
INTERCOMM

STORE/FETCH FACILITY

<~ISOGON ~ CORPORATION
330 Seventh Avenue, New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Publication

First Edition

Second Edition

Store/Fetch Facility

Publishing History

July 1976

February 1994

Remarks

This manual corresponds to
Intercomm Release 6.2.

Updates and
corresponding
Releases 9 and 10.

corrections
to Intercomm

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system of
Isogon Corporation, executing on the IBM System/370 and System/390
family of computers and operating under the control of IBM Operating
Systems (XA and ESA). Intercomm monitors the transmission of messages
to and from terminals, concurrent message processing, centralized
access to I/O files, and the routine utility operations of editing
input messages and formatting output messages, as required.

This manual documents the Store/Fetch Facility.

The following manuals are to be used in conjunction with this
manual:

• Operating Reference Manual

• COBOL Programmers Guide

• PL/l Programmers Guide

• Assembler Language Programmers Guide

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PL/l Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Oueuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Model System Generator

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

Table Facility

TCAM Support Users Guide

Utilities Users Guide

EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

iv

Chapter 1
1.1
1.1.1
1.1. 2
1.1. 3
1.2
1.3
1.4

Chapter 2
2.1
2.1.1
2.1. 2
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
2.4.2

Chapter 3
3.1
3.2
3.3
3.4
3.5
3.6

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Chapter 5
5.1

Chapter 6
6.1
6.2
6.3
6.4
6.5

Appendix A

TABLE OF CONTENTS

INTRODUCTION ... 1
Overview. 1

Modular Programming Applications 1
Conversational Subsystem Applications 3
Other On-Line Applications....................... 3

The Mu1tiregion Environment 3
Batch Mode Operations 4
Store/Fetch Utility 4

PROCESSING CONCEPTS 5
Store/Fetch Data Strings 5

Data String Types 5
Accessing Data Strings 6

Store/Fetch Data Sets........... 6
Subsystem Design Considerations........ 7

Creating Data Strings...................... 7
Updating Data Strings.......................... 8
Renaming Data Strings.......................... 8

Store/Fetch Data Set Recovery.. 9
Backout-on-the-Fly 9
Subsystem Design 9

STORE/FETCH SERVICE ROUTINES......................... 11
Introduction 11
Store/Fetch Parameters..................... 11
Store/Fetch Return Codes...... 13
Invoking the Store Function 15
Invoking the Fetch Function 17
Invoking the Unstore Function...................... 19

INSTALIATION ... 21
Introduction 21
Creating a Store/Fetch Data Set.................... 21
SPA Specification 22
Linkedit Requirements.............................. 22
JCL for Execution.................................. 23
Intercomm Store/Fetch Requirements 23
Statistics on Store/Fetch Usage. 24

BATCH MODE OPERATION................................. 25
Usage .. 25

OFF-LINE STORE/FETCH UTILITY 27
Introduction 27
Execution Syntax 27
Examples ... 28
Error Conditions 29
End of Job I/O Statistics 29

STORE/FETCH TUNING & OPTIMIZATION 31

Index .. 33

v

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

LIST OF ILLUSTRATIONS

Using The Store/Fetch Facility

Store/Fetch Data String Types

Store/Fetch Service Routines

Parameter Summary for Store/Fetch Calls

REENTSBS Codes (COBOL and PL/1)

SFCW Format .. .

Service Routine Options Specified via SFCW

SFCW Specification for INTSTORE

Parameters for INTSTORE

Return Codes for INTSTORE

SFCW Specification for INTFETCH

Parameters for INTFETCH

Return Codes for INTFETCH

SFCW Specification for INTUNSTO

Parameters for INTUNSTO

Return Codes for INTUNSTO

KEYCREAT JCL Example

Linkedi t Requirements

Batch Mode Store/Fetch Linkedit

vi

2

5

6

12

13

13

14

15

16

16

17

18

18

19

19

20

22

22

25

Chapter 1

INTRODUCTION

1.1 OVERVIEW

The Store/Fetch facility provides an application program
(subsystem) with the facilities to:

• STORE: save data either in main storage or on disk to be used at a
later time by this subsystem or related application subsystems.

• FETCH: retrieve stored data from main storage or disk.

• UNSTORE: free stored data from main storage or disk when the
information is no longer needed by an application subsystem.

Stored data may consist of counters, switches, messages, subsystem
parameters, print lines or any information which a subsystem may wish to
save and/or retrieve. Each Store/Fetch data string is saved and
re trieved us ing a unique app1ica tion- ass igned key. Data string
processing is described in Chapter 2 and string access service routines
are detailed in Chapter 3. Store/Fetch installation is in Chapter 4.

1.1.1 Modular Programming Applications

The Store/Fetch facility is quite useful in a modular programming
environment. In this type of environment, each application subsystem
typically performs one specific function. A group of related subsystems
may work together to perform a maj or task, with each subsystem working
on a specific portion of the task. Results are communicated via the
Store/Fetch faci1i ty. For example, an application subsystem is
activated by an input message from a terminal, performs initial
processing and saves the input message and/or resultant data for the
next related subsystem. The first subsystem makes some entries in a
table, accesses files, sets switches, and updates counters, based on the
content of the input message. A second subsystem then analyzes the
findings of the first subsystem and continues the processing to produce
a second intermediate result. A third subsystem analyzes the output of
the second subsystem, updates files, and produces a final output message
for the terminal.

Without Store/Fetch, this process would most likely be implemented
through the use of the File Handler to save intermediate results. The
overhead for CALLs to File Handler Service Routines would then be
included in the processing time of the application subsystems.
Developing logic to interface with the File Handler to perform all of
these functions would add to the implementation time and to the storage
requirements for each application subsystem. The Store/Fetch facility
simplifies application development.

Figure 1 i llus tra tes the logic flow of a message which is
processed in turn by Subsystems A, Band C through the use of the
Store/Fetch facility. The subsystems share switches, counters and data
saved and retrieved via Store/Fetch.

1

Chapter 1 Introduction

Enter A Enter B Enter C

I I I
Analyze Analyze Analyze
Input Message Input Input
from Terminal Message Message

I I I
Set Counters, FETCH FETCH
Switches, etc Retrieve Data Retrieve Data

Stored by A Stored by B

I I I
STORE Examine Examine
Save Data Counters, Data
for B Switches from B

Set by A

I I I "...- -..
Produce Update Values File Handler Appli-
Intermediate Fill in Data cation
Message for B for C Update Files ~ Files

I I I
MSGCOL/COBPUT STORE Produce Output
Queue Message Save Data Message for ---for B for C Terminal

• I I
Produce FESRNn*

RETURN Intermediate Pass Ouput
Message for C Message to

Front End

I I
MSGCOL/COBPUT UNSTORE**
Queue Message Release Space

for C Obtained by
STORE in A

... ..-
RETURN RETURN

'~Or queue message for Output Utility or create/queue message via MMU
~~*Or FETCH wi th DELETE and no UNSTORE is required.

Figure 1. Using the Store/Fetch Facility

J
2

Chapter 1 Introduction

1.1.2 Conversational Subsystem Applications

Subsystems involved in conversational processing may use Store/
Fetch to preserve the conversational environment. The first and
subsequent input messages and/or related data may be saved through the
use of STORE and retrieved through the use of FETCH until the
conversation is complete. A more thorough discussion of implementation
of conversations via Store/Fetch is found in the chapter on
conversational subsystems in the Intercomm COBOL, PL/l, and Assembler
Language Programmers Guides.

1.1.3 Other On-Line Applications

Subsystems which develop any type of data to be used by other
subsystems may save and retrieve the data through Store/Fetch. The data
may be transient in nature (perhaps cumulative totals for one Intercomm
execution), and it would therefore be necessary only to preserve it from
Intercomm Startup to Closedown. Rather than encounter the overhead of
preserving the data on a data set, it may be defined as Store/Fetch data
to be kept in (24-Amode) core.

A subsystem may create an output message and may wish to save it
for later transmission. There may be a certain set of conditions which
must be met before the message should be transmitted. For example, a
subsystem might expect to receive a feedback message from the Front-End
(via Front-End Control Message facility) to indicate one type of
terminal output is complete before it would wish to transmit this
message. Store/Fetch may be used to save a terminal-oriented message
for later transmission, or to gather data to produce a printed report.

Under Release 10, when multiple data strings are created by an
application, a Table Facility is available for storing them in core
above the 16M line. Strings in a table may be retrieved later by the
same or another subsystem under one Intercomm execution.

1.2 THE MULTIREGION ENVIRONMENT

Store/Fetch service routines are eligible for Link Pack Area
residence. Thus, no additional storage overhead per region is
encountered in the Multiregion environment. All I/O associated with
Store/Fetch is overlapped with all processing regions as well as within
the particular Intercomm region.

Store/Fetch data sets must be unique to each region. The
Multiregion concept of independent decentralized application-oriented
regions is maintained. Store/Fetch data may not be shared across
regions (except for permanent strings on a read-only data set),

3

Chapter 1 Introduction

l.3 BATCH MODE OPERATIONS

The Store/Fetch facility may also be used by batch programs to
save and later retrieve data within the same or a different program.
Off-line "utility" programs might create/update Store/Fetch data for
on-line program access. See Chapter 5.

1.4 STORE/FETCH UTILITY

A utility is provided to dump/restore, copy,
strings on) a Store/Fetch data set. This utility
Chapter 6.

4

or print (data
is described in

Chapter 2

PROCESSING CONCEPTS

2.1 STORE/FETCH DATA STRINGS

Store/Fetch operates upon logical entities defined as data
strings. Each data string is given a unique user-defined name called a
key. The key is specified in the parameter list passed to the Store/
Fetch service routines. Keys beginning with DATA and ISYS are reserved
for Intercomm use.

2.1.1 Data String Types

Data strings may be of any length and are defined as being either
trans ient, semipermanent or permanent. Figure 2 summarizes the
differences among the three types of data strings. Transient data
strings may be core resident or disk resident, based on a STORE
option. Semipermanent and permanent data strings reside only on disk.

The maximum main storage allotment for Store/Fetch transient data
strings stored in core is a user-specified SPALIST macro parameter.
When that value is exceeded, transient strings not recently accessed
are flushed to their disk data set. A subsequent FETCH, or STORE with
update, of such transient data causes it to again reside in core.
Thus, retrieval of frequently accessed transient data strings is not
I/O bound.

Similarly, in the event of a Resource Management low core
condition, transient strings in core are flushed to their disk data set
(when disk space is available) to alleviate the condition.

F=============--~=F' ==----===========================~F===,=====,==,== ==
Data String

Type Availability
Storage
Medium

F=--==--================--=--=================--==========~===============

Transient

Semipermanent

Permanent

From system startup/restart until
normal or abnormal closedown.

Across system restart.

Through each system execution
until specifically UNSTOREd.

Figure 2. Store/Fetch Data String Types

Core or
Disk

Disk

Disk

NOTE: Transient data strings only exist for the execution of Intercomm
within which they are created. Transient data strings that are
on disk are deleted during system initialization of the next
execution. Semipermanent strings are also deleted during system
initialization when Intercomm is executed with PARM=STARTUP, but
are not deleted if PARM=RESTART or RESTRNL.

5

Chapter 2 Processing Concepts

2.1.2 Accessing Data Strings

Data strings are created through the use of the STORE function.
They are placed in dynamic storage or written to a Store/Fetch data set
as requested by the user. Data strings are retrieved through the use
of the FETCH function. The retrieved strings are moved by Store/Fetch
into an area provided by the calling subsystem. Assembler subsystems
may request FETCH to obtain the area, but the subsystems are
responsible for freeing it. The space in dynamic core or on disk
occupied by a given data string may be released through the use of the
UNSTORE function. An UNSTORE applied to a disk data string causes the
space to be made available for subsequent STOREs of other new strings.
STORE, FETCH and UNSTORE functions are performed by service routines.
Application subsystems CALL the routines to perform these functions as
follows:

================== -===============~====-=~==================-

Function Service Routine

STORE INTSTORE

FETCH INTFETCH

UNSTORE INTUNSTO

Figure 3. Store/Fetch Service Routines

Any stored data string, whether in storage or on disk, can also be
deleted via the FETCH with DELETE option of the facility. A string can
also be renamed, or even moved to a different data set. An update with
a length change is also possible.

2.2 STORE/FETCH DATA SETS

Up to ten (10) Store/Fetch data sets may be used in one Intercornrn
environment (execution). The ddname convention is INTSTORn, where n
may be ° through 9. Application programs may specify use of a specific
data set in their service routine requests, or the default data set,
INTSTORO, will be used.

Each data set used by Store/Fetch is a preformatted keyed BDAM
file with the Extended Search option. The records are fixed-length and
unblocked. Record length should be larger than most of the data string
lengths the user intends to save on the file. Data strings longer than
the stated record length are segmented and chained by Store/Fetch:
shorter strings are padded with binary zeros. Management of the
variable-length data strings is transparent to the application program.

6

J

Chapter 2 Processing Concepts

The number of Store/Fetch data sets to define is an installation
dependent consideration. Several Store/Fetch data sets may be created
to be accessed on-line for the following reasons:

• Different application subsystems executing concurrently and
using Store/Fetch data sets may have quite different
processing requirements.

• Record lengths required may vary greatly.

• Performance may be degraded if many subsystems contend for
access to one data set.

2.3 SUBSYSTEM DESIGN CONSIDERATIONS

Data strings are accessed by user-specified keys up to 48
characters in length. The key must be unique for the data set defined
at access time. If a data string with a given key may be updated by
more than one subsystem, or by another thread of the same reentrant
subsystem, subsystem logic must include a method of ensuring exclusive
use of the string at that time via Store/Fetch control parameters. A
data string to be created may not have a duplicate key of an already
existing data string for the specified data set.

The following conventions are used by Intercomm system programs
for Store/Fetch data string names:

• ISYS: for internal system use

• DATA: for Data Entry facility

Users must not use these four-character combinations as the first four
characters of the data string key for their applications.

Suggestions for optimization of Store/Fetch usage are given in
Appendix A.

2.3.1 Creating Data Strings

Application design should ensure that each stored data string has
a unique key for the Store/Fetch data set requested. Store/Fetch, when
processing a create function (via STORE with the Add option), does not
check if a duplicate key (data string name) exists for the requested
data set. If more than one subsystem, or another thread of the same
reentrant subsystem, could create a data string with an identical key
to an existing data string then the next FETCH for the newly created
data string could have u~predictable results (that is, the FETCH might
get the original data string with the same name, not the one just
created) .

7

Chapter 2 Processing Concepts

To m~n~m~ze Store/Fetch overhead for data string creation, the
responsibility for ensuring unique keys is placed on the user. Each
subsystem (thread) might enqueue upon the resource (data string
name) to obtain exclusive control using the INTENQ/INTDEQ macros.
High -leve 1 language subsystems must call a user-written Assembler
Language service routine which issues the macros. With the enqueue in
effect, others wishing to create the same string will be delayed in
their processing. The subsystem in control will then issue a FETCH for
the string to see if a string with this key has already been created.
A Record Not Found return code indicates that no duplicate key exists.
If it does exist, the subsystem can delete the string via UNSTORE. The
subsystem will then create the string and call the service routine to
issue a dequeue on the resource. Or, if a string already exists for
this key, the subsystem can update the string returned by the FETCH.
The subsystem will then STORE the updated data string and call the
service routine for the dequeue function. See also Section 2.3.2 on
updating strings.

Again, please note that this enqueuing technique is necessary
only if other circumstances do not ensure that multiple subsystems (or
multiple threads of the same reentrant subsystem) will not attempt to
create the same data string concurrently.

2.3.2 Updating Data Strings

If a data string may be updated by more than one subsystem, or by
another thread of the same reentrant subsystem, data integrity must be
preserved by obtaining exclusive control during the updating process.
This is accomplished by the Store/Fetch service routines based upon a
user request (via the parameters passed). The service routines then
issue an enqueue before the FETCH and a dequeue after the STORE.

2.3.3 Renaming Data Strings

A data string is renamed by storing it with a new key. For
example, a data string contains information (such as counters) which
the user wants to preserve as permanent data. However, that string is
fetched and later stored in core as transient data for ready access, so
it can be modified during processing. In this case, the stored
transient data should be renamed to assure integrity of the original.
This is to safeguard against the modified transient data string being
flushed back to its disk data set (under the key of the original
permanent data string) in the event of a low-core condition. The
original data would be destroyed, in spite of its "permanence", if the
modified data had the same key. That is, the original permanent string
would be overlaid by the transient string in the flush processing.
This situation could be avoided by renaming the modified transient
data, as follows:

• FETCH original (Key 1): retrieve the data string,

• Modify the original data string and STORE in core (Key 2) .

8

Chapter 2 Processing Concepts

If a low-core condition should occur, the modified data string would be
written to disk at Key 2 location as transient data. Key 1 location
'..-ould still have the original permanent data. Note that periodic
updates of the permanent string, using the modified transient data,
could be a method of checkpointing cumulative subsystem data, such as
transaction totals. The permanent data could later be accessed in
batch mode for activity reports, etc.

2.4 STORE/FETCH DATA SET RECOVERY

Recovery of Store/Fetch strings written to a Store/Fetch data set
may only be accomplished through installation of the Intercomm File
Recovery special feature. The Backout-on-the-Fly facility of that
feature may also be used.

A Store/Fetch data set containing transient strings should not be
subject to file recovery. Excessive file update logging may take place
when transient strings in core are flushed to disk during low core
conditions. File recovery precedes Store/Fetch initialization at
system initialization. File recovery performed for transient strings
is unnecessary overhead because of their subsequent deletion.

Use of the recovery feature should be confined to one user
program-accessed Store/Fetch data set to minimize processing overhead.

2.4.1 Backout-on-the-Fly

The File Recovery option to back out updates in the event of a
subsystem failure may be implemented for user program-accessed Store/
Fetch data sets. All types of data strings may be subject to
Backout-on-the-Fly (BOF) , with the following exceptions:

• Transient strings created with a "keep in core" request
(SFCW=~CTA) are not recoverable .

• If a transient string created with a write to disk
(SFCW=~WTA) is later updated/replaced using a "keep/hold in
core" request (SFCW=~CTU,~HTU,~CTR,~HTR), that request is
also not recoverable.

The SFCW values and their meaning are described in Chapter 3.

2.4.2 Subsystem Desi~n

It is advisable that subsystem coding be organized in such a way
that all processing is done before an updated string is returned to
Store/Fetch or a new string is added. It is also recommended that
FETCH with the Delete option not be used for a Store/Fetch data set
with File Recovery options defined; instead use FETCH, followed by an
UNSTORE just before returning control to the Subsystem Controller.

9

.' 1.~ ..",

Chapter 3

STORE/FETCH SERVICE ROUTINES

3.1 INTRODUCTION

Application programs call Store/Fetch service routines using the
standard conventions of the language in use. Reentrant COBOL
subsystems and PL/l subsystems call the service routines via the
interface routines COBREENT and PMIPL1, respectively. PL/l and
Assembler programs may call the routines directly.

3.2 STORE/FETCH PARAMETERS

The parameters passed to the Store/Fetch routines qualify the
action to be performed. With the exception of the disk data set
ddname, all parameters specify areas of storage unique to a message
thread in progress and must be defined in the dynamic working storage
of the subsystem. The areas of storage associated with Store/Fetch
service routines and summarized in Figure 4 are:

• Store/Fetch Control Word (SFCW), a
aligned) area specifying service routine
the call, and containing a return code
the function after the call.

four-byte (fullword
options requested by
indicating status of

• Key, which must be left-justified and may be alphanumeric
character data and/or a hexadecimal value, though treated as
a binary value by the facility. The length of the Key area
must be big enough to hold the number of bytes specified for
the key length. Do not use low-order blank padding. The key
may not start with X'FF' (high-values). Keys beginning with
the words DATA and ISYS are reserved for Intercomm internal
use.

• Key Length, which must be a binary halfword value on a
halfword boundary. A key may be from 1 to 48 bytes long.
This allows the use of qualified data set names, for example,
as keys.

WARNING: If the key length passed to STORE is greater than the
actual length of nonblank key bytes, a Space Not
Found condition may happen due to randomizing.

• Data String Area, which contains the data to be stored, or
into which data will be moved for a FETCH. This area belongs
to the caller, and will not be freed by the facility.

• Data String Length, which must be a binary halfword value, on
a halfword boundary, from 1 to 32,767. For a STORE, this is
the length of the string to be stored from the data area,
while for a FETCH this must be initialized to the length of
the data area itself. The actual data string length is
always returned in this field from a FETCH request.

11

Chapter 3

•

Store/Fetch Service Routines

DDname, which is the eight-byte ddname field and must contain
INTSTORn to define a Store/Fetch data set. The n is a
character value from 0 (zero) to 9. If there are not enough
dummy records on the requested data set within the specified
search limits to STORE a data string, the data string is not
stored, and a Space Not Found error code is returned. If the
calling program may be loaded above the 16M line under
Release 10, the ddname field must be in the caller's dynamic
storage area, except if the calling program is VS COBOL II
(may be in Working Storage).

If the ddname parameter is omitted in the service routine call, the
default data set (INTSTORO) is selected. If INTSTORO is not available
for a disk data string request, an appropriate error code is returned.

Assembler Language and PL/l direct call programs may specify 0
(zero) as the data-area address for a FETCH. In this case, the
facility acquires the dynamic storage for the string and passes back
the address (in the data-area address field of the parameter list) and
length (in the halfword data-length field) of the area (string). The
user program is then responsible for freeing this storage area. The
area is always in 24-Amode storage.

F===-"-======'==== =========-=--=====
Parameter Meaning

F==---==========='~'=====~===-======--='======='-=----==========----====~=========~

REENTS BSname The label of a halfword (aligned) binary value
specifying the REENTSBS code for the service routine
to be called (COBOL and PL/l via PMIPL1)

SFCWname The label of the Store/Fetch Control Word (fullword
aligned)

KEYname The label of the area containing the data string key

KLENname The label of the halfword (aligned) binary value
specifying the key length

DATAname The label of the data string area to be Stored, or
the data string area for data to be Fetched

DLENname The label of the halfword (aligned) binary value
specifying data string length

DDname The label of the area (eight bytes) containing the
ddname of the Store/Fetch data set

Figure 4. Parameter Summary for Store/Fetch Calls

12

Chapter 3 Store/Fetch Service Routines

Figures 5, 6, and 7 summarize the conventions for calls to Store/
Fetch service routines. Assembler Language and PL/l programs calling
Store/Fetch directly also use the service routine names listed in
Figure 5. For PL/1 calls, these names are also in COPY member PLIENTRY
or may be declared individually with ENTRY OPTIONS (ASM INTER). (For
details of which parameters apply to which calls, see Figures 9, 12,
and 15.)

"""'"""""~~ -- ~

ICOMSBS PENTRY
Service REENTSBS name name
Routine Code (COBOL) (PL/l via PMIPL1)

F-=' ~~ = -=
INTFETCH 39 INTFETCH INTFETCH

------------ ---------------- ------------- ----------------------------

INTSTORE 43 INTSTORE INTSTORE
------------ ---------------- ------------- ----------------------------

INTUNSTO 47 INTUNSTO INTUNSTO

Figure 5. REENTSBS Codes (COBOL and PL/l)

Byte Purpose

1 Return code from Service Routine

2 Processing Request Character

3 Data Type (Transient, Semipermanent or Permanent)

4 STORE-related options

Figure 6. SFCW Format

3.3 STORE/FETCH RETURN CODES

The return code is placed in byte 1 of the SFCW by each of the
Store/Fetch service routines. It is a numeric character value. The
character zero always indicates successful completion of the function
and options requested. The return code placed in the SFCW is also
multiplied by 4 and returned in Register 15, in binary form. Return
codes from INTSTORE, INTFETCH and INTUNSTO are detailed in Figures 10,
13, and 16, respectively.

13

Chapter 3 Store/Fetch Service Routines

~==--~=-'~=~================----===-=-=,-=====--=~~========~================-

Byte Value
F========'=====================-====================-================-==='=================~

1

2

Reserved for return code indicating status of call.

Processing requests are coded as follows:

FETCH X Enqueue before retrieving data string. This must
be followed by a STORE or an UNSTORE with a
dequeue request, from the same thread.

UNSTORE

D Retrieve, then delete original data string.

K Retrieve and keep original data string.

C Keep in core (valid for transient data only)

W Do not keep in core, but write string to disk
data set specified (valid for any data type)

X Dequeue after saving updated data string on disk.
(If data type is transient, it will be written
to disk)

H Dequeue after saving updated transient string
in main storage.

X Dequeue after deleting data string. Dequeue is
automatic, even if return code is non-zero.

blank If X not requested, leave blank.

3 Data Type -- specify one of the following:

T Transient Data

S Semipermanent Data

P Permanent Data

4 STORE-related options. Must be coded for STORE:

A Add a new data string

R Replace an existing string of the same length

U Update with length change

Figure 7. Service Routine Options Specified via SFCW

14

Chapter 3 Store/Fetch Service Routines

3.4 INVOKING THE STORE FUNCTION

INTSTORE is invoked by a standard subroutine CALL. The SFCW must
be initialized prior to the CALL to specify STORE options; after the
CALL, the status of the operation is reflected by a return code in byte
1 of the SFCW.

The data string to be stored may be one of the following:

• a new data string (specified by A in byte 4 of the SFCW)

• an updated data string with no length change (specified by R in
byte 4 of the SFCW)

• an updated data string with length change (specified by U in byte
4 of the SFCW)

No test is made for a duplicate (existing key) on the Add (A) option.
An existing string is not necessarily replaced; the next FETCH will
have unpredictable results (see Section 2.3.1).

Note that if a STORE with dequeue is requested and a processing
error occurs (non-zero return code) the dequeue is not honored, except
for an I/O error.

SFCW options are summarized in Figure 8, parameters for the CALL
are illustrated in Figure 9, and the INTSTORE return codes are listed
in Figure 10.

F=========---========~==========~===='=--==-'=~

SFCW Setting (Character Values)
Function Desired Byte 1 Byte 2 Byte 3 Byte 4

F====~============================-~ ==========-~=

STORE a new string in core blank C T A

STORE an updated string in core

STORE a new string on disk

STORE an updated string on disk

STORE an updated transient string
in core, then dequeue

STORE an updated string on disk,
then dequeue

blank

blank

blank

blank

blank

C T

T/S/P

T/S/P

H T

x T/S/P

Figure 8. SFCW Specification for INTSTORE

15

R/U

A

R/U

RjU

R/U

Chapter 3 Store/Fetch Service Routines

COBOL:

PL/1:

CALL 'COBREENT' USING REENTSBSname,SFCWname,KEYname,
KLENname,DATAname,DLENname[,DDname] .

CALL PMIPLl (REENTSBSname,SFCWname,KEYname,KLENname,
DATAname,DLENname[,DDname]);

If INTSTORE is called directly, omit the REENTSBSname
parameter.

Assembler:

CALL INTSTORE,(SFCWname,KEYname,KLENname,DATAname,
DLENname[,DDname]),VL,MF=(E,list)

Figure 9. Parameters for INTSTORE (DDname is optional)

F=-'-=~-==='===~=~~======~-=-==----'==-===--=---====='=======---=======~=-~=

Code Meaning

o Successful STORE.

1 I/O Error during write to disk.

2 Record Not Found: R/U option had been specified, and the key of
the updated string does not exist for the specified data set.

3 Dequeue requested for key not previously enqueued upon (X/H
option) but string successfully updated/replaced.

4 Space Not Found: A/U option had been specified, and no dwnmy
records available within search limits on the specified data
set.

6 Data Length Error: R option had been specified, but length of
updated string differs form original.

7 Key Error: key field contains binary zeros or hexadecimal ' FF'
in first byte, or key length value not between 1 and 48.

8 Specification Error: invalid options combination in SFCW or
required option missing, or parameter list not long enough for
function requested, or incompatible data string type for key
requested.

9 Specified/default data set not available, or invalid DDname
specified.

Figure 10. Return Codes for INTSTORE

16

Chapter 3 Store/Fetch Service Routines

3.5 INVOKING THE FETCH FUNCTION

INTFETCH is invoked by a standard subroutine CALL. The SFCW must
be initialized prior to the CALL to specify FETCH options; after the
CALL, byte 1 of the SFCW indicates the status of the operation.

The data area length specified in the parameter list to INTFETCH
must be large enough to hold the data string to be fetched. If not,
the length required is returned in the data length field, along with a
Data Length Error return code. After a successful FETCH, the data
string is in the area specified and the actual length is in the data
length field. The data length field must then be reinitialized to the
original maximum data area length for subsequent FETCH requests.

If a FETCH
occurs (non-zero
honored.

with enqueue is requested and a processing error
return code), the enqueue request has not been

SFCW options are summarized in Figure 11, parameters for the CALL
are shown in Figure 12, and the INTFETCH return codes are listed in
Figure 13.

f== ==== ==-==== ======----=-=~

SFCW Setting (Character Values)
Function Desired Byte 1 Byte 2 Byte 3 Byte 4

1==== ==-=- ==-========= F===-==== F==== ====-=

FETCH (retrieve) a data string blank K T/S/P blank
--------------------------------- --------- --------- --------- --------

FETCH a string for update with
enqueue blank X T/S/P blank

--------------------------------- --------- --------- --------- --------
FETCH string for informational
use, delete original blank D T/S/P blank

Figure 11. SFCW Specification for INTFETCH

Note that a FETCH with the Delete Original option (C'D' in byte 2 of
the SFCW) may be used instead of the 2-step FETCH, followed by an
UNSTORE, process within the same thread.

17

Chapter 3 Store/Fetch Service Routines

COBOL:

PL/l:

CALL 'COBREENT' USING REENTSBSname,SFCWname,KEYname,
KLENname,DATAname,DLENname[,DDnameJ.

CALL PMIPLl (REENTSBSname,SFCWname,KEYname,KLENname,
DATAname,DLENname[,DDname]);

Or, if INTFETCH is called directly, omit the REENTSBSname
parameter, and DATAname may be 0 (zero-refer to Section 3.2).

Assembler:

Code

CALL INTFETCH,(SFCWname,KEYname,KLENname,DATAname,
DLENname[,DDnameJ),VL,MF=(E,list)

DATAname may be 0 (zero-refer to Section 3.2).

Figure 12. Parameters for INTFETCH (DDname is optional)

Meaning

o Successful FETCH.

1 I/O Error during retrieval from disk.

2 Record Not Found: key does not exist for data set specified.

4 Segmented string retrieved from disk contains invalid data (last
update not successful due to system failure or I/O error before
completed). Delete completed if requested.

6 Data Length Error: value not between 1 and 32,767 or data area
not big enough for string.

NOTE: required length will always be returned in data length
field.

7 Key Error: key field contains binary zeros or hexadecimal ' FF'
in first byte, or key length value not between 1 and 48.

8 Specification Error: invalid options combination in SFCW or
required option missing, or parameter list not long enough for
function requested, or incompatible data string type for key
requested.

9 Specified/default data set not available, or invalid DDname
specified.

Figure 13. Return Codes for INTFETCH

18

Chapter 3 Store/Fetch Service Routines

3.6 INVOKING THE UNSTORE FUNCTION

INTUNSTO is invoked by a standard subroutine CALL. The SFCW must
be initialized prior to the CALL to specify UNSTORE options; after the
CALL, status of the request is indicated in byte 1 of the SFCW.

Figure 14 lists SFCW options; Figure 15 lists the service routine
parameters; Figure 16 lists the return codes from INTUNSTO.

==--==== ===z===-:=a=== ~

SFCW Setting (Character Values)
Function Desired Byte 1 Byte 2 Byte 3

= = = =-.... ---=- -= == =
UNSTORE (delete) an existing
transient string blank blank T

--------------------------------- --------- --------- ---------
UNSTORE (delete) an existing
string from disk blank blank S or P

--------------------------------- --------- --------- ---------
UNSTORE
string,

COBOL:

PL/1:

(delete) an existing
then dequeue blank X- T/S/P

Figure 14. SFCW Specification for INTUNSTO

CALL 'COBREENT' USING REENTSBSname,SFCWname,KEYname,
KLENname [, DDname] .

CALL PMIPLl (REENTSBSname,SFCWname,KEYname,KLENname,
[,DDname]) ;

If INTUNSTO is called directly, omit the REENTSBSname
parameter.

Assembler:

CALL INTUNSTO,(SFCWname,KEYname,KLENname[,DDname]),
VL,MF=(E, list)

Figure 15. Parameters for INTUNSTO (DDname is optional)

19

Byte 4

blank

blank

blank

Chapter 3 Store/Fetch Service Routines

=--==============-=-=-~======,-~--========~==--=---=-

o Successful UNSTORE

1 I/O Error

2 Record Not Found

3 Key not previously enqueued (X option only)

7 Key Error

8 Specification Error: incorrect data type for key requested

9 File Not Available/DDname Error

Figure 16. Return Codes for INTUNSTO (see Figure 10 for
further details)

20

J

Chapter 4

INSTALLATION

4.1 INTRODUCTION

Installation and use of Store/Fetch requires the following
preparatory steps:

• Store/Fetch Data Set(s) Creation

• SPA Specification

• Intercomm Linkedit

• JCL for Execution

Some Intercomm facilities use Store/Fetch data sets, as described
in Section 4.6. Section 4.7 describes statistics on Store/Fetch
processing. Tuning and usage optimization suggestions are given in
Appendix A.

4.2 CREATING A STORE/FETCH DATA SET

A Store/Fetch data set is a preformatted keyed BDAM file with
fixed-length unblocked records. The key length must be 52 bytes to
contain a user-defined key up to 48 bytes in length (left-justified and
padded with binary zeros by the facility), plus an internal chaining
sequence number for segmented data strings. The record length
(BLKSIZE) should be larger than the common data string lengths the user
intends to STORE on the data set, plus a 24- byte header appended by
Store/Fetch. The header is not accessible to the user's processing
modules. Therefore space for it does not have to be provided in user
programs. The block size chosen must be a multiple of 8.

The user may use his own program to create the data set with
dummy records or may use the Intercomm utility KEYCREAT. In either
case, the following DCB parameters are required on the input DD card in
addition to the DSN, DISP, UNIT, SPACE and VOL-SER parameters:

DCB=(DSORG=DA,RECFM-F,BLKSIZE=nnn,KEYLEN=52)

Do not specify OPTCD or LIMCT on the JCL used to create a Store/Fetch
data set.

The input PARM to the KEYCREAT program specifies the number of
blocks desired in the data set. If zero is coded, or the PARM is
omitted, dummy records are created to the limits of the primary SPACE
allocation only. The input ddname for KEYCREAT must be INTKEYFL.

Sample execution
additional documentation
Reference Manual.

JCL for KEYCREAT is shown
on KEYCREAT is contained in

21

in Figure 17;
the Operating

Chapter 4

//
/ /STEPLIB
//INTKEYFL

EXEC
DD
DD

PGM=KEYCREAT(,PARM=bbb)
DSN=libraryname,DISP=SHR
DSN=name,DISP=(NEW,CATLG,DELETE) ,

Installation

// SPACE=({nnn, (bbb,e»)) ,UNIT=uuuu , VOL=SER=vvvvvv,
{ TRK, (i , e))

//
{ CYL, (i , e))

DCB=(DSORG=DA,RECFM=F,BLKSIZE=nnn,KEYLEN=52)

where:
nnn is record length
bbb is number of records to be created in the file
i is initial space allocation
e is secondary space allocation (if desired).

Figure 17. KEYCREAT JCL Example.

4.3 SPA SPECIFICATION

The maximum core to be occupied by Store/Fetch transient data
strings is specified in K (Kilobytes) by the SPALIST macro STOCORE
parameter. The default value is 5K or 5120 bytes. As with any other
SPALIST specification, the SPA module (INTSPA) must be reassembled ,~
following a change in any parameter specification. ~

Under Release 10, the current STOCORE value may be displayed via
the TALY$SU command, and dynamically changed for the current Intercomm
execution via the SCTL command (to reduce excessive flushing).

4.4 LINKEDIT REOUIREMENTS

Required linkedit control cards for Store/Fetch are generated by
specification of STORFCH=YES on the ICOMLINK macro. Figure 18 lists
linkedit requirements. INTSTORF may be resident in the Link Pack Area
(see Operating Reference Manual for installation).

INCLUDE SYSLIB(STOSTART)
INCLUDE SYSLIB(INTSTORF)

Initialization
Main Processing

Figure 18. Linkedit Requirements.

22

Chapter 4 Installation

4.5 JCL FOR EXECUTION

To access a Store/Fetch data set on-line, the DD statement must
include the following:

//INTSTORn DD DSN=name,DISP=SHR,
// DCB=(DSORG=DA,OPTCD=EF,LIMCT=n)

Because the Extended Search option and relative track addressing
are used, the LIMCT=number of tracks (to be searched) must be coded.
While the value chosen for LIMCT depends on the size of the Store/Fetch
data set, its block size, and the amount of data it contains, a value of
at least 2 is advisable. The I n I in the ddname must be a character
value from 0 to 9. The default data set is that accessed by the ddname
INTSTORO.

For on-line execution efficiency, it is advisable to code a FAR
(File Attribute Record) statement for each INTSTOR data set, as follows:

INTSTORn,ICOMBDAMXCTRL

Refer to the Operating Reference Manual for further details.

If a READ ONLY attribute is defined for a Store/Fetch data set, it
is not effective until after Intercomm startup processing is complete.
During startup, Store/Fetch initialization requires opening of the data
set for input/output processing (to delete transient and semi-permanent
strings depending on startup/restart mode see Section 2.1.1).
Therefore, read-only password protection may not be specified for a
Store/Fetch data set. A READONLY FAR should not be defined for the MMU
maps Store/Fetch data set if the LMAP command may be used under Release
10 (see Message Mapping Utilities).

FARs for File Recovery processing may be coded for user Store/
Fetch data sets (see File Recovery Users Guide).

4.6 INTERCOMM STORE/FETCH REQUIREMENTS

When calculating the number of Store/Fetch data sets to be
available, or shared, for user application subsystem processing,
consider the following system uses of Store/Fetch:

• Message Mapping Utilities (MMU); 2 data sets:

- Loaded Map Definitions (dedicated permanent strings)

- Intermediate output mapping form (transient strings-deleted
after MAP END or MAPURGE processing)

• Autogen Facility

23

Chapter 4 Installation

• Data Entry Facility

• BTAM Simulator SIM3270 processing (INTSTOR9)-see Operating
Reference Manual.

4.7 STATISTICS ON STORE/FETCH USAGE

SAM (System Accounting and Measurement) statistics on application
subsystem calls to Store/Fetch (including via MMU processing) may be
gathered, including whether the processing is for a string in core or
on disk, and for an update with length change. See the Operating
~R~e~f~e~r~e~n~c~e~M~a~n~u~a~l for installation and reporting details.

The System Tuning Statistics give information on Store/Fetch
strings and flushes across all Store/Fetch data sets for Release 9, or
broken down by data set (with totals for all data sets) under Release
10. See the Operating Reference Manual for further details.

24

Chapter 5

BATCH MODE OPERATION

5.1 USAGE

Store/Fetch may be used in Batch mode exactly as for on-line
execution. It may be used to create, update, or delete a permanent
string on an INTSTOR disk data set used in on-line execution, or may be
used with one or more unique Store/Fetch data sets not referenced
online.

The parameters for calls to Store/Fetch routines are coded exactly
as for on-line execution, except omit the REENTSBSname (always directly
call the desired entry point if a hi-level language used for the batch
program). In Batch mode, the first call will trigger Store/Fetch
initialization, which is normally performed during Intercomm startup in
on-line mode. Initialization will delete all transient and
semipermanent strings on INTSTORn data sets defined in the Batch mode
JCL. Therefore, it is not advisable to execute a Batch mode program
accessing on-line data strings while Intercomm is executing. Nor should
a Batch mode job accessing on-line Store/Fetch data sets be executed
between Intercomm restarts.

To the linkedit for Batch mode jobs add the following:

INCLUDE
INCLUDE
INCLUDE

SYSLIB(INTSTORF,STOSTART)
SYSLIB(IXFHNDOO,IXFHND01)
SYSLIB(BATCHPAK)

Figure 19. Batch Mode Store/Fetch Linkedit

Note that BATCHPAK contains SPA and SPAEXT Csects which use the defaults
for all parameters; it is not necessary to include an on-line version of
INTSPA.

To execute in Batch mode, DD statements must be present in the
JCL for each INTSTOR data set to be accessed. The DD statement must be
coded exactly as for on-line execution. Particularly, the LIMCT
parameter must be exactly the same for Store/Fetch data sets which are
also defined in the execution JCL of any other job (batch or online).

25

J

Chapter 6

OFF-LINE STORE/FETCH UTILITY

6.1 INTRODUCTION

An off-line utility, SFDMPRST, is provided to perform the
following operations:

• Dump a Store/Fetch data set to tape (for backup)

• Restore (load) a Store/Fetch Data set from tape backup

• Copy (merge) the contents of one Store/Fetch data set to
another (to allow for expansion of the data set)

• Print non-deleted strings on a Store/Fetch disk data set in
EBCDIC and hexadecimal (for reference or analysis).

Installation of the utility may require linkediting it onto
MODLIB with the modules given in Chapter 5 of this manual for batch
mode operation. Include SFDMPRST ahead of the listed INCLUDE
statements. The recommended load module name is DUMPREST. A prelinked
load module by that name is provided on the released MODREL.

6.2

where:

EXECUTION SYNTAX

The syntax of the EXEC statement is as follows:

// EXEC PGM-DUMPREST,PARM='{DUMP)[,{S)]'
(LOAD) (f)
(COPY)
{ LIST)

DUMP specifies that a Store/Fetch data set is to be dumped to a
tape file.

LOAD specifies that a Store/Fetch data set is to be loaded from a
tape previously created via DUMP.

COPY specifies that the contents of one Store/Fetch data set are
to be copied to another Store/Fetch data set.

LIST specifies that non- de leted non- transient strings on a
Store/Fetch data set on disk are to be printed.

S specifies that both semipermanent and permanent strings are to
be included.

P specifies that only permanent strings are to be included
(default) .

27

Chapter 6 Off-Line Store/Fetch Utility

The DD statement for the input disk data set (for COPY, DUMP, and
LIST) must be labeled INTSTORO, and the DD statement for the output
disk data set (for LOAD or COPY) must be labeled INTSTORl. These
labels must be used no matter what INTSTOR number is being used for
these data sets in the Intercomm execution JCL. In addition, there
must be a DD statement labelled SFDMPRST, referencing the same input
data set as INTSTORO; it is not required for LOAD operations. The DCB
parameters are as usual, including the LIMCT subparameter. The output
disk data set must be created as explained in Section 4.2 prior to
running the utility.

The DD statement for the input or output tape data set (for DUMP
or LOAD) must be labeled TAPE. The DCB parameters should be specified
as follows:

DCB=(RECFM=VBS,BLKSIZE=blksize,LRECL=dslrecl+92)

where blksize is any convenient block size, and dslrecl is at least the
length of the average string on the Store/Fetch data set (+92).

The DD statement for the listing data set (for LIST) must be
labeled PRINTOUT. The DCB parameters should be specified as follows:

DCB=(RECFM=FBA,LRECL=133,BLKSIZE=133*n)

where n is any convenient blocking factor.

In addition, two
SYSUDUMP and for SYSPRINT.

6.3 EXAMPLES

SYSOUT=A DD statements are required,
There is no SYSIN for the program.

for

To copy or merge a Store/Fetch data set (including both
semipermanent and permanent strings) to a larger Store/Fetch data set,
the following JCL might be used:

//
//STEPLIB
//SFDMPRST
//
//INTSTORO
//
//INTSTORl
//
//SYSUDUMP
//SYSPRINT
/~~

EXEC
DD
DD

DD

DD

DD
DD

PGM=DUMPREST,PARM='COPY,S'
DSN=INT.MODREL,DISP-SHR
DSN=INT.STORFETO,DISP=SHR,
DCB~(DSORG-DA,OPTCD-EF,LIMCT=n)

DSN=INT.STORFETO,DISP=SHR,
DCB=(DSORG=DA,OPTCD=EF,LIMCT=n)
DSN=INT.STORFET1,DISP=SHR,
DCB=(DSORG=DA,OPTCD=EF,LIMCT-2)
SYSOUT=A
SYSOUT=A,DCB=(LRECL=137,BLKSIZE=14l,RECFM=VA)

In this example, INT.STORFETl has been previously created via KEYCREAT.

NOTE: when merging two Store/Fetch data sets, duplicate keys are not
checked for and will produce unpredictable results if they exist ,~
on the output data set. To merge MMU map data sets, use the MMU ~
LOAD MAP utility instead (see Message Mapping Utilities) which
does check for duplicate keys.

28

Chapter 6 Off-Line Store/Fetch Utility

To restore only the permanent strings from a tape backup of a
Store/Fetch data set to a new Store/Fetch data set, the following JCL
might be used:

//
//STEPLIB
//INTSTORl
//
//TAPE
//
//SYSUDUMP
//SYSPRINT
/*

EXEC
DD
DD

DD

DD
DD

PGM=DUMPREST,PARM='LOAD'
DSN=INT.MODREL,DISP=SHR
DSN=INT.STORFET1,DISP=SHR,
DCB=(DSORG=DA,OPTCD=EF,LIMCT-2)
DSN=INT.SFBACKUP,DISP=OLD,
DCB=(RECFM=VBS,LRECL=192,BLKSIZE=1200)
SYSOUT=A
SYSOUT=A,DCB=(LRECL=137,BLKSIZE=141,RECFM=VA)

Again in this example, INT.STORFETl has already been created via
KEYCREAT.

6.4 ERROR CONDITIONS

Error messages and abends due to error conditions on output are
documented in Messages and Codes.

An input tape error condition during LOAD is handled according to
the tape error option specified on the JCL.

6.5 END OF JOB 1/0 STATISTICS

At normal end-of-job, a WTO is put out to the JES Job Log, giving
counts of Reads/Writes/Gets/Puts, I/O errors, and records with delete
flag on (for the input Store/Fetch data set). Gets and Puts apply only
to the input or output tape backups, respectively. Writes apply only
to an output Store/Fetch disk data set.

29

Appendix A

STORE/FETCH TUNING AND OPTIMIZATION

The following suggestions should help to make usage of the Store/
Fetch facility as efficient as possible.

• For Store/Fetch data sets:

•

Segregate the data sets by data string size.

The block size for a data set should be larger than most
data strings assigned to that data set to reduce chaining.

At least 30% free space on each data set should be planned
to reduce searching.

Do not specify too high a LIMCT for an INTSTOR data set; a
LIMCT of 2 or 3 should be sufficient (see Section 4.5).
It is better to increase the size of the data set (see
Chapter 6) than to increase the LIMCT.

A FAR card with the parameter ICOMBDAMXCTRL should be
specified to reduce exclusive control overhead in the File
Handler (see Section 4.5). However, a READ ONLY attribute
may not be specified.

Be generous with the size of the Store/Fetch data set used
by MMU to temporarily hold flushed output mapping strings.

For main storage use:

The total core used is controlled by the STOCORE parameter
of the SPALIST macro; a System Tuning Statistic (see
Operating Reference Manual) provides the number of
flushes: increase STOCORE to reduce flushing to disk.
Under Release 10, the STOCORE value may be dynamically
changed via the SCTL command, and the current value and
the number of flushes may be dynamically displayed via the
TALY$SU command, as described in System Control Commands.

Transient data strings may be stored in core or on disk.

Those transient data strings which will be needed ' soon'
(relative to other transient data strings) should be
stored in core.

Do not place all transient data strings in core just
because it is possible, as this will cause excess paging.

Data strings are flushed on a least recently used (LRU)
basis.

On a low core condition (the storage cushion is released)
all strings are flushed.

INTSTORF is eligible for the Link Pack area.

31

Appendix A

•

Store/Fetch Tuning and Optimization

For data string handling:

Do not request exclusive control if it is not needed

Only enqueue (INTENQ) around ADDs if necessary.

Avoid FETCHs for nonexistent data strings.

As s emb 1 e r Language and PL/l (us ing direct CALLs)
subsystems may allow FETCH to acquire the main storage for
the data string (see Section 3.2).

Avoid data string updates with length changes. Use
REPLACE instead as this reduces storage management and I/O
processing. The data string might be created with the
maximum required size, and blanks in unused areas. These
areas would be filled in by later processing.

It is more efficient to perform UPDATE or REPLACE rather
than to use FETCH with DELETE, followed by ADD (unless the
new string has an unrelated function requiring a new key).

It is more efficient to perform FETCH with DELETE, than to
perform FETCH followed by UNSTORE.

32

Assembler Language
--enqueue/dequeue routine 8
--return codes to
--subsystems

Autogen Facility

Backout-on-the-Fly
Batch mode operations
BTAM simulator

Checkpointing data strings
Closedown
COBOL subsystems
COBREENT
Conversational subsystems

Data Entry Facility
Data sets (Store/Fetch)

--blocksize of
--creation of
--ddnames of
--default
- -described
--Intercomm use of
--and Multiregion
--password protection of
--recovery of
--search limits (LIMCT)

13
6,11-13,32

23

9
4, 25

24

9
3

3, 11-13
11

3

24

21-22, 31
21-22

6, 11-12, 23
6, 12, 23

6-7
23-24

3
23

6-7

3, 12, 21, 23,
- -utility for

25, 28, 31
4, 27-29

Data strings
--accessing 6
--area for 11, 12, 17, 18
--chained 6
--creating 6, 7, 9, 15
--deleting of 6
--dequeuing of 8, 15, 19
--described 1, 5-6
--enqueuing on 8, 17, 32
--exclusive control of 7-8, 32
--flushing of 5, 8, 9, 24, 31
--keys 1, 7, 11
--length of 5, 11, 17, 18
--permanent 5, 8-9, 25, 27, 29
--and program/subsystem design 1-3
--recovery 9
--renaming 6, 8
--segmented 6, 21
--semi-permanent 5, 23, 25, 27
--transient 5, 8, 9, 23, 25, 27, 31
--updating 6, 15, 24, 32

DDnames 6, 11-12, 23, 28
DUMPREST--and off-line utility 27-29

33

Extended Search option 6, 23

FETCH function (INTFETCH)
--and accessing flushed data strings

5
--and data string area 12
--defined 1, 5-6, 7, 17-18
--and Delete option 6, 9, 14, 17, 32
--parameters 18
--return codes 18
--and string length 11
--and unique strings 8

File Attribute Records 23, 31
File Handler 1
File Recovery

--and Store/Fetch data sets 9, 23
3
3

Front-End (Intercomm)
Front-End Control Message facility

ICOMLINK macro
ICOMSBS copy member
Installation

--of SFDMPRST utility
--of Store/Fetch

INTDEQ macro
INTENQ macro
INTFETCH service routine
INTKEYFL ddname
INTSPA member
INTSTORE service routine
INTSTORF member
INTSTORn ddname
INTSTORO ddname
INTSTOR1 ddname
INTSTOR9 ddname
INTUNSTO service routine

JCL
--for batch mode
--for KEYCREAT

6,

6,
22,

6,
6, 12,

6,

22
13

27
21-24

8
8

17-18
21-22

22, 25
15-16

25, 31
12, 25
23, 28

28
24

19-20

25
22

--for off-line utility SFDMPRST
27-29

--for on-line execution 23, 25

KEYCREAT utility
Keys of Store/Fetch

--defined
--duplicate
--length of
--parameter
--reserved

strings

LIMCT (DCB parameter).

21-22, 29

1, 5, 7, 11
7-8, 15, 28

7, 11, 21
5, 11

5,7,11

See Data sets--search limits

Link gack Area
Linkedit

--for batch mode
--of SFDMPRST utility

LMAP system command
Low-core condition

3, 22, 31
22
25
27
23

5, 8, 31

M~ssage --saving of 3
Message Mapping Utilities (MMU)

23, 24, 28, 31
Modular Programming Applications 1
Multiregion environment 3

Off-line utility. See SFDMPRST
Optimization 31-32

Parameters for Store/Fetch calls
11-12, 16, 18, 19

PENTRY copy member 13
PLIENTRY copy member 13
PL/l subsystems 11-13, 32
PMIPLl 11, 12, 13
Programming 1-3

--conversational 3
- - illustrated 2
--modular 1

READONLY FAR attribute 23
REENTSBS codes 12-13, 25
Restart of Intercomm 5, 25
Return codes 13, 16, 18, 20

SAM processing 24
SCTL system command 22, 31
Service routine for enqueue/dequeue 8
Service routines of Store/Fetch 11-20

See also FETCH, STORE and UNSTORE
SFCW 9, 11, 12

13
14, 15, 17, 19

--format of
--options in

SFDMPRST utility
--described
--error conditions
--statistics

SIM3270 member
SPA module
SPAEXT Csect
SPALIST macro
Startup
Statistics on usage

4, 27
27-29

29
29
24

22, 25
25

5, 22, 31
3, 5, 23

24
STOCORE parameter (SPALIST)
STORE function (INTSTORE)

22, 31

--with Add option
--defined

7, 15
1, 5-6, 15-16

34

--and Key length
--parameters
--return codes
--and string length
--and unique strings

Store/Fetch Control Word. See
STORFCH parameter (ICOMLINK)
STOSTART member

11
16
16
11

8, 15
SFCW

22
22, 25

Subsystem design 7, 9
System Accounting and Measurement.

See SAM processing
System Tuning Statistics

Table Facility
TALY system command
Transient data
Tuning and optimization

UNSTORE function (INTUNSTO)
--defined 1,
--parameters
--and recovery
--return codes
--and unique strings

Utility
--KEYCREAT
--LOADMAP (MMU)
--SFDMPRST

VS COBOL II programs

24, 31

3
22, 31

3, 5
31-32

5-6, 19-20
19

9
20

8

21-22
28

27-29

12

J

J

