
t ,
f
I
!
1
t

t
I

I,
I

I

OPERATING REFERENCE MANUAL

I

f·~ , <~ISOGON
~ CORPORATION

---- ---------- -'''"~~

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Publication

First Edition

Operating Reference Manual

Publishing History

Date Remarks

February 1974 This manual corresponds to Intercomm
Release 6.0. It incorporates and
supercedes documentation formerly in
the Intercomm Users Guide, now
obsolete.

Second Edition March 1983 General updates and additions
corresponding to Intercomm Release
9.0.

The material in
and confidential.
material without
Isogon Corporation

this document is proprietary
Any reproduction of this

the written permission of
is prohibited.

ii

PREFACE

Intercornm is a state-of-the-art teleprocessing monitor system
executing on the IBM System/370 family of computers and operating
under the control of IBM Operating Systems (MVS/370 and MVS/XA).
Intercornm monitors the transmission of messages to and from terminals,
concurrent message processing, centralized access to I/O files, and
the routine utility operations of editing input messages and
formatting output messages, as required.

Installing and maintaining an on-line system is a complex task
with many variables ranging from coordination of equipment delivery
and associated environmental planning to scheduling the implementation
of application programs which service users at remote locations. One
phase of this installation is implementing Intercornm, the on-line
system monitor which schedules and controls the operation of the
communications network, as well as the application programs that
process the traffic input from, and produce the output to, the
network.

This document provides guidelines for the installation,
maintenance and tuning of Intercomm, including an orderly breakdown of
responsibility for system definition, testing, and production
operation. It serves as a reference manual for systems personnel
responsible for the operation of the on-line system.

In this manual, the term MVS refers to both MVS/370 and MVS/XA.
A distinction (MVS/370 or XA) is made only when applicable. Also, the
terms OS or VS are interchangable with MVS; all imply the IBM
Operating System installed at the user's site.

The following Intercomm publications are prerequisite and/or
relevant to this document:

• Concepts and Facilities

• Installation Guide

• Basic System Macros

• Messa~es and Codes

• System Control Commands

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts . .::..and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler.LanguageProgr!1mmers Guide

COBOL Pro~mmers Guide

PLll ProgrammersuGuide

SYSTEM PROGRAM.'1ERS MANUALS

Basic System.Macros

BTAM Term:lI1.al . Support Guide

Installation.lGui~ .

Messages. aJld.Codes

Operatin.&.. Reference Manual

S~J;.g]L. Con tro 1 . Commands

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Daca Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Model System Generator

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

CUSTOMER INFORMATION MANUALS TCAH Support Us.ers Guide

Customer Education Course Catalog Utilities Users Guide

Technical Information Bulletins

User Contributed Program Description EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

iv

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1. 9.1
1. 9.2
1. 9.3
1.10
1.11

Chapter 2
2.1
2.2
2.2.1
2.3
2.3.1
2.3.2

2.3.3
2.4

2.4.1
2.4.2
2.4.3
2.5
2.6
2.6.1
2.6.2

Chapter 3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.3
3.3.1

TABLE OF CONTENTS

THE INTERCOMM ENVIRONMENT•. ~. 1-1
Introduction 1-1
Front End :. 1-2
Subsystem Controller 1-3
Queue Management Routines. 1-3
File Handler 1-3
Dispatcher ' :> .. , 1-4
Resource Management... 1-4
Utility Programs :. ::... . 1-5
Region Organization 1-6

Dynamic Program Loading ;....... 1- 7
Overlay Program Loading........................ 1-8
Asynchronous Overlay Loader.................... 1-8

Modes of Execution 1-9
Intercomm Tables 1-10

THE INTERCOMM OPERATIONAL SYSTEM : .•..•.•
Installation Overview
Libraries ~ ... ~. ; ..

Source Library Concatenation Sequence
J CL Procedures ~•.• ; c ••••.••

Step Names
JCL Procedures for Source Updates, Co~piles,'>

2-1
2-1
2--1
2-4
2-5
2-11

Assemblies, Linkedits 2-11
JCL Procedures for Utility Executions . ~:::,,: ',' ~''~2 -16

System Installation and Maintenance
Responsibilities•..... :: ... :',.-

The Intercomm System Manager(s)
The Application Group (s) ; ..
Central Location Operations

Standards
System Control Functions and Tables

System Global Tables (INTGLOBE, SETGLOBE)
System Control Tables

MESSAGE MANAGEMENT
Introduction _ .. .
General Message Flow

Input Messages
Output Messages
Message/Subsystem Cancellation Processing

Message Cancellation User Exit--USRCANC
Message Cancelled Condition
Subsystem Stopped Condition

The Front End Verb Table
Entries in The Verb Table

v

2:-19
2-20
2-21
2-21
2-21
2-23
2-24
2-28

3-1
3-1
3-2
3-2
3-3
3-5
3-5
3-6
3-6
3-7
3-7

3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.6.1
3.4.6.2
3.46.3
3.4.6.4
3.4.7
3.5
3.5.1
3.5 2

3.5.3
3.5.4
3.5.5
3.6
3.6 .. 1
3.6.2

3.6.3

3.6.4

3.7
3.7.1
3.72

3.7.3

3.7.4
3.8
3.8.1
3.8.2
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.9.4.1

Short Verbs
Priority Verbs
Locked Verb Facility
8onversationa1 Verbs
Separate Assemblies of Ve:cb 3.r.a Network Tables .
l)Jnamically :'oacing thE: Front End Verb Table

at Star tup
Back End Table Specifications for the Utilities .. .

Station Table
Device Table
Q,:C'oadcas t Table
Message Mapping UtilitIes Requirements
Edit Utility Requirements
Output Utility Requiremencs

Adding O;;.f.:Pllt Format ':ab1e Entries
Error Messages from the Output Utility
Output User Exit--USROTEDT
Output Unl~r Exit- -USROTJTCK

Change/D:i.:~!Jlay Utility R'}'iuil:ements
Message Processing Facilities

Me.s,sage Sw;.t'.:lling ,
Multi-Messflgrl Queuing via the Dynamic

Data QueuLng Facility
Front End Control Message Facility
Page Facility

. Intermediate Message Data Storage
The System Parameter Area (SPA)

System Parameter List (SPA Csect)
User Extension tfl thf~ System Parameter

List (USERSPA)
Int.en:omm Extension to the System

Parameter. List (SPAEXT Csect)
Separate As£;emb1y of the SPA and

the 5:p'AEX7 Csects
The S'lhsystem Coutrol Table (SCT)

Coding SuhsY!Jtf>m Control Table (SCT) Entries .. .
Coding Subsy~lem Control Table Indices

(GENINDEX)
Coding Overflow Disk Queue Allocations

(PCENSCT) ., ... ,
Adding a Subsy!'tern

Subsystem Processing Specifications
Subsystem Queue Specifications
Scheduling and Concurrent Processing Limits

Subsyst:9ID Residency Considerations
Subsy::; tenr Rec:ntrancy
Resident Subsystems
Overlay A and Execution Group Subsystems
Dynamically Loaded Subsystems

Subsystems Residing Above the 16 Meg Line

vi

3-11
3-11
3-11
3-12
3-13

3-13
3-14
3-15
3-15
3-16
3-17
3-17
3-19
3-20
3-21
3-22
3-22
3-23
3-24
3-24

3-24
3-25
3-26
3-26
3-26
3-27

3-27

3-27

3-27
3-28
3·31

3-35

3-35
3·35
3-36
3-36
3-37
3-37
3-38
3-38
3-38
3-40
3·42

L 3.9.5
3;9.6

3.10
3.10.1
3.10.1.1
3.10.2

3.10.3
3.10.4
3.10.4.1
3.10.5
3.11
3.11.1
3.11.2

3.11.3
3.11.3.1
3.11.3.2
3.11.3.3
3.11.4
3.11.5
3.12
3.12.1
3.12.2
3.13

Chapter 4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.6.1
5.7

5.7.1
5.7.2

Dynamic Linkedit Facility
Subsystems Assigned to Overlay Region B,

C or D
Subsystem Interfaces and Linkedit Considerations .

COBOL Subsystem Interfaces
COBOL Subsystem Linkedit Considerations

COBOL Subsystem Initialization/Termination
User Exits•........

VS COBOL I I Support
PL/1 Subsystem Interfaces ~

PL/1 Subsystem Linkedit Considerations
FORTRAN Subsystems

Subroutine Interfaces and Linkedit, Considerations.
Resident Subroutines
Subroutines Linked with Dynamically

Loaded Subsystems '
Dynamically Loaded Subroutines> .. ;

Loading Subroutines Above the 16meg Line
Application Programming Conventions ' ..
Implementation

Transient Subroutine Overlay Region (Tr~N)
Subroutine Overlay Region (SUB)

Generalized Subtasking
Special Subtasks "
Implementation ;

Time Controlled Message Processing

TASK MANAGEMENT
Dispatcher and Related Service Routine~
Dispatcher Queues

Defining the Number of Task Queue Elements
IJKPRINT-Output to SYSPRINT
IJKTRACE-List Dispatcher Queues
IJKCESD--Initia1ize Csect/Entry Tables
IJK~·lHOIT- -Find Csect/Entry and Subsystem Names .
IJKDELAY--Request Time Delay
IJKTLOOP--Trace Program Loop

RESOURCE MANAGEMENT
Introduction
Resource Auditing and Purging
User-Defined Storage Pools•..................
Core-Use Statistics ~
Storage Cushion ' '
Resource Management Modules and Globa1s

Obtaining a Save Area with Resource Management .
Installing Resource Management with Core-Use

Monitoring and Pools•................
SETGLOBE Settings , '
SPALIST Parameters•..........

vii

3-42

3-44
3-47
3-47
3-48

3-49
3-51
3-52
3-54
3-55
3-55
3-55

3-56
3-56
3-57
3-57
3-58
3-59
3-61
3-62
3-62
3-63
3-64

4-1
4-1
4-1
4-1
4-2
4-2

4-10
4-10
4-11
4-12

5-1
5-1
5-1
5·2
5-2
5-3
5-3
5-'4

5-6,'
'5~6

5-6

5.7.3
5.7.3.1
5.7.4
5.7.5
5.7.6
5.7.7
5.8

5.B.l
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.9
5.9.1
5.9.2

5.9.3

Chapter 6
6.1
6 ')
6.2.1
6.2.2
6.2.3
6. '2. Lj.
6 .'. c: .i:..J

6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.2.15

6.2.15.1
6.2.15.2
6.2.15.3
6.2.15.4

6.3
6.3.1
6.3.l.l
6.3.2
6.3.2.1

Defining the Intercomm Pools (ICOMPOOL)
Dynamically Loaded Core Pools

Specifying Core Block Detail Statistics
Linkedit
Execution
Sarr.ple Ou~put

Installing Resource ManagemeEt with Resource
Audi t and Purge
SETGLOBE Settings
SPALIST Parameters
Macro Specifications
Linkedit
Enqueue-Dequeue Facility
Thread Hung User Exit--IOEXIT

Debugging Aids--Thread Resource and Pool Dumps .. .
The Thread Resource Dump
Status of Intercomm Administered Storage

(Pool Dump)
Finding the Dynamically Loaded Pools

FILE HANDLER SPECIFlCATIONS
Intrccuction
Access Methods

QISAM via BISAM
VSAM anc VSAM/lSAM Compatibility
lAM
Exclusive Control
Dyr.arr.ic Buffering
Overlapped GET and READ/WRITE Processing
Creatir.g and Defining lSAM Files
Undefined Record Support
Variable Length Sequential File Support
Sequential Output Disk File Flip-Flop Facility .
Flip-Flop User Exit--USERB37E
File Recovery
Dynamic File Allocation Facility
On-line File Control Commands
Dynamic Deallocation and Reallocation via

File Command
Retry of ALLOC or DEALL After Error
SubtaskLlg of DYNALLOC Macro
Status of Files While Deallocated
Deallocation/R~allocation of SMLOG and

SYSPRINT
VSAM File Support

Using a VSAM Local Shared Resources Pool
Connecting Data Sets to the LSR Pool

Sharing VSAM Files Under Intercomm
Implementation for Sharing VSAM Files

Across Regions

viii

5-7
5-9

5-10
5-10
5-11
5-11

5-16
5-16
5-16
5-17
5-19
5-19
5-20
5-21
5-21

5-27
5-27

6-1
6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-6
6-6
6-6
6-7
6-8
6-9
6-9
6-9

6-10
6-12
6-13
6-13

6-13
6-14
6-15
6-16
6-16

6-17

J

6.3.3
6.4
6.4.1
6.4.l.l
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.5
6.5.1
6.5.2
6.5.3
6.5.4

6.5.5
6.5.6
6.5.7
6.6
6.6.1
6.7
6.8
6.9
6.9.1
6.9.2
6.9.3
6.9.4
6.9.5
6.10
6.10.1
6.10.2

6.11
6.11.1

Chapter 7
7.1
7.2
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.4.3
7.5
7.5.1

ISAMjVSAM Compatibility Under Intercomm
File Handler Components

Data Set Control Table (IXFDSCTA)
Defining the Data Set Control Table

File Handler Initialization (IXFMONOO)
File Attribute Record Processing (IXFFAR)
File Handler Processing (I XFMONO 1)
QISAM Scan Mode via BISAM (IXFQISAM)
File Handler Termination (IXFMON09)
Sequential Output File Abend Control (IXFB37) ..
VSAM Cross-region Shared Control (IXFVSCRS)

Data Set Specifications
Required DD Parameters
Required DCB Par.ameters
Read-Only Data Sets
Shareability of Sequential Data Sets

(QSAM/BSAM)
. Data Set Disposition

SYSIN/SYSOUT Data Sets
Reserved ddnames

File Attribute Records (FAR)
Coding the FARs

File Handler Service Routine Summary
Locate Facility
File Handler Options

Exclusive Control Time-Out
Conditional Assembly of the File Handler
Subtasked GETs
IXFDSCTA Options
User-Specified DCBs ,

File Handler Statistics Report ... "
File Handler LSR Statistics
Creating the File Handler Statistics

File (STATFILE) ,
Using the File Handler Separately from Inlercomm .

Using the File Handler in LIN~PACK for
Batch Programs

EXECUTION OF INTERCOMM
Introduction
Generating Linkedit Control Statement8
The Intercomm Linkedit

Linkage Editor External Symbol Table Overflow ..
Linkage Editor Parameters

Execution JCL
Global WTO and MCS Routing
STEPLIB or JOBLIB Requirements
DD Statement Requirements ,

System Startup
Preliminary Startup User Exit--USERINIT

ix

6-18
6-19
6-19
6-21
6-21
6-22
6-22
6-22
6-23
6-23
6-23
6-24
6-24
6-25
6-26

6-26
6-27
6-27
6-27
6-29
6-31
6-36
6-39
6-41
6-41
6-41
6-42
6-43
6-43
6-46
6-48

6-50
6-51

6-52

7-1
7-1
7-2
7-2
7-3
7-3
7-4
7-5
7-6
7-6
7-8

7-12

7.5.2
7.6
7.6.1
7.6.2
7.6.3
7.7
7.7.1
7.7.2
7.7.3
7.8
7.9
7.9.1
7.9.2
7.9.3
7.9.4
7.9.5
7.9.6
7.9.7
7.9.8
7.10
7.11
7.12
7.12.1
7.12.2
7.12.3
7.12.4
7.12.5
7.12.6

7.i2.7

Chapter 8
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.3
8.3.l
8.3.2
8.3.3
8.1+
8.4.1
8.5
8.6
8.6.1
8.6.2

Startup User Exits--USRSTART/USRSTRTI
System C1osedown

C1osedown Statistics
C1osedown Time Limit
Closedown User Exits--USRCLOSE/USRCLSE1

Live Operation
Intercomm Dispatching Priority
Execution JCL
Low-Core Condition--SSPOLL

Intercomm Quiesce
NVS Operation

Page Pre loading
Page Fixing
MVS Installation
MVS/370 Installation
Linkedi t Ordering
MVS/370 Sy~teI!1 Tuning Considerations
Subsystem Considerations
MVS SYSGEN Considerations

XA Installation and Recommendations
Intercomm Interregion SVC--&MRSVC
Intercomm Link Pack Feature

Preparation of the Operating System
Preparation of the Link Pack Module (LPM)
Preparation of Intercomm Region (IR)
User Routlnes in the Link Pack Area
Coding Conventions for User LPM Routines
Entry Point Specifications for User

LPM Routines
Accessing LPM Modules in Batch Mode

INTERCOMM FACILITIES
Introducti0n
Terminal Simulator Facility

Terminal Input Data Set(s)
Input Parameter Data Set
Input Operations
Output Operations
Local 3270 Message Preparation and Processing ..
Simulator Closp.down

Abend Intercept Routines--SPIEEXIT, STAEEXIT
SPIEEXIT
User SPIESNAP Exit--SPSNEXIT
STAEEXIT

Indicative Dump Option
User Snap Exit--SNAPEXIT

System DCBs
Spinoff Snaps

Implementation
User SPINOFF Snap Exit--SPINEXIT

x

7-12
7-13
7-13
7-16
7-16
7-17
7-17
7-17
7-17
7-20
7-21
7-22
7-22
7-22
7-24
7-25
7-27
7-27
7-28
7-28
7-30
7-31
7-34
7-34
7-35
7-36

, 7 -37

7-38
7-39

8-1
8-1
8-1
8-2
8-3
8-3
8-4
8-4
8-5
8-5
8-6
8-6
8-6
8-7
8-9

8-10
8-10
8-11
8-12

l 8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.9
8.9.1
8.9.2
8.10
8.11

Chapter 9
9.1
9.2
9.3
9.3.1
9.3.2
9.4
9.4.1
9.5
9.5.1
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.7
9.7.1
9.8
9.8.1
9.9

Chapter 10
10.1
10.2
10.2.1
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.4
10.4.1

Fast Snap Facility
Restrictions
Prerequisi tes
Operation
Printing the Fast Snap--IMDPRDMP

System Accounting and Measurement (SAM) Facility .
Specifying System Resource Usage Categories
Specifying User Accumulators
SAM User Exit Routines--USRSAMnn
Implementation '
Reports from System Accounting and Measurement .

System Tuning Statistics
Reports from System Tuning Statistics
Implementation

Log Input Facility
Test Mode Operation

LOGGING, SYSTEM RESTART, MESSAGE RECOVERY .. "
Introduction
System Failure and Recovery
Message Restart Concepts

Mandatory and Desirable Conditions
User Responsibility in Restart

System Logging :
Logging User Exit--USERLOGE

System Checkpoints
Checkpointing User Exit--USRCHKPT

Restart/Recovery
The Restart Process
Message Accounting
Message Restart Logic
Message Restart User Exit--USRESTRT

Implementation
Concatenation of Disk Log Files for Restart

Serial Restart
Serial Restart User Exit--USRSEREX

Automated Restart

SYSTEM SECURITY IMPLEMENTATION
Introduction
Basic Security Processing Options

Security Processing Logic
Sign-on/Sign-off Security

Using a Sign-on/Sign-off Terminal
Sign-on/Sign-off Processing
SPALIST Macro Parameter
SYCTTBL Macro Parameter
User Exits for Sign-on/Sign-off Security

Transac tion Security
Using Transaction Security

xi

8-13
8-13
8-13
8-14
8-14
8-15
8-15
8-18
8-18
8-19
8-20
8-23
8-23
8-23
8-25
8-27

9-1
9-1
9-1
9-2
9-2
9-2
9-3
9-7
9-8
9-9

9-11
9-11
9-12
9-12
9-14
9-15
9-19
9-20
9-21
9-24

10-1
10-1
10-2
10-2
10-5
10-5
10-6
10-6
10-7
10-7
10-8
10-9

10.4.2
10.4.3
10.5
10.5.1

10.5.2
10.5.3

10.5.4
10.5.5
10.5.6

10.5.7

10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.7

Chapter 11
11.1
11.2
11.2.1
11.2.2

11.2.3
11.3
11.4
11.4.1
11.4.2
11.4.3
11.1+.4
11.4.5
11.4.6
11.4.7
11.4.8
11.5
11.6
11.6.1
11.6.2
11.6.3
11.6.4

11.6.5

11. 7
11.8
11.9

SPALIST Macro Parameter
SYCTTBL Macro Parameter

Coding the Station Table
Structure of the Station Table with Security

Processing
GENSEC Macro
SECVERBS Macro and STATION Macro/VERBS

Parameter
STATION MacrofUNIVER and OPER Parameters
Other STATION Macro Parameters in PMISTATB
Definition of Range of Verbs per Terminal for

Transaction Security
Loading Operator Codes on Disk for Station

Security Option
Implementation of User-Written Security Routines .

Coding Security Subroutines
SPALIST Macro Parameter
SYCTTBL Macro Parameter
Security Table
Linkedit Requirements

Mu1tiregion Intercomm Considerations

SYSTEM TUNING TECHNIqUES
Introduction
System Tuning and Performance Evaluation

System Tuning Facilities
System Pe.rformance Evaluation and Statistics

Reports
System Statistics Displays

Tracing a Message on the Log
Factors Affecting System Performance

Subsystem Program Logic
Subsystem Residency and Scheduling Parameters ..
Subpoo1 Space and Scheduling Criteria
Subystem Queuing Parameters
Front End Parameters
Data Set Allocation
System Log Specifications
Additional Execution Considerations

The Fine Tuner Commands
Response Time Considerations

Execution Considerations
Transmission Considerations
Queue and Log Processing
Dispatching Priority and Subsystem

Considerations
Main Storage Usage, Statistics, and Dump

Processing Considerations
MVS Tuning Recommendations
Debugging and Tracing Facilities
Summary

xii

10-9
10-10
10-10

10-10
10-11

10-11
10-14
10-14

10-15

10-17
10-18
10-18
10-19
10-19
10-19
10-20
10-20

11-1
11-1
11-1
11-2

11-2
11-3
11-3
11-6
11-7
11-7

11-10
11-12
11-13
11-14
11-14
11-15
11-15
11-17
11-17
11-18
11-18

11-18

11-19
11-19
11-23
11-24

-L

Chapter 12
12.1
12.2
12.3
12.3.1

12.4
12.4.1
12.4.2
12.4.3
12.4.3.1
12.4.3.2
12.4.3.3
12.4.3.4
12.4.4
12.5
12.5.1
12.6
12.7
12.8
12.9
12.10
12.10.1
12.10.2
12.11
12.12
12.13
12.14

12.15
12.15.1

Appendix

Appendix

Appendix

Appendix
D.1
D.2
D.3

INDEX

A

B

C

D

OFF-LINE UTILITIES
Introduction
Log Processing Programs
Intercomm Log Display (LOGPRINT)

Description and Function of Control Records
(SYSIN)

Log Analysis Program (LOGANAL)
Traffic Histograms
Response Time Reports
Installation of LOGANAL

LOGANAL Generation Parameters
Changing LOGANAL Generation Parameters
Generating the LOGVRBTB
Creating the LOGANAL Load Module

Execution of LOGANAL
The File Load Program (PMIEXLD)

Partial File Load
BDAM File Creation (CREATEGF)
OPSCAN -- Scan for Program Operation Codes
PRT1403 -- Print Output Utility Batch Reports
LIBCOMPR -- Symbolic Library Compare
Utility Programs to Create Input Test Data

CREATSIM Program
SIMCRTA Program

Create Keyed BDAM File (KEYCREAT)
ICOMFEOF - Recover from Missing End of File
CHANGER--Produce Change Deck from Two PDS Members.
AUTORSET--Initia1ize Automated Restart

STRTUPSW File
LOGMERGE--Merge Intercomm Log Data Sets

LOGMERGE User Exit--LOGMERGX

12-1
12-1
12-1
12-1

12-3
12-8
12-8

12-11
12-16
12-16
12-18
12-18
12-19
12-19
12-24
12-28
12-30
12-32
12-33
12-34
12-35
12-35
12-38
12-39
12-40
12-42

12-43
12-44
12-46

INTERCOMM TABLE SUMMARy.................... A-1

INTERCOMM MESSAGE HEADER. B-1

USER CODING OF THE SCT OVERLAY INDEX............... C-1

INTERCOMM USER EXITS D-1
Introduction D-1
Coding Conventions D-1
List of User Exits '....... D-2

1-1

xiii

LIST OF ILLUSTRATIONS

Figure

2-1 Intercomm JCL Procedures 2-6

2-2 JCL Procedure Parameter Summary 2-8

2-3 Intercomm Global Tables 2-23

2-4 INTGLOBE 2-24

2-5 SETGLOBE 2-26

2-6 Intercomm Tables with User COPY Members 2-28

3-1 Front End/Back End Communication via Message Queues .. 3-4

3-2 Released BTVRBTB 3-8

3-3 The System Control Components 3-28

3-4 Creating the System Parameter Area and SCT 3-29

3-5 INTSCT Coding of Intercomm Subsystems 3-30

3-6 . Sample Coding of INTSCT with an Overlay Structure 3-32

3-7 Intercomm-Supplied Subsytems 3-34

3-8 Sample Linkedit Statements for Overlay Region A
Subsys terns .. . 3-40

3-9 REENTSBS Release Version 3-50

3-10 PL/l Subsystem Interface Options 3-52

3-11 Dynamically Loaded PL/l Subsystems 3-52

3-12 Illustration of Nested CALLOVLY Coding Conventions 3-60

3-l3 Using CALLOVLY in an Assembler Language Interface
for a High-Level Language Program 3-60

xv

Figure

4-1 IJKTRACE - Csect/Modu1e Name Correspondence Table 4-6 J
4-2 Sample IJKTRACE Listing 4-7

5-1 Obtaining a Save Area via the STORAGE Macro 5-5

5-2 Example of Core-Use Statistics 5-13

5-3 Sample Thread Resource Dump 5-24

5-4 Sample Pool Dump 5-28

6-1 File Handler Components 6-20

6-2 File Handler Service Routine Parameter Summary 6-37

6-3 IXFDSCTA Options 6-43

6-4 Sample User-Supplied DCB 6-45

6-5 File Handler Statistics Report 6-46

7-1 Using LKDEP Procedure to Generate Intercomm Load
Modt:.1e .. .

7-2 C1osedown Subsystem Activity Report

7-3 J
7-14

7-3 C1osedown Subroutine Activity Report '" 7-15

7 -4 Typical Live Execution JCL 7-18

7-5 LINEGRP, BLINE Sequence and JCL for Remote Terminals. 7-19

7-6 BLINE, BTERM Sequence and JCL for Local Terminals 7-19

7-7 Link Pack Module Working in Conjunction with Several
Intercomm Regions 7-32

7-8 Applicable Intercomm Components for LPSPA/LPINTFC
Macro 7-33

7-9 Re1inkediting Intercomm Region for Link Pack Feature 7-36

7-10 Frequent Uses of System Parameter Area and SPA
Extension in User LPM Routines 7-38

xvi

Figure

8-1

8-2

8-3

8-4

8-5

8-6

8-7

8-8

8-9

9-1

9-2

10-1

~
10-2

11-1

12-1

12-2

12-3

12-4

12-5

12-6

12-7

Page

Areas Displayed by Indicative Dump................... 8-8

Listing of PMIDCB (as released) (DELETED)

Sample JCL for Spinoff Snaps....... 8-12

Resource Usage Categories " 8-16

SAM Report Execution PARM Values........ 8-21

System Accounting and Measurement Report Sample 8-22

Sample Report from System Tuning Statistics.......... 8-24

Test Mode Input Card Formats............ 8-28

Sample Test Mode JCL 8-30

INTERLOG Entries 9 - 5

Checkpoint Data 9 -10

Security Processing Logic 10-4

Summary and Use of SECVERBS and BTVERB Macros 10-13

Tracing Messages on INTERLOG 11-5

Sample Output from LOGPRINT Utility.................. 12-2

JCL for LOGPRINT Execution........................... 12-3

Sample Histogram for a Terminal...................... 12-9

Sample Response Time Analysis 12-13

Sample JCL for Execution of LOGANAL 12-23

JCL to Create PMIEXLD 12-24

Sample File TAble (PMIFILET) 12-25

xvii

Figure Page

12-8 JCL for File Load Program Execution 12-26 J
12-9 Conventions for Disk-Resident Tables for the

Utilities .. . 12-27

12-10 Example of CREATEGF JCL and Control Cards 12-32

12-11 JCL to Create Load Module for PRTl403 Utility 12-33

12-12 JCL to Execute PRT1403 Utility Load Module 12-33

12-13 Sample JCL to Execute LIBCOMPR 12-34

12-14 SIMCRTA Linkedit and JCL 12-38

12-15 KEYCREAT Execution JCL 12-39

12-16 ICOMFEOF Execution JCL 12-41

C-1 User-Coded Subsystem Control Table Index Structure .. C-3

xviii

Chapter 1

THE INTERCOMM ENVIRONMENT

1.1 INTRODUCTION

The Intercomm on-line teleprocessing monitor may be utilized on
the IBM System/370 (and compatible) family of computers (including
30xx, 43xx, etc.) and executes under the control of the IBM System/370
Multiple Virtual Storage system (MVS/370 or MVS/XA). With anyone of
the operating systems, any number of concurrent independent jobs may be
submitted and executed while the Intercomm system is operating.

Intercomm operates as a job in a multiprogramming, multitasking,
time and event dependent environment. Any number of applications may
be concurrently executed under the control of the Intercomm monitor;
any number of terminals, types of input, application programs, and file
access methods may be used.

Application programs executing under Intercomm may be written in
any of the System/370 compiler languages: Assembler Language, COBOL,
PL/l, or FORTRAN. The user can also convert from a batch processing to
an on-line environment without having to totally rewrite application
programs.

Intercomm is a table-driven system; that is, operating
specifications are described to the system in the form of tables.
Thus, Intercomm components are individual routines coded in generalized
form where applicable, utilizing table entries for execution
requirements. The application programmer is generally not concerned
with these table entries, but is responsible only for the problem
solving logic. All message routing, time-sharing, message mix, and
communication functions within Intercomm are, in general, transparent
to the application programmer.

The prerequisite publication to this document, Intercomm Concepts
and Facilities, describes the general system logic of an Intercomm
environment. In this section, a brief review is provided of the major
system components, region organization, modes of execution, and
user-specified tables.

An Intercomm system consists of user-coded application subsystems
(message processing programs) and the following Intercomm components:

• Front End Teleprocessing Interface
System programs responsible for all operation of the
telecommunications network.

• Subsystem Controller
System programs responsible for all scheduling, loading and
activating of message processing subsystems.

1-1

Chapter 1

•

The Intercomm Environment

Queue Management
System programs controlling queuing and retrieval of messages
waiting for processing or transmission.

• File Handler
System programs exercising centralized control over all
Operating System data management functions.

• Dispatcher
The multithreading control routine that schedules use of the
CPU among concurrently executing tasks.

• Resource Management
System programs provided to ensure efficient main storage
management and control over system resources in the event of
program failure.

• Utility Programs

•

System programs provided to simplify design and implementa
tion of application programs and message processing logic.

System Control Routines
Optional system programs providing logging (journaling),
restart/recovery, system control transactions, a
comprehensive dynamically controlled security environment,
debugging and tuning aids, program error interception, system
reliability, etc.

1. 2 FRONT END

This component of Intercomm controls all teleprocessing functions
of the system. An on-line installation may optionally utilize one or
more of the following Teleprocessing Interface components:

• The Intercomm BTAM Front End, a conditionally assembled,
table-driven series of programs providing efficient interface
to a wide variety of terminals through IBM's Basic
Te1ecommunicatons Access Method.

• The Intercomm TCAM Interface to a Message Control Program
operating in a separate region where all line control
func t ions are performed according to macro - generated
specifications for IBM's Telecommunications Access Method.
The Extended TCAM support provides interface to TCAM process
and destination queues via the BTAM Front End.

• The Intercomm VTAM
control region and
devices.

Front End, communicating
interfacing with both

1-2

with
SDLC

a VTAM
and BSC

Chapter 1 The Intercomm Environment

• A user-supplied interface to nonsupported devices implemented
by the Generalized Front End Interface of the BTAM Front End.

1.3 SUBSYSTEM CONTROLLER

The Subsystem Controller interacts with the Teleprocessing
Interface via the queue management routines to control all message
processing within the on-line system. It directs incoming messages to
the proper application programs, schedules and loads nonresident
subsystems as required.

The Subsystem Controller optimizes dynamic loading of subsystems
and/or program swapping (overlay management) to increase throughput,
and diagnoses application program errors to provide an uninterrupted
on-line operation.

Subsystem Controller processing is governed by user-varied tables
specifying the message routing structure and variable processing
factors which can be adjusted to maximize throughput.

1.4 QUEUE MANAGEMENT ROUTINES

Message queues are the prime interface between the Front End (TP
Device Control) and Back End (Message Processing Control) components of
Intercornrn. Input messages are queued for processing by subsystem;
output messages are queued for transmission by logical unit, terminal,
line, or user-specified discipline. Messages may be queued in main
storage and/or on disk at the user's option. Disk queues are
wraparound, reuseab1e BDAM data sets. A queue is a logical entity; one
phys ical data set may be shared for several queues. The queue
management routines are service routines utilized by both system
programs and application subsystems.

1.5 FILE HANDLER

By processing all on-1 ine fi 1es through a single module,
Intercomm eliminates duplication of I/O routines, control blocks and
buffers in application programs. It also eliminates the highly
wasteful opening and closing of data sets for each message
processed- -files are opened only once per day (or shift). In concert
with the Dispatcher, tasks that access files are maximally overlapped
with other tasks (processing threads) requiring CPU time.

1-3

Chapter I The Intercomm Environment

All data set organizations (sequential, direct, indexed) and
processing techniques (by logical record, by physical block, keyed
access, random access) are available to programs written in any
language. Comprehensive diagnostics for on-line security and I/O error
analysis are provided, as well as write-protection of master files.

Exclusive control of individual records or blocks within files,
recommended where simultaneous updating could occur, is also provided
as one of the File Handler's functions, and, via an exclusive control
time-out, those records held beyond a specified time limit may be
released from exclusive control.

1.6 DISPATCHER

The Intercomm Front End Teleprocessing Interface, the Subsystem
Controller and the File Handler create multiple independent threads
(parallel program paths for parallel message processing) using the
Dispatcher, which allocates and overlaps CPU time among any number of
concurrent work requests, and establishes any number of concurrent
real- time clocks. This is achieved within a single Operating System
task, thus obviating the need for a multitasking operating system and
formal dynamic program linkage through the Supervisor. The Dispatcher
also assists in overlay management and dynamic program management under
direction of the Subsystem Controller.

1.7 RESOURCE MANAGEMENT

The Resource Management facilities of Intercomm provide efficient
storage management techniques, unless specifically bypassed by the
user. Additionally, a storage cushion feature is available to serve as
a protection against a temporary shortage of main storage. The cushion
(of user-selected size) is an area gotten from subpool zero at startup
and held, but not used, until a request for dynamic storage cannot be
satisfied. At that point, the cushion is returned to subpool zero and
used to satisfy storage requests for messages currently in progress.
No new message processing is started until reduced storage demands, as
messages are completed and transmitted, allow the cushion to be
reacquired by the monitor. The impact of a noncritical shortage of
dynamic storage is therefore avoided. Resource Management options are
described below and may be used singly or in combination with each
other.

1-4

J

Chapter 1 The Intercomm Environment

The resource auditing and purging option provides a chain of
control blocks built for every active program thread. These blocks
correspond on a one-to-one basis with resources acquired by the
program. Resources may be areas of storage, files, or any facility
subj ect to ownership. Purging is accomplished by freeing unreleased
resources, represented by the control block chain, for a program thread
when the thread normally or abnormally completes. A thread resource
dump (TDUMP) is provided as an audit utility to print out control block
chains, showing which thread is in control of what unreleased
resources, through which module the resources were obtained and in what
order acquisition occurred.

As an adjunct to audit/purge or as an independent option, the
creation of main storage pools, which section a contiguous area of
storage into specified block sizes, is offered with Resource
Management. Storage pools are generated by a macro which defines the
size and number of pools, and the number of blocks within each pool to
be generated to fit user requirements. The pool option not only
manages storage allocation to eliminate fragmentation problems but
furthermore, through indexed access to the pools, provides a
significant increase in the speed with which storage may be obtained
and freed, owing to the elimination of GETMAIN and FREEMAIN SVCs.

The third option consists of two distinct sets of core-use
statistics: global and detail. Inclusion of either set may be made
without reference to the other. The global statistics present such
information as the number of requests for storage and requests to free
storage, the average storage request length, and the number of requests
filled from the pools. Detail statistics consist of the breakdown of
storage requests into size ranges. The primary purpose of the detail
statistics report is to provide sufficient statistics from actual
system usage so that an effective selection of the number and sizes of
pool blocks may be made at an installation.

1.8 UTILITY PROGRAMS

In addition to the File Handler, a number of on-line utility
functions are provided to ease programming of application subsystems
and to centralize control of such functions. The interface is via
standard call logic in the subsystem. These facilities include:

• Me s sage Mapp i ng Ut i Ii ties - - device - independent message
editing, formatting, and output routing

• Store/Fetch--temporary data string storage and retrieval

• Dynamic Data Queuing--transient queues of data strings, file
records, or messages

• Page Browsing- -collections of output messages for paging
access from a CRT device

1-5

Chapter 1

•

The Intercomm Environment

Dynamic File Allocation--allocate (SAM) and/or access (SAM or
VSAM) data sets not defined explicitly via JCL.

• In-core Table Sort- -via called subroutine described in the
Programmers Guides.

Additionally, the EDIT, OUTPUT, DISPLAY and CHANGE Utilities
provide alternate means of message and file record processing. EDIT
strips the incoming message of TP control characters and provides for
complete field-by-field editing of the input message. It also performs
keyword parameter analysis. OUTPUT supplies device-independent output
capabilities to application programmers. DISPLAY allows a remote
operator to display an individual file record (for BDAM, ISAM or VSAM
files) in a fixed character format on his terminal. CHANGE allows the
operator to modify selected fields in a file record obtained by
DISPLAY.

1.9 REGION ORGANIZATION

At execution time, the Intercomm region (address space) consists
of system programs, tables, and message-processing subsystems.

• Resident Intercomm routines
Thes.e routines are required constantly for Intercomm
functions and must be resident. Residing in this required
area is the Intercomm nucleus, that is, such routines as the
Subsystem Controller and Dispatcher.

• Resident tables
Certain tables are necessarily resident in that they specify
actual control functions of Intercomm. For example, the
System Parameter Area (SPA) describes systemwide
characteristics. Resident tables share the Intercomm nucleus
with resident routines.

• Resident subsystems

•

Frequently used subsystems and subroutines should remain in
main storage. Whether a program is resident is a factor in
good planning and can provide for both maximizing system
throughput and minimizing individual transaction response
time.

Nonresident subsystems: dynamically loadable
Nonresident subsystems and subroutines can be defined as
dynamically loadable into main storage. These programs are
loaded on an as-required basis. Reuseable subsystems remain
resident until message traffic ceases or prescribed message
processing limits are reached (if storage needed for other
processing), and nonreuseable subsystems are reloaded for
every message processed. Dynamically loaded subsystems
eligible for loading above the l6meg line under XA remain
loaded unless a program problem, or reload request, occurs.

1-6

Chapter 1 The Intercomm Environment

l. 9.1

• Nonresident subsystems: planned overlay structure
The Intercomm region may contain one or more overlay regions:
Overlay A,B,C,D. The first region therein, Overlay A, has
special characteristics in that groups of subsystems are
loaded to process messages concurrently. Overlays B,C,D are
utilized for single-thread, noncritical message-processing
subsystems. The sequence of overlay load is based on message
traffic and scheduling criteria.

• Nonresident service routines
Service routines that may be nonresident are those not called
frequently. When required, they are loaded into the
transient overlay area of the Intercomm region. If an
overlay structure is not defined, all Intercomm service
routines must be resident in the Intercomm region, or in the
Intercomm portion of the Link Pack Area.

• Nonresident table entries
Infrequently used table specifications, for example, message
formats for the Message Mapping and Output Utilities, can be
contained on disk and loaded when needed.

• Dynamic Subpool Area
This is the areas of main storage that are obtained
dynamically (as needed) for loading Intercomm or user
routines or tables. The subpool area is dynamic in that the
composition varies and areas are assigned, or released and
made available for reuse, as soon as the monitor determines
that the area is no longer needed.

Dynamic Program Loading

Nonresident subsystems and subroutines are loaded into the
dynamic subpool area during ongoing execution of the Intercomm region
via the dynamic load facility which interfaces with an asynchronous
loader task. Programs are expeditiously loaded on demand, according to
arrival sequence of incoming message traffic. A loaded subsystem
remains resident until a maximum of messages is processed (limit
specified by the Subsystem Control Table), or until message traffic
ceases.

Once loaded, any subsystem defined as reuseable or reentrant is
left resident in the dynamic area and rescheduled as needed, as long as
the storage it occupies is not required for a subsequent subsystem load
during an unscheduled interval. A nonreuseable subsys tern will be
reloaded for every message. Within this framework any
reuseable/reentrant subsystem processes more than one message, if
queued.

1-7

Chapter 1 The Intercomm Environment

A BLDL, or load list, area may optionally be requested for each
dynamically loaded program. Although load list specification increases
the size of the associated resident Intercomm tables, it provides for
faster loading and is recommended for frequently used programs.

The predefined maximum amount of storage useable for concurrently
loadab1e subsystems (below the 16meg line under XA) can be varied while
Intercomm is operational via a system control command. The load module
used for a dynamically loaded program may be reloaded via a system
control command to allow replacement of that program during Intercomm
execution. Dynamic Linkedit, an optional feature, resolves external
references between loaded and resident programs at startup and when a
replacement program copy is loaded by command.

1. 9.2 Overlay Program Loading

Loading of subsystems may be controlled by the Intercomm Overlay
Management scheduling facility, in which case subsystems are 1inkedited
as overlay region segments and loaded according to a prep1anned
structure and sequence. As with dynamically loadab1e subsystems, the
sequence of subsystem load is dictated by message traffic.

1. 9.3 Asynchronous Overlay Loader

The Intercomm Overlay Loader is an asynchronous mUltiprogramming
interface between Intercomm and the MVS Overlay Supervisor that allows
Intercomm to coordinate the loading of programs asynchronously with the
execution of other Intercomm threads. This prevents Intercomm from
being placed in a wait state by the Overlay Supervisor, while still
allowing full use of overlay facilities.

When multiple messages for subsystems in more than one overlay
area require concurrent loading of multiple regions, they are
automatically queued by being dispatched on one of the communications
Event Control Blocks (ECB) between the two tasks. This technique
permits resident subsystems and those active (already loaded) overlay
areas to continue processing.

The Intercomm Overlay Loader allows greater versatility than an
independent loader--due to the power of the MVS Overlay Supervisor, and
at the same time provides full processing overlap.

1-8

J

J

Chapter 1 The Intercomm Environment

1.10 MODES OF EXECUTION

Mode of execution in the Intercornm environment pertains to
operation with or without on-line terminals and to operation with or
wi thout consideration for previous execution ("cold" vs. "warm"
start) . Further, reference may be made in this document to operation
in the production environment or testing environment. The Intercomm
mode of execution is determined by parameters specified via JCL to
indicate whether or not terminals are operational or whether or not
restart functions are to be performed. The actual application
subsystems executed to process messages are unaffected by the
production or testing status of the system.

Intercornm operates in Test Mode in three ways: via message
processing in a batch mode; or via time-oriented simulation of
terminals whereby disk data sets of input messages exist for each
terminal simulated; or with a combination of live and simulated
terminals. These three types of test facilities are provided without
any changes to the user application program(s) being tested.

Batch Test Mode allows for input of transaction data at system
startup time through SYSIN. Those transactions are then queued and
passed into the system at the rate of an extremely high volume
environment, with mul ti threading taking place in the application
programs almost immediately, just as if the messages had come from
on-line terminals. The Batch Mode testing facility allows for pseudo
high volume testing, but in no way represents a projected processing
capabi~ity based on random message arrival rates from a simulated
network.

A second type of testing facility is provided with the BTAM
"terminal simulator". Separate message queues are established on
direct access sequential data sets for each simulated terminal.
Intercornm retrieves messages from "terminal queues" based on a unique
time value for each pseudo terminal. The terminal simulator allows the
user to simulate a "live" Intercornm environment by defining a network
of these pseudo terminals. This network could represent the eventual
network a user expects to install, or already has in use. Note that
although definition of a BTAM terminal network is required for the
simulator, input and output processing of messages is essentially the
same no matter which type of Front End (BTAM, TCAM or VTAM) is used for
the live Intercomm system. In addition, the user may request a printed
display of how 3270 terminal messages (formatted and unformatted) will
appear in live mode.

The third type of testing facility allows the user to operate
with all the terminals of his present on-line system and to simulate
those terminals which are not presently operating or which represent
the eventual projected network. This facility allows the testing of
application programs with a combination of both live terminals and
pseudo terminals. This combined network can then be operated under
control of Intercomm. This feature merely expands the capabilities of
the Intercomm Front End.

1-9

Chapter I The Intercomm Environment

Additionally, Intercomm provides a Multiregion mode of execution,
wherein there is one "control" region containing the Front End
teleprocessing interface and system control routines, and one or more
"satellite" regions containing only Back End facilities and user
application processing programs. Optionally, high-volume application
subsystems may execute in the control region. One of the satellite
regions may be used only for live testing of application programs.
Thus, the separation of application subsystems into several regions
provides file or data base access centralization, additional security
control, and system integrity and storage protection, without impacting
the terminal user or response time.

1.11 INTERCOMM TABLES

Intercomm is a generalized on-line system and, as such, requires
operating specifications for each particular installation. This
information is provided to the system in the form of tables which are
coded using Intercomm macros. An application programmer is usually not
involved in defining the Intercomm tables, except for the application
program requirements. Tables are coded for each of the following
Intercomm functions, by which the user specifies his unique
requirements:

• Line Control
network configuration
transaction validation
terminal queues

• Message Processing Control
application subsystem specifications
subsystem queues

• System Control
storage pool specifications
logging requirements
checkpoint/restart/recovery specifications
debugging options
statistics and tuning facilities

• Application Program Services and Utilities

Thus, Intercomm is a table - driven sys tern. Line control
information, that is, the number of logical units or terminals and
their exact hardware characteristics, is provided to the system,
facilitating such operations as LOGON control, polling and addressing,
process and destination queuing, and rerouting of messages.

1-10

J

L

Chapter 1 The Intercomm Environment

Specifications for message processing control functions are
tabular: the type of applications the user has, their scheduling,
whether an application program is capable of processing several
messages concurrently and, if so, the maximum number of messages to be
handled concurrently.

System control functions are table-driven; tables provide
specifications for which logging entries are required, the frequency of
checkpoint and information to be checkpointed, the particular files to
be updated, and specifications relating to restart requirements and
file integrity. In addition, the application program services, such as
Message Mapping, operate according to user-specified table entries and
defini tions .

Major functions in Intercomm are controlled by the following
tables:

• System Global Tables (SETENV, SETGLOBE)
Global tables used to control conditional assembly of many
Intercomm system routines, thus tailoring code requirements
to the individual installation.

• Front End Verb Table (BTVRBTB)
A tab 1 e 1 is ting all val id four - character transaction
identifiers (verbs) and relating them to the subsystem used
for message processing. There is one entry per transaction
or message type. This table may be resident in the Intercomm
linkedit, or dynamically loaded at system startup.

• Front End Network Configuration Tables
Tables describing the terminal network hardware operating
characteristics, queuing specifications, logging/restart
requirements, and relating individual devices to
five-character station identifications.

• Station Table and Device Table
Tables describing terminal device-dependent characteristics
to the Back End utilities.

• System Parameter Area (SPA)
A table describing systemwide operating characteristics.
This table may be extended to include a user area with
installation-defined parameters or tables, accessible to all
subsystems.

• Subsystem Control Table (SCT)
A table listing the characteristics (reentrancy, language,
entry point, etc.), queue specifications (main storage and/or
disk queues), scheduling (resident or loadable, concurrent
message processing limits, etc.) and logging/restart
specifications for application subsystems. There is one
entry per subsystem.

1-11

Chapter I

•

The Intercomm Environment

Data Set Control Table (DSCT)
A table automatically generated by the File Handler
describing on-line data sets. Information in the table is
derived from JCL and File Attribute Record (FAR) statements
at execution time.

• Intercomm Storage Pools
A table of Intercomm-managed storage resource pool blocks, in
ascending order by block size. The pools may be resident in
the Intercomm linkedit, or dynamically loaded at system
startup.

• Message Mapping Definitions
Sets of external and symbolic (Dsect) maps, along with tables
of logical terminal definitions, referenced by application
subsystems when invoking the Message Mapping Utilities to
edit and format messages and data strings. The definitions
are made via MMU macros and stored in prescribed files.

• Edit Control Table (ECT)

•

A table describing input message edi ting specifications for
transactions edited by the Edit Utility. There is one entry
per transaction. Entries are optionally disk-resident.

Output Format Table (OFT)
A table describing output message formatting specifications
for messages formatted by the Output Utility. There is one
entry per output format. Entries are optionally
disk-resident.

Thus, the Intercomm system components are individual routines,
coded in a generalized form, where applicable. Each system component
receives detailed specifications for its program functions via table
entries defined via global SET symbols, coding of Intercomm system
macros, or DC or parameter statements. Table entries may describe a
hardware configuration (for example, the communications network) or
software specification (for example, EDIT control functions). By
adjusting variable table entries, the user effectively tailors
Intercomm routines to his installation without modifying any program
logic. Appendix A summarizes all table entries.

This document provides processing features and table entries for
many of the system components. Others are described in manuals
defining installation for the Front End, System Control Commands. and
various Intercomm system and application program facilities.

1-12

J

Chapter 2

THE INTERCOMM OPERATIONAL SYSTEM

2.1 INSTALLATION OVERVIEW

This chapter describes the major requirements
installa tion, standardization and maintenance of
teleprocessing system, as follows:

for successful
the Intercornrn

• Intercornrn Libraries and Naming Conventions
• Intercomm JCL Procedures
• System Installation and Maintenance Responsibilities
• System Standards
• System Control Functions and Tables.

The installation of an Intercornrn system consists of allocation
and cataloging of standard Intercomm libraries, loading the Intercomm
release tape to disk via standard MVS utilities, copying selected
Intercomm JCL procedures to an installation's procedure library,
cus tom i zing sys tern global tables, and then executing various
preparatory steps prior to performing a linkedit and execution of the
system. This first installation phase ensures the proper functioning
of the system with respect to message processing control functions.
Thus, once installation is complete, testing of application subsystems
may begin immediately, independent of the hardware delivery schedule or
utilization schedule for existing terminals.

Front End installation consists of table specifications and
assembly of the appropriate terminal control programs to satisfy the
specific requirements of a particular hardware configuration and the
teleprocessing access method(s) used.

Instructions for installing the system accompany
tape, as the system generation procedures may vary from
wi th changes in the system programs, quantity of
distributed, and customer equipment to be used (see
Guide) .

2.2 LIBRARIES

the release
time to time
data to be
Installation

At installation time, the Intercomm system is copied from tape to
disk into libraries allocated and cataloged for this specific use.

A library is an Operating System
consisting of a directory and individual
identified by a 4- to 8-character name.
SYMxxxxx where xxxxx is 1 to 5 characters
An object library is named OBJxxxxx. A load

partitioned data set (PDS)
members. Each library is
A source library is named
to complete a unique name.
library is named MODxxxxx.

A systemwide high-level qualifier for the library data sets may
be defined at installation time. Intercomm JCL procedures provide for
override of the system default (INT) via a P parameter.

2-1

Chapter 2 The Intercomm Operational System

The Intercomm system is released on three libraries:

• SYMREL- - system macros, COpy members and Dsects,
programs, tables and Job Control Procedures.

source

• MODREL--system load modules

• SYMUCL- - Intercomm User Group contributed programs (see User
Contributed Program Description).

These 1 ibraries are not to be used for user programs or user
modifications to Intercomm modules, as new Intercomm releases are
effected by complete replacement of these libraries.

The following libraries must be created at installation time by
the user:

LIB-- to hold user-modified versions of Intercomm global tables defined
via SET statements:

• SYMLIB--updated system source members

• MODLIB--load modules

NOTE: these libraries are used by the ASMF Facility to hold
Intercomm members updated by SMs (periodic system
modifications); therefore, they should not contain other
user-modified Intercomm modules.

MDF- - to hold map group definitions for the Intercomm Message Mapping
Utilities:

• SYMMDF--source map definitions

• MODMDF--load module versions of maps

USR- - to contain installation JCL, user programs, user -modified
versions of, or additions to, Intercomm system tables, or user
modifications to Intercomm modules:

• SYMUSR--modified source modules

• MODUSR--load modules

NOTE: SYMUSR is intended as the common link across Intercomm
system releases in that it should contain user versions
of system tables (or COpy members to be inserted in
system tables; see Section 2.7), change decks for user
modification (UMs) or vendor-supplied Experimental system
modifications (XMs) of Intercomm system modules (in
addition to the changed modules), etc. All changes to
Intercomm system modules and tables must be reexamined
for applicability and sequence numbering whenever SMs are
applied or a new release is installed. The ASMF facility
may also be used to apply and track UMs and XMs.

2-2

J

Chapter 2 The Intercornm Operational System

INCL--to contain Intercornm linkedit control statements (INCLUDE, ENTRY,
etc.) and Intercornm linkedit modifications (to order Csects under
MVS, and to add user modules). Due to the MVS DFP Linkage Editor
SYSIN restriction of a maximum block size of 3200, this data set
must be preallocated to receive the punched output from assembly
of the ICOMLINK macro to generate the system linkedit statements.
(See also Installation Guide.)

• SYMINCL--for linkedit control statements.

REF-- a dummy data set (one track) to set the largest block size for a
SYSLIB concatenation stream (see Section 2.2.1):

• SYMREF--for block size determination

This is the minimal configuration of the Intercornm libraries.

If desired, all user programs may be placed into the common USR
libraries, or- "private" 1 ibraries may be created for individual
programmers or groups:

• SYMxxx--private source programs

• MODxxx--private load modules

For testing purposes, a set of "scratch" libraries may be created,
to be scratched and recreated periodically to eliminate unneeded modules
and recover space used during updating:

• SYMSCR--Test source programs

• MODSCR--Test load modules

NOTE: Several Job Control Procedures producing executable load
modules specify data set MODSCR (see LKEDE, LKEDT).

The Intercomm JCL procedures are so arranged that, whenever a
search must be made in a library for a member (such as a macro name,
source code to be copied or updated, or modules to be included in a
linkedit), a concatenation is used to cause a progressive search to be
made for the member in

• The specified private library

• The system modification USR library

• The system update LIB library

• The system release REL library

• Operating System libraries, such as MACLIB, AMODGEN, COBLIB,
TELCMLIB, etc. (where appropriate).

2-3

Chapter 2 The Intercomm Operational System

The search for a member ends with the first library (in the above
sequence) containing the member name in its directory, even if another
library also contains the named member. Thus, the user of a private
library can modify any system component for his own use without
affecting the user of any different private library. An installation
may choose to modify or add a component to the system USR library, and
it will automatically become available to all users. Components
modified by SMs will be taken from the system update library, while
those not modifiedlupdated by the user will be taken from the library
supplied by Intercomm, and components of the Operating System will be
taken from the appropriate operating system libraries.

2.2.1 Source Library Concatenation Sequence

Due to the existence of macros on SYS1.MACLIB and SYS1.AMODGEN
that have the same name as Intercomm macros, the Intercomm SYMxxx
libraries must be placed before the MVS macro libraries. When the
block size of MACLIB or AMODGEN is larger than the Intercomm SYMxxx
libraries, placing them after the SYMxxxs can cause 1/0 errors in
reading macros, COPY code, etc. There are three ways around the
problem: either (1) reblock MACLIB and AMODGEN to Intercomm source
libraries block size, or (2) reblock Intercomm source libraries to
MACLIB/AMODGEN block size, or (3) tell the Assembler what the largest
block size on SYSLIB is.

Method 1 can propagate the problem to other assemblies. Method 2
is workable but still requires a reblock, and all libraries must have
the same block size. Method 3 is the one that is provided by Intercomm
installation for all Intercomm JCL procedures using the Assembler
(ASMPC, ASMPCL, LIBEASM, LIBELINK, etc.):

where:

IISYSLIB
II
II
II
II
II
II

DD DSN-SYMREF,DISP=SHR
DD DSN-SYM&Q,DISP=SHR
DD DSN=SYM&U,DISP~SHR

DD DSN=SYMLIB,DISP=SHR
DD DSN=SYMREL,DISP=SHR
DD DSN-,SYS1. MACLIB, DISP=SHR
DD DSN-SYS1.AMODGEN,DISP=SHR

SYMREF is a dummy PDS with the correct largest block size,
SYM&Q is the private library (specified via Q parameter),
SYM&U defaults to SYMUSR.

2-4

J

Chapter 2 The Intercomm Operational System

2.3 JCL PROCEDURES

To simplify the execution of assemblies, linkage editing, and
utilities in an Intercomm environment, a number of Job Control
Procedures are supplied with the Intercomm system as members on SYMREL.
These procedures provide a straightforward, uniform means to:

• Add and update source programs on source program libraries.

• Assemble or compile programs from source program libraries,
producing either obj ect modules (assembler or compiler
output) or load modules (linkage editor output) on
appropriate libraries.

• Print and punch source programs and object decks.

• Patch load modules on load module libraries.

• Linkedit any combination of object and load modules to
produce executable programs.

Note: for MVS systems, programs must not be linkedited as
RENT (reentrant) unless they really are reentrant. The
Intercomm load modules on MODREL are not linked as either
reentrant or reusable.

• Execute general utility programs.

Figure 2-1 is a list of procedure names and the general function
performed by each procedure. The Intercomm System Manager should
evaluate this list carefully to determine which Intercomm procedures
should be utilized as a standard for the installation. Many of these
procedures are used in the Intercomm installation JCL and for specific
feature installation as described in this and other Intercomm manuals.

2-5

Chapter 2 The Intercomm Operational System

Function

ASMOC Assemble source--produce object module

ASMPC Assemble source--produce printed listing (and punched deck)

ASMPCL Assemble source--produce load module

ASMPCM Assemble a macro--(produce object module or no output)

COBPC COBOL-F source--(produce object module or no output)

COBPCL COBOL-F source--produce load module

COBUPC ANS COBOL source--(produce object module or no output)

COBUPCL ANS COBOL source--produce load module (with NCAL option)

COBUPCLD ANS COBOL source--produce dynamic load module (link INTLOAD)

COMPRESS compress a PDS

COpy copy PDS or member

DEFSYM see Message Mapping Utilities

FORTLINK compile and link FORTRAN module

INTASMF see ASMF Users Guide
J

LIBCOBDL update ANS COBOL--produce dynamic load module (link INTLOAD)

LIBE update a source member

LIBEASM update Assembler source- -produce printed listing

LIBECOB update ANS COBOL source--produce object module

LIBECOBL update ANS COBOL source--produce load module (NCAL option)

LIBELINK update Assembler source--produce load module

LKEDE object & load module(s)--produce executable load module

LKEDO object & load module(s)--produce executable load module

LKEDP load module(s)--produce executable load module

LKEDPLI PL/I object or load modules--produce executable load module

LKEDT load module(s)--produce executable Test Mode module

Figure 2-1. Intercomm JCL Procedures (Page 1 of 2)

2-6

Chapter 2 The Intercomm Operational System

Function
=====~~--=~==~~=======~~~~====~==================~-

OPSCN Assembler source program scan (OPSCAN utility)

PATCH patch load module(s)

PLIXPC PL/l-optimizer--produce object module

PLIXPCL PL/l-optimizer--produce load module

PMIPCH punch source or object deck

PMIPRT print source member listing

SYMGEN see Messa~e Mappin~ Utilities

Figure 2-1. Intercomm JCL Procedures (Page 2 of 2)

Unit name SYSDA is used wherever direct access space allocation
is required.

Listings of individual members may be obtained by using the
following JCL:

IIPROCLIB
II

DD
EXEC

DSN=INT.SYMREL,DISP=SHR
PMIPRT,Q=REL,NAME=procname

A Job Control Procedure is invoked by coding the procedure name
in an EXEC statement, along with appropriate keyword symbolic
parameters to supply the library and member names and other parameters.

Figure 2-2 summarizes the parameters specified for each Intercomm
procedure.

2-7

Chapter 2 The Intercomm Operational System

-=====================================~==================================

Except for some of the
symbolic parameters Q,
values Q=XYZ, U=USR,
optional.

utilities, all procedures below also haVE
U and P, with Intercomm- supplied default
P=INT. Bracketed parameters below arE

============F===============================~============================

Procedure Parameters Comments/Other Parms
=~-==

ASMOC NAME= OMOD=
ASMPC NAME=
ASMPCL NAME=
ASMPCM NAME=
COBPC NAME=
COBPCL NAME=
COBUPC NAME=
COBUPCL NAME=
COBUPCLD NAME
COMPRESS
COPY
FORTLINK NAME=
LIBCOBDL NAME=
LIBE
LIBEASM
LIBECOB
LIBECOBL
LIBELINK
LKEDE
LKEDO
LKEDP
LKEDPL1
LKEDT
OPSCN
PATCH
PLIXPC
PLIXPCL
PMIPCH
PMIPRT

NAME=
NAME
NAME=
NAME=
[OMOD-]
[OMOD=]

NAME=

NAME=
NAME-
NAME=
NAME=

LMOD=

LMOD=

LMOD=
LMOD=
DSN=
INDSN=
LMOD=
LMOD=

OMOD=
LMOD=
LMOD=
LMOD=
LMOD=
LMOD
LMOD=
LMOD=

LMOD=

[DECK=]
[RENT=]
[DECK=]

[S=]
OUTDSN=
[S=]

[D=]

[RENT-]
[D-]

[INPUT=]
[D=]

[PARM2=]
[PARM2=]
[S-]
[S=]

[SYSGO=] [OBJ=]

Dynamic Linkedit not used

[Sl=]
Dynamic Linkedit not used

OMOD optional if INCLUDE
statement in input stream

[OVLY=] [PL1=]

[T=]

[T=]
[T=]

Figure 2-2. JCL Procedure Parameter Summary

Notes: for the following procedures the default Q value is other than
XYZ: LKEDPL1 - (null); OPSCN - REL.

all procedures which execute the Assembler, execute Assembler H
(V2). Assembler F versions of these procs are noted under the
detailed descriptions.

2-8

J

J

Chapter 2 The Intercomm Operational System

The keyword symbolic parameters used are as follows:

Q

U

P

NAME

OMOD

LMOD

S

T

Common to all Intercomm procedures, this parameter defines the
characters completing various library names used in the procedure.
For example, if Q-TST is coded for a procedure which uses both
symbolic and load module libraries, the names SYMTST and MODTST are
generated by the procedure. One to five alphanumeric characters
may be specified. The default is XYZ.

Common to all Intercomm source update, compile, assembly, and
linkedit procedures, this parameter defines the characters
completing the library name of the data set placed after the Q data
set in a SYSLIB concatenation stream. One to five alphanumeric
characters may be specified. The default is USR.

Common to all Intercomm Procedures, this parameter specifies a
library name common prefix or high-level qualifier. For example,
if P=INTERCOM, and Q=TESTS is coded for a procedure using a source
library, the name INTERCOM.SYMTESTS is generated by the procedure.
One to eight alphanumeric characters may be specified, the first of
which must be alphabetic. If multiple qualifiers are used, then
the parameter value must be in quotes, that is, P='A.B', and more
than eight characters may be coded. The default is INT.

For those procedures which use a symbolic library, this parameter
is coded to specify the name of a particular member (source
program) to be assembled, printed, etc. It may be omitted if an
override SYSIN DD statement is present in the JCL. The default is
INVALIDNAME.

For those procedures using an object module library, this parameter
is coded to specify a particular name for the input or output
object module. The default is GO.

For those procedures using a load module library, this parameter
specifies a particular name for the linkage editor output module.
It may be omitted if a NAME statement is present in the linkedit
input control stream. The default is GO.

For utility procedures (compressing, printing, punching) requ~r~ng
control statement input, this parameter specifies the prefix of the
PROCLIB containing the control statements. For example, S=SYSI
specifies the system procedure library SYSI. PROCLIB. The default
is INT.

For certain procedures (printing, punching, patching) applicable to
more than one type of library, T=SYM, OBJ, or MOD may be specified
to indicate the type of library. The default is SYM.

2-9

Chapter 2 The Intercomm Operational System

RENT

DECK

D

SYSGO

PARM2

PLI

For assembly and linkedit procedures, specifies whether the
linkedited load module should be linked as reentrant (code
RENT=RENT). The default is NORENT.

For assemblies, specifies whether a punched deck output (in addition
to the assembly listing) is desired. If so, code DECK=DECK and add
a SYSPUNCH DD statement. The default is NODECK.

Indicates the disposition of the output library data set as follows:
for procedures which can optionally create a temporary data set,
D-MOD must be coded to specify this processing option; when library
creation procedures are used to add or replace members, D=MOD, OLD,
or SHR may be coded. The default is OLD.

For assemblies only, to provide the name of a temporary partitioned
data set which will receive an output object module from the
assembly. The data set is deleted at end of job. If not specified,
no obj ect output is produced. If a qualified data set name, or a
temporary name (starting with &&), is used, enclose the name in
quotes. The default is NULLFILE.

For PL/l procedures, this allows specification of additional
compiler parameter (PARM=' ') information without changing the J .. ~
parameter default values specified in the procedure (which would
cause a reversion to installation SYSGENed defaults). Specify as
PARM2-' ,parm[, ... J'.

For the LKEDPLI procedure to linkedit a dynamically loaded PL/l
subsystem and/or subroutine, this provides the library name to be
used in the linkedit step (LKEDl) execution to resolve all external
PL/l references (needed when Intercomm's dynamic linkedit not used).

INPUT
For LKEDPLl, specifies the prefix of the lowest level name of the
installation load library used to resolve external PL/l subroutine
references via a LKEDl.SYSIN statement such as INCLUDE PLlLIB(name).
The default is MOD. Thus if the defaults are used for the P, INPUT
and Q parameters, the PL/l subroutine library data set would be
INT.MODXYZ.

The following parameters are explained under examples of the
applicable procedures:

OBJ, DSN, INDSN, OUTDSN, OVLY.

2-10

Chapter 2 The Intercornm Operational System

2.3.1 Step Names

The following naming conventions apply to multistep procedures:

Step Name Function

LIB
ASM
COB
LKED
PLI

source update
assembly
COBOL compile
linkedit
PL/l-optimizer compile

2.3.2 JCL Procedures for Source Updates. Compiles. Assemblies.
Linkedits

II EXEC ASMOC,Q=xxx,NAME=source-member,OMOD=object-member

Assemble the source program on SYMxxx, placing the object module
on OBJxxx using the OMOD name. For Assembler Fuse ASMFOC.

II EXEC ASMOC,Q=xxx,OMOD=object-member
(Source program deck)

Assemble the input stream program (using library SYMxxx for
macro, etc., definitions) and store the object module on OBJxxx
using the OMOD name.

II EXEC ASMPC,Q=xxx,NAME=source-member[,DECK=punched-output-parm]

Assemble the named source program. No object output is produced.
For Assembler Fuse ASMFPC.

II EXEC ASMPC,Q=xxx,DECK=DECK
IISYSPUNCH DD SYSOUT=B

(source program deck)

In this example, an input stream source deck is being assembled,
and the object output is to be punched. The Q=xxx parameter
still defines a library to be used for macro definitions, COpy
members, etc. The punched output may be routed to a text editor
(TSO, CMS, etc.) data set, or may be a member of a PDS.

II EXEC ASMPCL,Q=xxx,NAME=source-name,LMOD=load-name[,RENT=parm]

Assemble and linkedit the named source member from SYMxxx,
creating or replacing the named load module on MODxxx. This
statement may be followed by an input stream source deck, in
which case the NAME parameter may be omitted. If linkage editor
control input is required, it must follow a IILKED.SYSIN DD *
statement. If the condition code from the assembly step is
greater than 4, the linkedit step is bypassed. If the load
module is to be linked as reentrant, code RENT=RENT. For
Assembler Fuse ASMFPCL.

2-11

Chapter 2 The Intercomm Operational System

II EXEC ASMPCM,Q=xxx,NAME=macro-name[,DECK=DECK]
[,SYSGO=data-set-name,OBJ=LOAD]

Assemble a macro, and optionally produce punched output (if
DECK=DECK coded): add a SYSPUNCH DD statement. To produce an
object module, define the receiving data set name via the SYSGO
parameter, and code OBJ=LOAD.

II EXEC COBPC,Q=xxx,NAME=COBOL-source-member

Analogous to ASMPC, for COBOL-F compilation.

II EXEC COBPCL,Q=xxx,NAME=COBOL-source-member,LMOD=load-module-narne

Analogous to ASMPCL, for COBOL-F compilation and linkedit.

II EXEC COBUPC,Q=xxx,NAME=COBOL-source-member

Analogous to COBPC, for ANS COBOL compilation.

II EXEC COBUPCL,Q=xxx,NAME=COBOL-source-member,LMOD=load-module-name

Analogous to COBPCL, for ANS COBOL compilation and linkedit of
resident, overlay, or dynamically loaded (if Dynamic Linkedit
used) programs.

II EXEC COBUPCLD,Q=xxx,NAME=COBOL-source-member,LMOD=load-module-name

Analogous to COBUPCL, for ANS COBOL compilation and linkedit for
a dynamically loaded program and including all needed COBOL load
modules from SYSl.COBLIB. If Dynamic Linkedit is used (see
Chapter 3), then use COBUPCL. Linkage editor control cards
should be added to LKED.SYSIN for the subsystem load module name,
and for INTLOAD. For example:

II EXEC COBUPCLD,Q=USR,NAME-COBPROG,LMOD-COBPROG
IILKED.SYSIN DD *

INCLUDE SYSLIB(COBPROG,INTLOAD)
ENTRY COBPROG
NAME COBPROG(R)

II EXEC FORTLINK,Q=xxx,NAME=source-member,LMOD=load-module-name
[,S=PDSprefix,Sl=PDSname]

where Sand Sl default to SYSl.FORTLIB (the library containing
I EYFORT , the Fortran compiler and Fortran subroutines for the
linkedit). This procedure executes a compile and linkedit of a
Fortran module.

2-12

J

J

L

Chapter 2 The Intercomm Operational System

// EXEC LIBCOBDL,Q-xxx,NAME=COBOL-source-member,LMOD=load-module-name

Analogous to LIBECOBL, for ANS COBOL source member update,
compilation, and linkedit for a dynamically loaded program
including all needed COBOL load modules, when Dynamic Linkedit not
used.

// EXEC LIBE,Q=xxx
(control statements and data for program IEBUPDTE)

Execute the IBM utility program IEBUPDTE to change symbolic
library SYMxxx. This program is described in the IBM Utilities
manual, and permits an individual source member to be changed,
added, or replaced. The member named in the utility control
statement is searched for in the named library and the system user
(USR) , update (LIB), and release (REL) libraries, so that it is
possible to update a source program onto a private library without
first copying the program from one library to the other.

Control statement and data examples:

// EXEC LIBE,Q=USR
./ CHANGE NAME=PROGI
* THIS IS A REPLACEMENT FOR THE STATEMENT NUMBERED 00459370

// EXEC LIBE,Q=USR
./ REPL NAME=PROG2,LIST=ALL
./ NUMBER NEWI=IOOOO,INCR=IOOO

(replacement deck for PROG2)

// EXEC LIBEASM,Q=xxx,NAME=source-member
(control statements and data for program IEBUPDTE)

Update and assemble the source program. No obj ect module is
produced. The control input is normally an add, replace, or
change for the member to be assembled. If the update is not
successful (any IEBUPDTE diagnostic giving a nonzero return code),
the assembly is not performed. For Assembler Fuse LIBEASMF.

// EXEC LIBECOB,Q=xxx,NAME=COBOL-source-member,OMOD=object-moduIe
[,D=disp 1

Analogous to LIBEASM, for ANS COBOL source member update and
compilation, and produce an object module. If data set OBJxxx is
not cataloged, a temporary data set is created and used in
subsequent steps of the same job, then is deleted at the end of
the job. D=MOD must also be coded to specify this option.

2-13

Chapter 2 The Intercomm Operational System

II EXEC LIBECOBL,Q=xxx,NAME=COBOL-source-member,LMOD=load-module

Analogous to LIBELINK, for ANS COBOL source member update,
compilation and linkedit of resident, overlay or dynamically
loaded (if Dynamic Linkedit used, see Chapter 3) programs.

II EXEC LIBELINK,Q=xxx,NAME=source-name,LMOD=load-name[,RENT=parm]
(control statements and data for program IEBUPDTE)

Update, assemble, and linkedit the source program, creating or
replac ing the named load module. If the update is not
successful, the assembly and linkedit are not performed. If the
assembly is not successful (return code greater than 4), the
linkedit is not performed. Any linkage editor control input must
be preceded by the statement IILKED.SYSIN DD * For Assembler F
use LIBFLINK.

II EXEC LKEDE,Q=xxx,LMOD=load-module-name[,OMOD=object-module-name]

Linkedit a program for subsequent execution, storing the load
module on library MODSCR. If this library is not cataloged, it
may be created and used in subsequent steps of the same job, then
will be deleted at the end of the job; specify D=MOD in this case
(the default is SHR). Linkage editor control input may follow
this statement; if no control input is provided, then
OMOD=obj ect-module must be coded to specify an obj ect module on
OBJxxx as input.

Control statement examples:

INCLUDE OBJLIB(omodl,omod2, ...)
INCLUDE SYSLIB(lmod2,lmod3, ...)
INCLUDE ddname(...)

include object modules
include load modules
data set defined on added
DD statement

Multiple load modules may be processed in one execution of the
linkage edi tor by interspersing linkage editor NAME control
statements with input control statements. The LMOD parameter is
not required in this case. If obj ect module library OBJxxx was
created in the same job by an assembly or compilation procedure
(see ASMOC, COBOC, LIBEASM), then, if OMOD parameter is not
specified, precede any control input by: IISYSLIN DD *

II EXEC LKEDO,Q=xxx,LMOD-load-module-name[,OMOD-object-module-name]

Linkedit one or more object andlor load modules, placing the load
module on library MODxxx. Refer to procedure LKEDE for the
remainder of the description of this procedure. Override the
SYSLMOD DD statement if MODxxx does not exist.

II EXEC LKEDP,Q-xxx,LMOD-load-module-name

This procedure is analogous to procedure LKEDO, but no obj ect
module data sets are defined or made available for inclusion.

2-14

J

L

Chapter 2 The Intercomm Operational System

II EXEC LKEDT,Q-xxx,LMOD=load-module-name

Analogous to procedure LKEDE, but with no object module data sets
defined. The load module is placed in MODSCR.

NOTE: Procedures LKEDT and LKEDP define concatenations of private
library, USR, LIB, and REL for the call library SYSLIB; in
addition, procedures LKEDE and LKEDT specify the system COBOL and
telecommunications libraries (SYS1.COBLIB and SYS1.TELCMLIB), so
that included or called Operating System modules will be
available to the linkage editor. For LKEDE and LKEDO, Q
specifies only the object library suffix; the SYSLIB
concatenation sequence starts with USR (U parameter) .

. 11 EXEC LKEDPLl,Q=xxx,LMOD=load-module-name,INPUT=library-type,
PL1=library-name,OVLY-

This procedure will linkedit PL/l programs including all required
PL/l library subroutines, and then perform a final linkedit to
include all necessary Intercomm modules. This is necessary, as
during the final linkedit the automatic library mechanism must be
disabled, while during the initial linkedit (when PL/l library
routines are included) it must be enabled.

There are two steps, LKEDl (the PL/l library step) and LKED2 (the
Intercomm step). During LKED1, PL/l programs are included from
either a load or object library (or both if additional user
libraries are specified) via the INPUT (INPUT=OBJ for object, MOD
is default) parameter and using the ddname PL1LIB. In the LKED2
step, Intercomm modules are included from SYSLIB and the PL/l
program(s) from the library defined by the ddname PLl. To
include the modules from the first step simply code
INCLUDE PL1(PL1). The OVLY parameter, if coded, will nullify the
overlay option in the second linkedit (default is OVLY to
generate an overlay structure in the linkedit if OVERLAY control
statements are used).

II EXEC LKEDPL1,Q=LIB,LMOD=INTERCOM,OVLY=
11* OVERLAY NULLIFIED, INPUT=MOD DEFAULT USED
IILKED1.SYSIN DD *

INCLUDE PL1LIB(PROG1)
INCLUDE PL1LIB(PROG2,PROG3)

IILKED2.SYSIN DD *
INCLUDE SYSLIB(Intercomm-modules, ...)
INCLUDE PLl(PL1)

1*

2-15

Chapter 2 The Intercomm Operational System

II EXEC PLIXPC,Q=xxx,NAME=PL1-source-name[,PARM2=' ,options']

Compile a PL/1-optimizer program from SYMxxx. If the source is
in-line, NAME need not be specified. If additional PARM options
are required, code PARM2=' ,options' (for example, PARM2=' ,LIST').

II EXEC PLIXPCL,Q=xxx,NAME=PL1-source-name,LMOD=load-module-name
[,PARM2=' ,options']

2.3.3

Compile a PL/1-optimizer program and store the load module
(without the PL/l library subroutine modules referenced) under
the name specified in LMOD (GO used if LMOD absent); for
resident, overlay, or dynamically loaded (when Dynamic Linkedit
used) programs. NAME need not be specified if source is
in-line. PARM2 is as in PLIXPC.

JCL Procedures for Utility Executions

The following procedures can be used to perform common utility
operations (data set copy, data set member printlpunchlpatchlscan,
library creation). The IBM Utilities manual describes the functions of
each program in detail. Some of the procedures must be modified by the
user to specify appropriate volumes for a given installation. The P
and Q override parameters may be used (except where noted), but the U
override parameter does not apply.

II

II

EXEC COMPRESS ,DSN=' data-set-name' [,S=Proclib-prefixname]

Compress an individual library (using utility program
IEBCOPY), and release any excess space available in the data
set after compressing. Control statement input for this
procedure is contained in the released member COMPSYS which
must be put on the PROCLIB specified by the additional
parameter S=prefix. If the system procedure library is used,
specify S=SYSl (the default is INT).

EXEC COPY,INDSN='INT.SYMCHG' ,OUTDSN='INT.SYMLIB'
COPY INDD=SYSUTl,OUTDD=SYSUT2
SELECT MEMBER=«PROGX, ,R»

In this example, a member of a private source library
(SYMCHG) is copied into SYMLIB. By supplying additional DD
statements and control statements, more than one operation
may be done in a single step.

Note: the COMPRESS and COPY procedures do not use the Q and P
parameters.

2-16

J

Chapter 2 The Intercornm Operational System

II EXEC PMIPCH,Q-xxx,NAME-source-member

Punch the named member of library SYMxxx.

II EXEC PMIPCH,Q-xxx,NAME-object-module,T-OBJ

Punch the named member of library OBJxxx.

II EXEC PMIPRT,Q=xxx,NAME=source-member

Print the named member of library SYMxxx.

NOTE: PMIPCH and PMIPRT use the IBM utility program IEBPTPCH;
control statements for these procedures are contained in
the released members PMIPCHI and PMIPRTI which must be
put on the PROCLIB specified by the additional parameter
S=prefix. If the system procedure library is used,
specify S=SYSI (the default is INT).

II EXEC PATCH,Q=xxx[,T=library-type]
(control statements for program IMASPZAP)

Print andlor change selected data in load modules or object
modules, using the IBM utility program IMASPZAP (also called
AMASPZAP, and described fully in the IBM Service Aids manual).

Obj ect modules may be ABSDUMPed and the desired data located
be fore changes are made. If the IMASPZAP program was not
included in the operating system link library, a JOBLIB or
STEPLIB DD statement is required. A STEPLIB DD statement may be
added to the procedure if necessary. T defaults to MOD.

Control statement examples for IMASPZAP:

DUMP (T)
NAME
VER
REP

member [csect]
member [csect]
hex-location hex-data, hex-data,
hex-location hex-data,hex-data,

2-17

Chapter 2 The Intercomm Operational System

II EXEC OPSCN,Q=xxx,NAME=source-member

This procedure executes the Intercomm-supp1ied utility OPSCAN
which scans an Assembler source library member (or sequential
data set) and selects all statements having a recognizable
operation code field other than standard instructions. The
selected statements may be directed to a printer, and will
include all macro instructions (Intercomm and Assembler), CALLs,
COPY references, conditional assembly statements, entry points,
external references, and control sections, as well as other
significant details.

Standard instructions are comment statements, machine operation
codes (including privileged operations, SPM, TS, and
floating-point feature instructions), selected extended mnemonic
operation codes (BNE, BH, etc.) and selected Assembler operation
codes (DC, EQU, CNOP, USING, EJECT, etc.)

The operation code scan accommodates free-form statements as
specified for the MVS Assembler Language. Continuation lines of
the selected statements are also printed.

Intercomm utilities for log (journal) printing and analysis, data
set creation and loading, BTAM simulator input creation, source member
compares, etc. are described elsewhere in this and other Intercomm
manuals. Addi tiona11y, sys tern cross - reference and maintenance
utilities are described in the ASMF Users Guide.

2-18

J

Chapter 2 The Intercomm Operational System

2.4 SYSTEM INSTALLATION AND MAINTENANCE RESPONSIBILITIES

In anyon-line system environment, it is necessary to develop a
distribution of responsibility to installation personnel involved with
the ongoing operation of the system. Three different user categories
of Intercomm personnel are required:

• The System Manager(s) System programmers responsible for

•

coordination of all system specifications, system program
maintenance, and operating procedures.

The Application Group(s)
responsible for design
subsystems.

Proj ect leaders and programmers
and implementation of application

• Central Location Operations Staff Responsible for the
actual scheduling and operation of the central CPU.

Many responsibilities overlap in these functional areas. An
installation must be flexible and above all establish orderly
communications methods between the user personnel. Each Intercomm
installation must develop its own distribution of responsibilities for
its personnel depending on the scope of the on-line system.
Requirements obviously vary from a staff of three to hundreds of
associa ted programmers, analys ts , sys tern programmers, operators,
management, etc.

In general, the responsibility for maintaining the Intercomm
System lies in the areas of:

1. Intercomm System Program Maintenance via the ASMF Facility
2. Table Maintenance
3. Execution Load Module Maintenance
4. Procedures for Testing and Live Execution
5. System Tuning
6. Problem Reporting
7. Backup and Recovery Procedures

The following list represents a suggested set of guidelines in
assignment of responsibi Ii ties for each category of installation
personnel.

2-19

Chapter 2 The Intercomm Operational System

2.4.1 The Intercomm System Manager(s)

• General liaison with vendor

Documentation updates and new editions
Microfiche listings and updates of Intercomm source
modules
Early Warnings periodic publication of outstanding
problem reports and solutions
Technical Information Bulletins non-product problem
resolution suggestions
SM (system modification) maintenance of Intercomm system
New release distribution
Problem reporting, tracking, and resolution

• System installation (initial or for new Release)

• Production system generation and maintenance

•

•

Definition of network configuration to Intercornrn
Definition of subsystems (applications) to Intercornrn
Ongoing system tuning as production environment changes
Application and testing of official and experimental SMs
Dump analysis and problem solution

Maintenance of Intercomm libraries
modifications to Intercornrn and/or
startup, restart, closedown, etc.)

and tables (may include
user exit routines for

Control and coordination of terminal test sessions
Add new application modules to linkedit
Add new table entries to system tables
Relinkedit Intercomm test system
Distribute test session output (snaps, dumps, log, etc.)

• Coordination of live (production) system with application
project leaders and operations personnel

Installation standards maintenance
Update live system with tested modules and tables
Develop operational procedures as required
Create and maintain a "run book" for operations personnel
System expansion planning

• Analysis of system messages, log and statistics reports from
live system for system tuning and problem reporting

• Development of procedures for system backup and restart

• Intercornrn education coordination for system and applications
staff

2-20

.'

<.

Chapter 2 The Intercomm Operational System

2.4.2 The Application Group(s)

• Maintenance of existing (live) application programs

• Deve lopment, coding, and comprehens ive tes ting of new
applications

• Assign specific identifiers following standards provided by
the System Manager(s) for: verbs (transaction identifiers),
subsystem codes and entry point names, mapping names, and
other required table specifications

• Communicate to System Manager(s) when
required for testing: new verbs, new
modules), new utility table entries, etc.

table maintenance is
subsystems (program

• Communicate to System Manager(s) when a new module is to be
added to the live system (requires a linkedit of production
module)

2.4.3 Central Location Operations

• Start s ys tern se lec tion of options (for example, JCL
considerations) under direction of System Manager(s)

• Notify System Manager(s) immediately in the event of hardware
or software failure and prepare "trouble" report stating
cause of failure and corrective action.

• Close down system at direction of System Manager(s)

• Start log printing and analysis procedures, or any related
off-line jobs to be executed after closedown or failure

• Re start s y s tern after fai lure at direct ion of Sys tern
Manager(s)

• Periodically back up disk packs containing system libraries

2.5 STANDARDS

In planning an orderly Intercomm ins tallation, the System
Manager(s) and Application Group(s) may wish to standardize certain
conventions for Intercomm libraries, programs and identifiers for
Intercomm transactions and associated table specifications.

Intercomm library naming conventions are described in full in
this chapter; program naming conventions must be controlled by the
System Manager(s) to avoid duplications. Additionally, control must be
exercised over file DD statement and data set names, terminal names,
Store/Fetch and DDQ key names, etc.

2-21

Chapter 2 The Intercomm Operational System

Several different applications may be operating under the control
of Intercomm and each of these applications may consist of several
different transactions. For example, an order entry application may
have different transac tions for shipment, receipts, back order
processing, stock status, etc.

A transaction under Intercomm has the following components:

• Input message from terminal

• Processing program(s) (subsystems and subroutines)

• Output message to terminal

• Data file(s) and/or data base access

The following basic identifiers are required in the Intercomm
system to control (direct) the processing of that transaction:

1. Input message verb (transaction code)

2. Subsystem code and associated program entry point name

3. Message Mapping Utility map group definitions existing as
members in this utility's related files and referenced by
application subsystems.

4. File DD statement(s) and data set names.

The System Manager(s) may define standards for coding verbs,
subsystem codes, program names, MMU map group names, and file names (if
applicable). Assume an installation has four application areas: A, B,
C, D. The System Manager(s) might define the following standards for
basic identifiers:

P======================P======='=='==P====='======F========================
Application
Identifier A B C D

F=~===============~=F=~~~====F====~===============================

Verb
(4 characters)

Subsystem Code
(2 l-byte values)

Program Entry
Point name
(8 characters)

Map Group Name
(1 to 7 characters)

AAxx

A(x }
(nnn)

AAxxxxxx

MGAAxxx

BBxx

B(x }
(nnn)

BBxxxxxx

MGBBxxx

CCxx

C(x }
(nnn)

CCxxxxxx

MGCCxxx

DDxx

D(x }
(nnn)

DDxxxxxx

MGDDxxx

~here x is any character and nnn is any number (from 0 to 255) selected
by the application project leader.

2-22

J

J

Chapter 2 The Intercomm Operational System

2.6 SYSTEM CONTROL FUNCTIONS AND TABLES

System Control Functions comprise those areas of table
specification and related program logic which control the general
operation of the Intercomm environment. The System Parameter List
(SPA), discussed in Chapter 3, "Message Management," includes
specification of many control variables affecting Intercomm execution.
In general, these variables consist of time-delay values (indicating
such things as checkpoint intervals, statistics intervals, etc.),
control values (such as subsystem dispatching, security, message
logging and message volume thresholds, etc.) and indicators controlling
program logic (mode of operation, subtasking, etc.).

Intercomm Dispatcher routines are discussed in Chapter 4. Other
system features connected with Intercomm installation, 1inkedit and
execution are described in Chapters 3, 7 and 8. Implementation of the
Resource Management functions of Intercomm is discussed in Chapter 5.
The File Handler is described in Chapter 6. Edit and Output
specifications are described in Chapter 3 and the Utilities Users
Guide. Logging and restart/recovery specifications are discussed in
Chapters 9 and 12, security options in Chapter 10, and system tuning
recommendations in Chapter 11. Specifications for Front End interfaces
and for special features are described in the applicable manuals.

Figure 2-3 lists the Intercomm global tables and corresponding SET
symbol tables which may be modified by the user as the various
Intercomm support features are utilized. Before a new installation, or
a reinstallation, of Intercomm, the SET tables must be moved from
SYMREL to SYMLIB and then modified according to expected user needs, or
the existing installation. For a new installation, it is primarily
necessary to modify SETGLOBE for the operating system in use, the type
of Front End to be used, and the types of file access to be used.
SETENV is described in the BTAM Terminal Support Guide and may
optionally be modified to suppress support for teleprocessing devices
which will not be installed. However, if a VTAM Front End is used
exclus ive1y, SETENV does not need to be modified as it applies
primarily to BTAM/TCAM Front Ends. The DDQ (see Dynamic Data Queuin~
Facility) and Log Analysis (see Chapter 12) tables provide recommended
default settings and need only be adjusted to conform to existing
installation specifications, or as the facilities are used in a
production environment.

F====================================F===================================
GLOBALS SETTINGS FUNCTION

==================:==================F===================================
INTGLOBE SETGLOBE Systemwide Support Requirements
ENVIRON SETENV Front End Support Requirements
DDQENV DDQENV DDQ Facility Requirements
LOGDCLGB LOGSETGB Log Analysis Utility Requirements

Figure 2-3. Intercomm Global Tables

2-23

Chapter 2 The Intercomm Operational System

2.6.1 System Global Tables (INTGLOBE, SETGLOBE)

The set of global specifications which control assembly of the
SPA and other system routines are the member INTGLOBE defining globals
indicating requirements for specific Intercomm features, and the member
SETGLOBE which provides user assigned values for the defined globals.
In general, these specifications pertain to the operating system,
interregion communication, resource management options, data base
management system interface requirements, File Handler options, Edit
and Output Utility options, Dispatcher specifications, etc.

Figures 2-4 and 2-5 illustrate the members INTGLOBE and SETGLOBE
as released. As these members vary from release to release, the user's
Intercomm Support Manager should examine a listing of these control
variables prior to effecting any change and subsequent reassembly of
the System Parameter List, and other system programs conditionally
assembled with these members. A global cross-reference program
(IAIMGOCR) is available to Intercomm users with Product Maintenance
agreements, to facilitate determination of which modules require
reassembly when a SETGLOBE setting is changed (see ASMF Users Guide).
A general list of affected system modules is provided in various jobs
illustrated in the Installation Guide.

~*** X
INTGLOBE - GENERAL SYSTEM FEATURES:

GBLB &VSSYSTM ON IF RUNNING UNDER VSl
GBLB &MVS VS2 RELEASE 2 OR MORE. .. ~ .. ~~
GBLB &XA MVS EXTENDED (XA) ~,

GBLC &MRSVC INTERCOMM INTERREGION SVC (MRS, ESS, VS, MVS)
GBLC &INTSVC DATA BASE INTERREGION SVC X

FRONT-END CHARACTERISTICS: USED IN BTAM/VTAM MODULES
GBLB &BTAM BTAM (INC. GFE) CONFIGURATION
GBLB &VTAM VTAM CONFIGURATION
GBLB &TIMSTMP TIME-STAMP ON RESPONSES TO F.E. CMD X

RESOURCE MANAGEMENT:
GBLB &RM RESOURCE AUDITING
GBLB &RMSTATS RM STATISTICS GATHERING.
GBLB &RMACCT BUCKET ACCOUNTING SWITCH.
GBLB &RMPOOLS SUPPORT USER POOLS.
GBLB &POOLNM POOLDUMP DEBUG FEATURE
GBLB &RMINTEG RESOURCE MGMNT CORE INTEGRITY CHCK. X

DISPATCHER:
GBLA &NUMWQES NUMBER OF WORK QUEUE ELEMENTS X

Figure 2-4. INTGLOBE (Page 1 of 2)

2-24

Chapter 2 The Intercornm Operational System

FILE HANDLER:
GBLB &IAM lAM FILES USED
GBLA &RPTINTV FILE STATISTICS REPORT INTERVAL
GBLA &FHSTATS NUMBER OF DSCT STATISTICS BUCKETS
GBLB &ISAM ISAM FILES USED
GBLB &VSAM VSAM FILES USED
GBLB &VSISAM ISAMjVSAM COMPATIBILITY REQUIRED X

EDIT UTILITY:
GBLB &DELCHNG NO CORRECT/CHANGE FACILITY USED
GBLB &EDERRS NO MAXIMUM FOR EDIT ERRORS SENT
GBLA &EDERMAX MAXIMUM NUMBER OF EDIT ERRORS X

(USED ONLY IF &EDERRS=O)
GBLB &OPTRPT SEND ERRORS FOR OPTIONAL PARMS X

OUTPUT UTILITY:
GBLB &DDQBACK DYNAMIC DATA Q'S - AUTO INPUT
GBLB &BROAD NO BROADCAST GROUPS
GBLB &RPTBLE NO REPORTS TO TAPE
GBLB &ALTRPT NO ALTERNATE REPORTS
GBLB &OUTEXIT NO USER OUTPUT EXIT X

DL/I SUPPORT:
GBLB &DLI DL/l X

TOTAL SUPPORT:
GBLC &TOTDESC TOTAL DATA BASE DESCRIPTOR
GBLA &TOTMOD SETTING:l IF ATTACHED, 2 IF SEP TOT REG
GBLC &TOTSVC TOTAL INTERREGION SVC NUMBER X

MULTIREGION SUPPORT:

(. GBLB &MULTREG MULTI-REGION SUPPORT REQUESTED X
LOGINPUT FACILITY:

GBLC &GENTERM DUMMY TERMINAL-ID
GBLA &LOGINTM LOGINPUT DISPATCH INTERVAL
GBLA &LGINRTD LOGINPUT REAL-TIME DIVISOR

Figure 2-4. INTGLOBE (Page 2 of 2)

2-25

Chapter 2 The Intercomm Operational System

**x
SETGLOBE - GENERAL SYSTEM FEATURES:

&VSSYSTM SETB 1 DEFAULT TO VS
&MVS SETB 1 DEFAULT TO MVS
&XA SETB 1 DEFAULT TO MVS-XA
&MRSVC SETC '013' INTERCOMM INTERREGION SVC NOT USED
&INTSVC SETC '013' DLI DATABASE INTERREGION SVC NOT USED
&MVS SETB (&XA OR &MVS) FORCE MVS IF XA
&VSSYSTM SETB (&MVS OR &VSSYSTM) .GLOBAL INTER-DEPENDENCIES X

FRONT-END CHARACTERISTICS:
&BTAM SETB 1 BTAM FRONT-END IS IN USE
&VTAM SETB 1 VTAM FRONT-END IS IN USE
&TIMSTMP SETB 0 NO TIMSTAMPS ON F.E. CMD RESP X

RESOURCE MANAGEMENT:
&RM SETB 1 RESOURCE MANAGEMENT
&RMSTATS SETB 1 STATISTICS
&RMACCT SETB 1 ACCOUNTING
&RMPOOLS SETB 1 CORE POOLS
&POOLNM SETB 1 USE POOL OWNER'S NAME IN POOLDUMP
&RMINTEG SETB 0 NO CORE POOL INTEGRITY CHECK
&RM SETB (&RM OR &RMINTEG) INTEG CHECK REQUIRES RCBS X

DISPATCHER:
&NUMWQES SETA 120 NUMBER OF WORK QUEUE ELEMENTS X

FILE HANDLER:
&RPTINTV SETA 600*300 600 SECS - 10 mins
&FHSTATS SETA 5 NUMBER OF DSCT STATISTICS BUCKETS
&1 SAM SETB 1 ISAM FILES USED
&IAM SETB 0 DEFAULT - NO lAM SUPPORT
&1 SAM SETB (&ISAM OR &IAM) ISAM IF lAM
&VSISAM SETB 1 ISAMjVSAM COMPATIBILITY
&VSAM SETB 1 VSAM FILES USED
&VSAM SETB (&VSAM OR &VSISAM) NEED VSAM FOR COMPATABILITY
&VSSYSTM SETB (&VSSYSTM OR &VSAM) IF VSAM OR VSISAM X

EDIT UTILITY:
&DELCHNG SETB 1 NO CANCEL/CORRECT FACILITY
&EDERRS SETB 0 SEND NO MORE THAN &EDERMAX ERROR MSGS
&EDERMAX SETA 5 MAXIMUM NUMBER OF ERRORS/MESSAGES
&OPTRPT SETB 0 SUPPRESS ERROR MSG IF PARM IS OPTIONAL X

Figure 2-5. SETGLOBE (Page 1 of 2)

2-26

Chapter 2 The Intercomm Operational System

~ OUTPUT UTILITY:
&DDQBACK SETB 0 DEFAULT TO NO DDQ AUTO INPUT
&BROAD SETB 0 BROADCAST GROUPS IN USE
&RPTBLE SETB 0 REPORTS TO TAPE IN USE
&ALTRPT SETB 1 ALTERNATE REPORTS NOT IN USE
&OUTEXIT SETB 1 NO USER OUTPUT EXIT X

DL/I SUPPORT:
&DLI SETB 0 DL/I NOT IN USE X

TOTAL SUPPORT:
&TOTDESC SETC 'xxxxxx' TOTAL DATA BASE DESCRIPTOR
&TOTMOD SETA 1 SETTING: 1 IF ATTACHED, 2 IF SEP TOT REG
&TOTSVC SETC 'NUL' NO INTERREGION COMM NECESSARY X

MULTIREGION SUPPORT:
&MULTREG SETB 1 MULTIREGION SUPPORT REQUESTED X

LOGINPUT FACILITY:
&GENTERM SETC '$$$$$' M.S.G. OR LOGINPUT TID
&LOGINTM SETA .3 .3 SEC TO DISP LOGINPUT
&LGINRTD SETA 5 LOGINPUT REAL-TIME DIVISOR
**

Figure 2-5. SETGLOBE (Page 2 of 2)

2-27

Chapter 2 The Intercomm Operational System

2.6.2 System Control Tables

As described in Chapter 1, there are several tables which are
required for the proper functioning of the Intercomm teleprocessing
monitor. Some of these tables must contain entries for Intercomrn
system control and command processing routines. As listed in Figure
2 - 6, such tables are released with the Intercomm recommended entries
and contain a COpy statement to copy in a user-coded table of
additional installation-dependent entries at assembly time. The user
COpy member for the table should be stored on SYMUSR and may thus be
carried to new releases without affecting system requirements. The
load module may reside on MODUSR or MODLIB.

TABLE USER COPY MEMBER FUNCTION
F================= F====================== ===============================

BTVRBTB USRBTVRB Front End Verb Table
INTSPA USERSPA System Parameter Area
INTSCT USRSCTS Application Subsystems
REENTSBS USRSUBS System and User Subroutines
PMIVERBS USRVERBS Edit Facility Control Table

Figure 2-6. Intercomm Tables with User COPY Members

The tables listed in Figure 2-6 are all described in Chap·ter 3.
Entries may be deleted (if function not used) or modified for all
tables except REENTSBS. Subsystem codes for system verbs and
subsystems should not be modified, and are also listed in Chapter 3.

Sample tables are provided on SYMREL for many tables, which may
be replaced or modified as necessary for a specific installation. Such
sample tables include:

• BTAMSCTS

• FENETWRK

• VTSAMP

• DDQDSTBL

• IXFDSCTn

• LOGCHARS

• MMUVTBL

• MRMCT

• NEWPOOLS

• PADDTBLE

• PAGETBLE

• PMIBROAD

• PMIDEVTB

• PMIFILET

• PMIRDTOO

• PMISTATB

• PTRNTBL

• RPT

These tables
applicable facility

Front End Terminal Queues (BTAM/TCAM)
Front End Network Definitions (BTAH)
Sample VTAM Front End Tables
DDQ Facility Table
Data Set Control Table
MMU Device Processing Definitions
MMU Vector Table
Multiregion Communication Table
Resource Management Pools Table
Edit Utility Pad Characters
Page Facility Terminal Table
Broadcast Terminal Table
Back End Device Characteristics Table
File Tables (Change/Display Utility)
Multiregion Description Table
Back End Terminal Definitions
Output Utility Editing Patterns
Output Utility System Reports (1-50)

are further described in this manual or in the
manuals. See also Appendix A.

2-28

Chapter 3

MESSAGE MANAGEMENT

3.1 INTRODUCTION

This chapter defines table specifications for user-written
message processing application programs, which under Intercomm are
called subsystems. Based upon resource requirements and user-coded
table specifications, all subsystems in concurrent execution affect one
another's throughput and response time. Procedures to optimize system
performance are described, along with techniques for implementing
message processing control facilities.

be

In particular, this chapter documents the following subjects:

•
•
•
•
•
•
•
•
•
•
•
•
In

used

•
•
•
•

General message flow and cancellation processing

The Front End Verb Table

Back End table specifications for message utilities

Message processing facilities

The System Parameter Area

The Subsystem Control Table

Subsystem processing specifications

Subsystem residency considerations

Subsystem interfaces and 1inkedit considerations

Subroutine interfaces and linkedit considerations

Generalized sub tasking

Time controlled message processing

addition to other referenced documentation, this chapter is to
in conjunction with the following Intercomm manuals:

Basic System Macros • BTAM Terminal Support Guide

COBOL Programmers Guide • Utilities Users Guide

PL/l Programmers Guide • Message Mapping Utilities

Assembler Language Programmers Guide

3-1

Chapter 3 Message Management

3.2 GENERAL MESSAGE FLOW

The Intercomm BTAM/VTAM or TCAM Front End interface ac ts as a
message handler between the terminal network and the Subsystem
Controller in the Intercomm Back End which controls processing by
application programs. The Front End receives messages from terminals,
formats message headers, validates transactions and routes them for
Front End command processing, or to the appropriate subsystem. Once a
response has been generated, the Front End will prefix, insert and/or
append terminal control characters, as required, queue the message for
the proper terminal, and transmit it to the destined device. Intercomm
facilities for editing and formatting messages are the Message Mapping
Utilities for mapping input and output messages, or the Edit Utility
for input messages and the Output Utility for output messages.
Additionally, a Change/Display Utility is provided for display and/or
update of user files, which itself interfaces with the Edit and Output
Utilities.

3.2.1 Input Messages

To allow the Intercomm Front End to process a message from a
terminal, all input messages received by Intercomm must follow the
standard Intercomm format:

verb

$

verb$text@

represents the transaction code. It must be one to four
alphameric characters, and is defined in the Verb Table used by
the Front End to validate the incoming message. Once the
validity of a verb is established, a standard message header is
prefixed to the message text.

If the subsystem does not use Message Mapping Utilities, then the
Edit Utility may be used to preedit the message text to remove
all terminal/format-dependent characteristics. In all cases, the
input message is passed to the Back End via Queue Management
routines. Messages not edited prior to queuing for subsystem
processing may be edited prior to transferring control to the
subsystem (COBOL, PL/1) , or on request from the subsystem
(Assembler Language). Alternatively, any subsystem may perform
its own editing, or use the MMU subroutine MAPIN.

indicates a separator character. This may be:

• A special graphic character (comma, etc.)

• A New Line character

• A device-dependent carriage-return/1ine-feed character
(CR/LF)

3-2

L

Chapter 3 Message Management

text

@

This systemwide separator character is defined at Intercomm
installation time in the System Parameter List SPALIST macro, SEP
parameter. It must also be defined by the global &SEPCHAR for
the BTAM or TCAM Front End in the member SETENV.

indicates optional text data.

indicates End-of-Transmission (EOT, EOB, etc.). The particular
character will depend on the hardware characteristics of the
transmitting terminal.

The message may consist of only a verb with no text data
following. In this case, no separator character is necessary.
Alternate methods for providing the input verb are described in Section
3.3.4, "Locked Verb Facility," and in the BTAM Terminal Support Guide
for certain terminals where special keys can signify a verb request,
such as the 3270 AID key processing and the ATTN key on a 2741.
Support for AID processing is also provided via the TCAM and VTAM
interfaces.

When Intercomm is unable to determine a verb (message routing)
for an input message, that message is discarded and the following
message is returned to the transmitting terminal:

NO VERB FOUND IN PREVIOUS MESSAGE STARTING xxxx

- where xxxx is the first four characters received from the terminal, or
???? if no text data received.

3.2.2 Output Messages

Messages for transmission to the network, created by internal
Intercomm processing or by the various subsystems, are passed via
FESEND to the Front End and placed in terminal queues to await
transmission. Figure 3-1 illustrates the relationship between the
Intercomm components and the message queues.

The Intercomm Front End utilizes the Queue Management Routines of
Intercomm to control all message queuing. If a terminal becomes
nonoperational before message transmission is complete, the Intercomm
Front End will either requeue the message or reroute it to an alternate
terminal (if specified). A system control command (TDWN for BTAM/TCAM,
or SPLU for VTAM) is available to dynamically assign alternate
devices. When an alternate device assignment exists, all output
messages queued for the down terminal will be transmitted to the
alternate terminal by the Front End until the down terminal is
reactivated.

3-3

Chapter 3 Message Management

J

Front Subsystem Back
End ... Core/Disk ... End -(Telepro- ", Queues " (Message
cessing (Input) Processing

Interface) Interface
Programs)

Terminal
~ Core/Disk
~

Queues
(Output)

J~ J ~

~,

FESEND ~ Application .,
Subsystems

.. ~

Output
~ Utility

Figure 3-1. Front End/Back End Communication via Message Queues

3-4

Chapter 3 Message Management

All output messages must have message-ending characters
(EOT/EOB/ETX, or other value, as appropriate to the device) coded at
the end of the message. This character may be provided via:

• Output/MMU message formatting utilities, based on coding of
the terminal's Back End DEVICE macro, EOT and/or EOB
parameters

• Coded by the subsystem before passing the message to the
Front End via FESEND (or FESENDC); see Programmers Guides.

• Added/replaced in the BTAM/TCAM Front End via the terminal's
BDEVICE macro, ENDCHAR and/or LAST parameters

• Automatically suffixed, depending on device type, by the VTAM
Front End, if appropriate.

3.2.3 Message/Subsystem Cancellation Processing

The following subsections describe cancellation processing in
terms of message flow.

3.2.3.1 Message Cancellation User Exit--USRCANC

In certain situations, messages must be cancelled by the
Subsystem Controller to prevent slowdown or failure of the entire
system. The USRCANC routine, released as member PMICANC, is used to
inform the terminal operator of this situation. The released USRCANC
Csect may be modified to handle particular cases in a manner suitable
to specific subsystems.

The USRCANC user exit will be called by the Subsystem Controller
(SYCT400) when a message is cancelled for one of the following reasons:

• Program check (system return code is X'FF')

• Time-out (system return code is X'FE')

• I/O error (subsystem return code is X'12')

• No core available to process message or other unrecoverable
error such as an output mapping error (subsystem return code
is X'08')

• Subsystem stopped due to previous message cancellations or
message is flushed by command (return code not applicable)

The error condition return code is duplicated into the logged
message header, the address of which is in the fourth parameter passed
to USRCANC (for all but the last reason).

3-5

Chapter 3 Message Management

Two types of calls can be issued by the Subsystem Controller to
the USRCANC routine. The first is exercised when the message is
cancelled due to an error condition. The second is issued if the
subsystem assigned to process the message is not allowed to process
further messages. This second condition arises if a message has
previously been cancelled and the user has chosen to exercise the
SYCTTBL macro CANC parameter to stop the subsystem from further message
processing or if a queued message was flushed via the SSFL command.

3.2.3.2 Message Cancelled Condition

USRCANC is called with register 1 pointing to a parameter list
that contains the following four addresses:

1. Address of message which was being processed

2. Address of SPALIST

3. Address of the Subsystem Control Table entry for the
subsystem processing the message

4. Address of the logged message header (MSGHCON+l, that is,
MSGHRETN, contains the Subsystem Controller return code
value)

For a type one call, the first address above may point to an
invalid location, or be zero, because the subsystem, the Edit facility
(if an error occurs), or MMU MAPIN processing may have freed the area
before control was passed to USRCANC. If the subsystem frees the
message area, then the message address in the parameter list must be
set to binary zero. If MMU frees the message, it will set the message
address to zero.

The released USRCANC routine generates and transmits an error
message to advise the operator at the sending termina.l that program
processing has been cancelled. This error message will indicate the
reason for cancellation. (See the cancellation reasons above.) For a
program cancelled condition, the USRCANC routine does not free the
input message or any other area. Standard linkage conventions must be
used.

3.2.3.3 Subsystem Stopped Condition

If a message was previously cancelled and the user has coded
CANC-STOP on the associated SYCTTBL macro to stop future subsystem
processing, or if a queued message is flushed, the parameter list
passed via register 1 to the USRCANC routine will contain only the
first three addresses listed above for the message cancelled
condition. Called in this manner, the released USRCANC generates and
transmi ts an error message to the sending terminal, then frees the
message area and zeros the address in the parameter list, and finally
returns a nonzero return code in register 15.

3-6

J

J

Chapter 3 Message Management

If the user modifies USRCANC and desires the message to be
processed despite the CANC option, the return code must be F' -1' and
the message may not be freed by USRCANC. This return code is ignored
if the message is to be flushed. Standard linkage conventions must be
used.

3.3 THE FRONT END VERB TABLE

Incoming transactions from a teleprocessing device are identified
by a transaction code, which under Intercomm is called a verb. Verbs
are defined in the Front End Verb Table (BTVRBTB) via coding of a
BTVERB macro for each user transaction code, and each system control
command. Each BTVERB macro relates a verb to the subsystem which is to
process the transaction via user-coded subsystem identifiers, called
receiving subsystem codes. These codes are placed in the Intercornrn
message header constructed for the incoming message, and are
subsequently used to search the subsystem table during message routing
processing. See Appendix B for a detailed description of the Intercomm
message header. Although the verbs must be unique, more than one verb
may be processed by a specific subsystem, by specifying the same
subsystem identifier codes.

3.3.1 Entries in The Verb Table

-One BTVERB macro must be coded for each four-character verb to be
accepted by the system. The macro parameters specify the actual verb,
the receiving subsystem code of the message processing subsystem,
message editing requirements, etc. To signify the end of the table,
the last coded BTVERB macro must be followed by a PMISTOP macro. User
verbs should be coded in a copy member USRBTVRB which is copied into
the released BTVRBTB at assembly time, as illustrated in the BTVRBTB in
Figure 3-2, or may be coded after Intercornrn verbs, but before the
PMISTOP. Intercomm verbs are called system commands and are all
described in System Control Commands.

Assembly of the Front End Verb Table also produces an index
(Csect BTVRBNDX) to BTVERB entries, providing a binary search
capability via the module BINSRCH. This facility allows verbs to be
grouped in any convenient order, such as by application area.

If more than 1000 BTVERB macros are defined, the global values
(released as 1000) in FEMACGBL must be reset to the higher number
desired to allow sorting of the greater number of verbs for the verb
index. Additionally, use of Assembler H and/or a larger region size
may be required for the assembly step of BTVRBTB.

3-7

Chapter 3

BTVRBTB

*
*
*

*
*
*

*
*
*

*

Message Management

CSECT

FRONT END (BTAM/TCAM)

BTVERB VERB=TDWN
BTVERB VERB=TPUP
BTVERB VERB=STLN
BTVERB VERB=SPLN
BTVERB VERB=STLG
BTVERB VERB=SPLG
BTVERB VERB=STPL
BTVERB VERB=SPPL
BTVERB VERB=RVRS
BTVERB VERB=STAT BTAM/TCAM/GFE STATUS
BTVERB VERB=BTUP GROUP TPUP'S ON PARTIAL NAME
BTVERB VERB=BTDN GROUP TDWN' S ON PARTIAL NM1E

COMMON FRONT END COMMANDS

BTVERB VERB=LOCK
BTVERB VERB=UNLK
BTVERB VERB=RLSE
BTVERB VERB-FLSH
BTVERB VERB=QHLD
BTVERB VERB=QRLS
BTVERB VERB=WHOI,SSCH-W,SSC-I OPERATOR TERMINAL DISPLAY
BTVERB VERB=WHOU,SSCH=W,SSC=U REMOTE TERMINAL DISPLAY
BTVERB VERB=COPY,SSCH-C,SSC-C COPY SUBSYSTEM - 3270'S

SYSTEM COMMANDS

BTVERB VERB-NRCD,SSC=J NORMAL CLOSEDOWN
BTVERB VERB=IMCD,SSC=J IMMEDIATE CLOSEDOWN
BTVERB VERB=SECN CONTROL TERM. SECURITY ON
BTVERB VERB=SECF CONTROL TERM. SECURITY OFF
BTVERB VERB=DSPL,SSC=H,EDIT=YES,CONV-18000 DISPLAY
BTVERB VERB-CHNG,SSC=H,EDIT-YES,CONV-18000 CHANGE
BTVERB VERB=SWCH,SSC-B MESSAGE SWITCHING
BTVERB VERB=SNBK,SSC=W ECHO INPUT MESSAGE
BTVERB VERB=LOAD,SSC=L,SSCH=L,CONV=36000 LOADSCT SUBSYSTEM
BTVERB VERB=FHST,SSC=R,CONV=36000 FILE STATISTICS DISPLAY

* GPSS VERBS

* BTVERB VERB=FILE,SSCH=G,SSC-P,CONV-36000
BTVERB VERB=TALY,SSCH=G,SSC=P,CONV-18000
BTVERB VERB-STRT,SSCH=G,SSC-P
BTVERB VERB-STOP,SSCH=G,SSC-P
BTVERB VERB-SNAP,SSCH-G,SSC-P,CONV-36000
BTVERB VERB-ABND,SSCH-G,SSC-P,CONV-36000
BTVERB VERB-LTRC,SSCH=G,SSC-P START/STOP LINE TRACE

Figure 3-2. Released BTVRBTB (Page 1 of 2)

3-8

J

J

J

Chapter 3 Message Management

* * FINTUNER COMMANDS

*

*

BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB

VERB=MNCL,SSC-T CHANGE SUBSYSTEM MNCL
VERB=DELY,SSC-T DELAY SUBSYSTEM PROCESSING
VERB=BEGN,SSC=T RESTART SUBSYSTEM PROCESSING
VERB-TCTV,SSC~T CHANGE SUBSYSTEM TCTV
VERB=SPAC,SSC=T CHANGE SUBSYSTEM DWS/ISA SIZE
VERB=PRTY,SSC-T CHANGE SUBSYSTEM PRIORITY
VERB=SSFL,SSC-T FLUSH ONE/SOME/ALL SS MSGS
VERB=FTUN,SSC-F DISPLAY SUBSYSTEM SYCTTBL
VERB=SSUP,SSC-F UPDATE SYCTTBL FIELDS
VERB=SCTL,SSC=C,CONV=18000 SYSTEM DISPLAY

* MMU COMMAND

*

*

BTVERB VERB=MMUC,SSCH=M,SSC=M,CONV=18000
BTVERB VERB=LMAP,SSCH=L,SSC=M,CONV=18000

* PAGE FACILITY COMMANDS

*

*

BTVERB
BTVERB

* VTAM VERBS

* BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB

VERB=PAGE, SSC=P,EDIT=YES ,CONV=36000
VERB=SAVE,SSC=P,EDIT=YES,CONV=36000

VERB=STLU
VERB=SPLU, LOCKEXE=YES
VERB=RSLU
VERB=VTCN
VERB=VTST,LOCKEXE=YES
VERB=BRUP GROUP STLU ON
VERB=VTUP GROUP STLU ON
VERB=BRDN GROUP SPLU ON
VERB=VTDN GROUP SPLU ON

VTAM STATUS
PARTIAL ICOMID
PARTIAL VTAMID
PARTIAL ICOMID
PARTIAL VTAMID

**************************************~~****-:;~';*************************
*
*
*

ADD USE R V E R B SHE REV I A COP Y *
*
*

** COPY USRBTVRB
PMISTOP
END

Figure 3-2. Released BTVRBTB (Page 2 of 2)

3-9

Chapter 3 Message Management

The following illustrates a USRBTVRB (as released on SYMREL for use by J
new installations):

* * MULTIREGION COMMANDS

*

*

BTVERB
BTVERB
BTVERB

VERB=COMM,SSC=K,CONV=18000
VERB=LOKR,LOCKEXE=YES
VERB=ULKR,LOCKEXE=YES

* EXTENDED SECURITY COMMAND

*
BTVERB
TITLE
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB
BTVERB

VERB=SECU,SSC=E
'APW CLASS WORKSHOP SIS VERBS'
VERB=APW1,SSCH=A,SSC=1
VERB=INQ1,SSCH=A,SSC=1
VERB-UPT1,SSCH=A,SSC=1
VERB=NEW1,SSCH=A,SSC=1
VERB=APW2,SSCH=A,SSC=2
VERB=INQ2,SSCH=A,SSC=2
VERB=UPT2,SSCH=A,SSC=2
VERB=NEW2,SSCH=A,SSC=2

3-10

Chapter 3 Message Management

3.3.2 Short Verbs

Intercomm provides a facility to allow verbs with a length of
one, two or three characters to be accepted, instead of only verbs of
the standard four-character length. These short verbs are padded on
the right with XS before the verb is validated against the Verb Table.
The BTVERB entry for each short verb must contain the X padding.

3.3.3 Priority Verbs

Certain verbs may be specified as high-priority by coding
HPRTY-YES in the BTVERB macro. The input message header will then be
flagged so that the message will receive high-priority treatment on any
subsystem or Front End queue which specifies the priority-queuing
facility (via the PRYMSGS parameter of the SYCTTBL macro). Any
messages generated in the course of processing these high-priority
input messages will also receive high priority if message processing
program logic is such that input message headers are copied before
altering to create output message headers. The MSGHUSR byte in the
input message header is set to a character P to identify priority
verbs; subsystems altering or omitting this value will cause a message
to lose its priority status on transfer to another queue.

3.3.4 Locked Verb Facility

For certain terminals where prefixing a message with a verb may
be impractical, Intercomm provides a facility for locking the terminal
to a verb. The verb is automatically inserted by the Front End for
each message from the designated terminal. This may be accomplished by
one or more of the following:

• Specifying LOCK=verb on the terminal descriptor
(BTERM/LCOMP/LUNIT) in the Front End Network Table.

• Specifying AUTOLOK=YES on the verb descriptor (BTVERB)

• Issuing the LOCK system control command from another terminal
or a subsystem.

Subsequent unlocking of the terminal from a specific verb may be
accomplished dynamically by issuing the UNLK system control command.

When the LOCK parameter is specified via the terminal descriptor,
the terminal is automatically locked to the specified verb at startup;
therefore the firs t message input from the terminal does not need a
verb. That message, and all subsequent messages, will automatically
have the designated verb (and system separator) inserted between the
Intercomm message header and the message text before queuing. When
AUTOLOK is requested via the BTVERB macro, only the first message

3-11

Chapter 3 Message Management

requires a verb; subsequently the terminal is locked. Issuing the
LOCK/UNLK system control commands may be done before terminal input is
begun or to alter subsequent locked verb processing (status). The
latter case applies particularly to restarted messages; the processing
subsystem must issue an internal LOCK command if terminal locking is
required for subsequent input.

Certain verbs may be defined as lock-exempt; that is, even if the
terminal is locked to another verb, when the exempt verb is entered
from the terminal, it is to be processed instead of the locked verb.
This is designated by coding LOCKEXE-YES for the BTVERB macro, and is
the default for certain system control commands. The LOCKEXE and
AUTOLOK parameters of BTVERB are mutually exclusive. When executing
under Multiregion, LOCKEXE also exempts terminal/region locking.

3.3.5 Conversational Verbs

An installation may optionally define certain terminals as
conversational terminals and certain verbs as conversational verbs. If
a conversational verb arrives from a conversational terminal, the
terminal is quiesced (taken out of the polling list) and further input
is ignored until a message has been written back to the terminal. This
prevents a terminal from having more than one input message begin
processing at one time. A routine is scheduled on a time interval to
issue a time-out message to the terminal in the event that the
subsystem to which the verb was directed does not respond within the
specified time. The time limit for each verb is defined on the BTVERB
macro. The presence of a nonzero time limit indicates a conversational
verb. In normal operation, if a response does come back from the
subsystem before the specified interval expires, the scheduled routine
is cancelled. Conversational mode processing controls input messages
only. Response to a conversational verb from a conversational terminal
could be more than one output message.

This facility is implemented as follows:

1. Set the &CONVER global in SETENV to 1 if BTAM/TCAM used, and
reassemble the BTAM Front End modules.

2. Code CONV-YES for all terminal BTERM/LUNIT/LCOMP macros for
which this processing is desired.

3. Code the CONV parameter with the time-out value on the
conversational verb's BTVERB macro.

If this facili ty is used in conjunction with the CONVERSE
facility (described in the Programmers Guides), the time interval on
the conversational verb should be slightly larger than the time
interval passed from the application program to CONVERSE. Use of the
CONVERSE facility is not recommended if message restart is used.

3-12

J

Chapter 3 Message Management

3.3.6 Separate Assemblies of Verb and Network Tables

Normally, the Front End Verb Table is coded with the Front End
Network Table as one module. In cases where frequent changes of
entries in the Front End Verb Table occur, or either table becomes very
large, it may be coded and assembled as a separate module. The Csect
and member name for the verb table must be BTVRBTB. Internal Csect or
entry point names, generated by the first occurrence of a macro
designating a major component, are used for accessing the Network
Table, which may have any Csect name if assembled separately. When
assembled separately, the load module name for the Network Table must
be specified on the Intercomm linkedit generation ICOMLINK macro via
the FETABLE parameter. The BTVRBTB is automatically included (unless
it is dynamically loaded at startup - see below). In a Multiregion
environment, these tables are included only in the control region.
Sample Front End terminal tables are illustrated in the BTAM/TCAM/VTAM
Terminal Support Guides.

3.3.7 Dynamically Loading the Front End Verb Table at Startup

At startup time, the user may dynamically choose a set of
transaction codes (verbs) for the system to use. That is, instead of
choosing a set of verbs at linkedit time (by including the member
BTVRBTB), a set of verbs may be chosen at execution time. The set of
verbs chosen is brought into core via a LOAD macro, and for every
Intercomm execution a new set, or the same set, of verbs may be chosen.
With a dynamically loaded verb table, the need for relinking Intercomm
whenever the transaction definitions change is alleviated.

done:
To use a dynamically loaded verb table, the following must be

• Include the module VERBSTRT in the Intercomm linkedit.

• Separate the assemblies of the verb and network tables as
described in the previous section.

• Do not include BTVRBTB (verb
linkedit. (The ICOMLINK macro
INCLUDE statements if DYNVERB=YES
(default), an INCLUDE for BTVRBTB
VERBSTRT.)

table) in the Intercomm
will generate the proper
is coded. If DYNVERB=NO
is generated, but not for

• Assemble and link the verb table into a library which will be
part of the STEPLIB concatenation for INTERCOMM execution.
The member names for the verb table load module names must be
of the form BTVERBxx where xx is a two digit decimal number
in the range 00-99. Ensure that the entry point of the
BTVERBxx load modules is the assembly generated VERBVCON
Csect. (This can be accomplished by either using the "ENTRY
VERBVCON" linkage editor control statement explicitly, or by
ORDERing the BTVERBxx load module so that VERBVCON is the
first CSECT in the module.)

3-13

Chapter 3

•

Message Management

If the module VERBSTRT is present in the Intercomm load
module, it will be called at startup time and it takes the
following actions:

l. Checks if the Front End Verb Table (BTVRBTB) was
linkedited with the system. If so, no further action is
taken, and the linkedited version of the verb table will
be the one used in the run.

2. If BTVRBTB is not linked with the system, a WTOR (MI080R)
is issued requesting a reply in the form of a two-digit
number which is the suffix of the name of the desired
verb table load module (the xx in BTVERBxx).

3. A LOAD is attempted for the module BTVERBxx. If found,
the module is loaded and the VERBVCON Csect (returned
module address) is used to resolve references in the SPA
and SPAEXT to specific verb pointers. The execution of
startup then continues. If the module is not found,
another WTOR (MID8IR) is issued giving the operator the
choice of:

a) retrying the LOAD. (The operator is asked for
another two digit suffix by reissuing WTOR MI080R.)

b) cancelling the run. (A return to the operating
system is effected with a step return code of 16. No
dump is taken.)

c) abending Intercomm startup. (The job step is
abnormally terminated with a dump. The abend code is
a User 199.)

3.4 BACK END TABLE SPECIFICATIONS FOR THE UTILITIES

The Intercomm utilities (Edit, Output, Change/Display, and the
Message Mapping Utilities) are documented in the Utilities Users Guide
and Message Mapping Utilities. This section describes specifications
for the utilities of a nonapplication-oriented nature, that is,
systemwide table specifications controlling the use of the utilities.
In a Multiregion environment, these tables are required in the control
region, and in each satellite region which uses the utilities and/or
Intercomm subsystems. These tables are also required in a simulated or
Test Mode Intercomm system. The following describes tables used by all
the utilities, plus additional tables unique to the individual utility.

3-14

J

Chapter 3 Message Management

3.4.1 Station Table

The Station Table is core-resident in a Csect named PMISTATB.
The table is created and maintained by the user. Individual entries in
the table are created by use of the STATION macro (one for each device
defined in the Front End Network Table). The end of the table is
indicated by four bytes of hexadecimal 'FF', generated by the PMISTOP
macro. Assembly of the Station Table produces a binary search index by
terminal names (Csect STATINDX). The location in core of the PMISTATB
Csect is pointed to by a V-type address constant in the field SPASTATB
of the System Parameter Area. The member PMISTATB on SYMREL contains a
sample Station Table which may be updated or replaced by the system
manager to define the network configuration for the utilities.

The Station Table effectively creates five-character logical
names for each terminal in the system, and relates that terminal to the
device type characteristics defined in the Device Table. General
device characteristics may be overridden for a specific terminal by
coding a DVMODIFY macro after the PMISTOP in the Station Table, and
specifying the label of that DVMODIFY via the corresponding STATION
macro.

The Station Table structure is as follows:

PMISTATB CSECT
STATION
STATION
STATION

PMISTOP
END

To add a new terminal to the system, the Station Table must be
modified by adding a STATION macro entry before the PMISTOP macro. The
Station Table is accessed by all the utilities, and for additional
internal Intercomm functions, and therefore is required in all
regions. If more than 1000 STATION macros are coded, the global table
FEMACGBL must be modified as described for the BTVRBTB in Section
3.3.1.

3.4.2 Device Table

Created and maintained by the user, the Device Table is resident
in a Csect named PMIDEVTB. Individual entries (one per terminal type)
are created by use of the DEVICE macro (specifying message editing and
formatting control characteristics of each device type). The end of
the table is indicated by four bytes of hexadecimal 'FF', generated by
the PMISTOP macro. The location in core of the PMIDEVTB Csect is
pointed to by a V-type address constant in the field SPADEVTB of the
System Parameter Area.

3-15

Chapter 3 Message Management

The member PMIDEVTB on SYMREL contains a sample Device Table
which may be updated or replaced by the system manager to define the
installation device types. A user-assigned device type (DEVICE macro,
TYPE parameter) is referenced by the STATION macro, IOCODE parameter.
The Device Table structure is as follows:

PMIDEVTB CSECT
DEVICE
DEVICE
DEVICE
PMISTOP
END

To add a new device type to the table, code the necessary DEVICE
macro before the PMISTOP, then reassemble and re1inkedit. The Device
Table is accessed by all the utilities, and also by internal Intercomm
functions, and therefore is required in all regions.

3.4.3 Broadcast Table

The Broadcast Table is core-resident in
linkedited with the member name PMIBROAD.
maintained by the user. Each entry in the
one broadcast group. The end of this table
of hexadecimal 'FF', generated by the PMISTOP

a Csect named BROADCST and
The table is created and

Broadcast Table represents
is indicated by four bytes
macro.

The member PMIBROAD on SYMREL contains a sample Broadcast Group
Table which may be updated or replaced by the system manager. The
Broadcast Group "TOALL" is used by the optional modules USRSTART and
USRCLOSE to send a message to all terminals in the group at startup and
c1osedown time.

The Broadcast Table is defined by the BCGROUP macro. The
broadcast group name (five bytes) is followed by a specification of the
terminals within the group. A message destined for a broadcast group
(MSGHTID in the header) will cause a message to be passed to the Front
End for each terminal in the group. Therefore, all terminals in a
broadcast group must be of the same device type. The Broadcast Table is
accessed by the Output Utility, Message Mapping Utilities, and the
Intercomm Front End.

In the following sample Broadcast Table (released as member
PMIBROAD), one broadcast group is defined:

BROADCAST CSECT
BCGROUP GROUP-TOALL,TERMS=(CNT01,TEST1)
PMISTOP
END

3-16

J

J

Chapter 3 Message Management

An optional routine, BROADRTN, will assist in smoothing the
storage requirement peaks when processing broadcast messages. If
included, BROADRTN will generate one message at a time with a small
time delay before generating the next message. If BROADRTN is used,
the module must be in the resident portion of Intercomm, and in the
same region as the Output Utility.

3.4.4 Message Mapping Utilities Requirements

The Message Mapping Utilities provide input message editing and
output data formatting capabilities to Intercomm subsystems through
callable subroutines. MMU allows a unified specification of input and
output formatting requirements, and provides simplified format (screen
template) generation and data insertion. It can be used instead of the
Edit and Output Utilities.

MMU includes all processing options of the Edit and Output
Utilities, in addition to control and attribute character insertion.
MMU also provides a means of generating symbolic versions of message
data areas which can be copied into the application source module for
ease of definition and reference.

Tables required by MMU include the Device Table and Station Table
and, optionally, the Broadcast Table. General device characteristics
may be overridden for an individual terminal via the DVMODIFY macro
coded j.n the Station Table after the PMISTOP. Additional design and
implementation considerations for MMU are documented in Message Mapping
Utilities.

3.4.5 Edit Utility Requirements

The Edit Control Table (ECT) contains all information necessary
to perform editing of a message by the Edit Utility. The Edit Control
Table is a variable-length table created and maintained by the user, as
described in the Utilities User Guide.

The table resides in core, in a separate Csect labeled VERBTBL.
The member PMIVERBS on SYMREL contains required ECT entries for the
Intercomm verbs which require Edit Utility processing. User table
entries may be added to this member via COpy member USRVERBS, or an
entirely new VERBTBL Csect may be created. In either case, care must
be taken to ensure that each new entry has been thoroughly tested prior
to execution in production mode. Disk-resident table entry references
are coded within the core-resident table. Each disk-resident entry is
assembled and linkedited individually, for loading to the VRBOOO data
set via the File Load Utility (PMIEXLD). A DD statement for VRBOOO
must be included with execution JCL, if disk-resident entries are used.

3-17

Chapter 3 Message Management

The Intercomm system manager must define the systemwide field
separator character used by the Edit Utility in scanning a message text
for field delimiters. This same character is used by the Intercomm
Front End to separate the verb from other message text. The SETENV
global specification for &SEPCHAR in a BTAM/TCAM Front End must
correspond to coding of the SEP parameter of the SPALIST macro to
ensure consistent operation.

User-coded edit subroutines may be added, but must be coded in
Assembler Language. If used, the system manager must code the SPALIST
macro EDITRTN parameter to indicate the highest-numbered edit routine
in use. Coding specifications are in the Utilities Users Guide.

In addition to controlling the table specifications for the Edit
Utility and ensuring their validity in the production environment, the
system manager may control optional edit features via conditional
assembly. The globals listed below control conditional assembly of the
member PMIEDIT. The globals are defined in the member INTGLOBE and
specified in the member SETGLOBE.

F==~=======================

Global
!Definition
(INTGLOBE) Option Defined

Default
Specification

(SETGLOBE)
P======~===F============-=--=====--======================~F=~=====-==c====

&EDERRS
&EDERMAX

&OPTRPT

&EDERRS code specifies that the maximum
number of error messages per input verb is
limited by &EDERMAX. To suppress this
feature, use &EDERRS SETB 1.

&OPTRPT code specifies that error messages
for non-required fields are not generated.
To get error messages use &OPTRPT SETB 1.

&DELCHNG &DELCHNG code controls the CANCEL/CORRECT
feature for keyword input. To activate
this feature, use &DELCHNG SETB O.

SETB 0
SETA 5

SETB 0

SETB 1

The Edit Control Program (PMIEDIT) must be a resident module, but
the edit subroutines (Intercomm or user-supplied) may be resident,
linkedited as part of an Overlay Region A subsystem group to be
resident only when the subsystem which requires their use is loaded, or
linkedited within the Intercomm Transient Subroutine Overlay Region.
Certain constraints apply in this latter case with respect to
situations where one subroutine calls another; all called subroutines
must be linkedited in the same load segment as the calling subroutine.

3-18

J

Chapter 3 Message Management

3.4.6 Output Utility Reguirements

The Output Utility (PMIOUTPT) is defined by three Subsystem
Control Table entries in the member INTSCT. This allows routing of
messages to the Output Utility via three subsystem codes and
corresponding subsystem queues. Subsystem U is for standard full
messages; V is only for segmented messages, and N is for messages to
the control terminal.

If segmented messages are processed by the Output Utility, (that
is, a series of messages destined for the same terminal, identified by
message header VMI-X'51', X'52', X'5C', or X'53' for each segment of
the message text) the System Manager must be aware of three parameters
on the SPALIST macro controlling message processing:

• DTIMS, which is the delay time between attempts to check the
availability of the terminal to assign it to a "segmented
message in progress" condition by the PMIDVASN module.

• NTIMS, which is the maximum number of attempts that are to be
made to ass ign a terminal to a "segmented message in
progress" condition when a terminal is already busy with
other segmented message processing.

• TIMS, which is the time value (multiplied by two minutes)
which specifies allowable time between processing of the
VMI-X'5l' and VMI=X'53' messages; that is, the duration
allowed for device assignment to a "segmented message in
progress" condition. If a time-out occurs, an error message
is routed to the destination terminal indicating SEGMENTED
MESSAGE TIMEOUT.

The following globals (defined in INTGLOBE and specified in
SETGLOBE) control conditional assembly options of the Output Utility.

F==F===========
Global Option Defined Default

F==p~==========

&DDQBACK DDQ Automatic Subsystem Input not used SETB 0
(SETB to 1 to activate this facility)

&BROAD

&RPTBLE

&ALTRPT

&OUTEXIT

Broadcast Groups in use
(SETB to 1 to suppress this facility)

Batch Report Table Facility
(SETB to 1 to suppress this facility)

Alternate Format Table Facility not in use
(SETB to 0 to activate this facility)

User Output Exit USROTEDT not used
(SETB to 0 to activate this facility)

3-19

SETB 0

SETB 0

SETB 1

SETB I

Chapter 3 Message Management

3.4.6.1 Addin~ Output Format Table Entries

User-generated Output Format Table (OFT) entries may be added to
the Intercomm system as either core-resident or disk-resident. Each
user entry is identified by the name RPTOnnnn, where nnnn is in the
range 0051 to 9999. Numbers 1- 50 are reserved for Intercomm use.
Individual table entries (REPORTs) must be assembled and linkedited
separately. These table entries must not use the Csect name PMIRCNTB
nor include a PMISTOP macro. Generation of OFTs is described in the
Utilities Users Guide.

Two members are contained on SYMREL to facilitate linkedit of OFT
entries for the core-resident table: (1) PMIRCNTB- -Table Heading
(Csect name PMIRCNTB); and (2) PMIRCEND- -Table End (PMISTOP macro).
In an Intercomm linkedit generated by the ICOMLINK macro, these members
bracket the common system OFT entries which should be resident. Other
Intercomm OFT entries may be made resident, if desired. See also
installation of system command verbs requiring REPORTs, as described in
System Control Commands.

The following linkedit control statements are used to construct
the core-resident OFT (entries do not have to be in numeric sequence):

INCLUDE SYSLIB(PMIRCNTB)
INCLUDE SYSLIB(RPT00008)
INCLUDE SYSLIB(RPT00009)
INCLUDE SYSLIB(RPT00043)
INCLUDE SYSLIB(RPT00045)
INCLUDE SYSLIB(RPTOOOnn)

INCLUDE SYSLIB(RPTOnnnn)
INCLUDE SYSLIB(PMIRCEND)

Before All Resident Reports
Intercomm Reports

User Reports

After All Resident Reports

Disk-resident OFT entries have no entry in the core-resident
table. They are loaded to the BDAM data set RCTOOO via the File Load
Utility (PMIEXLD) for access at execution time. A DD statement for
RCTOOO must be present in the Intercomm execution JCL. Many Intercomm
error and statistical messages are produced via OFT numbers 1-50
released as member names RPTOOOOI to RPT00050 on SYMREL. These table
entries are loaded to RCTOOO at system installation time. The block
size of RCTOOO must be a minimum of 1800 to accommodate Intercomm OFTs.

3-20

J

Chapter 3 Message Management

3.4.6.2 Error Messages from the Output Utility

Error messages reflecting problems encountered during message
processing by the Output Utili ty are generated and queued for
subsequent processing via the Output Utility. The messages are
formatted according to OFT entries which may be disk-resident. Each
error message is prefixed with identifying information:

SEQ NO
SSC
RSC
TID

(Monitor Message Number of message in error)
(Sending Subsystem Code)
(Receiving Subsystem Code: U, N or V)
(Destination Terminal of message in error)

Each error message explicitly defines the reason for rej ecting
the message being processed, for example:

THE FROM IS GREATER THAN THE TO FIELD.

REPORT NUMBER NOT IN MESSAGE.

ReT nnnn IS INVALID. NOT FOUND. (OFT entry missing for nnnn)

See Messages and Codes for a precise listing of Output Utility
error messages.

3-21

Chapter 3 Message Management

3.4.6.3 Output User Exit--USROTEDT

An optional user-coded exit, USROTEDT, is available in PMIOUTPT.
Before sending a message to the Front End, the Output Utility issues a
conditional call (CALLIF) to USROTEDT, if such a routine has been
written and included. USROTEDT is also called by FESEND before (F2)
logging and queuing an output message if a subsystem calls FESEND
(FESENDC) directly. In a Multiregion environment, if PMIOUTPT is
included in a satellite region, USROTEDT should be included only in the
control region (called by FESEND). This will prevent it from being
called twice. Standard linkage conventions are to be used.

The parameter list passed to USROTEDT via register 1 contains:

1. Address of message

2. Address of System Parameter Area

3. Address of a fullword in which the user-written routine must
place a return code (see FESEND and subsystem return codes
described in Programmer's Guides).

Any return code other than 0 will cause PMIOUTPT or FESEND to
stop the message from being queued for the Front End (no error message
issued if called by FESEND); the message is flushed by the caller. If
the user wishes to create an entirely new message area, an area of
storage may be obtained (via the STORAGE macro) and a new message may
be created consisting of header and text. Do not free the storage area
occupied by the old message. Change the address of the message in the
parameter list to reflect the address of the new message.

To generate the code to call USROTEDT, make sure the global
&OUTEXIT was set to 0 in SETGLOBE when FESEND and PMIOUTPT were
assembled for Intercomm installation.

3.4.6.4 Output User Exit--USROUTCK

USROUTCK is a user-coded user exit conditionally called (via
CALLI F) by PMIOUTPT. Its purpose is to allow the user to determine if
PMIOUTPT is to process the unformatted message, based on installation
dependent criteria.' If the message is to be cancelled, USROUTCK must
free it before returning to PMIOUTPT. In this case, the user exit is
responsible for notifying the terminal that the message was cancelled,
if a response is expected.

At entry to USROUTCK, register 8 points to the input message
(header). If PMIOUTPT is not to process the message, a nonzero return
code must be returned by USROUTCK to PMIOUTPT in register 15;
otherwise, a zero return code is required, indicating PMIOUTPT is to
process and/or forward the message to FESEND. If the message is
cancelled, PMIOUTPT returns immediately to the Subsystem Controller
with a zero return code. Standard linkage conventions are to be used.

3-22

J

Chapter 3 Message Management

3.4.7 Change/Display Utility Requirements

The Subsystem Control Table entry for the Change/Display Utility
is provided in the released member INTSCT. The SCT defines the CHANGE
module as a resident subsystem. The user may redefine the
Change/Display entry as a dynamically loaded subsystem. Other modules
referenced by CHANGE include DISPLAY, FORMAT, CRUNCH, PTRNTBLE, and the
CHNGTB table. The UTILITY parameter of the ICOMLINK macro is used to
generate the include statements.

All file (format) description records (FDRs) for the
Change/Display Utility are disk-resident (ddname DESOOO) table entries
loaded via the File Load Utility (PMIEXLD). See the Utilities Users
Guide for coding specifications, a description of application subsystem
interface to the CHANGE utility, and the required user-coded CHNGTB
table. The DD statement for DESOOO must be specified in the Intercornrn
execution JCL if Change/Display is used. The released PMIVERBS
contains required ECT entries for the CHNG and DSPL verbs for this
utility.

User files accessed via the utility are defined via the GENFTBLE
macro in the Intercomm File Table (PMIFILET). Additional
considerations are:

• There must be an entry in the File Table for each Intercomrn
disk-resident table data set (RCTOOO, VRBOOO, DESOOO, etc.)
as well as files accessed via Change/Display.

• The entry in the File Table defines the block size for data
set access which must be greater than or equal to the
physical block size of the user file data block on disk. If
the optional module PMICKFTB is included, these block sizes
are verified at startup and dynamically corrected if
required.

• The last entry must be followed by a PMISTOP macro.

Following is a sample PMIFILET;

PMIFILET CSECT
ENTRY PMIFILTB

PMIFILTB EQU *
GENFTBLE FNAME=RCTOOO,BLKSIZE=1800,TYPE=BDAM
GENFTBLE FNAME=DESOOO,BLKSIZE=750,TYPE=BDAM
GENFTBLE FNAME=VRBOOO,BLKSIZE=750,TYPE=BDAM

* BLKSIZE FOR DESOOO,RCTOOO,VRBOOO CORRESPOND TO INTERCOMM RELEASE
* SPECIFICATIONS. USER MUST CHANGE FOR LARGER TABLE ENTRIES.
* ADD USER FILE DESCRIPTIONS HERE.

* GENFTBLE FNAME=USERFILE,BLKSIZE=xxxx,TYPE=ISAM,DESNUM=7
PMISTOP
END

3-23

Chapter 3 Message Management

3.5 MESSAGE PROCESSING FACILITIES

The following subsections describe other Intercomm facilities for
queuing and processing messages.

3.5.1 Message Switching

The standard terminal-requested message switching facility is
activated by the SWCH system control command which uses a subsystem for
the switching and allows messages to be switched to one or more
receiving terminals, as well as to Broadcast Groups.

The Intercomm Front End also provides a Fast Message Switch
facility, as it recognizes input messages which contain, in place of
the normal verb, the five-character name of the single terminal to
which the message should be forwarded. For example, terminal NYCOl
sends a message to terminal BOS07 in the following format:

BOS07,THIS IS A SWITCHED MESSAGE

The message would be routed, completely within the Front End, to
terminal BOS07. The receiving terminal name is replaced by the sending
terminal name so that the origin of the message is known. The message
sent to BOS07 would be:

NYC01,THIS IS A SWITCHED MESSAGE

As with the standard message switching facility, no reformatting
of the message is done. Messages should therefore be switched only to
terminals which have hardware characteristics compatible with the
sending terminal. For example, a multiline message from a terminal
which uses NL (new line) characters should not be switched to a
terminal which requires CR/LF (carriage return, line feed) characters.

If the receiving terminal is not active, or is not currently able
to receive an output message,· the message remains queued until it can
be transmitted. Fast Message Switch cannot be used for a Broadcast
Group name, use the SWCH command.

3.5.2 Multimessage Queuing via the Dynamic Data Queuing Facility

The Front End Data Queuing feature operates in conjunction with
the Intercomm Dynamic Data Queuing Facility. It enables an application
to send to the Front End a dynamic data queue (DDQ) that contains
messages to be transmitted to a terminal. Thus, instead of sending one
message at a time and having each message queued for Front End
transmission, and then dequeued by the Front End, an entire group of
messages may be placed on a DDQ and treated as one message.

3-24

J

J

Chapter 3 Message Management

For implementation of the data queuing feature, refer to the
applicable application programmer guides and the Dynamic Data Queuing
Facility for further details. In addition to the Dynamic Data Queuing
Facility, the Front End Control Message Facility (see below) must be
installed in order to use the Front End Data Queuing feature.

The Dynamic Data Queuing Facility is also used for easy, orderly
retrieval of segmented input messages, and may be used for queuing of
output messages to the Change/Display or Output Utilities.

3.5.3 Front End Control Message Facility

This facility allows application subsystems to generate and
transmit control messages to the Front End. Three types are currently
defined. A control message (FECM) may be either a feedback-request, a
release-request, or a DDQ-identifier for a group of messages collected
on a DDQ. For implementation, the module FECMMOD must be included in
the Intercomm 1inkedit.

Feedback-requests, when sent to a terminal, cause the Front End
to send a message, containing user-specified text, to a user-specified
subsystem. This message, which is sent when all messages in front of
the feedback-request message have been transmitted to the terminal, can
be used, for example, to determine when a report has actually been
printed. The feedback facility also allows synchronization of message
transmission with subsystem processing. A subsystem may issue a
feedback FECM which signals the Front End to notify the issuing
subsystem or another subsystem when a certain output message has been
transmitted to a destination terminal.

DDQ-identifier control messages designate a DDQ containing
messages to be sent to the terminal. These messages, which must be
preforma tted (VMI=X' 67' or X' 57'), are read from the DDQ and sent to
the terminal. The DDQ, subject to user specification, may be either
freed or retained. By retaining the DDQ, the messages may be
broadcast; therefore it is a convenient facility to send canned reports
or other data. The DDQ may also contain FECMs for other DDQs, or for
feedback, mixed in with real output messages (only at the end of the
DDQ, if VTAM). DDQ FECMs require dedicated queues for the receiving
terminals.

Release-requests, when sent to a terminal, override normal CRT
processing logic, which requires a one-for-one correspondence between
input and output messages. When the release FECM is processed by the
Front End, it causes the next message queued for the CRT terminal to be
transmitted immediately, rather than waiting for input from the
operator. Processing is the same as if a RLSE command was generated
internally. The Front End converts the command to a FECMRLSE. Under a
VTAM Front End, certain protocols (HDFF) may preclude immediate
transmission of the next message; see SNA Terminal Support Guide.

3-25

Chapter 3 Message Management

3.5.4 Page Facility

The Page Facility provides a browsing capability for CRT output
messages that have been collected on a disk data set, rather than being
queued for the terminal. A subsystem may request MMU to pass messages
to the Page Facility which were formatted by MAPOUT processing, or the
subsystem may call the Page Facility directly with messages to be
formatted later by the Change/Display Utility and/or the Output
Utility.

The first message of the series is always returned directly to
the terminal. The terminal operator subsequently uses Page Facility
commands to browse and ultimately save or discard the collected
messages. Further details are described in Page Facility.

3.5.5 Intermediate Message Data Storage

Two facilities are provided for storage of data by a message
processing thread between input messages when an interactive
conversation is in progress. These are the Store/Fetch Facility (see
the manual of that name), and the CONVERSE facility described in the
applicable Programmers Guide. The former provides for storage and
retrieval of saved data as data strings in core or on disk. The saved
data may consist of tables, counters, message data, or file data, as
the strings may be of any length. The CONVERSE facility is used to
save and restore the dynamic working storage of a reentrant COBOL or
Assembler Language subsystem between input messages, that is, while
waiting for a response to the last output message. Installation and
programming considerations for these facilities are described in the
referenced manuals.

3.6 THE SYSTEM PARAMETER AREA (SPA)

The System Parameter Area consists of systemwide variables and
system component addresses controlling all message processing
functions. These elements are defined in the member INTSPA which
contains the following:

• SPA CSECT--the System Parameter List, defined by the
SPALIST macro.

• USERSPA: This is an optional user extension to the
System Parameter List, with user-defined variables and
addresses, coded as a separate source module in SYMUSR.

• SPAEXT: This is the Intercomm extension to the System
Parameter List. SPAEXT Csect is also generated by the
SPALIST macro, using the EXTONLY-BOTH parameter.

Figure 3-4 illustrates typical JCL which may be used to create
INTSPA, or the released member on SYMREL may be modified to user
requirements and placed on SYMUSR.

3-26

Chapter 3 Message Management

3.6.1 System Parameter List (SPA Csect)

The System Parameter List is a fixed area of 500 bytes in
length. It contains addresses, control information and statistics for
the entire Intercomm system. When building the SPA Csect, the System
Parameter List is generated by coding the SPALIST macro.

3.6.2 User Extension to the System Parameter List (USERSPA)

The variable-length USERSPA allows definition of user fields or
table areas common to all user subsystems. Since all subsystems are
passed the address of the SPA as an entry parameter, application
subsystems may not alter values within the System Parameter Area.
Users must instead add user fields to the SPA Csect via USERSPA. User
additions to the System Parameter Area are coded as a separate source
module named USERSPA, and labeled SPAUSER. When the SPALIST macro is
assembled, the source module USERSPA will automatically be copied into
the System Parameter Area, at a displacement of 500 bytes from the
beginning of the SPA (plus X'lF4'). The maximum length allowed for
USERSPA is 4095 minus 500, or 3595 bytes (for addressabi1ity).

USERSPA should be correctly referenced by application
subsystems. For application programmers' use in defining this user
extension, source statement library members should be provided in the
appropriate language available for copying into the program.

3.6.3 Intercomm Extension to the System Parameter List (SPAEXT Csect)

The SPAEXT Csect is variable in length to allow for continued
flexibility in adding systemwide control variables to the System
Parameter List.

3.6.4 Separate Assembly of the SPA and the SPAEXT Csects

The number of VCONs required by the addition of USERSPA and/or
edit routines may necessitate separate assembly of the SPA Csect and
the Intercomm extension to the System Parameter List. The SPALIST
macro must be assembled twice, once to generate the SPA Csect and once
to generate the SPAEXT Csect. With the exception of the EXTONLY=YES
parameter, denoting generation of the SPAEXT, coding of the SPALIST
macro parameters must, in both cases, be identical. Currently,
approximately 250 VCONs are generated by the combined SPA and SPAEXT
Csects, along with VCONs for the Edit Utility routines EDITOOO-009, if
specified for the region.

3-27

Chapter 3 Message Management

3.7 THE SUBSYSTEM CONTROL TABLE (SCT)

Each subsystem is defined to Intercomm by an entry in the
Subsystem Control Table, generated via the SYCTTBL macro coded in the
member INTSCT which contains the following:

• SCT Csect containing:

The Subsystem Control Table (SCT)--individual table entries
defining subsystem characteristics and message processing
scheduling parameters, defined via the SYCTTBL macro.

The Subsystem Control Table Overlay and Binary Search
Indices, generated via the GENINDEX macro .

• SCTEXT Csect containing the SCT Extension--automatically
generated SYCTTBL extensions for defining dynamically loadable
subsystems.

Figure 3-3 illustrates the relationship of the SPA, the SCT, and
the Overlay Index.

SYSTEM
PARAMETER LIST

INTSPA

SYSTEM
PARAMETER
LIST
(SPA CSECT)

USERSPA
(OPTIONAL)

INTERCOMM SPA
EXTENSION
(SPAEXT CSECT)

Figure 3-3.

SCT OVERLAY INDEX

HEADER PORTION

1ST OVERLAY GROUP

2ND OVERLAY GROUP

NTH OVERLAY GROUP

~-----

SUBSYSTEM
CONTROL TABLE

INTSCT
SCT CSECT:
RESIDENT AND
DYNAMICALLY
LOAD ABLE
SUBSYSTEM
SCT'S

1ST OVERLAY
GROUP
SCT'S

2ND OVERLAY
f------I~ GROUP

SCT'S

NTH OVERLAY
GROUP
SCT'S

The System Control Components

3-28

J

Chapter 3 Message Management

The SYCTTBL macro defines the following for each subsystem:

• Subsystem residency (overlay region, VS execution group,
dynamically loadab1e, or resident)

• Subsystem characteristics (subsystem code, program language,
reentrancy, entry point name, storage requirements, etc.)

• Processing specifications
priority, concurrent message
etc.)

(queue sizes, queue overflow,
processing limits, scheduling,

• Control parameters (time-out limit, snaps desired, logging,
cancellation criteria, file recovery, restart, etc.)

If more than 1000 SYCTTBL macros are defined in INTSCT, the
global values (released as 1000) in FEMACGBL must be reset to the
higher number desired to allow sorting of the greater number of
subsystems for the binary search index. Additionally, use of Assembler
H and/or a larger region size may be required for the assembly of
INTSCT.

Figure 3-5 illustrates the released member INTSCT on SYMREL which
provides for most of the Intercomm subsystems and indicates where user
SCT entries may be inserted via a user-coded copy member USRSCTS. If
an overlay structure is not used, the order of SCT entries is
immaterial as the Binary Search Index is used by Intercomm to find a
particular entry. Figure 3-4 shows JCL to create a USRSCTS and
assemble and link the released version of INTSCT which copies USRSCTS.

IISPA
.1 ADD

*
SPA

11*

EXEC LIBELINK,Q=USR,NAME=INTSPA,LMOD=INTSPA
NAME=INTSPA

CSECT
SPALIST

END

SYSTEM PARAMETER LIST

A=A,EXTONLY=BOTH,CCNID=CNT01,SEP=6B,

other operands as desired

IISCT EXEC LIBELINK,Q=USR,NAME=INTSCT,LMOD=INTSCT
IILIB.SYSIN DD *
.1 ADD NAME=USRSCTS
* USER SUBSYSTEM CONTROL TABLE ENTRIES

SYCTTBL

SYCTTBL
IIASM.SYSIN DD DSN=INT.SYMREL(INTSCT),DISP=SHR
II

Figure 3-4. Creating the System Parameter Area and SCT

3-29

x

p---------------------

Chapter 3 Message Management

SCT CSECT
DC CL8'SCTENTRY' SCTS BEGIN HERE.

**
* SCT DEFINITIONS (SYCTTBL'S) FOR INTERCOMM SIS *
**
U SYCTTBL ECB=YES , SUBH=OOO,SUBC=U,LANG=RBAL,TCTV=120,MNCL=4, X

DFLN=PMIQUE,PCEN=lO,NUMCL=lO,SBSP=PMIOUTPT,RESTART=NO
V SYCTTBL ECB=YES,SUBH=000,SUBC=V,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP=PMIOUTPT,RESTART=NO
N SYCTTBL ECB=YES,SUBH=000,SUBC=N,LANG=RBAL,TCTV=120,MNCL=4, X

DFLN=PMIQUE,PCEN=lO,NUMCL=lO,SBSP=PMIOUTPT,RESTART=NO
J SYCTTBL ECB=YES,SUBH=OOO,SUBC=J,LANG=RBAL,TCTV=O,MNCL=l, X

NUMCL=2,SBSP=PMICLDWN,PRTY=3,RESTART=NO
LL SYCTTBL ECB=YES,SUBH=L,SUBC=L,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP=LOADSCT,RESTART=NO
MM SYCTTBL ECB=YES,SUBH=M,SUBC=M,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP=MMUCOMM,RESTART=NO
LM SYCTTBL ECB=YES,SUBH=L,SUBC=M,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP=LMAP,RESTART=NO
GP SYCTTBL ECB-YES,SUBH=G,SUBC=P,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP=GPSS,LOG=NO,RESTART=NO
T SYCTTBL ECB=YES,SUBH=000,SUBC=T,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP=FINTUNER,LOG=YES,RESTART=NO
C SYCTTBL ECB=YES,SUBH=000,SUBC-C,LANG=RBAL,TCTV=60,MNCL=3, X

NUMCL=lO,SBSP-SYSCNTL,LOG-YES,RESTART=NO
F SYCTTBL ECB=YES,SUBH-OOO,SUBC-F,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP-DYNSSUP,LOG=YES,RESTART=NO
B SYCTTBL ECB=YES,SUBH=OOO,SUBC=B,LANG=RBAL,TCTV=120,MNCL=2, X

NUMCL=2,SBSP=SWITCH,LOG=NO,RESTART=NO
P SYCTTBL ECB=YES,SUBH=OOO,SUBC=P,LANG=RBAL,TCTV=120,MNCL=5, X

NUMCL=5,DFLN=PMIQUE,PCEN=5,SBSP=PAGEMSG,RESTART=NO
W SYCTTBL ECB=YES , SUBH=OOO , SUBC=W,LANG=RBAL,TCTV=120 ,MNCL=4 , X

NUMCL=lO,SBSP=SENDBACK,RESTART=NO
R SYCTTBL ECB=YES,SUBH=OOO,SUBC=R,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP=IXFRPTIQ,RESTART=NO
H SYCTTBL ECB=YES,SUBH=OOO,SUBC=H,LANG=RBAL,TCTV=120,MNCL=4, X

DFLN=PMIQUE,PCEN-10,NUMCL=4,SBSP=CHANGE,RESTART=NO
HH SYCTTBL ECB=YES,SUBH=H,SUBC=H,LANG=RBAL,TCTV=120,MNCL=1, X

DFLN=PMIQUE,PCEN-10,NUMCL=4,SBSP=CHANGE,RESTART=NO
CC SYCTTBL ECB=YES,SUBH=C,SUBC-C,LANG=RBAL,TCTV-120,MNCL=4, X

NUMCL=lO,SBSP-COPYSS,RESTART-NO
WI SYCTTBL ECB=YES,SUBH=W,SUBC-I,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP=FEWHOI,RESTART-NO
WU SYCTTBL ECB=YES,SUBH=W,SUBC=U,LANG=RBAL,TCTV=120,MNCL=4, X

NUMCL=lO,SBSP-FEWHOU,RESTART-NO
**
* SCT DEFINITIONS (SYCTTBL'S) FOR USER SUB/SYSTEMS *
**

COPY USRSCTS
GENINDEX
PCENSCT
END

Figure 3-5. INTSCT Coding of Intercomrn Subsytems
3-30

J

J

Chapter 3 Message Management

Optionally. control of maximum thread concurrency for a group of
subsystems may be implemented by coding a RESOURCE macro prior to all
the SYCTTBL macros. The RESOURCE macro is used to provide a systemwide
limit on the number of threads that may concurrently access a specific
system resource. or is often used to control concurrent access to a
data base. It is referenced via the SYCTTBL macro RESOURC parameter.

3.7.1 Coding Subsystem Control Table (SCT) Entries

The SCT defines all subsystems executing under Intercomm. The
table entries coded via the SYCTTBL macro must be in the following
sequence:

1. Resident and dynamically loadab1e subsystem entries

2. Entries for subsystems in each Overlay Region A overlay
segment (OVLY parameter) or in each VS execution group (EXGRP
parameter). if used.

The OVLY parameter defines the subsystem's residency, and is
coded according to the following conventions:

• OVLY=O--indicates a resident, or dynamically loadab1e
subsystem. Default.

• OVLY=l- - indicates an Overlay Region B subsystem, to be
scheduled by MONOVLY (see Section 3.9.6).

• OVLY=2 - - indica tes an Overlay Region C subsystem, to be
scheduled by MONOVLY.

• OVLY=3 - - indicates an Overlay Region D subsystem, to be
scheduled by MONOVLY.

• OVLY=4--indicates a subsystem within an Overlay Region A, or
VS execution group, subsystem group. It must be coded in
ascending consecutive order: the first number must be 4; the
highest permissab1e number is 62.

OVLY=62

Figure 3-6 illustrates a sample coding of SCTs, with resident and
Overlay A Intercomm-provided subsystems. More than one subsystem may
belong to the same Overlay A group. Each group is delimited by a
required label: SCTLRES--for resident (dynamically loadab1e)
subsystems; SCTLOVn- - for Overlay A subsystem groups, where n is in the
range of 1 to 59 (corresponding to OVLY numbers 4-62).

3-31

Chapter 3

SCT

*
SCT

SCTRES
B
W
SCTLRES

CSECT

COPY SCTLISTC
CSECT

Message Management

DSECT DESCRIPTION

DC C'SCTENTRY' SCTS BEGIN HERE.
DS OF
SYCTTBL SUBC=B,SBSP=SWITCH,OVLY=O,NUMCL=4,LANG=RBAL,MNCL=2
SYCTTBL SUBC=W,SBSP=SENDBACK,OVLY=O,NUMCL=4,LANG=RBAL
EQU *

* 0 V E R LAY A G R 0 U P 0 N E
H SYCTTBL SUBC=H,SBSP=CHANGE,OVLY=4,NUMCL=4,LANG=RBAL,MNCL=4, X

DFLN=PMIQUE,PCEN=lO
HH SYCTTBL SUBH=H,SUBC=H,SBSP=CHANGE,NUMCL=4,OVLY=4, X

LANG=RBAL,MNCL=l,DFLN=PMIQUE,PCEN=lO
SCTLOVl EQU * END OF OVERLAY ONE
* 0 V E R LAY A G R 0 U P TWO
U SYCTTBL SUBC=U,SBSP=PMIOUTPT,OVLY=5,NUMCL=lO, X

LANG=RBAL,MNCL-4,DFLN=PMIQUE,PCEN=lO
V SYCTTBL SUBC=V,SBSP=PMIOUTPT,OVLY=5,NUMCL=4, X

LANG=RBAL,MNCL=l,DFLN=PMIQUE,PCEN=lO
N SYCTTBL SUBC=N,SBSP=PMIOUTPT,OVLY=S,NUMCL=4, X

LANG=RBAL,MNCL=4,DFLN=PMIQUE,PCEN=10
SCTLOV2 EQU * END OF OVERLAY TWO J'.
* 0 V E R LAY A G R 0 U P T H R E E
J SYCTTBL SUBC=J,SBSP=PMICLDWN,OVLY-6,RESTART=NO,NUMCL=2, X

LANG=RBAL,PRTY=3,MNCL=1
SCTLOV3 EQU * END OF OVERLAY THREE
* 0 V E R LAY A G R 0 U P F 0 U R
LL SYCTTBL SUBC=L,SUBH=L,SBSP=LOADSCT,NUMCL=4,OVLY=7,LANG=RBAL
SCTLOV4 EQU *
*
T

o V E R LAY A G R 0 U P F I V E
SYCTTBL SUBC=T,SBSP=FINTUNER,NUMCL=4,OVLY=8,LANG=RBAL,

RESTART=NO
SCTLOVS EQU *
* GP

o V E R LAY A G R 0 UPS I X
SYCTTBL SUBH=G,SUBC=P,SBSP=GPSS,LANG=RBAL,OVLY=9,NUMCL=4,

RESTART=NO
SCTLOV6 EQU *

GENINDEX
PCENSCT
END

Figure 3-6. Sample Coding of INTSCT with an Overlay Structure

3-32

X

X

Chapter 3 Message Management

For MVS users wishing to code VS execution groups, instead of
Overlay Region A subsystem groups, the OVLY parameter is coded as 0,
and the EXGRP parameter is used as follows:

EXGRP~4--indicates a resident subsystem within a VS execution
group. It must be coded in ascending consecutive order: the
first number must be 4; the highest possible number is 62.

EXGRP=62

NOTE: If more than one subsystem code is used for the same
subsystem (accessed by multiple verbs), then the OVLY or
EXGRP parameter value must be the same on each SYCTTBL
pointing to that subsystem. Also, subsystem residency
must be the same (either resident, or overlay, or
dynamically loadable). Testing for correct coding of
OVLY or EXGRP parameters in ascending consecutive order
is done at assembly time.

VS execution group scheduling is similar to Overlay Region A
scheduling except that, instead of the overlay supervisor, the MVS
paging supervisor is used to invoke loading of the subsystem logic into
main storage. See also Chapter 7 on MVS installation and page
preloading.

Figure 3-7 shows a listing of Intercomm-supplied subsystems and
reserved subsystem codes. If no specific value is listed for SSCH,
then it must be binary zeros (OOO--default). Additional subsystems for
special feature commands are described in System Control Commands.

3-33

Chapter 3 Message Management

J F=======F=======F==
SSCH SSC Function (Member Name)

F=======F=======F==
A G Autogen (ISGEN)

C C Copy processing for BTAM 3270 terminals (COPYSS)

D E Data Entry Facility (INTBETAI)

G P General Purpose Subsystem (GPSS)

H H Single-thread Display--segmented messages (CHANGE)

L L Loading dynamically linkedited modules (LOADSCT)

L M MMU dynamic map group loading (LMAP)

M M MMU command processing (MMUCOMM)

I Display entering terminal data (FEWHOI)

U Display other terminal data (FEWHOI: entry FEWHOU)

B Message switching between terminals (SWITCH)

C System display and control (SYSCNTL)

E Dummy subsystem for ESS processing ($$$$SECU)

F Dynamic SYCTTBL modification (DYNSSUP)

H Change/Display Utility (CHANGE)

J Closedown (CLOSDWN3: entry PMICLDWN)

K Multiregion commands--control region only (MRCONSS)

M Internal processing (Time Zone, etc.)

P Page Facility (PAGEMSG)

Q Checkpointing (CHCKPTSS)

R File Handler Statistics (IXFRPTOI: entry IXFRPTIQ)

S Basic Security processing (PMISIGN)

T Fine Tuner processing (FINTUNER)

U,N,V Output Utility (PMIOUTPT)

W Message echoing (SENDBACK)

Z MROTPUT--satellite regions only under MRS

Figure 3-7. Intercomm-Supplied Subsystems

3-34

Chapter 3 Message Management

3.7.2 Coding Subsystem Control Table Indices (GENINDEX)

The SCT Indices consist of two elements: the SCT Overlay
Index- -used for scheduling work for resident and dynamically loadable
subsystems, and for overlay or execution groups within the Subsystem
Control Table; and the SCT Binary Search Index- -used for finding an
entry in the Subsystem Control Table. Each Overlay Index entry is
three words in length. There is one entry for resident and dynamically
loadable subsystem SCTs (OVLY=O), followed by one entry for each
overlay group, if any.

As illustrated in Figure 3-3, the System Parameter Area points to
the SCT Overlay Index, which in turn is used to locate the individual
SCT groups.

As illustrated in Figure 3-5, the SCT Indices are generated at
assembly time by coding the GENINDEX macro after all the SYCTTBL
entries. However, if multiple overlay group indices for the same
Overlay A group are desired, or if no resident or dynamic load SCTs are
defined, the SCT Overlay Index must be hand-coded, as described in
Appendix C. In this case, the GENINDEX macro must be coded with the
parameter OVLYNDX=NO, and is placed after the user-coded Overlay Index.

3.7.3 Coding Overflow Disk Queue Allocations (PCENSCT)

As illustrated in Figure 3-5, the PCENSCT macro is coded after
the GENINDEX macro. This macro has no parameter and is coded only
once. Its function is described in Section 3.8.1.

3.7.4 Adding a Subsystem

In addition to coding the SYCTTBL for a new subsystem, the entire
Subsystem Control Table structure may have to be reevaluated to
determine the impact of the new subsystem on response time, throughput,
and queue space for all subsystems. Also, other table entries may be
required in order to test the new subsystem or utilize it in the
production environment.

The Front End Verb Table must be updated with the new verb(s) for
the added subsystem. Locking, conversational, and other Front End
processing parameters may have to be considered, depending on the
terminal type(s) being used. Other Intercomm facilities, such as
ICOMPOOLs, may be affected, and table or disk-resident entries for the
Intercomm utilities may be required.

3-35

Chapter 3 Message Management

3.8 SUBSYSTEM PROCESSING SPECIFICATIONS

Subsystem response time and throughput are affected not only by
subsystem residency, but also by queue, scheduling and processing limit
specifications. These specifications are also defined via SYCTTBL
macro parameters for each subsystem.

3.8.1 Subsystem Queue Specifications

A subsystem queue is a list of messages awaiting processing by
the subsystem. These messages may be incoming transactions (from a
terminal), or passed from another subsystem. These queues are also
known as input queues, in contrast to output terminal queues of
messages awaiting transmission. Three types of queues may be defined;
core queues, high-priority core queues, and disk overflow queues.

At least one type of queue should be defined. The queuing method
is FIFO. Normally, a priority queue is defined only if more than one
verb is processed by the subsystem, and certain verbs (such as those
requiring little subsystem processing) should be processed as soon as
possible. A subsystem which is not response time dependent or which is
activated only periodically would have little use for a core queue
because a core queue ties up system resources for holding the
message (s) in core. A disk queue is used for overflow from the core
queue at high activity periods, or to hold messages when no core queue
is defined. The SYCTTBL AUXS parameter is coded when no core or disk
queues are defined.

The NUMCL parameter defines the number of elements in a core
queue and creates an entry in the internally generated PMICLZZZ Csect
which defines the core list (queues) for all subsystems operating under
Intercomm. The purpose of the core list is to contain the addresses of
all messages that are destined for a subsystem and are still in core.
When the core list is full, messages are written to overflow disk
queues that are accessed under the file name (JCL DD statement label)
specified by the SYCTTBL macro, DFLN parameter. If a disk queue is not
defined (DFLN parameter omitted), overflow messages are flushed and an
appropriate message is returned to the terminal named in the message
header.

In addition to the normal core queue, a priority core queue may
be defined (by the PRYMSGS parameter of the SYCTTBL macro) for those
messages requiring priority processing for fast response time. If the
priority queue is full when adding a priority message to a subsystem's
queue, it will be added to the end of the normal queue (core or disk).
A priority message is recognized by Intercomm when a C' P' is in the
message header field MSGHUSR. The P is inserted during Front End verb
processing if the BTVERB parameter HPRTY-YES was coded, or if a
subsystem initializes MSGHUSR before queueing a message for another
subsystem.

3-36

J

Chapter 3 Message Management

The disk queues are contained on BDAM data sets which must be
preformatted with dummy records via the Intercomm utility CREATEGF (see
Chapter 12). If a disk queue data set is to be shared among several
subsys terns (PCEN parameter in SYCTTBL), assignment of space is
allocated at sys tern startup time by the module CALCRBN, which
calculates the appropriate percentage of the actual number of blocks
(RBNs) on the data set and rounds that down to the nearest multiple of
8; a minimum of eight RBNs are allocated. If the data set referenced
by DFLN is exhausted, an indicative message is issued and startup
abends with a user code 44. Queue and block size considerations
include message lengths and traffic for a given subsystem, as well as
achievement of minimal I/O activity, since messages with lengths
greater than disk queue block size are spanned. A maximum of 63
different disk queue data sets may be defined for the combined
subsystems in the Subsystem Control Table. The PCENSCT macro, coded
after the GENINDEX macro, will print the accumulated percentages per
disk queue data set as part of the assembly of the SCTs; the output
should be checked whenever a SYCTTBL is added. Typical output
generated by the PCENSCT macro is illustrated below.

*** ACCUMULATED PERCENTAGES PER DISK QUEUE ***

*** QUEUE NAME PERCENTAGE ***
* , QUEUEN 40.0
* QUEUEA 100.0 ,
* , QUEUEC 100.0
*, QUEUEU 100.0
* , QUEUEH 80.0

3.8.2 Scheduling and Concurrent Processing Limits

SYCTTBL scheduling parameters are SCHED, ECB, and THRSH.
Processing limits are defined by the MNCL and RESOURC parameters, which
are also directly related to the residency and reentrancy of the
subsystem.

3.9 SUBSYSTEM RESIDENCY CONSIDERATIONS

The subsystem identifier, or receiving codes in the Intercomm
message header (MSGHRSCH and MSGHRSC fields), is coded for the
subsystem in the SUBH and SUBC parameters of the SYCTTBL macro. Each
SYCTTBL must have a unique set of codes which are used by the Intercomm
subsystem queuing routines to identify the specific subsystem to
process a transaction. Once found, the transaction is queued for later
dispatch of the subsystem. Dispatch considerations are based not only
on systemwide parameters defined for the SPALIST macro, but also on
subsystem residency, reentrancy and processing specifications.

3-37

Chapter 3 Message Management

3.9.1 Subsystem Reentrancy

Reentrancy is defined to Intercomm by the LANG parameter of the
SYCTTBL macro. See the applicable Programmers Guide for criteria for
reentrant subsystems under Intercomm which may process more than one
transaction (message) at a time (more than one thread dispatched), if
permitted by scheduling parameters.

3.9.2 Resident Subsystems

Defini tion of a subsystem as resident, dynamically loadable, in
an Overlay Region A, or in a VS execution group, is a function of
reentrancy, message traffic, message volume and storage requirements.
For efficiency, those reentrant subsystems with high volume and/or
traffic should be made resident. Subsystems with sporadic or single
periods of volume processing could be made dynamically loadable, while
those with lower volume but more constant traffic could be defined for
an overlay or execution group.

In this discussion, volume represents the possible total number
of transactions to be processed during an execution of Intercomm, while
traffic represents the number to be processed within a specific time
span. Storage requirements for processing of a transaction include not
only the program area, but also the dynamic working storage, (pool
areas).

Subsystem residency is
required, file and data base
response time criteria.

also affected by the processing
access, message formatting, etc.,

time
and

Because loading delays are avoided, resident subsystems
potentially provide the best response time. They are defined to
Intercomm in the OVLY=O group, as described above. Throughput is
contro lIed by scheduling parameters and also depends on external
storage requirements and processing time. Resident subsystems are
linkedited with resident Intercomm modules.

3.9.3 Overlay A and Execution Group Subsystems

Depending on scheduling and concurrent processing limits defined
for each subsystem within the overlay structure, Intercomm controls the
Overlay A processing. An overlay group may consist of one or more
subsystems which may be grouped according to reentrancy, programming
language, processing time, resource requirements, traffic, volume,
etc. Scheduling and concurrent processing limits are relevant, as,
once work is dispatched for one group in Overlay A, another group
cannot be overlaid into the area until all the dispatched threads have
completed processing.

3-38

J

J

Chapter 3 Message Management

Intercornrn controls VS execution group processing, depending on
scheduling and concurrent processing limits defined for each subsystem
within the VS execution group. An execution group may consist of one
or more subsystems which are grouped according to reentrancy,
programming language, processing time, resource requirements, traffic,
volume, etc. Scheduling and concurrent processing limits are relevant,
since once work is dispatched for one execution group, no other
execution groups will be scheduled until the current group completes
its processing. This technique is useful in preventing excessive VS
paging overhead when real storage is at a premium; all nonzero EXGRP
subsystems are linked as resident in a contiguous group.

Those subsystems which are to be executed from Overlay Region A
must be linkedited according to the same structure depicted in Figure
3-6. In other words, all subsystems whose SYCTTBL macro OVLY parameter
is coded as 4 must be inserted in the same overlay segment, all OVLY=5
in the same segment, etc. These SYCTTBLs must have OVLY coded in
ascending, sequential order.

The following example illustrates
Table with two Overlay A groups defined.
relate the OVLY parameter definitions to
are illustrated in Figure 3-8.

a sample Subsystem Control
Linkedit control cards which
Overlay A INSERT statements

* RESIDENT and DYNAMICALLY LOADABLE SUBSYSTEMS
SYCTTBL -----
SYCTTBL -----

* OVERLAY A GROUP 1
SYCTTBL SBSP=SUBSYSA,OVLY=4,--
SYCTTBL SBSP=SUBSYSB,OVLY=4,--

* OVERLAY A GROUP 2
SYCTTBL SBSP=SUBSYSC,OVLY=5,---

Wi thin one overlay segment, a subs true ture may be defined for
subroutines called by, and linked with, a particular subsystem, as
illustrated by OVERLAY AB; SUBX and SUBY in Figure 3-8. The
subroutines may not give up control to the Dispatcher (no calls to the
File Handler, etc.); if such logic is essential, the subsystem of the
called subroutine must be defined as single - thread processing.
Otherwise, calls in different message threads processed concurrently
for that subsystem will cause the overlay substructure to be "overlaid"
by mistake.

3-39

Chapter 3 Message Management

The appropriate control cards for eligible Overlay A Intercomm
routines may be generated via the ICOMLINK parameter OVLYSTR=YES which
also causes inclusion of LOADOVLY in the Intercomm linkedit. For
asynchronous overlay loading, also code ASYNCH=YES on ICOMLINK (causes
an include for ASYNCH), and code ASYNLDR=YES on the SPALIST macro.

3.9.4

//LKED.SYSIN DD *
INCLUDE

Figure 3-8.

. required Intercomm modules

INCLUDE SYSLIB(SUBSYSA)
INCLUDE SYSLIB(SUBSYSB)
INCLUDE SYSLIB(SUBSYSC)
OVERLAY A

. Intercomm Overlay A modules

OVERLAY A
INSERT SUBSYSA
INSERT SUBSYSB

OVERLAY A
INSERT SUBSYSC

OVERLAY AB
INSERT SUBX

OVERLAY AB
INSERT SUBY

Sample Linkedit Statements for Overlay Region A
Subsystems

Dynamically Loaded Subsystems

No special table entries are required for dynamically loadable
subsystems, other than the LOADNAM and REUSE parameters on the SYCTTBL
macro. If the BLDL parameter indicates YES, the Subsystem Controller
searches the STEPLIB or JOBLIB directory only once for the required
member location. Thereafter, loading is performed based upon an
internally generated (BLDL) list of actual file locations. The system
control command, LOAD, must be used to indicate a change in location.
Each dynamically loaded subsystem is linkedited independently of the
main Intercomm load module. High-level language subsystems coded and
defined to Intercomm as reentrant may not, however, be linkedi ted as
reentrant. If linked as reusable, the loaded module will be reused by
the MVS Loader (if space not otherwise used after an Intercomm DELETE
issued) until a new BLDL is forced by use of the Intercomm LOAD
command.

3-40

J

Chapter 3 Message Management

The subsystem load module consists of the subsystem itself and
any called modules (compiler-oriented routines not loaded dynamically
by compiler-oriented code) which are not standard Intercomm/user
subroutines accessible via REENTSBS. Assembler Language subsystems
should load Intercomm facility addresses from the SPA/SPAEXT before
calling an Intercomm routine, and use the MODCNTRL macro to access user
subroutines defined to Intercomm via REENTSBS (SUBMODS macro). Each
dynamically loaded subsystem module is then linkedited with the
Intercomm interface INTLOAD (unless dynamic linkedit is used; see
below) . INTLOAD resolves references to resident (user-callable)
Intercomm routines. The LKEDP procedure may be used for the subsystem
linkedit, as the following illustrates:

//LINKSUBS
//LKED.SYSIN

EXEC
DD
ENTRY
INCLUDE
INCLUDE
NAME

LKEDP,Q=ABC,LMOD=DYNSUBX

*
SUBSYSX
SYSLIB(SUBSYSX)
SYSLIB(INTLOAD)
DYNSUBX(R)

The LOADNAM parameter of the SYCTTBL macro describing the
subsystem must then correspond to the LMOD parameter of the LKEDP
procedure (name of the module in the load library). If the subsystem
is defined under more than one SYCTTBL (accessed by multiple verbs),
linkedit with ALIAS names to make each definition unique, but do not
link as either reusable or reentrant. This will result in more than
one copy loaded in core, which cannot be avoided. The subsystem may,
however, be defined to Intercomm as reentrant, if coded as reentrant.

The library used for dynamically loaded subsystems must be
defined at execution time (STEPLIB or JOBLIB). If the region is
executing with the lAM file access method, the library containing the
dynamic load modules must be concatenated with the IAMLIB DD statement,
not STEPLIB. Certain restrictions apply if the Dynamic Linkedit
facility is used (see below).

Use of dynamically loaded subsystems requires an INCLUDE of the
modules LOADSCT, DELOAD, and ASYNCLDR for the resident portion of
Intercomm. Coding DYNLOAD=YES (default) for the ICOMLINK macro
automatically generates these statements. LOADSCT is used in
conjunction with the LOAD command. MAXLOAD is the SPALIST macro system
control parameter used with dynamically loaded subsystems.

3-41

Chapter 3 Message Management

3.9.4.1 Subsystems Residing Above the 16 Meg Line

In a MVS-XA environment, reentrant (according to Intercomm coding
conventions as defined in the Programmers Guides) subsystems can be
loaded above the l6meg line. The following is required:

• The SYCTTBL macro for the subsystem must have the LOADNAM
parameter coded and LANG=RCOB or RPLl or RBAL, as appropriate

• The subsystem must be independently linkedited with the
parameters: AMODE=3l,RMODE=ANY.

For COBOL, calls to Intercomm service routines and user
subroutines are done through COBREENT; the only restriction is that all
the passed parameters (to the called program), except the ICOMSBS code,
must be in the subsystem's 24-Amode Dynamic Working Storage.

For Assembler, the subsystem must be linked with INTLOAD, and
call Intercomm service routines directly (entry points in INTLOAD).
All passed parameters must be in 24-Amode storage (dynamic save/work
area) .

For PL/l, the subsystem must be linked with INTLOAD if Intercomm
service routines are called directly. Otherwise, PMIPLl will
accomplish mode switching. In either case, all passed parameters,
except the PENTRY code if PMIPLl used, must be in 24-Amode automatic
storage (DSA).

Additional considerations are described in the appropriate
language Programmers Guide.

3.9.5 Dynamic Linkedit Facility

The Intercomm Dynamic Linkedit facility is optionally used in
conjunction with dynamically loaded subsystems to allow these
subsystems to be linkedited with unresolved references to subroutines
and data areas. If these subroutines and data areas are present (and
resident) within the main Intercomm load module, the Dynamic Linkedit
facility will resolve the references at startup time by "zapping" the
load module of each subsystem.

Using this facility, the INTLOAD interface module no longer need
be linkedi ted wi th each dynamically loaded subsystem to resolve
references to Intercomm resident routines, since they will be
automatically resolved by Intercomm. INTLOAD, however, is still
required for certain subsystems loaded above the l6meg line as
described above.

The Dynamic Linkedit facility is a generalized approach which
permits a single copy of a compiler subroutine which is resident within
the main Intercomm load module to be used by any loaded subsystem,
rather than requiring a separate copy along with each loaded
subsystem. Eliminating duplicate copies of subroutines in this manner
is particularly useful for COBOL or PL/l loaded subsystems, since a

3-42

J

Chapter 3 Message Management

single copy of all the standard library routines used by these
languages can be made resident wi thin Intercomm (if not in the Link
Pack Area), and thus available to be used by all subsystems.

The Dynamic Linkedit facility is implemented by including the
module ICOMDYNL in the main Intercomm linkedit. ICOMDYNL can be placed
in the startup overlay. However, if the LOAD system control command is
implemented, it must be resident. Coding DYNLINK=YES (default) for the
ICOMLINK macro automatically generates the necessary statement. Also,
the ICOMCESD and ICOMVCON modules must be separately linkedited with
these names, and as nonreentrant, on one of the load libraries
specified via STEPLIB or JOBLIB (IAMLIB, if using the lAM file access
method in the region) for Intercomm execution.

Additionally, a work file must be provided to Intercomm using the
following format:

//DYNLWORK DD UNIT=SYSDA,DISP=(;PASS),SPACE=(CYL,(l,l»

A listing of Dynamic Linkedi t processing results, unresolved External
References and WXTRNs will be produced by adding an optional DD
statement to execution JCL:

//DYNLPRNT DD SYSOUT=A

If the LOADSCT routine is used to reload a dynamically loaded
subsystem which has been relinkedited during Intercomm's execution,
LOADSCT will use the Dynamic Linkedit facility to rezap the subsystem.

The following restrictions apply to the use of dynamic linkedit:

• Assembler Language address constants will not be resolved if
coded as "label+nn" where "nn" is nonzero and less than or
equal to 64K.

• Called programs must be resident
segment for resolution to take place.
dynamically loaded subroutines.

in the Intercomm root
This does not apply to

• A VCON referencing a module in an overlay segment will not be
resolved. Thus, an Assembler Language program may use
CALLOVLY only if it obtains the VCON of the called program
from the Intercomm root segment, that is, from the System
Parameter Area.

• Load modules on the library which is to be dynamically
1 inkedi ted may not be executed by any other concurrent job.
Since VCONs can only be resolved to point to one region, the
load module is therefore executable only in that region.

• All modules to be dynamically linkedited during a given
Intercomm execution must reside on one data set defined for
STEPLIB or, if no STEPLIB, then on JOBLIB. This library must
be contained in one extent. A careful watch of this library
space is necessary to ensure that updates do not cause it to
exceed one extent. Frequent off-line compresses may be
necessary. This library may not be concatenated with others.

3-43

Chapter 3 Message Management

• However, if STEPLIB consists of concatenated data sets, the
library containing load modules to be dynamically 1inkedited
must be defined by a DD statement with the name DYNLLIB.
This library must be a single data set, and must also be
concatenated with STEPLIB (or IAMLIB) for subsequent load
processing. Code DISP=SHR on both DD statements. This
library may not exceed one extent (see above) and may not be
shared with any other Intercomm region.

• A combination of 10adab1e subsystems 1inkedited with INTLOAD
and dynamically 1inkedited 10adab1e subsystems may be used.
However, the INTLOAD group may not be on the dynamic link
library, but must be on one of the other libraries
concatenated to STEPLIB/JOBLIB. The INTLOAD library may be
shared across regions.

• Compress of the dynamic link library may not be done while
Intercomm is executing.

Because the load modules of dynamically loaded subsystems are
modified, they cannot reside on a library shared by another Intercomm
region. For efficiency, each dynamic load library should be on a
different disk pack. To convert a subsystem from dynamically
1inkedited and loaded to resident or in the overlay region, the
subsystem must be recompiled and re1inkedited prior to inserting it
into the Intercomm 1inkedit.

3.9.6 Subsystems Assigned to Overlay Region B. C or D

Some linkage editors limit the number of overlay regions that can
be defined in a 1inkedi t. Due to the existence of Intercomm Regions
TRAN and SUB, not all of Overlay Regions B, C and D may be usable.

Overlay Regions B, C and/or D are used for subsystems which
require no guaranteed response time. The objective of their use is to
effectively remove some subsystems from contention for 'use of Overlay
Region A. Subsystems assigned to Overlay Region B, C or D have the
following characteristics:

• Input messages are queued by region, instead of by subsystem.

• Subsystem execution is controlled by the Intercomm program
MONOVLY.

• Subsystem processing is always single-threaded.

• All subsystems in one overlay region should be coded in the
same language.

•

•

A Subsystem Control Table entry (SYCTTBL) is defined for
MONOVLY, not the individual subsystem(s).

An additional Verb Table is required for each overlay region.

3-44

J

Chapter 3 Message Management

There is one Subsystem Control Table entry for each of the
Overlay Regions B, C or D, in use. Each defines MONOVLY as the entry
point and the OVLY parameter is coded as 1, 2 or 3 for Overlay Region
B, C or D, respectively. For example:

OVLYB SYCTTBL SUBC=B,SUBH=B,OVLY=l,LANG=NBAL,
SBSP=MONOVLY,NUMCL=2,DFLN=OVLYBQ

x

MONOVLY controls the loading of the appropriate subsystem into the
overlay region, based upon the order of messages retrieved from the
queue, and a table specification relating the message verb to the
subsystem entry point.

Subsystems assigned to Overlay B, C or D, and coded in different
languages, should have a Subsystem Control Table entry for an overlay
region for each programming language. For example:

COBOVLYB SYCTTBL

BALOVLYC SYCTTBL

SUBC=B,SUBH=C,OVLY=l,LANG=COB,
SBSP=MONOVLY,NUMCL=2,---
SUBC=B,SUBH=A,OVLY=2,LANG=NBAL,
SBSP=MONOVLY,NUMCL=2,---

x

x

The Intercomm Enqueue/Dequeue facility (PMINQDEQ) is used to
force single-threading of the overlay region. If more than one
language is used per overlay region, the conversational control routine
(CONVERSE) may not be called by any subsystem assigned to the overlay
region.

BTVERB entries in the Front End Verb Table (BTVRBTB) must use the
subsystem code assigned to the overlay region via the SYCTTBL macro.
An Overlay Region Verb Table is required for each overlay region. This
special verb table must have a Csect name of OVLYBTB for Region B,
OVLYCTB for Region C, and OVLYDTB for Region D. These Csects are coded
by the user, and must include an entry for each subsystem in the
particular overlay. Each table entry is twelve bytes in length, as
follows:

• Bytes l-4--the four-character verb associated with a
subsystem in the overlay region

• Byte 5--Verb Identifier/Edit Flag: X'OO' = editing required;
X'Ol' to X'254' = user VMI value; X'FF' = no editing desired

• Byte 6--X'FF' indicates free the incoming message before
calling the subsystem, if desired, else code X'OO'

• Bytes 7-8--unused

• Bytes 9-l2--the subsystem entry point, coded as a VCON.

3-45

Chapter 3 Message Management

A fullword of X'FF', generated by the PMISTOP macro, is required
at the end of the table. A sample overlay region verb table follows:

OVLYBTB CSECT
DC C'EPKF' ,4X'O' ,V(EDITTEST)
DC C'EPKV' ,4X'O' ,V(EDITTEST)
DC C'V250' ,4X'0' ,V(EDITTEST)
DC C'EDKF' ,4X'O' ,V(EDITTEST)
DC C'EDPV' ,4X'O' ,V(EDITTEST)
DC C'EDPL' ,4X'O' ,V(EDITTEST)
DC C'ED32' ,4X'O' ,V(EDITTEST)
PMISTOP
END

As illus trated below, the Verb Identifier/Edit Flag controls
processing of incoming messages via the Edit Utility based upon a test
of the message header VMI field.

============F==============F===
Message Verb ID/
Header Edit Flag

VMI (Verb Table
Value Byte 5) Value Action

============F==============F===
X'FF'

X'OO'

X'OO'

X'Ol'
to
X' FE'

ignored

X'OO'

X' 01' - X' FE'

X'Ol'
to
X'FE'

No editing required. The message text verb
is used to locate the table entry defining
the subsystem to process the message.

Same as above. Edit Utility is not called.

Edit Utility is called prior to giving
control to the subsystem.

Editing is not required. The message
header VMI is matched with the Verb
Identifier to locate the table entry
defining the subsystem to process the
message. (Assumes edit-before-queuing.)

The MONOVLY program checks the input verb or the VMI against the
table and calls the Edit Utility, if specified by the table entry. It
then brings the program into the overlay area and passes control to the
program. If the Overlay Region Verb Table is invalid, a message is
issued and a Snap 90 is taken; then the overlay monitor returns to the
Subsystem Controller with a return code of 4.

If asynchronous loading (ASYNLDR=YES in the System Parameter
Area, and the module ASYNCH is present) is being used, the module
LOADOVLY must be present. It is a necessary interface between MONOVLY
and the Loader Task ASYNCH. To generate the correct linkedit for
MONOVLY processing, the following must be coded for the ICOMLINK
Macro: MONOVLY=YES, ASYNCH=YES, OVLYSTR=YES and optionally TRANS=YES.

3-46

J

J

Chapter 3 Message Management

3.10 SUBSYSTEM INTERFACES AND LINKEDIT CONSIDERATIONS

There are no special considerations for coding or linking of
Assembler Language subsystems except that they should be reentrant and
use the Intercomm facilities described in the Assembler Language
Programmer's Guide. Macros supplied by Intercomm to aid in coding
Assembler Language programs and subroutines are further described in
Basic System Macros. Considerations for higher-level language programs
supported by Intercomm are described below.

3.10.1 COBOL Subsystem Interfaces

Application subsystems may be coded in OS/VS or ANS COBOL, and
may also be compiled via the CAPEX Optimizer. However, all COBOL
subsystems must use the same compiler, because the ILBO subroutines may
not be compatible. An Intercomm facility allows COBOL subsystems to
operate in a reentrant mode, processing several messages concurrently,
as specified by the Subsystem Control Table entry for the subsystem.
Certain coding conventions must be followed, as described in the
Intercomm COBOL Programmers Guide. A reentrant subsystem must be
linked with the REUS (but not the RENT) attribute.

The size of the Dynamic Working Storage in the Linkage Section of
a reentrant COBOL subsystem must agree with SYCTTBL macro values. The
COBOL Programmers Guide details coding techniques required when the
amount of storage freed is less than the amount of storage obtained for
the processing of a message. Two SYCTTBL parameters, GET and FREE, are
used to specify the amount of dynamic core to obtain on entry to, and
free on return from, a reentrant COBOL subsystem. The maximum request
for storage via the GET parameter is 64K, less 304 bytes. If GET and
FREE were originally coded as equal, they may be dynamically changed
via the LOAD or SPAC system control commands. If unequal, they may be
changed via the FTUN/SSUP command sequence. See System Control
Commands.

The Reentrant Subroutine Table (REENTSBS) must be included for
execution of reentrant COBOL subsystems. This table represents a list
of Intercomm service routine addresses referenced by a COBOL program
parameter list for the reentrant subroutine interface module COBREENT.
User additions to this list may begin at decimal offset 104 and be
coded in a copy member USRSUBS. User-coded subroutines require an
entry in this member and COBREENT must be used to interface to a called
subrou tine. Addi tionally, the supplied COBOL program COpy member
ICOMSBS must be updated to provide the names and index codes for the
added user subroutines.

Figure 3-9 illustrates the standard Intercomm-supplied Reentrant
Subroutine Table. REENTSBS must be reassembled and relinked every time
an entry is changed or added to USRSUBS.

3-47

Chapter 3 Message Management

3.10.1.1 COBOL Subsystem Linkedit Considerations

To execute COBOL subsystems under Intercomm, the interface
modules PREPROG, PMICOBOT, and COB PUT must be included in the Intercomm
linkedit (automatic if the ICOMLINK parameter COBOL=YES (default) is
coded) . Depending on the version and compiler NORES options used,
COBOL programs require certain COBOL routines (based on coding logic)
to be available from SYSI.COBLIB, either at linkedit time or at
execution time. These modules are ILBOSRV, ILBOBEG, ILBOCMM, and
ILBOMSG.

In addition, ILBOSTPO and ILBOSTPl may be required if they are
not entry points wi thin the ILBOSRV module. The modules have several
subroutines (indicated by a suffix code) which mayor may not be
linkedi ted with them on SYS 1. COBLIB, depending on the COBOL vers ion
(release) used, and weak external reference specifications in routines
of that version. Normally, to cut down on the size of the COBOL load
module, an execution time library is required if all COBOL routine
external references are not resolved at linkedit time. This execution
time library provides COBOL subroutines for the COBOL program only when
needed, thus saving space in the user's region via LOADs and DELETEs.
For example, ILBOBEGO and ILBOCMMO will always be needed, whereas
ILBOMSGO only if an error occurs. If EXHIBIT or READY TRACE is coded,
adding an INCLUDE for ILBODSPO to the Intercomm linkedit may be
advisable.

To save space in the Intercomm region, COBOL subsystems should be
compiled with the same compiler, using the NORES, and NOTRUNC options.
For dynamically loaded COBOL subsystems defined to Intercomm as
reentrant (SYCTTBL macro, LANG=RCOB), use the REUS and NCAL linkedit
options. In addition, to save LOAD and DELETE time (if COBOL routines
not in Link Pack), the ICOMLINK parameter RECOBOL=YES (default) should
be used to generate INCLUDEs not only for Intercomm routines required
for reentrant COBOL (COBREENT, COBSTORF), but also for the most common
COBOL subroutines (ILBOSTPO, ILBOBEGO, ILBOCMMO, ILBOMSGO and
ILBOCOMO), and for the Intercomm/user subroutine table REENTSBS.

If following the above recommendation for including COBOL
routines in the Intercomm linkedit is not possible, due to the COBOL
version in use, the user is advised to perform the following steps:

1. Linkedit ILBOSRVO (PARM=' REUS') into a spec ial SRV library,
with INCLUDE statements for subroutines ILBOBEGO, ILBOCMMO
and ILBOMSGO, as follows:

2.

INCLUDE SYSLIB(ILBOSRVO,ILBOBEGO,ILBOCMMO,ILBOMSGO)
ALIAS ILBOSR,ILBOSRVO,ILBOSRVI,ILBOST,ILBOSTPO,ILBOSTPl
NAME ILBOSRV(R)

Then concatenate that special
regular COBOL library in the
linkedit of the COBOL subsystem.

3-48

SRV library
SYSLIB data

ahead of
sets for

the
the

J

Chapter 3 Message Management

3.10.2

3. Additional ALIAS names may be used for ILBOSR3, ILBOSRST,
ILBOBEG, ILBOCMM, ILBOCMM1, ILBOMSG, and ILBOCOM depending on
unresolved references in the COBOL subsystem 1inkedit.

4. The ENDJOB compiler option should be used to prevent 80A, 804
and 906 abends if the subroutine library is used.

NOTE: ANS Version 4 or CAPEX Optimizer routines might be on a
library other than SYS1.COBLIB. Research this point for
proper compile and 1inkedit SYSLIB JCL when using
Intercornrn procedures, and for execution time STEPLIB JCL.

COBOL Subsystem Initialization/Termination User Exits

Two user exits, PREPROGI (for initialization) and PREPROGE (for
termination) are provided so that the user can pass additional
parameters (area addresses) to a reentrant COBOL subsystem via the
Linkage Section, and process the added areas on subsystem return.
Standard linkage conventions must be used.

PREPROGI is called by PROPROG (after the Dynamic Working Storage
area is acquired) and is passed (via register 1) the address of the
parameter list for the subsystem. The first 5 addresses (of the
(edited) input message, SPA, SCT-entry, return-code field, DWS-area) in
the list may not be changed. The exit may add to the list, the
addresses of up to 5 additional areas to be passed to the subsystem.
The addresses may be of resident (in Intercomm load module) areas,
dynamically acquired storage (via STORAGE macro if below (GETMAIN if
above) 16meg line), a dynamically loaded table, a Store/Fetch string,
etc. A 31-bit address may be passed if the subsystem was loaded above
the 16meg line under XA (see SCTLISTC Dsect, SCTLDXA flag in SCTBIT2
byte) .

PROPROGE is called by PREPROG (after subsystem GOBACK) or RMPURGE
(if subsystem program-checked or timed-out, but can be purged) before
resource purging. The address of the same parameter list (after user
modification) is passed as for PREPROGI.

3-49

Chapter 3 Message Management

REENTSBl CSECT

* * NEGATIVE OFFSETS ARE USED BY SPECIFYING AN OFFSET ENDING IN B'll',
* WHICH IS INCREMENTED BY 1 AND COMPLEMENTED TO OBTAIN TRUE OFFSET
* BY COBREENT AND PMIPL1.

* SUBMODS NAME=INTSORTC OFFSET -lOO,CODED AS 99
SUBMODS NAME=DWSSNAP OFFSET -96,CODED AS 95
SUBMODS NAME=MAPFREE OFFSET -92 , CODED AS 91
SUBMODS NAME=FECMRLSE OFFSET -88,CODED AS 87
SUBMODS NAME=FESEND OFFSET -84,CODED AS 83
SUBMODS NAME=FESENDC OFFSET -80,CODED AS 79
SUBMODS NAME=ALLOCATE OFFSET -76,CODED AS 75
SUBMODS NAME=ACCESS OFFSET -72 , CODED AS 71
SUBMODS NAME=MAPURGE OFFSET -68,CODED AS 67
SUBMODS NAME=MAPCLR OFFSET -64,CODED AS 63
SUBMODS NAME=MAPEND OFFSET -60,CODED AS 59
SUBMODS NAME=MAPOUT OFFSET -56,CODED AS 55
SUBMODS NAME=MAPIN OFFSET -52,CODED AS 51
SUBMODS NAME=INTUNSTO OFFSET -48,CODED AS 47
SUBMODS NAME=INTSTORE OFFSET -44,CODED AS 43
SUBMODS NAME=INTFETCH OFFSET -40,CODED AS 39
SUBMODS NAME=FECMFDBK OFFSET -36,CODED AS 35
SUBMODS NAME=FECMDDQ OFFSET -32,CODED AS 31
SUBMODS NAME=QWRITEX OFFSET -28,CODED AS 27
SUBMODS NAME=QREADX OFFSET -24,CODED AS 23
SUBMODS NAME=QWRITE OFFSET -20,CODED AS 19
SUBMODS NAME=QREAD OFFSET -16,CODED AS 15
SUBMODS NAME=QCLOSE OFFSET -12,CODED AS 11
SUBMODS NAME=QOPEN OFFSET -8,CODED AS 7
SUBMODS NAME=QBUILD OFFSET -4,CODED AS 3
ENTRY REENTSBS

REENTSBS DS OA ALLOW FOR NEGATIVE OFFSETS
DC A(REENTEND-REENTSBS-4) REQUIRED
SUBMODS NAME=SELECT CODE 4- FILE SELECT
SUBMODS NAME=RELEAsE CODE 8- FILE RELEASE
SUBMODS NAME=READ CODE 12- FILE READ
SUBMODS NAME=WRITE CODE 16- FILE WRITE
SUBMODS NAME=GET CODE 20- FILE GET
SUBMODS NAME=PUT CODE 24- FILE PUT
SUBMODS NAME=RELEX CODE 28- RELEASE EXCL. CONTROL
SUBMODS NAME-FEOV CODE 32- FILE FEOV
SUBMODS NAME-DISEL CODE 36- DISAM SELECT
SUBMODS NAME=DIREL CODE 40- DISAM RELEASE
SUBMODS NAME=DIREAD CODE 44- DISAM READ
SUBMODS NAME-DIWRITE CODE 48- DISAM WRITE

Figure 3-9. REENTSBS Release Version (Page 1 of 2)

NOTE: the DISAM entry points are no longer supported, but are generated
for downward compatability.

3-50

J

J

Chapter 3 Message Management

SUBMODS NAME=DIGET CODE 52- DISAM GET
SUBMODS NAME=DIPUT CODE 56- DISAM PUT
SUBMODS NAME=DIDEL CODE 60- DISAM DELETE
SUBMODS NAME-DIRELEX CODE 64- DISAM RELEX
SUBMODS NAME=COBPUT CODE 68- COBOL MESSAGE SWITCHING
SUBMODS NAME=MSGCOL CODE 72- MESSAGE COLLECTION
SUBMODS NAME=COBSTORF CODE 76- COBOL STORFREE
SUBMODS NAME=CONVERSE CODE 80- CONVERSE
SUBMODS NAME=DBINT CODE 84- DATA BASE REQUEST
SUBMODS NAME=LOGPUT CODE 88- LOGPUT
SUBMODS NAME=PAGE CODE 92- PAGE ROUTINE
SUBMODS NAME=GETV CODE 96- VSAM GET
SUBMODS NAME=PUTV CODE 100-VSAM PUT

**
*** INSERT USER SUBMODS MACROS ***
**

COPY USRSUBS
REENTEND EQU * REQUIRED AFTER LAST SUBMODS

ENTRY REENTEND
REENTSBl CSECT

END

Figure 3-9. REENTSBS Release Version (Page 2 of 2)

3.10.3 VS COBOL II Support

COBOL subsystems and subroutines compiled under VS COBOL II are
not currently supported under Intercomm.

3-51

Chapter 3 Message Management

3.10.4 PL/l Subsystem Interfaces

In the Intercomm environment, a PL/l subsystem requires special
consideration for each allowable option. Specifications of the options
chosen are indicated for the subsystem in the PLl and PL1LNK parameters
of the SYCTTBL macro. These options are as follows:

1. The PL/l optimizing compiler, specified via PL1=OPT on the
SYCTTBL macro (default).

2. The linkage conventions used by Intercomm to construct the
parameter list may be either nonbased (character string) or
based (dummy arithmetic scalar) format for the first three
parameters in the list, as specified by the PL1LNK parameter
of the SYCTTBL macro. Nonbased is the default.

The Intercomm module PREPLI is required as the interface between
Intercomm and the PL/l compiler, as shown in Figure 3-10. Figure 3-11
illustrates the interface when the subsystem is dynamically loaded.
Each thread of a PL/l subsystem is a separate instance of the PL/l
environment.

Subsystem
Controller ~ ... PREPLI

""III ,

Figure 3-10.

Subsystem
Controller __ -I~ PREPLI

Figure 3-11.

Optimized PL/l subsystem using ... linkage convention defined by ,
the SCT (SYCTTBL macro PL1=OPT
and PL1LNK parameters)

PL/l Subsystem Interface Options

PLIV

PL/l Optimizer
Subsystem

Dynamically Loaded PL/l Subsystems

3-52

J

J

Chapter 3 Message Management

As released, PREPLI specifies no options. PL/I invocation
options STAE, SPIE and REPORT should be disabled for production.
However, they may be specified by changing the PREPLI macro coded
within the member PREPLI, then reassembling PREPLI. The Intercomm
System Manager may provide an alternate PREPLI module for testing,
specifying some or all of the above options. Since PL/I STAE and SPIE
can be suppressed by invocation options, Intercomm STAE and SPIE will
remain effective. For Intercomm compatability, ESTAE is used under
MVS, and ESPIE under XA.

Optimizer users are required to use preallocated ISA, which
allows PREPLI to allocate the ISA from Intercomm storage, based on the
specified size on the SPAC parameter of the SYCTTBL macro, and to pass
it to the subsystem. This makes clean abnormal thread termination
possible where the ERROR condition is not raised. The ISA space size
can be dynamically changed via the LOAD, SPAC or FTUN/SSUP commands, as
described in System Control Commands.

The subroutine interface program PMIPLI may be used. When
calling non-PL/I subroutines, it will reformat the parameter list to
pass data addresses. Subroutines are referenced by specifying the
offset into the REENTSBS table as the first parameter. The offsets are
defined for PL/I in the copy member PENTRY. If a subroutine not
currently represented in REENTSBS is called, both tables must be
updated. When coding user entries in REENTSBS, PMIPLI assumes all
parameters are passed in character format (with the exception of
MSGCOL, PAGE and CONVERSE). This method can be bypassed, however, when
using the optimizer.

For optimizing compiler users, PMIPLl functions can be achieved
for Assembler Language subroutines by copying the member PLIENTRY into
the subsystem, or by declaring the subroutine, for example, COB"PUT, as

DCL COBPUT ENTRY OPTIONS (ASM INTER);

and calling, in the usual PL/l fashion:

CALL COBPUT(message,return-code);

Dynamically loaded PL/l subsystems must be linkedited so that the
load module, specified by the SYCTTBL macro LOADNAM parameter, contains
the address table PLIV, which must be specified as the load module
entry point via a linkage editor ENTRY statement.

3-53

Chapter 3 Message Management

In the PL/l subsystem, the procedure given control by Intercomm
must specify OPTIONS (MAIN, REENTRANT), or OPTIONS (MAIN), if not
reentrant. OPTIONS (MAIN) is used to get the true subsystem entry point
in Csect PLIMAIN. Since resident or overlay subsystems use the SBSP
parameter on the SYCTTBL macro for this purpose, then for them,
OPTIONS (MAIN) is not needed but will be accepted.

The subsystem should avoid unnecessary data conversion to keep
PL/l library routines called by the subsystem to a minimum. If Dynamic
Linkedit is used, some or all of the PL/l library subroutines may be
included in the resident portion of Intercomm, eliminating their
duplication in each dynamically loaded subsystem that references them.

PL/l library subroutines eligible for residency are those
normally included via automatic library call (control section name,
preceded by an asterisk in the link map listing). Either specify the
NCAL linkage editor option to remove all control sections, or prevent
automatic call of selected control sections (see below) via linkage
editor LIBRARY statements. Use of LIBRARY statements to exclude a
standard set of commonly used routines allows the automatic library
call to include infrequently used modules when referenced, eliminating
special programmer effort once a set of resident routines have been
selected by examining typical linkedits.

3.10.4.1 PL/l Subsystem Linkedit Considerations

PL/l subsystems necessitate inclusion in the Intercomm linkedit
of the Intercomm Abend Intercept Routines SPIEEXIT and STAEEXIT, as
well as the PL/l interface routines PMIPL1, COBPUT, and PREPLI. Coding
PL1=YES on the ICOMLINK macro automatically generates the necessary
include statements for the above (except COBPUT).

When using the PL/l optimizing compiler, the transient library
modules are loaded into dynamic storage as required. With a relatively
high message volume for Pl/l subsystems, a high overhead can be
encountered while loading and deleting the transient library modules.
To ease this problem, load some of the most used modules at startup
time (via USRSTRT1), such as IBMBPGRA, IBMBPIIA and IBMBPITA, or make
them resident in the Intercomm linkedit.

The Optimizer uses three transient modules which are loaded and
deleted for each thread. They are IBMBPII, initialization; IBMBPIT,
termination; and either IBMBPGR, transient library storage management,
or IBMBPIR, resident library storage management with REPORT. To keep
them resident, thereby greatly improving response time, the USRSTRTl
user exit routine could also load them at startup and a USRCLSEl user
exit routine could be written to delete them at closedown.

3-54

J

J

Chapter 3 Message Management

3.10.5 FORTRAN Subsystems

Application subsystems coded in the FORTRAN language are executed
under Intercomm in the same manner as nonreentrant COBOL subsystems.
They are single - threaded. Their SYCTTBL macros should specify
LANG=FORT and MNCL=l. They must be linkedited with compiler-dependent
subroutines; see the description of the FORTLINK procedure in Chapter
2. Do not code either REUS or RENT for the linkedit parameters. If
dynamically loadable, code REUSE=NO on the associated SYCTTBL macro.

3.11 SUBROUTINE INTERFACES AND LINKEDIT CONSIDERATIONS

The following subsection describes the use of user-coded
subroutines with user-coded subsystems and their residency and linkedit
considerations. Additional considerations apply if the caller or the
called subroutine is dynamically loaded above the 16meg line under XA.
For further details, see the applicable Programmers Guide.

3.11.1 Resident Subroutines

Resident and Overlay A Assembler Language subsystems may call
res ident Assembler subroutines using standard linkage conventions.
Dynamically loaded Assembler Language subsystems must either be
dynami,cally linkedited with the resident subroutines, or use the
MODCNTRL macro to access dynamically loaded and resident user
subroutines previously defined via the SUBMODS macro in REENTSBS;
Intercomm routines may be accessed via VCONs in the SPA, or via
INTLOAD, if linked with the subsystem.

Resident, Overlay A and dynamically loaded COBOL and PL/l
subsystems must use Intercomm interfaces to all noncompiler
subroutines. The interface routines are COBREENT and PMIPL1,
respec ti vely. User subroutines are defined to Intercomm via the
SUBMODS macro in the REENTSBS table. Copy code tables to define
subroutine codes to match entries in REENTSBS are ICOMSBS (COBOL) and
PENTRY (PL/l). PL/l-Optimizer subsystems may optionally call resident
Assembler Language subroutines (user or Intercomm) directly by adding
the name to the PLIENTRY table included in the program; however, this
option cannot be used for dynamically loaded subsystems unless
dynamically linkedited, or linked with INTLOAD.

3-55

Chapter 3 Message Management

A maximum of 350 user SUBMODS entries using the NAME parameter
(resident), or LNAME and RES=LINKEDIT or RES=BOTH (default) parameters,
may be defined (due to an Assembler restriction on ESD entries). An
additional 50 are reserved for Intercomm service routine definitions.
However, addi tional entries may be defined using the LNAME and
RES=LOADMOD parameters of the SUBMODS macro. See also the PERMRES
parameter, as described in Basic System Macros.

3.11. 2

Note the following language interface considerations:

• Reentrant COBOL subsystems must use the Intercomm interface
COBREENT to call subroutines, and may only call reentrant or
reusable COBOL and Assembler Language subroutines.

• Reentrant COBOL subroutines may be called only by reentrant
COBOL subrout ines and subsystems which use the COBREENT
interface.

• PL/l subroutines must be serially reusable and may not be
called by Assembler or COBOL subroutines or subsystems due to
language differences in parameter list construction.

• Reentrant PL/l subsystems must use the Intercomm interface
PMIPLI to call PL/l subroutines; COBOL subroutines may not be
called. See the discussion of Resident Subroutines (above)
for Assembler subroutine interface considerations.

• Nonreentrant COBOL and PL/l subsys terns may call only
language-compatible nonreentrant or reusable subroutines and
reentrant Assembler subroutines. Nonreentrant Assembler
subsys terns and subrout ines may call reentrant Assembler
subroutines if standard linkage conventions are used.

Subroutines Linked ~.,ith Dynamically Loaded Subsystems

Use of this convention is not recommended under Intercomrn as it
impac ts reentrancy and multi threading, in addition to adding to the
size of the load module.

3.11.3 Dynamically Loaded Subroutines

Intercomrn subsystems have the ability to link to dynamically
loaded subroutines. For all languages, these subroutines must be
defined in REENTSBS using the SUBMODS macro. The loaded subroutines
wi 11 be dynamically 1 inkedi ted at startup time to resolve any
unresolved VCONs and then loaded as required when accessed by a
subsys tern. A BLDL 1 is t for each subroutine may optionally be
maintained for efficiency. Loaded subroutines will be automatically
deleted from storage after a user-specified period of inactivity.
Optionally, a subroutine can be loaded at startup and then made
resident for the duration of the Intercomrn execution (see PERMRES
parameter of the SUBMODS macro).

3-56

J

Chapter 3 Message Management

Subroutines may be dynamically loaded during testing and then
later be made resident or defined for the subroutine overlay region
with no changes to the application. New versions of'dynamica11y loaded
subroutines can be obtained during Intercomm execution by use of the
LOAD system control command (except if made resident at startup).

Intercomm imposes no size restriction for these subroutines.
Dynamic subroutine loading is dependent upon storage availability.
Loading is overlapped through the use of subtasking. Subroutines which
issue INTENQ/DEQ or process data base or file I/O, which might cause a
time-out, should not be dynamically loadab1e, unless made resident at
startup.

3.11.3.1 Loading Subroutines Above the 16meg Line

In a MVS-XA environment, user subroutines (Assembler or reentrant
COBOL only) can be loaded above the 16meg line. The following is
required:

• SUBMODS macro defining the subroutine must have LNAME coded,
PERMRES=NO (default), and RES=LOADMOD or BOTH (default)

• Linkedit the subroutine independently with AMODE=31 and
RMODE=ANY.

Reentrant COBOL subroutines loaded above the 16meg line may only be
called (via COBREENT) by reentrant COBOL subsystems or subroutines and
are subject to the same coding restrictions as described previously for
COBOL subsystems. Assembler subroutines must be reentrant and are
subject to the restrictions and coding conventions described in detail
in the Assembler Language Programmers Guide, but may be called by
reentrant COBOL programs (via COBREENT) and by Assembler programs as
described below. Address mode switching is controlled by the
subroutine load program (DYNLLOAD). Assembler tables may only be
accessed by Assembler programs as described below.

3.11.3.2 Application Programming Conventions

Language-dependent considerations for application program coding
are as follows:

• Reentrant COBOL programs must use COBREENT and REENTSBS in
the standard manner; dynamic load is transparent to the
application program, COBOL subroutines must be coded and
defined to Intercomm as reentrant.

3-57

Chapter 3 Message Management

• PL/l programs must call the PMIPLI interface routine (the
ENTRY option of the Optimizer is not allowed for
dynamic -loaded subroutine reference); dynamic load is
transparent to the application program. Dynamically loaded
sub rou tines wri tten in PL/I require spec ial I inkedi t
considerations. In order to maintain the PL/I environment
constructed for the calling subsystem, the PL/I
initialization routines generated by the compiler must be
removed, and the subroutine entry point must be explicitly
specified. This can be accomplished by the following
linkedit control cards for the subroutine (with the name
SUBROUT) :

•

REPLACE
REPLACE
INCLUDE
ENTRY
NAME

PLIMAIN
PLISTART
SYSLIB(SUBROUT)
SUBROUT
SUBROUT(R)

PLI subroutines should be coded and linked as serially
reusable (USAGE=REENT may not be coded on the SUBMODS macro).

Assembler programs must issue a MODCNTRL macro to invoke
dynamic subroutine load. If the loaded module is a table
processed (scanned) by a program executing in 24-Amode, it is
the users' responsibility to switch address modes (see
XASWITCH macro in Basic System Macros). Also, the program
must carefully ensure 24-bit mode addressing when processing
is completed and for all branch processing.

Nonreentrant COBOL and FORTRAN programs may not use the Dynamic
Load facility directly. The user may provide a reentrant interface
routine in Assembler Language for those programs.

3.11. 3.3 Implementation

The macro SUBMODS is coded in REENTSBS and defines the name and
characteristics of the subroutine (deletion time, residency, etc.) and
may specify a BLDL list (see Basic System Macros). A separate Csect,
DYNLSUBS, is generated to contain control data for dynamically loaded
subroutines. The modules PMIDLOAD, DYNLLOAD, and REENTSBS must be
included in the Intercomm linkedit. Coding DYNLOAD=YES and DYNLINK=YES
on the ICOMLINK macro will generate the necessary INCLUDE statements.
See the description of dynamically loaded subsystems and the Dynamic
Linkedit facility for further installation details.

3-58

J

Chapter 3 Message Management

3.11.4 Transient Subroutine Overlay Re~ion (TRAN)

The Intercomm Transient Subroutine Overlay Region allows rarely
used Intercomm and Assembler Language application subroutines (which
may give up control) to be linkedited as separate overlay segments in
an overlay region reserved for this purpose. This can significantly
reduce the resident storage requirements of such Intercomm and
application subroutines.

To be eligible for the transient area, a subroutine and its
callers must follow several rules:

• All callers of the subroutine in the transient area must call
the transient area using the CALLOVLY macro.

• The subroutine in the transient area must, in all cases,
return eventually to the calling program. It cannot branch
away forever into some other module. It must return.

• Usage of the transient area cannot be nested; that is, no
subroutine to be used in the transient area can CALLOVLY
another subroutine which is also in the transient area. It
can, however, CALL resident subroutines. (See Figure 3-12.)

•

•

The subrout ine in the
reus eable or reentrant,
conventions.

transient
and must

area
follow

must be
standard

serially
linkage

The caller must be an Assembler Language program. If the
user wishes to use a high-level language and call a transient
subroutine, he must do the following:

1. Write a reentrant Assembler Language interface, using
standard linkage conventions, to issue the CALLOVLY for
the high-level program, and define it in REENTSBS.

2. Parameters to be
transient area must
Language interface
Figure 3-13.)

passed to the subroutine in the
initially be passed to the Assembler
by the high-level language. (See

3. The high-level language caller of the Assembler Language
interface must be defined as reentrant, that is, provide
save area chaining.

• The subroutine in the transient area must invariably complete
its processing within five minutes. The time-out interval is
fixed by the Intercomm transient subroutine handler. After
this time, it will be subj ect to being overlaid by other
subroutines.

3-59

Chapter 3 Message Management

Allowed Not Allowed

ASUB CSECT ASUB CSECT

CALLOVLY BSUB CALLOVLY BSUB

END END

BSUB CSECT BSUB CSECT

CALL DSUB CALLOVLY CSUB

END END

Figure 3-12. Illustration of Nested CALLOVLY Coding Conventions

CALL 'COBREENT' USING CSUBI-code, Parameter-A, Parameter-B

* REGISTER ONE CONTAINS THE COBOL PARAMETER LIST ADDRESS
CSUBI CSECT

USING *,12
STM 14,12,12(13)
LR 12,15
LR 2,1
STORAGE ADDR=8(13),LEN=72,RENT=NO
L 3,8(13)
ST 13,4(3)
LR 13,3
LR 1,2
CALLOVLY CSUB,(l)
LR 1,13
L 13,4(13)
STORFREE LEN=72,ADDR=(1)
1M 14,12,12(13)
BR 14
END

Figure 3-13. Using CALLOVLY in an Assembler Language Interface
for a High-Level Language Program

3-60

J

. l 1 .. ·• ~

Chapter 3 Message Management

The set of Linkage Editor control statements illustrated below
would result in a root section containing the resident subsystems PGMl
and PGM2, and in the Intercomm transient area, the subroutines SUB1,
SUB2, SUB3 and SUB4. The transient subroutine OVERLAY and INSERT
statements must be placed in the Intercomm linkedit after the Intercomm
OVERLAY TRAN(REGION) statement.

INCLUDE
INCLUDE

SYSLIB(PGM1,PGM2)
SYSLIB(SUB1,SUB2,SUB3,SUB4)

OVERLAY TRAN(REGION)
Intercomm transient subroutines

OVERLAY TRAN
INSERT SUBl

OVERLAY TRAN
INSERT SUB2

OVERLAY TRAN
INSERT SUB3

OVERLAY TRAN
INSERT SUB4

PMIOVLAY and LOADOVLY must be included in the Intercomm linkedit.
The appropriate control cards for these modules and applicable
Intercomm routines in the Transient Subroutine Overlay Region may be
generated via the ICOMLINK macro specifying TRANS=YES and requires
coding of OVLYSTR=YES.

Since the linkage editor cannot create more than four overlay
regions, the use of one of them as a transient area will restrict the
application subsystems to the use of Intercomm Overlay Areas A, Band
C.

Since the transient area is a serially reuseable resource, care
must be taken not to use it for subroutines that, due to frequency of
usage or duration of processing, will create a decrease in message
throughput or delay system control functions.

3.11.5 Subroutine Overlay Region (SUB)

Intercomm provides an overlay region dedicated to rarely used
Assembler Language subroutines which follow normal linkage conventions
and never relinquish control to the Dispatcher (no I/O, no time delays,
etc.). Some Intercomm routines are defined for this overlay region and
thus accomplish a saving of 6-9K. ICOMLINK parameters are the same as
for Overlay Region TRAN.

3-61

Chapter 3 Message Management

OVERLAY and INSERT statements, for user subroutines eligible for
this area, must be placed in the Intercomm linkedit after the Intercomm
OVERLAY SUB(REGION) statement, and INCLUDE statements must be added as
described above for the TRAN area. Use of this area in addition to the
TRAN area will restrict application subsystems to Overlay A and B only.

3.12 GENERALIZED SUBTASKING

The concept of using OS sub tasks to perform operations containing
inherent WAITs, (for example, GET, OPEN, CLOSE, etc.) has been
generalized. At startup time the generalized subtasking facility will
create a pool of general purpose sub tasks which can thereafter be used
to perform functions of this type. This facility, which is used by
Intercomm system routines, is also available for use by Assembler-coded
subsystems or subroutines. A SUBTASK macro is coded to specify a
subroutine which is to receive control under a general subtask. The
subroutine executes under the subtask, then returns control to the
original routine at the next sequential instruction after the SUBTASK
macro. The linkage between the issuer of the SUBTASK macro and the
subroutine is similar to a CALL; all registers must be preserved and
restored as they would be during a CALL.

The code executed as the subtask cannot relinquish control to any
Intercomm service routines such as the Dispatcher, File Handler, etc.
nor issue an OS WAIT macro. Execution of the subtask logic is
synchronous with respect to the thread issuing the SUBTASK macro. The
calling routine may be resident or dynamically loadable, but may not
execute in an overlay area. The TCTV for the originating subsystem
must be generous to prevent unnecessary time-outs.

3.12.1 Special Subtasks

Special subtasks are subtasks from the general pool which are
reserved by Intercomm with a unique identification number. Special
subtasks are defined to allow exclusive use of a subroutine. This is
useful for subtasking subroutines which may only be executed serially,
that is, nonreentrant code.

The first issuance of a SUBTASK macro with an 10 number specified
via the TASKNUM parameter causes Intercomm to fetch a subtask from the
general pool, assign the ID number to it and place its address in the
special subtask table. Control is then passed to the subroutine to
execute under that subtask. For every subsequent SUBTASK macro with
the same ID specified, Intercomm retrieves the source subtask and
determines whether it is active. If it is active, an INTWAIT is
performed until the subtask is free. When it is free, or if it was
inactive, control is passed to the subroutine to execute under the
subtask, and that subtask is marked active. The ID assigned to the
subtask is unique and remains in effect until closedown.

3-62

J

J

Chapter 3 Message Management

The difference between a general subtask and a special subtask is
that when a general subtask is requested (no 10 is provided), an
inactive subtask is chosen at random from the general pool and control
is passed to the subroutine to execute under that subtask. If a
special subtask is requested (an 10 is provided with the SUBTASK
macro), the subtask to which the 10 is assigned is located, and control
is passed to the subroutine only if the subtask is inactive, even
though there may be other inactive general or special subtasks. This
method forces serial reusability for the special subtasks.

If a subroutine is requested under a general subtask while it is
executing under a special subtask, control will be passed to the
subroutine and it will execute concurrently under both the general and
special subtasks. In addition, if a subroutine is executing under one
special subtask and that subroutine is requested for execution under a
different special subtask (different 10 number), control will be passed
only if the second subtask is inactive. Intercomm can only determine
whether a special subtask is active or free; it cannot determine
whether the subroutine is active, nor can it associate special subtasks
with subroutines. Thus, to prevent concurrent use of the subroutine by
multiple requests, a subroutine should always be executed under the
same special subtask 10.

As with general subtasks, special subtasks should not relinquish
control to Intercomm, and they may not issue a WAIT or cause a program
check. Intercomm does not use special subtasks.

3.12.2 Implementation

The number of general and special subtasks in the system is
specified to Intercomm via the TASKNUM parameter of the SPALIST macro.
If the number of special subtasks in TASKNUM is zero, special subtasks
will not be allowed. The module ICOMTASK must be included in the
linkedit if general and/or special subtasks are in use.

To execute a subroutine under a general subtask, code the SUBTASK
macro in-line and omit the TASKNUM parameter. To execute a subroutine
under a special subtask, code the SUBTASK macro in-line, and code the
TASKNUM parameter with a valid subtask 10 number (wi thin the range
specified for the SPALIST TASKNUM parameter).

The subroutine must be coded in Assembler and must be resident.
Refer to Basic System Macros for coding specifications of the SPALIST
TASKNUM parameter and the SUBTASK macro.

3-63

Chapter 3 Message Management

3.13 TIME CONTROLLED HESSAGE PROCESSING

Intercomm automatically generates messages based on the time of
day, as dictated by the user's Time Zone Table. The user specifies
through the parameters supplied in the table what Verb Message
Identifier (VMI) is to be included as part of the constructed message
header. The message is queued, through Message Collection, to the
specified subsystem for processing at the time of day specified by the
user. The format of the message produced by Intercomm is:

• Bytes 1-42: Standard Intercomm message header with:

MSGHSSCH set to binary zero, MSGHSSC to C'M'

MSGHRSC and MSGHRSCH fields set to the values supplied by
the user

MSGHVMI field set to the value specified by the user

• Byte 43: Item Code=l

• Byte 44: Length=l

• Byte 45: Time Zone Code Value (supplied by user)

The Time Zone Table is constructed by coding one TMZONE macro for
each message the user wishes to be automatically started by Intercomm
based on the time of day. The TMZONE macros must be coded in a Csect
named PMITIMTB. The end of the table must be delineated by the PMISTOP
macro, which indicates the end-of-table condition at execution time.
The receiving subsystem can further trigger later iterations of the
same message via the Dispatcher, or multiple table entries for the same
subsystem with different times may be coded. The receiving subsystem
might be used to:

• queue System Control Command messages

• start (acquire) a remote input or output terminal or a line

• generate a FECMDDQ for printer output

The module TRIGGER must be included as a resident program in
addi tion to the resident Time Zone Table. TRIGGER automatically
detects when midnight has passed and reprocesses the Time Zone Table
for the new day.

3-64

J

Chapter 3 Message Management

Following is a sample Time Zone Table:

PMITIMTB CSECT
* MESSAGE TO SUBSYSTEM AA AT NOON:

TMZONE SCHT=1200,PGID=A,PGIH=A,PVMI=N,TMZC=Z

* * MESSAGE TO SUBSYSTEM XY AT 4:00 PM:
TMZONE SCHT=1600,PGID=Y,PGIH=X,PVMI=X,TMZC=Y

* * END OF TABLE
PMISTOP
END

3-65

J

J

Chapter 4

TASK MANAGEMENT

4.1 DISPATCHER AND RELATED SERVICE ROUTINES

The Intercornm multitasking Dispatcher (IJKDSP01) controls all
scheduling of task execution in the Intercornm environment, replacing
the Operating System multitasking facility. All system programs (Front
End, Subsys tern Controller, File Handler, etc.) effect overlap of
operation, interprogram communication and scheduling via the
Dispatcher.

4.2 DISPATCHER QUEUES

The Dispatcher controls operation via task queues of three
different types:

• Execution Queues

•

•

Tasks which are executable based upon their order of
readiness within order of priority

Event Queues

Tasks which will become executable upon completion of an
event, indicated via the posting of an Event Control Block;
whether by the operating system (WAIT queue) or an internal
posting (IPOST queue--see DISPATCH macro)

Time Queue

Tasks which will become executable at a particular time of
day, or on completion of a timed wait.

Tasks are created via the DISPATCH or INTWAIT macros, described
in Basic System Macros, and the Assembler Language Programmer's Guide.
Information about the queues may be dynamically displayed via the TALY
and SCTL system control commands.

4.2.1 Defining the Number of Task Queue Elements

The Dispatcher contains assembled space for task queue elements
allowing up to 120 concurrent tasks (executable, event or
time-dependent). Task queue elements not in use are members of a free
queue element pool. Except in cases of high message volume or 200+
terminals, this number of queue elements is satisfactory. The number
of queue elements is a global specification:

&NUMWQES within INTGLOBE and SETGLOBE

4-1

Chapter 4 Task Management

To increase the number of queue elements, update the global setting in
SETGLOBE and reassemble and link IJKDSPOI. If the free queue is empty
when a new task element is to be created, Intercomm abends with a user
code 901 (see IJKTRACE description, below). To estimate the number of
WQEs necessary for a high-volume system, add the number of SYCTTBLs
generated for Front End processing to the number of BLINE macros and/or
VTAM I/Os (RCVNO, RCVRSP and MXSDTHD on VCT macro), and the total MNCL
across all subsystem SYCTTBLs, plus 50 for Intercomm processing.

4.2.2 IJKPRINT-Output to SYSPRINT

This Dispatcher-related service routine calls the PUT entry point
in the File Handler to output a print line image whose address is
pointed to by register 1 at entry to IJKPRINT. Print line images must
be IBM standard format V (variable-length) records, with an ASA printer
spacing control character as the first text byte. (Maximum logical
record length is that defined in the JCL for SYSPRINT.) A count is
maintained of the number of lines printed on the text page; when the
count exceeds sixty lines, the next line output will specify a skip to
head of form (ASA control character '1'), and the line count will be
reset.

Output is directed to the file with ddname SYSPRINT. If the file
is undefined or incorrec tly defined, no output is produced and no
diagnostic indication is given. The DD statement for SYSPRINT must
define a DCB with DSORG=PS, RECFM=VA, or VBA, LRECL=137 and BLKSIZE=14l
or a multiple of 137 plus 4.

Any program may, if desired, call upon this routine to perform
routing of similarly formatted records to SYSPRINT. Control is not
released to the Dispatcher during IJKPRINT processing.

4.2.3 IJKTRACE-List Dispatcher Queues

This service routine constructs print line images producing a
formatted display of all Dispatcher task queues. It is called
automatically whenever the program check handler (SPIESNAP) is entered
for a snap 126, and by RMPURGE when purging a subsystem thread with
outstanding resources not released by that thread. It is also called
by the Subsystem Controller (SYCT400) when a subsystem times out (snap
118 produced), by STAEEXIT (for snaps 121 and 122), and by VTERRMOD for
VTAM error recovery (snap 63). It may also be called for diagnostic
purposes-by any other program. A WQE trace for a specific queue may be
dynamically displayed via the SCTL system control command. Also, a
full WQE trace routed to SYSPRINT may be dynamically requested via
SCTL. Successful execution of this program also requires inclusion of
IJKCESD and IJKWHOIT in the Intercomm linkedit (see sections 4.2.4 and
4.2.5) . IJKTRACE calls IJKPRINT to output the print line images to
SYSPRINT (see above). For efficiency, the SYSPRINT data set should be
blocked.

4-2

J

Chapter 4 Task Management

Each print line image is passed to the IJKPRINT routine for
output to SYSPRINT. Fields are printed in hexadecimal format, unless
otherwise noted. The following are detailed explanations of the
elements of the listing:

• Heading Line I--General information giving:

The Julian date and time (decimal) at entry to the
routine, as obtained from the operating system clock:

IJKTRACE ENTERED DATE yy.ddd TIME hh.mm.ss.

The byte specifying the priority and overlay group of the
last program path given control by the Dispatcher:

PRljOVLY xx

The byte specified by the last
instruction (00 if no overlay
used) :

executed SETOVLY macro
or EXGRP structure is

SETOVLY xx

The caller (Csect name and displacement) of IJKTRACE:

CALLED BY name+displacement

• Heading Line 2--Defines the list type, locations and
activity:

The Dispatcher list name whose task elements, if any, are
printed below:

aaaaa LIST

In place of 'aaaaa' will appear the list type: FREE,
WAIT, IPOST, TIME or EXEC.

The FREE list contains task elements that are unused or
that represent program paths already either given control
or cancelled, in the order in which these events
occurred. The oldest (first) entry in the FREE list is
reused when required for a new program path. The newest
(last) entry is for the most recently dispatched task.
Only the last 200 entries are printed. To print more or
less, modify the local global &FQENUM in IJKTRACE.

The WAIT list contains task elements for program paths
awaiting the posting of an Event Control Block (ECB) by
Intercomm or the operating system. Task elements appear
in the order in which the requests were made.

The IPOST list contains elements for program paths
awai ting the posting of an ECB by Intercomm via an
internal INTPOST request. Task elements in this list are
in random order (by ascending WQE address).

4-3

Chapter 4 Task Management

The TIME list contains task elements for program paths to
be resumed at a given real time; the list is maintained
in ascending real time sequence, with first-in first-out
sequence for equal real time values.

One EXEC (execution) list for each priority level
(max imum=4) in the sys tern contains task elements
representing program paths ready to be given control, in
the order that readiness was determined.

The addresses of the list table entry, the first task
element, and the last task element in the list are
displayed. Where a list is empty (zero count), all three
addresses are equal:

WQT xxx xxx FIRST xxxxxx LAST xxxxx

The decimal count of task elements currently in the list,
and the highest or lowest count value that has occurred
since processing began (highest count for all but the
FREE list):

NOTE:

COUNT aaaa HI/La aaaa

if the free queue La value is below 10, the total
number of task queue elements should be increased
(see Section 4.2.1).

• Heading Line 3- -Provides task element column descriptors if
the list contains any task elements (nonzero count). This is
followed by task element fields, one task element per line.
The column headings are:

WQE--Address of the task element.

FLAGS- -Letters corresponding to flag bits in the task
element, as follows:

D--Program path has been given control (dispatched).

C--Program path has been cancelled (before dispatch) .

E- -Task element has been placed on execute list.

P--Task element is (has been) in the IPOST list.

I - -WAIT list element is internal ECB (posted by
Intercomm).

T- -Task element is (has been) in the TIME list.

W--Task element is (has been) in the WAIT list.

NOTE: where an invalid combination of flags has been
detected, an asterisk (*) precedes the flags field.

4-4

J

J

J

Chapter 4 Task Management

PRI/OVL- -The priority and overlay- group portions of the
priori ty /overlay byte spec ified in the DISPATCH or
INTWAIT macro instruction; the sum of these values is the
value of the PRI/OVL field.

ECB/T--The ECB address or real time, where applicable. A
real time is a 24-bit value with the least significant
bit representing 1/37.5 of one second in this display. A
description of converting timer units is provided in the
chapter on "General Debugging Techniques" in Messages and
Codes.

This field is not printed for task elements that have not
been in either a WAIT, IPOST, or TIME list, that is, the
task element was dispatched directly on an EXEC queue.

ENTRY PT- -Address for transfer of control to resume the
program path; the high-order (leftmost) byte contains the
thread number in hexadec imal (if nonzero, subsystem
processing created the task element).

PARAMETER--Value to be passed to program in register 1.

(ECB) - -Value in ECB if the FLAGS field contains a W; it
is the value before posting if the task element is in an
event list (WAIT, IPOST).

TIME--for task element that is (was) in time list if the
FLAGS field contains a T, the time it was (will be)
dispatched or, if it was cancelled, the time it would
have timed out.

CSECT--the Csect (+ displacement if any), that was (will
be) given control of this task element (see ENTRY PT
above) . If the Csect name is not easily recognizable,
refer to the Csect/Module name correspondence table for
Intercomm system modules in Figure 4-1.

ENTRY - -the entry point within the Csect at which this
Csect was (will be) entered, if known (defined by an
ENTRY statement within the module).

SUBSYS - - if CSECT is SYCTRL (no ENTRY), or the thread is
not zero (and the task element not on the Free Q); the
subsystem code of the subsystem processing under this
task element.

SUB NAME--if CSECT is SYCTRL (no ENTRY), or the thread is
not zero (and the task element not on the Free Q); the
name of the subsystem processing under task element.

An example of IJKTRACE output is shown in Figure 4-2.

4-5

Chapter 4 Task Management

.. ~ .. ~ F================F=== ~,

CSECT Name Module Name Function
P================F=================~=====================================

SYCTRL SYCT400 Subsystem Controller

IXFMONOO IXFHNDOO File Handler Initialization

IXFMONOl IXFHNDOl File Handler Processing

IXFAm.JTO IXFHNDOl File Handler ISK

IXFSUBS IXFHNDOl File Handler save area processing

IXFMON09 IXFHNDOO File Handler Closedown

PMISTUP STARTUP 3 Intercomm Startup

STUOVLY STARTUP 3 Intercomm Startup

RSMGMNT MANAGER Resource Management

RM MANAGER Resource Management sub function

MSGCOL BLMSGCOL Message queuing

RDLNKTB SYSCNTL SCTL command processing

REFRMAT SYSCNTL SCTL command processing

Figure 4-1. IJKTRACE - Csect/Module Name Correspondence Table

4-6

...,
~

~
Ii
(II

.p-
I

I'.)

en

!
(II

H
c....
~

f~
-..JC")

tJ:1

t"'
~
til
rt
~
::3

C)q -"Cj
III

C)q
(II

......
o
I-t)

w
'-"

r
JJI(TRACE E"lTHEO DATE

filE[LIST .. OT OlColO

WOE FLAGS PRJ OVL
02C700 DEli 00 00
02CA60 DE" 00 00
02C7BO DE W 00 00
02C8AO DEW 00 00
02CC80 DE W 00 00
OlCA 70 DEW 00 00
01C8CO DE .. 00 00
02CAAO DE .. 00 00
01CC70 DE .. 00 00
01C8100 DE .. 00 00
02CB80 DE .. 00 00
02CD60 DEW 00 00
02(C60 DE .. 00 00
Olcno DEW 00 00
01C8EO DEw 00 00
01C720 DEW 00 00
OlCDEO DEW 00 00
02CA20 DEW 00 00
01C070 DEW 00 00
01C810 DEw 00 00
01 C 71 0 DEW 00 00
02(ClO DEw 00 00
01-CAtO DEW 00 00
OltOAO DEW 00 00
OlCHO DEW 00 00
02t450 DEw 00 00
01C860 DEW 00 00
02C0400 DEW 00 00
OlttAO DEW 00 00
02C880 DEW 00 00
01C870 DEW 00 00
Olcseo DEW 00 00
01C8EO OEw 00 00
01C770 DEW 00 00
01C860 DEw 00 00
OlCCCO DEw 00 00
01C830 DEW 00 00
OlCCioO OEW 00 00
01C800 DEw 00 00

, OlCoCO OEW 00 00
OlCHO DEW 00 00
01(6AO OET 00 00
01CA60 DE .. 00 00
02CC20 OET 80 00
02(6EO DET 80 00
02CO~0 DEW 80 00
02CAQO DE 00 00
02C080 OHW 00 00

('

68.2 !>2 TJM 09.27.07 PRJ/OYLY 00 SETOWlY 00 CALLE~ 8Y SPIESNAP+28~

FIRST 02C700 LAST 02C080 COUNT 0048 HI/LO 0037

EC81T ENTRY PT PARAMETER I ECb) T1I'1E CSECT
OlE8EO 000787010 OOOloACOO IXFI'IOh01+2081o
089010 00078704 000CF728 IXFI'ION01+2084
03E 8E 0 000787010 OOOloACOO IXFI'IONOl+1084
089010 0007B7010 000CF728 IXFI'ION01+2084
03E8EO 000787010 0004ACOO IXFI'IONOl+20blo
089010 00078704 000CF728 I X fIolONO 1 + 20810
03E8EO 000787010 0004ACOO I XfI'lON01+1081o
089010 000787010 OOOCF 728 IXFP10NOl+2084
OHBEO 000787010 0004ACOO IXFI'ION01+20810
089010 000787010 OOOCF 728 1 XHIONO 1 + 20810
03E8EO 00078704 OOO'<4COO IXFI'ION01+20BIo
089010 0007870~ 000CF728 IXFI'IONOl+2081o
03E8EO 000787010 OOOloACOO IXFI'ION01+2084
089010 000787010 000CF728 IXFI'IONOl+20SIo
OH8EO 0007870 .. OOO'<4COO IXFI'10NOl+2081o
089010 00078704 000CF728 IXFI'ION01+20810
03E 8E 0 0007870" OOOioAtOO IXF"ON01+20810
089010 000787010 000CF728 IXFI'ION01+20810
03E8EO 000787010 OOO'<4COO IXF"ON01+20810
089010 00078704 OOOCF 728 IXFI'IONOl+2081t
03E8EO 000787010 OOOltAtOO IXF"ON01+20810
089010 0007S7010 000CF728 IXF"ON01+20SIo
03E8EO 000787010 OOOltACOO IXF"ON01+2084
089010 0007S7010 000CF718 IXF"ON01+20810
03E8EO 00078704 OOO .. ACOO IXF"ON01+20810
089010 00078704 OOOtF 728 IXF"ONOl+2081o
03E8EO 0007S7010 OOOItACOO IxF"ON01+2084
089010 00078704 OOOCF 728 IXF"ON01+20810
03E8EO 00078704 OOO~ACOO IXFI'IONOl+20SIo
089010 000787010 000CF728 IXF"ON01+20810
03E8EO 00078704 OOOioACOO IXF"ON01+20810
OS9010 0007S7010 000CF728 IxFI'ION01+2081o
03ESEO 000787010 OOO .. ACOO IXF"ON01+20BIo
OS9010 000787010 000CF728 IxF .. ONOl+2081o
03E 8EO 000787010 OOOioACOO IXFI'IONOl+20SIo
OB9010 00078704 000CF728 IXFI'ION01+20810
03E8EO 000787010 OOO .. ACOO IXF"ON01+1081o
089010 000787010 OOOCF 728 IXF"ON01+20810
03E8EO 00078704 OOOioACOO IXFI'ION01+10Sio
089010 000787010 000CF728 IXFI'IONOl+2081o
089010 000787010 OOO .. ACOO IXFI10N01+20810
13 777& 0001110010 OOOOCEOC 09:27:00.103 8TA"SI"+AIoC
OOCEOC 000lEIo16 000 "2088 8SCOlAL+820
137777 00011310 C 000!>6FF 0 09:27:00."~ 8TA"51 .. +9910
137180 00011~0" OOOOC&F~ 09:27:00.&9 8TAI1SIf'I+A4C
OOCbF .. 0001~Ob6 000"3070 'lHIN+19lE

00017A2" 000412CO 'PlHOOO+1t
082750 00030808 0001l2&FO SYCTRl

ENTRY
OYRLAPIO
OYRLAPIO
OYRLAP 10
OYRLAPIO
OYRLAP 10
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAP 10
OVRLAPIO
OVRLAP 10
OVRLAPIO
OVRLAPIO
OVRLAP 10
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRL AP 10
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRL AP 10
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRL AP 10
OVRLAPIO
OVRLAPIO
OVRLAPIO

III\HINOOO
SCNII\UN

('

SUBSY5 SUB NA"E

,,"D1D7 NAGE"NGIt

9 .:;
rt • tot

~

~
fII
~

i:

..,
t-'o

~
11
CD

.r:-
I

N

i
"
c..,
~

f~ OOn
~

t""
t-'o ,.
rt
t-'o

~ -toO ..
0:
N

o
HI

W -

,UIT 1I Sf

WOE flAGS
OlCo)O W
OlCt-FO W
OlC010 III
OlCIlO ..
OlCD~O W
OlCAOO ..
OleCEO IW
OlC1FO 1111
02COOO I ..
OlC8(0 I ..
OlU80 IW

TI"E LIST

WOE FLAGS
OlC7AO T
02C.00 T
Olcno T
02cno T
OlCl40 T
02C7CO T
OlCC~O T
OlCI50 T
OlC750 T
OlCClO T
02C(50 T
02C.'0 T
02CCFO T
02C120 T
02C7EO T
02C760 T
OlCAlO T
OlCIIO T
02C690 T
02COOO T
OlCUO T
OlUeo T
Ol(740 T
02CAlO T

EnC LIST

wOE FLAGS
Olcno E

EXEC LIST

EXEC LIST

\,

WOT OZCblC F IRH 07C030 LAST 02C"BO

PRI OYL ECB/T EIIITRT .. T """"'E TEIt
eo 00 0118106 00011 9E 2 IoE01l9CC
110 00 OOCFFO 000HC2B 0001FObC
00 00 OHOOIo OC070A6A 000loF934
80 00 00C374 0001b7FC 00042760
00 00 ooeEoe OOOHIo18 00042088
eo 00 03EF50 0007B701t 0004ACOO
110 00 Ol37I1C 00011ECO 0002CCOO
00 00 081160 0006AltBO 00000000
00 00 00F69C 0001858e 0001t1b18
00 00 OOF 5ge 0001858e 00040C"0
00 00 OOEEoe 000185Be 0001o10AO

WOT 02C638 FIRST 02C1&0 LAST 02CAEO

PRI on EC81T ENTRY PT PARAI'IE TER
eo 00 1378810 000111t01t 0000014
00 00 137886 00011404 OOOOCEOC
80 00 1318eA OOOllHC 0005f:A0 0
80 00 131890 OOOACOOE 00043328
80 00 131892 OOOllHC 00051510
80 00 1318n OOOllHC 00051A30
80 00 1318n 00011HC 00051F50
80 00 137895 00013104 0000e9AC
80 00 1318AO 00016082 0100C9AC
80 00 1318AC 0001l9FA 0000CA04
eo 00 131888 OOOllHC 00055810
80 00 13788F OOOllHC 0005"580
eo 00 1378C5 OOOllHC 00056090
110 00 1318EO 0001"082 0000C9AC
80 00 13790F OOOllHC 00056FFO
00 00 137928 000388E2 000300CIo
00 00 131e07 00031F 16 0001oC118
00 00 139]8C 000101t88 00000000
00 00 139Fb3 0003858" 000813CO
00 00 138688 000298C8 00000000
80 00 13861.1 0001E21& OOOOCEoe
80 00 13BbA1 OOOlE 21A 0000CE6'1
00 00 11020EF 00034198 00081014E
00 00 1'10030 0001F5C8 00028F20

wOT 02CbH FIRST 02C890 LAST 02C890

PRI OYL ECB IT ENTRY PT PARAI'IETER
00 00 0002ClOA 0088252F

WOT 02C650 F lRST 02C650 LAST 02C650

wOT OlCfl5C FIRST 02Cf)5C LAST 02CbSC

COUNT 0011 HI/LO 00l)

e ECU T ,,'IE CSEC T
006FF8Ae BTAMS 11,,\+10ZA
00bFF6A6 CNT011'100+ 336
00bFF8A8 I XFB37+ 38A
006FF8A8 BLHOT +F 3C
00bFF8AB BSCDIAL+820
7FOOOOOO lXFI'IONO 1+20B4
00000000 BI'IHOOO+4AO
00000000 PMISTUP+HB
0300C851t 8MHOOO+Bge
03000000 8"'HOOO+&9C
0300C3CC BMHOOO+89C

COUNT OOH HIILO 0030

fEC8' TIME CSECT
09;21;07.63 8TAI'IS IM+A4e
09:21:01.68 8U"'S II'I+A4C
09:21:01.19 8TAI'ISIM+994
09&21&01.95 GFORIYER+E6
09:21:08.00 BUMS 11'1+994
09121:08.00 8TA"'S 11'1+994
09:21:08.00 BTA"'SI"'+994
09:21:08.08 8LHIN+8C
09:21&08.31 BLHOT+14C2
09:21:08.69 8U"'SI"'+1042
0<1:21&09.09 BUI'IS 1"'+994
09:21:09.20 8TA"'SII'''994
09:21:09.3b BTA"'S 1"'+994
09:21;10.08 BLHOT+14C2
09&21& 11.33 B T A"'S 11'1+994
09;21:12.00 RS"'GMNT+432
09:21: 31.60 SYCTRL+140E
09&]0:13.1t4 CHECK P T
09:31132.9Q RSMG"NT+06
09:]10: 10. Q9 I NTSTS
09: 3'0: 11.81 8SCOlAL+982
09:H: 1l.81 BSCOIAL+982
OQ:Iof):}7.3b P",IAUTOF
10 :06113 .1b IXFRPT01

COUNT 0001 HIILO 0036

HCB' TII'IE CSECT
IJKOSP01+58A

COUNT 0000 HIILO 0003

COUNT 0000 HIILO 001f1

~

ENTIl T

HBWAIT

OYRLAPIO
BMHDEOA8

ENTRY

BLHINOOO
HAR08ACK

HARDBACK

PURGE

BSCDLOUT
8SCOLOUT

ENTRY
IJKRETX

SUBSTS SUB HA"'E·

SUBSYS SUI HA"E

SU8SYS SUI NAIU

~

&\
~
rt
CD
11

.r:-

~ ..
(II

~

f
Qq

CD
Iii
<b
::s
rt

IW2
~
11
ID

~
I

I',)

tI)

~
t-'
ID

H
c....

~
f~
\DC")
~

t"'
III
rt
~ -o-a
III

()q
ID

W

o
HI

W
'-'

r

EXEC LI ST WOT OlC6611

II-OST LIST WOT OlC67it

.. e, nAGS PRJ OVL
OlC700 'w CO 00
02C710 'w "0 01
OlCI50 '101 00 00
02C870 PW 00 00
02cno Pw 00 00
OlC880 PW 00 00
02CICO PW 00 00
02CIDO PW 00 00
02C8FO PW 00 00
02CCJOO PW 00 00
02CQ10 PW 00 00
02CCJ20 PW 00 00
02C9)0 PW 00 00
02C'''0 Pw 00 00
02C950 PW 00 00
02C960 PW 00 00
02C.70 Pw 00 00
02C980 PW 00 00
02C9CJO PW 00 00
02C cUO PW 00 00
02cno ' PW 00 00
02C9CO Pw 00 00
02C900 PW 00 00
02C9£0 Pw 00 00
02C9FO PW 00 00
02CAOO Pw 00 00
02CA30 PW 00 00
02C'''0 PW 00 02
02CUO PW 00 00
OlC8)0 PW 00 00
OlC8FO PW 00 00
02CCOO PW 00 00
02CCDO Pw ItO 00
02C020 PW 00 00
OlCD60 PW 00 00
02COFO PW 00 00

IJICTUCE ENDED.

FIRST OlC6611 LAST OlC6611

F IRH N/A LAST N/A

£celT ENTRY P T PARA"ETEIt
OSlCC" 000)08011 00001C6"
01l287C 000)08011 0000281C
0818FC 000308011 000818CJC
081028 000308011 00061ce8
081DFO 00030808 000810CJO
08lE 88 00030808 00081E58
081FIC 00030808 00081EBC
08lf80 00030808 00081F20
0820"8 00030808 00001FE 6
0820AC 00030808 0008204C
082110 00030808 00082080
082174 000308011 00062114
082108 000)0808 00082178
08ZZ3C 000)0808 000tl210C
0822AO 00030808 00082240
08230" 000)0808 0006ZZA4
082368 00030808 00082308
082)CC 00030808 0008236C
082430 00030808 00082300
0824CJ" 00030808 00082434
082"FII 00030808 00062"CJ8
08255C 00030808 00082loFC
0825CO 00030808 00082560
08262" 00030808 000825CIo
08268B 00030B08 00082628
0826EC 000308011 0008268C
08108C 00030808 0008102t
082 8E 0 00030B08 00082880
OBlFEIt 00030808 00081F 81t
081(60 00030808 00081tOO
08278" 000)0808 000827~1t

08lE ~ .. 000308011 00081DFIt
081654 000671tHit 00067Q8C
0811QC 000318AO 000"Cl88
082818 00030808 00082788
0818Q8 00030808 00081838

('

COUNT 0000 HI/LO 0001

COUNT 0036 HI/LO OO)CJ

(Eel' TI"E CSECT ENTRY
000lC700 SYCTRL SCN'UIN
0002C780 SYCUL SCN"A IN
0002C850 SYCTRL SCN"AIN
0002C870 S YC TR L SCN.IAIN
0002cno SYCTRL SCN"AIN
0002C880 SYCTRl SCN"AIN
0002C8CO SYCTRL SCN"AIN
0002C800 SYCUL. SCN ... IN
0002C8FO SYCTRL SCN"AI N
0002CCJOO SYCTRL SCN"AIN
0002CCJI0 SYCTRL StN"AIN
0002C920 SYCTRL SCN"AlN
0002C930 SYCTRL SCN"AIN
0002CCJ"0 SYCTRL SCNI'IAIN
0002C950 SYCTRL SCN"AIN
0002C960 SYCTRL SCNI'IAIN
0002CCJ70 SYCTRL SCN""AIN
0002CCJ80 SYCTRL SCN"AIN
0002C9CJO SYCTRL SCN"AIN
0002CCJAO SYCTRL SCN""AIN
0002CCJ80 SVCTRL SCN""AIN
0002C9CO SYCTRL StN"AIN
0002CCJOO SYCTRL SCNI'IAIN
0002CCJEO SYCTRL SCNI'IAIN
0002CCJFO SYCTRL 5 CN'''' I N
0002CAOO SYCTRL SCN"AIN
0002C'30 SYCTRL SCN'''' I N
0002tA"0 SYCTRL SCN"'IN
0002CA80 SYCTRL SCN"' IN
0002C830 SYCTRL SCN"AJN
0002C8FO SYCTRL SCN.1A!N
0002CCOO SYCTRL SCN"'!N
0002CCOO OELOAO+104
0002C020 SYCTRL+OCJ8
0002C060 SYCTRL SCN"AlN
0002COFO SYCTRL SCN"AlN

SUISYS
JlOOOI
"/000"
Y/Oon

Ll/0303
L"/030"

T/OOE)
C 100C3
F/00C6
P/0007
11/00£6
R/OOOCJ
H/00C8

HH/C8CtI
CC/C)C 3
WI/E6CCJ
W/E6E"
" 1I0loC9
RO/OCJ08
RA/09Cl
P0/07011
AI/CIFl
Ll/O)F I
LlI0)F2
L3/03F3
L"/03F"
"O/O"CIo
"""/OltO"
CI/OFl

8/00C2
N/0005
a/ooos

GP/C7D7

PG/D7C7
U/OOE"

('

SUI HA"E
'"ICLOII ..
"ONOVLYC
," IOUTPT
LOAOSCT
LI'IAp·
FINTUNE.
SYSCNTL
OYNSSU'
PAGE"S'
SENDlAtl
I XFR'TI 0
CHANGE
CHANGE
COPYSS
F EWHOI
FEWHOU
"ISSINC
SOCOSOLA
SOAS""A
SOPLl
APWTESTC
FHTiSTL
SNBItLl
S NBItLl
CON¥1L
TESULSE
""UCO""
"ONOYLY'C
SWITCH
ppnou'"
CHCK'TSS
GPS5

""UnSTfi
P"IOUT"

K
~
"'" ...

.. •
"'"
f
i
::I
rt

Chapter 4 Task Management

When all Dispatcher lists have been scanned and formatted, the
following line is generated:

IJKTRACE ENDED.

Control is retained in the current program path for the duration of
processing by this module; the Dispatcher is not entered, and no other
system work is performed.

4.2.4 IJKCESD--Initialize Csect/Entry Tables

IJKCESD is called once during system startup to scan the main
Intercomm load module and to scan LPSPA (if the Intercomm Link Pack
facility is used) in order to create the internal tables used to
provide the Csect and Entry names for the IJKTRACE report and various
Intercomm debugging messages, snap printouts, on-line displays, and the
Resource Management Thread Dump. IJKCESD may be resident or in the
startup overlay (conditionally called by the STUOVLY Csect). It is
automatically included if the ICOMLINK macro is used to generate the
Intercomm linkedit.

If an LPSPA linkedit is used (placing selected Intercomm load
modules in the Link Pack Area as described in Chapter 7), then a DD
statement for the load library containing the LPSPA load module must be
added to the Intercomm execution JCL after the / /PMISTOP DD DUMMY
statement (library not processed via the File Handler), as follows:

//LPSPALIB DD DISP=SHR,DSN=LPSPA-load-module-library

4.2.5 IJKWHOIT--Find Csect/Entry and Subsystem Names

IJKWHOIT is called by several Intercomm system modules to
determine the Csect name, and displacement within that Csect, of an
address passed as a parameter. It may also be called to find out the
name of the subsystem for which the SCT entry address is passed as a
parameter. Note that the SCT entry address is the third parameter
passed to all subsystems on transfer of control from Intercomm.
IJKWHOIT must be included in the Intercomm linkedit as resident
(automatic if the ICOMLINK macro is used to generate the Intercomm
linkedit) .

To find the name of (and displacement within) a Csect in which an
address in the Intercomm (or LPSPA, if there) or dynamically loaded
load module resides, call IJKWHOIT as follows:

CALL IJKWHOIT, (addr, {sct},wherecsect, {wherentry}, (wheresub}) ,
to} {O}{ 0 }

VL[,MF=(E, list)]

4-10

J

J

Chapter 4 Task Management

where:

call:

4.2.6

addr is a pointer to the field containing the address
whose Csect name is to be found (if only sct desired,
code 0 -- see below);
NOTE: the high-order byte of the address field must

be binary zero (X'OO') to indicate a 24-Arnode
address under XA. Clear only the high-order
bit (X'80') if a 3l-Arnode address is passed.

sct is a pointer to the SCT (SYCTTBL) entry for a
subsystem (if not desired/available, code 0);

wherecsect is a pointer to the area to which the caller wants
the Csect name moved (a print line, for example):
minimum area length must be 15 bytes for the Csect
name plus displacement, if any (if the Csect name
cannot be found, the value UNKNOWN ADDR is placed in
the area) (if only sct passed, code 0 -- see below);

wherentry is a pointer to the area to which the caller wants
the entry point name (if available within the Csect)
moved: m~n~mum area length mus t be 8 bytes (if not
desired, code 0);

wheresub is a pointer to the area to which the caller wants
the name of the subsystem (if sct pointer coded)
moved: minimum area length is 8 bytes. If a
subsys tern defined as resident or overlay is not
included in the linkedit, the value **NONE** is
placed in the area. (If sct is not coded, code 0).

To obtain only a subsystem name, use the following form of the

CALL IJKWHOIT,(O,{sct},O,O,wheresub),VL[,MF=(E,list)]
((r) }

where (r) is a register pointer to the SCT entry.

Return Codes: 0 - addressees) converted and required
information moved to user area(s);

4 - either address not found, or IJKCESD was not
in the Intercomm linkedit, or an error
encountered at startup no CESD table
entries were formatted.

IJKDELAY--Request Time Delay

This module may be called, instead of using the DISPATCH or
INTWAIT macros for a timed wait, to introduce a timed delay averaging
100 milliseconds into a program path. The Dispatcher is given control
to perform other processing and returns at the expiration of the delay
interval. No parameters are passed. Standard linkage conventions are
used. The current thread will resume processing, after expiration of
the interval, with the same execution priori ty . There is no REENTSBS
code; a SUBMODS must be added for the routine if it is not called by an
Assembler Language program.

4-11

Chapter 4 Task Management

The facility may be utilized to give a time-slicing effect within
a routine that would otherwise monopolize CPU time. It can also force
the buildup of parallel program paths for reentrant testing purposes in
an environment where actual parallel execution otherwise might not
ensue, or it may be invoked to await the passing of a temporary
condition that is to be resolved by another previously scheduled
program.

4.2.7 IJKTLOOP--Trace Program Loop

This module assists in detecting closed program loops. If it is
included in the Intercomm linkedit, it will be activated automatically
at system startup. IJKTLOOP functions as an Intercomm subtask. When
IJKTLOOP is called at startup, a subtask is ATTACHed, followed by a
CHAP (change priority request) in the Intercomm main task giving the
subtask the highest priority in the Intercomm region. The subtask:

• Initializes flags in the Intercomm Dispatcher

• Issues a STIMER to schedule an exit routine, then

• WAITs on an ECB to be posted by that exit routine.

After 30 seconds (real time), the exit routine receives control
and posts the ECB placing the subtask in the ready state. When the
subtask receives control, it checks flags in the Dispatcher to
determine whether various conditions have occurred and to take the
appropriate actions as follows:

• If closed loop detection has been deactivated via a call to
IJKTSTOP (see below), the closed loop subtask is DETACHed by
the Intercomm main task and closed loop processing is no
longer operative.

• If the Intercomm main task is in the WAIT state, then the
STIMER is reissued to schedule the exit routine and the
subtask WAITs again without taking further action.

• If the Dispatcher has been entered, indicating that a task
has been scheduled in the intervening 30 seconds (that is,
the task that was executing at the start of the 30-second
interval has returned control to the Dispatcher and thus was
not in a long duration closed loop), then the
Dispatcher-entered flag is cleared (flag will be reset by the
Intercomm Dispatcher in the main task). The exit routine is
then rescheduled and a WAIT is performed as before.

4-12

J

J

Chapter 4 Task Management

• If none of the above conditions are true, the subtask returns
to the main task, which issues the message numbered MP020I

. and abends with a user code of 909, accompanied by a snap
with ID-121, an IJKTRACE printout and a thread dump. The
abend 909 will be recovered by STAEEXIT (if included in the
Intercomm 1inkedit), which cancels the looping thread, issues
message MP003I, and then transfers control to the retry
routine, STAERTRY, if it is included in the Intercomm
1inkedit. The retry routine will call IJKTLOOP to reactivate
the closed loop detector and then restore the Intercomm
environment (via transfer of control to SPIESNAP at entry
ABNDCANC).

Closed loop detection may be deactivated at any time via a call
to IJKTSTOP, an entry in IJKTLOOP. No parameters are required;
standard linkage conventions are followed. This may be useful if, for
example, a program thread requires control, or calls an Intercomm
routine (for example, the File Handler) that requires control, for a
longer than average duration before returning to the Dispatcher. Once
the closed loop detector, IJKTLOOP, is deactivated via IJKTSTOP, it
must be reactivated to reinstate closed loop detection. Intercomm will
not reinstate it automatically unless a 909 abend occurs.

Closed loop detection is reactivated via a call to IJKTLOOP. No
parameters are required; standard linkage conventions are followed. If
IJKTLOOP is called and closed loop detection is already active, a
return code of X'04' is returned in register 15 to the caller without
any further action taken.

Deac ti va tion and reactivation
dynamically controlled via the STOP
System Contol Commands).

of IJKTLOOP processing may be
and STRT system commands (see

To summarize, IJKTLOOP processing requires inclusion in the
Intercomm linkedit of IJKTLOOP, STAEEXIT, STAERTRY, SPIEEXIT and
SPIESNAP, in addition to IJKTRACE, IJKCESD, IJKWHOIT, IJKPRINT and
TDUMP (and the DD statements for SYSPRINT, SMLOG, SNAPDD and optionally
LPSPALIB). When generating the Intercomm linkedit via the ICOMLINK
macro, code LOOPTIM=YES. Also see Chapter 8 for further details on
snap processing and the description of snap 121 in Messages and Codes.

NOTE: The hard-coded interval for the scheduling of the exit is
30 seconds real time, not task time. This means that the
time is decremented continuously whether Intercomm has
control of the CPU or not. This should be taken into
account if Intercomm runs on the system with other higher
priority jobs.

4-13

J

J

Chapter 5

RESOURCE MANAGEMENT

5.1 INTRODUCTION

Intercornm Resource Management has three major options:

1. Resource Auditing and Purging

2. User-defined pools of core storage

3. Accumulation of core-use statistics

Allor any combination of these three options can be selected by
the user, according to installation requirements. If only the pools
option (recommended) is selected, Resource Management still provides
the system with an extremely efficient version of storage management.
Macros and their parameters referenced in this section are described in
Basic System Macros.

5.2 RESOURCE AUDITING AND PURGING

Resource Audi ting re fers to the maintenance of a chain of
resource control blocks (RCBs) defining user-accessed resources for
every active thread. There are five audited resource types:

1. CORE--acquisition of storage by invoking the STORAGE macro

2. FILE--use of a data set indicated by a call to SELECT

3. DDQ- -access to a dynamic data queue indicated by a call to
QBUILD or QOPEN

4. DYNL--loading of a dynamically loaded subroutine via invoking
the MODCNTRL macro by the user, COBREENT, PMIPLl or LOADSCT

5. NQ--activating an enqueue upon a resource by issuing the
INTENQ macro

Each time a thread acquires a resource, a control block is
created containing information about the resource and is attached to a
chain of similar blocks. When the thread releases control of the
resource, the corresponding control block is detached from the chain.
The on-line TDUMP utility (see Section 5.9) is provided to print out
the control block chains. This output shows which thread was in
control, what resources each thread owned, which module acquired each
resource, and the order of acquisition.

5-1

Chapter 5 Resource Management

Resource Purging means that when a thread completes, normally or
abnormally, its chain of resource control blocks is checked; in the
case of a non-empty chain, the used control blocks are released after
freeing blocks of storage, releasing files, etc.

All levels of Resource Management will purge Dispatcher queue
entries for failed message processing threads. With Resource Auditing,
storage, files, DDQs, loaded subroutines and enqueued resources are
also purged. Additionally, a "must complete" disable/enable facility
ensures that threads are not purged during critical operations; that
is, if a subsystem times out while an I/O event is outstanding, a timed
wait for the I/O event to complete is effected before attempting the
purge.

5.3 USER-DEFINED STORAGE POOLS

User-defined storage pools are generated by the Intercomm
ICOMPOOL macro and may be dynamically loaded at startup or linkedited
into the Intercomm load module. A pool is a set of storage blocks of a
given size; there is no limit to the number of blocks in a pool. The
ICOMPOOL macro also generates an index that permits the storage
management routine to quickly determine whether or not a storage
request can be filled out of the pools. Freeing an area of pool
storage is usually just as fast. Furthermore, the code is loop-free,
so that these time values are constant, and system degradation due to
storage fragmentation does not occur. The increase in efficiency
provided by judiciously tailored Intercomm pools more than offsets any
overhead increment from core-use statistics gathering. Creation of the
user-defined Intercomm pools (via ICOMPOOL macro) is described later in
this chapter. Acquiring and releasing core under Intercomm is
accomplished via the STORAGE and STORFREE macros described in Basic
System Macros.

5.4 CORE-USE STATISTICS

Three sets of core-use statistics can be accumulated via the
RMTRACE routine. Statistics are computed and printed at intervals
defined in SPALIST macro parameters.

1. Global statistics--the number of STORAGE and STORFREE macros
issued, the average storage request length, the number of
requests filled from the pools, etc.

2. Breakdown of STORAGE requests into detailed user-defined core
block size ranges. For each range, the number of requests
falling into that range is given, plus "concurrency"
statistics: at any given moment, the concurrency of a range
is the number of blocks that have been obtained, but not
freed. In addition to the instantaneous concurrency, high,
low and average concurrencies are computed. These figures
are particularly useful in working out pool sizes; the most

5-2

J

J

Chapter 5 Resource Management

value from a pool is obtained if the block size falls in a
range with a large number of requests, and the average
concurrency of the range indicates how many blocks are needed
in the pool. However, if the size is small, the high
concurrency may be used to get maximum efficiency, at a
relatively low cost in storage.

3. Pool-use detail statistics measure the effects of different
choices of pools, providing such information as the number of
requests that could not be filled from the user-defined pool
(because all the blocks were in use), the average number of
free blocks, etc.

5.5 STORAGE CUSHION

Every version of Resource Management includes the Storage Cushion
feature. At startup, a block of storage is obtained and held until a
request arrives that cannot be satisfied out of the Intercomm pools or
dynamic storage (OS subpool area). The storage cushion is then
released and no new threads started until the cushion is available
again. Thus, a temporary shortage of storage is not likely to bring
the system down. The user specifies the size of the cushion in the
SPALIST macro CUSHION parameter; a zero size is acceptable. A WTO
informs the user whenever release and acquisition of the cushion
occurs. (Front End input operations are also temporarily halted if the
module SSPOLL is included--see Chapter 7.)

5.6 RESOURCE MANAGEMENT MODULES AND GLOBALS

Seven modules automatically included in the Intercomm linkedit
are used to support Resource Management. Their member names are
MANAGER (Csects: RSMGMNT, RMPC and RMFNQ) , RMPURGE, RMTRACE, TDUMP,
POOLDUMP, RMNADISA and the core pools definition module.

• MANAGER is the main Resource Management module. It contains
entry points for STORAGE and STORFREE macro processing
(STORAGEM and STORFRED), routines that switch control of
blocks of storage between threads (RMPASS and RMCATCH), and
tho s e tha t handle resource contro 1 blocks for files
(RMFON/OFF), enqueued resources (RMNQON/OFF), etc.

• RMPURGE is the Resource Purging routine. It is called by the
Subsystem Controller when a nonzero thread completes to free
any resources not previously freed by the thread.

• RMTRACE computes and prints out core-use statistics.
Figure 5-2 for explanation and sample output.)

• TDUMP prints out RCB chains. (See Figure 5-3.)

5-3

(See

Chapter 5 Resource Management

• POOLDUMP prints out the current status of the user pools.
(See Figure 5-4.)

• RMNADISA is the Intercomm disable/enable routine, and is also
used for resource purging.

• NEWPOOLS (or user-defined name) contains ICOMPOOL macros
defining storage pools.

Four independent options apply
defined by binary set symbols in
controlling assembly of the MANAGER
follows:

to Resource Management, and are
INTGLOBE and set in SETGLOBE,
module. These options are as

5.6.1

1. &RM

If set to 1, Resource Audit and Purge are obtained; it is
necessary to include RMPURGE amd RMNADISA if this option is
chosen. Also, TDUMP should be included.

2. &RMPOOLS

If set to 1 (required), pool support is obtained; an ICOMPOOL
module must be defined. POOLDUMP may be included.

3. &RMSTATS

If set to 1, global core-use statistics are provided.
RMTRACE must be included.

4. &RMACCT

If set to 1, detail core block size and pool-use statistics
are provided. RMTRACE must be included.

Obtaining a Save Area with Resource Management

The STORAGE macro has Resource Management parameters. Instead of
a LINKAGE macro, STORAGE can be issued without supplying a save area or
a parameter list by the coding of RENT=NO. (See Figure 5-1). The
macro will generate code to build the list in MANAGER, and MANAGER will
save registers in its own in-line save area. In fact, with Intercomm,
the in-line save area is first used, shifting only to the user's save
area when a storage request fails and a retry is necessary. Thus,
coding RENT=NO means only one attempt is made to obtain user storage;
however, the retry feature is not as likely to be invoked with the
Storage Cushion facility in use, and less likely to succeed when it is
invoked because it competes for storage with the routine that tries to
reacquire the cushion. If a STORAGE request fails, an error routine
may be given control as specified by the ERRADDR parameter. VS users
can optionally specify page boundary alignment in the STORAGE macro.

5-4

, ,.;,

~

Chapter 5 Resource Management

The code in Figure 5-1 illustrates a save area obtained via a
STORAGE macro.

*Register 15 is used by the STORAGE macro, as are 14, 0 and 1. Thus,
*the user must establish a base register other than 15.

SUB

ENTRY
USING
STM
LR

SUB
SUB,Rz
14,12,12(13)
Rz,R15

*Next, establish addressability to the SPA Csect.

L RX,=V(SPA)

*Issue STORAGE'macro to obtain storage for save area and set forward
*chain in current save area.

STORAGE LEN=len,ADDR=8(13),SPA=(Rx),RENT=NO

*Test for valid return (ensure storage was obtained)

LTR 15,15
BNZ error-routine

*Restore registers used by STORAGE (optional)

LM 14,1,12(13)

*Initia1ize new save area

NOTE:

L
ST
LR

Ry, 8 (13)
13,4(Ry)
13,Ry

Get save area address
Back chain
Point to new save area

Rx, Ry and Rz refer to three general registers (2 to 12).
They have the following uses:

• Rx points to the System Parameter Area (SPA).

• Ry temporarily holds the address of the storage obtained.

• Rz is the base register.

Figure 5-1. Obtaining a Save Area via the STORAGE Macro

5-5

Chapter 5 Resource Management

The RTNLINK macro, SPA= (r) parameter, is used by Resource
Management. RTNLINK generates a call to the PMIRTLR Csect, which in
turn calls STORFRED to release the save area. If PMIRTLR finds its
STORFRED VCON unresolved, it expects the SPA address in register 2. If
a register has been specified as the SPALIST base in the preceding
LINKAGE macro, RTNLINK will generate a LR of the base into register 2.
In cases where a LINKAGE macro was not issued or the SPALIST base is no
longer valid upon a return, the SPA address must be loaded into a
register (r) and the SPA=(r) parameter must be coded on the RTNLINK
macro.

5.7 INSTALLING RESOURCE MANAGEMENT WITH CORE-USE MONITORING AND POOLS

5.7.1 SETGLOBE Settin~s

The following globa1s must be defined in SETGLOBE:

&RMPOOLS
&RMSTATS
&RMACCT

SETB
SETB
SETB

1
1
1

use Intercomm pools (required)
generate global core-use statistics
generate detail usage statistics

and MANAGER must be reassembled.

An additional option implemented via the conditional assembly of
MANAGER with the global &RMINTEG in SETGLOBE SETBd to 1, causes
validation of the integrity of the storage pools on each entry to
MANAGER. If the storage pool area is not intact, an error message
(RM022A) is generated. This facility assists in detecting problems in
destruction of storage, often difficult to find due to their random
nature. This facility is controlled by the STRT/STOP system commands,
and is set off at startup.

5.7.2

NOTE: This facility should be used in the test environment
only, due to CPU overhead. See also the description of
the TRAP debugging module in Messages and Codes.

SPALIST Parameters

Associated parameters in the SPALIST macro are described below.
Other SPALIST parameters, not used at this level of Resource
Management, are discussed in conjunction with Resource Auditing.

Choose appropriate values for these parameters and, if necessary,
reassemble INTSPA (SPA and SPAEXT Csects).

5-6

Chapter 5 Resource Management

CUSHION
is the size in bytes of a block of storage (specify in 2K or 4K
increments) that will be acquired by a GETMAIN at startup and
released when a request for main storage cannot be satisfied.
When the cushion is released, the SPAHOLD switch is set so that
no new threads are started, and a routine issuing a GETMAIN is
dispatched on a time interval to get the cushion back. If
unsuccessful, it leaves SPAHOLD set and redispatches itself. The
default is 2048.

CUSHTM
is the interval in seconds between tries at getting the cushion
back. The default is 1.

COREACC
is coded YES if computation of core block size statistics, broken
down by ranges with pool "concurrencies", and pool-use detail
statistics are desired. (See Figure 5-2.) The default is YES.

RMSTIM
is the time interval, in seconds, between successive invocations
of the detailed pool usage statistics program (RMTRACE). The
maximum value is 27,962 (7 hours, 46 minutes and 2 seconds). The
default is 5 seconds.

TRACETM

5.7.3

is the interval, in seconds, between printouts of global (and
detailed) core-use statistics by RMTRACE. The default is 120.

Definin~ the Intercomm pools (ICOMPOOL)

The ICOMPOOL macro is coded by the user to define each user pool
area and has the following operands:

LEN

NUMBER

LOWLIM

is the size of a pool block up to a maximum of 256K less 8 bytes.

is the number of blocks of that size.

optionally specifies the minimum request size to be filled out of
this pool.

For example, to define a pool of 20 32-byte blocks, code:

ICOMPOOL LEN=32,NUMBER=20

5-7

Chapter 5 Resource Management

To define a second pool of 10 256-byte blocks, and to ensure that
only requests for greater than 200 bytes (but less than or equal to
256) will be allocated from the pool, code:

ICOMPOOL LEN=256,NUMBER=10,LOWLIM=200

The number of bytes allocated from a pool block will always be
greater than the block size of the preceding pool. LOWLIM is coded
only when the difference in block sizes between successive pools is
large and user intent is to reduce wastage. If LOWLIM were not coded
in the above example, an infrequent 48 -byte request could tie up an
entire 256-byte block.

ICOMPOOL macros must be arranged by increasing block size; that
is, the values of the LEN parameters have to be in ascending order. A
maximum of 255 ICOMPOOL macros may be coded.

The following JCL can be used to create the pools member:

II EXEC LIBE,Q=USR
.1 ADD NAME=member-name
.1 NUMBER NEWI=lOOO,INCR=lOOO
ICOMINX CSECT

ICOMPOOL macro 1

ICOMPOOL macro n
END

Assemble the new member. One set of pools, member name NEW POOLS ,
is included on the release tape. These pools are roughly sized to
handle the storage requirements of the Intercomm beta test, and may be
used as a starter set before core-use statistics have been collected.

The member may be linkedited with the Intercomm load module, or
it may be chosen dynamically at startup if the dynamic core pool
facility is in use. (If the latter, the pools may not be linkedited
wi th the load module.) If the pool load module is to be selected
dynamically, the member name must be ICPOOLxx where xx is a two-digit
number 00-99. When dynamic pools are in use, a number of different
sets of pool load modules can be created and the proper one chosen for
loading at startup, as described below.

5-8

J

Chapter 5 Resource Management

5.7.3.1 Dynamically Loaded Core Pools

At startup time, the user may dynamically choose a set of storage
pools for the system to use. That is, instead of choosing a set of
storage pools at linkedit time, a set of pools may be chosen at
execution time. The set of pools chosen is brought into core via a
LOAD macro and, for every Intercomm execution, a new set or the same
set of pools may be chosen. This option may prove advantageous if it
is desired to experiment with different sets of core pools to find the
most efficient, or if it is known that at certain times variations in
system activity make a different set of pools more efficient than they
would be normally. Also, in some operating systems, the size of load
modules is restricted, making the use of Intercomm administered storage
pools difficult. With dynamic core pools, because they are a separate
load module, the need for relinks of the system for every tuning of the
pools, and/or the problem of size restriction, can be alleviated.

To use dynamic core pools, the following must be done:

• Include the module POOLSTRT in the Intercomm linkedit

• Exclude NEWPOOLS or whatever member name currently contains
the ICOMPOOL macros to define the user pool areas. (The
ICOMLINK macro will generate the proper INCLUDE statements if
DYNPOOL=YES is coded. If DYNPOOL=NO, an INCLUDE for NEWPOOLS
is generated but not for POOLSTRT.)

• Assemble and link the set(s) of pools (created via ICOMPOOL
macros) onto a library which will be part of the / /STEPLIB
concatenation for Intercomm execution. The member names for
the poo 1 load modules must be ICPOOLxx where xx is a
two-digit decimal number 00-99.

• If the module POOLSTRT is present in the Intercomm load
module, it will be called at startup time and it takes the
following actions:

1. Checks if the pools were linkedited in with the system.
If so, no further action is taken and the linkedited
pools will be the ones used in the run.

2. If not 1), a WTOR is issued requesting a reply in the
form of a two-digit number which is the suffix of the
name of the desired pool load module (the xx in
ICPOOLxx) .

3. A LOAD is attempted for ICPOOLxx.
is loaded and execution of startup
found, or if the reply is invalid
WTOR is issued, giving the operator

5-9

If found, the module
is continued. If not
(not numeric), another
the choice of:

Chapter 5 Resource Management

a) retrying
operator
suffix)

(the first WTOR is reissued and the
may reply with a different two-digit

b) continuing without pools (all storage for the run
will be GETMAINed)

c) cancelling the run - a return to MVS is effected
with a step return code of 16. No dump is taken.

• In the Intercomm linkedit, do not ORDER the pool Csects
(ICOMINX, ICOMCHN, ICOMPOOL, POOLEND, POOLACCT, COREACCT) if
they are dynamically loaded.

If the pools are subsequently to be linked into the Intercomm
load module, add an INCLUDE for the desired pools module (ICPOOLxx) to
the 1 inkedi t control statements before the sys te.m 1 inkedit is
executed. The INCLUDE for POOLSTRT does not have to be removed.

5.7.4 Specifying Core Block Detail Statistics

Core block detail statistics are specified by coding the COREACCT
macro before the ICOMINX CSECT statement in the pools module, as
described in Basic System Macros.

Initially, core block usage is broken down by ranges: the
"number of requests" column of the printout (see Figure 5-2) is used to
decide the pool block sizes; the "average concurrency" is used to
decide the number of blocks per pool. The ranges are defined via the
COREACCT macro.

5.7.5

In the NEWPOOLS module as released, the macro is written:

COREACCT ,FROM=64,TO=4096,BY=64

Linkedit

The following modules must be included in the Intercomm Linkedit:

• MANAG ER - - storage management routine (reassemble after
SETGLOBE updated)

• RMTRACE--statistics-gathering routine

• NEWPOOLS or a user- defined ICOMPOOLs member- -user pools
(unless dynamically loaded at startup)

• INTSPA--reassembled SPA and SPA Extension

• POOLSTRT--if pools are to be dynamically loaded

5-10

J

Chapter 5 Resource Management

5.7.6 Execution

In the execution step, include the following DD statement for the
data set that will receive the statistics:

IISMLOG DD SYSOUT=A,
II DCB=(DSORG=PS,LRECL=120,BLKSIZE=120,RECFM=FBA)

For efficiency, BLKSIZE may be increased to a multiple of 120.

To eliminate core-use monitoring, change SETGLOBE so that &RMACCT
and &RMSTATS are 0, reassemble MANAGER, and take RMTRACE out of the
linkedit.

To keep the global statistics, reassemble the SPA with COREACC=NO
andlor change SETGLOBE so that &RMACCT is 0 and reassemble MANAGER.

5.7.7 Sample Output

Figure 5-2 provides a sample output of core-use statistics. The
following should be noted:

• CORE USE STATISTICS

Except for TOTAL POOL STORAGE, POOL STORAGE AVAILABLE and
BYTES OUTSTANDING, the figures are cumulative global
statistics, accounting for all Storage Management activity
from the beginning of the run.

• TOTAL ICOMPOOL WASTAGE

Wastage is the difference between the length of the pool
block and the length of the requested area allocated from the
block; available blocks are not wastage. PERCENT WASTAGE is
important; a low figure is desirable. Wastage is controlled
by the LOWLIM parameter in the ICOMPOOL macro. Wastage is
broken down by pool in the Pool Use Detail Statistics.

• ICOMPOOL FAILURES

A count of the number of times a request failed from one of
the pools because all the blocks in the pool were in use. A
high figure means that at least one of the pools should have
more blocks. Failures are broken down by pool in the Pool
Use Detail Statistics.

5-11

Chapter 5

•

Resource Management

QUICK FREES

This applies only to areas allocated from the pools: "quick"
means no search was made to find the block containing the
area to be freed; that is, the address passed pointed to the
beginning of a pool block, and 8 is subtracted to get the
pool block header. Most of Resource Management's overhead is
in STORFRED's search loops, so a higher quick frees value is
better.

• AVERAGE SEARCH LENGTH

For Resource Auditing, this gives the average number of RCBs
that STORFRED searched to find the one corresponding to the
area being freed, when it could not do a quick free. Without
Resource Auditing, this is the average number of pool blocks
STORFRED checked to find the one containing the area being
freed.

• RCB TABLE RELOCATIONS

When the RCB table is full, and an attempt is made to
allocate an additional RCB, space is obtained to contain the
current RCB table plus the number of RCBs to add as specified
by the SPALIST macro parameter RCBSADD. (See Section 5.8.2.)
This statistic shows the number of times this occurred. More
than one relocation is undesirable.

• POOL USE DETAIL STATISTICS--AVG FREE BLOCKS

Th i sis the ave rage number of blocks availab le for
allocation. If this figure is low, relative to the number of
blocks in the pool, then failures are usually high, and vice
versa.

NOTE: He adi ngs deno t i ng DOUB LEWORDS indicate that the
calculation is in doublewords: multiply by eight to get
the corresponding value in bytes. All storage requests
are rounded up to the next highest doubleword.

If a counter overflows, the print field will contain 9s,
and related fields providing average or percent values
will be zero.

5-12

J

(' r r
CORE USE STATISTICS TIM E 09.48.00 88.Z'>Z

STORAGFS I But: D bU18
DOUBLE wORDS REQUESTED 176813" AVERAGE REQUEST LENGTH Io~

9 DOUBLf WORDS GRANTED 27681310 HIGH THIS PERIOD 110273 HIGH THIS RU~ 1427]
TOTAL POOL STORAGE 1 .. 71l1l0 P(10L STORAGE AVAILABLE 10129b PERCENT AVAILABLE 6~ • ..,
REQUESTS FILLED F~ ICO~POOL "9~b" PERCENTAGE FM ICOl"POOL 80 rt
DOUBLE wOS GRA~TED EM I CQMPOOL 217b801 PERCE NTAGE FM ICOI'IPOOL 79 AVERAGE LENGTH FI'I ICOMPOOL It

Pot "r:I DOUBLE WDS WASTED IN ICQMPOOL bb33q AVERAGE DOUBLE WDS WASTED Z PERCENT WASTAGE It
ICOI'IPOOL FAILURES 131~q PERCENT FAILURES Zl VI (Jq

s::
11 STORFREES ISSUED b1702 ~

POOL BLOCKS FREED "9')1Z QUICK FREES .. 9 .. 0Z PERCENTAGE QUICK •• VI DOUBLE WORDS FREED 27~7678 DOUBLE WORDS OUTSTANDING 10.25b I
r-.) REQUESTS NOT FILLED 0 PERCENT NOT FILLED 0

AVERAGE SEARCH LENGTH 3

to:!
RCe TABLE RELOCATIONS 0

><
~ DISTRIBUTION OF CORE BLOCK SIZES
'0 ,..., RANGE NUI'IBER OF REQUESTS CONCURRENCY-- NOW HIGH LOW AVERAGE
~ 1- 32 93 72 73 8 b"
0 33- 610 608 .. 10 1 0;
H'I 65- 128 b908 57 88 I, b2
n lZ9- 192 1596 2 10 1 3
0 193- 256 1773 19 26 0 ZO 11

VI~ Z'H- 320 5910 3 13 1 3
I~ 321- 38 .. 333 1 6 0 2

""'1/) 385- 1048 .. 27 1 .. 0 2 w~ 10109- H2 210 2 4 1 2
til 513- 576 995 2 5 1 3
rt 577- bioO 2105 1 3 1 2 III
rt blol- 10" bO 0 2 0 1 705- 7b8 H 0 7 0 1 I/)

rt 769- 832 2 0 1 0 0 833- 89b 10 0 3 0 0 (')
I/) 8 en- 900 103 0 2 0 0

9bl- 10 ZIt 113 10 12 0 4
" ~ 1025- 1088 5210 0 b 0 1
III 1089- 1152 5 0 2 0 0 fill (Jq

1153- 1210 110 0 1 0 1 It ~ .. 1217- 1280 710 0 2 0 1 0 ,...,
1281- BioI, 1"61 11 13 0 11 ~ 0 1345- 1"08 11 0 2 0 0 (') H'I H09- 1'07 2 Z 0 1 0 0 It

w 1473- 1536 5 0 2 0 0

f
....,

1537- 1600 3 0 2 0 0
1bOl- 16b" 2 0 1 0 0
1665- 1728 .. 0 2 0 0 OIl
1729- 119Z 9 0 2 0 0 ~

1793- 1856 33 0 3 0 0 I
1857- 1920 9 1 .. 1 Z =' rt 1q21- 198 .. 1Z01 3 '5 0 1
lIIJ 8 5- Z048 172 0 12 0 7
2049- 2llZ 18 0 1 0 0

(")
::T'
III
"d
rt

"!j CO t1

~ \J1

t1
CO

llD- 2176 1 0 1 0 0
\J1 2177- 22"0 0 0 0 0 0
I

I'.) 22"1- 2304 0 0 0 0 0
llOS- 2368 0 0 0 0 0
ll69- 2"32 2 0 1 0 0

P:I
14H- 2't96 197 1 2 0 2

>< 2"''1- 2')60 2 0 1 0 1

~ 2S61- 262" " 0 2 0 0
26ZS- 2688 0 0 0 0 0

~ 2689- 27')2 "" 0 1 0 1
CO

27'53- 2816 0 0 0 0 0
0 2817- 2880 0 0 0 0 0
HI U8l- 29"" 0 0 0 0 0
(") 29"S- 3008 0 0 0 0 0
0 3009- 30ll 0 0 0 0 0 t1
CO 3073- 3136 0 0 0 0 0

\J1 I
3131- 3200 1 0 1 0 0 I d

~I/I 1201- 3Z6" 2 0 1 0 1
~CO 3Z6S- 3328 2 0 1 0 1

til Hl9- 33'12 1 1 1 0 1
rt Hen-)'t')6 0 0 0 0 0 III
rt 1"'H-)')20 0 0 0 0 0 HZ1- 3')8 " 0 0 0 0 0 1/1
rt H8')- 36"8 0 0 0 0 0

36"9- 3712 0 0 0 0 0 0
1/1 3713- 3776 0 0 0 0 0

3777- 38"0 0 0 0 0 0
38"1- 390" 0 0 0 0 0

,-... HO,)- 3'168 0 0 0 0 0 ::a 0,:,
III 3969- 4032 0 0 0 0 0 CO

1/1 (Jq "033- "096 9 0 1 0 1 0 CO
"OQl-262136 1 ~ 1 1 1 0

I'.) t1
0

0 CO

HI :x
w III

::l - III
(Jq

CO
S
CO
::l
rt

~ \r ~

"Ij ,...,
~
to!
CD

VI

'"

trI
X
II>
8

"0
CD

o
H)

(J
o
to!
CD

VI I

Ie::
...... (/l
VI CD

en
rt
II>
rt ,...,
(/l

rt ,...,
()
(/l

-"11
II>

()q
(!)

Lo.l

o
HI

Lo.l,

r

BLOCK SIZE
3Z
b4
9b

128
1&0
192
224
l56
2118
)04
320
B6
l52
3114
448
'HZ
576
640
701t
7"8
1)2
'9b
960

1056
1216
1280
1304
1)1t4
147Z
1792
198 It
201t1l
27'H
3032
3264
40ll
4CQ6

BLOCKS
50
16
.. 0
.. 0

8
b

18
ll2

2
Z

1&
1&

4
10

b
4
4
4
2
2
2
2
1
5
2
2

14
)

2
2
3
2
1
1
1
1
1

REOUESTS FILLED
9) 59

b08 608
Zqz 1 Z&OO
3987 388&
1 .. 9" }At9"
1102 1102
1686 1683

87 87
20211 1950

425&0 30546
6 &

314 314
& &

13 13
427 427

24 24
995 980
245 245

&0 bO
31 25

Z 2
70 &9
43 41

620 4b2
3b 36
H 74

1452 }At 52
9 9

13 13
23 17

1242 1059
172 45
2&8 158

0 0
3 3
0 0
Q Q

('

POOL USE DETAIL STATISTICS

FA ILED PCNT FAILED AVG FREE BLOCKS
JIt J7 2

0 0 lZ
321 11 12
101 3 9

0 0 5
0 0 &
3 1 &
0 0 105

78 4 2
1201 .. 29 1

0 0 1&
0 0 15
0 0 4
0 0 10
0 0 5
0 0 2

15 2 2
0 0 3
0 0 2
b 20 Z
0 0 1
1 2 2
2 5 2

158 2& 4
0 0 Z
0 0 2
0 0 4
0 0 3
0 0 2
6 27 2

183 15 1
127 74 1
llO 42 1

0 0 1
0 0 1
0 0 1
0 0 1

DBLWDS ALLOCATED
229

3b57
26&8l
56920
28600
25ltH
46&ge

2733
&81&1

1130203
235

1318&
2& 1
bOl

21135
1425

&&705
19013

S047
2152

200
7525
4856

59758
5073

ll1Q9
236&H

1497
2252
H99

258532
ll451
It 11587

0
Ull

0
4"011

('

AVG OBLWDS WASTAGf
0
1
1
1
0
0
0
0
1
0
0
0
0
1

• ..
]

I
J
1 ..
I
1
I

11
0
0
1

10
11

]

1 ,.
0
4
0
0

9
~
rt
CD
11

VI

~
(/l

o
~
n
CD

~
()q

CD
EI
CD
::s
rt

Chapter 5 Resource Management

5.8 INSTALLING RESOURCE MANAGEMENT WITH RESOURCE AUDIT AND PURGE

Concurrency figures (see Figure 5-2) may be more accurate when
using Resource Auditing. The difference is the way in which partial
STORFREEs are recorded. For example, of 256 bytes, 16 bytes are freed; .
without Resource Auditing, there is no indication that the area being
freed is part of a larger one. Thus, if the concurrency for the
16 -byte range is decremented, then the concurrency for 16 is one too
low and the concurrency for 256 is one too high. A subsequent STORFREE
for the remaining area will make the concurrency for 240 inaccurate as
well. With Resource Auditing, the RCB is available to indicate that
the area is part of a 256-byte block; the concurrency is decremented
for the 256-byte range and a flag set in the RCB. This causes
accounting for STORFREEs on this block to be skipped so the eventual
freeing of the other 240 bytes will not affect the concurrencies. A
few partial frees will not make a significant difference in the average
concurrencies, the most important figures. The number of partial frees
in the ranges corresponding to the pools can be estimated by looking at
the percentage of "quick frees" in the global statistics; a partial
free will cause at least one search. Other advantages and restrictions
are described below.

5.8.1 SETGLOBE Settings

The following global must be set in SETGLOBE for Resource Audit
and Purge:

&RM SETB 1

5.8.2 SPALIST Parameters

In addition to the previously discussed parameters in Section
5.7, there are two SPALIST macro parameters applicable to Resource
Audit and Purge.

• RCBSINT

The initial number of RCBs. Although the RCBs are chained
together, they occupy a single area of storage called the RCB
table. This permits an efficient sequential scan of all the
RCBs, minimizes storage fragmentation, and reduces the risk
of useless page faults under MVS. Space for the RCB table is
obtained the first time STORAGEM is called; this parameter
indicates how many entries should be created in the table.
The default is 75.

5-16

J

Chapter 5 Resource Management

NOTE:

• RCBSADD

The RCB table also contains a pointer to the free-RCB
chain and the 256-entry thread table, making its
total length:

4 + (8*256) + 20*(number of RCBs)

The number of fresh RCBs to add when space is depleted in the
RCB table. When the available RCBs are exhausted, space is
obtained for a new table sufficient to hold this many new
RCBs, plus all the RCBs in the old table. The contents of
the old table are moved and the storage it occupied is
freed. The default is 5.

The area for the expanded RCB table is acquired via a GETMAIN for
storage from the subpool area. If space for a new RCB table cannot be
obtained, Inte~comm will abend with a code of 1111. This can be
avoided by making RCBSINT large enough so relocation of the RCB table
is not necessary. One of the global statistics is the number of
relocations (see Figure 5-2); use the figure from the last statistics
printout to compute the right size for RCBSINT.

5.8.3 Macro Specifications

Installation of Resource Auditing mandates the following two
rules for Assembler Language programs:

1. To pair STORAGE and STORFREE macros, and LINKAGE and RTNLINK
macros. If a block of storage is obtained with a STORAGE and
freed with a FREEMAIN, an abend will occur with an AOA if
storage was obtained from OS dynamic storage, or a 30A if
obtained from the pools. If a block is obtained with a
GETMAIN and freed with a STORFREE, Resource Management will
issue a RM013A message and program check. LINKAGE and
RTNLINK both use Resource Management to get and free work
areas, so the same remarks apply to a LINKAGE followed by a
FREEMAIN or a GETMAIN followed by a RTNLINK. Of course, a
LINKAGE can be followed by a STORFREE, etc. In other words
do not use GETMAIN and FREEMAIN macros.

An AOA may occur in STORFRED. This almost always means that
a thread has issued a FREEMAIN for a block of storage
obtained with a STORAGE or LINKAGE. The thread completes and
there is still an RCB pointing to the freed area; RMPURGE
calls STORFRED to free it and an AOA results. The address of
the block is in register 9. RMPURGE will issue a thread
dump: look for an RCB belonging to the thread being purged,
that is, SMLOG's owner, whose resource address matches
register 9. The ACQUIRED BY field for that RCB will locate
the module that obtained the storage. (See Figure 5-3.)

5-17

Chapter 5 Resource Management

2. Care must be taken not to leave blocks of storage unfreed.
In one sense, this rule is relaxed, since acquired storage
will be freed automatically upon return to the Subsystem
Controller. On the other hand, an area cannot be left to be
picked up, used, and freed by another thread- -passing areas
be tween threads mus t be done explicitly. This forces
shielding of the area from the purge routine by attaching its
RCB to Intercomm' s chain, then moving the RCB to the
receiving thread's chain (performed automatically for message
queuing) so it will be freed if the receiving thread
completed abnormally.

There are two ways to handle this: the RCB can be put on
Intercomm's chain at the time the area is obtained, by coding
SYS=YES in the STORAGE macro; however, if there is a chance
of a program check or time-out before the receiving thread is
informed where the area is, the area should be obtained in
the normal way, and later its RCB should be switched onto the
system chain. The PASS macro is used to do the switching:

PASS LEN=length,ADDR=address and optionally ,SPAEXT=(r)

Code the length and address exactly as for STORFREE.
Programs not linkedited with MANAGER must set up a base
register for the SPA Extension. In particular, Message
Collection passes the area containing the message; this. means
that while it is usually safe to do a GETMAIN as long as it
is paired with a FREEMAIN, storage always has to be obtained
for a message with a STORAGE. If this is not done, a RM009A
message and a program check will result because RMPASS will
not find an RCB for the area.

The receiving subsystem claims the area with the CATCH macro
coded just like PASS:

CATCH LEN=length,ADDR=address and optionally ,SPAEXT=(r)

NOTE: if the SYS=YES parameter is coded on the STORAGE
macro and the user wishes to free the block while its
RCB is still attached to the system chain, SYS=YES
should also be coded on the STORFREE macro.
Otherwise, Resource Management will search for the
RCB sequentially through all the RCBs in the table,
which is inefficient.

5-18

J

J

Chapter 5 Resource Management

5.8.4 Linkedit

MANAGER must be reassembled after SETGLOBE is updated. The SPA
and SPA Extension must be reassembled if the RCB table size parameters
are changed. The Intercomm linkedit must include MANAGER, RMNADISA,
TDUMP and RMPURGE, plus whatever modules are needed to support any
other Resource Management options chosen (see Section 5.6).

The MANAGER module supports full Resource Management. If pool
statistics accounting is not required, reassemble with the appropriate
SETGLOBE globals set to O.

5.S.5 Enqueue-Dequeue Facility

In a multitasking on-line system it is sometimes necessary to
serialize the use of a particular resource (main storage, data set,
etc.) by allowing only one task at a time to "own" the resource.

It is also sometimes desirable to limit the number of concurrent
users of a resource to some predetermined maximum. Both these
facilities are provided by the Intercomm Enqueue-Dequeue routine (Csect
name PMINQDEQ) through the use of the macros INTENQ and INTDEQ. All
control is effected by a resource name of from one to fourty- four
characters; hence all programs utilizing a particular resource must
include enqueue/dequeue logic referencing the identical resource name
and providing the identical length of that name (default=16). A
time-out control prevents "runaway" exclusive control. The inclusion
of PMINQDEQ in the linkedit is automatic, as it is a required Intercomm
system routine. Resource Audit and Purge monitors the Enqueue-Dequeue
facility.

The following example requests and subsequently releases
exclusive control of the resource whose ID-address is RESOR, within the
issuer's region only. The default time - out value from the SPALIST
(NQTIM parameter) will be used.

INTENQ RESOR

INTDEQ RESOR

The example below requests that all other Intercomm regions be
prevented from using the resource whose ID- address is in regis ter 1.
Also, up to five tasks within the issuer's region may share use of the
resource. There will be no time-out protection. The SHARE parameter
is not defined for the release request.

INTENQ (1),SHARE=5,SYSTEM=YES

INTDEQ (l),SYSTEM=YES

5-19

Chapter 5 Resource Management

5.8.6 Thread Hung User Exit--IOEXIT

If a nonzero thread program checks or times out (TCTV or Enqueue
time expires), and the thread is disabled, resource purging is
suspended. A thread may be disabled because:

• the last action was a file I/O, Store/Fetch flush, message
queuing, or message logging request which did not complete
before the time-out.

• a dynamically loaded subroutine program checked or timed out,
and this thread originally caused the load of the subroutine
(that is, issued the first call/link).

• a Data Base access interface module disabled the thread
before starting processing of the data base request.

• the thread is executing under the general or special subtask
facility.

A thread is disabled from resource purging via an internal
DISABLE macro, and subsequently enabled for purging via an internal
ENABLE macro. At nonzero thread purge time, if an outstanding DISABLE
exists, purge processing is halted for the TCTV time of the originating
subsystem, or until all required ENABLEs are issued (whichever occurs
first). If the TCTV wait time expires without all necessary ENABLEs, a
user exit IOEXIT is called (by RMNADISA) if coded and included as
resident in the Intercomm linkedit. Subsequently, a subsystem disabled
message (RM016I) is issued, a thread dump is produced, and only enqueue
waits and outstanding WQEs are purged.

At entry to IOEXIT, standard linkage conventions are used, with
register 1 pointing to the SYCTTBL entry for the thread being purged.
The user exit could be used to issue a WTO to alert the operator at the
CPU console that one of the above disable reasons could degrade
In te rcomm execution time, such as tying up access to the hung
resource. Repeated occurrences of this situation could be cause to
close down Intercomm until the problem is resolved via dump/program
analys is. Particularly, check for Enqueue lockouts, excessive
Store/Fetch flushing, excess ive disk queuing (NUMCL too low for
terminals/subsystems), VSAM exclusive control waits (Control Interval
Lockouts), Data Base interregion access waits, etc.

The exit may not give up control to the Dispatcher either
directly or indirectly. No file or data base I/O may be performed. Do
not queue a message for a terminal that will cause logging of the
message or possible queuing on disk.

The TALY,DA command (see System Control Commands) can be used to
display information about currently active and hung threads.
Optionally, the subsystems accessing the hung resource could then be
delayed from new executions via the DELY system control command.

5-20

J

Chapter 5 Resource Management

5.9 DEBUGGING AIDS--THREAD RESOURCE AND POOL DUMPS

5.9.1 The Thread Resource Dump

This consists of a listing of all outstanding Resource Control
Blocks (RCBs), broken down by thread. The dump is written by a routine
called TDUMP onto a SYSOUT data S(;t called SMLOG. Thread dumps are
taken when a program check occurs and when a thread completes without
free ing all its resources. One call to TDUMP is from SPIESNAP
(accompanying a 126 snap); another is in RMPURGE, the routine called to
purge "leftover" resources. If the thread dump is followed in the
printout by a pool dump, it was taken by SPIESNAP; if not, it was taken
by RMPURGE. TDUMP is also called by STAEEXIT to accompany snaps 121
(long- term loop control) and 122 (user/system abend), and by PMINQDEQ
to accompany a snap 114 (enqueue time-out). An RCB for SNLOG will
always appear at the top of the list of resources of one of the
threads. (If it does not, s ;:orage des true tion has occurred in the
Thread Status Table, entry point TSTATAB, in SYCT400.) The th-ceAd
O\vning SHLOG therefore hfid control whf'TI th,' duwp \>las L'ikell.

TDUMP is called with register 1 pointing to the address of a
fullword argument. To dump one thread's resources, the argument is the
thread number, that is, three bytes of zeros and the thread number in
the low-order byte. Thread number can be obtained froIn IJKTHRED (an
entry in the Dispatcher) which is the label of a fullword field
containing the currently executing thread nWllber in the low-order
byte. For example:

LA Rl,=V(IJKTHRED) POINT TO IJKTHRED ADDRESS
CALL TDUMP

To dump all the threads, CALL TDUMP with Rl pointing to the address of
an argument of -1. The SCTL system command can be used to dynamically
produce a thread dump for a specific or all assigned thread numbers.

The RCBs are stacked, that is, a thread's most recently acquired
reSOUi"ce is located at the top of its list and the oldest is at the
bottom. This is useful in deu,rmining wbat a subsJ3tun v:,iS <Join£; just
before the dump was taken. The contents of the in-lint: save area
(INTSAVE) used by STORAGEM and STORFRED provide useful information in
case of a snap, and is one of the areas snapped in an h!dicative dump
(see Chapter 8). In a full snap, use the linkedit to find the MANAGER
module (Csect RSMGMNT), and then look for the literal 'RtlSAVE REGS 14
to 12' in the EBCDIC printing on the right side of the dump. The
register contents (14-12) begin after the literal; there is no space
for save area chaining. Register 15 can be checked to see if the
module was entered at STORAGEM or STORFRED.

Successful execution of TDUMP requires including IJKCESD and
IJKWHOIT in the Intercomm linkedit (see Chapter 4), and a DD statement
for SMLOG (see Section 5.7.6),

5-21

Chapter 5 Resource Management

The following explains the thread resource dump in Figure 5-3:

• THREAD/SUBCODE

The three-digit thread number, 000-255, in decimal, followed
by the two-byte subsystem code in hexadecimal. For thread
000 (the system resource thread), the subcode is meaningless.

• RESOURCE TYPE

There are five resource types: CORE, FILE, DDQ, DYNL and
NQ. For an enqueue resource, the entry will either be

NQ(OWNER)--thread has control of the resource

NQ(WAIT)--thread is waiting for control

NQ(POST)--the ECB,for the enqueue has been posted and the
thread will get control after the Dispatcher transfers
the corresponding WQE to the execute list.

• ACQUIRED BY

The Csect name (+ displacement), or the address, of the
location immediately following a branch-and-link. If the
resource is an area of storage, it may locate a call to
STORAGEM (STORAGE macro), a call to PMILINK2 (LINKAGE macro),
or PMISUBL2 (SUBLINK macro), a PASS macro or a CATCH macro.
If the resource is a file, it locates the call to SELECT. If
the resource is an enqueue, it locates the call to PMINQDEQ
generated by an INTENQ macro. If the resource is a DDQ, it
locates a call to QBUILD or QOPEN. If the resource is a
dynamically loaded subroutine, it locates the issuer of a
MODCNTRL macro which requested access to the subroutine.
(See also Figure 4-1 in Chapter 4 for Csect/Module names.)

• SUBPOOL NUMBER

Either nnn or ICOM. ICOM means the storage was acquired by
MANAGER from the Intercomm pools, not dynamic (subpool nnn)
storage.

• RESOURCE ADDRESS

If storage, this is the start of the block. If a file, this
is the address of the external DSCT; there is usually another
RCB for an area of storage containing the external DSCT. If
it is an enqueued resource, this is the address of the
72-byte resource-ID block obtained by PMINQDEQ. There will
always be a storage RCB in the thread 000 list containing the
10 block. Immediately after an NQ(WAIT) or NQ(POST), the RCB
will be an RCB for a 12S-byte work area which is chained to
the ID block. If the resource is a ODQ, this is the address
of the internal Queue Locate Block (QLB). If the resource is
a subroutine defined in REENTSBS via a SUBMODS macro with the

5-22

Chapter 5 Resource Management

Notes:

LNAME parameter, this is the address of that macro's
expansion in the DYNLSUBS Csect generated within REENTSBS.

• RESOURCE LENGTH

The length of a storage resource (in decimal). Note that
this value may be less than LOWLIM if a partial free was done
from an ICOMPOOL block (flagged by an asterisk after the
length value) .

• ICOMPOOL HEADER

The address of the doubleword control block prefixed to the
pool block from which the storage resource was allocated.
Generally, eight less than the resource address, unless part
of the area has been freed or passed to another thread.

• ICOMPOOL BLOCKSIZE

The size of the pool block from which the area was allocated.

• FILE NAME

The file ddname. The owner of SMLOG caused the thread dump.

• DDO NAME

The l6-byte DDQ identifier.

• SUB NAME

The eight-byte (dynamically loaded) Subroutine (DYNL)
identifier (defined via a SUBMODS macro--see Chapter 3).

• NO/DO NAME

The 16 to 44 characters of the identifier passed to PMINQDEQ
via an INTENQ macro.

• RCB ADDRESS

The location of the 20-byte RCB. There are a few things the
RCB indicates that do not appear in the thread dump. See the
RCB Dsect in any of the Resource Management modules for flag
settings and offsets.

the phrase IS ACTIVE BUT OWNS NO RESOURCES usually indicates
the thread is in a CONVERSE wait.

For non-zero threads, a status line provides information
about the thread owner including the terminal- id from the
input message, and the assigned MMN number (see the
discussion of LOGPRINT in Chapter 12).

5-23

"Ij
~
11
(II

VI
I

UJ

tn

!
CD

51
11
(II

VIlli
lil-
t-,)",
-P-(II

III
o
~ o
(II

I -."
I»

(Jq
(II

.....
o
HI

UJ -

THREAD RESOURCE Du"P

THR £AD I RESOURCE
SU8crOE TYPE

OOO/COOO CORE
00010000 CORE
000/0000 CORE
OOOICOOO CORE
OOO/COOO FILE
00010000 CORE
000/0000 FILE
000/0000 CORE
000/0000 CORE
OOOICOOO CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
00010000 CORE
00010000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
00010000 CORE
00010000 CORE
00010000 CORE
00010000 CORE
OOOICOOO CORE
OOOICOOO CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
000/0000 FILE
000/0000 CORE
000/0000 CORE
00010000 CORE
000/0000 COilE
000/0000 COilE
00010000 CORE

~

ACQUIRED SIP RES(lURCE
8Y NO. AODPESS

RI1PURGE+I10 ICOI1 03FBIO
"'SGCOL+481 I (oro, 03FBB6
IXFSU8S+9b 1(011 04A(00
INTSTORF+1390 1(011 04lEA8
INTSTORF+ll8C 04A806
INTSTORF+184A I C 011 0loA676
SII'13270+11E 050lCC
S 1113270+2A ICOI1 050140
FDITC8+Fb ICO"! 03F2Z0
SYCTRl+1A ICO'" OltCIob8
8T A~ S I "'+63E I C 0'1 058990
8LHIN+IC38 ICOI1 05F410
8TAI1S 111+E16 ICO~ 053F80
GFDRIYER+29" ICO~ 0"3410
GFEINTFC+2"6 ICO~ 03F8EO
8LHIN+189E I COI'I 0"2590
8LHIN+189E I COI'I 0"2760
8TA115111+63E ICO'" 058E80
8I1HOOO+A2C ICOI1 0101238
FEI'ISGSUB+38A I C 011 0"1766
8LHOT+CD2 ICOI1 0"Zb78
FE"'SGSUB+3BA ICOI'I 0419A8
8TA"511'1+63E ICO~ 055870
8LHI N+IC38 ICOI'I 05CCA6
8LHIN+189E I CO~ 043328
SYCTRL+2A ICO'" 0"C188
FEI1SG5UB+3BA ICO'" 0101810
INTSTORF+140Z 000 00F808
FEI1SGSU8+38A I CO" 041700
INTSTORF+lItOZ ICOI1 05EC08
8SCLEASE+A08 I CO" 051238
INTSTORF+l"OZ I CO" 050500
INTSTORF+lIt02 I CO" 04321t0
INTS TORF+HOZ ICOI'I 0517C8
BI'IHOOO+A2C I CO" 0"1128
I'ISGCCL+"82 I CO" 0"0738
INTSTORF+1't02 000 00C070
IXFI'ION01+338" 000 000;IoE6
INTSTORF+l"'02 000 00E808
I NTS TORF +lIt02 000 008098
INT5TORF+l"02 000 OOFOIO
FE '1SG5U8+ 3BA ICOI1 0418CJ8
FE 1'15GSU8+38A I COI'I 04lA 30
I XFI'IONO 1+ 33 8 .. I COP'! 03FCFO
8TAI'IS 1I'I+C6E OBOF80
INTSTORF+l"'02 000 000188
BTAI'ISII'!+63E I CD" 05bFFO
8SCOIAL+DFZ ICO'1 03FI00
I'ISGCOL+"82 ICOI'I OltlC80
INTSTOItF+l"02 000 OOEOIO
8TA~SI"'+63E ICO~ 058 .. 70

CALLED BY R~PURGl+1AE

RESOURCE ICOI1POOl ICO~POOL

LENGTH HEADEI< BlOCKSllE

9b 03F 806 9b
88 03F680 9b

19b 04ABF6 304
160 0"1£ AO 160

280 04A670 188

544 050138 576
40 o 3F 216 bit

336 04C"60 336
13010 058988 1304
Z46" 05FIo08 Z752
1040 053F78 105b

216 043408 22"
96 03F806 96

22" 0 .. 2588 22"
22" 0"2756 22 It

130 .. 058EA8 130"
120 0"1230 128
1010 0"1760 126
22" 0"Zb70 nlo
101t 0"19AO 116

130 .. 0558b6 1304
1984 05CCAO 19B4

224 01t33Z0 224
33b 0loC180 33b
104 0 .. 1808 1Z6

20"0
10 .. OUM6 128

20ltO 05ECOO 20 .. 8
t»bIt 051230 70"
53b 0505C8 576
208 0"3Z38 2Z"
768 0517CO 768
lZ0 0"'11Z0 128
352 0"0730 352

2040
3Z

20ltO
20ltO
2040

1010 0101890 128
104 OltlA28 128

88 03F CE8 96

20100
1304 056FE8 130"

"0 03FOF8 6'"
10",0 0ltlCA8 160

20"0
130'" 058"'68 130 ..

~

TI~E·09.31.19. DATE-eB.l')2

FILE/ODQ/SUB/NQ/DQ • Cft
NAI1E ADORE ssl

,

088"0":
08BOEC'
OBAOF",
08811"

INTSTOR5 088300
08AF 1t8

SCRTEST] 08A728
088"'C
088"'20
OBAOEO
08Ut»'"
08AF , ..
08AEE"
088"OC
081H"
08A930
08139"
0881t» ..
08A11oC
088100
088018
08At»9C
081 .. 70
OBI3F8
08UCO
08A671t
08AICC
08AFCO
OBll7C
081lA"
OBA .. ac
OBA07C
0881FO
088508
08SH8
08A"Io"
OBI"U
08A"10
081330
0815210
08A9DO
08 A7CI
OBAH8
OBACIC

CPU03 08 Alo E 10
088580
088288
08UlC
08A680
OB8588
088llC

~

9
~
rt
CD
11

\11

~
III
o
~
11
o
(II

f
(Jq
(II

~ ::s
rT

I'!j
t-'.

~
t1
C!>

VI ,
W

til

~
"Cl
t-'
(b

;i
t1
(b

VIII> ,P-
I'.J~
VI(b

III
o
~
t1
()

C!>

t::I

~
"Cl
,.....
'"d
II>

O'Q
(b

I'.J

o
H1

w
'-"

('
OOOICOOO CORE
00010000 COIH
000/0000 COI!E
OOO/COOO CORE
000/0000 CORE
OOO/COOO CURE
OOOICOOO CURE
00010000 CORE
00010000 CORE
000/0000 CORE
000/0000 CORE
000/0000 (ORE
000/0000 (ORE
000/0000 CORE
00010000 CORE
000/0000 CORE
00010000 CORE
OOOICOOO FILE
000/00(10 FILE
000/0000 FILE
00010000 FILE
00010000 FILE
00010000 FILE
00010000 FILE
000/0000 FILE
000/0000 FILE
000/0000 FI LE
00010000 FILE
00010000 FILE
000/0000 FILE
00010000 FILE
000/0000 FILE
000/0000 CORE
00010000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
000/0000 CORE
000/0000 CORE
00010000 CORE
000/0000 CORE
000/0000 FILE
00010000 FILE
00010000 FILE

BSCDlAl·ABC ICO~ 0"1088
8TAI'ISI"I+63E ICO'" OHF')O
8LHIN+IBqE I COI'I 0"2COO
IlTAI'ISI"·63E ICOM 057A30
RLHIN+IC38 000 OBfbbO
BLHIN+18qE leOM 0"16E6
BTAI'IS I "1+6 3E ICOI'I 057510
PI'I127"1+700 ICllI'I 0"0010
PI'IIZ1101+A6C ICO"l Olo31oF8
BTAI'IS 1I'I.1>3E 1C01'! 056AOO
flLHIN+1B9E lCOI'I 04<'930
IXFI'ION01+)36'o 1(01'1 03F9108
P'QNOOEO+ 1BC ICOI'I 0'oOB50
I'ISGCOL+30 ICOI'I OioEC 28
MI'IUS TART+)30 000 003880
PI'IIEXTRM+2C ICO'" 040988
FESENO+78 I CO" OloU86
GFORlvER+7b OAC20;'o
8TAI'ISI"'·3Cb OB090;0
BTAI'ISIM+3Cb 080908
BUI'IS 11'I+3C6 OB08CO
BU"'SII'I+3Cb 080818
8TAI'I S 11'\+ 3C6 0800;16
BU"'S 1"'+3(6 0801AO
8T"IS IM+3CI> 0806(B
8U"'SII'I+3C6 080380
BUI'ISIM+3C6 080 .. 00
8TAI'ISI"I+3C6 080800
8UI'IS IM+3Cb 080A10
8TAI'IS 11'I+3C6 080890
814M51M+3C6 080 .. '00
8TAMSII'I+3Cb 080638
8TAI'IS II'I+AO 000 0802CO
IXFI'ION01+)38'o lCOM 03EAOO
IXFI'ION01+338'o lCOI'I 03Fb10
IXFMON01+)381t ICOM 03E908
IXF"ON01+)38'o I COM 040930
rXFI'IONOI+3361o ICOI'I 03E980
IXFI'ION01+33B'o ICOI'I 040846
oooaAN5+~1C 1(01'1 03F5AO
ODOTRANS+o;1C ICO'" Oo;OUO
OOOTRANS+S1C ICOI'I O'oF EF 8
IXFMONOl+3381t ICOI'I 03[988
I XF"ONO 1 + 33 81t ICOI'I 040820
IXF"ON01+338'o lCO'" 03E960
I)(FMONO 1 + 33 81t lCO'" 0100198
IXFI'ION01+3361t ICOI'I 03E936
I XFMONO 1 +33 6'0 ICOI'I 0 .. 0110
IXF"ONOl+3381t I COI'I 03E910
IXFMONOI+338'o 1 CO" OItObOO
IXFI'ION01+33B'o ICOI'I 03E8E8
1 XFMONOI + n 81t lCOI'I O"Obllll
SlUOVL Y+lt02 OOAFCC
Sluon Y+ltOZ OOUIIC
STUOVLY+lt02 OOqFltC

("

21" 0"20BO ZZ ..
130 .. O')1F .. e 130 ..

ZZ" 0"2CC8 nit
130 .. 051Alll 130"
2"b"

ZZ" 0"16EO lZ"
130" 0515011 130"

128 0"001>& 118
Z32 0431oFO Z51>

1304 00;bAC8 1304
ZZio 042926 ZZio

q6 ° 3F9'o0 ql>

1211 0'00848 126
392 O"EC 20 .. '06

1920
ll2 0'o09BO 128
160 0'oU80 1bO

))92
32 03E 9F8 32
86 o 3F 6b8 q6

3l 03E'~00 32
10 '0 0 .. 0928 128

32 o 3E 9A8 3l
10'0 0'o08AO 128

9t. 03F0;98 9t.
600 050A98 bitO
51b OItFEFO 0;16

32 03Eno 32
101t Olt0818 128

32 03E 9~8 32
101t 0'00790 128

32 o 3E930 3l
10" 0"0108 128

32 03E908 32
104 OltOo;F6 128

32 o 3E 8EO 32
10" OltObllO 128

('
OUA10
OIU~C
0lAAlt8
OIUH
08U20
06UOC
08ACJFII
oBAQelt
08nlSC
OBACJbC
OBn,)1I
08A11C
08A6l"
08 .. 10
OBHFC
08UD"
08UOI

GFEIN OBAHI
TEST) OBASCO
TEST 2 OBA,)AC
TESTl OBAS.I
PAULI 011 ASI"
NWKOI 08USC
SFC02 08U'"
OGU01 08U]"
CNT01 08UlO
INOOO; OUSOC
LON01 08AltFi
CHI01 OBA"9"
PAROl OBAitSI
PHL03 08A")0
80501 OBAHC

08U.0
08Anc
OBA2 .. "
08An"
08AlEO.
08Alte
08A381
084361
08A21C
08AZ71
08AlS"
08A340
08AlZC
OUllI
OBA10"
08AlFO
OUlOC
08A2tl
08A2 ,It
OBUAO

INTULO' 08AlSO
IHTERLOG OeAlle
INTERlOG 0lAl21

g
rt
It
1'1

VI

:' •
~
n
It

f
i ::s
rt

000/0000 " ILE STIJOYLY+IoOl 00Cl70C INTERLOC, OBAZ lit 9
OOO/COOO FILE STUOYLY+IoOl OO"ECC INTERLOC; 09A100 ~ 000/0000 FILE STUOYLY+401 00flb8C INTERLOC. OBUH rt
000/0000 F I L E STUOYLY+402 00 1E 4C INTERLOG OBAlOfl It

OOO/COOO F I L E STUOYLY+402 OD7bOC INTERLOG OB Al Cit 11

"Ij 000/0000 FILE S TUOYL Y+Io0l OObDCC INTERLOC. OeAUO VI

..... 000/0000 FILE STUOYLY+401 ODb58C INTERLOC. 01U1"'C
~ 000/0000 F I L E STUOYLY+IoOl 00504C I NTE RLOG 08A1II8
11 00010000 FILE STUOYLY+IoOZ OO,)50C INTERLOG OB Al1't
~ 000/0000 CURE STUOYLY+IOEl 000 0010000 Z,)HIo OBAOUI
VI 000/0000 CURE IXFMONOl+B81o ICOM 03Fb08 qb 03FbOO qb OBAHIO ,

00010000 CORE TASKSTRT+bIo ICO'" 0loUC8 304 O'oAACD 3010 08A1)8
W

00010000 CORE IXFFAR+l3'>Z ICOM 03F088 100 03F080 b4 OB All"
00010000 CORE IXFMON01+B3b I C OM 03F538 qb o 3F 53 ° qb 08A110
000/0000 CORE IXFMONOl+3381o I COM 0100578 1010 0100')70 1Z8 08AOFC

en 00010000 CORE STOSTART+7E ICOM 0loFb08 1080 OIoFbOO H2 OBAOO" ;
't:J OZ32 RESOURCES OWNED 8Y THIS THREAD.
t-' 00q113b BYTES OF MAIN STORAC,f. ~

;i
030 FILE S.

11 0Ol/0qD8 FilE TDUMP+,)E 03CQEC SMLOG OBAces
~ 001/0q08 CORE I X FrleNO 1+338E leOM 03F 108 blo 03F 100 bit 08AFOC VIlli

,Po OOl/Oq08 CORE IXFSUBS+Qb 000 00')518 ZQb OBn .. c
N~ 0Ol/0Q08 CORE COBREENT+3ZA ICO .. 0') ZB 78 QbO 0,)ZB70 qbO OBA"flC
O\~ OOl/OQ08 FILE C08REENT"'ZA O')IoAQO STOKFILE 088".8

In OOl/OQ08 CORE PREPROG+3BE ICO" 0.,.,100 121b 0')10 7C8 121b 088008 0
s:: 001lOQD8
11

CORE PREPROG+1b ICOI'I 01010')8 1104 0"10')0 1 bO 088Z18
n
It STATUS • IN PURGE TID • TESTl DISABLE COUNT • 0 N • 1t03 0007 RESOURCES OWNED BY THIS THREAD

r 0002b80 BYTES OF .. AIN STORAGE.
002 FILES.

't:J
OOZlCQO CORE ICMTS1+1b ICO .. 03FABO qb o 3F A 78 qb OBI"'" ,......

"d
STATUS· CON WAIT 0001 RESOURCES OWNED BY THIS THREAD III TID • CHI01 DISABLE COUNT • 0 "MN • 3fl7 ,a

011 00000Q6 BYTES OF MAIN STORAGE. ~
~ In

W
0

CURRENT NU .. 8ER OF UNUSED RCB'S • 0160 co INDICATES THAT A PARTIAL FREE HAS BEEN DONE ON THIS BLOCK' s::
11

0 n
HI ~

w f '-"
::s
III

011
~
S
~
::s
rt

l, ~ ~

L

Chapter 5 Resource Management

5.9.2 Status of Intercomm Administered Storage (Pool Dump)

This is produced by a call to POOLDUMP. There are no parameters
for the call, as with the thread dump. POOLDUMP is written onto
SMLOG. Currently, the only time a pool dump is taken is after a
program check; the call is in SPIESNAP following the call to TDUMP.
Figure 5-4 illustrates part of the output from POOLDUMP.

The pool dump consists mainly of a block-by-block listing of the
status of the Intercomm pools. For each assigned (in use) pool block,
the rightmost value is either the hex address or the Csect name +
displacement of the pool owner. Which value is printed depends on the
setting of the &POOLNM global in SETGLOBE (default=l requesting name).
To print the address instead of the name, reset &POOLNM to 0 and
reassemble and link POOLDUMP (less processing overhead consumed). It
also includes the status of the storage cushion and the address of the
RCB table. The latter information may be useful in exam~n~ng the
free-RCB chain in a full region dump. The location of the top RCB in
the free chain is the first fullword in the RCB table. It is given as
a halfword offset (divided by 4) from the start of the table. However,
RCBs are taken from the top of the free chain as well as returned
there, so no reverse trace is available.

If any of the addresses appear strange (such as 404040 or
BBBBBB), or the name is UNKNOWN, that is a good indication that storage
destruction has occurred (possibly by the owner of the preceding pool
block). RMINTEG processing (see Section 5.7.1) or the TRAP module (see
Messages and Codes) may be used to find the culprit in future Intercomm
executions.

5.9.3 Finding the Dynamically Loaded Pools

Pointers to all pool VCONs (address of ICOMPOOL Csect, etc.) are
located in the SPAEXT. Thus, if the addresses of these items are
required in debugging a snap, the fullwords located in the SPAEXT which
are listed below contain the addresses of the entry points listed at
the right:

SPAEXT Label

SEXCORAC
SEXICMPL
SEXPOOLN
SEXICMCH
SEXICMNX
SEXPOOLA

ICPOOLxx Csect
=============================

COREACCT
ICOMPOOL
POOLEND
ICOMCHN
ICOMINX
POOLACCT

Note: When ordering resident pool Csects, the above order may be used;
POOLEND must be ordered immediately after ICOMPOOL. COREACCT may
be ordered after POOLACCT.

5-27

Chapter 5

STATUS OF IMTEICO"" AD"INISTEIED STORACE

OlO~~-IYTE STORA'E CUSHION NOT RELEASED.
CUSHION ADDRESS. 0057A6
RCI TARLE AT OBQaBC. LENGTH. 10052 BYTES.

~OC TOTAL RCBS.
ltlZ FREE ICIS.

lC TOTAL BLOCKS.
10 FREE BLOCKS.

¢ •• US~R POOL. BLOCKLENGTH • 00~~8

RLnCK IN USE. HEADER LOCATION • O~ECZO

THIEAD/SS· 0/0000. SVB8LOCK aDDRESS • 0~EC28. LENGTH.

t> TOTAL BLOCK S.
5 FREE BLOCKS.

*OOUSER POOL. BLOCKLENGTH • 0051Z

8LOCK IN USE. HElDER LOCATION • O~FbDO

THREAD ISS. 0/0000. SUBBLOCK 4DDRESS • O~Fb08. LENGTH.

"LOCK IN USE ... ElDER LOCAl ION • 0~F8011

THREAD/5S· 0/0000. SUBBLOCK ADDRESS • 0~F8EO. LENGTH.

4 TOTAL BLOCKS.
Z FREE BLOCKS.

OOOUSER POOL. BLOCKLENGTH • 0057t1

BLOCK IN USE. HEADER LOCATION. 04oFEFO
TH'FAO/S5· 0/0000. SUB8LOCK ADURESS • 0~FEF8. LENGTH.

ILOCK IN USE. HEADER LOCATION. 050136
THIEAD/SS· 0/0000. SUBBLOCK ADDRESS. 050140. LENeTH •

ALaCK IN USE. HElOER LOCATION. 0505C8
TH'EAD/SS· 0/0000. SUBBLOCK ADDRESS. 050500. LENGTH.

4 TOTAL ALOCKS.
I FREE 8LOCKS.

OOOUSER PonL. 8LOCKLENGTH • 00b40

aLaCK IN USE. HEADER LOCATION. 050AQe
THREAD/SS. 0/0000. SU88LOCK aDDRESS. 050AAO. LENGTH.

4 TOTAL BLOCKS.
3 FREE BLOCKS.

~*¢USER POOL. BLOCKLENGTH • 0070~

ALOCK IN uSE. HEADER LOCATION. 051Z30

Resource Management

3QZ. RCB OFFSET • 00005~. GOT BY "SeCOl+30

~80. RCB OFFSET. 000818. COT BY STOSTART+7E

~5b. RCB OFFSET • OOl~D~. COT BY IXFB37+4E

Htl. MC 8 Off Sf T • 0009BC. COT 8Y DJ)OT~A,"S·'HC

5~4. RC B OF F SE T • 0018FO. GOT 8Y SI"3Z70+lA

53b. RC8 OFFSET • 001~CO. COT BY INTSTORF+l~Ol

tlOO. RCB OfFSET. OOOQOO. COT 8Y DO~TRA,"S.57C

THREAD/SS· 0/0000. SU88LOCK ADDRESS. 051Z38. LENGTH. tltI~. RC8 OFFSET. OOOCOO. GOT BV 8SCLEASE+A08

2 TOTAL BLOCKS.
1 FREE BLOCKS.

¢¢OUSER POOL. BLOCKLENGTH • 007t18

BLOCK IN USE. HEADER LOCATION. 0517CO
THREAO/S5. 0/0000. SUB8LOCK ADDRESS. 0517C8. LENGTH. 7t1B. RCB OFFSET. 00101C. COT BY INTSTORF.l~Ol

Z TOTAL ILOCKS.
1 FlEE ILOU S.

Figure 5-4. Sample Pool Dump
5-28

J

J

Chapter 6

FILE HANDLER SPECIFICATIONS

6.1 INTRODUCTION

The Intercomm File Handler provides data management facilities of
the operating system to all user processing programs. Only external
data management planning (data set organization and processing
techniques) is required by the user. Internals are handled entirely by
the File Handler.

The general purposes of the File Handler are to eliminate all the
required input/output programming within those application programs
functioning in the on-line system, and to coordinate all concurrent
requests for input or output operations from the on-line programs. An
I/O operation is requested by simply calling a File Handler service
routine.

When a request for an input or output operation is received by
the File Handler, the appropriate control blocks are generated, the
operation is started and other programs in concurrent execution are
allowed to continue operation. The File Handler provides overlap of
I/O operations via the Intercomm Dispatcher (Event Queue). It is the
interaction of the File Handler and the Dispatcher that provide
Intercomm's multithreading facility within application programs and/or
Intercomm programs during data set I/O operations.

In general, the functions performed by the File Handler provide:

• All I/O operations against on-line system data sets under
monitor control

• Total overlap of all I/O operations with on-line application
program processing

• I/O error analysis and simplified reporting of errors to the
application programs

• Detection of errors which would otherwise cause abnormal task
termination

• Elimination of opening and closing of data sets at each
execution of an on-line processing module

• Exclusive record (or file) control preventing simultaneous
record updating

6-1

Chauter 6 File Handler SnR~ifi~~~innR

Chapter 6 File Handler Specifications

6.2.7 Creating and Defining ISAM Files

Because Intercomm uses the more efficient IBM BISAM access method
against ISAM files, where possible, certain restrictions apply
concerning the creation and definition of ISAM files for use under
Intercomm:

• Do not define separate Area Names (PRIME, INDEX, OVERFLOW)
when creating the file. Let the access method allocate these
areas from the primary allocation defined for the file and
from the CYLOFL DCB parameter on the DD statement. It is
better to use the IBM Utility IEBISAM (or an Assembler
Language program using BISAM) to create the file than to
create it with a COBOL or PL/l program. Do not define the
file as blocked.

• Use only one DD statement on the execution JCL; do not define
separate Area Names. The only DD parameters necessary are
DISP=OLD or SHR, the data set name, the unit and volser if
not catalogued, and the DCB parameter DSORG=IS. Optionally,
OPTCD may also be specified for the DCB parameter.

• If an existing file to be used on-line under Intercomm does
not meet the above criteria, use the FAR parameter
OPEN=QUEUED to force only QISAM (GET/PUT) access to the file
(see Section 6.6).

6.2.8 Undefined Record Support

Undefined record support applies to QSAM!BSAM only. Full
GET/PUT, READ/WRITE support for undefined records on sequential data
sets is provided by the File Handler. The application program must
supply the record length as a parameter for File Handler calls.

6.2.9 Variable Length Sequential File Support

The application program must be aware that each block starts with
a BDW (halfword of block length plus 4, followed by a halfword of
binary zeros), and each record wi th an RDW. When READ and WRITE are
used, blocking and deblocking of blocked files must be performed by the
application program. If GET and PUT are used, the access method will
block and deblock the file (if RECFM=VB). Whatever form, the record
always starts with an RDW (halfword of record length plus 4, followed
by a halfword of binary zeros). For output, the application program
must initialize the RDW before calling the File Handler. When WRITE is
called for a blocked file, both the BDW and the RDWs (for each record
in a block) must be initialized. The type of access to the file must
be specified by a FAR OPEN option; BASIC if READ/WRITE is used, QUEUED
if GET/PUT is used. DCB-DSORG=PS must be specified on the DD
statement. Also specify BLKSIZE (add 4 bytes for BDW) , LRECL
(inc luding RDW) if a blocked file, and NCP-n and OPTCD-C (see
Overlapped Processing above). See also the FAR NCPWAIT and WRITEOVER
parameters.

Chapter 6 File Handler Specifications

6.2.10 Sequential Output Disk File Flip-Flop Facility

This facility invokes automatic protection of Intercomm from an
x37 abend resulting from running out of space on a BSAM (sequential
output) disk file or the Intercomm Log (when logging to disk).

A companion disk file must be defined to effect this protection.
The ddname of the companion file is constructed by right- "padding" the
ddname of the original file, up to the maximum of eight characters,
with the character 'C'; one character of the ddname is replaced, if
necessary. The following illustrates construction of the alternate
ddname:

Original No. Chars. Alternate Comment

INTERLOG 8 INTERLOC Last character
replaced by 'c'

DISKX 5 DISKXCCC Padded with
'ccc'

XYZ 3 XYZCCCCC Padded by
'CCCCC'

The two data sets are used alternately. When one gets full, the
resulting x37 abend is intercepted, the full data set is closed, and
output is written to the companion data set. The message FR080R is
issued, to instruct the operator to copy the full data set off -line,
effectively "emptying" it so that it may then be reused. When both
data sets become full, the message FR081I is issued, and Intercomm
enters the wait state until the operator replies to FR080R.

To implement this facility, the module IXFB37 must be included in
ei ther the Intercomm linkedi t or the Intercomm Link Pack Module, and
the original disk file (for example, INTERLOG) must have the B37 FAR
option specified. x37 abend protection may not be specified for any
original file whose ddname is eight characters ending with the letter
C. The DD statement for the alternate disk file (ddname ending in C)
must be specified after the //PMISTOP DD DUMMY statement in the
Intercomm JCL to prevent an internal DSCT from being created. No
on-line access to the alternate file by non-system (Intercomm) programs
is allowed.

Both the original and the companion data sets must reside on a
DASD device, must be defined as physical sequential (DSORG=PS), may
only be accessed using WRITE, and must have a disposition of SHR to
allow off-line accessing after an x37 abend has occurred. Neither data
set may be DUMMY nor have a dsname of NULLFILE. If they do not meet
these criteria, then the original data set will not be marked as
eligible for abend recovery. The data sets must be preallocated in
another job, not in a previous step of the same job. The NCP count
(DCB subparameter) must be exactly the same for both data sets, if
chained scheduling is used. If recovery of the file after a system
crash is desired, see the description of ICOMFEOF in Chapter 12. Abend

6-7

Chapter 6 File Handler Specifications

6.2.15 Dynamic Deallocation and Reallocation via FILE Command

Two FILE command parameters are available to dynamically
deallocate and reallocate on-line files. The parameters ALLOC and
DEALL make use of MVS Dynamic Allocation services via the DYNALLOC
macro (SVC 99). The syntax of, and response messages pertaining to,
these parameters are fully described in System Control Commands. The
following discussion deals with restrictions and operational
considerations for these parameters.

The main purpose is to allow a file which is accessed thru the
Intercomm File Handler and originally allocated to Intercomm via JCL to
be deallocated and thus made available for processing by batch jobs.
Once the batch jobs are completed, the file may then be reallocated to
Intercomm and thus again become available for on-line subsystems. The
commands cannot be used to allocate a file to Intercomm which was not
originally allocated via the Intercomm execution JCL.

When MVS deallocates the file, all traces of it (JFCB, etc.) are
disconnected from the job doing the deallocation. After deallocation,
no reference to the file exists in the operating system control blocks
belonging to Intercomm; it is as though the file was never allocated to
Intercomm in the first place. In order to successfully reallocate the
file later, information about the current allocation must be saved
before the file is deallocated. That information is obtained out of
various operating system control blocks such as the JFCB, TIOT and UCB,
and saved in a storage area which is pointed to by the internal DSCT
for the file. If it is known that the file will not need to be
reallocated to Intercomm later in the run, the NOREALC option of the
DEALL parameter can be used. This option causes the obtaining and
saving of the reallocation information to be bypassed, thus saving some
processing time and storage. Under MVS, do not code FREE=CLOSE for any
data set.

In order to keep the amount of information that must be obtained
and saved about a file to a minimum, and because certain information is
unobtainable, the following restrictions on the reallocation of a file
must be considered:

• Temporary data sets (&&dsname) may be deallocated but not
reallocated.

• A data set whose DISP status was NEW in the beginning of the
run (as coded on the JCL DD statement) will have a status of
MOD when reallocated.

6-10

Chapter 6 File Handler Specifications

• If the ddname in the FILE command describes a concatenated
data set, only one of the members of the concatenation will
be reallocated. The member of the original concatenation
that will be reallocated is unpredictable:

if IIDDl
II
II

DD DSN=FILEA
DD DSN=FILEB
DD DSN=FILEC

and DDl is deallocated, upon reallocation, DDl will point to
e i the r FI LEA, FI LEB 0 r FI LEC bu t not the original
concatenation sequence.

• When a data set is deallocated, any subsequent reallocation
will be attempted using DD statement parameters assigned via
the original JCL. Any parameters not provided will not be
supplied and the IBM defaults for them will be taken, as
necessary:

DSN
member-name
Generation Data
Group number
LABEL number
LABEL type
SYSOUT class

UNIT

VOL=SER

DISP

as coded on DD statement
as coded on DD statement for a PDS.
if coded on DD statement

as coded on DD statement
as coded on DD statement
will be A upon reallocation. SYSOUT
class may be overridden with the DEALL
command CLASS option.
Direct access types: 2305-1, 2305-2,
2314,3330,3330-11,3340,3350,3380.
Tape units: 2400, 3400. I f the uni t
type is not one of the above, SYSDA will
be used for reallocation.
the first 5 volumes coded on the DD
statement. Only one unit will be
requested for a tape multivolume data
set. For a DA multivolume data set, as
many units as there are volumes will be
requested for PARALLEL MOUNT.
as coded on DD statement with exception
of NEW which is changed to MOD upon
reallocation.

• Catalogued data sets are an exception to the above. For a
catalogued data set, UNIT type and VOL=SER information is not
checked. All other information, including LABEL data, is
verified.

• If a data set is named by more than one ddname, each ddname
must be named by the operator on a separate FILE command (for
example, VSAM base cluster and alternate index paths;
deallocate the paths first).

6-11

Chapter 6 File Handler Specifications

The following DCB subparameters will also be preserved for the
specified data types; all other parameters will be taken from the
internal DCB or DSCB:

BFTEK
BLKSIZE -
DSORG
EROPT
LRECL
NCP
OPTCD
RECFM
DEN
KEYLEN
LIMCT
BUFNO

Buffering techniques (BDAM, QSAM, BSAM)
Block size (BSAM, QSAM, BDAM)
Data set organization (BSAM, QSAM, BDAM)
DCB error options (QSAM)
Logical record length (QSAM, BSAM)
Number of channel programs before CHECK (BSAM, BISAM)
Operational services (QSAM, BSAM, BDAM)
Record format (QSAM, BSAM, BDAM)
Tape density (QSAM, BSAM)
Key length (Keyed BDAM or ISAM)
Search limit (Keyed BDAM)
Number of buffers (all)

NOTES: DSORG=PO data sets are not supported by the File Handler
and may not be deallocated. Sequential output disk data
sets defined for x37 abend protection may not be
deallocated. VSAM data sets may be reallocated but JCL
overrides (AMP=AMORG) of VSAM parameters will not be
preserved. That is, upon reallocation, VSAM will take
all necessary parameters from its control blocks. IBM
currently does not support the provision of VSAM AMP
parameters via dynamic allocation.

6.2.15.1 Retry of ALLOC or DEALL After Error

Upon completion of the DYNALLOC macro, a return code in register
15 indicates whether or not the request completed successfully. If it
did not, the error reason code field in the dynamic allocation request
block is checked. The error reason codes are divided by IBM into
classes as documented in the IBM MVS SPL: - JOB MANAGEMENT or MVS/XA
SPL: System Macros & Facilities, Vol. 1 manual. An error code whose
two-byte hex value is X' 02nn' is represented to be significant of a
failure due to insufficient system resources. As such, Intercomm will
consider such errors temporary and preserve the internal control blocks
necessary for a retry. An error code whose value is other than X'02nn'
is a permanent error, due to an invalid parameter list, system routine
error or envirorunent error. When these occur, the internal control
block necessary for the function is freed and the request cannot be
retried by entering a subsequent ALLOC or DEALL. In either case, after
a failing ALLOC or DEALL, the status of the file remains the same as it
was before the failing command. In the case of a permanent error, a
snap (ID=34) is taken of the SVC 99 request block and the parameter
list used to attempt the request. The snap is not taken for a
temporary error. An error message is issued to the requesting terminal
for both temporary and permanent error conditions.

6-12

J

J

Chapter 6 File Handler Specifications

6.2.15.2 Sub tasking of DYNALLOC Macro

When a request for allocation is accepted by the operating
system, a certain lag time for volumes to be mounted, off-line units to
be varied, etc., may occur before the allocation request can complete.
In order to avoid forcing all Intercomm activity to wait while these
events take place, the system will attempt to issue the DYNALLOC under
a general subtask. To take advantage of this, the user should
implement the Intercomm Generalized Subtasking facility in his system
(see Chapter 3). As many general subtasks should be created as there
are expected to be concurrent DEALL or ALLOC commands entered, plus the
number required for other system and user functions. This is important
because, if a general subtask is not available, ICOMTASK performs the
subtasked code (the DYNALLOC macro) under the main task, which may
cause a significant deterioration of system performance.

6.2.15.3 Status of Files While Deallocated

Intercomm closes and marks a file as locked in the internal DSCT
before deal locating it. This means that any subsystem selecting the
file through the File Handler will receive a return code of C'9' in the
status field, and no I/O can be done. If the deallocation request
fails, the file will remain locked but may be unlocked by a FILE$UNLOCK
command. Thus, the operator may free the file for subsystems to use
until the deallocation request is retried. If the deallocation is to
be retried immediately, however, it is recommended that the file not be
unlocked so as to avoid the time lag involved in quiescing the file a
second time.

been deallocated, it remains locked until a
reallocation (FILE$ALLOC) request occurs. An

Once a file has
subsequent successful
unlock command cannot
reallocation, the file
whether or not it was
command.

6.2.15.4

unlock a deallocated file. Upon successful
is immediately marked unlocked, regardless of
locked prior to deallocation by a FILE$LOCK

Deallocation/Reallocation of SMLOG and SYSPRINT

The two Intercomm SYSOUT data sets SMLOG (for thread resource
dumps, pool dumps, core use statistics - see Chapter 5) and SYSPRINT
(for WQE traces, File Handler Statistics, and print line images written
via IJKPRINT - see Chapter 4) may be dynamically deallocated in order
to print or display the output immediately, rather than waiting for
Intercomm closedown. Use the CLASS option of the DEALL command to
route the output if the original class was not A. These files are
automatically immediately reallocated with CLASS=A. A subsequent ALLOC
command is not needed. Because routing of output to these files is
single-threaded, they will not be deallocated in the middle of a report
(except possibly when STATFILE is used for File Handler statistics -
see section 6.10).

6-13

Chapter 6 File Handler Specifications

6.3 VSAM FILE SUPPORT

The three major VSAM file types (key-sequenced, entry-sequenced
and relative-record) are supported under Intercomm. Access may be
either sequential or direct via key, relative byte address (RBA) or
relative record number (RRN), where applicable. Generic keyed access
may also be performed. Additionally, alternate index (path) and base
cluster processing may be performed against KSDS files. Details on
access parameters and restrictions are provided in the Intercomm
Programmers Guides.

Several additional restrictions and processing considerations
apply to using VSAM files as follows:

• Do not define a JOBCAT DD statement for the Intercomm
execution JCL stream.

• If user catalogs are used, define the STEPCAT DD statement(s)
after the / /PMISTOP DD DUMMY statement (see Section 6.5) in
the Intercomm execution step in order to prevent File Handler
access to the catalog at startup. DISP=SHR must be coded.
Do not specify STEPCAT if ICF catalogues are used.

• An empty ESDS file may be loaded on-line: it will be opened
only for output if there are no existing records in the
file. ESDS files with existing records are opened for
input/output. An empty file may be loaded by only one
subsystem which must be single threaded (MNCL=I), or control
single access via the RESOURCE macro. When allocating the
file via IDCAMS, specify REUSE and RECOVERY (not SPEED) on
the DEFINE statement. To overlay existing records (reload
the file), use the FAR parameter WRITEOVER (see section 6.6).

• STAEEXIT must be included in the Intercomm linkedit to ensure
closing of VSAM files after an abend occurs (see the
description of STAEEXIT usage in Chapter 8 and of its
processing in Messages and Codes). Note that Intercomm file
closing is not performed after a system cancel (x22 abend),
or if a second abend condition occurs during STAEEXIT
processing. The MVS Operating System does not perform VSAM
file closing if STAEEXIT does not successfully complete, nor,
of course, if a system crash (requiring reIPL) occurs.
Therefore, it may be necessary to add steps to the Intercomm
execution JCL stream to run IDCAMS on critical (updated)
files before starting/restarting Intercomm. While a VERIFY
operation will make an inquiry-only file accessible (but does
not update the catalogue), it is recommended to use a REPRO
(unload/load) operation against a file updated (added to)
on-line in the previously unsuccessful execution.

• When using a path (via an alternate index) to access a base
cluster, the base file should be opened at startup (if
accessed); use the FAR parameter OPEN=VSAM (see Section
6.6) . To preserve read/write integrity for updating via the
path(s) or base cluster, use the FAR DSN parameter (data set

6-14

J

Chapter 6 File Handler Specifications

name sharing), and implement LSR pools (see below). The DD
statement for the base must always precede that for the
path(s) .

6.3.1 Using a VSAM Local Shared Resources Pool

Local Shared Resources is a VSAM facility which allows selected
VSAM data sets to share a cornmon set of buffers rather than having a
buffer created for each data set for each access. This facility
implements a more efficient utilization of VSAM buffers and of dynamic
storage since buffers will be acquired for a data set only when an I/O
operation is started and are returned to the pool when the I/O
completes. The buffer pool is acquired by VSAM when the BLDVRP macro
is issued at startup, ensuring that the buffer pool will reside in a
contiguous storage area and thus reducing storage fragmentation. Since
the Intercornm File Handler overlaps I/O requests for VSAM data sets,
use of Local Shared Resources can cut down on paging requests for I/O
buffers; if a page containing a buffer is fixed for one I/O operation,
no subsequent paging need be done for other I/O operations which
require buffers residing on the same page(s). For further information
on Local Shared Resources, see the IBM VSAM Administration manuals.

To install Local Shared Resources under Intercornm, first code the
applicable BLDVRP parameters on the SPALIST macro. The parameters on
the SPALIST are coded exactly the same as they would be coded on the
VSAM BLDVRP macro (omitting the TYPE parameter). Coding these
parameters causes a list form of the BLDVRP macro (a BLDVRP parameter
list) to be built in a Csect named VRPLIST. The BLDVRP parameter list
is variable in length, the length dependent upon the number of buffer
pools there are. (Each VSAM buffer size coded causes a pool to be
built; for example, if 512 and 1024 are specified, a pool of 512-byte
buffers and one of l024-byte buffers are built.) Both index and data
component sizes must be specified for VSAM data sets to be connected to
the LSR pool.

One and only one Local Shared Resources pool may be built per
Intercornm region. Separate data and index component pools are not
supported. For each region in a Mul tiregion Intercomm, code BLDVRP
parameters on each region's SPALIST, as desired.

The pool is built at startup when an execute form of the BLDVRP
macro is issued naming the list form BLDVRP in the VRPLIST Csect. Once
this is accomplished, the resource pool characteristics cannot be
changed until Intercornm is brought down and back up again with a
revised version of the SPALIST coding in the linkedit. Furthermore,
the pool will not be built if Intercornm does not find at least one VSAM
data set that can be opened and connected to it. Once BLDVRP
completes, a message is issued giving status information on the pool.
If unsuccessful, the return code is displayed. Certain parameters can
be checked at assembly time (such as invalid buffer size) but others,
such as a failing GETMAIN, are contingent on circumstances. If the
BLDVRP fails, it is not retried and VSAM buffers will be acquired by
VSAM per data set as usual.

6-15

Chapter 6 File Handler Specifications

6.3.1.1 Connecting Data Sets to the LSR Pool

The Local Shared Resources pool will be built only if the user
specifies data sets to be connected to it. This is done by a FAR
option, LSR, coded on a FAR statement for each data set that is to use
the shared resources. When LSR is coded, the File Handler will alter
the ACB for the data set to connect it to the resource pool and test
special OPEN return codes for it. Also, resource-poo1-oriented usage
statistics may be accwnu1ated for the buffer pools. These statistics
are discussed in Section 6.10; File Handler Statistics.

Specifying LSR for a VSAM file also causes its ACB to be opened
at startup, provided a VSAM resource pool exists. (That is, BLDVRP was
successful.) If a VSAM resource pool is not created, the data set is
not opened at startup unless OPEN=VSAM is also specified on the FAR
card. Empty ESDS files and ESDS files for which the FAR WRITEOVER
option is used may not be connected to the LSR pool (VSAM restriction).

Even though a Local Shared Resources pool may be created
successfully, a data set may be unable to connect to it. This latter
fact is discovered when its ACB is opened and VSAM returns a special
return code indicating the error. (These error conditions and return
codes are fully discussed in VSAM Administration: Macro Instruction
Reference.) When an attempt to connect a data set to the resource pool
fails, the File Handler will issue a message to call attention to this
error and then retry the OPEN, this time using the normal nonshared
buffers. That is, the retry of the OPEN will not specify connection to
the shared resource pool. When an attempt to connect a data set to a
resource pool fails, it is usually due to a conflict between the data
set control interval size and resource pool specifications, or because
the data set is empty. The return code in the error message can be
used to determine the necessary action to be taken.

During execution, any VSAM request failing due to a lack of
resources (for example, STRNO exceeded or no buffers available) will be
retried on a 1/3 - second basis. Statistics about these failures may be
kept and reported so that the resource pool configuration may be
adjusted accordingly, as described in Section 6.10.1.

6.3.2 Sharing VSAM Files Under Intercomm

When a VSAM Shareoption 2 or 4 file is shared by multiple
Intercomm on-line or batch regions in the same CPU, the VSAMCRS FAR
option can be used to augment VSAM shared file protection. For
Shareoption 1 data sets, VSAM provides total READ/WRITE integrity. For
Shareoption 3 files, VSAM provides no integrity; integrity for such
files is not provided by Intercomm either.

For Shareoption 2 files, VSAM provides complete WRITE integrity
in the update region; that is, it will allow only one GET-update/
PUT-update or PUT- insert at any time. VSAM does not provide READ
integri ty in this ins tance ; a record jus t read by one region may be
updated or deleted by another before the first region is finished

6-16

J

J

Chapter 6 File Handler Specifications

processing it. The VSAMCRS FAR option augments VSAM processing by
providing READ integrity for Shareoption 2 files. Under this option,
Intercomm will issue an OS ENQ for shared control of the file on the
first GET by a thread, and retain that ENQ until the last user in the
same region releases the file. This will allow any region sharing the
file to read from the VSAM file, but no user may update that file until
all regions have released shared control. Conversely, no region may
read from the file while one region holds an exclusive control ENQ on
the file for the purpose of updating. Thus, Intercomm ensures that a
user program always has the latest copy of a VSAM record. The VSAM
file in the read-only region must also have the READONLY FAR option
specified for it.

For Shareoption 4 files, VSAM provides minimal aid toward
READ/WRITE integrity. The VSAMCRS option will ensure file integrity in
this case again by ENQing on the file fo~ shared control before GETs,
and for exclusive control before GET-update/PUT-update or PUT- insert.
In addition, an exclusive control ENQ within the region is issued
before processing any sequential request (for update or not) so as to
preserve VSAM positioning for the file. A DEQ and an ENDREQ are issued
at subsystem release time to release this positioning as well as to
cause VSAM to write out any updated buffers.

To conclude, the VSAMCRS FAR option should be coded when:

• READ integrity is desired for a Shareoption 2 VSAM file which
will be updated by another sharing Intercomm region.

• A Shareoption 4 file will be shared across two or more
Intercomm regions.

If any batch regions will be sharing the file while Intercomm is
executing, the batch access should be performed via the File Handler.
If this is not done, the user program should issue an OS ENQ before any
VSAM access, and DEQ afterwards (see the description of the VSAMCRS FAR
option for enqueue names). Further information on sharing of VSAM
files may be found in the IBM VSAM Administration Guide.

6.3.2.1 Implementation for Sharing VSAM Files Across Regions

The VSAMCRS option must be coded on a FAR card for a Shareoption
2 or 4 VSAM file in every Intercomm region which will share that file.
In addition, the module IXFVSCRS must be linked with the File Handler,
IXFHNDOI. IXFVSCRS is Link Pack eligible so it must be linked with
IXFHNDOI when the File Handler is Link Pack resident. The File Handler
will check for the VSAMCRS option when SELECT is called and ensure that
the IXFVSCRS module has been linkedited with it. If IXFVSCRS is not
present, SELECT will shut off the option, mark the file locked, and
return a code of 9. The VSAM file may be used but only if the operator
unlocks the file via the FILE command (see System Control Commands).

6-17

Chapter 6 File Handler Specifications

If VSAMCRS is coded for a Shareoption 3 file, the option is ignored and
the file is locked. In this case, the file may be used if the operator
unlocks the file via the FILE command. However, if the operator
unlocks a file which was locked because of either of the above reasons,
unpredictable errors may occur.

If VSAMCRS is coded for a Shareoption I file, it is ignored but
the file is not locked. However, VSAM may not allow the region to open
the file because Shareoption I restricts processing of a file to a
single region.

6.3.3

The Intercomm Interregion SVC (IGCICOM) must be installed.

Note: TCTV time-out values of subsystems using VSAMCRS files
may have to be increased substantially, depending upon
volume of activity against the files used. The ENQ
issued by IXFVSCRS is done with time-out suppressed, so
that the limiting value is the subsystem time-out value.
However, if an OS ENQ request for exclusive control never
completes during thread purge processing because the
thread is disabled (see Chapter 5), then further access
to the file may be prevented because an update request
never completed. The TALY,DA system control command may
be used to determine thread status.

ISAM!VSAM Compatibility Under Intercomm

Subsystems accessing ISAM files can function with little or no
modification when their files are converted to VSAM. Intercomm's
ISAM/VSAM interface does not use IBM's VSAM/ISAM interface modules.
ISAM/VSAM support is provided as an option which is specified by
setting the global &VSISAM to I in SETGLOBE before assembly of
IXFHNDOI.

The File Handler, when processing a converted VSAM data set, uses
QISAM-compatible access for a GET or PUT call and BISAM-compatible
access for a READ or WRITE call. An ISAM retrieval is converted to a
VSAM GET for update. If a key is provided, it is, of course, treated
as a full key. For GET, with a key, positioning and a search for a
greater or equal key is performed. For READ, a search is made for an
equal key. The FHCW is initialized internally for this operation.

ISAM delete code processing continues to function as usual via
the OPTCD subparameter of AMP on the DD statement. The new OPTCD
parameters (I, IL) which specify supplementary delete code processing
are also supported.

The appropriate Intercomm Programmers Guide should be consulted
for specifics on coding techniques and return codes.

6-18

Chapter 6 File Handler Specifications

6.4 FILE HANDLER COMPONENTS

The File Handler is organized into eight control sections:

F==~==~=========~~-=============~F====--=-=====-~-================~===

Member CSECT Function
P==================================F====--===============================

IXFDSCTn IXFDSCTA Data Set Control Table

IXFHNDOO

IXFHNDOI

IXFQISAM

IXFFAR

IXFB37

IXFVSCRS

IXFMONOO
IXFMON09

IXFMONOI

IXFQISAM

IXFFAR

IXFB37

IXFVSCRS

File Handler Initialization
File Handler Termination

File Handler Processing

QISAM Scan Mode via BISAM

File Attribute Record Processing

File Flip/Flop Processing

VSAM Cross-region Control Processing

The functions of each control section are detailed below, and
diagrammed in Figure 6-1. If any new version of any supported access
method (particularly VSAM) is installed, all File Handler components
must be reassembled and relinked.

6.4.1 Data Set Control Table (IXFDSCTA)

The Data Set Control Table (DSCT) contains, during execution, an
entry for each file (data set) that may be processed by the File
Handler. Each entry contains the ddname of the data set (corresponding
to the name of the Job Control DD statement defining the file); the
addresses of any Data Control Blocks or Access Control Blocks
constructed to process the file; buffer addresses; flags defining file
characteristics (data set organization, device type, disposition, and
access method); flags identifying the current processing status of the
file; I/O error flags; and a pointer to an associated File Attribute
Block (FAB) , if any, created at initialization time via IXFFAR.

Fixed information in each entry is inserted by the initialization
routine (IXFMONOO) at startup, and variable information is recorded in
the entry during execution by the File Handler processing routine
(IXFMON01) .

The first DSCT entry is preceded by a DSCT header containing a
count of the number of entries used, and flags for communicating
general processing options from IXFMONOO to IXFMONOI. The DSCT is a
resident table containing 20 entries, assembled as a Csect within the
member IXFHND01. As described below, this individual control section
may be replaced to change the size of the DSCT to accommodate more
files.

6-19

Chapter 6 File Handler Specifications

Task Input-Output Table
Unit Control

Blocks
Job File

Control Blocks

/

TIOT

...... -

ICOMIN
v

File Attribute
Records

/\'r---l ~ r

UCB

IXFMONOO

IXFDSCTA
+

FAB _

'1"
IXFMONOI

/

IXFFAR

/
SYSI.

SYSJOBQE

Step
Initialization

\

Data Set Control Table
(DSCT) and File Attribute
Blocks (FABs)

File Handler
User Data Sets ~~.-~ Processing

~ ~----~----,-.-------~--------------, \ \ ~~
IXFQISAM/IXFB37/IXFVSCRS

Application
Program

IXFMON09

Release and close each data
set specified in DSCT

Figure 6-1. File Handler Components.

6-20

Step
Termination

J

Chapter 6 File Handler Specifications

6.4.1.1 Defining the Data Set Control Table

The File Handler Data Set Control Table (DSCT) specifying the
maximum number of data sets to be accessed is created by the Intercomm
macro, IXFDSCTA. The File Handler file processing member (IXFHND01)
contains a DSCT allowing up to 20 data sets (DD statements) to be
accessed during Intercomm execution. Additionally, the Intercomm
release contains three other members, one of which may be utilized to
allow 50 data sets (IXFDSCT1), 100 data sets (IXFDSCT2), or 200 data
sets (IXFDSCT3). Code the DSCT parameter on the ICOMLINK macro, when
generating the Intercomm linkedit control statements, to specify which
member is to be used. Alternatively, an installation may generate its
own DSCT by coding the IXFDSCTA macro to specify a more precise
maximum. Any DSCT to be used in lieu of the File Handler DSCT must be
included prior to IXFHNDOO and IXFHNDOl in the Intercomm linkedit.

The IXFDSCTA macro also allows specification of File Handler
options and statistics requirements as discussed in subsequent
sections. The Intercomm-supplied DSCTs specify no options; statistics
are for detailed access statistics. Refer to Section 6.9.4 on IXFDSCTA
options and to Section 6.10 on File Handler statistics for procedures
to follow if other than a release version of the DSCT is used.

6.4.2 File Handler Initialization (IXFMONOO)

This Csect (within member IXFHNDOO) is executed at system startup
to initialize all entries in the Data Set Control Table. The names of
all Job Control DD statements in the current job step are found from
the operating system Task Input Output Table (TIOT). For each DD
statement, the allocated device type is determined (through a system
macro instruction) and coded information from the DD statement is
accessed (from the associated Job File Control Block). Additional
information is determined by opening, and subsequently closing, the DCB
or ACB, if VSAM. If the data set cannot be opened, it is flagged as
locked (unusable) in the DSCT, and an error message is issued to the
system console. If corrective action is taken, see the FILE command
(in System Control Commands) for dynamically altering the status of a
file. If the device type and data set characteristics are supported by
the File Handler, the name and selected information from the above
sources is transferred to an entry in the DSCT. Subsequently,
additional fixed information concerning the data set is located from
FAR options specified for the data set. This FAR information is also
transferred to the DSCT entry, or File Attribute Block, as applicable.

When the TIOT has been completely scanned, the DSCT header is
then filled in. Should the initialization routine be inadvertently
called again at any time after the DSCT has first been initialized, no
action will be performed. If, during File Handler initialization, the
DSCT becomes filled and unprocessed TIOT entries remain, a console
message is written and the job step is terminated.

6-21

Chapter 6 File Handler Specifications

6.4.3 File Attribute Record Processing (IXFFAR)

This routine is executed in File Handler initialization during
Intercomm startup to read and analyze an input data set defining
various optional attributes per on-line file, such as input only,
update only, name alias, open at startup, exclusive control processing,
etc. FAR specifications are described in Section 6.6, and in the
Intercomm File Recovery Users Guide.

6.4.4 File Handler Processing (IXFMONOl)

This Csect (within member IXFHNDOl) 'is composed of one mainline
routine for each function (SELECT, RELEASE, LOCATE, GET, PUT, GETV,
PUTV, READ, WRITE, RELEX). Each mainline routine verifies the caller's
parameter list, maintains the DSCT status information, determines the
access method to be used, issues the appropriate Data Management
Input/Output macro instructions, checks and moves the record or block,
and sets the resulting status code for the caller. Exclusive control
processing is also performed if requested and/or applicable depending
on data set type. See Section 6.7, "File Handler Service Routine
Sununary. " Other Csects in this module are IXFSUBS which performs save
area acquisition and chaining, and IXFABWTO which issues an error
message and forces a program check (via ISK-see Messages and Codes)
when an unrecoverable logical or physical error occurs.

6.4.5 OISAM Scan Mode via BISAM (IXFOISAM)

IXFQISAM provides the interface so that the function of QISAM
Scan Mode is supported by us ing BI SAM. Core requirements are
significantly reduced when an indexed sequential file accessed by QISAM
and BISAM can be accessed only through BISAM. The set of control
blocks, buffers, channel programs and work areas, tied up for QISAM as
long as the data set is open, is tllereby eliminated.

IXFQISAM must be included in the Intercomm linkedit, along with
the other File Handler modules even if IXFHNDOl is in the Link Pack
Area. The following statements must precede the include statement for
IXFHNDOI (whether resident or in the Link Pack Area):

CHANGE GET(GETZ)
CHANGE PUT(PUTZ)

These statements are automatically generated by the assembly of the
ICOMLINK macro. Thus, a program call to the GET or PUT routines will
initially enter IXFQISAM. If the request is not for a file to be
processed by this module, control is transferred to the revised entry
points (GETZ and PUTZ) in IXFHNDOI. If QISAM scan mode is not used,
remove the INCLUDE statement for IXFQISAM and the two CHANGE statements
in order to reduce processing overhead for sequential files accessed
via GET and PUT.

6-22

J

J

Chapter 6 File Handler Specifications

6.4.6 File Handler Termination (IXFMON09)

This routine, (a Csect in IXFHNDOO) calls the RELEASE function to
close each data set opened by the File Handler. When a file is closed,
it is closed for every access method for which it was opened, and all
buffers and main storage areas previously acquired for construction of
control blocks are released.

Typically, this step termination routine is required only once
per job step; it may be incorporated in a nonresident segment of the
overlay program structure. The abend intercept routine STAEEXIT
conditionally calls IXFMON09; therefore, if it is nonresident, the
overlay region it occupied may be overlaid in a dump.

6.4.7 Sequential Output File Abend Control (IXFB37)

IXFB37 receives control from IXFHNDOI after an x37 abend has
occurred for a sequential output disk file defined for such abend
protection. It cancels the outstanding WQE requests (posted with a
code of X'40') representing chained writes against the file which has
become full, opens the alternate data set, and then restarts the
outstanding writes against that data set in the same order in which the
writes were initially issued so that sequential record integrity is not
lost.

6.4.8 VSAM Cross-region Shared Control (IXFVSCRS)

If included in the same linkedit (Intercomm region or Link Pack)
as IXFHNDOl, IXFVSCRS is called for every access to a VSAM file. If
the file was defined as eligible for cross-region processing, IXFVSCRS
determines the type of system ENQ to issue (for shared or exclusive
contro I or to CHNG to exc lusive control, if applicable) via an
Intercomm INTENQ macro. An INTDEQ is issued and ENDREQ processing is
performed when the subsystem thread or resource purging (RMPURGE) calls
RELEASE for the file.

6-23

Chapter 6 File Handler Specifications

6.5 DATA SET SPECIFICATIONS

Every data set which may be accessed during the course of
Intercomm execution (from startup to c1osedown) must be defined by
appropriate DD statements in the execution JCL. All files must be
mounted prior to initiation of Intercomm, except those for which
deferred mounting is specified. After initiation, a subsequent
requirement for mounting a deferred data set, or a volume of a
multivolume tape file, may cause suspension of all message processing
activity in the system until the request is satisfied, depending upon
the operating system used.

All data sets accessed under Intercomm control must be previously
existing data sets (DISP=OLD or SHR), except sequential output data
sets (DISP=NEW or MOD). That is, VSAM, BDAM or ISAM data sets to be
accessed on-line must be created in a step preceding the execution of
Intercomm. The Intercomm-supplied utilities CREATEGF (for non-keyed)
or KEYCREAT (for keyed) may be used to initialize BDAM data sets.

Message processing programs will refer
one- to eight-character ddname, as specified
defini tion statement defining the data set.
the same data set must refer to it by the same

to each data set by its
in the job control data
Each program which uses

ddname.

It may be desirable to exclude certain DD statements containing
the DSORG parameter (such as data sets controlled by a DBMS attached in
the Intercomm region) from being included in the DSCT table. To
accomplish this reduction in size of the DSCT, insert

//PMISTOP DD DUMMY

after the last DD statement to be included in the DSCT. All Intercomm
data sets must precede this statement, except those used for snap
output and dynamic linkedit, and the JCL for BTAM lines. The maximum
number of DD statements for the Intercomm execution step is operating
system (DFP version and release) and TIOT size dependent.

6.5.1 Required DD Parameters

All DD statements defining data sets to be processed by the File
Handler must specify the DCB subparameter DSORG-(PS, DA or IS) for SAM,
BDAM or ISAM data sets, or AMP=AMORG for VSAM data sets. For fixed
length VSAM files, specify AMP-(AMORG,' RECFM=F') . Files for which
DSORG or AMP are not specified on the DD statement will not be
considered by the File Handler when constructing its internal data set
control information (DSCT) at system startup.

A DUMMY file (or DSNAME=NULLFILE) may be specified for any data
set referenced through the File Handler, however, a DSORG or AMP (see
above) must be specified. This is useful in eliminating unnecessary
data set definition and I/O operations upon data sets that are not to
be used in a given job. For example, the output log file may be
eliminated by specifying a dummy data set, or an indexed file
containing no existing records can be simulated for testing program

6-24

J

J

J

Chapter 6 File Handler Specifications

logic by specifying a dummy data set. Any File Handler operation may
be called for a dummy data set; successful completion return status
will be given to the requesting program for operations other than
input; EOF or KEY NOT FOUND return status will be given when an input
operation (GET or READ) is attempted. This feature does not apply to
x37 abend protected files.

For sequential, multivolume output files, SUL should be coded in
the LABEL parameter to avoid subsystem time-outs which could occur
between volume mounts.

6.5.2 Required DCB Parameters

The DCB parameters listed in the following table should be
contained in each data set label. The label is created from parameters
specified in the DD statement when the file is created or is
subsequently opened for output or updating. Any parameters omitted
from the data set label must be specified in the DD statement used in
the processing job step.

DCB
Parameter Function

DSORG specifies PS (sequential), IS (indexed) or DA (direct).

AMP

RECFM

DSORG is required on the DD statement (unless VSAM).

specifies AMORG for all VSAM files and is required on the
DD statement.

specifies record format: F, FB, U, V or VB (with A
and/or S).

BLKSIZE specifies exact or maximum block size, including 4 for
BDW, if applicable.

LRECL specifies exact or maximum logical record length,
including 4 for RDW, if applicable.

KEYLEN specifies key length (IS and Keyed DA only).

RKP specifies relative key position (IS only).

OPTCD specifies standard DCB macro parameters. E must be added
for Keyed BDAM with extended search option.

LIMCT specifies the number of records or tracks to search when
using the extended search option for Keyed BDAM.

NCP specifies the maximum number of I/O operations that may
be started for a sequential data set (BSAM or BISAM).

6-25

Chapter 6 File Handler Specifications

6.5.3 Read-Only Data Sets

One or more data sets may be specified as read-only by means of
FAR parameters. Requests for output operations upon data sets
specified as read-only are not accepted. For VSAM alternate index
processing, all paths but the one used for update must have read-only
specified.

Read-only specification provides a method for protecting a data
set for inquiry only when referred to by one ddname, while allowing
full access to programmers using another ddname for update of the same
data set. However, the inquiry requests may not always access the most
recently updated version of the record, depending on the buffer
emptying processing of the access method used.

6.5.4 Shareability of Sequential Data Sets (OSAM/BSAM)

A sequential data set is shareable among subsystems executing in
the same Intercomm region if:

• The data set disposition is OLD or SHR (read-only) and not on
tape (can be repositioned)

• The data set disposition is either NEW or MOD (write-only)
and interleaving of output records is immaterial (tape or
disk) and the DCB is not closed via RELEASE.

A sequential data set is not shareable if it resides on tape and
has disposition OLD or SHR.

If a sequential data set is shareable, the following occurs:

1. The status code returned by SELECT is a 1 if a SYSOUT data
set, disk output, or on tape (0 if disk input).

2. Write operations upon the file requested
different threads are performed in the
without repositioning.

by the same or
order requested,

3. Processing modes may not be intermixed: If GET or PUT
processing is used by any program, no other program may
employ READ or WRITE processing upon the same file, and vice
versa.

4. A disk data set with DISP=OLD or SHR is repositioned and
processed from the beginning for each new subsystem thread (a
new DCB is opened for each thread).

6-26

J

J

Chapter 6 File Handler Specifications

6.5.5 Data Set Disposition

The disposition indicated on the DD statement is related to the
operations which can be performed upon the file, as follows:

• NEW/MOD--The file can only be a sequential shareable data set
(see above), and no input operations are allowed.

• OLD/SHR--Both input and output operations are allowed
(provided the data set is not read-only); output operations
(depending on access method restrictions and processing
options) may be rewrites of existing records, additions of
new records, insertions of keyed records, or writing over of
an existing sequential file (see FAR WRITEOVER parameter).

6.5.6 SYSIN!SYSOUT Data Sets

If data sets are defined as DD *, DD DATA, or DD SYSOUT=x and are
accessed through the File Handler, they are processed in the same
manner as shareable sequential data sets, even though the actual
assignment is either to a unit record device or intermediate
direct-access storage. The implied dispositions are: SYSIN--OLD;
SYSOUT - -NEW. For SYSOUT data sets, DCB parameters are required:
DSORG=PS, RECFM and BLKSIZE, also LRECL if blocked. Under MVS, do not
code FREE-CLOSE for a SYSOUT data set because it is opened and closed
during File Handler initialization; the close will automatically
deallocate the data set. Use the FILE command to dynamically
deallocate it.

6.5.7 Reserved ddnames

SYSOnnnn data sets are reserved for the operating system and are
not processed by the File Handler (used for ICF catalogs).

The following ddnames are reserved for Intercomm System use and
should not be assigned to user data files:

• CHEKPTFL--System Checkpoint File

• DESOOO--File Description Records File (Change/Display)

• DYNLLIB--Dynamic Linkedit Load Module File

• DYNLPRNT--Dynamic Linkedit Print File

• DYNLWORK--Dynamic Linkedit Work File

• FASTSNAP--Used by Fast Snap facility (see Chapter 8)

• FRLOG--File recovery image printing. at restart time

6-27

Chapter 6 File Handler Specifications

• ICOMIN--File Attribute Record input

• INTERLOG--System log (current)

• INTSTORn--Used by Store/Fetch Facility (and MMU)

• LOGDISK--Restart Work File

• LPSPALIB--LPSPA load module library (Link Pack Facility)

• NEWSNA?--Alternate snap data set used by Spinoff facility

• NULLFILE-Dummy File (File Handler)

• PAGES--Used by Page Facility

• PMIQCFDD--Dynamic Data Queuing Queue Control File

• PMISCFDD--Dynamic Data Queuing Space Control File

• PMISTOP- -Delimits last DD statement to be processed by File
Handler

• RCTOOO--Output Utility Format Table disk-resident entries

• RESTRTLG--System log (for restart)

• RPTOOO--Batch reports to Tape File (Output Utility)

• SECOOO--Basic Security disk-resident table entries

• SECURITY--Extended Security System File

• SIMCARDS--Front End Simulator parameter cards

• SMLOG- -Statistical data and other output from Resource
Management (thread dumps, etc.)

• SNAPDD--Snap dumps

• STATFILE--File Handler Statistics File

• STSLOG--System Tuning Statistics Report File

• SYSABEND--Used if abends are to dump all of storage

• SYSPRINT--Used by IJKTRACE, IJKPRINT, messages etc.

6-28

J

Chapter 6 File Handler Specifications

• SYSSNAP--ID~l5 snaps (test mode)

• SYSSNAP2--ID=20 snaps (test mode)

• SYSUDUMP--Used if abends are to dump Intercornm region only

• THREDLOG--Backout-on-the-Fly facility DDQ File

• VRBOOO--Edit Control Table disk-resident entries (Edit
Utility)

Additional system files with user-assigned ddnames for the
following system facilities:

• BTAM output queues--names assigned in BTAMSCTS (BTAMQ)

• VTAM output queues--names assigned in VTAMSCTS (VTAMQ)

• Disk Message Queues--names assigned in Subsystem Control
Table (PMIQUE)

• Front End Simulator input data sets (DDNAME=Terminal-ID), and
simulated Local 3270 print files (SCRxxxxx)

• Page Facility (in addition to, or instead of, PAGES)

• Multiregion Support (MRS) disk message queues (DDQs)

• Dynamic Data Queuing (DDQ)

• Data Entry (INTBSKRM, INTBDTET, INTBDTnn)

• Autogen (AUTOGPCH)

• IXF (Dynamic File Allocation - volser reference)

6.6 FILE ATTRIBUTE RECORDS (FAR)

The FARs are read during File Handler initialization by the
module IXFFAR after all internal DSCTs have been initialized, and the
information from the FARs is encoded in DSCT appendages called File
Attribute Blocks (FABs). The ddname of the FAR data set is ICOMIN; any
card image data set accessible via QSAM GET is allowed.

Several types of specification may be made via the File Attribute
Record input data set. They are:

• Defining a data set (by ddname) as input only. This means
there will be no output activity allowed on the file. Any
attempt to alter the file will be treated as an error by the
File Handler. Coding this facility has exactly the same
effect as coding ddname=R in the EXEC statement PARM field.

6-29

Chapter 6

•

File Handler Specifications

Defining a BISAM data set (by ddname) as update only. The
file will be opened for updates, not for inserts; an attempt
to insert a record will be treated as an error. A core
saving at least equal to the block size of the file is
realized by this definition.

• Defining an alias for a data set (by ddname). This causes
the File Handler to treat all calls referencing the file as
if they referenced its alias. This technique is useful for
mixing SYSOUT data from different routines using different
hard-coded ddnames without reassembling. Two ddnames that
are aliased must have the same DeB parameter specifications.

• Specifying that the file be opened at system startup.
Opening DCBs or ACBs at startup reduces storage
fragmentation; once storage is allocated for a DCB/ACB it
will stay allocated for the rest of the run, unless the file
is closed via a RELEASE request to the File Handler with the
close option, or the FILE command. Opening the files at
startup time segregates long-term storage holdings at the top
of the region, hence eliminating fragmentation that would
occur when files are opened at first access.

• Specifying that the high-level index of a BISAM file be kept
in storage. Index level must be above the cylinder level.

• Specifying the ddname of a duplex output file. This causes
all output operations against the primary file to be
replicated automatically against the duplex output file. The
result of this is to create an on-line backup copy of a
critical sequential output file. This specification is
allowed only if both files are sequential output. The duplex
relationship is not symmetrical. For example, if DD2 is a
duplex of DD1, then users selecting DDI would have their
output duplexed on DD2; but users selecting DD2 would not
have their output duplexed on DDI. Do not use for the
Intercomm log or x37 abend protected files.

• Marking a file permanently down if any I/O call to the File
Handler results in a status code of C'l' or G' 9' . When a
file is marked down, then all calls to perform I/O will
result in a status code of C'l', all SELECTs result in a
G'9', and all RELEASEs complete normally. After all current
users of a down file have released it, the file will be
closed.

• Specifying Intercomm logic for BDAM exclusive control, rather
than that of the operating system. A significant reduction
in GPU requirement is gained, but no other region may request
exclusive control on that file. Do not use DISP=SHR.

6-30

Chapter 6 File Handler Specifications

• Specifying Intercomm logic for ISAM exclusive control. The
default assumed is that ISAM exclusive control updates are
limited to BISAM access within a single region. This is most
efficient and should apply to most users. Users whose
requirements differ must specify the XCTL FAR attribute.

• Specifying Intercomm logic for VSAM cross-region shared and
exclusive control for VSAM Shareoption 2 and 4 files.

• Overwriting of an existing sequential or VSAM ESDS file
(DISP=OLD or SHR).

• Forcing a wait state when NCP is reached for an output
sequential file. For example, NCPWAIT is specified for the
file with the ddname of QXl, and NCP=2 is coded on the JCL
for QXl. A process ing thread calls the File Handler which
proceeds to write a block to the file. The File Handler does
an internal wait (that is, exits to the Dispatcher until the
ECB for the write is posted complete). The Dispatcher gives
control to a second thread which also calls the File Handler
to write a block to QXl. The File Handler issues that write
and discovers that an earlier write to the same file is still
outstanding, and that NCP for the file is 2. The File
Handler issues a HARDWAIT; that is, the Intercomm main task
goes into the wait state until the ECB for the first I/O is
posted complete. Execution then resumes with the first
thread made active and the second waiting on its I/O to the
file.

• Preventing x37 abends for sequential output disk files and
Intercomm log.

• Providing LSR pool buffer support for VSAM files.

• Specifying Data Set Name Sharing for a VSAM base cluster and
its path(s).

6.6.1 Coding the FARs

Comment statements, starting with an asterisk (*) in column 1 may
be interspersed with the FAR statements. The coding format for FARs
is:

ddname,attributel,attribute2, ... attributen.

FAR data may be coded from column 1 to 72; leading blanks are allowed;
however, embedded blanks are not allowed.

A complete description of the FAR parameters and syntax for
coding is contained in the File Recovery Users Guide. In the simple
case of utilizing FARs to specify attributes not associated with File
Recovery, the attributes are:

6-31

Chapter 6 File Handler Specifications

ALIAS=ddname

B37

to define an alias for a data set, in order to route I/O
operations to the alias data set. The originating ddname will
have the FAR attributes of the alias file; no other attributes
may be coded on this statement. x37 abend protection may not be
requested for the originating ddname.

applies only to sequential output disk files and the Intercomm
Log (if to disk). Invokes an automatic facility to protect
Intercomm from an x37 abend resulting from running out of space
on this file. Installation specifications are in the section
"Sequential Output Disk File Flip-Flop Facility" in this chapter.

CORE INDEX

DSN

requests that the highest-level index of a BISAM file be kept in
main storage. This option applies only to files large enough
that the index hierarchy goes above the cylinder level. Cannot
be used for lAM files.

causes the specified VSAM KSDS file to be opened with the 'data
set name sharing' attribute and is to be used for a base cluster
and associated path(s) when updating, or adding to, the data set
is done via one or more ddnames, while inquiry is also done via
one or more of the ddnames. That is, via the base and/or one or
more of its paths. The DSN attribute guarantees file integrity
and VSAM exclusive control when updating a record (depending on
SHAREOPTIONS - see section 6.3.2). Otherwise, an inquiry via a
path, for example, may not return the latest version of a record
updated in the base (different buffers used for the same control
interval) . Coding DSN for a data set forces the LSR attribute
for that data set (VSAM requires use of LSR pools for DSN
processing), even if LSR omitted on the FAR statement. A FAR
with the DSN attribute must be coded for the base cluster and
each path ddname. The JCL and FAR statements for the base must
be coded before those for the associated path(s). VSAM files for
which DSN is specified must have been allocated with the UPGRADE
(on the AIX) and UPDATE (for the path(s» attributes on the
associated DEFINE statements for IDCAMS.

DUPLEX=ddname
specifies the ddname of one or more duplex output files. When a
duplex output operation is performed, the status code returned to
the caller is C'O', if any output operation was successful.
Otherwise, the status code from the first operation is returned.

NOTE:

ERRLOCK

When duplex files are specified, all associated files are
automatically flagged with the ERRLOCK attribute.

to force marking a data set permanently down, when any I/O call
to the File Handler results in a status code of C'l' or C'g'.

ICOMBDAMXCTRL
to indicate that Intercomm logic is to be used for BDAM exclusive
control, rather than that of the operating system.

6-32

Chapter 6 File Handler Specifications

LOCK

LSR

specifies that any requests to Select or access (perform I/O) the
file will be refused with a return code of 9 in the FHCW (see
section 6.7). This is useful for a file for which off-line
processing did not complete before Intercomm is brought up. To
process against the file at a later time, the FILE command must
be used to unlock the file.

causes a VSAM data set to be connected to the VSAM Local Shared
Resources pool at ACB OPEN time. The data set must be a VSAM
data set which is currently loaded (LSR cannot be used to load a
data set or to reload an ESDS file) and the resource pool must
have buffers large enough to contain the data set's control
intervals. The SPALIST BLDVRP parameter must be coded if LSR is
coded. (See "Using a VSAM Local Shared Resources Pool" in
Section 6.3.)

NCPWAIT
forces Intercomm into the wait state when the number of pending
I/O's to a sequential file has reached NCP for that file.
Intercomm becomes active again when the first I/O in the series
is posted complete. This option is forced for INTERLOG, the
Intercomm log data set.

NOTE: This option should be used with caution. Its improper
use can cause the sys tern to enter the wait state
excessively and performance will deteriorate as a
result. Concurrent I/O requests should be controlled by
SYCTTBL parameters as described in Section 6.2.8.

OPEN={BASIC }
{QUEUED}
{BOTH }
{VSAM }

requests that the file be opened at startup time, rather
waiting for the first I/O request. The meanings of
subparameters depend on the file organization:

direct:
BASIC open BDAM DCB
QUEUED not applicable
BOTH not applicable

indexed sequential:
BASIC open BISAM DCB only
QUEUED -- open QISAM DCB only
BOTH -- open both BISAM and QISAM DCBs

than
the

(If IXFQISAM is used, the only valid specification is BASIC;
BOTH or QUEUED will generate unpredictable results.)

sequential:
BASIC open BSAM DCB only
QUEUED open QSAM DCB only
BOTH open both BSAM and QSAM DCBs

VSAM
-- open VSAM ACB

6-33

Chapter 6 File Handler Specifications

READONLY
to define an input only data set.

UPDATEONLY
to define a BISAM data set allowing updates, but not inserts.

VSAMCRS
indicates that a VSAM Shareoption 2 or 4 file will be shared by
more than one region in the same CPU and that updates will be
performed by at least one region. Intercomm will augment VSAM
shared file processing and provide read integrity for Shareoption
2 files and read/write integrity for Shareoption 4 files by means
of OS ENQs: QNAME-INTERCOM, RNAME=VSAM-dsn (up to 44
characters). This FAR specification must be coded for the file
in question for every region which will share the file. See also
"Sharing VSAM Files Under Intercomm" in Section 6.3.

iVRITEOVER
allows a complete rewrite of an existing physical sequential file
(DSORG=PS, DISP=OLD or SHR) or VSAM ESDS file. If this option is
not specified, any data written to the file will be added at the
end of existing data (that is, DISP=MOD assumed). If iVRITEOVER
and READ ONLY are specified for the same file, READONLY will be
used and no writing to the file will be allowed. That is,
READONLY suppresses iVRITEOVER. However, if the file is an empty
VSAM ESDS, READONLY is ignored. If iVRITEOVER is specified for a
VSAM ESDS file, then the file is opened at startup for output
only and with the reset attribute; the LSR option, if specified,
is rejected. To use this option, REUSE must have been coded on
the DEFINE statement for the VSAM ESDS cluster when the file was
allocated via IDCAMS. PUTV calls to the file must be single
threaded (see section 6.3). Before attempting to access (via
GETV) records loaded to an empty/reused ESDS file, the data set
mus t fir s t be closed. For a subsequent access, it is
automatically reopened for input/output.

XCTL={QISAM}
{MULTIREG}
indicates that ISAM exclusive control updates are performed using
QISAM, or from multiple regions. These specifications are
functionally equivalent, and result in an OS ENQ at the file
level. This is the least efficient means of assuring exclusive
control, and can be avoided by restricting the updates to BISAM
and to within a single region.

6-34

J

J

J""---, ,

Chapter 6 File Handler Specifications

A typical FAR input data set might be:

//ICOMIN DD *
MASTFILE,READONLY,COREINDEX
TRANFILE,UPDATEONLY,OPEN=BASIC
CUSTRECS,ALIAS=MASTFILE
INRECS,READONLY
/*

When ALIAS is specified, it must be the only attribute defined for a
particular ddname. In other words, coding a FAR as:

TRANSIN,UPDATEONLY,ALIAS=INTRANS

is invalid syntax. When an ALIAS is defined:

ddnamel,ALIAS=ddname2

any call to SELECT for ddnamel will cause subsequent calls to READ,
WRITE, GET, PUT, GETV or PUTV to operate on ddname2. There is no need
for a DD statement with ddnamel in the execution JCL; the ALIAS
attribute overrides all specifications for ddnamel. Any reference to
ddname2 thus refers to ddname2 and the associated FARs for ddname2, if
any.

To code the FAR for duplexed output:

ddnamel,DUPLEX=ddname2

All WRITEs to ddnamel will be duplicated on the ddname2 data set. DD
statements for both data sets must be present in the execution JCL.

IXFFAR will WTO images of each FAR read from ICOMIN in the course
of proces sing, inc luding comment statements. Thus, IXFFAR error
messages (FRnnnI) may easily be related to an individual FAR. Once the
FAR syntax is correct, you may suppress the image WTOs (80-character
card images) by inserting the following card at the beginning of the
FAR deck:

NOMESSAGES

FAR images will be suppressed; error messages will still be printed.
This card must be the first record of ICOMIN.

NOTE: No internal DSCT is created for ICOMIN.

6-35

Chapter 6 File Handler Specifications

6.7 FILE HANDLER SERVICE ROUTINE SUMMARY

The following discussion provides a brief summary of File Handler
functions. The specifics of calling procedures are discussed in
greater detail in the Intercomm Programmers Guides.

The File Handler Service Routines are entry points within the
File Handler Csect IXFMONOl. Each service routine is called with a
parameter list, as summarized in Figure 6-2. The File Handler
determines specific operations to be performed, based upon the
parameter list and DCB information. Parameters for File Handler calls
are:

EXTDSCT (External Data Set Control Table): 12-fullword
control block area supplied (but not modified) by the
calling program, or ddname for a RELEASE with close
option.

(File Handler Control Word): four-byte option/status
area initialized prior to call to request special
functions and analyzed after call to determine status
of operation.

Area: I/O area within calling program (ddname in the case
of ~ELECT).

Key: Requested key. For undefined
field contains the record length.

record format, this
RRN for VSAM RRDS.

Block-id: Requested BDAM block-identification (RBN, TTR, or
MBBCCHHR), or Relative Byte Address (RBA) for VSAM.

The SELECT function is called before the first access to a file
in order to:

• Verify the availability of the file.

• Pos i tion the file for subsequent sequential access. A
reuseable (direct access input) file will be repositioned to
the beginning of the file for subsequent sequential
retrieval. A nonreuseable (tape, direct access output) file
will be positioned after the last record previously
processed.

• Initialize and chain the External DSCT area.

The RELEASE function is called after the last access to a file in
order to:

• Free any dynamically obtained buffers and control blocks

• Update file status tables and perform necessary housekeeping
functions (unchain External DSCT area).

6-36

J

J

Chapter 6 File Handler Specifications

A special RELEASE function may be used after the above operation
has been performed to close all shared control blocks for a given file
if there is no currently outstanding operation being performed against
the file by the system.

SELECT

RELEASE

GET

PUT

READ

WRITE

RELEX

GETV

PUTV

Symbol

R

I

D

DI

U

E

EXTDSCT FHCW

R R R

R R

R R R I or U

R R R U

R R R DI or U D

R R R DI or U D

R R

R R R I E

R R R I E
------------ --------

Indicates

Required parameter

Optional for ISAM or VSAM KSDS and RRDS files, otherwise
invalid

Optional for Keyed BDAM file (extended search), required
for random BDAM (instead of key)

Required for Keyed BDAM and ISAM files, otherwise invalid

Required for accessing a BSAM or QSAM file with
undefined record format (DCB=RECFM=U)--record length

Required for address-accessed VSAM (RBA) , instead of key

Invalid Parameter

Figure 6-2. File Handler Service Routine Parameter Summary

6-37

Chapter 6 File Handler Specifications

The GET function may be used to access the next sequential
logical record from a QSAM or ISAM data set. In the case of
application programs requiring QISAM retrieval logic, the GET function
is used either to obtain the next sequential record for processing, or
to locate a record by key and continue sequential processing with the
located record. The File Handler may implement QISAM logic through the
Basic Indexed Sequential Access Method (BISAM), transparent to the
application program.

The PUT function is used to write or rewrite a record or a
block. When creating a new QSAM data set, new records are written
using the PUT function. When updating an existing QSAM or (logical)
QISAM data set, the last record obtained by a GET function may be
rewritten by calling the PUT function as the next operation upon the
file.

The READ function is used to access physical blocks located
within BSAM, BISAM, or BDAM data sets. For sequential data sets, each
request for a READ function will process a physical block of records,
which must be deblocked if necessary by additional programming. For
indexed sequential data sets, each request for a READ function will
locate (through an index search) the block containing the desired
record, but will read only the single record specified by the key. For
direct access data sets, each request for a READ function will process
a physical block indicated by relative block number (RBN) , relative
track and record (TTR) or actual address (MBBCCHHR). In the case of
BDAM without keys, the requested block is retrieved. In the case of
BDAM wi th keys, the key search begins at the block specified,
continuing until the search is complete. (Use of the extended search
option is based upon DCB parameters including LIMCT.)

The WRITE function is used either to write the next sequential
block in a new output BSAM data set, or to update the last block or
record obtained by a READ function from a BSAM, BDAM or BISAM data
set. The WRITE function can be used to insert records to a BISAM data
set specified by key (position located through an index search). A
record to be rewritten must have been previously read; an inserted
record must not have been previously read. WRITE with key is the only
function which will add records to an indexed sequential data set.

The GETV and PUTV functions are used to access VSAM data sets,
requesting either sequential or direct access via key, relative byte
address, or relative record number. A keyed access call for direct
retrieval may provide either a generic (leading portion of a) key or a
full key, and may specify either a search for an equal (generic) key or
for the first greater-or-equal (generic) key. All retrieval calls are
processed assuming that no update is to be performed unless the caller
specifies otherwise. All calls allow for subsequent sequential access
(key/RBA/RRN parameters not passed). The caller may switch back and
forth from any access technique to another, provided VSAM rules are not
violated; for example, keyed request against an entry-sequenced data
set.

6-38

J

J

Chapter 6 File Handler Specifications

6.8 LOCATE FACILITY

An additional File Handler service routine, LOCATE, provides
access to internal DSCT information for Assembler Language programs
only. The LOCATE function is intended primarily for system use in
al tering the normal processing of a file. LOCATE provides access to
data management control blocks used by the File Handler. A call to
LOCATE will return data set specifications, error indicators and
related information. This data, not available via other File Handler
calls, can then be examined and/or judiciously altered.

A parameter list of variable length (depending on the amount of
information required) is passed to LOCATE. The specific format is:

CALL LOCATE,(work-area,fhcw,dsctfld[,dcbfld,decbfld,iobfld]),VL, X
MF-(E, list)

Each parameter suffixed with "fld" must specify a fullword
field. The address of the requested control block will be returned in
each of these fields. The first three parameters are required; the
remaining three are optional.

The parameters passed to LOCATE are defined as follows:

• work-area-- pointer to a File Handler work area which may be:

A location containing a ddname. If dcbfld is specified,
a public DCB is to be supplied (that is, an opened DCB to
be shared by all users of this file is returned).

A File Handler work area (External DSCT) for a previously
selected file. If dcbfld is specified, a private DCB is
to be supplied (that is, the DCB returned is to be used
only for I/O operations referencing the specified work
area. The DCB will be closed when the work area is
RELEASEd.)

• fhcw- - the File Handler Control Word name. The completion
status, in character format, will be returned in the first
byte. Completion codes are:

•

C'O'-- control blocks located

C'9'-- file not located or improper type (if VSAM, and
file could not be opened, byte 3 of FHCW contains
OPEN error code)

dsctfld- - pointer to a location on a word boundary.
address of the internal DSCT will be returned here.
IXFDSCTA macro should be used to generate a Dsect.

6-39

The
The

Chapter 6

•

File Handler Specifications

dcbfld- - pointer to a location on a word boundary. The
addres s 0 f an opened Data Control Block (DCB) will be
returned here (see work-area, above). If this parameter is
the last coded, the DCB will be one for sequential access
(GET/PUT). If additional parameter(s) follow, the DCB will
be one for basic access (READ/WRITE). The record length,
block size, and other data set characteristics are specified
in the DCB. (For details, see IBM System Control Blocks, and
macro instruction lHADCB.)

• decbfld-- pointer to a location on a word boundary. Address
of a Data Event Control Block (DECB) for basic access will be
returned here. Contents of the DECB vary by access method.
For BDAM or BISAM, error status indicators are present in the
DECB. (See IBM System Control Blocks.) This pointer must be
hex zeros if file is not yet selected (address of ddname of
the file is supplied for work-area). Address of DECB will
not be returned in such a case.

• iobfld- - pointer to a location on a word boundary. Address
of the last used Input/Output Block (lOB) will be returned
here. If no READ/WRITE operation has been performed, a zero
value is returned.

LOCATE for VSAM, with dcbfld and decbfld specified, returns an
opened ACB and a RPL address, respectively, even if the data set was
converted from ISAM. If decbfld not specified, only the ACB address is
returned if the file could be opened.

Programs which must refer to fields within the internal Data Set
Control Table may be coded as in this example:

CALL
L
USING

IXFDSCTA

LOCATE,(work-area,fhcw,dsctfld),VL
register,dsctfld
DSCT,register

6-40

Locate DSCT Entry
Load Entry Address
Make Fields Addressable

Define DSCT Fields

J

J

Chapter 6 File Handler Specifications

Some of the fields which may be useful are:

DSCTDCBQ pointer to QSAM or QISAM DCB

DSCTDCBS pointer to BSAM or BISAM DCB

DSCTDCBD pointer to BDAM DCB

DSCTDECB pointer to DECB for BSAM, BISAM or BDAM

DSCTACB pointer to VSAM ACB

DSCTRPL pointer to VSAM RPL

Each of the above fields contains a significant value only if the high
order bit of the word is 1 (use TM fie1d,X'80').

6.9 FILE HANDLER OPTIONS

A number of File Handler options may be specified to further
customize performance for an installation's needs. These options are
specified via JCL, tables or conditional assembly of the File Handler.

6.9.1 Exclusive Control Time-Out

This option wi thin the File Handler specifies a maximum time
limit that a particular record or block may be held in exclusive
control by a particular message processing thread. This time value
represents the actual duration of message processing time between a
request for exclusive control and the subsequent release of exclusive
control by file update, or access to the same External DSCT
representing a message thread's access to a file. This value is a
constant defined within the member IXFHNDOl. The standard setting
represents two minutes for exclusive control at the physical block
level, ten minutes for exclusive control at the data set level. An
Intercornrn System Engineer should be consul ted to adj ust this value.
This feature does not apply to VSAM files.

6.9.2 Conditional Assembly of the File Handler

Several File Handler options are specified by global settings and
subsequent conditional assembly of File Handler modules. The globa1s
are defined in the member INTGLOBE and specified in the member
SETGLOBE.

6-41

Chapter 6 File Handler Specifications

The following members must be reassembled and linked:

IXFHNDOO,IXFHNDOl

If the &VSAM or &VSISAM globals are set to 1,
reas semb led whenever a new version of VSAM is
&VSISAM to 1 internally forces &VSAM to 1).
illustrated below.

the modules must be
installed (setting

The globals are

~===========~==F=================

Global Default
Definition File Handler Setting
(INTGLOBE) Function (SETGLOBE)

====================F==================================F=================
&ISAM Allow ISAM access SETB 1
&VSAM Allow VSAM access SETB 1
&VSISAM Allow VSAM/ISAM compatability SETB 1
&IAM Allow lAM file access SETB 0

6.9.3 Sub tasked GETs

The File Handler has a generalized subtasking facility to allow
all GETs (both QSAM and QISAM) to be overlapped with other Intercornrn
processing. The reason for the facility is that the GET macro does not
return control to a task, when it is issued to retrieve a record, until
the record is obtained. Without subtasked GETs, the File Handler, and
therefore Intercornrn, would go into a wait state whenever a GET was
issued. Using a subtask to perform the GET allows Intercornrn to
continue processing while only the subtask remains in the wait state.
The module ICOMTASK must be included in the linkedit.

At startup a user-specified number of generalized subtasks must
be created, which will issue the GETs, when called upon to do so by the
main Intercomm task. The user specifies the number of general subtasks
to be created in the TASKNUM parameter of the SPALIST macro.

Each subtask executes GETs serially. Therefore, with only one
subtask, all GETs will be overlapped with other processing, but not
with each other. Specifying a larger number of subtasks allows the
GETs themselves to be executed concurrently.

File Handler closedown (IXFMON09) detaches all the subtasks.

6-42

J

Chapter 6 File Handler Specifications

6.9.4 IXFDSCTA Options

The four bytes beginning at displacement 4 from the start
(header) of the IXFDSCTA Csect are the "options" bytes for the File
Handler, and can be coded to give the various options listed in Figure
6-3 either by the appropriate hex digits coded in the OPTIONS parameter
in the IXFDSCTA macro, or can be patched into the Intercomm load module
at execution time (Csect name: IXFDSCTA, displacements: 4, 5, 6
and 7).

Options

Do not overlap BISAM (single-thread) xx 40 XX XX

Allow unit record devices in DSCT xx XX XX 80

Disable automatic initialization XX XX XX 01

GET: Time-slice option XX XX 80 XX

Single-thread PS READs XX 80 XX XX

BDAM: Prevent exclusive control XX 02 XX XX

BDAM: Force exclusive control XX XX 02 XX

BDAM: Single-thread nonexclusive READs XX 20 XX XX

BISAM: Prevent exclusive control XX 04 XX XX

BISAM: Force exclusive control xx XX 04 XX

BISAM: Bypass RE-READ option (exclusive control) XX 01 XX XX

Figure 6-3. IXFDSCTA Options

6.9.5 User-Specified DCBs

The File Handler provides the m~n~mum necessary control blocks
and options for processing a file. Certain increased performance
processing options require that the user supply the data control
block. Such nonstandard options include resident master indexes, main
storage work areas for ISAM data sets, etc.

DCBs should be supplied to the File Handler before they are
required for I/O operations. The user startup exit (USRSTRT1) in
Intercomm is a convenient point at which to supply DeBs.

6-43

Chapter 6 File Handler Specifications

The user routine must be written in Assembler Language and use
standard linkage conventions.

To supply a DCB to the File Handler, first call the LOCATE
function. This will store the address of the internal Data Set Control
Table (DSCT) entry for the requested ddname in a user-supplied field:

CALL LOCATE,(ddname,fhcw,dsctfld),VL,MF=(E,list)

The return status (first byte of fhcw) from LOCATE must be tested
before proceeding. If the code is nonzero, the named file is not
available for accessing; no DCB can be supplied.

The following statement must precede the END statement in the
user's module:

IXFDSCTA

This macro will generate a Dsect (labeled DSCT) in the assembled
routine for the internal DSCT entry for the requested file.

If the file is available, dynamic main storage should next be
acquired (STORAGE macro with SYS=YES parameter coded). The number of
bytes obtained should be the length of the user-supplied DCB. The user
DCB can then be constructed in this dynamic area. Or, if constructed
elsewhere, the DCB can now be moved to the area. Unused bytes at the
beginning of the DCB must be copied into the dynamic area. The ,symbol
naming the DCB macro instruction must correspond to the first byte of
the area. The DCB need not be opened; however, an OPEN macro can be
issued if desired.

Having created a DCB in dynamic storage, load the DSCT address
returned by LOCATE into a register. The statement:

USING DSCT,register

should be in effect at this point. The proper DSCT field to contain
the address of the created DCB can now be addressed; this field will be
one of the following:

• DSCTDCBQ for a QSAM or QISAM DCB

• DSCTDCBS for a BSAM or BISAM DCB

• DSCTDCBD for a BDAM DCB

Bit zero of the field DSCTDCBx should now be tested:

If the bit
supplied. If the
field DSCTDCBx.
DSCTDCBx.

TM DSCTDCBx,X'80'

is on, a DCB already exis ts ; no new DCB can be
bit is off, place the address of the user DCB in the

Next, move (MVI) X' 80' into the firs t byte of

6-44

J

Chapter 6 File Handler Specifications

The File Handler will now use the supplied DCB for subsequent I/O
operations (by all program threads referencing the file). Use will
continue until closing of the data set is executed explicitly.
(Closing of the data set would be requested by a RELEASE with the close
option.) Upon closing:

• The supplied DCB will be closed.

• The main storage area occupied by the user DCB will be
freed. (Storage freed will correspond in length to the
standard DCB for the particular access method.)

A new DCB must be supplied if subsequent processing is desired.

Figure 6-4 illustrates a possible user-coded routine to supply a
user DCB to the File Handler.

TITLE
USRCSECT CSECT

'USER SUPPLIED BISAM DCB TO FILE HANDLER'

MYDCB
DCBLEN
ADDRDSCT
STAT

CALL
CLI

LOCATE, (MYDCB+40,STAT,ADDRDSCT),VL
STAT,C'O'

BNE NODDNAME ERROR. FILE NOT AVAILABLE
L
USING
TM
BO
LA
STORAGE
MVC
ST
MVI

2,ADDRDSCT
DSCT,2
DSCTDCBS,X'80'
DCBlNUSE ERROR. DCB ALREADY IN USE
O,DCBLEN
LEN=(O),SYS=YES ...
O(DCBLEN,l),MYDCB
l,DSCTDCBS
DSCTDCBS,X'80'

DCB DSORG=IS,MACRF=(RUS,WUA),DDNAME=MYDD, ...
EQU *-MYDCB
DC F'O'
DC CL4' ,
IXFDSCTA
END

Figure 6-4. Sample User-Supplied DCB

6-45

Chapter 6 File Handler Specifications

6.10 FILE HANDLER STATISTICS REPORT

The optional program IXFRPT01, when included in the resident
Intercomm linkedit, produces statistical reports of File Handler
usage. Reports on all files accessed are periodically written to
SYSPRINT. Data for these reports is maintained in the internal DSCT
and optionally on the disk data set STATFILE. The printed figures
reflect cumulative file activity; that is, total activity since
Intercomm startup or the last reini tialization of STATFILE (if
defined) . A second entry point, IXFRPTIQ allows on-line inquiry via
the FHST command. To allow terminal commands, a SYCTTBL for a resident
subsystem must be defined in the SCT with entry point IXFRPTIQ, along
with the appropriate verb definition for FHST in BTVRBTB. In this
case, a terminal operator asks for statistics for a particular file or
all files; the requested information is returned to the terminal. See
System Control Commands.

The general layout of the File Handler Statistics Report is shown
in Figure 6-5. The leftmost column lists ddnames of all accessed files
in the system. The second column shows how many times each file has
been selected. Columns three through six show the number and type of
accesses to the file (less detail may be obtained; see below). At the
right hand side of the page, total accesses per file are shown.
AVERAGE shows the average nwnber of accesses per SELECT. (For
SYSPRINT, which has no SELECTs, no average is calculated.) At the end,
a swnmary line showing total activity for all files is printed.

DATE 83.056 FILE HANDLER STATISTICS REPORT TIME 10:19:38.7 PAGE 1

DDNAME SELECT GET PUT READ WRITE TOTAL AVERAGE
INTERLOG 12 0 0 0 43 43 3.58
STSLOG 2 0 48 0 0 48 24.00
INTSTOR2 9 0 0 11 0 11 l. 22
SYSPRINT 0 0 521 0 0 521
SMLOG 5 0 649 0 0 649 129.80
WAGEMSTR 14 0 0 41 27 68 4.86
STOKFILE 4 4 0 0 0 4 l.00
PARTFILE 6 0 0 6 0 6 l.00
PMIQUE 5 0 0 0 0 0 0.00
RCTOOO 9 0 0 9 0 9 l.00

SUMMARY 66 4 1218 67 70 1359 20.59

Figure 6-5. File Handler Statistics Report

A terminal request for statistics for a particular file produces one
line of output formatted exactly as a body line in the SYSPRINT report.

6-46

J

J

L

Chapter 6 File Handler Specifications

The number of statistics options is globally specified via the
&FHSTATS global in SETGLOBE (released as 5 for selects, gets, puts,
reads and writes). A corresponding number of fullword buckets are
generated at the end of each internal DSCT entry for each file accessed
via the File Handler.

If less
&FHSTATS global
accesses) and
used) :

CLOSDWN3
DDQMOD
DDQSTART
INTSECOO
INTSTORF
IXFB37
IXFCHKPT
IXFCREAT
IXFCTRL

detailed statistics options are desired, change the
value to 3 (selects, inputs, outputs) or 2 (selects,
reassemble and relinkedit the following modules (if

IXFDSCTn
IXFDYALC
IXFDYNAM
IXFFAR
IXFHNDOO
IXFHNDOl
IXFLOG
IXFQISAM

IXFRPTOl
IXFRVRSE
IXFSNAPL
IXFVERFl
IXFVSCRS
LOG PUT
PMISNAPl
PMITEST
RMPURGE

IXFRPTOl is initially dispatched by startup. Thereafter it
dispatches itself on the time interval specified by the global &RPTINTV
in the member SETGLOBE. As released, the report is produced at ten
minute intervals. If this value is changed, reassemble STARTUP3. Tqe
time interval for dispatching IXFRPTOl can be changed during Intercornm
execution. This is accomplished by issuing a DISPATCH macro
instruction for IXFRPTOl. The address of the new time interval (in
timer units) is passed in register 1. The IXFRPTOl rescheduling cycle
can be hal ted by dispatching IXFRPTOl on a time interval of O. The
dispatching of IXFRPTOl is stopped by closedown. A final File Handler
Statistics Report is produced, but IXFRPTOl is not rescheduled. As
written, IXFRPTOl supports up to 1596 files (internal DSCT table
entries) . If more are defined in the Intercornm JCL, change the value
coded for FLAGTBL in the save/work area to the number of files divided
by 8 (each bit represents one file).

At each execution of IXFRPT01, statistics are retrieved from
internal File Handler tables. If defined, the STATFILE disk data set
is also updated. Updating consists of summing figures from the
internal tables with those already accumulated on STATFILE. The
internal tables are then zeroed out. A report reflecting the total
figures on STATFILE is then written to SYSPRINT. The number of lines
per print page may be modified by changing the global setting for
&PAGELIN in IXFRPTOl (default=55).

When entered via an inquiry from a terminal, IXFRPTOl also
retrieves required data from STATFILE, if defined. Statistics in
internal tables are added in and the on-line report is sent to the
requesting terminal. STATFILE is not updated, nor are the internal
tables zeroed. Statistics for all files, even if never selected, are
displayed when an FHST command without a ddname is entered. The number
of lines per display (including headers) depends on the terminal line
length (minimum=80) and buffer size (defaults to 24).

6-47

Chapter 6 File Handler Specifications

6.10.1 File Handler LSR Statistics

In addition to the normal File Handler statistics, when a Local
Shared Resources pool is present, statistics on all of the buffer pools
in the resource pool may be gathered. Since the buffer pools are
shared among data sets, the statistics are reported on a pool rather
than data set basis. Information about the individual data sets using
the pool is displayed as usual in the data set section. To implement
LSR statistics, the &FHSTATS global must be set to 5 and the modules
listed in the previous section reassembled if &FHSTATS was less than 5.

The following statistics are displayed for Local Shared Resources
(see illustration);

BFR SIZE

REQ REJ

BFRFND

BUFRDS

STRNO EX

STRMAX

one line of statistics for each pool size in the
resource pool.

number of requests (requiring a given size
buffer) which were rej ected because there were
not enough buffers of that size to satisfy it
(the amount reflects all retries of rejected
requests).

number of requests satisfied by data found in a
buffer of that pool size (no I/O needed to
satisfy request).

number of reads to bring data into a buffer of
that pool size.

number of requests that were rej ected because no
placeholders were available; reflects all retries
of rejected requests (kept for resource pool as a
whole) .

maximum number of placeholders in use at anyone
time (accumulated for the whole resource pool,
not on a buffer pool size basis, because
placeholders are assigned to the resource pool as
a whole).

Note that, when LSR is used, VSAM attempts to use buffers that
are the size of a data set's control interva1(s). If no buffer pools
of that size exist, VSAM uses the next larger size. Thus if X and Y
are pool buffer sizes and Z is a control interval size such that Z is
larger than X but smaller than Y, buffers for control interval size Z
will be taken out of the pool of size Y buffers. When the "request
rejected" statistics are displayed, they will show the number of
requests rej ected for each control interval size rather than buffer
size. One should be aware, however, that the buffer pool that had no
buffers available for the request was that of the next larger size.

6-48

" J,

J

J

Chapter 6 File Handler Specifications

Also, when a key-sequenced data set is used with LSR, both the
data component and the index component share buffers from the LSR
pool. If the data and index component have different CI sizes, both
buffer sizes must be available in the pool (with the exact sizes or the
next higher size) and buffers must be free in the pool for the request
to be satisfied. Thus, a request may be rejected if either buffer pool
size is temporarily out of buffers. VSAM gives no indication as to
which buffer size was unavailable, so when a KSDS request is rejected,
this is reflected in the statistics under both CI sizes. This fact
must be considered when making adjustments to the LSR pool based on the
File Handler statistics.

DATE 88.056 VSAM LSR POOL STATISTICS TIME 10:19:38.7 PAGE 2

BFR SIZE REQ REJ BFRFND BUFRDS

512 0 3 1
1024 0 0 0
1536 0 0 0
2048 0 0 0
2560 0 0 0
3072 0 0 0
3584 0 0 0
4096 0 0 0
4608 0 0 0
5120 0 0 0
5632 0 0 0
6144 0 0 0
6656 0 0 0
7168 0 0 0
7680 0 0 0
8192 0 0 0

10240 0 0 0
12288 0 3 1
14336 0 0 0
16384 0 0 0
18432 0 0 0
20480 0 0 0
22528 0 0 0
24576 0 0 0
26624 0 0 0
28672 0 0 0
30720 0 0 0
32768 0 0 0

STRNO EX 0 STRMAX 1

Note that the new buffer (Control Interval) sizes available under
XA 2.2.0, DFP V2.3 are also reported. A LSR statistics display may be
requested at a terminal via the FHST command.

6-49

Chapter 6 File Handler Specifications

6.10.2 Creating the File Handler Statistics File (STATFILE)

STATFILE must contain a number of records at least one greater
than the maximum number of files in the system. The STATFILE record
consists of an eight-byte ddname and four bytes for each statistic.
Totals on STATFILE are cumulative and may represent daily or weekly
totals, etc., that is, cumulative for several Intercomm jobs. A
schedule for reinitializing STATFILE should be established to meet the
needs of the particular Intercomm installation.

To create STATFILE, use the CREATEGF utility (see Chapter 12),
for example:

Iistepname
IISTEPLIB
IISYSPRINT
IISTATFILE
II
II
IISYSIN
F STATFILE
II

EXEC
DD
DD
DD

DD
xx

PGM=CREATEGF
DSN=INT.MODREL,DISP=SHR
SYSOUT=A
DISP=(NEW,KEEP),DSN=STATFILE,SPACE=(TRK,(2,1»,
UNIT=unit,VOL=SER=volume,
DCB=(DSORG=DA,BLKSIZE=560)

*

where xx is the number of blocks to create based on the value of n
below.

At Intercomm execution time, the following DD statement must be
present for STATFILE:

IISTATFILE
II

DD DSN=STATFILE,DISP=(OLD,KEEP),
VOL=SER=volume,UNIT=unit,
DCB=(DSORG=PS,BLKSIZE=560,LRECL=n,RECFM=FB) II

where n is:

16 if only collecting SELECT and ACCESS statistics, (&FHSTATS
set to 2),

20 if SELECT, INPUT, and OUTPUT statistics are to be
collected (&FHSTATS set to 3),

28 if SELECT, GET, PUT, READ, and WRITE statistics are to be
collected (&FHSTATS set to 5).

6-50

J

L

L

Chapter 6 File Handler Specifications

The SYSPRINT data set must be specified in the Intercomm
execution JCL as follows:

IISYSPRINT
II

DD SYSOUT~A,

DCB-(DSORG=PS,BLKSIZE=141,LRECL=137,RECFM=VA)

The SYSPRINT file should be blocked for optimum throughput since PUTs
to the file are not overlapped (see Chapter 4).

6.11 USING THE FILE HANDLER SEPARATELY FROM INTERCOMM

The File Handler may be used independently of any other Intercomm
components, if desired, by linkediting the modules BATCHPAK, IXFHNDOO,
and IXFHNDOI (preceded by IXFDSCTn, if a separate Internal DSCT table
is needed) with any application program. File Handler interface coding
is exactly the same as used in on-line programs; the same entry points
(including SELECT and RELEASE) are called, and the same parameters are
used. Unresolved external references, beginning with 'IJK' (Dispatcher
entry points), will be bypassed during execution. However, if a VSAM
or x37 abend protected file is being processed, IJKDSPOI must also be
included.

When the File Handler is used off-line by a processing program,
that is, used separately from Intercomm, the initialization routine
(IXFMONOO) may be called prior to any File Handler processing; however,
this module will be automatically called, if necessary, when the File
Handler is first used in a job step. If errors occur during
initialization, IXFMONOO returns to the operating system with a return
code of 16. The File Handler will not use any "unresolved" entry
points to other Intercomm modules if these are not available during
execution. At the end of processing, the batch program should issue a
second call to RELEASE with the close option, to close the file
(required for VSAM).

also be performed if IXFFAR is included in
DD statement for ICOMIN (and FAR statements)
For VSAM file processing, if any of the

FAR processing will
the linkedit, along with a
in the execution JCL.
following FAR options
apply:

are used, additional linkedit considerations

• LSR include an INTSPA (SPALIST macro assembly with

•

EXTONLY=BOTH and with LSR pool definitions) before the
include statement for BATCHPAK

VSAMCRS - include KEYFLIP (before the include for IJKDSPOl),
PMINQDEQ, IXFVSCRS, and then INTSPA before the include
statement for BATCHPAK; INTSPA must contain a SPALIST macro
assembled with a SETGLOBE in which the Intercomm Interregion
SVC was specified (&MRSVC not 13).

6-51

Chapter 6 File Handler Specifications

6.11.1 Using the File Handler in LINKPACK for Batch Programs

To interface a batch program to the File Handler in the Intercomm
Link Pack Module in the Link Pack Area, the following steps are
necessary:

1. Prepare the Link Pack Facility as described in Chapter 7.

2. Write an interface routine (INTERFAC) to:

• CALL MULTI SPA

• CALL LPSTART

• CALL BATCHPGM

where BATCHPGM is the entry point of the user batch program.

3. Include in the linkedit

• INCLUDE SYSLIB(MULTISPA)

• INCLUDE SYSLIB(LPSTART)

• INCLUDE SYSLIB(LPINTFC)

• INCLUDE SYSLIB(IJKDSPOl) (if VSAM file accessed)

• INCLUDE SYSLIB(IXFDSCTl)

• INCLUDE SYSLIB(IXFHNDOO)

• INCLUDE SYSLIB (IXFFAR) (if FAR options used)

• INCLUDE SYSLIB (BATCHPAK)

• INCLUDE SYSLIB(BATCHPGM) User Batch Program

• INCLUDE SYSLIB(INTERFAC) User Interface Routine

• ENTRY INTERFAC

6-52

J

J

Chapter 7

EXECUTION OF INTERCOMM

7.1 INTRODUCTION

Execution of Intercomm entails a linkedit of all resident
user-coded and Intercornrn-supplied routines and tables, and resident or
overlay subsystems, to produce an executable load module, followed by
execution in Test Mode, or in live mode with actual or simulated
terminals. The mode of execution is controlled by the EXEC statement
PARM data and/or system logic determining whether or not specific
system routines were included in the load module.

The Intercornrn System Manager(s) may provide as many as four
different linkedit versions of Intercornrn for use at an installation:

1. A production system for actual day-to-day operation

2. A terminal testing system,
t~sted via operator t:ntry
terminal input

inc luding user subsystems being
at terminals, [,nd/or simulated

3. A Tes t Mode sys tern, including production subsystems for
volume testing

4. A minimal Test Mode system, including only system programs
and service routines required for testing one subsystem.

This chapter documents the following topics:

• Generating the linkedit control statements

• The Intercomm linkedit

• Execution JCL

• System startup

• System closedown

• Live operation

• Intercomm quiesce facility

• MVS operation and installation

• XA installation and recommendations

• lnterregion SVC installation

• Link Pack Feature

7-1

Chapter 7 Execution of Intercomm

7.2 GENERATING LINKEDIT CONTROL STATEMENTS

The required linkage editor control statements to produce an
Intercomm load module for execution may be generated initially via the
ICOMLINK macro (described in Basic System Macros). Based upon global
settings in the SETENV and SETGLOBE members and user-specified
parameters or default values for ICOMLINK, assembly of ICOMLINK
produces (punches) INCLUDE statements for the required Intercomm
routines, and OVERLAY and INSERT statements for their overlay structure
(if desired). The required entry point to the Intercomm load module is
PMISTUP. Recommended JCL to produce the linkedit deck is as follows:

II EXEC ASMPC,Q=LIB,DECK=DECK
IIASM.SYSIN DD *
* GENERATE LINK EDIT DECK

ICOMLINK user-defined-parameters
END

1*
IISYSPUNCH DD DSN=INT.SYMINCL(link-name),DISP=SHR

NOTE: the output from SYSPUNCH can be a member of a PDS such as
SYMINCL (see Chapter 2), a TSO data set, etc., as desired.

J

INCLUDE statements must then be added for application subsystems j)
and subroutines (except those dynamically loaded). In addition,
appropriate OVERLAY and INSERT statements for some of these modules may
be defined if an overlay structure is used. Overlay areas for
application subsystems and subroutines are described in Chapter 3 of
this manual. Also, for executing under MVS, ORDER statements may be
placed at the beginning of the linkedit as described later.

7.3 THE INTERCOMM LINKEDIT

The actual 1 inkedi t may be accomplished via the Intercomm
procedure LKEDP. The SYSLIB definition for this procedure references
only the Intercomm libraries; the user must provide additional DD
statements to reference system libraries, such as SYSl. TELCMLIB
(teleprocessing access method modules), SYSl.COBLIB (COBOL modules),
and user libraries for application subsystems, etc., as appropriate.
An example of the use of the LKEDP procedure is shown in Figure 7 -1.
The SYSIN data set can be a PDS member (from SYMINCL) or TSO (CMS) data
set.

The linkedit error messages should be examined for unresolved
references. Many optional features are implemented by Intercomm
condi tional calls; in this case unresolved references present no
problem. The Intercomm S.E.O.D. may be consulted to verify the
critical nature of unresolved references.

7-2

Chapter 7

IILINK
11*
11*
11*
IILKED. SYSLIB
II
II
II
II
IILKED.SYSIN

1*

Execution of Intercomm

EXEC LKEDP,Q=xxx,LMOD=ICOMEXEC
THE FOLLOWING SUBSTITUTION JCL ADDS THE COBOL
LIBRARY TO THE CONCATENATION SEQUENCE OF INT.MOD&Q,
INT.MODUSR,INT.MODLIB,INT.MODREL:
DD
DD
DD
DD
DD DSN=SYS1.COBLIB,DISP=SHR
DD *
INCLUDE

INCLUDE

LINKEDIT DECK PRODUCED
BY ICOMLINK MACRO

PLUS REQUIRED INCLUDES
FOR USER MODULES AND TABLES

Figure 7-1. Using LKEDP Procedure to Generate Intercornm Load Module

7.3.1 Linka~e Editor External Symbol Table Overflow

If the following error message:

IEW0254 ERROR - TABLE OVERFLOW--TOO MANY EXTERNAL SYMBOLS IN ESD

occurs during linkage editor execution, override the linkage editor
SIZE parameter in the following manner:

IILINK EXEC LKEDP,Q=xxx,LMOD=ICOMEXEC,
II PARM.LKED='SIZE=(512K,100K),XREF,LIST,LET,NCAL'

Refer to IBM linkage editor documentation for appropriate SIZE values
to use. Add OVLY to the parms if an overlay structure is desired. Do
not code either REUS or RENT. Also increase the REGION size if
necessary.

7.3.2 Linka~e Editor Parameters

There are two linkage editor parameters which influence the
number of overlay FETCH operations and, in turn, the response time for
an overlay-loaded program.

If the Downward Compatible (DC) option is specified when
1inkediting, the maximum block size created on the load library will be
1024 bytes. This means that for a 10K overlay program to be loaded, at
least 10 FETCH operations will be executed. This will considerably
slow the response time of the program because of the extra 1/0
involved. The solution is to ensure that there is no DC parameter for
the linkedit step (see SIZE override example, above).

7-3

Chapter 7 Execution of Intercornm

In the SIZE parameter, the maximum record size of a disk unit
will be equal to one half of the value of the second parameter (yyy) of
SIZE=(xxx, yyy) . If the text record size is too small, there will be
additional FETCH operations, again slowing response time. Therefore,
specify twice the maximum text record size (for 3330s, yyy should equal
26K; for 3350s, yyy should equal 40K; for 3380s, yyy should equal 80K).

7.4 EXECUTION JCL

The execute (EXEC) statement is the first statement of each job
step and contains the load module name and data that pertains to the
job step. The principal function of the Intercomm execute statement is
to identify the load module to be executed and define Intercornm's mode
of execution. The execute statement is coded as follows:

Iistepname EXEC PGM=load-module-name,
II PARM='mode-of-execution[,ddname=R,ddname=R,
II ,DB=name
II ,APPLID=name,PASSWD=code]'

load-module-name
indicates the name of the Intercornm load module to be execu~ed.

mode-of-execution
describes the function to be initiated. The execution mode
parameter may be omitted in an on-line execution using Automated
Restart (see Chapter 9). Acronyms that define the mode of
execution and their functions are:

STARTUP

RESTART

RESTRNL

TEST

Execution Mode Options

Normal startup with terminals

Restart mode of startup, including processing of log for
message restart

Restart without log; will call RESTORE if checkpoint is
used (see Chapter 9)

Execute Test Mode of Intercomm

TESTR Test Mode with full restore and restart capability

TESTRNL Same as RESTRNL, except in Test Mode

7-4

J

Chapter 7 Execution of Intercomm

To preserve semipermanent DDQs (especially if spooled
printer output created via MMU) and/or semipermanent
Store/Fetch strings, Intercomm must be brought up in
restart mode; if message restart is not used, code
RESTRNL.

ddname=R
specifies the ddnames of those data sets that are to be
"readonly. " Each ddname is coded followed by the equal sign and
an R. FAR statements may be used instead of coding this parameter
(see Chapter 6).

DB=name
specifies, for TOTAL users, the DBMOD name to be used for TOTAL
file processing at startup. This value overrides the &TOTDESC
global definition in SETGLOBE and/or the value coded on the
TOTFLGEN macro. (TOTAL support is described in Data Base
Management System Users Guide.)

APPLID=name
optionally specifies the VTAM APPLID name to be used for this
execution of Intercomm when the ACB is opened to establish
Intercomm as a VTAM application. This name is substituted into
(overrides) the name field in the VCT within the Front End Network
Table. See SNA Terminal Support Guide.

PASSWD=code

7.4.1

optionally specifies the password code for opening the VTAM ACB to
establish Intercomm as a VTAM application (see APPLID parameter
above). If defined, this value overrides that coded for the
PASSWD parameter of the VCT macro.

Global WTO and MCS Routing

Users can force and/or suppress routing of system messages issued
in Intercomm via the PMIWTO and PMIWTOR macros. The SPALIST macro has
four parameters for this purpose:

• FMCSWTO

• SMCSWTO

• FPMIWTO

• SPMIWTO

The SPALIST parameters specify, for both MCS (CPU console) and
Intercomm routing, the options to be suppressed, and those to be forced.
This facility could be used, for example, to prevent any system messages
(except WTORs) from being sent to the CPU console, or to force all
messages to SYSPRINT. See Basic System Macros for coding
specifications. See also the WTOPFX parameter of the SPALIST macro for
message prefix-ID override feature, and Messages and Codes for message
syntax.

7-5

Chapter 7 Execution of Intercomm

7.4.2 STEPLIB or JOBLIB Requirements

Execution JCL must reference the following libraries as STEPLIB
(IAMLIB if the lAM access method is used in the region) or JOBLIB data
sets:

• The 1 ibrary containing dynamically loaded subsystems and
subroutines.

• The library containing compiler-oriented dynamically loaded
service routines, such as SYSI. COBLIB. Frequently used
routines should be made resident whenever possible.

• The library containing the Intercomm load module.

• The library containing user versions of Intercomm tables
which may be loaded at startup.

• MODREL- -required if dynamic linkedit is used, and the
ICOMCESD and ICOMVCON modules are not contained on one of the
above-mentioned libraries.

• The library containing the ESS (Extended Security System)
load module INTSEC02 if it is linked with the SECUEXIT user
exit (or MODREL if INTSEC02 used alone).

Concatenation sequence is critical to performance. The order of
the DD statements is installation-dependent, based upon frequency of
access. MODREL is infrequently referenced, and should be among the
last in the series. If an overlay structure is used, the library
containing the overlay loaded routines should be first in the
concatenation stream.

7.4.3 DD Statement Requirements

The execution JCL contains Data Definition (DD) statements
describing all data sets accessed by Intercomm. The following DD
statement names are required:

• INTERLOG

The system log data set (tape or disk; see Chapter 9).

• SMLOG

Resource Management statistics reports and thread d~~ps

7-6

J

J

L

Chapter 7 Execution of Intercomm

• STSLOG

System Tuning Statistics reports

• SYSPRINT

For IJKTRACE output, statistics reports, system messages

• SNAPDD

For snap output

• SYSUDUMP

For abend output if SNAPDD unusable

• RCTOOO

Output Format Table disk-resident Entries

Additionally, for subsystem and terminal queues:

• PMIQUE

•

Intercomm subsystem disk queues (Output, Change/Display,
etc.) as defined in the SYCTTBLs at system installation time

The Intercomm BTAM/TCAM terminal disk queues defined via
SYCTTBLs in the BTAMSCTS module, or via BTERM macros in the
network table, at Front End installation time

• VTAMQ

VTAM terminal disk queues defined via LUNIT/LCOMP macros for
a VTAM Front End

• ddnames

Additional installation-dependent disk queue data sets

Additionally, for Test Mode execution:

• SYSSNAP

Test Mode input messages (snaps with ID=lS)

• SYSSNAP2

Test Mode output messages (snaps with ID=20)

7-7

Chapter 7 Execution of Intercomm

Additional Intercomm data sets that may be required are described
in this manual with each particular feature; that is, FAR Parameters
Input File, File Handler Statistics File, Checkpoint File, Terminal
Simulator Input, Dynamic Linkedit, etc., and in the special feature
manuals.

NOTE: All Intercomm and user data sets accessed by the File
Handler must include the DCB parameter DSORG (or AMP, if
VSAM) on the DD statement and, except for sequential
output data sets, must be DISP=OLD or SHR. The Intercomm
utility CREATEGF may be used to format BDAM data sets
such as disk queues. (See Chapter 12, "Off-Line
Utili ties" .)

7.5 SYSTEM STARTUP

System startup is accomplished by the module STARTUP3, consisting
of a resident Csect given control by MVS, and a second Csect (which may
be linked in an Overlay) performing the main system initialization
functions. The resident module, PMISTUP, accomplishes MVS linkage
conventions, calls POOLSTRT (if in link) to load Intercomm pools (see
Chapter 5), and issues the ESTAE macro if the module STAEEXIT is
included in the Intercomm linkedit (see Chapter 8).

The second Csect, STUOVLY, performs analysis of the mode of
execut ion and, based on the presence of system modules, performs
initialization functions in the following order:

• set PMIWTO/R messages global Job/Region Identifier

• LPSTART - resolve VCONs from Link Pack Module

• SSINIT - START/STOP command function initialization

• FASTSNAP initialization
if MRSVC specified and FASTSNAP DD statement present
if DCB opened successfully-set on SEXFSNAP

• Configuration initialization

CPU Model
Operating System
Release Number
Region Boundaries
Link Pack Area

SEXMODEL
SEXBITSI
SEXVERSN
SEXPPBEG, SEXPPEND
SEXLPBEG, SEXLPEND

• set SPINOFF snap SYSOUT spooling if FREE=CLOSE specified

• open SNAPDD data set (PMISNAP DCB)

• STOSTART - start Store/Fetch initialization

7-8

J

Chapter 7 Execution of Intercomm

• attach ICOMDYNL - Dynamic Linkedit initialization

• IXFMONOO - File Handler initialization
IXFFAR - FAR specifications processing

• IJKCESD - initialize Csect/Entry table for debugging reports,
etc.

• TASKSTRT - Generalized subtasking initialization

• initialize log buffers (unless Satellite Region with single
region logging)

•
•
•
•
•

acquire storage for number/size buffers defined in SPA
SELECT per log buffer

PMIDATER set date in SPA

ILBOSTPO OS/VS (ANS) COBOL initialization

ASYNCH Attach overlay load sub task if present

ASYNCLDR Attach dynamic load subtask if present

determine mode (from EXEC PARM or AUTORSTU Automated
Restart)

SPAMODE
Startup (0)
Restart (4)
Test (8)

• determine restart (Live or Test) options

• SYSEVENT macro
specified)

make Intercomrn non-swappable (if MRSVC

• VERBSTRT - dynamically load BTVRBTB, if not in linkedit

• MRSTART - initialize Multiregion if applicable

• CKLINK - check linkedit structure corresponds to SCT

• USERINIT - user exit for preliminary startup processing

• SCT initialization - all SYCTTBLs
SELECT disk queue; if queue cannot be selected (opened),

flag SCT entry to only use core queue
Initialize auxiliary SCT - point to primary

• CALCRBN - allocate RBNs for Front End and SCT disk queues

• if SAM modules in link, check SAMTABLE included

7-9

Chapter 7 Execution of Intercomm

• PMIPRIME - If Test Mode, prime input data buffers

• RESTORE - if no res tart log; ini tialize checkpoint file, if
checkpointing desired

• DDQSTART - initialize Dynamic Data Queuing facility

• LOGPROC process restart log: checkpoint, restart, file
recovery, data base recovery, serial restart (if used)

• INTERLOG initialization (unless Satellite Region with single
region logging)

set log buffer count to NCP (if NCP lower)
free OS buffers

• set flag to allow WTO message routing override

• TRIGGER - Time Zone Table processing

• dispatch CHECKPT - checkpoint processing

• DBSTART - data base initialization

• dispatch LOGINPUT - extra log input - threshold testing

• dispatch IXFRPT01 - File Handler Statistics reporting

• BTAMSTRT - BTAM/GFE/Extented TCAM initialization
Front End Table Verification (BTVERIFY, TCAMVER)

• VTSTART - VTAM initialization

• PMICKFTB
PMIFILET

adjust block size, try selecting each file in

• BLDL for all dynamically loadable SIS - move resident BLDL to
SCT extension - validate load module size against SEXSPMAX
(SPALIST- -MAXLOAD parar:teter)

• dispatch DELOAD - dynamic subsystem loading processor

• PMIDEBUG - debugging WTOR (see Messages and Codes)

• dispatch PMlHARDW - allow Intercornrn quiesce (adjust timers)

• wait for Dynamic Linkedit to end, detach subtask

7-10

J

Chapter 7 Execution of Intercomm

• check dynamic subroutines
if in link, flag as permanently resident
if to be permanently resident, load and flag as resident.

• STOSTART - wait for Store/Fetch initialization to complete

• MMUSTART - initialize Message Mapping Utilities

• USRSTART - user exit - issue startup broadcast messages or
ESS sign-on messages (call USRSTRTI from USRSTART)

• INTSTS - start System Tuning Statistics reporting

• dispatch Subsystem Controller for all resident and
dynamically loadable SCTs and for all SCTs in first overlay
or VS Execution group (if used)

• dispatch TRANG EN - Model System Generator activity

• issue startup complete message with latest SM level, SPA
address

• issue SPIE (ESPIE if XA) using SEXSPICA «1,13),15) if
SPIEEXIT in linkedit (see Chapter 8)

• dispatch LOWCORE - (core flush routine when cushion released
condition) - wait on SEXLOCOR ECB

• indicate startup complete post SEXSTUPE for VTAM (and
BTAM/TCAM BLINEs with WAIT=YES) - set SEXSTRUP in SEXSWTCH

• post Multiregion active, if used

• IJKTLOOP - closed loop detection routine initialization

• dispatch exit to the Dispatcher.

At completion of system startup, both the Back End and Front End
(if required) have created tasks on the Dispatcher queues to perpetuate
their operation. Control is then transferred to the Dispatcher to
continue execution and manage the Intercomm multithreading environment.

7-11

Chapter 7 Execution of Intercomm

7.5.1 Preliminary Startup User Exit--USERINIT

Early in startup processing, the user exit USERINIT is
conditionally called with the address of the SPA in register 1. The
exit must save and restore the caller's registers. Because many system
facilities are not yet initialized, the user must be careful of trying
to use Intercomm facilities. However, the exit could be used to
initialize user statistics processing, or check data base or file
availability, etc. See the sequence of startup processing described
above for the state of the system when the exit is called. The exit
called at the end of startup, USRSTRTl described below, provides a
better point for user system initialization.

7.5.2 Startup User Exits--USRSTART/USRSTRTl

A conditional call (CALLIF) is made to the user exit USRSTART
prior to completion of system startup and after initialization of the
Front End, File Handler, etc. If included in the load module, this
routine is given control with register 1 containing the address of the
execution parameter list. A member USRSTART is included with the
Intercomm release.

The USRSTART routine, as released, formats and sends a message to
the broadcast group name TOALL at startup time. The message states:

*** GOOD MORNING *** INTERCOMM IS READY: MM-DD-YY HH.MM

The Output Format Table entry is RPT00045. MORNING will be
replaced by AFTERNOON or EVENING at the proper time of day. An entry
must be made in the Broadcast Table PMIBROAD (BROADCST Csect) for the
group name TOALL. This is provided in the released version of this
table. Add to it the names of all terminals to receive the startup
message.

If the Extended Security System (ESS) is in use, an internal
USRSTART routine generates sign-on prompt messages instead.

Additionally, USRSTART calls a routine named USRSTRTI if it is
coded and included in the linkedit (also called by ESS). USRSTRTl must
be coded in reentrant Assembler Language and use standard linkage
conventions. At entry to USRSTRTI, register 1 points to the address of
the MVS formatted PARM values coded on the EXEC JCL statement for
Intercomm execution, or to the Automated Restart modified parm values
if auto-restart used (see Chapter 9). No return code is expected.
This user exit may perform additional installation-dependent startup
processing, if necessary.

USRSTART is written in reentrant Assembler Language. The member
name, Csect name and load module name are all USRSTART. See also the
USRSTRT parameter of the ICOMLINK macro to provide/prevent automatic
linkedit inclusion.

7-12

Chapter 7 Execution of Intercomm

7.6 SYSTEM CLOSEDOWN

The closedown functions are performed upon receipt of the NRCD or
IMCD transactions (see System Control Commands) or, in the case of Test
Mode, when all subsystem queues are empty. Closedown in a Multiregion
Intercomm system is described in Multiregion Support Facility.

Closedown in live mode (or with simulated terminals) consists of
routing a message to the closedown subsystem, PMICLDWN, an entry in
CLOSDWN3. This subsystem will continue to scan the SCTs and requeue a
message for itself until all messages are processed (NRCD) or messages
in progress are complete (IMCD). A final checkpoint is taken and
control is passed to the Front End to ensure that all messages queued
for transmission to operational terminals are sent before closing the
line DCBs and/or VTAM ACB. The Intercomm log buffers are flushed and
the log is closed before issuing final System Tuning and File Handler
Statistics. The File Handler termination routine (IXFMON09) is then
called to close the files prior to job termination.

Closedown in Test Mode completes the Back End termination
functions described above because an NRCD command is internally
generated, or the job terminates with an Abend 999, indicating all
input messages have been processed. These options are controlled by
the TSTEND parameter on the SPALIST macro.

Return codes to the operating system (MVS) from Intercomm
closedown are 4 (NRCD issued) and 8 (IMCD issued).

7.6.1 Closedown Statistics

If System Tuning Statistics (see Chapter 8) is installed, two
additional reports are produced at closedown (and after an abend) for
all subsystems and for dynamically loadable user subroutines defined in
REENTSBS (see Chapter 3).

The subsystem report illustrated in Figure 7-2 is produced by the
module SSRPT and can be used to determine a subsystem's future
residency based on message activity. The report is intended to provide
information similar to that dynamically displayable via the TALY$BE
command, including current values for dynamically modifiable subsystem
SCT fields such as MNCL, PRTY and TCTV, as well as the execution status
at closedown (NOSCHED indicates new message processing was halted).

The subroutine report illustrated in Figure 7 - 3 is produced by
SUBRPT and can be used to determine whether a subroutine should be made
resident based on usage, or whether the delete time (DELTIME) should be
increased (see the description of the DELTIME parameter for the SUBMODS
macro in Basic System Macros).

To produce the reports, ensure that the SMLOG SYSOUT data set is
defined in the Intercomm execution JCL, and that INTSTS, SUBRPT and
SSRPT are included in the Intercomm linkedit (automatic via ICOMLINK
macro) .

7-13

DATE : 0'1/08/88 T I ME: 10:)q:lq SUBSYSTEM TUNING STATI~TICS FOK KE~ION: I NTTOO.,x PAGE: 1

SIS CODE ENTRY-PTI RESIDENCY TIMES LOAD NUM i'1SGS NUMB tR NUM B E:R MAX MNCL PR TV TC TV STATUS
LOAONAME LOADED S lIE PROCESSED QUEuED CANClL USAGE

00E4 .u P~IOUTPT 'HS IDENT 170 ') 4 0 1Z0 ACTIVE ()
OOE,) .v P'"'IOUTPT RESIDENT 4 0 1Z0 ACTIVE ::T
0005 • N P"IOuTPT RESIDENT Z3 Z 4 0 1Z0 ACTIVE III

"C
0001 • J PMICLD .. N RES IDENT Z 1 3 0 ACTIVE rt
0303 LL LOAOSCT RES IDENT 3 4 0 1Z0 ACTIVE CD

Ii
0404 1'111 M"UCCMM RES IDENT Zb 4 0 lZ0 ACTIVE
0304 LM LMAP I!ESIDENT 1 4 0 lZ0 ACTI VE " C iO 1 GP GPSS RESIDENT 59 4 0 lZ0 ACTIVE
00£3 .T FINTuNER RES IDENT 17 4 0 lZ0 ACTIVE

~ 00(3 .C SYSCI'.TL RESIDENT 49 3 0 bO ACTIVE
'"" OOCb .F OYNSSUP RESIDENT 15 0 lZ0 ACTIVE ()Q 4
s:: OOCZ .B SW I TCH RESIDENT 7 Z 0 lZ0 ACTIVE
Ii 0007 .P PAGEMSG RESIDENT .5 0 lZ0 ACTIVE CD

OOH .W SENOBACK RESIDENT 3 4 0 1Z0 ACTIVE

" 000'1 .R IXFRPTlQ RESIDENT 4 4 0 lZ0 ACTIVE I

r-.,) OCC e • H CHANGE RES IDENT 4 0 lZ0 ACTIVE
cece HH CHANGE RESIDENT 1 0 lZ0 ACTIVE

() C3C3 CC COPYSS RES IOENT 4 0 lZ0 ACTIVE
t-' EbC9 WI FEWHO I RESIDENT 4 0 lZ0 ACTIVE 0
Ul EeE4 WU FEWHOU RESIDENT 4 0 lZ0 ACTIVE
CD 04Cq 111 IHSSING DVN.LOAD 0 a 1 0 bO NOSCHED P-
o 0'108 RO SOCOBOLA DVN.LOAD 1 5.000 9 1 2 0 bO ACTIVE

~ DqC 1 R A SOASMA DVN.LOAD a 3. lib l 0 bO ACTIVE

"til
0708 PO SOPLl RESIDENT 9 2 0 bO ACTIVE

':'g. ClF 1 Al APWTESTC DVN.LOAD Z 7.448 17 8 2 0 28 ACTIVE
03f 1 Ll fHTESTL DYN.LOAD a 1.704 3 0 240 ACTIVE

.j::-Ul
D3F2 L2 SNBKLl DYN.LOAD 0 1.320 1 0 bO ACTIVE '-<

Ul D3f3 L3 SN8KL2 OYN.LOAD 0 1.752 1 0 bO ACT IVE
rt D3f4 L4 CONVIL OYN.LOAD 0 1.232 1 0 bO ACTIVE CD
B D4C4 "'0 TESTRLSE OVN.LOAO 1 1.080 2 1 2 0 bO ACTIVE
;l> 0107 JP WAGEI1NGR RESIDENT 15 2 1 0 b ACTIVE
(') oooe .Q CHCKPTSS RESIDENT 19 1 0 240 ACTIVE
rt D7C7 PG I1MUTESTM RESIDENT 21 1 0 20 ACTIVE
'"" < 0004 .f' 110NOVLYC OVLV. 1 2 1 1 bO ACT! 'IE

'"" C3Fl Cl 110NOVLYC OVLV. 2 1 0 4.800 ACTIVE trl rt
'-< E'.E9 ZZ ~*NONE** OVLY· 4 1 0 bO NOSCHED X

CD

:::tJ 00C1 .A DEMO OVLV· 5 1 1 0 60 ACTIVE (')

CD CbCb FF FHTE ST OVLV· 5 1 3 0 240 ACTIVE s::
"C C]C2 C8 CONV1 OVLY. 5 9 1 bO ACTIVE rt
0 1-"

Ii OOCq .1 CONV2 OVLY. 5 1 1 60 ACTIVE 0
rt 00C4 .0 CONV] OVLV· 6 1 I bO ACTIVE ::l

00 C 5 • E CONV4 OVLV· 6 3 1 60 ACTIVE 0
E 6f 1 WI ECHOMSG CVLY. 6 3 1 60 ACTIVE I-t)

Ita'" \l!W U~()N!rU CVL .,. b 3 1 bO NOSCHEO H
00C7 .G SECTEST OVLY- 7 8 1 0 60 ACTIVE ::l
C4C4 00 DOOTEST OVLV· 7 rt

1 1 300 ACTIVE CD
00D3 .L SECTSTl OVLY- 7 3 1 60 ACTIVE Ii

(') CqC3 IC ICMTST OVLV- 7 b 1 0 300 ACTIVE 0
DOE 7 • X CHANGE OVLY- 8 3 1 bO ACTIVE §
OOEZ .S PP"SIGN OVLY· 'I 3 5 0 60 ACTIVE
00E9 .z PAGETEST OVLY· 10 1 0 60 ACTIVE
OOf 3 .3 TEST3Z70 OVLY- 10 2 0 60 ACTIVE
CZCl SA RENTI OVLY- 11 1 0 300 ACTIVE

\.,TCTA~~ : 4 ~ 4'12 11

'Tj
r"

~
r\
CI>

-...J ,
W

n

'""" o
til
CI>
0..
o
~

-...J en
, C
'"""ct
Vlr\

o
C
rt
r"
::l
CI>

:t
O
rt
r"
<:
r"
rt

'<
:;>::I
CI>

"0
o
r\
rt

('

DATE : OQ/08/88

ROUTlt-.oE NA"'E
SOCOBOLB
SO AS'" B
NOTTHERE

T I ME :

LAIljGUAGE
~C[lB

RBAL
R SAL

('

lO:39:1Q SUBoGUTINE TUNING

TIMES USED LOAD SIZE
6 l,b48
0 1 ,Ci ,}2
0 0

STATISTICS FUR REGIOI';:

DWS DELETE
hO

0
0

II-ITTOO'oX

TIME
bO
bO

0

PAGE:

SCHEOULABLE
YE S
YES

NO

r

1

n
::r'

~
rt
CI>
1"'\

"

t:<:I
X
CI>
o
C
rt
r"
o
::s
o
HI

1-1
::s
rt
(1)

1"'\
o
o
§

Chapter 7 Execution of Intercomm

7.6.2 Closedown Time Limit

Under certain circumstances, a normal closedown (NRCD) may be
initiated, and then, due to subsystem or terminal conditions, it is
discovered that closedown will take excessive time to complete. There
are two methods by which this situation may be handled:

• A user-specified maximum time limit on the SPALIST (CLDNLIM)
will be set at the beginning of closedown processing; at the
expiration of this time interval, closedown will not wait for
any further terminal or message processing, but will
terminate all Intercomm system functions and return to the
operating system. See also the SPALIST macro CLDTO
parameter.

• An IMCD may be entered during closedown processing. This
will have the same effect as the expiration of the time
interval described above.

When forcing a premature closedown by these techniques, an Intercomm
restart may be needed to recover messages queued or in process at the
time of closedown.

7.6.3 Closedown User Exits--USRCLOSE/USRCLSEl

A conditional call (CALLIF) is made to a user exit (USRCLOSE)
prior to completion of closedown cleanup processing (final checkpoint,
statistics reports, etc.). A member USRCLOSE is supplied with the
Intercomm release, which will send a message to the broadcast group
name TOALL during normal closedown processing. The message states:

*** GOOD MORNING *** INTERCOMM IS CLOSED: MM-DD-YY HH.MM.

RPT00045 is used and the MORNING is replaced by AFTERNOON or
EVENING at the proper time of day. An entry must be made in the
Broadcast Table (BROADCST) for the group name TOALL.· (See Section
7.5.2, "Startup User Exits," above.)

USRCLOSE is written in reentrant Assembler Language. The member
name, Csect name and load module name are all USRCLOSE, which is
automatically included in the Intercomm linkedit.

USRCLOSE also calls the user exit routine USRCLSE1, if it is
included in the linkedit. USRCLSEl must be coded in reentrant
Assembler Language and use standard linkage conventions. At entry,
register 1 points to a parameter list containing the address of the
entered closedown message and the address of the System Parameter
Area. No return code testing is done.

7-16

J

L

Chapter 7 Execution of Intercomm

7.7 LIVE OPERATION

Execution of Intercomm in live mode necessitates that terminal
operation (the Front End) is activated for actual or simulated (see
Chapter 8) terminals. When startup functions are complete, terminal
input/output processing begins.

The system may be activated as a cold start with no consideration
for any previous execution (EXEC statement parameter STARTUP), or as a
warm start with message restart/recovery performed (EXEC statement
parameter RESTART). Restart/Recovery functions are described in detail
in Chapter 9.

7.7.1 Intercomm Dispatching Priority

In order for on-line Intercomm to provide good response time, it
requires a higher dispatching priority than other jobs operating in the
system. Intercomm may not execute as an authorized program, and
therefore connot be defined in the MVS Program Properties Table (PPT).
Use the DPRTY or PERFORM parameter on the execution JCL as permitted at
your installation.

7.7.2 Execution JCL

Execution JCL requires specifications for the network
configuration. A typical live execution job with a BTAM Front End is
shown in Figure 7-4.

For remote terminals accessed via BTAM, the sequence of the DD
statements describing operational lines must correspond to the network
configuration definition in the Front End Network Table. The LINEGRP
macro defines the ddname in the execution JCL. The order of the DD
statements for each line group defines the physical unit addresses
relative to the associated sequence of BLINE macros, as depicted in
Figure 7-5. Remote lines must be on the byte-multiplexor channel
(Channel 0).

For local BTAM (3270) terminals, the sequence of the DD
statements for each line is related to the sequence of the BTERM macros
as illustrated in Figure 7-6. Local terminals are defined on a
block-multiplexor channel (not Channel 0).

7.7.3 Low-Core Condition--SSPOLL

When a low-core condition (CUSHION released) exists, the user may
optionally prevent additional leased-line terminal and/or TCAM input to
the Intercomm system. Issuing of macros to accept new input is
automatically temporarily halted and later resumed when sufficient
storage becomes available. Include SSPOLL in the resident portion of
the Intercomm linkedit to activate this feature. The system control
commands SPPL and STPL, may be used at other times to temporarily halt
input.

7-17

Chapter 7

IIICOMEXEC
IISTEPLIB
II
II
IIINTERLOG
II
II
11*
11*
11*
11*
IISMLOG
II
IISTSLOG
II
IISYSPRINT
II
IIRCTOOO
IIPMIQUE
IIBTAMQ
IIUSERFILE

11*
IIPMISTOP
IISYSUDUMP
IISNAPDD
11*
11*
11*
IIDYNLLIB
IIDYNLWORK
IIDYNLPRNT
IILINEl

11*
IIPRINTLOG
IISTEPLIB
IIINTERLOG
IISYSPRINT

NOTE:

Execution of Intercomm

EXEC
DD
DD
DD
DD

PGM=ICOMLIVE,PARM='STARTUP' ,REGION=1024K
DSN=INT.MODUSR,DISP=SHR
DSN=INT.MODLIB,DISP=SHR
DSN=INT.MODREL,DISP=SHR
DSN=&&INTLOG,VOL=vvvvvv,UNIT=unit,
DISP=(,PASS),LABEL=(,SUL),

DCB=(DSORG=PS,RECFM=VB,BLKSIZE=4l00,LRECL=4096,NCP=8,OPTCD=C)

NOTE THAT INTERLOG BLOCK SIZE MUST BE AS LARGE
AS THE LONGEST EXPECTED LOGGED MESSAGE (+4).

DD SYSOUT=A,
DCB=(DSORG=PS,LRECL=120,BLKSIZE=multiple-of-l20,RECFM=FBA)
DD SYSOUT=A,
DCB=(DSORG=PS,LRECL=l20,BLKSIZE=multiple-of-l20,RECFM=FBA)
DD SYSOUT=A,
DCB=(DSORG=PS,RECFM=VBA,BLKSIZE=multiple-of-137-+4,LRECL=137)
DD DSN=INT.RCTOOO,DISP=OLD,DCB=(DSORG=DA,OPTCD=RF)
DD DSN-INT.PMIQUE,DISP=OLD,DCB=(DSORG=DA,OPTCD=RF)
DD DSN=INT.BTAMQ,DISP=OLD,DCB=(DSORG=DA,DPTCD=RF)
DD DSN=

USER DATA SET DEFINITIONS

THE FOLLOWING ARE NOT PROCESSED BY THE FILE HANDLER
DD DUMMY
DD SYSOUT-A or DUMMY
DD SYSOUT=A STANDARD SNAPS

FOLLOWING IS FOR DYNAMIC LINKEDIT

DD DSN=INT.MODUSR,DISP=SHR
DD UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL,(l,l»
DD SYSOUT=A
DD UNIT=nnn

EXEC
DD
DD
DD

TERMINAL NETWORK DEFINITIONS IF BTAM USED

PGM=LOGPRINT,COND=EVEN
DSN=INT.MODREL,DISP=SHR
DSN=&&INTLOG, DISP=OLD, DCB=BLKSIZE=5000
SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=l2l)

Figure 7-4. Typical Live Execution JCL

if executing with VSAM data sets, place STEPCAT DD
statement(s) for user catalog(s), if needed, after the
IIPMISTOP DD statement (do not use JOBCAT) so that the File
Handler does not process the catalog at startup.

7-18

J

L

Chapter 7 Execution of Intercomm

* A BTAM NETWORK TABLE CODED AS FOLLOWS REQUIRES JCL DDCARDS
* AS ILLUSTRATED BELOW
ROI LINEGRP DDNAME=RRI,------

BLINE
BTERM
BTERM

BLINE
BTERM

BLINE
BTERM

LGNAME-ROI,-----
TERM=RRIOI,-----
TERM=RRI02,------

LGNAME=ROI,-----
TERM=RR201,------

LGNAME=ROI,-----
TERM=RR301,------

11* DDCARDS FOR LINEGRP ROI
IIRRI DD UNIT=03I (TERMINALS RRIOI,RRl02,ETC.)

(TERMINALS RR20l,ETC.)
(TERMINALS RR30l,ETC.)

II DD UNIT=032
II DD UNIT=033

Figure 7-5. LINEGRP, BLINE Sequence and JCL for Remote Terminals

* A BTAM NETWORK TABLE CODED AS FOLLOWS FOR LOCAL 3270
* TERMINALS REQUIRES JCL DDCARDS AS ILLUSTRATED BELOW
LOI LINEGRP DDNAME=LLl,------

BLINE
BTERM
BTERM
BTERM

LGNAME=LOI,-----
TERM=LLOOl,-----
TERM=LL002,-----
TERH=LL003,------

11* DDCARDS
IILLl DD

DD
DD

FOR LOCAL 3270 BLINE

Figure 7-6.

UNIT=301 (TERMINAL LLOOl)
UNIT=302 (TERMINAL LL002)
UNIT=303 (TERMINAL LL003)

BLINE, BTERM Sequence and JCL for Local Terminals

7-19

Chapter 7 Execution of Intercomm

7.8 INTERCOMM QUIESCE

It is sometimes necessary to stop the CPU while running Intercomm
so that maintenance or volume switching can be done. However, if the
CPU is stopped for a significant period of time (more than one minute),
it is likely that, when processing is resumed, Intercomm's event-timing
will have been disrupted, resulting in various time-outs. This causes
erroneous cancellation of messages, snaps 114 and 118, etc.

The Quiesce facility allows the CPU console operator to stop all
Intercomm processing by replying to an outstanding WTOR prior to
stopping the CPU itself. When processing is to be resumed, Intercomm
can be reactivated by replying to a subsequent outstanding WTOR. All
of Intercomm's internal timings are adjusted to reflect the lost time,
thereby avoiding time-outs.

The Quiesce facility is optional, and is provided by including
the module PMIHARDW in the Intercomm linkedi t. This module, which is
dispatched at startup time, puts out a WTOR (MU001R) with the following
text:

REPLY "ICOMHALT" WHEN YOU WANT INTERCOMM TO TEMPORARILY STOP PROCESSING

This WTOR will remain outstanding until needed. When the proper
reply is given, Intercomm will go into the wait state, after putting
out another WTOR (MU002R):

REPLY "ICOMSTART" WHEN YOU WANT INTERCOMM TO RESUME PROCESSING

At this point, it is safe to stop the CPU. When the CPU is again
started, Intercomm can be reactivated by replying to this latter WTOR.
The first WTOR will then be put out again allowing the procedure to be
repeated if and when necessary.

The time interval during which Intercomm is quiesced is lost to
the system. If a one-hour time-dispatch was done by some internal
routine at 12:00 P.M., this interval would normally expire at 1:00
P.M. If, however, Intercomm was quiesced from 12: 20 to 12: 25, the
interval will expire at 1:05.

7-20

J

J

L

Chapter 7 Execution of Intercomm

7.9 MVS OPERATION

All MVS support is generally applicable to both MVS/370 and XA.
Installation and operation of Intercomm with MVS follows the previously
described procedures, plus additional considerations documented in this
section to take advantage of MVS facilities. More considerations
applicable primarily to XA are described in Section 7.10. The MVS
vocabulary is illustrated below:

Reference Meaning

EPS External Page Storage; Page Data Set

Page Fault A page is referenced that is not residing in real
storage, but on EPS.

Page Segment of main storage

Page Loading Transfer of page from EPS to real storage

Page Fixing Marking a page as nonpageable; that is, remains
in real storage full-time

The maj or difference between OS/MFT or OS/MVT and operation of
Intercomm under MVS is the unpredictable nature of program loading in
the address space/region. Under OS, when a job is loaded, the user
knows the job is actually residing in main storage. This is not true
for MVS, where there are two types of storage: Real Storage and
External Page Storage (EPS), also referred to as the Page Data Set.
Only a certain portion of a load module actually resides in real
storage; most of it (depending on real core availability, number of
jobs concurrently running, etc.) will reside on EPS.

When a program references a page that currently resides on EPS,
an I/O operation must be performed in order to transfer that page from
EPS into real storage. This procedure is called page loading. Each
time a page that is residing on EPS is referenced (a page fault), the
task's TCB is marked nondispatchable by MVS until the referenced page
is loaded. This can result in extensive degradation of response time
in an on-line system, since the task (Intercomm) must wait until I/O
completes.

For Intercomm under MVS/370, an alternative to avoid page faults
is to use page pre loading , which requires installation of the Intercomm
Interregion SVC (see Section 7.11).

7-21

Chapter 7 Execution of Intercomm

7.9.1 Page Pre loading

Using the page preloading feature, the same process is executed
as when a page fault occurs; that is, page loading from EPS must be
requested. However,· if the page loading is requested by the user
(Intercomm) before the page fault actually occurs, the task's TCB will
not be marked nondispatchable. Thus, the task will not be in a wait
state until the I/O completes and therefore other processing can
continue while the I/O is still in progress. Page preloading under
Intercomm is done for pages that are likely to be on EPS at the time
they are referenced again; that is, save areas and return points to
application programs are preloaded prior to transfer of control from
the Dispatcher. Page pre10ading cannot be used under XA, when EPS (on
the 3090 CPU) is often auxiliary storage, and thus an I/O operation is
not required.

7.9.2 Page Fixing

Page fixing is no longer supported under Intercomm, because the
operating system paging efficiency is undermined by user page fixing.

7.9.3 MVS Installation

Installation and operation of Intercomm under MVS require a few
considerations in addition to the specific MVS/370 and XA installation
procedures described later in this chapter. All the recommendations
listed below are also covered in the Installation Guide. The MVS user
should consider:

• Each live Intercomm region must run as a nonswappable task.
In order to make Intercomm nonswappab1e, a SYSEVENT macro has
been inserted in STARTUP3, and requires installation of the
Intercomm Interregion SVC. For a BTAM Front End region with
remote terminals, ~he operating system automatically marks
the task nonswappable, therefore the SYSEVENT is not issued.

• Provision must be made for installation of the Intercomm
Interregion SVC, as described in Section 7.11.

• Concatenate SYS1.AMODGEN after SYS1.MACLIB in all Intercomm
procedures (including INTASMF) executing the assembler.

• The following Intercomm modules must be reassembled and
1inkedited: STARTUP3, CLOSDWN3, SYCT400, PMINQDEQ, PMIRETRV,
PMITEST, PMISNAP1, STAEEXIT, STAERTRY, STAETASK, SPIEEXIT,
SPIESNAP, SNAPRTN, DYNLLOAD, MANAGER and, if used, PMIDEBUG,
RESTORE3, INTLOAD, TRAP, and PREPLI.

• Other system modules including the File Handler, common Front
End modules, COBOL support modules, Mu1tiregion modules, etc.
to be reassembled are listed in the Installation Guide.

7-22

J

J

L

Chapter 7 Execution of Intercomm

• Because BTAM dynamic buffering is not supported, Intercomm
suppresses dynamic buffering under MVS. Therefore, the
LINEGRP macro, BUFL parameter, must specify a value at least
as large as the longest message expected, with the exception
of bisync devices (see Basic System Macros). LINEGRP macro,
BUFNO parameter, must specify a value at least as large as
the value assigned to the NUMLN parameter (the number of
BLINE macro instructions subordinate to the LINEGRP).

• BTAM (and TCAM) Front End modules, particularly BTSEARCH
(which contains the BTAM RESETPL macro) and BlliTRACE (SNAP
macro), must be reassembled, if in the Intercomm linkedit.
Also reassemble every time an operating system upgrade is
made.

• The entire VTAM Front End, if used, must be reassembled.
Also reassemble every time an operating and/or VTAM system
upgrade is made. Ensure that the correct MVS system library
containing VTAM macros and Dsects is in the SYSLIB
concatenation stream.

• Reassemble the Front End Network Table due to possible
changes in DCB, ACB and RPL macros.

• Eliminate the subsystem overlay structure, if at all
possible; convert subsystems to dynamically loadable, or
define as VS execution groups. Eliminate internal overlay
structure subsystem linkedits, if previously used.

An operator cancel (S122 and S222) will not give control to final
cleanup processing in the STAEEXIT routine. Therefore, PMIDEBUG should
be included in order to cancel Intercomm with a dump. This is also
recommended for flushing the Intercomm log buffers and closing the log,
and for closing VSAM files. A system x22 cancel will not accomplish
this. See Messa~es and Codes for a description of STAEEXIT processing
and the use of PMIDEBUG. Code DEBUG=YES on the ICOMLINK macro for the
linkedit generation to force an include for PMIDEBUG.

Intercomm and the MVS operating system components which affect
Intercomm execution must be tuned on an ongoing basis. See Chapter 11
for general tuning recommendations, plus those specific to execution
under MVS.

7-23

Chapter 7 Execution of Intercomm

7.9.4 MVS/370 Installation

To install MVS/370 processing in conjunction with standard
Intercomm installation, follow the steps below:

1. Ensure that the MVS global in the member SETGLOBE is set to 1
(see Chapter 2), along with the VSAM and VSISAM globals set
to 1 (if used). Set the XA global to o.

2. All MVS page management macros, that is, PGLOAD, PGFREE,
IHBPSINR, etc., must be available on SYSl.MACLIB. These
macros are distributed on AMODGEN (initial distribution
library of your MVS system).

3. Reassembly to incorporate MVS macros must be performed for
PMIPGLD and LOADPAGE for the Page Pre loading facility, which
are automatically included in the linkedit when executing
under MVS/370 (XA global set to 0 in SETGLOBE).

4. The following INCLUDE statements for the Intercomm linkedit
deck are generated automatically by the ICOMLINK macro:

INCLUDE SYSLIB(KEYFLIP) -resident
and for Page Preloading:

INCLUDE SYSLIB(PMIPGLD,LOADPAGE) -resident (MVS/370 only)

Note: if subsystem time-outs occur remove the INCLUDEs for LOADPAGE
and PMIPGLD.

5. An overlay structure should not be used, remove all OVERLAY
and INSERT statements from the Intercomm linkedit deck, or
code OVLYSTR=NO (default) and TRANS=NO (default) on ICOMLINK
when generating the linkedit deck. Also redefine overlay
subsystems (if any) to resident or dynamically loadable, or
to use VS execution groups, in the SCT (see Chapter 3).

7-24

J

J

Chapter 7 Execution of Intercomm

7.9.5 Linkedit Ordering

Frequently referenced pages, that is, pages referenced by every
transaction, such as the Front End line handlers, may be ordered.
Recommended ORDER statements used to group modules and force page
boundary alignment are:

SPA(P),SPAEXT,INTSCTDD
PMISUBL2,PMIRTLR,PMILINK2,PMIPRELR
LOADPAGE,PMIPGLD
IXFDSCTA
BITSECT,LOGPUT,STARTWRC,MSGACOOO

(MVS/370 only)

MSGCOL,PMIRETRV (if not in Link Pack)

Intercomm Nucleus-
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER

VTAM Front End-
ORDER
ORDER

BTAM/TCAM Front
ORDER
ORDER
ORDER
ORDER
ORDER

SCT,PMICLZZZ,SCTINDX,SCTEXT,INTBEDDL
SYCTRL,RMPURGE,RMNADISA
FDITCB,RMPC,RMFNQ,RSMGMNT,RMTRACE
POOLACCT,COREACCT,ICOMINX,ICOMCHN,ICOMPOOL,POOLEND
KEYFLIP,EXECWAIT,IJKDSPOl
FESEND,STATINDX,BINSRCH
PMIEXTRM (if not

(control region
(control region
(control region

INTVRBOO,OUT3270
BTVRBNDX,FEINDX
ATTIDTBL,AIDDATA

in Link Pack)
only, if MRS)
only, if MRS)
only, if MRS)

VCT(P),VTIDTABL,ICIDINDX,VTIDINDX,VTAMCLZZ
VTAMSCTS,INTVTDDL

End- -
BLHIN(P),REQBUFOO,BTSEARCH
AIDCSECT,HEADSECT,IECTTRNS
BTADPL,BTPOLFLP,BTAMSECT
BMHOOO,BLHOT,QUEUEMOD,BTAMCLZZ,INTBTDDL
GFEINTFC,TCAMINTF,TCAMASYN,IEDQBl (TCAM only)

And, if BTAM switched lines used--
ORDER BTBACKSP,PEXCSECT,DIALSECT

The following is a list of suggested Intercomm Csects to be
ordered, arranged in order of importance:

1. First consider ordering:

Intercomm nucleus Csects listed above.

2. Then. if possible. order:

a. VTAM and/or BTAM Front End Csects listed above, and the
Csect containing the Front End network definitions. Also
if priority queuing used, add:

PMIPRNDX,BTMPRNDX,VTMPRNDX

7-25

Chapter 7 Execution of Intercomm

b. File Handler Routines (if not in Link Pack)

IXFMONOI, IXFSUBS, IXFVSCRS (VSAM) , IXFLOG (if used)
IXFDYNAM (if Dynamic File Allocation special feature used)

c. Store/Fetch and MMU Routines (if not in Link Pack)

INTSTORF, MAPIN, MAPOUT, MMUVTBL, EDITTRTS, DEVDESC,
DEVDESCU, MMUEDOOI-3, MMUED008, MMUDDM, MMUDDMU, etc.

d. Output Utility & Back End Tables

PMIOUTPT, SUBOUTPT, PMISERCH, TERMCONV, DVASN
PMITRTAB, PTRNTBLE, PMIFILET, PMISTATB, PMIDEVTB

e. Edit Utility. Tables & Subroutines

EDITCTRL, SUBEDIT, FIXEDIT, VERBTBL, PADDTBLE, EDITRTNS,
EDIT3270, EDIT0001-nnn

f. High Level Language Interfaces

PREPROG, COBREENT, COBPUT, COBSTORF, PMICOBOT
PREPLI, PMIPLl
REENTSBI, DYNLSUBS

g. Extended Security System

INTSECOO, SECTEST, SECUSER, SECURITY, IJKDELAY

3. If executing in a Multiregion environment, then

a. For the Control Region:

MRINPUT, MRQMNGR, MRXQMNGR

b. For each Satellite Region:

MRINPUT, MROT PUT" , MRXOTPUT, MRCSAMOD

4. Then, as required, order:

Resident user modules frequently referenced such as message
routing subsystems, critical response subsystems, etc.

For a small-scale system (two megabytes or less of real storage),
it is not wise to order too much storage. There will be a trade-off
point where pages that are not ordered will be paged in and out
extensively. It is advisable to order not more than one-third of the
linkedit size, and then order more on a trial and error basis.

7-26

J

J

L

Chapter 7 Execution of Intercomm

7.9.6 MVS/370 System Tuning Considerations

If using LOADPAGE, it is important to have enough ICOMPOOL blocks
for LOADPAGE save areas. If the LOADPAGE save area is acquired from
subpool zero, two page faults may occur and therefore LOADPAGE saves
only one page fault. Thus, the LOADPAGE save area should be obtained
via ICOMPOOLs to maximize system performance and prevent unnecessary
page faults. The length of the save area is defined by the EQU labeled
WORKLEN in the LOADPAGE module.

There must, additionally, be as many LOADPAGE save areas as there
are ECBs in LOAD PAGE as specified by the PLECBT EQU value in LOADPAGE.
The number of ECBs used may affect system performance. The number of
ECBs can be changed by altering the number of fullwords (released as 8)
defined at the label PLECB in LOADPAGE, then reassembling LOADPAGE.

This technique is also applicable to PMIPGLD save areas.

7.9.7 Subsystem Considerations

In lieu of defining subsystems in an overlay structure, a MVS
parameter may be specified in the SYCTTBL macro, EXGRP=n, defining
groups of subsystems which may be allowed to process messages
concurrently. Its purpose is to prevent all resident application
subsystems from executing concurrently upon receipt of a message, since
each message processing thread requires save areas, message areas, I/O
areas, etc., which could result in a massive page-in/page-out operation
if enough real storage is not available. If the EXGRP parameter is
specified, only one of the execution groups will be processing at a
time, and paging will be reduced. Using this scheduling technique, all
subsystems are defined as resident (SYCTTBL macro parameter OVLY=O) and
the Subsystem Control Table entries must be sequenced by EXGRP number
(in ascending order). (The execution group number becomes the "overlay
number" in the generated SCT control byte SCTPONU.) The SCT Index must
be generated, as described in Chapter 3, via the GENINDEX macro.

If page pre loading is not in use, disk queuing for overflow
messages is often more efficient than large core queues under MVS due
to I/O activity overlapped via the standard File Handler facilities.

If page preloading is in use (MVS/370 only), storage queuing
should be used since the paging activity (which is more efficient than
BDAM I/O) will be overlapped.

The RTNLINK macro (for Assembler Language subsystems) also has a
MVS/370-oriented parameter called PRELOAD, which, when coded as YES,
causes the page that contains the high order save area to be preloaded
and therefore prevent a page fault.

7-27

Chapter 7 Execution of Intercomm

7.9.8 MVS SYSGEN Considerations

For effective performance, observe the following points when
specifying IBM sysgen parameters:

• Execute Intercomm at the highest possible dispatching
priority (above TSO, if used).

• Separate JES spooling data sets onto different packs from
page (EPS) data sets.

• Separate frequently used Intercomm and on-line user data sets
onto different disk drive channels from those used for
operating system, JES, and page (EPS) data sets.

7.10 XA INSTALLATION AND RECOMMENDATIONS

In addition to the general MVS installation and recommendations
described in the previous sections, the Installation Guide lists
various jobs describing modules to be reassembled for an XA environment
(see Job 20). Intercomm will execute successfully under MVS/XA if the
user observes the following restrictions and recommendations:

• The XA . global must be set to 1, in addition to the MVS
global, in SETGLOBE before reassembly of system modules.

• The Intercomm load module, all dynamically loaded Intercomm
tables, and all off -line utili ties using Intercomm modules
must execute below 16 MB.

• If using a BTAM Front End, BTAM/SP must be installed before
reassembly of all BTAM modules.

• The MVS/370 version of certain downward incompatible macros
(ATTACH, ESTAE, STIMER, WTOR) mus t be used. To accomplish
this, copy the SPLEVEL macro from the MVS/XA SYSl.MACLIB to
SYMREL and change the setting for the internal &DEFAULT
global from 2 to 1, or use the macro as already provided on
SYMREL. This will force the MVS/370 versions of those macros
to be generated (same as MVS SPl.3 version for Intercomm
modules) for any future assemblies of the affected modules.
If any Intercomm or user modules issuing the above macros
were assembled with the MVS/XA version, they must be
reassembled with the MVS/370 version.

• If the Link Pack Facility is used, LPSPA must be in the PLPA,
not the EPLPA (see Section 7.12).

• . If the ESS and/or MRS Intercomm facilities are used, the
SECVECT and MRMCT tables must be in FLPA (not EFLPA) or MLPA,
and NOPROT must be specified on the FIX (or MLPA) parameter
in the IEASYSnn PARMLIB member used for system IPL. See
IBM's MVS/XA SPL: Initialization and Tuning.

7-28

J

L

Chapter 7 Execution of Intercornm

• Use the XA assembler (H, Version 2) to assemble Intercomm
modules and tables. Ensure that the Intercomm procedures
which perform an assembly will execute the XA assembler.
Also concatenate the XA version of SYSl.MACLIB and
SYS1.AMODGEN to SYSLIB. See the released versions of ASMPC,
ASMPCL, etc. on SYMREL.

• See Chapter 8: Measurement and Tuning of the IBM MVS/XA
Conversion Notebook (GC28-ll43), for a description of program
fetch optimization. Follow the recommendations therein for
the Intercomm and user load libraries, particularly for
DYNLLIB.

• Ensure the Intercomm procedures used at your installation
which execute a linkedit will use the MVSjXA DFP linkage
editor. Also modify the REGION and SIZE parameters and block
size of the SYSUTl data set as described in the IBM
Conversion Notebook (Chapter 8). See the released versions
of ASMPCL, LKEDP, etc. on SYMREL.

• Do not use the Intercomm MVSj370 page preloading (PMIPGLD,
LOADPAGE) facility. This is unnecessary under MVSjXA, and
references control blocks which have been changed or
eliminated.

• ISK instructions issued by Intercornm to force a program check
cause a SOCl (not SOC2) under XA.

• Ensure that the PDATA parm coded for the IBM SYS1. PARMLIB
members IEAABDOO and IEADMPOO does not specify the SUBTASKS
option (do not code PDATA-ALLPDATA). Otherwise, if Intercomm
is cancelled with a dump, full region dumps are produced for
both the Intercomm main task and all subtasks.

• An overlay structure should not be used in the linkedit.
Remove the OVLY parm from all procedures which execute the
linkage editor, and ensure all subsystems SYCTTBL macros have
OVLY=O coded (or omit the OVLY parameter - default is 0).

7-29

Chapter 7 Execution of Intercomm

7.11 INTERCOMM INTERREGION SVC--&MRSVC

The member IGCICOM on SYMREL is a type 1 SVC routine which
provides for interregion communication or general use in protect key
zero, and is required for forcing Intercomm to execute non- swappable,
page preloading in a MVS/370 installation, Multiregion installation,
the Extended Security System, the Fastsnap facility, and cross-region
sharing of VSAM files. The SVC must be reinstalled if converting to XA
2.2 with DFP 2.3 and up.

The Interregion SVC performs the following functions:

• Posts an ECB in another region

• Waits on an ECB in another region

• Executes Intercomm system functions in protect key zero.

To implement the Interregion SVC, the following steps must be taken:

1. Assign a number for a type 1 SVC for Intercomm use.

2. Modify the global &MRSVC (member: SETGLOBE) to reflect the
number assigned in Step 1. (&MRSVC is released with a value
of 013. Execution of an Intercomm routine requiring the SVC,
without resetting &MRSVC and assembly and linkedit of the SVC
routine, will result in a user abend with a random
identification.)

3. Assemble and linkedit:

• IGCICOM as IGCnnn, where nnn is the assigned SVC number;
linkedit parame ters are LIST, LET, RENT. Link to an
operating system load library or to MODLIB

• KEYFLIP

• INTSPA (all regions for a Multiregion system)

• MRBATCH (if used)

• Define the SVC number as a type 1 SVC to the operating
system for the MVS SVC table (SVCTABLE sysgen macro, or
IEASVCnn if using XA 2.2 with DFP 2.3 and up)

• Force linkedit of the SVC to the MVS Nucleus (IEANUC01)
via the IBM DATASET sysgen macro, and regen the operating
system

• Re-IPL the operating system.

7-30

J

J

L

Chapter 7 Execution of Intercornm

4. When structuring the linkedit deck for the Intercornm load
module, KEYFLIP must be included before the Intercornm
Dispatcher (IJKDSPOl). Do not include KEYFLIP unless the SVC
has been installed. Otherwise, miscellaneous program checks
will occur.

Invalid installation of the Intercornm Interregion SVC is signaled
by an IBM error message, or system Fnn abend (where nn is the defined
SVC number in hexadecimal), or a dump simulating a SOCI.

7.12 INTERCOMM LINK PACK FEATURE

The Intercornm Link Pack Feature allows operation of more than one
Intercornm region (live, simulated, batch, or Test Mode) simultaneously
on one CPU without duplicating identical Intercornm routines from region
to region. Various Intercomm routines are linked together and loaded
into the Piigeable Link Pack Area (PLPA) and shared among the various
Intercomm regions. (See Figure 7-7.) Such routines are generally used
more than others; over lOOK of storage is saved. Since the Link Pack
Area is separate from the Intercornm area, the Intercomm system is
therefore divided into two interfacing sections, the Link Pack Module
(LPM) containing the Link Pack routines and the Intercornm Region (IR).

An additional advantage is that reentrant user Assembler Language
routines to be executed under Intercornm in all regions may also be
placed in the LPM in the Link Pack Area.

Entry point names for all Intercornm Link Pack modules are defined
to the Intercornm region via the interface module LPINTFC. At Intercornm
startup, the module LPSTART initializes VCONs for those entry points
with actual addresses of Link Pack routines, using the Link Pack
resident interface routine LPSPA. It should be noted that the LPINTFC
and LPSPA modules provide entries for all Link Pack eligible Intercornm
modules. The physical makeup of the Link Pack Module is only
determined by the linkedit of the LP and Intercornm regions. VCONs in
LPSPA will be unresolved for those Intercornm components that the user
has chosen to keep in the Intercomm region. LPSTART will issue a
PMIWTO for each of these modules indicating that they have been
resolved within the Intercornm region, and not in the Link Pack Area.

During Intercomm execution, LPINTFC loads the actual address of a
called Link Pack routine using the initialized VCONs which reside in
the System Parameter Area. Startup initializes word 1 of the MVS save
area with the System Parameter Area address for subsequent use by the
LPM routines. Intercomm components eligible for the Link Pack Module
are illustrated in Figure 7 - 8, along with their corresponding entry
point names.

Preparation necessary to utilize the Link Pack Feature is
provided in the following sub-sections. Macros discussed in these
sub-sections are all described in Basic System Macros.

7-31

Chapter 7 Execution of Intercomm

I
N
T
E
R
C
0
M
M

R
E
G
I
0
N

1

OPERATING SYSTEM NUCLEUS

FRONT I MULTIREGION I
END N INTERFACE N

T T
PART OF E PART OF E
BACK END R BACK ENI R

C C
0 0

SUB POOLS M SUB POOLS M
M M

R R
E E
G G
I I
0 0
N N

2 3

LINK PACK AREA

Link Pack Module
consisting of many
Intercomm Back End
modules

TEST MODE
INTERFACE

PART OF
BACK ENI

SUB POOLS

N
0
N

I
N
T
E
R-------------
C
0
M
M

R
E
G
I
0
N
S

Figure 7-7. Link Pack Module Working in Conjunction With
Several Intercomm Regions

7-32

J

J

Chapter 7

Component
Entry-Point

Name

Execution of Intercornm

Module(s) To Include
For LPM Linkedit

=~=~~===~========~=====~=F===========-~=F~-===~===============~===

Message Collection

Retriever

Edit Utility

Output Utility

Change/Display Utilities

Dynamic File Allocation

MSGCOL

RTRVER

EDIT

OUTPUT

CHANGE or
DISPLAY or
CHGDIS

DFA

File Handler (IXFQISAM FILEHND
not in Intercornm linkedit)

File Handler (IXFQISAM
in Intercornm linkedit)

Store/Fetch

Dynamic Data Queuing

FILHNDQI

SFETCH

DDQ

Message Mapping Utilities MMU

Terminal Lookup PMIEXTRM

Enqueue/Dequeue Functions NQDEQ

Conversational Support CONVERSE

BLMSGCOL

PMIRETRV

PMIEDIT, PMIFIXED
EDIT3270*

PMIOUTPT, (USROUTCK),
PMIVMI56*

CHANGE, DISPLAY
FORMAT, CRUNCH

IXFDYNAM* (requires File
Handler in Link Pack)

IXFHND01, IXFVSCRS*,
IXFB37*, IXFLOG*

IXFHND01, etc. (see above)

INTSTORF

DDQMOD

MAPIN, MAPOUT, MMUTRTS,
MMUED001-003 & -OOB,
LOGCHARS (or username),
MMUDDM, MMUDDMU, MMUDDMX ,
MMUDDMT, MMUDDMM
MMUCOMM**,LMAP**

PMIEXTRM

PMINQDEQ

CONVERSE

* Include only if used for corresponding feature (3270 terminals,
VSAM files, etc.) Also include USERB37E if used with IXFB37.

** LPENTRY definition required (see 7.12.6)

Note: If the user exit USROUTCK is to be used with PMIOUTPT, it
should also be included, and must be reentrant.

Figure 7-B. Applicable Intercomm Components for LPSPA/LPINTFC Macro

7-33

Chapter 7 Execution of Intercomm

7.12.1 Preparation of the Operating System

If the Intercomm Link Pack Module does not reside on SYS1.LPALIB,
it must be in one of the concatenated data sets specified via the
LPALSTnn parameter (XA 2.2 only).

The Link Pack Module (LPSPA) may not reside on a STEPLIB or
JOBLIB library of an Intercomm region. If it is, the local Link Pack
Module would then be loaded into the Intercomm region, rather than
using the copy in the MVS Link Pack Area.

7.12.2 Preparation of the Link Pack Module (LPM)

The following LPM preparation steps are described in the
Installation Guide as one job, or may be executed as separate jobs:

1) Assemble and linkedit the LPM interface routine LPSPA using
the LPSPA macro, as follows:

II
IIASM. SYSIN

EXEC
DD
LPSPA
END

ASMPCL,LMOD=LPSPAMOD,Q=USR,RENT=RENT

*

1*

A=A,MODS=(.....)

RENT must be specified to cause the linkage editor to flag
the output as reentrant.

Example of LPSPA macro:

LPSPA A=A,MODS=(MSGCOL,RTRVER,FILEHND)

This generates an LPSPA Csect to be used to place Message
Collection, the Retriever, and File Handler modules in the
Link Pack Area.

2) Each module in the LPM must be reassembled and re1inked as
reentrant: use the ASMPCL procedure and override the
linkedit parms by adding RENT (see above); place the output
load modules in MODUSR.

7-34

J

L

Chapter 7 Execution of Intercornm

3) Linkedit the LPSPA Csect (load module LPSPAMOD), together
with all other component modules to go in the Link Pack Area,
as follows:

II EXEC LKEDP,Q=USR,LMOD=LPSPA,
II PARM. LKED-'RENT , '
IILKED.SYSLMOD DD Operating System library to contain

IISYSIN

1*

LPM (LPALIB),DISP=SHR
DD *
INCLUDE SYSLIB(LPSPAMOD)
INCLUDE SYSLIB(member-name ,member-name , ...)
ENTRY LPSPA
NAME LPSPA

• RENT must be specified to cause the linkage editor to flag
the output as reentrant.

• NAME statement specifies the Link Pack Module name (LPSPA).

• member-name specifies the module(s) to be included for each
of the applicable Intercornrn components, as defined in Figure
7-8.

Under XA, LPSPA can be placed in the MLPA. However, because LPSPA is
loaded at startup, there is no advantage gained.

In order for Intercornm system programs to provide Csect names for
Link Pack Modules in messages and reports, add the following DD
statement to the Intercornrn execution JCL after the IIPMISTOP DD
statement:

IILPSPALIB DD DISP=SHR,DSN=name-of-library-containing-LPSPA

7.12.3 Preparation of Intercomm Region (IR)

Assemble and linkedit the IR interface routine LPINTFC using the
macro LPINTFC, as follows:

II
IIASM. SYSIN

1*

EXEC ASMPCL,LMOD=LPINTFC,Q=USR
DD *
LPINTFC MODS=(.....)
END

where the same values are coded for the MODS parameter on LPINTFC as
were coded for the LPSPA macro.

7-35

Chapter 7 Execution of Intercomm

Create a standard Intercomm linkedit deck using the output of the
ICOMLINK macro, as described in the previous sections. If LPSPA=YES on
ICOMLINK, link pack eligible module INCLUDEs are not generated. If
LPSPA=NO, delete the INCLUDE statements for the modules put in the LPM,
or relinkedit the Intercomm Region load module, as indicated in Figure
7 -9. Only the REPLACE statements for the Csect names of the specific
components in the previously created Intercomm Link Pack Module should
be utilized.

II EXEC LKEDP,Q=xxx,LMOD-name
IISYSIN DD * ENTRY PMISTUP

INCLUDE SYSLIB(LPSTART)
INCLUDE SYSLIB(LPINTFC)
REPLACE MSGCOL Message Collection
REPLACE PMIRETRV Retriever
REPLACE EDITCTRL Edit
REPLACE FIXED IT Edit
REPLACE PMIOUTPT Output
REPLACE IXFMONOl File Handler

INCLUDE SYSLIB(Intercomm)
OVERLAY AB Add to Startup
INSERT LPSTART Overlay (if used)

remainder of overlay
structure from
original linkedit (if used)

1*

Figure 7-9. Relinkediting Intercomm Region for Link Pack Feature

7.12.4 User Routines in the Link Pack Area

Prior to placing a non-Intercomm module in the LPM, the following
preparation is required:

1. Coding Conventions

The module must be coded in Assembler Language and obey
certain coding restrictions, as described below.

2. Entry Point Specifications

A VCON for the module's entry point must be assigned via the
. User Spa, or the Subsystem Control Table. In the latter
case, the module would have to be a subsystem and the SYCTTBL
macro will automatically provide the VCON.

7-36

J

Chapter 7

7.12.5

NOTE:

Execution of Intercomm

Verify that the SYCTTBL macro (s) for subsystem(s) in
the Link Pack Area do not specify that the subsystem
is dynamically loaded. Also, if messages for the
subsystem(s) are to be scheduled as if the
subsystem(s) were in an overlay (EXGRP not equal to
0) the CKLINK module should be removed from the
Intercomm linkedit.

Coding Conventions for User LPM Routines

Modules in the LPM may not have TEST-YES coded for any LINKAGE
macros. Since modules in the LPM are not linkedited with the rest of
Intercomm, many external symbols cannot be resolved at linkedit time.
Any unresolvab1e external references needed by the module during
execution must, therefore, be provided, directly or indirectly, through
the System Parameter Area. Likewise, when subsequently passing control
to routines not in the Link Pack Area, a normal "CALL entry, ... " will
not work.

To overcome this limitation, the System Parameter Area and Spa
Extension are used as a communication area between the IR and the LPM,
and vice versa. The User Spa is also available for any external
symbols required by the user which are not already present (see Chapter
3) . The SPALIST Dsect contains labels of User Spa fields; therefore,
the problem of unresolved external symbols is reduced to obtaining the
addresses of the SPA (also for User Spa areas) and SPAEXT.

All subsystems are given the address of the System Parameter Area
upon entry to the subsystem. In the exceptional case when the SPA
address is not passed as a parameter to a module in Link Pack, the
GETSPA macro can be used. The macro obtains the SPA address from word
1 of the MVS save area which was initialized during startup. The macro
is coded as follows:

GETSPA REG=r
USING SPALIST,r

Execution of the macro loads the System Parameter Area address in
the register specified for the REG parameter. The most frequent uses
of the Spa and Spa Extension are for the macros shown in Figure 7-10.
The Spa Extension address is in the Spa at the label SPAEXTAD and may
be placed in a register by use of a load (L) instruction. Do not
forget USING statements to establish addressability for the SPALIST and
SPAEXT Dsects. Also code a SPALIST DSECT statement followed by a
SPALIST macro statement (no parameters) to generate the Dsects.

Finally, any module in the Link Pack must be reentrant.
attempts to modify itself, an OC4 program check will
Furthermore, each load module included as linkedit input when
is created must have been itself linkedited with PARM='RENT, ... '.

7-37

If it
result.
the LPM

Chapter 7

CALL

STORFREE

INTWAIT

DISPATCH

L
CALL

15, SPAWRITE
(15)

L ls,SPAFREE
STORFREE .. ,LINK=(ls)

Execution of Intercomm

V(WRITE)

V(STORFREE)

L l4,SPAKINT DISPATCH ON INTERVAL
INTWAIT .. ,INTVL=n,LINK=(14) V(IJKINT)

L r,SPAEXTAD
USING SPAEXT,r
L l4,SEXKDSP
DISPATCH .. ,LINK=(14)

or

SPA EXTENSION ADDRESS

DISPATCH EXECUTE
V(IJKDSP)

Figure 7-10. Frequent Uses of System Parameter Area
and SPA Extension in User LPM Routines

7.12.6 Entry Point Specifications for User LPM Routines

Even if a module requires no external symbols after acqu1r1ng
control, it cannot get control at all unless its entry point can be
found. Therefore, each entry point to which control can be passed from
the Intercornm region must have a VCON reserved in the User Spa, having
a label beginning with SPA. At Intercornm startup, all such VCONs will
be initialized to point to the Link Pack entry point, if it is resolved
in the LPM and unresolved in the IR.

The LPENTRY and LPVCON' macros define user entries in the LPSPA
and LPINTFC, respectively. These macros must be coded and assembled
with the respective Csects, as described below. For each entry point
in the LPM which is to be called symbolically, that is, "CALL name",
instead of "CALL (15)", the LPINTFC can be coded as follows:

LPINTFC MODS-(....)
LPVCON
LPVCON
LPVCON
END

One' LPVCON macro must be coded for each such entry point, except
if a subsystem is referenced via a SYCTTBL macro.

7-38

J

J

Chapter 7 Execution of Intercomm

Similarly, when creating the LPSPA Csect, an LPENTRY macro must
be coded defining each user entry point to the LPSPA.

LPENTRY
LPENTRY
LPENTRY
LPSPA
END

NOTE: All LPENTRY macros must precede the LPSPA macro, and must
be coded for subsystems as well as subroutines.

Assume a user subsystem has an entry point of SUBSYST, a
subsystem code of 'X', and a user subroutine has an entry point of
LPROUTN. First, a VCON would have to be assigned in the User Spa;
suppose that---

SPAROUTN DC V (LPROUTN)

was coded in the User Spa. None is required for SUBSYST, since it is a
subsystem.

In the LPINTFC, for example---

LPVCON LPROUTN,SPA,ROUTN

would be coded to create a pseudo entry point for LPROUTN in the
LPINTFC CSECT. No LPVCON macro is required for the subsystem.

In the LPSPA---

LPENTRY LPROUTN,SPA,ROUTN

would be coded for LPROUTN, and the following would be coded for the
subsystem:

LPENTRY SUBSYST,SCT,SSC=X

This would make it possible for these modules to be linkedited
into the LPM and receive control from an Intercomm region. Should they
have any unresolvable external references, additional entries might be
needed in the User Spa.

7.12.7 Accessing LPM Modules in Batch Mode

If a batch program (not Test Mode or simulated Intercomm) needs
to access the Intercomm File Handler (for example) in the LPM, an
interface program has to be coded as described in the chapter on the
File Handler. Additionally, the modules LPSTART, MULTI SPA , and LPINTFC
must be included in the linkedi t. For Store/Fetch, see Store/Fetch
Facility for additional linkedit requirements for a batch program.

7-39

J

Chapter 8

INTERCOMM FACILITIES

8.1 INTRODUCTION

This chapter provides general descriptions and implementation
procedures for several testing, debugging and tuning facilities
available to the Intercomm user. Where necessary, references are made
to related Intercomm manuals. The following facilities are defined:

• Terminal Simulator (BTAMSIM)

• Abend Intercept Routines (SPIEEXIT,STAEEXIT)

• Indicative dumps

• System DCBs

• Spinoff snaps

• Fast Snap Facility

• System Accounting and Measurement Reports

• System Tuning Statistics

• Log Input Facility

• Test Mode operation

8.2 TERMINAL SIMULATOR FACILITY

The Intercomm terminal simulator module (BTAMSIM) allows the
entire Intercomm system, Back End, BTAM Front End, and application
programs to be executed as if it were receiving input and sending
output to terminals, without actually having those terminals. The
terminal simulator allows the testing and debugging of the system in a
manner which closely approximates a live environment. It also allows
an early evaluation of system performance and an indication of the
response time when the system goes live.

The simulator permits a combination of a real BTAM, TCAM and/or
VTAM Front End, and BTAM line groups with only simulated terminals of
the following types:

• IBM 3270 Locals (Models 1 and 2) • IBM 2741

• IBM 2740 (Models 1 and 2) • IBM 2780 (output only)

8-1

Chapter 8 Intercomm Facilities

To use the simulator, the user must perform the following steps:

1. Include BTAMSIM as resident in the Intercomm linkedit

2. Create an input data set for each terminal to be simulated

3. Supply a DD statement for each input data set, using the name
of the terminal as the name of the DD statement

4. Create a SIMCARDS input parameter card data set

5. Supply a DD statement for the SIMCARDS data set

The following subsec,tions contain detailed discussions of each of
these steps. In addition, the BTAM Front End must be installed, and
the simulated terminals must be completely defined in the BTAM Front
End tables, as described in the BTAM Terminal Support Guide. Also, the
terminals must be properly defined in the Intercomm Back End Station
and Device Tables. A BLINE and BTERM for the CPU console as a live
terminal is optional. A control terminal (live or simulated) is
required (same TID as SPALIST- -CCNID parameter). Under Multiregion,
the simulator may not be used in a satellite region.

8.2.1 Terminal Input Data Set(s)

A data set must be created for each terminal to be simulated
containing the pseudo- input from that terminal. Each of these data
sets must be variable-format sequential files and is created using the
CREATSIM utility program. This program is described in Chapter 12,
"Off- Line Utilities."

The DD statement for each data set must have as its ddname the
name of the terminal. For example, the simulated input data set for a
terminal named CNTOl would have a ddname of CNT01.

The input data set(s) will be accessed using the File Handler;
therefore, the DD statement must specify DCB=DSORG=PS. Input records
on the simulator data set must be variable length and must follow (in
EBCDIC) the exact format of what would normally be received from the
terminal. All control characters, EOBs, ETXs, etc., must be contained
in the record.

NOTE: When simulating CRTs, if an input message causes multiple
output messages to be sent back to the terminal, it
should be followed on the input data set by a RLSE system
control command for each expected output message after
the first. There is no physical output from the
simulator.

8-2

J

J

L

Chapter 8 Intercomm Facilities

8.2.2 Input Parameter Data Set

The simulator expects an input parameter data set with the ddname
SIMCARDS containing one parameter card for each terminal with an input
data set. Each card has the following format, starting in column one:

where:

ttttt, iii, pp, ss

• ttttt represents the terminal name, for example, CNTOI
(ddname of input data set).

• iii represents the interval in seconds between input
messages, left-padded with zeros to three positions.

• pp represents the number of passes to be made through the
data set. The field is optional and has a default of 1.

• ss represents the number of initial records to skip on passes
through the data set subsequent to the first pass. This
field is optional and has a default of zero. If it is
specified, pp must also be specified.

8.2.3 Input Operations

At startup, the Front End attempts to open every TP line. If the
line DD statement is missing (as specified via the LINEGRP macro), the
line cannot be opened. This is a likely indication that some or all
terminals on that line group are to be simulated. If some terminals in
the line group are to be simulated, the terminals which are not to be
simulated cannot be live (no DD statement for the lines or local
units). Also, the BTERMs for nonsimulated terminals on those lines
must specify TPUP=NO, while those for simulated terminals must specify
TPUP=YES. The control terminal may not be simulated in a mixed
environment with live terminals.

The terminals to be simulated are identified by checking which DD
statements are supplied with the terminal name ttttt for the ddname.
If a terminal is to be simulated, there must be an input data set and a
SIMCARDS input statement for that terminal.

Assume that SIMCARDS has the following parameter card:

CNTOl,030,03

In this example, any time the Intercomm Front End encounters the
terminal name CNTOI for processing, the simulator tests to see if there
should be a simulated read from the terminal (or a simulated write to
the terminal). If a simulated read is required, a record is read from
the data set represented by the CNTOI DD statement and is passed back
to the Front End.

8-3

Chapter 8 Intercomm Facilities

The Front End conversational facility is supported because an
interval is started only at the time a message is read from a terminal.

The simulator program operates by changing the READ/WRITE routine
address in the DCB of the LINEGRP macro expansion for the terminals to
be simulated to point to an entry point in BTAMSIM instead of to the
normal BTAM READ/WRITE routine. Therefore, whenever the Intercomm
Front End issues a read or a write, the simulator acquires control.
For read operations, the simulator determines which terminals are being
simulated. For each terminal provided with a data set and defined to
the simulator by a parameter card on the SIMCARDS data set, records
representing a message are read in from the terminal's data set and
passed back to the BTAM Front End at the interval specified in the iii
field of the parameter card.

If the end of the data set is reached, and if the pp field of the
parameter card is greater than 1, the simulator will start over again
at the beginning of the data set. It will perform as many passes as
prescribed in the pp field. On these additional passes, it will bypass
the first ss records of the data set, if requested.

8.2.4 Output Operations

Whenever the Front End issues a write to a terminal, the
simulator acquires control in the same manner as for a read. For write
operations, there is very little to be done. The simulator delays
returning control to the Front End for an interval that it calculates
to be the approximate line-time required to send the message to the
terminal as if the terminal were really there. The simulator then
returns to the Front End with a successful completion code. An
exception to this is for buffered hard copy devices, where the
simulator will return to the Front End a buffer-busy code, if the
current message is being written to the terminal before the terminal's
buffer could have dumped a prior message. The Front End then retries
at a later time, as it would in a live environment.

Output messages to simulated terminals are ignored (and freed) by
the simulator. However, they can be examined on the INTERLOG data set
which contains all output queued for the Front End (F2 and F3 log
codes).

8.2.5 Local 3270 Message Preparation and Processing

To simulate formatted screen input messages for a 3270, use the
CREATSIM utility to create the input message file with SBA sequence
cards defined for each input field. CREATSIM can also process
positional input messages interspersed with formatted input messages.

8-4

J

Chapter 8 Intercornm Facilities

To produce a printed listing of all input and output 3270
messages, also include SIM3270 as resident in the Intercornm linkedit
and define a SYSOUT DD statement for each local 3270 terminal (CRT or
printer) to be simulated, as follows:

//SCRxxxxx DD SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=12l,RECFM=FA)

where xxxxx is the terminal-ID of the terminal being simulated.

The printed listing provides a display (with attribute
indicators, where applicable) and also the message data in EBCDIC as it
would be sent to, or received from, the terminal. Appropriate error
messages for invalid 3270 orders, etc., are also printed. A CRT
display is updated for each message to illustrate how it would look had
the actual terminal I/O been performed. SIM3270 expects each input
message to start with a one-byte hex AID key value, followed by a
two-byte physical cursor address, then an SBA sequence for the first
field if formatted input, or a message text string if unformatted.

Use of SIM3270 requires that the Intercomm Store/Fetch Facility
be installed. Transient strings are created in core for the area of
each simulated terminal and updated for each input and output message.
These strings require definition of a Store/Fetch data set in case a
flush is necessary. The default used is INTSTOR9; however, this may be
changed to an existing Store/Fetch work data set ddname by modifying
the global &SDD at sequence number 01760000 in SIM3270. (See
Store/Fetch Facility for further details.)

8.2.6 Simulator Closedown

The simulator maintains a record of the number of terminals that
have active simulated input files. If end-of-file has been reached on
all of these files (or if the specified number of passes has been made
through all of them), and if there are no live terminals operating,
then the simulator will internally generate a NRCD closedown message to
terminate the simulation. If some live terminals are also operating,
however, this will not be done; the system will close down when the
NRCD or IMCD transaction is entered from the control terminal, which
must be a live terminal.

8.3 ABEND INTERCEPT ROUTINES--SPIEEXIT,STAEEXIT

Two system routines are provided with Intercornm to intercept
abends and prevent the termination of task execution. These programs,
SPIEEXIT and STAEEXIT, are referenced in the SPIE (ESPIE if XA) and
ESTAE macros, issued at system startup. SPIE/ESPIE and ESTAE will not
be issued if the modules are not included in the Intercornm linkedit.

8-5

Chapter 8 1ntercomm Facilities

8.3.1 SP1EEX1T

SP1EEX1T receives control in the event of any program check (OCx)
condition, and then calls SP1ESNAP to issue a Snap 126 and return
control to the Dispatcher (thread zero) or Subsystem Controller
(nonzero thread). Recovery mayor may not proceed successfully based
upon the cause of the program check. Many Intercomm service routines
force an OC1 (XA) or OC2 (MVS/370) program check intentionally (via 1SK
instruction) when invalid data is passed; in this case the associated
message processing thread is terminated, and the system continues
execution. If the program check occurs because of invalid table
entries, or because a system routine is inadvertently destroyed by
invalid program logic, recovery may not be successful. SP1ESNAP and
PMISNAPl must also be in the linkedit. The program check codes trapped
via SP1EEX1T are controlled by the STUSPIE parameter of the SPAL1ST
macro.

8.3.2 User SP1ESNAP Exit--SPSNEX1T

A user exit routine is conditionally called by SPIESNAP to
determine whether or not a snap 126 should be taken. This exit can be
used to prevent a buildup of the snap data set by repetitive snap 126
calls. This exit will not suppress any other snap (see also Section
8.4.1, "User Snap Exit," below).

When control is passed to SPSNEXIT, Rl contains the address of
the SP1EEXIT save area (formatted SP1E SAVE AREA described in Messages
and Codes), and RO points to the initialized text of the program check
message (MP001I) in standard WTO format (4-byte prefix); see the
description for the USERWTO exl.t in Messages and Codes. Standard
linkage conventions apply.

Upon return from the SPSNEXIT routine, if register 15 contains
zero, the snap 126 will be taken. Any other value in register 15
indicates . that the snap should be suppressed. The routine must be
closed; that is, it may not relinquish control to the Dispatcher. The
routine must be resident.

8.3.3 STAEEXIT

STAEEXIT receives control in the event of any abend conditions
other than program checks. The only valid situations for attempted
recovery are that of the Dispatcher abend 909 indicating detection of a
closed program loop by the routine IJKTLOOP, or a Multiregion
cross-memory post failure (abend 557). Recovery will be attempted only
if the module STAERTRY is included in the linkedit (this module
contains the IBM SPIE macro; if executing under XA, reassemble STAERTRY
to ensure that the ESPIE version of the macro is used for abend 909
recovery) . Otherwise, STAEEXIT effects job termination via the same

8-6

J

L

Chapter 8 Intercomm Facilities

abend code, after issuing an informational WIO, capturing the current
environment via a snap 122, closing files and flushing the log
buffers. A SNAPDD DD statement must be present (not DUMMY) for the
snap 122 to be issued. A MVS system dump (ID~OOO) will be written to
SYSUDUMP, or SYSABEND if present, only if a console operator cancel
(with a dump) request is issued (no snap 122 issued). See Messages and
Codes for a description of Snap 122.

8.4 INDICATIVE DUMP OPTION

When a program check or a time-out occurs, a full region snap is
produced by default. It is usually the case that only certain items in
the snap are needed for debugging purposes. In order to reduce the
size of the snap produced, Intercomm provides an option to produce a
smaller indicative dump, which includes only those areas most likely to
be needed for· debugging. The user selects this option (for snaps
issued by Intercomm) by specifying INDUMP=YES as a parameter on the
SPALIST macro. When choosing this option, be aware that certain
problems (for example, storage destruction) may only be solved from a
full snap before the cause of the problem can be determined.

On a user-coded PMISNAP macro, the parameter INDUMP=YES may be
coded to request an indicative dump, rather than a full snap. For a
user- issued PMISNAP, this option applies to all snap-IDs. If
INDUMP=YES was coded for the SPALIST macro, the user- issued PMISNAP
option will be honored. Thus, this option can serve as a useful
debugging tool, particularly for dynamically loadable subsystems and
subroutines, by the insertion of the statement:

PMISNAP ID=n,INDUMP=YES

in an Assembler Language program.

Indicative dump processing may be activated and deactivated by
various indicative dump parameters of the STRT/STOP system control
commands. These command options can be used to dynamically override
the SPALIST macro specification. However, the option to suppress
indicative dumps requires all user-coded PMISNAP macros to additionally
contain operands for a normal snap, if INDUMP is turned off.
Indicative dump processing for a specific subsystem is additionally
controlled by the SYCTTBL macro, INDUMP parameter (defaul t=YES), and
can be dynamically changed via the FTUN/SSUP command sequence.

The indicative dump option is applied to Intercomm-generated
snaps 126. 118 and 114. It is not applied to thread O. The storage
areas printed in an indicative dump are described in Figure 8-1, in the
order of their appearance. Other resource types owned by the thread
are adequately identified in the associated thread resource dump.

8-7

Chapter 8 Intercomm Facilities

F===
Areas Length Note

F==F================
SPIE SAVE AREA 144 1

Text of PROGRAM CHECK/TIMEOUT Message (MP001I, MS009I
or MG300I)

Vicinity (-16 thru +16) of Failing Instruction

Resource Manager Save Area (RMSAVE)

System Parameter Area and USERSPA (if any)

SPA Extension

ITCB (Intercomm Thread Control Block) for subsystem

SCT (of the associated subsystem)

Subsystem Controller Save Area for subsystem (with
saved input message header)

Subsystem Input Parameter List

88 7

36 7

104 2

500+ 6

1500 7

40 7

100 7

244 3,7

20 7

Subsystem Input Message (if available) Variable 7

Subsystem, if COBOL, or nonreentrant Assembler or PL/1 Variable 4,7

SCT Extension, if dynamically loaded subsystem 104

Resources owned by thread Variable 4,5

STORAGE/LIST parameter storage areas (if any) Variable

Notes:

1 Meaningful for snap 126 only (see Messages and Codes).

2 Meaningful only for program check in Manager.

3 May be chained down to thread-owned save areas which will
appear in the snap as resources obtained dynamically.

4 The SPALIST macro, INDUMP parameter, specifies the length for
snapping a COBOL or nonreentrant subsystem; except that for a
dynamically loaded subsystem, the entire load module is
produced. For user subroutines defined with the LNAME
parameter on a SUBMODS macro, the BLDL length is used if

. available, otherwise the INDUMP parameter length value is
used.

Figure 8-1. Areas Displayed by Indicative Dump (Page 1 of 2)

8-8

J

J

L

Chapter 8 Intercomm Facilities

otes:

5 Up to 50 areas representing thread-owned resources appear i
the snap (in reverse order of acquisition) as follows:

Resource Type

Core
Dynl

File

Area acquired
REENTSBS (SUBMODS macro) entry
Dynamic loaded subroutine
Internal DSCT
External DSCT
DCB/ACB, if present
DECB/RPL, if present

Length

Area Length
28/80

Variable
60-76

48
256

80

6 If no USERSPA, then only the 500-byte SPA Csect is snapped.

7 If this area is not available (address is zero), the constant
THIS AREA IS NOT APPLICABLE TO THIS SNAP will be snappe
instead of the control block area. The literal can be easily
identified in the EBCDIC representation of the snapped area 0

the right side of the dump.

Figure 8-1. Areas Displayed by Indicative Dump (Page 2 of 2)

8.4.1 User Snap Exit--SNAPEXIT

A user exit routine is conditionally called by the Csect ICOMSNAP
within the module PMISNAPI to determine whether or not a snap should be
taken. This exit routine could be used to prevent buildup of the snap
data set by recursive snap calls. The entry point of the exit routine
must be SNAPEXIT.

When control is passed to SNAPEXIT, register 1 points to a
parameter list, as follows:

1. Address of the one-byte snap-ID in the snap parameter list.

2. Address of the SPIEEXIT save area (See Messages and Codes).
This parameter is only meaningful for snap 126.

Upon return from the
zero, the snap should be
indicates that the snap
conventions apply.

SNAPEXIT routine, if register 15 contains
taken. Any other value in register 15
should be suppressed. Standard linkage

The routine must be closed; that is, it may not relinquish control
to the Dispatcher or call any routine which gives up control to the
Dispatcher. The routine must be in the same overlay segment as the
Csect ICOMSNAP or must be resident.

8-9

Chapter 8 Intercomm Facilities

8.5 SYSTEM DCBs

The member named PMIDCB is obsolete and, no longer used as of
Release 10. The DCB required in all Intercomm systems labeled PMISNAP,
which references the DD statement named SNAPDD, has been moved to the
snap processing module PMISNAP1, along with the FASTSNAP DCB. PMISNAP
is used to define output of snap dumps, and may be referenced by any
program requiring this facility.

The QTAMDCB entry in the old PMIDCB was used only for the Basic
TCAM destination queue DCB and is obsolete because the Basic TCAM
interface is desupported as of Release 10 in favor of the Extended TCAM
interface which takes advantage of Intercomm Front End facilities.

Figure 8-2 (Listing of PMIDCB) has been deleted.

8.6 SPINOFF SNAPS

J

This facility allows the snap data set defined by the SNAPDD DD
statement to be dynamically renamed and deallocated when a
user-specified threshold of total output has been reached. The renamed
SNAPDD data set may then be printed by a batch program while Intercomm
continues to execute. This feature is particularly useful for
installations using dynamic program loading. An error condition
causing a snap can be analyzed, corrected, and a new version .of the J
program implemented quickly.

The SPINOFF module is called every time a PMISNAP macro is
issued, if the DCB parameter is specified as PMISNAP (SEXSNAP in SPA),
or omitted. The PMISNAP DCB is defined in the Intercomm member
PMISNAP1, and specifies the ddname SNAPDD. If SNAPDD is tape-resident,
the SPINOFF facility is meaningless and inoperative. SYSOUT spooling
may be used if FREE=CLOSE is specified. If the SNAPDD data set is a
disk file, the module checks to see if the total accumulated snap
output equals the number of pages specified by the SNAPPGS parameter of
the SPALIST macro. If this t~reshold has been reached, the snap DCB is
closed, the data set is renamed and deallocated, and the message MPOIOI
is issued giving the new data set name to allow it to be printed. If
the threshold is set at fifty pages, for instance, every time fifty
pages or more of snaps have been produced (this could be one full snap
126 or snap 118, or many small (indicative dump or Front End trace)
snaps), the data set will be spun-off. A new data set is dynamically
allocated on the same disk pack using the MVS allocate SVC and the DCB
is then reopened to allow additional snaps. At closedown, the newest
SNAPDD data set is scratched if empty, spun off if not.

If the SNAPDD data set is SYSOUT and FREE-CLOSE is specified on
the DD statement, the DCB is closed after each snap is issued in order
to allow· immediate printing. Then, a new SYSOUT area is allocated.
Also code a space allocation (in cylinders); SPACE-(CYL,20) is
recommended to allow for full region snaps.

8-10

Chapter 8 Intercomm Facilities

If allocation of a new SNAPDD data set fails, an informational
message is issued and the next snap will be attempted to the file with
ddname NEWSNAP. If this fails, a message is issued to inform that
future snaps will be lost. If the auxiliary data set (NEWSNAP) is
desired, the following DD statement must be added to the execution JCL:

//NEWSNAP DD SYSOUT-A

Snaps to NEWSNAP are not spun off, therefore a large space allocation
should be defined.

8.6.1 Implementation

To implement this facility, the following steps must be
performed:

l. The module SPINOFF must be included in the Intercomm
linkedit.

2. If spooling to disk, the SNAPPGS parameter must be defined
for the SPALIST macro, and then the member INTSPA must be
reassembled and linkedited, and a linkedit of Intercomm must
be executed.

3. The Intercomm execution JCL must define a disk data set,
DISP=(NEW, KEEP) , for the SNAPDD DD statement except if SYSOUT
is used. The space allocation must be large enough to hold a
full region dump. If the allocation is too small, an x37
system abend may occur. The SNAPDD data set is referenced by
the system DCB labeled PMISNAP in the member PMISNAPI. If
not SYSOUT, DCB=DSORG=PS may be defined on the SNAPDD
statement; other subparameters are already defined on the DCB
macro and may not be changed. For a disk data set, space
allocation may be in cylinders or tracks (with primary and
secondary extents), and a specific volser may be requested;
also a data set name is required. FREE=CLOSE (and a SPACE
allocation) must be specified if SYSOUT. In either case,
place the DD statements for SNAPDD and NEWSNAP (if used)
after the //PMISTOP DD DUMMY statement, as they are not
processed by the File Handler.

4. The disk pack to which the SNAPDD data set is assigned must
have room for subsequent snap data sets to be allocated, once
the SPINOFF facility is activated. When a SPINOFF data set
is printed or no longer needed, it should be deleted
(DISP=(OLD,DELETE» so as not to waste system resources.

5. Add the NEWSNAP DD statement described above to the Intercomm
execution JCL, if desired.

8-11

Chapter 8 Intercomm Facilities

Sample JCL for printing SPINOFF snaps is illustrated in Figure
8-3. This example illustrates the concatenation of two renamed snap
data sets produced by SPINOFF.

Iistepname
IISYSUTl
II
II
II
IISYSPRINT
IISYSUT2
IISYSIN

EXEC
DD

DD

DD
DD
DD

PGM=IEBGENER,COND=EVEN
UNIT=3380,VOL=SER=WORKl4,DISP=(OLD,DELETE),
DSN=INTERCOM.SLOWSNAP.D88l0l.Tl2260S.IDl26
UNIT=3380,VOL=SER=WORKl4,DISP=(OLD,DELETE),
DSN=INTERCOM.SLOWSNAP.D88l0l.Tl238l9.IDl26
SYSOUT=A
SYSOUT=A,DCB=(RECFM=VBA,LRECL=l2S,BLKSIZE=882)
DUMMY

Figure 8-3. Sample JCL for Spinoff Snaps

8.6.2 User SPINOFF Snap Exit--SPINEXIT

SPINOFF conditionally calls a user exit routine which may be
coded to determine whether to dispose of the snap data set
automatically by generating an internal job to print the data set.
This exit may be used to eliminate the need for an external action to
print a data set created by SPINOFF. The entry point of the exit
routine must be SPINEXIT.

When control is passed to SPINEXIT, register 1 points to a
parameter list describing the snap data set just created by the SPINOFF
routine, as follows:

1. UCB address

2. Address of the 38-byte SNAP data set name.

3. Address of the volume serial number, a six-byte character
string.

The exit routine must be serially reusable and may not relinquish
control to the Dispatcher, either directly or indirectly. Standard
linkage conventions apply. The exit routine must be resident.

8-12

J

L

Chapter 8 Intercomm Facilities

8.7 FAST SNAP FACILITY

An optional high-speed Fast Snap facility is available with
Intercomm. This is used only to snap the entire Intercomm region. If
the issuer of the PMISNAP requests an indicative dump, and indicative
dump processing is activated, Fast Snap processing is bypassed.
Dramatic improvements in elapsed time (up to 90 percent) have been
realized through the use of this facility. The actual improvement
depends on the operating system, CPU size, and Intercomm region size.
Intercomm snaps 126, 118 and 114 are issued requesting a Fast Snap. If
the facility is not implemented, a normal snap will be taken. Users
may request Fast Snaps with a PMISNAP macro. (See Basic System Macros
for coding details ~) Also code the normal snap parameters, so that a
snap will be taken even if any errors occur on the Fast Snap data set.

8.7.1 Restrictions

The implementation of the Fast Snap facility relies upon an
operating system capability (SVC dump) which is normally for internal
use only and is officially supported by IBM only for MVS. This
facility must be available to user programs, that is, Intercomm.

8.7.2 Prerequisites

in order to implement the Fast Snap facility, the following
Intercomm components are required:

• Intercomm Interregion SVC must be installed (see Chapter 7)

• Reassemble PMISNAPI and STARTUP3

• Install SPINOFF Snap facility as described in the previous
section

At execution time, a DD statement is required defining disk space
to contain the Fast Snap output. The format of the DD statement is:

IIFASTSNAP DD UNIT=disk,SPACE=(CYL,nn,RLSE,CONTIG)

SPACE must be contiguous and large enough to contain the
Intercomm Region, Link Pack Area (if applicable) and the operating
system nucleus. A vo1ser may be defined, if desired. Do not code a
data set name or DISP parameter. The FASTSNAP DD statement must be
placed after the IIPMISTOP DD DUMMY along with those for SNAPDD and
NEWSNAP.

8-13

Chapter 8 Intercomm Facilities

8.7.3 Operation

Each Fast Snap taken will allocate and name a new data set on the
volume allocated by the system or JCL for the FASTSNAP DD statement. A
message will be issued providing the data set name and volume serial
number. If, for any reason, the Fast Snap operation fails, a message
is issued containing a code identifying the reason for the failure.
These codes are described in Messages and Codes under the MPOllI
message.

After a nonzero code, corrective action within SPINOFF may result
in the message MP014I or MP013I being issued and then the current snap
is processed normally by the Spinoff facility. Allocation will be
attempted again on the next Fast Snap. A count of consecutive
allocation failures is maintained. When it exceeds three,
informational messages are suppressed; however, any successful
allocation resets the count.

8.7.4 Printing the Fast Snap--IMDPRDMP

The IBM service aid, IMDPRDMP (AMDPRDMP, PRDMP), may be used to
print the data set. The IMDPRDMP service aid may be named differently
among operating system versions or releases. JCL required to print the
data set is illustrated below.

II
IISYSPRINT
IIPRINTER
IISYSUTI
IITAPE
II
IISYSIN

1*

LPAMAP
FORMAT
PRINT
END

EXEC
DD
DD
DD
DD

DD

PGM=AMDPRDMP
SYSOUT=A message data set
SYSOUT=A primary output
UNIT=SYSDA,SPACE=(20S2,(n,lO), ,CONTIG) (see NOTE)
DISP=(OLD,DELETE,KEEP),UNIT=disk,VOL=SER=vvvvvv,
DSN=INTERCOM. FASTSNAP.Dyyddd.Thhmmss. I Dnnn
* IMDPRDMP CONTROL CARDS

CURRENT,NUCLEUS,JOBNAME=Intercomm-jobname

where n is the number of blocks calculated as: (core size/2048) + 1,
and DSN and VOL are those described by message MP010I at execution
time when the Fast Snap data set was created.

NOTE: Consult Service Aids manual relevant to your operating system
for appropriate SYSUTI block sizes and other requirements.

8-14

J

L

Chapter 8 Intercomm Facilities

8.8 SYSTEM ACCOUNTING AND MEASUREMENT (SAM) FACILITY

The optional Intercomm System Accounting and Measurement
facility is used to accumulate resource usage information for
message processed by subsystems operating under Intercomm.
captured resource usage information can be used, for example:

(SAM)
each

The

• For report generation purposes to allocate charges for use of
a resource

• To fine tune the Intercomm System

The information from SAM is written to INTERLOG in conjunction with the
logging of the X'FA' completlon record at the time subsystem processing
completes for each message. An off-line utility program is provided to
extract the data from the sorted log and print it. If LOG=NO or SAM=NO
is coded on a SYCTTBL macro, SAM information will be unavailable for
that subsystem. If message restart is not applicable for the
subsystem, RESTART=NO should be coded on the associated SYCTTBL macro.

8.8.1 Specifying System Resource Usage Categories

The SAM facility is capable of capturing information on up to
fifty-three system categories, as specified via the MAPACCT macro. The
MAPACCT macro is used to specify the following:

• The name (keywords) of the system resource usage categories
to be collected

• The grouping of certain categories for reporting purposes

• The title to be used in the report to describe each group

The MAPACCT macro is coded as follows:

MAPACCT (' bl' , r , r ...) , (, b2' , r , r ...) , ... (, bn' ,r, r , ...)

Only one MAPACCT macro is coded; all statistics categories to be
accumulated systemwide for each processing thread must be specified on
that macro. Each group of parameters wi thin parentheses defines a
single accounting group or "bucket." The value coded for "bn" must be
a character string of one to ten characters and represent the title to
be used for that bucket in the final report. Each "r" parameter must
be a SAM keyword representing a category of resource usage to be
included in that bucket. Any number of buckets may be specified, but
no resource usage category may appear in more than one bucket. The
system resource usage categories and their keywords are listed in
Figure 8-4. It should be noted that no count of WAIT time is kept.

8-15

Chapter 8 Intercomm Facilities

Keyword Resource--Usage Type

CPUTIME Total thread CPU time in units of 1/1000 second

HIGHS TOR

STORAGES

MESSAGES

OLOADS

LOADS

ENQS

OPENS

CLOSES

SETLS

QISAMG

QISAMP

BISAMR

BISAMW

BISAMWKN

BDAMR

BDAMW

BSAMR

BSAMW

QSAMG

QSAMP

VSAMG

VSAMP

VSAMPT .

VSAME

Thread high water mark of core usage. If specified, the
STORAGES keyword must also be specified.

Total number of storage requests

Total number of messages generated by the thread

Total overlay loads through use of CALLOVLY

Total module loads via the PMIDLOAD module

Total ENQS through use of the INTENQ macro (routine)

Total of File OPENs

Total of File CLOSEs

Total QISAM SETLs

Total QISAM GETs

Total QISAM PUTs

Total BISAM READs

Total BISAM WRITE Updates

Total BISAM WRITE Adds

Total BDAM READs

Total BDAM WRITEs

Total BSAM READs

Total BSAM WRITEs

Total QSAM GETs

Total QSAM PUTs

Total VSAM GETs

Total VSAM PUTs

Total VSAM POINTs

Total VSAM ERASEs

Figure 8-4. Resource Usage Categories (Page 1 of 3)

8-16

J

J

L

Chapter 8

SELECTS

RELEASES

ALLOCS

ACCESSES

FETCORE

FETDISK

STORCORE

STORDISK

STORUPD

UNSTCORE

UNSTDISK

MAPINS

MAPOTS

MAPENS

MAPPRS

MAPCLS

MAPFRS

MPPAGES

QBLDS

QOPNS

Intercomm Facilities

~=~~ ===~=-=-=-,~===~-=-================~===-=-~=====

Resource--Usage Type

Total File SELECTs

Total File RELEASEs

Total calls to ALLOCATE

Total calls to ACCESS

Total FETCHs from core

Total FETCHs from disk

Total STOREs to core

Total STOREs to disk

Total STORE UPDATES with length change

Total UNSTOREs of transient strings (core and disk)

Total UNSTOREs from disk (semipermanent and permanent
strings)

Total calls to MAPIN

Total calls to MAPOUT

Total calls to MAP END

Total calls to MAPURGE

Total calls to MAPCLR

Total calls to MAPFREE

Total pages created via MMU

Total number of DDQ QBUILDs

Total number of DDQ QOPENs

QRDS Total number of DDQ QREADs

QRDXS Total number of DDQ QREADXs (for update)

Figure 8-4. Resource Usage Categories (Page 2 of 3)

8-17

Chapter 8 Intercomm Facilities

Keyword Resource--Usage Type

QWRS Total number of DDQ QWRITEs

QWRXS Total number of DDQ QWRITEXs (for update)

QCLSS Total number of DDQ QCLOSEs

FESCLS Total calls to FESEND/FESENDC

FEOTPUT Total calls to PMIOTPUT (entry in FESEND) by Output
Utility

Figure 8-4. Resource Usage Categories (Page 3 of 3)

Any resource usage types not referred to by keywords in the
MAPACCT macro are not cons idered for statistics. All specified
categories are collected for all active subsystems with SAM=YES
(default) coded on their SYCTTBL macros.

Resource usage accumulations can be dynamically stopped or started
system-wide while Intercomm is processing, via the STOP and STRT system
control commands. SAM processing for a specific subsystem can be
stopped or started via the FTUN/SSUP command sequence.

8.8.2 Specifying User Accumulators

In addition to the fifty-three system-defined resource usage
accumulators represented by the keywords in Figure 8-4, up to ten user
accumulators can be specified. The MAPACCT macro is also used to
specify the user accumulators; coding conventions for system resource
usage categories also apply to user-specified accumulators. The user
accumulator keywords must have the following format:

USRBKnn

where nn is coded in the range of 01 to 10, inclusive.

The USRTRACK macro with the BUCKTNO parameter is issued by the
user, when appropriate, to increment by one a user accumulator defined
via the MAPACCT macro. (See Basic System Macros.)

8.8.3 SAM User Exit Routines--USRSAMnn

Optionally, up to ten user-coded eX1t routines are permitted with
the SAM facility for use with USRBKnn accumulators. A SAM user exit
routine is specified to the SAM facility as a keyword on the MAPACCT
macro, as follows:

USRFNnn

8-18

J

J

Chapter 8 Intercomm Facilities

where nn is coded in the range of 01 to 10, inclusive, which
corresponds to a user accumulator USRBKnn. The user exit is invoked
via the FUNCNO parameter of the user-coded USRTRACK macro. (See Basic
System Macros.)

The user-written exit routines are coded with a Csect name as
follows:

USRSAMnn

where nn corresponds to the value specified in the USRFNnn keyword.

8.8.4

The following are conventions for user-written exit routines:

• Can be resident modules or reside in the uncontrolled overlay
region

• Must follow standard linkage conventions

• Are pas sed the addres s in regis ter 1 of the bucket
(accumulator) with which the corresponding USRFNnn has been
associated (USRBKnn)

• May not give up control to the Dispatcher, whether directly
or indirectly.

Implementation

The MAPACCT macro is coded in a member named SAMTABLE with a
Csect name of SAMTABLE. This member, along with the processing modules
SAMSECT and TRACKMOD must be included in the Intercomm linkedit. The
INCLUDE cards for these SAM modules are automatically produced if
SAM=YES is specified on the ICOMLINK macro. A typical SAMTABLE is
illustrated below:

II
.1
SAMTABLE

1*

EXEC
ADD
CSECT

LIBELINK,Q=LIB,NAME=SAMTABLE,LMOD=SAMTABLE
NAME=SAMTABLE,LIST=ALL

MAPACCT ('BDAM READS' ,BDAMR),

END

('CPUTIME' ,CPUTIME),
('ALL WRITES' ,BISAMW,BISAMWKN,BDAMW,BSAMW),
('HIGH CORE' ,HIGHSTOR),
('STORAGES' ,STORAGES),
('MY BUCKET' ,USRBK01),
('MY ROUTINE' ,USRFN01)

8-19

X
X
X
X
X
X

Chapter 8 Intercomm Facilities

The USRTRACK macro may be coded in a user-written Assembler
Language subroutine called by a high-level language subsubsystem
(COBOL, PL/l) or issued directly in an Assembler Language subsystem.
When the BUCKTNO=nn parameter is specified, the corresponding bucket
(in the SAMTABLE) to which the keyword USRBKnn was assigned (via the
MAPACCT macro) is incremented by one by Intercomm. However, if the
FUNCNO=nn parameter is used, the corresponding USRSAMnn user exit
subroutine is invoked, with the address of the corresponding bucket (in
the SAMTABLE) to which the keyword USRFNnn was assigned (via the
MAPACCT macro). The user exit may examine the contents of the bucket
(a fullword) and increment or decrement it by any desired value. Also,
the user exit could indicate, via a return code to the user's calling
routine, the results of examination/manipulation of the bucket. Thus,
the next processing step to be taken within the user routine issuing
the USRTRACK macro can depend on that return code, if desired. For
example, processing action may be different, depending on whether the
bucket is or becomes zero or not.

8.8.S Reports from System Accounting and Measurement

Two main types of reports may be produced from the data captured
on the log. The maj or control can be on the subsystem codes or the
terminal- IDs. Totals for accumulated data will be printed either by
subsystem or by terminal. For each of these two main report types the
user may also request that detail information be printed as well as
totals. If detail information is requested, the resource usage
information will be printed for every individual message in addition to
the totals.

Before executing the report program, INTERLOG must be sorted to
produce the input to the report program; DCB=(RECFM=VB,BLKSIZE=nnnnn,
LRECL=nnnnn-4,DSORG=PS) must be specified. The SORTOUT data set should
be defined as a variable-length blocked file (minimum LRECL is 42 plus
the number of accounting buckets (times 4) rounded up to the next
doubleword). A sort ElS-exit must be used to delete extraneous records
from the sort. This exit routine is named SAMElS and is supplied on
MODREL. The control cards for the sort to produce a sorted output file
to be used for a report whose major control is on the subsystem codes,
are as follows:

SORT FIELDS=(29,l,BI,A,S,l,BI,A,24,S,CH,A,7,3,BI,A),SIZE=E9000
MODS ElS=(SAMElS,SOO,MODREL,N)

The following control statements will produce a sorted output
file with a major control on terminal-IDs:

SORT FIELDS-(24,S,CH,A,29,l,BI,A,5,l,BI,A,7,3,BI,A),SIZE=E9000
MODS E15-(SAMElS,SOO,MODREL,N)

In both of the above cases, a DD statement named MODREL must
define the Intercomm MODREL library in the sort JCL.

8-20

J

Chapter 8 Intercomm Facilities

The report program must be linkedited as follows:

INCLUDE SYSLIB(SAMREPT,SAMRPTIO,SAMTABLE)
ENTRY SAMREPT

(The SAMTABLE member is the same member used in the Intercomm linkedit.)

The report is produced using the following JCL:

II
IISTEPLIB
IISYSUDUMP
IISAMPRNT
IISAMFILE

EXEC
DD
DD
DD
DD

PGM=SAMREPT,PARM=pppp
DISP=SHR,DSN=library-with-SAMREPT
SYSOUT=A
SYSOUT=A,DCB=(RECFM=FA,LRECL=133)
(Output from the Sort)

The PARM field controls the type of report to be produced. The
PARM values are detailed in Figure 8-5.

Parm Type of Report

PARM- 'SUBO' Totals by subsystem code

'SUBO,DTL' As above with detail information

'SUBT' Totals by terminal within subsystem code

'SUBT,DTL' As above with detail information

'TRMO' Totals by terminal

'TRMO,DTL' As above with detail information

'TRMS' Totals by subsystem within terminal

'TRMS,DTL' As above with detail information

1: File was sorted with major control on subsystem code.

2 : File was sorted with major control on terminal.

3: The last character of SUBO or TRMO is the letter '0' , not zero.

Figure 8-5. SAM Report Execution PARM Values

1,3

1,3

1

1

2,3

2,3

2

2

Sample output from a System Accounting and Measurement Report is
illustrated in Figure 8-6, and illustrates statistics for multiple
terminals accessing subsystem 'OOD9', via a PARM of 'SUBT,DTL'.

8-21

SYSTE"S A(COU..,T ING AND ME ASURE"ENT REPORT 88.HZ

SU6SVSTE'" OoOq f &
~

• OTL SUBSYSTEM OOOq TERMINAL 10 PAUll ""'N- 0000030q TI"E- On93117B

ALL QI SA" I
rt
CD

101" READS CPUTIME MESSAGES
11

HIGH CORE STORAGES ENQUEUt:S OPENS

.... 0 0 17lZ 6 1 0 0 0 co

.... IJI SA"R BISAM .. 80AM ..
~ 0 0 0
11 ..

.OTL SUBSYSTE" OOOq TERMINAL 10 PAULl MMN- OOOOOb55 TIME- OQ37 .. nZ
00
I
0\ IDA" REAOS CPU TI ME HIGH CORE STORAGES MESSAGES ENIJUEUES OPENS ALL QISA"

0 7 1BZ" 1Z 1 0 1 0

II5A"'R B IS"'" BoAMW

en 0 0 0

'< ..
• OTL SUBSYSTE" OOOq TERI1INAL 10 PAUll Ml'IN- 00000768 TIME- Oq C .. 7l

n ; lOA" READS CPUTIME HIGH CORE S TOR AGE S MESSAGES ENQUEUES OPENS ALL QISA"

~ 0 q 68q6 308 b 0 1 0

n IISA .. R BISA"W BoAI1 ..

0 0 0 0

oo§
• OTL SUBSYSTEI1 OOOq TERI1INAL 10 PAULl M"'N- OOOO'078q TIME- OQ"6167Q In

N
N::I

IDA" READS CPUTIIIIIE HIGH CORE STORAGES MESSAGES ENQUEUES OPENS ALL QI SA"
011

§
0 q 68q6 zQz 1 0 1 0

II5"'R BISA"W BOA"W
~ 0 0 0

if •• TOTALS .. SUBSYSTEM 0001:1 TERMINAL 10 PAULl ..
~ IDA" READS CPUTI ME HIGH CORE STORAGES "ESSAGES ENQUEUES OPENS ALL UISA"

.. 0 Z5 17328 618 q 0 3 0

=
IISA"R B I SAI'hl 80AM .. foot

::I
• ·0 0 0 ::I

n
n ..
11

'" .. n
'0

0

0 I
11 •••• TCTALS SUBSYSTE" OOOq
n
en IDA" READS CPUTI"'E HIGH COIlE STORAGES MES SAGE S ENUUEUES OPENS ALL QISA" III

! 0 25 17328 618 - q 0 3 0
n

III SA"R B I SAl'll' BO"'"
~

~ 0 0 0
.... .. rt
CD

1011011010 AVERAGES 5l&SYSTEII OOOq MESSAGE COUNT- eooo
1101" READS CPUTI"lE HIGH CORE STORAGES MESSAGES I:NCJUEUES OPENS ALL DISA"

0 6 43 JZ 155 Z 0 1 0

8ISA"R BISAI':" BOA"'''
0 0 0

L

Chapter 8 Intercomm Facilities

8.9 SYSTEM TUNING STATISTICS

The System Tuning Statistics facility, using minimal overhead, is
optionally avai 1ab1e to users of Intercomm. The statistics are
accumulated and written to a statistics data set at time intervals
specified by the SPALIST macro, STSTIME parameter. The information
obtained can be used to tune and optimize the Intercomm system.
(System Tuning is also described in Chapter 11.)

8.9.1 Reports from System Tuning Statistics

System Tuning Statistics are accumulated in a report issued at
user-specified intervals, and at c1osedown (also at abend - if STAEEXIT
in Intercomm 1inkedit). The report includes statistics on:

• Message processing and overflow disk queuing

• Multiregion message flow

• INTERLOG log records processing

• Dynamic/Overlay subsystem/subroutine loading, activity,
status

• Store/Fetch activity by data set

Figure 8-7 illustrates a sample report produced by System Tuning
Statistics routines. Each printed report displays cumulative totals.
Hence, reports produced over a given time span can be used
independently, or wi th the SAM Faci 1i ty or Log Analysis on a
comparative basis to determine bottlenecks, activity cycles and tuning
possibilities (see Chapter 11). If a counter overflows, the printed
field contains 9s.

8.9.2 Implementation

Implementation of the System Tuning Statistics facility requires
the following:

1. The members INTSTS, SSRPT, and SUBRPT must be included in the
linkedit of Intercomm (automatic if ICOMLINK used to generate
Intercomm linkedit). INTSTS consists of two Csects--INTSTS and
INTSTSPR. INTSTS must be resident, while INTSTSPR may be
placed in a transient overlay area.

2. The STSTIME parameter in the
time interval (in seconds)
Statistics are to be printed.
value of 120 seconds is used.
produced only at c1osedown.

8-23

SPALIST macro must be set to the
for which the System Tuning
If this is not set, the default
If 0 is coded, statistics are

Chapter 8 Intercomm Facilities

3. The data set for the statistics reports must be a sequential
output data set. SYSOUT may be used for this purpose. A DD
statement must be included for the data set with the
following specifications:

• STSLOG must be the ddname.

• DCB information on the DD statement should be as follows:

DCB=(DSORG=PS,LRECL=120,BLKSIZE=multiple-of-120,RECFM=FBA)

IT IS NOW 10:01:53:39 IN 1988 ON DAY 034 REGION/JOB: INTCOMM4

FRONTEND MESSAGE NUMBER(BMN)
MONITOR MESSAGE NUMBER (MMN)
NUMBER OF DISPATCHER WAITS

96
652

= 3,954

NUMBER OF BACK END MESSAGES PROCESSED = 340
NUMBER OF FRONT END MESSAGES PROCESSED = 311
NUMBER OF MESSAGES CANCELLED = 1
NUMBER OF MESSAGES QUEUED = 1
CURRENT COMPLETED MESSAGE COUNT = 511
NUMBER OF BACK-END BLOCKS WRITTEN TO DISK-QUEUES = 0
NUMBER OF FRONT-END BLOCKS WRITTEN TO DISK-QUEUES = 0

NUMBER OF MESSAGES PASSED TO SATELLITE-REGIONS = 0
NUMBER OF MESSAGES RECEIVED BY SATELLITE REGION = 0
NUMBER OF MESSAGES SENT BY SATELLITE REGION = 0

TOTAL NUMBER OF PHYSICAL RECORDS WRITTEN TO INTERLOG = 126
TOTAL NUMBER OF SYNCHRONOUS LOGICAL-RECORDS WRITTEN TO INTERLOG = 14
TOTAL NUMBER OF ASYNCHRONOUS LOGICAL-RECORDS WRITTEN TO INTERLOG = 1,732
TOTAL NUMBER OF LOGICAL-RECORDS (BOTH TYPES) WRITTEN = 1,746
TOTAL NUMBER OF BYTES WRITTEN TO INTERLOG = 219,793
AVERAGE NUMBER OF BYTES PER PHYSICAL RECORD = 1,744
NUMBER OF BUFFER-WAIT CONDITIONS = 0
PERCENTAGE OF BUFFER-WAITS TO BUFFERS WRITTEN 0

TOTAL SPACE CURRENTLY USED BY LOADED PROGRAMS 0
MAX SPACE TO BE USED BY LOADED PGMS CONCURRENTLY = 102,400
TOTAL SPACE CURRENTLY USED BY LOADED PGMS ABOVE 16 MG LINE = 7,592
NUMBER OF TIMES MAXLOAD REACHED = 0
NUMBER OF OVERLAY-SUBSYSTEM SEGLDS = 0
NUMBER OF NON-SUBSYSTEM SEGLDS = 0
NUMBER OF SUBSYSTEM DYNAMIC-LOADS - 3
NUMBER OF SUBROUTINE DYNAMIC-LOADS = 1

Store/Fetch activity report by data set, plus totals, follows.

Figure 8-7. Sample Report from System Tuning Stat-istics

8-24

J

J

Chapter 8 Intercornm Facilities

8.10 LOG INPUT FACILITY

The Log Input Facility (LOGINPUT) allows an Intercornm system log
(INTERLOG) created in a previous execution of Intercornm to be used as
input to a subsequent execution. LOGINPUT reads the sequential data
set (ddname LOGINPUT), extracting all messages queued by the Front End
for a subsystem: 01 log records (and Cl log records if Multiregion
control region). (Messages queued for the closedown and checkpoint
subsystems are ignored.) Input messages are then queued for the
appropriate user subsystem as if they had come in from the Front End
during this execution of Intercornm. The time interval between
executions of LOGINPUT to search for the next message to input to the
system is specified by the &LOGINTM or &LGINRTD globals in SETGLOBE.

Normally, any terminal output generated by LOGINPUT is sent in
the usual manner. However, the terminal output may be optionally
discarded by appropriate SPALIST and SETGLOBE specifications.

The proper function of this facility necessitates that all
application subsystems place the sending subsystem code in all messages
queued for another subsystem. Otherwise, messages may be found on the
LOGINPUT data set (and reprocessed) that were not messages originally
input to the Front End (characterized by sending subsystem code of
binary zeros).

In the case of errors of a noncritical nature, namely inability
to queue a message due to invalid subsystem code, no room on queue,
etc., the message will be bypassed. For errors of a critical nature,
such as a no storage condition, I/O errors on LOGINPUT, etc., a message
will be issued and the Log Input Facility terminated.

When the LOGINPUT data set is completely processed, the facility
issues a message and terminates itself.

The Log Input facility is implemented in the following manner:

1. Update SETGLOBE to use one of the two globals &LGINRTD and
&LOGINTM in order to control the time interval between input
messages from the LOGINPUT data set. &LGINRTD specifies a
real time divisor, that is, the actual time interval between
input messages (calculated from the log) is divided by
&LGINRTD to compute the interval between LOGINPUT's generated
messages. If this method is desired, specify:

&LGINRTD SETA n

If &LGINRTD is set to zero (0), then &LOGINTM is used. This
specifies a constant time interval in tenths of a second. To
request this method of interval calculation, code:

&LOGINTM SETA n

8-25

Chapter 8 Intercomm Facilities

2. To discard the terminal output, specify on the SPALIST macro:

3.

LOGINDO=YES.

This indicates that the message output should be discarded
(not queued for the Front End). In this case, the output
message will be logged with a log code of X'40', as though it
were Test Mode output. LOGINPUT substitutes the dummy
terminal- ID coded for the SETGLOBE global &GENTERM for the
actual terminal name in the requeued input.

Reassemble and linkedit
revised SETGLOBE is in
concatenation stream.

INTSPA and LOGINPUT:
the first library in

ensure the
the STEPLIB

4. Include LOGINPUT as resident in the Intercomm linkedit.

5. Define Back End Station and Device Table entries for the
dummy terminal name defined by &GENTERM in SETGLOBE (default
is $$$$$); device type should be that of the majority of the
input terminals.

6. Execution JCL must contain a DD statement for LOGINPUT, as
follows:

IILOGINPUT DD DSN=INTERLOG-name,
II DCB-(DSORG=PS,RECFM=VB,BLKSIZE=mmmm,LRECL=blksize-4),
II additional operands as required

7. Execution may be in Test Mode, startup or restart. To
execute in Test Mode, at least one input message must be
coded for the SYSIN data set (see Figure 8-9).

8. To suppress input for a subsystem (such as the Output Utility
subsystem) modify LOGINPUT to add a test of the MSGHRSCH and
MSGHRSC fields for the applicable subsystem codes after the
label NEXTCHK. If the codes match, branch to READ label.
See code immediately following the NEXTCHK label in LOGINPUT.

9. If ESS (Extended Security System) is used, then messages
requeued on-line by LOGINPUT can only be used if subsystem
(and region) security is not implemented (messages passed ESS
when originally input). If Test Mode is used, omit INTSECOO
from the linkedit. Note that messages queued on-line for the
ESS subsystem are not logged, and therefore would not be
requeued by LOGINPUT.

8-26

J

J

Chapter 8 Intercomm Facilities

8.11 TEST MODE OPERATION

Intercomm allows the complete testing of application programs
without using terminals at all. The input messages are read in at
startup time from a sequential data set with a ddname of SYSIN. All
messages are snapped onto a sequential output data set with a ddname of
SYSSNAP after they have been read from SYSIN.

All output
output data set
the Front End.
follows:

from Intercomm is similarly snapped onto a sequential
wi th ddname of SYSSNAP2, rather than being passed to
The snaps issued have a snap- ID to identify them as

• lS--Snap of a complete input message

• 20--Snap of a complete output message

The Test Monitor (PMITEST) effectively replaces the Intercomm
Front End. The Test Mode input card MSG contains all the message
header fields normally supplied by Front End Table information. In
particular, the Receiving Subsystem Codes (MSGHRSCH,MSGHRSC), Terminal
Identification (MSGHTID), and Verb/Message Identifier (MSGHVMI) are
critical for proper message routing.

All input messages are read as SO-byte logical records. Each
message is preceded by a header record defining the start of the
message and is terminated by a trailer record defining the end of the
message. Detail lines of the input message are read in as separate
SO-byte records between the header and trailer records for the
message. The format of the various input records is illustrated in
Figure S-S.

NOTE:

where:

The user may define new ending characters by inserting DC
instructions in PMITEST, as follows:

./ NUMBER INSERT=YES,SEQl=670S0,NEWl=670Sl,INCR=1
DC CL4'eee' ,X'nn'

eee is the three-character trailer card value and nn is
the hexadec imal code equivalent of the named ending
character. Note that a blank will be generated between
the eee and nn values at assembly time.

S-27

Chapter 8 Intercomm Facilities

Card Columns Contents

HEADER 1-3 MSG

*6-8

*9-11

20-24

50-53

*55-57

Lo-order byte of SIS code (MSGHRSC) (or 8)

Hi-order byte of SIS code (MSGHRSCH) (or 11)

Sending terminal-ID (MSGHTID)

Front End Serial Number (MSGHBMN)--leading zeros

VMI value (MSGHVMI): leave blank if editing
required by the Edit Utility; code 255 if using
MMU or if no editing is desired (or 57)

*three-digit integer values from 000 to 255 or a corresponding
single alphanumeric character in the column indicated in
parentheses (8,11,57).

DETAIL(s) 1-64

TRAILER 1-3

Data for one line of input message. If VMI in
header card is left blank, a New Line
character is inserted at the end of text on
every card, except the last one. If the last
nonblank character is a $ sign (X' 5B'), it
wi 11 be replaced by a NL; the preceding
character (usually a blank) is kept as part of
the input. All NLs are suppressed if editing
is not required. If editing is required, the
system separator character used between
positional fields must be the same as that
coded for the SPALIST macro, SEP parameter.

Generates End-of-Transmission character fol
lowing the last nonblank character of the
previous detail card.

Contents of Card Ending Character

EMS EDT (X' 37')

EDT EDT (X'37')

ETX ETX (X'03')

ETB ETB (X'26')

Figure 8-8. Test Mode Input Card Formats

8-28

J

J

Chapter 8 Intercomm Facilities

The maximum total message size and the maximum number of text
columns per detail card are determined by the global variables &MAXMSG
and &MAXCRD, which default to 1000 and 64, respectively. The user may
change these values (for example, &MAXMSG SETA 2000 would increase the
maximum message size to 2000) by insertion of the appropriate SETA
instructions in the PMITEST module at sequence numbers 00002030 and
00002040.

The system log INTERLOG is maintained during Test Mode execution,
as in live mode, and provides further information for analyzing the
results of Test Mode operation. Output messages passed to FESEND (by
the subsystem, the Output Utility, or MMU) are logged with a log code
of X'40' so they may be examined for valid data.

After all Test Mode messages have completed processing, the
method of step termination depends on the value of the TSTEND operand
of the SPALIST macro. The default is TSTEND=NRCD; proceed with normal
system c1osedown with no dump. Other options available are:
TSTEND=NODUMP, which causes abend 999 without a dump; and TSTEND=DUMP,
which causes an abend 999 with a dump. The Test Mode c1osedown logic
is in PMITEST. It remains the responsibility of the user to determine
whether or not the messages were processed successfully by examining
SYSSNAP2 and INTERLOG records.

One or more Test Mode jobs may execute concurrently (with or
without concurrent execution of a live system), as long as there is no
conflict with respect to MVS allocation and disposition of data sets,
or the dynamic load library. Figure 8-9 illustrates typical Test Mode
JCL, including a step to print the system log via the Intercomm
LOGPRINT utility (see Chapter 12). User data set DD statements must be
inserted before the //PMISTOP DD statement.

The Intercomm 1inkedit for Test Mode may be generated via the
ICOMLINK macro (see Basic System Macros); code TEST=YES and all other
parameters applicable to the on-line system (except Front End, security
and Mu1tiregion parameters). The Link Pack Facility may be used with a
Test Mode system.

8-29

Chapter 8 Intercomm Facilities

IIEXECTEST EXEC PGM=INTCOMM,PARM='TEST' ,REGION=500K
IISTEPLIB DD DSN=INT.MODUSR,DISP=SHR
II DD DSN=INT.MODLIB,DISP=SHR
II DD DSN=INT.MODREL,DISP=SHR
IISMLOG DD SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=120,RECFM=FA)
IISTSLOG DD SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=120,RECFM=FA)
IISYSPRINT DD SYSOUT=A,
II DCB=(DSORG=PS,RECFM=VA,BLKSIZE=141,LRECL=137)
IIINTERLOG DD DSN=&&INTLOG,VOL=REF=INT.SYMREL,
II DISP=(,PASS),SPACE=(TRK,(2,2»,
II DCB-(DSORG=PS,RECFM=VB,BLKSIZE=3200,LRECL=3196,
II NCP=2,OPTCD=C)
IIPMIQUE DD DSN=INT.PMIQUE,DISP=OLD,DCB=(DSORG=DA,OPTCD=RF)
IIRCTOOO DD DSN=INT.RCTOOO,DISP=OLD,DCB=(DSORG=DA,OPTCD=RF)
IIINTSTORO DD DSN=INT.INTSTORO,DISP=OLD,
II DCB=(DSORG=DA,OPTCD=EF,LIMCT=3)
IIINTSTOR2 DD DSN=INT.INTSTOR2,DISP=OLD,
II DCB=(DSORG=DA,OPTCD=EF,LIMCT=3)
IIINTSTOR3 DD DSN=INT.INTSTOR3,DISP=OLD,
II DCB=(DSORG=DA,OPTCD=EF,LIMCT=3)
IISYSIN DD *
MSG WOOO CNT01 0001 255
SNBK, SEND THIS MESSAGE BACK TO SENDER
EMS
MSG BOOO CRT01 0002 255
SWCH,(NYC01) SEND THIS MESSAGE TO ONE OTHER TERMINAL
EMS
MSG BOOO NYC01
SWCH,(CRT01,CNT01,NYC01)
rns

0003 255
SEND MESSAGE THREE TO THREE TERMINALS

IIPMISTOP DD
IISNAPDD DD
IISYSSNAP DD
IISYSSNAP2 DD
IIDYNLLIB DD
IIDYNLWORK DD
IIDYNLPRNT DD
11*
IIPRINTLOG EXEC
IISTEPLIB DD
II I NTERLOG DD

DUMMY DELIMITS FILE HANDLER ACCESS
SYSOUT=A STANDARD SNAPS
SYSOUT=A TEST MODE ONLY INPUT ID=015
SYSOUT=A TEST MODE ONLY OUTPUT ID=020
DSN=INT.MODUSR,DISP=SHR
UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL,(l,l»
SYSOUT=A

PGM=LOGPRINT,COND=EVEN
DSN=INT.MODREL,DISP=SHR
DSN=&&INTLOG,DISP=OLD,DCB=BLKSIZE=3200

11*
11*
11*
11*

NOTE THAT INTERLOG BLOCK SIZE MAY BE ANY VALUE THAT
EQUALS OR EXCEEDS THE MAXIMUM DATA SET BLOCK SIZE.

IISYSPRINT DD SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=121)
II

Figure 8-9. Sample Test Mode JCL

8-30

J

Chapter 9

LOGGING, SYSTEM RESTART, MESSAGE RECOVERY

9.1 INTRODUCTION

Intercomm provides message restart as a standard option; file
recovery is a special feature (see the File Recovery Users Guide).
This chapter describes only message restart without file or data base
recovery considerations. It documents the following subjects:

• System failure and recovery

• Message restart concepts

• System logging

• System checkpoints

• Restart/recovery

• Implementation

• Serial restart

• Automated restart

9.2 SYSTEM FAILURE AND RECOVERY

Intercomm is designed to anticipate, detect and recover from most
error s i tua tions without br inging down the entire teleprocessing
system. In most instances following failures, Intercomm can continue to
run in a degraded mode without the failing components. Alternatively,
Intercomm can come down gracefully after failure by completing all work
that is in process at time of failure. Certain conditions, however,
may occur that cause immediate termination of all processing in
Intercomm; for example, power failures, machine failures, data base
destruction or operating system failure. In these and other total
failure cases, Intercomm automatically provides for the complete
recovery of the teleprocessing environment. This recovery includes the
restarting of all messages in progress at the time of failure, the
recovery of message queues and the coordinated recovery of files and
data bases, the last being a special feature.

Recovery from failure situations is based upon the system log, a
sequential data set (INTERLOG) providing a historical record of all
message processing, and a checkpoint file, a BDAM data set providing a
record of critical tables.

9-1

Chapter 9

Chapter 9

Lo~~in~. Svstem Restart.

Logging, System Restart,
Message Recovery

9.5 SYSTEM CHECKPOINTS

During startup, the CHECKPT3 program is dispatched, via the
Dispatcher timer queue, for an interval of time equal to that value
specified in the System Parameter List (SPALIST macro parameter TCHP).
When the CHECKPT entry in CHECKPT3 is activated (the time has expired),
CHECKPT3 will generate checkpoint records for the checkpoint file,
organized as a direct access (BDAM) Data Set with ddname CHEKPTFL.
When processing is complete, the checkpoint program again dispatches
itself and subsequently idles. The cycle will repeat itself when the
new time value expires.

The SPALIST operand GENSW defines the number (maximum is 5) of
logical checkpoint areas to be utilized on CHEKPTFL. One checkpoint
area usually consists of several physical blocks on the BDAM data set.
Bits 1-5 of the byte associated with GENSW indicate usability of
checkpoint areas. The default value X'7C' indicates no useable areas.
A minimum of three checkpoint areas is required.

The records associated with each checkpoint are constructed in a
wraparound or flip-flop manner; that is, if the system fails during the
checkpoint processing, the previous checkpoint area remains intact. At
restart time, the data is restored exactly as it was when the last
complete checkpoint was taken.

The checkpoint routine writes certain fields from system tables
onto the checkpoint file. If any table is not present in the system,
the Checkpoint Program will bypass processing for that table.

Intercomm allows the user to request data to be checkpointed, in
addition to the information Intercomm checkpoints in its own tables.
To utilize user checkpointing the user must:

• Indicate the label of the starting point of data to be
checkpointed in the CKUSR parameter of SPALIST

• Indicate the length in bytes of the user area to be
checkpointed in the CKUSL parameter of SPALIST.

In order to take full advantage of this facility, it is necessary
to centralize, in a contiguous area, all the data which is to be
retained across restart. (Such a contiguous area could be USERSPA.)
The area to be checkpointed should contain only data which would not
change if it were loaded into another location. Address constants
should not be checkpointed, for example.

The CHEKPTFL data set must be formatted in advance by the
off-line utility CREATEGF. (See Chapter 12.) An installation may
crea te minimally 40 blocks, each containing all checkpoint data
described in Figure 9-2. Or, given that the amount; of data to
checkpoint: exceeds the physical block capacity of the direct access
device, some multiple of 40 blocks must be created. Again, the
checkpoint/restore routines function with logical checkpoint areas on
the CHEKPTFL data set.

L

Chapter 9 Logging, System Restart,
Message Recovery

The following formula should be used to calculate the minimum
number of blocks which must be formatted by CREATEGF:

where:

N=5(13S
B-8

+ --1dL
B-8
+~+~

B-8 B-8
+ U+2+23)+5

B-8

B block size (minimum allowed is 64 bytes)
S II of Station Table entries (STATION macros)
F II of File Table (PMIFILET) entries
C II of Subsystem Control Table entries (SYCTTBL
T If of Time Table entries
U Length of User Area

macros)

All divisions must be rounded up to the nearest integer before summing
and multiplication by five.

For implementation of message restart/recovery with
checkpointing, see Section 9.7. To synchronize Intercomm checkpoints
and file recovery and/or data base checkpointing, there is also a
checkpoint subsystem (CHCKPTSS) and other required modules, as
described in the File Recovery Users Guide or DBMS Users Guide, as
applicable.

9.5.1 Checkpointing User Exit--USRCHKPT

After the checkpoint records are written and the checkpoint time
message is issued (RR013I), a user checkpointing exit is called if
coded and included as resident in the Intercomm linkedit. At entry,
register 1 points to the checkpoint time message (two-byte length
field, followed by two-byte MCS flags field, followed by message
text). Standard linkage conventions must be used.

This user exit could bE:: used for data base checkpointing
coordination (when not provided by Intercomm - see DBMS Users Guide),
or to record the checkpoint time for internal reporting purposes.
There is no return code processing.

9-9

Chapter 9

Station Table

Company Number
Use Code (up/down)
Terminal-ID
Alternate Terminal-ID

Change/Display Utility File Table

File Name
Last Number Generated
File Table Switches

Time Table

Scheduled time
Time Control Value
Time Zone Code
Message Sent Indicator
Processed Indicator
Program Identification Code
Program Message Identifier

System Parameter List Data

Total Messages processed
Unused
Monitor Sequence Number
Number of Messages Cancelled
Number of Messages Cancelled by Editing

Logging, System Restart,
Message Recovery

(one entry per terminal)

2 Bytes
1 Byte
5 Bytes
5 Bytes

13 bytes
per terminal

(one entry per File)

8 Bytes
4 bytes
1 Byte

(per entry)

4 Bytes (Packed)
2 Bytes
1 Byte
1 Byte
1 Byte
2 Bytes
1 Byte

4 Bytes
4 Bytes
4 Bytes
2 Bytes
2 Bytes

13 bytes
per file

23

12 bytes
per
entry

bytes
Number of Messages Cancelled (Invalid Subcode)
Number of Messages Cancelled (I/O Errors)
Number of Messages Cancelled (No Queue Space)
Checkpoint File Area Check and Midnight Switch

2
2
2
1

Bytes in total
Bytes
Bytes
Byte

User Area (if specified) .

Length of area
User-specified area

Subsystem Control Table

Subcode of subsystem
Total cancelled for subsystem
Total processed for subsystem

Figure 9-2.

2 Bytes
user-dependent

(one entry per subsystem)

2 Bytes
2 Bytes
4 Bytes

8 bytes
per
subsystem

Checkpoint Data

9-10

J

J

J

Chapter 9

9.6 RESTART/RECOVERY

9.6.1 The Restart Process

Logging, System Restart,
Message Recovery

Intercomm is an event-driven system whereby activities are
ini tiated in response to a message. Therefore, the heart of recovery
involves the recovery and/or restarting of appropriate messages. The
basis for determining what is required for a particular
restart/recovery operation is the Intercomm log. This log consists of
entries for all messages that are subject to recovery. The log entries
allow determination of message status at the time of failure. Every
terminal, subystem, and Multiregion transfer message will fall into one
of these message status categories:

1. Queued and completely processed prior to the last checkpoint

2. Queued and completely processed subsequent to the last
checkpoint

3. Queued but not started processing (transmission)

4. Queued and processing/transmitting at failure

The analysis of the message data in the log is performed during restart
by reading the log file backwards from the point of failure. A
technique of message accounting has been developed that permits this
read back to proceed only as far as is necessary to retrieve those
messages needed for restart, as described below.

After messages to be restarted are recovered from the log, they
are placed on the queues for their destined subsystems, terminals, or
regions as the last phase of restart processing.

The restart process is initiated when the word RESTART is found
in the PARM field of the Intercomm execution (EXEC) JCL statement, or
in the automated restart control file record (see section 9.9). This
is the only change whatsoever that distinguishes a restarted Intercomm
run. When RESTART is recognized, the restart phase of Intercomm
analyzes the log and· rebuilds the queues. At that time Intercomm
starts reprocessing messages placed in the queues by restart while at
the same time receiving and processing messages from the live terminal
network (FIFO queues insure that restarted messages are processed prior
to live messages).

Checkpoint data is automatically restored at restart time.

9-11

Chapter 9 Logging, System Restart,
Message Recovery

9.6.2 Message Accounting

To make the warm restart function as rapid as possible, restart
involves a reading backward of the log file only as far as required to
recover all necessary messages. This information is developed by the
Message Accounting routine, MSGAC, a subprogram of LOGPUT. MSGAC
examines log entries as they are made by LOGPUT and determines the
"read back point" of the log data set. Periodically, MSGAC will insert
message accounting records onto INTERLOG. These records reflect a
current read back point. Thus, when restart starts reading INTERLOG
backwards, the first message accounting record encountered will
instruct restart as to the actual read-back point.

Message accounting records are written when the Front End, Back
End, and Multiregion "message complete" status occurs for the last
message within a group of messages with monitor sequence numbers (MMN)
ranging within a multiple of 256 (that is, when message numbers 0-255
complete, when 256-511 complete, etc.).

9.6.3 Message Restart Logic

The Intercornrn message restart procedure is straightforward when
no file recovery is considered. When reading the log data set
backwards, information from certain message headers is temporarily
stored. This stored information is the basis for determining what to
do with the header/text log entries as they are encountered. The
information from the header is such that it can uniquely identify a
me s s age wi thin a subsys tem (including recurs ive entries to a
subsystem) . Since the log data set is read backwards, message log
entries will be encountered in this order:

1. Subsystem completed (normally or abnormally)

2. Subsystem started

3. Message queued for a subsystem

When the "message queued for a subsystem" log entry (header/text)
is encountered, the information stored from the previously encountered
log entries for this message is examined and the following rules apply
to the restart analysis:

• If the message successfully completed (log code FA found), or
if it failed security (log code FE found), the message is not
restarted.

• If the message failed in processing by a subsystem (time-out,
program check) or could not be processed (flushed, bad QPR,
queue full, etc.), then the message is restarted, if its
monitor message number, MSGHMMN, is greater than the latest
message accounting read-back point.

9-12

J

L

Chapter 9 Logging, System Restart,
Message Recovery

• If the message had started processing, but not completed at
the time of failure (a log code entry 30, but no FA or FD was
encountered), then the message is restarted, and its log code
is set to "R" indicating that it is an in-process message
being restarted.

• If an 01 log entry is encountered without any prior entries
(it was on the queue at the time of failure), then it is
requeued.

These are the criteria applied to a single message out of context; they
may be overridden by other considerations:

• If any "ancestor" of a message is restarted for. any reason,
the message is discarded. This rule requires some
clarification: if during the processing of Message A,
Message B is generated, Message A is the mother of Message
B. Starting at any message, restart logic can work back to
the original terminal input, going from the current message
to its mother, the mother's mother, and so on. A daughter
message is restarted only if all its ancestors are discarded
(not logged or not to be restarted). This applies to Front
End as well as Back End messages.

• If the message is part of a conversation (subsystem logic
uses the CONVERSE facility) and CNVREST=YES is coded in the
subsystem's SYCTTBL macro, the message will be restarted if
it is the first message in the conversation (even if it
completed) and discarded if it is not the first (even if it
didn't complete). Note that in order to insure file
integrity, conversational subsystems performing data base
upda tes should be designed so that either a message is
switched to a nonconversational subsystem to perform the
update(s), or the update(s) are performed as processing logic
for the last message in the conversation.

• If a message is part of a segmented message sent to OUTPUT or
CHANGE/DISPLAY and SEGREST=YES is coded in the sending
subsystem's SYCTTBL macro, then the disposition of the
trailer (final) segment determines what happens to the other
segments. They will be restarted if the trailer was
restarted, discarded if the trailer was discarded or not
found.

Whether message restart is actually performed depends on the user
RESTART specification on each SYCTTBL or BTERM/LUNIT macro. If
RESTART=NO was coded, then no messages will be restarted regardless of
the circumstances. RESTART=IFPOSBL affects message accounting so that
the read-back point for restart analysis mayor may not include all
those IFPOSBL messages. The read-back point will definitely include
all RESTART=YES messages. For Multiregion messages, see Multiregion
Support Facility.

9-13

Chapter 9 Logging, System Restart,
Message Recovery

The c losedown subsystem must have the SCT specification
RESTART=NO. Otherwise, system failures during closedown and subsequent
message restart would cause the closedown subsystem to be activated
immediately. RESTART=NO should also be coded for all Intercomm system
control command subsystems (see Chapter 3).

In all those cases where file or data base recovery is not
included, the only integrity problem concerning a restart involves
those messages that were in process at time of failure. Thus, if a
message was being transmitted when a power failure occurred, the
restarted Intercomm would retransmit that entire message.

In a complete system failure (example, machine or power failure),
Intercomm cannot determine the status of terminal transmissions in
process at the time of failure. Therefore, following complete failure,
the remote terminal operator must verify the conclusion of his last
operation if it was an update operation and if he had not received
completely all results from that operation. This is the only terminal
operator interaction relevant to restarted Intercomm.

The user can optionally suppress Front End or terminal restart
completely. That is, all messages which were queued for terminal
output at the time of Intercomm termination will be discarded during
restart mode, regardless of terminal restart parameters. This is done
by setting location LOGTRT plus displacements hex ' F2' and ' F3' to
X'OO' in the restart module LOGPROC.

9.6.4 Message Restart User Exit--USRESTRT

This user exit is called by LOGPROC to allow the user to
determine disposition of a message eligible for restart. The exit must
be serially reusable; standard linkage conventions are used. At entry,
register 1 points to the message to be requeued (restarted). The exit
may examine the log code (MSGHLOG) to test the message type, as
follows:

C'2' or X'F2' Front End output--check MSGHTID

C'A' or X'Cl' Input to be requeued for a satellite region:
MSGHMRDX contains the region id number

C'P' or X'D7' -- Data Base update subsystem message to be
reprocessed

C'R' or X'D9'

X'Ol'

Non-DB update subsystem message to be reprocessed

Unprocesssed (never started) or failing
subsystem message

For the last four message types, check the receiving subsystem
codes (MSGHRSCH,MSGHRSC). Multiregion messages can exist only in the
control region and are used to recreate the satellite region queues
(see Multiregion Support Facility).

9-14

J

J

Chapter 9 Logging, System Restart,
Message Recovery

Because it is called during initial Intercomm startup, the user
exit may not give up control to the dispatcher nor call the File
Handler. At exit it must tell LOGPROC whether to restart the message
via the value returned in register 15:

• binary zeros = requeue the message

• nonzero = discard the message

The user exit may wish to discard a message if the subsystem no
longer exists or will program check, or if the terminal (see MSGHTID)
no longer exists or is out of service. The user may alter message
header or text fields. Data Base subsystem messages should not be
altered or discarded if coordinated checkpointing and backout of DB
updates is used.

9.7 IMPLEMENTATION

The following load modules are required for message
restart/recovery functions:

Module Functions

STAEEXIT Abend Intercept Routine--assures data sets are
closed at abend time; in particular required to
ensure log buffers are flushed to INTERLOG.

LOGPUT,MSGAC

CHECKPT3,RESTORE3

LOGPROC,INTDBLOK,
READ BACK

System logging and message accounting

Checkpoint processing, restore checkpointed values

Analysis of Restart log; deblocking, read
backward modules.

Coding CHKRES=YES on the ICOMLINK macro will generate the applicable
INCLUDE statements.

There are two SPALIST parameters specifying the number of log
buffers to get (LGNUM) and the average buffer length (LGBLK). These
numbers should be chosen with care, because if logging requests
accumulate faster than LOGPUT can handle them, the performance of the
whole system degrades. LGBLK should be big enough so that every
frequently generated log entry (message or file recovery record) will
fit in a buffer. Logging an entry bigger than LGBLK effectively ties
up two of LOG PUT ' s buffers: the active, partially filled buffer is
queued to be written, storage is gotten for a temporary buffer to hold
the log entry, and then another one of LOGPUT's own buffers is marked
as full so the buffer WRITEs can be chained.

9-15

Chapter 9 Logging, System Restart,
Message Recovery

The more synchronous logging performed, the smaller and more
numerous your buffers should be (recall that synchronous logging,
requested by coding LSYNCH=YES, means LOG PUT doesn't return to its
caller until the log entry is written). A synchronous logging request
causes the buffer containing the entry to be queued immediately for
writing, whether or not the buffer is full. Any leftover space is
wasted. Thus, there is no point in making buffers big enough to hold
ten messages, say, if one log request in five is synchronous.

Aside from RESTART as an EXEC card parameter, JCL requirements
for restart/recovery functions are identical to STARTUP mode plus the
following DO statements:

• INTERLOG- -DO statement for the system log data set to be
created in the current run

• CHEKPTFL- - DO statement for the BDAM data set containing
checkpoint records (if created in the previous execution)

• LOGDISK- -DO statement for a BDAM data set used at restart
time to hold all messages to be restarted. The maximum
message length is thus restricted to the track capacity of
the direct access device used. No preformatting is required.

• RESTRTLG--DD statement for the system log to be restarted.

Code the following on the INTERLOG DO Statement:

1. DCB=(.... NCP=number-egual-to-LGNUM, ...)

Recall that LOGPUT writes the log using BSAM, from buffers
acquired by the startup routine; this DCB parameter allows
LOG PUT to start writes on subsequent buffers before waiting
for the first write to complete. If NCP is allowed to
default to 1 and LOG PUT issues two writes in a row, the
second buffer may be lost for the rest of the run, because
BSAM ignores I/O requests once it has NCP operations in
progress. It never posts the DECB. Unless volume is very
low, this kind of attrition will eventually reduce the number
of live buffers to NCP. Therefore, code the NCP parameter to
match the LGNUM parameter on the SPALIST macro.

2. DCB=(... ,OPTCD=C, ...)

Requests chained scheduling, that is, consolidation of
channel programs when more than one write request is queued
up.

3. Verify that BUFNO is not specified in the DCB parameter
sublist. LOGPUT doesn't use access method provided buffers.

9-16

J

J

Chapter 9 Logging, System Restart,
Message Recovery

4. BLKSIZE specifies the actual maximum length block that LOGPUT
may use. You can specify BLKSIZE=32760 or maximum track size
to make sure everything gets logged, but if the log file is
ever used in a restart run you must specify what its real
block size is (unless you can spare 32K for a buffer), and
it's probably better to settle on one figure for both STARTUP
and RESTART modes. The minimum block size is LGBLK+4. The
extra four bytes are for the block descriptor word. BLKSIZE
must be a multiple of 4. A multiple of 4K should be used. A
NCP (LGNUM) of at least 10 and LGBLK of 4K or 8K is
recommended, as using many small buffers is more efficient
(less paging, etc.) than using a few large ones.

Sample JCL:

IIINTERLOG
II

DD DSN=INTERLOG,DISP=(NEW,KEEP) ,
UNIT-unit,VOL=SER=volser,LABEL=(,BLP),

II
II

DCB-(DSORG=PS ,RECFM-VB , BLKSIZE=blksize ,LRECL=blksize-4,
OPTCD=C,NCP=lgnum)

NOTE: In order to correctly reposition an INTERLOG tape following a
loss of power or operating system failure, the tape must be
preformatted with tape marks. For restart from a disk data set
which was not closed (that is, after a system crash) at the end
of a previous Intercomm execution, see the description of
ICOMFEOF in Chapter 12. If disk logging is used, omit the LABEL
parameter and add a SPACE parameter; SPACE=(CYL, (primary» is
recommended. Do not specify secondary extents if recovery via
ICOMFEOF might be executed. In order to reduce disk space
utilization, the Intercomm sequential output disk file flip/flop
facility described in Chapter 6 should be implemented, and
automated restart should be used (see section 9.9).

For checkpointing, include a DD statement for CHEKPTFL. This
direct access file is used by CHECKPT3 to store checkpoint
information. It must be preformatted by CREATEGF (see Chapter 12)
before the first execution with checkpointing. The file must have a
block size of at least 64, and at least 40 blocks.

Sample JCL:

IICHEKPTFL
II
II

DD UNIT=direct-access-device,VOL=SER=volser,
DSN=INT.CKPOINT,DISP=OLD,
DCB=(DSORG=DA,OPTCD=RF)

9-17

Chapter 9 Logging, System Restart,
Message Recovery

For message restart, LOGPROC uses a temporary disk data set that
holds messages to be restarted. The data set is variable-format with
one message per block, so its block size must be equal to the length of
the longest message that can be produced for a restartable subsystem or
terminal. The data set is created by LOGPROC, so preformatting is
unnecessary. In the following, 'm' stands for the maximum message
size.

IILOGDISK
II
II

DD UNIT=direct-access-work-unit,
SPACE=(m, (primary, secondary) ,RLSE) ,
DCB=(DSORG=DA,BLKSIZE=m,RECFM=F)

Figure 9-3 illustrates JCL for Intercomm log files for restart.
Note that RECFM=U for the restart log data set.

Both INTERLOG and RESTRTLG may be defined as the same tape unit.
In this case, logging is suppressed while reading RESTRTLG and
performing the restart function. Logging begins when restart functions
are complete. For one-tape-drive mode, either make the volume-serial
numbers identical so that both data sets are assigned to the same
drive, or code UNIT=AFF=RESTRTLG on the INTERLOG DD statement.

The LABEL parameters assume standard labels. If you are using
unl abeled tapes, code LABEL= (,BLP) or LABEL= (,NL) in both DD
statements. LABEL=(,SUL) is recommended for INTERLOG; this will cause
the user label exit to be taken in the File Handler and will prevent
time-outs that occur during the mounting of a new tape volume. If
restart is from disk, omit the LABEL parameter.

Input Log
IIRESTRTLG
II
II
II
Output Log
IIINTERLOG
II
II
II
II

DD DSN=anyname,DISP=(OLD,PASS),
UNIT-unit ,VOL=SER=volser ,
LABEL=(, BLP) , if tape
DCB=(DSORG=PS,RECFM=U,BLKSIZE=blksize)

{NEW}
DD DSN=anyname,DISP=({MOD} ,KEEP),

UNIT=unit,VOL=SER=volser,
LABEL=(,SUL), if tape
DCB-(DSORG=PS,RECFM=VB,BLKSIZE=blksize,
LRECL=blksize-4,OPTCD=C,NCP=lgnum)

Figure 9-3. RESTRTLG and INTERLOG DD Statement Examples

For· res tart,
execution is reused.

the same checkpoint file used
The JCL also remains the same.

9-18

in the previous

J

Chapter 9 Logging, System Restart,
Message Recovery

9.7.1 Concatenation of Disk Log Files for Restart

If disk logging is used with the fliplflop facility, the user
should off-load each log file as it becomes filled (see on-line
USERB37E user exit in Chapter 6) so it will be available for reuse at a
later time. To unload the disk log, copy the file to another disk file
or to tape using IEBGENER; RECFM=U must be specified for both input and
output files; do not use RECFM=VB or try to reblock the file. If
reblocking of the file is desired, use the LOGMERGE utility (see
Chapter 12).

If Intercomm goes down, all of the disk log files can be
concatenated and used for Intercomm restart. If the operating system
crashes (IPL required) while Intercomm is executing, use IEBGENER as
described above to copy the file to set an EOF at the end of the extent
(occurs even if IEBGENER abends due to garbage data). Then execute the
Intercomm utility ICOMFEOF to set the true end-of-file. Intercomm will
read backwards through as many files as necessary in order to restart.
In the JCL, the order of concatenation for the log files should be from
the newest to oldest. For example, suppose that 'INT.NEWEST' is the
most recent disk log file (the one being used when the system went
down), and ' INT. OLDEST' is the oldest (the first log file used or
off-loaded). Then, the RESTRTLG DD statements would look as follows:

IIRESTRTLG
II

DD DSN=INT.NEWEST,
DD DSN=INT.OLDEST,

If there were other disk data sets filled during the run, they
would be inserted in the same reverse chronological order between
'INT.NEWEST' and 'INT.OLDEST'.

Note that if any log files are on tape, the tape files may not be
concatenated to (nor mixed with) the disk files nor may the tape data
sets be concatenated by themselves and be restarted. This is due to an
IBM restriction that concatenated tape data sets may not be read
backwards. Intercomm handles tape data sets as multivolume data sets -
when it reaches the end of one tape, it will request another volume.
When a disk log concatenation is used, data set switching is executed
internally by READBACK. LOGPROC continues to request a previous log
block to be read until it finds a message accounting record (log code
X'FF') or until the beginning of the last tape volume or disk data set
is reached. Then the RESTRTLG file is closed. It is important to
remember the difference between restarting tape logs and disk logs, as
summarized in the following table:

9-19

Chapter 9 Logging, System Restart,
Message Recovery

==
TAPE DISK

============
JCL

Action at
End of Data

Method of
Operation

No concatenation. Code
last tape VOLSER used in
JCL (LABEL - NL or BLP),
followed by previous VOLSERs
used (in reverse order).

Requests another volume via
WTO, until last tape read
backwards (if necessary);
closes RESTRTLG.

Reads Backward via BSAiM
(READ SB)

9.8 SERIAL RESTART

==========================
Concatenate log files
via JCL. Data set
switching executed
internally.

Closes RESTRTLG. Does
not request another
volume or DSN to be
read.

Uses BDAiM and EXCP to
read backwards using
actual track addresses
for each block.

Normally, restarted messages are multithreaded. That is, all
restarted messages will be requeued for their respective subsystems
immediately and each subsystem will process as many messages as it can
concurrently, up to its maximum. This scheme is undesirable in some
circumstances; for example, systems using a data base management system
may want updates to take place in the same order as they were
originally entered. A multithread environment cannot guarantee this
will be accomplished if more than one subsystem updates the same data
base or the update subsystem has a MNCL (concurrency) greater than one.

To solve this problem, a serial (s ingle - thread) res tart
capability is provided with Intercomm which employs the Intercomm
Dynamic Data Queuing facility. With the serial restart feature, Back
End messages are restarted one at a time and the next message to be
restarted for any subsystem is not queued until the previous one is
completed. Thus, use of the serial restart feature will ensure that
only one restarted message will start processing at any given time.

While processing a restarted message, if a subsystem queues a
message for another subsystem, that "daughter" message will be
processed on a multithread basis concurrently with the next restarted
message. Messages queued for the Output Utility will also be
multithreaded. New messages from the Front End which must be processed
by a subsystem will be rejected unless a user exit (USRSEREX) is coded
to permit the processing of selected input messages (such as sign-on
security or inquiry messages unrelated to the serially restarted update
subsystem). Front End commands which are not processed by a subsystem
(see System Control Commands), and output terminal messages will be

9-20

J

L

Chapter 9 Logging, System Restart,
Message Recovery

processed normally during serial restart. Message Collection
determines that a message is from the Front End by exam1.n1.ng the
sending subsystem codes (MSGHSSCH, MSGHSSC); if both are binary zeros,
the message is assumed to be a new input message. Both message restart
and Log Analysis require the coding of the sending subsystem codes for
all "daughter" messages (including those passed to the Output
Utility). If a "daughter" subsystem performs the critical update, the
user may force serial restart on the "daughter" subsystem by coding
RESTART=NO on the SYCTTBL for the "mother" subsystem.

In a Multiregion Intercomm using serial restart, each satellite
region must have its own log and each region must be restarted using
its own log. All data base update subsystems should be placed in the
same satellite region if it is desired that data base updates take
place in the same order on restart as they did originally. In the
Multiregion control region, messages to be passed to a satellite region
and messages received from a satellite region will be processed
normally. Serial restart should be employed only in those regions
containing critical update subsystems. The other regions may use
multithread restart or can omit restart processing entirely.

To install serial restart, follow the instructions for installing
normal restart with the following additions:

9.B.l

• The Intercomm DDQ special feature must be installed in the
system and the default DDQ data set must be defined. (See
Dynamic Data Queuing for details.) A transient DDQ is used
to hold the restarted messages in the order in which they
were originally logged. The block size of the DDQ data set
must be at least as large as the longest possible requeued
message (including header).

• The module REQONDDQ must be included as resident
Intercomm region linkedit. For multiregion systems,
be linked into each region using serial restart.

in the
it must

• If coded, the user exit USRSEREX must also be included as
resident in the Intercomm linkedit (sample exit routine
provided on SYMREL).

Serial Restart User Exit--USRSEREX

This exit routine is called by BLMSGCOL when message collection
is called to queue a message to a subsystem from the Front End while
single thread restart is in progress. That is, when serial restart is
in progress, BLMSGCOL will call USRSEREX before queuing a Front End
message for a subsystem. The exit is never called when queuing a
restarted message, or a message from a subsystem to another subsystem
or to a terminal, nor is it called after serial restart has completed.

9-21

Chapter 9 Logging, System Restart,
Message Recovery

Upon entry to the USRSEREX routine, register 1 contains- the
address of a two-fullword parameter list. These fullwords point to the
input message and the region SPA respectively. USRSEREX can examine
the message and must pass a return code in register 15 which tells
message collection what action to take; a return code of zero tells
message collection to free the message and return to the caller; that
is, if USRSEREX returns a return code of 0, BLMSGCOL does not queue the
message for the subsystem. Instead, the message is freed and the
following message is returned to the originating terminal:

PREVIOUS MESSAGE REJECTED, SERIAL RESTART IN PROGRESS

If USRSEREX returns any nonzero return code in register 15, message
collection will queue the message for the subsystem as it normally does
and the message may be processed while serial restart is still in
progress. USRSEREX may not free the message as that will be done by
the system when required. However, USRSEREX may issue STORAGE and
STORFREE macros for any storage area the routine requires.

Because BLMSGCOL is Link Pack eligible, a pointer to USRSEREX is
kept in the SPA extension for each region (control and satellite) in a
Multiregion environment. Implementation of this feature thus becomes a
matter of linking or not linking USRSEREX as resident within the region
load module. If USRSEREX is not linked in, the call is skipped by
Message Collection and the Front End message is rejected. An
installation may provide different exit routines for each region or no
exit routine for some regions, depending on requirements. For example,
the user exit can be omitted for any regions that do data base updates
or file recovery to force Front End messages to be rej ected until
single- thread restart is complete. A region doing mostly inquiry
processing may need the user exit to allow most. input messages to be
processed.

The USRSEREX module must have a Csect name of USRSEREX and should
be reentrant, especially if any Intercomm facility, such as the
Dispatcher or File Handler, may be used. It is recommended that the
user exit avoid admitting messages that will be in the system for a
long duration. That is, messages for subsystems that dQ multiple file
I/O's or generate numerous output screens, for example, may remain in
the system for a relatively long time, thus slowing down serial restart
considerably. Discretion must be used when choosing the number and
types of messages that the exit allows to be processed during serial
restart.

A message queued by a subsystem for another subsystem will be
intercepted by USRSEREX if the subsystem fails to set the sending
subsystem codes (MSGHSSC, MSGHSSCH) correctly. The Intercomm
Programmers Guides state that a subsystem which queues a message for
another subsystem must set the fields if Intercomm restart/recovery is
to be used. USRSEREX will not be called to process a message whose
sending ·subsystem code bytes are not binary zeros (binary zero
indicates the message originated in the Front End). This allows any
messages which result from a message already passed by USRSEREX to be
queued without further checks.

9-22

J

L

Chapter 9 Logging, System Restart,
Message Recovery

One final consideration in designing the USRSEREX module is the
processing of new Intercomm control commands. (All Intercomm control
subsystems should have RESTART-NO coded on their SYCTTBLs so that old
commands are not reprocessed.) Some control commands, such as FILE,
LOAD, and TALY, are processed by Back End subsystems under Intercomm
and hence must have messages queued for them via message collection
(other commands, such as FLSH and RLSE, are processed by the Front End
and this discussion does not apply to them). Consult System Control
Commands for information on which commands are Front End or Back End
commands. The commands processed by the Back End will usually
originate in the Front End and so will be passed to USRSEREX for
processing before being queued for the processing subsystem when serial
restart is in progress. The user, when coding USRSEREX, must decide
which, if any, Back End control commands shall be allowed during serial
restart. This decision should be based on the command function and the
logic of the applications running under serial restart mode. For
example, it does not make sense to allow a FILE command to LOCK a data
set that may be required by a subsystem which will process a restarted
message, but it may be valuable to use the TALY command. The user must
decide which control commands to allow in the USRSEREX.

When designing the exit routine, the user must also be aware that
some subsystems may process a number of commands. For example, the
GPSS subsystem processes FILE, TALY, STRT and STOP commands, among
others, and so the exit routine may have to check the message verb as
well as the receiving subsystem codes when checking for control
commands or user verbs that it wishes to allow to be queued.

The sample USRSEREX released with the system allows only selected
Intercomm Back End commands to be processed. This routine may be
modified by the user to allow some user functions if desired. If using
the Intercomm Extended Security System, SECU commands must be allowed
to be processed, so that sign-on prompt screens may be transmitted and
terminal operators may sign on to Intercomm while serial restart is in
progress. This also applies to any other security scheme employed
(Intercomm's Basic Security, etc.).

Note: If EDIT=BQ is specified for the input verb (on BTVERB macro), the
input message will be edited before being passed to the user
exit. Therefore, the user exit should employ testing of the
receiving subsystem codes (MSGHRSCH, MSGHRSC), rather than the
verb, except as noted above for multipurpose verbs which are not
edited before queuing is attempted.

9-23

Chapter 9 Logging, System Restart,
Message Recovery

9.9 AUTOMATED RESTART

Automated restart is designed to circumvent operator intervention
when it is necessary to restart Intercomm after an abend or a system
crash. Instead of examining the Intercomm EXEC statement PARM field to
see if STARTUP or RESTART is coded, automated restart examines a
control record on the BDAM data set STRTUPSW. This data set is created
and initialized via the off-line utility AUTORSET (see Chapter 12). At
Intercomm startup, if the record is set to STARTUP, no message restart
is performed. Then, the record is reset to RESTART in case a failure
occurs during execution. If Intercomm closes down (IMCD or NRCD)
successfully, then after the final checkpoint is taken (if
checkpointing used), the STRTUPSW record is reset to STARTUP for the
next Intercomm execution. If at Intercomm startup the record contains
RESTART, then message restart (along with checkpoint reset, file and/or
data base backout, if implemented) is performed.

To implement automated restart, first implement message restart
(and checkpointing and/or serial restart, if desired) as described in
the previous sections. Then,

• On the Intercomm EXEC statement, omit the mode-of-execution
(STARTUP or RESTART) parameter on the PARM field, if other
parms (see Chapter 7) are used, or omit the PARM field
entirely if no other parms used (automated restart acquires a
storage area for the parm(s) and initializes the
mode-of-execution from the STRTUPSW record).

• Create the STRTUPSW data set using the AUTORSET utility
described in Chapter 12. Add a DD statement to the Intercomm
execution JCL for STRTUPSW, as follows:

//STRTUPSW DD
//

DSN=INT.STRTUPSW,DISP=SHR,
DCB-(DSORG=DA,OPTCD=R)

• Ensure the automated restart processing module AUTORCVR is
included in the Intercomm linkedit (automatic if CHKRES=YES
code~ for ICOMLINK macro).

Note that in a multi-region environment, each region using
automated restart must have a unique STRTUPSW data set.

Automated restart is best used in conjunction with disk logging
(optimally flip/flop data sets and the USERB37E exit - see Chapter 6)
and by adding a step to execute the LOGMERGE utility (to merge logs for
the RESTRTLG data set used for message restart) before the Intercomm
execution step. Add a DD statement for the on-line STRTUPSW data set
to the LOGMERGE JCL (see Chapter 12). If Intercomm executes
successfully, another step added after the Intercomm execution step can
be used to execute LOGMERGE to merge (and reset) the on-line log and
RESTRTLG data sets to a master (weekly) log data set or to unload them
to tape, or to a generation data set.

9-24

J

10.1

Chapter 10

SYSTEM SECURITY IMPLEMENTATION

INTRODUCTION

Under Intercomm, two security systems are provided:

• Extended Security a special feature is dynamically
created and controlled on-line via commands and provides a
full range of security control over all maj or system
resources such as terminals, verbs, subsystems, files,
regions, and user-specified functions (such as data base
access). Secured terminals require operator sign-on with an
ID and, optionally, a password. The ranges of resource
access ib i 1 i ty are defined for each operator. Extended
Secur~ty is fully described in Extended Security System.

• Basic Security a table-driven system available to all
Intercomm installations provides sign-on security at
specified terminals, transaction (verb) security at specified
terminals, and optionally, user-coded exits for additional
security processing at sign-on, sign-off, and subsystem
access time.

This chapter describes Basic Security implementation within the
Intercomm system and covers the following subjects:

• Basic Security processing options

• Implementation of sign-on/sign-off security and user exits
for additional processing

• Implementation of transaction security

• Coding the Station Table for security installation

• Imp lemen ta t ion of user -wri tten securi ty routines for
subsystem access control

In this chapter, the conventions for input message formats are
denoted by the following:

$ indicates the system separator character defined in the
installation's system parameter area (SPA).

@ indicates the end-of-message sequence of the terminal (EOT,
EOB, ETX, etc).

Responses to sign-on/sign-off and system security control
commands are described in System Control Commands.

10-1

Chapter 10 System Security Implementation

10.2 BASIC SECURITY PROCESSING OPTIONS

Under Basic Security, Intercomm
types of system security options:

provides the user with three

• Station Sign-on/Sign-off Security

Station sign-on/sign-off security checking allows the
installation to limit the use of a specified set of terminals
to only those operators who sign on using pre-assigned
numerical operator security codes. Not all stations need be
under the sign-on/sign-off facility.

• Transaction Sign-On/Sign-Off Security

Transaction security checking allows the installation to
specify which transaction codes (verbs) are allowed entry
from a particular station. Not all verbs need be under
transaction security.

• User-Written Security

User-written security allows the user to insert other types
of security which may be desired.

Control commands affecting system security are also described.
Installation and use of the commands are defined in System Control
Commands.

Anyone of the above types of security checking or any
combination of these types is available to the user under Basic
Security. Requirements for security options are specified in system
tables by subsystem (SYCTTBL macro), terminal (STATION macro) and in
the System Parameter Area (SPALIST macro).

10.2.1 Security Processing Logic

The following examples describe Intercomm Basic Security
processing logic as illustrated in Figure 10-1. Assume the following
list of terminals are under security check with the associated operator
codes:

NYCOI allows only operator codes 1, 5, 7, 10

CHI01 allows only operator codes 2, 3, 4, 8

SFI01 allows only operator codes 1, 6, 7, 9

ABT01 allows only operator codes 1, 5, 7, 9

10-2

J

Chapter 10 System Security Implementation

Assume the following list of verbs are under security check with
the associated terminals:

SEND

SHIP

DELI

MAIL

TRUC

allowed only through NYCOl, CHIOI

allowed only through SFIOI

allowed only through NYCOI

allowed only through ABTOl, CHIOI

allowed only through NYCOI

1. Operator 1 attempts to sign on at the NYCOI terminal. He is
allowed on. He then enters the verb SEND. The message is
processed. He signs off.

2. Operator 6 attempts to sign on at SFIOl. He is allowed on.
He then enters the verb SHIP. The message is processed. He
may enter additional transactions using SHIP.

3. Operator 5 attempts to sign on at NYCOI. He is allowed on.
He then enters the verb THIP. An unknown verb error message
is sent to the terminal. He signs off.

4. Operator 5 attempts to sign on at CHIOI.
error message; sign-on is cancelled.

He receives an

5. Operator 4 attempts to sign on at CHIOI. He is allowed on.

6.

He then enters the verb DELI. The incoming message is
cancelled; the operator receives an unauthorized verb error
message.

Operator
message.
processed.
MAIL.

4 is still on
He then enters

He may enter

CHI01. He has read his error
the verb SEND. The message is
other transactions using SEND or

10-3

Chapter 10

Error
Message

NO

Error
Message

NO

YES

System checks
to see if
operator code
is allowed for
this terminal.

YES

System Security Implementation

Operator
attempts to
sign on at a
terminal

System checks
to see if
terminal is
listed under
security

NO

~ ____________ ~~~ Operator Can Enter
... Transaction

YES

System checks
to see whether

YES

System checks to see if the
transaction is on a list of
transactions under security
check.

NO

transaction is ~
~----------~ allowed ~--------------~~

Transaction
is processed

through this
terminal

Figure 10-1. Security Processing Logic

10-4

J

J

Chapter 10 System Security Implementation

10.3 SIGN-ON/SIGN-OFF SECURITY

This section describes implementation of operator
security which involves three interrelated system areas:
operator codes for secured terminals, activating systemwide
.security via the SPALIST, and optionally requiring sign-on
before certain subsystems may process an input transaction.

10.3.1 Using a Sign-on/Sign-off Terminal

sign-on
defining
terminal
security

Before using a station that requires a sign-on/sign-off security
check, a terminal operator signs on by entering the following message:

SIGNONoperator-code@

The operator code must be numeric and may be any number from 1 to
2147483647. If the operator code is not defined via the STATION macro,
OPER parameter, for that terminal, an error message will be sent to the
originating and control terminal. The operator is allowed "n" attempts
to sign on before access is terminated for that station. The "n" is
set in the STATION macro via the MAXSIGN parameter.

The sign-off command format is:

SIGN$OFF@

An operator is not allowed to sign on at the same time at more
than one terminal under security check, and only one operator at a time
is allowed to sign on at a secured terminal. If an operator signs on
to a terminal and is already signed on at another terminal, an error
message will be received. If an operator signs on at a terminal and
another operator has already signed on to that terminal, the first
operator will be signed off. For instance, operator 111 signs on to
terminal NYCOI and does not sign off, and then operator 222 signs on to
terminal NYCOI. Terminal NYCOI will first sign off operator 111 and
then sign on Operator 222.

If an operator attempts to enter a verb at a secured terminal
without signing on, an error message will be received. An operator
must remember to sign off from a terminal under security check to which
he has signed on; otherwise the terminal may be used by other operators
without signing on, thereby compromising security.

An automatic sign-off feature is included if certain
specifications exist in the SPALIST and the terminal's STATION macro.
It is important that the operator be aware of whether or not the
automatic sign-off is in effect. If it is, the terminal will be signed
off automatically after the prespecified elapsed time expires, whether
the operator is ready to be signed off or not.

10-5

Chapter 10 System Security Implementation

10.3.2 Sign-on!Sign-off Processing

Sign-on/sign-off (SIGN command) is processed by a subsystem which
must be represented by a Subsystem Control Table entry (SYCTTBL macro)
for the PMISIGN subsystem as follows:

SYCTTBL SUBC=S, SBSP=PMISIGN,OVLY=O,LANG=RBAL,ECB=YES,
TISE=YES,SOSO=NO,SECU=OO,
NUMCL=4,MNCL=5,PRTY=0,RESTART=NO,LOG=NO, ...

10.3.3 SPALIST Macro Parameter

x
X

To use the sign-on/sign-off option, the security parameter
SONOFF=YES must be coded on the SPALIST macro. SONOFF=NO takes
priority over all SYCTTBL entries which request sign-on/sign-off
security.

There are two transactions which can be entered from a terminal
and which affect the SONOFF parameter in SPALIST. The verb ASGN
activates the sign-on/off feature for the entire system even if
SONOFF=YES has not been specified in the SPALIST macro; that is, ASGN
activates, or turns on, SONOFF=YES. The verb DSGN deactivates the
sign- on/off feature for the entire system, even if SONOFF=YES was
specified in the SPALIST macro. DSGN turns off the SONOFF parameter;
by changing SONOFF=YES to SONOFF=NO. These special transactions are
also processed by the PMISIGN subsystem. Their formats are described
in System Control Commands. It is recommended that ASGN and DSGN be
restricted to the control terminal via the BTVERB macro SECUR parameter
(SECUR=YES) .

The SPALIST macro SGNTIME parameter specifies, in minutes, the
default time interval to be used to automatically sign off a terminal
after an operator has signed on at that terminal; that is, the default
duration a terminal may retain a signed-on security clearance before
that clearance is to be automatically revoked (code as a decimal from
0-466). This time interval will be used only when the following
conditions exist:

• the sign-on/sign-off feature is active

• the terminal's STATION macro specifies AUTOFF=YES

• the terminal's STATION macro specifies TIME=O

• a sign-off transaction has not already been entered

10-6

J

J

J

Chapter 10 System Security Implementation

10.3.4 SYCTTBL Macro Parameter

For each subsystem which may only process input from a secured
terminal, the SOSO parameter in the SYCTTBL macro defining that
subsystem must be coded SOSO-YES. If in the SPALIST macro the SONOFF
parameter is coded SONOFF=NO, then that will take priority; that is,
SONOFF=NO turns off the sign-on/sign-off security option for the entire
system, even if some subsystem SYCTTBL macros have SOSO=YES. If
SONOFF=YES, and a subsystem SYCTTBL has SOSO=NO, then the sign-on
requirement does not hold for the subsystem.

The relationship of the SPALIST SONOFF parameter and the SYCTTBL
SOSO parameter is summarized as follows:

==~===-===F======= =======================~==========================-~~

SONOFF SO SO Result
=====-====F~-==-~=

YES

NO

YES

NO

YES

YES

Sign-on/sign-off security option does not hold for
subsystem

Sign-on/sign-off security option does not hold for
subsystem

Sign-on/sign-off security in effect for subsystem

10.3.5, User Exits for Sign-on/Sign-off Security

An installation may add user-coded exit routines which can be
designed to accumulate statistical information and to perform
additional sign-on or sign-off processing. The two exit routines the
user is allowed are USRSGNON and USRSGNOF. The exit routines must be
coded using standard linkage conventions and must be linkedited as
resident in lntercomrn.

The user sign-on exit routine is called before the
actually signed on, and after the lntercomm checks
performed. The entry point for user sign-on is USRSGNON.

The parameter list passed via register 1 is as follows:

station is
have been

1. The address of the station's entry in the Station Tab1e(-6).
Use the STALlST macro to generate the Dsect for the Station
Table entry. The Dsect includes six bytes of header
information which appears prior to the first entry in the
table only. Thus the address passed is "table-entry minus
six" to allow proper reference to the exact table entry.

10-7

Chapter 10 System Security Implementation

2. The address of the SPA.

3. The address of the sign-on message. Define a labeled Dsect
statement and COPY MSGHDRC to form the message header Dsect.
If the field MSGHVMI is X'FF' or X'OO', then a normal sign-on
is indicated. If the field is X'FD', a sign-on message has
been received for a terminal that is already signed on.

4. The address of operator security information for the station
in PMISTATB. Use the SECTB macro to define the Dsect.

5. The address of the return code, which is a fu11word. At
exit, if the word is binary zero, then sign-on will be
completed. If it is nonzero, sign-on will be terminated and
error messages will be sent to the originating and control
terminals. In the latter case, the user exit must free the
input message area using a STORFREE macro; the length is in
the first two bytes of the message header.

The user sign-off exit routine is called before the station is
signed off. The entry point is USRSGNOF. The parameter list passed to
USRSGNOF is similar to that for USRSGNON, as follows:

1. The address of the entry for the station in the Station
Tab1e(-6) .

2. The address of the SPA.

3. The address of the message. If the field MSGHVMI is X'FF' or
X'OO', then a normal sign-off is indicated. If the field is
X'FE', the message was generated by the automatic sign-off
function.

4. The same as for USRSGNON.

NOTE: USRSGNOF cannot cancel the sign-off function.

10.4 TRANSACTION SECURITY

As with terminal security, transaction security involves three
interrelated system areas: defining permitted transaction codes for
each station, systemwide transaction security via the SPALIST, and
optionally requiring transaction security before certain subsystems may
process an input transaction.

10-8

J

Chapter 10 System Security Implementation

An additional form of transaction security, which operates
independently of, and overrides, systemwide transaction checking
options, is provided by the parameter SECUR=YES coded on a BTVERB macro
in the Front End Verb Table. Such a verb may be entered only from the
control terminal (internally forced for the system commands NRCD and
IMCD, used to close down Intercomm). The default is SECUR=NO. Control
terminal transaction security may be dynamically controlled by the
system commands SECN and SECF (control terminal security on/off for the
specified verb) .

10.4.1 Using Transaction Security

If the transaction security option is in effect for the system,
each verb entered by an operator at a particular terminal is checked.
If the transaction code is a secured verb, and if allowed from that
terminal, the transaction is processed as usual. If not allowed, the
incoming message is rejected and the operator receives an error
message. A list of secured verbs is defined in the STATION table via a
SECVERBS macro; the allowed verbs from that list which apply to a
specific terminal are defined via the VERBS parameter of the STATION
macro, as described in section 10.5.

Transaction security checking is performed after message
de queuing by the Subsystem Controller. The option to edit (by the Edit
Utility) an input message before queuing (BTVERB macro, EDIT=BQ) may
not be used if transaction security is to be effected for that verb.

For each station, the user has the option of adding or deleting
allowable transactions from the SECVERBS list via the system commands
SWON or SWOF.

10.4.2 SPALIST Macro Parameter

If the user intends to employ the transaction security option,
the security parameter TRANSEC=YES must be coded on the SPALIST macro.

There are two system control commands that can be entered on-line
which are able to activate or deactivate the transaction security
option systemwide. The AVRB transaction activates the security by verb
feature, even if TRANSEC=YES was not coded in the SPALIST macro. The
DVRB transaction deactivates the security by verb feature even if
TRANS EC=YES was specified in the SPALIST macro; that is, it sets
TRANSEC=NO.

10-9

Chapter 10 System Security Implementation

10.4.3 SYCTTBL Macro Parameter

TISE=YES must appear in the subsystem SYCTTBL if the user
requires transaction security for transactions going to that subsystem.

If, in the SPALIST macro, TRANS EC=NO, then the transaction
security option is turned off for the whole system, even if in a
subsystem's SYCTTBL macro TISE=YES. If TRANS EC=YES , but TISE=NO is
coded on a subsystem SYCTTBL macro, then transaction security is not in
effect for that subsystem. The relationship of TRANSEC and TISE is as
follows:

F~===============================~======================================

TRANSEC TISE Result
F=================;===

NO YES Transaction security turned off systemwide

YES NO Transaction security turned off for that subsystem

YES YES Transaction security in effect for the subsystem

10.5 CODING THE STATION TABLE

This section describes the macros and parameters for the Station
Table which are necessary to implement terminal and/or transaction
security.

10.5.1 Structure of the Station Table with Security Processing

When sign-on/sign-off and/or transaction security is to be
implemented, the Back End Station Table (PMISTATB Csect) must be
expanded to identify security requirements.

The structure of the Station Table when security processing is
utilized, and the positioning of user-coded macros, is illustrated
below:

PMISTATB CSECT
GENSEC OPER=CORE
SECVERBS
STATION
STATION

PMISTOP
END

10-10

J

Chapter 10 System Security Implementation

10.5.2 GENSEC Macro

If any of the Intercomm Basic Security checking options are going
to be used, the user must supply a GENSEC macro. Only one GENSEC macro
is coded, and it must appear before all SECVERBS and STATION macros in
PMISTATB. It notifies the macro processor that one or more security
table entries are to be generated in a separate Csect PMISECTB.

The OPER parameter of the GENSEC macro indicates whether all the
operator security codes covered by the sign-on/sign-off option will
reside in core or on disk. Further details on how the codes are made
resident on disk (data set SECOOO) appear later; OPER=CORE must be used
to indicate only core-resident entries.

10.5.3 SECVERBS Macro and STATION Macro/VERBS Parameter

If the transaction security option is used, one or more SECVERBS
macros must be coded, and must precede all STATION macros. The
SECVERBS macro has two parameters: VERBS and TABLE.

All transactions to receive a transaction security check must be
specified in the VERBS parameter of SECVERBS macros. The maximum total
number of transaction-ids permissible within the parameter sublists is
2048. The STATION macros define, for each individual terminal, the
subset of transaction-id's allowed entry from that termina1. The
transaction- ids in the STATION macros must come from the list in the
SECVERBS macro, VERBS parameter.

The TABLE parameter specifies whether or not an in-line table
cons isting so le ly of the transac tion- ids supplied by the VERBS
parameter is to be generated. If TABLE=YES, an in-line table is
generated. If TABLE~NO, an in-line table is not generated.

If a Front End does not exist (Test Mode), the parameter
TABLE=YES must appear in the SECVERBS macro.

If a BTAM/TCAM/VTAM Front End does exist, and the user wishes to
conserve main storage, then TABLE=NO is allowed. In this case, the
transactions under security must be specified by a set of BTVERB
macros, in the BTVRBTB table, in the identical order in which they
appear in the VERBS parameter of the SECVERBS macro. In addition, they
must precede all other BTVERB macro instructions defining transaction
id's that do not require security checking.

The following examples illustrate these coding requirements. In
this example, an in-line table of the transactions in the VERBS
parameter will be generated (the order and placement of BTVERB macros
in the BTVRBTB is irrelevant). Figure 10-2 summarizes use of the
SECVERBS and BTVERB macros.

10-11

Chapter 10

Example 1:

BTVRBTB

Example 2:

System Security Implementation

SECVERBS macro where Front End does exist:

SECVERBS VERBS=(MLER,DLVE,INVE,RPTE,RDEQ,LWRE,TFQZ, X
GRTE,BRNI),TABLE=YES

CSECT

BTVERB VERB=BRNI, .. .
BTVERB VERB=DLVE, .. .
BTVERB VERB=MLER, .. .
BTVERB VERB=INVE, .. .
BTVERB VERB=RPTE, .. .

BTVERB VERB=RDEQ, .. .
BTVERB VERB-LWRE, .. .
BTVERB VERB=GRTE, .. .
BTVERB VERB=TFQZ, .. .

PMISTOP
END

SECVERBS macro where Front End does not exist:

SECVERBS VERBS=(MLER,DLVE,INVE,RPTE,RDEQ,LWRE,TFQZ, X
GRTE,BRNI),TABLE=YES

10-12

J

Chapter 10 System Security Implementation

~========== F========-=============--===---===============~'=-===='~

SECVERBS BTVERB Result
~========= =-= =--=---===== __ ==---== =====================z====

VERBS=(list) Front End does not exist The list of transactions
TABLE-YES (Test Mode). that will be in the VERBS

parameter of subsequent
STATION macros will be under
transaction security check
for the specified stations
and will be generated in
main storage.

VERBS=(list)
TABLE=YES

VERBS=(list)
TABLE=NO

Front End exists. Order
of BTVERB macros does
not matter.

Front End exists. Each
transaction in the
SECVERBS VERBS param
eter must have a BTVERB
macro in the same order
as the transactions
appear in the SECVERBS
macro, and preceding all
other BTVERB macros in
BTVRBTB.

The list of transactions
that will be in the VERBS
parameter of subsequent
STATION macros will be under
transaction security check
for the specified stations
and will be generated in
main storage.

The set of transaction-ids
under security will be the
set specified in the VERBS
parameter of the SECVERBS
macro, but will be listed in
the BTVRBTB.

Figure 10-2. Summary and Use of SECVERBS and BTVERB Macros

10-13

Chapter 10 System Security Implementation

10.5.4 STATION Macro(UNIVER and OPER Parameters

This is a STATION macro that, if used, has only two parameter
entries, UNIVER and OPER. It is important to remember that not all
stations need be under the sign-on/sign-off security option; for each
station under terminal security, there is a set of operator codes
associated with the station, which will be the only operator codes
allowed to sign on at that station. However, if the user chooses, he
may specify in the first STATION macro a set of universal operator
codes which will be allowed to sign on to all terminals under the
sign- on/sign-off option. If used, the macro appears as:

STATION UNIVER=YES, x

OPER=(all codes for universal entry)

This STATION macro must precede all other STATION macros in
PMISTATB, and only one STATION macro specifying UNIVER=YES is allowed
to appear. It has no other parameters except UNIVER and OPER.

10.5.5 Other STATION Macro Parameters in PMISTATB

The STATION macro contains parameters for both the
sign-on/sign-off security and transaction security options. Only one
STATION macro per terminal is allowed, whether one or both types of
security are in effect. Only those operands of the STATION macro
pertaining to security are described here; consult Basic System Macros
for coding details.

The OPER parameter indicates whether or not sign-on/sign-off
security is required at the terminal. An absence of assigned operator
codes indicates sign-on/sign-off security is not required. OPER
specifies, in a sublist, the operator security codes to be considered
as the only operator codes permitted entry at the terminal (unless
overridden by a universal STATION macro as described above).

The RBN parameter provides a pointer to the relative location on
a SECOOO file at which the subj ect terminal's security codes can be
located. If all the associated security codes are to be
core-resident, this parameter is not meaningful. However, if all the
codes are to be located within the SECOOO file, then the RBN value is
the last five digits of the member-name used to place the entry in the
file (see Section 10.5.7).

10-14

J

J

Chapter 10 System Security Implementation

The MAXSIGN parameter specifies the maximum number of times an
operator can reenter an Intercomm SIGN transaction after failing in the
attempt to pass sign-on/sign-off security for the terminal. Failure to
sign on will be recorded at the Intercomm control terminal, and failure
to sign on within the specified number of attempts will result in an
immediate terminal down condition, with notification again sent to the
Intercomm control terminal. An Intercomm TPUP (or STLU) transaction
will be required to place the terminal on-line again.

The AUTOFF parameter specifies whether or not the terminal is to
use the automatic sign-off feature of sign-on/sign-off. This parameter
is meaningful only if security codes have been assigned to the OPER
parameter. Code YES to use this feature, NO to bypass this feature.
If YES is coded, the automatic sign-off duration interval is provided
via either the TIME parameter of the STATION macro or the SPALIST
macro, SGNTIME parameter. The default code is YES.

The TIME parameter indicates whether or not the otherwise default
sign-off duration interval specified by the SPALIST macro, SGNTIME
parameter, is to be overridden. This parameter is meaningful only if
AUTOFF=YES has been specified. A zero code indicates that the SGNTIME
interval is not to be overridden. A nonzero code indicates it is to be
overridden and specifies, in minutes, the overriding sign-off interval,
that is, the specific duration the subject terminal may retain a
signed-on security clearance before that clearance is to be
automatically revoked.

The VERBS parameter indicates whether or not transaction-id
security is required at the terminal. The transactions listed in this
parameter must come from the VERBS parameter in SECVERBS in the same
order as in the SECVERBS list. If more than one transaction-id is to
be specified, they must be coded as a parameter sublist. An absence of
VERBS indicates that transaction-id security is not required.

10.5.6 Definition of Range of Verbs per Terminal for Transaction
Security

The SWON and SWOF transactions can be used only on the
transactions within the transaction security range of a terminal, which
is defined below.

Consider the transactions in the VERBS list of the SECVERBS macro
as being numbered sequentially, starting at 1. For a particular
terminal, find the corresponding lowest number verb in the VERBS list
of its STATION macro. Let the number of that verb be L. L is divided
by 8, yielding a quotient (m) and remainder (q) (that is, q is less
than 8):

L=8m+q

10-15

Chapter 10 System Security Implementation

However, if L is an exact multiple of 8, then q=8, and m=m-1 (m=O if
L=8). The lowest number verb in the range for that terminal is then:

r1-L-q+1 (for the first through eighth verbs, r1=1)

Now take the corresponding highest number verb in the VERBS list
of the same terminal's STATION macro and call it H. H is divided by 8
yielding a quotient (m) plus a remainder (q), that is,

H=8m+q

The highest number verb in the range for that terminal is then:

r2-8(m+1) (if H is an exact multiple of 8, r2=H)

In other words, all verbs from the SECVERBS list with numbers
equal to or greater than r1, or less than or equal to r2, can be
acted upon by the SWON and SWOF transactions, for that terminal.
Furthermore, no other secured verbs outside the range may be entered at
that terminal.

The reason for all this is that a bit string is generated for the
secured verbs list created by SECVERBS. The string consists of a bit
for each verb, but the bits are grouped in units of 8. A corresponding
bit string is also generated for each terminal, with a bit set on for
each verb defined on the STATION macro. The bits are grouped in
corresponding units of 8, so that even if a verb is in the middle of a
SECVERBS verbs list unit, the whole unit from that list is included.

If the user wishes to simplify operating instructions, he can
pretend that the range for the station consists only of those verbs
falling between and including the lowest number transaction listed in
the STATION macro and the highest number listed in the STATION macro.
But the user must be careful to remember that the actual range for the
terminal may be larger.

Following is an example of determining a range for a terminal:

SECVERBS

STATION

VERBS=(TBYV,CLYE,NRMY,LYRE,JALY,ALLI,TPQR,LFTY,
SNPQ,LLNO,FGRS,KDYO,LPQR,ATST,BSST,NYCE,
PLAU,PTER,FLFS,JWSP,JQRL,JMNO,FLOP,RWYE),

TABLE=YES

TERM-(NYC01),

VERBS-(KDYO,ATST,PTER)

10-16

x

i
x
X
X
X

j

Chapter 10 System Security Implementation

The verbs in the SECVERBS list can be considered as consecutively
numbered from 1-24, that is, TBYV is the first verb, RWYE is the 24th
verb. The verbs in the VERBS parameter for the STATION macro for NYCOl
terminal are:

KDYO - 12th verb from SECVERBS
ATST - 14th verb from SECVERBS
PTER - 18th verb from SECVERBS

Thus, the lowest number verb on the NYCOl STATION macro is the
12th verb listed in SECVERBS, KDYO:

L = 12
L 8m+q

12 8*1+4

rl = 12-q+1
r1 12-4+1
r1 9

The lowest number verb from SECVERBS possible in the range of
NYC01 is the ninth verb from SECVERBS, namely SNPQ.

The highest number verb appearing in the STATION macro is the
18th verb from SECVERBS, PTER:

H 8m+q
18 - 8*2+2

8 (m+l)
8(2+1)-24

The highest verb possible in the range of NYC01 is verb number 24
from SECVERBS, or RWYE .

.
Thus, an operator from a terminal can use the SWON instruction to

activate transaction security for NYC01 on the verbs SNPQ, LLNO, FGRS,
LPQR, BSST, NYCE, PLAU, FLFS, JWSP, JQRL, JMNO, FLOP, RWYE, even though
they are not in the VERBS parameter of the STATION macro for NYC01.

10.5.7 Loading Operator Codes on Disk for Station Security Option

To have operator codes on disk, the user must create a symbolic
library, that is, SYMSEC with members consisting of the operator codes
under security for each terminal; each STATION macro is an entry in the
library.

Members of SYMSEC appear as:

SECxxxxx CSECT
GENSEC
STATION
END

OPER=DISK
OPER=(list)

10-17

Chapter 10 System Security Implementation

The member names in SYMSEC must be SECxxxxx, where xxxxx is all
numeric. All xxxxxs must begin at 00001 and be in sequential order
with no five-digit omissions.

The order in which each station appears in the library SYMSEC
must correspond to its RBN number, that is, if the STATION macro for
terminal NYCOI has RBN=00005, it must be the fifth entry in the library
(member-name SEC00005).

For each set of operator codes on disk listed in SYMSEC, it is
necessary to assemble and linkedit the member with the same name into a
load module library, that is, MODSEC. Create the SECOOO file by
executing the off -line File Load Utility PMIEXLD agains t MODSEC. (See
Chapter 12.)

10.6 IMPLEMENTATION OF USER-WRITTEN SECURITY ROUTINES

Under Basic Security, the user can supply his own security checks
at the subsystem level in addition to or instead of the
sign - onl sign - 0 ff and transac t ion security checks suppl ied by
Intercomm. If this option is chosen, he must perform the coding steps
described below.

10.6.1 Coding Security Subroutines

Before the Subsystem Controller passes a message to a subsystem,
it checks the Subsystem Control Table entry for the subsystem to
determine whether incoming messages for this particular module are to
be passed through a security subroutine. If a security routine has
been provided for the subsystem, the message will be passed to this
subroutine before being passed to the actual application program. When
called, the security subroutine is passed, via register 1, the address
of a parameter list consisting of:

1. Address of message

2. Address of System Parameter Area

3. Address of Subsystem Control Table entry

The user-coded security routine will determine whether this
message is or is not to be passed on to the application program. If
the message passes the security check, the security routine will return
to the Subsystem Controller after placing a return code of 0 in
register 15.

If the message does not pass the security check, a return code of
16 or greater should be placed in register 15. Under this condition,
the user must provide coding wi thin his securi ty routine to generate
and output any required error message.

10-18

J

Chapter 10 System Security Implementation

Also, in the case where the message does not pass the security
check, the security routine must free the incoming message area if the
subsystem was coded in Assembler Language. If the subsystem was coded
in a high-level language, the Subsystem Controller will free the
message when cancelled by the security routine. To determine language
type, use the Dsect SCTLISTC (COPY member) for the subsystem SCT entry.

The user-coded subroutines must be resident and use standard
linkage conventions.

10.6.2 SPALIST Macro Parameter

USERSEC=YES must be coded on SPALIST to indicate user security
routines are to be honored.

10.6.3 SYCTTBL Macro Parameter

If a securi ty routine is to be provided for a particular
subsystem, the parameter SECU of the SYCTTBL macro must be coded.
Otherwise, the default value of 0 (no security routine) will be placed
in the Subsystem Control Table entry. Any number from 1 to 63 may be
coded in the SECU parameter. This number will be used as an index to
access the actual address of the security routine, found in a table of
user security routine VCONs coded in a Csect named SECURITY.

10.6.4 Security Table

The SECURITY Csect must contain address constants pointing to
each user security routine. The first VCON in this table is the
address of security routine number 1; the second VCON is the address of
routine 2; etc. No PMISTOP macro is needed at the end of this table.
User security routines may have any name which does not conflict with
system module names (see operator disk member names above, and linkedit
below).

SECURITY CSECT
DC V(SEC01)
DC V(SEC02)

END

10-19

Chapter 10 System Security Implementation

10.6.5 Linkedit Requirements

The proper include cards for Basic Security logic modules are
produced when the user specifies SECUR=YES when assembling the ICOMLINK
macro to generate an Intercomm linkedit deck. The modules are
PMIAUTOF, PMIHEADR, PMISIGN, SECUREOO, SECUREOl and SECURE02.
User-supplied terminal security routines must have member and entry
poi n t name s USRSGNON and USRS GNOF as previously discussed.
User-supplied subsystem security routines must be specially included,
using the names in the VCONs coded in the Security Table, which must
also be included via a user-coded INCLUDE statement.

10.7 MULTIREGION INTERCOMM CONSIDERATIONS

If SOSO=YES is coded for any SYCTTBL in the Intercomm system,
then, when executing under a Multiregion Intercomm system, terminal
(sign-on/sign-off) security only applies to the single region where the
PMISIGN subsystem is resident. This restriction may be overcome by
using RAP processing (operator signs on only to the region to which the
terminal is locked). Alternatively, all SYCTTBLs for which SOSO=YES is
required can be grouped in one SCT in one region (the same region where
PMISIGN processes the SIGN command).

Transaction security and user-coded subsystem security exit
routines are processed just before a message is passed to a subsystem
and are therefore not affected by execution in a Multiregion system.
Table coding and linkedit requirements described in the above sections
for these two security types must be present in each region for which
either type of security is desired.

10-20

J

\.

L

Chapter 11

SYSTEM TUNING TECHNIQUES

11.1 INTRODUCTION

One of the major areas of concern in anyon-line
that of system tuning: those procedures involved
performance from the points of view of response
resource utilization.

system environment is
in optimizing system
time, throughput and

This chapter presents techniques for system tuning from the following
points of view:

• System tuning and performance evaluation

• System statistics reports and display commands

• Tracing a message on the log

• Factors affecting performance

• The Fine Tuner commands

• Response time considerations

• MVS tuning recommendations

• Debugging and tracing facilities

Debugging an on-line system is a task ranging in complexity from
simple errors in application program code to virtually random errors in
the interaction of program logic, due to time-dependent combinations of
message processing. Debugging techniques are described in the
Intercomm Messages and Codes manual.

A summary of factors affecting performance (response time) and of
corrective suggestions is provided at the end of this chapter.

11. 2 SYSTEM TUNING AND PERFORMANCE EVALUATION

System tuning and subsequent performance evaluation in the
on-line system environment involves consideration of the following:

1. Transaction response time, typically measured as elapsed time
from request for entry of a message from the terminal until
the first character of response is received.

2. Message throughput, typically measured in terms of messages
per hour.

3. CPU utilization, derived from operating system accounting
statistics.

11-1

Chapter 11 System Tuning Techniques

System tuning is an iterative process whereby the System Manager ~
adjusts particular control values via tables, such as the System
Parameter Area, the Subsystem Control Table and/or message routing and
queuing specifications. After each execution of Intercomm, the system
log and statistics are analyzed to determine the effect of the varied
parameters, and the tuning process is continued. At some point, an
acceptable level of performance will be attained. If message traffic
rates or the mix of message traffic varies from that tested during the
tuning process, the procedure must be performed again.

11.2.1 System Tuning Facilities

The Intercomm Test Mode facility can be effectively used for
system tuning. Since all messages to be processed are input at system
initialization time, message processing proceeds at a forced
high-volume state. No consideration is given to arrival rates of
various message types, or to processing time by the teleprocessing
interface. By isolating and adjusting message processing control
specifications in high-volume test mode executions, the maj or task of
system tuning can be accomplished without involving terminal operators
in a volume field test. The Intercomm BTAM Front End terminal
simulator can also be used for system testing prior to field test. In
both cases, direct access device space is required for all messages to
be tested. High-volume processing using a production Intercomm log
data set via the Log Input Facility (see Chapter 8) provides a good
tuning base.

11.2.2 System Performance Evaluation and Statistics Reports

The Intercomm system provides several facilities for performance
evaluation, which are described in detail in other sections of this
manual. A summary list follows:

• The Intercomm System Log

The LOGPRINT program (see Chapter 12) may be utilized to list
the log to obtain a detail trace of individual messages from
entry into the system to final output.

• Log Analysis Program

The LOGANAL program (see Chapter 12) prepares summary
statistics of message processing and queue time by verb,
terminal or subsystem from entries in the system log.

• File Handler Statistics Report

A periodic report detailing the number and type of I/O
operations for each data set (DO statement) defined via JCL
for Intercomm execution, and listing VSAM LSR pool activity.
(See Chapter 6.)

11-2

Chapter 11 System Tuning Techniques

• Resource Management (Core-use) Statistics

Periodic reports of Intercomm pool block acquisition and
release, prepared in conj unction with use of Resource
Management storage pools. (See Chapter 5.)

• System Accounting and Measurement Facility

11.2.3

A report produced from a sorted system log detailing resource
usage by subsystem or terminal. Accounting information is
written to INTERLOG for each message processed, which is then
printed by an off -line utility. Implementation requires
special modules and tables in the Intercomm system. (See
Chapter 8.)

• System Tuning Statistics

Periodic reports are produced from an accumulation of various
system activity statistics, which can be used to tune and
optimize the Intercomm system. (See Chapter 8.) Many of the
values listed on the reports can be dynamically displayed via
the TALY system command.

System Statistics Displays

Several Intercomm-supplied system control commands provide the
on-line ability to dynamically display statistics for (or the current
status of) BTAM/TCAM terminals (STAT), VTAM devices (VTST), a specific
terminal (WHOI, WHOU), files (FHST, FILE), message and/or dispatcher
queues (TALY, SCTL), active threads (TALY), subsystems (FTUN, TALY),
and regions (COMM- -Multiregion control). The generated displays,
command parameters (one, selected, or all terminals, files, subsystems
or regions), and implementation procedures for these commands are
described in System Control Commands.

11.3 TRACING A MESSAGE ON THE LOG

To identify where time delays occur in message processing, the
Intercomm Log Analysis program provides summary statistics of time in
subsystem queues and time in subsystem processing. Occasionally it may
be necessary to perform a more detailed analysis on a specific message
type or some combination of messages occurring at a particular point in
time.

11-3

Chapter 11 System Tuning Techniques

A manual technique may be used to trace the path (and associated
time of day) of processing for a particular message by locating
individual log entries on the LOGPRINT program output. Individual
input messages can be located and traced in combination with their
subsequent output message(s) by use of two fields in the message
header, MSGHBMN and MSGHMMN. Input parameter cards may be used for
selective printing of log entries as described in Chapter 12.

• MSGHBMN

The Front End input message sequence number is placed in the
header by BTSEARCH or VTRECVE from BTAMSEQ, an accumulator in
the BTSPA. The counter, BTAMSEQ, is incremented and placed
in the header when a message arrives from a terminal. For
VTAM messages, MSGHBMN is set to the VTAM input sequence
number for the device, or optionally to the input message
sequence number as for a BTAM Front End (depending on coding
of the SEQNO parameter on the VCT macro for the VTAM Network
Table) . Thereafter, this field is not touched by any other
modules of Intercornm and, therefore, should appear on all
further log entries. If the subsystem that builds an output
message retains this field from the input message header, it
can be used to associate each input message with its
generated output message(s).

• MSGHMMN

A Back End 'queued for subsystem' message sequence number is
placed in the header by MSGCOL from SPAMSNM, which is a
counter located in the SPA. This counter is incremented and
placed in the header when a message is queued for a
subsystem. It initially appears on the INTERLOG log code
X'Ol' entry. When the subsystem builds a message for another
subsystem (including the Output Utility), this field,
MSGHMMN, is incremented when that message is queued.

A Front End output message sequence number is also placed in
the header by the FESEND routine from SPAMSNM. This counter
is also incremented and placed in the header when an output
message is queued for a terminal. It initially appears in
the Log Code X' F2' entry. Thereafter, the field MSGHMMN is
not touched by any other modules of Intercornm, and should
therefore appear on all further entries.

A Multiregion queuing (from control region to satellite
region only) message sequence number is also placed in the
header from SPAMSNM by the MRQMNGR routine. This counter is
incremented and placed in the header when the message is
queued for a satellite region. It initially appears in the
log code X'Cl' entry.

Figure 11-1 illustrates the relationship between Front End and
Back End messages as traced by the header fields MSGHBMN and MSGHMMN.

11-4

J

L

Chapter 11

MESSAGE HEADER

MMN TID BMN
LOG
CODE

System Tuning Techniques

MESSAGE TEXT

AB 29 NYeOl 16 01 input message from terminal

(message queued for user subsystem)

----------------------------]
AB 29 NYC 0 1 16 30

(user subsystem processing begins)

U 51 NYCOl 16 01 message for Output Utility

(message queued for output subsystem)

----------------------------]
AB 29 NYC01 16 FA

(user subsystem processing complete)

----------------------------]
U 51 NYC01 16 30

(output subsystem processing begins)

00 51 NYC01 16 40 message passed to FESEND

(output log entry, Test Mode only)

00 53 NYC01 16 F2 output message for terminal

(message queued for transmission, non-test mode only)

----------------------------]
U 51 NYC01 16 FA

(output subsystem processing complete)

----------------------------]
00 53 NYCOl 16 F3

(message transmission complete, non-test mode only)

Figure 11-1. Tracing Messages on INTERLOG

11-5

Chapter 11 System Tuning Techniques

Once each associated message is identified on the log, the user
may then analyze the time stamps in each header to determine if
contention problems exist in the following areas:

11.4

• Subsystem Processing

An unusually long time in queue for the subsystem (measured
by the difference between log code X' 01' and log code X' 30'
entries).

• System Resources

An unusually long message processing time (measured by the
difference between log code X'30' and log code X'FA').

• Front End Contention for Output

An unusually long time in queue for transmission (measured by
the difference between log code X'F2' and log code X'F3').

• Multiregion Message Transfer

An usually long time in control region queue before satellite
region transfer (measured by the difference between log code
X'Cl' and X'C2' entries).

FACTORS AFFECTING SYSTEM PERFORMANCE

Many factors must be considered in combination to attain a
desired performance criteria in anyon-line system. The ultimate
obj ective is to maximize performance, while minimizing main storage
requirements for the Intercomm region. The trade-off is obvious: the
more storage available, the easier it is to attain the best response
time and throughput for all subsystems. Other hardware factors
involved concern contention for both the communications network and
direct access devices. The objective must be to minimize contention
for all resources.

For MVS linkedit considerations to optimize performance and
additional system tuning techniques, refer to Chapters 3, 7, and 8.
Additional tuning recommendations for MVS are detailed in Section 11.7.

The following discussion presents key areas for the Intercomm
Support Manager's consideration to effectively perform the process of
system tuning.

11-6

J

L

Chapter 11 System Tuning Techniques

11.4.1 Subsystem Program Logic

In general, response time for individual messages should be
directly related to the amount of I/O activity in subsystem logic. If
the resul ts of log analysis show the major portion of message
processing time is involved in subsystem processing (as opposed to
message queuing time), a file contention problem may have occurred. If
on-line updates are involved, only those subsystems performing updates
should use exclusive control; inquiry subsystems reading files with
exclusive control only generate unnecessary File Handler processing
overhead. If QISAM processing logic is used by a subsystem, the QISAM
via BISAM facility of the File Handler should be utilized to minimize
operating system overhead. In-core indices for ISAM files and local
shared resource pools for VSAM files can also minimize overhead. (See
Chapter 6.)

When message processing logic is complex, it may be advantageous
to separate logical functions by subsystem. Thus, a series of
subsystems can be created and related via intersubsystem message
switching to allow the different logical functions to operate at
different priorities. The user might also consider thread subtasking
as described in Chapter 3 of this manual.

11.4.2 Subsystem Residency and Scheduling Parameters

The mix of subsystem scheduling and residency is an important
factor affecting overall system performance.

Intercomm permits four types of residency for subsystems, with
the following options:

• Resident Subsystems

Resident subsystems are always in main storage, available to
process messages concurrently with other resident modules.
The Output Utility subsystem (and the Change/Display
subsystem, if fixed format messages are used) should be made
resident for best performance. Installations may specify
"execution groups" via the SYCTTBL macro parameter EXGRP, for
resident subsystems. This technique provides control over
the scheduling of message processing by limiting the number
of concurrently active subsystems, even though all are linked
as resident.

11-7

Chapter 11

•

System Tuning Techniques

Dynamically Loaded Subsystems

Dynamically loaded subsystems are loaded "on demand" in
combination with other dynamically loaded subsystems. If
coded, linked, and loaded for execution above the l6meg line
under XA (see Chapter 3), they will remain loaded unless a
program check or timeout occurs. If reentrant or serially
reusable and loaded below the l6meg line, they remain loaded
as long as new messages are queued or until the SPALIST
parameter MAXLOAD value (total subpool space occupied) is
reached. A subsystem calling CONVERSE will remain in storage
for the duration of the conversation. Dynamically loaded
subsystems and subroutines which can be executed under
Intercomm as reentrant or serially reusable, should be
linkedited as REUS to reduce MVS load and delete processing.

• Overlay Region A Subsystems

One or more subsystems, linkedited as an Overlay Region A
segment, are loaded when anyone of the subsys terns in the
segment has messages to process. Subsystems with similar
traffic and I/O activity rates may be grouped together; or,
subsystems with opposite traffic and I/O activity might be
grouped together (that is, a high traffic and low I/O
subsystem with a low traffic and high I/O subsystem).

• Overlay Region B (C. D) Subsystems

Overlay Region B, C or D subsystems share a message queue and
are loaded based upon the sequence of message traffic.
Message processing is single-threaded; hence response time is
directly related to the arrival sequence of message types for
subsystems assigned to this overlay region. A low response
time cannot be guaranteed.

Two SYCTTBL macro parameters, MNCL and RESOURC, along with the
RESOURCE macro, are used to control message processing by specifying
the concurrent message processing limit and/or the maximum number of
messages to process (concurrently if reentrant, serially if
nonreentrant). These values define limits that are continually in
effect for resident subsystems, but are effective only during residency
for nonresident subsystems.

MNCL is the multithreading parameter; it permits a given number
of messages to be processed concurrently by a specific subsystem.
RESOURC, if specified, controls (in combination with the RESOURCE
macro) the maximum number of concurrent threads to be executed among a
given group of related subsystems accessing the same resource, for
example, a data base. The relationship is established via the RESOURCE
macro and the RESOURC parameter of the SYCTTBL macro. The RESOURCE
macro must be coded prior to all SYCTTBL macros (add to INTSCT).

11-8

J

Chapter 11 System Tuning Techniques

For tuning purposes, first specify MNCL, considering the
following:

• A high value will keep to a minimum the number of messages
concurrently queued.

• A low value for high traffic subsystems will fill the core
queues, causing overflow to disk queues.

• If the subsystem reads many records from, or updates, files
or a data base, a low number will minimize file and data base
contention.

• If the subsystem requires a large amount
acquired storage, a low number will m1n1m1ze
dynamic storage (Intercomm pool ~reas).

of dynamically
contention for

• If the subsystem is related to another subsystem (via message
switching) the specification for both should be similar.

As a second phase of tuning, consider different values for MNCL,
remembering that a high volume situation may occur for several
subsystems at the same time:

• A greater MNCL will theoretically improve response time for a
subsystem, given that dynamically acquired storage is
available. However, other subsystems may be impacted, due to
one subsystem's increase in dynamic storage requirements.

• A lower MNCL will effectively "penalize" a high volume
subsystem, thus smoothing peak bursts of traffic.

For dynamically loadable subsystems which are multithreaded,
specify the SYCTTBL parameter REUSE~YES (default) to avoid unnecessary
reloading.

An additional SYCTTBL parameter, PRTY, the task priority, may
also be varied in conjunction with the MNCL specification. Priority is.
related to Dispatcher task scheduling and takes effect only during
subsystem execution. It is not used by the Subsystem Controller in any
determination of nonresident subsystem loading sequence. Considering
the combinations of subsystems executing concurrently, high priority
should be defined for subsystems with high I/O activity. However,
since nonresident subsystems share a serially reusable resource (main
storage), they should be defined with higher priority than resident
subsystems to free the resource for use by other nonresident subsystems
as quickly as possible. Subsystem and subroutine loading totals are
displayed in System Tuning Statistics.

In a high-volume Multiregion environment with a VTAM Front End,
control region subsystem SYCTTBLs should have a PRTY other than 0
because the Multiregion message transfer modules and VTAM modules
execute at priority O. In satellite regions, because the
single-threaded MROTPUT subsystem must execute with a PRTY of 0, other
subsystems should have a lower PRTY value (1 to 3).

11-9

Chapter 11 System Tuning Techniques

11.4.3 Subpool Space and Scheduling Criteria

A problem with MVS subpool space fragmentation is indicated when
the Resource Management Storage Cushion (SPALIST macro CUSHION
parameter) is released. This means that a request for storage could
not be satisfied from either the Intercomm pools or the dynamic
subpoo1. No further message processing is initiated until the cushion
is reacquired. An attempt to reacquire the cushion is made at the
interval specified by the SPALIST macro CUSHTM parameter. The subpool
area may remain too fragmented to reacquire the cushion (an extreme
case). The system may then be deactivated only by operator
cancellation. If this condition occurs frequently, two courses of
action are available:

1. Open frequently used files at system startup (see Chapter 6)
to decrease fragmentation caused by opening a file (acquiring
DCB or ACB, lOB and buffer pool space) at the time of first
access.

2. Evaluate subsystem design to ensure that, whenever possible,
the amount of dynamic storage obtained is equal to the amount
freed, that is, avoid partial freeing of storage (see also
GET/FREE SYCTTBL macro parameters).

Proper definition of the cushion size can be determined by
analysis of the periodic Resource Management Core Use statistics. (See
Chapter 5.) It may be necessary to increase the frequency of these
reports temporarily to determine the particular request causing release
of the cushion. An area of at least 8K (8192) is recommended.

The SPALIST parameters TIMS and NTIMS define the time delay and
the number of attempts for those cases where a storage request cannot
be satisfied on the initial attempt. If many subsystems encounter "low
storage" returns, these parameters may be varied as part of the tuning
process.

11-10

J

Chapter 11 System Tuning Techniques

Other SPALIST parameters to be considered are the following:

• STSTIME

Specifies, in seconds, an interval for System Tuning
Statistics to be issued for tuning options. This interval
should be realistic to provide useful, meaningful, but not
redundant data. Experimentation is necessary to determine
the optimal value.

• TASKNUM

Stipulates how many general and special subtasks are
permitted during execution. This parameter is related to the
SUBTASK macro, which allows part of a thread's logic to
execute as a subtask of Intercomm. Use of this parameter and
macro require both application and system design
forethought. Refer to Basic System Macros and Chapter 3 of
this manual for additional information.

• MAXLOAD

Specifies the maximum total subpool space to be utilized at
any given time for dynamic subsystem loading (below the l6meg
line under XA). This value has to accommodate the desired
mix of dynamically loadable subsystems designated in the
SCT. (Does not apply to dynamically loaded subroutines.)
This value can be dynamically changed via the LOAD system
command.

• STOCORE

Specifies the total dynamic storage available to the
Store/Fetch facility for transient data strings on a
systemwide basis. The Message Mapping Utility (MMU) uses
transient Store/Fetch strings. Consequently, MMU
requirements must be added to applications' requirements when
specifying a value for this parameter. m1en this storage is
exceeded, the excess transient strings are written (flushed)
to disk, thereby incurring I/O overhead. See System Tuning
Statistics in Chapter 8 which records the number of flushes.
The STOCORE value can be dynamically changed via the SCTL
system command.

Both the current values for MAXLOAD and STOCORE, along with the
core used (below the l6meg line under XA) by dynamically
subsystems and the accumulated count of Store/Fetch flushes,
dynamically displayed via the TALY,SU system command.

11-11

current
loaded

can be

Chapter 11 System Tuning Techniques

11.4.4 Subsystem Queuing Parameters

Although not as critical as the subsystem scheduling parameters
previously discussed, the definition of a subsystem's queue may affect
system performance from the point of view of storage requirements
and/or direct access device utilization. (See Chapter 3 and System
Tuning Statistics disk queuing totals.)

The following SYCTTBL macro parameters define a subsystem's
queues:

• NUMCL

The maximum number of messages queued in main storage. This
specification has a direct effect on subpool and/or Intercomm
pool requirements. The minimum value should be at least one
more than that coded for the MNCL (subsystem thread
concurrency) parameter.

• PRYMSGS

The maximum number of priority messages
storage, again affecting subpool and/or
requirements.

• DFLN. PCEN

queued in
Intercomm

main
pool

Defining the subsystem's disk queue specifications for which
messages are blocked. The number of messages per block is
limited to a maximum of NUMCL+l. Thus, subsystems with
similar message lengths and NUMCL can share the same disk
queue data set most efficiently. BLKSIZE optimization is:
average-message-length times (NUMCL + 1) + 4. Blocking and
deblocking are performed by Message Collection and Retrieval
modules. FIFO queuing is preverved across disk queuing, even
though the disk blocks are used in a wraparound manner.

11-12

J

L

Chapter 11 System Tuning Techniques

11.4.5 Front End Parameters

Once it is assured that subsystem message processing scheduling
has been sufficiently "tuned" for best reponse time and throughput, the
following Front End Table specifications should be considered to
further optimize performance (see also Section 11.6):

• Terminal Oueues

All comments regarding subsystem queues also apply to BTAM,
TCAM and VTAM terminal queues. (See Section 11.4.4.) For
BTAM and TCAM terminals, most efficient operation will be
realized with dedicated queues; that is, a unique value
defined for the BTERM macro, QNUM parameter for each terminal
(or define queuing specifications directly on the BTERM
macro, as for the VTAM Front End).

• The Polling List Table

For a BTAM Front End, a wraplist may cause excessive CPU
overhead for negative responses to polling when not used with
auto-polling. For those lines with light traffic, an
"openlist" with a time delay (BLINE macro POLTM parameter)
prior to initiating a subsequent cycle through the poll list
should be specified. Auto-wraplist polling is recommended,
however, for applicable devices (3270, 2740); code POLTM=O.

• The Network Configuration Table

For a BTAM Front End, the LINEGRP macro parameters BUFNO and
BUFL specify a BTAM buffer pool shared by a line group.
Storage required is obtained via a GETMAIN at system
startup. The buffer pool is used only for input operations.
The buffer length need not be equal to the maximum length
message. For start/stop lines, the absolute maximum total
amount of buffer space required is the maximum message length
times the number of lines in the line group. If a buffer
pool is too small, lost data conditions will occur; the
buffer pool must then be increased. Buffer usage
optimization for bisync lines is described under the LINEGRP
macro in Basic System Macros.

• For all terminal types, synchronous logging (LSYNCH=YES)
should be avoided where poss ib le. (See System Tuning
Statistics synchronous logging totals and Chapter 9.)

• Large core queues (NUMCL parameter) for printers will tie up
storage (and increase MVS paging) when the printer is
unavailable to Intercomm (paper needed, printer turned off,
in use by another TP system). MMU should be used to place
mUlti-page output on a DDQ.

11-13

Chapter 11 System Tuning Techniques

11.4.6 Data Set Allocation

The Intercomm system is installed with all libraries and defined
queue data sets on the direct access device with VOL=SER=INTOOl (or an
installation-defined name). As message traffic increases, performance
will improve by utilizing separate devices for:

11.4.7

• MVS paging data sets (External Page Storage); separate
channels also recommended

• Dynamically loaded program libraries

• Disk queues

• The Intercomm log, if not on tape

• Spinoff snap data set(s) (see Chapter 8)

• User files

• Store/Fetch and DDQ files (if heavily used)

• System spooling data sets

• ESS Security file (if frequent sign-ons or updates occur)

System Log Specifications

Once the tuning process is complete and if no performance
analysis is required, entries on the system log may be restricted in
two ways.

1. The LOG parameter in the SYCTTBL, BTERM/LUNIT and Multiregion
macros can be used to totally suppress log entries by
subsystem, terminal or region. This reduces I/O and
auxiliary storage overhead. (Code LOG-NO.)

2. Systemwide suppression of particular log entries may be made
by altering the log code translate table LOGTROUT within the
module LOGPUT. Log codes translated to X'FF' are suppressed.
(Be careful if message restart and/or file recovery is used.)

The reader is referred to Chapter 9 for a detailed discussion of
the SPALIST macro parameters defining log buffers (LGBLK and LGNUM) and
SYCTTBL and BTERM/LUNIT macro parameters defining logging and message
restart requirements (LOG, LSYNCH, RESTART). See also Multiregion
SUDDort Facility. System Tuning Statistics are provided for logging
ac ti vi ty. It is particularly important to keep the number of
BUFFER-WAITS to a minimum, which is an indication of channel/pack
contention for the log data set and/or too few or too small log
buffers.

11-14

Chapter 11 System Tuning Techniques

11.4.8 Additional Execution Considerations

The following are additional execution considerations that may
affect system tuning:

• Global Intercomm message routing considerations are
controlled by routing parameters on the SPALIST macro- -see
Chapter 7.

• Consider utilizing the FASTSNAP and Indicative Dump
facili ties, as described in Chapter 8 of this manual.
Suppress subsystem time-out snaps if possible via the SYCTTBL
macro SNAP parameter.

• Specify SUL on the LABEL parameter for multivolume sequential
output files, such as INTERLOG (if on tape), to prevent snap
118 time-outs during volume mounts.

• Do not use COBOL DWS snapping or checking, the TRAP Facility
(see Messages & Codes), or Resource Management Integrity
checking (see Chapter 5) in a production environment once
subsystems are thoroughly tested. Also do not use compiler
trace or report options for high-level language subsystems.

11.5 THE FINE TUNER COMMANDS

The Intercomm System includes tuning subsystems which allow
modification of a subsys tern's message process ing criteria, or
suspension and later restart of processing of messages by the specified
subsystem. Tuning techniques are activated by entry of system control
commands from a terminal. Thus the System Manager can experiment with
tuning variables during a live operation. See System Control Commands
for a detailed description of the Fine Tuner commands discussed below,
including their installation requirements.

The MNCL command is used to modify the MNCL of a particular
subsystem. The maximum MNCL value that can be requested is delimited
by the SPALIST parameter MMNCL, which can be dynamically altered via
the SCTL system command. The TALY,BE command displays the current MNCL
for a subsystem.

PRTY is used to modify the execution priority of a particular
subsystem. PRTY may only be in the range 0 (highest) to 3 (lowest).
The TALY,BE command displays the current PRTY for a subsystem.

TCTV is used to modify the processing time of a particular
subsystem. The fine tuner FTUN command displays the current TCTV value
(SYCTTBL macro parameter) for a subsystem.

11-15

Chapter 11 System Tuning Techniques

SPAC is used to modify the size of the dynamic storage to be
acquired for a reentrant COBOL or PL/l subsystem. The size
restrictions are the same as those defined for the GET (COBOL) or SPAC
(PL/l) parameters on the SYCTTBL macro in Basic System Macros. For a
COBOL subsystem, the current GET and FREE values for the subsystem must
be equal in order to use this command. Note that the LOAD system
command may be used to change the dynamic storage size for a
dynamically loaded reentrant COBOL or PL/l subsystem (same size, etc.
restrictions as above). The FTUN command displays the current GET/FREE
or SPAC values for a subsystem.

DELY is used to delay the processing of messages by a particular
application. If the specified subsystem was previously delayed via the
DELY command, and the delay time had not expired, the previous delay is
cancelled, and the new delay time is used. The maximum number of
minutes that can be requested for delaying a subsystem is delimited by
the SPALIST parameter MDELY, which can be dynamically altered via the
SCTL system command. The FTUN command displays current processing
status of a subsystem.

If a terminal operator enters a transaction for a subsystem which
has been delayed, then the message is rejected (default) or processing
is deferred until the DELY expires, depending on coding of the SYCTTBL
macro REJECT parameter. When the delay time has expired, a message is
sent to the control terminal.

BEGN is used to restart processing of a subsystem before the DELY
time has expired. After the subsystem is restarted, a confirmation
message is sent to the requesting terminal. If the subsystem was
already processing upon receipt of a BEGN verb, then an appropriate
message is sent to the requesting terminal.

SSFL is used to flush messages queued for a subsystem (that is
delayed, inoperable, or for which a new version is to be dynamically
loaded) . SSFL requests flushing one, some, or all messages currently
queued (does not affect future input messages). The FTUN command
displays the current number of messages queued and to be flushed for a
subsystem.

FTUN is used (3270 terminal screens only) to display the current
values of all Subsystem Control Table fields for a particular
subsystem. Two formatted screen displays are generated via MMU
(Message Mapping Utilities) processing. The RLSE system control
command is used to view the second screen.

SSUP is used to modify SYCTTBL macro values displayed in the
second FTUN screen (such as LOG, LSYNCH, INDUMP, GET/FREE, SPAC, MNCL,
TCTV, PRTY, REJECT, etc.). The screen is returned with the modified
(if accepted) values displayed and error or informational messages, as
appropriate.

NOTE: tuning changes requested by commands do not affect processing of
messages already started through the subsystem. Only queued
message processing is affected, as well as new messages input to
the system or queued by other subsystems.

11-16

J

lr

Chapter 11 System Tuning Techniques

11.6 RESPONSE TIME CONSIDERATIONS

Terminal response time is the elapsed time between transmission
of an input message from the terminal to Intercomm, and receipt of a
response back to the terminal. The response time is affected by a
number of factors:

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

Intercomm execution priority within the operating system

MVS paging and page fault processing frequency and time

Line transmission speed

Message length

Polling specifications (BTAM, MCP or NCP)

Line I/O error recovery processing (Access Method and
Intercomm)

Overflow disk queue processing

Synchronous or asynchronous message logging

Front End vs Back End dispatching (execution) priority

Subsystem and subroutine residency, reentrancy, reusability

Subsystem I/O activity and requirements

Core use requirements and tuning of Intercomm pools

Statistics gathering processing time and frequency

Dump (snap) processing time

On-line system display command frequency.

11.6.1 Execution Considerations

The production Intercomm system should execute as the highest
priority job in the system. An on-line test version executing on the
same CPU should have a lower priority, but will also have a longer
response time in competing with the production system and batch or test
jobs which may be CPU-bound, or go into a loop.

MVS paging must be tuned as the production system grows. The MVS
page data sets must be on a different disk drive, and should be on a
different channel from that used for Intercomm files (system and
user) . The Intercomm linkedit should be ordered, and Intercomm
production regions must execute nonswappable (automatic in regions with
a BTAM Front End, or if the Intercomm Interregion SVC is installed -
see Chapter 7).

11-17

Chapter 11 System Tuning Techniques

11.6.2 Transmission Considerations

The highest transmission speed available for each device should
be used. This is usually a function of the modems. Output messages
prepared by the user (not formatted by the Output Utility or MMU)
should not transmit extraneous blanks, when judicious insertion of new
line characters will eliminate blank pad to the end of a line. Idles
insertion requirements should be kept to the minimum. General poll is
more efficient than specific poll for remote BTAM 3270 lines.
Auto-wraplist polling is the most efficient and recommended for remote
3270 and leased 2740 lines. If line errors occur frequently on leased
lines, alternate routing paths should be sought. In general, a line
handler that is tied up with long messages and/or slow transmission
speeds, or I/O error recovery (including putting the terminal down and
changing the polling list, if necessary) for one terminal, will have
delays in processing for other terminals defined for the same line.
Always check also for terminal hardware problems to avoid unnecessary
device up/down processing. Sometimes, hardware problems can be cleared
by using the SPLG/STLG commands or, for VTAM, the RSLU command.

11.6.3 Queue and Log Processing

Dedicated queues are recommended for all BTAM/TCAM terminals
(automatic for VTAM). The number of messages to be held in main
storage (NUMCL parameter defines core queues) for either a terminal
(output) or subsystem (input) may need changing, depending on volume.
For example, a printer that receives multiple output pages needs a
larger core queue than a CRT used mostly for interactive processing.
Disk overflow should be kept to a minimum, except for peak high volume
situations. Synchronous/asynchronous logging specifications are
controlled by the LSYNCH parameter of the BTERM/LUNIT and SYCTTBL
macros. LSYNCH-NO (default) is more efficient, although some messages
may be lost upon restart after a CPU crash (or system cancel under MVS)
if large log buffers are defined.

11.6.4 Dispatching Priority and Subsystem Considerations

Dispatching priority under Intercomm ranges from 0 (highest) to 3
(lowest). The BTAM/TCAM Front End dispatching priority is controlled
by the SETENV global &FEPRTY, released as 2. The VTAM Front End always
executes at priority o. Subsystem priority is controlled by the
SYCTTBL PRTY parameter which defaults to zero. If the processing
requirements are equal (each terminal input normally results in one
output message) then the balance of execution priority depends on the
amount of subsystem I/O activity and passing of messages to other
subsystems (or Output Utility). The more of the latter, the greater
the argument in favor of the Back End having higher priority than the
Front End. However, if multiple output is generated, the Front End
needs higher priority, due to the slower line transmission time in
contrast to CPU or disk I/O activity time. Every subsystem must be
considered separately, as the priority can be defined for each

11-18

J

Chapter 11 System Tuning Techniques

subsystem in the Back End, but is systemwide in the Front End. If the
Ou tpu t Ut i 1 i ty is heavily used, it is advisable to make it
core-resident rather than in Overlay A.

On the other hand, if Front End commands (see System Control
Commands) are frequently used, the Front End may require a higher
priori ty in order to speed response. Also make sure that TPUMSG and
FEMSG routines, and BSTAT2, are not in the OVERLAY TRAN area. This
also applies if General Purpose Subsystem (GPSS) commands are heavily
used; the subsystem should also have a high priority; otherwise a low
priority for GPSS is advisable.

11.6.5 Main Storage Usage, Statistics, and Dump Processing
Considerations

Inefficient storage use can affect response time. System tuning
based on the Core Use Statistics reports should be performed after
every change to the system, and when message volume increases. Too
frequent generation of other statistics reports can also slow down
response time while that report is being generated.

Whenever a dump is being processed, all other activity is stopped
until the processing is finished. Therefore, the causes of dumps
should be immediately analyzed. The indicative dump option should be
used whenever possible. If enqueue time-outs are frequent (Snap 114),
the SPALIST NQTIM parameter value may have to be increased. If
subsystem time-outs occur (Snap 118), the TCTV value for those
subsystems must be increased, or check for file or data base access
contention. Also data set contention during overflow disk queuing of
messages should be studied as a possible source of delay; NUMCL may
need to be increased for heavily used subsystems or terminals
(printers).

11.7 MVS TUNING RECOMMENDATIONS

In addition to the general tuning recommendations described in
this chapter, and the MVS installation requirements described in
Chapter 7, the following apply to Intercomm execution under MVS:

• Do not linkedit as reentrant (linkedit RENT option) any
modules which are executed off-line (batch mode) or are
dynamically loaded on-line except modules to be placed in the
Link Pack (LPSPA, MRMCT, SECVECT). This will prevent an OC4
in self-modifying modules (COBOL, PL/l, utilities, etc.) at
execution time.

• The performance group assigned to the Intercomm address space
should have a high dispatching priority. Generally, the
dispatching priority should be less than JES, but greater
than the JES task initiation procedure and all started tasks
(including TSO, if used).

11-19

Chapter 11

•

System Tuning Techniques

The device location of the page data sets is critical; the
following should be separated and placed on low activity
spindles:

Pageable Link Pack Area (PLPA)

Common system area (CSA)

Local page data sets (LPA)

NOTE: Because these data sets are VSAM and the method of
channel command bundling is used, the above data sets
should be separated from any user VSAM data sets to
avoid device contention.

• I/O activity should be balanced on devices/channels.

• The Pageable Link Pack Area MVS system modules that are
frequently paged in should be placed in the fixed LPA.

•

•

V=R jobs may not start
short- term page fixes
task. Similar problems
storage off-line.

readily, due to Acess Methods doing
for the duration of the Intercomm
may be found in attempting to VARY

Check for disk drive and channel contention between the MVS
Page and System data sets and frequently used Intercomm and
user files, particularly STEPLIB and DYNLLIB if using dynamic
loading of subsystems or subroutines.

• VSAM under MVS

eliminate or reduce batch activity on files during peak
or busy periods.

separate the VSAM catalogues for the Intercomm address
spaces and batch address space files. This reduces
spindle RESERVES during VERIFY, OPEN, and CLOSE on a data
set.

VSAM will out-perform any ISAM counterpart at the cost of
CPU cycles and main storage.

implement LSR buffer pools (see Chapter 6).

• For a TCAM Front End, in-core, rather than disk, queuing
should be requested in the MCP.

• ICOMPOOL tuning is necessary to decrease paging as a result
of SVC GETMAINs and FREEMAINs and to prevent AOA abends.

• Ensure MAXLOAD parameter of SPALIST large enough to reduce
dynamic loading, or make stable/tested and heavily used
production subsystems core-resident rather than dynamically
loadable.

11-20

J

J

Chapter 11

•

System Tuning Techniques

Increase NUMCL (core queue elements) for Control Terminal,
CPU Console, and Output Utility (particularly U and N) to
prevent disk queuing overhead at peak times.

• Ensure that Reports (OFTs) used by Intercomm System Control
commands are resident rather than on the RCTOOO data set.
(See System Control Commands, command installation chapter.)

• Remove BSEGMOD from the Intercomm linkedit if not using
segmented input (see DDQ Facility). Remove ASYNCH (Overlay
Loader) LOADOVLY and PMIOVLY if no overlays defined.

• Put INCLUDE statements for BTVERIFY (if used) and/or TCAMVER
(if used), with the other startup processing modules
(STARTUP3, DDQSTART, MMUSTART, STOSTART, IXFHNDOO, etc.).
See Chapter 7.

• ORDER the Intercomm linkedit as described in Chapter 7.

• If using the Multiregion Facility, use the Link Pack Area
Facility described in Chapter 7.

• Increase the STOCORE parameter of SPALIST to prevent
Store/Fetch flushes (see System Tuning Statistics), code
DWSCHK=NO in all but test satellite regions.

• Tune NUMCL,
subsystems
terminals.

MNCL and TCTV parameters for frequently used
(Intercomm and user); also NUMCL for active

• For Multiregion, code a large value (60 or more) for the
COREQ parameter on each REGION macro in the RDT. Do not use
single region logging. Code 4096 for the SPALIST macro
MRCSALN parameter, and for the CSALEN parameter on all REGION
macros in PMIRDTnn.

• For high-volume Multiregion Satellite regions, give all
subsystems except MROTPUT a PRTY of I or higher. Code
MNCL=I,PRTY=O,TCTV=O,LANG=RBAL for MROTPUT to ensure rapid
message transfer to the Control region.

• Code LOG=NO, or at least RESTART=NO, when possible for SUBSYS
and SYCTTBL macros (Front End and Back End queues).

• All BTAM/TCAM terminals should have dedicated queues.

• Frequently tune ICOMPOOLs, particularly the ranges below BK.
Watch doubleword wastage reported by Core Use Statistics.

• Define half-hour intervals for Core Usage, System Tuning and
File Handler Statistics reports.

• Use Log Analysis and close down reports periodically for
subsystem tuning (concurrency, loading, etc.).

11-2l

Chapter 11

•

System Tuning Techniques

Periodically check for thread dumps (see Chapter 5)
subsys terns re turning normally which have not freed
acquired resources, and correct the coding problem.

from
all

• Under Mul tiregion, minimize sharing of DDQs (requires
operating system enqueues) and do not share Store/Fetch data
sets (except dedicated MMU maps file, if necessary). Each
region must have its own DYNLLIB, IntercoM log, disk
overflow queues, etc. Implement RAP processing (reduces
queuing overhead). Confine all subsystems accessing the same
fi Ie/data base (whether inquiry or update) to the same
region.

• Periodically tune disk overflow queuing data set
requirements. Group data set usage by record size (average
message length) and blocking factor (NUMCL+l).

• Use FAR parameters where applicable, particularly OPEN (all
files), COREINDEX (ISAM) , ICOMBDAMXCTRL (BDAM) and LSR
(VSAM).

• Use conversational processing for all verbs (except system
control commands not associated with a subsystem) entered
from 3270 CRTs (BTAM/TCAM/VTAM). Code the CONV parameter
time-out value on BTVERB as a few seconds greater than the
TCTV value for the associated subsystem. This may require
inc reas ing &NUMWQES in SETGLOBE; reassemble IJKDSPOl.
Specify CONV-YES on all applicable BTERM/LUNIT/LCOMP macros.
CRT=YES is also recommended.

• Define Intercomm log buffers as a multiple of 4K (up to a
maximum of 12K), and increase the number of buffers to at
least 8 (up to 20 depending on activity). Many small buffers
are better than a few large ones (I/O slow compared to CPU
throughput).

• If shared DDQ data sets are used, ensure that the FETSIZE
parameter and corresponding block size of the Space Control
File are at least 1200, or larger if heavy usage occurs.

• DDQ data sets used to hold printer output messages should
have a blocksize at least as large as the longest possible
message (including message header). MMU does not block
output on a DDQ.

• Place DD s ta tements in the Intercomm execution JCL in
descending order of the frequency of SELECTs against the
file, as determined from the File Handler Statistics.
INTERLOG (Intercomm log data set), for example, is selected
only at startup, and therefore the DD statement can be placed
at the end of the JCL (before the PMISTOP DD statement).

• If Backout-on-the-Fly implemented (see File Recovery Users
Guide), code BACKOUT-NO for subsystem SYCTTBLs where
possible, particularly inquiry-only and Intercomm subsystems.

11-22

J

Chapter 11 System Tuning Techniques

11.8 DEBUGGING AND TRACING FACILITIES

The following are described in this manual and/or Messages and
Codes and other Intercomm manuals as applicable:

• Dispatcher: IJKTRACE WQE report, IJKDELAY, IJKPRINT,
IJKWHOIT, TALY and SCTL commands (WQE queue displays).

• Intercomm Pools: Core Use Statistics for pools tuning,
POOLDUMP.

• Resource Usage: Thread RCB Dump (TDUMP), SAM statistics,
statistics and status display commands, System Tuning
Statistics, Log Analysis, enqueue facility, close down
subsystem and subroutine statistics, TALY,SU command.

• Thread Processing: Runaway (looping) control and recovery
via IJKTLOOP, time-out control, snap control, Fine Tuner
commands, dynamic load and 1inkedit, TALY command, DWS
display for COBOL subsystems, LOAD command.

• Files: FAR parameters, FILE control command, File Handler
Statistics, FHST command, flip/flop facility, file and data
base recovery, dynamic backout, dynamic file
al1ocation/deallocation.

• Messages: user log entries, PMIWTO and PMIWTOR macros and
routing control, user logging exit routine, selective log
printing, log file flip/flop facility, restart/recovery, Log
Analysis, TALY command (message queues).

• MMU Maps: MMUC and LMAP commands.

• Snaps: indicative dumps, program check recovery, PMISNAP
macro, PMIDEBUG facility, SNAP command, MMU snaps, SPINOFF
and Fast Snap facilities, DWS snaps for COBOL subsystems.

• TP Device Activity Tracing: LTRC command, TCAM snaps.

• Storage Destruction: DWS checking, TRAP and FAKEDISP
routines, POOLDUMP.

• User Exits: see Appendix D of this manual for list.

• System Commands: see System Control Commands.

• Threshold Testing: simulator, Test Mode, LOGINPUT.

• STROBE Performance Monitoring: Intercomm interface to STROBE
(product of Programart) provided via STRB command see
System Control Commands.

11-23

Chapter 11 System Tuning Techniques

The TALY command suboptions provide for displaying various
combinations of message processing data, and subsystem or terminal
status. The SCTL command can display or print subsets of WQE traces or
thread dumps, system table areas, and core. Also a complete thread
dump or WQE trace can be dynamically requested (routed to SMLOG or
SYSPRINT respectively). Additionally, the SCTL command can be used to
display the addresses of the SPA, USERSPA and SPAEXT, or to convert hex
data to decimal or decimal data to hex, or to convert an address to a
Csect name (+displacement) or to locate the address from a Csect or
subsystem name (loaded or resident). Thus, the SCTL command is an
on-line debugging tool.

11.9 SUMMARY

Degradation of response time can have external (to Intercomm)
and/or internal (within Intercomm) causes. Factors to be considered
involve whether it is gradual or abrupt, whether all terminals and
subsystems are affected or only some, whether it occurs only at certain
times of day or is random, and whether I/O error recovery (terminal,
files) is a cause.

External factors affecting response time include:

•

•

CPU overload at peak processing hours due to on-line, batch,
and JES job mix

More terminal I/O processing and transactions throughout the
CPU (more TSO users, other on-line systems) may be decreasing
Intercomm throughput

• DASD channel reconfiguration, shared channels, cross-system
reserves, MVS paging, JES spooling, pack data set contention

• Communications Control Unit (37xx, COMTEN, MEMOREX)
reconfiguration needs tuning (polling interval, input/output
interleaving)

• VTAM or TCAM region tuning, storage availability

• Too many high-volume terminals connected to a relatively
low-speed line, too many drops on one line

• Transmission line routing: satellites, straight paths, VTAM
nodes, number of intermediate CCUs and/or CPUs

• Batch job access to, or continuous update of, on-line files,
data bases

• Intercomm dispatching priority vs. other on-line systems,
JES, batch jobs.

11-24

J

J

Chapter 11 System Tuning Techniques

Internal factors affecting response time include:

• Transaction volume increase

• More terminals added

• More subsystems added

• Mix of resident, loadable subsystems and subroutines changed

• Subsystem PRTY and MNCL changes

• NUMCL and disk queuing changes for subsystems, terminals

• Multiregion inter-region message queuing increases, delays

• Increase in long-running transactions requiring more file or
data base I/O, more updates requiring exclusive control,
especially at peak processing times

• Increase in online report generating transactions, Page
Utility, DDQ, or Store/Fetch usage

• Increase in subsystem time-outs, program checks, normal
completion thread dumps (resources not freed).

More causes are listed in Section 11.6

Immediate help for abrupt or periodic spurts of degradation
includes:

• TALY, SU command does MAXLOAD or STOCORE need to be
increased (see Section 11. 4.3) . Are Buffer-Waits occurring
(contention for log data set WRITES) check off-line
contention, B37 flip/flop processing (see Chapter 6)

• TALY,DA command - many active threads (if for same subsystem
- off-line file or data base contention?), many hung or in
purge threads (many snaps occurring?)

• SSFL command - flush messages for subsystem having file or
data base problems, then DELY subsystem until contention
problem resolved

• FLSH output messages queued for unavailable terminals, or
route to active alternate terminals (SPLU or TDWN commands,
ATD parameter)

• TALY, DS command - many WQEs on WAIT queue also indicates a
file or data base access problem

11-25

Chapter 11

•
•

System Tuning Techniques

See Section 11.5 for other subsystem control commands

FILE and FHST commands for suspected files
SELECTs, I/O volume, prevent new SELECTs

outstanding

• ESS used? If so, are on-line security file updates being
executed? Are many users signing-on concurrently?

• Increase Intercomm MVS dispatching priority. Give Control
Region a higher priority than Satellite regions in a
Multiregion environment. (See Chapter 7.)

• Cancel long-running batch jobs causing file, data base, or
JES contention, and rerun at off-peak hours.

If an expected response is not received from a system command,
are snaps being processed (check control terminal and CPU console
messages)? If the terminal hangs in input, a long-duration loop in
Intercomm or in another job in the CPU may be occurring - consult MVS
systems management. If Intercomm is suspected - implement IJKTLOOP
processing to determine the problem (see Chapter 4).

Help for gradual degradation of response time includes:

• Tune Intercomm core pools from Core Use Statistics, and
eliminate RCB table relocations (see Chapter 5)

• ORDER the Intercomm linkedit to decrease MVS paging (see
Chapter 7)

• If many user files defined, reorder DD statements in
decreasing frequency of SELECTs (see File Handler Statistics
- Chapter 6), and open files at startup

• Implement LSR buffer pools for VSAM files (if used
Chapter 6)

see

• Increase Intercomm region size if terminals or subsystems
added, or core pool _block sizes or number increased

• Resolve channel and pack contention problems

• Increase Intercomm MVS dispatching priority (see above);
ensure test system or regions execute at a lower priority
than production system.

Then consider external factors affecting Intercomm execution, and
perform other tuning recommendations in this chapter, particularly the
recommendations in Section 11.7.

11-26

J

L
Chapter 12

OFF-LINE UTILITIES

12.1 INTRODUCTION

The utility programs discussed in this chapter are provided with
the Intercornm system to assist the user with operations cornmon to the
on-line environment and/or to provide data set creation for Intercornm
facilities.

12.2 LOG PROCESSING PROGRAMS

At the completion of execution of an Intercornm job, one of the
following programs may be used to process the system log (INTERLOG) for
further analysis of message processing:

• LOGPRINT--formatted printout of log

• LOGANAL--log sort/analysis

12.3 INTERCOMM LOG DISPLAY (LOGPRINT)

An off-line utility program may be used to print the Intercornm
system log when execution of Intercornm has terminated. LOGPRINT
contains routines that select specified records for printing.
Selection of records can be by date, time, terminal, subsystem code,
log code, etc. Selection criteria are established by a SYSIN file.
The default is to print all INTERLOG entries. The first page of the
report contains only the title line and the parameter selection
statements, or, if none, the legend NO CARDS FOUND.

Figure 12-1 illustrates a sample output page from this program,
where the circled notation indicates:

Each page contains a title line defining the standard message
header field names.

Each message is printed in the following format:

Cl) message header, spaced as per the title line heading

~ message text, 32 characters per line

~ offset (in decimal) relative to zero within text

(§) hexadecimal format

~ EBCDIC format

12-1

"'1 ..
~
11
CD

....
flo)

~
rt

.... "d

~:;
N"d

II
c:;
~ a
§
;g
1-4

;:j

TilliE 13.06.15" **** I N T E R CO" " LOG DIS P LAY **** PAGE ""
THREAD OPR RSC ssc "'PIN DATE TIPIE TID FLGS USR SPIN LOG ~lK W"I

------------"--

~l

en
000000
000031

o Fl "'Pl/O~O~ •• /0000 626
0~0~E~C3 h8E2C806 Eb68~OEb CIC7CSOq
C90~C~E2 6803C90~ C~E268E3 ObE3C103

1 F2 PlPI/O~O~ •• /0000 b2b

1 02 •• /0000 ""/0404 628
EZE~C3C3 CSEZEZCb E~03~00B E~CSE~CS
E306~OCl 03E3CS09 0~C1E3CS ~OE3C9C~

88.31~ 1~.~1.4~92 PAULI 0000 00 381 01 00 FF
07E3bBE3 C9E303C~ bB03C905 CSE2bBD3 *""UC,SHOW,IWAGERPT,TITLE,LINES,l.
E2506BCZ 06E2FOFI Z6 *JNES,lINES,TOTALSI,ROS01..

88.3lS 1~.Sl.loloq2 PAULI 0000 00 381 30 00 FF

88.3l~ 1~.~i.10492 PAULI 0000 00 381 FZ 00 51
~006Cb~0 70EZC80b Eb70~OO~ CI07EZ~0 *SUCCESSFUL QUEUE OF 'SHOW' "A'S •
Z6 *TO ALTERNATE TID. •

--u
000000
1000011

~Z

56
000000

56
000000

42

1 FZ ""/O~O~ •• /0000 6Z6
00000000 00000000 OOOZOOOO lEAOOOOO
COOOOOOO 00000000 00000000 0000

1 OZ •• /0000 ""/01004

o 02 •• 10000 •• 10000
C6C8E2E3 68C90~E3 CS090306 C7Z6

o F2 .R/0009 •• 10000
C6C8E2E3 68CQOSE3 CS090306 C7Z6

1 FZ .R/0009 •• 10000

618

o

633

633

88.31S 1~.51.449~ PAULI 0000 00 3111 FA 00 FF
00380000 OOOZOOOO 00020000 00000000 0 •••••••••••••••••••••••••••••••••

o. • • • • • • •• • • • • • •

88.11S 1~.51.~63l PAULI 0000 00 381 F3 00 51

88.31S l't.~l.SlbS PAULI 0000 00 38S Fl 00 00
OFHS T, INTERLOG. •

88.3l~ 1~.Sl.S3b~ PAUll 0000 00 385 01 00 FF
OFHST,INTERLOG.

88.31S 1~.~1.53b~ PAUll 0000 00 3815 30 00 FF

--117
000000
000032
0000."

88
000000
00003Z

1 FZ .U/OOE~ .R/OOOq 634
FF02002F 16010001 0901C905 E3CS0903
~O~O~O~O ~O~O~OFO 0~090140 40~0~0~0

01~0~0~0 4040F2Fl FI070901 40~0~040

1 F2 .R/0009 •• 10000 633
00000000 00000000 00070000 07200000
00000000 00000000 00000000 0000

88.31S 1~.Sl.~38Z PAULl 0000 00 385 01 00
06C70209 01~0~040 ~O"O"OFl F2030q01 O •••••••••• INTERLOG •••
~O .. OFOOS 0901~0~0 ~O~O"O~O 40FOObOq 0 0... 0 •••
~OFZF1Fl 080901~0 ~0~OFIF8 ~8F~FZ O. ZZl... 2Z1 •••

88.31S 1~.Sl.S39Z PAULl 0000 00 385 FA 00

50
lZ ••• •

0 •• •
18.~1 •

FF
OOOCOOOO 00010000 00000000 00010000 0 •••••••••••••••••••••••••••••••••

*•........ •
--lit 1 1 Fl .U/OOEIo .R/0009 634 88.HS 1~.Sl.S392 PAUll 0000 00 38S 30 00 50

---~--l'H
000000
000032
000064
0000 ••

1 OZ •• 10000 .U/OOE~ 615
1It0~04040 ~0~04040 ~O~O~O~O ~0~01lt0~0
IItOE2E3Cl E1CQEZE3 CQC3E240 OQC~0706
C503C5C3 E3~0~0~0 ~04040~O C7C~E3~0
C5C1C~~0 40~0~01lt0 E609CQE3 C5~0~040

B8.11S 1~.~1.S391 PAULl 0000
~O~O~O~O C6C9D3C~ ~OC8CIOS C403CS09
D9E315C6 C903CSilt0 05C10"C5 ~0~0~OE2
~0~01lt0~0 404007E~ E3~0~040 40~0~009

~OIoOE306 E3Cl03~0 ~010040~0 CIE5CS09

00
o

38S F2 00 50
FILE HANDLU.

o STATJ ST IC5 REPORT.FILE NA"'E S.
OELECT
OEAO

GE T PUT ••
WRITE TOTAL AYE ••

-------.--000121
000160
OOOlCfl

CIC7CSC9 DSE3C~09 D306C7~0 1It0"O~01lt0
40~O~0~0 40~0~040 F04040~0 1It0100''0~0
~0404040 FZF2Fl~0 ~0~0~040 ~0"OFIF8

~O"O~OFl FZ~O~O~O 1It0100~040 ~0"OF040
~OIoOFOIltO ~040~040 40100F2F2 F1~0~0~0
~8F~F237

OACEINTERLOG
0" 0
o Z21

1Z
o

18.4Z.

o •
ZZl •

•
--1 Fl .U/OOE~ .R/OOOQ 63~

00000000 00000000 00010000 13900000
00000000 00000000 00000000 0000

88.31S 1~.SI.~3QZ PAULI 0000 00 38~ FA 00 so
00160000 00010000 00010000 00000000 0 ••••••••••••••••••••••••••••••••• 0.............. •

--lit 2 1 01 •• 10000 .U/OOE~ 6H 88.315 l~.H .S678 PAULl 0000 00 385 F3 00 50

--
THREAD OPR RSC SSC MM~ DATE

i
TI"E IMN LOC; IIL~J USR TID FLGS

~

!
rt
CD
11

....
N

o
HI
HI ,
t"" .. ;
d
rt
~
rt ..
(D
rn

L

L

L

Chapter 12 Off-Line Utilities

The JCL required for execution is shown in Figure 12-2.

II
IIJOBLIB
II
IIINTERLOG

JOB
DD DSN-INT.MODxxx,DISP=SHR
EXEC PGM=LOGPRINT[,PARM=nnn,REGION=rrrK]
DD DSN= __________________ _

II DISP=OLD, see NOTE
II
IISYSPRINT

DCB=BLKSIZE=bbbbb
DD SYSOUT= ,

II
IISYSUDUMP
IISYSIN

DCB=(DSORG=PS,BLKSIZE=(multip1e of 121»
DD SYSOUT=A
DD * or DUMMY,DCB=BLKSIZE=80

xxx is the library containing the LOGPRINT load module. This
will be REL, unless using File Selection in which case the
LOGPRINT load module must be re1inked and placed on
MODLIB.

nnn is the number of lines per page. The default is 058.

rrrK is at least twice the block size plus 15.

bbbbb

NOTE:

12.3.1

is the length of the largest block on the data set.
parameter may be omitted when using standard
volumes.)

(This
label

if Intercomm is executing with disk logging and the x37
abend protection option (see Chapter 6) and DISP=SHR is
coded for on-line execution, then LOG PRINT may be executed
off-line while Intercomm is executing if DISP=SHR is coded
in the above JCL. Also, concatenation of the on-line
INTERLOG and INTERLOC data sets may be used.

Figure 12-2. JCL for LOGPRINT Execution

Description and Function of Control Records (SYSIN)

All of the selection records are fixed- format, fixed-position.
There is no validation of data. The control field begins in column 1
and indicates the following selection options:

12-3

Chapter 12

• Date Selection

Select records within a date range.

cc cc cc
1 6 12

DATE~yyddd~yyddd

1t ~~--------ending year and date

~---------------beginning year and date

~-------------------specify date selection

Off-Line Utilities

• Time Selection

Select records within a time range. If both time and date
are entered, the range is from the beginning time and date to
the ending time and date.

cc
1

cc
6

cc
11

TIME~hmm~hmm t + ---------- ending time

~---------------beginning time

• Terminal Selection

Select records for specified terminals. Records from several
terminals can be selected, up to a maximum of 41 terminals.

cc
1

cc
6

cc
12

TE~tid01,tid02, ...

j + ----termina1- ID

~---------------termina1-ID

12-4

J

Chapter 12 Off-Line Utilities

• Subsystem Selection

Select records with specified sending or rece~v~ng subsystem
codes. Any number of subsystem codes can be entered on
multiple entry records, up to a maximum total of 41 codes.

cc
1

cc
6

cc
11

SSC~xxxx,yyyy ...

t t subsystem codes entered in hex

• Log Code Selection

Select records with specified log codes (in hex). Any number
of log codes can be entered on multiple entry records, up to
a maximum total of 4l. If non-documemted (see INTERLOG
external codes chart in Chapter 9) user log codes are used,
then those codes must be added to the LOGTRT table in the
LOGPRINT program.

cc cc cc
169

LGID~xx, yy, ...

• BMN Selection

Select records wi thin a BMN range (8 digits each, leading
zeros).

cc
1

cc
6

cc
13

B~~nnnnnnnn,nnnnnnnn t Lending BMN

~---------------starting BMN

• MMN Selection

Select records within an MMN range (8 digits each, leading
zeros).

cc
1

cc
6

cc
13

~~nnnnnnnn,nnnnnnnn t ~ending MMN

starting MMN

12-5

Chapter 12

•

Off-Line Utilities

Print Selection

Print only message header or message header and 1 line of
text.

cc cc
1 6

PRNT~HEAD

~~----------Header only

cc cc
1 6

PRNT~PART

~~----------Header and 1 text line

J

• File Selection

Select File Recovery log records. To use this option, the
LOGPRINT module must first be 1inkedited as follows:

// EXEC LKEDP,Q=LIB,LMOD=LOGPRINT J' ..
//LKED.SYSIN DD *

INCLUDE SYSLIB(LOGPRINT)
INCLUDE SYSLIB(IXFSNAPL)

Note that the execution JCL STEPLIB must specify INT.MODLIB.

The format of the File Selection control record is as
follows:

cc cc
1 6

FILE~ddnamebddname ... ddname

where ddname is the ddname of a file which is to be
selected. ddnames must be separated by one or more blanks.
Any number of files may be selected, up to a maximum of 41.
If TIME and/or DATE selection is also specified (see above),
then only File Recovery records wi thin that TIME/DATE range
will be printed. If no ddnames are specified on the FILE
statement, then all File Recovery log records are printed.

The format in which File Recovery records are printed differs
from messages. An example of this format may be found in the
File Recovery Users Guide. "Sample IXFSNAPL Output".

12-6

Chapter 12 Off-Line Utilities

The following are examples of selective log printing.

Example: Print only records from 12: 39 through 12: 45 with subsystem
codes 00E4 or 00D3.

//SYSIN DD *
TIMEb1239JH245
SSCWOOE4,OOD3
/*

Example: Print only records from 82219 through 82221 for terminals
CNTOI and CRT03 with subsystem codes 0805 or C9l2 and log
code 01.

//SYSIN DD *
TER.Mj1$CNTOl
DATE~822l9~8222l
SSCW0805,C9l2
TER.Mj1$CRT03
LGID~Ol

/*

Example: Print only File Recovery records for ddnames ISAMX and BDAMY
from 15:21 on 82218 through 07:00 on 82219.

//SYSIN DD *
TIME~152l,0700
DATE~82218,82219

FILE~IS~BDAMY

/*

12-7

Chapter 12 Off-Line Utilities

12.4 LOG ANALYSIS PROGRAM (LOGANAL)

The log analysis program operates on Intercomm log data sets from
one or more successive executions of Intercomm to produce traffic
histograms or response time reports. The PARM field on the EXEC
statement invoking LOGANAL indicates reporting options.

12.4.1 Traffic Histograms

Traffic histograms portray the number of inputs during each
half-hour interva1. Depending upon the ANALYZE option specified at
LOGANAL invocation, histograms are produced by terminal (TERM option),
the entire run (TOTAL option) and the parent subsystem (SUBSYS option)
or verb (VERB option). Note that, if the VERB option is specified, the
SUBSYS option is ignored.

The report for a terminal or the run consists of two parts: a
summary of inputs for this terminal or the run for each subsystem
(SUBSYS option) or verb (VERB option), and an input traffic histogram.
The report for a parent subsystem or verb consists of a traffic
histogram. (A parent subsystem is the subsystem that processes the
input message from the outside world or from the control region if
analyzing a satellite region log.) Figure 12-3 illustrates a sample
output.

12-8

J

J

Chapter 12 Off-Line Utilities

~ r-;;: ...
~
&.

I

~ ... I ~ ...
0

~ r-... • ...
..; !C • III IIIC ... IE ...
~ 8
IIIC ...

III

~
~ ...
ell

! -«
~ ~

i : ... : ... : ... : ... : ... : ...
1 1 1 1 1 •• • ~

1 1 l ~ l 1· • ... :=i
~

A-

I • ..
3 III ...
..; ...

IIIC • IE, '" ,:

I

c
0 III
:lit -«
i :z

....
-«
b

ell ~ :.: ...
~ I IIIC
C

i III ..,
0

8 i :z I III:
~

~

I
c
:lit

III: -... I ~ ,
:lit ~ ~ g ~ 8 ~ .; io 0 0 0 0 ... III: '" N- 11\
0 0 N

r I
N

r
! ..

I l
..

!
...

III ... III
III U
> ...
~ ~ III
:lit ...

I
c -« • III

~ l ~ 1" *i* • .~. • it ••

I I I I j

1 1 ~ ~. • .~. • * I I·· .: ... : ... :
1 ~ .;. • .~. • « •• :* • e;* •• ~ ••• : : •• • ~ •• •..

I ·

0 io ci 0 ~ ci 0 io ci 0
0

r
1

,.. r 1 •
..,
1

... ...

Figure 12-3. Sample Histogram for a Terminal (Page 1 of 2)

12-9

Chapter 12 Off-Line Utilities

J
.. ...
1'1
1'1

...
~
A-

I

~ ... I 'n ...
~ ~ ... il ... • ...
N ~ :.
10
"- s.. ... '" U
"- ... :~
N II< ~ ... I-

:0:

II
... a 3

II:
~ ... :.c

III r ~

~
z ...
w • I!I ...

! ~ !> III ... :) ~
>C

~
~ 1'1 A-

c:! I

J
..

*' 3 III
i""

w :. :;1 II<
l- X

"- Z ...
1'1 ... ~
N .. ~ ... on :0

:z
~ u ...
CI III r z ~

i z
~
~ 0

I!I ~
:0: ~ • i· II: • ~ s..
III "" X

0
8 -I J-
~ II • I ><-0

~ :.. a..c
~ u 8 u z

II: ... !II ... I uio ...
:0: ... ~ -... II< 1 0 0 ...
III ... III

'" U >-:
-I t; :.
~ ...
=

... o:oz ...
~ ~ ... • III .:.

Figure 12-3. Sample Histogram for a Terminal (Page 2 of 2)

12-10

Chapter 12 Off-Line Utilities

12.4.2 Response Time Reports

Response Time Reports generate analysis of input message response
times, and message queue and process times. Reports can be displayed
for the entire run (TOTAL option), by region (REGION option), by
terminal (TERM option), by parent subsystem (SUBSYS option), and by
verb (VERB option), depending upon the ANALYZE options specified when
LOGANAL is invoked.

ANALYZE and OUTPUT options
reporting. ANALYZE controls the
capture the input log record data
for permissible values.

are used to control response time
breakdown level. OUTPUT is used to
used by LOGANAL. See Section 12.4.4

All reports display hourly and 24-hour totals of response time.
Response time is defined as the time elapsed between receipt of input
message from the outside world (or from the control region for
Mu1tiregion Intercomm) and the transmission of the first message back
to the input terminal (or control region). The report shows response
time by interval with maximum and mean times and standard deviations,
counts of messages with no response to the input terminal, and
messages lost due to queue full, cancelled or flushed conditions;
additionally, parent subsystem and verb reports display queue and
process time statistics. A 1ine-by-1ine explanation of a sample page
of a report is described in the following subsections.

Report Terminology

Terms used in these reports are:

• parent subsystem--the subsystem rece~v~ng the message from
the outside world or from the control region.

• child subsystem--a subsystem initiated by messages from a
parent subsystem or another child subsystem, such that the
parentage can be traced back to a message from the outside
world.

• Front End- -the Intercomm Front End, which receives messages
from a parent or child subsystem.

• transaction- -the collection of messages associated with the
same input message. A transaction is created by a message to
a parent subsystem, and includes that message, the messages
to the parent subsystem's children, messages to its
children's children, etc.

12-11

Chapter 12 Off-Line Utilities

Line-by-Line Report Analysis

Figure 12-4 is a sample page of a reponse time report. Numbered
lines in the figure are explained below:

Line 1

Line 2

Line 3

This line gives the earliest and latest dates and times
encountered on the log.

This line indicates the breakdown level of the report. One
response time report (hourly totals and 24-hour total) is
produced for each breakdown level, as specified by the ANALYZE
option.

The rightmost legend indicates the breakdown level (VERB SIGN in
this example).

Region breakdown is displayed only for Mu1tiregion log files.
Control region log file reports will indicate REGION CONTROL for
messages processed within the control region and REGION rrrrrrrr
for messages sent to satellite region rrrrrrrr. Satellite region
log file reports will indicate the satellite region.

The parent subsystem is given in EBCDIC and hexadecimal. The
verb is given in EBCDIC, except when it is not available. The
verb may not be available if it specifies edit-before-queuing.
The user may code a table (LOGVRBTB) to define subsystem/verbfVMI
correspondence to LOGANAL. If an edit-before-queuing verb' is in
this table, the verb is displayed in EBCDIC. If this type of
verb is not in the table, or no table is coded, the VERB legend
gives the VMI in hexadecimal (VERB 'vv', where vv is the VMI).

This line is the title of the report.

Line 4
This line displays the headings for the
right-hand columns of the line specify the
response time statistics available (TOTAL),
TIME), mean (MEAN), and standard deviation
response times.

Lines 5, 6

next line. The
total number of

and maximum (MAX
(STD DEV) of the

These lines give the response times for a one-hour period.

The HOUR STARTING column indicates the hour in which the
transaction started.

12-12

J

J

r'

"1
t-'.

OQ
C
t-t
(\)

,...
N
I

s:--

til
III
S
~
f-'
(\)

--I\) :;>::l

I
(\)

.... 00

W ~
0
::l
00
(\)

~
~.
(\)

~
III
f-'
'<
00
t-'o
00

(' r

1 I. ANALYSIS OF INTERCOMH LOG STARTING MONDAY, 12/13/82, 06:19:34.31 THROUGH FRIDAY, 12/17/12, 17:01:51.44 .. PAGE 212'
2

3
4

REGION CONTROL TERMINAL RML04 PARENT SUBSYSTEM K 1D2OD VERB '01'
' ... ""l(ESPOII'Sr'TIME"lJf"SEI:OND"$"'FAOM"UflUT"M"SG"'Ttr-FIIIST"aurPIJr·lISC··•................ -.--..•...

·Sffl'lING·················~r·········l-.:.l··········2.::3"··········,-.:..··········~~········--5~··········'~f········a-.:.-rO······IIF-r~······U:.:.~··OYE'r·IO········--.. TOTl("·······n'A~······flA'···-···~lV·

5 ········ .. ····IIUM················r-·····-·-·-··T·-··-··-......... -... -.. -- .. -............... -.-.... -............ ··2··········l:r······l1:..,········o-;·~·
6 peEN 50.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
7 . ··············lIlM·TIIAIIS-···········-··2·····-·-·····NO·JIESpOIlSr-·······-···-·O·-······-··MSGS·IOSy·i····O··FUll···········O-·····tANCEllEJ)"··········O·······FLUSHED···········0··

~ ················p~~t~yowN··K·7D200····11UM .. ttS~········ .. MlX--·······o:lr·~~yfi··IIH~:·O····STD·········O·:O-········MlX·········o~-!l~i~S .. Jl~~2····STD----·····O·:,··········· --......... .
10 OFFSPRING U/OOE4 2 MAX 0.0 HEAN 0.0 STO 0.0 MAX 0.0 MEAN 0.0 STD 0.0
11 _ f RO_KT. .. END _ 2 .. _ HAll _ 0.8 HEAH• J) .• 5. SID I). 3_ ...•.............. _•......................•.•............••.....•.........

·····l.?····-·~~N······lOO·;~······lOO·;·O······IOO:_o·····'lOO';l1"""iOO';O"""loo';O"""loo';O"""IOO';O""--100·;·0······100·;·0······100·;0····················.2··· ~ •. O._ ••••. Jl.:l f) .• .5..

................ IIIJK . .T.RANS _.2 _ NO .. R.ESPONSE. _ O•... MSGS .. .lQSIl •.. JUULL_ O ..•... WCELLED O F.lUSHfD_ D ..•••••••.•..•.......••.•••••••••••••.••••..
8REAKOOMN MUM MSG OUEUE TIME PROCESS TIME

················bt~~~lING··'\6~~·················i···········~n········g:8···~Un········8:·8····nB·········8:8·········~u·········g~a····a~a········8·:~····iiR········8:5··
FRONT END 2 MAX 0.8 MEAN 0.6 STO 0.4

f····
1~ NUH 1 1 2 1.1 0.7 0.5

.... _ I'C.Ell _ ... 50 .• D 1oo .• 0 1DO .•. 0 __ 100 .•. 0 100 .•. 0 100 .•. 0 100 .• 11.. 1oo .•. 0 100 .•. 0 _.1oo .• D loo .• .Q .•.•••••..••..•...•..••••••.••••••••...•..•..•••••••••••••.•••••..•....

NUH TRANS 2 NO RESPONSE 0 MSGS LOST: 0 FULL 0 CANCELLED 0 FLUSHED 0
···············-llltE"A"KOOWN·····················l/UH··MSC-·'·-·········-·················-·OUEUr-·TIME···PRO"CESS··TINE···

················~U!~~~aB·~ui~~ _l ·ai~········8:ft····aUa········_8:·2····ng········8~2··· =U g:a :tl=---... ..8.:.~.JIg J:t .. .
12 ···TOlA:[··NI)(················.··············}·········· -.... -.. ·,···········l;·I·········o-:..,········o-;·{·
13 peEN 66.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
14 ·······••·••·· .. N');fTI(XNS ····· .. ····~····· .. ······NO··RE~flONSE············· .. D .. ······ .. ·MSGn.:OST"i"· .. ~··FUIX··········O······t"A'NCE[[W--···· .. ··O·······FLUSHm··········O····

iJ ::::.:::.::.:J!G;::~~~~~ ... :::::~l:::::·:::=n::::::I[l~~::~~~t[:IB.:::::::I[::::::~~:::::::::~~(~~~~::~~!!~::::!~:::::::::~~~:::::::~:::::::::::::::::::::::::::::::::::

i
'" g
'1

...a
N

o
MJ
MJ
I
t"'
::s
(1)

c::
c1'
c1'
(1)
OJ

Chapter 12 Off-Line Utilities

The columns headed 0-1, 1-2,... head statistics about transac
tions with response times in the interval. For example, for
interval 1-2, the response time is from 1 to 2 seconds, inclu
sive.

NUM gives the number of transactions that responded in the
interval.

The second
responded
percentage
inclusive.

line (PCEN) indicates the cumulative percentage of
transactions. For example, for interval 1-2, the
of transactions with response time a to 2 seconds,

The response time is defined differently for single or control
region Intercomm and for satellite region Intercomm.

Line 7

• For single region and control region Intercomm, response time
is the elapsed time between receipt on an input message from
the outside world (log record with log code X'Ol' or X'Cl')
and the transmission of the first output message back to the
input terminal (log record with log code X'F3').

• For satellite region Intercomm, response time is the elapsed
time between receipt of a message from the control region
(log record with log code X'Ol') and the transmission of the
first message back to the control region by the Multiregion
output subsystem (log record with log code X'FA').

NOTE: Response time is defined only for output messages back to
the original input terminal. If there is no output, or
if it is associated with a terminal other than the
original input terminal, the transaction will be
considered "no response."

This line shows other transaction-related statistics.

NUM TRANS is the total number of transactions within the period,
including those that have no response time due to design or error
conditions.

NO RESPONSE counts are totals of logged error conditions that may
have occurred to any of the messages of a transaction. Possible
error conditions are:

• Q FULL--the number of subsystem messages lost due to a queue
full condition (log record with log code X'FC').

• CANCELLED--the number of messages lost due to a program error
or time-out (log record with log code X'FD').

12-14

J

J

Chapter 12 Off-Line Utilities

• FLUSHED--the number of messages flushed by:

Lines 8-11

The Retriever (segment input retrieved by the GETSEG
service routine--log record with log code X'FE')

Message Collection for an invalid destination
subsystem code (log record with log code X'FB').

Mul tiregion Queue Manager, because a stopped or
inactive satellite region specified the flush option
(log record with log code X'C3').

These lines are present only on parent subsystem and verb
response time reports. They give statistics about the subsystems
used in processing a particular transaction.

The (subsystem) BREAKDOWN entries are PARENT, OFFSPRING and FRONT
END. Each breakdown entry (lines 9, 10, 11) gives the number of
messages for the subsystem and queue and process times.

PARENT is always present.

OFFSPRING--one or more OFFSPRING, that is, child subsystem,
entries may be present.

FRONT END will always be present in single region or control
region Intercomm when response times are available. In satellite
regions, an OFFSPRING entry for the Multiregion output subsystem
will be present instead of FRONT END when response times are
available. This offspring will show the subsystem code of the
destination subsystem in the control region or other satellite
region. If the destination is the Front End queueing routine,
FESEND, the subsystem code will be X'OOE9' (Z).

QUEUE TIME is the time elapsed between queuing of a message (log
record with log code X'Ol', X'Cl' or X'F2') and subsystem
processing (log record with log code X'30') or transmission (log
record with log codes X'C2' or X'F3').

PROCESS TIME, available only for subsystems executed within the
region, is the time elapsed between start of processing (log
record with log code X' 30') and end of processing (log record
with log code X'FA'). For queue and process times, maximum
(MAX), mean (MEAN), and standard deviation (STD) times are
given. This example illustrates the breakdown of a simple
transaction. The parent subsystem X'00E2' (S) creates a message
for the child (offspring) subsystem X'00D5' (N), which in turn
creates a message to the Front End.

12-15

Chapter 12 Off-Line Utilities

Lines 12-18
These lines are similar to lines 5-11. They detail response time
and breakdown statistics for the hour 14:00 (2:00 PM).

Lines 19-25
These lines are similar in format to lines 5-11. They detail the
24-hour total statistics.

All times are in seconds and tenths of seconds. The standard
deviation reflects the distribution of times about the mean. When it
is too large or otherwise unable to be computed, a value of 9999.9 is
displayed.

12.4.3 Installation of LOGANAL

Installation of LOGANAL requires the following steps:

1. Examine the LOGANAL generation parameters in the member
LOGSETGB.

2. Optionally change LOGSETGB values, if necessary.

3. Optionally generate the LOGVRBTB, using the LOGVERB macro.

4. Create the LOGANAL Load Module.

12.4.3.1 LOGANAL Generation Parameters

The LOGANAL generation parameters are in the member LOGSETGB.
Examine the parameters and determine the settings suitable to your
installation's needs. The default values of these parameters were
chosen to accommodate common requirements. The parameters described
below are defined as globa1s in the member LOGDCLGB. The global
settings are in the member LOGSETGB. The &MXSS, &MXMIPFT, &MXMIFAM and
&MXDIFSS parameters control table capacities.

12-16

J

Chapter 12 Off-Line Utilities

LOGSETGB settings are illustrated below:

COpy
GBLA
GBLA

GBLA
GBLA

GBlA

LOGDCLGB
&NBRETRN
&MXMIPFT

&MXSS
&MXMIFAM

&MXDIFSS

NUM OF BYTES RETURNED TO OS BY LOGANE15
MAX NUM OF MSGS IN PROG FOR A
TRANSACTION
MAX NUM OF SUBSYS OR VERBS FOR LOGHIST
MAX NUM OF MSG IN 'FAMILY'=PARENT &
CHILDREN FROM ONE INPUT MSG
MAX NUM OF DIFFERENT SUBSYS USED IN PROC
ALL TYPE OF INPUT TO ONE PARENT SUBSYS

COPY
&NBRETRN SETA
&MXMIPFT SETA
&MXSS SETA
&MXMIFAM SETA
&MXDIFSS SETA

LOGSETGB
64*1024
16
100
16
10

SYNCSORT NEEDS 64K, SMl NEEDS 4K
MSGS IN PROGRESS
MAX NUM OF SUBSYS (MULTIPLE OF 20)
MAX MSGS IN A 'FAMILY'
MAX NM OF DIF SUBSYS

&MXDIFSS
specifies the maximum number of different subsystems used in
processing all types of input to one parent subsystem. The value
is set at 10. The parent subsystem and the Front End count as
two toward that limit. If the error message LA035I is issued,
increase the value and reassemble LOGRESP and LOGRSRPT. Refer to
LA035I for further information.

&MXMIFAM
specifies the maximum number of messages generated in a family
(that is, parent and children) from one input message. The value
is set at 16. If error message LA036I is issued, then increase
the value and reassemble LOGRESP. This value should never be set
higher than 254.

&MXMIPFT

&MXSS

specifies the maximum number of messages in progress for a
transaction. A message in progress is one that has not been
processed to completion; that is, LOGANAL encountered its first
log entry but not its final log entry. The maximum value is set
at 16. If error message LA046I is issued, increase the value and
reassemble LOGANE15. This value should never be set higher than
76.

specifies the maximum number of subsystems or verbs for LOGHIST.
There is one entry in the table for each verb in the input file
(if the verb option of ANALYZE is used), or for each parent
subsystem (if only the SUBSYS option of ANALYZE is used). The
value is set at 100 (multiples of 20). If error message LAOS1I
is issued, increase the value and reassemble LOGSSTAB and
LOGHIST.

12-17

Chapter 12 Off-Line Utilities

&NBRETRN
specifies the number of bytes returned to the operating system by \
LOGANE15. This parameter controls table allocation in the E15,
exit routine invoked by the SORT program. It is set to handle
the requirements of SYNCS aRT , which is 64K. The IBM sort can use
a smaller value of 4K; this reduces the minimum region size of
LOGANAL to 160K. &NBRETRN is set at 64*1024. If there is a
prob 1em with the SORT program, or if a S804 abend occurs,
increase the size and reassemble LOGANE15.

12.4.3.2 Changing LOGANAL Generation Parameters

To change LOGSETGB values, use the following JCL:

11* CHANGE PARAMETERS IN LOGSETGB
II EXEC LIBE,Q=LIB
.1 CHANGE NAME=LOGSETGB,LIST=ALL
******** PLACE REVISED PARAMETERS HERE ********
11* REASSEMBLE MODULES INDICATED IN DESCRIPTION OF PARAMETERS
II EXEC ASMPCL,Q=LIB,NAME=modulel,LMOD=modulel
IIASM.SYSIN DD INT.SYMREL(modulel),DISP=SHR
11* IF modulel NOT IN INT.SYMLIB ADD ABOVE STATEMENT

reassemble other modules as required

12.4.3.3 Generating the LOGVRBTB

If edit-before-queuing is used, the verb is not in the initial
log record for a transaction. The user may code a table of subsystem
codejVMI/verb combinations. This table is the member LOGVRBTB, which
is coded using the LOGVERB macro. The macro format is:

(blank) LOGVERB SUBSYS=subsystem-code,
VMI=verb-message-identifier,
VERB=transaction-ID

See the description of the LOGVERB macro in Basic System Macros for
coding details. The VMI value must be the same as that coded for the
VERB macro in PMIVERBS (VERBTBL Csect) and/or the copy member USRVERBS
(see Chapter 3). The VERB macro is described in the Utility Users
Guide.

12-18

J

Chapter 12 Off-Line Utilities

The following JCL creates a sample LOGVRBTB:

11* REPLACE DUMMY LOGVRBTB IN INT.SYMREL WITH USER-CODED TABLE
II EXEC LIBE,Q=LIB
.1 REPL NAME=LOGVRBTB,LIST-ALL
.1 NUMBER INCR=1000,NEW1=1000
* CODE LOGVERB MACROS TO RELATE SUBSYSTEM AND VMI COMBINATIONS
* TO VERBS IF EDIT-BEFORE-QUEUING IS USED.

LOGVERB SUBSYS~X'0102' ,VMI=X'Ol' ,VERB='VRB1'
LOGVERB SUBSYS=X'0103' ,VMI=X'02' ,VERB='VRB2'

11* REASSEMBLE AND LINK LOGSSTAB WHICH COPIES NEW LOGVRBTB
II EXEC ASMPCL,Q=LIB,LMOD=LOGSSTAB
IIASM.SYSIN DD DSN=INT.SYMREL(LOGSSTAB),DISP=SHR

12.4.3.4 Creating the LOGANAL Load Module

If executing under an operating system other than XA, reassemble
LOGANAL to ensure that the correct version of the SPIE macro is used.
The LOGANAL load module is created by executing the following JCL:

IILK EXEC
IILK~D.SYSIN

1*

LKEDP,Q=LIB,LMOD=LOGANAL
DD *
INCLUDE
INCLUDE
INCLUDE
ENTRY

SYSLIB(LOGANE1S,LOGRESP,LOGRSRPT)
SYSLIB(LOGHIST,LOGSSTAB,JULIAND)
SYSLIB(LOGANAL)
LOGANAL

12.4.4 Execution of LOGANAL

Execution of LOGANAL is controlled by the EXEC statement PARM
option coded as follows:

II EXEC PGM=LOGANAL,PARM='parm-options'

12-19

Chapter 12 Off-Line Utilities

The 'parm-options' are coded within a set of single quotation marks as
keyword parameters, each separated by a comma. The names of the
execution parameters may be shortened. For example, M=yyddd is
interpreted as MAXDATE=yyddd. Refer to parameter descriptions for
specific abbreviations.

If no PARM field is specified, the parameter defaults used are
equivalent to specifying the following:

PARM='HISTOGRAM=YES,RESPONSE=YES,
ANALYZE=(TOTAL,REGION,SUBSYS,TERM,VERB),
OUTPUT=NO,SCALE=1,MAXPAGE=2'

LOGANAL can be invoked to obtain LOGOUT output only, wi th no
reports, by using the following parameters:

PARM='HISTOGRAM=NO,RESPONSE=NO,OUTPUT=YES'

These parameters will bypass sorting and all reports (sort program JCL
is not required). Parameters are summarized below; detailed
descriptions follow on the next page.

Parameter/Value(s)

ANALYZE={opt }
{ (opt, opt, ...) }

HISTOGRAM={NO }
{YES}

MAJCDATE=date
MAXPAGE-{nnn}

{l }
MAXTIME=time
MINDATE=date
MINTIME=time
QUTPUT={YES

{ddname}
{NO }

RESPONSE={NO }
{YES}

~CALE={nnn}

{l}

Description Summary

Criteria for information breakdown.

Histogram reports request.

Latest transaction date.
Maximum histogram report pages.

Latest transaction time.
Earliest transaction date.
Earliest transaction time.
Save/discard sorted log records.

Response time reports request.

Number of messages per vertical line.

NOTE: The parameter choices are all optional, with defaults as
indicated. The underlined characters in each parameter
keyword indicate the minimum recognized abbreviation for eac
keyword.

12-20

J

J

Chapter 12 Off-Line Utilities

ANALYZE-
specifies the criteria used for information breakdown. The value
choices for opt may specify:

• TOTAL--for system totals

• REGION--for breakdown by region (Control Region log data
sets only).

• IERM--for breakdown by terminal

• ~UBSYS--for breakdown by parent subsystem

• YERB--for breakdown by verb

Only the first letter of each option need be coded (except TO for
TOTAL), thus A=(T,S,V) is valid.

If this option is omitted, the default ANALYZE option provides
statistics for all levels of breakdowns and traffic histograms by
terminal, entire run and verb.

tlISTOGRAM=
specifies whether or not histogram reports are required.
YES if they are required; code NO if they are not required.
default is YES.

MAXDATE==

Code
The

specifies the maximum date of transactions to be selected by
LOGANAL. Transactions that started before MAXDATE, but ended
after, are also included. Code as a Julian date yyddd (yy=year,
ddd=day of year). The maximum date must be greater than or equal
to the minimum date. The default is no maximum date.

MAXPAGE-
specifies the maximum number of pages for a histogram report (up
to 999 pages). The default is 2. If an individual report would
exceed the number of pages coded for this option, scale is
temporarily increased so that every report remains within bounds.

MAXTIME-
specifies the maximum time of transactions to be selected by
LOGANAL. Transactions started before MAXTIME, but ended after,
are also included. Code as hours only (hh); hours and minutes
(hhrnrn); hours, minutes, and seconds (hhrnrnss); or hours, minutes,
and seconds in hundredths (hhrnrnssth). The maximum time must be
greater than or equal to the minimum time. The default is no
maximum time.

MINDATE=
specifies the m~n~mum date of transactions to be selected by
LOGANAL. Code as Julian date yyddd (yy=year, ddd=day of year).
The m~n~mum date must be less than or equal to the maximum date.
The default is no minimum date.

12-21

Chapter 12 Off-Line Utilities

MINTIME=
specifies the minimwn time of transactions to be selected by
LOGANAL. Code as hours only (hh); hours and minutes (hhmm);
hours,
seconds
than or
time.

NOTE:

QUTPUT=

minutes, and seconds (hhmmss); or hours, minutes, and
in hundreths (hhmmssss). The minimwn time must be less
equal to the maximwn time. The default is no minimwn

When a time range is specified over multiple days
(MAXDATE MINDATE), the transactions for those days are
summed together and the reports produced are based on the
sum. Th a tis, if MAXTIME= 1000, MINTIME=O 900,
MAXDATE=78236, MINDATE=78230, the nwnber of transactions
from 9 to 10 for each day specified are added together
and the output reports that result are based on that swn,
as if one day were specified. Reports for each
individual day are not produced.

specifies whether or not selected log data is to be saved. The
OUTPUT option is used to capture the input log record data used
by LOGANAL. This data can be used as input to LOGANAL for
additional analysis without reading the entire log data set
again. The data may be saved and collected over a period of time
for cwnulative analysis of log data. It is more compact than the
original log data--only log data needed by LOGANAL is retained as
46-byte fixed length records.

If date and time selection criteria are used (MAXDATE, MINDATE,
MAXTIME, MINTIME), then the LOGOUT output collects only the
selected records. If YES is coded, the log data is written using
ddname LOGOUT. If a different ddname is desired, code
OUTPUT=ddname. If selected log data is not to be saved, code NO
(default).

B,ESPONSE=
specifies whether or not response time reports are required.
Code YES if they are required; code NO if they are not required.
The default is YES.

~CALE-
specifies the scale (nwnber of messages) that each horizontal
line of the histogram will represent (within constraints defined
by MAXPAGE). The default is 1.

Figure 12-5 illustrates JCL for execution (note that data set
names are user-specified and need not correspond to those in the
Figure).

12-22

J

J

Chapter 12

always
required

multiple
volume
logs

as
required
by
sort
program

required
for
OUTPUT=YES
or
OUTPUT-

ddname

Off-Line Utilities

IILOGANAL JOB
IISTEPl EXEC PGM=LOGANAL,PARM='HISTOGRAM-YES,
II SCALE=lOO' ,REGION=2000K
IISTEPLIB DD DSN=INT.MODLIB,DISP=SHR
IISYSPRINT DD SYSOUT-A
IIPRINT DD SYSOUT-A
IIERROR DD SYSOUT=A
IILOGIN DD DSN=INT.INTERLOG,UNIT-xxx,
II VOLrSER-xxxxxx,DCB-(RECFM~VB,
II BLKSIZE-xxxx,LRECL=xxxx),DISP=OLD
II DD DSN=INT.INTLOG2, (etc., as above)
II DD DSN=INT.INTLOG3, (etc., as above)

IISYSOUT DD SYSOUT=A
IISORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
IISORTWKOl DD UNIT=SYSDA,SPACE=(TRK,(200), ,CONTIG)
IISORTWK02 DD UNIT=SYSDA,SPACE=(TRK,(200), ,CONTIG)

II S ORTWKO 6 DD UNIT=SYSDA,SPACE=(TRK,(200), ,CONTIG)

Iiddname DD DSN=INT.SORTLOG,UNIT=xxx,
II VOLrSER=xxxxxx,
II DCB=BLKSIZE=(mu1tiple of 46,

default=920),
II SPACE=(TRK,(50,lO),DISP=(NEW,KEEP)

OUTPUT=YES implies ddname=LOGOUT

Figure 12-5. Sample JCL for Execution of LOGANAL

Multivolume INTERLOG data sets from one execution of Intercomm
should be processed so that the volumes are read in increasing chrono
logical order by LOGANAL. This ensures proper tracking of transactions
spanning volumes. If volumes are out of order, statistics from those
transactions will be lost. Multiple INTERLOG data sets from separate
executions of Intercomm must be read in consecutive order. When
concatenating Multiregion INTERLOG data sets ensure that all data sets
are for the same configuration. For satellite region data sets, the
data sets must all be for the same satellite region. When control
region log data sets are concatenated, all data sets must be from
Intercomm executions using the same Region Description Table (RDT).

For documentation of LOGANAL messages and corrective actions, see
the Intercomm Messages and Codes.

12-23

Chapter 12 Off-Line Utilities

12.5 THE FILE LOAD PROGRAM (PMIEXLD)

The Intercomm utilities include a program (PMILOAD) which
sequentially reads in load modules from a partitioned data set, and
creates a BDAM data set. There is one record created on the BDAM data
set for each load module (with specified first three characters) on the
partitioned data set.

To create the load module for executing this program, use the
JCL shown in Figure 12-6. The load module name to be created will then
be PMIEXLD.

II
IILKED.SYSIN

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
ENTRY
NAME

EXEC LKEDP,Q=LIB,LMOD=PMIEXLD
DD *
SYSLIB(BATCHPAK)
SYSLIB(PMIFILET)
SYSLIB(PMISERC3)
SYSLIB(IXFHNDOO)
SYSLIB(IXFHND01)
SYSLIB(PMILOAD)
PMILOAD
PMIEXLD(R)

Figure 12-6. JCL to Create PMIEXLD

If LMOD=PMIEXLD is coded on the EXEC statement, the NAME oard is
not needed. When both LMOD and the NAME card are used, the names must
be the same.

12-24

J

Chapter 12 Off-Line Utilities

This off-line utility is typically used for loading disk-resident
table entries for Intercomm execution. However, it may be used for
converting members of any partitioned data set to relative blocks
(RBNs) of a BDAM data set, as long as the following naming conventions
and table entries are met:

• There must be an entry in the File Table (PMIFILET Csect)
created via the GENFTBLE macro for each BDAM data set to be
loaded. Figure 12-7 illustrates the member PMIFILET defining
Intercomm data sets for tables, and one user file. Note that
a PMISTOP macro must follow the last entry.

• The member names of the partitioned data set must follow the
convention xxxOnnnn where nnnn varies from 0001 to 9999,
incremented by 1 with no unassigned entries. (See Section
12.5.1, "Partial File Load.")

• The BDAM data set must be named xxxOOo on its DD statement.
(See figure 12-8.)

PMIFILET CSECT
ENTRY PMIFILTB

PMIFILTB EQU *
GENFTBLE FNAME=RCTOOO,BLKSIZE=1800,TYPE=BDAM
GENFTBLE FNAME=DESOOO,BLKSIZE=750,TYPE=BDAM
GENFTBLE FNAME-VRBOOO,BLKSIZE=750,TYPE=BDAM
GENFTBLE FNAME=SECOOO,BLKSIZE=100,TYPE=BDAM

* BLKSIZE FOR DESOOO,RCTOOO,VRBOOO CORRESPOND TO INTERCOMM RELEASE
* SPECIFICATIONS. USER MUST CHANGE FOR LARGER TABLE ENTRIES.
* ADD USER FILE DESCRIPTIONS HERE.

GENFTBLE FNAME=USERFILE,BLKSIZE=xxxx,TYPE=ISAM, *
DESNUM=7

PMISTOP
END

Figure 12-7. Sample File Table (PMIFILET)

Each member of the partitioned data set becomes the n-1 RBN of
the BDAM data set. At the first "member not found" condition, the load
program fills out the current extent of the BDAM file with records
containing binary zeros, unless Partial File Load is used.

The JCL shown in Figure 12 - 8 may be used for execution to load
the entire file; the SYSIN control card varies for Partial File Load.

12-25

Chapter 12

II
IlsTEPLIB
IlxxxoOO
II
II
II
IlxxxLOAD
II
IISYSPRINT
IISYSIN
xxxOOO
1*

EXEC
DD
DD

DD
DD
DD
DD

PARM-'NOCHECK'

PGM=PMIEXLD,PARM='NOCHECK'
DSN=INT.MODLIB,DISP=SHR
DSNAME=xxxOOO,DISP=(,KEEP),
SPACE=(),UNIT=xxxx,

Off-Line Utilities

VOL=SER=xxxxxx,
DCB=(DSORG=PS,BLKSIZE=xxxx,RECFM=F)
DSN=INT.MODxxx,DISP=SHR
DSN=INT.MODREL,DISP=SHR
SYSOUT=A (default BLKSIZE is 605)

*

is used to indicate that each table member being loaded does not
contain four bytes of asterisks at its end.

xxxOOO
should be changed to DES, RCT (or RPT), VRB, or SEC representing
the table file being created. If an existing file is being
recreated, change the DISP parameter to OLD.

xxx LOAD
is the input PDS containing the table members (xxx00001-xxxOnnnn)
to be loaded. xxx must be the same as on xxxOOO.

Figure 12-8. JCL for File Load Program Execution

Multiple files can be created in the same execution if there is a
SYSIN control card for each file, and the pair of xxxOOO and xxxLOAD DD
statements are defined for each associated output file and input PDS
library.

Use of this program for loading table entries for the utilities
and sample JCL is contained in the Utilities Users Guide. Figure 12-9
is a summary table reproduced from that document.

12-26

J

J

Chapter 12 Off-Line Utilities

F==============='=='======== ================================~=======--=--=====

Utility

Requirements Edit Output Change/Display
F~-====-============F====='=====---===============-===~=====-=========='====-9

ddname of disk
resident table
entries in
Intercomm
execution JCL

PMIFILET blocksize
specification at
installation time

Symbolic Table
Entry Library

Load Module Table
Entry Library

Table Entry
Library member
name convention

Coding convention
within disk resi
dent entry

Core-resident
table require
ments.

VRBOOO

750

INT.SYMVRB

INT.MODVRB

VRBOnnnn

VERB macro,
RBN=nnnn

VERBTBL
CSECT:

VERBGEN macro
plus in-line
assembly of
disk resident
entries

RCTOOO

1800

INT.SYMRCT

INT.MODRCT

RPTOnnnn

REPORT
macro,
NUM=nnnn

PMIRCNTB
CSECT:

None
(OFT no.-l
is used for
RCTOOOrbn)

DESOOO

750

INT.SYMDES

INT.MODDES

DESOnnnn

none

PMIFILET
CSECT:

GENFTBLE macro,
DESNUM=DESOOOrbn

or
CHNGTB CSECT:
DC A(DESOOOrbn)

Figure 12-9. Conventions for Disk-resident Tables for the Utilities

12-27

------- -~-------

Chapter 12 Off-Line Utilities

The control card is printed on SYSPRINT, followed by one or more
of the following messages:

• PMILOAD PROCESSING COMPLETE

• PROCESSING HAS BEEN COMPLETED FOR FILE xxxOOO

• OF THE nnnnn BDAM BLOCKS WRITTEN, nnnnn CONTAINED DATA

Error messages that may appear on SYSPRINT during execution,
which result in an abend (UlOO), are:

• xxxxxx IS AN INVALID FILE NAME

• LOAD MODULE xxxOnnnn IS TOO LARGE FOR RECORD SIZE

• FILE xxxOOO CANNOT BE OPENED

• AN INVALID SELECT OCCURRED ON FILE xxxOOO

• THERE WAS A PERMANENT I/O ERROR ON FILE xxxOOO

• NO RCDS WERE FOUND FOR FILE xxxOOO

The following two error messages do not cause an abend:

• ERROR IN INPUT CONTROL CARD--NO PROCESSING DONE

• NO CORE AVAILABLE

A condition code of zero at end-of-job indicates all processing
completed successfully. Unsuccessful processing (see the last two
messages) results in a condition code of 12.

If an error message is printed, correct the error and rerun the
job. See Messages and Codes listings of utility error messages for
further explanation.

12.5.1 Partial File Load

The File Load Program allows the SYSIN data set to specify
replacement of a specific member of the partitioned data set or
creation of a BDAM data set by loading all members within a specified
range of member names, starting with member xxx00001. Following are
examples:

Example 1
To copy PDS member name xxx00007 to the existing BDAM data set
xxxOOO, the SYSIN data set specifies:

//SYSIN DD *
xxx00007

12-28

J

Chapter 12 Off-Line Utilities

For this processing, the DISP parameter for the file being
updated (xxxOOO) must specify OLD or SHR.

Example 2
To create the BDAM data set xxxOOO from PDS member names xxxOOOOl
to xxxOnnnn, irrespective of the number of actual members on the
PDS, the SYSIN data set specifies:

//SYSIN DD *
xxxOOO-nnnn

The File Load Program will copy PDS members in ascending
sequence to the BDAM data set xxxOOO beginning with xxx00001,
which must be present. When a "member not found" condition
arises, the File Load does not terminate, but the last member
found will be copied to the BDAM data set until the next
"member found" occurs, or the "upper limit" member xxxOnnnn
is encountered. To illustrate, assume members RPTOOOOl to
RPTOOOsO, RPT00100 to RPT00106 exist on the library
INT.MODRCT. The File Load Program specification

//SYSIN DD *
RCTOOO-OllO

will cause creation of a BDAM data set (RCTOOO) with 110
RBNs. The member RPTOOOsO will be duplicated in RBNs 49 to
98 (once as the actual table entry RBN 49, repeated until
RPT00100 is found and loaded to RBN 99). The member RPT00106
will be duplicated in RBNs 105 to 109. For Partial File
Load, the DISP parameter of the data set being created should
specify OLD if a recreate, or NEW if the file does not exist.

There is no limit to the number of control cards input via the
SYSIN data set. Further, given the proper JCL, several BDAM data sets
may be recreated and/or individually updated in one execution of the
File Load Program.

12-29

Chapter 12 Off-Line Utilities

12.6 BDAM FILE CREATION (CREATEGF)

The CREATEGF program is used to create formatted BDAM data sets.
The blocks are all formatted with binary zeros. This program should be
used to format the disk queue data sets which are defined by the DFLN
parameter in the SYCTTBL macro, or LUNIT/LCOMP (VTAM) macros.

NOTE: When formatting disk queue data sets, the number of
blocks must always be a multiple of eight.

An additional feature is the ability to place data (for testing
or real data) into the file in the relative block number desired as
indicated on the RECORD card. Five control cards can be used when
executing CREATEGF. These are FILE, RECORD, FIXED, VARIABLE and END
cards. If only formatting a BDAM data set without inserting data is
desired, the only control card required is the FILE card.

The format of the control cards is:

• FILE card--to designate creation of a new file.

Column l--F

Column 3-l0--ddname

Column ll-17--number of records to allow for in file;
must be right-justified, blanks permitted on left.

Column 19--0NLY option - if a or ONLY coded starting in
column 19, CREATEGF will create only as many RBNs as
requested. If omitted, CREATEGF will fill the last used
extent with records, even if this causes more than the
number of records requested to be produced.

The ddname given must be used on a DD statement which
describes the file by giving the DCB parameters BLKSIZE and
DSORG=DA. This DD statement must be in the job stream when
CREATEGF is executed.

• RECORD card--to define the record to be created in the
following cards.

Column l-3--RIS

Column 4-5--blank

Column 6-8--RBN of record to be created (in EBCDIC).

12-30

J

J

L

Chapter 12

• FIXED card(s) - -to designate
placed in the file record
These cards must be in the
file record.

Column l--X

Column 2-3--Size of field

Off-Line Utilities

a fixed-length data field to be
indicated by the RECORD card.

order of the data fields on the

Column 4--l-Binary; 2=Packed Decimal; 3=Character Image

Column 10-70--Data (EBCDIC)

where the maximum characters for each field are:

1. Binary fields - -maximum nine characters becoming four
bytes binary

2. Packed fields--maximum 29 characters becoming fifteen
bytes packed

3. Character fields--maximum 60 characters

• VARIABLE Item Code card(s)--to place a field in record
preceded by an item code, length, and (optionally) occurrence
number. The maximum size of field defined for the FIXED card
applies to this card as well. For this card, size of field
must include one byte for occurrence number (if specified).
Actual size of the field in record will include two bytes for
item code and length.

Column 1--1

Column 2-3--size of field

Column 4--l=Binary; 2=Packed Decimal; 3=Character Image

Column 5-7--item code for data

Column 8-9 - -line no. (or o or blank)

Column 10--Data (EBCDIC)

• END Record card--to define end of a record (block) .

Column l--E

When creating multiple data sets, any number may be created in
one step. The Data Set Control Block (DSCB) for the data set created
has an Option Code (OPTCD) indication. This can be overridden at
execution time by coding an OPT CD subparameter on the DD card (for use
with Intercomm File Handler).

Figure 12-10 illustrates CREATEGF JCL and control cards.

12-31

Chapter 12 Off-Line Utilities

II EXEC PGM=CREATEGF
IISTEPLIB DD DSN=INT.MODREL,DISP=SHR
IISYSPRINT DD SYSOUT=A
IISYSSNAP DD SYSOUT=A
IISYSUDUMP DD SYSOUT=A
IIDDNAME01 DD DCB=(DSORG=DA,BLKSIZE=b1ksize),DISP=(,KEEP), .. .
IIDDNAME02 DD DCB=(DSORG=DA,BLKSIZE=b1ksize),DISP=(,KEEP), .. .
IISYSIN DD *
F DDNAME010000080
F DDNAME020000152
R1S 001
X021 1234
X032 12345
X053 FIELD
1031001016789

E
1*

This is all that is required for monitor disk queues
Format a user file:
The following data goes into this RBN
Fixed binary field
Fixed packed field
Fixed character field
Variable binary field with an item code of 001
and a line number of 01. Note the length of
03 includes one byte for the line number.
End of record
End of job

Figure 12-10. Example of CREATEGF JCL and Control Cards

12.7 OPSCAN -- SCAN FOR PROGRAM OPERATION CODES

This program analyzes an Assembler Language source module and
lists all those statements having significant operation codes. Among
the selected operation codes are IBM macros GETMAIN, FREEMAIN, WAIT,
POST, SPIE, STAE, CALL and data management functions, and Intercomm
macros STORAGE, STORFREE, LINKAGE, RTNLINK, DISPATCH and other
significant opcodes. The summary listing thus produced can be readily
scanned for significant features of the source program.

OPSCAN is executed using the Intercomm-supp1ied JCL Procedure
OPSCN, described in Chapter 2.

12-32

J

J

Chapter 12 Off-Line Utilities

12.8 PRT1403 -- PRINT OUTPUT UTILITY BATCH REPORTS

The PRT1403 Utility is used to format output from the Output
Utility to the RPTOOO data set, that is, the Batch Report facility.

The PRT1403 Utility provides a line-by-line formatted output as
opposed to the snap dump formats that appear in Test Mode normally.
Thus, the Batch Report feature can be used to get hard copy formatted
output from Test Mode. It can also be used during live execution of
Intercomm to obtain formatted output of reports, which for one reason
or another (perhaps length) were put out to tape or disk, rather than
sent to remote terminals.

Before executing the PRT1403 Utility, a load module must be
created. The JCL in Figure 12-11 is used to create the load module.
The created load module is executed using the JCL in Figure 12-12.

II JOB
I I EXEC
IILKED.SYSIN DD

1*

INCLUDE
INCLUDE

Figure 12-11.

II JOB
II EXEC
IISTEPLIB DD
IISYSIN DD
II
IISYSPRINT DD
II
IISYSUDUMP DD
IISNAPDD DD
IISYSSNAP DD
IISYSSNAP2 DD
1*

Figure 12-12.

LKEDP,P=INT,Q=USR,LMOD=PRNTAPE

* SYSLIB(PRT1403,BATCHPAK)
SYSLIB(IXFHNDOO,IXFHND01)

JCL to Create Load Module for PRT1403 Utility

PGM=PRNTAPE
DSN=INT.MODUSR,DISP=SHR
DSN=RPTOOO,UNIT= __ ,VOL=SER= __ ,DISP=(OLD,DELETE),
DCB=(RECFM=V,DSORG=PS,BLKSIZE=l004,LRECL=lOOO)
SYSOUT=A,
DCB=(DSORG=PS,BLKSIZE=133,RECFM=F)
SYSOUT=A
SYSOUT=A
SYSOUT=A
SYSOUT=A

JCL to Execute PRT1403 Utility Load Module

Note that UNIT and VOL=SER parameters on the SYSIN DD statement
must correspond with parameters indicated in JCL when creating RPTOOO.
DISP parameter may be altered if the user wishes to keep the RPTOOO
data set. Execution of PRT1403 produces output for the entire RPTOOO
data set.

12-33

Chapter 12 Off-Line Utilities

12.9 LIBCOMPR -- SYMBOLIC LIBRARY COMPARE

The utility program LIBCOMPR compares two source data sets (or
members of partitioned data sets). All statements that do not match
are printed. See description of CHANGER program to produce a change
deck from a source member comparison.

The statement sequence field (columns 73-80) is used to determine
corresponding records. Records are printed if:

• A sequence number in one input data set is not matched in the
other input data set.

• Data in correspondingly numbered statements differs.

Statements printed are identified as to which data set contains
each statement. If any statements are printed, a summary follows the
listing. This summary indicates the number of statements read and the
number printed from each data set.

Two input DO statements (SYSUTl and SYSUT2) and one output DO
statement (SYSPRINT) are required. The input data sets must either
have standard labels or the block size (multiple of 80) must be
specified.

To bypass listing SYSUT2 statements having unmatched sequence
numbers, code PARM=' S' on the EXEC statement. This is useful when
comparing updates (SYSUT1) to a complete existing program (SYSUT2).

A
12 -13.

sample JCL stream to execute LIBCOMPR is shown in Figure
(Appropriate alteration should be made for particular cases.)

II
IISTEPLIB
IISYSPRINT
IISYSUTI
IISYSUT2

EXEC
DO
DD
DO
DO

PGM=LIBCOMPR,PARM-'S'
DSN-INT.MODREL,DISP=SHR
SYSOUT=A
DSN=LIBRl(MEMBER1),DISP~SHR

DSN=LIBR2(MEMBER2),DISP=SHR

Figure 12-13. Sample JCL to Execute LIBCOMPR

12-34

J

Chapter 12 Off-Line Utilities

12.10 UTILITY PROGRAMS TO CREATE INPUT TEST DATA

There are two utility programs which can be used to create input
data sets for batch testing:

• CREATSIM--create input messages for BTAM terminal simulator

• SIMCRTA--create input messages for Test Mode execution

12.10.1 CREATSIM Program

CREATSIM accepts only raw data, as from a terminal, and requires
a separate execution for each message data set created.

To execute CREATSIM, use the following JCL:

II EXEC PGM=CREATSIM
IISTEPLIB DD DSN=INT.MODREL,DISP=SHR
IISYSPRINT DD SYSOUT-A
IISYSUT2 DD DSN=message-data-set , DISP=(NEW,KEEP) ,
II UNIT=SYSDA,SPACE= ... ,
II DCB=BLKSIZE=maximum-message-length+4
IISYSIN DD *
message-cards

1*

where SYSUT2 defines the sequential output data set containing the
messages for one terminal which will be input to the BTAM simulator for
an Intercomm execution. This data set is variable unblocked; the
BLKSIZE must be at least as large as the largest message record to be
created, plus 4. If no BLKSIZE is specified, the default is 304.

From the SYSIN card-image input, CREATSIM constructs a
variable-length output record from successive cards until a card with
an EOB (X' 26') or ETX (X' 03') is found. The output record is then
written to SYSUT2 and a new record is built starting with the next
card. If for some reason it is not desired to fill all 80 columns with
data, an end-of-card character must be punched following the data.
This character is X' FF' . (Use graphic control described below to
assign a graphic to X'FF'.)

12-35

Chapter 12 Off-Line Utilities

Special characters, such as EOB, NL, etc., may be multipunched
or, for convenience, other punchable graphic characters may be used.
These will be converted by the creation program to the hex value for
the special character. Internally provided conversion graphics
(identify map) are:

-==
Input Output

Graphic Hex Code Name Hex Code Name
==============,==,====~=--=- = =-======================F=========

X'SA' Exclamation point X'26' EOB,ETB

X'SF' Negation sign X' 03' ETX

¢ X/4A' Cent sign X' 37' EaT

I X' 4F' Vertical bar X'll' SBA

" X' 7F' Double quote X'lS' NL

There are several types of input control cards which are coded
starting in column l. The graphic card sets one-time-only changes to
the input translate table to define graphics for special character
codes. Formats are:

• GRAPHIC,CLR,ghh,ghh" "

This clears the translate table for identify mapping and
enters new graphic ghh where g is the input graphic and hh is
the hex code for the character to be substituted.

• GRAPHIC,ADD,ghh,ghh, ...

This form adds new definitions to the current translate
table.

• GRAPHIC,DEL,g,g".,

This form deletes substitutions from the table for graphic g,

There are also 3270 SBA generation cards. These cards simplify
entering of 3270 SBA addresses, First the model is set, if not Model 2
(default), by

SBA,Mn

where Mn is Ml or M2 for Modell or 2, respectively,

12-36

J

J

Chapter 12 Off-Line Utilities

For each input field, SBA addresses are entered in the message stream
by the following format:

SBA,rrcc

where rr is the row number (decimal) and cc the column (decimal) for
the beginning of the following field. Rowand column are relative to
1, and are defined in the ranges 01 to 24 and 01 to 80, respectively.
The subsequent text card begins in column 1 and if it does not end in
column 80, it must be delimited with an end-of-card character.

For 3270 simulation, if SIM3270 is included in the Intercomm
linkedit, the message text stream must be as follows:

AID CURSOR SBA rrcc verb SBA rrcc text- field ... EOB

Value g W I 0102 vvvv I rrcc data !

Length 1 2 1 2 4 1 2 n 1

where text-field is one or more input text fields separated by SBA
cards. The SBA sequence for the verb is optional and the verb itself
may be omitted if the terminal is defined as locked to a verb in the
Intercomm Front End Network Table.

For AID Values, see IBM 3270 documentation for graphic
equivalents. A GRAPHIC card must be coded for CREATSIM to define a
graphic equivalent for the Enter key, for example:

GRAPHIC,ADD,<7D

A sample input text stream to CREATSIM for verb CHEK to access account
number 12345 from a formatted screen would be:

GRAPHIC ,ADD, ; FF
GRAPHIC,ADD,<7D
<W;
SBA,0102
CHEK;
SBA,0320
12345;

define end-of-card (field) character
define Enter key
AID value and cursor location
optional

This could be followed by the AID value for the next message, etc. For
positional (unformatted) input (such as an Intercomm control command),
the text statement can be coded:

<:WFLSH$TPUABC01$ALL!

where $ represents the installation standard system separator character.

12-37

Chapter 12 Off-Line Utilities

12.10.2 SIMCRTA Program

SIMCRTA creates input messages for an Intercomm Test Mode
execution, and handles multiple data sets in one run. It creates a
message data set for each input terminal-ID specified via a MSG card.

SIMCRTA accepts standard Back End test messages and will insert
the correct end-of-line character (New Line or CR/LF) at the end of
each data card, based upon the STATION and DEVICE tables. It also
inserts EOB and EOT (X'2637') at the end of each message. Any special
characters, such as HT, VT, etc., must be multipunched into the card.
An EMS card must be used to indicate the end of each input message
text. SIMCRTA will create as many terminal data sets as necessary at
the same time. The message cards do not have to be in order of
terminal- IDs. Figure 12-14 illustrates linkedit and execution JCL for
SIMCRTA. Note that the ddnames for the corresponding terminal data
sets must consist of the terminal-ID preceded by an A; that is, NYCOI
must have a ddname of ANYCOI. The different data sets may then be
specified for SYSIN when executing Test Mode Intercomm.

IILKEDCRTA
IILKED.SYSIN

IIEXECCRTA
IISTEPLIB
IIANYCOI
II
II
IIACNTOI
II
II
IISYSPRINT
IISYSIN
MSG AOOO
DEMO
FLN DDNAMEOI
KEY ABCD
FDN FIELD
RPT 73
EMS
MSG HOOO
DSPL
FLN DDNAMEOI
FDN FIELD
KEY ABCD
RPT 73
EMS
1*

EXEC
DD
INCLUDE
INCLUDE
EXEC
DD
DD

DD

DD
DD
NYCOI

CNTOI

LKEDP ,Q=xxx, LMOD=EXSIMCRT

* SYSLIB(SIMCRTA,TERMCONV,BINSRCH)
SYSLIB(BATCHPAK,PMIEXTRM,PMISTATB,PMIDEVTB)

PGM=EXSIMCRT
DSN=INT.MODxxx,DISP=SHR
DSN=INT.NYCOl,DISP=(,CATLG),VOL-SER=yyyyy,
UNIT=zzzz,SPACE=(500,(20,2),RLSE),
DCB=(BLKSIZE=500,LRECL=500)
DSN=INT.CNTOl,DISP~(,CATLG),VOL-SER=yyyyy,
UNIT=zzzz,SPACE=(500,(20,2),RLSE),
DCB=(BLKSIZE=500,LRECL-500)
SYSOUT=A

*
0001

0002

Figure 12-14. SIMCRTA Linkedit and JCL

12-38

Chapter 12 Off-Line Utilities

12.11 CREATE KEYED BDAM FILE (KEYCREAT)

KEYCREAT creates and preformats a keyed BDAM file of fixed-length
unblocked dummy records. The key length and record size are determined
by the DCB subparameters KEYLEN and BLKSIZE on the DD statement. The
size of the file is determined by the number of records (blocks)
indicated in the PARM field of the EXEC statement in the JCL; blocks
will be written until the PARM value is reached. In this case, the
number of blocks supplied must be a multiple of the number of blocks
per track of the device defined by the UNIT parameter on the DD
statement describing the file (INTKEYFL). However, if the PARM value
is omitted or 0, records will be written under control of the program
(not the user) until the primary space allocation is filled.

Figure 12-15 shows the JCL required to execute KEYCREAT.

II EXEC.
IISTEPLIB
IISYSPRINT
IISYSUDUMP
IIINTKEYFL
II

II
II
II
II
II

PGM=KEYCREAT[,PARM='number-of-records-to-create']
DD DSN=INT.MODREL,DISP=SHR
DD usua1-insta11ation-parameters
DD SYSOUT=A (optional)
DD DSN=data-set-name-to-be-created,
DISP=(NEW,{CATLG},DELETE),

{KEEP }
SPACE=a11ocation-parameter,
VOL=SER=vo1serid,
UNIT=dasd,
DCB=(KEYLEN=key-1ength,BLKSIZE=b1ocksize,

RECFM=F,DSORG-DA)

Figure 12-15. KEYCREAT Execution JCL

There is no restriction on the number of records to be created as
supplied in the PARM field other than that the value must be numeric.
The data portion of the records is initialized to binary zeros.

Should an 1/0 error occur, the utility abnormally ends. Should
the KEYLEN subparameter be omitted, the utility will issue an
appropriate WTO message and abend with a User Code 4. Should the input
PARM field contain nonnumeric characters or be too long, the utility
will issue an appropriate WTO message and abend with User Code 8. An
unsuccessful open of INTKEYFL's DCB results in a related system abend,
as no SYNAD exit is provided. The WTOs are documented in Messages and
Codes.

Note: if a PARM value is supplied, the SPACE allocation must be
for the number of blocks (tracks) into which the number
of requested records will fit. The RLSE sub-parameter
should be coded on the SPACE parameter.

12-39

Chapter 12 Off-Line Utilities

12.12 ICOMFEOF - Recover From Missing End of File

ICOMFEOF recovers from a missing/invalid end of file condition on
a sequential output file, such as can occur after an operating system
or hardware failure in which the file was not closed either via
Intercomm c 10sedown or system abend processing. In particular,
ICOMFEOF is designed to ensure that a valid end of file exists on
INTERLOG, the Intercomm log, so that a restart is possible. ICOMFEOF
may also be used against a TOTAL data base log file. Coding a PARM on
the execute statement indicates a log file and the type of log. In
this case, the name coded for the parm is used as the ddname of the log
file to be processed.

To determine if a valid EOF exists, the file (disk or tape) is
read until one of the following occurs:

1) A valid EOF is detected.
do.

2) A no-record-found occurs.
disk.

In this case there is nothing to

This indicates an invalid EOF on

3) A data check occurs. This indicates a missing EOF on tape.

4) If PARM=INT ... is specified, then the subject file is assumed
to be an Intercomm log. In this case, the log code is
validated and the time stamp is checked for the first message
in each block. An invalid log code, or a non-numeric or
descending date/time is treated as a missing end of file. If
single region logging is used in a Mu1tiregion Intercomm
system, log records on the control region log may not be in
ascending order, because the time is set in the satellite
region. A local global &DTMARGN may be set to allow for a
descending time variance in minutes; see the comments at the
beginning of module ICOMFEOF.

5) If PARM=TOT ... is specified, then the subject file is assumed
to be a TOTAL log. In this case, each record in every block
is verified to have a monotonically ascending sequence
number. If this check fails, a missing end of file is
assumed.

When a missing EOF is diagnosed, the EOF is written by issuing a POINT
to position to the last block read successfully. The block is then
rewritten and a CLOSE is issued, writing the EOF.

Optionally a WTOR to the console operator can be issued
requesting acceptance or refusal of the new EOF. Or, the operator may
request an abend so that the System Manager can examine the cause of
the missing EOF and the last valid record in the dump. See the
description of message RL069R and abend 2222 in Messages and Codes. To
generate the WIOR message, reset the local global &WTOR in ICOMFEOF to
1 and reassemble and re1ink ICOMFEOF.

12-40

J

J

Chapter 12 Off-Line Utilities

Figure 12 -16 shows the JCL required, to execute ICOMFEOF. If
PARM-INT ... or PARM=TOT ... is specified, substitute the ddname coded in
the parm field for NOEOF, because the latter is used only to process a
sequential data set which is not either an Intercomm or TOTAL log
file. Do not code DCB parameters except if an unlabeled tape is used.
For unlabeled tapes, code:

LABEL-(,NL),DCB=(RECFM-U,BLKSIZE-max-b10cksize)

or omit the LABEL parameter and code RECFM=VB and LRECL=blksize-4 in
addition to BLKSIZE on the DCB parameter.

II
IISTEPLIB
IISYSUDUMP
IINOEOF
II
II

EXEC PGM=ICOMFEOF[,PARM- J
DD DSN=INT.MODREL,DISP=SHR
DD SYSOUT=A
DD DSN=name-of-sequential-fi1e,
UNIT=unit,VOL=SER=volser,
DISP=OLD

(optional)

if not catalogued

Figure 12-16. ICOMFEOF Execution JCL.

NOTE: In order to recover a tape data set after an operating system
failure, it is important that the tape either be pre-initialized
wi th tape marks (if new see User Contributed Program
Descriptions for sample program) having at least a tape mark at
the end of the tape, or previously written on until the end of
the tape. This will prevent a runaway tape condition after the
last block is read.

In order to recover a disk data set after an operating system
failure, the IBM utility IEBGENER must be executed to copy the
data set (primary extent only) to another disk area. This will
cause an end-of-fi1e mark to be placed at the end of the extent.
ICOMFEOF will then find and mark the real end of file (last valid
record) within the extent. Any records created beyond the first
extent will be lost as the DSCBs on disk are not updated until
the file is closed. When copying the Intercomm log (INTERLOG),
RECFM=U must be specified on both the input and output disk data
sets for IEBGENER (also BLKSIZE=maximum block size; omit LRECL).
To avoid using IEBGENER, a disk log data set can be preset with
an EOF by precreating it as a BDAM file using the Intercomm
utility CREATEGF described earlier in this chapter.

If non-documented (see INTERLOG external codes chart in Chapter
9) user log codes are used, then those codes must be added to the
LOGTRT table in ICOMFEOF.

12-41

Chapter 12 Off-Line Utilities

12.13 CHANGER--Produce Change Deck from Two PDS Members

This program compares two partitioned data set Assembler Language
members (an original and a modified version of a module), and produces
an IEBUPDTE change deck consisting of IEBUPDTE control statements
(CHANGE, INSERT, DELETE) and data statements, as necessary. This
change deck, if applied to the original version of a module, as defined
by the OLDMEM DD statement, would produce the new version of the same
module, as defined by the NEWMEM DD statement.

In this way, an original module may be copied to a user's private
library and conveniently updated (online via TSO, for example) without
disturbing the original, while at the same time keeping an accurate
audit trail of modifications. Program output (the change deck) may be
SYSOUT (printed or punched) or any desired card- image (LRECL=80) data
set, or a member of a PDS where the LRECL is 80. The block size is of
the user's choice.

The two versions of the module must have the same sequence
numbers except for the changes (deletions).

JCL for executing the CHANGER program is:

II
IISTEPLIB
IIOLDMEM
IINEWMEM
IICHANGEDK

EXEC PGM=CHANGER
DD DSN=INT.MODREL,DISP=SHR
DD DSN=pds1(origina1),DISP=SHR
DD DSN-pds2(modified),DISP=SHR
DD {SYSOUT-{A} },DCB-BLKSIZE=multip1e-of-80

{ {B}}
{DSN=data-set}

12-42

J

Chapter 12 Off-Line Utilities

12.14 AUTORSET--Initialize Automated Restart STRTUPSW File

This utility may be used to
automated-restart control file STRTUPSW.
BDAM file. To create the file, use:

create or reinitialize the
It is a one-record (20 bytes)

II EXEC PGM-AUTORSET,PARM=STARTUP
IISTEPLIB DD DSN-INT.MODREL,DISP=SHR
IISTRTUPSW DD DSN~INT.STRTUPSW,DISP=(,CATLG,DELETE),
II UNIT=SYSDA,VOL=SER=volume,
II SPACE=(TRK,(l)),DCB=DSORG=DA

To reset the file for startup or restart processing, use:

II EXEC PGM=AUTORSET,PARM={STARTUP}
{RESTART}

IISTEPLIB DD DSN=INT.MODREL,DISP=SHR
IISTRTUPSW DD DSN-INT.STRTUPSW,DISP=OLD,
II DCB=DSORG=DA

Substitute an installation-standard data set name for the STRTUPSW
file, as necessary. Note that if executing in a multi-region
environment, each region with automated restart must have a unique
version of this file.

12-43

Chapter 12 Off-Line Utilities

12.15 LOGMERGE--Merge Intercomm Log Data Sets

This utility can be used to merge (and reblock) up to three log
data sets to the end of a fourth log data set with the ddname LOGOUT.
The input data sets may be a partial-day, one day, or one week's worth
of log records. The output data set could accumulate one day, one week
or one month's worth of log records for input to on-line message
restart, or off-line file recovery, log print or analysis, SAM
statistics reports, or user accounting or statistical programs. The
data sets may be on tape or disk. The LOGOUT data set may have a
larger or smaller block size than the input log data set(s), however
the blocksize may not be smaller than the largest possible log record
(+4). The type, number of data sets, and processing is dependent on
how the utility is used, as follows:

• Merge one input log data set:

II EXEC
IISTEPLIB
IIINTLGOLD
II

PGM=LOGMERGE[,PARM=NOCLEAR]
DD DSN=INT.MODREL,DISP=SHR
DD DSN=merge-from-file,DISP=OLD
UNIT and VOL parms if not cataloged
DCB parms if unlabeled tape II

IILOGOUT
II
II

DD DSN=merge-to-file,DISP=MOD
UNIT and VOL parms if not cataloged
DCB parms if unlabeled tape

NOTES: PARM=NOCLEAR indicates, for input log data sets only,
that the file is not to be reset as empty after the merge
completes.
Put a comma after the DISP parameter if UNIT, VOL, or DCB
parameters coded.
For a new (DISP=NEW) output disk data set or unlabeled
tape data sets only, code:
DCB-(RECFM-VB,BLKSIZE=max-b1ksize,LRECL=blksize-4).

LOGMERGE loads and executes ICOMFEOF against the input
log data set to ensure a valid input log. ICOMFEOF must
be on the same library as LOGMERGE, or the library
containing it mus t be concatenated to STEPLIB. To
prevent an internal execution of ICOMFEOF (see section
12.12) to recover the end-of- file on the input log data
set (if it is multivolume tape, or multi-extent disk),
create the STRTUPSW automated restart data set (see
Chapter 9) using the AUTORSET utility (see section 12.14)
with PARM-STARTUP (or use the on-line data set). Add the
following DD statement:

IISTRTUPSW DD DSN=INT.STRTUPSW,DISP=OLD

12-44

J

J

Chapter 12 Off-Line Utilities

• Merge two input log data sets:

II EXEC PGM=LOGMERGE[,PARM=NOCLEAR]
IISTEPLIB DD DSN-INT.MODREL,DISP-SHR
IIINTERLOG DD DSN-merge-from-fi1e,DISP-OLD
IIINTERLOC DD DSN=merge-from-fi1e,DISP=OLD
IILOGOUT DD DSN=merge-to-fi1e,DISP=MOD

NOTES: Above notes apply, also:

same file.
header for

merge the

The two input data sets must not be the
LOGMERGE will test the date and time in the
the first message in each input file and will
oldest file first to preserve chronologie order.

If the DD statement for STRTUPSW is missing, or the
STRTUPSW record is initialized to RESTART (for on-line
processing), ICOMFEOF will be loaded and executed against
the newest (as determined by LOGMERGE) input file. In
this case, the newest file may not be a multi-volume tape
or multi-extent disk data set.

If the two input data sets are those used on-line with
the 'flip-flop facility' (IXFB37 - see Chapter 6), and
between them hold a full day's processing, then this
utility can be used to merge them to one big (daily) disk
data set (or to tape) after Intercomm c1osedown. If the
PARM is omitted, both input files will be reset to empty
for the next day. If either input file is empty, it will
be ignored.

If the two input data sets only represent the most recent
processing, because the on-line USERB37E exit routine is
used to unload the log files as they are filled, then
LOGOUT should be the same disk data set as used for
subsequent on-line restart (RESTRTLG DD statement). The
LOGOUT data set itself can then be merged, or unloaded to
tape, using the 'one data set merge' JCL. Note that the
supplied USERB37E exit also resets the unloaded file to
empty.

12-45

Chapter 12 Off-Line Utilities

• • Merge three input log data sets:

II EXEC
IISTEPLIB
IIINTERLOG
IIINTERLOC
IIINTLGOLD
IILOGOUT

PGM=LOGMERGE[,PARM=NOCLEAR]
DD DSN=INT.MODREL,DISP=SHR
DD DSN=merge-from-fi1e,DISP=OLD
DD DSN=merge-from-fi1e,DISP=OLD
DD DSN=merge-from-fi1e,DISP=OLD
DD DSN=merge-to-fi1e,DISP=MOD

NOTES: Above notes apply, also:

12.15.1

INTLGOLD must be the oldest log data set (on-line
RESTRTLG data set). Date and time comparison done only
for INTERLOG and INTERLOC.

If one or two of the input log files are empty, they are
ignored.

The STRTUPSW DD statement still controls executing
ICOMFEOF against the newest input log file.

This JCL could be used, after successful Intercomm
c10sedown, to merge the final on-line log files (INTERLOG
and INTERLOC) and the restart log file (INTLGOLD) to a
weekly disk or tape data set or into one complete (daily)
data set for off-line processing.

LOGMERGE User Exit--LOGMERGX

This exit is called for every input log record before merging it
to the output log data set. At entry, the address of a one-word
parameter list is passed via register 1. The word contains the address
of the log record in the input log buffer. The exit may edit or
reformat the message (if length in first two bytes of the header is
greater than 42) or may indicate to LOGMERGE that the record is not to
be merged by passing back a non-zero return code in register 15. If
the message is changed, do not change the length in the header; zero or
blank undesired fields. Do not add fields or text. The exit must be
serially reusable and use standard linkage conventions. No Intercomm
macros (such as STORAGE) may be used. Use COpy MSGHDRC to acquire the
message header fields layout. Check the log code (MSGHLOG) before
attempting modification. Do not modify File Recovery, Message
Accounting, Checkpoint, or other system log records.

12-46

J

Appendix A Intercomm Table Summary

Appendix A

INTERCOMM TABLE SUMMARY

F=====-~F=--======r======--=~~===-~===-====~=~==~~'~=-====~

NAME MACROS DSECTS FILE DESCRIPTION
~~ ==-=-='=-=F=--=--=-'-F===--==+==-==-~-=-----=--~ -= ====

AIDSECT AIDDATA AIDSECTS
AIDGRP

3270 AID key replacement table

BTAMSCTS SYCTTBL
PCENSCT

SCTLISTC (BTAMQ) Front End Terminal Queues

BTVRBTB BTVERB
PMISTOP

CHNGTB (DC's)

COBPCBTB ICOMPCB

CPUIDTBL (DC's)

DDQDSTBL DDQDS

DDQENV SET.

FDPTABL (DC's)

FDR FDHDR
FDETL

FENETWRK BDEVICE
LINEGRP
BLINE
BTERM
POLLIST
DFTRMLST
GFE
PMISTOP

FORMTBLE (DC's)

INTDEFMT DRFORM

PVRBTBLE

DLIB

DDQSECTS

FDRLIST

DEVTABL
LGDSECT
PLNDSECT
DIALTABL
PTRDSECT
PEXTABLE
GFEDSECT

(may be generated from BTERMs)

F.E. Transaction Codes--Verbs

C/D-Fixed Format Identifiers

DL/I Data Base Interface

3735 Terminal CPU-ID lists

DDQ queues dd names

DDQ execution environment

FDPOOO 3735 Terminal FDP lists

DESOOO C/D-File Record Description

F.E. Network Definitions-BTAM

--GFE/Extended TCAM

FGEN verbs/OFT numbers

Data Entry Format Names/Numbers

INTSCT SYCTTBL SCTLISTC (PMIQUE) Subsystem Control Table
RESOURCE
GENINDEX
PCENSCT

INTSPA SPALIST SPALIST System Parameter Area
SPA Extension Area

IXFDSCTn IXFDSCTA IXFDSCTA Data Set Control Table

KEYTABLE (DC's) C/D-Key conversion routines

A-I

Appendix A Intercomm Table Summary

USER-DEFINED TABLE LIST

=========-=============================F==================================
NAME MACROS DSECTS FILE DESCRIPTION

F======================================F==================================
LOGCHARS DEFINE MMUDSECT MMU Device Processing Definitions

DEFAULTS --ASMLOGCH
COMMAND --COBLOGCH
CNTLCHR --PLILOGCH
ATTRIB

LOGSETGB SET.

LOGVRBTB LOGVERB

LPINTFC LPINTFC
LPVCON

LPSPA LPSPA

LUT

LPENTRY

VCT
LUNIT
LCOMP
VTLSB
VTCSB
VTLVB
VTIDTAB

Log Analysis generation parms

Log Analysis utility verbs

Link Pack interface list

Link Pack resident modules

VCT (VTAMQ) VTAM network definitions
LUDSECTS

Terminal-id synonyms

MMU maps MAPGROUP MMUDSECT INTSTORn MMU map definitions
MAP
SEGMENT
FIELD
ENDGROUP

MMUVTBL MMUVT MMUVT MMU vector table

MRMCT REGCOM MCTDSECT MRS-region communications

NEWPOOLS ICOMPOOL RMDSECTS
COREACCT CORACCT

OVLYBTB (DC's) OVLYTBL

PADDTBLE PADD

Core pools descriptions
Storage ranges accumulators

Overlay B verb table

Editing pad characters

PAGETBLE PAGETBL PGEDSECT (PAGES) Terminal/Page file lists

PMIALTRP PMIALTRN ALTREPRT Alternate Terminal OFT Reports

PMIBROAD BCGROUP BRODSECT Broadcast MSG. terminal groups

PMIDEVTB DEVICE DEVLISTC B.E. device descriptions

PMIFILET GENFTBLE FTBLISTC File tables (E/O, C/D)

A-2

J

Appendix A Intercomm Table Summary

USER-DEFINED TABLE LIST

NAME MACROS DSECTS FILE DESCRIPTION

PMIRDT .. REGION RDTSECTS MRS-Region Description Table
SUBSYS
GENRDT
MRPASSWD MPWDSECT RAP processing

PMIRPTAB (DC's) OFT Terminal Restrictions

PMISECTB STATION STALIST SECOOO Basic Security Processing Table
SECVERBS SECTB
GENSEC

PMISTATB STATION STALIST
DVMODIFY DVMODIFY
PMISTOP

PMITIMTB TMZONE TIMETBL

B.E. Terminal Table

Time-of-Day/Subsystem List

PMIVERBS VERB VERBTBL VRBOOO Verb Editing Control (ECT)
PARM
PMIELIN
VERBGEN

PTRNTBL PATRN C/D--Output Edit Patterns

REENTSBS SUBMODS DYNDSECT Subroutine Codes/Entries

REPTAPE (DC's) RPTOOO OFT Report Spooling to Tape

RPT REPORT RCTLISTC RCTOOO OFT Report Definitions
LINE
ITEM

SAMTABLE MAPACCT SAMCB SAM Reporting Areas

SECURITY (DC's) Basic Security User Exit VCONs

SETENV SET. F.E. Network Environment

SETGLOBE SET. System Control Globals

TOTFILE TOTFLGEN TOTAL Data Base Files

TRANG EN GENERTRN MSG--Transaction Generation

USERSPA (DC'S) User Extension to SPA Csect

USRBTVRB BTVERB PVRBTBLE User additions to BTVRBTB

USRSCTS SYCTTBL SCTLISTC User additions to INTSCT

USRSUBS SUBMODS DYNDSECT User additions to REENTSBS

USRVERBS VERB ,etc VERBTBL User additions to PMIVERBS

A-3

J

J

L

Appendix B

INTERCOMM MESSAGE HEADER

The following lists the names and formats of all fields in the
Intercomm message header, and describes their contents and
changeability.

Field
Name

MSGHLEN

MSGHQPR

MSGHRSCH

MSGHRSC

MSGHSSC

MSGHMMN

MSGHDAT

MSGHTIM

MSGHTID

2

1

1

1

1

3

6

8

5

Description

Length of message, including header
(binary number)

Teleprocessing segment I/O code:
02/F2=full message
OO/FO=header segment
Ol/Fl=intermediate segment
03/F3=final (trailer) segment

Receiving subsystem code high order
byte (binary zero if terminal output)

Receiving subsystem code low order
byte (binary zero if terminal output)

Sending subsystem code low order
byte (binary zero if terminal input)

Monitor message number assigned by
Message Collection (binary)

Julian date (YY.DDD). The period
is a one-byte message thread number
(for resource management and/or
message restart purposes).

Time stamp (HHMMSSTH)

Terminal identification (originating
terminal on input messages,
destination terminal on output)
or Broadcast Group Name

B-1

y

N

y

y

M

N

N

N

y

Appendix B Intercomm Message Header

r=======================r======================================-========
Field Alter
Name Length Description Legend*

F==F========
MSGHCON 2 Reserved area N

MSGHCON+1
(MSGHRETN)

MSGHFLGS

MSGHBMN

MSGHSSCH

MSGHUSR

(1)

2

3

1

1

ORG MSGHUSR (1)
MSGHADDR 2

MSGHLOG 1

MSGHBLK 1

MSGHVMI 1

*A1ter Legend:

Subsystem Return Code (Log Code X'FA'
entries only)

Message indicator flags

Front End message number (binary)

Sending subsystem code high order
byte (binary zero if terminal input)

Reserved (see below)

Used for special processing
by the Front End

Log Code (see Chapter 9)

Reserved area

Verb or Message Identifier inter
preted by receiving subsystem as
required, and by FESEND.

N

N

N

M

L

N

L

N

Y

Y - must be filled in by application program for a message for
Output Utility, a terminal, or another subsystem. For calls
to FESEND(C), MSGHVMI should be set to X'57' or X'67' as
appropriate for output messages, and MSGHRSCH/C must be
binary zeros (low values).

M - Should be filled in for user's own information (required by
Intercomm for restart)

N - DO NOT TOUCH (must be copied from input message header to
output message header)

L - may be modified for user codes based on subsystem logic.

B-2

J

L

Appendix B Intercomm Message Header

NOTE: Log records are blocked by LOGPUT with a Block Descriptor
Word containing the block length at the beginning of the
block. The individual message records within the block
do not, however, contain Record Descriptor Words.
Intercomm uses the length in the message header to
increment to the next message in the block. Therefore,
the blocks are written as RECFM~U. Do not use
programming or JCL access to the log as RECFM=VB.

MSGHUSR is used for interface with Intercomm modules as follows:

1. If the input verb had HPRTY=YES coded for the BTVERB macro;
MSGHUSR contains a C'P' to request priority queuing for the
subsystem. The user may move a C'P' to this field to request
priority queuing for output messages to a terminal (via
FESEND) or to another subsystem (via Message Collection).

2. For messages to be processed by the Edit Utility; contains
C' F' to indicate that the input message was from a 3270 CRT
and contains SBA sequences.

3. For output messages to a switched async device (Teletype,
Dataspeed 40, and 2740); a C' B' requests disconnect after
transmitting the output message.

4. For output messages to a switched Teletype or Dataspeed 40
device; a C'X' requests using the alternate call-list for the
next input message (as described in the BTAM Terminal Support
Guide) .

5. For output messages to a switched IBM 7770 device; this field
must contain one of several optional values, as described in
the BTAM Terminal Support Guide.

6. For output messages discarded by the Front End,
indicates the message was flushed by command; a C'Z'
was discarded by the VTAM OTQUEUE user exit.

a C'F'
that it

If none of the above considerations are applicable, the subsytem
may use this field for messages queued to other user subsystems, or for
special logging information, as desired. The LOGPRINT utility always
prints the value coded in this field (in hexadecimal).

B-3

J

L

Appendix C

USER CODING OF THE SCT OVERLAY INDEX

As illustrated in Figure C-l, the following coding conventions must
be utilized when the SCT Overlay Index is coded by the user:

• Code an ENTRY statement for SPA references, as follows:

ENTRY SCXFSOG1,SCXESCX,SCTRES

• The first word must be labeled SCXESCX, as one of the fields
in the SPA Csect is an address constant referencing this
label (SPAPSCX).

• The header of the Subsystem Control Table Index consists of
the three fields SCXESCX, SCXFRSS and SCXLRSS. SCXESCX is an
address constant pointing to the last detail entry in the
index. The end of the index has been given a label SCXEND.
Since each detail entry is twelve bytes long, the constant
A(SCXEND-12) will point to the first word of the last entry,
even if new overlay groups are inserted in the index during
future maintenance.

• The fields SCXFRSS and SCXLRSS contain the address of the
first and last entries in the resident portion of the
Subsystem Control Table. Code as A(O) if there are no
resident or dynamic load SCTs. The value SCTSIZE has been
subtracted from the address of the end of the group to
establish the starting address of the last entry.

• At the beginning of the Subsystem Control Table, the label
SCTRES must be placed on a OS statement that establishes a
fullword boundary for the beginning of the first entry for a
resident subsystem in the table. The end of the first entry
has been flagged with the label SCTERES1. At the end of the
table (following all of the overlay groups), these labels
have been used in an EQU statement to establish the size of
an individual entry (SCTSIZE). This size is an important
figure in coding the address constants in the index.

• The first word following the entries for the resident portion
of the Subsystem Control Table is indicated by the label
SCTLRES. The first word following each subsequent overlay
group is labeled SCTLOVn, where n identifies the overlay
group. With these labels established, the coding of the
index can proceed.

C-l

Appendix C

•

•

•

User Coding of the SCT
Overlay Index

The coding of detail entries for each subsystem group
consists of the fields SCXFSOGn, SCXLSOGn and SCXOVNMn,
where n is varied to dis t inguish between overlay
subsystem groups.

The OVLY number is the constant value coded at
SCXOVNMn. (Overlay numbers 1, 2 and 3 are reserved for
Overlay Regions B, C and D.) Numbers 4 through 62 are
used for subsystem groups in Overlay Region A.
SCXFSOGn is the address of the first entry in the
Subsys tern Control Table for each overlay group.
SCXLSOGn is the address of the last entry in the group;
the value SCTSIZE is used to calculate this address.
Each detail entry is padded at the end with three
bytes. Coded as shown in the example, the labels
SCTLRES and SCTLOVn serve the dual purpose of defining
the address of the las t entry in the preceding group,
and the starting point of the next group.

When the overlay index is user-coded, the GENINDEX
macro must specify OVLYNDX=NO.

C-2

J

J

Appendix C User Coding of the SCT
Overlay Index

* THE THREE FOLLOWING FIELDS CONSTITUTE THE HEADER OF THE SYSTEM
* CONTROL TABLE INDEX
SCXESCX DC A(SCXEND-12) ADDR 1ST WRD, LAST DTL ENTRY.

AD DR 1ST SCT FOR RES SIS.
ADDR LAST SCT FOR RES SIS.

SCXFRSS DC A(SCTRES)
SCXLRSS DC A(SCTLRES-SCTSIZE)

* * THE FOLLOWING CODE ESTABLISHES A DETAIL ENTRY IN THE INDEX FOR
* THE FIRST OVERLAY GROUP.
SCXFSOG1 DC A(SCTLRES)
SCXLSOG1 DC A(SCTLOV1-SCTSIZE)

ADDR 1ST SCT FOR OVLY FOUR
ADDR LAST SCT FOR OVLY FOUR
OVLY NUMBER. SCXOVNM1 DC AL1(4)

DC 3B'O' PADDING.

* * THE FOLLOWING CODE ESTABLISHES A DETAIL ENTRY IN THE INDEX FOR
* THE SECOND OVERLAY GROUP.
SCXFSOG2 DC A(SCTLOV1)
SCXLSOG2 DC A(SCTLOV2-SCTSIZE)

.ADDR 1ST SCT FOR OVLY FIVE
ADDR LAST SCT FOR OVLY FIVE
OVLY NUMBER. SCXOVNM2 DC AL1(S)

DC 3B'O' PADDING.

* * DETAIL ENTRIES FOR ADDITIONAL OVERLAY GROUPS MAY BE INSERTED HERE.

* SCXEND EQU * AD DR OF END OF INDEX.

* * FOLLOWING IS THE SYSTEM CONTROL TABLE.

* SCTRES DS OF
SYCTTBL

SCTERES1 DS OF
SYCTTBL
SYCTTBL
SYCTTBL

SCTLRES DS OF
* BEGINNING OF

SYCTTBL
SYCTTBL
SYCTTBL

SCTLOV1 DS OF

* * BEGINNING
SYCTTBL
SYCTTBL
SYCTTBL

OF

SCTLOV2 DS OF

*

1ST SCT FOR RES SIS.

ADDITIONAL SCT'S
FOR RESIDENT OR DYNAMICALLY
LOADED SUBSYSTEMS.

OVERLAY A GROUP ONE
SCT'S FOR

OVERLAY
GROUP 4

OVERLAY A GROUP TWO
SCT'S FOR

OVERLAY
GROUP 5

* ADDITIONAL OVERLAY GROUPS 6 THROUGH 59 MAY BE INSERTED HERE.

* SCTSIZE EQU SCTERES1-SCTRES
GENINDEX OVLYNDX=NO
PCENSCT
END

Figure C-1 User-Coded Subsystem Control Table Index Structure

C-3

Appendix D

INTERCOMM USER EXITS

D.l INTRODUCTION

Generally, user exits are conditionally called (CALLIF) for special
processing, for example:

• Additional error recovery (terminals, files, etc.)

• Cancelling/modifying/routing of messages

• Additional security checking

• Statistics gathering

• Additional startup and closedown processing

• VTAM interface processing

D.2 CODING CONVENTIONS

Unless otherwise documented for the specific user exit, the
following coding conventions for user-coded or user-modified exits from
Intercomm processing routines must be observed:

• Written in Assembler Language only

• Reentrant (establish and chain save areas)

• Use standard linkage conventions; at entry

R15 contains address of user exit

R14 contains return address to caller

R13 points to caller's save area

RO generally not used

Rl contains a parameter, or points to a parameter
list which contains one or more addresses or
values, as documented for each exit

R2-l2 may contain additional parame ter values, as
applicable

D-l

Appendix D Intercomm User Exits

• If STORAGE macro used to acquire save/work area, RENT=NO must
be coded

• SPALIST address can be acquired via GETSPA macro

• Do not give up control to the Dispatcher either directly
(dispatcher macros) or indirectly (call to Intercomm service
routine or user subroutine) if documented as prohibited

• Most of the exits are called in thread 0 (system thread)

• Intercomm macros for application programming documented in
Basic System Macros and the Assembler Lanl1;ual1;e Prol1;rammers
Guide may be used; be aware of putting the caller in a wait
state if an INTENQ macro is issued

• Intercomm control commands may be issued (format message and
queue via FESEND, or via FESENDC if message storage area to
be copied)

• At exit, if documented, user must pass back a return code,
either via register 15 or in a status word

• Exit must return to caller.

D.3 LIST OF USER EXITS

Note the following:

Source: YES indicates sample source code provided on SYMREL

Doc: the Intercomm manual in which the user exit is described, as
follows:

BTG BTAM Terminal Support Guide

DBMS Data Base Manal1;ement Users Guide

DEIG Data Entry Installation Guide

ESS Extended Security System

M&C Messal1;es and Codes

MRS Multirel1;ion Support Facility

ORM Operating Reference Manual

PAG Page Facility

SNA SNA Terminal Support Guide

TSG TCAM Support Users Guide

UUG Utilities Users Guide

D-2

Appendix D Intercomm User Exits

~:-====-=F~::CZ:=::Z::: r===--=-=="I'-~==f=-==========-=--=====-=-=====:;:==

Name Caller Source DOC Comments
~======='==~=='=='====F====~=='~~~=~~ = =====~========-~=--======~======

CHNGEXIT CHANGE

COPYEXIT COPYSS
VTCDM2

DDQEXIT DDQINTFC

DEUS EXIT INTENTRY

DEUSEXTR INTDEXTR

INQEXIT BMHOOO

IOEXIT RMNADISA

LOGMERGX LOG MERGE

LUCUR VTLUCMD

MRS ECURl MRINPUT

MRS ECUR2 MRINPUT

PREPROGE PREPROG
RMPURGE

PREPROGI PREPROG

SECUEXIT INTSEC02

SNAPEXIT PMISNAPl

SPINEXIT SPINOFF

SPSNEXIT SPIESNAP

USERB37E IXFB37

USERINIT STARTUP 3

USERLOGE LOG PUT

USERPDBE PDATBASE

USRBSCEX BSCLEASE

USRBTLOG BTSEARCH
VTRECVE

USRCANC SYCT400

USRCHKPT CHECKPT3

YES
YES

YES

YES

YES

YES
YES

YES

UUG called before updating a file

BTG allow/cancel COPY processing, check for
SNA AID key generic to-terminal change

- segmented input messages processing

DEIG Data Entry input data editing etc.

DEIG Data Entry extracted record processing

BTG modify header/free msg. before queuing

ORM for thread or file hung-I/O time-out

ORM edit or reject copied log record

ESS VTAM HALT exit- ESS clean-up/signoff

MRS validate message passed to Control Region

MRS validate SR to CR message transfer

ORM COBOL subsystem parm list termination

ORM add to COBOL subsystem parm list

ESS ADD/SIGNON/SIGNOFF, etc. processing

ORM determine whether to take a snap

ORM use to generate job to print SNAPDD

ORM determine whether to take snap 126

ORM unload 'flipped-from' log data set

ORM preliminary user startup processing

ORM log statistics gathering

DBMS DATBAS calls statistics gathering (TOTAL)

BTG

BTG
SNA

ORM

ORM

leased CPU optional error recovery

after verb verification-log input msg (FI)
after input msg. header formatted

See PMICANC-issue 'message cancelled'

called prior to write checkpoint record

D-3

Appendix D Intercomm User Exits

F========= F=====- - F======'F=== p== \

~~~~:=====F~~=::~-= :~~~~:= ~~~=~========~~~:~:~======================== ~ 
USRCLOSE CLOSDWN3 YES ORM issue 'Intercomm closed' message 

USRCLSEl USRCLOSE 

USRCONVE CONVERSE 

USRCONVl CONVERSE 

USRECRY BLHIN 
BLHOT 

USRER129 BLHIN 
BLHOT 

USRESTRT LOGPROC 

USROTEDT PMIOUTPT 
FESEND 

USROUTCK PMIOUTPT 

USRPAGEX PAGE 

USRPRMPT INTSECOO 

YES 

YES 

YES 

USRQMONX MRQMNGR YES 

USRSAMOl SAMSECT 

USRSECOO INTVRBOO 
INTSECOO 
INTSEC02 

USRSEREX BLMSGCOL YES 

USRSGNOF PMISIGN 

USRSGNON PMISIGN 

USRSTART STARTUP3 YES 

USRSTRTl USRSTART 

USRTDWN BDIAL 
TPUMSG 

USRTPUP TPUMSG 

USRTRAP TRAP 

ORM additional closedown processing 

called when entered from subsystem 

called when entered from Subsystem 
Controller (next message received) 

BTG error recovery message handling 

BTG 129 Card Read/Punch hardware error 
recovery 

ORM restart message option 

ORM formatted output message changes 

ORM cancel message formatting by Output 

PAG control adding pages to Page data set 

ESS suppress sign-on prompt message at startup 

MRS determine receiving SR when no RAP 

ORM SAM user function routines (01-10) 

ESS security statistics gathering, etc. 

ORM Serial Restart - Front End input 
message queuing exit 

ORM Basic Security sign-off checking 

ORM Basic Security sign-on checking 

ORM issue , Intercomm started' message 

ORM additional user startup processing 

BTG terminal disconnected processing 
BTG terminal down (TDWN) processing 

BTG terminal up (TPUP) processing 

M&C user TRAP debugging 

D-4 



Appendix D Intercomm User Exits 

~=====~======~~.=--=====r==='r-==--=======--=====-======---======'======'== 

Name Caller Source DOC Comments 

US RWTO WTOMOD M&C additional system message output routing 

USRXIN BlliIN BTG input msg. modification before queuing 
------------------- --.---- -_ ... - -------------------------------------------

VTAM USER EXITS 
------------------- ------- ---- -------------------------------------------
HALT VTLUCMD 

INQUEUE VTRECVE 

LOGON VTEXITS 

LUS VTRECVE 

OTQUEUE VTQMOD 

OUTSEG VTSEND 

RCVEXCD VTRECVE 

SHUTD VTLUCMD 

SIGNAL VTEXITS 

SNDABT VTSEND 

SNDEXR VTRESP 

SNDNRM VTRESP 

VTURLRXI VTEXITS YES 

VTUROTXl VTQMOD YES 

VTURSDXl VTRES~ YES 

VTUSLGNX VTEXITS 

VTUSRLRX VTEXITS 

VTUSVSDX VTLUCMD 

SNA SPLU$TPUxxxxx$HALT processing 

SNA before msg. queued for Back End 

SNA after OPNDST completed 

SNA LUS (sense data) received 

SNA before msg. put on component queue 

SNA if VTLSB specifies SOUTSEG=USER 

SNA invalid input message 

SNA SPLU$TPUxxxxx$SHUTD processing 

SNA Signal Expedited Flow command received 

SNA SEND error recovery processing 

SNA negative response received 

SNA positive response received 

SNA Intercomm-supplied version of VTUSRLRX 
exit 

SNA Intercomm-supplied version of OTQUEUE exit 

SNA Intercomm-supplied version of SNDNRM exit 

SNA final validation of LOGON request 

SNA VTAM RELREQ exit scheduled 

SNA VTCN$SHUTD command processing 

D-5 



J 

J 



Abend intercept routines 
--and closed program loops 
- -described 
--and Dispatcher task queues 
--and system tuning statistics 
--and thread resource dump 

4-13 
8-5--8-7 

4-2 
8-23 
5-21 

See also SPIEEXIT and STAEEXIT. 
Abend protection for sequential 

output files 6-7--6-8,6-23,6-30,6-32 
--and LOGPRINT utility 12-3 

AID processing 3-3,8-5,12-37 
ALIAS FAR attribute 6-32,6-35 
ALIASed files 6-30,6-32 
ALLOC parameter, 

FILE command 6-10,6-12--6-13 
Alternate index/path processing. 

See VSAM. 
AMASPZAP utility (IBM) 2-17 
AMDPRDMP utility (IBM) 8-14 
AMODE parameter, 1inkedit 3-42,3-57 
AMODGEN library 2-3--2-4,7-22,7-24,7-29 
AMP parameter, VSAM data sets 

6-12,6-18,6-24--6-25,7-8 
I.· ANALYZE option, LOGANAL utility 
~ 12-8,12-11,12-20--12-21 

APPLID parm, EXEC JCL 7-4--7-5 
APPLID parmeter, VCT macro 7-5 
ASGN command 10-6 
ASMF facility 2-2,2-24 
ASMOC procedure 2-6,2-8,2-11 
ASMPC procedure 2-6,2-8,2-11 
ASMPCL procedure 2-6,2-8,2-11 
ASMPCM procedure 2-6,2-8,2-12 
Assembler H 2-8,3-7,3-29,7-29 
Assembler Language 

--coding conventions 3-55,3-58 
--and Dynamic Linkedit facility 3-43 
--and dynamically loadab1e 

subsystems 3-41 
--and generalized 

subtasking 3-62--3-63 
--and indicative dumps 8-7 
--and input messages 3-2 
--and ISAM 6-6 
--and Link Pack Area 7-31 
--and LOCATE facility 6-39 
--and page pre loading 7-27 
--and resident subroutines 3-55--3-56 
--and Subroutine Overlay Region 3-61 
--and subroutines under XA 3-57--3-58 

t --and subystem interface 3-47 
~ --and subsystems under XA 3-42 

1-1 

--and System Accounting and 
Measurement 

--and Transient Subroutine 
Overlay Region 

--type of, used by procs 
--and user-specified DCBs 
--and user-written security 

8-20 

3-59--3-61 
2-8 

6-44 

routines 
ASYNCH module 

10-19 
3-40,3-46,7-9,11-21 

ASYNCH parameter, 
ICOMLINK macro 

Asynchronous Overlay 
Loader 

ASYNCLDR module 
ASYNLDR parameter, 

SPALIST macro 
ATTACH macro (IBM) 
Auditing. See Resource 
AUTOFF parameter, 

STATION macro 
AUTOGPCH data set 
AUTOLOK parameter, 

3-40,3-46 

1-8,3-40,3-46 
3-41,7-9 

3-40,3-46 
7-28 

Audit and Purge. 

10-6,10-15 
6-29 

BTVERB macro 3-11--3-12 
Automated Restart Facility 9-1,9-24 

--described 9-24 
--and execution mode PARM 7-4 
--and Intercomm startup 7-9,7-12,9-24 
--and LOGMERGE utility 12-44 
--and message restart 9-11,9-17 
--and STRTUPSW file creation 12-43 

Automatic Sign-off 10-5,10-15 
AUTORCVR module 9-24 
AUTORSET utility 9-24,12-43--12-44 

--described 12-43 
--execution JCL 12-43 

AUXS parameter, SYCTTBL macro 3-36 
AVRB command 10-9 
AOA abend 5-17 

BACKOUT parameter, SYCTTBL macro 11-22 
Backout-on-the-F1y 6-9,11-22 
Basic Security System 

- -defined 
--Mu1tiregion consideration 
--processing options 
--sign-on/sign-off security 

--processing 
--and SPALIST parameters 
--and SYCTTBL parameter 
--user exits 
--using a sign-on/sign-off 

terminal 

10-1 
10-20 

10-2--10-3 

10-6 
10-6 
10-7 

10-7--10-8 

10-5 



--and Station Table 
--BTVERB macro 
--GENSEC macro 
--SECVERBS macro 
--STATION macro 

10-13 
10-11 

10-11--10-13 
10-11,10-14--10-15 

--loading operator codes 
on disk 10-17--10-18 

--parameters 10-14--10-15 
--range of verbs per 

terminal 
--station security 

10-15--10-17 
10-17--10-18 

--transaction security 
10-15--10-17 

--UNIVER and OPER parameters 10-14 
-- structure 10-10 

--transaction security 
--range of verbs per 

terminal 
--SPALIST parameter 
--SYCTTBL parameter 
- -use of 

processing 

10-15--10-17 
10-9 

10-10 
10-9 

--user-written security routines 
--coding of 10-18--10-19 
--linkedit requirements 10-20 

10-19 --security table 
--SPALIST parameter 
--SYCTTBL parameter 

Batch mode 
Batch Report feature. 
BATCHPAK module 
BATCHPGM--and separate 

File Handler 
BCGROUP macro 
BDAM 

10-19 
10-19 

6-51,7-39 
See PRT1403. 

6-51--6-52 
use of 

6-52 
3-16 

--and b1ock-id parameter 6-36 
--and Data Set Control Table 

(internal) 6-41 
--DD statements 6-24 
- - disk queues 1- 3 
--and Display utility 1-6 
--error status indicators 6-40 
--exclusive control 6-3--6-4,6-30,6-32 
--file creation 12-30--12-32 
--formatting of 7-8 
--keyed file creation 12-39 
--and READ function 6-38 
--and WRITE function 6-38 

BDEVICE macro 3-5 
BEGN command 11-16 
BINSRCH module 3-7 
BISAM 

--and Data Set Control Table 
(internal) 6-43,6-44 

1-2 

- -DCBs 
--error status indicators 
--exclusive control 

6-33 
6-40 

6-3--6-4,6-31,6-34 
--and File Attribute Records 6-30 
--file creation 6-6 
--and GET function 6-38 
--index 6-30,6-32 
--overlapped GET and READfWRITE 

processing 6-4--6-5 
--QISAM via 6-2,6-22,11-7 
--and READ function 6-38 
--update-only data sets 6-30 
--and WRITE function 6-38 

BLDL list 1-8,3-56,3-58 
--and LOAD command 3-40 
--and Intercomm startup 7-10 

BLDL parameter, SYCTTBL macro 3-40 
BLDVRP parameter, SPALIST 

macro 
BLHTRACE module 
BLINE macro 
BLMSGCOL module 
Broadcast Table 
BROADCST Csect 
BROADRTN module 

6-15,6-33 
7-23 

4-2,7-11,7-17,7-19,8-2 
9-21--9-22 
3-16,7-12 
3-16,7-12 

3-17 
BSAM 

--and Data Set Control Table 
(internal) 6-44 

6-7 --and Flip-Flop facility 
--and overlapped GET and 

READfWRITE processing 
--and READ function 

6-4--6-5 
6-38 

--and shareability of sequential 
data sets 6-26 

6-6 
6-38 
1-2 

11-21 
11-19 

--and undefined r~cord support 
--and WRITE function 

BSC devices 
BSEGMOD module 
BSTAT2 module 
BTAM Front End 

--and conversational processing 11-22 
1-2 

11-18 
7-17--7-19 

- -defined 
--dispatching priority 
--execution JCL 
--generalized Front End, 

interface of 
--and Intercomm execution 
--and Intercomm startup 
--and 1inkedit ordering 

1-3 
11-17 

7-10,7-11 
7-25 

9-3 
7-22--7-23 

11-21- -11-22 

--logging of input messages 
--and MVS installation 
--and MVS tuning 

J 

J 



--and separator character 
--and system tuning 
--and terminal queues 

See also Queues, terminal 
--and terminal simulator 

3-18 
11-13 

7-7 

facility 1-9,8-1--8-5 
--and transaction security 10-11 

BTAM terminal simulator 

BTAMQ data set 
BTAMSCTS table 
BTAMSEQ counter 
BTAMSIM. See BTAM 
BTAM/SP (IBM) 
BTAMSTRT module 
BTERM macro 

1-9,8-1--8-5,11-2 
6-29,7-7,7-18 

2-28,7-7 
11-4 

Terminal simulator. 
7-28 
7-10 

--BLINE, BTERM sequence 7-17,7-19 
--and BTAM terminal simulator 

facility 8-2--8-3 
--and conversational verbs 3-12 
--and locked verb facility 3-11 
--and message restart 9-2,9-13,11-14 
--and queue specifications 11-13 
--and system logging 

I . --and terminal 
"'" BTSEARCH module 

BTSPA table 

queues 
9-4,11-14,11-18 

7-7 
7-23,11-4 

11-4 

L 

BTVERB macro 
--and ASGN and DSGN commands 
- -described 
--examples 
--and locked verb facility 

10-6 
3-7 

3-8--3-10 
3-11--3-12 

B- 3 
9-23 
3-45 

3-11,B-3 
10-6,10-9 

3-11 

--and message header 
--and message recovery 
--and overlay regions 
--and priority verbs 
--SECUR parameter 
--and short verbs 
--and sign-on/sign-off 

security 
--and subsystem queue 

specifications 

10-6,10-9 

3-36 
--and transaction security 10-11 

10-13 
3 -13 - - 3 -14 
7-10,11-21 

3-7,7-25 

- -use of 
BTVERBnn module 
BTVERIFY module 
BTVRBNDX Csect 
BTVRBTB table 

--described 
--dynamic loading of 
--example 

1-11,2-28,3-7 
3 -13- -3-14 
3-8--3-10 

1-3 

--and File Handler 
Statistics Report 

--and Network Table 
--and overlay regions 
--and Transaction Security 

BUFFER-WAITS 
BUFL parameter, 

LINEGRP macro 
BUFNO parameter, 

LINEGRP macro 
B37 FAR attribute 

6-46 
3-13 
3-45 

10-11,10-13 
8-24,11-14 

7-23,11-13 

7-23,11-13 
6-7,6-32 

CALCRBN module 
CALLOVLY macro 
CANC parameter, 
CATCH macro 
CHANGE module 
Change/Display 

3-37,7-9 
3-43,3-59--3-60 

SYCTTBL macro 3-6--3-7 
5-18,5-22 

3-23 
utility 

- -defined 
--and Dynamic Data Queuing 

facility 
--and message restart 
--and Page Facility 
--requirements 

CHANGER utility 
CHCKPTSS subsystem 
Checkpointing 

--and c1osedown 
- -data 
- -file 
--and INTERLOG 
--and message restart 

1-6,3-2 

3-25 
9-13 
3-26 
3-23 

12-42 
9-9 

7-13 
9-10 

9-1 
9-3 

9-18 
--processing 
--and startup 

CHECKPT entry point 
CHEKPTFL data set 
CHECKPT3 module 

9-8--9-9 
7-10 

9-8 
6-27,9-8,9-16--9-17 

9-8,9-17 
CHKRES parameter, ICOMLINK 

CHNGTB table 
CKLINK module 

macro 
9-15,9-24 

3-23 
7-9,7-37 

9-8 
9-8 

7-16 
7-16 

CKUSL parameter, SPALIST macro 
CKUSR parameter, SPALIST macro 
CLDNLIM parameter, SPALIST macro 
CLDTO parameter, SPALIST macro 
C1osedown 

--broadcast message 
- -described 
--and LOGMERGE utility 
--and message restart 
--and PL/1 Optimizer 
--return codes 

3-16 
7-13 

12-45,12-46 
9-14 
3-54 
7-13 



--and sequential files missing EOF 
12-40 

--simulator 8-5 
--statistics 

7-13--7-15,8-23,11-21,11-23 
--Test Mode 8-29 
--time limit 7-16 
--user exits 7-16 

CLOSDWN3 module 7-13,7-22 
CNVREST parameter, SYCTTBL macro 9-13 
COBLIB data set 3-48,7-2,7-6 
COBOL 

--and compiler trace option 11-15 
--and DWS snaps and checking 11-15 
--and DWS display and snaps 11-23 
--and Dynamic Linkedit facility 3-42 
--and indicative dumps 8-8 
--initialization user exit 3-49 
--and ISAM files 6-6 
--JCL procedures 2-6,2-8,2-12--2-14 
--linkedit considerations 

--and message editing 
--and MVS installation 

3-48--3-49,11-19 
3-2 

7-22 
--programming conventions 
--resident subroutines 
--and SPAC command 
--and subroutines under XA 
--subsystem interfaces 
--and subsystems under XA 
--termination user exit 
- -VS COBOL II 

3-55--3-57 
3-55--3-56 

11-16 
3-57 

3-47--3-49 
3-42 
3-49 
3-51 

COBOL parameter, 
COBPC procedure 
COBPCL procedure 
COBPUT module 
COBREENT module 

ICOMLINK macro 3-48 
2-6,2-8,2-12 
2-6,2-8,2-12 

3-48,3-53--3-54,7-26 

--and called subroutines 
3-47,3-55--3-57 

--and 1inkedit ordering 7-26 
--and reentrant COBOL subsystems 3-56 
--and resident subroutines 3-55 
--and Resource Audit and Purge 5-1 
--and XA 3-42,3-57 

COBSTORF module 3-48,7-26 
COBUPC procedure 2-6,2-8,2-12 
COBUPCL procedure 2-6,2-8,2-12 
COBUPCLD procedure 2-6,2-8,2-12 
Cold start 7-17 
COMM command 11-3 
Commands. See System commands 

and individual command names 
COMPRESS procedure 2-6,2-8,2-16 

1-4 

Concurrent processing limits 
Control terminal 

3-37 

--and BTAM terminal simulator 8-2 
11-21 --and MVS-tuning considerations 

--and sign-on/sign-off 
security 

--and transaction security 
CONV parameter, 

10-6,10-15 
10-9 

BTERM macro 3-12,11-22 
CONV parameter, 

BTVERB macro 3-12,11-22 
CONV parameter, 

LCOMP macro 3-12,11-22 
CONV parameter, 

LUNIT macro 3-12,11-22 
Conversational verbs. See Verbs, 

Conversational. 
CONVERSE facility 

--and conversational verbs 3-12 
--and dynamically loaded 

subsystems 11-8 
--and intermediate 

message storage 
--and message restart 
--and overlay regions 
- -and PL/1 
--and thread dump 

COPY procedure 
Core queues--subsystem 
Core use monitoring 
Core Use Statistics 

- -defined 
--and MVS tuning 

recommendations 
--sample output 
--specifying 
--and storage cushion 
--and system tuning 

COREACC parameter, 
SPALIST macro 

COREACCT Csect 
COREACCT macro 
COREINDEX FAR attribute 
CREATEGF utility 

--and CHEKPTFL 

3-26 
3-12,9-13 

3-45 
3-53 
5-23 

2-6,2-8,2-16 
3-36,7-9,11-12 

5-6 

1-5,11-3 

11-21 
5-13--5-15 

5-10,5-11 
size 11-10 

11-19 

5-7,5-11 
5-10,5-27,7-25 

5-10 
6-32,11-22 

data set 9-8--9-9,9-17 
--control cards for 12-30--12-31 
--described 12-30--12-31 
--and disk queues 3-37,7-8 
--execution JCL 12-32 
--and preformatted log data set 12-41 

CREATSIM utility 8-2,8-4,12-35--12-37 
CRT parameter, BTERM macro 11-22 

J 



L 
CRT parameter, LCOMP macro 
CRT parameter, LUNIT macro 
CRUNCH module 
CSALEN parameter, REGION macro 
CUSHION parameter, SPALIST macro 

11-22 
11-22 

3-23 
11-21 

--described 5-3,5-7 
--and low core condition 7-11,7-17 
--and subpoo1 space 

fragmentation 
CUSHTM parameter, 

SPALIST macro 

Data Base processing 
--and checkpointing 

11-10 

5-7,11-10 

--and execution parameters 
9-9 

7-4--7-5 
3-31,11-8 

11-9,11-24 
6-40 

--and resource contention 
--and system tuning 

Data event control block 
Data Set Control Table 

--address of an entry 
--and BSAM/BISAM 
- -defining 
- -described 
--exclusion of DD 

statements from 
--and FILE c?mmand 
--function 
--generation of 
--initialization 
--and LOCATE facility 
--options 
--program references to 
--status information 
--and system tables 

6-44 
6-5 

6-21 
6-19 

6-24 
6-10 
1-12 
6-21 
6-21 
6-39 
6-43 
6-39 

--and thread resource dump 

6-9,6-21 
2-28 
5-22 

Data Set Name Sharing (VSAM) 

Dataspeed 40 terminal 
DB parm, EXEC JCL 
DBMOD name (TOTAL DB) 
DBSTART module 
DC parameter, 1inkedit 
DCB parameters 

6-14,6-31,6-32 
B-3 

7-4--7-5 
7-5 

7-10 
7-3 

--and PMISNAP macro 8-10 
--required 6-25,7-8 
--and SYSPRINT for Dispatcher 4-2 
--user-specified 6-43--6-45 

DSCT. See Data Set Control Table. 
DSCT parameter, ICOMLINK macro 6-21 
DD parameters 6-24--6-25 
DD statement requirements 6-24,7-6--7-8 

--and placement for tuning 11-22 L ddname parm, EXEC JCL 7-4--7-5 

1-5 

DDnames, reserved 6-27--6-29 
DDQ. See Dynamic Data Queuing. 
DDQDSTBL sample table 2-28 

2-23 
6-47 

DDQENV table 
DDQMOD module 
DDQSTART module 
DEALL parameter, 

6-47,7-10 

FILE command 6-10,6-12--6-13 
DEBUG parameter, ICOMLINK macro 7-23 
Debugging command. See SCTL command. 
Debugging facilities 11-1,11-23--11-24 
DECB. See Data event control block. 
DECK parameter, assemblies 2-10--2-12 

--and ICOMLINK MACRO 7-2 
DELOAD module 3-41,7-10 
DELTIME parameter, SUBMODS macro 7-13 
DELY command 5-20,11-16,11-25 
DESOOO data set 3-23,6-27,12-25--12-27 
DEVICE macro 3-5,3-15--3-16 
Device Table 

--and BTAM terminal simulation 8-2 
- -described 
--function 

3-15--3-16 
1-11 

--and Log Input facility 8-26 
--and Message Mapping Utilities 

requirements 
--and SIMCRTA utility 
--and Station Table 

3-17 
12-38 

3-15 
DFA. See Dynamic File Allocation. 
DFLN parameter, 

SYCTTBL macro 
DISABLE macro 
DISAM 

--and REENTSBS table 
Disk queues--subsystem 
Disk-resident tables 

3-36--3-37,11-12 
5-20 

3-50--3-51 
3-36--3-37,7-9 

1-7 
3-23 

12-27 
3-17 

3-20--3-21 

--and Change/Display Utility 
--conventions for the utilities 
--and Edit Utility 
--and Output Format Table 
--and security operator 

codes 
DISPATCH macro 
Dispatching priority 
Dispatcher 

10-17--10-18 
4-1,4-11,7-38 

(Intercomm) 7-17 

--and abend processing 
--and closed program loops 
- -described 
--and execution groups 
--and File Handler 
--and flip/flop user exit 

8-6 
4-12,8-6 

4-1--4-13 
3-38--3-39 

1-3,6-1,6-31 
6-9 

--and generalized subtasking 3-62 
4-11 --and IJKDELAY module 



--and IJKPRINT module 
--and IJKTLOOP module 
--and IJKTRACE module 
--and Interregion SVC 
--and IOEXIT user exit 
--and logging user exit 
--and Overlay A subsystems 
--and page pre loading 
--and queues 
--residency of 

4-2 
4-12--4-13 
4-2--4-10 

7-31 
5-20 

9-7 
3-38 
7-22 

4-1--4-5 
1-6 

--and Resource Audit and Purge 5-2 
9-22 
8-9 
8-6 

8-12 

--and serial restart user exit 
--and SNAPEXIT user exit 
--and SPIEEXIT module 
--and SPINEXIT user exit 
--and SPSNEXIT user exit 
--and STAEEXIT module 
--and Intercomm startup 

8-6 
8-6 

7-11 
--and Subroutine Overlay Region 3-61 

8-24 
11-9 
5-21 
3-64 

--and System Tuning Statistics 
--and task priority 
--and thread resource dumps 
--and time controlled messages 
--and user exits 
--and USERB37E user exit 
--and USERLOGE user exit 
--and USRSEREX user exit 

D-2 
6-8--6-9 

--and VS execution groups 

9-7 
9-22 
3-39 
3-23 DISPLAY module 
7-17 DPRTY execution parameter (IBM) 

DSCT. See Data Set Control Table. 
DSGN command 10-6 

6-14,6-32 DSN FAR attribute 
DTIMS parameter, SPALIST macro 3-19 
Dumps. See Indicative dumps and thread 

resource dumps 
DUPLEX FAR attribute 
Duplex files 
DVMODIFY macro 
DVRB command 

6-32 
6-30,6-32,6-35 

3-15,3-17 
10-9 

DWS. See Dynamic Working Storage. 
DWSCHK parameter, SPALIST macro 11-21 
DYNALLOC macro 6-12--6-13 
Dynamic core pool 

facility 5-8--5-10,5-27 
Dynamic Data Queuing 

--and data set allocation 
- -defined 
--and execution mode 
--and global tables 
--log codes for messages 
--and mU1timessage queuing 

11-14 
1-5 
7-5 

2-23 
9-6 

3-24,11-13 ,11-22 

1-6 

--and MVS tuning recommendations 11-22 
--reserved ddnames 6-28 
--and Resource Audit 

and Purge 5-1--5-2 
--and serial restart 9-20--9-21 
--and system table 2-28 
--and thread resource dumps 5-22 

Dynamic File Allocation 1-6,6-9,11-23 
--and Link Pack facility 7-33 

Dynamic Linkedit Facility 3-42--3-44 
--and execution JCL 3-43,7-18 
--and Intercomm startup 7-9,7-10 

Dynamic Loading 
--described 1-7--1-8,3-40--3-41 
--and Link Pack feature 7-37 
--and MAXLOAD parameter, 

SPALIST macro 
--and PL/1 

11-8,11-11 

subsystems 3-52--3-53,3-58 
--and region organization 1-6 
--and resident subroutines 3-55 
--and Resource Audit and Purge 5-1 
--and spinoff snaps 8-10 
--of subroutines 3-56--3-58,7-13 
--and Subsystem Control 

Table entries 
--and Subsystem Controller 
--and System Tuning Statistics 
--and Test Mode 

3-31 
1-3 

8-23 
8-29 

--and thread resource dumps 5-22 
--and XA 

Dynamic subpoo1 area 
3-42,3-57--3-58 

1-7 
Dynamic Working Storage. See COBOL. 
Dynamically loaded 

core pools 
Dynamically loaded Front End 

Verb Table 
Dynamically loaded 

5-9 

3-13--3-14 

subroutines 3-56--3-58 
--and lAM access method 6-3 
--and Intercomm c10sedown 7-13,7-15 
--and Intercomm startup 7-11 
--and System Tuning Statistics 8-24 
--and XA 3-57--3-58 

Dynamically loaded 
subsystems 3-40--3-42,3-55 

--and lAM access method 6-3 
--and Intercomm c10sedown 7-13--7-14 
--and lntercomm startup 7-11 
--and System Tuning Statistics 8-24 
--under XA 1-6,1-8,3-42,11-8,11-11 

DYNLINK parameter, 
lCOMLINK macro 3-43,3-58 



DYNLLIB data set 
3-44,6-27,7-18,7-29,11-22 

DYNLLOAD module 3-57,3-58,7-22 
DYNLOAD parameter, 

ICOMLINK macro 3-43,3-58 
DYNLPRNT data set 3-43,6-27,7-18 
DYNLSUBS Csect 3-58,5-23 
DYNLWORK data set 3-43,6-27,7-18 
DYNPOOL parameter, ICOMLINK macro 5-9 
DYNVERB parameter, ICOMLINK macro 3-13 

ECB. See Event Control Block. 
ECB parameter, SYCTTBL macro 
ECT. See Edit Control Table. 

3-37 

Edit Control Table 1-12,3-17--3-18 
EDIT parameter, BTVERB macro 9-23,10-9 
Edit subroutines 3-18,3-27 
Edit Utility 

--and cancelled messages 
- -described 
--and Edit routine VCONs 
--and 1inkedit ordering 
--and message flow 
--and message header 
--and overlays 

3-6 
1-6 

3-27 
7-26 

3-2 
B-3 

3-46 
~ --requirements 3-17--3-18 
~ --and transaction security 

EDITRTN parameter, SPALIST macro 
ENABLE macro 

10-9 
3-18 
5-20 

ENDCHAR parameter, BDEVICE 
Enqueue/Dequeue facility 
ENVIRON global table 

macro 3-5 
3-45,5-19 

EOB parameter, DEVICE macro 
EOT parameter, DEVICE macro 
ERRADDR parameter, STORAGE macro 
ERRLOCK FAR attribute 
ESDS files (VSAM) 

2-23 
3-5 
3-5 
5-4 

6-32 

6-14,6-16,6-31,6-33,6-34 
ESETL macro (IBM) 6-4 
ESPIE macro (IBM) 8-5 

--and Intercomm startup 7-11 
--and PL/1 3-53 
--and XA 8-5--8-6 

ESS. See Extended Security System. 
ESTAE macro (IBM) 

--and Intercomm startup 
--and PL/1 
--and XA 

Event Control Block 

8-5 
7-8 

3-53 
7-28 

--and asynchronous overlay loader 1-8 
--and event queues 4-1,4-4--4-5 
--and File Attribute Records 6-31 
--and Interregion SVC 7-30 

1-7 

--and LOADPAGE 
--and WAIT list 

7-27 
4-3--4-5 

Event queues. See Queues, event 
Exclusive control 

--and access methods 
- -described 
--and File Attribute Records 

6-3--6-4 
1-4 

6-22,6-30--6-32,6-34 
--and subsystem program logic 11-7 
--time-out 6-41 
--and VSAM cross-region shared 

control 
EXEC list. See Execution lists. 
Execution groups. See VS 

execution groups. 

6-23 

Execution JCL (Intercomm). See JCL. 
Execution lists 4-4 

7-4--7-5,7-9,9-24 Execution mode 
Execution queues. See Queues, 

execution 
EXGRP parameter, SYCTTBL macro 

--described 3-33,7-27 
--and execution group processing 3-39 
--and Link Pack Area 7-37 
--and overlapped GET and READ/ 

WRITE processing 6-5 
--and Subsystem Control 

Table entries 
--and WQE Trace 

3-31,3-33,11-7 
4-3 

Experimental system modifications 
EXTDSCT. See External Data 

Set Control Table. 
Extended Security System 

- -defined 
--and interregion SVC 
--and library with INTSEC02 
--and 1inkedit ordering 
--and Log Input Facility 
--and Security file 
--and serial restart user exit 
--and startup user exit 
--and system tuning 
--and XA 

2-2 

10-1 
7-30 

7-6 
7-26 
8-26 

11-14 
9-23 
7-12 

11-26 
7-28 

External Data Set 
Control Table 

EXTONLY parameter, 
SPALIST macro 

6-36,6-39 

3-26--3-27,6-51 

FAB. See File Attribute Block. 
FAR. See File Attribute Record. 
Fast Message Switch facility 3-24 
Fast Snap facility 8-13--8-14,11-15 

--and Intercomm startup 7-8 



FASTSNAP data set 6-27,7-8,8-13--8-14 
FASTSNAP DCB 7-8,8-10 
FDR. See Format Description Record. 
FECM. See Front End Control Message. 
FECMDDQ processing 3-64 
FECMMOD module 3-25 
FECMRLSE processing 3-25 
FEMACGBL table 3-7,3-15,3-29 
FEMSG module 11-19 
FENETWRK sample table 2-28 
FESEND module 

--and message header B-2,B-3 
--and message sequence number 11-4 
--and output messages 3-3,3-5 
--and output user exit 3-22 
--and Test Mode 8-29 
--and user exits D-2 

FETABLE parameter, ICOMLINK macro 3-13 
FHCW. See File Handler Control Word. 
FHST command 6-9,6-46,11-3,11-23,11-26 
FHSTATS global 

(SETGLOBE) 
FIFO queuing method 
File Attribute Block 
File Attribute Record 

--and aliased files 
--and batch programs 
--comment statements 
- -described 
--examples 
--and exclusive control 
--and FAR data set 
--and file locking 

2-26,6-47--6-48 
3-36,11-12 
6-19,6-29 

--and Flip/Flop facility 

6-30,6-32,6-35 
6-51 

6-31,6-35 
6-29--6-34 

6-35 
6-4 

6-29,7-7 
6-33 

6-7--6-8 
6-6 

6-35 
6-32- -6-·34 

6-22 

- -and ISAM files 
- -messages 
--parameters 
--processing 
--and read-only data sets 
--and variable-length files 
--and VSAM local shared 

6-26 
6-6 

resources 6-16 
FILE command 

--and deal locating/reallocating 
files 6-9--6-13,6-27 

--and File Attribute Records 6-30 
--and file status display 

6-9,11-3,11-26 
--and locking/unlocking files 

6-13,6-17,6-33 
--parameters 6-9--6-10,6-13 
--and serial restart user exit 9-23 
--and VSAMCRS FAR attribute 6-17--6-18 

1-8 

File contention 
File Handler 

--access methods 
--BISAM 
--BSAM 
--dynamic buffering 
--dynamic deal location 

reallocation 
--exclusive control 
--file recovery 
--Flip/Flop facility 
--lAM 
--ISAM 
--overlapped GET and 

11-7,11-14 

6-2--6-18 
6-5--6-6 

6-5.6-6 
6-4 

and 
6-10--6-13 

6-3--6-4 
6-9 

6-7--6-9 
6-3 

6-2--6-6 

READ/WRITE processing 6-4--6-5 
--QISAM 6-2,6-4--6-6 
--QSAM 6-4 
--retry of ALLOC or DEALL 

after error 
--status of files while 

deallocated 

6-12 

--subtasking of DYNALLOC macro 
6-13 
6-13 

6-6 --undefined record support 
--variable length sequential 

file support 
--VSAM 

--cross-region 

6-6 
6-j,6-l4--6-18 

shared 
control 

--ISAM/VSAM 
compatibility 

--Local Shared 
Resources 

--sharing VSAM files 
--and closed loop detection 

deactivation 
--and closedown 
--components 

--abend protection 
--Data Set Control Table 
--initialization 
--processing 

6-23 

6-3,6-18 

6-15--6-16 
6-16--6-18 

4-13 
7-13 

6-19--6-23 
6-23 

6-19,6-21 
6-21 
6-22 

--QISAM scan mode via BISAM 6-22 
--termination 
--VSAM cross-region shared 

control 
--data set specifications 

--data set allocation 
--data set disposition 
--read-only data sets 
--required DCB parameters 
--required DD parameters 

6-23 

6-23 
6-24--6-29 

11-14 
6-27 
6-26 
6-25 

--reserved ddnames 
6-24--6-25,7-8 

6-27--6-29 

J 



--shareability of 
sequential data sets 6-26 

--SYSIN/SYSOUT data sets 6-27 
--described 1-3--1-4,6-1--6-2 
--File Attribute Records 

6-22,6-29--6-35 
--file control commands 6-9 
--and generalized subtasking 3-62 
--and Link Pack Module 6-52,7-33--7-34 
--and 1inkedit ordering 7-26 
--and message restart user exit 9-15 
--and MVS installation 7-22 
--options 6-41--6-45 

--conditional assembly 6-41 
--exclusive control time-out 6-41 
--IXFDSCTA options 6-43 
--subtasked GETs 6-42 
--user-specified DCBs 6-43--6-45 

--and overlays 3-39 
--and serial restart user exit 9-22 
--and spinoff snaps 8-11 
--Statistics Report 6-46--6-51 

--Local Shared Resources 
Statistics 

--and MVS tuning 
recommendations 

--statistics file 
--and system tuning 

6-48--6-49 

11-21--11-22 
6-13,6-50--6-51 

11-2 
--and subsystem program logic 11-7 

8-2 
9-18 

--and terminal input data sets 
--and unlabeled tapes 
--using separately from 

Intercomm 
File Handler Control Word 

6-51--6-52 
6-36,6-44 

File Load program 
3-17,3-20,12-24--12-29 

File Recovery 6-9,6-31,9-7,12-6--12-7 
File Table 2-28,3-23,12-25 

--and startup verification 7-10 
Fine Tuner commands 11-15--11-16,11-23 
Flip/Flop facility 6-7--6-9,12-45 
FLSH command 11-25 
FMCSWTO parameter, SPALIST macro 7-5 
Format Description Records 3-23 
FORTLINK procedure 2-6,2-8,2-12,3-55 
Fortran Language 3-55,3-58 
FPMIWTO parameter, SPALIST macro 7-5 
FQENUM global, IJKTRACE module 4-3 
Fragmentation, subpoo1s 11-10 
Free queue element list 4-1,4-3--4-4 
FREE parameter, SYCTTBL 

macro 3-47,11-10,11-16 
~ FREE=CLOSE JCL parameter 6-10,6-27 

1-9 

FRLOG data set 6-27 
Front End Control Message 3-25 
Front End Network Configuration Table 

--defined 1-11 
--and execution JCL 7-17,7-19 
--and Front End Verb Table 3-13 
--and locked verbs 3-11 
--and MVS installation 7-23 
--and system tuning 11-13,11-24 

Front End queues. See Queues, terminal 
Front End Teleprocessing 

Interface 1-1--1-4,4-1 
Front End Verb Table 

--and adding a subsystem 3-35 
--and conversational verbs 3-12 
--described 1-11,3-7 
--dynamic loading of 3-13--3-14 
--entries in 3-7 
--examples 3-8--3-10 
--and locked verb facility 3-11--3-12 
--and Network Table 3-13 
--and overlays 3-45 
--and priority verbs 3-11 
--and short verbs 3-11 
--and transaction codes 3-2 
--and transaction security 10-9 

FTUN command 3-47,3-53,8-7,8-18,11-3 
--and subsystem display 11-15--11-16 

FUNCNO parameter, 
USRTRACK macro 8-19--8-20 

General Purpose Subsystem 
3-34,9-23,11-19 

Generalized Front End 1-3,7-10 
Generalized Subtasking 

Facility 3-62--3-63,6-4,6-13,6-42 
--and Intercomm startup 7-9 
--and system tuning 11-11 

GENFTBLE macro 12-25 
GENINDEX macro 

--and PCENSCT macro 3-35,3-37 
--and Subsystem Control Table 3-28 
--and user-coded SCT index C-2 
--and VS execution groups 7-27 

GENSEC macro 10-11 
--illustrated 10-10,10-17 

GENSW parameter, SPALIST macro 9-8 
GET function 6-37--6-38,6-40,6-42 
GET parameter, 

SYCTTBL macro 
GETSPA macro 
GETV function 

--and ESDS files 

3-47,11-10,11-16 
7-37,D-2 

6-37--6-38 
6-34 



GFE. See Generalized Front End. 
Globals. See INTGLOBE,SETGLOBE,SETENV, 

LOGSETGB,DDQENV. 
GPSS. See General Purpose Subsystem. 

Histograms. See Traffic histograms. 
HPRTY parameter, 

BTVERB macro 3-ll,3-36,B-3 

lAM access method 6-3,6-32,6-42 
--and IAMLIB 3-41,3-43--3-44,6-3,7-6 

IAIMGOCR module 2-24 
IBM 2740 Display Station 

8-1,11-13,11-18 
IBM 2741 Display Station 8-1 
IBM 2780 Display Station 8-1 
IBM 3270 Display Station 

--and BTAM terminal simulation 
facility 8-1--8-2,8-4--8-5 

--and CREATSIM utility 
8-2,8-4,12-36--12-37 

--and FTUN/SSUP commands 11-16 
--and MVS tuning 11-22 
--and Polling List Table 11-13 
--and SIM3270 module 8-5,12-37 
--and transmission 

considerations 
IBMB ... modules (PL/l) 

11-18 
3-54 

6-14,6-27 
6-32,11-22 

3-43,7-6 
5-10,5-27,7-25 

3-43,7-9 

ICF catalogues (IBM) 
ICOMBDAMXCTRL FAR attribute 
ICOMCESD module 
ICOMCHN Csect 
ICOMDYNL module 
ICOMFEOF utility 
--data set recovery 
- -described 

requirements 12-41 
12-40 

--execution JCL 
--and Flip/Flop facility 

12-41 
6-7 

12-44--12-46 
9-17,9-19 

12-40 
6-28,6-29,6-35,6-51 

5-10,5-27,7-25 

--and LOGMERGE utility 
--and message restart 
- -WTOR option 

ICOMIN data set 
ICOMINX Csect 
ICOMLINK macro 

--and automated restart 
--and Basic Security 
--and checkpointing 
--and COBOL subsystems 
--and dynamically loaded BTVRBTB 
--and dynamically loaded core 

pools 
--and dynamically loaded 

subroutines 

9-24 
10-20 

9-15 
3-48 
3-13 

5-9 

3-58 

1-10 

--and dynamically loaded 
subsystems 3-41 

--and File Handler data set 
control table 

--and IJKCESD Csect 
--and IJKWHOIT module 
--and IJKTLOOP processing 

6-21 
4-10 
4-10 
4-13 

--and Intercomm 1inkedit 
--and Link Pack facility 

7-2 
7-36 

--and 1inkedit generation 2-3,7-2--7-4 
9-15 
3-46 
3-20 
3-40 
3-54 

--and message restart 
--and MONOVLY processing 
--and Output Format Table 
--and Overlay A subsystems 
--and PL/1 subsystems 
--and QISAM scan mode via BISAM 6-22 

End 
3-13 
7-12 

2-3 

--and separate assembly of Front 
Verb and Network Tables 

--and startup user exit 
--and SYMINCL library 
--and System Accounting and 

Measurement facility 
--and system cancel (PMIDEBUG) 
--and System Tuning Statistics 
--and Test Mode 
--and Transient Subroutine 

8-19 
7-23 
8-23 
8-29 

Overlay Area 
ICOMPOOL Csect 
ICOMPOOL macro 

3-61 
5-2,5-10,5-27,7-25 

--and adding a subsystem 
--described 
--and dynamically loaded 

core pools 
--LOWLIM parameter 
--and MVS tuning 

considerations 
--and MVS/370 tuning 

considerations 
--and NEWPOOLS module 
--parameters 
--sample JCL 

3-35 
5-7--5-8 

5-9 
5-11 

11-20--11-21 

7-27 
5-4,5-10 

5-7 

--and thread resource dump 
5-8 

5-23 
5-2 

5-11 
3-55 

8-9 

--and user-defined storage pools 
--wastage 

ICOMSBS table 
ICOMSNAP Csect 
ICOMTASK module 
ICOMVCON module 
ICPOOLxx table 
IDCAMS options, VSAM 
IEBGENER utility (IBM) 

--and Intercomm log file 
IGCICOM. See Interregion 

3-63,6-13,6-42 
3-43,7-6 

5-8--5-10 
6-14,6-32,6-34 

8-12,12-41 
9-4,9-19 

SVC. 

J 

J 



IJKCESD module 
IJKDELAY module 

4-2,4-10,4-13,7-9 
4-11--4-12 

IJKDSP01. See Dispatcher. 
IJKPRINT module 

4-2--4-3,4-13,6-13,11-23 
IJKTHRED entry point 5-21 
IJKTLOOP module 4-12,7-11,8-6,11-26 
IJKTRACE module 4-2--4-11,4-13 

--and FQENUM global 4-13 
IJKTSTOP entry (IJKTLOOP) 4-12--4-13 
IJKWHOIT module 4-2,4-10--4-11,4-13 
ILBO ... modules (COBOL) 3-48--3-49 

--and Intercomm startup 7-9 
IMASPZAP utility (IBM) 2-17 
IMDPRDMP utility (IBM) 8-14 
IMCD command 7-13,8-5,10-9 
In-core Table Sort 1-6 
Indicative dumps 

- -described 
--and spinoff snaps 
--and STRT/STOP commands 
--and system tuning 

INDUMP parameter, 

8-7--8-9 
8-11 

8-7 
11-15,11-19 

SPALIST macro 8-7--8-8 
SYCTTBL macro 8-7,11-16 

Innovation Access Method. See lAM. 
Input-output block 6-40 
Installation 

--execution JCL 7-4--7-8,7-17--7-19 
--interregion SVC 
--JCL for local terminals 
--JCL for remote terminals 
--JCL procedures 
--libraries 
--Link Pack Feature 
- -linkedit 
--linkedit ordering 
--and maintenance 

responsibilities 
- -MVS 
--MVS sysgen considerations 
- -MVS/370 
--overview 
--page pre10ading 
--system control functions 
--system control tables 
--system global tables 
- -XA 

INTASMF procedure 
INTBDTnn data sets 
INTBDTET data set 
INTBSKRM data set 
INTDBLOK module 

7-30--7-31 
7-17,7-19 
7-17,7-19 
2-5--2-18 
2-1--2-4 

7-31--7-36 
7-1--7-4 

7-25--7-26 

2-19--2-22 
7-22--7-23 
7-28,7-30 

7-24 
2-1 

7-22,7-24 
2-23 
2-28 

2-24--2-27 
7-28--7-29 

2-6 
6-29 
6-29 
6-29 
9-15 

1-11 

INTDEQ macro 5-19,6-5,6-23 
INTENQ macro 

--and overlapped GET and 
READ/WRITE processing 6-5 

--and Resource Audit and Purge 5-1 
--and thread resource dump 5-22--5-23 
- -use of 5-19 
--and user exits 5-1 
--and VSAM cross-region shared 

control 6-23 
Intercomm commands. See 

System commands. 
Intercomm tables 1-10--1-12,2-23--2-28 
--listing of A-1--A-3 
See also Tables. 

Intercomm Thread Control Block 
INTERLOC data set 

8-8 
6-7--6-8 

INTERLOG data set 
--and BTAM terminal simulator 

facility 
--copying of 
--DD statement 
- -described 
--entries 
--and File Attribute 

8-4 
9-4 

6-28,7-6,7-18 
9-1--9-4 
9-5--9-6 

Records 6-30,6-32--6-33 
--and Flip/Flop facility 6-7--6-8,9-19 
--and ICOMFEOF utility 12-40--12-41 
--and Intercomm startup 7-9,7-10 
--and LABEL parameter 11-15 
--log buffers 7-10,11-14,11-22 
--log codes 11-4,11-6,11-14 
--and LOGANAL utility 11-2,12-23 
--and logging user exit 9-7 
--and LOGMERGE utility 12-44--12-46 
--and LOGPRINT utility 12-1,12-3 
--and message accounting 9-12 
--and MVS tuning 

recommendations 11-22 
--reb1ocking of 9-4,9-19,12-44 
--and restart/recovery JCL 9-16--9-18 
--and System Accounting and 

Measurement 8-15,8-20,11-3 
--and system tuning 11-2 
--and Test Mode 8-29 
--tracing messages on 11-3--11-6 

Interregion SVC 
--described 
--and 
--and 
- -and 
- -and 

Fast Snap facility 
MVS installation 
MVS operation 
VSAM files shared 

regions 

7-30 
8-13 
7-22 

7-21,11-17 
across 

6-18 



--and VSAMCRS FAR attribute 
INTGLOBE global table 

--described 
--Edit Utility requirements 
--and File Handler options 
--function 
- -listing 
- -Output Utility 

requirements 

6-51 

2-24 
3-18 

6-41--6-42 
2-23 

2-24--2-25 

3-19 
--and Resource Management options 5~4 

4-1 
12-39 

12-44,12-46 

--and task management 
INTKEYFL data set 
INTLGOLD data set 
INTLOAD module 

3-41--3-42,3-44,3-55,7-22 
INTPOST macro 4-3 
INTSAVE save area (RMSAVE regs) 5-21 
INTSCT table 2-28,3-19,3-23,3-28--3-33 

--and RESOURCE macro 3-31,11-8 
--sample 3-30 

INTSECOO module 6-47,8-26 
INTSEC02 module 7-6 
INTSPA table 

--described 2-28,3-26 
--and File Handler 6-51 
--and Interregion SVC 7-30 
--and Log Input facility 8-26 
--and Resource Management 5-6,5-10 
--and spinoff snaps 8-11 

INTSTORF module 6-47 
INTSTORn data sets 6-28,8-30 
INTSTOR9 data set 8-5 
INTSTS module 7-11,8-23 
INTSTSPR Csect 8-23 
INTWAIT macro 3-62,4-1,4-11 
lOB. See Input-output block. 
IOCODE parameter, STATION macro 
IOEXIT user exit 
IPOST Queue 
ISA for PL/1 subsystems 
ISAM files 

--and conditional assembly of 
File Handler 

--creating and defining 
--and DISPLAY module 
--and dynamic buffering 
--and exclusive control 
--and File Attribute 

3-16 
5-20 

4-1--4-3 
3-53 

6-42 
6-6 
1-6 
6-4 

6-3--6-4 

Records 6-31,6-32--6-34,11-22 
--and GET function 6-38 
- -and lAM 6-3 
- -and JCL 6-24 
--and LOCATE facility 6-40 

1-12 

--and MVS tuning 
recommendations 11-20,11-22 

--and subsystem program logic 11-7 
--VSAM/ISAM compatibility 6-3,6-18 

ITCB. See Intercomm Thread Control 
Block. 

IXFB37 module 6-7--6-9,6-23,6-47,12-45 
--user exit (USERB37E) 6-8--6-9 

IXFCHKPT module 6-47 
IXFCREAT module 6-47 
IXFCTRL module 6-47 
IXFDSCTA. See Data Set Control Table. 
IXFDSCT1 module 6-9,6-21,6-47,6-52 
IXFDSCT2 module 6-21,6-47 
IXFDSCT3 module 6-21,6-47 
IXFDYALC module 6-47 
IXFDYNAM module 7-26,7-33 
IXFFAR module 

--and batch processing 6-51 
--described 6-22 
--and FAR messages 6-35 
--and File Attribute Records 6-29 
--and File Handler Statistics 6-47 
--function 6-19 
--and startup 7-9 

IXFHNDOO module 6-21,6-47,6-51,11-20 \ 
IXFHND01. See File Handler. ~ 
IXFLOG module 6-47 
IXFMONOO Csect 6-19,6-51,7-9 
IXFMON01 Csect 6-19,6-36 
IXFMON09 Csect 6-23,6-42,7-13 
IXFQISAM module 6-22,6-47,7-33 
IXFRPTIQ entry point 6-46 
IXFRPT01 module 6-46--6-47,7-10 
IXFRVRSE module 6-47 
IXFSNAPL module 6-47 
IXFVERF1 module 6-47 
IXFVSCRS module 

6-17--6-18,6-23,6-47,6-51 

JCL 
--to assemble 2-6,2-11--2-14 
--to assemble and link 2-6,2-11 
--for automated restart 9-24 
--for AUTORSET utility 12-43 
--for BTAM terminal simulator 8-2--8-5 
--for BTAM terminals 7-19 
--for CHANGER utility 12-42 
--for CHEKPTFL data set 9-17 
--to compile a COBOL 

program 2-6,2-12--2-13 
--to compile and link a COBOL \ ... 

program 2-6,2-12--2-14 ~ 



--to compile and link a 
Fortran program 2-6,2-12 

--to compile and link a 
PL/1 program 2-7,2-15--2-16 

--to compile a PL/1 program 2-7,2-16 
--for CREATEGF utility 12-32 
--for CREATSIM utility 12-35 
--for data sets 6-24--6-25 
--for dynamic 1inkedit 3-43--3-44 
--for execution of Intercomm 

7-4--7-8,7-17--7-19 
--for FARs (ICOMIN) data set 6-35 
--for Fast Snap dump printing 8-14 
--for file load uiti1ty 12-26 
--for ICOMFEOF utility 12-41 
--for Intercomm pools module 5-8 
--Intercomm-supp1ied procedures 

2-5--2-18 
--for INTERLOG data set 9-16--9-18 
--for KEYCREAT utility 12-39 
--for LIBCOMPR utility 12-34 
--and libraries 2-3--2-4 
--for Link Pack feature installation 

7-34--7-36 
--for 1inkedit of Intercomm 7-2--7-4 
--for 1inkedit of 

subystem 
--for LOGANAL utility 

2-14--2-15,3-41 
12-19--12-23 

--for Log Analysis global 
changes 

--for LOGDISK data set 
--for Log Input facility 
--for LOGMERGE utility 
--for LOGPRINT utility 

12-18 
9-18 
8-26 

12-44--12-46 

--for LOGVRBTB table generation 
12-3 

12-19 
7-35 
3-40 

12-26--12-29 
12-33 

9-18--9-19 
8-19,8-21 

3-29 

--for LPSPALIB data set 
--for Overlay A 1inkedit 
--for PMIEXLD utility 
--for PRT1403 utility 
--for RESTRTLG data set 
--for SAM 
--for SCT (INTSCT) 
--for SIMCRTA utility 
--for SMLOG data set 
--for SPA (INTSPA) 
--for SPINOFF snap printing 
--for STATFILE data set 
--for STRTUPSW data set 
--for subsystem with INTLOAD 
--for SYSPRINT data set 
--for Test Mode 
--to update symbolic library 

--for utility execution 

12-38 
5-11 
3-29 
8-12 
6-50 
9-24 
3-41 
6-51 
8-30 

2-13 - -2-14 
2-16--2-18 

1-13 

JES (IBM) 
JOBCAT DD statement 
JOBLIB data set 

11-19,11-24,11-26 
6-14,7-18 

7-6 
See also STEPLIB data set. 

KEYCREAT utility 
KEYFLIP module 
KSDS files (VSAM) 

6-24,12-39 
6-51,7-25,7-30--7-31 

6-14,6-32,6-49 

LANG parameter, 
SYCTTBL macro 

LCOMP macro 
3-38,3-42,3-48,3-55 

3-11--3-12 
--and terminal queues 

LEN parameter, ICOMPOOL macro 
7-7 

5-7--5-8 
LGBLK parameter, 

SPALIST macro 
LGNUM parameter, 

9-3,9-15,9-17,11-14 

SPALIST macro 
LIBCOBDL procedure 
LIBCOMPR utility 
LIBE procedure 
LIBEASM procedure 
LIBECOB procedure 
LIBCOBDL procedure 
LIBELINK procedure 
Libraries 

9-15--9-17,11-14 
2-6,2-8,2-13 

Line Control 
LINEGRP macro 

12-34 
2-6,2-8,2-13 
2-6,2-8,2-13 
2-6,2-8,2-13 
2-6,2-8,2-14 
2-6,2-8,2-14 
2-1--2-4,7-6 

1-2,1-10 

--and BTAM terminal 
facility 

--and buffer pools 

simulation 
8-3--8-4 

11-13 
--examples 
--and MVS installation 
--and remote terminals 

accessed via BTAM 
--and startup 

Link Pack facility 

7-19 
7-23 

7-17 
8-3 

--and batch programs using 
File Handler 6-52,7-39 

7-31 
7-33 
6-9 

4-10 
--and MVS tuning considerations 11-21 

- -described 
--eligible components 
--and file flip/flop processing 
--and IJKCESD module 

--and nonresident service 
routines 

--and preparation of the 
Intercomm region 

--and preparation of the 
Link Pack Module 

--and preparation of the 
operating system 

--and startup 
--and Test Mode 

1-7 

7-35--7-36 

7-34--7-35 

7-34 
7-8 

8-29 



--and user routines in Link 
Pack Area 7-36--7-39 

--and VSAM files shared across 
regions 

LINKAGE macro 
--and Assembler Language 

subsystems 
--and Link Pack Module 
--and Resource 

6-17 

5-17 
7-37 

Management 
--and STORAGE macro 
--TEST parameter 
--and thread dump 

5-4,5-6,5-17,5-22 
5-4 

7-37 
5-22 

Linkedit. See JCL. 
Linkedit considerations 

--Assembler Language subsystems 3-47 
10-20 --for Basic Security 

--for batch programs using the 
File Handler in Link Pack 6-52 

--COBOL subsystems 3-47--3-49 
--control statements 2-3,7-1--7-2 
--for dynamically loaded programs 11-8 
--for File Recovery log printing 12-6 
--Fortran subsystems 3-55 
--and ICOMLINK macro 2-3,7-2 

See also ICOMLINK macro 
--of Intercomm 7-2--7-4 

--and MVS libraries 7-2 
--for Link Pack feature 7-33--7-36 
--for Log Analyses utility 12-19 
--ordering of 2-3,7-25--7-26,11-26 
--for Output Utility reports 3-20 
--and PARM overrides 2-11,7-3 
--and pool Csects 5-10,5-27,7-25 
--PL/1 subroutines 3-58 
--PL/l subsystems 3-53--3-54 
--for PMIEXLD utility 12-24 
--for Resourse Management 5-10,5-19 
--for SAM report 8-21 
--for SIMCRTA utility 12-38 
--for SPA and SCT 3-29 
--and subroutine interfaces 

--dynamically loaded 
subroutines 3-56--3-58,11-8 

--resident subroutines 3-55--3-56 
--Subroutine Overlay 

Region 
--subroutines linked with 

dynamically loaded 
subsystems 

--Transient Subroutine 
Overlay Area 

--of subsystem with INTLOAD 

3-61--3-62 

3-56 

3-59--3-61 
3-41 

1-14 

Page J 
--for subsystems under XA 3-42 
--and XA 7-29 

Live operation 7-17--7-19 
LKEDE procedure 2-6,2-8,2-14 
LKEDO procedure 2-6,2-8,2-14 
LKEDP procedure 

--described 2-14--2-15 
--function 2-6 
--and Intercomm 1inkedit 7-2 
--and Link Pack Module 7-35 
--parameters 2-8 

LKEDPL1 procedure 2-6,2-8,2-15 
LKEDT procedure 2-6,2-8,2-15 
LMAP command 11-23 
LMAP module 7-33 
LMOD parameter, LKEDP procedure 3-41 
LNAME parameter, 

SUBMODS macro 3-56--3-57,5-23,8-8 
LOAD command 3-38--3-41,3-47,3-53,9-23 

--and DWS/ISA size changing 11-16 
--and ICOMDYNL 3-43 
--and SPALIST MAXLOAD value 11-11 
--and thread processing 11-23 

LOADNAM parameter, 
SYCTTBL macro 3-41--3-42,3-53 

LOADOVLY module 3-40,3-61 \ 
LOADPAGE module 7-24,7-27,7-29 ~ 
LOADSCT module 3-41,3-43 
Local Shared Resources. See VSAM. 
LOCATE facility 6-39--6-41,6-44 
LOCK command 3-11--3-12,9-23 
LOCK FAR attribute 6-33 
LOCK parameter, BTERM macro 3-11 
LOCK parameter, FILE command 6-13 
LOCK parameter, LCOMP macro 3-11 
LOCK parameter, LUNIT macro 3-11 
Locked files 6-13,6-33 
Locked verbs. See Verbs, locked. 
LOCKEXE parameter, BTVERB macro 3-12 
Log Analysis. See LOGANAL utility. 
Log codes 9-5--9-6,11-4,11-6,11-14 

--and ICOMFEOF utility 12-40--12-41 
--and log merge user exit 12-46 
--and LOGPRINT utility 12-5 

Log Input facility 7-10,8-25--8-26,11-2 
LOG parameter, BTERM macro 11-14 
LOG parameter, LUNIT macro 11-14 
LOG parameter, SUBSYS macro 11-21 
LOG parameter, 

SYCTTBL macro 8-15,11-14,11-16,11-21 
LOGANAL utility 

--creating load module 12-19 '\.' 
--described 12-8 ~ 



--execution of 12-19--12-23 
--function 11-2 
--generating LOGVRBTB 12-18--12-19 
--generation parameters 12-16--12-18 
--installation of 12-16 
--JCL for executing 12-23 
--linkedit of 12-19 
--and message tracing 11-23 
--response time reports 12-11--12-16 
--traffic histograms 12-8--12-10 

LOG CHARS table 2-28 
LOGDCLGB member 2-23,12-16--12-17 
LOGDISK data set 6-28,9-16,9-18 
Logging 9-3--9-7,11-13,11-18,12-1 

See also INTERLOG. 
SPALIST macro 8-26 LOGINDO parameter, 

LOGINPUT. See Log 
LOGINPUT data set 
LOGMERGE utility 

- -described 
LOGMERGX user exit 

Input facility. 
8-25--8-26 

9-4,9-19,9-24 
12-44--12-46 

12-46 
LOG PRINT utility 

--control records 12-3--12-7 
--described 12-1--12-3 
--JCL for executing 7-18,8-30,12-3 
--and message header B-3 
--sample output of 12-1--12-2 
--and system tuning 11-2,11-4 
--and undocumented log codes 12-5 

LOGPROC module 9-14--9-15,9-18--9-19 
--and Intercomm startup 7-10 

LOG PUT module 
--and File Handler Statistics 
--and logging user exit 
--and LOGTROUT 
--and Message Accounting 
--and message header 
--and restart JCL requirements 
--and suppression of log 

6-47 
9-7 

11-14 
9-12 

B-3 
9-16 

entries 11-14 
LOGSETGB member 2-23,12-16--12-18 
LOGTROUT table (LOGPUT) 11-14 
LOGTRT table (ICOMFEOF) 12-41 
LOGTRT table (LOGPRINT) 12-5 
LOGTRT table (LOGPROC) 9-14 
LOGVERB macro 12-16,12-18--12-19 
LOGVRBTB table 

12-12,12-16,12-18--12-19 
4-12--4-13 

ICOMLINK macro 4-13 
7-11,7-17 

Loop tracing 
LOOPTIM parameter, 
Low core condition 
LOWLIM parameter, l.. ICOMPOOL macro 5-7--5-8,5-11,5-23 

1-15 

LPENTRY macro 
LPINTFC macro 
LPINTFC module 
LPSPA macro 
LPSPA module 

7-38--7-39 
7-35 

7-31,7-35,7-38--7-39 
7-34--7-35 

--assembly of 7-34 
--linkedit of 7-36 
--and LPENTRY macro 7-39 
--and startup 4-10,7-31 
--and XA 7-28,7-35 

LPSPA parameter, ICOMLINK macro 7-36 
LPSPALIB data set 4-10,4-13,6-28,7-35 
LPSTART module 6-51,7-8,7-31,7-39 
LPVCON macro 7-38--7-39 
LSR buffers. See VSAM. 
LSR FAR attribute 

6-13,6-31--6-34,6-51,11-22 
LSR pools. See VSAM. 
LSYNCH parameter, 

BTERM macro 9-16,11-13,11-18 
LSYNCH parameter, 

LUNIT macro 9-16,11-13,11-18 
LSYNCH parameter, SYCTTBL macro 

--and critical subsystems 9-4 
--and synchronous logging 9-16 
--and system tuning 11-13,11-16,11-18 

LUNIT macro 
--CONV parameter 
--LOCK parameter 
- -LOG parameter 
--LSYNCH parameter 
--RESTART parameter 
--and terminal queues 

3-12 
3-11 

11-14 
9-4,11-14,11-18 

9 - 2,9 -13,11-14 
7-7 

MACLIB library 
- -and XA 

Maintenance 
MANAGER module 

2-3--2-4,7-22,7-24,7-29 
7-28 

2-19--2-22 

- -assembly of 5-4,5-6,5-19,7-22 
--and core use statistics 5-11 
--described 
--and dynamically 
--execution of 
--linkedit of 
--and save areas 
--and SETGLOBE 

5-3 
loaded pools 5-27 

5-11 
5-10,5-19,7-22 

--and SPA Extension 

5-4 
5-6,5-19 

5-18 
5-21--5-27 
8-15--8-20 

3-2,3-6 
3-26 

--and thread resource dump 
MAPACCT macro 
MAPIN module 
MAPOUT module 
MAXLOAD parameter, 

SPALIST macro 3-41,7-10,11-11,11-20 



MAXSIGN parameter, 
STATION macro 10-5,10-15 

MCP. See Message Control Program. 
MDELY parameter, SPALIST macro 11-16 
Message Accounting 9-7,9-11--9-12 
Message cancellation 3-5--3-7 
Message Collection 

--and blocking and unblocking 
of disk queues 

--and Link Pack facility 
--and message header 
--and message sequence number 
--and PL/l subsystem interface 
--and response time reports 
--and serial restart 
--and time controlled messages 

Message Control Program (TCAM) 
Message header 

--and broadcast groups 
- -format 
--and indicative dumps 
--and logging user exit 

11-12 
7-33 

11-4,B-3 
11-4 
3-53 

12-15 
9-21 
3-64 
1-2 

3-16 
B-l--B-3 

8-8 
9-7 
3-6 --and message cancelled condition 

--and message sequence number 
--and priority verbs 
--and sign-on/sign-off security 

11-4 
3-11 
10-8 
3-37 --and subsystem identifier 

--and Test Mode 8-27 
Message Management 

--Back End Table specifications 
for the utilities 

--Broadcast Table 3-16 
--Change/Display utilities 3-23 
--Device Table 3-15--3-16 
--Edit Utility 3-17--3-18 
--Message Mapping Utilities 3-17 
--Output Utility 

--adding OFT entries 
--error messages 
--user exit USROTEDT 
--user exit USROUTCK 

--DDQ message status 
--flushing of messages 

--log codes for 
--and message restart 
--and MSGHUSR code 
--SSFL command 

See also SSFL command. 
--and USRCANC user exit 

--Front End Verb Table 
--conversational verbs 
--entries 
--example 

3-20 
3-21 
3-22 
3-22 

9-6 

9-5--9-6 
9-12 

9-6,B-3 
11-16 

3-5--3-7 

3-12 
3-7 

3-8--3-9 

1-16 

--locked verb facility 
--priority verbs 

3-11--3-12 
3-11 

--separate assembly of the 
Verb and Network Tables 

--message flow 
3-13 

--input messages 3-2--3-4 
--message cancellation user 

exit 
--message cancelled condition 

3-5 
3-6 

--message/subsystem 
cancellation 

--subsystem stopped 
condition 

--subsystem time-out 
--message processing, 

delaying of 

3-5--3-7 

3-5--3-7 
3-5 

11-16 
--message processing facilities 

--Front End Control Message 
facility 3-25 

--intermediate message data 
storage 

--message switching 
--multimessage queuing 
--Page Facility 
--and system tuning 

3-26 
3-24 

3-24--3-25 
3-26 

11-16 
--queue displays. See TALY and 

FTUN commands. 
--subsystem queue 

specifications 
--System Parameter Area 

3-36--3-37 
3-26--3-27 

--time controlled message 
processing 

Message Mapping Utilities 
--and Broadcast Table 
--commands 
--data sets for 
--and DDQ 

3-64--3-65 

--and disk-resident tables 

3-16 
11-23 

2-2 
11-13,11-22 

1-7 
8-29 

11-16 
1-5,3-2 

7-26 
condition 3-6 

--and FESEND 
--and FTUN command 
--function 
--and linkedit ordering 
--and message cancelled 
--and message mapping 

definitions 1-12 
--and message-ending characters 3-5 
--and printer messages 11-13,11-22 
--requirements 2-28,3-17 
--and SPALIST STOCORE parameter 11-11 
--and startup initialization 7-11 
--and Store/Fetch strings 11-11 
--and Test Mode 8-29 



Message recovery. See 
Restart/recovery. 

Missing end of file recovery 12-40 
MMN number. See MSGHMMN. 
MMNCL parameter, SPALIST macro 11-15 
MMU. See Message Mapping Utilities. 
MMUC command 11-23 
MMUSTART module 7-11 
MMUVTBL table 2-28 
MNCL command 11-15 
MNCL parameter, SYCTTBL macro 

--and c1osedown statistics 7-13--7-14 
--defined 11-8,11-15 
--and Dispatcher WQEs 4-2 
--and Fortran subsystem 3-55 
--modification of 11-15--11-16 
--and NUMCL parameter 11-12 
--and overlapped GET and READ/ 

WRITE processing 
--and scheduling 

6-5 
3-37 
9-20 

11-8- -11-9,11- 21 
6-14 

--and serial restart 
--and system tuning 
--and VSAM ESDS files 

MODCNTRL macro 
--and Assembler Language 

programs, 3-55,3-58 
--and dynamically loaded 

subroutines 3-58 
3-55 
5-1 

5-22 
2-2,2-28 

2-2 
2-2,7-6,8-20 

10-18 
2-2,2-8,2-28,7-34 

3-31,3-44--3-46 
ICOMLINK macro 3-46 
SPALIST macro 11-21 

2-28,11-19 

--and resident subroutines 
--and Resource Audit and Purge 
--and thread resource dump 

MODLIB library 
MODMDF library 
MODREL library 
MODSEC library 
MODUSR library 
MONOVLY module 
MONOVLY parameter, 
MRCSALN parameter, 
MRMCT table 

--and XA 
MROTPUT module 
MRQMNGR module 

7-28 
11-9,11-21 

11-4 
MRS. See Mu1tiregion Support. 
MRSTART module 7-9 

9-12 MSGAC module 
MSGCOL. See Message 
MSGHBMN field 
MSGHDRC member 
MSGHLOG field 
MSGHMMN field 

--and System Tuning 
MSGHMRDX field 

Collection. 
8-24,8-28,11-4 

10-8,12-46 
9-14 

5-23,9-12,11-4 
Statistics 8-24 

9-14 

1-17 

MSGHRETN field 
MSGHRSC field 

--and Log Input Facility 

3-6 

--and message restart user exit 
8-26 
9-14 
9-23 --and serial restart 

--and SYCTTBL macro 
- -and Test Mode 

3-37 
8-27--8-28 

--and time controlled messages 3-64 
MSGHRSCH field 

- -and 
--and 
- -and 

Log Input Facility 
message restart user exit 
serial restart 

8-26 
9-14 
9-23 

--and SYCTTBL macro 
--and Test Mode 

3-37 
8-27--8-28 

--and time controlled messages 3-64 
MSGHSSC field 9-21--9-22 

--and time controlled 
MSGHSSCH field 

messages 3-64 
3-33,9-21--9-22 

--and time controlled messages 3-64 
MSGHTID field 

3-16,8-27--8-28,9-14--9-15 
MSGHUSR field 3-11,3-36,B-2--B-3 
MSGHVMI field 

--and FESEND 
--and LOGVRBTB table 
--and Output Utility 

B-2 
12-18 

requirements 3-19 
--and overlays 3-45--3-46 
--and response time reports 12-12 
--and sign-on/sign-off security 10-8 
--and Test Mode 8-27--8-28 
--and time controlled messages 3-64 

Mu1tiregion Support 
--and abend interception 
--and Automated Restart 
--and Basic Security 

8-6 
9-24,12-43 

10-20 
--and BTAM terminal simulator 

facility 
--and c1osedown 
--control command (COMM) 

8-2 
7-13 

--and cross-memory post failure 
11-3 

8-6 
1-10 - -defined 

--and Intercomm startup 
--and interregion SVC 
--and 1inkedit ordering 
--and locked verb facility 
--and log codes 
--and Log Input Facility 
--and LOGANAL utility 
--and message restart 

7-9,7-11 
7-31 
7-26 
3-12 

11-4,11-6 
8-25 

12-15,12-23 
9-11 

--and message restart user exit 9-14 
11-6 
7-27 

--and message transfer time 
--and MVS installation 



--and MVS tuning 
recommendations 

--and Network Table 
--and Output user exit 
--and response time 

11-21--11-22 
3-l3 
3-22 

reports 12-11--12-12,12-15 
--and serial restart 9-21 
--and STAEEXIT 8-6 
--and subsystem PRTY 11-9 
--and system statistics displays 11-3 
--and System Tuning Statistics 

8-23--8-24 
--and Test Mode 8-29 
--and Verb Table 3-13 
- -and XA 7 - 28 

MULTISPA module 6-52,7-39 
Multitasking. See Subtasking. 
MVS (MVS/370 and MVS/XA) 

--and c1osedown return codes 7-13 
11-14 

8-l3 
6-10 

7-22--7-23 

--and data set allocation 
--and Fast Snap facility 
--and FILE command 
--installation 
--and Intercomm 
--and Intercomm startup 
--and Interregion SVC 
--and Link Pack facility 

iii,l-l 
7-8,7-11--7-l3 

7-30--7-31 

7-31,7-34--7-35 
--and linkedit RENT parameter 2-5 
--and LOGPUT block size 9-17 
--operation 7-21--7-22 
--and operator cancel 8-7 
--ORDER statements 7-2 
--and paging data sets 11-14 
--and page fixing 7-21--7-22 
--and page pre loading 7-21--7-22 
--Program Properties Table 7-17 
--and RCB table 5-16 
--response time considerations 11-17 
--save area 7-8,7-37 
--and STAEEXIT 6-14,8-6 
--and swapping 7-9,7-22,11-17 
--and sysgen 7-28,7-30 
--and SYSOUT data sets 6-27 
- -system dump 8-7 
--and terminal queue definitions 11-13 
--tuning recommendations 11-19--11-22 
--and VSAM file support 6-14 
--and 30A abends 5-17 
--and AOA abends 5-17 

MVS/XA. See XA. 
--incompatible macros and XA 

MVS/370 
--installation 

7-28 

7-21--7-24 

1-18 

--and Intercomm 
--and page faults 
--and page pre10ading 
--and program checks 

iii, 1-1 
7-21 

7-21,7-27 
8-5 

7-27 
7-27 
4-2 

--and subsystem considerations 
--and system tuning 

MXSDTHD parameter, VCT macro 

NAME parameter, SUBMODS macro 3-56 
NCP parameter (DCB) 

--and BSAM/BISAM files 6-5 
--and dynamic file deallocation and 

reallocation 6-12 
--and Flip/Flop facility 6-7--6-8 
--and INTERLOG data set 9-16 
--and NCPWAIT FAR attribute 6-31,6-33 
--and required DCB parameters 6-25 
--and variable length files 6-6 

NCPWAIT FAR 
attribute 6-6,6-8,6-31,6-33 

Network Configuration Table. See 
Front End Network Configuration 
Table. 

NEWPOOLS table 2-28,5-4,5-8--5-10 
NEWSNAP data set 6-28,8-11,8-13 
NOPROT, XA sysgen parameter 7-28 
NQTIM parameter, SPALIST 

macro 
NRCD command 

5-19,11-19 
7-l3,8-5,10-9 

NTIMS parameter, SPALIST 
macro 

NULLFILE data set 
3-19,11-10 

6-28 
5-7 NUMBER parameter, ICOMPOOL macro 

NUMCL parameter, SYCTTBL macro 
--and data set contention 11-19 

3-36,11-12 - -defined 
--and MVS tuning 

recommendations 
--and terminal queues 
--and thread hung user exit 

NUMWQES global 

11-21 
11-l3 

5-20 
4-1--4-2 

Off-line File Load utility 10-18,12~24 
Off-line utilities. See Utilities, 

offline. 
OFT. See Output Format Table. 
OPEN FAR attribute 

--and Flip/Flop facility 
--and MVS tuning 

recommendations 
--subparameters 
--and VSAM alternate index 
--and VSAM LSR pools 

OPER parameter, GENSEC macro 

6-8 

11-22 
6-33 
6-14 
6·16 

10-11 

J 

J 



OPER parameter, 
STATION macro 

OPSCAN module 
OPSCN procedure 
OPTIONS parameter, 

10-5,10-14--10-15,10-17 
12-32 

2-7--2-8,2-18,12-32 
IXFDSCTA macro 

6-5,6-43 
ORDER statements, 1inkedit 

5-10,7-2,7-25--7-26 
Output Format Table 

--adding entries to 
- -defined 
--and error messages 
--and MVS tuning 

recommendations 

3-20 
1-12 
3-21 

--and startup broadcast message 
11-21 

7-12 
Output Utility 

--and Broadcast Table 
--and disk-resident table entries 

3-16 
1-7 

3-25 
1-6 

7-26 
3-2 

3-17 
9-13 

11-21 
3-26 
3-19 

11-19 

--and Dynamic Data Queuing 
--function 
--and 1inkedit ordering 
--and message flow 
--and Message Mapping Utilities 
--and message restart 
--and MVS tuning 
--and Page facility 
--requirements 
--residency 
--and serial restart 
--and Test Mode 

Overlay 

9-20 
8-29 

--conversion of subsystems to 3-44 
1-4 

3-18 
--and Dispatcher 
--and Edit Control Program 
--index 

--generation of 
--and Subsystem Control 
--user coding of 

--and Intercomm 1inkedit 
--loading 

3-35 
Table 3-28 

C-1--C-3 
7-2--7-3 

1-8 
--Overlay A and VS execution 

group subsystems 3-31,3-38--3-40 
--Overlay Regions B, C 

and D 
--Overlay Region Verb 

Table 
--and resolution of VCONs 
--structure 
--Subroutine Overlay 

3-44--3-46 

3-45--3-46 
3-42--3-43 

1-7 

3-61--3-62 Region 
--and Subsystem Control Table 

3-31,7-11 
--and Subsystem Controller 1-3 

1-19 

--and system tuning 11-8 
--and System Tuning Statistics 

7-13,8-23--8-24 
--Transient Subroutine 

Overlay Region 
- -use of 
--and VS execution 

3-59--3-61 
3-38 

groups 3-31,3-33,3-38--3-39 
- -and XA 7 -29 

OVLY parameter, SYCTTBL macro 
--coding conventions 3-31 

3-32,3-39 
and READ/ 

--examples of 
--and overlapped GET 

WRITE processing 
--and overlay index 
--and subsystems accessed by 

multiple verbs 
--and subsystems under MVS 
--verification of 
--and VS execution groups 

6-5 
3-35 

3-33 
7-27 
3-33 
3-33 

OVLYSTR parameter, 
ICOMLINK macro 3-40,3-46,3-61 

PADDTBLE table 2-28 
PAGE. See Page Facility. 
Page Facility 1-5,2-28,3-26,3-53,6-28 
Page fixing 

--and MVS operation 7-22 
Page pre loading 7-21--7-22,7-24,7-27 
PAGES data set 6-28,6-29 
PAGETBLE table 2-28 
Partial File Load 12-25,12-28--12-29 
PASS macro 5-18,5-22 
PASSWD parm, EXEC JCL 7-4--7-5 
PASSWD parameter, VCT macro 7-5 
PATCH procedure 2-7--2-8,2-17 
PCEN parameter, 

SYCTTBL macro 3-37,11-12 
PCENSCT macro 3-35,3-37 
PENTRY member 3-53,3-55 
PERFORM execution parameter (IBM) 7-17 
Performance considerations 11-1--11-26 
PERMRES parameter, SUBMODS macro 

PL/1 
--and compiler options 
--and dynamic 1inkedit 
- -and ISAM files 

3-56--3-57 

11-15 
3-42 

6-6 
--linkedit considerations 

3-52--3-54,11-19 
--and message editing 3-2 
--procedures 2-7,2-15--2-16 
--programming conventions 3-56,3-58 



--and resident subroutines 3-55--3~56 

--and SPAC command 11-16 
--subsystem interface 3-52--3-53 
--and subsystems under XA 3-42 

PLIENTRY member 3-53,3-55 
PLIMAIN entry 3-54,3-58 
PLIV table 3-52--3-53 
PLIXPC proc. 2-7--2-8,2-16 
PLIXPCL proc. 2-7--2-8,2-16 
PLI parameter, 1COMLINK macro 3-54 
PLI parameter, SYCTTBL macro 3-52 
PLlLNK parameter, SYCTTBL macro 3-52 
PMIAUTOF module 10-20 
PMIBROAD table 2-28,3-16,7-12 
PMICANC module. See USRCANC. 
PMICKFTB module 3-23,7-10 

7-13 
3-36 

3-48,7-26 
8-10 

7-9 
7-10,7-22--7-23 
2-28,3-15--3-16 

3-58 

PMICLDWN entry point 
PMICLZZZ Csect 
PMICOBOT module 
PMIDCB table 
PMIDATER module 
PMIDEBUG module 
PMIDEVTB table 
PMIDLOAD module 
PMIEDIT module 
PMIEXLD. See File Load Program. 
PMIF1LET. See File Table. 

3-18 

PMIHARDW module 7-10,7-20 
PMIHEADR module 10-20 
PMILINK2 entry point 5-22,7-25 
PMILOAD. See File Load Program. 
PM1NQDEQ. See Enqueue/Dequeue Facility. 

--and MVS installation 7-22 
PMIOUTPT. See Output Utility. 
PMIOVLY module 3-61 

2-7--2-8,2-17 
7-24,7-27,7-"29 

PMIPCH procedure 
PMIPGLD module 
PMIPLI module 

--described 3-53 
--linkedit considerations 3-54 
--and 1inkedit ordering 7-26 
--programming conventions 3-58 
--and Resource Audit and Purge 5-1 
- -use of 3-53 

PMIPRELR Csect, ordering of 7-25 
PMIPR1ME entry point, PMITEST 7-10 
PMIPRT procedure 2-7--2-8,2-17 
PMIQCFDD data set 6-28 
PMIQUE data set 6-29,7-7,7-18 
PMIRCEND Csect 3-20 
PM1RCNTB Csect 3-20 
PMIRDTOO table 2-28,11-21 
PMIRETRV module 7-22,7-33 

1-20 

PMIRTLR Csect 
PMISCFDD data set 
PMISECTB Csect 
PMISIGN module 
PMISNAP DCB 
PMISNAP macro 
PMISNAPI module 

5-6,7-25 
6-28 

10-11 
10-6,10-20 

7-8,8-10 
8-7,8-10,8-13 

--and Fast Snap facility 8-13 
--and File Handler statistics 6-47 
--and MVS installation 7-22 
--and SPIEEXIT 8-6 
--and user snap exit 8-9 

PMISTATB table 
--and GENSEC macro 
--and sign-on/sign-off 

security 
--and STATION macro 
--and Station Table 
--and Transaction Security 

PM1STOP DD statement 
--and excluding data sets 

the internal DSCT 
--and Flip/Flop facility 
--illustrated 

10-11 

10-8,10-10 
10-14 

2-28,3-15 
10-10 

from 
6-24,6-28 

6-7 
}-18 

11-22 
4-10,7-35 

6-28 
8-11,8-13 
6-14,7-18 

--and INTERLOG DD statemen~ 
--and LPSPALIB DD statement 
--and reserved ddnames 
--and snap data sets 
--and VSAM user catalog 

PM1STOP macro 
--and Broadcast Table 
--and Device Table 
- -and File Table 
--and Front End Verb Table 
--and Output Format Table 
--and Overlay Verb Table 
--and Station Table 
--and Time Zone Table 

PMISTUP entry point 
PMISUBL2 entry point 
PMITEST. See Test Monitor. 

--and MVS installation 
PMITIMTB table 

3-16 
3-15--3-16 
3-23,12-25 

3-7 
3-20 
3-1+6 

3-15,3-17 
3-64 

7-2,7-8 
5-22,7-25 

7-22 
3-64 
3-65 --example 

PM1VERBS table 
PMIWTO macro 
PMIWTOR macro 

2-28,3-17,3-23,12-18 
5-20,7-5 

7-5 
11-13 Polling List Table 

POLTM parameter, BLINE 
Pool dumps 

- -example 
Pool use statistics 
POOLACCT Csect 

macro 11-13 
5-21,5-27 

5-28 
5-7 

5-10,5-27,7-25 



POOLDUMP module 
POOLEND Csect 
POOLNM global 
POOLSTRT module 
PRDMP utility (IBM) 

5-3--5-4,5-27 
5-10,5-27,7-25 
2-24,2-26,5-27 
5-9--5-10,7-8 

8-14 
PRELOAD parameter, RTNLINK macro 
PREPLI module 

7-27 

--and ESPIE macro 
--and 1inkedit ordering 

3-53 
7-26 
7-22 --and MVS installation 

--and PL/1 1inkedit 
--and PL/1 subsystem 

interfaces 
--and SPIE macro 

PREPROG module 
PREPROGE user exit 
PREPROGI user exit 
Printers 

- -and DDQ 

3-52--3-54 

3-52--3-54 
3-53 

3-48--3-49,7-26 
3-49 
3-49 

--and main storage usage 
11-22 
11-19 
11-13 --queue definitions 

Priority queues 
Priority verbs. See Verbs, 

3-36,7-25 
priority. 

2-5--2-18 Procedures (JCL) 
See also individual procedure names. 

PRTY command 11-15 
PRTY parameter, 

SYCTTBL macro 11-9,11-16,11-18 
--and c1osedown statistics 7-13--7-14 
--and PRTY command 11-15 

PRT1403 utility 12-33 
PRYMSGS parameter, 

SYCTTBL macro 
PTRNTBL table 
Purging. See Resource 
PUT function 
PUTV function 

3-11,3-36,11-12 
2-28,3-23 

Audit and Purge. 
6-37--6-38,6-40 
6-34,6-37--6-38 

QBUILD entry point 
QISAM 

- -via BISAM 
--exclusive control 
--and GET function 
--and LOCATE facility 
--and OPEN FAR attribute 
--and overlapped GET and 

READ/WRITE processing 
--and PUT function 
--Scan Mode via BISAM 
--and subsystem program logic 
--and subtasked GETs 

QLB. See Queue Locate Block. 
QOPEN entry point 

5-1,5-22 

6-2,6-22 
6-3--6-4 

6-38,6-42 
6-41 

6-6,6-33 

6-5 
6-38 

6-2,6-22 
11-7 
6-42 

5-1,5-22 

1-21 

QSAM 
--and GET function 
--and LOCATE facility 
--and overlapped GET and 

READ/WRITE processing 
--and PUT function 

6-38,6-42 
6-41 

6-4 

--and shareability of data sets 
6-38 
6-26 
6-42 --and subtasked GETs 

--and undefined record support 6-6 
5-22 

1-3,3-2--3-3 
Queue Locate Block 
Queue Management routines 
Queues 

- -described 
--Dispatcher 
--event 
--execution 
- -free 
--priority 
--subsystem 
--task 
--terminal 
--time 
--types of 
- -wait 

1-3 
4-2--4-4 
4-1,6-1 
4-1,4-4 
4-1,4-3 

3-36 
1-3,3-36--3-37,7-9,11-12 

4-1--4-2 
1-3,4-2,7-7,11-13 

4-1,4-4--4-5 
4-1 

4-1--4-4 
See also Dynamic 

Quick frees 
Quiesce facility 

Data Queuing. 
5-12 
7-20 

RAP. See Region Associated Processing. 
RBN parameter, 

STATION macro 10-14,10-18 
RCB. See Resource control block. 
RCBSADD parameter, 

SPALIST macro 5-12,5-17 
RCBSINT parameter, 

SPALIST macro 5-16--5-17 
RCTOOO data set 

3-20,6-28,11-21,12-25--12-27 
--and Intercomm JCL 7-7,7-18 

RCVNO parameter, VCT macro 4-2 
RCVRSP parameter, VCT macro 4-2 
ROT. See Region Descriptor Table. 
READ function 6-5,6-37--6-38,6-40 
Read-only data sets 6-26 
READBACK module 9-15 
READONLY FAR attribute 6-17,6-34 
RECOBOL parameter, ICOMLINK macro 3-48 
Reentrant subsystems 

--Assembler Language 3-26,3-47 
--COBOL 3-26,3-47,3-55--3-57 
--and COBREENT 3-56 
--and dynamic 1inkedit 3-42--3-44 
--and dynamic load 3-40 



--and Link Pack Module 
--and loading under MVS/XA 
--PL/1 
--and REENTSBS 
--resident 
--and SYCTTBL LANG parameter 

REENTSBS table 
--and c1osedown statistics 
--and COBOL programming 

conventions 

7-37 
3-42 

3-54,3-56 
3-47 
3-38 
3-38 

7-13 

--and COBOL subystem interfaces 
3-57 
3-47 
2-28 --deletion of entries in 

--and DISAM 
--and dynamically loaded 

subroutines 
--and dynamically loaded 

subsystems 
--and IJKDELAY 
--linkedit 
--listing of release 

version 
--modification of 
--and PL/1 subsystems 
--and resident subroutines 
--and SUBMODS macro 
--and thread resource dump 
- - and USRSUBS 

REENTSB1 Csect 
REG parameter, GETSPA macro 
Region Associated 

3-50--3-51 

3-56 

3-41 
4-11 
3-58 

3-50--3-51 
2-28 
3-53 
3-55 

3-55,3-58 
5-22--5-23 

2-28,3-47 
3-50,7-26 

7-37 

Processing 10-20,11-22 
Region Descriptor Table 12-23 
REGION macro 11-21 
Region organization 1-6,1-10 
REJECT parameter, SYCTTBL macro 11-16 
RELEASE function 

--and batch programs using 
File Handler 

--and closing of data sets 
- - described 

6-51 
6-45 

6-36--6-37 
--and dynamic buffering 
--and File Attribute Records 
--and File Handler parameters 
--and File Handler termination 
--and IXFHND01 
--and LOCATE facility 
--parameters 
--and shareable sequential 

data sets 
--and VSAM cross-region shared 

control 
RELEX function 

6-4 
6-30 
6-36 
6-23 
6-22 
6-39 
6-37 

6-26 

6-23 
6-37 

1-22 

RENT parameter, 1inkedits 
2-8,2-10--2-11,2-14 

RENT parameter, STORAGE macro 5-4,D-2 
Reports table. See Output Format Table. 
REQONDDQ module 9-21 
RES parameter, SUBMODS macro 3-56--3-57 
RESETPL macro (IBM) 7-23 
Resident Intercomm routines 1-6 
Resident subroutines 3-55--3-56,3-63 

--and Intercomm startup 7-11 
Resident subsystems 

--and c1osedown statistics 
--residency considerations 
--and resident subroutines 
--and response time and 

throughput 
--and startup 
--and Subsystem Control 

Table 
Resident tables 
RESOURC parameter, 

7 -13 - -7 -14 
3-38 
3-55 

1-6,3-38 
7-11 

3-29--3-31 
1-6 

SYCTTBL macro 3-31,6-5,11-8 
Resource Auditing and Purging 

--and COBOL subsystem user exit 3-49 
--described 1-5,5-1--5-2 
--installation 5-16--5-20 

--Enqueue/Dequeue facility 5-19 
--linkedit 5-19 
--macro specifications 5-17--5-18 
--SETGLOBE settings 5-16 
--SPALIST parameters 5-16--5-17 
--and thread hung user exit 5-20 

Resource control block 
--and AOA abend 
--and core use statistics 
- -described 
--and installation 
--and macro specifications 

5-17 
5-13 

5-1--5-2 
5-16 

5-17--5-18 
5-27 --and pool dumps 

--and RMFON/OFF 
--and SPA and SPA Extension 

5-3 
5-19 
5-16 

5-16--5-17 
--and SPALIST macro 
- -table 
--and thread resource 

dump 
RESOURCE macro 

5-18,5-21,5-23 
3-31,6-5,6-14,11-8 

Resource Management 
--core-use statistics 
--debugging aids 

--pool dump 
--thread resource dump 

- -described 
--and dynamic buffering 

5 - 2 - - 5 - 3, 11- 3 

5-27--5-28 
5-21--5-26 

1-4--1-5,5-1 
6-4 

J 

J 



--installation with core-use 
monitoring and pools 5-6--5-15 

--core block detail 
statistics 

--defining the Intercomm 
pools 

--dynamically loaded 
core pools 

--linkedit 
--sample output 
--SETGLOBE settings 
--SPALIST parameters 

--installation with Resource 

5-10 

5-7--5-10 

5-9--5-10 
5-10 

5-13--5-15 
5-6 

5-6--5-7 

Audit and Purge 5-16--5-20 
--Enqueue/Dequeue facility 5-19 
--linkedit 5-19 
--macro specifications 5-17 
--SETGLOBE settings 5-16 
--SPALIST parameters 5-16--5-17 
--thread hung user exit 5-20 

--integrity checking 5-6,11-15 
--modules and globa1s 5-3--5-6 
--resource audit and purge 5-1--5-2 
--and SPALIST subpoo1 requirement 

specifications 11-10 
I --storage cushion 5-3,11-10 
~ --and user-defined storage pools 5-2 

Response time 
7-17,11-17--11-19,11-24--11-26 

--defined 11-17 
Response Time Reports 12-11--12-16 
RESTART parameter, BTERM macro 9-13 
RESTART parameter, 

EXEC statement 7-4,9-11,9-16,9-24 
RESTART parameter, LUNIT macro 9-13 
RESTART parameter, SYCTTBL macro 

--and c1osedown subsystem 9-14 
--and message restart 9-13--9-14,9-23 
--and MVS tuning 

recommendations 
--and serial restart 
--and System Accounting and 

Measurement 
--and user responsibility 

11-21 
9-21 

8-15 

in restart 9-2,9-13--9-14 
Restart/Recovery 

--automated message restart 9-24 
--concatenation of disk files 

for restart 
--and CONVERSE facility 
--execution JCL 
--and 1COMFEOF 
--implementation 

9-19 
3-12 

7-4 
12-40 

9-15--9-20 

1-23 

--and LOGMERGE utility 
--message accounting 
--message restart concepts 

12-45--12-46 
9-12 

9-2 
9-12--9-14 --message restart logic 

--message restart user 
exit 9-14--9-15 

--and missing end of file 12-40 
--the restart process 9-11 
--serial restart 9-20--9-23 
--system failure & recovery 9-1,12-40 

RESTORE3 module 7-10,7-22,9-15 
RESTRTLG data set 6-28,9-16--9-20,9-24 

--and flip/flop user exit 6-8 
--and LOGMERGE utility 12-45--12-46 

Retriever 7-33,12-15 
REUSE parameter, 

SYCTTBL macro 
RLSE command 
RMCATCH entry point 
RMFNQ Csect 
RMFOFF entry point 
RMFON entry point 
RMINTEG global 
RMNAD1SA module 
RMNQOFF entry point 
RMNQON entry point 

3-40,3-55,11-9 
3-25,8-2,11-16 

5-3 
5-3 
5-3 
5-3 

5-6,5-27 
5-3--5-4,5-19--5-20 

5-3 

RMODE parameter, 1inkedit 
RMPASS entry point 

5-3 
3-42,3-57 
5-3,5-18 

5-3 RMPC Csect 
RMPURGE module 

--and AOA abends 
- -defined 
--and File Handler statistics 
- -and 1JKTRACE 
--and 1inkedit of Intercomm 
--and MANAGER module 
--and Resource Management 
--and thread resource dump 
--and VSAM cross-region shared 

5-17 
5-3 

6-47 
4-2 

5-19 
5-4 

5-18 
5-21 

control 6-23 
RMSAVE (MANAGER save area) 5-21,8-8 
RMSTIM parameter, SPALIST macro 5-7 
RMTRACE module 

RPTOOO data set 
RPTOOOnn modules 

RSLU command 
RSMGMNT Csect 
RTNL1NK macro 

5-2--5-4,5-7,5-10--5-11 
6-28 

2-28,3-20,12-27--12-29 
11-18 

5-3,5-21 
5-6,5-17,7-27 

SAM. See System Accounting and 
Measurement. 



SAM access method 6-24 
See also BSAM and QSAM. 

SAM parameter, ICOMLINK macro 
SAM parameter, SYCTTBL macro 
SAME15 module 

8-19 
8-15,8-18 

8-20 
8-21 
8-19 

SAMPRNT data set 
SAMSECT module 
SAMTABLE table 
Save areas, obtaining of 

7-9,8-19--8-21 
5-4--5-6 

3-54 
3-37 

6-29,8-5 

SBSP parameter, SYCTTBL macro 
SCHED parameter, SYCTTBL macro 
SCRxxxxx data set 
SCT. See Subsystem 
SCTEXT Csect 

Control Table. 
3-28,7-25 

SCTL command 
--and debugging 11-24 
--and Dispatcher queues 4-1,11-3,11-24 
--and IJKTRACE display 4-2,11-23 
--and SPALIST STOCORE value 11-11 
--and SPALIST MDELY value 11-16 
--and SPALIST MMNCL value 11-15 
--and TDUMP display 5-21,11-24 

SCTLDXA flag, SCTLISTC Dsect 3-49 
SCTLISTC Dsect 3-49,10-19 
SDLC devices 1-2 
SECF command 10-9 
SECN command 10-9 
SECU command 9-23 
SECU parameter, SYCTTBL macro 10-19 
SECUEXIT user exit 7-6 
SECUR parameter, 

BTVERB macro 
SECUR parameter, 
SECUREOO module 
SECURE01 module 
SECURE02 module 

10-6,10-9 
ICOMLINK macro 10-20 

10-20 
10-20 
10-20 

Security. See Basic Security System 
and Extended Security System. 

SECURITY Csect 
SECURITY data set 
Security Table 
SECVECT table, and XA 

--and MVS tuning 

10-19 
6-28 

10-19--10-20 
7-28 

11-19 
SECVERBS macro 

10-9,10-11--13,10-15--10-17 
SECOOO data set 6-28,10-11,10-14,10-18 

--and file load utility 12-25--12-26 
Segmented messages 3-19 
SEGREST parameter, SYCTTBL macro 9-13 
SELECT function 

--and a1iased files 6-35 
--and batch programs using the 

File Handler 6-51 

1-24 

- -described 
--and dynamic buffering 
--and IXFHND01 
--and MVS tuning 
--parameters 
--and shareable sequential 

data sets 
--and VSAM files shared 

across regions 
SELECT entry point 
SEP parameter, SPALIST 

6-36--6-37 
6-4 

6-22 
11-22 

6-37 

6-26 

6-17 
5-1,5-22 

macro 3-3,3-18,3-29,8-28 
Separator character 

--and BTAM Front End 
- -described 
--and Edit Utility 
--and locked verbs 
--and SETENV table 
--and System Parameter Area 
--and TCAM Front End 

SEQNO parameter, VCT macro 
SETENV table 

--and conversational verbs 
--and dispatching priority 
--and Edit Utility 
- -function 
--and linkedit 
--and separator character 

SETGLOBE table 

3-18 
3-2--3-3 

3-13 
3-11 

3-3,3-18 
3-29,10-1 

3-18 
11-4 

3-12 
11-18 

3-17 
1-11,2-23 

7-2 
3-3,3-18 

--and batch programs using the 
File Handler 6-51 

11-22 --and conversational verbs 
- -described 
--and Dispatcher 
--and Edit Utility 
--and File Handler 
--and File Handler 

Report 
--function 

2-24 
4-1--4··2 

3-15 
6-41--6-42,6-51 

Statistics 

--and lAM access method 

5-47 
1-11,2-23 

6-3 
7-30 --and Interregion SVC 

--and ISAM/VSAM compatibility 6-18 
7-2 

2-26--2-27 
8-25--8-26 

- -and linkedi t 
- -listed 
--and Log Input facility 
--and MVS/370 installation 
--and MVS tuning 

recommendations 
--and Output user exit 
--and Output Utility 
--and pool dump printing 
--and pool integrity validation 
--and Resource Management 

7-24 

11-22 
3-22 
3-19 
5-27 

5-6 
5-4 



--with core-use monitoring 
and pools 5-6,5-10--5-11 

--with Resource Audit 
and Purge 

--and XA installation 
SETL macro (IBM) 
SETOVLY macro 
SEXSNAP field, SPA 
SGNTIME parameter, SPALIST 

5-16,5-19 
7-28 

6-4 
4-3 

8-10 

macro 10-6,10-15 
SHARE parameter, INTENQ macro 5-19,6-5 
Shareable sequential data sets 6-26 
Shareoptions. See VSAM, files 

shared across regions. 
Short verbs. See Verbs, 
SIMCARDS data set 
SIMCRTA utility 

short. 
6-28,8-2--8-3 

12-35,12-38 
8-5,12-37 

10-6,10-15,10-20 
linkedit 

SIM3270 module 
SIGN command 
SIZE parameter, 

7-3--7-4,7-29 
SMCSWTO parameter, SPALIST macro 7-5 
SMLOG data set 

--and c1osedown statistics 7-13 
--and Core Use Statistics 5-11 
-~dyr.amic dea11ocation of 6-13 
-~and IJKTLOOP 4-13 
--anu Intercomm JCL 7-6,7-18 
--and pool dump 5-27 
--and Resource Auditing 5-17 
--and Resource Management 6-28 
--and thread resource dump 5-21,5-23 

SMs. See System modifications. 
SNA. See System Network Architecture. 
SNAP ~arameter, SYCTTBL macro 11-15 
SNAPDD data set 4-13,7-8,8-7,8-10--8-11 

--and Fast Snap Facility 8-13 
--and Intercomm JCL 7-7,7-18 
--and Intercomm startup 7-8 

SNAPEXIT user exit 8-9 
SNAPPGS parameter, SPALIST 

macro 
SNAPRTN module 
Snaps 

8-10--8-11 
7-22 

--and Dispatcher WQE trace 4-2 
8-13--8-14 

option 8-7--8-9 
8-10--8-12 

8-6 

--Fast Snap facility 
--and indicative dump 
--and SPINOFF 
- - and SPIEEXIT 
- -and STAEEXIT 
--and system performance 
--and thread resource dump 

8-6--8-7 
11-15 

5-21 

1-25 

SONOFF parameter, SPALIST 
macro 10-6--10-7 

SOSO parameter, SYCTTBL 
macro 

SPA. See System 
SPA, address of 
SPA Csect 

10-7,10-20 
Parameter Area. 

7-11,7-31,7-37 
5-6 

SPA Extension. See SPAEXT Csect. 
SPA parameter, RTNLINK macro 5-6 
SPAC command 3-47,3-53,11-16 
SPAC parameter, SYCTTBL 

macro 
SPADEVTB field 
SPAEXT Csect 

--address of 
- -defined 
--and dynamically loaded 

subsystems 
--length of 
--and Link Pack Module 
--and Resource Management 

--with core-use monitoring 
and pools 

--and pool Csects 
--with Resource Audit 

and Purge 
--and serial restart 

SPAHOLD switch 
SPALIST macro 

--assembly of 
--ASYNLDR parameter 
--and batch programs using 

File Handler 
--BLDVRP parameter 
--and checkpoints 
--CKUSL parameter 
--CKUSR parameter 
--CLDNLIM parameter 
--CLDTO parameter 
--and c1osedown 
--COREACC parameter 
--CUSHION parameter 
--CUSHTM parameter 
- - described 
--and Dsect generation 
--DTIMS parameter 
--DWSCHK parameter 
--and dynamically loaded 

subsystems 
--and Edit Utility 
--EDITRTN parameter 
--and enqueue time-outs 
--EXTONLY parameter 

3-53,11-16 
3-15 

11-24 
3-26 

3-41 
3-27 

7-37--7-38 

5-6,5-11 
5-27 

5-16,5-19 
9-22 

5-7 

3-29 
3-40 

6-51 
6-15 

9-8 
9-8 
9-8 

7-13 
7-13 
7-13 

5-7,5-11 
5-3,11-10 
5-7,11-10 

3-26--3-27 
7-37 
3-19 

11-21 

3-41 
3-17--3-18 

3-18 
11-19 

3-26--3-27 



- -described 
--and dynamic buffering 
--and IXFHND01 
--and MVS tuning 
--parameters 
--and shareable sequential 

data sets 
--and VSAM files shared 

across regions 
SELECT entry point 
SEP parameter, SPAL1ST 

6-36--6-37 
6-4 

6-22 
11-22 

6-37 

6-26 

6-17 
5-1,5-22 

macro 3-3,3-18,3-29,8-28 
Separator character 

--and BTAM Front End 
--described 
--and Edit Utility 
--and locked verbs 
--and SETENV table 
--and System Parameter Area 
--and TCAM Front End 

SEQNO parameter, VCT macro 
SETENV table 

--and conversational verbs 
--and dispatching priority 
--and Edit Utility 
--function 
--and linkedit 
--and separator character 

SETGLOBE table 

3-18 
3-2--3-3 

3-18 
3-11 

3-3,3-18 
3-29,10-1 

3-18 
11-4 

3-12 
11-18 

3-17 
1-11,2-23 

7-2 
3-3,3-18 

--and batch programs using the 
File Handler 6-51 

--and conversational verbs 11-22 
2-24 

4-1--4-2 
3-18 

6-41--6-42,6-51 
Statistics 

--described 
--and 
- -and 
--and 
--and 

Dispatcher 
Edit Utility 
File Handler 
File Handler 

Report 
--function 
--and lAM access method 
--and 1nterregion SVC 

6-47 
1-11,2-23 

6-3 
7-30 

--and 1SAMjVSAM compatibility 6-18 
7-2 

2-26--2-27 
8-25--8-26 

7-24 

- -and linkedit 
--listed 
--and Log Input facility 
--and MVS/370 installation 
--and MVS tuning 

recommendations 
--and Output user exit 
--and Output Utility 
--and pool dump printing 
--and pool integrity validation 
--and Resource Management 

11-22 
3-22 
3-19 
5-27 

5-6 
5-4 

1-26 

J 
--and Fine Tuner commands 11-15--11-16 
--FMCSWTO parameter 7-5 
--FPM1WTO parameter 7-5 
--and generalized subtasking 3-62 
--GENSW parameter 9-8 
--and global WTO and MCS routing 7-5 
--and indicative dump option 8-7--8-9 
--1NDUMP parameter 8-7--8-8 
--LGBLK parameter 9-3,9-15,9-17,11-14 
--LGNUM parameter 9-15--9-17,11-14 
--and Link Pack Module 7-37 
--linkedit of 3-2~ 
--and Log Input Facility 8-25--8-26 
--and logging 9-3 
--LOGINDO parameter 8-26 
--MAXLOAD parameter 3-41,11-11,11-20 
--and startup 7-10 
--MDELY parameter 11-16 
--and message cancelled condition 3-6 
--MMNCL parameter 11-15 
--MRCSALN parameter 11-21 
--and MVS tuning 

recommendations 11-20--11-21 
--NQTIM parameter 11-19 
--NTIMS parameter 3-19 11-10 
--and Output Utility , 3-191- J 
--and Overlay A subsystems 3-40 
--RCBSADD parameter 5-12,5-17 
--RCBSINT parameter 5-16--5-17 
--and resident subroutines 3-55 
--and Resource Management 

--with core-use monitoring 
and pools 

--with Resource Audit 
and Purge 

--and restart/recovery 
--RMST1M parameter 
--and RTNLINK macro 
--and save areas 
--and scheduling criteria 
--and security 

5-11 

5-16,5-19 
9-15--9-16 

5-7 
5-6 
5-6 

11-10 

10-5--10-10,10-15,10-19 
--SEP parameter 3-18,8-28 
--and separator character 3-3,8-28 
--SGNTIME parameter 10-6,10-15 
--and sign-on/sign-off 

security 
--SMCSWTO parameter 
--SNAPPGS parameter 
--SONOFF parameter 
--and spinoff snaps 
--SPMIWTO parameter 
--STOCORE parameter 

10-5--10-6 
7-5 

8-10- -8-11 
10-6--10-7 
8-10--S-U 

7-5 
11.-11,11-21 



--and storage cushion 
--STSTIME parameter 
--STUSPIE parameter 
--and subpoo1 space 
--and subtasked GETs 

5-3 
8-23,11-11 

8-6 
11-10 

6-42 
--and System Tuning Statistics 8-23 
--TASKNUM paramter 
--TCHP parameter 
- -and Test Mode 
--TIMS parameter 
--TRACETM parameter 

3-63,6-42,11-11 
9-8 

8-27--8-28 
3-19,11-10 

5-7 
--and Transaction 

Security 
--TRANSEC parameter 

10-8--10-10 
10-9--10-10 

7-13,8-29 
D-2 

--TSTEND parameter 
--and user exits 
--and user-written 

routines 
--USERSEC parameter 

security 

--and VSAM Local Shared 
Resources 

--WTOPFX parameter 
SPAMSNM counter 
SPASTATB field 
SPAUSER label 
SPIE macro (IBM) 

--and PL/1 
-~and Intercomm startup 
--and task termination 

SPIEEXIT module 
--and closed loop detection 
- -described 
--?nd ESPIE macro (IBM) 
- - and IJKTLOOP 
--and MVS installation 
- -and PL/I 
--and SNAPEXIT 
--and SPIE macro (IBM) 

SPIES NAP module 

10-19 
10-19 

6-15 
7-5 

11-4 
3-15 
3-27 

3-53 
7-11 

8-5--8-6 

4-13 
8-5--8-6 

7-11 
4-13 
7-22 
3-54 

8-9 
7-11 

- -and 
- -and 
- -and 

closed loop detection 
Dispatcher task queues 
IJKTLOOP 

4-13 
4-2 

4-13 
4-2 

7-22 
5-27 

8-6 
5-21 
8-6 

8-12 
8-10--8-14 

7-8,8-10--8-12,11-14 

--and IJKTRACE 
--and MVS installation 
--and pool dumps 
--and SPIEEXIT 
--and thread resource dump 
- -user exit 

SP1NEXIT user exit 
SPINOFF module 
Spinoff snaps 
SPLEVEL macro (IBM) 7-28 
SPLG command 11-18 

1-27 

SPLU command 3-3 
7-5 

7-17 
8-6 

3-6,11-16,11-25 
5-3,7-17 

7-13,8-23 
3-47,3-53,8-7,8-18 

SPMIWTO parameter,SPALIST 
SPPL command 

macro 

SPSNEXIT user exit 
SSFL command 
SSPOLL module 
SSRPT module 
SSUP command 
STAE macro (IBM) 

- -and PL/1 
STAEEXIT module 

- -described 

3-53 

--and File Handler termination 
8-5--8-7 

6-23 
4-13 --and IJKTLOOP 

--and IJKTRACE 
--and MVS installation 
- -and PL/1 
--and STAERTRY 
--and startup 
--and subsystem time-out 

4-2,4-13 
7-27 
3-54 
4-13 

--and System Tuning Statistics 

7-8 
4-2 

8-23 
5-21 
5-21 
6-14 

--and TDUMP 
--and thread resource dump 
--and VSAM file support 

STAERTRY module 
STAETASK module 
STALIST macro 
Standards 
Startup 

--broadcast message 
--and checkpoints 
- -described 
--and dynamically loaded 

pools 
--and execution mode 

4-13,7-22,8-6 
7-22 
10-7 

2-21--2-22 

core 

3-16,7-12 
9-8 

7-8--7-12 

5-9 

--and File Attribute 
7-4,7-9,9-16,9-24 
Records 6-30 

--and File Handler 
--and fragmentation prevention 

6-19 
11-10 

--and generalized 
subtasking 

--and lAM access method 
--and ICOMPOOL 
--and logging 
--and PL/I subsystems 
--and subtasked GETs 
- -and VSAM files 
--and VSAM Local Shared 

Resources 
STARTUP parameter, 

EXEC statement 
STARTUP3 module 
STAT command 

3-62,6-42 
6-3 
5-8 

9-3,9-7 
3-54 
6-42 
6-14 

6-15 

7-4,9-24 
6-47,7-8,7-22 

11-3 



STATFILE data set 
6-13,6-28,6-46--6-47,6-50--6-51 

STATION macro 
--and Basic Security 

system 
--sign-on/sign-off 

security 
--station security 
--transaction 

10-2--10-4 

10-5--10-6 
10-17--10-18 

security 
- -parameters 
--and Station Table 

10-9,10-15--10-17 
10-14--10-15 

3-15--3-16,10-11 
Station Table 

--and Basic Security system 10-1 
--coding for security 

processing 
--GENSEC macro 
--operator codes 
- -parameters 
--range of verbs per 

terminal 
--SECVERBS macro and 

parameter 
--structure 
--UNIVER and OPER 

parameters 
--and sign-on/sign-off 

10-10--10-18 
10-11 

10-17--10-18 
10-14--10-15 

10-15--10-17 
VERBS 

10-11--10-13 
10-10 

10-14 

security 10-17 
--and station security 10-17--10-18 
--and transaction security 

10-9,10-15--10-17 
--and BTAM terminal simulator 8-2 
--described 3-15 
--function 
--and Log Input Facility 
--and MMU requirements 
--and SIMCRTA utility 

Statistics, system 
STATINDX Csect 
STEPCAT DD statement 
STEPLIB data set 

See also lAM access method, 
IAMLIB data set. 

STLG command 
STLU command 
STIMER macro (IBM) 
STOCORE parameter,SPALIST 

1-11 
8-26 
3-17 

12-38 
11-2--11-3 

3-15,7-25 
6-14,7-18 

7-6,7-18 

11-18 
10-15 

7-28 

macro 
STOP command 
Storage cushion 

- -defined 

11-11,11-21 
4-13,5-6,8-7,8-18,9-23 

--and pool dumps 
--and save areas 

1-4,5-3 
5-27 

5-4 

1-28 

--and SPALIST CUSHION 
parameter 

--and SPALIST CUSHTM parameter 
5-3,5-7 

5-7 
--and subpoo1 space 

fragmentation 11-10 
STORAGE macro 

--and AOA abend 5-17 
--and COBOL subsystem user exits 3-49 
--and CORE resource type 5-1 
--ERRADDR parameter 5-4 
--example 5-5 
- - and FREEMAIN macro (IBM) 5 ··17 - - 5 -18 
- -and log merge user exit 12-l~6 
- - and MANAGER module 5··3 
--and Output user exit 3·22 
--RENT parameter 5-4,D .. £ 
--and save areas 5-4--5-5 
--and serial restart user exit 9-22 
--and STORFREE macro 5-17 
--and thread dump 5-22 
--and user DCBs 6-44 
--and user exits D-2 
--and user-defined storage pools 5-17 
--and USRSEREX module ~-22 
--and 30A abend 5-17 

Storage pools. See Resource Kanabeme~t. 
STORAGEM entry point 

5-3,5-16,5-21--5-22 
Store/Fetch utility 

--and data set allocation 
--described 
--function 
--and Intercomm startup 
--and 1inkedit ordering 
--and MVS tuning 

recommendations 
--and SIM3270 module 

11-14 
3-26 

1-5 
7-8,7 .. 11 

7-25 

11-21- -11-22 
8-5 

--and STOCORE SPALIST p~rameter 11-11 
--and System Tuning Statistic~ 

--and TALY command 
--and thread hung user exit 

STORFRED entry point 
--and AOA abend 
--and core-use statistics 
--and MANAGER moduie 
--and thread resource dump 
- -use of 

STORFREE macro 
--and MANAGER module 
--and Resource Audit and 

8-23 .. ·8-24 
11-11 

5-20 

5-17 
5-12 
5-3 

5-21 
5-6 

5-3 

Purge 5-16--5-17 
--and serial restart user exit 9-22 



--and sign-on user exit 10-8 
--and STORAGE macro 5-17 
--SYS parameter 5-18 
--and user-defined storage pools 5-2 
--and USRSEREX module 9-22 

STOSTART module 7-8,7-11 
STPL command 7-17 
STRB command 11-23 
STROBE Performance Monitor 11-23 
STRT command 4-13,5-6,8-7,8-18,9-23 
STRTUPSW data set 9-24,12-43--12-46 
STS. See System Tuning Statistics. 
STSLOG data set 6-28,8-24 

--and Intercomm JCL 7-7,7-18 
STSTIME parameter, SPALIST 

macro 8-23,11-11 
STUOVLY Csect 4-10,7-8 
STUSPIE parameter, SPALIST macro 8-6 
SUB. See Subroutine Overlay Region. 
SUBC parameter, SYCTTBL macro 3-37 
SUBH parmaeter, SYCTTBL macro 3-37 
SUIILINK macro 5-22 
SUBMODS macro 

--DELTIME parameter 
7~and dynamically loaded 

subroutines 
~'"and dynamically loaded 

subsystems 
~-and IJKDELAY module 
--and indicative dumps 
--and resident subroutines 
--and thread resource dump 

Subpoo1s 

7-13 

3-55--3-58 

3-41 
4-11 

8-9 
3-55--3-56 
5-22--5-23 

--dynamic subpool area 1-7 
--space criteria 11-10 
--and storage cushion 1-4,5-3 
--and thread resource dump 5-23 

Subroutine interfaces 3-55--3-62 
Subrout.ines, dynamically loaded. See 

Dynamically loaded subroutines. 
Subroutine Overlay Region 3-61--3-62 
SUBRPT module 7-13,8-23 
SUBSYS macro 11-21 
Subsystem Control Table 

--adding a subsystem to 
--assembly of 
--and Basic Security 

3-35 
3-28--3-29 

system 10-6,10-18,10-20 
--and COBOL subsystems 3-47 
--coding entries in 3-28--3-31 
--coding indices to 3-35,C-l--C-3 
:-defined 1-11 
·~-described 3-28--3-35 

1-29 

- -and 
- -and 
- -and 
--and 

disk queue data sets 
display of subsystem 
dynamic program loading 
File Handler Statistics 

3-33,3-37 
11-16 

1-7 

Report 
--and 1JKWHOIT 
--and INTSCT 
--and Link Pack Module 
--linkedit of 
--modification of values 

6-46 
4-10- -4-11 

3-28 
7-36 
3-29 

--and Mu1tiregion security 
11-15- -11-16 

10-20 
--and Output Utility require-

ments 3-19 
--and overflow disk queue 

"allocation 3-37,11-12 
--and Overlay A subsystems 3-39 
--overlay index, user coded C-1--C-3 
--and Overlay Regions B,C and D 3-44 
--and sign-on/sign-off security 10-6 
--and SYCTTBL macro 3-28--3-33 
--and system tuning 11-2,11-12 
--and user-written security 

routines 
--verification of 
--and VS execution groups 

Subsystem Controller 
- -defined 
--and Dispatcher 
--and dynamically loaded 

subsystems 
--and freeing storage 
--and IJKTRACE module 

10-18 
3-33 

3-33,7-27 

1-1,1-3 
1-4,4-1--4-2 

--and message cancellation 

3-40 
5-18 
4-2 

3-5,3-22 
3-22 
1-6 
8-6 

7-11 

--and Output user exit 
--residency of 
--and SP1EXIT module 
--and startup 
--and task priority 
--and transaction security 

11-9,11-15 
10-9 

--and user-written security 
routines 10-18--10-19 

Subsystem management 
--generalized sub tasking 

--and File Handler 
--implementation 
--special subtasks 

6-4,6-13,6-42 
3-62 

3-62--3-63 
--residency considerations 

--Dynamic Linkedit 
facility 

--dynamically loaded 
3-42--3-44,3-55 

subsystems 3-40--3-42,3-55 
--Overlay A and VS execution 

groups 3-39--3-40,3-55 



--Overlay B,C and D 
--resident subroutines 
--resident subsystems 

--subroutine interfaces and 
considerations 

--dynamically loaded 
subroutines 

--resident subroutines 
--Subroutine Overlay 

Region (SUB) 

3-44--3-46 
3-55--3-56 

3-38,11-7 
1inkedit 

3-56--3-57 
3-55--3-56 

3-61--3-62 
--subroutines linked with dynamical-

ly loaded subsystems 3-56 
--Transient Subroutine Overlay 

Region (TRAN) 3-59--3-61 
--Subsystem Control Table 

--adding a subsystem to 3-35 
--coding SCT indexes (GEN1NDEX) 3-35 
--and dynamically loadab1e 

subsystems 
--extension to 
--field modification 

3-28 
3-28 

11-15--11-16 
--and 1ntercomm-supp1ied 

subsystems 
--and overflow disk queue 

allocation 
--and Overlay A 
--and Overlay B,C and D 
--and resident subsystems 
--verification of 
--and VS execution groups 

3-33 

3-35 
3-31--3-33 

3-31 
3-31 
3-33 
3-33 

--subsystem interface and 1inkedit 
considerations 

--COBOL subsystem inter
faces 3-47--3-49 

linkedit 
3-48--3-49 

--COBOL subsystem 
considerations 

--Fortran subsystems 
--PL/1 linkedit 

considerations 
--PL/1 subsystem inter-

3-55 

3-54 

faces 3-52--3-54 
--subsystem processing specifications 

--queue specifications 3-36--3-37 
--scheduling and concurrent 

processing limits 
--and system tuning 

3-37 
11-7--11-9 

11-15 
3-62--3-63,11-11 

--time-outs 
SUBTASK macro 
Sub tasking 

- -general 
- -GETs 

3-62--3-63,6-13,11-11 
6-4,6-42 

--special 3-62--3-63,11-11 
SVC. See 1nterregion SVC. 

1-30 

SVC dump 
SWCH command 
Switched asynchronous 
SWOF command 
SWON command 
SYCTTBL macro 

- -AUXS parameter 
--BACKOUT parameter 
--and Basic Security 

8-13 
3-24 

devices B-3 
10-9,10-15--10-16 
10-9,10-15--10-16 

3-36 
11-22 

10-2,10-7,10-10,10-19 
- -BLDL parameter 
--and BTVERB macro 
--CANC parameter 
--and c1osedown statistics 
--CNVREST parameter 
--and COBOL dynamic working 

3-40 
3-45 
3-6 

7 -13 - - 7 -14 
9-13 

storage 
--DFLN parameter 

3-47 
3-36--3-37,11-12 

--and dispatching 
--and dynamically 

subsystems 
--ECB parameter 

priQrity 11-18 
loaded 

3-41 
3-37 

--EXGRP parameter . 
3-31,3-33,3-39,7-27,7-37,11-7 

--and File Attribute Records 6-33 
--and File Handler Statistics 

Report 6 -46' --
--FREE parameter 3-47,11-16" 
--and Front End Verb Table 3-45 
--and generated extension to 3-28 
--and GEN1NDEX macro 3-35 
--GET parameter 3-47,11-16 
--and 1JKWH01T 4-11 
--1NDUMP parameter 8-7,11-16 
--LANG parameter 3-38,3-42,3-48,3-55 
--and Link Pack Module 7-36--7-38 
--LOADNAM parameter 3-41,3-53 
--LOG parameter 8-15,11-14,11-16,11-21 
--and logging 9-14,11-14 
--LSYNCH parameter 

9-4,9-16,11-14,11-16,11-18 
--and message cancelled condition 3-6 
--and message restart 9-13--9-14,9-21 
--MNCL parameter 

--described 11-8--11~9 

--and Dispatcher WQEs 4-2 
--and Fortran subsystems 3-55 
--and message management 11-8 
--and MNCL command 11-15 
--modification of 11-15--1i-16 
--and MVS Tuning recommenda-

tions 11-21 



[-:-and overlapped GET and READ/ 
WRITE processing 6-5 

3-37 --and processing limits 
--and MVS subsystem considerations 

7-27 
--and MVS tuning 

recommendations 11-21 
--NUMCL parameter 

3-36,11-12,11-18--11-19,11-21 
--a.nd Overlay A subsystems 3-39 
--and Overlay B,C and D 

subsystems 3-45 
--OVLY parameter 3-31--3-33,3-39,7-27 
--parameter changing 11-15--11-16 
--PCEN parameter 3-37,11-12 
--and PL/1 subsystems 3-52 
--PL1 parameter 3-52 
--PL1LNK parameter 3-52 
--for PMISIGN subsystem 10-6 
--and priority verbs 3-11 
--PRTY parameter 

11-9,11-15,11-16,11-18--11-19 
--PRYMSGS parameter 3-36,11-12 
--and queue initialization 7-9 
--REJECT parameter 11-16 
- -and RESOURCE mac ro 11- 8 
- -.1,?ESOURC parameter 3 - 31,6 - 5,11- 8 
--~ESTART parameter 

~-and c1osedowll subsystem 9-14 
--and message restart 

9-13--9-14,9-23 
--and MVS tuning 

recommendations 
--and serial restart 

11-21 
9-21 

--and System Accounting and 
Measurement 

--REUSE parameter 
--SAM parameter 
--SBSP parameter 
--SCHED parameter 

8-15 
3-40,3-55,11-9 

8-15,8-18 
3-54 
3-37 

--and scheduling and concurrent 
processing limits 

--SECU parameter 
--SEGREST parameter 
--and serial restart 
--SNAP parameter 
--SOSO parameter 
--and sign-on/sign-off 
--SPAC parameter 
--SUBC parameter 
--SUBH parameter 
--and subpoo1 space 

requirements 

3-37 
10-19 

9-15 
9-21 

11-15 
10-7,10-19 

security 10-6 
3-53,11-16 

3-37 
3-37 

11-10 

1-31 

--and Subsystem Control 
Table 3-28--3-33 

--and subsystem queue specifications 
3-36--3-37,7-7,11-12 

--and subsystem reentrancy 3-38 
--and subsystem residency 

3-37--3-39,3-41,3-44 
--and subsystem stopped condition 3-6 
--and subsystem time-outs 11-15 
--and System Accounting and 

Measurement 8-15 
--and system tuning 11-8--11-10,11-21 
--TCTV parameter 

5-20,6-18,11-15,11-16,11-21--11-22 
--and terminal queues 7-7 

See also Queues, terminal 
--THRSH parameter 
--TISE parameter 
--and transaction security 
--and user-written security 

3-37 
10-10 
10-10 

routines 10-19--10-20 
--and VS execution groups 7-37 

SYCT400. See Subsystem Controller. 
--and MVS installation 

SYMINCL library 
SYMLIB library 
SYMMDF library 
SYMREF data set 
SYMREL library 

- -defined 
--and Interregion SVC 
--and JCL procedures 
--and Output Format Table 
--and sample tables 
--and SET tables 
--and SPLEVEL macro 
--and Subsystem Control Table 
--and System Parameter Area 

7-22 
2-3,7-2 

2-2,2-23 
2-2 

2-3--2-4 

2-2 
7-30 

2-5 
3-20 
2-28 
2-23 
7-28 
3-29 
3-26 

SYMSCR library 
SYMSEC library 
SYMUCL library 
SYMUSR library 

2-3 
10-17--10-18 

2-2 

- -defined 
- -and linkedit 
--and system control tables 
--and System Parameter Area 

SYS parameter, STORAGE macro 
SYS parameter, STORFREE macro 
SYSABEND data set 
SYSEVENT macro (IBM) 
SYSGEN 

--and Interregion SVC 
--and MVS 

2-2--2-4 
7-2 

2-28 
3-26 
5-18 
5-18 
6-28 

7-9,7-22 

7-30 
7-28 



--and XA 
SYSIN data sets 
SYSOUT data sets 
SYSPRINT data set 

7-28--7-29 

--dynamic dea11ocation of 

6-27,7-2,8-27 
6-27 
6-28 
6-13 

--and File Handler Statistics 
6-46--6-47,6-51 

--and Intercomm JCL 7-7,7-18 
--and Intercomm messages 7-5 
--and WQE trace 4-2--4-3,4-13 

SYSPVNCH DD statement 2-10--2-12 
--and 1inkedit generation 7-2 

SYSSNAP data set 6-29,7-7,8-27 
SYSSNAP2 data set 6-29,7-7,8-27,8-29 
System Accounting and Measurement 

--defined 8-15,11-3 
--implementation 8-19--8-21 
--reports from 8-20--8-21 
--and resource usage 

categories 
--sample report 
--and user accumulators 
--user exit routines 

System commands 

8-15--8-18 
8-22 
8-18 

8-18--8-19 

--for debugging 11-16,11-23--11-24 
- -Fine Tuner 11-15- -11-16 
--statistics displays 11-3 
--status displays 11-3 
--tracing facilities 11-23 
See also individual command names_ 

System DeBs. See DCB parameters. 
System log. See INTERLOG. 
System modifications 2-2,2-4,7-11 
System Network Architecture 

See VTAM Front End" 
System Parameter 

--address of 
--creation of 
- -described 
-.,Extension 

Area 
7-11,7-31,7-37,11-24 

3-29 
1-11,3-26--3-27 

3-27 
--and Link Pack 

Module 
--residency of 

7-31,7-37--7-38 
1-6 

--and Resour.ce Management 
--and security options 
--and security subroutines 
--and separator character 

5-6,5-10 
10-2 

--and sign-on/sign-off security 

10-18 
10-1 
10-8 
8-10 --and spinoff snaps 

--and Station Table 
- ·-and system control functions 
--and system tuning 

3-15 
2-23 
11-2 

Se~ also INTSPA and SPALIST macro. 

1-32 

System tuning 
--debugging facilitieR 
- -described 

11-23- -] 1-24 
11-1--11-2 

--factors affecting system performance 
--data set allocation 11-14 
--Front End parameters 11-13 
--general 11-6,11-15 
--SPALIST parameters 11-10--11-11 
--subpoo1 space and scheduling 

criteria 
--subsystem program logic 

11-10 
11-7 

--subsystem queuing 
parameters 11-12 

--subsystem residency and 
sche.du1ing parameters 11-7--11-9 

--systen log specifications 11-14 
- -fine tuner commands 11-15- -11-16 
--MVS tuning 

recommendations 
--and performanc.e 

evaluation 
--response time 

considerations 
--statistics on 
--and status displays 

11-19 .. -11-22 

11-1- -11.-3 

11-17--11-19 
11-2- -11-3 

11-3,11-16,11-25--11-26 
--summary 
--tracing facilities 
--tracing a message on 

the log 
System Tuning Statistics 

- ··and closedown 
- .. described 
--implt?mentation of 
--interval 
--reports from 
--and SPALIST parameter 
--and startup 

SYSUDUMP data set 

11-24 .. -11-26 
11-23- -11-24 

11-·3--11-6 

7-13 
8-23,11-3 

8-23--8-24 
8-23,11-·11 
8-24,11-9 

STSTIME 11-11 
7-11 

6-29,7-7,7-18 

TABLE parameter, SECVERBS ma-r.rr, 
Tables 

10-11 

--described 1-10--1-12 
- -disk-residsnt 

--and Change/Display Utility 3.- 23 
--conventions for the 

utilities 
- -defined 
--and Edit Utility 
--and Output Format 

Table 
--and security operator 

12-27 
1-7 

3-17 

3-20 

codes 10-17--10-18 J 



--global 
-\-and 1inkedit ordering 
--resident 
--summary of 
~'-'system control 

2-24--2-27 
7-25--7-26 

1-6,1-8 
A-1--A-3 

2-28 
--system control functions and 

tables 2-23 
See also individual table names. 

TALY command 
--and c10sedown statistics 
~-and Dispatcher queues 
--and Fine Tuner 
--and serial restart user exit 

7-13 
4-1 

11-15 
9-23 

11-11 
11-15 

11-3 

--and SPALIST values display 
~;and subsystem values display 
-"'and system statistics displays 
oi-and system status displays 

11-23- -11-25 
~-and thread hung user exit 5-20 
--and thread status display 5-20 
~-and VSAM files shared across 

regions 6-18 
Task Input-Output Table 

--and File Handler 6-19--6-21,6-24 
Task management 

a::Dispatcher queues 
a:~ .. -described 
~~related service routines 

--IJKCESD 
d-~-IJKDELAY 

--IJKPRINT 
--IJKTLOOP 
:-IJKTRACE 

~,: .. - IJKWHOIT 
TAsKNUM parameter, SPALIST 

4-1 

4-10 
4-11--4-12 

4-2 
4-12--4-13 
4-2--4-10 

4-10- -4-11 

macro 3-63,11-11 
TAS~~ parameter, SUBTASK 

macro 3-62--3-63,6-42 
TCAl1 Front End. See TCAM Interface. 
TCAM Interface 
-~and BTMI terminal simulator 8-1 
--and conversational processing 11-22 
~-defined 1-2 
--and dispatching priority 11-18 
--and linkedit ordering 7-25 
--and logging of input messages 9-3 
--and message flow 3-2--3-3 
~-and MVS installation 7-22--7-23 
--and MVS tuning 11-20--11-22 
--and queue and log processing 11-18 
- -'and separator character 3-18 
--and startup 7-10,7-11 
'"-and system tuning 11-13,11-24 

1-33 

--and terminal queues 
--and transaction security 

7-7 
10-11 

7-10,11-21 TCAMVER module 
TCHP parameter, 
TCTV command 

SPALIST macro 9-8 
11-15 

TCTV parameter, SYCTTBL macro 
--and closedown statistics 7-13--7-14 
--and generalized sub tasking 3-62 
--and MVS tuning 

recommendations 
--and SSUP command 
--and subsystem time-outs 
--and TCTV command 

11-21--11-22 
11-16 
11-19 
11-15' 

--and thread hung user exit 5-20 
--and VSAM files shared across 

regions 
TDUMP module 

6-18 

--and closed loop detection 4-13 
--defined 5-1,5-3 
--and IJKTLOOP 4-13 
--linkedit 5-19 
--and Resource Audit and Purge 5-4 
--and SPIESNAP 5-27 
--and thread resource dump 5-21 

TDWN command 3-3 
TELCMLIB data set 7-2 
Teletype terminals B-3 
TERM option, Log Analysis 12-8,12-11 
Terminal queues. See Queues, terminal. 
Terminal simulator facility. See BTAM 

terminal simulator. 
Test Mode 

--and closedown 7-13 
--des~ribed 1-9 
--input card formats 8-28 
--and Log Input Facility 8-26 
--message creation utility 12-38 
--operation 8-27--8-30 
--and PRT1403 utility 12-33 
--sample JCL 8-30 
--and SECVERBS macro 10-11 
--and system tuning 11-2 

Test Monitor 3-27,8-29 
TEST parameter, ICOMLINK ma~ro 8-29 
TEST parameter, LINKAGE macro 7-37 
Thread resource dump 

- -described 
--dynamic generation of 
--function 
--and indicative dumps 
--and MVS tuning 
--sample 
--thread status line 

5-21--5-23 
11-24 

1-5 
8-7 

11-22 
5-24--5-26 

5-23 



Thread Status Table 
THREDLOG data set 

5-21 
6-29 

THRSH parameter, SYCTTBL 
TIME list 

macro 3-37 
4-1,4-4--4-5 

TIME parameter, STATION 
macro 

Time Zone Table 
10-6,10-15 
3-64--3-65 

Timer queues. See Queues, time. 
TIMS parameter, SPALIST 

macro 3-19,11-10 
TIOT. See Task Input-Output Table. 
TISE parameter, SYCTTBL macro 10-10 
TMZONE macro 3-64 
TOTAL data base 7-5,12-40--12-41 
TOTFLGEN macro 7-5 
TPUMSG module 11-19 
TPUP command 10-15 
TPUP parameter, BTERM macro 8-3 
TRACETM parameter, SPALIST macro 5-7 
Tracing facilities 11-23 
TRAClO'1OD module 8 -19 
Traffic histograms 12-8--12-10 
TRAN. See Transient Subroutine Overlay 

Region. 
TRANGEN module 
TRANS parameter,ICOMLINK 

macro 
TRANSEC parameter, SPAL1ST 

7-11 

3-46,3-61 

macro 10-9--10-10 
Transient Subroutine Overlay 

Region 3-59--3-61,11-19 
TRAP module 5-6,5-27,7-22,11-15 
TRIGGER module 3-64,7-10 
TSTATAB entry point 5-21 
TSTEND parameter, SPALIST 

macro 
Tuning techniques. 

7-13,8-29 
See System tuning. 

UMs. See User modifications. 
Undefined records 6-6 
UNIVER parameter, STATION macro 10-14 
UNLK command 3-11--3-12 
UNLOCK parameter, FILE command 6-13 
UPOATEONLY FAR attribute 6-34 
User exits 

--cancelled messages 
--checkpointing 
--COBOL subsystems 
--c10sedown 
--coding conventions for 
- -listed 
--log merging 
--logging 

3-5--3-7 
9-9 

3-49 
7-16 

0-1--0-2 
0-2--D-5 

12-46 
9-7 

1-34 

--message restart 
--output messages 
--serial restart 
- -for sign-on/sigr..-off 

security 
--snap processing 
--startup 

9 -14 - - 9 -.1;5. _ 
3-22 

9-20--9-23 

10-7--10-8 
8-6,8-9,8-12 

7-12 
3-5-~3-7 --from Subsystem Controller 

--from System Accounting and 
Measurement 8-18--8-19 

--thread hung (disabled) 5-20 
--unloading B37-protected 

data sets 6-8--6~9 
USERB37E user exit 6-R--6-9 

- -and Link Pack Facility 7 -33 
--and message restart 9-19,9-24,12-45 

USERINIT user exit 7-9,7-12 
USERLOGE user exit 9-7 
User modifications 2-2 
USERSEC Farameter, SPALIST macro 10-19 
USERSPA 2-28,3-26--3-27,7-36--7-39 

--address of 11-24 
--and checkpointing 9-8 
--and indicative dumps 8-8--8-9 

User-written security routines . 
10-18--10-20 

USRBTLOG user exit 9-.3 
USRBTVRB member 2-23,3-7,3-10 
USRCANC user exit 3-5--3-7 
USRCHKPT user nxit 9 ... 9 . 
USRCLOSE user exit 3-16,7-16 
USRCLSEl user exit 3-54,7-16 
USRESTRT user exit 9-14. 
USROTEDT user exit 3-22 
USROUTCK user exit 3-22. 
USRSAMnn exit routines 8-18--8-20 
USRSCTS member 2-28,3.-29 
USRSEREX user exit 9-20-~9-23 
USRSGNOF user exit 10-7--10-8,10-20 
USRSGNON user exit 10-7--10-8,10-20 
USRSTART user exit 3-16,7-11--7-12 
USRSTRT parameter, 1COMLINK macro 7 -l~j.)· 
USRSTRTl user exit 3-54,6-43,7-11~-1;~~~ 
USRSUBS member 2-28,,3-47-
USRTRACK macro 8-18--8-20 
USRVERBS table 2 - 28,3 -17 , I? - ~Q ' 
USAGE parameter, SUBMODS macro 3-58 
Utilities 

- -off-line 
--BDAM file creation 

(CREATEGF) 12-30- -12··32 
--create keyed BDAM file 

(KEYCREAT) 



-~reate input data to simulator 
~. (CREATSIM) 12-35--12-37 

_icreate input messages for 
. Test Mode (SIMCRTA) 12-38 

-~disk-resident table conventions 
for the utilities 12-27 

--File Load program (PMIEXLD) 
'--described 12-24--12-26 
--JCL for 12-26 
~:-partia1 file load 12-28--12-29 

-~initia1ize Auto-restart file 12-43 
--log analysis (LOGANAL) 

\--creating load module for 12-19 
":-described 12-8 
f_-execution of 12-19--12-24 
<~-':generating LOGVRBTB 

12-18--12-19 
--generation 

" parameters 
--installation of 
e~-response time 

reports 
~--samp1e JCL 
(.:-ttaffic histograms 

12-16--12-18 
12-16 

12-11--12-16 
12-23 

12-8--12-9 
--log display (LOGPRINT) 

O--contro1 records for 12-3--12-7 
f~-described 12-1 
nS-JCL for 12-3 
; - - sample output 12 - 2 

_91og merge (LOGMERGE) 12-44--12-46 
--missing-end of file recovery 

(ICOMFEOF) 12-40--12-41 
-"print Output Utility batch 
< reports (PRT1403) 

- :'produce change deck from 
12-33 

. two PDS members (CHANGER) 12-41 
-~scan for program operation 

~, ·co.des (OPSCAN) 
-:.symbolic library comparison 

. , .. (LIBCOMPR) 12-:34 
See··a1so individual utility names. 

--on-line 1-5--1-6 
Se~aiso Change/Display, Edit, HMO, 

6.utput Utility 

Vari~ble-1ength records 6-6 
VCT_,See VTAM Control Table. 
Verb 3-2--3-3,3-7,3-11--3-12 
VERB macro 12-18 
Verb Message Identifier 

--and Log Analysis LOGVRBTB 
--Overlay Region Verb Table L ~,\.alld Output Utility 

12-18 
3-45--3-46 

3-19 

1-35 

controlled message 
MSGHVMI. 

3-64' --and time 
See also 

Verb Table. 
Verbs 

See Front End Verb Table. 

--conversational 3":12 
--and Front End Verb Table 3-7--3-9 
--locked 3-11--3-12 
--and Log Analysis. See -LOGVERB. 
--for overlay regions 3-44--3-46 
--priority 3-11 
--purpose of 3-7, 
--short 3-11 
--and transaction 

security 
--unlocked 

10-9,10-15--10-17 
3-11--3-12 

VERBS parameter, STATION 
macro 10-9,10-11,10-15--10-17 

VERBSTRT module 3-13--3-14,7-9 
VERBTBL Csect 3-17,12-18 
VERBVCON Csect, entry 3-13--3-14 
VMI. See Verb Message Identifier. 
VRBOOO data set 3-17,6-29,12-25--12-27 
VS 

--and COBOL II 3-51 
--execution groups 

3-31--3-33,3-38--3-39,4-3,7-27 
--and MVS installation 7-24,7-27 

VSAM 
--alternate index 

processing 6-11,6-14,6-26 
- -and batch programs using' 

File Handler 6-51 
--data set name sharing 6-14,6-32 
--data set specifications 6-24,6-32 
--and Dynamic File Allocation 

Facility 
--empty file loading 
--exclusive control 

6-9 
6-14,6-33,6-34 

5-20,6-4,6-31,6-32,6-34 
--execution JCL 7-18 
--and File Attribute 

records 6-31--6-34 
--and FILE command 6-11 
--file support 6-14--6-18 
--files shared across regions 

6-16--6-18,6-31,6-32,6-34,1-30 
--and GETV function 6-38 
--and globals 6-42 
--IDCAMS options 6-14,6-32,6-34 
--ISAM/VSAM compatibility 

6-3,6-18,6-42 
--Local Shared Resources 



--and' File Attribute 

--statistics 
--and system tuning 
- -using 

--and LOCATE facility 
--and MVS tuning 
--and PUTV function 

Records 
6-31--6-33 
6-48--6-49 
11-7,11-20 
6-15--6-16 
6-39--6-40 

11-20,11-22 
6-38 

--and read-only processing 6-26 
6-12 
5-20 

--and reallocation of data sets 
--and thread hung user exit 

VSAMCRS FAR attribute 
6-16--6-18,6-34,6-51 

VTAM Control Table 
--and APPLID at startup 
--and Dispatcher WQES 
--and Intercomm VTAM name 

--and APPLID password code 
--and message sequence numbers 

VTAM Front End 

7-4--7-5 
4-2 
7-5 

7-4--7-5 
11-4 

--and APPLID override 7-4--7-5 
--and BTAM terminal simulator 8-1 
--and conversational processing 11-22 
--defined 1-2 
--dispatching priority 11-18 
--and hardware problems 11-18 
--and IJKTRACE 4-2 
--and 1inkedit ordering 7-25 
--logging of input messages 9-3 
--and message flow 3-2,3-5 
--and message release processing 3-25 
--and message sequence numbers 11-4 
--and Mu1tiregion tuning 11-9 
--and MVS installation 7-22--7-23 
--and OTQUEUE user exit B-3 
--and output messages 3-5 
--and RSLU command 11-18 
--and SETENV 2-23 
--and SPLU command 3-3 
--and startup 7-10,7-11 
--and system statistics displays 11-3 
--and system tuning 11-13,11-24 
--and transaction security 10-11 
--transmission considerations 11-18 
--and VTST command 11-3 

VTAMQ data set 6-29,7-7 
VTERRMOD module 4-2 
VTRECVE module 11-4 

1-36 

VTSAMP sample table 
VTST command 
VTSTART module 

WAIT list 
WAIT parameter, BLINE macro 
Warm start 
WHOI command 
WHOU command 
WQE trace 

See also IJKTRACE. 

2-28 
11-3 
7-10 

4-3--4-5 
7-11 
7-17 
11-3 
11-3 

11-23,11-24 

WRITE function 6-4--6-5,6-37--6-38,6-40 
WRITEOVER FAR attribute 

6-6,6-8,6-14,6-16,6-34 
WIO message routing override 7-5,7-10 
WTOPFX parameter, SPALIST macro 7-5 
WTOR macro (IBM) 7-28 

XA 
--and ABEND interception 
--and ABEND recovery 
--and COBOL subsystem user exits 

8-5 
8-6 

3-49 
--and dynamically loaded 

subroutines 3-57--3-58 
--and dynamically loaded 

subsystems 1-6,1-8,3-42,11-8,11-11 
--statistics on 8-24 

--ESPIE and PL/1 subsystems 3-53 
--ESPIE at startup 7-11 
--and IJKWHOIT calls 4-11 
--installation of 7-28--7-29 

See also MVS, installation 
--and Intercomm 
--and Interregion SVC 
--and Link Pack facility 
--and LSR statistics 
--and MVS/370 macros 
--and off-line utilities 
--and program checks 
--recommendations 
--and subsystems loaded 

above 16meg line 
--sysgen recommendations 
--and user subroutines 

XASWITCH macro 
XCTL FAR attribute 
XMs. See Experimental system 

modifications. 

11i,1-1 
7-30 
7-35 
6-49 
7-28 
7-28 

8-5 
7-28--7-29 

1-6,3-42 
7-28--7-29 

3-55 
" 3-58 

6-31,6-34 

J 

J 




