
--...- ------ ------ ---- - ---

e ee e

Publication Number
SC34-2088-2

Interactive
System Productivity Facility
(ISPF)

Dialog Management
Services

MVS, VM/SP, and VSElAF

File Number
S370/4300-39

Program Number
·5668-960

Third Edition (March 1985)

This edition applies to the program product Interactive System
Productivity Facility (ISPF) as shown in the table below, and to
all subsequent releases and modifications until otherwise
indicated in new editions or Technical Newsletters.

I I I I
System Release MVS 3.8 1 VN/SP 1.01 VSE/AF 1.3.51 VSE/AF 2.11

1 1 5746-XE8 1 5666-301 1
1 1 I

ISPF 5668-9601 5668-960 I 5668-960 1 5668-960
I I I

Changes are made periodically to the information herein.
Therefore, before using this publication, consult the latest IBN
System 370 and 4300 Processors Bibliography (GC20-0001) for the
editions that are applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBN intends to make these available
in all countries in which IBM operates. Any reference to an IBN
program product in this document is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below.
Requests for copies of IBM publications should be made to your
IBN representative or to the branch office serving your
locality.

A form for readers' comments has been provided at the back of
this publication. If this form has been removed, address
comments to: IBM Corporation, Systems Publications, Dept. T46,
P.O. Box 60000, Cary, NC 27511. IBN may use or distribute
whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982,
1983, 1984, 1985

I
1
I

PREFACE

The Interactive System Productivity Facility (ISPF) and the ISPF/Program
Development Facility (ISPF/PDF or PDF) are related IBM program products.
Together, they are designed to improve user productivity in the
development of applications, and contain special functions for the
development and use of interactive applications, called dialogs.
Specifically:

• ISPF is a dialog manager for interactive applications. It provides
control and services to support execution of the dialogs in the MVS,
VM/SP, and VSE environments.

• PDF is a facility that aids in the development of dialogs and other
types of applications. It makes use of display terminals and an
interactive environment to help with many programming tasks.

This manual provides a detailed description of the dialog management
services and related information required to develop and use an
interactive application that runs under ISPF. It is assumed that the
reader is an application or systems programmer, engaged in the
development of interactive programs, who is familiar with the host
operating system environment; or is the user of an application running
under ISPF. Users who do not develop programs may wish to read only the
following parts of' the manual, which describe application user
functions:

Chapter 1, selected topic:
Processing a Dialog

Chapter 2, selected topics:
Online Tutorial
Split Screen
ISPF Parms Option

Chapter 3, selected topics:
Command Entry
System Commands
Terminal Keys
Light Pen and Cursor Select

Appendix B

The first five chapters of this manual describe how to use ISPF
facilities to support the operation of interactive applications
dialog organization, use of variables, library setup, invocation of
dialogs, etc. Following that are detailed descriptions of each dialog
service, and then detailed formats for panel, message, and file
definitions. Finally, the appendixes contain a description of PARMS
option use, an example of using the DISPLAY and TBDISPL services, a
services summary, character translations for APL, TEXT, and Katakana
keyboards, how to use the command table utility, and the appendix
described below.

Preface iii

For the MVS and VM/SP operating systems, the dialog management functions
of ISPF and the program development functions of PDF were previously
combined in the predecessor program product, the System Productivity
Facility (SPF). Major changes from SPF are described in an Appendix G.

ISPF Dialog Management Services Examples (SC34-2085) is a supplement to
this manual and provides examples (in CLIST, EXEC 2, COBOL, FORTRAN, and
PL/I) of ISPF application dialogs. Other related publications are:

~IVS VSE

SC34-2089 SC34-2090 SC34-2079 ISPF/PDF Reference tells how to use the
Program Development Facility.

SC34-2084 SC34-2083 SC34-2080 ISPF and ISPF/PDF Installation and
Customization provides information
needed to install ISPF and PDF and to
custom tailor these products for a
particular installation.

SYNTAX NOTATION

In this manual, the following notation conventions are used:

• Uppercase commands and their operands should be entered as shown.
Operands shown in lowercase are variable; a value should be
substituted for them.

• Operands shown in brackets [] are optional, with a choice indicated
by vertical bars I. One or none may be chosen; the defaults are
underscored.

• Operands shown in braces { } are alternatives; one must be chosen.

• An ellipsis (...) indicates that the parameter shown may be repeated
to specify additional items of the same category.

TERMINOLOGY

In this manual, the following terms are used to bridge the differences
in terminology between the MVS, VM/SP, and VSE environments:

• Library - A partitioned data set in the MVS environment, a MACLIB in
the VM/SP environment, a VSE/AF source library in the VSE/AF 1.3.5
environment, or a VSE/AF library in the VSE/AF 2.1 environment.

• File - A sequential data set in the MVS environment, a sequential
CMS file in the VM/SP environment, or a sequential data set in the
VSE environment.

• Command Procedure - A CLIST in the MVS environment, or an EXEC in
the VM/SP environment.

iv ISPF Dialog Management Services

CONTENTS

I Chapter 1. Introduction
Using ISPF Services
Developing a Dialog
An Example of a Dialog
Processing a Dialog

MVS and VM/SP: Invoking an ISPF Application
VSE: Invoking an ISPF Application
Invoking an ISPF Application from a Master Application Menu

Data Communications Within ISPF
Parts of a Dialog

Chapter 2. Dialog Processing Concepts
Dialog Organization
Control Facilities
MVS and VM/SP: Starting a Dialog
VSE: Starting a Dialog
The SELECT Service
Online Tutorial
Split Screen
ISPF PARMS Option
Dialog Services Overview

Display Services
Panel Definitions
Message Definitions

Table Services
Table Residency
Accessing Data
General Services
MVS, VM/SP, and VSE/AF 1.3.5: Resource Protection
VSE/AF 2.1: Resource Protection
Row Services
Example
Table Size

File Tailoring Services
Skeleton Files
Example

Variable Services
Variable Access - Order of Search from Services
Select Service and Variable Pools
Relationship of Function Pools to Dialog Functions
MVS and VM/SP: The Function Pool for Command Procedures
The Function Pool for Programs
The Shared Pool
The Application Profile Pool
Representation of Variables
System Variables
Summary of Variable Services

Contents

1
2
3
4
5
5
5
6
7
7

9
9

12
12
12
14
16
16
17
17
17
18
20
22
23
23
24
25
25
26
26
28
28
29
31
32
32
33
35
35
36
38
38
39
40
42

v

I

Miscellaneous Services
EDIT and BROWSE Services
LOG Service
CONTROL Service

VM/SP: Use of the Virtual Machine Communication Facility (V~fCF)

Chapter 3. Use of Commands, Program Keys, and Light Pen
Command Entry
System Commands

STOPAT Command
END and RETURN Commands
Jump Function
Scrolling

Command Tables
Command Table Format
SELECT Action Commands
Assigning Command Aliases
Overriding System Commands
Passing Commands to a Dialog Function
Dynamically Specified Command Actions

Terminal Keys
Program Function Keys

Defining PF Keys
Saving PF Key Definitions

MVS and VM/SP: Program Access (PA) Keys
VSE: Program Access (PA) Keys

Light Pen and Cursor Select

Chapter 4. Library Requirements
MVS: Library Setup

Required Libraries
Table and File Tailoring Libraries
CLIST and Program Libraries

VM/SP: Library Setup
Required Libraries
Table and File Tailoring Libraries
EXEC and Program Libraries
Restrictions on Use of MODULE Files

MVS and VM/SP: Use of Libraries
VSE/AF 1.3.5: Library Setup

Required Libraries
Library Definition
Table and File Tailoring Libraries

VSE/AF 1.3.5: Use of Libraries
VSE/AF 2.1: Library Setup

Required Libraries
Library Definition
Table and File Tailoring Libraries

VSE/AF 2.1: Use of Libraries

Chapter 5. I nvocation and Termination
MVS and VM/SP: Invocation of ISPF
VSE: Invocation of ISPF
ISPSTART Syntax

vi ISPF Dialog Management Services

42
42
43
43
44

45
45
47
49
50
51
52
53
54
55
56
56
57
58
59
59
60
62
62
63
63

65
65
65
66
67
68
68
69
71
72
72
73
73
74
78
78
79
79
80
84
85

87
87
87
88

I
\

Test Modes
Trace Modes

Dialog Initiation and Termination
SELECT Service Invocation
VSE: Dialog Abend Intercept

Batch Execution of ISPF Services
TSO Batch Environment

Sample Batch Job
Error Processing

VM/SP Batch Environment
Sample Batch Job
Error Processing

VSE Batch Environment
Sample Batch Job
Error Processing

Chapter 6. Description of Services
Invocation of Services

Command Invocation
VM/SP: Using the &PRESUME Statement
Call Invocation
Parameters

Return Codes from Services
MVS and VM/SP: Return Codes from Services
VSE: Return Codes and Other Processing Considerations

FORTRAN
PL/I
COBOL

Services
BROWSE - MVS or VM/SP: Display a Data Set or File
BROWSE - VSE: Display a Library or File
CONTROL - Set Processing Modes
DISPLAY - Display Panels and Messages
EDIT - MVS or VM/SP: EDIT a Data Set or File
EDIT - VSE: EDIT a Library or File
FTCLOSE - End File Tailorlng
FTERASE - Erase File Tailoring Output
FTINCL - Include a Skeleton
FTOPEN - Begin File Tailoring
LOG - Write a Message to the Log File
SELECT - Select a Panel or Function
SETMSG - Set Next Message
TBADD - Add a Row to a Table
TBBOTTOM - Set the Row Pointer to Bottom
TBCLOSE - Close and Save a Table
TBCREATE - Create a New Table
TBDELETE - Delete a Row from a Table
TBDISPL - Display Table Information
TBEND - Close a Table without Saving
TBERASE - Erase a Table
TBEXIST - Determine if a Row Exists in a Table
TBGET - Retrieve a Row from a Table
TBMOD - Modify a Row in a Table
TBOPEN - Open a Table

91
93
93
93
95
95
95
96
96
98
98
98

100
100
101

103
103
103
105
105
108
109
110
111
111
111
112
112
113
116
120
124
126
129
133
135
136
137
139
140
145
147
149
150
153
155
156
162
163
164
165
167
169

Contents vii

TBPUT - Update a Row in a Table
TBQUERY - Obtain Table Information
TBSARG - Define a Search Argument
TBSAVE - Save a Table
TBSCAN - Search A Table
TBSKIP - Move the Row Pointer
TBTOP - Set the Row Pointer to the Top
TBVCLEAR - Clear Variables
VCOPY - Create a Copy of a Variable
VDEFINE - Define Function Variables
VDELETE - Remove a Definition of Function Variables
VGET - Retrieve Variables from a Pool or Profile
VPUT - Update Variables in a Pool or Profile
VREPLACE - Replace a Variable
VRESET - Reset Function Variables

Chapter 7. Panel and Message Definition and Skeleton Formats
Panel Definitions

Formatting Guidelines
Syntax Rules and Restrictions

General Rules
Blanks and Comments
Lists
Variables within Text Fields and Literal Expressions

Attribute Section
Default Attribute Characters
Statement Formats

Panel Body Section
Command and Message Fields
Sample Body Section

Model Section
Initialization and Processing Sections

Statement Formats
Control Variables
Default Cursor Positioning

"Zit Variables as Field Name Placeholders
Panel Processing Considerations
Special Panel Requirements

Menus
Primary Option Menus
Set Next Menu
Examples of Menus
Help/Tutorial Panels
Table Display Panels

Message Definitions
Message ID
Nessage Library
Syntax Rules

Skeleton Definitions
Data Records
Control Statements
Sample Skeleton File

Appendix A. Using the DISPLAY Service

viii ISPF Dialog Management Services

171
173
175
177
180
182
184
185
186
188
191
192
194
196
198

199
199
200
202
203
203
204
205
206
206
207
210
211
211
213
213
214
223
226
226
227
228
229
232
233
234
239
243
251
251
251
253
254
255
256
258

261

Reading List
Steps in Function Processing

Description of Steps in Function Processing

Appendix B. Using the ISPF PARMS Option
Specify Terminal Characteristics (Option 0.1)
MVS: Specify Log and List Defaults (Option 0.2)
VMjSP: Specify Console, Log, and List Defaults (Option 0.2)
VSE: Specify Log and List Defaults (Option 0.2)
Specify Program Function Keys (Option 0.3)

Appendix C. Using the TBDISPL Service
Steps in Function Processing

Description of Steps in Function Processing

Appendix D. Command Table Utility

Appendix E. Summary of ISPF Syntax
Invoking an ISPF Application
Message Definitions
Skeleton Control Statements
Panel Definitions

Panel Header Statements
Attribute Section
Body Section
Model Section
Initialization Section
Processing Section
Statement Specifying the End of a Panel Definition

Panel Statements and Built-in Functions
Attribute Section
Initialization and Processing Sections

Panel Control Variables
Dialog Services

Command Invocation Syntax
Display Services
Table Services - General
Table Services - Row Operations
File Tailoring Services
Variable Services
Other Services

Call Invocation Syntax
Display Services
Table Services - General
Table Services - Row Operations
File Tailoring Services
Variable Services
Other Services

Appendix F. VDEFINE Exit Routine

Appendix G. Character Translations for APL, TEXT, and
Katakana

262
263
264

275
275
279
281
282
284

289
290
291

297

301
301
301
301
302
302
302
302
302
302
302
303
303
303
303
303
304
304
304
304
305
305
306
306
307
307
307
308
308
309
309

311

313

Contents ix

Appendix H. MVS and VM/SP: Summary of Changes From SPF 317
New and Revised Functions 317
Migration of Dialogs from SPF to ISPF 320

Appendix I. VM/SP: Use of Shared Minidisks

Index

x ISPF Dialog Management Services

323

325

FIGURES

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

Developing a Dialog Using PDF
Application Dialog Running Under ISPF
Typical Dialog Starting with a Menu
Typical Dialog Starting with a Function
Control and Data Flow
SELECT Service Used To Invoke and Process a Dialog
Sample Panel Definition
Sample Panel - When Displayed
Sample Member in Message Library
Sample Table
Sample Skeleton File
Control and Data Flow in a Dialog
Default Program Key Arrangement
PF Key Definition Panel
Use of Light Pen Attribute
ISPDEF Statement Parameters and Libraries to Which They Apply
Relationship Between Defaults Specified by the '*' Libname
Statement and Unspecified ISPF Libraries.
ISPDEF Statement Parameters and Libraries to Which They Apply
Relationship Between Defaults Specified by the '*' Libname
Statement and Unspecified ISPF Libraries.Sublibraries
~lVS Batch Job
V~l/SP Batch Job
VSE/AF 1.3.5 Batch Job
VSE/AF 2.1 Batch Job
Sample Panel Definition
Sample Panel - When Displayed
Sample Panel with TRANS and TRUNC
Sample Panel with IF Statement
Sample Panel with Verification
Sample Panel with Control Variables
Example of "z" Variable Placeholders
Master Application Menu
ISPF Primary Option Menu
Lower-Level Menu
Sample Tutorial Hierarchy
Sample Tutorial Panel (B)
Sample Tutorial Panel (F2)
Table Display Panel Definition
Current Contents of Table
Table as Displayed
Table Display Panel Definition with Multiple Model Lines
Table as Displayed with Multiple Model Lines
Sample Member in Message Library
Sample Skeleton File
Five Rows in Table Library Member TAB1 (TAB1 is Referenced by
Steps 1b, 3a, 6a, and 8a)

4
6

10
11
13
15
19
21
22
23
30
34
60
61
64
76

77
82

83
97
99

100
101
212
213
217
219
222
225
227
235
237
238
241
242
243
247
247
248
249
250
252
259

268

Figures xi

45. Panel Library Member, Panel Definition SER (Used in Steps 2a,
4a, and 7a). 268

46. Panel Display SER (Displayed by Steps 2a, 4a, and 7a) 269
47. Panel Display SER With an ISPF-provided Message Superimposed

on Line 1 (Displayable During Steps 2a and 7a) 270
48. Message Library Member EMPX21 (Used by Steps 4a, 5b, and 7a) 270
49. Panel Display SER With the Short Form of Message EMPX210

Superimposed on Line 1 (Displayed by Step 4a) 271
50. Panel Display SER With the Long Form of Message EMPX210

Superimposed on Line 3 (Displayable During Step 4a) 272
51. Panel Library Member, Panel Definition DATA (Used in Step 5b) 273
52. Panel Display DATA (Displayed by Step 5b) 274
53. Parameter Options Menu 275
54. Terminal Characteristics Panel (MVS and VM/SP) 276
55. Terminal Characteristics Panel (VSE) . 277
56. Log and List Defaults Panel (MVS) 279
57. Console, Log, and List Defaults Panel (VM/SP) 281
58. Log and List Defaults Panel (VSE) 283
59. PF Key Definition Panel (12 PF Keys) 285
60. PF Key Definition Panels (24 PF Keys) 284
61. Table TAB1 Contents 294
62. Table TAB1 as Displayed 294
63. Table Display Panel Definition T1PANEL 295
64. Command Table Utility Partel 298
65. Command Table Editing Panel 299
66. Internal Character Representations for APL Keyboards 314
67. Internal Character Representations for Text Keyboards 315

xii ISPF Dialog Management Services

CHAPTER 1. INTRODUCTION

The Interactive System Productivity Facility (ISPF) Program Product
provides dialog management services in three environments:

• MVS Time Sharing Option (TSO)

• VM/SP Conversational Monitor System (CMS)

• VSE/lnteractive Computing and Control Facility (ICCF)

Conceptually, ISPF is an extension to these host systems. ISPF services
are complementary to those of the host system and are expressly designed
to implement interactive processing.

ISPF provides services to interactive applications that run under its
control. Developers of these applications rely on ISPF to:

•

•

•

•

•

•

Display predefined screen images and messages

Originate and maintain tables of user information

Generate output files for job submission or other processing

Define and control symbolic variables

Interface to edit and browse facilities (ISPF/PDF must be installed
to make these facilities available), and log hardcopy output

Control operational modes during processing

An application that runs under ISPF is called a dialog. Application
coding may be done in:

• In MVS and VM/SP, a command procedure language (CLIST or EXEC 2).

• A programming language, such as PL/I, COBOL, or FORTRAN. The
following compilers may be used:

In MVS and VM/SP:

PL/I Optimizer 5734-PL1

COBOL 5740-CB1

FORTRAN IV G1 5734-F02

Chapter 1. Introduction 1

In VSE:

PL/I (Release 6) 5736-PLl

COBOL (Release 3) 5746-CBl

VS FORTRAN (Release 4) 5748-F03

A developer may use more than one language in·a dialog. For example,
within a single dialog containing three functions, each function could
be written using a different language, such as PL/I, COBOL, and FORTRAN.
In MVS and VM/SP, one (or more) of the functions could be written using
a command procedure language (CLIST or EXEC 2) instead of a programming
language.

A dialog coded in a programming language may be designed for
cross-system use, to be processed by ISPF running under MVS, VM/SP, or
VSE.

USING ISPF SERVICES

When a dialog is running under ISPF, ISPF services are invoked from a
dialog function, at the point where the service is desired, by a command
(in MVS and VMjSP only) or a call statement. (In VSE, dialog functions
cannot be written as ICCF procedures).

• In MVS and VM/SP, dialog functions coded in a command procedure
language invoke ISPF services by means of the ISPEXEC command; for
example: i, p e')(

~ 1.)-

•

~ ISP~EC DISPLAY PANEL(XYZ)

This example invokes a service that displays information on a 3270
screen (such displays are called panels). A panel definition named
XYZ, prepared by the developer and prestored in the ISPF panel
library, specifies both the content and the format of the display.

Dialog functions coded in a programming language invoke ISPF
services by calling a service interface routine named ISPLINK; for
example, in PL/I~: f'Ii, I'

."). l'~ r t..--N i' ,.. ! .

.../ CALL ISPLINK ('DISPLAY', 'XYZ ');

This example invokes a service that displays information on a 3270
screen (such displays are called panels). ISPLINK is a small
program module distributed with ISPF. (Because FORTRAN allows only
six characters in a called module's name, the module may also be
called by using the 6-character name ISPLNK).

In MVS and VM/SP, ISPLINK may be called from programs coded in any
language that uses standard OS register conventions for call interfaces,
and the standard convention for signaling the end of a variable length

2 ISPF Dialog Management Services

parameter list. Assembler programs must include code to implement the
standard save area convention.

In VSE, programs issuing requests for ISPF services must adhere to the
standard call, save, return linkage described in "Program Linkage" in
the DOS/VSE Macro User's Guide, GC24-5139.

More examples of ISPF services requests may be found with each service
description in Chapter 6, "Description of Services."

DEVELOPING A DIALOG

A developer, using an editor such as the edit option of the ISPF/Program
Development Facility (ISPF/PDF, or simply PDF), develops a dialog by
entering its various components from a terminal and storing them in
libraries.

Any available editor may be used by a developer when creating dialog
components; however, PDF does provide special facilities to aid dialog
development and testing. Figure 1 shows a developer using PDF to create
and test dialog components. 1

Two types of components generally present in dialogs are functions
(command procedures or programs) and panel definitions. A function is
created in the same way as any command procedure or program and stored
in an appropriate host system library or CMS EXEC file.

A panel definition specifies a 3270 display image. The definition
specifies both the content and format of a particular display. It is
created by a dialog developer at a 3270 terminal and, when completed, is
saved as a member of an ISPF panel library.·

The panel definition requires no compilation or preprocessing step and
closely resembles the appearance of the 3270 display screen that it
specifies. Each character position in the panel definition is mapped to
the same relative position on the display screen.

Panel definitions specify where variable data and literal data are to
appear on the 3270 display screen. The developer specifies the place on
a display where he wants a variable to appear by entering the variable's
name at the same place in the panel definition. Literal data is
specified by entering the literal itself on the panel definition at the
place at which it is to appear on the screen.

When the developer completes the functions, panel definitions, and any
other dialog components (such as messages, tables, and file tailoring

1 Using PDF facilities to aid in dialog development and testing is
described in ISPF/PDF Reference. See, particularly, "Using Dialog
Development Models" and "Dialog Test (Option 7)" in that manual.

Chapter 1. Introduction 3

Operating System

EJ ISPF
Panel
Library

EJ A
)

ISPF/PDF
... y

Table
Library

.... B ~ ..
*Log and

List Files

Dialog Developer
...
"f

EJ
Message
Library

EJ
File Tailoring
Skeleton Library

EJ
File Tailoring
Output Files

ISPF Libraries
and Files

.... ~
......,. Opera '1 Syste

ting

1
.... t ~

or Co
m Program
mmand

Procedure Library

*In addition to being an output file, the log file can be browsed
and is an input file when PDF option 7.5 is in effect.

Figure 1. Developing a Dialog Using PDF

skeletons) required by the application being developed, the dialog is
ready to be processed under ISPF.

AN EXAMPLE OF A DIALOG

An example of a dialog (consisting of a function, messages, and two
display panel definitions) appears in Appendix A, "Using the DISPLAY
Service" on page 261. This appendix includes a list of sections of this
publication (a reading list) containing information needed to understand
the example.

4 ISPF Dialog Management Services

PROCESSING A DIALOG

Figure 2 shows a dialog being processed under ISPF. ISPF dialog
services are available only to command procedures or programs running
under ISPF.

Dialog processing begins either with the display of a selection panel
(also called a menu) that provides the user with a choice of actions, or
with a function. The developer determines, when he designs the dialog,
whether it will begin with a menu or a function.

In either case, the user can invoke a dialog from a 3270 terminal
running under control of TSO, eMS, or IeeF.

MVS and VM/SP: I nvoking an ISPF Application

In MVS and V~1/SP, an ISPF application is invoked from a 3270 running
under TSO or eMS by use of the ISPSTART command; for example:

• ISPSTART PANEL(ABC)

This command invokes ISPF and specifies that dialog processing
is to begin with display of a selection panel named ABC from the
panel library.

• ISPSTART CMD(DEF)

This command invokes ISPF and specifies that dialog processing
is to begin with a command procedure function (CLIST or EXEC 2)
named DEF.

• ISPSTART PGM(GHI)

This command invokes ISPF and specifies that dialog processing
is to begin with a program function named GHI.

VSE: I nvoki ng an I SPF Application

In VSE, an ISPF application is invoked from a 3270 running under ICCF by
use of an ICCF procedure. Assuming that the name of this procedure is
ISPSTART, ISPF is invoked by a single command; for example:

• ISPSTART 'PANEL(ABC),

This command invokes ISPSTART, an ICCF procedure, which, in
turn, invokes ISPF. 'PANEL(ABC), specifies that dialog
processing is to begin with display of a selection panel named
ABC from the panel library.

• ISPSTART 'PGM(GHI) LANG(COBOL) ,

Chapter 1. Introduction 5

Application User

Operating System

ISPF

Application
Dialog

BB
Panel
Library

Message
Library

BB ISPF Libraries
and Files

Table
Library

File Tailoring
Skeleton Library

BB
Log and
List Files

File Tailoringl
Output Files

Operating
System Program
or Command
Procedure Library

Figure 2. Application Dialog Running Under ISPF

This command invokes ISPSTART, an IeCF procedure, which, in
turn, invokes ISPF. 'PGM(GHI) LANG (COBOL) , specifies that
dialog processing is to begin with a program function named GHI,
which was written in the COBOL programming language.

Invoking an ISPF Application from a Master Application Menu

At installations that provide an ISPF master application menu, the user
can invoke a dialog by making appropriate selections on that menu, or on
that menu and one or more subsequently displayed menus. (A master
application menu is one from which any of the installation's
applications may be invoked. It generally is displayed at the outset of
each ISPF session.) In these installations, the master menu is
generally invoked by the ISPSTART command or an ICCF procedure invoked
(with no operands) at a terminal.

In ~lVS and V~1/SP, ISPSTART may be issued automatically as part of a
user's logon procedure. Also, the ISPSTART command may be issued from a
command procedure (CLIST or EXEC 2).

6 ISPF Dialog Management Services

DATA COMMUNICATIONS WITHIN ISPF

Data is communicated within a dialog and to ISPF services by means of
dialog variables. A dialog variable is a character string referred to
by a symbolic name. Dialog variables may be defined and used in panels,
messages, skeleton definitions, and in functions that comprise a dialog.
For example, a dialog variable name can be defined in a panel definition
and be referenced in a function of the same dialog. Or, the variable
can be defined in a function and used in a panel definition to
initialize information on a display panel, and then used to store data
entered by the user on the display panel.

For functions coded in a programming language, the internal program
variables that are to be used as dialog variables may be identified to
ISPF through the use of the ISPF VDEFINE service, or the program may
access and update dialog variables by using the ISPF VCOPY and VREPLACE
services. These services do not apply to commana procedures.

In MVS and VMjSP, for functions coded as a command procedure (CLIST or
EXEC 2), variables used in the procedure are automatically treated as
dialog variables; no special action is required to define them to ISPF.

PARTS OF A DIALOG

In summary, a dialog is any application designed to be run under the
control of the ISPF dialog manager. Each dialog is composed of program
and data elements, which allow an orderly interaction between the
computer and the user of the application. The types of elements that
make up a dialog are:

• Functions - a function is a command procedure or a program that
performs processing requested by the user. It may invoke ISPF
dialog services to display panels and messages, build and maintain
tables, generate output files, and control operational modes.

• Panels - a panel is a predefined display image. It may be a menu, a
data entry panel) or an information-only panel. t-lost panels prompt
the user for input. The user response may identify which path is to
be taken through the dialog, or it may be interpreted as data.

• Messages - a message is a comment that provides special information
to the user. It may confirm that a user-requested action is in
progress or completed, or report an error in the user's input.
Messages may be directed to the user's terminal and superimposed on
the display to which they apply, to a hardcopy log, or both.

• Tables - a table is a two-dimensional array used to maintain data.
A table may be created as a temporary data repository, or it may be
retained across sessions. A retained table may also be shared among
several applications. The type and amount of data stored in a table
depends upon the nature of the application.

Chapter 1. Introduction 7

• File Tailoring Skeletons - a file tailoring skeleton (or simply a
skeleton) is a generalized representation of sequential data that
may be customized during dialog execution to produce an output file.
The output file may be used to drive other processes. File
skeletons are frequently used to produce job files for batch
execution.

A dialog need not include all types of elements. In particular, tables
and skeletons may not be needed, depending upon the type of application.

Panel definitions, message definitions, and skeletons are stored in
libraries prior to execution of the dialog. They are created by editing
directly into the panel, message, or skeleton libraries; no compile or
preprocessing step is required.

Tables are generated and updated during dialog execution. The
organization of each table is specified to ISPF by the functions that
use ISPF.

8 ISPF Dialog Management Services

CHAPTER 2. DIALOG PROCESSING CONCEPTS

This chapter describes basic concepts of dialog organization and
control, and the capabilities of the ISPF dialog management services.

DIALOG ORGANIZATION

A dialog may be organized in a variety of ways to suit the requirements
of the application and the needs of the application user.

A typical dialog organization, shown in Figure 3, starts with display of
the highest menu in a hierarchy (called the primary option menu) for the
application. User options selected from this menu may result in the
invocation of a dialog function, or the display of a lower-level menu.
Each lower-level menu may also cause functions to receive control, or
still other menus to be displayed. The menu hierarchy may extend as
many levels deep as desired.

Note: Menus are also called selection panels. In this
publication, the terms are used interchangeably.

Eventually, a dialog function receives control. The function may use
any of the dialog services provided by ISPF. In particular, the
function may continue the interaction with the user by means of the
DISPLAY service. Typically, the function displays data entry panels to
prompt the user for information.

When the function ends, the menu from which it was invoked is
redisplayed.

Figure 4 shows another type of dialog organization in which a dialog
function receives control first, prior to the display of a menu. The
function may perform application-dependent initialization, and display
data entry panels to prompt the user for basic information. It may then
start the selection process by using the SELECT service to display the
primary option menu for the application.

As shown in Figure 4, a function may also invoke another function, using
SELECT, without displaying a menu. (In MVS and VMjSP, this provides a
convenient way to pass control from a program-coded function to a
command-coded function, or vice versa.) The invoked function then starts
a lower-level menu process, again by using the SELECT service.

Chapter 2. Dialog Processing Concepts 9

START
I

1
V

-;': .,~

#~ -;':

.,'~ Nenu .,,:

.,~ .,~

.,,: .,'r

I

1
I I I

1 I I
I I 1
V V V

'it: .,'(.,'r ~':

Dialog 'it: .,tr .,,: ~':

,'\ Nenu .,'r ,,: Nenu .,~

Function ,'('it: .,,: .,'r

,,: .,tr .,,: *
I I

1 1
I I I I I I

I I 1 1 I I
I V V V V V
I
V

I

I .,,: .,,:

Dialog I ,,:

1-->,;'(.,,: ,,:

Function 1 .,~ .,"(Data .,'c

1 -;': 'it: ,tr

I -,,: Entry .,'~

,,: ';~

Figure 3. Typical Dialog Starting with a Nenu

10 ISPF Dialog Nanagement Services

START
I

1

V

Dialog

I

1
1 .. ;':

1<-->,,:

i'r

;'r

"i':

i~

~~

I
V

I

1

V

Nenu

1

1

1

V

J

V

it:

.,,,

i'(

.,,,
'i':

,~

"it:

.,'(

,;'c .,'(

'it: it:

'it: .,'c

"it:

I I

1 1
Dialog 1 1

1 >1
Function 1 1

1 1

I
V

Function

I

1

V

i'lenu

I

1
1
1
V

Nenu

I

1
1
V

Dialog

I
V

Function

1
I
I

-;'(

.,~

..,,,

.,'\

.,~

.,'(

.,'c

.,'c

.,~

.,,,

~--------------~II ~ ______________ ~

~,j
ho1 e -~/

Figure 4. Typical Dialog Starting with a Function

-;'(

'i~ ~"

~~ 'i~

'i~ Data i~

'it: -;': Entry 4~

i~ Panels i'~

i~ ,,\

I

1
V

Dialog

Function

.,,, 4'\

.,'(.,~

>,'~ Nenu ~ ..
";': ";~

'i'('it:

I

1

I I I
V V V

Chapter 2. Dialog Processing Concepts 11

CONTROL FACILITIES

Control and data flow are shown in Figure 5.

A dialog is started by means of the ISPSTART command or, in VSE, by
means of an IeCF procedure. ISPSTART is the recommended name for this
procedure and, in this publication, that is the name used.

MVS AND VM/SP: STARTING A DIALOG

In NVS and V~l/SP, a dialog is started by the ISPSTART command. The
ISPSTART command may be entered in various ways:

• By a user at the terminal

• From a command procedure (CLIST or EXEC 2)

• During LOGON (from a TSO LOGON procedure or CMS PROFILE EXEC)

ISPSTART command parameters specify the first menu to be displayed or
the first dialog function to receive control (prior to the display of a
menu). In this case, the ISPSTART command is typically entered during
LOGON or from a command procedure.

Example:

A user begins an application from his terminal by entering the ABC
command. ABC allocates the appropriate libraries for the
application, and then issues an ISPSTART command to begin ISPF
processing. Thus, the ABC command serves as a "front end" to start
the application. ABC cannot use ISPF dialog services, because it
does not run under ISPF.

VSE: STARTING A DIALOG

In VSE, a dialog is started by an ICCF procedure, generally named
ISPSTART. This procedure may be invoked directly from a terminal. A
parameter, passed in the command that invokes the ISPSTART procedure,
specifies the first menu to be displayed or the first dialog function to
receive control (prior to display of any menu).

Example:

A user invokes an application from his terminal by invoking an ICeF
procedure named ISPSTART. This procedure defines libraries for the
application and invokes ISPF. The procedure cannot use ISPF dialog
services, because it does not run under ISPF.

12 ISPF Dialog Management Services

- In MVS and VM/SP, ISPSTART is a command
ISPSTART - In VSE, ISPSTART is an ICCF procedure

I

1

1

1

V
I I I I I I

I ISPF I I I I PROFILE I
1 INITIALIZATION 1 1 1 VARIABLE I IVARIABLE POOLI
I 1 I I SERVICES 1<··········>1 LIBRARY 1
I

I
I I I 1 I I

1 I 1 1
V 1 1 I I

1 D 1 1 I PANEL
I I I 1<···········1 LIBRARY

SELECT I A I DISPLAY I I

SERVICE >1 L 1 SERVICES 1

1 0 1 I I

I 1 G 1 1 I MESSAGE
I 1 1 1<···········1 LIBRARY
V 1 1 1

I

1 1 1
I M 'I 1 I

DIALOG 1 A 1 TABLE 1 1 DATA
FUNCTION >1 N 1 SERVICES 1<··········>1 TABLES

1 A 1 I I

I G 1 1

1 E 1 I I

1 R 1 1 1 SKELETON
1 1 FILE 1<···········1 LIBRARY
I 1 TAILORING 1

I

1 1 SERVICES 1

1 1 1 I
--> Control flow 1 1 1 1 OUTPUT

I 1 1···········>1 FILES
..... > Data flow I I I I

Figure 5. Control and Data Flow

Chapter 2. Dialog Processing Concepts 13

THE SELECT SERVICE

SELECT is both a control facility and a dialog service. SELECT is used
by ISPF during its initialization to invoke a function or selection
panel that begins a dialog.

During dialog processing, SELECT may be used in the dialog to display
menus and invoke program or command procedure functions.

Parameters passed to SELECT specify the next action as follows (CMD
applies only in MVS and VM/SP; in VSE, dialog functions may not be
written as ICCF procedures):

PANEL(panel-name)
CMD(command)
PGM(program-name)

The PANEL parameter specifies the name of the next panel to be
displayed. The CMD and PGM parameters specify a dialog function (coded
as a command or program, respectively) to receive control. Input
parameters may be passed to the dialog function as part of the command
specification or, for programs, by the use of the PARM parameter.

Figure 6 emphasizes that the SELECT service is used when invoking and
when processing a dialog. After SELECT is used to start a dialog, it is
used by the dialog, as a dialog service, to invoke a function or to
display a menu. In turn, that function or menu may use SELECT to invoke
another function or to display another menu. This function or menu may,
in turn, using SELECT, invoke still another function or menu. This
process may continue for many levels and establishes a hierarchy of
invoked functions and menus. There is no restriction as to the number
of levels allowed in this hierarchy.

When a lower-level function or menu in the hierarchy completes its
processing, control is returned to the higher-level function or menu
from which it was invoked. The higher-level function resumes its
processing or the higher-level menu is redisplayed for the user to make
another selection. Thus, SELECT is used in a dialog to establish a
hierarchy of functions and menus and this hierarchy determines the
sequence in which dialog functions and menus are processed, including
the sequence in which they are terminated.

In MVS and VM/SP, dialog functions written as command procedures may
directly invoke other functions written as command procedures without
using the SELECT service.

Program-coded functions can invoke another function only through using
the SELECT service. Thus when a progr~m~coded function calls another
program directly, without using the SELECT service, the called program
is treated as part of the function that called it. It is not treated as
a new dialog function by ISPF.

The scope of a dialog function is defined as the period of time from the
invocation of a function to its termination.

14 ISPF Dialog Management Services

1

1 - In MVS and VM/SP, ISPSTART is a command
1 ISPSTART
1 - In VSE, ISPSTART is an ICCF procedure
1
1

r

1

1

V

1 Begin
1 ISPF
1
1

1

1

.-------> 1

1

1
1

1

1

V

SELECT
Service

1

1 1

1

1 Display
1<---->
1 Menu
1
1

Select Lower 1 1 Invoke
Level Menu 1

< _____ ----'1
1 Function
1

1

1

1

V

1

1

1

1 1

1 Select Lower 1 Display 1
L < I Dialog 1< > I

Level Menu I FunctionlData Entry I
or Function I IPanel I

DISPLAY
Service

~I ___ ~I ~I ______ ~

Figure 6. SELECT Service Used To Invoke and Process a Dialog

Chapter 2. Dialog Processing Concepts 15

ONLINE TUTORIAL

A tutorial is a set of panels that provides online information for a
user of an application. A dialog developer may include tutorial panels
with his dialog to be displayed at the option of the user. Generally,
the developer incorporates information that is helpful to a first-time
user or is instructive about the actions the user may select when some
particular condition occurs during application processing.

The program that displays tutorial panels is part of ISPF. It may be
entered in either of two ways:

• As an option from a menu

• Indirectly from any non-tutorial panel when the user enters the HELP
command

Transfer in and out of the tutorial using the HELP command is
transparent to the dialog functions.

Tutorial panels are arranged in a hierarchy. When the tutorial is
entered from a menu, the first panel to be displayed is normally the top
of the hierarchy. When the tutorial is entered by invoking the HELP
command, the first panel to be displayed is a panel within the
hierarchy, appropriate to what the user was doing when the HELP command
was invoked.

When viewing a tutorial, the user may select topics by number (or other
appropriate code), or simply press the ENTER key to view the next topic.
On any tutorial panel, the user may also enter the following commands:

BACK or B - to return to the previously viewed tutorial panel

SKIP or S - to skip to the next topic

UP or U - to display a higher-level list of topics

TOP or T - to display the table of contents

INDEX or I - to display the tutorial index

When the user ends the tutorial, by means of the END or RETURN command,
the panel from which the tutorial was entered is redisplayed.

SPLIT SCREEN

At any time during a dialog, the user may partition the display screen
into two "logical" screens. The two logical screens are treated as
though they were independent terminals. ISPF provides control for
mapping the two logical screens onto the physical screen. (Panels that
are displayed by the DISPLAY service always pertain to a logical
screen.)

16 ISPF Dialog Management Services

In split screen mode, only one of the logical screens is considered
active at a time. The location of the cursor identifies the active
screen.

Use of split screen mode and the size of each logical screen is under
control of the user and is transparent to the dialog function.

In VSE, user dialog functions are restricted to one logical screen.
While a user dialog function may be executed on either logical screen,
it may not be executed on both logical screens concurrently. This
restriction does not apply to ISPF and ISPF/PDF functions.

Split screen mode is entered by invoking the SPLIT command. This
command is also used to reposition the split line that separates the two
logical screens. Thus, the size of a logical screen may be changed by
use of the SPLIT command. Split screen mode is terminated by ending the
application on either logical screen. The remaining logical screen is
then expanded to its full size.

ISPF PARMS OPTION

ISPF includes a facility, generally referred to as "ISPF PARHS," that
allows a user to specify terminal characteristics, default options for
processing the ISPF list and log files, and program function (PF) key
assignments. This facility operates as a dialog and may be invoked from
other dialogs. Typically, it should be included as an option on an
application's primary option menu. See "Primary Option Menu" on
page 235 for an example of how to specify the invocation of the ISPF
PARHS option. See Appendix B, "Using the ISPF PARHS Option" for a
description of how to use the PARMS option.

DIALOG SERVICES OVERVIEW

The display services, table services, file tailoring services, variable
services, and miscellaneous services available to dialogs are described
in the following sections.

Display Services

The display services allow a dialog to display information and interpret
responses from the user. There are three display services:

• DISPLAY - Display a panel

• TBDISPL - Display a table

• SETMSG - Display a message on the next panel

The DISPLAY service reads panel definitions from the panel library,
initializes variable information in the panel from the corresponding
dialog variables in the function, shared, or profile pools, and displays

Chapter 2. Dialog Processing Concepts 17

the panel on the screen. Optionally, a message may be superimposed on
the panel display.

After the user has entered information, it is stored in the
corresponding dialog variables in the function, shared, or profile
pools, and the DISPLAY service returns to the calling function.

Use of the DISPLAY service is illustrated in Appendix A, "Using the
DISPLAY Service."

The TBDISPL service combines information from panel definitions with
information stored in ISPF tables. It display3 selected columns from a
table, and allows the user to identify rows for processing. The user
may scroll the table information up and down (see "Scrolling" in Chapter
3, "Use of Commands, Program Keys, and Light Pen").

Panel definitions used by the table display service contain
non-scrollable text, including column headings, followed by one or more
"model lines" that specify how each row from the table is to be
formatted in the scrollable area of the display.

Use of the TBDISPL service is illustrated in Appendix C, "Using the
TBDISPL Service."

The SET~ISG service constructs a specified message in a system save area.
The message will be superimposed on the next panel displayed by any ISPF
service.

Panel Definitions

A panel definition consists of up to five sections:

• Attribute section (optional) - defines the special characters that
will be used in the body of the panel definition to represent
attribute (start of field) bytes. Default attribute characters,
which may be overridden, are provided.

• Body section (required) - defines the format of the panel as seen by
the user, and defines the name of each variable field on the panel.

• Model section (required for table display; not allowed for other
types of panels) - specifies the format for displaying each row of
the table.

• Initialization section (optional) - specifies the initial processing
that is to occur prior to displaying the panel. This section is
typically used to define how variables are to be initialized.

• Processing section (optional) - specifies processing that is to
occur after the panel has been displayed. This section typically is
used to define how variables are to be verified and/or translated.

18 ISPF Dialog Management Services

The panel definition syntax is fully described in Chapter 7, "Panel and
Message Definition and Skeleton Formats."

Panel definitions are created by editing directly into the panel
library; no compile or preprocessing step is required. Each panel
definition is a member in the library, and is identified by member na~e.

A sample panel definition is shown in Figure 7. It consists of a panel
body followed by an ")END" control statement. It has no attribute,
initialization, or processing sections. It uses the default attribute
characters, namely:

% (percent sign) - text (protected) field, high intensity
+ (plus sign) - text (protected) field, low intensity

(underscore) - input (unprotected) field, high intensity

)BODY
%---------------------------- ENPLOYEE RECORDS ------------------------------
~~COM~lAND ==> ZCND
%
%EMPLOYEE SERIAL: &ENPSER
+
+ TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
)END

EMPLOYEE NAME:
LAST %===> LNA~1E

FIRST %===> FNANE
INITIAL%===> 1+

HOME ADDRESS:
LINE 1 %===> ADDR1
LINE 2 %===> ADDR2
LINE 3 %===> ADDR3
LINE 4 %===> ADDR4

HOME PHONE:
AREA CODE %===> PHA+
LOCAL NUMBER%===> PHNUM

+
+

+

Figure 7. Sample Panel Definition

+
+
+
+

+

For text fields, the information following the attribute character ("%"
or "+") is the text to be displayed. Text fields may contain
substitutable variables consisting of an ampersand (&) followed by a
dialog variable name. The ampersand and name are replaced with the
value of the variable prior to displaying the panel.

Chapter 2. Dialog Processing Concepts 19

For input fields, a dialog variable name immediately follows the
attribute character ("_") with no intervening ampersand. The name is
replaced with the value of the variable prior to displaying the panel,
and any information entered by the user is stored in the variable after
the panel has been displayed.

The panel in Figure 7 has eleven input fields (ZCMD, TYPECHG, LNAME,
etc.), indicated with underscores. It also has a substitutable variable
(EMPSER) within a text field (on line 5). The first three lines of the
panel and the arrows preceding the input fields are all highlighted, as
indicated by percent signs. The other text fields are low intensity, as
indicated by plus signs.

Before the panel is displayed, all variables in the panel body are
automatically initialized from the corresponding dialog variables (ZCMD,
TYPECHG, LNAME, etc.) and EMPSER. After the panel has been displayed
and the user has finished entering requested input and depresses the
ENTER key, the input fields are automatically stored into the
corresponding dialog variables.

Figure 8 shows the panel as it appears when displayed, assuming that the
current value of EMPSER is "123456", and that the other variables are
initially null or blank. Panel variables that are blank are initialized
to null.

Message Definitions

Message definitions are created by dialog developers, using an editor,
and are saved in a member of the message library; no compile or
preprocessing step is required. Each member of the library may contain
several messages. Messages are referenced by message id.

Each message in the message library consists of two lines. The first
line contains the message id, and optionally:

•

•

•

The short message text, enclosed in apostrophes (')

The name of the corresponding help panel (if the user requests help
when the message is displayed)

The audible alarm indicator (yes or no)

The second line contains the long message text, enclosed in apostrophes.

Short messages are displayed in the upper right-hand corner of the
screen. If the user enters the HELP command (or presses the Help PF
key), the long message is then displayed on line 3 of the screen. If
the user requests help again, tutorial mode is entered.

Note: The default screen positions for short and long messages
(upper right-hand corner and line 3, respectively) may be changed
by a dialog developer specifying some other position in the panel
definition.

20 ISPF Dialog Management Services

If a short message is not specified, the long message is displayed
first. If the user then requests help, tutorial mode is entered.

Variable names, preceded by an ampersand (&), may appear anywhere within
the short and long message text, and are replaced in the display with
their current value.

---------------------------- ENPLOYEE RECORDS ------------------------------
COMNAND ==>

EMPLOYEE SERIAL: 123456

TYPE OF CHANGE ===>

ENPLOYEE NA~1E:

LAST ===>
FIRST ===>
INITIAL ===>

HOHE ADDRESS:
LINE 1 ===>
LINE 2 ===>
LINE 3 ===>
LINE 4 ===>

HOME PHONE:
AREA CODE ==>
LOCAL NUHBER ===>

(NEW, UPDATE, OR DELETE)

Figure 8. Sample Panel - When Displayed

Figure 9 shows an example of a member in the message library. This
member contains all messages that begin with a message id of "EMPX21".
The message definition syntax is fully described in "Message
Definitions" in Chapter 7, "Panel and Message Definition and Skeleton
Formats."

Chapter 2. Dialog Processing Concepts 21

EMPX210 'INVALID TYPE OF CHANGE' .HELP=PERS033 . ALAR~1=YES
'TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE. '

EMPX213 'ENTER FIRST NA~1E' . HELP=PERS034 . ALARM=YES
'EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE. '

EMPX214 'ENTER LAST NAME' .HELP=PERS034 .ALARM=YES
'EMPLOYEE NAME NUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE. '

ENPX215 'ENTER HOME ADDRESS' .HELP=PERS035
'HOME ADDRESS MUST BE ENTERED FOR TYPE OF CHANGE =

.ALARM=YES

. ALAR~I=YES
NEW OR UPDATE. '

EMPX216 'AREA CODE INVALID'
'AREA CODE &PHA IS NOT DEFINED. PLEASE CHECK THE PHONE BOOK. '

EMPX217 '&EMPSER ADDED'
'ENPLOYEE &LNAME, &FNAME &1 ADDED TO FILE.'

EMPX218 '&EMPSER UPDATED'
'RECORDS FOR &LNAME, &FNAME &1 UPDATED. '

EMPX219 '&E~IPSER DELETED'
'RECORDS FOR &LNAME, &FNAME &1 DELETED.'

Figure 9. Sample Member in Message Library

Table Services

Table services allow sets of dialog variables to be maintained and
accessed. A table is a 2-dimensional array of information in which each
column corresponds to a dialog variable, and each row contains a set of
values for those variables.

A table is shown in Figure 10. In this example, the variables that
define the columns are:

EMPSER
LNAME
FNAME
I
PHA
PHNUM

- Employee Serial Number
- Last Name
- First Name
- Middle Initial
- Home Phone:
- Home Phone:

Area Code
Local Number

22 ISPF Dialog Management Services

<' ,

EMPSER LNAME FNAME I PHA PHNUM

598304 Robertson Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Caruso Vincent J 914 294-1168

Figure 10. Sample Table

Table Residency

A table may be either temporary or permanent. A temporary table exists
only in virtual storage, it cannot be written to disk storage. A
permanent table, while created in virtual storage, may be saved on
direct access storage. It may be opened for update or for read-only
access, at which time the entire table is read into virtual storage.
When a table is being updated (in virtual storage), the copy of the
table on direct access storage cannot be accessed until the update has
been completed.

Permanent tables are maintained in one or more table libraries, in which
each member contains an entire table.

For both temporary and permanent tables, rows are accessed and updated
from the in-storage copy. A permanent table that has been accessed
read-only may be modified in virtual storage, but may not be written
back to disk storage.

When a permanent table is opened for processing, it is read from a table
input library. When the table is saved, it is written to a table output
library that may be different from the input library. The input and
output libraries should be the same if the updated version of the table
is to be reopened for further processing by the same dialog. See
Chapter 4, "Library Requirements," for a discussion of libraries.

Accessing Data

The variable names that define the columns of a table are specified when
the table is created. Each variable is specified as either a KEY field
or a NAME (non-key) field. One or more columns (variable names) may be
specified as keys for accessing the table. For the table shown in
Figure 10, EMPSER might be defined as the key variable. Or EMPSER and
LNAME might both be defined as keys, in which case a row would be found
only if EMPSER and LNAME both match the current values of those
variables. A table may also be accessed by one or more "argument"

Chapter 2. Dialog Processing Concepts 23

variables, that need not be key variables. The variables that
constitute the search argument may be defined dynamically by means of
the TBSARG and TBSCAN services.

In addition, a table may be accessed by use of the "current row pointer"
(CRP). The table may be scanned by moving the CRP forward or back. A
row is retrieved each time the CRP is moved. When a table is opened,
the CRP is automatically positioned to TOP -- ahead of the first row.

When a row is retrieved from a table, the contents of the row are stored
into the corresponding dialog variables. When a row is stored (updated
or added), the contents of the dialog variables are saved in that row.

When a row is stored, a list of "extension" variables may be specified
by name. These extension variables, and their values, are added to the
row. This permits variables to be stored in the row that were not
specified when the table was created. A list of extension variable
names for a row may be obtained when the row is read. If the list of
extension variables is not respecified when the row is rewritten, the
extensions are deleted.

General Services

The following services operate on an entire table:

TBCREATE Creates a new table and opens it for processing

TBOPEN Opens an existing (permanent) table for processing

TBQUERY Obtains information about a table

TBSAVE Saves a permanent copy of a table without closing

TBCLOSE Closes a table, and saves a permanent copy if the table was
opened in WRITE mode

TBEND Closes a table without saving

TBERASE Deletes a permanent table from the table output library

Temporary tables are created by TBCREATE (NOWRITE mode) and deleted by
either TBEND or TBCLOSE. A new permanent table is created by TBCREATE
(WRITE mode). This simply creates the table in virtual storage. The
table does not become permanent until it is stored on direct access
storage by either TBSAVE or TBCLOSE.

An existing permanent table is opened and read into virtual storage by
TBOPEN. If the table is to be updated (WRITE mode), the new copy is
saved by either TBSAVE or TBCLOSE. If ~t is not to be updated (NOWRITE
mode), the virtual storage copy is deleted by either TBEND or TBCLOSE.

24 ISPF Dialog Management Services

MVS, VM/SP, and VSE/AF 1.3.5: Resource Protection

Table services provides a resource protection mechanism designed to
prevent concurrent updating of the same table by multiple users. This
protection mechanism is built on the assumption that all users who may
want to update a given table will have the same first library definition
for ISPTLIB.

When a table is opened or created in write mode, an exclusive enqueue
(MVS and CMS) or lock (VSE) is requested for a resource name consisting
of the first library name in the ISPTLIB definition concatenated with
the table name. The TBOPEN orTBCREATE service fails with a return code
of 12 if this enqueue or lock is unsuccessful. A successful enqueue or
lock stays in effect until the completion of a TBEND or TBCLOSE service
for the table. If the NAME parameter is specified on the TBSAVE or
TBCLOSE service, an additional exclusive enqueue or lock is issued. The
resource name consists of the first library name in the ISPTLIB
definition concatenated with the name specified in the NAME parameter.
If this enqueue or lock fails, the service terminates with a return code
of 12 and the table is not written.

The table output library represented by the ISPTABL definition is
protected from concurrent output operations from any ISPF function
through a separate mechanism not specific to table services. Volume
protection prevents physically writing to the same volume by more than
one user at a time.

VSE/AF 2.1: Resource Protection

Table services provides a resource protection mechanism designed to
prevent concurrent updating of the same table by multiple users .. This
protection mechanism is built on the assumption that all users who may
want to update a given table will have the same first library definition
for ISPTLIB.

When a table is opened or created in write mode, an exclusive lock is
requested for a resource name consisting of the first library.sublibrary
name in the ISPTLIB definition concatenated with the table name. The
TBOPEN or TBCREATE service fails with a return code of 12 if this lock
is unsuccessful. A successful lock stays in effect until the completion
of a TBEND or TBCLOSE service for the table. If the NAME parameter is
specified on the TBSAVE or TBCLOSE service, an additional exclusive lock
is issued. The resource name consists of the first library.sublibrary
name in the ISPTLIB definition concatenated with the name specified in
the NAME parameter. If this lock fails, the service terminates with a
return code of 12 and the table is not written.

The table output library represented by the ISPTABL definition is
protected from concurrent output operations from any ISPF function
through a separate mechanism not specific to table services. Volume
protection prevents physically writing to the same volume by more than
one user at a time.

Chapter 2. Dialog Processing Concepts 25

Row Services

Example

The following services operate on a row of the table:

TBADD Adds a new row to the table

TBDELETE Deletes a row from the table

TBGET

TBPUT

TBMOD

Retrieves a row from the table

Updates an existing row in the table

Updates a row in the table if it exists (if the keys match);
otherwise, adds a new row to the table

TBEXI ST Tests for the existence of a row (by key)

TBSCAN Searches a table for a row that matches a list of "argument"
variables, and retrieves the row

TBSARG Establishes a search argument for use with TBSCAN

TBTOP Sets CRP to TOP (ahead of the first row)

TBBOTTOM Sets CRP to the last row and retrieves the row

TBSK I P Moves the CRP forward or back by a specified number of rows,
and then retrieves the row at whi~h the CRP is positioned

TB VCLEAR Sets dialog variables (that correspond 'to variables in the
table) to null

The following series of commands demonstrate the use of table services
(also see Appendix C, "Using the TBDISPL Service"):

1. Create a permanent table, named DALPHA, to consist of dialog
variables AA, BB, andCC. AA is the key field; BB and CC are name
fields.

ISPEXEC TBCREATE DALPHA KEYS(AA) NAMES(BB Ce) WRITE

DALPHA

AA BB CC

26 ISPF Dialog Management Services

2. Display a panel named XYZ. (This panel requests a user to enter
values for dialog variables AA, BB, and CC, which are used in
following steps of this example.)

ISPEXEC DISPLAY PANEL (XYZ)

3. Assume the user enters the following values on panel XYZ:

AA = Pauly John
BB = W590
CC = Jones Beach

ISPF automatically updates dialog variables AA, BB, and CC -- in the
function variable pool -- with the user-entered values.

Record these values in the table DALPHA.

ISPEXEC TBADD DALPHA

DALPHA
I

I AA
I
IPauly John
I
I
I

BB

W590

I
I cc
I
I Jones
I
I
I

Beachl
I
I
I

4. Assume the following values for dialog variables AA, BB, and CC are
entered by a user, as in step 2, through a panel display operation:

AA = Clark Joan
BB = Y200
CC = Bar Harbor

Record these values in table DALPHA.

ISPEXEC TBADD DALPHA

DALPHA
I I

AA I BB CC I
I I I

Pauly John I W590 IJones Beachl
Clark Joanl Y200 IBar Harbor I

I I I
I I I

Table services adds a row to table DALPHA immediately following the
row added by the previous TBADD. Following the TBADD, the current
row pointer (CRP) is positioned at the newly added row. (Before a
row is added by the the TBADD service, table service scans the table
to determine if the KEY field of the new row to be added duplicates

Chapter 2. Dialog Processing Concepts 27

Table Size

the KEY field of an existing row. If it does, the TBADD is not
performed.)

5. Save table DALPHA (by writing it to the table output library) for
later use.

ISPEXEC TBCLOSE DALPHA

The table DALPHA is written from virtual storage to member DALPHA in
the table library.

The length of any row in a table cannot exceed 65,536 bytes. The length
can be computed as follows:

Row size = 22 + 4a + b + 9c

where:

a = total number of variables in the row including extensions
b = total length of variable data in the row
c = total number of extension variables in the row

The total table size is the sum of the row lengths, plus the length of
the data table control block (DTCB). The length of the DTCB can be
computed as follows:

DTCB length = 152 + 16d

where:

d = total number of columns (not including extension
variables) in the table

The number of tables that may be processed at one time is limited only
by the amount of available virtual storage.

File Tailoring Services

File tailoring services read skeleton files from a library and write
tailored output that may be used to drive other functions. Frequently,
file tailoring is used to generate job files for batch execution.

The file tailoring output may be directed to a library or sequential
file that has been specified by the dialog function, or it may be
directed to a temporary sequential file provided by ISPF. The name of
the temporary file is available in system variable ZTEMPF. In MVS,
ZTEMPF contains a data set name; in VM/SP and VSE, ZTEMPF contains a
filename.

28 ISPF Dialog Management Services

Skeleton Files

Each skeleton file is read record-by-record. Each record is scanned to
find any dialog variable names (preceded by an ampersand). When a
variable name is found, its current value is substituted from a variable
pool (see "Variable Access - Order of Search from Services").

Skeleton file records may also contain statements that control
processing. These statements provide the ability to:

• Set dialog variables

• Imbed other skeleton files

• Conditionally include records

• Iteratively process records in which variables from each row of a
table are substituted

When iteratively processing records, file tailoring services read each
row from a specified table. If the table was already open (prior to
processing the skeleton), it remains open with the CRP positioned at
TOP. If the table was not already open, file tailoring opens it
automatically and closes it upon completion of processing.

A sample skeleton file is shown in Figure 11. It contains MVS job
control language (JCL) for an assembly and optional load-go. In an MVS
environment, the ta~Jore~output could be submitted to the background
for execution. In ~/S~),.,environment, it could be punched to an MVS

machine for batch executfon~ ____ . __ " .. _. " ,," _<~ .. ;:A

Chapter 2. Dialog Processing Concepts 29

IIASM
II

EXEC

IISYSIN DD
IISYSLIB DD
) SEL &ASM~lAC 1

PG~l=IFOXOO, REGION=128K,
PARM=(&ASMPARMS)
DSN=&ASHIN(&~IEHBER) ,DISP=SHR
DSN=SYS1.MACLIB,DISP=SHR
.,= &Z

II DD DSN=&ASMMAC1,DISP=SHR
)SEL &ASHHAC2 .,= &Z
1/ DD DSN=&ASMHAC2,DISP=SHR
)ENDSEL
)ENDSEL
IISYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,2))
IISYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
IISYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
IISYSPRINT DD BYSOUT=(&ASNPRT)
)CM IF USER SPECIFIED "GO", WRITE OUTPUT IN TEMP DATA SET
)CM THEN IHBED "LINK AND GO" SKELETON
)SEL &GOSTEP = YES
I/SYSGO DD DSN=&&&&OBJSET,UNIT=SYSDA,SPACE=(CYL,(2,1)),
II DISP=(HOD,PASS)
)IM LINKGO
)ENDSEL
)CM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET
)SEL &GOSTEP = NO
I/SYSGO DD DSN=&ASMOUT(&MEMBER),DISP=OLD
)ENDSEL
I / .. ~

Figure 11. Sample Skeleton File

The sample skeleton references several dialog variables (ASMPARMS,
ASMIN, MEMBER, etc.). It also illustrates use of select statements
")SEL" and ")ENDSEL" to conditionally include records. The first part
of the example has nested selects to include concatenated macro
libraries if the library names have been specified by the user (i.e., if
variables ASMMAC1 and ASMMAC2 are not equal to the null variable Z).

In the second part of the example, select statements are used to
conditionally execute a load-go step. An imbed statement, ")IM", is
used to bring in a separate skeleton for the load-go step.

The file tailoring services are:

FTOPEN Prepares the file tailoring process, and specifies whether the
temporary file is to be used for output.

FTINCL Specifies the skeleton to be used, and starts the tailoring
process.

30 ISPF Dialog Management Services

Example

FTCLOSE Ends the file tailoring process.

FTERASE Erases (deletes) an output file created by file tailoring.

The following example illustrates file tailoring services. For this
example assume that:

• LABLSKEL is a member in the file tailoring skeleton library,
containing:

LABLSKEL

)DOT DALPHA
NAME: &AA

APARTMENT: &BB
CITY: &CC
YEAR: &ZYEAR

)ENDDOT

ZYEAR is the name of an ISPF system variable that contains the
current year.

• DALPHA is a member in the table library, containing:

DALPHA
I

AA I
I

Pauly John I
Clark Joan I

I
I

BB

W590
Y200

I
I CC
I I
IJones Beachl
IBar Harbor I
I I
I I

1. Issue ISPF commands to process skeleton LABLSKEL. Obtain values for
dialog variables AA, BB, and CC from table DALPHA. The resulting
file tailoring output consists of one address label for each row of
information in table DALPHA.

ISPEXEC
ISPEXEC

FTOPEN
FTINCL LABLSKEL

FTOPEN prepares for access (opens) both the file tailoring skeleton
and file tailoring output libraries. These libraries must have been
allocated before starting the ISPF session.

FTINCL performs the file tailoring process using the file tailoring
skeleton named LABLSKEL. LABLSKEL contains the file tailoring
controls,)DOT and)ENDDOT, which specify the use of table DALPHA.

Chapter 2. Dialog Processing Concepts 31

2. Write the resulting file tailoring output to a member named LABLOUT
in the file tailoring output library

ISPEXEC FTCLOSE NAME (LABLOUT)

3. At the conclusion of processing the above commands, file tailoring
output library member LAB LOUT contains:

LAB LOUT

NANE: Pauly John
AP ART~1ENT : W590

CITY: Jones Beach
YEAR: 82
NANE: Clark Joan

AP ART~lENT : Y200
CITY: Bar Harbor
YEAR: 82

Variable Services

Variable services allow the definition and use of dialog variables.
Dialog variables are the main communication vehicle between dialog
functions (program modules or command procedures) and ISPF services.
Program modules, command procedures, panels, messages, tables, and
skeletons can all reference the same data through the use of dialog
variables.

A dialog variable's value is a character string that may vary in length
from zero to 32K bytes. Some services restrict the length of dialog
variable data. For example, dialog variables used as input or output
fields in panels are limited to a length of 255 bytes.

Dialog variables are referenced symbolically, by name. The name is
composed of one to eight characters (six, for FORTRAN). Alphameric
characters (A-Z, 0-9, #, $, or @) are used in the name, but the first
character may not be numeric.

Variable Access - Order of Search from Services

Dialog variables are organized into groups (or pools) according to the
dialog function and application with which they are associated. (See
the SELECT service for a description of how the dialog developer can
control creation of these pools.)

A pool may be thought of as a list of variable names that enables ISPF
to access the associated values. When an ISPF service encounters a
dialog variable name (in a panel, message, table, or skeleton) it
searches these pools to access the dialog variable's value. The pools
and the types of dialog variables that reside in them are shown below in
the standard search sequence used by ISPF services.

32 ISPF Dialog Management Services

2.

Function pool - A variable that resides in the function pool of the
~c.t~~~.!!:)currently in control is called a function variable. It is

acc'e'ssible only by that function. (tlJo51tt elite.".. ;"-I('il CL/),T /EXEC)

Shared pool - A variable that resides in the shared pool of the
current application is called a shared variable. It is accessible
only by functions belonging to the same application.

Application profile pool - A variable that resides in the
application profile pool is called an application profile variable
and is automatically retained for the user from one session to
another. Profile variables are automatically available wheniin
application begins and are automatically saved when it ends.

Select Service and Variable Pools

Figure 12 shows how the SELECT service may be used to pass control
within a dialog and illustrates the resulting variable pool structures.
The flow is shown from the initial command entry through menus and
through dialog functions. ISPF access to dialog variables is shown at .

each point. (0 y""vc1 1 i>1,J I:~I J
Initially, menus A and B are processed. Since menus a~ not part of any
function, all variables are accessed from the shared and profile pools.
Function X is invoked and uses the VPUT service to copy one of the
var1ables from its function pool into the shared pool. Next, function Y
is invoked. Function Y is shown using the VGET service to copy the
dialog variable from tlie shared pool to its function pool and then using
the SELECT service for further menu processing.

Chapter 2. Dialog Processing Concepts 33

I
I
I ISPSTART PANEL(A)
I
v

.. ~ Menu .. ~
.. ~ A ------

.. ~ .. ~ Menu"~ Variable Data Flow
* B * <=========================>

.. ~ I .. ~
-I-

I
I SELECT PGM(X)
I
V

I

I
Function I

X I

r============
Variable II

<=============>1 I Function
Data Flow I I Pool for

I I II X L ______ __ I - - __ J

I
I
I

L==============
I

VPUT +===>

I SELECT PGM(Y) +======
I
V

r - - - - - - - - - - - - -1

I
I Function
I Y
I L-I ___ --'

I
I SELECT
I
V

~'r Menu *
.,tr C

VGET I
V

r==============
Variable II

<=============> II Function
Data Flow I I Pool for

II Y
L=============

PANEL(C)

-;t.r * Menu * Variable Data Flow

* D * <=========================>
* *

Figure 12. Control and Data Flow in a Dialog

34 ISPF Dialog Management Services

r====================l

S A
H P
A P
R L
E I
D C

A
P T
a I
a a
L N

P
R
a
F
I
L
E

P
a
a
L

L================== J

Figure 12 also shows how the SELECT service controls access to dialog
variable pools from both functions and menus.

When a variable is defined as an input variable on a menu, the following
actions apply during processing of the menu:

•

•

•

If the variable does not exist in either the shared pool or the
profile, it is created in the shared pool.

If the variable exists in the shared pool, it is accessed from, and
is updated in, the shared pool.

If the variable exists in the profile and not in the shared pool, it
is accessed from, and is updated in, the profile pool.

Relationship of Function Pools to Dialog Functions

Each dialog function has associated with it a unique function pool of
dialog variables. The pool is maintained by ISPF for the associated
function. The function uses the dialog variables to communicate with
the various ISPF services.

When a dialog variable is created, it is entered into the current
function pool and may not be referenced by other functions. (Dialog
variables associated with one function may have the same names as dialog
variables associated with another function, but they are not the same
variables.)

When a new function is started, a function pool is created for it.
Variables may then be created in the function pool and accessed from it.
When the function ends, its function pool -- along with any variables in
it -- is deleted.

MVS and VMjSP: The Function Pool for Command Procedures

In MVS and VMjSP, when the function in control is a command procedure
(CLIST or EXEC 2), the list of variable names kept by the command
language processor and the list of function variables kept by ISPF are
the same list. Thus, a variable created by the command procedure during
its execution is automatically a dialog variable, and a dialog variable
entered in the function pool by ISPF is automatically accessible to the
command procedure. However, in ISPF, variable names may not exceed
eight characters.

Notes:

1. EXEC 2 variables &DATE and &TIME and CLIST variables &SYSDATE and
&SYSTIME may not be used in ISPF. Use instead, ISPF system
variables ZDATE and ZTIME, which contain similar information.

2. In MVS, TSO global variables in effect at when ISPF is started, are
not available to CLISTs running under ISPF. These global variables

Chapter 2. Dialog Processing Concepts 35

are restored when ISPF terminates. Any global variables put into
effect from within ISPF are lost when ISPF terminates.

The following command procedure example (CLIST language) illustrates
that command procedure variables are automatically treated as ISPF
dialog variables.

Example:

SET &AAA = 1
ISPEXEC DISPLAY PANEL(XYZ)
SET &CCC = &AAA + &BBB

In the example,above, variable AAA is created by the command procedure
simply by setting it to a value (a "I", in this case). The DISPLAY
service is then invoked to display panel XYZ.

Assume that the panel definition for XYZ contains two dialog variables,
named AAA and BBB, and that they are defined as input (unprotected)
fields. In the panel definition, they might appear as follows:

+ INITIAL VALUE %===> AAA +
+ INCRENENT ~{,===> BBB +

where the underscore indicates the start of an input field, followed by
the name of the variable.

When the panel is displayed, the content of AAA (a "I") is displayed.
ISPF creates the variable BBB in the function pool and displays it as a
blank.

Now assume the user, in response to the panel display, types 100 in the
first field (AAA) and types 20 in the second field (BBB). When the user
presses the ENTER key, the value 100 is automatically stored in AAA and
the value of 20 is automatically stored into BBB. The DISPLAY service
then returns control to the command procedure. Then the next statement
is executed. This statement creates variable eec, setting it to the sum
of AAA and BBB, namely 120.

The Function Pool for Programs

When the dialog function in control is a program, the program' does not
share a common list of variables with ISPF because a program is
compiled, not interpreted as command procedures are. ISPF maintains a
list of variables that belong to the function so that ISPF s~vices can
use dialog variables for communication of data. ISPF makes two types of
entries in the function pool for a program: ~efined and !mp . 't.
_---.... --~'";~.J;IJ.!M~~~~~

C~X,4BJ.ABLES.v~".:g"@fined variables are entered explicitly through the
use of the VDEFINE service. The VDEFINE service creates a dialog
variable name in the function pool and associates it with the program's
own variable. This association enables ISPF to directly access and
modify that program variable. Otherwise, the program's variables are

36 ISPF Dialog Management Services

not available to ISPF. The VDELETE service ends this association and
removes ISPF's ability to access that program variable.

Example: The following program code (PL/I) specifies that field PA of
the program can be accessed by ISPF using dialog variable name FA.

DECLARE PA CHAR(8);
DECLARE LENGTHPA FIXED BIN(31) INIT(LENGTH(PA));
PA = 'OLD DATA';
CALL ISPLINK ('VDEFINE', 'FA', PA, 'CHAR', LENGTHPA);
CALL ISPLINK ('DISPLAY', 'XYZ I);

PA is declared as a program variable (character string, length 8). The
program calls the VDEFINE service to make PA accessible to ISPF by use
of dialog variable FA. Then, the DISPLAY service is called to display
panel XYZ. Assuming dialog variable FA is specified as an input field
on the panel definition, then when data is entered for field'FA, ISPF
stores the data into the program variable PA.

(" .. ··--:~~ni~-VARiA-B~mplicit variables are placed in the function pool
"'---whe.n...,.e..i,t-laS>F""'6T .. "ttre ,,,.,€ 0 11 ow ing c i r c urns t anc e s a r is e :

1. When an ISPF service refers to a dialog variable name that is not
found in the standard search reference.

2. When an ISPF service must store into a dialog variable that does not
already exist in the function pool.

Implicit variables can not be accessed directly from a program function.
Programs access implicit variables only through the use of VCOPY and
VREPLACE. However, any ISPF service invoked by a program function may
access an implicit variable directly by referencing the variable name.

To illustrate how an implicit variable is created, assume that panel
XYZ, in the above example, allows the user to enter another value and
the panel definition specifies ~hat this value is to be stored in dialog
variable IA. This is the first reference to IA and therefore it does
not exist in the function pool. Because IA does not exist, ISPF creates
it in the function pool and stores into IA the value entered on the
panel by the user. IA is an implicit dialog variable.

IDENTICAL DIALOG VARIABLE NAMES: A defined variable and an implicit
variable can have the same name. This occurs when (using the VDEFINE
service) a defined variable is created using the same name as an
existing implicit variable. When the same name exists in both the
defined and ,the implicit areas of a function pool, the defined entry can
be accessed and the implicit entry can not be accessed. The implicit
entry is made accessible by removing (through VDELETE) any entries for
that variable name made through the VDEFINE service.

A given dialog variable name can be defined (by VDEFINE) many times
within a given function. Each definition may associate a different
program variable with the dialog variable name. This is referred to as
"stacking." When each successive VDEFINE request is processed for a

Chapter 2. Dialog Processing Concepts 37

given dialog variable name, the previous definition is not accessible.
Only the most recent definition of that dialog variable is accessible.
A previous definition of that variable may be made accessible by
deleting (using VDELETE) the more recent definitions of that name.

For example, the mainline of a program can define a dialog variable to
be associated with one program variable. A subroutine is called and can
define the same dialog variable name to be associated with a different
program variable. Any ISPF services invoked after the second VDEFINE
would have access to only the subroutine's program variable. The
subroutine would delete (using VDELETE) that dialog variable before
returning, thereby uncovering the earlier definition set up in the
mainline program.

The Shared Pool

Note: To avoid a possible program error, for each VDEFINE
processed within a function for a given dialog variable name, a
VDELETE should be processed using the same name.

The shared variable pool allows functions and selection panels to share
access to dialog variables.

Shared pools are created by the SELECT service when it processes the
ISPSTART or ISPF command and when the NEWAPPL or NEWPOOL keywords are
specified with the SELECT service. When SELECT returns, the shared pool
is deleted and the previous shared pool (if any) is reinstated.

A function may copy dialog variables from its function pool to the
shared pool by means of the VPUT service. Since a panel displayed by
the SELECT service does not belong to any function, any dialog variables
used in the panel are read from and stored into the shared or profile
pools.

Variables in the shared pool are accessible to all ISPF services that
use the standard search sequence. In addition, another function may
directly copy these variables to its function pool by means of the VGET
service.

The Application Profile Pool

Like the shared variable pool, the application profile pool contains
variables that are accessible to functions within an application, but
the profile variables are saved across sessions. (An application
consists of one or more dialogs, each of which have been started using
the same application id).

When a new application is started, it has access to an application
profile variable pool. If an application is restarted (for example, by
split screen) then both invocations of the application access exactly
the same application profile. The profile data is maintained as an ISPF
table whose name is xxxxPROF, where xxx x is the application-id. If the

38 ISPF Dialog Management Services

application is already active, then the current profile is used.
Otherwise, ISPF must search for the table.

When accessing an application profile that is not currently active, ISPF
first searches the user's profile library for a member with the name
xxxxPROF. The member is found if the user had previously run the
application and so had a local copy of the profile table.

If the member is not found, the table input library is searched. The
application developer may provide a profile in this library. This
profile is to contain variable names and values initialized for the
application.

If the member cannot be found in either the user's profile or table
input library, the application profile is initialized with the contents
of the default application profile pool, ISPPROF, which is read from the
table input library. ISPPROF is distributed with ISPF and contains a
set of default PF key values. An installation may modify this table to
change these settings or to include other variables which will be copied
to initialize brand new application profiles. Refer to Chapter
4, "Library Requirements," for information on profile and table
libraries.

Upon completion of the application, the contents of the application
profile pool are saved in the user's profile library under the name
xxxxPROF. The profile is deleted from storage when the last invocation
of the application is terminated.

Functions can directly access the profile pool using the VGET variable
services. The VPUT service must be used to enter variables in the
profile pool. However, menus (selection panels) automatically update
existing profile variables.

Note: A second level of profile variable pool, the system
profile pool (ISPSPROF), is always active. These dialog variables
are owned by the dialog manager and may not be modified by an
application. Their values may be read, however, because the
system profile is included in the standard search sequence after
the application profile. All system variable names begin with "z"
(such as "ZTERH") and supply information such as terminal type and
list/log defaults.

Representation of Variables

Information entered by a user on a panel is in character string format.
All dialog variables remain in character string format when stored as
implicit function variables, or when stored in the shared pool, in a
profile, or in ISPF tables.

Defined variables, however, may be translated to fixed binary or to a
bit string, hex string, or a user-defined format when stored internally
in a program module. The internal format is specified when the variable
is defined (through the use of the VDEFINE service). The translation

Chapter 2. Dialog Processing Concepts 39

occurs automatically when the variable is stored by an ISPF service. A
translation back to character string format occurs automatically when
the variable is fetched.

When a defined variable is stored, either of two errors may occur:

• Truncation - if the current length of the variable is greater than
the defined length within the module, the remaining data will be
lost.

• Translation - if the variable is defined as other than a character
string, and the external representation has invalid characters, the
contents of the defined variable is lost.

In either case, the ISPF service issues a return code of 16.

System Variables

Certain variable names are reserved for use by the system. They all
begin with the letter "Z". Therefore, dialog developers should avoid
names which begin with "z" when choosing dialog variable names. System
variables are used to communicate special information between the dialog
and the dialog manager. The variables are discussed with the ISPF
service to which they apply.

Some system variables cannot be modified. They provide the dialog with
information about the environment, such as user id, current date, and
time. These variables ~Q.e··~±rrttre·~'~~d vgxJable pool. They may be
obtained for a comman~function through th~~ervice, and for a
p~~~ ~~~:_~.:m through th@ry service.
~

40 ISPF Dialog Management Services

I
Commonly used system variables that a dialog may access are listed
below:

Note: ~': = may not be modified by a dialog

General

* ZUSER - User id
* ZPREFIX - TSO user prefix in MVS; in VMjSP and VSE, ZPREFIX

contains the same value as ZUSER
* ZLOGON - Stepname of TSO LOGON procedure in MVS; in VMjSP and

~': ZTIME
~': ZDATE
~': ZJDATE
~': ZDAY
~': ZHONTH
-.'r ZYEAR
~': ZTE~IPF

~': ZAPPLID
.,'~ Z

ZTERM
ZKEYS
ZPFxx

ZERRMSG
ZERRSM
ZERRLM
ZERRHM
ZVERB
ZTDTOP
ZSCBR
ZSCED
ZSCML

VSE, ZLOGON contains a null value
Time of day (format hh:mm)
Current date (format yyjmmjdd)
Day-of-year date (format yy.ddd)

- Day of month (2 characters)
- Month of year (2 characters)

Year (2 characters)
Name of temporary file for file tailoring output
Application identifier
Null Variable

- Terminal type
- Number of PF keys
- Setting for PF Keys:

ZPF13-ZPF24 contain settings for the primary keys
ZPF01-ZPF12 contain settings (on 24-key terminals only)
for the alternate keys

- Error message id
- Short error message text
- Long error message text
- Name of help panel associated with error message
- Command verb after a command table (SETVERB) action
- Current top row upon return from table display
- Scroll amount for the BROWSE service
- Scroll amount for the EDIT service
- Scroll amount for member lists

Tutorial Panels

ZUP - Name of parent panel
ZCONT - Name of next continuation panel
ZIND - YES specifies an index page
ZHTOP - Name of top panel
ZHINDEX - Name of first index panel

(,Selection~anels

ZCMD - Command input field
ZSEL - Command input field truncated at first period
ZPARENT - Parent menu name (when in explicit chain mode)
ZPRIM - YES specifies panel is a primary option menu

Chapter 2. Dialog Processing Concepts 41

Summary of Variable Services

The variable services are:

VGET Retrieve variables from shared pool or profile

VPUT Update variables in shared pool or profile

VDEFINE Define function variables

VDELETE Remove definition of function variables

VRESET Reset function variables

VCOpy Copy data from a dialog variable to the program

VREPLACE Copy data from the program to a dialog variable

The first two services, VGET and VPUT, may be invoked from any function.
The other variable services are for use from program modules only (they
are not applicable to functions coded in a command language).

Miscellaneous Services

ISPF provides EDIT, BROWSE, LOG, and CONTROL services. These services
are discussed below. EDIT and BROWSE are available only if ISPF/PDF is
installed.

EDIT and BROWSE Services

The EDIT and BROWSE services allow a dialog function to invoke the
ISPF/PDF edit or browse programs. These services require specification
of a data set name (MVS) , fileid (VM/SP), or filename (VSE) and a member
name, if applicable. The entry panel, which is displayed if edit or
browse is selected from the primary option menu, is bypassed. See
ISPF/PDF Reference.

In MVS, EDIT and BROWSE services use subpools 2 and 3 and will issue
FREEPOOL macros for the subpools that they use. Therefore, a dialog
that invokes EDIT and BROWSE services should not use subpools 2 and 3.
EDIT and BROWSE services must not be invoked from PL/I programs that
also use subtasking.

42 ISPF Dialog Management Services

LOG Service

The LOG service allows a dialog function to write a message to the ISPF
log file. The user may specify whether the log is to be printed, kept,
or deleted when ISPF is terminated.

CONTROL Service \ 2 ()
/. StlP Pi

The(CONTRO~vice allows a dialog function to condition ISPF to expect
cert~k:inds of display output, or to control the disposition of errors
encountered by ISPF services. For example, some display conditions are:

LINE

LOCK

SPLIT

Expect line output, to be generated by the dialog or by
execution of a TSO or CMS command. In MVS, optionally, the
starting line may be specified. In VM/SP and VSE, the
starting line is ignored.

Allow the next display without unlocking the 3270 keyboard.
LOCK is generally used with the DISPLAY service to overlay a
currently displayed panel with an "in process" message; for
example:

CONTROL DISPLAY LOCK
DISPLAY MSG (message-id)

Enable or disable split screen operation by a user as required
by the application.

REFRESH Refresh the entire screen on the next display. Typically used
before or after invoking some other full screen application
that is not using ISPF display services.

NONDISPL Do not display the next panel (process the panel without
actually displaying it, and simulate the ENTER key or END
command) .

The disposition of errors may be controlled as follows:

CANCEL Terminate the dialog function on an error (return code 12 or
higher from any service). A message is displayed and logged
prior to termination.

RETURN Return control to the dialog function on all errors (with
appropriate return code). A message id is stored in system
variable ZERRMSG, which may be used by the dialog function to
display or log a message.

The default disposition is CANCEL. If a dialog function sets the
disposition to RETURN, the change affects only the current function. It
does not affect lower-level functions invoked through the SELECT
service, nor a higher-level function when the current function
completes.

Chapter 2. Dialog Processing Concepts 43

VM/SP: USE OF THE VIRTUAL MACHINE COMMUNICATION FACILITY (VMCF)

For VM/SP systems, the Virtual Machine Communication Facility (VMCF) is
used by ISPF and may be used by dialogs. (VMCF provides services to
allow virtual machines to communicate messages and data. ISPF uses V~fCF

in its implementation of ENQ/DEQ services to control file sharing by
dialogs.)

To use VMCF facilities,2 a dialog must issue the following, in the
sequence shown, for each transaction:

1. VMCF diagnose - to authorize the virtual machine for general
communications (see note)

2. C~1S HNDEXT SET macro and STCTL/LCTL instructions ,- to enable th~
virtual machine for external interrupts

Note: Because ISPF services may change the settings for VMCF
authorization and interrupt handling, these settings must be
reestablished following each use of ISPF services.

3. VMCF diagnose - for data transfer protocol

4. CMS HNDEXT CLR macro and STCTL/LCTL instructions - to disable the
virtual machine for external interrupts; issued at the end of
transaction processing-and before returning.

In addition, the dialog:

•

•

2

Must accept the IDENTIFY protocol as well as any desired data
transfer protocols.

Must not use the VMCF AUTHORIZE SPECIFIC or VMCF UNAUTHORIZE
services. Their use could result in an ABEND due to an ISPF ENQ/DEQ
failure.

Refer to VM/SP CMS Command and Macro Reference Manual, SCI9-6209,
and VM/SP System Programmer's Guide, SC19-6203 for more information.

44 ISPF Dialog Management Services

CHAPTER 3. USE OF COMMANDS, PROGRAM KEYS, AND LIGHT PEN

This chapter describes the three levels of ISPF commands and their use
and processing, and the operation of the program access (PA) and program
function (PF) keys of the 3270 terminal.

Commands may be used to request processing functions. There are three
levels of commands:

• System commands - provided by the dialog manager and always
available to an end user (unless explicitly overridden by an
application).

• Application commands - available to an end user throughout operation
of an application.

• Function commands - meaningful only while operating a particular
function within an application.

The first two levels (system and application commands) are defined
through the use of command tables. Processing of these commands is
handled by the dialog manager. Use of system and application commands
is generally transparent to the dialog functions. For example, HELP is
a system command.

The third level (function commands) includes all commands that are
processed by a dialog function. For example, the edit NUMBER command is
a function command.

Note: Virtual machine settings (such as device spool and tag
settings and minidisk concatenation)" could be changed during
display of a panel by execution of CP or CMS commands or SELECT.
For example, the terminal user may change the spooling of the
printer to class C by entering on the command line of a displayed
panel:

CP SPOOL PRT CLASS C

Therefore, upon return from ISPF services, the dialog should
establish any settings required for its processing.

COMMAND ENTRY

The user may enter a command by:

• Pressing a PF key .

Chapter 3. Use of Commands, Program Keys, and Light Pen 45

• Selecting an ATTENTION FIELD by using the light pen or the cursor
select key. (The cursor select key is a hardware feature on 3278
and 3279 terminals.)

• Typing the information in the command field and pressing ENTER.
(This includes the command field in browse, edit, member lists, and
table displays, as well as the command field on a panel.)

ISPF intercepts all commands entered by the user, regardless of whether
the command was typed in the command field or entered with a PF key or
attention field. If the command matches an entry in the application or
system command table, it is executed by the dialog manager. Otherwise,
it is assumed to be a function command and is passed through to the
dialog function. See "-Command Tables" for more information on how ISPF
intercepts and processes commands.

Commands may be passed to the operating system by entering the
appropriate ISPF-provided command verb (CP, TSO, CMS, or ICCF) followed
by the actual TSO, VM/SP, or ICCF command; for example:

===> TSO LISTC LEVEL(Z77PHJ)
===> CMS L -J, ";.~ A
===> ICCF ILIST XYZ

Commands may be stacked for execution by entering a special delimiter
between the commands; for example:

===> SORT BLDG DEPT NAME; HENU ABC

Note: Commands cannot be stacked following the HELP command
(HELP processing deletes any commands in the stack).

The default delimiter is a semicolon (;), which the user may change with
the ISPF parms option (see Appendix B, "Using the ISPF PARHS Option").

In the above example, the SORT command is executed first. When it
completes, the MENU command is executed.

Note: In VSE, do not attempt to execute ICCF commands from both
screens at once, because ICCF can process just one command at a
time.

PRESSING A PF KEY: In ISPF, the PF keys have not been assigned to
special functions. Each PF key is equated to a character string and
simply simulates command entry. When the PF key is pressed, the
processing is the same as though the character string had been typed in
the command field and the ENTER key pressed. A dialog function cannot
sense the difference between a command entered by a PF key and a command
entered by typing in the command field.

When a PFkey is pressed, there may be user-entered information already
in the command field. If so, the PF key definition, followed by a
blank, is concatenated ahead of the contents of the command field. For
example, suppose PF7 is equated to the character string "UP". If the

46 ISPF Dialog Management Services

user types "4" in the command field and then presses PF7, the results
are exactly the same as if the user had typed "UP 4" in the command
field and then pressed ENTER.

A command entered in the command field is passed to the function in
control if it is logically not related to the function of the PF key
depressed. However, any valid commands chained behind an unrelated
command are concatenated with the PF key definition.

SELECTING AN ATTENTION FIELD: Attention fields may also be used to
simulate command entry. When an attention field is detected by the
light pen or cursor select key, the processing is exactly the same as
though the contents of the attention field had been typed into the
command field and the ENTER key pressed. Again, the dialog function
cannot sense the difference.

Note: Attention fields are intended as an alternative means of
selecting options from a menu. They should not be used on data
entry panels, since any information that is typed by the user into
an input field (including command fields) will be lost when the
attention occurs. Unlike PF keys, information in the command
field is not concatenated with the contents of the attention
field.

SYSTEM COMMANDS

The system commands, distributed with ISPF, include the following (PF
key defaults are shown in parentheses):

HELP (PF1/13)

SPLIT (PF2/14)

END (PF3/1S)

RETURN (PF4/16)

RFIND (PFS/17)

RCHANGE (PF6/18)

UP (PF7/19)

Displays additional information about an error
message or provides tutorial information about
commands and options.

Causes split screen mode to be entered, or changes
the location of the split line.

Terminates the current operation and returns to
the previous menu. If the primary option menu is
displayed, this command terminates ISPF.

Causes an immediate return to the primary option
menu or to the display from which the user entered
a nested dialog. (See "END and RETURN Commands.")

Repeats the action of the previous FIND command or
the FIND part of the most recent CHANGE command
(applies to browse and edit only).

Repeats the action of the previous CHANGE command
(applies to edit only).

Causes a scroll toward the top of the data.

Chapter 3. Use of Commands, Program Keys, and Light Pen 47

DOWN (PF8/20)

SWAP (PF9/21)

LEFT (PF10/22)

RIGHT (PFl1/23)

CURSOR (PF12/24)

Causes a scroll toward the bottom of the data.

Moves the cursor to wherever it was previously
positioned on the other logical screen of a split
screen pair.

When operating in split screen mode and the SWAP
key (PF9) is depressed, any entry on the command
line is ignored and is not processed.

Causes a scroll left.

Causes a scroll right.

Moves the cursor to the first input field on the
panel being displayed (which generally is the
option selection or command field) or to the
alternate command field if one has been designated
on the)BODY statement. If invoked a second time
on a panel with scrollable data (a BROWSE, EDIT,
or table display panel), this command causes the
cursor to be moved to the second input field.

The system commands described below have no default PF key assignments:

CP or CMS

TSO

ICCF

STOPAT

KEYS

PANELID ONIOFF

In VM/SP, allows the user to enter a VM/SP command
or an EXEC. Because ISPF uses the same mechanism
to execute both CP and CMS commands, the two
commands (CP and CMS) are treated synonymously;
ISPF does not attempt to distinguish between them.

In MVS, allows the user to enter a TSO command or
CLIST.

In VSE, allows the user to enter an ICCF command.

In VM/SP, causes display of a message and entry to
CMS SUBSET mode whenever a specified program is
loaded by the select service.

causes an immediate display of a panel that allows
the user to view and change the current PF key
definitions (equivalent to option 0.3 in the ISPF
PARMS option).

The command PANELID or PANELID ON causes all
subsequent panels to be displayed with the name of
the panel shown at the beginning of line 1. The
command PANELID OFF turns off this mode of
operation. During initial entry to ISPF, this
mode is initialized OFF.

48 ISPF Dialog Management Services

Note: The panel id is displayed only if
the panel contains a protected-field
attribute byte in row 1 column 1, and no
other attribute bytes in the next eight
character positions.

PRINT Causes a "snapshot" of the screen image to be recorded in the
ISPF list file for subsequent printing.

PRINT-HI Same as PRINT except that high-intensity characters on the
screen are printed with overstrikes to simulate the dual
intensity display.

If desired, an installation may add new system-wide command definitions
by modifying the system command table.

STOPAT Command

For VM/SP systems, the STOPAT command is used to cause entry to CMS
SUBSET mode when a specified program is loaded by the SELECT service.
The STOPAT command is entered on the command line of a panel displayed
on a logical screen:

COMMAND => STOPAT pgmname

where pgmname is the name of a program. Whenever the specified program
is loaded by the SELECT service for the logical screen on which STOPAT
was entered, a message is displayed and CMS SUBSET mode is entered. The
message gives the name of the program and the storage address at which
the program was loaded. For example, suppose the following STOPAT
command, specifying a program named MYPROGA, is entered on the command
line of a panel:

COMMAND ==> STOPAT ~IYPROGA

After MYPROGA is loaded by the SELECT service (assuming the storage
address at which it is loaded is OOOD17AO) the message displayed is:

PROGRAM MYPROGA
LOADED AT OOOD17AO
CMS SUBSET

While in CMS SUBSET mode, the user may enter CP or CMS commands for
debugging. To end CMS SUBSET mode and begin execution of the program
(MYPROGA in this example), the user enters RETURN.

STOPAT is effective for one program per logical screen and remains in
effect for the specified program until another STOPAT command specifying
another program name is entered or a STOPAT command without a program
name is entered; for example:

COMMAND ==> STOPAT

Chapter 3. Use of Commands, Program Keys, and Light Pen 49

This STOPAT command, without a program name specified, cancels the
STOPAT command previously in effect.

END and RETURN Commands

The END command is used to request termination of a function or dialog.
When entered on a selection panel displayed by the SELECT service, it
causes a redisplay of the next higher menu in the hierarchy. When
entered on a panel displayed by the tutorial program, it terminates the
tutorial and causes a redisplay of the menu from which the tutorial was
invoked or the panel from which HELP was requested.

When the END command is entered on a panel that was displayed by a
dialog function (through the DISPLAY or TBDISPL service), the dialog
function must take whatever action is appropriate to terminate and
return control. Entry of the END command is signalled by a return code
of 8 from the DISPLAY or TBDISPL service.

The RETURN command simulates repeated END commands, up to some
appropriate stopp{ng point, without displaying intervening panels. When
a RETURN command is entered, the dialog manager takes the following
action:

1. The END command is simulated on the panel that is currently
displayed (i.e., the DISPLAY or TBDISPL service returns a code of
8).

2. For subsequent requests (made through the DISPLAY or TBDISPL
service) for display of a different panel, the panel is not
displayed and a return code of 8 is issued by the service.

3. However, when two consecutive display requests name the same panel,
normal operation of the DISPLAY and TBDISPL services is restored and
processing may proceed as though RETURN had not been entered.
Whether to proceed is decided by the dialog developer. (Generally,
because RETURN signals the application user's desire to end the
current processing, a developer will limit processing, after the
RETURN is received, to clean up and final processing before
returning control to the dialog element from which the function was
invoked.)

4. If two consecutive requests do not specify the same panel,
processing continues in the mode described in item 2 above, until
control is returned to a primary option menu or a nested dialog
completes. Then, normal operation of the DISPLAY and TBDISPL
services is restored.

Note: If it is necessary to suspend processing of a panel
temporarily so that other panels may be displayed, issue a CONTROL
DISPLAY SAVE request to save the contents and control information
of the panel whose processing is to be suspended. Before resuming
the processing of this panel, issue CONTROL DISPLAY RESTORE to
reinstate the contents and control information for the panel. If

50 ISPF Dialog Management Services

non-ISPF screens have been displayed, issue CONTROL DISPLAY
REFRESH to clear the screen.

This mode of operation continues until a primary option menu is
encountered or a nested dialog completes, whichever occurs first. If a
primary option menu is encountered, it is displayed. If a nested dialog
completes, the panel from which it was invoked is redisplayed exactly as
the user last saw it (except that the command field is blank). In
either case, this completes the action of the RETURN command.

Note: A nested dialog is one that is invoked from any panel by a
SELECT action command (see "Command Tables"). The HELP and KEYS
commands invoke nested dialogs. In addition, the TSO, CMS, and CP
system commands invoke nested dialogs when they are used to
execute a CLIST or EXEC that displays panels through ISPF
services.

If a dialog function needs to distinguish between END and RETURN, it can
do so in one of the following ways:

• Upon return from the DISPLAY or TBDISPL service (with a return code
of 8), the function may examine variable ZVERB in the shared
variable pool. It will contain either "END" or "RETURN".

• Upon return from the SELECT service when the PANEL keyword was
specified, the dialog function may examine the return code from
SELECT. Return code 0 indicates that the END command was entered on
the selected menu panel. Return code 4 indicates that the RETURN
command was entered on the selected menu panel or on some
lower-level menu.

Jump Function

The jump function (also referred to as extended return) allows a user to
go directly to any option that is valid from the primary option menu
currently in effect.

The function is entered in the command field of any panel, preceded by
an equal sign; for example:

COMMAND ===> =3.1

The action is as follows:

•

•

If not entered on a primary option menu, the jump function causes
repeated END commands to be simulated until a primary option menu is
encountered. What follows the equal sign is then entered on the
primary option menu and the ENTER key is simulated. (The primary
option menu is not displayed.)

If entered on a primary option menu, a jump function is treated the
same as if the equal sign were not present; i.e., the specified
option is selected.

Chapter 3. Use of Commands, Program Keys, and Light Pen 51

Scrolling

Unlike the RETURN command, the jump function is unaffected by nested
dialogs. For example: from the ISPF/PDF edit option, the user enters a
HELP command to enter the tutorial. Then from the tutorial, the user
enters "=1". This causes tutorial to end, edit to end, and primary
option 1 to be invoked.

For user convenience, the jump function may be entered in any field that
is preceded by an arrow. The arrow must consist of at least two equal
signs followed by a greater-than sign ("==>") and must immediately
precede the input attribute byte.

For compatibility with the SPF Program Product, the jump function may be
entered in conjunction with the RETURN command (or RETURN PF key). For
example: the user types "=2" and then presses the RETURN PF key rather
than pressing ENTER. The action is just the same as if the user had
typed "=2" and pressed ENTER.

When operating in split screen mode, if a user enters a jump function
(for example, =3) and chains other commands to it (=3;other), the
chained commands are ignored.

The scroll commands are used if the dialog function invokes the table
display service (TBDISPL) or the interfaces to edit and browse. During
execution of the tutorial, the commands are interpreted as follows:

UP - same as the UP command
DOWN - same as the SKIP command
LEFT - same as the BACK command
RIGHT - same as the ENTER key (display the next page).

When scrollable data is displayed, scrolling allows the screen "window"
to be moved up, down, left, or right across the information. (Only up
and down scrolling is allowed for table displays.)

Whenever scrolling is allowed, a scroll amount is displayed at the top
of the screen (line 2). This amount determines the number of lines (or
columns) scrolled with each use of a scroll command. To change the
scroll amount, move the cursor to the scroll field and overtype the
displayed amount. Valid scroll amounts are:

•

•

•

•

A number from 1 to 9999 - specifies the number of lines (up or down)
or columns (left or right) to be scrolled.

PAGE - specifies scrolling by one page.

HALF - specifies scrolling by a half page.

MAX - specifies scrolling to the top, bottom, left margin, or right
margin, depending upon which scrolling command is used.

52 ISPF Dialog Management Services

• CUR - specifies scrolling based on the current position of the
cursor. The line or column indicated by the cursor is moved to the
top, bottom, left margin, or right margin of the screen, depending
upon which scrolling command is used. If the cursor is not in the
body of the data, or if it is already positioned at the top, bottom,
left margin, or right margin, a full page scroll occurs.

For scrolling purposes, a "page" is defined as the amount of information
currently visible on the logical screen. In split screen mode, for
example, a browse display might have 12 lines by 80 columns of
scrollable data. In this case, a scroll amount of HALF would move the
text up or down by 6 lines, or right or left by 40 columns.

The current scroll amount is saved in the application profile. Three
values are saved -- one for browse (ZSCBR), one for edit (ZSCED), and
one for member lists (ZSCHL). When you overtype the scroll amount, the
new value remains in effect until you change it again. The value MAX is
an exception; following a HAX scroll, the scroll amount reverts to its
previous value.

Users can also enter any valid scroll amount as part of the scroll
command. For example, enter:

COHMAND ===> up 3

and press the ENTER key, or enter

COHMAND ===> 3

and press the UP PF key. Either form results in a temporary, one-time
override of the scroll amount.

COMMAND TABLES

System and application commands are implemented through the use of
command tables.

A system command table (ISPCMDS) is distributed with ISPF in the table
(~''''"-'~input library. An application may provide an application command table

" ~tv\Jb,l by including a table named xxxxCMDS in its table input library, where
'1-Sf /" xxxx is a 1- to 4-character application id.

,.r.,~

Whenever a command is entered, the dialog manager searches the
application command table (if any) and then the system command table.
If the command is found, action is taken immediately. If the command is
not found in the application or system tables, the command is passed
through to the dialog, unaltered, in the command field. The dialog may
then take appropriate action.

Chapter 3. Use of Commands, Program Keys, and Light Pen 53

10'.
Command Table Format

A command table is an ISPF table in which each row contains the
specification for one command. (Refer to Appendix D, "Command Table
Utility," for a discussion of the utility that is used to generate or
modify command tables.) The variables that define the table columns
are:

• ZCTVERB - specifies the name of the command. A command name must be
from two to eight characters in length, and must begin with an
alphabetic character. Note that the terms 'command name' and
'command verb' are synonymous and are used interchangeable.

• ZCTTRUNC - specifies the minimum number of characters that the user
must enter to find a match with the command name. If this number is
zero or equal to the length of the name, the user must enter the
entire name. This number may not be one, nor greater than the
len.g.t
,..,~

/ ZCTACT - specifies the acti;:>to be performed when the command is
~ entered. See below.

/ / . ZCTDESC - contains a brief description of the purpose of the
command. This variable is optional. It is not used by the dialog
manager in processing the command, but it is displayed by the
command table utility. The description is limited to 57 characters.

The variable names listed above (ZCTVERB, ZCTTRUNC, ZCTACT, and ZCTDESC)
are treated as defined function variables by the dialog manager; they
are not accessible to dialogs. ZCTACT defines the action that the
command specified in ZCTVERB will perform.

",-~--.......
~~) that can be specified in the ZCTACT variable are:

• SELECT (followed by selection keywords) - causes the selected dialog
(command, program, or menu) to be given control immediately.

• ALIAS (followed by the name of another command) - allows
specification of command aliases.

• PASSTHRU - causes the command to be passed to the dialog, as though
it had not been found in the table.

• SETVERB - causes the command to be passed to the dialog with the
command verb stored separately from the parameters.

• NOP - causes the command to be functionless. An "inactive command"
message is displayed in this case.

• Blank (no action) - causes the table entry to be ignored, and
scanning to continue (to search for additional entries with the same
name) .

54 ISPF Dialog Management Services

• A variable name (beginning with an ampersand) whose content may be
one of the above valid actions - allows dynamic specification of
command action.

These actions are described in the sections that follow.

Additional action keywords are used to indicate system commands for
which special processing is required. These are: SPLIT, SWAP, CURSOR, ---- - -P~, and PRINT-HI. Although these are valid actions, they are
intended for use only in the system command table distributed with ISPF.
They are not intended for use in application command tables.

SELECT Action Commands

A SELECT action command is one type of command that may be specified in
a command table. The action is coded exactly the same as for the SELECT
service. All SELECT keywords are valid, including NEWAPPL.

The selected dialog (function or menu panel) is invoked immediately when
a SELECT action command is entered on the command line of any panel.
This temporarily suspends the current dialog. When the selected dialog
completes, the screen is refreshed and the suspended dialog resumes
execution.

Examples of SELECT action commands:

ZCTVERB ZCTTRUNC

SORT 0
PREPARE 4
MENU 4

ZCTACT

SELECT PGM(PQRSORT) PARM(&ZPARM)
SELECT CMD(XPREP &ZPARM) NEWPOOL
SELECT PANEL(&ZPARM)

Note: In VSE, CMD is not used.

In the example, the TRUNC variable indicates that the SORT and MENU
command names may not be truncated. PREPARE, however, may be truncated
to any of the following: PRE PAR , PREPA, PREP. The functions and
keywords in the ZCTACT field indicate the actions that the commands will
perform.

The ZPARM variable that appears in the SELECT keywords indicates that
command parameters are to be substituted at that point. For example, if
the following commands were entered:

===> SORT BLDG DEPT NA~1E

===> PREPA LOG LISTING
===> MENU PQRMENUl

the following SELECT actions would result:

SELECT
SELECT
SELECT

PGM(PQRSORT) PARM(BLDG DEPT NAME)
ct-m (XPREP LOG LI STING) NEWPOOL
PANEL (PQRMENUl)

Chapter 3. Use of Commands, Program Keys, and Light Pen 55

The ZPARM variable is used only to substitute user-entered parameters
into SELECT action commands. It is a dummy variable; it is not stored
in a variable pool and is not accessible to dialogs.

Note: Use of SELECT action commands may cause recursive entry
into dialog functions, which the dialog manager allows. The
dialog developer should either design functions for recursive use,
or display a message if a user attempts to reenter a non-recursive
function.

The ISPF EDIT and BROWSE services are non-recursive. There is an ISPF
restriction that commands entered from edit and browse may not re-invoke
edit and browse.

The ISPF DISPLAY and TBDISPL services may be used recursively. The
current display environment is automatically saved whenever a SELECT
action command is entered, and restored upon completion of the command.

Assigning Command Aliases

A command table may establish aliases by designating, as an action in
the ZCTACT field, the keyword ALIAS followed by the name (verb) of
another command. The alias entry must precede the command that it
references. Normally, alias entries are used in an application command
table to reference system commands; for example:

ZCTVERB ZCTTRUNC

QUIT 0
EXPLAIN 4
FORWARD 3
BACK 0

ZCTACT

ALIAS END
ALIAS HELP
ALIAS DOWN
ALIAS UP

This defines QUIT as an alias of END, EXPLAIN as an alias of HELP, etc.
For example, when the user enter;s QUIT, the system responds as though
END had been entered. ,

Overriding System Commands

An application can override any system command simply by including the
same command name in the application command table; for example:

ZCTVERB ZCTTRUNC ZCTACT

HELP 0 PASSTHRU
~ TSO 0 NOP

t:, In this example, the dialog has overridden both the HELP and TSO
\\ CJ'fI'-? commands. During ISPF processing, if the user enters HELP, it is passed

.\~ ~ to the dialog function then in control and its function is determined by
\ " \ I"~ ~~' the function. The action specified for the TSO command is NOP. This

~~ disables the TSO command and if TSO is entered by a user, Nap causes the

56 ISPF Dialog Management Services

command to be functionless. An "inactive command" message is
automatically displayed when a NOP action command has been processed.

Passing Commands to a Dialog Function

As previously noted, any command that is not found in the application or
system command table is passed to the dialog, unaltered, in the command
field. This occurs regardless of whether the command was typed in the
command field or entered by use of a PF key or the attention field.

The user may force a command to be passed to the dialog, even if the
command exists in the command table, by typing a greater-than sign (»
in front of the command verb.

In the command table, any command that has an action of PASSTHRU is
processed as though the command were not found in the table - it is
passed to the dialog in the command field.

Commands may also be passed to the dialog via the SETVERB action. This
action causes the dialog manager to separate the verb from the command
parameters (if any). The command verb is stored in variable ZVERB,
which is in the shared variable pool. The command parameters are passed
to the dialog, left-justified, in the command field; for example:

ZCTVERB ZCTTRUNC ZCTACT

QUERY 0 SETVERB

The verb "QUERY" is stored in variable ZVERB and the character string
(for example "DEPT 877") is passed in the command field.

The following user actions produce the same results:

• The user types "QUERY DEPT 877" in the command field and presses
ENTER.

• The user types "DEPT 877" in the command field and then presses a PF
key that has been equated to the character string "QUERY".

• The user presses a PF key that has been equated to the character
string "QUERY DEPT 877".

• The user employs the light pen or cursor select key to select an
attention field that contains the character string "QUERY DEPT 877".

The following system commands, distributed with the dialog manager, are
defined as SETVERB action commands:

END
RETURN
RFIND
RCHANGE

UP
DOWN
LEFT
RIGHT

Chapter 3. Use of Commands, Program Keys, and Light Pen 57

Note: The ZVERB variable can be interrogated to distinguish
between END and RETURN. (The effect of END and RETURN on the
DISPLAY service is the same because RETURN is used to simulate
repeated END commands, until the primary option menu is reached.)

Dynamically Specified Command Actions

A command action may be specified dynamically by means of a dialog
variable. A variable action may be used to "share" commands with the
dialog manager, such as UP, DOWN, LEFT, and RIGHT, and to enable or
disable command~_4HE~ng certain points in the dialog. Suppose, for
exam~le, an~i~~~=}ommand table includes the following two
entrl.es:

ZCTVERB

UP
DOWN

ZCTTRUNC ZCTACT

o &SCRVERT
o &SCRVERT

The variable SCRVERT may be used to dynamically control the action of
the vertical scroll commands (UP and DOWN), as follows:

• If SCRVERT is set to Nap, the commands are disabled.

• If SCRVERT is set to PASSTHRU, the commands are passed to the
dialog.

• If SCRVERT is set to blank, command scanning continues, in which
case the system definitions for UP and DOWN (in th~ syste~lcommand
table) take effect. - \,",-,~.~.~~~.r_~~,_c:,.;'

• If SCRVERT is set to an invalid action, the commands are disabled,
as in Nap.

For this particular example, settlng SCRVERT to SETVERB would have the
same effect as setting it to blank, because UP and DOWN are defined in
the system command table as SETVERB action commands.

Note: If the dialog overrides or shares the use of the scroll
commands, it becomes that dialog's responsibility to ensure that
the commands have been redefined with an action of blank (or
SETVERB) before invoking any ISPF function that requires them;
namely, browse, edit, and table display. The same rule applies to
the RFIND command (used by browse and edit) and the RCHANGE
command (used by edit).

58 ISPF Dialog Management Services

TERMINAL KEYS

On the terminal, the two program access (PA) keys and the program
function (PF) keys (if any) are used to request commonly used
operations. No PF keys are required for ISPF operations, but ISPF is
shipped with a default set of PF key definitions that users can change.
Refer to Appendix B, "Using the ISPF PARHS Option," for information on
specifying PF key operation.

Program Function Keys

ISPF does not require PF keys for its operation. Commands are entered
in the command field of any display (including edit, browse, member
lists, and table display). PF keys are strongly recommended, however,
for ease of use.

The default PF key assignments, distributed with ISPF, for the 3x4- key
pad (right-hand side of the keyboard) are shown in Figure 13. These are
PF keys 1-12 on a 12-key terminal, or keys 13-24 on a 24-key terminal.

For 24-keyterminals, PF keys 1-12 have the same defaults as keys 13-24.
It is recommended that users of 24-key terminals continue to use the key
pad (13-24) for ISPF operations, and redefine PF keys 1-12 as needed by
dialog applications.

Chapter 3. Use of Commands, Program Keys, and Light Pen 59

PFI / 13 PF2 / 14 PF3 / 15

HELP SPLIT END

PF4 / 16 PF5 / 17 PF6 / 18

RETURN RFIND RCHANGE

PF7 / 19 PF8 / 20 PF9 / 21

SCROLL SCROLL SWAP
UP DOWN

PFI0 / 22 PFl1 / 23 PF12 / 24

SCROLL SCROLL CURSOR
LEFT RIGHT

Figure 13. Default Program Key Arrangement

Defining PF Keys

When the KEYS command is entered or option 3 is selected from the ISPF
PARMS option menu, the panel shown in Figure 14 is displayed.

The panel shown in the figure is displayed for terminals with 12 PF
keys. For terminals with 24 PF keys, the first panel displayed by the
KEYS command shows the "primary" keys (PFI3-PF24). When the ENTER key
is pressed, a panel is displayed showing the "alternate" keys
(PFI-PFI2). The user may flip-flop between the two panels by continuing
to press ENTER.

The user may define or change a PF key function simply by equating the
key to a command. Example:

PF9 ===> CHANGE ALL ABC XYZ
PF12 ===> PRINT

60 ISPF Dialog Management Services

------------------------- PF KEY DEFINITION -----------------------------
CO~IMAND ==>

NUNBER OF PF KEYS ==> 12 TER~lINAL TYPE ===> 3277

PF1 ===> HELP
PF2 => SPLIT
PF3 ===> END
PF4 => RETURN
PFS ==> RFIND
PF6 ===> RCHANGE
PF7 ===> UP
PF8 ===> DOWN
PF9 ===> SWAP
PF10 ==> LEFT
PF11 ===> RIGHT
PF12 ===> CURSOR

INSTRUCTIONS:
Verify number of PF keys and terminal type before proceeding.
Press ENTER key to process changes.
Enter END command to process changes and exit.

Figure 14. PF Key Definition Panel

In this example, PF9 has been equated to an edit command, and PF12 has
been equated to the system-defined PRINT command.

A PF key definition beginning with a colon (:) is treated as a special
case. The colon is stripped off and the command to which the key is
equated is inserted in the first input field on whichever line the
cursor is currently positioned.

A PF key definition beginning with a greater-than sign (» is another
special case. It causes the command to be passed to the dialog
regardless of whether the command appears in the command tables. This
feature provides compatibility with SPF, in which edit and browse
commands were defined with a greater-than sign.

Note: When an ISPF function is executing, do not press RESET and
then attempt to enter information or use a PF key; results are
unpredictable.

Chapter 3. Use of Commands, Program Keys, and Light Pen 61

Saving PF Key Definitions

PF key definitions are kept- in a set of system variables named ZPF01,
ZPF02, ... ,ZPF24. Variables ZPF13-ZPF24 always contain the "primary"
PF key definitions. For 24-key terminals, these correspond to physical
keys 13-24. For 12-key terminals, these correspond to physical keys
1-12. Variables ZPF1-ZPF12 contain the "alternate".key definitions, and
are meaningful only for terminals with 24 PF keys.

The current values for all 24 keys (variables ZPF01-ZPF24) are kept in
the application profile. Hence, different PF key definitions can be
associated with different applications.

An application can provide default PF key settings for a new user by
providing a default profile. An application can prevent the user from
changing the default PF key settings by overriding the KEYS command (by
assigning it to NOP in the application command table).

MVS and VM/SP: Program Access (PA) Keys

The two PA keys are defined as follows. These definitions may not be
changed.

ATTENTION! (PAl) Normally, this key should not be used while you are
in ISPF full screen mode. See the discussion below
for exceptions.

RESHOW (PA2) Redisplays the contents of the screen. PA2 may be
useful if a user has pressed the ERASE INPUT or CLEAR
key accidentally, or has typed unwanted information
but has not yet pressed ENTER or a PF key.

Generally, PAl is used to terminate TSO commands or CLISTs running under
ISPF. However, some TSO commands and CLISTs process PAl in their own
way. CLISTs with attention exists should not be run under ISPF because
results are unpredictable when PAl is pressed.

If PAl is pressed while ISPF is in full screen mode after the keyboard
has been unlocked, it is treated as a RESHOW request. If PAl is again
pressed, the current function is terminated and the primary option menu
or a top-level selection panel supplied by the dialog developer, is
displayed.

When an ISPF function is executing, if the RESET key is pressed to
unlock the keyboard and PAl is pressed, ISPF will attempt to terminate
the current function and redisplay the primary option menu. The attempt
may not always be successful (if, for example, there is an error in MVS
allocation) .

62 ISPF Dialog Management Services

VSE: Program Access (PA) Keys

The two PA keys are defined below. Because these definitions may be
changed by an installation, consult the installation's system
administrator or system programmer to obtain the current definitions.

RESHOW

CANCEL

(PAl) Redisplays the contents of the screen. PAl may be
useful if the user has pressed the ERASE INPUT or has
unwanted information but has not yet pressed ENTER or
a PF key.

(PA2) Normally, this key should not be used while you are
in ISPF full screen mode. See the discussion below
for exceptions.

The PA2 key, pressed after the keyboard has been manually unlocked (by
pressing the RESET key), terminates processing and redisplays the
primary option menu.

If PA2 is pressed after the keyboard has been unlocked by ISPF, it
functions the same as the PAl key. However if PA2 is pressed a second
time without any intervening interaction, it terminates processing of
the current function or panel and the primary option menu is
redisplayed.

When an ISPF function is executing, if the RESET key is pressed to
unlock the keyboard and PA2 is pressed, ISPF will attempt to terminate
the current function and redisplay the primary option menu.

LIGHT PEN AND CURSOR SELECT

ISPF permits fields on a panel to be detected with a light pen or the
cursor select key. (The cursor select key is a hardware feature on 3278
and 3279 terminals.) Only the "attention" mode of light pen selection
is used.

Panel fields that are to be detectable by light pen or cursor selection
must be defined as attention fields. This is done with an attribute
character that has been defined with the ATTN(ON) keyword. The panel
designer must provide the number of blank characters before and after
the attention attribute character that are required by the 3270
hardware.

Processing of light pen/cursor selected fields is handled in much the
same way as PF keys. The entire contents of the selected field are
treated as a command and processed as though they had been typed into
the command field. If the command is found in the tables, it is
executed immediately. If the command is not found in the tables, it is
inserted into the command field and the entire command field is passed
to the dialog.

Attention fields may be used on a menu to simulate option selecti.on.
The panel designer must truncate any unwanted characters resulting from

Chapter 3. Use of Commands, Program Keys, and Light Pen 63

an attention entry into the command field. An example is shown in
Figure 15.

In this example, a light pen or cursor selection of the first option
would cause the character string "1 - BROWSE" to be placed in the ZCMD
field and the ENTER key to be simulated. In the)PROC section, the
contents of the ZCMD field are truncated at the first blank before the
ZSEL variable is set based on a translation of the ZCMD field.

)ATTR
$ TYPE(TEXT) ATTN(ON)

)BODY
%------------------------------- SOME MENU -------------------------------
%SELECT OPTION ===> ZCMD +
%
$
$

1 - BROWSE
2 - QUERY

+DISPLAY SOURCE DATA OR LISTINGS
+FIND OUT INFORMATION ABOUT SOMETHING

)PROC
&ZCND = TRUNC (&ZCMD, ' ')
&ZSEL = TRANS (TRUNC (&ZCMD, '. ')

1, 'PGM(ISPBRO),
2 , ' PANE L (XYZ) ,

Figure 15. Use of Light Pen Attribute

64 ISPF Dialog Management Services

CHAPTER 4. LIBRARY REQUIREMENTS

This chapter describes the libraries that are used by ISPF. Some are
always required and others are required only if certain operations are
to be performed. Libraries that are to be required during a given
invocation of ISPF must be allocated before that invocation.

MVS: LIBRARY SETUP

Required and optional libraries for the operation of ISPF in the MVS
environment are described in this section.

Required Libraries

The following libraries (partitioned data sets) are required for
operation of ISPF in the MVS/TSO environment:

DDNAME

ISPPLIB
ISPHLIB
ISPSLIB
ISPTLIB
ISPPROF

DESCRIPTION

Panel Library
Message Library
Skeleton Library
Table Input Library
User Profile Library

RECFM LRECL BLKSIZE

FB 80 3120
FB 80 3120
FB 80 3120
FB 80 3120
FB 80 (see note)

Note: The block size may be established by the application. It
must be a mUltiple of 80.

A filemode number other than 1 on a minidisk other than the A-disk may
not result in proper updating.

The panel, message, skeleton, and table input libraries are distributed
with ISPF. There is a separate profile library for each end-user. Its
contents are dynamically generated and updated during execution of ISPF.

The recommended data set names for these libraries are shown below.
Check with your system programmer to determine if these are the actual
data set names used at your installation.

DDNAME

ISPPLIB
ISPMLIB
ISPSLIB
ISPTLIB
ISPPROF

DSNAME

ISP.V1R1MO.ISPPLIB
ISP.V1R1MO.ISPMLIB
ISP.V1R1MO.ISPSLIB
ISP.VlR1MO.ISPTLIB
user selected

Chapter 4. Library Requirements 65

Application libraries for panels, messages, skeletons, and tables should
be concatenated ahead of the corresponding ISPF libraries using the
ddnames shown above. They must all have a record format of FB, a
logical record length of 80, and a block size of 3120 or greater. (The
block size must be a multiple of 80.)

Example. Suppose application XYZ uses the following partitioned data
sets for panels, messages, skeletons, and tables:

XYZ.PANELS
XYZ.HSGS
XYZ.SKELS

The following allocations are required:

IIISPPLIB
II

IIISPHLIB
II

IIISPSLIB
II

IIISPTLIB

IIISPPROF

DD DSN=XYZ.PANELS,DISP=SHR
DD DSN=ISP.VIRIMO.ISPPLIB,DISP=SHR

DD DSN=XYZ.MSGS,DISP=SHR
DD DSN=ISP.VIRIMO.ISPMLIB,DISP=SHR

DD DSN=XYZ.SKELS,DISP=SHR
DD DSN=ISP.VIRIMO.ISPSLIB,DISP=SHR

'DD DSN=ISP.VIRIMO.ISPTLIB,DISP=SHR

DD DSN=USERAA.ISPF.PROFILE,DISP=OLD

These allocations must be performed prior to invoking ISPF. They may
be done in the user's TSO LOGON procedure using DD statements, as shown
above, or in a CLIST using the corresponding TSO ALLOCATE commands.

Table and File Tailoring Libraries

The following data sets are optional, and have to be allocated only if
an application uses table or file tailoring services.

DDNAME

ISPTABL
ISPFILE

DESCRIPTION RECFM

Table Output Library FB
File Tailoring Output FB

LRECL BLKSIZE

80 (See note)
80 (See note)

Note: The block size may be established by the application. It
must be a multiple of 80.

The table output library must be a partitioned data set. The ISPTABL
ddname that defines it may specify the same data set as the table input
library (ddname ISPTLIB) or a different data set. The data sets must be
the same if the updated version of a table is to be reprocessed by the
same dialog that updated it.

66 ISPF Dialog Management Services

The table output library must be allocated to ddname ISPTABL prior to
use of table services. ISPF includes ENQ logic to prevent simultaneous
updates. ISPTABL must not specify a concatenated sequence of data sets.

In HVS and VH/SP, ISPTABL may be allocated dynamically by the dialog,
and freed upon completion of use. In MVS, ISPTABL should be allocated
with DISP=SHR even though it specifies an output data set.

Note: In MVS, the TSO Programming Control Facility II (PCF) may
not be used to protect the table output library from unauthorized
updating if the library is allocated DISP=SHR. The library may
either be protected by RACF, or allocated with DISP=OLD and
protected by PCF.

File tailoring output may be written to a temporary sequential data set
provided by ISPF. The temporary data set is allocated automatically, so
there is no need for the dialog to allocate a data set. The fully
qualified name of the temporary data set is available in system variable
ZTEMPF.

If the temporary data set is not used, file tailoring output may be
written either to a partitioned or a sequential data set. The data set
must be allocated to ddname ISPFILE prior to invoking file tailoring
services. ISPFILE may be allocated dynamically by the dialog, and freed
upon completion. For a sequential data set, ISPFILE must be allocated
with DISP=OLD. For a partitioned data set, it may be allocated with
DISP=SHR, but may not be protected by the Program Control Facility II
(PCF) unless it is allocated with DISP=OLD. ISPFILE must not specify a
concatenated sequence of data sets.

CLIST and Program Libraries

Dialog functions that are coded as CLISTs must be in a procedure library
that has been allocated to ddname SYSPROC prior to invoking ISPF.

Dialog functions that have been coded as programs must be link edited.
The load module may reside in a step library, a system link library
(such as SYS1.LINKLIB), or the link pack area. Alternatively, it may be
in the following partitioned data set (RECFH=U):

DDNAME DESCRIPTION

ISPLLIB ISPF Link Library

This library may be used for testing new dialogs that contain
program-coded functions. If used, it must be allocated to ddname
ISPLLIB (DISP=SHR) prior to invoking ISPF. ISPLLIB may specify a
concatenated sequence of partitioned data sets.

ISPLLIB is used as a task library when fetching load modules. It is
searched prior to the system link libraries and the link pack area. If
both a step library and task library (ISPLLIB) are used, then the step
library should be included in the ISPLLIB concatenation sequence.

Chapter 4. Library Requirements 67

Note: If a program is to be used in split screen mode from both
screens, it should be linked as reentrant or nonreusable.

VM/SP: LIBRARY SETUP

Required and optional libraries for the operation of ISPF in the VM/SP
environment are described in this section.

Note: Before ISPF is invoked, the user's virtual device 191 must
be accessed as the A-disk. ISPF assumes that this minidisk is
available at all times in read/write mode, and that no other user
has write access to it.

Note: Shared minidisk support is described in Appendix
I, "V~1/SP: Use of Shared Minidisks."

Required Libraries

The following libraries (MACLIBs) are required for operation of ISPF in
the VM/CMS environment:

DDNAME DESCRIPTION FILENAME

ISPPLIB Panel Library (note 1) ISPPLIB MACLIB
ISPMLIB Message Library (note 1) ISPMLIB MACLIB
ISPSLIB Skeleton Library (note 1) ISPSLIB MACLIB
ISPTLIB Table Input Library (note 1) ISPTLIB MACLIB
ISPPROF User Profile Library (note 2) user

Notes:

1. These libraries are distributed with ISPF.

2. This library is not distributed with ISPF and is empty the first
time a user logs on. There is a separate profile library for each
user. Its contents are dynamically generated and updated during
execution of ISPF.

Application libraries for panels, messages, and skeletons should be
concatenated ahead of the corresponding ISPF libraries using FILEDEF
statements with the ddnames shown above. .

Example. Suppose application XYZ uses the following libraries for
panels, messages, and skeletons, respectively:

XYZPANLS
XYZMSGS!
XYZSKELS

MACLIB
MACLIB
MACLIB

68 ISPF Dialog Management Services

The following FILEDEFs are required, assuming that the minidisks
containing the XYZ libraries and the distributed ISPF libraries have
already been linked and accessed.

FILEDEF ISPPLIB DISK XYZPANLS MACLIB 4': (PERM CONCAT)
FILEDEF ISPPLIB DISK ISPPLIB MACLIB i'((PERM CONCAT)

(' FILEDEF ISPMLIB DISK XYZMSGS ~IACLIB 4', (PERM CONCAT)
\

FILEDEF ISP~ILIB DISK ISP~ILIB ~IACLIB *;', (PERM CONCAT)

C FILEDEF ISPSLIB DISK XYZSKELS MACLIB ~': (PERM CONCAT)
FILEDEF ISPSLIB DISK ISPSLIB MACLIB #': (PERM CONCAT)

Note: A GLOBAL MACLIB command is not required; ISPF handles the
concatenation automatically based on the FILEDEF information.

These FILEDEFs must be issued prior to invoking ISPF. They may be
issued in the user's PROFILE EXEC or in an EXEC that initiates the XYZ
application. Any EXEC that invokes ISPF must be coded in EXEC 2
language.

Note: Duplicate file names are not permitted in CMS.

Table and File Tailoring Libraries

The following files are optional, and need to be defined only if an
application uses table or file tailoring services:

DDNAME

ISPTABL
ISPFILE

Description

Table Output Library
File Tailoring Output

Filename

user selected
user selected

HACLIB
MACLIB

The table input and output libraries must both be MACLIBs. The ddnames
that define them may specify the same MACLIB or different MACLIBs. The
MACLIBs must be the same if the updated version of a table is to be
reprocessed by the same dialog that updated it.

If tables are used, the table input library must be allocated (in a
FILEDEF statement) to ddname ISPTLIB prior to invoking ISPF. It may
consist of a concatenated sequence of libraries, in which case the
FILEDEFs must include the CONCAT parameter (see the above example).
Again, a GLOBAL MACLIB command is not required.

The table output library must be allocated (using a FILEDEF statement)
to ddname ISPTABL prior to use of table services. The ISPTABL ddname
may be allocated dynamically by the dialog, and freed (FILEDEF CLEAR)
upon completion of use. ISPTABL must not specify a concatenated
sequence of libraries.

File tailoring output may be written to a temporary sequential file
provided by ISPF. In this case, there is no need for the dialog to
allocate an output file. The temporary file is written on the user's

Chapter 4. Library Requirements 69

A-disk. The file name of the temporary file is available in system
variable ZTENPF. The file type is always ISPTEHP.

If the temporary file is not used, file tailoring output may be written
to either a NACLIB or a sequential file. The HACLIB or sequential file
must be allocated (in a FILEDEF statement) to ddname ISPFILE prior to
use of file tailoring services. If the HACLIB or file does not already
exist, the FILEDEF statement must include a "RECFH F" parameter. The
ISPFILE ddname may be allocated dynamically by the dialog, and freed
(FILEDEF CLEAR) upon completion. ISPFILE must not specify a
concatenated sequence of libraries.

Note: Table output libraries and, in some cases, file tailoring
output may need to be on shared minidisks. (Shared minidisk
support is further described in Appendix I, "VH/SP: Use of Shared
Minidisks") , ISPF ensures the integrity of these minidisks
provided all updating is done by ISPF services. However, ISPF
cannot prevent destructive conflicts if other means (e.g"
ordinary CNS commands) are used to update shared minidisks. To
guard against destructive conflicts, the following procedures are
suggested:

•

•

•

Isolate shared ISPF tables and file tailoring output files on
minidisks that do not have other types of files.

Caution users not to update these minidisks except through the
use of ISPF services.

Always access these minidisks as read-only extensions of
themselves. This prevents inadvertent updating. For example:

CP LINK XYZ 294 294 MW
ACCESS 294 D/D
FILEDEF ISPTABL DISK XYZTABL MACLIB D (PERM)

In this example, the table output library for the application
is assumed to be on the XYZ 294 minidisk. The disk is linked
in multiwrite (~M) mode to allow concurrent updating by
mUltiple users. However, when the disk is accessed as the
D-disk, "D/D" is specified making it a read-only extension of
itself. This prevents inadvertent updating. A FILEDEF
statement for the table output library (ddname ISPTABL) is
then issued to specify the particular table library (XYZTABL
MACLIB) on the D-disk.

ISPF automatically reaccesses the disk, when needed, to write
an updated copy of the table. ISPF then restores the original
(D/D) access mode.

The same technique should be used when a table library is
allocated for both input and output. For example:

70 ISPF Dialog Management Services

CP LINK XYZ 294 294 MW
ACCESS 294 DID
FILEDEF ISPTLIB DISK XYZTABL MACLIB D (PERM)

FILEDEF ISPTABL DISK XYZTABL MACLIB D (PERM)

EXEC and Program Libraries

Dialog functions coded in EXEC 2 must be in EXEC files on minidisks that
have been linked and accessed prior to invoking the EXEC.

Dialog functions that are coded as programs may be invoked in text
(object) module format, or they ... J.!!5i ink edited and invoked mload
module format. They may be in "TEXT files on minidisks that have been
ljLnked and accessed prior to invo lng e function,~they may be
members of either of the following two libraries:

DDNAME

ISPXLIB
ISPLLIB

DESCRIPTION

Text Module Library (TXTLIB)
Load Module Library (LOADLIB)

If a TXTLIB is used, it must be allocated (using a FILEDEF statement) to
ddname ISPXLIB. A concatenated sequence of TXTLIBs may be specified, in
which case the FILEDEF statements must include the CONCAT parameter. A
GLOBAL TXTLIB command is not required.

When a text module is invoked (either as a TEXT file or as a member of a
TXTLIB), any additional text modules that it calls are loaded
automatically by "automatic call" reference. The called modules must
also be TEXT files on an ISPF-accessible minidisk or members of the
TXTLIB allocated to ddname ISPXLIB.

If a LOADLIB is used, it must be allocated (using a FILEDEF statement)
to ddname ISPLLIB. A concatenated sequence of LOADLIBs may be
specified, in which case the FILEDEFs must include the CONCAT parameter.
A GLOBAL LOADLIB command is not required.

No automatic call referencing is available with load modules; all load
module references must be resolved prior to invocation by ISPF.

Note: Load~dules may be used only for programs that are
reenterable. Nested use of the same load module or concurrent use
in split screen mode causes the same copy of the load module to be
invoked, even if it is marked reenterable.

Chapter 4. Library Requirements 71

Restrictions on Use of MODULE Files

Use of NODULE files, which are non-relocatable, should be avoided
whenever possible. Dialog functions that are invoked as programs by
means of the SELECT parameter:

SELECT PGN(program-name)

must be relocatable (text or load module format). --- ---
In VN/SP, whenever SU~h a ~ is loaded into the user area, ISPF
automatically turns o· CMS sub';';t~'modeJo prevent NODULE files from
overlaying the relocata e progra~--fSPF turns off subset mode whenever
all relocatable programs in the user area have completed operation.

Note: In the split screen environment, subset mode is not turned 6ff
until all relocatable programs associated with both logical screens have
completed execution. A dialog may control the use of split screen
through use of the CONTROL service.

Dialog functions that are invoked as commands use the following SELECT
parameter: r t

CND(command)

This parameter may be used to invoke NODULE files if CMS is not
currently operating in subset mode. However, these files may not use
dialog services. If subset mode is on, any attempt to invoke or load a
NODULE file will result in a CMS return code of +1.

MVS AND VM/SP: USE OF LIBRARIES

The following steps describe the order in which MVS and VM/SP libraries
are set up for use in development and test of a dialog:

1. Set up the panel, message, skeleton, table, and program libraries
for the application. For the MVS environment, allocate new
partitioned data sets. For the VM/SP environment, selectminidisks
on which the libraries are to reside, and ensure that the dialog has
access to the minidisks.

2. Create a command procedure (CLIST or EXEC 2) that contains the
necessary ALLOCATE or FILEDEF statements to allocate the libraries.
Concatenate the application libraries ahead of the libraries
required by ISPF, as described previously.

3. Create the panels, messages, and skeletons by editing directly into
the application libraries. In the VM/SP environment, these
libraries can be updated only in test or trace mode.

4. Create the dialog functions and assure that the text or load modules
are in libraries (or on minidisks) accessible to'ISPF.

72 ISPF Dialog Management Services

Note: Functions coded as program modules must be link
edited. Under V~1/SP, they may be link edited.

In either environment, when a function is link edited, the
ISPLINK subroutine must be included (explicitly or by
automatic call) in the load module. For MVS, ISPLINK is
distributed in load'module format and may be placed in a
system library for automatic call during link edit. For
VM/SP, ISPLINK is distributed as a TEXT file.

5. Invoke the application. To do this, add an ISPSTART command to the
command procedure created in step 2. The ISPSTART commend should
invoke the application, using the appropriate PANEL, CMD, or PGM
parameter. This command procedure may be made available to the end
users as the means of invoking the application. Alternatives are to
invoke the application from the master menu or other menu.

VSE/AF 1.3.5: LIBRARY SETUP

In VSE, source statement libraries are used to store panels, messages,
tables and skeletons. The following sublibraries are used:

TYPE

MESSAGES
PANELS
SKELETONS
TABLES

SUBLIBRARY

M
N
S
T

(Includes file tailoring output)

Source statement libraries to be used in an ISPF session are defined
through ISPDEF control statements. These ISPDEF control statements are
-specified in the ICCF procedure used to invoke ISPF.

Required Libraries

The following ISPDEF library definitions are required for operation of
ISPF in the VSE/ICCF environment.

LIBNAME

ISPPLIB
ISPMLIB
ISPSLIB
ISPTLIB
ISPPROF

DESCRIPTION

Panel Library
~lessage Library
Skeleton Library
Table Library
User Profile Library

Panel, message, skeleton, and table input libraries are provided in a
source statement library distributed with ISPF. A profile library must
be created for each user. Its contents are dynamically generated and
updated during execution of ISPF.

Chapter 4. Library Requirements 73

Application libraries for panels, messages, skeletons, and tables should
be concatenated ahead of the corresponding ISPF libraries using the
libnames shown above.

Example

Assume that application XYZ uses VSE library XYZLIB for its panels,
messages, skeletons, and tables.

The following ISPDEF statements are required:

ISPDEF ISPPLIB,SEARCH=(XYZLIB,ISPFDMS)
ISPDEF ISPMLIB,SEARCH=(XYZLIB,ISPFDMS)
ISPDEF ISPSLIB,SEARCH=(XYZLIB,ISPFDMS)
ISPDEF ISPTLIB,SEARCH=(XYZLIB,ISPFDMS)
ISPDEF ISPPROF,SEARCH=USERA,TO=USERA

Or, alternatively:

ISPDEF *,SEARCH=(XYZLIB,ISPFDMS)
ISPDEF ISPPROF,SEARCH=USERA,TO=USERA

Library Definition

The ISPDEF control statement defines libraries to be used by ISPF.

The following syntax rules apply to the ISPDEF statement:

•

•

•

•

•

A statement may start in any column.

Parameters must be separated by a comma or one or more blanks.

A statement may be continued at any point a comma is valid and the
comma must be specified.

A continued statement may start in any column.

Parentheses in a SEARCH parameter are optional if a single library
is specified.

74 ISPF Dialog Management Services

ISPDEF libname

,SEARCH=(af-name-input, ...)
,TO=af-name-output
,SEARCH=(af-name-input, ...),TO=af-name-output
,ICCFLIB=iccf-number-ft-output I PRIM
,FILENAME=vse-name-ft-output

libname

*

Specifies the ISPF library this definition represents. The ISPF
library names that may be specified are ISPPLIB, ISPMLIB, ISPSLIB,
ISPTLIB, ISPPROF, ISPPHOD, ISPTABL and ISPFILE. User-defined names
may be specified to support the LIBRARY parameter of table services
and file tailoring.

Specifies that this library definition applies to all ISPF
libraries that have not been explicitly defi~ed by other library
definition statements.

af- name- input
Specifies the name of an Advanced Function (AF) library used for
input. Multiple libraries may be specified, in which case they are
concatenated beginning with the initially specified library name.
This parameter applies to libraries ISPPLIB, ISPMLIB, ISPSLIB,
ISPTLIB, ISPPROF or ISPPMOD, and to the libname '*' A maximum of
15 libraries may be specified.

af- name-output
Specifies the name of an AF library used for output. This
parameter applies to libraries ISPPROF, ISPPHOD, ISPTABL, ISPFILE,
user defined libraries, and to the libname 'i'.'

iccf- n umber-ft-output
Specifies the number of an ICCF library number to be used for file
tailoring output. This parameter applies to library ISPFILE and to
user defined libraries.

vse- name-ft-output
Specifies the filename of a VSE sequential file to be used for file
tailoring output. This parameter applies to library ISPFILE only.

Figure 16 shows the ISPDEF statement parameters and the ISPF libraries
that may be specified in each. Figure 17 shows relationships between
defaults specified by the '*' libname statement and unspecified ISPF
libraries.

Chapter 4. Library Requirements 75

libname

ISPPLIB

ISPMLIB

ISPSLIB

ISPTLIB

ISPPROF

ISPPMOD

ISPTABL

ISPFILE

user
defined

~~

Figure 16.

I
SEARCH I TO ICCFLIB FILENAME

I
M R I NA NA NA

I
M R I NA NA NA

I
M R I NA NA NA

I
M R I NA NA NA

I
M R1 I R1 NA NA

I
0 R1 I R1 NA NA

I
0 NA I R NA NA

I
0 NA I R2 R2 R2

I
I

0 NA I R2 R2 NA
I

0 R3 I R3 NA NA
I

ISPDEF Statement Parameters and Libraries to Which They Apply

Meanings for the codes used in Figure 16 are:

M -

NA -

o

R

Rl -

R2 -

Mandatory ISPF library

Not applicable

Optional ISPF library

Required parameter

The library specified for ISPPROF and ISPPMOD is used for
input and output operations. A single library must be
specified using either the SEARCH or TO parameters. The same
library must be indicated if both the SEARCH and TO parameters
are specified.

A single AF library or ICCF library or VSE sequential data set
filename must be specified. For a user defined library used
by table services, only the TO parameter is valid.

76 ISPF Dialog Management Services

libname

ISPPLIB

ISPMLIB

ISPSLIB

ISPTLIB

ISPPROF
ISPPMOD

ISPTABL

ISPFILE

R3 - The libname '*' specifies the default input library chain
and/or default output library. The SEARCH parameter specifies
one or more libraries as the default ISPF input library chain.
The TO parameter specifies one library as the default ISPF
output library. Refer to Figure 17 for the relationship
between the '*' libname statement and unspecified ISPF
libraries.

SOURCE OF DEFAULT LIBRARY SPECIFICATION

libraries specified by the SEARCH parameter

libraries specified by the SEARCH parameter

libraries specified by the SEARCH parameter

libraries specified by the SEARCH parameter

first library specified by the SEARCH parameter
or library specified by the TO parameter. The
same default library must result if both the
SEARCH and TO defaults have been established.

library specified by the TO parameter

library specified by the TO parameter

Figure 17. Relationship Between Defaults Specified by the '*' Libname Statement and
Unspecified ISPF Libraries.

Three examples of ISPDEF statements are given below. In example 1, all
ISPF input libraries are defined by USER1 followed by the ISPF product
source library, and all ISPF output libraries are defined to USER1.
Example 2 defines the same ISPF libraries as example 1, but uses the '*'
libname.

Example 3 explicitly specifies an ISPPROF definition. In this case, if
ISPPROF were not explicitly specified, the default definition from the
'*' ISPDEF statement would be in effect and would be invalid. The
default is invalid because the first library in the SEARCH parameter is
not the same as the library in the TO parameter. In this example, the
optional ISPF library ISPPMOD will not be defined from the defaults
established because th~ result also would be invalid.

Note: The name ISPFDMS, used in these examples, is the
recommended name.

Chapter 4. Library Requirements 77

1. ISPDEF ISPPLIB,SEARCH=(USER1,ISPFDMS)
ISPDEF ISPMLIB,SEARCH=(USER1,ISPFDMS)
ISPDEF ISPSLIB,SEARCH=(USER1,ISPFDMS)
ISPDEF ISPTLIB,SEARCH=(USER1,ISPFDMS)
ISPDEF ISPPROF,SEARCH=USER1,TO=USER1
ISPDEF ISPPMOD,SEARCH=USER1,TO=USER1
ISPDEF ISPTABL,TO=USER1
ISPDEF ISPFILE,TO=USERI
ISPDEF USERDEF,ICCFLIB=4

2. ISPDEF *,SEARCH=(USER1,ISPFDMS),TO=USERI
ISPDEF USERDEF,ICCFLIB=4

3. ISPDEF *,SEARCH=(USER2,USERl,ISPFDMS),TO=USER1
ISPDEF ISPPROF SEARCH=USERl,TO=USER1
ISPDEF USERDEF,ICCFLIB=4

Table and File Tailoring Libraries

The following libraries are optional, and need be specified only when an
application is to use table or file tailoring services.

LIBNAME

ISPTABL
ISPFILE

DESCRIPTION

Table Output Library
File Tailoring Output

The table output library must be a VSE library. The ISPTABL definition
may specify the same library as the table input library or a different
library. The libraries must be the same if the updated version of a
table is to be reprocessed by the same dialog that updated it.

File tailoring output maybe written to a temporary sequential data set
defined under the filename "ISPCTLn". The filename of the temporary
data set is available in system v~riable ZTEMPF. (When accessing this
data set use RECFM of fixed, BLKSIZE of 800, and LRECL of 80.)

If the temporary data set is not used, file tailoring output may be
written to a VSE library, an ICCF library, or a sequential data set as
specified by the ISPDEF statement for ISPFILE. (When accessing this
data set use fixed RECFM, BLKSIZE of 800, and LRECL of 80.)

VSE/AF 1.3.5: USE OF LIBRARIES

The following steps describe the order in which VSE libraries are set up
for use in development and test of a dialog:

1. Allocate an AF private source statement library to contain the
panels, message, skeletons, and tables associated with the dialog.

2. Create an ICCF procedure that contains the necessary ISPDEF
statements to define the libraries to be used during ISPF execution.

78 ISPF Dialog Management Services

The sample ISPSTART ICCF procedure located in the ICCF common
library should be used as a guide. (This procedure is placed in the
ICCF common library during ISPF installation.)

3. Create the panels, messages, and skeletons by editing directly into
the application library (allocated in step 1).

4. Create the dialog functions and make them available in core image
libraries accessible to ISPF. Each dialog function must be link
edited and the subroutine ISPLINK must be included (explicitly or by
autolink) in the phase.

5. Invoke the application. To do this, modify the ISPSTART command in
the ICCF procedure created in step 2. The ISPSTART command should
invoke the application using the appropriate panel or pgm parameter.
This ICCF procedure may be made available to application users as a
means of invoking the application. Alternatives are to invoke the
application from the master menu or other menu.

VSE/AF 2.1: LIBRARY SETUP

In VSE, libraries.sublibraries are used to store panels, messages,
tables and skeletons. The following member types are used:

CATEGORY

HESSAGES
PANELS
SKELETONS
TABLES

TYPE

H
N
S
T

(Includ~s file tailoring output)

Libraries.sublibraries to be used in an ISPF session are defined through
ISPDEF control statements. These ISPDEF control statements are
specified in the ICCF procedure used to invoke ISPF.

Required Libraries

The following ISPDEF library definitions are required for operation of
ISPF in the VSE/ICCF environment.

LIBNAHE

ISPPLIB
ISPHLIB
ISPSLIB
ISPTLIB
ISPPROF

DESCRIPTION

Panel Library
Hessage Library
Skeleton Library
Table Library
User Profile Library

Panel, message,skeleton, and table input libraries are provided in a
VSE/AF library.sublibrary distributed with ISPF. A profile
library.sublibrary must be created for each user. Its contents are
dynamically generated and updated during execution of ISPF.

Chapter 4. Library Requirements 79

Application libraries.sublibraries for panels, messages, skeletons, and
tables should be concatenated ahead of the corresponding ISPF libraries
using the libnames shown above.

Example

Assume that application XYZ uses VSE library.sublibrary XYZLIB.XYZSUB
for its panels, messages, skeletons, and tables.

The following ISPDEF statements are required:

ISPDEF ISPPLIB,SEARCH=(XYZLIB.XYZSUB,ISPF.DM)
ISPDEF ISPMLIB,SEARCH=(XYZLIB.XYZSUB,ISPF.DM)
ISPDEF ISPSLIB,SEARCH=(XYZLIB.XYZSUB,ISPF.DM)
ISPDEF ISPTLIB,SEARCH=(XYZLIB.XYZSUB,ISPF.DM)
ISPDEF ISPPROF,SEARCH=USERLIB.USERA,TO=USERLIB.USERA

Or, alternatively:

ISPDEF *,SEARCH=(XYZLIB.XYZSUB,ISPF.DM)
ISPDEF ISPPROF,SEARCH=USERLIB.USERA,TO=USERLIB.USERA

Library Definition

The ISPDEF control statement defines VSE libraries.sublibraries, ICCF
libraries, or VSE sequential files to be used by ISPF.

The following syntax rules apply to the ISPDEF statement:

•

•

•

•

•

A statement may start in any column.

Parameters must be separated by a comma or one or more blanks.

A statement may be continued at any point a comma is valid and the
comma must be specified.

A continued statement may start in any column.

Parentheses in a SEARCH parameter are optional if a single
library.sublibrary is specified.

80 ISPF Dialog Management Services

ISPDEF

,SEARCH=(af-name-input, ...)
,TO=af-name-output
,SEARCH=(af-name-input, ...),TO=af-name-output
,ICCFLIB=iccf-number-ft-output I PRIM
,FILENAME=vse-name-ft-output

libname

*

Specifies the ISPF library this definition represents. The ISPF
library names that may be specified are ISPPLIB, ISPMLIB, ISPSLIB,
ISPTLIB, ISPPROF, ISPPMOD, ISPTABL and ISPFILE. User-defined names
may be specified to support the LIBRARY parameter of table services
and file tailoring.

Specifies that this library definition applies to all ISPF
libraries that have not been explicitly defined by other library
definition statements.

af-name-input
Specifies the name of a VSE/Advanced Function (AF)
library.sublibrary used for input. Multiple libraries.sublibraries
may be specified, in which case they are concatenated beginning
with the initially specified library.sublibrary name. This
parameter applies to libraries ISPPLIB, ISPMLIB, ISPSLIB, ISPTLIB,
ISPPROF or ISPP~1OD, and to the libname '''-:'. A maximum of 15
libraries.sub1ibraries may be specified.

af- name-outp ut
Specifies the name of a VSE/AF library.sublibrary used for output.
This parameter applies to libraries ISPPROF, ISPPMOD, ISPTABL,
ISPFILE, user defined libraries, and to the libname '*'

iccf- n umber-ft-outp ut
Specifies the number of an ICCF library number to be used for file
tailoring output. This parameter applies to library ISPFILE and to
user defined libraries.

vse- name-ft-outp ut
Specifies the filename of a VSE sequential file to be used for file
tailoring output. This parameter applies to library ISPFILE only.

Figure 18 shows the ISPDEF statement parameters and the ISPF libraries
that may be specified in each. Figure 19 shows relationships between

Chapter 4. Library Requirements 81

libname

ISPPLIB

ISPMLIB

ISPSLIB

ISPTLIB

ISPPROF

ISPPMOD

ISPTABL

ISPFILE

user
defined

.,~

Figure 18.

defaults specified by the '*' libname statement and unspecified ISPF
libraries.

SEARCH TO ICCFLIB FILENA~lE

~1 R NA NA NA

M R NA NA NA

M R NA NA NA

M R NA NA NA

M R1 R1 NA NA

0 R1 R1 NA NA

0 NA R NA NA

0 NA R2 R2 R2

0 NA R2 R2 NA

0 R3 R3 NA NA

ISPDEF Statement Parameters and Libraries to Which They Apply

Meanings for the codes used in Figure 18 are:

M -

NA -

o

R

Rl -

Mandatory ISPF library

Not applicable

Optional ISPF library

Required parameter

The 1ibrary.sub1ibrary specified for ISPPROF and ISPPMOD is
used for input and output operations. A single
library.sublibrary must be specified using either the SEARCH
or TO parameters. The same library.sublibrary must be
indicated if both the SEARCH and TO parameters are specified.

82 ISPF Dialog Management Services

libname

ISPPLIB

ISPMLIB

ISPSLIB

ISPTLIB

ISPPROF
ISPPMOD

ISPTABL

ISPFILE

R2 -

R3 -

A single VSE/AF library.sublibrary or ICCF library or VSE
sequential data set filename must be specified. For a user
defined library used by table services, only the TO parameter
is valid.

The libname '*' specifies the default input library chain
and/or default output library. The SEARCH parameter specifies
one or more libraries.sublibraries as the default ISPF input
library chain. The TO parameter specifies one
library.sublibrary as the default ISPF output library. Refer
to Figure 19 for the relationship between the '*' libname
statement and unspecified ISPF libraries.

SOURCE OF DEFAULT LIBRARY.SUBLIBRARY SPECIFICATION

libraries.sublibraries specified by the SEARCH parameter

libraries.sublibraries specified by the SEARCH parameter

libraries.sublibraries specified by the SEARCH parameter

libraries.sublibraries specified by the SEARCH parameter

first library.sublibrary specified by the SEARCH parameter
or library.sublibrary specified by the TO parameter. The
same default library.sublibrary must result if both the
SEARCH and TO defaults have been established.

library.sublibrary specified by the TO parameter

library.sublibrary specified by the TO parameter

Figure 19. Relationship Between Defaults Specified by the '*' Libname Statement and
Unspecified ISPF Libraries.Sublibraries

Three examples of ISPDEF statements are given below. In example 1, all
ISPF input libraries are defined by USERLIB.USER1 followed by the ISPF
product library, and all ISPF output libraries are defined to
USERLIB.USER1. Example 2 defines the same ISPF libraries as example 1,
but uses the '*' libname.

Example 3 explicitly specifies an ISPPROF definition. In this case, if
ISPPROF were not explicitly specified, the default definition from the
'*' ISPDEF statement would be in effect and would be invalid. The
default is invalid because the first library in the SEARCH parameter is
not the same as the library in the TO parameter. In this example, the

Chapter 4. Library Requirements 83

optional ISPF library ISPPMOD will not be defined from the defaults
established because the result also would be invalid.

1.

2.

3.

Note: The name ISPF.DM, used in these examples, is the
recommended name.

ISPDEF ISPPLIB,
SEARCH=(USERLIB.USERl,

ISPF . Dt-I)
ISPDEF ISPMLIB,SEARCH=(USERLIB.USERl,ISPF.DM)
ISPDEF ISPSLIB,SEARCH=(USERLIB.USERl,ISPF.DM)
ISPDEF ISPTLIB,SEARCH=(USERLIB.USERl,ISPF.DM)
ISPDEF ISPPROF,SEARCH=USERLIB.USERl,TO=USERLIB.USERl
ISPDEF ISPPMOD,SEARCH=USERLIB.USERl,TO=USERLIB.USERl
ISPDEF ISPTABL,TO=USERLIB.USERI
ISPDEF ISPFILE,TO=USERLIB.USERI
ISPDEF USERDEF, ICCFLIB=4

ISPDEF *,SEARCH=(USERLIB.USERl,ISPF.DM),TO=USERLIB.USERl
ISPDEF USERDEF,ICCFLIB=4

ISPDEF -l: ,
SEARCH=(USERLIB.USER2,USERLIB.USERl,ISPF.DM),
TO=USERLIB.USERI

ISPDEF ISPPROF SEARCH=USERLIB.USERl,TO=USERLIB.USERl
ISPDEF USERDEF,ICCFLIB=4

Table and File Tailoring Libraries

The following libraries are optional, and need be specified only when an
application is to use table or file tailoring services.

LIBNAME

ISPTABL
ISPFILE

DESCRIPTION

Table Output Library
File Tailoring Output

The table output library must be a VSE library.sublibrary. The ISPTABL
definition may specify the same library.sublibrary as the table input
library or a different library.sublibrary. The library.sublibraries
must be the same if the updated version of a table is to be reprocessed
by the same dialog that updated it.

File tailoring output may be written to a temporary sequential data set
defined under the filename "ISPCTLn". The filename of the temporary
data set is available in system variable ZTEMPF. (When accessing this
data set use RECFM of fixed, BLKSIZE of 800, and LRECL of 80.)

If the temporary data set is not used, file tailoring output may be
written to a VSE library.sublibrary, an ICeF library, or a sequential
data set as specified by the ISPDEF statement for ISPFILE. (When
accessing this data set use fixed RECFM, BLKSIZE of 800, and LRECL of
80.)

84 ISPF Dialog Management Services

VSE/AF 2.1: USE OF LIBRARIES

The following steps describe the order in which VSE/AF
libraries.sublibraries are set up for use in development and test of a
dialog:

1. Define an AF library.sublibrary to contain the panels, message,
skeletons, and tables associated with the dialog.

2. Create an ICCF procedure that contains the necessary ISPDEF
statements to define the libraries to be used during ISPF execution.
The sample ISPSTART ICCF procedure located in the ICCF common
library should be used as a guide. (This procedure is placed in the
ICCF common library during ISPF installation.)

3. Create the panels, messages, and skeletons by editing directly into
the application library.sublibrary (defined in step 1).

4. Create the dialog functions and make them available in
libraries.sublibraries accessible to ISPF. Each dialog function
must be link edited and the subroutine ISPLINK must be included
(explicitly or by autolink) in the phase.

5. Invoke the application. To do this, modify the ISPSTART command in
the ICCF procedure created in step 2. The ISPSTART command should
invoke the application using the appropriate panel or pgm parameter.
This ICCF procedure may be made available to application users as a
means of invoking the application. Alternatives are to invoke the
application from the master menu or other menu.

Chapter 4. Library Requirements 85

86 ISPF Dialog Management Services

CHAPTER 5. INVOCATION AND TERMINATION

This chapter describes how to invoke ISPF in both interactive and batch
environments, and how to terminate ISPF processing.

MVS AND VM/SP: INVOCATION OF ISPF

In MVS and VM/SP, ISPF is invoked using the ISPSTART command. The
ISPSTART command may be issued:

• By the user at a terminal

• From a command procedure (CLIST or EXEC 2)

• During LOGON (from a TSO LOGON procedure or CMS PROFILE EXEC)

When PDF is installed, the ISPF command may be used to invoke either
ISPF/PDF or other dialogs if a PANEL, CMD, or PGM keyword is specified.
The ISPF command provides compatibility with the SPF Program Product.

VSE: INVOCATION OF ISPF

In VSE, ISPF is invoked by an ICCF procedure. The procedure may have
any name acceptable to ICCF, however, in this publication, ISPSTART is
the name assumed. The procedure to invoke ISPF consists of the
following kinds of statements:

&&OPTIONS 0010001
/INPUT
&/LOAD ISPSTART
&/OPTION GETVIS P-22 TIME=32767,65535
&/FILE ISPLOG,DISP=DELETE,SPACE=2
&/FILE ISPLIST,DISP=DELETE,SPACE=2
&/FILE ISPCTL1,DISP=DELETE,SPACE=2
&/FILE ISPCTL2,DISP=DELETE,SPACE=2
ISPSTART &&PARA~l1 &&PARAM2 &&PARAM3 &&PARAM4
I SPDEF .. ,~, SEARCH= (... , I SPFDMS) , TO= .. .
ISPDEF .. ~, SEARCH=(... , ISPF . DM) , TO= .. .
/END
/PEND
/RUN

The /LOAD job entry statement invokes ISPF.

(for VSE/AF 1.3.5)
(for VSE/AF 2.1)

The /OPTION job entry statement specifies a maximum GETVIS area size.

The /FILE job entry statements define the log, list, and temporary data
sets to be used during ISPF processing.

Chapter 5. Invocation and Termination 87

ISPDEF command processing is described in Chapter 4, "Library
Requirements. "\\ II

£:-x (;C I ~ ~/1A\/~,
~7NT;X '/~ <'1-1

-~-,,'~-'"~ This section describes syntax for the command that invokes ISPF. In HVS
and VH/SP, this command is the ISPSTART command. In VSE, the command
invokes an ICeF procedure that, in turn, invokes ISPF. Generally, this
IceF procedure is named ISPSTART. Other names may be used; however, the
name ISPSTART is used in this publication.

Notation conventions are described in the Preface.

In ~lVS and V~l/SP, the command and its parameters are coded as shown
below.

In VSE, command parameters are coded as shown below, but with the
parameter string enclosed in apostrophes when any parameter in the
string includes parenthesis, as in the following example~

ISPSTART 'PANEL(USER) NEWAPPL(ZZZZ),

The resulting ISPSTART command statement, after ICCF substitution,
is:

ISPSTART PANEL(USER) NEWAPPL(ZZZZ)

I5pvc5

88 ISPF Dialog Hanagement Services

The format for ISPSTART is:

ISPSTART PANEL(panel-name) [OPT(option)]

CMD(command)

PGM(program-name) [PARN(parameters)]
[LANG(PLIIPLl [,storage-area])]
[LANG(COBOL)]

[NEWAPPL[(application-id)]]

[TESTITESTXITRACEITRACEX]

panel-name
Specifies the name of the first menu (i.e., the primary option
m"enu) to be displayed.

option
Specifies an initial option, which must be a valid option on the
first menu. This causes direct entry to that option without
displaying the menu. (The menu is processed in nondisplay mode, as
though the end user had entered the option.)

command
In MVS and VMjSP, specifies a command procedure (CLIST or EXEC 2)
that is to be invoked as the first dialog function. Command
parameters may be included within the parentheses. These
parameters are passed to the command procedure. A percent sign (%)
may precede the CLIST or EXEC 2 name to improve performance.

In VSE, this parameter is not used because ICCF procedures may not
be used for writing dialog functions.

program-name
Specifies the name of a program that is to be invoked as the first
dialog function. If the program is coded in PLjI, it must be a
MAIN procedure.

Note: Dialog developers should avoid using the ISP and ISR
prefixes (the ISPF and PDF component codes) in naming dialog
functions. Special linkage conventions, intended only for
internal ISPF use, are used to invoke programs named
"ISPxxxxx" and "ISRxxxxx".

In MVS, this parameter must specify the name of a load module that
is accessible by use of the LINK macro.

Chapter 5. Invocation and Termination 89

In VHjSP, this parameter may specify the name of a TEXT file, a
- -rr--member of a TXTLIB,~a member of a LOADLIB. See Library Setup -

VHjSP Environment" for more information.

parameters
(~u. p CaB)

Specifies input parameters to be passed to the program.
program should not attempt to modify these parameters.

The

The parameters within the parentheses are passed as a single
character s-tring, preceded by a halfword containing the length of
the character string, in binary. (The length value does not
include itself.) This convention is the same as that for passing
parameters by use of the PARM= keyword on a JCL EXEC statement.

Parameters on the ISPSTART command to be passed to a PLjI program
are coded in the standard way:

XXX: PROC (PAR~1) OPTIONS (MAIN) ;
DCL PARM CHAR (nnn) VAR;

If the value of the PARM field is to be used as an ISPF dialog
variable, it must be assigned to a fixed character string because
the VDEFINE service cannot handle varying length PLjI strings.

In MVS and VHjSP, the first character of the PARM field must be a
slash ('j') since PLjI assumes that any value prior to the slash is
a run-time option.

LANG(PLI) or LANG(PL 1)
In VSE, specifies that the function being invoked is written in the
PLjI language.

In MVS and VMjSP, this keyword is not used.

storage-area
In VSE, for programs written in PLjI, specifies the number of bytes
of dynamic storage to be made available to the function being
invoked.

The default storage size is 2816 bytes. Generally, the amount of
storage required for a PL/I program can be determined by using the
storage option to compile the program and then adding 2192 to the
DSA sizes specified on the compile listing. However, the storage
requirement will vary considerably depending on the compiler
options specified, i.e. "FLOW" will use slightly more storage but
"COUNT" will substantially increase the storage requirement.

In MVS and VMjSP, this parameter is not used.

LANG(COBOL)
In VSE, specifies that the function being invoked is written in the
COBOL language.

In MVS and VMjSP, this keyword is not used.

90 ISPF Dialog Management Services

NEWAPPL(application-id)
Specifies a 1- to 4-character code that identifies the application
that is being invoked. The code is to be prefixed to the user and
edit profile names or the command table associated with the
application, as follows:

User Profile
Edit Profile
Command Table

xxxxPROF
xxxxEDIT
xxxxCHDS

where xxxx is the application-id. If the application-id is
omitted, or if the NEWAPPL keyword is omitted, the application-id
defaults to ISP.

TEST
Specifies that ISPF is to be operated in TEST mode, described
below.

TESTX
Specifies that ISPF is to be operated in extended TEST mode,
described below.

TRACE
Specifies that ISPF is to be operated in TRACE mode, described
below.

TRACEX
Specifies that ISPF is to be operated in extended TRACE mode,

~~ 't .. T~~~eturn . __ code from ISPST~~T is always ~,.,)

Test Modes

--.. ---~.- ~--"-.- ~-... - •.... ---

The testing modes of ISPF provide special processing actions to help in
the debugging of a dialog. If PDF is installed, consider using the
dialog test option of that facility (see ISPFjPDF Reference), instead of
the testing modes described here.

Anyone of four mutually exclusive keyword parameters may be specified
on the ISPSTART command to control the operational mode when testing a
dialog:

• TEST - Test mode

• TESTX - Extended test mode

• TRACE - Trace mode

• TRACEX - Extended trace mode

Chapter 5. Invocation and Termination 91

In TEST mode, ISPF operates differently from normal mode in the
following ways:

1. Panel and message definitions are refetched from the panel and
message libraries whenever a panel name or message id is specified
in an ISPF service. (In normal mode, the most recently accessed
panel definitions are retained in virtual storage and, under MVS, a
table of TTRs returned from BLDL macros is kept in virtual storage
for frequently used message, panel, skeleton, and table members. If
you have modified the panel or message library, use of TEST mode
will ensure that the latest v2rsion of each panel or message is
accessed during a test run.

Under MVS, a new extent on a DASD may be caused when using an editor
to modify a panel, message, or skeleton or by link editing a module.
When a new extent is allocated, the modification can be accessed
only by first terminating and then reinvoking ISPF.

2. Tutorial panels
panel name, and
display screen.
the panel in the

are displayed with current panel name, previous
previous message id on the bottom line of the
This will assist you in identifying the position
tutorial hierarchy.

of

3. Screen printouts (obtained through use of the PRINT or PRINT-HI
commands) include line numbers, current panel name, and message ida

4. If a dialog function is operating in the CANCEL error mode (the
default), the panel that is displayed on an error allows you to
force the dialog to continue, in spite of the error. Results from
that point on, however, are unpredictable and may result in an
ABEND.

S. Other than the situation described in item 4, any ISPF-detected
error, ABEND, or program interrupt forces an ABEND of ISPF. The
user may also force an ABEND by entering ABEND or CRASH in the
command line of any panel.

6. For MVS/TSO:

The PAl key causes an immediate exit from ISPF.

If an ISPF subtask ABENDs, a dump may be taken by pressing ENTER
after the ABEND message appears, provided that a SYSUDUMP, SYSMDUMP,
or SYSABEND data set has been allocated.

7. For VM/CMS:

An ADSTOP set within ISPF code is not lost, even if ISPF invokes a
eMS command that executes in the user area. If ISPF is operating in
DCSS, the page containing the ADSTOP is marked non-shareable, and is
copied automatically to the user area.

92 ISPF Dialog Management Services

Trace Modes

In TESTX (extended test) mode, ISPF operates the same as in TEST mode
except that all messages written to the ISPF log file are also displayed
at the terminal.

In TRACE mode, ISPF operates the same as it does in TEST mode, with the
following exception.

In MVS, VM/SP, and ISPF/PDF option 7.6, a message is written to the ISPF
log file whenever any ISPF service is invoked (even if CONTROL ERRORS
RETURN has been issued) and whenever any error is detected by an ISPF
service. Note that only CLIST and EXEC 2 service requests, and service
requests issued under PDF option 7.6 are recorded; program module
requests for service are not recorded in the log file.

In TRACEX (extended trace) mode, ISPF operates the same as it does in
TRACE mode except that all messages written to the ISPF log file
(including the trace messages) are also displayed at the terminal.

DIALOG INITIATION AND TERMINATION

Execution of a dialog is initiated by the SELECT service. Selection
keywords, passed to the SELECT service, specify whether the dialog
begins with the display of a menu (PANEL keyword) or the execution of a
dialog function (CMD or PGM keyword). The dialog terminates when the
selected menu or function terminates. The action at termination depends
upon how the SELECT service was originally invoked.

SELECT Service Invocation

The SELECT service may be invoked in the following ways:

• During initialization, the SELECT service is automatically invoked
by the dialog manager to initiate the first dialog. The selection
keywords originally specified on the ISPSTART command are passed to
the SELECT service.

•

For dialogs invoked by ISPSTART, ISPF error processing is not put
into effect until ISPF initialization is completed.

If the user enters split screen mode, the dialog manager again
invokes the SELECT service and again passes the selection keywords
from the ISPSTART command. This causes the first dialog (specified
in the ISPSTART command) to be initiated on the second logical
screen.

In VSE, user dialog functions are restricted to one logical screen.
That is, a user dialog function may be executed in either logical
screen, but may not be executed in both logical screens

Chapter 5. Invocation and Termination 93

concurrently. This restriction does not apply to ISPF or ISPF/PDF
functions.

• The SELECT service recursively invokes itself whenever the user
selects an option from a menu displayed by the SELECT service. In
this case, the selection keywords are specified in the panel
definition for the menu.

• The SELECT service may be invoked from a dialog function. In this
case, the selection keywords are passed as calling sequence
parameters.

The action taken at dialog termination is as follows:

• If the SELECT service was invoked from a dialog function, control is
returned to that function and the function continues execution.

• If the SELECT service was invoked from a menu, that menu is
redisplayed (including execution of the INIT section in the panel
definition) .

• If the user is terminating split screen mode, the original dialog is
ended on that logical screen and the other logical screen expands to
the full size of the physical display screen.

• If the user is terminating ISPF (which can only be done in single
screen mode), either the ISPF termination panel is displayed or the
user's defaults for list/log processing are employed (as specified
using the ISPF PARMS option).

The termination panel is displayed if:
----~--.--""j~..,..~'"

• The dialog started with the display of a menu and the user entered
the END command on that menu.

• The dialog started with the execution of a function and the function
ended with a return code of o.

The list/~og defaults are used if:

• The dialog started with the display of a menu and the user entered
the RETURN command or selected the "exit" option (see "Special Panel
Requirements" in Chapter 7 for discussion of the EXIT keyword).

• The dialog started with the execution of a function and the function
ended with a return code of 4 or higher. (A return code higher than
4 will cause an error message to be displayed.)

If the user has not specified valid list/log defaults, the ISPF
termination panel is displayed in all cases.

,~~~"")l~~~M.iC~-&V:.JMIil{.'j;" .. r.,,;r,.:;.;w;,(,.I..~';' \I$j

94 ISPF Dialog Management Services

VSE: Dialog Abend Intercept

In VSE, the STXIT AB facilities of VSE are available to dialogs. Each
function of a dialog - invoked using SELECT PGM(program-name) - may
issue the STXIT AB macro to establish its own STXIT AB exit.

ISPF manages dialog STXIT AB exit information so that each function of
the dialog operates independently. If an abnormal condition is
detected, each dialog STXIT AB exit routine that is active is given
control prior to ISPF terminating the currently running logical screen.
This permits data needed for debugging to be saved before the dialog is
terminated.

Because ISPF and user dialogs operate in the same partition, an error
that causes a dialog to abend may also destroy ISPF's ability to process
dialog service requests. Therefore, requests for dialog services
included within an STXIT AB exit may themselves cause an abend and
should be avoided or, at least, not specified until all other dialog
recovery processing has been specified.

Note: When a dialog is cancelled by the system operator or
because execution time expires, dialog STXITs do not receive
control.

BATCH EXECUTION OF ISPF SERVICES

When initiated in a batch environment, ISPF services execute as a
command in the background. Only services that are non-interactive
execute successfully. Any services that cause a full screen write
result in an error message. Background invocations are generally used
to invoke ISPF table and file tailoring services; however, access to
other non-interactive dialog services are also available.

TSO Batch Environment

TSO provides facilities for executing command processors in the batch
environment. The JCL stream provides for data sets to be pre-allocated
prior to the invocation of any command. The Terminal Monitor Program
(TMP) is invoked by use of the EXEC statement, and establishes the
necessary control blocks for the TSO environment. The command input
stream is accessed from the SYSTSIN DD statement and all terminal line
I/O outputs issued by the TSO I/O service routines are directed to the
SYSTSPRT DD statement definition. The ISPF libraries are allocated
using DD statements. The panels, messages, skeleton, table, and profile
data sets must be preallocated. While not required, it is recommended
that the log data set also be preallocated. If a log data set is
dynamically allocated, it is always kept at ISPF termination.

The ISPF command is placed in the input stream with the CMD or PGM
keywords that name the dialog to be invoked. All dialog services are
permitted except for BROWSE, DISPLAY, EDI~, SELECT PANEL, SETMSG, and
TBDISPL.

Chapter 5. Invocation and Termination 95

A userid is selected for the background job, as follows:

1. If available, the userid supplied during RACF authorization checking
is used.

2. If a userid is not available from RACF, the prefix supplied with the
TSO PROFILE command is used.

3. If neither of the above occurs, the default is "BATCH."

Sample Batch Job

Figure 20 shows a sample batch job. This job invokes the MVS/TSO
Terminal Monitor Program (TMP) which, in MVS, establishes the
environment necessary to attach command processors. The ISPSTART
command is specified in the TSO background input stream (SYSTSIN) with
the name of a CLIST (TBUPDATE) that contains the ISPF services to be
executed.

Error Processing

ISPF terminates with an error message if a required library is not
available. The ISPSTART command must also be invoked naming either a
CLIST or PGM function. If no dialog is specified, a message is issued.
These messages are directed to the file defined by the SYSTSPRT DD
statement.

96 ISPF Dialog Management Services

IIUSERAA JOB (AA04,BIN1,OOOOOO), 'I. M. USERAA',
II CLASS=L,MSGCLASS=A,NOTIFY=USERAA,MSGLEVEL=(l,l)
11*---*1
I I~': EXECUTE I SPF COMMAND IN THE BACKGROUND ~': I
11*---*1
IIISPFBACK EXEC PGM=IKJEFT01,DYNAMNBR=25,REGION=1024K
I I~':
I I~':- - - ALLOCATE PROFILE, PANELS, MSGS, PROCS, AND LOG
IIISPPROF DD DSN=USERAA.ISPF.PROFILE,DISP=OLD
IIISPPLIB DD DSN=ISP.V1R1MO.ISPPLIB,DISP=SHR
IIISPMLIB DD DSN=ISP.V1R1MO.ISPMLIB,DISP=SHR
IIISPSLIB DD DSN=ISP.V1R1MO.ISPSLIB,DISP=SHR
IIISPLOG DD DSN=USERAA.ISPF.LOG,DISP=SHR
I I~':
11*- - - ALLOCATE TABLE DATA SETS - - - - - - - - - - - - *1
IIISPTLIB DD DSN=ISP.V1R1MO.ISPTLIB,DISP=SHR
IIISPTABL DD DSN=USERAA.ISPF.TABLES,DISP=SHR
I I~':
11*- - - ALLOCATE DIALOG PROGRAM AND CLIST LIBRARIES- - - ~': I
IIISPLLIB DD DSN=USERAA.ISPF.LOAD,DISP=SHR
IISYSPROC DD DSN=USERAA.ISPF.CLIST,DISP=SHR
I I~':
11*- - - ALLOCATE TSO BACKGROUND OUTPUT AND INPUT DS- - - *1
IISYSTSPRT DD DSNAME=USERAA.ISPF.ISPFPRNT,DISP=SHR
I I SYSTS IN DD ,,:

PROFILE PREFIX(USERAA)
ISPSTART CMD(%TBUPDATE)

I'':

Figure 20. MVS Batch Job

1* ESTABLISH PREFIX
1* INVOKE CLIST DIALOG

Errors encountered during background dialog execution are handled in the
same manner as errors encountered during foreground execution. Messages
normally written to the ISPF log data set for severe errors are also
written to the SYSTSPRT file. This is useful when executing a CLIST
dialog because any error messages are listed immediately after the
ISPEXEC service in which the error occurred.

If a function encounters an abend, the entire ISPF batch job stream
terminates. A message is issued to the SYSTSPRT file indicating the
type of abend.

Chapter 5. Invocation and Termination 97

VM/SP Batch Environment

A disconnected virtual machine or a CMS batch machine can be used to
execute non-interactive dialogs. The command inputs may be specified
via the CMS Console stack or by using the CMS PUNCH command to provide
input to the batch machine reader. In either case, the ISPF libraries
must be specified using FILEDEF commands for the panels, messages,
skeleton, tables, and profile maclibs.

All dialog services may be invoked except BROWSE, DISPLAY, EDIT, SELECT
PANEL, SETMSG, and TBDISPL.

Sample Batch Job

Figure 21 shows a sample batch job.

This job provides the links and accesses needed by the batch machine to
invoke ISPF with the correct libraries. This EXEC also sends any list
and log files back to the originator. The profile tables could also be
sent.

Error Processing

ISPF terminates with an error message if a required library is not
available. The ISPSTART command must also be invoked naming either an
EXEC or a PGM function. If no dialog is specified, a message is issued.
These messages are directed to the console log.

Errors encountered during background execution are handled in the same
manner as errors encountered during normal execution. Messages normally
written to the ISPF log file for severe errors are also written to the
eMS Console Log.

98 ISPF Dialog Management Services

*
",(BUILD THE BATCH JOB CARDS
*

CP SPOOL PUNCH CLASS A NOHOLD CONT TO BATCH
&PUNCH 1"''(
&PUNCH IJOB USERAA AA04 BUPDATE

,,'~ KEEP TRACK OF BATCH EXECUTION OF THIS JOB FOR USER
,,'~ MAKE SURE SYSTEM LIBRARY DISK IS AVAILABLE FOR BATCH
* THE SYSTEM DISK HAS ~STRIBUTED ISPF LIBRARIES

&PUNCH CP LINK MAINT 19E 19E RR ~~~
&PUNCH ACC 19E Y ~

... '~ HAVE BATCH LINK TO USER DISKS AS REQUIRED
&PUNCH CP LINK USERAA 191 291 RR USERAAR
&PUNCH ACC 291 B

* SET UP FILEDEFS TO ACCESS LIBRARIES
&PUNCH FILEDEF ISPPLIB DISK ISPPLIB MACLIB * (PERM
&PUNCH FILEDEF ISPMLIB DISK ISP~lLIB MACLIB ... '~ (PERM
&PUNCH FILEDEF ISPSLIB DISK SKELS MACLIB * (PERM CONCAT
&PUNCH FILEDEF ISPSLIB DISK ISPSLIB MACLIB * (PERM CONCAT
&PUNCH FILEDEF ISPTLIB DISK TABLES MACLIB * (PERM CONCAT
&PUNCH FILEDEF ISPTLIB DISK PROFLIB MACLIB ... '((PERM CONCAT
&PUNCH FILEDEF ISPTLIB DISK ISPTLIB MACLIB * (PERM CONCAT
&PUNCH FILEDEF ISPPROF DISK PROFILE ~lACLIB A (PERM

,,'~ INVOKE THE DIALOG ~lANAGER PASSING THE NAME OF THE COMMAND
&PUNCH EXEC ISPSTART CMD(BUPDATE)

... '(CLEANUP
&PUNCH CP SP PUN TO USERAA
&PUNCH CP SP CONS CLOSE STOP TO USERAA

... ': SEND BACK LIST AND LOG FILES
&PUNCH DISK DUMP SPFLOG LISTING A
&PUNCH DISK DUMP SPFLIST LISTING A

&PUNCH CP CLOSE E
&PUNCH CP SPOOL CONSOLE STOP CLOSE
&PUNCH 1"'(
CP SPOOL PUNCH NOCONT CLOSE

Figure 21. VI-liSP Batch Job

Chapter 5. Invocation and Termination 99

VSE Batch Environment

User program dialogs may be executed in a VSE batch environment. The
sequential data sets required by ISPF are defined with DLBL/EXTENT/ASSGN
JCL. The panel, message, skeleton, and table libraries are defined by
ISPDEF control statements. The ISPSTART command specifies the dialog to
be executed.

The log data set, although not required for batch execution, should be
specified. If the log data file is used, it is kept. It is available
to be viewed by use of the ISPF/PDF BROWSE service, if ISPF/PDF is
installed.

Sample Batch Job

Figure 22 shows a sample VSE/AF 1.3.5 batch job. Figure 23 on page 101
shows a sample VSE/AF 2.1 batch job. The ISPSTART command is specified
in the VSE background input stream (SYSIN) with the parameter
PGM(DIALOG). This program contains the ISPF service requests to be
performed.

~': $$ JOB JNM=BATCH,CLASS=O,DISP=D
II JOB BATCH
~'r DEFINE THE LOG AND TEMPORARY CONTROL DATA SETS
II DLBL ISPLOG, 'BATCH.LOG'
// EXTENT SYS001,SERNUM,1,1,3000,10
II DLBL ISPCTL1, 'BATCH.TEMP.CONTROL'
// EXTENT SYS001,SERNUM,1,1,4000,10
II ASSGN SYS001,160
/1 LIBDEF CL,SEARCH=ISPFDMC
/1 EXEC ISPSTART, SIZE=20K
* SPECIFY DIALOG TO BE EXECUTED
ISPSTART PGM(DIALOG)
* DEFINE VSE LIBRARIES
ISPDEF *,SEARCH=(XYZLIB,ISPFDMS)
I~'r

1&
~'r $$ EOJ

Figure 22. VSE/AF 1.3.5 Batch Job

100 ISPF Dialog Management Services

, .. $$ JOB JNH=BATCH,CLASS=O,DISP=D
II JOB BATCH
.... DEFINE THE LOG AND TEMPORARY CONTROL DATA SETS
II DLBL ISPLOG, 'BATCH.LOG'
II EXTENT SYSOOl,SERNUM,I,I,3000,10
II DLBL ISPCTLl,'BATCH.TEMP.CONTROL'
II EXTENT SYSOOl,SERNUM,I,I,4000,10
II ASSGN SYSOOl,160
II LIBDEF PHASE,SEARCH=ISPF.DM
II EXEC ISPSTART, SIZE=20K
,.. SPECIFY DIALOG TO BE EXECUTED
ISPSTART PGM(DIALOG)
* SET UP ISPDEF TO ACCESS VSE LIBRARIES/SUBLIBRARIES
ISPDEF *,SEARCH=(XYZLIB.XYZSUB,ISPF.DM)
I'"
1&
,': $$ EOJ

Figure 23. VSE/AF 2.1 Batch Job

Error Processing

ISPF terminates with an error message if a required library is not
available. In batch mode, the ISPSTART command must specify invocation
of a program function - PGM(program-name) - and if one is not specified,
ISPF is not invoked and a message, issued on SYSLOG, states that display
services are not available in a batch environment.

Any errors, including severe errors, that occur during batch mode
execution are handled in the same way as errors encountered during IeeF
execution. In both instances, severe error messages are written to
SYSLOG.

If a function abends, an IDUMP is taken and the ISPF batch job is
terminated.

Chapter 5. Invocation and Termination 101

102 ISPF Dialog Management Services

CHAPTER 6. DESCRIPTION OF SERVICES

This chapter contains a description of syntax conventions and return
codes for the dialog services, followed by a detailed description of
each service. The service descriptions are arranged in alphabetic order
for ease of reference. Appendix E, "Summary of ISPF Syntax," contains a
quick reference summary of dialog services. (See ISPF Dialog Management
Services Examples for examples of invoking ISPF services in application
dialogs.) Notation conventions are described in the Preface.

INVOCATION OF SERVICES

Each service description shows the format for command invocation and for
call invocation from a program module. The command invocation format is
used from a CLIST, EXEC or, option 7.6 of PDF (the dialog test
facility). In VSE, the command invocation format may be used only while
in option 7.6 of PDF.

Call invocation formats are shmvn in PL/I syntax. For example, ";" ends
statements in the formats described. This is a PL/I convention, but
syntax should be appropriate to the language being used.

Included in each service description is an example of its use in the
command procedure forma~the PL/I call format. Additional examples,
including COBOL and FORT~call formats, may be found in ISPF Dialog
Management Services Examples.

If ISPF/PDF is installed, consider using its model facilities (under
edit) when coding requests for ISPF services (see ISPF/PDF Reference for
a description of these facilities).

Command Invocation

ISPF services are invoked using the ISPEXEC command in a command
procedure (CLIST or EXEC) or while operating under option 7.6 of
ISPF/PDF.

The gen~ral format for command invocation is:

ISPEXEC service-name parameterl parameter2

The ". It serVlce-name is alphabetic, up to eight characters long.

Chapter 6. Description of Services 103

For some services, "parameterl" is a positional parameter and is
required. Other parameters are keyword parameters. They may take
either of two forms:

keyword
keyword (value)

Some keyword parameters are required and others are optional, as
indicated for each service. Keyword parameters may be coded in any
order. If conflicting keywords are coded, the last keyword is used.

In MVS and VM/SP, CLIST or EXEC variables consisting of a name preceded
by an ampersand (&), may be used anywhere within the statement as the
service name or as a parameter. Each variable is replaced with its
current value prior to execution of the ISPEXEC command.

Notes:

1. In MVS, TSO CLIST attention exits are not recognized by ISPF and, if
used, may cause unpredictable results.

2. In VM/SP, EXEC variables appearing within parentheses must be
followed by a blank, preceding the closing parenthesis. For
example:

ISPEXEC DISPLAY PANEL(&PNAME)

Some ISPF services allow the names of dialog variables to be passed as
parameters. (Variable names are eight characters or less). These names
should not be preceded with an ampersand unless substitution is desired;
for example:

ISPEXEC
ISPEXEC

VGET XYZ

VGET ~V~ w~\l Jl-\,6siitde

In the first example, XYZ is the name of the dialog variable to be
passed. In the second example, variable VNAME contains the name of the
dialog variable to be passed.

Some services accept a list of variable names, passed as a single
parameter. For example, the syntax for the VGET service is:

ISPEXEC VGET name-list [ASISISHAREDIPROFILE]

In this case, "name-list" is a positional parameter. It may consist of
a list of one or more (up to 254) dialog variable names, each name
separated by commas or blanks. If the name-list consists of more than
one name, it must be enclosed in parentheses. Parentheses may be
omitted if a single name constitutes the list; for example:

ISPEXEC
ISPEXEC
ISPEXEC
ISPEXEC

VGET
VGET
VGET
VGET

(AAA,BBB,CCC)
(LNAME FNAME I)
(XYZ)
XYZ

104 ISPF Dialog Management Services

The last two lines of the example (with and without the parentheses) are
equivalent.

In other cases, a list of variable names may be passed as a keyword
parameter. For example, the syntax for the TBPUT service is:

ISPEXEC TBPUT table-name [SAVE(name-list)]

where the parentheses are required by the "keyword(value)" syntax.
Again, the names may be separated by commas or blanks. Examples:

ISPEXEC
ISPEXEC

TBPUT
TBPUT

TBLA SAVE(LNAHE FNAME I)
XTABLE SAVE (XYZ)

VM/SP: Using the &PRESUME Statement

In VH/SP, the following statement may be included in an EXEC 2 procedure
prior to issuing the first ISPEXEC command:

&PRESUHE &SUBCOHHAND ISPEXEC

This statement allows the omission of "&SUBCOM~1AND" and "ISPEXEC" in
requests for ISPF services.

A subsequent &PRESUME statement with no operands may be used to cancel
the subcommand environment for the purpose of issuing other VH/SP
commands.

If &PRESUME &SUBCOMHAND ISPEXEC statement is not included, every request
for ISPF services must be preceded by &SUBCOMMAND ISPEXEC, as follows:

&TRACE OFF
&SUBCOMMAND ISPEXEC DISPLAY PANEL(ABC)

&TRACE specifies the use of the EXEC 2 language.

This last mentioned form is used in this publication, but the
'&SUBCOMHAND' is not shown with the service.

Call Invocation

ISPF services are invoked from programs, except FORTRAN programs, by
calling a subroutine named ISPLINK. FORTRAN programs must invoke this
subroutine using another name, ISPLNK, because, in FORTRAN, the maximum
length of a module name is six characters.

Note: Only a single task level is permitted. In MVS, a dialog
function may attach a lower-level subtask, but the subtask may not
invoke ISPF services. User dialogs may not use storage subpools
33 through 48, because these pools are reserved for use by ISPF.

Chapter 6. Description of Services 105

Examp'les of service requests in programs (COBOL, FORTRAN, and PL/I) may
be found in ISPF Dialog Management Services Examples.

The general format for invoking ISPF services from functions, other than
FORTRAN, is:

CALL ISPLINK (service-name, parameter1, parameter2 ...)

The parameters in call statements are all positional; they must be coded
in the order described for each service. Optional parameters may be
omitted in a right-to-Ieft dropout sequence. To obtain the default
value for an optional parameter, code the parameter as one or more
blanks. This has the same effect as omitting the parameter and is used
when parameters are to be dropped in other than a right-to-Ieft
sequence.

The general format for invoking ISPF services from FORTRAN functions is:

ISPLNK (service-name, parameter1, parameter2 ...)

a FORTRAN integer variable in which the return code from the
,\ 1 I) • I' A ISPF service is available. astrc 1S any va 1d FORTR N name.

For functions written in FORTRAN,' arguments may be passed as FORTRAN
variables or literals.

Standard register conventions are used. Registers 2-14 are preserved
across the call.

Note: The last parameter in the calling sequence must be
indicated with a high-order "1" bit in the last entry of the
address list. This high-order bit is automatically generated by
PL/I, COBOL, and FORTRAN call statements. It requires use of the
VL keyword in Assembler call statements.

Call statements are shown in PL/I syntax. Service names and keyword
values are shown as literals, enclosed in apostrophes C'); for example:

CALL ISPLINK ('TBOPEN', table-name, 'NOWRITE');

where "table-name" must be supplied either as a literal or as a variable
containing the table name.

106 ISPF Dialog Management Services

In PL/I programs, the following declare statements should be included:

DECLARE ISPLINK
ENTRY
EXTERNAL
OPTIONS (
ASM,
INTER,

/,;"NA~1E OF ENTRY POINT'" /

/*EXTERNAL ROUTINE*/
/*NEEDED OPTIONS*/
/*DO NOT USE PL/I DOPE VECTORS*/
/';', INTERRUPTS,;', /

RETCODE); /*EXPECT A RETURN CODE*/

Note: In VSE, RETCODE should not be specified.

Some languages, such as COBOL, do not allow literals within a call
statement. Use of literals is never required; all parameters may be
specified as variables, as in the following examples:

PL/I example:

DECLARE "SERVICE CHAR(8) INIT('TBOPEN '),
r,cr£B~E? CHAR(8) INITC'XTABLE '),

('-. ~DN':)~,(8) INIT('NOWRITE ');

'-'"-.:::~~;:;:~::'''':,,- .-~-"-.--... "'~'""" .. ''', "
CALL ISPLINK ,(SERVICE, TABLE, OPTION);

COBOL example:

WORKING-STORAGE SECTION.
77 SERVIS PICTURE A(8) VALUE 'TBOPEN
77 TABL PICTURE A(8) VALUE 'XTABLE
77 OPTSHUN PICTURE A(8) VALUE 'NOWRITE '

PROCEDURE DIVISION.
CALL 'ISPLINK' USING SERVIS TABL OPTSHUN.

FORTRAN example:

INTEGER SERVICE(2),TABLE(2),OPTION(2)
DATA SERVICE/'TBOP', 'EN '/
DATA TABLE/'XTAB', 'LE '/
DATA OPTION/'NOWR', 'ITE '/

LASTCC=ISPLNK(SERVICE ,TABLE ,OPTION)

Chapter 6. Description of Services 107

Parameters

For service calls in PL/I and COBOL parameter variables may be
initialized using literals in assignment statements, as in the following
examples:

PL/I example:

SERVICE='TBOPEN';

COBOL example:

NOVE "TBOPEN" TO SERVICE.

FORTRAN example: For FORTRAN service requests, previously defined
constants must be used in assignment statements; for example:

INTEGER
DATA

TBOPEN(2),SERVICE(2)
TBOPEN/'TBOP', 'EN 'I

SERVICE=TBOPEN

The following types of parameters may appear in a calling sequence to
ISPLINK or ISPLNK:

•

•

Service name or keyword: A left-justified character string that
must be coded as shown in the description of the particular service.
The string may be up to eight characters long. It need not be
delimited by a trailing blank.

Single name: A left-justified character string. If the string is
less than the maximum length for the particular parameter, it must
have a trailing blank to delimit the end of the string. The maximum
length for most names is eight characters. The exceptions are data
set name, volume serial, and fileid (see the description of the EDIT
and BROWSE services).

• Numeric value: A fullword signed binary number.

• Name list - string format:. A list of dialog variable names coded
as a character string. Each name is one to eight characters. The
string must start with a left parenthesis and end with a right
parenthesis. Within the parentheses, the names may be separated
with commas or blanks; for example:

'(AAA BBB CCC)'

When the list consists of a single name, the parentheses are not
required, but a trailing blank is required if the name is less than
eight characters in length.

108 ISPF Dialog Management Services

• Name list - structure format:. A list of dialog variable names
passed in a structure. Each name is one to eight characters. The
structure must contain the following information in the following
order:

1. Count - Full word binary integer containing the number of names
in the list.

2. Reserved - Full word binary integer that must contain a value of
either zero or eight.

3. List of names - Each element in the list must be an 8-byte
character string. Within each element, the name of the variable
must be left-justified with trailing blanks.

RETURN CODES FROM SERVICES

Return codes from services are grouped into three general categories:

• Normal completion (code 0).

• Exception condition (codes 4 and 8). Indicates a condition that is
not necessarily an error, but that the dialog should be aware of.

• Error condition (codes 12, 16, and 20). Indicates that the service
did not complete, or only partially completed operation, due to
errors.

The action taken in the case of errors (return code 12 or higher)
depends upon the error mode setting. There are two error modes:

•

•

CANCEL - displays and logs a message, then terminates the dialog and
redisp1ays the primary option menu.

RETURN - formats an error message (but does not display or log it),
then returns to the function that invoked
the designated return code.

the service, pas~n;.:a~ 12 b
..P ~,.~~~_ . ,

The dialog may set the error mode by means of the/CONTROL servic:] The
default mode is CANCEL. In CANCEL mode, genera11y~ontror is not
returned to the function that invoked the service. Hence, the function
generally will not see a return code of 12 or higher, and may not
include logic to process these kinds of errors. However, this is not so
for a return code of 20 from ISPLINK, when it is caused by an invalid
ISPF environment. In this case, because ISPF is not capable of
displaying an error panel (or any panel), control is returned to the
dialog, even though the return code is 20.

In RETURN mode, control is returned to the function that invoked the
service. That function must then have logic to handle return codes of
12 or higher.

Chapter 6. Description of Services 109

The RETURN mode applies only to the function that set it with the
CONTROL service. If a lower-level function is invoked, it starts out in
CANCEL mode. When a function returns to the higher-level function that
invoked it, the mode in which the higher-level function was operating is
resumed.

In RETURN mode, an error message is formatted prior to returning to the
function. The message id is contained in system variable ZERRMSG. The
short and long message text (in which substitutable variables have been
resolved) is contained in system variables ZERRSM and ZERRLl"1,
respectively. ZERRMSG, ZERRSM, and ZERRLM are changed only when the
return code from an ISPF service is greater than 8. If a corresponding
help panel was specified in the message definition, the name of the help
panel is contained in system variable ZERRHM. All of these system
variables are in the shared variable pool.

The function may display and/or log the message, if desired, simply by
invoking the appropriate service with the message id contained in
ZERRMSG. Examples:

ISPEXEC
ISPEXEC

DISPLAY MSG(&ZERRMSG)
LOG MSG(&ZERRMSG)

The short and long message text and the name of the corresponding help
panel are provided in the event that other action is desired.

MVS and VM/SP: Return Codes from Services

Each service returns a numeric code indicating the results of the
operation. For command invocation, the code is returned in the CLIST
variable LASTCC, or EXEC 2 variable RETCODE. For call invocation, the
code is returned in register 15 or, in FORTRAN programs, in registers 15
and O.

Programs coded in FORTRAN may examine the return code by using an
integer variable, such as lastrc in the following example:

lastrc = ISPLNK (service name, parameter1, parameter2 ...)

Programs coded in PL/I may examine the return code by using the PLIRETV
built=in function.

The following declare statements are required:

DECLARE ISPLINK EXTERNAL ENTRY OPTIONS(ASM INTER RETCODE);
DECLARE PLIRETV BUILTIN;

Programs coded in COBOL may examine the return code by using the
RETURN-CODE built-in variable.

110 ISPF Dialog Management Services

VSE: Return Codes and Other Processing Considerations

FORTRAN

This section describes the use of return codes and other processing
considerations when preparing a dialog, written in a high-level
language, to run in VSE.

Programs coded in FORTRAN may examine the return code by using an
integer variable, such as lastrc in the following example:

lastrc = ISPLNK (service name, parameter1, parameter2 ...)

Programs written at language level 77, must specify the compiler option
SC for ISPLNK. This creates a parameter list acceptable to ISPF.

ISPF does not permit the use of FORTRAN programs that use phase overlay
structures.

When invoking a PL/I program by use of the ISPSTART command or the
SELECT service, the LANG keyword must be specified with either the PLI
or PL1 parameter, e.g., LANG(PLI). A second parameter, storage-area,
may also be specified to indicate the number of storage bytes to be made
available to the PL/I program being invoked. (The default storage size
is 2816 bytes. Generally, the amount of storage required for a PL/I
program can be determined by compiling the program using the storage
option and adding 2192 to the DSA sizes indicated on the compile
listing. However, the storage requirement will vary considerably
depending on the compiler options specified; for example: while "FLOW"
requires a small amount of additional storage, "COUNT" adds
substantially to required storage).

PL/I programs may examine the return code from ISPF services by using
the PLIRETV built-in function.

The following declare statements are required for PL/I programs:

DECLARE ISPLINK EXTERNAL ENTRY OPTIONS(ASM INTER);
DECLARE PLIRETV BUILTIN;

PL/I programs must be link edited with modules ISPPLI and IBMBPJRA.
ISPPLI must be the first physical module in the phase and IBMBPJRA must
be the second physical module. In addition, linkage editor control
statements must include a statement defining the entry point of the
program; for example:

Chapter 6. Description of Services 111

COBOL

SERVICES

PHASE EHPLFN, ~~
INCLUDE ISPPLI
INCLUDE IBHBPJRA
INCLUDE ENPLFN
INCLUDE ISPLINK
ENTRY EHPLFN

ISPF does not permit the use of PL/I programs that use phase overlay
structures.

When invoking a COBOL program by use of either the ISPSTART command or
the SELECT service, the LANG keyword must be specified with the COBOL
parameter, e.g., LANG(COBOL).

To examine the return code from ISPF services, COBOL programs must have
a LINKAGE section with the return code field coded as the first item in
the section; for example:

LINKAGE SECTION
77 RETURN-CODE PIC 9(8) COHP-4.

Although the name of the return code field can be any name valid in
COBOL, it is recommended that RETURN-CODE be used to make the dialog
compatible with MVS and VM/SP. Regardless of what name is used, the
data description must appear exactly as shown.

ISPF does not permit the use of COBOL programs that use phase overlay
structures.

This section describes the ISPF services. The services are presented in
alphabetic order. For each service, the command procedure format is
shown, followed by the PL/I call format. Following this, the parameters
used when invoking the service are described.

112 ISPF Dialog Management Services

BROWSE - MVS or VM/SP: Display a Data Set or File

The BROWSE service provides an interface to the ISPF/PDF browse program,
bypassing display of the browse entry panel. (Use of BROWSE requires
installation of ISPF/PDF.) The BROWSE service may not be issued by a
PL/I main program that also uses subtasking. See ISPF/PDF Reference for
a description of BROWSE.

Syntax for use in an MVS environment:

ISPEXEC BROWSE DATASET (dsname) [VOLUi'IE (serial)]

[PASSWORD(pswd-value)]

CALL ISPLINK ('BROWSE', dsname [,serial]

[,pswd-va1ue]);

Syntax for use in a VM/SP environment:

ISPEXEC BROWSE FILE(fi1eid) [MENBER(member-name)]

CALL ISPLINK ('BROWSE', fileid [,member-name]);

dsname
Specifies the name of the data set, in TSO syntax, to be browsed.
A fully qualified data set name may be specified, enclosed in
apostrophes. If the apostrophes are omitted, the TSO user prefix
is automatically left-appended to the data set name.

For partitioned data sets, a member name may be specified, enclosed
in parentheses. If a member name is not specified, a member
selection list is displayed.

The maximum length of the dsname parameter is 56 characters.

Chapter 6. Description of Services 113

serial
Specifies the serial number of the volume on which the data set
resides. If this parameter is omitted or coded as blank, the
system catalog is searched for the data set name.

The maximum length of this parameter is 6 characters.

pswd-value
Specifies the password if the data set has OS password protection.
(The password is not specified for RACF or PCF protected data
sets.)

fileid
Specifies the fileid, in CMS syntax, to be browsed. The fileid
consists of a filename, filetype, and (optionally) filemode,
separated by one or more blanks. For call invocation of the browse
service, the fileid must be enclosed in parentheses. That is,
fileid is one calling sequence parameter consisting of a character
string that starts with a left parenthesis and ends with a right
parenthesis.

The maximum length of the fileid parameter (including the
parentheses for call invocation) is 22 characters.

member- name
Specifies the member to be browsed for a MACLIB or TXTLIB (ignored
for other file types). If member name is not specified, a member
selection list for the MACLIB or TXTLIB is displayed.

Nested dialogs may not use the BROWSE service if any of the functions
listed below are active under the same logical screen. Violation of
this restriction results in a severe error.

• ISPF/PDF option 1 (BROWSE)

• ISPF/PDF option 3 (UTILITIES)-

• ISPF/PDF option 4 (FOREGROUND)

• User functions that invoke the BROWSE service

The following return codes are possible:

o - Normal completion

20 - Severe error

114 ISPF Dialog Management Services

Example:

1. NVS

Invoke the BROWSE service to allow browsing of TELOUT, a member of
the ISPFPROJ.FTOUTPUT data set.

ISPEXEC BROWSE DATASET('ISPFPROJ.FTOUTPUT(TELOUT)')

CALL ISPLINK('BROWSE', 'ISPFPROJ.FTOUTPUT(TELOUT) I);

2. VH/SP

Invoke the BROWSE service to allow browsing of TELOUT, a member of
the FTOUTPUT HACLIB maclib.

ISPEXEC BROWSE FILE (FTOUTPUT HACLIB ~, ..) i'IEHBER(TELOUT)

CALL ISPLINK('BROWSE', '(FTOUTPUT MACLIB *)', 'TELOUT ');

Chapter 6. Description of Services 115

BROWSE - VSE: Display a Library or File

The BROWSE service provides an interface to the ISPFjPDF browse program,
bypassing display of the browse entry panel. (Use of BROWSE requires
installation of ISPFjPDF.) The BROWSE service may not be issued by a
PLjI main program that also uses subtasking. See ISPFjPDF Reference for
a description of BROWSE.

BROWSE DATASET(dsname) [RECFORM(recfm)]

[RECSIZE(lrecl)]

[BLKSIZE(blksize)]

[DEVADDR(sysno)]

[VOLUME(serial)]

CALL ISPLINK ('BROWSE', dsname [,recfm]

[,lrecl]

[, blksize]

[,sysno]

[,serial]);

dsname (for VSE/AF 1.3.5)
Specifies one of the following:

• lllllll.s.mmmmmmmm.tt

• lllllll .. mmmmmmmm.tt

• lllllll.s .. tt

• 1111111 ... tt

• nnnn

• nnnn.iiiiiiii

• nnnn.iiiiiiii.pppp

• fffffff

116 ISPF Dialog Management Services

where:

dsname

l's represent an AF library name; maximum length is 7
characters

s represents the AF sublibrary (source libraries only);
length is 1 character

mrs represent the AF member name; maximum length is 8
characters

tt represents the AF library type (SL, RL, PL),

nls represent a VSE/ICCF library number; maximum length is
4 digits

ils represent the VSE/ICCF library member name; maximum
length is 8 characters

pIS represent the VSE/ICCF library member password; maximum
length is 4 characters

fls represent a VSE sequential fileid; maximum length is 7
characters

Note: If a member name is not specified, a selection
list is provided.

(for VSE/AF 2.1)
Specifies one of the following:

• lllllll.ssssssss.mmmmmmmm.tttttttt

• lllllll.ssssssss.mmmmmmmm

• lllllll.ssssssss .. tttttttt

• nnnn

• nnnn.iiiiiiii

• nnnn.iiiiiiii.pppp

• fffffff

where:

l's represent a VSE/AF library name; maximum length is 7
characters

s
,

represents a VSE/AF sublibrary; maximum length is 8 s
characters

Chapter 6. Description of Services 117

mrs represent the VSE/AF member name; maximum length is 8
characters

tIs represent the VSE/AF member type; maximum length is 8
characters

n's represent a VSE/ICCF library number; maximum length is
4 digits

its represent the VSE/ICCF library member name; maximum
length is 8 characters

pIS represent the VSE/ICCF library member password; maximum
length is 4 characters

f's represent a VSE sequential fileid; maximum length is 7
characters

Note: If a member name is not specified, a selection
list is provided.

reefm

Ireel

Specifies the record format of the VSE sequential data set, as
follows:

F - specifies fixed format

v - specifies variable format

U - specifies undefined format

Specifies, in five digits or less, the record size of the
sequential data set. If called from a program, lrecl should be
declared as a fullword variable and set to the correct value.

blksize
Specifies, in five digits or less, the block size of the sequential
data set. If called from a program, blksize should be declared as
a fullword variable and set to the correct value.

sysno
Specifies the three numerical digits of the programmer logical unit
on which the sequential data set is mounted.

serial
Specifies, in six characters or less, the serial number of the
volume on which the data set resides.

Nested dialogs may not use the BROWSE service if any of the functions
listed below are active under the same logical screen. Violation of
this restriction results in a severe error.

• ISPF/PDF option 1 (BROWSE)

118 ISPF Dialog Management Services

• ISPFjPDF option 3 (UTILITIES)

• User functions that invoke the BROWSE service

The following return codes are possible:

o - Normal completion

20 - Severe error

Example:

1. Under VSEjAF 1.3.5, invoke the BROWSE service to allow browsing of
TELOUT, a member of source statement library USERSRC.

CALL ISPLINK ('BROWSE', 'USERSRC.S.TELOUT.SL I);

2. Under VSEjAF 2.1, invoke the BROWSE service to allow browsing of
TELOUT, a skeleton member of library.sublibrary USERLIB.USER1.

CALL ISPLINK ('BROWSE', 'USERLIB.USER1.TELOUT.S');

3. Invoke the BROWSE service to allow browsing of a sequential data set
named SEQFILE, consisting of fixed length 80-byte records, blocked
10, mounted on SYS001, volume number 111111. Program variables
RSIZE and BSIZE are full words and contain the binary equivalent of
80 and 800, respectively.

CALL ISPLINK ('BROWSE', 'SEQFILE " 'F', RSIZE, BSIZE,
'001', '111111');

Chapter 6. Description of Services 119

CONTROL - Set Processing Modes

120

The CONTROL service defines certain processing options for the dialog
environment. The processing options control the display screen and
error processing.

ISPEXEC CONTROL DISPLAY LOCK
LINE [START(line-number)]
SM [START(line-number)]
REFRESH
SAVE I RESTORE

NONDISPL [ENTER lEND]

ERRORS

SPLIT

[CANCEL I RETURN]

{
ENABLE }
DISABLE

CALL ISPLINK ('CONTROL', type [,mode]

[,line-number]);

For call invocation:

~ may be 'DISPLAY', 'NONDISPL', 'ERRORS', or 'SPLIT'

mode may be, ~ LocK', , LINE', 'SK', 'REFRESH',

'SAVE', or 'RESTORE' ~'for type 'DISPLAY';

ENTER' or type 'NONDISPL';

i"'CANCEL' or 'RETURN' for type 'ERRORS';

'ENABLE' or 'DISABLE' ,for type 'SPLIT'.

DISPLAY
Specifies that a display mode is to be set. The valid modes are
LOCK, LINE, SM, REFRESH, SAVE and RESTORE. LINE and SM are in
effect until the next display of an ISPF panel. REFRESH occurs on
the next display of an ISPF panel.

LOCK
Specifies that the next (and only the next) display output (e.g.,
by the DISPLAY or TBDISPL service) is to leave the terminal user's

ISPF Dialog Management serVices~ ~ tk 5 r; Lice 1-f7?tle{ St'1' v; (e..

LINE

keyboard locked. ISPF processes the next display output as though
the user had depressed the ENTER key.

This facility may be used to display an "in process" message during
a long running operation. It is the dialog developer's
responsibility to ensure that the keyboard is unlocked (by the
subsequent display of a message or panel).

Specifies that terminal line-mode output is expected (e.g., from a
TSO or CMS command or VSE system or program dialog). The screen is
completely rewritten on the next ISPF full screen write operation,
after the line(s) have been written.

Note: CONTROL DISPLAY LINE is automatically invoked by the
SELECT service whenever a SELECT CMD request is encountered,
unless the command begins with a percent (%) sign; for
example:

SELECT CMD(ABC) - causes automatic entry into line mode.
SELECT CMD('7~ABC) - no automatic entry into line mode.

line-number

In MVS, this parameter specifies the line number on the screen
where the line-mode output is to begin. (The first line on the
screen is line number 1.) The screen is erased from this line
position to the bottom. If this parameter is omitted or coded as
zero, the value defaults to the end of the body of the currently
displayed panel.

The line-number parameter must have an integer value. For call
invocation, it must be a full word binary integer. The parameter
should specify a line value that is not within 3 lines of the
bottom of the logical screen. If the value is within 3 lines of
the bottom of the logical screen, a.default line value is used.
This value is equivalent to the number of the bottom line of the
screen, minus 3.

This parameter ~s meaningful only when entering line mode. It may
be specified with the SM keyword, since SM reverts to LINE if the
Session Manager is not installed. Once line mode has been set,
subsequent attempts to set line mode (without intervening full
screen output) are ignored. Accordingly, the line-number, once
set, cannot be changed.

In VM/SP, this parameter is ignored. Line mode output is always
displayed starting at the top of a blank screen.

In VSE, this parameter is ignored. Line mode output is always
displayed immediately following the ICCF column indicator line.

Chapter 6. Description of Services 121

SM
Specifies that the TSO Session ~1anager should take control of the
screen when the next line-mode output is issued. If the Session
Manager is not installed, the SM keyword is treated the same as
LINE.

REFRESH
Specifies that the entire screen image should be rewritten when the
next ISPF-generated full screen write is issued to the terminal.
This facility should be used before or after invoking any program
that uses non-ISPF services for generating full screen output
(e . g., XE D IT) .

SAVE
Used in conjunction with DISPLAY, TBDISPL, BROWSE, or EDIT
processing, specifies that information about the current logical
screen (including control information) is to be saved.

Use of the CONTROL service SAVE and RESTORE allows DISPLAY,
TBDISPL, BROWSE, or EDIT processing to be nested. The CONTROL
service is used to save and restore the environment at each level.
Nesting of successive requests for the same service is not allowed.

Note: Whenever the dialog manager encounters a SELECT
command entered by the user in the command field of a
displayed panel as described in "Command Table Format" on
page 54, the current display environment is automatically
saved prior to invoking the designated dialog. That
environment is subsequently restored when the dialog ends.

Certain positioning information, including the ZTDTOP variable and
the current row pointer, is not saved. The variable ZVERB is not
saved.

RESTORE
Specifies the restoration of information previously saved by
CONTROL DISPLAY SAVE. The logical screen image is restored exactly
as it appeared when the SAVE was performed. Processing of the
previous panel or table display can then be resumed.

NONDISPL
Specifies that no display output is to be issued to the terminal
when processing the next panel definition. This option is in
effect only for the next panel; after that, normal display mode is
resumed.

ENTER

END

Specifies that the ENTER key is to be simulated as the user
response to the NONDISPL processing for the next panel.

Specifies that the END command is to be simulated as the user
response to the NONDISPL processing for the next panel.

122 ISPF Dialog Management Services

ERRORS
Specifies that an error mode is to be set. The valid modes are
CANCEL and RETURN. If the RETURN mode is set, it applies only to
the function that set it using this, the CONTROL, service.

CANCEL
Specifies that the dialog should be terminated on an error (a
return code of 12 or higher from any service). A message is
written to the ISPF log file and a panel is displayed to describe
the particular error situation.

RETURN
Specifies that control should be returned to the dialog on an
error. The system variable ZERRMSG contains the message id for a
message that describes the error. The message is not written to
the ISPF log file (unless TRACE mode is in effect), nor is an error
panel displayed. -~ fCJi. fdi

Note: If a dialog developer wan~s, on an error, to ABEND
with STAE, he must specify CONTROL RETURN because
specification of CONTROL CANCEL can nullify the developer's
requested STAE.

SPLIT
Defines the user's ability to enter split screen mode.

ENABLE
Specifies that the user is be allowed to enter split screen mode.
Split screen mode is normally enabled. It is disabled only if
explicitly requested by use of the CONTROL service. It remains
disabled until explicitly re-enabled by the CONTROL service.

DISABLE
Specifies that the user's ability to enter split screen mode should
be disabled, until explicitly enabled via the CONTROL service. If
the user is already in split screen mode, a return code of 8 is
issued and split screen remains enabled.

The following return codes are possible:

o - Normal completion.

8 - Split screen mode already in effect (applies only to a
SPLIT DISABLE request); split screen remains enabled.

20 - Severe error.

Example: Set the error processing mode to allow the dialog function to
process return codes of 12 or higher.

ISPEXEC CONTROL ERRORS RETURN

CALL ISPLINK('CONTROL', 'ERRORS I 'RETURN I);

Chapter 6. Description of Services 123

D I SPLAY - Display Panels and Messages

The DISPLAY service reads a panel definition from the panel library,
initializes variable panel fields from the c6rresponding dialog
variables, and displays the panel on the screen. A message may
optionally be displayed with the panel.

The user may enter information in fields specified to be input fields on
the panel definition. After the user presses ENTER, content of the
input fields is stored in dialog variables specified on the panel
definition. Then, any processing specified on the panel definition is
performed and the DISPLAY service returns to the calling function.

ISPEXEC DISPLAY [PANEL(panel-name)]

[MSG(message-id)]

[CURSOR(field-name)]

CALL ISPLINK ('DISPLAY' [,panel-name]

[,message-id]

[,field-name]);

panel-name
Specifies the name of the panel to be displayed.

message-id
Specifies the identification of a message to be displayed on the
panel.

field-name
Specifies the name of the field where the cursor is to be
positioned.

Regardless of the format, all of· the parameters are optional. The
processing of the panel-name and message-id parameters is as follows:

•

•

If panel-name is specified and message-id is not specified, the
panel is read from the panel library, initialized, and displayed
without a message.

If panel-name and message-id are both specified, the panel is read
from the panel library, initialized, and displayed with the
specified message.

124 ISPF Dialog Management Services

• If panel-name is not specified and message-id is specified, the
current panel is overlaid with a message, without any initialization
being performed on the panel.

• If neither panel-name nor message-id is specified, the current panel
is redisplayed, without a message and without any initialization.

The field-name parameter may be used to control the initial position of
the cursor when the panel is displayed. However, the field-name
parameter may be overridden by initialization statements in the panel
definition. For more information on use of the field-name parameter,
see "Default Cursor Positioning" and "Panel Processing Considerations"
in Chapter 7.

The following return codes are possible:

o - Normal completion.

8 - User requested termination via the END or RETURN command.

12 - The specified panel, message, or cursor field could
not be found.

16 - Truncation or translation error in storing defined
variables.

20 - Severe error.

Example: (See Appendix A, "Using the DISPLAY Service" on page 261 for
another example of DISPLAY processing).

Panel definition XYZ specifies display of variables AAA and KLM (an
input field). Using this definition, invoke ISPF services to display
these variables at the terminal and superimpose, on line 1, the short
form text of message number ABCX013. Position the cursor, on the
display, at the beginning of input field KLM ready for entry of data by
the person at the terminal.

ISPEXEC DISPLAY PANEL(XYZ) MSG(ABCX013) CURSOR(KLM)

CALL ISPLINK('DISPLAY', 'XYZ' 'ABCX013', 'KLM f);

Chapter 6. Description of Services 125

EDIT - MVS or VM/SP: EDIT a Data Set or File

The EDIT service provides an interface to the ISPF/PDF editor, bypassing
display of the edit entry panel. (Use of EDIT requires installation of
ISPF/PDF.) The EDIT service may not be issued by a PL/I main program
that also uses subtasking. See ISPF/PDF Reference for a description of
the editor.

Syntax for use in an MVS environment:

ISPEXEC EDIT DATASET(dsname) [VOLUr-IE (serial)]

[PASSWORD(pswd-value)]

CALL ISPLINK ('EDIT', dsname [,serial]

[,pswd-value]);

Syntax for use in a VM/SP environment:

ISPEXEC EDIT FILE(fileid) [MEMBER(member-name)]

CALL ISPLINK ('EDIT', fileid [,member-name]);

dsname
Specifies the name of the data set, in TSO syntax, to be edited. A
fully qualified data set name may be specified, enclosed in
apostrophes. If the apostrophes are omitted, the TSO user prefix
is automatically left-appended to the data set name.

For partitioned data sets, a member name may be specified, enclosed
in parentheses. If a member name is not specified, a member
selection list is displayed.

The maximum length of the dsname parameter is 56 characters.

126 ISPF Dialog Management Services

serial
Specifies the volume serial on which the data set resides. If this
parameter is omitted or coded as blank, the system catalog is
searched for the data set name.

The maximum length of this parameter is 6 characters.

pswd-value

fileid

Specifies the password if the data set has OS password protection.
(The password is not specified for RACF or PCF protected data
sets.)

Specifies the fileid, in CHS syntax, to be edited. The fileid
consists of a filename, filetype, and (optionally) filemode,
separated by one or more blanks. For call invocation of the edit
service, the fileid must be enclosed in parentheses. That is,
fileid is one call~ng sequence parameter consisting of a character
string that starts with a left parenthesis and ends with a right
parenthesis.

The maximum length of the fileid parameter (including the
parentheses for call invocation) is 22 characters.

Note: The EDIT service is intended for use with existing
files. In the VM/SP environment, if fileid specifies a
non-existent file, the user is able to create a new file.
However, the file characteristics (record format and logical
record length) may be unpredictable. They are whatever was
saved in the last-used edit profile for the specified file
type. If the user has no edit profile for this file type,
the characteristics of the new file are fixed 80.

member- name
Specifies the member to be edited for a HACLIB or TXTLIB (ignored
for other file types). If member name is not specified, a member
selection list for the MACLIB or TXTLIB is displayed.

Nested dialogs may not use the EDIT service if any of the functions
listed below are active under the same logical screen. Violation of
this restriction results in a severe error.

F~. ISPF/PDF option 2 (EDIT)

• ISPF/PDF option 3 (UTILITIES)

• ISPF/PDF option 4 (FOREGROUND)

• User functions that invoke the EDIT service

Chapter 6. Description of Services 127

The following return codes are possible:

o - Normal completion, data was saved.

4 - Normal completion, data was not saved.

Note: For a D37 space ABEND, a partial save is done, up to the
point where space was depleted.

20 - Severe error.

Example:

1. MVS

Invoke the EDIT service to allow editing of TELOUT, a member of the
ISPFPROJ.FTOUTPUT data set.

ISPEXEC EDIT DATASET(ISPFPROJ.FTOUTPUT(TELOUT))

CALL ISPLINK('EDIT', 'ISPFPROJ.FTOUTPUT(TELOUT) I);

2. VM/SP

Invoke the EDIT service to allow editing of TELOUT, a member of the
FTOUTPUT MACLIB maclib.

ISPEXEC EDIT FILE(FTOUTPUT MACLIB *) MEMBER(TELOUT)

CALL ISPLINK('EDIT', '(FTOUTPUT MACLIB *)', 'TELOUT I);

128 ISPF Dialog Management Services

EDIT - VSE: EDIT a Library or File

The EDIT service provides an interface to the ISPFjPDF editor, bypassing
display of the edit entry panel. (Use of EDIT requires installation of
ISPFjPDF.) The EDIT service may not be issued by a PLjI main program
that also uses subtasking. See ISPFjPDF Reference for a description of
the editor.

EDIT DATASET (dsname) [PROFILE(profile)]

[RECFORtl(recfm)]

[RECSIZE(lrecl)]

[BLKSIZE(blksize)]

[DEVADDR(sysno)]

[VOLUHE (serial)]

CALL ISPLINK ('EDIT', dsname [,profile]

[, recfm]

[,lrecl]

[,blksize]

[,sysno]

[, serial]);

dsname (for VSE/AF 1.3.5)
Specifies one of the following:

• 1111111.s.mmmmmmmm.tt

• 1111111 .. mmmmmmmm.tt

• 1111111.s .. tt

• 1111111 ... tt

• nnnn

• nnnn.iiiiiiii

Chapter 6. Description of Services 129

• nnnn.iiiiiiii.pppp

• fffffff

where:

lIs represent an AF library name; maximum length is 7
characters

s represents the AF sublibrary (source libraries only);
length is 1 character

mls represent the AF member name; maximum length is 8
characters

tt represents the AF library type (SL, RL, PL),

nls represent a VSE/ICCF library number; maximum length is
4 digits

ils represent the VSE/ICCF library member name; maximum
length is 8 characters

pIS represent the VSE/ICCF library member password; maximum
length is 4 characters

fls represent a VSE sequential fileid; maximum length is 7
characters

Note: If a member name is not specified, a selection
list is provided.

dsname (for VSE/AF 2.1)
Specifies one of the following:

• lllllll.ssssssss.mmmmmmmm.tttttttt

• lllllll.ssssssss.mmmmmmmm

• lllllll.ssssssss .. tttttttt

• nnnn

• nnnn.iiiiiiii

• nnnn.iiiiiiii.pppp

• fffffff

where:

lIs represent a VSE/AF library name; maximum length is 7
characters

130 ISPF Dialog Management Services

sts represents a VSEjAF sublibrary; maximum length is 8
characters

mts represent the VSEjAF member name; maximum length is 8
characters

tts represent the VSEjAF member type; maximum length is 8
characters

nts represent a VSEjICCF library number; maximum length is
4 digits

its represent the VSEjICCF library member name; maximum
length is 8 characters

pts represent the VSEjICCF library member password; maximum
length is 4 characters

fts represent a VSE sequential fi1eid; maximum length is 7
characters

Note: If a member name is not specified, a selection
list is provided.

profile
Specifies the name of the edit profile. When omitted, the default
is ISPEDIT.

reefm

Ireel

Specifies the record format of the VSE sequential data set, as
follows:

F - specifies fixed format

v - specifies variable format

Specifies, in five digits or less, the record size of the
sequential data set. If called from a program, 1recl should be
declared as a fu11word variable and set to the correct value.

blksize
Specifies, in five digits or less, the block size of the sequential
data set. If called from a program, b1ksize should be declared as
a ful1word variable and set to the correct value.

sysno

serial

Specifies the three numerical digits of the programmer logical unit
on which the sequential data set is mounted.

Specifies the volume serial, six or less characters, on which the
sequential data set resides.

Chapter 6. Description of Services 131

Nested dialogs may not use the EDIT service if any of the functions
listed below are active under the same logical screen. Violation of
this restriction results in a severe error.

• ISPF/PDF option 2 (EDIT)

• ISPF/PDF option 3 (UTILITIES)

• User functions that invoke the EDIT service

The following return codes are possible:

o - Normal completion.

20 - Severe error.

Example:

1. Under VSE/AF 1.3.5, invoke the EDIT service to allow browsing of
TELOUT, a member of source statement library USERSRC.

CALL ISPLINK ('EDIT', 'USERSRC.S.TELOUT.SL')

2. Under VSE/AF 2.1, invoke the EDIT service to allow browsing of
TELOUT, a skeleton member of library.sublibrary USERLIB.USER1.

CALL ISPLINK ('EDIT', 'USERLIB.USER1.TELOUT.S')

3. Invoke the EDIT service to allow editing of a sequential data set
named SEQFILE, consisting of fixed length BO-byte records, blocked
10, mounted on SYS001, volume number 111111. Program variables
RSIZE and BSIZE are full words and contain the binary equivalent of
BO and BOO, respectively. Use the default profile.

CALL ISPLINK ('EDIT', 'SEQFILE '

132 ISPF Dialog Management Services

, ,
'F', RSIZE, BSIZE,
'001', '111111');

.•• "r"" ,.....-'~·"·-".,_.

'" FTCLOSE - End (File Tailoring
\.

The FTCLOSE service is used to terminate the file tailoring process and
to indicate the final disposition of the file tailoring output.

A member-name parameter should be specified if the output file is a
library. The file tailoring output is given the specified member name.
No error condition results if the member-name parameter is not
specified, and the output is not stored in the library.

If the member-name parameter is specified and the output file is
sequential, a severe error results.

The library parameter should be specified if a library other than that
represented by the ISPFILE definition is to be used. The library
parameter is ignored if the "TEHP" option is specified on the FTOPEN
service or if the ISPFILE definition specifies a sequential data set. A
severe error occurs if file tailoring attempts to use the data set and
it is not a library.

The NOREPL parameter specifies that an existing member in the file
tailoring output library is not to be overlaid (replaced) by the current
FTCLOSE service. If a member of the same name already exists, the
FTCLOSE service request is terminated with a return code of 4 and the
original member remains unaltered.

ISPEXEC FTCLOSE [NA~1E(member-name) [LIBRARY(library-name)]

[NOREPL]

CALL ISPLINK ('FTCLOSE' [,member-name] [,library-name]

[, 'NOREPL ']) ;

member- name
Specifies the name of the member in the output library that is to
contain the file tailoring output.

library-name
Specifies the name of aDD, FILEDEF, or ISPDEF statement that
defines the output library in which the member-name exists.
ISPFILE is the default if this parameter is omitted.

NOREPL
Specifies that FTCLOSE is not to overlay an existing member in the
output library.

Chapter 6. Description of Services 133

The following return codes are possible:

o - Normal completion.

4 Member already exists in the output library and NOREPL was
specified. The original member is unchanged.

8 - File not open (FTOPEN was not used prior to FTCLOSE).

12 - Output file in use; ENQ failed.

16 - Skeleton library or output file not allocated.

20 - Severe error.

Example: End the file tailoring process and store the result of the
processing in the file tailoring output library in member TELOUT.

ISPEXEC FTCLOSE NAME(TELOUT)

CALL ISPLINK('FTCLOSE', 'TELOUT ');

134 ISPF Dialog Management Services

.. /'
FTERASE - Erase File Tailoring~ Output

The FTERASE service erases (deletes) a member of a file tailoring output
library.

A severe error occurs if a specified library or the default (ISPFILE) is
a sequential file.

ISPEXEC FTERASE member-name [LIBRARY(library-name)]

CALL ISPLINK ('FTERASE', member-name [,library-name]);

member- name
Specifies the name of the member that is to be deleted from the
output library.

library-name
Specifies the name of aDD, FILEDEF, or ISPDEF statement that
defines the output library in which the member-name to be deleted
exists. ISPFILE is the default if this parameter is omitted.

The following return codes are possible:

o - Normal completion.

8 - Hember does not exist.

12 Output library in use; ENQ failed.

16 - Output library not allocated.

20 - Severe error.

Example: Erase member TELOUT in the file tailoring output library.

ISPEXEC FTERASE TELOUT

CALL ISPLINK('FTERASE', 'TELOUT ');

Chapter 6. Description of Services 135

." ... { '''.:'''~
FTINCL - Include r'Skeleton,)

"" __ ~._~."".~.".,.,.,,,,.,Jf'

The FTINCL service specifies the name of the skeleton (member of the
skeleton library) that is to be used to produce the file tailoring
output.

See "Skeleton Definitions" in Chapter 7.

ISPEXEC FTINCL skel-name [NOFT]

CALL ISPLINK ('FTINCL', skel-name [, 'NOFT']);

skel-name
Specifies the name of the skeleton.

NOFT
Specifies that no file tailoring is to be performed on the
skeleton: the entire skeleton is to be copied to the output file
exactly as is with no variable substitution or interpretation of
control records.

The following return codes are possible:

o - Normal completion.

8 - Skeleton does not exist.

12 Skeleton or table in use; ENQ failed.

16 - Data truncation occurred; or skeleton library or
output file not allocated.

20 - Severe error.

Example: Perform file tailoring using the file tailoring skeleton named
TELSKEL, a member in the file tailoring skeleton library, to control
processing.

ISPEXEC FTINCL TELSKEL

CALL ISPLINK('FTINCL', 'TELSKEL I);

136 ~ISPF Dialog Management Services

The FTOPEN service begins the file tailoring process. It allows
skeleton files to be accessed from the skeleton library, specified by
ddname ISPSLIB.

The skeleton library must be preallocated prior to invoking ISPF.
ISPSLIB may specify a concatenation of libraries. See Chapter
4, "Library Requirements," for library setup requirements.

If output from file tailoring is not to be placed in a temporary file,
the desired output file must be allocated to ddname ISPFILE prior to
invoking this service. ISPFILE may designate either a library or a
sequential file.

ISPEXEC FTOPEN [TEHP]

CALL ISPLINK ('FTOPEN' [, 'TEMP']);

TEMP

Specifies that the output of the file tailoring process should be
placed in a temporary sequential file. The file is automatically
allocated by ISPF. Its name is available in system variable
ZTEMPF.

If this parameter is omitted, the output will be placed in the
library or sequential file as designated by ddname ISPFILE.

In MVS, ZTEHPF contains a fully qualified data set name. Generated
JCL in this file may be submitted for background execution using
the following TSO command:

SUBMIT '&ZTEMPF'

Note: If ISPCTL1 and ISPCTL2 are preallocated to VIO, this
temporary data set may not be accessed using BROWSE or EDIT.

Chapter 6. Description of Services 137

In V~l/SP, the temporary file is written to the user's A-disk. The
ISPF-generated file name is contained in ZTEMPF. The file type is
always ISPTEMP. Data in this file may be sent to another virtual
machine using the following CMS command:

PUNCH &ZTEMPF ISPTEMP

In VSE, ZTEMPF contains the filename of the temporary sequential
data set.

The following return codes are possible:

o - Normal completion.

8 File tailoring already in progress.

12 - Output file in use; ENQ failed.

16 - Skeleton library or output file not allocated.

20 - Severe error.

Example: Prepare for access (open) both the file tailoring skeleton and
file tailoring output libraries.

ISPEXEC FTOPEN

CALL ISPLINK('FTOPEN');

138 ISPF Dialog ~lanagement Services

LOG - Write a Message to the Log File

The LOG service causes a message to be written to the ISPF log file.

ISPEXEC LOG NSG(message-id)

CALL ISPLINK ('LOG', message-id);

message-id
Specifies the identification of the message that is to be retrieved
from the message library and written to the log.

The following return codes are possible:

o - Normal completion.

12 ~ The message-id contains invalid syntax or was not found.

20 - Severe error.

Example:

• In a CLIST or EXEC, dialog variable TERNSG contains a message-ide
Write this message in the ISPF log file.

ISPEXEC LOG NSG(&TERHSG)

• In a PL/I program, program variable TERHSG contains a message-ide
Write this message in the ISPF log file.

CALL ISPLINK('LOG', TERHSG);

• Write message ABCX013 in the ISPF log file.

ISPEXEC LOG MSG(ABCX013)

CALL ISPLINK('LOG', 'ABCX013 f);

Chapter 6. Description of Services 139

L

'0 '
i
I

SELECT - Select a Panel or Function

..... ,

The SELECT service may be used to display a hierarchy of selection
panels (menus), or invoke a function.

Within a dialog function a program may invoke another program using
standard CALL or link conventions. These are nested programs and are
transparent to the dialog manager. On the other hand, when the invoked
program is a new dialog function, SELECT must be used.

Note: Programs or command processors that use VNCF to
communicate with their own disconnected virtual machine, may not
be invoked under ISPF.

ISPEXEC SELECT PANEL(panel-name) [OPT(option)]

C}1D (command)

PGM(program-name) [PARM(parameters)]

[NEWAPPL [(application-id)]INEWPOOL]

CALL ISPLINK ('SELECT', buf-length, buffer);

Note: parameters which may appear in buffer are:

panel-name

PANEL(panel-name) [OPT(option)]

CND(command)

PGM(program-name) [PARN(parameters)]
[LANG(PLI-IPL1 [,storage-area])]
[LANG(COBOL)]

[NEWAPPL [(application-id)] INEWPOOL]

Specifies the name of a selection panel to be displayed.

option

~
specifies an initial option, which must be a valid option on the
menu specified by panel-name. Specifying an option causes direct ~-)\Q~ 1i . .,.A entry to that option without displaying the menu. (The menu is

i~~ S~\a processed in nondisplay mode, as though the user had entered the
~ option.)

140 ISPF Dialog Management Services

command
In MVS and VM/SP, specifies a command procedure (CLIST or EXEC 2),
or any TSO or CMS command that is to be invoked as a dialog
func t ion. -C8mmart(r'pa'rame"t'e'r's"'maf"13°e"'''Inc1~uOea-wrtnl11't

Y""'P'1"feili'fl'e!es . -~'A"'p'e~rcen:t""'(%)'-'sI'gn""'may~~'pr'ece(f;t~lne"''''ii.'am'eo~ command
) pr6ce~ure 11fLIST or EXEC 2) to improve performance, and to avoid
~ automatic entry into line display mode (see description of CONTROL

~;2. ') service) .

Note: In MVS, ordinary commands (command processors) are
invoked by the ATTACH macro and may not issue requests for
ISPF dialog services.

In VM/SP, references made by CMS commands while running ISPF,
generally, give unpredictable results.

In VSE, this parameter is not used because ICCF procedures may not
be used for writing dialog functions.

~.- -_ .. " ~.:,.:::.::.,-.-.....,~.~,:,,~-~~

(p;~gram-~a~v
__ , ___ S.p,e.c.:l:-:t-Ies the name of a program that is to be invoked as a dialog

/
-1',.1

,/
/

/
;'
I
I

\

) function. If the program is coded in PL/I, it must be a MAIN
,/ procedure.

Note: Dialog developers should avoid the ISP and ISR
prefixes (the ISPF and PDF component codes) in naming dialog
functions. Special linkage conventions, intended only for
internal ISPF use, are used to invoke programs named
"ISPxxxxx" and "ISRxxxxx".

\
\
~'" In MVS, this parameter must specify the name of a load module that
~sible by use of the LINK macro. -----""'"" ... ');;"'....,,.~"~-...... '.--""~"~-.. -' ' •. '.

In VM/SP, this parameter may specify the name of a TEXT file, a
member of a TXTLIB, or a member of a LOADLIB. For more
information, see "Library Setup - VM/SP Environment" in Chapter 4.

In VSE/AF 1.3.5, this parameter must specify the name of a phase
contained in a core image library. This library must be defined by
a LIBDEF CL statement.

In VSE/AF 2.1, this parameter must specify the name of a phase
contained in a library.sublibrary, which must be defined by a
LIBDEF PHASE statement.

parameters
Specifies input parameters to be passed to the program. The
program should not attempt to modify these parameters.

The parameters within the parentheses are passed as a single
character string, preceded by a halfword containing the length of
the character string, in binary. (The length value does not
include itself.) This convention is exactly the same as if the

Chapter 6. Description of Services 141

parameters had been passed in a PARH= keyword on a JCL EXEC
statement.

Parameters passed from the SELECT service to a PLjI program may be
declared on the procedure statement in the standard way:

XXX: PROC (PARM) OPTIONS(HAIN);
DeL PARM CHAR (nnn) VAR;

If the value of the PARM field is to be used as an ISPF dialog
variable, it must be assigned to a fixed character string, because
the VDEFINE service cannot handle varying length PLjI strings.

In MVS and VMjSP, the first character of the PARM field must be a
slash ('j'), because PLjI assumes that any value prior to the slash
is a run-time option.

LA N G (P L I) 0 r LA N G (P L 1)
In VSE, specifies that the function being invoked is written in the
PLjI language.

In MVS and VMjSP, this keyword is not used.

storage-area
In VSE, for programs written in PLjI, specifies the number of bytes
of dynamic storage to be made available to the function being
invoked.

The default storage size is 2816 bytes. Generally, the amount of
storage required for a PLjI program can be determined by using the
storage option to compile the program and then adding 2192 to the
DSA sizes specified on the compile listing. However, the storage
requirement will vary considerably depending on the compiler
options specified, i.e. "FLOW" will use slightly more storage but
"COUNT" will substantially increase the storage requirement.

In MVS and VMjSP, this parameter is not used.

LANG(COBOL)
In VSE, specifies that the function being invoked is written in the
COBOL language.

In MVS and VMjSP, this keyword is not used.

NEWAPPL
Specifies that a new application is being invoked.

application - id
Specifies a 1- to 4-character code for the new application named in

_!J.1jJ? __ ~g.1~<2,!".service._:S~JlJ,l~s_t~ .. _.~.!he code. is t0l:>: p~e~i~~d t? t~e
<:~~.~~, . pro fi I!:) t~"~di t . P ro f.~J~, or th~~'~c:mffif~lfa~~''t ao 1 e' . as socia·t~a,
with t lie-- apt> 1: i cat ion ;-_ .. lIs"foT I ows (where xxx)Cis··"t he-
application-id):

142 ISPF Dialog Management Services

Application Profile
Edit Profile
Command Table

xxxxPROF
xxxxEDIT
xxxxCMDS

These are table (member) names in the profile or table input
library.

If the NEWAPPL keyword is specified but the application-id is not
specified, the default application-id is ISP, as follows:

User Profile
Edit Profile
Command Table

NEWPOOL

ISPPROF
ISPEDIT
ISPCMDS

Specifies that a new shared variable pool is to be created without
specifying a new application. Upon return from the SELECT service,
the current shared variable pool is reinstated.

buf-Iength
Specifies the length of a buffer containing the selection keywords.
This parameter must be a fullword binary integer.

buffer
Specifies the name of a buffer containing the selection keywords.
This is a character string parameter. The selection keywords in
the buffer are specified exactly as they would be coded for the
ISPEXEC command; for example:

BUFNAME = 'PANEL(ABC) OPT(9) NEWPOOL';

In the above example, it is assumed that BUFNAME is the name of the
buffer. The apostrophes are part of the syntax of the PL/I
assignment statement. They are not stored in the buffer itself.

If a command or program is invoked using SELECT, the return code from
the command or program is passed to the function that invoked SELECT.

Note: If a selected command, not using ISPF display services,
could cause a full screen input or output operation, the developer
should refresh the entire screen on the next display. To do this,
use the CONTROL DISPLAY REFRESH service. See "Control Service" in

Chapter 2. ~

rr rvJ.,

Chapter 6. Description of Services 143

The following return codes are possible if a menu is specified:

o - Normal Completion. The END command was entered from the selected
menu.

4 - Normal Completion. The RETURN command was entered or the EXIT
option as specified from the selected menu or from some
lower-level menu.

12 - The specified panel could not be found.

16 Truncation error in storing the ZCMD or ZSEL variable.

20 - Severe error.

Example:

• In MVS or V~l/SP (in a CLIST or EXEC), start a hierarchy of selection
panels (menus) from a dialog function. The first menu in the
hierarchy is named QOPTION.

ISPEXEC SELECT PANEL(QOPTION)

• In a PL/I program, program variable QOPT contains 'PANEL(QOPTION),
and program variable QOPTL is a full word containing the bi<~~f'y~,w.~" .. ,,,>","

equivalent of 14. Start a hierarchy of selecti~D""",pane"rs,-uCmenus) ""\,;
beginning with panel QOPTION. ;.~e·,·<-v:'~;""·h r 5Pt'Yt,C 5t LtC-, '

CALL ISPLINK('SELECT' QOPTL QOPT). :i'/" 1,·e.".t~(1{ c"~Jq,~I,Y\,, ,dr, ' "";;;;;:.:~,
, , "I S }" _ '" f)(Le,) """"., ... ,--<.~ .. " '"-, ; ~ (,.. \ S T 01(' ", ' '/

• In MVS or VM/SP (in a, ... ~~:tST or"':~', invoke a'E!~~E~~:E;:~e:~::~~,., .. ~li,a.1.og'
function named PROG1, aii'd"'pass'it'a parameter string consisting of
ABCDEF.

•

•

ISPEXEC SELECT PGM(PROG1) PARM(ABCDEF)

In NVS or VN/SP, in a PL/I program, program variable PROG contains
'PGN(PROG1) PAR~l(ABCDEF)' and program variable PROGL is a full word
containing the binary equivalent of 23. Invoke a program-coded
dialog function, named PROGl, and pass it a parameter string
consisting of ABCDEF.

CALL ISPLINK('SELECT', PROGL, PROG);

In VSE, in a PL/I program, program variable PROG contains
'PGM(PROGl) PARN(ABCDEF) LANG(PLI), and program variable PROGL is a
full word containing the binary equivalent of 33. Invoke a
program-coded dialog function (written in PL/I), named PROG1, and
pass it a parameter string consisting of ABCDEF.

CALL ISPLINK('SELECT', PROGL, PROG);

144 ISPF Dialog Management Services

SETMSG - Set Next Message

The set next message service allows a dialog function to display a
message on the next panel that is written by ISPF to the terminal. The
next panei does not have to be displayed as a result of action taken by
the function routine. The function routine may have, in fact,
terminated before the next panel is displayed.

The specified message is retrieved from the message library at the time
the set message request is issued. Values for all variables defined in
the message are substituted at this time and the message is saved in a
message area for the application. When the next panel is displayed, the
message is retrieved from the save area and displayed on the panel.

If multiple set-message requests have been issued before a panel is
displayed, only the last message is displayed. A message specified on
the panel display request is overridden by any outstanding set next
message request.

A message that has been set with SETNSG is displayed the next time any
full screen output is sent to the display, regardless of whether that
output is a panel, table display, browse data, or edit data.

The message is preserved across CONTROL NONDISPL. That is, the message
is displayed on the next actual output to the terminal. If the next
panel is processed in non-display mode, the message remains pending, to
be displayed with any following panel that is processed in display mode.

If the message refers to a help panel, the help panel should not include
substitutable variables. Variables in related help panel(s) contain the
values current at the time the HELP command is issued, not at the time
the SETNSG service is invoked.

Syntax for the set message function is:

ISPEXEC SETMSG MSG(message-id)

CALL ISPLINK C'SETMSG', message-id};

message-id
Specifies the identification of the message to be displayed on the
next panel.

Chapter 6. Description of Services 145

The following return codes are possible:

o - Normal completion.

12 - The specified message could not be found.

20 - Severe error.

Example: Put, on the next panel that is displayed, a message whose id,
ABCX015 , is in a dialog variable named TERMSG.

ISPEXEC SETMSG MSG(&TERMSG)

CALL ISPLINK('SETMSG', 'ABCX015 I);

146 ISPF Dialog Management Services

TBADD - Add a Row to a Table

The TBADD service adds a new row of variables to a table. The new row
is added immediately following the current row, pointed to by the
current row pointer (CRP). The CRP is then set to point to the newly
inserted row.

The current contents of all dialog variables that correspond to columns
in the table (that were specified by the KEYS and NAHES parameters in a
TBCREATE) are saved in the row.

Additional variables (those not specified when the table was created)
may also be saved in the row. These "extension" variables apply only to
this row; not the entire table. The next time the row is updated, the
extension variables must be respecified if they are to be rewritten.

For tables with keys, the table is searched to ensure that the new row
has a unique key. The current contents of the key variables (dialog
variables that correspond to keys in the table) are used as the search
argument.

For tables without keys, no duplicate checking is performed.

ISPEXEC TBADD table-name [SAVE(name-list)]

CALL ISPLINK ('TBADD', table-name [,name-list]);

table-name
Specifies the name of the table to be updated.

name-list

The

0

8

Specifies a list of extension variables, by name, that are to be
saved in the row, in addition to the variables specified when the
table was created.

following return codes are possible:

- Normal completion.

- Tables with keys: A row with the same key already
exists; CRP set to TOP (zero).

12 - Table is not open.

20 - Severe error.

Chapter 6. Description of Services 147

Example: Add a row to the table TELBOOK, copying to the row values from
function pool variables whose names match those of table variables.

ISPEXEC TBADD TELBOOK

CALL ISPLINK('TBADD', 'TELBOOK I);

148 ISPF Dialog Management Services

TB BOTTOM - Set the Row Poi nter to Bottom

The TBBOTTOM service sets the current row pointer (CRP) to the last row
of a table, and retrieves the row.

All variables in the row, including keys, name, and extension variables
(if any), are stored into the corresponding dialog variables. A list of
extension variable names may also be retrieved.

IS:2EXEC TBBOTTOM table-name [SAVENAME(var-name)]

CALL ISPLINK ('TBBOTTO~II, table-name [,var-name]);

table-name
Specifies the name of the table to be used.

var-name
Specifies the name of a variable into which a list of extension
variable names contained in the row will be stored. The list must
be enclosed in parentheses, and the names within the list must be
separated by a blank.

The following return codes are possible:

o - Normal completion.

8 Table is empty; CRP set to TOP (zero).

12 Table is not open.

16 - Variable value has been truncated or insufficient space
provided to return all extension variable names.

20 - Severe error.

Example: Move the current row pointer (CRP) of the table TELBOOK to the
last row of the table. Store values from variables in that row, in
function pool variables having names that match the names of the
variables in the row.

ISPEXEC TBBOTTOM TELBOOK

CALL ISPLINK('TBBOTTOM', 'TELBOOK f);

Chapter 6. Description of Services 149

TBCLOSE - Close and Save a Table

The TBCLOSE service terminates processing of the specified table and
deletes the virtual storage copy, which is then no longer available for
further processing.

If the table was opened in WRITE mode, TBCLOSE copies the table from
virtual storage to the table output library. In this case, the table
output library must be allocated to a ddname of ISPTABL before invoking
this service. Optionally, the table can be stored under a different
name in the output iibrary.

If the table was opened in NOWRITE mode, TBCLOSE simply deletes the
virtual storage copy.

Table output can be directed to a table output library other than the
library specified on the table output ISPTABL DD, FILEDEF, or ISPDEF
statement. (The library to be used must be allocated before table
services receives control.) Thus, an application can update a specific
table library. This is particularly useful for applications that need
to maintain a common set of tables containing their data.

The output table library - specified by the ISPTABL DD, FILEDEF, or
ISPDEF statement - is the default output library. Therefore, dialogs
previously written for SPF that use table services continue to function
in the same manner in ISPF as they did when running under SPF.

ISPEXEC TBCLOSE table-name [NEWCOPYI REPLCOPY]

[NANE(alt-name)]

[PAD(percentage)]

[LIBRARY(library-name)]

CALL ISPLINK ('TBCLOSE', table-name [, 'NEWCOPY' I 'REPLCOPY']

[,alt-name]

[,percentage]

[,library-name]);

table-name
Specifies the name of the table to be closed.

150 ISPF Dialog Nanagement Services

NEWCOPY
Specifies that the table is to be written at the end of the output
library, regardless of whether an update in place would have been
successful. This ensures that the original copy of the table is
not destroyed before a replacement copy has been written
successfully.

REPLCOPY
Specifies
library.
replaces
library,
library.

that the table is to be rewritten in place in the output
If the existing member is smaller than the table that

it, or if a member of the same name does not exist in the
the complete table is written at the end of the output

Note: If both the NEWCOPY and REPLCOPY keywords are

alt-name

omitted, a comparison is made between the virtual storage
size of the table and the external size in the table output
library. If there is insufficient storage to write the table
in-place, it is written at the end of the table output
library.

Specifies an alternate name for the table. The table is stored in
the output library with the alternate name. If another table
already exists in the output library with that name, it is
replaced. If the table being saved exists in the output library
with the original name, that copy remains unchanged.

percentage
Specifies the percentage of padding space, based on the total size
of the table. The padding is added to the total size of the table
only when the table is written as a new copy. This parameter does
not increase the table size when an update in place is performed.

This parameter must have an unsigned integer value. For call
invocation, it must be a fullword fixed binary integer.

The default value for this parameter is zero.

Padding permits future updating in place, even when the table has
expanded in size. Should the table expand beyond the padding
space, the table is written at the end of the table output library
instead of being updated in place.

library-name
Specifies the name of aDD, FILEDEF, or ISPDEF statement that
defines the output library in which table-name is to be closed. If
this parameter is omitted, the default is ISPTABL.

Chapter 6. Description of Services 151

The following return codes are possible:

0 - Normal completion.

12 - Table is not open.

16 - Table output library not allocated.

20 - Severe error.

Example: Close the table TELBOOK.

ISPEXEC TBCLOSE TELBOOK

CALL ISPLINK('TBCLOSE', 'TELBOOK f);

152 ISPF Dialog Management Services

TBCREATE - Create a New Table

The TBCREATE service creates a new table in virtual storage, and opens
it for processing.

TBCREATE allows specification of the variable names that correspond to
columns in the table. These variables will be stored in each row of the
table. Additional "extension" variables may be specified for a
particular row when the row is written.

One or more variables may be defined as keys for accessing the table.
If no keys are defined, only the current row pointer can be used for
update operations.

ISPEXEC TBCREATE table-name [KEYS(key-name-1ist)]

[NAMES(name-1ist)]

[WRITE I NOWRITE]

[REPLACE]

CALL ISPLINK ('TBCREATE', table-name [,key-name-1ist]

table-name

[,name -1 is t]

[, 'WRITE' I' NOWRITE']

[, 'RE PLACE']);

Specifies the name of the table to be created. The name may be
from one to eight alphameric characters in length, and must begin
with an alphabetic character.

key- name-list
Specifies the variables, by name, that are to be used as keys for
accessing the table. See the section entitled "Invocation of
Services" for specification of name lists. If this parameter is
omitted, the table will not be accessible by keys.

name-list
Specifies the non-key variables, by name, to be stored in each row
of the table.

Chapter 6. Description of Services 153

If key-name-list and name-list are omitted, the table can contain
only extension variables that must be specified when the row is
written.

WRITE
Specifies that the table is permanent, to be written to disk by the
TBSAVE or TBCLOSE service. The disk copy is not actually created
until the TBSAVE or TBCLOSE service is invoked.

NOWRITE
Specifies that the table is for temporary use only. When
processing is complete, a temporary table should be deleted by the
TBEND or TBCLOSE service.

REPLACE
Specifies that an existing table is to be replaced. If a table of
the same name is currently open, it is deleted from virtual storage
before the new table is created, and return code 4 is issued. If
the WRITE parameter is also specified and a duplicate table name
exists in the table input library, the table is created and return
code 4 is issued. The duplicate table is not deleted from the
input library.

The following return codes are possible:

o - Normal completion.

4 - Normal completion
was specified.

a duplicate table exists but REPLACE

8 - Table already exists; REPLACE was not specified.

12 Table in use; ENQ failed.

16 - WRITE mode specified and table input library is not allocated.
(TBCREATE checks the input library to determine if a duplicate
table exists; see return code 8.)

20 - Severe error.

Example:

• In MVS or VM/SP, in a CLIST or EXEC, create a permanent table,
TELBOOK, to contain the variable TABKEY and other variables, the
names of which are specified in dialog variable TABVARS. The key
field is TABKEY.

ISPEXEC TBCREATE TELBOOK KEYS(TABKEY) NAMES(&TABVARS)

• In a PL/I program, create a permanent table, TELBOOK, to contain the
variable TABKEY and other variables, the names of which are
specified in program variable TABVARS. The key field is TABKEY.

CALL ISPLINK('TBCREATE', 'TELBOOK' 'TABKEY', TABVARS);

154 ISPF Dialog Management Services

TBDELETE - Delete a Row from a Table

The TBDELETE service deletes a row from a table.

For tables with keys, the table is searched for the row to be deleted.
The current contents of the key variables (dialog variables that
correspond to keys in the table) are used as the search argument.

For tables without keys, the row pointed to by the current row pointer
(CRP) is deleted.

The CRP is always updated to point to the row prior to the one that was
deleted.

ISPEXEC TBDELETE table-name

CALL ISPLINK ('TBDELETE', table-name);

table-name
Specifies the name of the table from which the row is to be
deleted. The row is determined by the current position of the CRP
(if the table has no keys) or the current contents of the key
variables (if the table has keys).

The following return codes are possible:

o - Normal completion.

8 - Keyed tables: The row specified by the value in key
variables does not exist; CRP set to TOP (zero).

Non-keyed tables: CRP was at TOP (zero) and remains at TOP.

12 - Table is not open.

20 - Severe error.

Example: Delete a row of the table TELBOOK.

ISPEXEC TBDELETE TELBOOK

CALL ISPLINK('TBDELETE', 'TELBOOK f);

Chapter 6. Description of Services 155

TBD I SPL - Display Table Information

The TBDISPL service combines information from a panel definition with
information stored in an ISPF table. It displays all or selected rows
from the table, allowing the application user to scroll the information
up and down (only). An illustration appears in Appendix C, "Using the
TBDISPL Service" on page 289.

When only selected rows from a table are to be displayed, the TBSARG
service is used before issuing TBDISPL to define the selection criteria.
In this case, ROWS(SCAN) must be specified on the)MODEL statement in
the panel definition.

The format of the display is specified by a panel definition, which
TBDISPL reads from the panel library. The panel definition contains two
input fields (the command and scroll fields) and the non-scrollable
text, which includes column headings. It also contains one or more
"model" lines that specify the format of the scrollable data and which
columns (i.e., which variables) from the table are to be displayed. For
a description of panel formats for table display, see "Special Panel
Requirements, Table Display Panels" in Chapter 7.

Each line of scrollable data may have one or more input (unprotected)
fields, as well as output (protected) fields. The user may modify the
input fields and may also enter commands in the command field.

Before TBDISPL is invoked, the table to be displayed must be open, and
the current row pointer (CRP) positioned to the row in the table at
which the display is to begin. (CRP at TOP is a value of 0 and is
valid; it is treated as though the CRP were pointing to the first row.)

Note: Do not attempt to use TBDISPL to display a command table
currently in use. The result would not be predictable.

TBDISPL does not modify information in the table. The dialog function
may use the information entered by the user to determine what processing
is to be performed, and may modify the table accordingly.

156 ISPF Dialog Management Services

ISPEXEC TBDISPL table-name [PANEL(panel-name)]

[MSG(message-id)]

[CURSOR(field-name)]

[CSRROW(table-row-number)]

CALL ISPLINK ('TBDISPL', table-name [,panel-naQe]

[,message-id]

[,field-name]

[,table-row-number]);

table-name
Specifies the name of the table to be displayed.

panel-name
Specifies the name of the panel to be displayed.

message-id
Specifies the identification of a message to be displayed on the
panel.

field-name
specifies the column (variable name) where the cursor is to be
positioned on the display. Any .CURSOR setting (done in the IN IT
section of the panel definition) takes precedence over this
parameter.

table-row-number
specifies the table row number (CRP) corresponding to the line on
the display where the cursor is to be positioned. If the specified
row is not displayed on the screen, the cursor is placed at the
command field. For call invocation, this parameter must be a full
word fixed binary number.

The panel-name and message-id parameters are optional. Their processing
is as follows:

• If panel-name is specified and message-id is not specified, the
panel is read from the panel library, rows from the table are read
to fill the screen, and the screen is displayed without a message.

Chapter 6. Description of Services 157

• If panel-name and message-id are both specified, the panel is read
from the panel library, rows from the table are read to fill the
screen, and the screen is displayed with the specified message.

• If panel-name is not specified and message-id is specified, the
current table display is overlaid with a message, without
reinitializing the screen nor rereading the table.

• If neither panel-name or message-id is specified, the CRP is set to
point to the table row corresponding to the next modified line on
the display. If no modified lines remain to be processed, the
following occurs:

If the application user's last act was to:

Press the ENTER key, then rows from the table are again read to
fill the screen and the screen is redisplayed.

Enter a scroll command, then the scroll function is now honored
by reading and displaying the appropriate rows from the table.

Enter an END or RETURN command, then the CRP is set to TOP
(zero) and return is made to the function (issuing the TBDISPL)
with a return code of 8. If this occurs more than once in
immediate sequence, a return code of 20 is issued, since the
application may be in a loop.

The field-name and table-row-number parameters are optional. Their
processing is as follows:

• If the field-name parameter is not specified but the
table-row-number parameter is specified, the cursor is placed on the
first field in the specified row.

• If the field-name parameter is specified but the table-row-number
parameter is not specified, the current value of the CRP determines
the row location and the cursor is placed in this row, on the field
specified by the field-name parameter.

• Whenever the table-row-number parameter is specified, the contents
of the row are always returned by TBDISPL, even if the user did not
modify the row. This allows the dialog developer to force the user
to correct an error on that row, before going on to process other
rows.

• The .CURSOR control variable may be set within the)INIT section of
a table display panel to specify a field name where within a row the
cursor is to be initially positioned. If .CURSOR is not explicitly
set, it assumes the value passed from the c~lling sequence in the
field-name parameter, (if any). If cursor placement is not
specified (in .CURSOR or a passed value), the cursor is positioned
at the command input line.

158 ISPF Dialog Management Services

TBDISPL allows the user to scroll the data up and down, and enter
primary commands or information on one or more lines of scrollable
data. After display of a panel using TBDISPL and after the user has
made any modifications to the scrollable data on the display and has
pressed the ENTER key or issued the SCROLL, END, or RETURN command, the
TBDISPL service performs the following functions:

1. The contents of the command field are stored in the dialog variable
specified in the panel definition.

2. If there was no modified line to process, the CRP is set to TOP
(zero).

3. If the user entered information into one or more lines of scrollable
data, the CRP is positioned to the row in the table that corresponds
to the first modified line, and the row is retrieved (all variables
from that row are stored into the corresponding dialog variables).
The information entered by the user on that line is then stored in
the corresponding dialog variables. This includes all input fields
in the line, which mayor may not correspond to variables in the
table.

4. The row number that corresponds to the first line currently
displayed on the screen is stored in the system variable ZTDTOP.
If, in a dialog, a dialog developer wants to reposition the
scrollable data as the user last saw it, he must reposition the CRP
to the row number stored in ZTDTOP prior to reinvoking the TBDISPL
service.

(ZTDTOP is a variable in the function pool. A command procedure -
CLIST or EXEC - may access it directly. A program may access it
through use of the VCOPY service.)

5. TBDISPL then returns to the dialog function.

If the application user modified more than one line in a single
interaction, a call to TBDISPL is required to position the CRP to the
row corresponding to each modified line. After the CRP is positioned to
each modified line, the function may process the line, for example, by
issuing a TBPUT request to update the table. For these calls, neither
the panel-name nor the message-id should be specified. The processing
sequence for each of these calls is as described above, except that the
next modified line is processed. The combination of the return code and
CRP values indicate whether there are more modified lines to be
processed.

Whenever modified table entries remain to be processed, the dialog can
choose to ignore them by calling TBDISPL with a specified (non-blank)
panel name. This clears out any remaining information about previous
calls. If the dialog wants to display another table before processing
all remaining entries from the first display, and then resume processing
of multiple entries from the first display, it must invoke the CONTROL
service to save and restore the display environment.

Chapter 6. Description of Services 159

The following return codes are possible from TBDISPL:

o - The ENTER key was pressed or a scroll command was entered.
One or both of the following occurred:

one line was modified in the scrollable part of the display.
The CRP is set to point to the table row corresponding to
that line. The row is retrieved (i.e., stored in the
function pool) and then the line is stored in the function
pool.

a function command was entered by the user.

4 - The ENTER key was pressed or a scroll command was entered.
The first or both of the following occurred:

two or more lines in the scrollable part of the display were
modified by the user. The CRP is set to the table row
corresponding to the first line changed. That row is
retrieved (i.e., stored in the function pool) and then the
line is stored in the function pool.

a function command was entered by the user.

For subsequent TBDISPL requests (with no panel name and no
message-id), return code 4 is issued for each request until one
modified line remains to be accessed. For this last line, a
return code of zero is issued by the TBDISPL request (still
specified with no panel name and no message-id).

8 The END or RETURN command was entered. The CRP is set to
the table row corresponding to the first of any lines modified
in the scrollable part of the display. That row is retrieved
(stored in the function pool) and then the line is stored in
the function pool.

If the CRP is at the top (zero), no lines were changed.

To capture data entered when END or RETURN was entered,
continue to issue TBDISPL requests with no panel name or
message-id specified, until the CRP is at zero. For each
request, a return code of 8 is issued.

In addition to the action described above, a function
command mayor may not have been originated by the user.

12 - The specified panel or message could not be found or the table
was not open.

20 - Severe error.

160 ISPF Dialog Management Services

Example: (See Appendix C, "Using the TBDISPL Service" on page 289 for
another exampl~ of TBDISPL use.)

Display the table TELBOOK using panel definition TPANEL2 to format the
display.

ISPEXEC TBDISPL TELBOOK PANEL(TPANEL2)

CALL ISPLINK('TBDISPL', 'TELBOOK " 'TPANEL2 I);

Chapter 6. Description of Services 161

TBEND - Close a Table without Saving

The TBEND service deletes the virtual storage copy of the specified
table, making it unavailable for further processing. The permanent copy
(if any) is not changed.

ISPEXEC TBEND table-name

CALL ISPLINK ('TBEND', table-name);

table-name
Specifies the name of the table to be ended.

The following return codes are possible:

o - Normal completion.

12 - Table is not open.

20 - Severe error.

Example: Delete the virtual storage copy table TELBOOK; do not change
any permanent copy (in the table library).

ISPEXEC TBEND TELBOOK

CALL ISPLINK('TBEND', 'TELBOOK I);

162 ISPF Dialog Management Services

TBERASE - Erase a Table

The TBERASE service deletes a table from the table output library. The
table output library must be allocated before invoking this service.

The table must not be open in WRITE mode when this service is invoked.

ISPEXEC TBERASE table-name [LIBRARY(library-name)]

CALL ISPLINK ('TBERASE', table-name [,library-name]);

table-name
Specifies the name of the table to be erased.

library-name
Specifies the name of aDD, FILEDEF, or ISPDEF statement that
defines the library in which table-name exists. If this parameter
is omitted, the default is ISPTABL.

The following return codes are possible:

o - Normal completion.

8 Table does not exist in the output library.

12 - Table in use; ENQ failed.

16 - Table output library not allocated.

20 - Severe error.

Example: Delete (erase) the table TELBOOK from the table library.

ISPEXEC TBERASE TELBOOK

CALL ISPLINK('TBERASE', 'TELBOOK ');

Chapter 6. Description of Services 163

TBEXIST - Determine if a Row Exists in a Table

The TBEXIST service tests for the existence of a specific row in a table
with keys.

The current contents of the key variables (dialog variables that
correspond to keys in the table) are used to search the table for the
row.

This service is not valid for non-keyed tables and causes the current
row pointer (CRP) to be set to the top.

ISPEXEC TBEXIST table-name

CALL ISPLINK ('TBEXIST', table-name);

table-name
Specifies the name of the table to be searched.

The following return codes are possible:

o - Normal completion; the CRP is positioned to the specified row.

8 - Keyed tables: the specified row does not exist; the CRP is
set to TOP (zero).

Non-keyed tables: service not possible; the CRP is set to TOP.

12 - Table is not open.

20 - Severe error.

Example: In the keyed table TELBOOK, test for the existence of a row
having a specific key value.

ISPEXEC TBEXIST TELBOOK

... if return code = 0 ... then the row exists ...

CALL ISPLINK('TBEXIST', 'TELBOOK ');

... if return code = 0 ... then the row exists ...

164 ISPF Dialog Management Services

TBGET - Retrieve a Row from a Table

The TBGET service fetches a row from the table.

For tables with keys, the table is searched for the row to be fetched.
The current contents of the key variables (dialog variables that
correspond to keys in the table) are used as the search argument.

For tables without keys, the row pointed to by the current row pointer
(CRP) is fetched.

The CRP is always set to point to the row that was fetched.

All variables in the row, including keys and extension variables (if
any), are stored into the corresponding dialog variables. A list of
extension variable names may also be retrieved.

ISPEXEC TBGET table-name [SAVENAHE(var-name)]

CALL ISPLINK ('TBGET', table-name [,var-name]);

table-name
Specifies the name of the table to be read.

var-name
Specifies the name of a variable into which a list of extension
variable names contained in the row will be stored. The list is
enclosed in parentheses, and the names within the list are
separated by a blank.

The following return codes are possible:

o - Normal completion.

8 - Keyed tables: The row specified by the value in the key
variables does not exist; the CRP is set to TOP (zero).

Non-keyed tables: the CRP was at TOP and remains at TOP.

12 - Table is not open.

16 - Variable value has been truncated or insufficient space was
provided to return all extension variable names.

20 - Severe error.

Chapter 6. Description of Services 165

Example: In the keyed table TELBOOK, for a row having a specific key
value, copy values from variables in that row to variables in the
function pool having names that match names of the variables in the row.

ISPEXEC TBGET TELBOOK

CALL ISPLINK('TBGET', 'TELBOOK I);

166 ISPF Dialog Management Services

TBMOD - Modify a Row in a Table

The TBMOD service unconditionally updates a row in a table.

For tables with keys, the table is searched for the row to be updated.
The current contents of the key variables (dialog variables that
correspond to keys in the table) are used as the search argument. If a
match is found, the row is updated. If a match is not found, a TBADD is
performed, adding the row to the end of the table.

For tables without keys, TBMOD is equivalent to TBADD.

The current row pointer (CRP) is always set to point to the row that was
updated or added.

The current contents of all dialog variables that correspond to columns
in the table (keys and names) are saved in the row.

Additional variables, not specified when the table was created, may also
be saved in the row. These "extension" variables apply only to this
row; not the entire table. Whenever the row is updated, the extension
variables must be respecified if they are to be rewritten.

ISPEXEC TBMOD table-name [SAVE(name-list)]

CALL ISPLINK ('TBMOD', table-name [,name-list]);

table-name
Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to be
saved in the row, in addition to the variables specified when the
table was created. See the section entitled "Invocation of
Services" for specification of name-lists.

The following return codes are possible:

o - Normal completion. Keyed tables: Existing row
updated. Non-keyed tables: New row added to table.

8 - Keyed tables: Keys did not match; new row added to the table.

12 - Table is not open.

20 - Severe error.

Chapter 6. Description of Services 167

Example: Update or add a row of variables in the table TELBOOK using
values from variables in the function variable pool.

ISPEXEC TBMOD TELBOOK

CALL ISPLINK('TBMOD', 'TELBOOK ');

168 ISPF Dialog Management Services

TBOPEN - Open a Table

The TBOPEN reads a permanent table from the table input library into
virtual storage, and opens it for processing. TBOPEN should not be
issued for temporary tables.

The table input library, specified by ddname ISPTLIB, must be
preallocated prior to invoking ISPF. ISPTLIB may specify a
concatenation of libraries. Refer to "Library Setup" in Chapter 4 for
additional information.

An ENQ is issued to ensure that no other user is currently accessing the
table. The ENQ applies only to the specified table (member) in the
table input library - not to the entire library. For the WRITE option,
it is an exclusive ENQ that remains in effect until the table is closed.
For the NOWRITE option, it is a shared ENQ that remains in effect only
during the time that the table is read into storage.

ISPEXEC TBOPEN table-name [WRITE I NOWRITE]

CALL ISPLINK ('TBOPEN', table-name [, 'WRITE' I 'NOWRITE']);

table-name
Specifies the name of the table to be opened.

WRITE
Specifies that the table is being accessed for update. The updated
table may subsequently be saved on disk by use of the TBSAVE or
TBCLOSE service. This option is the default.

NOWRITE
Specifies read-only access. Upon completion of processing, the
virtual storage copy should be deleted by invoking the TBEND or
TBCLOSE service.

The following return codes are possible:

o - Normal completion.

8 - Table does not exist.

12 - ENQ failed; table in use by another user or the current user.

16 - Table input library not allocated.

20 - Severe error.

Chapter 6. Description of Services 169

Example: Access (open) the table TELBOOK for updating.

ISPEXEC TBOPEN TELBOOK WRITE

CALL ISPLINK('TBOPEN', 'TELBOOK' 'WRITE');

170 ISPF Dialog Management Services

TBPUT - Update a Row in a Table

The TBPUT service conditionally updates the current row of a table.

For tables with keys, the current contents of the key variables (dialog
variables that correspond to keys in the table) must match the key of
the current row, pointed to by the current row pointer (CRP).
Otherwise, the update is not performed.

For tables without keys, the row pointed to by the CRP is always
updated.

If the update was successful, the CRP remains unchanged. It continues
to point to the row that was updated. The current contents of all
dialog variables that correspond to columns in the table, including key
variables, are saved in the row.

Additional variables not specified when the table was created, may also
be saved in the row. These "extension" variables apply only to the row;
not the entire table. Whenever the row is updated, the extension
variables must be respecified if they are to be rewritten.

ISPEXEC TBPUT table-name [SAVE(name-list)]

CALL ISPLINK ('TBPUT', table-name [,name-list]);

table-name
Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to be
saved in the row, in addition to the variables specified when the
table was created. See the section entitled "Invocation of
Services" for specification of name lists.

The following return codes are possible:

o - Normal completion.

8 - Keyed tables: The key does not match that of the
current row; CRP set to TOP (zero).

Non-keyed tables: CRP was at TOP and remains at TOP.

12 - Table is not open.

20 - Severe error.

Chapter 6. Description of Services 171

Example: Update a row, in the table TELBOOK, using values from variables
in the function variable pool.

ISPEXEC TBPUT TELBOOK

CALL ISPLINK ('TBPUT', 'TELBOOK I);

172 ISPF Dialog Management Services

TBQUERY - Obtain Table Information

The TBQUERY service returns information about a specified table, which
must be open prior to invoking this service. The number of key fields
and their names, as well as the number of all other columns and their
names may be obtained. The number of rows and the current row position
may also be obtained.

All of the parameters except for table-name are optional. If they are
all omitted, TBQUERY simply validates the existence of an open table.

ISPEXEC TBQUERY table-name [KEYS(key-name)]

[NAMES(var-name)]

[ROWNUM(rownum-name)]

[KEYNUM(keynum-name)]

[NAMENUH(namenum-name)]

[POSITION(crp-name)]

CALL ISPLINK ('TBQUERY', table-name [,key-name]

[, var-name]

[, rownum -name]

[,keynum -name]

[,namenum-name]

[,crp-name]);

table-name
Specifies the name of the table for which information is desired.

key-name
Specifies the name of a variable into which a list of key variable
names contained in the table will be stored. The list will be
enclosed in parentheses, and the names within the list will be
separated by a blank.

var-name
Specifies the name of a variable into which a list of variable
names in the table, specified with the NAMES keyword when the table

Chapter 6. Description of Services 173

was created, will be stored. The list will be enclosed in
parentheses, and the names within the list will be separated by a
blank.

rownum-name
Specifies the name of a variable into which the number of rows
contained in the table will be stored.

keyn um- name
Specifies the name of a variable into which the number of key
variables contained in the table will be stored.

namen um- name
Specifies the name of a variable into which the number of variables
in the table specified with the NANES keyword when the table was
created, will be stored.

crp-name
Specifies the name of a variable into which the current row pointer
(CRP) number for the table will be stored. If the CRP is
positioned to TOP, the relative row number returned is zero.

Note: The parameters rownum-name, keynum-name, namenum-name, and
crp-name all specify the names of variables into which numeric
values will be stored. If these are defined variables (in a
program module), they may be either full word fixed variables or
character string variables.

The following return codes are possible:

o - Normal completion.

12 - Table is not open.

16 - Not all keys or names returned because insufficient
space was provided.

20 - Severe error.

Example: For the keyed table TELBOOK:

• In dialog variable QKEYS, store the names of key variables

• In dialog variable QNANES, store the names of non-key variables

• In dialog variable QROWS, store the number of rows

ISPEXEC TBQUERY TELBOOK KEYS(QKEYS) NAHES(QNANES) ROWNUN(QROWS)

CALL ISPLINK('TBQUERY', 'TELBOOK' 'QKEYS' 'QNAMES' 'QROWS I);

174 ISPF Dialog Management Services

TBSARG - Define a Search Argument

The TBSARG service establishes a search argument for scanning a table
using the TBSCAN service.

The search argument is specified in dialog variables that correspond to
columns in the table, including key variables. A value of null for one
of the dialog variables means that the corresponding table variable is
not to be examined during the search.

Generally, TBSARG is used prior to TBSCAN or TBDISPL operations to
establish search arguments for these operations. To set up a search
argument, set table variables in the function pool to nulls by using
TBVCLEAR. Next, set a value in each variable that is to be part of the
search argument. Then, issue TBSARG to establish this variable(s) as
the search argument to be used in subsequently requested TBSCAN or
TBDISPL operations.

Extension variables, only, may be included in the search argument by
specifying their names in the name-list parameter. The values of these
variables become part of the search argument. A null value in an
extension variable is a valid search argument and requires a
corresponding null variable in the matching row.

A search argument of the form AAA* means that only the characters up to
the ",';," are compared. This is called a generic search argument. A
generic search argument is specified by placing an asterisk in the last
non-blank position of the argument. Asterisks imbedded in the argument
are treated as data. For example, to perform a generic search for a
row value of DATA*12, the generic search argument is:

DATA";'12,';,

The first asterisk is part of the search argument. The second asterisk
designates the argument to be a generic search argument.

Note: In a CLIST, the following technique may be used to set a
variable to a literal value that ends with an asterisk:

SET &X = AAA&STR C"'")

The position of the current row pointer (CRP) is not affected by the
TBSARG service.

TBSARG replaces all previously set search arguments for the specified
table.

Chapter 6. Description of Services 175

ISPEXEC TBSARG table-name [ARGLIST(name-list)]

CALL ISPLINK ('TBSARG', table-name [,name-list]);

table-name
Specifies the name of the table for which an argument is to be
established.

name-list
Specifies a list of extension variables, by name, whose values are
to be used as part of the search argument. See the section
entitled "Invocation of Services" for specification of name lists.

The following return codes are possible:

o - Normal completion.

8 - All column variables are null and the name-list parameter
was not specified; no argument established.

12 - Table is not open.

20 - Severe error.

Example: Establish a search argument to be used by a TBSCAN operation of
the table TELBOOK. Assume that the argument values are contained in
function pool variables whose names are the same as table variables in
TELBOOK.

ISPEXEC TBSARG TELBOOK

CALL ISPLINK('TBSARG', 'TELBOOK I);

176 ISPF Dialog Management Services

TBSA VE - Save a Table

The TBSAVE service writes the specified table from virtual storage to
the table output library. The table output library must be allocated to
a ddname of ISPTABL before invoking this service. The table must be
open in WRITE mode.

Optionally, the table can be stored under a different name in the output
library.

TBSAVE does not delete the virtual storage copy of the table; the table
is still open and available for further processing.

Table output can be directed to a table output library other than the
library specified on the table output ISPTABL DD, FILEDEF, or ISPDEF
statement. (The library to be used must be allocated before table
services receives control.) Thus, an application can update a specific
table library. This is particularly useful for applications that need
to maintain a common set of tables containing their data.

ISPEXEC TBSAVE table-name [NEWCOPYIREPLCOPY]

[NAHE(alt-name)]

[PAD(percentage)]

[LIBRARY(library-name)]

CALL ISPLINK ('TBSAVE', table-name, [, 'NEWCOPY' I 'REPLCOPY']

[,al t-name]

[,percentage]

[,library-name]);

table-name
Specifies the name of the table to be saved.

NEWCOPY
Specifies that the table is to be written at the end of the output
library, regardless of whether an update in place would have been
successful. This insures that the original copy of the table is
not destroyed before a replacement copy has been written
successfully.

Chapter 6. Description of Services 177

REPLCOPY
Specifies that the table is to be rewritten in place in the output
library. If the existing member is too small to complete the
update in place successfully, or if a member of the same name does
not exist in the library, the complete table will be written at the
end of the output library.

If both the NEWCOPY and REPLCOPY keywords are omitted, a comparison
is made between the virtual storage size of the table and the
external size in the table output library. If there is
insufficient storage to write the table in-place, it is written at
the end of the table output library.

alt-name
Specifies an alternate name for the table. The table will be
stored in the output library with the alternate name. If another
table already exists in the output library with that name, it will
be replaced. If the table being saved exists in the output library
with the original name, that copy will remain unchanged.

percentage
Specifies the percentage of padding space, based on the total size
of the table. The padding is added to the total size of the table
only when the table is written as a new copy. This parameter does
not increase the table size when an update in place is performed.

Padding permits future updating in place, even when the table has
expanded in size. Should the table expand beyond the padding
space, the table is written at the end of the table output library
instead of updated in place.

This parameter must have an unsigned integer value. For call
invocation, it must be a fullword fixed binary integer.

The default value for this parameter is zero.

lib r a ry - n arne

The

0

12

16

20

Specifies the name of aDD, FILEDEF, or ISPDEF statement that
defines the output library in which table-name is to be saved. If
this parameter is omitted, the default is ISPTABL.

following return codes are possible:

- Normal completion.

- Table is not open.

- Table output library not allocated.

- Severe error.

178 ISPF Dialog Management Services

Example: Write a table TELBOOK, previously opened and currently in
virtual storage, to the table library. Retain the copy in virtual
storage for further processing (do not close the table).

ISPEXEC TBSAVE TELBOOK

CALL ISPLINK('TBSAVE', 'TELBOOK I);

Chapter 6. Description of Services 179

TBSCAN - Search A Table

The TBSCAN service searches a table for a row with values that match an
argument list. The argument list may be established by use of the
TBSARG service, or specified in the name-list for TBSCAN.

The search is always in a forward direction, starting with the row after
the current row, and continuing to the end of the table. If a match is

. found, the row is retrieved and the current row pointer (CRP) is set to
that row. All variables in the row, including keys and extension
variables (if any), are stored into the corresponding dialog variables.
A list of extension variable names may also be retrieved.

Use of the name-list parameter is optional. If specified, it overrides
the search argument set by the TBSARG service for this search only. The
values of all variables specified in the name-list parameter become part
of the search argument. A value of the form AAA* means that only the
characters up to the ",;,," are compared. This is called a generic search
argument. A generic search argument is specified by placing an asterisk
in the last non-blank position of the argument. Asterisks imbedded in
the argument are treated as data. For example, to perform a generic
search for a row value of DATA*12, the generic search argument is:

The first asterisk is part of the search argument. The second asterisk
designates the argument to be a generic search argument.

Note: In a CLIST, the following technique may be used to set a
variable to a literal value that ends with an asterisk:

SET &X = AAA&STR(';',)

A null value requires a corresponding null value in the matching row.

If the name-list parameter is omitted, a search argument must have been
established by a previous TBSARG command. Otherwise, a severe error
occurs.

ISPEXEC TBSCAN table-name [ARGLIST(name-list)]

[SAVENAHE(var-name)]

CALL ISPLINK ('TBSCAN', table-name [,name-list]

[, var-name]);

180 ISPF Dialog Management Services

table-name
Specifies the name of the table to be searched.

name-list
Specifies a list of variables, by name, whose values are to be used
as the search argument. See the section entitled "Invocation of
Services" for specification of name lists.

var-name
Specifies the name of a variable into which a list of extension
variable names contained in the row will be stored. The list will
be enclosed in parentheses, and the names within the list will be
separated by a blank.

The following return codes are possible:

° - Normal completion.

8 - Row does not exist, no match found; CRP set to TOP (zero).

12 - Table is not open.

16 - Variable value has been truncated or insufficient space
provided to return all extension variable names.

20 - Severe error.

Example: For the table TELBOOK:

• Establish a search argument to be used by a TBSCAN operation of
table TELBOOK.

ISPEXEC TBSARG TELBOOK

CALL ISPLINKC'TBSARG', 'TELBOOK I);

• Hove table TELBOOK's CRP to the row that fulfills the search
argument as specified in the TBSARG operation, above. Copy values
from variables in that row to function pool variables whose names
match those of the table variables.

ISPEXEC TBSCAN TELBOOK

CALL ISPLINKC'TBSCAN', 'TELBOOK I);

If the return code is 0, the row was found and values were copied
from the row variables to function pool variables.

Chapter 6. Description of Services 181

TBSKIP - Move the Row Pointer

The TBSKIP service moves the current row pointer (CRP) of a table
forward or backward by a specified number of rows, and then retrieves
the row to which it is pointing.

All variables in the row, including keys and extension variables (if
any), are stored into the corresponding dialog variables. A list of
extension variable names may also be retrieved.

ISPEXEC TBSKIP table-name [NUMBER(number)]

[SAVENAME(var-name)]

CALL ISPLINK ('TBSKIP', table-name [,number]

[, var-name]);

table-name
Specifies the name of the table to be used.

number
Specifies the direction and number of rows to move the CRP. This
parameter must be a positive or negative integer. A positive
integer moves the CRP toward the bottom of the table; a negative
integer moves it toward the top. Zero is an allowable value that
results in retrieving the current row.

For call invocation, this parameter must be a fullword fixed binary
number.

If this parameter is omitted, the default value is 1.

var-name
Specifies the name of a variable into which a list of extension
variable names contained in the row is stored. The list is
enclosed in parentheses, and the names within the list are
separated by a blank.

182 ISPF Dialog Management Services

The following return codes are possible:

o - Normal completion.

8 - CRP would have gone beyond the number of rows in the table
(this includes a table empty condition); CRP set to TOP (zero).

12 Table is not open.

16 - Variable value has been truncated or insufficient space
provided to return all extension variable names.

20 - Severe error.

Example: In the table TELBOOK, move the current row pointer (CRP) to the
next row. After the move, copy values from variables in that row to
variables in the function variable pool having names that are the same
as the names of the variables in the row.

ISPEXEC TBSKIP TELBOOK

CALL ISPLINK('TBSKIP', 'TELBOOK I);

Chapter 6. Description of Services 183

TBTOP - Set the Row Pointer to the Top

The TBTOP service sets the current row pointer (CRP) to the top of a
table, ahead of the first row.

ISPEXEC TBTOP table-name

CALL ISPLINK (tTBTOpt, table-name);

table-name
Specifies the name of the table to be used.

The following return codes are possible:

o - Normal completion.

12 - Table is not open.

20 - Severe error.

Example: For the table TELBOOK, move the current row pointer (CRP) to
the row immediately before its first row.

ISPEXEC TBTOP TELBOOK

CALL ISPLINKCtTBTOP', 'TELBOOK t);

184 ISPF Dialog Management Services

TBVCLEAR - Clear Variables

The TBVCLEAR service sets dialog variables to nulls.

All dialog variables that correspond to columns in the table (specified
when the table was created) are cleared.

The contents of the table and the position of the current row pointer
(CRP) are not changed by this service.

ISPEXEC TBVCLEAR table-name

CALL ISPLINK ('TBVCLEAR', table-name);

table-name
Specifies the name of the table to be used.

The following return codes are possible:

o - Normal completion.

12 - Table is not open.

20 - Severe error.

Example: Clear dialog variables associated with the table TELBOOK to
nulls.

ISPEXEC TBVCLEAR TELBOOK

CALL ISPLINK('TBVCLEAR', 'TELBOOK I);

Chapter 6. Description of Services 185

VCOpy - Create a Copy of a Variable

This service is used only with call invocations.

The VCOpy service allows a program module to obtain a copy of dialog
variables. The copied data is in character string format, and may be
accessed in either "locate" or "move" mode.

The variable names may be specified as a single 8-character value, a
list enclosed in parentheses, or a name-list strueture. IIi LOCATE mode

-an array of pointers must be supplieo to receive the data address. An
array of ltngths must be supplied to receive the data lengths.

The VCOPY service automatically allocates storage for the data, and
returns the address and length of each variable to the caller. In MOVE
mode, an array of lengths must be supplied on input; its values map the
structured area which must be supplied to receive the data. The caller
first allocates storage for the data, and then invokes VCOPY, passing
the address and length of the storage area into which the data is to be
copied. The length array is then set with the data lengths.

As with other ISPF services, the search for each variable starts with
the defined area of the function pool, followed by the function's
implicit area, followed by the shared variable pool, and then the
profile pool. If a variable of the specified name is not found, VCOPY
issues a return code of 8.

ISPEXEC *This service does not apply to command procedures*

CALL ISPLINK ('VCOPY', name-list, length-array, value-array

[,'LOCATE'I'MOVE']);

name-list
Specifies an area containing the names of dialog variables to be
copied. The standard name-list format is used.

length-array
Specifies an array of fullword fields containing the lengths of the
data areas for the dialog variable values. (The array may consist
of a single item.) In move mode, each element of the array is set
by the caller to the output area size. In move mode or locate
mode, each element of the array is set by the service to the number
of bytes of data for the corresponding variable.

186 ISPF Dialog Management Services

value-array
In locate mode, specifies the name of an array that contains
pointers to fields into which the copied variables are placed.
(The array may consist of a single item.)

In move mode, specifies the name of a structure that is mapped by
the length array.

LOCATE
Specifies locate mode. The address of the copied value is returned
to the user invoking the service.

MOVE
Specifies move mode. The copied value is returned to the user
invoking the service.

The following return codes are possible:

o - Normal completion.

8 - One or more variables do not exist.

16 - Truncation has occurred during data movement
(move mode only).

20 - Severe error.

Example: Copy the value in dialog variable QROWS to a field named
QROWSDATA in this PL/I program module. Perform the copy in move mode
(as opposed to locate mode). Variable L8 contains a value of 8.

CALL ISPLINK('VCOPY', 'QROWS ',L8, QROWSDATA, 'MOVE');
. 11

~. __ , .. _ .. _.,,, .. ~ ..•. /J'

'i La P

Chapter 6. Description of Services 187

VDEFINE - Define Function Variables

The VDEFINE service is used only with call invocations.

The VDEFINE service is invoked by a program to give ISPF the ability to
use dialog variable names to directly access variables within the
particular program module. In the call to VDEFINE, the program
specifies the format (character string, fixed binary, bit string, hex or
user-defined) and length of the variables. (As described in "The
Function Pool for Programs" in Chapter 2, stacking of definitions for a
particular dialog variable may be achieved by successive calls to
VDEFINE for that dialog variable.)

When the VDEFINE service is called, ISPF enters the dialog variable
names into the function pool for the dialog function currently in
control. Dialog variables entered in the function pool by use of the
VDEFINE service are called defined variables to distinguish them from
implicit variables in the function pool. (Refer to "The Function Pool
for Programs" in Chapter 2, for a further discussion of defined and
implicit variables.)

A list of dialog variables can be defined with a single call to the
VDEFINE service. The program variables that correspond to the dialog
variables defined to ISPF by VDEFINE must have the same format and
length and be in contiguous locations or defined as an array or
structure within the program. The program variable name passed to ISPF
must be the name of the first variable as defined in the program, the
name of the array, or the name of the structure. The format and length
specified in the call to VDEFINE are the format and length of each
individual variable.

EXIT ROUTINE: The dialog writer may specify an exit routine to define
dialog variables when program variables are in non-standard formats
(formats other than CHAR, FIXED, BIT, or HEX). When a variable is then
accessed by any ISPF service, the exit routine is invoked to perform any
conversion necessary between the program variable's format and the
character string format required for a dialog variable. Appendix
F, "VDEFINE Exit Routine," describes invocation, parameters used, and
return codes required for the exit routine.

ISPEXEC *This service does not apply to command procedures*

CALL ISPLINK ('VDEFINE', name-list, variable, format, length
[,options-list] [,user-data]);

name-list
Specifies the symbolic name or name-list to be used by ISPF when

~-referencing the specified variables.

188 ISPF Dialog Management Services

An asterisk specifies (in conjunction with the USER format keyword
described below) that the exit routine (whose address is specified
in the user-data parameter) is to be called for variables not found
in the function pool.

variable
Specifies the variable whose storage is to be used. If a name list
is passed, this storage contains an array of variables. The number
of names in the list determines the dimension of the array.

format
Specifies the data conversIon format.

The format parameters are:

CHAR
Character string. Within the variable, the data is
left-justified and padded on the right with blanks. This is
the default.

No data conversion is performed when fetching and storing a
CHAR variable, nor is there any checking for valid characters.

Note: In PL/I, a character string to be used as a
dialog variable must be declared as fixed length,
because VDEFINE cannot distinguish varying length PL/I
strings.

FIXED

BIT

HEX

Fixed binary integer, represented by the characters 0-9.

Fixed variables that have a length of 4 bytes (fullword) are
treated as signed, represented by the absence or presence of a
leading minus sign (-). They may also have a null value,
which is stored as the maximum negative number (X'80000000').

Fixed variables that have a length of less than 4 bytes are
treated as unsigned. For these variables, a null value is
stored as binary zeros, and cannot be distinguished from a
zero value.

Bit string, represented by the characters 0 or 1. Within the
variable, the data is left-justified and padded on the right
with binary zeros.

Bit string, represented by the characters 0-9 and A-F. Within
the variable, the data is left-justified and padded on the
right with binary zeros.

USER
Specifies that the format is to be determined by the user.
Any conversion format is allowed. A conversion routine must

Chapter 6. Description of Services 189

length

be specified and is specified by naming it in the user-data
parameter, described below.

Specifies the length of the variable storage, in bytes. This
parameter must be a full word binary integer. The maximum length
for a FIXED variable is 4 bytes. The maximum length for other
types of variables is 32,767 bytes.

options-list
Specifies initialization of the defined storage and/or retention of
trailing blanks in variable data.

The options-list parameters are COpy and NOBSCAN (both may be
specified and are specified in the name-list format):

COpy
Specifies that any dialog variable with the same name may be
used to initialize the defined storage. The variable pools
are searched in the standard (function pool, shared pool,
profile pool) sequence.

NOBSCAN

user-data

Specifies that any trailing blanks in the variables are to
remain in the variables.

Specifies the storage location that contains the entry point
address of the conversion subroutine followed by any other data
that should be passed to the routine. This parameter is specified
whenever the USER parameter is specified.

The following return codes are possible:

o - Normal completion.
B - Variable not found.

16 - Data truncation occurred.
20 - Severe error.

Example: Establish ISPF accessibility, using the name ZMSGNAME, to a
field named ZERRMSG in this PL/I module. The field is a character
string and is B bytes long. Program variable LB contains a value of B.

CALL ISPLINK(' VDEFINE', 'ZMSGNAME', ZERRMSG, 'CHAR', LB);

190 ISPF Dialog Management Services

VDELETE - Remove a Definition of Function Variables

The VDELETE service is used only with the call invocations.

The VDELETE service removes variable names, previously defined by the
program module, from the function pool. This service is the opposite of
VDEFINE.

ISPEXEC *This service does not apply to command procedures*

CALL ISPLINK ('VDELETE', name-list);

name-list
Specifies the dialog variable names that are to be removed from the
function pool, or contains an asterisk.

An asterisk (*) specifies removal, from the function pool, of all
dialog variable names previously defined by the program module,
including exit routine definitions.

The following return codes are possible:

o - Normal completion.

8 - At least one variable not found.

16 - Data truncation occurred.

20 - Severe error.

Example: Remove ISPF accessibility to PL/I program variable ZERRMSG that
was previously established by VDEFINE to be accessible using dialog
variable name ZMSGNAME.

CALL ISPLINK ('VDELETE', 'ZMSGNAME');

Chapter 6. Description of Services 191

VGET - Retrieve Variables from a Pool or Profile

The VGET service copies values from dialog variable(s) in the shared
variable pool or the application profile to the function pool variables
with the same names. If a named function variable already exists, it is
updated; if not, it is created and then updated.

ISPEXEC VGET name-list [ASISISHAREDIPROFILE]

CALL ISPLINK ('VGET', name-list [, 'ASIS' I 'SHARED' I 'PROFILE']);

name-list
Specifies the names of one or more dialog variables whose values
are to be copied from the shared or profile pool to the function

~GvPOOI. The names are passed in the standard name-list format. See
\'J "Invocation of Services" for specification of name lists.

\' -- -- --
ASIS

Specifies that the variables are to be copied from the shared
variable pool, or, if not found there, from the profile pool.

SHARED
Specifies that the variables are to be copied from the shared
variable pool.

PROFILE
Specifies that the variables are to be copied from the application
profile. A shared pool variable with the same name is deleted,
even if it is not found in the profile pool.

The following return codes are possible:

o - Normal completion.

8 - Variable not found.

16 - Translation error or truncation occurred during data movement.

20 - Severe error.

Example: In MVS or VMjSP, in a CLIST or EXEC, copy from the shared pool
to the function pool, values for variables whose names are listed in
variable VARLIST.

ISPEXEC VGET (&VARLIST) SHARED

192 ISPF Dialog Management Services

In a PL/I program, VARLIST contains a list of variable names. Copy
values for these variables, from the shared pool to the function pool.

ISPLINK('VGET' VARLIST 'SHARED I);

Chapter 6. Description of Services 193

VPUT - Update Variables in a Pool or Profile

The VPUT service copies values from dialog variables in the function
pool to the shared pool or to the application profile. If a variable of
the same name already exists in the shared pool or the profile, it is
updated. If it does not exist, it is created and then it is updated.

ISPEXEC VPUT name-list [ASIS I SHARED I PROFILE]

CALL ISPLINK ('VPUT', name-list [, 'ASIS' I 'SHARED' I 'PROFILE']);

name-list

ASIS

Specifies the names of one or more dialog variables whose values
are to be copied from the function pool to the shared or profile
pool. See "Invocation of Services" for specification of name
lists.

Specifies that the variables are to be copied to the pool that they
already exist in or that they are to be copied to the shared pool,
if they are new. If the variables exist in both the shared and
profile pools, they are copied to the shared pool only.

SHARED
Specifies that the variables are to be copied to the shared
variable pool.

PROFILE
Specifies that the variables are to be copied to the application
profile. Any shared pool variable(s) of the same name(s) are
deleted.

The following return codes are possible:

o - Normal completion.

8 - Variable not found.

16 Truncation has occurred while copying variables to
the application profile.

20 - Severe error.

194 ISPF Dialog Management Services

Example: In HVS orVH/SP, in a CLIST or EXEC, write variables, the names
of which are listed in the variable VPUTLIST, from the function variable
pool to the shared variable p~~_:.._. '. e1 blvv)'\<'

ISPEXEC VPUT (&VPUTLIST~ SHARED------ rot>,A!'(

In a PL/I program, write variables, the names of which are listed in
program variable VPUTLIST, from the function variable pool to the shared
variable pool.

ISPLINK ('VPUT' VPUTLIST 'SHARED I);

Chapter 6. Description of Services 195

VREPLACE - Replace a Variable

The VREPLACE service is used only with call invocations.

The VREPLACE service allows a program module to update the contents of a
variable in the function pool.

The variable names may be specified as single 8-character values, a list
enclosed in parentheses, or a name-list structure. An array of lengths
must be supplied on input to map the area that contains the data for
each of the variables.

The variable to be updated can be the function's own defined variable
(if it exists) or an implicit variable associated with the function. If
the named variable does not exist, it is created as an implicit function
variable.

ISPEXEC *This service does not apply to command procedures*

CALL ISPLINK ('VREPLACE', name-list, lengths, values);

name-list
Specifies the names of the dialog variables whose values are to to
be updated. The standard name-list format is used.

lengths
Specifies an array of values glvlng, for each corresponding
variable in the name-list, the number of bytes of the data to be
used in the updating. Each field in the array must be a fullword
binary integer.

values
Specifies (in the buffer mapped by the length array) the update
data to be used in the updating.

The following return codes are possible:

o - Normal completion.

16 - Truncation has occurred during data movement.

20 - Severe error.

196 ISPF Dialog Management Services

Example: Copy the value of a field named QROWSDATAZ from this PL/I
program module to the function variable named QROWS. Before the copy
operation, if no variable with this name is found in the function pool,
create one giving it the name QROWS. Program variable L8 contains a
value of 8.

CALL ISPLINK('VREPLACE', 'QROWS " L8, QROWSDATAZ);

\
(1 t1,.,) d ~(~

)

Chapter 6. Description of Services 197

VRESET - Reset Function Variables

The VRESET service is used only with call invocations.

The VRESET service allows a program module to reset its function pool
variables.

Any defined variables are removed from the function pool (as though
VDELETEs had been done); any implicit variables are also deleted.

ISPEXEC *This service does not apply to command procedures*

CALL ISPLINK ('VRESET');

The following return codes are possible:

o - Normal completion.

20 - Severe error.

Example: Remove ISPF accessibility to all PL/I program variables.

CALL ISPLINK('VRESET');

198 ISPF Dialog Management Services

CHAPTER 7. PANEL AND MESSAGE DEFINITION AND SKELETON FORMATS

This chapter describes the syntax for defining panels, messages, and
file tailoring skeletons. If ISPF/PDF is installed, consider using its
modeling facilities to assist in entering panel definitions (see
ISPF/PDF Reference).

PANEL DEFINITIONS

ISPF panel definitions are stored in a panel library and are displayed
by means of the SELECT, DISPLAY, or TBDISPL service. Each panel
definition is referenced by its name, which is the same as the member
name in the library.

Panel definitions are created or changed by editing directly into the
panel library; no compile or preprocessing step is required.

Each panel definition consists of up to five sections:

1. Attribute section (optional) - defines the special characters that
are used in the body of the panel definition to represent attribute
(start of field) bytes. Default attribute characters are provided,
but may be overridden.

2. Body (required) - defines the format of the panel as seen by the
user, and defines the name of each variable field on the panel.

3. Model section (table display panels only) - defines the format of
each line of scrollable data. This section is required for table
display panels, and is invalid for other types of panels.

4. Initialization section (optional) - specifies the initial processing
that is to occur prior to displaying the panel. This section is
typically used to define how variables are to be initialized.

5. Processing section (optional) - specifies processing that is to
occur after the panel has been displayed. This section is typically
used to define how variables are to be verified and translated.

The panel definition is always ended with an)END statement, regardless
of the sections included in the definition.

Chapter 7. Panel and Message Definition and Skeleton Formats 199

The sections must appear in the order listed above. Th~ sections are
delineated by the following statements:

)ATTR - start of attribute section
)BODY - start of body section
)MODEL - start of model section (applies to table display panels only)
)INIT - start of initialization section
)PROC - start of processing section
)END - end of panel definition

The discussion of panels is arranged as follows:

• The formatting guidelines, which indicate the placement of panel
elements.

• A discussion of each section of the panel, in the order in which
they appear on the panel. (The model section is described with
table display panels, since it is unique to that type of panel.)

• A discussion of how panel processing is done.

• The rules and restrictions regarding the syntax of statements,
variable names, and keywords.

• A discussion of special panel types: menus, help/tutorials, and
table displays.

Formatting Guidelines

This section presents general guidelines for panel design.

Generally, in any panel definition, the first three displayable lines
include system-defined (default) areas for the display of messages, a
command/option field, and a scroll field. Location of the message areas
and command field may be overridden, see "Panel Body Section."

Following are suggestions for formatting the first three lines of a
panel body:

line 1 Title Short Message
I

line 2 Command/Option IScroll
I

line 3 Long Message

Line 1 should contain a title indicating the function being performed
or, where appropriate, should display information critical to that
function. The right-hand 24 characters of line 1 should not contain

200 ISPF Dialog Management Services

critical information if short messages are to be used in the default
short message area.

If short messages are used, they should provide a brief indication of:

• Successful completion of a processing function, or

• Error conditions (accompanied by audible alarm).

Short messages temporarily overlay whatever information is currently
displayed in the right-hand end of the first line, and are removed from
display on the next interaction. (The original information is
redisplayed when the message is removed.)

Short messages should be used either consistently throughout the
application, or not at all.

For table display, the short message area contains an indication of
current row/column positions, except when overlaid by a
function-requested message. The row/column indication is automatically
generated by the TBDISPL service, and replaces whatever was in the panel
definition in that area.

Line 2 generally contains the command field. This same field should be
used for option entry on menus. The command field, when the first input
field on the panel or when identified by using keyword CMD in the panel
body section, may be named using any valid variable name. However, the
name ZCMD is generally used.

(Cursor placement while viewing a panel differs between use of the name
ZCMD and other names. When ZCMD is used and cursor placement is not
explicitly specified, ISPF will skip over the command field - when blank
- to place the cursor on a following input field. When a name other
than ZCMD is used, a blank command field is not skipped over when
placing the cursor during display.)

For table display, edit, and browse panels, the scroll field should be
at the right-hand end of line 2, following the command/option area. The
scroll field must be the second input field in the panel definition, and
must be four characters in length. A scroll field is not meaningful for
other types of panels, and should be omitted from them.

Line 3 should generally be left blank, so that long messages do not
overlay any significant information. An exception to this rule might be
made in the case of table display panels, to allow as much scrollable
data as possible to fit on the screen. Refer to "Panel Body Section"
for a discussion of how to specify the information in the first three
lines of the panel.

Note: The command input field should not be located on line 3,
the line on which long messages display, because when display of a
long messag~ is superimposed on the command line, results are
unpredictable.

Chapter 7. Panel and Message Definition and Skeleton Formats 201

Following are additional suggestions for designing panels:

•

•

•

•

•

•

Avoid overly cluttered panels. Split up "busy" panels into two or
more simple panels that have less information and are easier to
read.

Do not use the last available line in a panel body. For example, if
the dialog may be used on 24-line terminals, limit the body to 23
lines or less. The reason for this is that in split screen mode the
maximum length of a logical screen is one less than the length of
the physical screen.

Place important input fields near the top of the panel and less
important fields (especially optional input fields) further down,
for two reasons: It is easier to move the cursor down than up, and
in split screen mode the bottom of the panel may not be visible
unless the user repositions the split line.

Note: Place the command line near the top of the panel. If
the command line is near the bottom, and the end user enters
split screen mode, the command line may not be visible on the
screen and, therefore, the user may not be able to continue
processing the dialog.

Where practical, align fields vertically on a panel, especially
input fields. Group related input fields under a common heading.
Minimize use of multiple input fields on the same line, so that the
NEW LINE key may be used to skip from one input field to the next.

Use visual signals to indicate particular types of fields, such as
arrows to indicate input fields, and colons to indicate variable
information that is protected. As examples:

FILE NAME ===> (arrow signals an input field)

EMPLOYEE SERIAL: 123456 (colon signals a protected field)

In any case, be consistent. Arrows, colons, and other visual
signals are very confusing if used inconsistently.

Use highlighting sparingly. Too many intensified fields result in
visual confusion. Again, be consistent. Highlight the same type of
information on all panels.

Syntax Rules and Restrictions

This section describes the syntax to be used in panel definition
statements.

202 ISPF Dialog Management Services

General Rules

The following general syntax rules apply:

• All statements, variable names,and keywords must be coded in
uppercase. Values that are interpreted by the DISPLAY service, such
as INTENS(LOW) , must also be in uppercase. Values assigned to
dialog variables and text in the panel body need not be in
uppercase.

• Input and output fields defined in the body section may not exceed
255 bytes in length.

• All header statements, such as) ATTR ,)BODY, etc., must be coded
exactly as shown, starting in column 1. Statements following the
header need not begin in column 1.

• If a section is omitted, the corresponding header statement is also
omitted. The)BODY header may be omitted if the entire attribute
section is omitted and there is no need to override the default
attribute bytes by using a keyword on the)BODY statement.

• An)END statement is required as the last line of each panel
definition.

Blanks and Comments

The following rules apply to the use of blanks and comment statements:

• In the attribute section, the attribute character and all keywords
that follow must be separated by one or more blanks. At least one
keyword must follow the attribute character on the same line.
Keywords may be continued on succeeding lines.

• In the initialization and processing sections, mUltiple statements
may occur on the same line, separated by one or more blanks.
Statements may not be split between lines, except that listed items
within parentheses may be continued on succeeding lines (see below).

• One or more blanks may optionally occur on either side of an equal
sign (=) or a not-equal operator (,=). Embedded blanks may not
occur in the not-equal operator: ", =" is invalid.

• One or more blanks may optionally occur on either side of
parentheses (except that a blank may not follow the right
parenthesis that begins a header statement). The following are all
equivalent:

INTENS(LOW)
INTENS (LOW)
INTENS (LOW)

Chapter 7. Panel and Message Definition and Skeleton Formats 203

Lists

One or more blanks must follow the closing parenthesis to separate
it from the next statement or keyword.

• Comments may be coded in the attribute, initialization, and
processing sections. Comments must be enclosed with the comment
delimiters, /* and */. The comment must be the last item on the
line (i.e., additional keywords or statements may not follow the
comment on the same line). A comment may not be continued on the
next line. For multi-line comments, the comment delimiters must be
used on each line.

• In NVS and VH/SP, blank lines may occur anywhere within the
attribute, initialization, and processing sections.

• In NVS, VN/SP, and VSE/AF 2.1, you can use blank lines in a panel
definition. In VSE/AF 1.3.5, however, blank lines cannot be used
in a panel definition. For VSE/AF 1.3.5, you can cause a blank line
to appear in a panel display by providing, in the panel definition,
a line that is blank except for a field delimiter character, such as
"+", in the first position.

The following rules apply to items in lists:

• Listed items within parentheses may be separated by commas or one or
more blanks. This includes paired values within a TRANS statement.
For example, the following are equivalent:

TRANS (&XYZ 1,A 2,B 3,C NSG=xxxx)
TRANS (&XYZ 1 A 2 B 3 C t<ISG=xxxx)
TRANS (&XYZ, 1 , A , 2 , B , 3 , C., MSG=xxxx)

• Null items within a list are treated as blank items. For example,
the following are equivalent:

TRANS (&XXX N,' ,
TRANS (&XXX N"

Y , YE S , "'~,' ')
Y , YE S , .. '~ ,)

• Listed items within parentheses may be continued on one or more
lines. For example:

TRANS (&CASE 1, 'THIS IS THE VALUE FOR CASE l'
2, 'THIS IS THE VALUE FOR CASE 2')

Literal values within a list may be split between lines by coding a
plus sign (+) as the last character on each line that is to be
continued. Example:

TRANS (&CASE 1, 'THIS IS THE VALUE +!
FOR CASE l' 2, 'THIS IS THE +!
VALUE FOR CASE 2')

204 ISPF Dialog Management Services

Variables within Text Fields and Literal Expressions

The following rules apply to variables in text fields and literals:

• In the panel body, a variable may appear within a text field. In
the initialization and processing sections, a variable may appear
within a literal value. In all three sections, the variable name
(and the preceding ampersand) are replaced with the value of the
corresponding dialog variable. For example, if variable V has the
value ABC then:

tF &V Gt

tF,&V,G'
yields
yields

tF ABC Gt

'F,ABC,G'

• A period (.) at the end of a variable name causes concatenation with
the character string following the variable. For example, if &V has
the value ABC, then

t&V.L~1Nt yields 'ABCLHN'

• A single ampersand followed by a blank is interpreted as a literal
ampersand character (not the beginning of a substitutable variable).
An ampersand followed by a non-blank is interpreted as the beginning
of a substitutable variable.

• A double ampersand may be used to produce a character string
starting with (or containing) an ampersand. The double character
rule also applies to apostrophes within literal values (if the
literal is enclosed within delimiting apostrophes), and to a period
if it immediately follows a variable name. That is:

&& , , yields
yields
yields

&
t within delimiting apostrophes
. immediately following a variable name

• When variable substitution occurs within a text field in the panel
body, left or right shifting extends to the end of the field
(defined by the occurrence of the next attribute byte). For left
shifting, the rightmost character in the field is replicated
(shifted in), provided it is a special (non-alphameric) character.
For example:

%DATA SET NAME: &DSNAME ----------------------%

Assuming that the value of variable DSNAHE is greater than seven
characters, the dashes are "pushed" to the right, up to the next
start of field (the next H%" in this example). If the value of
DSNAME is less than seven characters, additional dashes are "pulled"
in from the right.

Chapter 7. Panel and Message Definition and Skeleton Formats 205

Attribute Section ----- The attribute section of a panel defines the special characters that are
to be used in the definition of the body of the panel to represent
attribute (start of field) bytes. When the panel is displayed, these
characters are replaced with the appropriate hardware attribute bytes,
and appear on the screen as blanks.

If specified, the attribute section precedes the panel body. It begins
with the)ATTR header statement and ends with the)BODY header
statement.

Default Attribute Characters

The special characters defined in the attribute section (or the default
attribute characters) are used in the panel body to indicate the start
of each field, which is also the end of the preceding field.

The default attribute characters are:

% (percent sign) - text (protected) field, high intensity
+ (plus sign) - text (protected) field, low intensity

(underscore) - input (unprotected) field, high intensity

For text (protected) fields, the information following the attribute
character is the text to be displayed. -Text fields may contain
substitutable variables which consist of a dialog variable name preceded
by an ampersand (&). The name and ampersand are replaced with the value
of the variable prior to displaying the panel.

For input (unprotected) fields, a dialog variable name immediately
follows the attribute character (with no intervening ampersand). The
name is replaced with the value of the variable prior to displaying the
panel, and any information entered by the user is stored in the variable
after the panel has been displayed.

There is another type of protected field, called an output field, for
which there is no default attribute character. Output fields allow
padding and justification of the variable information.

The maximum length of dialog variables, used for input or output in a
panel, is 255 bytes.

The default characters may be changed by means of a keyword on either
the)ATTR or)BODY header statement. For example:

DEFAULT (abc)

where "a", lib", and "c" are the three characters that take the place of
"0/" "+" d"" . 1 ro, ,an _, respectlve y.

206 ISPF Dialog Management Services

Note: The value inside the parentheses must consist of exactly
three characters, not enclosed in apostrophes and not separated by
commas or blanks.

Typically, this keyword would be used on the)ATTR header statement if
the three default characters are to be changed, and additional attribute
characters are also to be defined. The keyword would be used on the
)BODY header statement (and the entire attribute section would be
omitted) if the only change is to redefine the default characters. For
example:

)BODY DEFAULT($¢_)

In this example, the default characters for text fields are changed to
"$" for high intensity, and "¢" for low intensity. The default
character for high intensity input fields is specified as " " (the same
as from the ISPF-supplied default).

Statement Formats

Each statement in the attribute section must begin with a single
character. This defines the attribute character for a particular kind
of field. The remainder of the statement contains keyword parameters
that define the nature of the field. The keywords that may be specified
are described below.

Generally, special (non-alphameric) characters should be chosen for
attribute characters so that they will not conflict with the panel text.
An ampersand (&) is illegal as an attribute character.

The keyword parameters that may be specified to the right of the
attribute character are: TYPE, INTENS, CAPS, JUST, PAD, SKIP, and ATTN.
They are all optional, except that at least one parameter must be
specified. They may be specified in any order.

In attribute keywords, the "value" may be expressed as a literal or as a
dialog variable name, preceded by an ampersand (&). For example:

INTENS(&A)

Variable substitution is done after processing of the initialization
section.

The current value of the dialog variable must be valid for the
particular keyword. In the above example, the value of dialog variable
A must be HIGH, LOW, or NON.

Exception: TYPE(TEXT) must be coded explicitly; therefore,

TYPE (&A)

is invalid even when the current value of dialog variable A is TEXT.

Chapter 7. Panel and Message Definition and Skeleton Formats 207

For simplicity, the values in the following examples are shown as
literals.

TYPE(TEXTIINPUTIOUTPUT)

Specifies the type of the field:

TEXT - text (protected) field

INPUT - input (unprotected) field

OUTPUT - output (protected) field

Text fields are displayed exactly as specified in the body of the panel,
except that any variable names (preceded by an ampersand) are replaced
with the current value of the variable.

For input and output fields, a dialog variable name must immediately
follow the attribute character (with no intervening ampersand). No text
may be included within the field.

Input fields are initialized prior to display, and may be entered (or
overtyped) by the user. Output fields are initialized prior to display,
but may not be changed by the user. Note that both input and output
fields may have associated caps, justification, and pad attributes.
Note also that that there is no default attribute character for output
fields.

INTENS(H IGH I LOWI NON) Specifies the intensity of field:

HIGH - high intensity field

LOW - low (normal) intensity field

NON - non-display field (valid only for input fields) ...- rf\~

CAPS(ON IOFF)

\
';,Kto,

Specifies the upper or lower case attribute of the field, and is valid
only for input and output fields:

ON - translate to uppercase

OFF - no translation

For CAPS ON, initial values and values entered by the user are
automatically translated to uppercase. For CAPS OFF, no translation is
performed.

Note: Use of CAPS (OFF) is negated if the dialog variable is
referenced in a CLIST. (CLISTs translate unconditionally to upper
case) .

JUST(LEFTI RIGHTIASIS)

208 ISPF Dialog Management Services

Specifies how the contents of the field are to be justified, and is
valid only for input and output fields.

LEFT - left justification

RIGHT - right justification

ASIS - no justification

Justification occurs if the initial value of a field is shorter than the
length of the field as described in the panel body. Normally, right
justification should be used only with output fields, since a right
justified input field would be difficult to overtype.

For LEFT or RIGHT, the justification applies only to how the field
appears on the screen; leading blanks are automatically deleted when the
field is processed. For ASIS, leading blanks are not deleted when the
field is processed, nor when it is initialized. Trailing blanks are
automatically deleted when a field is processed, regardless of its
justification.

PAD(NULLS \char)

Specifies the pad character for initializing the field, and is valid
only for input and output fields.

NULLS - nulls are used for padding.

char - any character, including blank (' ') may be specified as the
padding character.

If this keyword parameter is omitted, the default is user-defined for
input fields and blank for output fields. The user-defined default for
input fields is specified by using ISPF Parms (see Appendix B, "Using
the ISPF PARHS Option."

If the field is initialized to blanks (or the corresponding dialog
variable is null), the entire field contains the pad character when the
panel is first displayed. If the field is initialized with a value, the
remaining field positions (if any) contains the pad character.

Padding and justification work together in the following manner: On
initialization, the field is justified (unless ASIS was specified) and
then padded. For left justified and ASIS fields, the padding extends to
the right. For right justified fields, the padding extends to the left.

The pad characters are automatically deleted when the field is
processed.

When an input field is processed, leading or trailing pad characters are
automatically deleted, as follows:

• For a left justified field, leading and trailing pad characters are
deleted.

Chapter 7. Panel and Message Definition and Skeleton Formats 209

• For a right justified field, leading pad characters are deleted.

• For an ASIS field, trailing pad characters are deleted.

In no case are imbedded pad characters deleted; only leading or trailing
pad characters are deleted.

In the PAD(NULLS/char parameter is omitted, the default for input fields
is either nulls or blanks, as specified by a user by use of the terminal
characteristics panel (option 0.1); for output fields the default is
blanks.

SKIP(ON IOFF)

The SKIP keyword defines the autoskip attribute of the field, and is
valid only for text or output (protected) fields.

SKIP(ON) specifies that the cursor automatically skips the field and is
positioned to the first character location of the next unprotected
field, upon entry of a character into the last character location of the
preceding unprotected data field.

SKIP(OFF) specifies that the cursor does not automatically skip the
field when the above condition occurs.

ATTN(ONIOFF)

The ATTN keyword defines the attention-select attribute of the field,
and is valid only for text fields.

ATTN (ON) , specifies that the field may be selected by using the light
pen or cursor select key (see "Light Pen and Cursor Select" in Chapter
3, "Use of Commands, Program Keys, and Light Pen").

ATTN (OFF) , specifies that the field is not sensitized for selection in
this manner.

Note: The panel designer must provide an adequate number of
blank characters before and after the attention attribute
character, as required by the 3270 hardware (see 3270 Information
Display System Component Description, GA27-2749).

Panel Body Section

The body section of the panel definition specifies the format of the
panel as the user sees it. It contains up to 43 records, each of which
corresponds to a line on the display.

The section begins with the)BODY header statement, which may be omitted
if there is no attribute section and no change to the default attribute
characters. The panel body ends with any of the following statements:
)MODEL,)INIT,)PROC, or)END.

210 ISPF Dialog Management Services

Several keywords may optionally be placed on the)BODY header statement.
They include KANA, CMD, SMSG and LMSG. The KANA keyword should be
included when Katakana characters are to appear within the panel (see
Appendix G, "Character Translations for APL, TEXT, and Katakana").

Command and Message Fields

There are system-defined (default) areas for the display of messages and
the command field (see "Panel Definitions"). Alternate locations may be
specified by use of the following keywords on the)BODY header
statement:

• CMD(field-name) - identifies the panel field (variable name) that is
to be treated as the command field. The field must be TYPE(INPUT).

Note: If a command line is omitted from a panel, the first
input field is used by ISPF as a default command field.

• SMSG(field-name) - identifies the panel field (variable name) where
the short message, if any, is to be placed. The field must be
TYPECOUTPUT). If the length of this field is shorter or longer than
24 characters, the message is truncated or justified as appropriate.

• LMSG(field-name) - identifies the panel field (variable name) where
the long message, if any, is to be placed. The field must be
TYPE(OUTPUT). If the length of this field is shorter or longer than
79 characters, the message is truncated or justified as appropriate.

Sample Body Section

The sample panel definition, shown in Figure 24 consists of a panel body
followed by an ")END" control statement. It has no attribute,
initialization, or processing sections, and uses the default attribute
characters.

This data entry panel has 11 input fields (ZCMD, TYPECHG, LNAME, etc.),
indicated with underscores. It also has a substitutable variable
(EMPSER) within a text field (on line 2). The first two lines of the
panel and the arrows preceding the input fields are all highlighted, as
indicated by the percent signs. The other text fields are low
intensity, as indicated by the plus signs.

Following)INIT section processing and immediately before a panel is
displayed, all variables in the panel body are automatically initialized
from the corresponding dialog variables (EMPSER, TYPECHG, LNAME, etc.).
After the panel has been displayed and before)PROC section processing,
the input fields are automatically stored into the corresponding dialog
variables.

Figure 25 shows the panel as it appears when displayed, assuming that
the current value of EMPSER is "123456", and that the other variables
are initially null.

Chapter 7. Panel and Message Definition and Skeleton Formats 211

)BODY
%---------------------------- E~IPLOYEE RECORDS ------------------------------
~~CONNAND ===> ZCND +
%
%ENPLOYEE SERIAL: &EMPSER
+
+ ~YPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ ENPLOYEE NAME:
+ LAST ~~===> LNAME +
+ FIRST ~~===> FNAME +
+ INITIAL%===> 1+
+
+ HOME ADDRESS:
+ LINE 1 ~~===> ADDRI +
+ LINE 2 %===> ADDR2 +
+ LINE 3 %===> ADDR3 +
+ LINE 4 %===> ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===>_PHA+
+ LOCAL NUMBER%===>_PHNUM +
+
)END

Figure 24. Sample Panel Definition

212 ISPF Dialog Management Services

---------------------------- ENPLOYEE RECORDS ------------------------------
CO~mAND ===>

EMPLOYEE SERIAL: 123456

TYPE OF CHANGE ===> (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST ===>
FIRST =::.:=>
INITIAL ===>

HO~IE ADDRE S S :
LINE 1 ===>
LINE 2 ===>
LINE 3 ===>
LINE 4 ===>

HOME PHONE:
AREA CODE ===>
LOCAL NUMBER ===>

Figure 25. Sample Panel - When Displayed

Model Section

The model section is used only with table display panels and defines how
each table row is to be formatted. Because the model section is unique
to table display panels, it is discussed in "Table Display Panels."

I nitialization and Processing Sections

The initialization and processing sections are discussed together
because the same statements may be used in both, although typically
certain statements are used only in the initialization section while
others appear only in the processing section.

The initialization section specifies the initial processing that is to
occur prior to displaying the panel. It begins with the)INIT header
statement and ends with either the)PROC or)END header statement.

Chapter 7. Panel and Message Definition and Skeleton Formats 213

The variables that are displayed in the panel body reflect the contents
of the corresponding dialog variables after the)INIT section has been
processed, just prior to display of the panel. The input fields are
automatically stored into the corresponding dialog variables immediately
following display and prior to processing the)PROC section.

The processing section specifies additional processing that is to occur
after the panel has been displayed. It begins with the)PROC header
statement and ends with the)END statement.

Statement Formats

The same statements may be used in the initialization and processing
sections, although certain statements are typically used only in the
initialization section and others only in the processing section.

There are four types of statements that may be used in these sections:
assignment, IF, VER (verify), and VPUT. Two built-in functions may also
be used: TRUNC (truncate) and TRANS (translate). These functions may
appear on the right-hand side of an assignment statement.

The following types of data references may appear within these
statements:

•

•

•

Dialog variable - a name preceded by an ampersand (&).

Control variable - a name preceded by a period (.) -- see the
section entitled "Control Variables."

Literal value - a character string not beginning with an ampersand
or period. A literal value may be enclosed in apostrophes ('). It
must be enclosed in apostrophes if it begins with a single ampersand
or a period, or if it contains any of the following special
characters:

Blank < (+ I) ; ~ - > : =

A literal may contain substitutable variables, consisting of a
dialog variable name preceded by an ampersand (&). The name and
ampersand are replaced with the value of the variable prior to
processing the statement. A double ampersand may be used to specify
a literal character string starting with (or containing) an
ampersand. See "Syntax Rules and Restrictions."

In the description of statements and built-in functions that f~llows, a
"variable" may be either a dialog variable or a control variable. A
"value" may be either type of variable or a literal value.

variable = value

This is an assignment statement. Assignment statements may be used in
the)INIT section to set the contents of dialog variables prior to the
automatic initialization of variables in the panel body. Assignment

214 ISPF Dialog Management Services

statements may also be used in the)PROC section, typically to set the
contents of dialog variables that do not correspond to fields in the
panel body. For example:

&A = ' ,
&COUNT = 5
&DSN
&BB

= "'SYS1.MACLIB'"
= &C

The first example sets variable A to blanks. The second example sets
variable COUNT to a literal character string (the number 5). The third
eXdmple sets variable "DSN to a character string that begins and ends
with an apostrophe (see "Syntax Rules and Restrictions"). The fourth
example sets variable BB to the contents of anothe1variable, C. The
literal ' , represents a single blank. To define a null, you must use
the &Z literal.

;'

4:)~ 2 0 ';)
TRUNC (variable, value) r

This built-in function may occur on the right side of an assignment
statement to cause truncation. The first parameter inside the
parentheses specifies the variable to be truncated. The value may be a
numeric quantity indicating the length of the truncated result, or any
special character indicating truncation at the first occurrence of that
character. For example:

&A = TRUNC (&XYZ,3)
&INTEG = TRUNC (&NUMB,'. ')

In the first example, the contents of variable XYZ are truncated to a
length of three characters and stored in variable A. (Variable XYZ
remains unchanged.) In the second example, the contents of variable
NUMB are truncated at the first occurrence of a period and stored in
variable INTEG. (Variable NUMB remains unchanged.) If NUMB contains
"3.2.4", INTEG contains "3".

The control variable .TRAIL contains the "remainder" following a TRUNC
operation. When the contents of a variable are truncated to a specified
length, all remaining characters are stored in .TRAIL. If the contents
of a variable are truncated at the first occurrence of a special
character, the remaining characters following the special character are
stored in .TRAIL. The special character, itself, is not stored nor is
it retained in ZCMD, the command field. For example:

)PROC
&AAA = TRUNC (&ZCMD, '. ')
&BBB = .TRAIL

If variable ZCMD contains "9.4.6", variable AAA contains "9" and the
.TRAIL control variable and the variable BBB contains "4.6".

TRANS (variable value, value ... [MSG=value])

Chapter 7. Panel and Message Definition and Skeleton Formats 215

.. "......-'-1-.1 ""..Y., ""'~>\~M"'«"""''''''''" ~"'h" """ ~
..::-' l<"~

."~., ... '''. ""~"'." ,., ""
. ",.,,""'P '''-",

/ ,
/./1//" This built-in function may occur on"he right side of an assignment

I i' statement to cause trans lation. The(r-rrst pararne~~ ins ide the

I
f parentheses specifies th:"X,~~£lJ~~,,_.t.Q:!I!:::!!l1'i'rS"t·a:t·ea. This is followed

/
' by paired values. The("first value in each pa'"1:) indicates a possible

(;~! U:x~!p ~:~ variab Ie, 7t,secc;na(~nifrcates the trans Iated result.

&REPL = TRANS (&NOD Y, YES N, NO))\
~r,~'--~--~'" ~~ ~~)

----~~~ffrrent value of variable rnTIr is translated, and the result is
stored in variable REPL. (Variable NOD remains unchanged.) The
translation is as follows: If the current value of NOD is "Y", it is
translated to "YES". If the current value is "N", it is translated to
"NO". If the current value is anything else (neither "y" nor "N"), it
is translated to blank.

The anything-else condition may be specified by using an asterisk in the
last set of paired values. For example:

&REPL = TRANS (&NOD
&REPL = TRANS (&NOD

~'. , , ? ')

In the first example, if the current value of MOD does not match any of
the listed values, a question mark is stored in variable REPL. In the
second example, if the current value of MOD does not match any of the
listed values, the value of MOD is stored untranslated into REPL.

Another option for the anything-else condition is to cause a message to
be displayed to the user, by specifying MSG=value, where "value" is a
message-id. Typically, this technique is used in the processing section
of the panel description. For example:

&DISP = TRANS (&D 1,SHR 2,NEW 3,MOD MSG=ISPG001)

The contents of variable D are translated as follows: "1" is translated
to "SHR", "2" is translated to "NEW", and "3" is translated to "MOD".
If none of the listed values is encountered, message ISPG001 is
displayed. Message ISPG001 may be an error message indicating that the
user has entered an invalid option.

For both the TRANS and TRUNC built-in functions, the source and
destination variables may be the same. Figure 26 shows an example in
which it is assumed that variable TYPECHG was originally set (in the
dialog function) to a single character "N", "U", or "D". In the)INIT
section, TYPECHG is translated to "NEW", "UPDATE", or "DELETE" and
stored into itself prior to display of the panel. In the)PROC section,
TYPCHG is truncated back to a single character.

Use of this technique allows the end user to change the valid options
for TYPECHG by simply overtyping the first character.

216 ISPF Dialog Management Services

Finally, the TRANS and TRUNC built-in functions may be nested. For
example:

&XYZ = TRUNC(TRANS(&A ---),1)
&ZSEL = TRANS(TRUNC(&ZCHD,'. ') ---)

In the first example, the current value of variable A is translated.
The translated value is then truncated to a length of one, and the
result is stored in variable XYZ. In the second example, the contents
of variable ZCHD are truncated at the first period, the truncated value
is then translated, and the result is stored in variable ZSEL.

)BODY
%---------------------------- EMPLOYEE RECORDS ------------------------------
~~Co~mAND===> ZCMD
+
%EHPLOYEE SERIAL: &EHPSER
+
+ TYPE OF CHANGE~~===> TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ EHPLOYEE NAME:
+ LAST %===> LNAME
+ FIRST %===> FNAME
+ INITIAL%===> I+
+
+ HOHE ADDRESS:
+ LINE 1 %===> ADDR1
+ LINE 2 %===> ADDR2
+ LINE 3 %===> ADDR3
+ LINE 4 %===> ADDR4
+
+ HOHE PHONE:
+ AREA CODE ~~===> PHA+
+ LOCAL NU~1BER<J~===> PHNUt-l
+
)INIT

+
+

+

&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,1)

)END

Figure 26. Sample Panel with TRANS and TRUNC

+
+
+
+

+

Chapter 7. Panel and Message Definition and Skeleton Formats 217

IF (variable operator value [,value ...])

The IF statement may be used to test the current value of a variable.
The parentheses contain a conditional expression, in which the operator
may be either equal (=) or not equal (~=). One or more values may be
specified. For example:

IF (&DSN = ' ')
IF (&OPT = 1,2,5)
IF (&A ~= &B)
IF (&A ~= AAA,BBB)

The first example is true if variable DSN is null or contains blanks.
The second is true if variable OPT contains any of the literal values 1,
2, or 5. The third is true if the value of variable A is not equal to
the value of variable B. The fourth is true if variable A is not equal
to either of the literal values AAA or BBB, which is the same as saying
that variable A is not equal to AAA and not equal to BBB.

The IF statement is indentation sensitive. If the conditional
expression is true, then processing continues with the next statement.
Otherwise all following statements are skipped up to the next statement
that begins in the same column as the IF or in a column to the left of
the IF. Example:

IF (&XYZ = ' ')
&A = &B
&B = &PQR
IF (&B = YES)

&C = NO
&D = &ZZZ

In this example, processing skips to statement &D = &ZZZ from either IF
statement if the stated condition is false.

Figure 27 shows a sample panel with an IF statement. The current value
of variable PHA is tested for blank. If it is blank, PHA is initialized
to the literal value 301.

218 ISPF Dialog Management Services

)BODY
%---------------------------- ENPLOYEE RECORDS ------------------------------
%COHHAND===> ZCND +
+
%EMPLOYEE SERIAL: &ENPSER
+
+ TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ EHPLOYEE NANE:
+ LAST ~~===> LNA~lE +
+ FIRST %===> FNANE +
+ INITIAL~o===> 1+
+
+ HOME ADDRESS:
+ LINE 1 %===> ADDR1
+ LINE 2 ~~===> ADDR2
+ LINE 3 ~~===> ADDR3
+ LINE 4 ~~===> ADDR4
+
+ HONE PHONE:
+ AREA CODE %===> PHA+
+ LOCAL NUMBER%===> PHNUM +
+
)INIT

IF (&PHA = ' ')
&PHA = 301

&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,l)

)END

Figure 27. Sample Panel with IF Statement

+
+
+
+

VER (variable [, NON BLANK], keyword [, value ...] [MSG=value])

The verify statement, VER, may be used to check that the current value
of a variable meets some criteria. Typically, it is used in the
processing section to verify the contents of input fields entered by the
user.

The first parameter inside the parentheses specifies the variable to be
checked. The second parameter is NONBLANK, a keyword specifying that
the variable is to contain a value and not a blank. The number and
meaning of the values that follow the keyword are dependent upon the
type of verification.

Chapter 7. Panel and Message Definition and Skeleton Formats 219

If the variable does not meet the verification criteria, a message is
displayed. The message may be specified in the NSG=value parameter,
where "value" is a message-id. If no message is specified, an
ISPF-supplied message is displayed, based on the type of verification.
Even if a VER fails, processing of the panel INIT and PROG sections is
performed.

ISPF provides several types of verification, as described below. In
these descriptions, "xxx" is used to represent the variable name. The
values that must follow the verification keyword, if any, are also
indicated.

•

•

•

•

•

•

•

VER (xxx,NONBLANK) - The variable is required and must not be blank.
NONBLANK (or the abbreviated form, NB) may be specified with another
type verification (ALPHA, NUH, HEX, etc.) by specifying the NONBLANK
keyword first (after the variable name but before the other
keyword). Example:

VER (&A,NB,PIGT,NNN-NNNN)

is equivalent to:

VER (&A,NONBLANK)
VER (&A,PIGT,NNN-NNNN)

VER (xxx,ALPHA) - The variable must contain all alphabetic
characters (A-Z, #, $, or @).

VER (xxx,NUM) - The variable must contain all numeric characters
(0-9).

VER (xxx,HEX) - The variable must contain all hexadecimal characters
(0-9, A-F).

VER (xxx,BIT) - The variable must contain all 'O's and 'l's.

VER (xxx,FILEID) - The variable must contain a valid fileid (in CMS
syntax), which is any value that is valid with a LISTFILE command.
The file name and file type (if given) must be one to eight
alphameric characters (A-Z, 0-9, #, $, @, the filemode must be a
single letter (A-Z), optionally followed by a single digit (0-9).
In addition, one or more fields of the file identifier may be an
asterisk (*) or may be a string of characters followed by an
asterisk (e.g., tr*).

VER (xxx,PIGT,string) - The variable must contain characters that
match the corresponding type of character in the picture string.
The "string" parameter may be composed of the following characters:

C - any character
A - any alphabetic character (A-Z, #, $, or @)
N - any numeric character (0-9)
9 - any numeric character (same as "N")

220 ISPF Dialog Management Services

•

•

•

x - any hexadecimal character (0-9, A-F)

In addition, the string may contain any special character (except #
$, or @), which represents itself. Example:

VER (xxx,PICT, 'A/NNN')

The value must start with an alphabetic character, followed by a
slash, followed by three numeric characters.

Note: The length of the variable value and the picture
string must be the same. Trailing blanks are not included.

VER (xxx,NAHE) - The variable must contain a valid name, following
the rules of member names (up to eight alphameric characters of
which the first must be alphabetic).

VER (xxx,DSNAME) - The variable must contain a valid TSO data set
name. A data set name qualifier must begin with an alphabetic
character, @, #, $, or a period. The remaining characters must be
either alphameric or a hyphen (-).

Note: ISPF Dialog Hanager does not take the length of the
actual TSO prefix into account when the panel user specifies a
data set name without quotes. It checks that the length of
the variable is no greater than 42 characters.

VER (xxx,RANGE,lower,upper) - The variable must be numeric, and its
value must fall (inclusively) within the specified lower and upper
limits.

Note: The length of the specified variable is limited to 16
digits. Further, the lower and upper parameters may consist
of no more than 16 digits each.

• VER (xxx,LIST,value1,value2, ...) - The variable must contain one
of the listed values.

For all tests except NONBLANK, a blank value is acceptable.
the user enters a value (or leaves a non-blank initial value
it must conform to the specified condition. But if the user
input field blank, the field will pass any verification test
NONBLANK.

That is, if
unchanged) ,
leaves an
except

Figure 28 shows a sample panel with VER statements to verify that
information entered by the user meets the following criteria:

• The truncated value of TYPECHG is "N", "U", or "D".

• The three name variables (LNAME, FNAME, and I) contain all
alphabetic characters.

• The PHA (area code) field contains all numeric characters.

Chapter 7. Panel and Message Definition and Skeleton Formats 221

• The PHNUM (local number) field contains three numeric characters,
followed by a hyphen, followed by four numeric characters.

For the TYPECHG test, a message-id has been specified in the event that
the test fails. In all the other cases, an ISPF-provided message will
be displayed if the variable fails the verification test.

)BODY
%---------------------------- EMPLOYEE RECORDS ------------------------------
%COHHAND===> ZCMD
+
%EMPLOYEE SERIAL: &EMPSER
+
+ TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ EMPLOYEE NAME:
+ LAST %===> LNAME +
+ FIRST %===> FNAME +
+ INITIAL%===> I+
+
+ HOME ADDRESS:
+ LINE 1 %===> ADDR1 +
+ LINE 2 %===> ADDR2 +
+ LINE 3 %===> ADDR3 +
+ LINE 4 %===> ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===> PHA+
+ LOCAL NUl'1BER~~===> _ PHNUM +
+
)INIT

IF (&PHA = ' ')
&PHA = 301

&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,l)
VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)
VER (&LNAME,ALPHA)
VER (&FNAME,ALPHA)
VER (&I,ALPHA)
VER (&PHA,NUM)
VER (&PHNUM,PICT, 'NNN-NNNN')

)END

Figure 28. Sample Panel with Verification

222 ISPF Dialog Management Services

+

VPUT name-list [AS I S I SHARED I PROF I LE]

While variables entered from a panel are automatically stored in the
function variable pool, variables can be stored in the shared and
profile variable pools by VPUT statements used in the)INIT or)PROC
sections of the panel definition. For example~

)PROC
VPUT (XYZ ABC) PROFILE

This coding causes current values for variables XYZ and ABC to be stored
in the profile pool by a VPUT operation.

The syntax for the VPUT statement is the same as that for the VPUT
service when it is invoked from a CLIST or EXEC 2 except that the
ISPEXEC command verb is omitted. (Refer \0 Chapter 6, "Description of
Services" for a description of the VPUT parameters).

Control Variables

Control variables are used to control and test certain conditions
pertaining to the display of a panel. The control variables are
described below:

.CURSOR Nay be set in the initialization section to control the

/
initial placement of the cursor. Its value must be a
character string that matches a field name in the panel body.

7., 1,.,(p For example:

. HELP

. MSG

.CURSOR = DSN

causes the cursor to be placed at the beginning of field DSN.
This variable is automatically set to the field last
referenced whenever .NSG is set explicitly or indirectly by
TRANS or VER statements .

May be set in the initialization section to establish a
tutorial (help) panel to be displayed if the user enters the
HELP command. For example:

.HELP = ISPTE

causes tutorial page ISPTE to be displayed when the user
enters the HELP command .

May be set to a message-id, typically in the processing
section, to cause a message to be displayed. For example:

.NSG = ISPE016

This variable is automatically set by use of the MSG=value
keyword on a TRANS (if there is no match with the listed
values) or a VER statement (if the verification fails).

Chapter 7. Panel and Message Definition and Skeleton Formats 223

.RESP

.TRAIL

Indicates "normal" or "exception" response on the part of the
user. It is always set to "ENTER" (normal response) unless
the user enters an END or RETURN command, in which case it is
set to "END". It may be tested in the processing section to
determine the user's response. For example:

IF (.RESP = END)

This variable may be set in the initialization section to
simulate a user response. In this case, the panel is not
displayed but is processed as though the user had pressed
ENTER or entered an END command without entering any data.

This variable may be set in a panel processing section to
force an END or ENTER response. This may be particularly
useful if a verification has failed (or .MSG set) and it is
desired that the panel be redisplayed with the message even if
the user entered END or RETURN.

Contains the "remainder" following a truncate (TRUNC)
operation. If the contents of a variable are truncated to a
specified length, all remaining characters are stored in
.TRAIL. If the contents of a variable are truncated at the
first occurrence of a special character, the remaining
characters following the special character are stored in
.TRAIL .

. ZVARS May be set in the initialization section to a list of variable
names that correspond to "z" placeholders in the body and/or
model lines. See "z Variables as Field Name Placeholders."

The control variables are automatically reset (set to blank) when the
panel display service first receives control. If .MSG and .CURSOR are
still blank after processing of the initialization section, they are set
to the values passed by the calling sequence (if any) for an initial
message or cursor position. Under certain conditions, processing of the
initialization section is bypassed. See "Processing Considerations."

Once . CURSOR, .MSG, and .RESP have been set non-blank, they retain their
initial values until the panel is displayed (or redisplayed), at which
time they are again reset.

Figure 29 shows an example in which both .HELP and .CURSOR have been set
in the)INIT section of the panel definition .

• A~ AR0 ~ f ~~}
r f
:At-'r/~

224 ISPF Dialog Management Services

)BODY
%---------------------------- EMPLOYEE RECORDS ------------------------------
%CO~I~lAND===> ZC~1D +
+
%EMPLOYEE SERIAL: &EMPSER
+
+ TYPE OF CHANGE~~===> TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ EMPLOYEE NAME:
+ LAST ~~===> LNAME
+ FIRST %==> FNA~IE

+ INITIAL~~==> 1+
+
+ HO~lE ADDRESS:
+ LINE 1 %===> ADDR1
+ LINE 2 ~~===> ADDR2
+ LINE 3 %===> ADDR3
+ LINE 4 %==> ADDR4
+
+ HOME PHONE:
+ AREA CODE %===> PHA+

+
+

+ LOCAL NUMBER%===>_PHNUM +
+
)INIT

.HELP = PERS032

.CURSOR = TYPECHG
IF (&PHA = ' ')

&PHA = 301
&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,l)
VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)
VER (&LNAME,ALPHA)
VER (&FNAME,ALPHA)
VER (&I,ALPHA)
VER (&PHA,NUM)
VER (&PHNUM,PICT, 'NNN-NNNN')

)END

Figure 29. Sample Panel with Control Variables

+
+
+
+

Chapter 7. Panel and Message Definition and Skeleton Formats 225

Default Cursor Positioning

If the control variable .CURSOR is not explicitly initialized (or if it
is set to blank), the initial position of the cursor is determined as
follows:

• The panel body is scanned from top to bottom, and the cursor is
placed at the beginning of the first input field that meets the
following criteria:

It must be the first or only input field on a line.

It must not have an initial value (i.e., the corresponding
dialog variable must be null or blank).

It must not have a field name of ZCMD.

• If no fields meet the above criteria, the cursor is placed on the
first input field in the panel body (normally the command field).

• If the panel has no input fields, the cursor is placed at row 1,
column 1.

Whenever a message is displayed because of a verification failure, a
MSG=value condition in a TRANS, or an explicit setting of .MSG, the
cursor is automatically positioned at the beginning of the field that
was last referenced in any panel definition statement. For example:

&XYZ = TRANS (&A ... MSG=xxxxx)
&A = TRANS (&XYZ ... MSG=xxxxx)
VER (&XYZ,NONBLANK) VER (&B,ALPHA)

Assume that field XYZ exists in the panel body, but there are no fields
corresponding to variables A or B. In all the above examples, the
cursor would be placed on field XYZ if a message is displayed.

"z" Variables as Field Name Placeholders

In the body section of a panel definition and in the model lines for a
table display panel, the name of an input or output field may be
represented by the single character "Z". This serves as a placeholder;
the actual name of the field is defined in the initialization section of
the panel definition.

Use of placeholders allows the definition of short fields for which the
lengths of the variable names exceed the lengths of the fields.

The actual names of these fields are assigned in the initialization
section of the panel definition using a name list (enclosed in
parentheses if more than one name is specified) assigned to the control
variable .ZVARS. The first name in the list corresponds to the first
"z" placeholder that appears in the body or model lines. The second

226 ISPF Dialog Management Services

name in the list corresponds to the second "Z", etc. An example is
shown in Figure 30.

)BODY
---------------------------- TITLE LINE ------------------------------------
%CONHAND===> ZCMD +

+
+
+

TYPE %===> Z+
LENGTH%===> Z +
OFFSET~~===> Z +

(A for alpha, N for numeric)
(0 to 99)
(0 to 99)

)INIT
.ZVARS = '(TYPFLD LNGFLD OFFSET)'

Figure 30. Example of "z" Variable Placeholders

In this example, the input field labeled "type" is one character long
and the next two input fields are each two characters long. The names
of these three fields are TYPFLD, LNGFLD, and OFFSET, respectively.

The name list assigned to .ZVARS must be enclosed in apostrophes.because
the list contains special characters (parentheses) and blanks. As with
other name lists, either commas or blanks may be used to separate the
names in the list. The length of the entire list, including the
parentheses, is limited to 255 characters.

Panel Processing Considerations

When the DISPLAY service is invoked from a dialog function, the panel
name, message-id, and cursor field parameters may be specified.

If the panel name or message-id is specified, the following processing
occurs:

1. If a panel name has been specified, and a message-id has not been
specified, the panel is displayed without a message.

2. If both a panel name and a message-id have been specified, the panel
is displayed with an initial message (typically, a prompt or
confirmation message).

Chapter 7. Panel and Nessage Definition and Skeleton Formats' 227

3. If a message-id has been specified, but a panel name has not been
specified, the previously displayed panel is redisplayed with the
message (typically, an error message).

4. If neither a panel name nor a message-id has been specified, the
previously displayed panel is redisplayed.

In the first two situations, processing of the panel definition proceeds
normally, through the)INIT section, prior to display of the panel. If
.tlSG or .CURSOR is set in the)INIT section, that setting overrides an
initial message or cursor position passed by the calling sequence
parameters.

In the third and fourth situations, processing of the)INIT section is
bypassed, and there is no automatic initialization of variables in the
panel body (nor in the attribute section). As a result, all variables
in the panel body appear as last displayed, and input fields contain
whatever the user last entered. If an initial message or cursor
position is passed in the calling sequence parameters, that setting is
used since the)INIT section is bypassed.

After the panel has been displayed, the user may enter information and
press the ENTER key. All input fields are automatically stored into
dialog variables of the same name, and the)PROC section of the panel
definition is then processed. If any condition occurs that causes a
message to be displayed (verification failure, MSG=value condition in a
TRANS, or explicit setting of .MSG), processing continues to the)END
statement. The panel is then redisplayed with the first (or only)
message that was encountered.

When the user again presses ENTER, all input fields are stored and the
)PROC section is again processed. This sequence continues until the
entire)PROC section has been processed without any message conditions
encountered. The panel display service then returns to the dialog
function that invoked it with a return code of O.

Whenever a panel is displayed or redisplayed, the user may enter an _End
or RETURN command. In this case, all input fields are stored and the
)PROC section is processed but no message is displayed (even if a MSG
condition is encountered). The panel display service then returns to
the dialog function with a return code of 8.

Special Panel Requirements

Special requirements exist for defining the following types of panel:

• Menus

• Help tutorials

• Table displays

228 ISPF Dialog Management Services

Menus

A menu (also called a selection panel) is a special type of panel. It
is processed by the SELECT service. A menu must have an input field to
be used or entry of selection options by the user of the application.
Generally, this field (called the command field) is the first input
field on line 2 of the panel. Name this field ZCMD to be consistent
with the name used in this publication. (OPT is the name of this field
used in SPF, the ISPF predecessor product). It must also have a
processing section in which variable ZCMD is truncated at the first
period and then translated to a character string. The results must be
stored in a variablt named ZSEL or SEL. (SEL is provided only for
compatibility with SPF; use of ZSEL is recommended.)

Besides ZCMD, a menu may have input fields to set up dialog variables
needed by the particular application. Any variables other than ZCMD and
ZSEL (or OPT and SEL) that are set from a menu are automatically stored
in the shared variable pool.

Variables from .the shared pool (including system variables) may also be
displayed on a menu to provide information to the end user.

The general format of the processing section of a menu is:

)PROC
&ZSEL = TRANS(TRUNC(&ZCMD,'. ')

value, 'string'
value, 'str ing'

I\' Ther"Z'clin variable is truncated prior to translation to allow the end
._,._ ,.~."'."'·'""·· .. ·,.··user to bypass one or more intermediate menus. For example, "1.2" means

primary option 1, suboption 2. (This is generally called a "nested
option.") When the SELECT service discovers that variable ZCMD (which
was automatically stored, untranslated, as the user entered it) contains
a period, it causes the next lower-level menu to be selected with an
initial option of everything following the first period. As long as the
initial option is non-blank, the lower-level menu is processed in the
normal fashion but not displayed to the end user.

Each "value" is one of the options that may be entered on the menu.
Each "string" contains selection keywords indicating the action to
occur. The selection keywords are:

Chapter 7. Panel and Message Definition and Skeleton Formats 229

'PANEL(panel-name) [NEWAPPL(application-id)INEWPOOL],

, C~1D (command) [NEWAPPL(application-id)INEWPOOL]

'PGM(program-name) [PARM(parameters)]

EXIT

[LANG(PLIIPLI [,storage-area])]
[LANG(COBOL)]

[NEWAPPL(application-id)INEWPOOL]

[NOCHECK] ,

[NOCHECK] ,

Except for EXIT, each string of keywords must be enclosed in
apostrophes, since it contains parentheses (and sometimes blanks).

The following selection keywords are the same as those that may be
specified for the SELECT service (for a description of these keywords
see "SELECT" in Chapter 6):

PANEL(panel-name)
CMD(command)
PGM(program-name)
PARM(parameters)
[LANG(PLIIPLI [,storage-area])]
[LANG(COBOL)]
NEWAPPL(application-id)INEWPOOL

The PANEL keyword, for example, is used to specify the name of a
lower-level menu to be displayed. The CMD and PGM keywords are used to
invoke a dialog function coded in a.command procedure or programming
language, respectively. Note that OPT(option), which is valid for the
SELECT service, is not valid on the definition of a menu. NOCHECK and
EXIT are described below.

Normally, nested options are allowed only when each component of the
option (up to, but not including the last component) specifies a
lower-level menu. For example, given the following ZSEL keywords on a
selection panel definition

&ZSEL = TRANS (TRUNC(&ZCMD,'. ')
I, 'PANEL(DEF)'

8, 'PGM(ABC)'
9, 'PGM(XYZ)'

A user may enter "l.x" as his selection. This selection would be
accepted by ISPF. However, if the developer wants to allow a user to
enter a nested option that selects a dialog function (in this case "8.x"
or "9.x ff

), the developer specifies the NOCHECK keyword as in the
following example:

230 ISPF Dialog Management Services

&ZSEL = TRANS (TRUNC(&ZCMD,'. ')
1, 'PANEL(DEF)'

8, 'PGM(ABC) NOCHECK'
9, 'PGM(XYZ) NOCHECK'

The NOCHECK keyword specifies that normal checking for validity is
suspended. It is the responsibility of the dialog function to
interpret the meaning of the lower-level options. To allow this, the
remaining options (those to the right of the first period) are normally
passed to the dialog function through any appropriate variable that has
been set equal to the .TRAIL panel control variable in the menu
definition. Example:

&ZSEL = TRANS (TRUNC (&ZCMD, I. ')

1, 'PANEL(DEF)'
8, 'PGM(ABC) NOCHECK'
9, 'PGM(XYZ) NOCHECK'

&NEXTOPT = .TRAIL

In this example, variable NEXTOPT contains the remainder of the TRUNC
operation. If the user enters "8.5.2", program ABC is invoked and
NEXTOPT is set to "5.2". If the user enters "9.7", program XYZ is
invoked and NEXTOPT is set to "7". Since variable NEXTOPT is unknown to
the SELECT service, it is automatically stored in the shared variable
pool, where it can be accessed by the dialog function.

When the NOCHECK keyword is specified, a return code of 20 from the
dialog function indicates that the remaining options are invalid. If
return code 20 is passed back from the function, an "invalid option"
message is displayed by the dialog manager.

The EXIT keyword, if used, applies only to a primary option menu. It
terminates ISPF using defaults for list/log file processing.

If no option is entered (ZCMD variable is blank), a blank is returned as
the translated string. This causes the SELECT service to redisplay the
menu. For primary option menus, the menu is redisplayed without a
message. For lower-level menus, an "enter option" message is displayed
if the option field was left blank.

If an invalid option is entered (indicated by an asterisk, meaning none
of the above), a question mark (?) is returned as the translated string.
This causes the SELECT service to redisplay the menu with an "invalid
option" message.

Chapter 7. Panel and Message Definition and Skeleton Formats 231

Primary Option Menus

A primary option menu is a selection panel that has special significance
in terms of the way the RETURN command operates, and in terms of the way
a "jump function" (an option number preceded by an equal sign) works.
One type of primary option menu is the master application menu. It is
described in "Examples of Menus" below.

The first menu displayed when the dialog manager is invoked is normally
treated as a primary option menu. That is, if the dialog manager is
invoked with:

ISPSTART PANEL(XYZTOP)

then panel XYZTOP is treated as a primary option menu.

Similarly, if the dialog manager is invoked with:

ISPSTART CMD(XYZ) or
ISPSTART PGM(XYZ)

and dialog XYZ subsequently issues:

SELECT PANEL(XYZTOP)

then panel XYZTOP is treated as a primary option menu because it is the
first invoked menu.

It is possible to write a dialog with no primary option menu by setting
the variable ZPRIM to "NO" on the first selection panel (panel XYZTOP in
this example):

)INIT
&ZPRIM = NO

In general, this is not recommended since the RETURN command then causes
an immediate exit from the dialog, which may be confusing to the end
user.

A dialog may have lower-level (nested) primary option menus. This is
achieved by setting variable ZPRIM to "YES" on a lower-level selection
panel:

)INIT
&ZPRIM = YES

Nested primary option menus should be used sparingly, since they can
confuse the end user. It is recommended that there be only one primary
option menu per major application.

232 ISPF Dialog Management Services

Set Next Menu

ISPF allows the display of menus that are arranged in a hierarchy. The
path through the hierarchy is automatically preserved as the user
selects options from the various menus. As the user moves back up
through the hierarchy, the menus are redisplayed in reverse sequence
from which they were selected. While this is the standard mode of
operation, it may be overridden. A developer may specify an alternative
mode of menu processing called explicit chain mode. In this mode, the
"parent" menu is specified explicitly in a system variable named
ZPARENT. This variable may be set in a panel definition or in a dialog
function. It has the following effect:

• From a menu, ZPARENT specifies the name of the next menu to be
displayed when the user enters the END command. A menu that
specifies itself as the parent is interpreted as a primary option
menu; the RETURN command "stops" at that menu.

• From a function, ZPARENT specifies the name of the next menu to be
displayed when the function completes execution. If a function is
invoked from another function (by the SELECT service), the
lower-level function may set ZPARENT. Upon completion of the
lower-level function, the higher-level function resumes execution.
The setting of ZPARENT does not take effect until the higher-level
function (i.e., the one originally invoked from a menu) completes
execution.

Notes:

1. A value may be stored in ZPARENT in a function or in the)INIT,
)PROC, or)BODY section of a panel.

2. The value in ZPARENT takes effect only after display of a selection
panel when the user enters the END command.

3. When the ZPARENT variable is set from a dialog function, it must be
explicitly copied to the shared pool (using VPUT) to ensure that
ISPF still has access to it after the function completes.

4. Once the ZPARENT variable is set:

The hierarchy of menus traversed by the user is not
preserved by ISPF.

The NEWAPPL and NEWPOOL selection keywords are inoperable
(ignored) while the dialog is in explicit chain mode.

S. The ZPARENT variable is automatically reset to blank by the dialog
manager each time it is used. If the dialog does not continue to
set ZPARENT, the dialog manager resumes normal mode. The hierarchy
of menus (if any) up to the point at which explicit chain mode was
started is then restored.

Chapter 7. Panel and Message Definition and Skeleton Formats 233

6. Generally, a dialog should use either explicit chain mode or
hierarchical chaining (the standard mode); chaining should not be
mixed. If they are mixed, a function that sets ZPARENT should do so
only after completion of any hierarchical dialog that it invokes
(i.e., the setting of ZPARENT should be the last thing the function
does before returning control). Otherwise, results are
unpredictable.

7. The ZPRIM variable is not applicable to (and is ignored) when
operating in explicit chain mode.

Examples of Menus

Typical menus are described below.

MASTER APPLICATION MENU: A master application menu, shown in Figure 31,
and named ISP@MSTR, is distributed with ISPF as part of the panel
library. This menu may be used, if desired, to allow selection of the
various applications available at an installation.

234 ISPF Dialog Management Services

%------------------------ ISPF MASTER APPLICATION MENU ----------------------
%OPTION ===> ZCMD +
%
%
% 1 +SAMPLE1 - Sample application 1

+USERID - &ZUSER
+TIME - &ZTIME
+TERMINAL - &ZTERM
+PF KEYS - &ZKEYS

% 2 +. - (Description for option 2)
% 3 +. - (Description for option 3)
% 4 +. - (Description for option 4)
% 5 +. - (Description for option 5)
% X +EXIT - Terminate ISPF using list/log defaults
%
+Enter%END+command to terminate ISPF.
%
)INIT

. HELP = ISP00005 /* Help for this master menu */
&ZPRIM = YES / ... ,: This is a primary option menu ... ,: /

)PROC
&ZSEL = TRANS(TRUNC (&ZCMD,'. ')

)END

1, 'PANEL(ISP@PRIM)' /* Sample primary option menu */

/* Following shows how to code an invocation of the */
/ ... ,: ISPF Program Development Facility, where "n" is ... ,: /
/* the desired selection number: */
/* */
/* n, 'PANEL(ISR@PRIM) NEWAPPL(ISR), */
/* */
/ 4~.,;"#~?':4'C"';'r";'c#'r";,,#':#':#':#':#':#~#'ri~#':";':#':i'r·l~.,':i':;':i':#'ri'r#':i':#,(·l:#':;':i':;~-;':i':#"(i':,";':f':";'r#':,";':#':#':i':#': -;':-;':-;':,,;,(-;'r-;': / , , , , ,

X, 'EXIT'
... ,: , ' ?')

Figure 31. Master Application Menu

If used, the master menu should be the first menu displayed when the
user logs on. It may be displayed automatically by including the
following command in the user's TSO LOGON procedure or CMS PROFILE EXEC:

ISPSTART [PANEL(ISP@MSTR)]

When no keywords are specified on the ISPSTART command, PANEL (ISP@MSTR)
is assumed. To add a new application to the master menu, a line should
be added to the panel body, indicating the selection code and the nature
of the application. A corresponding addition must then be made the the
)PROC section, to specify the selection keywords for the option.

Chapter 7. Panel and Message Definition and Skeleton Formats 235

PRIHARY OPTION ~1ENU: Figure 32 shows a primary option menu definition.
This is the sample primary option menu definition (ISP@PRIH) distributed
with ISPF. The required input field, ZCND, appears in the second line
of the panel body. It is followed by a description of the various
options available to the user.

This menu also has four variables within text fields at the upper
right-hand of the screen. These reference system variables (from the
shared variable pool) to display user id, timi, terminal type, and
number of PF keys.

The Initialization section sets the control variable .HELP to the name
of a tutorial page to be displayed if the user enters the HELP command
from this menu. It also initializes two system variables that specify
the tutorial table of contents and first index page. See the discussion
under "Help/Tutorial Panels."

Note: &ZPRIM=YES specifies that this panel is a primary option
menu.

The processing section specifies the action to be taken for each option
entered by the user. If option 0 is selected, panel ISPOPTA (a lower
level menu) is displayed. If option 1 is selected, panel ISPUCHA is
displayed; and so on.

Note that for the tutorial, program ISPTUTOR is invoked and passed a
parameter (ISPOOOOO), which ISPTUTOR interprets as the name of the first
panel to be displayed. Panel ISPOOOOO is the first panel in the
tutorial for ISPF. Other applications should pass the name of the first
tutorial page for that application.

236 ISPF Dialog Hanagement Services

%------------------------ SA~lPLE PRI~lARY OPTION HENU ------------------------
%OPTION ===> ZCHD +
%
% +USERID
% 0 +ISPF PARHS - Specify terminal and user parameters +TINE
% 1 +COtltlANDS - Create/change command table +TERMINAL
% 2 +. - (Description for option 2) +PF KEYS
% 3 +. - (Description for option 3)
01 4 +. - (Description for option 4) 10

01 5 +. (Description for option 5) /0
01
10 T +TUTORIAL - Display information about this application
% X +EXIT - Terminate ISPF using list/log defaults
%
+Enter%END+command to terminate application.
%
)INIT

.HELP = ISP00003
~"~P.R.Lt! = YE S

//&ZHTOP"~:::'" ISP00003
l'. __ ~ZHINDE2<;)= ISP9l000
I) PR·OC·-.. ·····_·-"

/* Help for this panel */
j"k This is a pr imary opt ion menu "'~ /
I""~: Tutorial table of contents for this appl"""/
/* Tutorial index - 1st page for this appl */

- &ZUSER
- &ZTIME
- &ZTERM
- &ZKEYS

II &ZSEL = TRANS(TRUNC (&2.CMD,'. ') ! 0, 'PANEL(ISPOPTA) ,
I 1, 'PANEL(ISPUCMA) ,
J.i
'if i

It
'Il.

)END

/***/
I""~:

/* Add other applications here.
I""~:

/***/
T, 'PGM(ISPTUTOR) PARM(ISPOOOOO)' , , , , ,
X, 'EXIT'
";~ , , ?')

Figure 32. ISPF Primary Option Henu

LOWER-LEVEL MENUS: Lower-level menus follow the same rules as a master
or primary option menu. An example of a lower-level menu is shown in
Figure 33. This menu is used in the HVS version of ISPF/PDF. The panel
is ISRUTIL, which is displayed if option 3 is selected from the ISPF/PDF
primary option menu. For option 1, it specifies that program ISRUDA is
to receive control, and that ISRUDA is to be passed a parameter (UDAl)
which ISRUDA interprets as the name of a panel to be displayed.

An exit option is not included on this menu, since it is never displayed
as a primary option menu.

Chapter 7. Panel and Message Definition and Skeleton Formats 237

Note: In this menu, variable ZCMD need not have been truncated
prior to translation, since there is no lower-level selection
panel that can be displayed from this menu.

%------------------------- UTILITY SELECTION MENU ----------------------------
~~OPTION ===> ZCMD
%
%
+

1 +LIBRARY - Library utility:

+
+
%
+
+
+

2 +DATASET

Print index listing or entire data set
Print, rename, delete, or browse members
Compress data set

- Data set utility:
Display data set information
Allocate, rename, or delete entire data set
Catalog or uncatalog data set

0'
10 3 +MOVE/COPY - Move or copy members or datasets
%
+
+

4 +CATALOG - Catalog management:

% 5
% 6
% 7
% 8
% 9
% 10
)INIT

+RESET
+HARDCOPY
+VTOC
+OUTLIST
+COMMANDS
+CONVERT

Display or print catalog entries
Initialize or delete user catalog alias

- Reset statistics for members of ISPF library
- Initiate hardcopy output
- Display or print VTOC entries for a DASD volume
- Display, delete, or print held job output
- Create/change an application command table
- Convert old format menus/messages to new format

.HELP =
)PROC

&ZSEL =

ISR30000

)END

TRANS(TRUNC (&ZCMD,'. ')
1, 'PGM (ISRUDA) PARM (UDAl) ,
2,'PGM(ISRUDA) PARM(UDA2),
3, 'PGM(ISRUMC) ,
4, 'PGt-l (ISRUCA) ,
5 , I PGM (I SRURS) ,
6 , 'PGM (I SRUHC) ,
7 , 'PGM (ISRUVT) ,
8, 'PGM (ISRUOL) ,
9, 'PANEL(ISPUCHA) ,

lO,'PGM(ISRQCM) PARM(ISRQCMP), , , , , ,
.. ,: , , ?')

Figure 33. Lower-Level Menu

238 ISPF Dialog Management Services

+

Help/Tutorial Panels

A help or tutorial panel is a special type of panel that is processed by
the ISPF tutorial program, which invokes the panel display service to
display the panel. The tutorial program may be invoked either from a
menu, or through the HELP command.

Tutorial panels are arranged in a hierarchy. Generally, this hierarchy
is a table of contents, each succeeding level of which contains a
succeedingly more detailed list of topics. When the tutorial is entered
from a menu, the first panel to be displayed is normally the top of the
hierarchy. The name of the first panel is passed as a parameter to the
ISPTUTOR program.

When the tutorial is entered by use of the HELP command, the first panel
to be displayed is a panel within the hierarchy, appropriate to what the
user was doing when help was requested. In this situation, the name of
the panel is specified by the .HELP control variable in a panel or
message definition.

When viewing the tutorial, the user may select topics by entering a
selection code, or simply pressing the ENTER key to view the next topic.
On any panel, the user may also enter the following commands:

BACK or B - to return to the previously viewed panel

SKIP or S - to advance to the next topic

UP or U - to display a higher-level list of topics

TOP or T - to display the table of contents

INDEX or I - to display the tutorial index

The name of the top panel must be specified by dialog variable ZHTOP,
and the name of the first index panel must be specified by ZHINDEX. It
is recommended that these two dialog variables be initialized at the
beginning of the application to ensure that the end user can always
display the tutorial top or index, regardless of how the tutorial was
entered. One way to initialize these variables is to set them from the
primary option menu, as shown in Figure 32.

The index is optional and is a collection of panels in which topics are
arranged in alphabetic order. A user may jump to the index from any
point by the use of the INDEX command. The index need not be connected
to the main tutorial hierarchy; it may be a selectable topic from the
main table of contents or other panels.

Chapter 7. Panel and Message Definition and Skeleton Formats 239

Each tutorial panel must have a "next selection" input field.
Generally, you should use the name ZCMD for this field. A tutorial
panel should also have a processing section in which the following
variables are set:

ZSEL or SEL Specifies the name of the next panel to be displayed
based on the t~£ic selected by the user (by translating
ZCMD to...--a p'aller--n~ The pane 1 name may, be preceded by
an ast"erisk ~.. to indicate a topic that can be
explicitly selected by the user, but which is bypassed if
the user presses the ENTER key to view the next topic.

ZUP or UP

If a panel does not have any selectable topics, ZSEL
should be omitted.

Specifies the name of the parent panel, from which this
panel was selected. Generally, ZUP may be omitted since
the tutorial program remembers the sequence of selections
that lead to the display of this panel. ZUP is used only
if this panel is the first to be displayed (by a user
entering the HELP command) or is selected from the
tutorial index, and the user then enters the UP command.

ZCONT or CONT Specifies the name of the next continuation panel. If
there is no continuation panel, ZCONT should be omitted.

ZIND When set to a value of YES, specifies that a page in the
tutorial is an index page. For example:

)PROC
&ZIND = YES

The ZIND variable is used only on index pages; it should
not be set on other tutorial panels.

Note: Variables SEL, UP, and CONT are provided for compatibility
with the previous SPF product. Use of variable names ZSEL, ZUP,
and ZCONT is recommended. Refer to Appendix H, "HVS and VH/SP:
Summary of Changes From SPF."

A panel cannot have both a continuation panel and selectable topics.
However, the last panel in a sequence of continuation panels may have
selectable topics.

Help/Tutorial panels may contain variables so that dialog information
(including information entered by the user) may be displayed on the help
panel. Function variables, as well as shared and profile variables, may
be displayed.

240 ISPF Dialog Hanagement Services

E

Figure 34.

Figure 34 shows a sample hierarchy of tutorial panels. Panels A and B
each have three selectable topics. Panels C and D2 each have two
selectable topics. The other panels have no selectable topics. Panel
Dl has a continuation page (D2), and panel Fl has two continuation pages
(F2 and F3).

In Figure 34, assuming that panel A is the highest-level table of
contents, the viewer can get to A from any point by issuing TOP. A
viewer currently on panel F1, F2, or F3 may return to panel B by issuing
BACK. Then, from B, the SKIP command would take the viewer to panel C.

A

I
B C D1 f---,

I D21
L---,..--.J

1 I
I

I
F1 f---, G H I

I F2 f---, J K
I I F31

I I
I

Sample Tutorial Hierarchy

Two sample tutorial panels are shown in Figure 35 and Figure 36. These
are assumed to be panels Band F2, respectively, in the hierarchy in
Figure 34.

Panel B has three selectable topics. In the processing section, ZCMD is
translated to a panel name (E, F1, or G) corresponding to the selected
option, and the result is stored in ZSEL. If none of the valid options
is selected, a question mark (?) is returned as the translated string,
which causes the tutorial program to display an "invalid option"
message.

Note that option 3 is translated to "~"'G". This indicates that panel G
is displayed if the user selects option 3, but is bypassed if the user
repeatedly presses the ENTER key to view each topic. (The order in

Chapter 7. Panel and Message Definition and Skeleton Formats 241

which topics are presented when the ENTER key is pressed is the same as
the order in which they appear in the TRANS function.)

In panel B, the name of the parent panel (A) is stored in variable ZUP.

Panel F2 (Figure 36) has no selectable topics, but does have a
continuation page. The name of the continuation panel (F3) is stored in
variable ZCONT. The name of the parent panel (B) could have been stored
in ZUP, but this was omitted assuming that F2 cannot be directly entered
by use of the HELP command or from the tutorial index.

%TUTORIAL ------------------ 3270 DISPLAY TERHINAL --------------------TUTORIAL
%NEXT SELECTION ===> ZCMD +
%

+

General Information
3270 Key Usage

The IBM 3270 display terminal has several keys which will assist you
in entering information. These are hardware defined keys; they do not
cause a program interruption.
The following topics are presented in sequence,
or may be selected by number:

%1+ Insert and Delete Keys
%2+ Erase EOF (to End-of-Field) Key

The following topic will be presented only if
explicitly selected by number:

%3+ New Line and TAB Keys
)PROC

&ZSEL = TRANS(&ZCMD 1,E 2,F1 3,*G *, I?')
&ZUP = A

)END

Figure 35. Sample Tutorial Panel (B)

242 ISPF Dialog Management Services

%TUTORIAL -------------------- ERASE EOF KEY ------------------- TUTORIAL
%NEXT SELECTION ===> ZCMD +

+

+

+

+

When the erase EOF (erase to end-of-field) key is used, it will appear
to blank out the field. Actually, null characters are used in erasing
to the next attribute byte, thus making it easy to use the insert mode
(which requires null characters).

If the erase EOF key is pressed when the cursor is not within an input
field, the keyboard will lock. Press the RESET key to unlock the
keyboard.

You can tryout the erase EOF key by entering data on line 2, then
moving the cursor back over part or all of the data and pressing the
key.

(Continued on next page)
+
)PROC

&ZCONT = F3
)END

Figure 36. Sample Tutorial Panel (F2)

Table Display Panels

A table display panel is a special panel that is processed by the
TBDISPL service. The panel definition contains non-scrollable text,
including column headings, followed by one or more model lines. These
lines describe how each table row is to be formatted within the
scrollable data area. Attribute characters in the model lines indicate
whether each field is protected or user-modifiable.

If a single model line is specified in the panel definition, each row
from the table is mapped to the format of that line. This results in
scrollable data that is in tabular format. For many applications, it
may be useful to define the left-most column in each line as an input
field where the application user may enter a code to be used by the
dialog function to determine the particular processing for that row.

If mUltiple model lines are specified in the panel definition, each row
from the table is mapped to mUltiple lines on the screen. (If desired,
a separator line - consisting of blanks or dashes, for example - may be
specified as the first or last model line.) This format may be useful
for address lists or other repetitive data in which each unit will not
fit on a single line.

Chapter 7. Panel and Message Definition and Skeleton Formats 243

PANEL DEFINITION REQUIREMENTS: Specific requirements for each section
of the panel definition are described in the following paragraphs.

Attribute Section (typically reguired) Attribute characters may be
defined for use in the panel body and the model lines. For the model
lines, only the attributes TYPE, INTENS, and PAD are meaningful; all
fields in the model line assume CAPS(OFF) and JUST(ASIS).: An attribute
section is required if the model line contains output fields. There is
no default attribute character for output fields.

Body (required) The panel body contains the non-scrollable text. It
must also contain two, and only two, input fields:

1. Command field - must be the first input field, and must be at least
eight characters long. The command field may have any desired name.

The command field is used (the same as on other types of panels) to
enter ISPF commands and application-defined commands (if any). Any
commands entered in this field that are not recognized by ISPF are
automatically stored into the corresponding dialog variable. Upon
return from TBDISPL, the dialog function may interpret this field
and take appropriate action.

2. Scroll amount field - must be the second input field, and must be
four characters long. The field may have any desired name. Its
initial value may be set in the)INIT section of the panel
definition to any valid scroll amount.

If additional input fields are specified in the panel body, they are
ignored (may not be used to enter data).

Model Section (reguired): The panel body must be followed by a model
section. This section begins with a)MODEL header statement and is
immediately followed by one or more model lines.

The)MODEL header statement must begin in column 1. The following
optional keywords may be specified on this header:

• CLEAR(var-name,var-name ...)

• ROWS (ALL I SCAN)

The CLEAR keyword identifies the dialog variable names, from the model
lines, that are to be cleared (initialized to blank) before each row in
the table is read. Thus, if the variable is an "extension" variable in
the table, which may not exist in all rows, previous values are erased
and are thereby not repeated in other lines for which they do not apply.

The ROWS keyword indicates whether all rows from the table are to be
displayed, or whether the table is to be scanned for selected rows to be
displayed. The default is ROWS(ALL) which causes all rows to be
displayed. If ROWS(SCAN) is specified, the dialog must invoke the
TBSARG service prior to invoking TBDISPL. The search' argument set up by

244 ISPF Dialog Management Services

the TBSARG service is used to scan the table; only rows that match the
search argument are displayed.

One or more model lines must appear following the)MODEL header
statement. A model line may contain input and output fields. Each
field consists of an attribute character followed by a variable name.
This name may be the name of a variable in the table row, or may be the
null system variable, "Z", which serves as a placeholder. "z" variable
name replacement is resolved within the)INIT section, as described
below.

Typically, the first field within the model lines specifies the dialog
variable into which a selection code (entered by the user) will be
stored, and all remaining names correspond to columns in the table.
However, this arrangement is not required; any name mayor may not
correspond to a column in the table and a selection code field need not
be specified.

Text fields may be specified in the model line. A text attribute
character may appear by itself to terminate the preceding input or
output field. Any characters that appear within a text field in the
model line are repeated in each line of the scrollable data. (This
includes the letter Z; it is not treated as a variable name if it occurs
in a text field.)

Variables within text fields (e.g., "&XYZ") are not allowed in the model
lines; the results are unpredictable.

A maximum of eight model lines is allowed.

Initialization Section (may be required): If "z" variables occur as
name placeholders within the model lines, an)INIT section is needed.
The real names of these fields are defined by assigning a name list
(enclosed in parentheses, if more than one name is given) to the control
variable, .ZVARS. (See "Control Variables" for a description of the use
of .ZVARS.) For example:

)INIT
.ZVARS = I (NAME1,NAME2,NAME3) I

where NAME1, NAME 2 , and NAME3 are the actual variable names
corresponding to the first, second, and third "z" variables in the model
lines.

Chapter 7. Panel and Message Definition and Skeleton Formats 245

Note: For compatibility with SPF, liZ" variables in the model
lines of a table display panel may be assigned to the VARS
variable, rather than to the control variable, .ZVARS. For
example:

)INIT
&VARS = '(NAMEl,NAME2,NAME3)'

It is recommended, however, that existing table display panels be
converted to use the new .ZVARS control variable. They must be
converted if the new CLEAR keyword is added to the)MODEL header
statement or explicit cursor positioning is used for table
display.

The initialization section may contain any statement that is valid in an
)INIT section of a panel definition. However, only the .CURSOR, .HELP,
and .ZVARS control variables may be set.

Processing Section (omit):: A table display panel should not contain a
processing section; if it does, the results are unpredictable.

TBDISPL PROCESSING: When a panel is displayed by the TBDISPL service,
the model lines in the)MODEL section are duplicated to the end of the
logical screen. When the scrollable portion of the screen is being
formatted, only full units or duplications of these model lines are
displayed. Each input or output field that has a corresponding column
in the table is initialized with data from succeeding rows from the
table. The first row displayed is the row pointed to by the CRP when
TBDISPL was issued.

Input or output fields in a model line that do not correspond to columns
in the table are initialized with the current contents of the
corresponding dialog variables (in all rows). If·these fields are to be
blank, the corresponding variables must be set to blanks or null prior
to each invocation of TBDISPL, or the CLEAR keyword may be used to
specify that they are to be blanked.

The user may scroll the data up and down. Scroll commands (e.g., "DOWN
5") apply to the number of table entries to scroll up or down. Example:
If three model lines are specified, "DOWN 5" would scroll by 5 table
entries, which corresponds to 15 lines on the display.

The user may enter information in the command field and in any of the
input fields within the rows. Processing of input is described in the
TBDISPL service description in Chapter 6, "Description of Services."

Figure 37 shows a sample panel definition for table display. Assuming
that the current contents of the table are as shown in Figure 38, the
resulting display is shown in Figure 39.

246 ISPF Dialog Management Services

)A'ITR
@ TYPE(OUTPUT) INTENS(LOW)

)BODY
%---------------------------- EHPLOYEE LIST ---------------------------------
%CO~mAND INPUT ===> ZC~1D

+
+SELECT ------ EHPLOYEE NAHE -------
+ CODE LAST FIRST HI
)HODEL

Z+ @LNAHE @FNAME @I
)INIT

.ZVARS = '(SELECT)'
&AHT = PAGE
.HELP = PERS123

)END

Figure 37. Table Display Panel Definition

EMPSER LNAME FNAHE I PHA

-- PHONE
AREA NUHBER

@PHA @PHNUH

PHNUH
--
598304 Roberston Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Caruso Vincent J 914 294-1168

Figure 38. Current Contents of Table

%SCROLL ===> AHT +

EHPLOYEE
SERIAL

@EMPSER

Chapter 7. Panel and Message Definition and Skeleton Formats 247

---------------------------- EMPLOYEE LIST --------- LINE 000001 COL 001 080
COt-1MAND INPUT ==> SCROLL ===> PAGE

SELECT ------ E~1PLOYEE NAME ------- -- - PHONE EMPLOYEE
CODE LAST FIRST MI AREA NUt-1BER SERIAL

Roberston Richard P 301 840-1224 598304
Smith Susan A 301 547-8465 172397
Russell Charles L 202 338-9557 813058
Adams John Q 202 477-1776 395733
Caruso Vincent J 914 294-1168 502774

******************************* END OF DATA -;'\i";':#'\;':;'\";':;'\i'\;':"l\i'\·l:i':i'\;':i':i'\i':i~i~·l~i':;'(i':i':;':;':·l:·l\i':i"i':i':

Figure 39. Table as Displayed

In this example, the select field (left-most column) does not correspond
to a column in the table; it is used to return a selection code, entered
by the user in a variable named SELECT. The other variables in the
model line correspond to variables in the table. The example also
illustrates the initialization of the scroll amount field to PAGE, and
the specification of a corresponding help panel.

The same table might be displayed using mUltiple model lines with the
panel definition shown in Figure 40. The resulting display is shown in
Figure 41. An entry separator, consisting of a dashed line, is also
included as the last model line. In this example, the SELECT field has
been increased to 4 characters, with underscores used as pad characters.

248 ISPF Dialog Management Services

)ATTR
@ TYPE(OUTPUT)
if TYPE(INPUT)

)BODY

INTENS(LOW)
PADe' _')

%---------------------------- EHPLOYEE LIST ---------------------------------
%COHMAND INPUT ===> ZCMD
+
+ENTER CHANGES ON THE LINES BELOW.
+
)HODEL

#Z + SERIAL: @EMPSER +
PHONE: @PHA@PHNUM

)INIT
.ZVARS = '(SELECT)'
&AMT = PAGE
.HELP = PERS123

)END

+
LAST NAME: @LNAME
FIRST NAHE: @FNAME
INITIAL: @I+

%SCROLL ===> AMT +

+
+

Figure 40. Table Display Panel Definition with Multiple Model Lines

Chapter 7. Panel and Message Definition and Skeleton Formats 249

---------------------------- ENPLOYEE LIST --------- LINE 000001 COL 001 080
COMNAND INPUT ===> SCROLL ===> PAGE

ENTER CHANGES ON THE LINES BELOW.

SERIAL: 598304
PHONE: 301 840-1224

SERIAL: 172397
PHONE: 301 547-8465

SERIAL: 813058
PHONE: 202 338-9557

SERIAL: 395733
PHONE: 202 477-1776

SERIAL: 502774
PHONE: 914 294-1168

LAST NAME:
FIRST NAME:
INITIAL:

Robertson
Richard
P

LAST NAME: Smith
FIRST NAttE: Susan
INITIAL: A

LAST NAHE: Russell
FIRST NAME: Charles
INITIAL: L

LAST NAME:
FIRST NAttE:
INITIAL:

LAST NAttE:
FIRST NAME:
INITIAL:

Adams
John
Q

Caruso
Vincent
J

******************************* END OF DATA **********************************

Figure 41. Table as Displayed with Multiple Model Lines

250 ISPF Dialog Management Services

MESSAGE DEFINITIONS

Message ID

ISPF message definitions are stored in a message library and displayed
by means of the DISPLAY, TBDISPL, or SETMSG service, or written to the
ISPF log file by the LOG service. Messages are created or changed by
editing directly into the message library. The messages are interpreted
during ISPF processing; no compile or preprocessing step is required.

Each message is referenced by message-id. A message id may be four to
eight characters long, and is defined as follows:

• Prefix: one to five alphabetic characters (A-Z, #, $, or @)

• Number: three numeric characters (0-9)

• Suffix (optional): one alphabetic character

If the prefix is five characters long, the suffix must be omitted so
that the total length does not exceed eight characters.

Message Library

Several messages may be contained within each member of the message
library. When using ISPF/PDF EDIT to create a message file, NUMBER OFF
should be specified.

The member name is determined by truncating the message-id after the
second digit of the number. For example:

Message id

G015
ISPE241
XYZ123A
ABCDE965

Hember name

G01
ISPE24
XYZ12
ABCDE96

All messages that have ids beginning with the characters "G01", for
example, must be in member G01. Figure 42 shows an example of a member
in the message library. This member contains all message-ids that begin
with "EMPX21".

Within the member, messages generally should appear in collating
sequence by message-id. The optional message id suffix should be used
if more than 10 messages are to be included in one member.

Each message in the library consists of two lines, as follows:

msgid [' short message'] [.HELP = panell2] [.ALARM = YES I NO]

'long message'

Chapter 7. Panel and Hessage Definition and Skeleton Formats 251

EHPX210 'INVALID TYPE OF CHANGE' .HELP=PERS033 .ALARM=YES
'TYPE OF CHANGE }1UST BE NEW, UPDATE, OR DELETE. '

EHPX213, ENTER FIRST NA}IE' . HELP=PERS034 . ALARM=YES
'E}IPLOYEE NAHE MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE. '

EHPX214 'ENTER LAST NAHE' .HELP=PERS034 .ALARM=YES
'ENPLOYEE NAHE }1UST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

EHPX215 'ENTER HOHE ADDRESS' .HELP=PERS035
'HOHE ADDRESS NUST BE ENTERED FOR TYPE OF CHANGE =

. ALAR}I=YES

.ALARM=YES
NEW OR UPDATE. '

EHPX216 'AREA CODE INVALID'
'AREA CODE &PHA IS NOT DEFINED. PLEASE CHECK THE PHONE BOOK.'

EMPX217 '&EMPSER ADDED'
'ENPLOYEE &LNAHE, &FNANE &1 ADDED TO FILE. '

EHPX218 '&ENPSER UPDATED'
'RECORDS FOR &LNANE, &FNAME &1 UPDATED.'

ENPX219 '&E}IPSER DELETED'
'RECORDS FOR &LNAHE, &FNAME &1 DELETED.'

Figure 42. Sample Member in Nessage Library

The short message is optional. If a short message is specified on an
ISPF panel, it is displayed first. Short messages are right-justified
and displayed at the right end of the first line on the screen. If the
user enters the HELP command, the long message is displayed on the third
line of the screen. If the user enters the HELP command again, tutorial
mode is entered.

The long message is required. If a short message is not specified, the
long message is displayed first, on the third line of the screen. If
the user then enters the HELP command, tutorial mode is entered.

The location of the short and long messages in a user-designed panel is
specified by the SNSG and L}ISG keywords. These keywords are defined in
"Panel Body Section."

If tutorial mode is entered by the user, the panel name specified by
.HELP is the first tutorial page displayed. If .HELP=·\, is specified,
the first tutorial page is whatever was specified in the panel
definition (i.e., the panel on which this message is being displayed).
The default is ".1."

252 ISPF Dialog Management Services

If .ALARH=YES is specified, the audible alarm is sounded whenever the
message is displayed. If .ALARM=NO is specified, the alarm is not
sounded. The default is NO.

When messages are written to the ISPF log file, both the short message
(if any) and the long message are written in the same output line. The
short message comes first, followed by the long message.

Substitutable parameters, consisting of a dialog variable name preceded
by an ampersand (&), may appear anywhere within the short and long
message text. For example:

'VOLUME &VOL NOT NOUNTED'

Substitutable parameters may also be used to specify the value of .HELP
or . ALARM, as follows:

'VOLUHE & VOL NOT HOUNTED' . HELP = &H . ALARtvl = &A

where variable H must contain a panel name or single asterisk, and
variable A must contain YES or NO.

Substitutable parameters in messages are replaced with values
immediately before display or, if the message is specified for display
using the SETMSG service, substitutable parameters are replaced during
SETMSG processing. After substitution of the variables, the short
message is truncated to 24 characters and the long message is truncated
to 78 characters.

Syntax Rules

The following rules apply to the syntax of messages as they appear in
the message library.

1. The message-id must begin in column 1 of the first line, and the
long message must begin in column 1 of the second line. For
readability, one or more blank lines may separate the two-line
message specifications within the member.

2. In the first line, the message-id, short message, .HELP, and .ALARM
fields must be separated by at least one blank. One or more blanks
may optionally occur on either side of an equal sign (=).

3. The short message (if specified) and the long message must each be
enclosed in apostrophes (').

4. Within the short or long message text, any non-alphameric character
may terminate a variable name; for example:

'ENTER &X, &Y, OR &Z'

where a comma terminates the variable names X and Y. The name Z is
delimited by the apostrophe that marks the end of the message.

Chapter 7. Panel and Message Definition and Skeleton Formats 253

5. A period C.) at the end of a variable' name has a special meaning.
It causes concatenation with the character string following the
variable. For example, if the value of variable V is ABC then:

'&V.DEF' yields 'ABCDEF'

6. A single ampersand followed by a blank is interpreted as a literal
ampersand character (not the beginning of a substitutable variable).
An ampersand followed by a non-blank is interpreted as the beginning
of a substitutable variable.

7. A double ampersand may be used to produce a character string
starting with an ampersand. The double character rule also applies
to apostrophes (within the delimiting apostrophes required for the
short and long message text), and to a period if it immediately
follows a variable name; for example:

&& , , yields
yields
yields

SKELETON DEFINITIONS

&
within delimiting apostrophes
immediately following a variable name.

ISPF skeleton definitions are stored in a skeleton library and accessed
by means of the ISPF file tailoring services. Skeletons are created or
changed by editing directly into the skeleton library. The skeletons
are interpreted during ISPF execution; no compile or preprocessing step
is required.

Note: The ISPF-distributed skeleton library also contains old
format Structured Programming Facility "proc" members. (The
Structured Programming Facility is a predecessor program product
to SPF, which, in turn, is the predecessor of ISPF.)

The following description of skeleton formats applies only to new format
skeletons used with ISPF file tailoring services.

There are two types of records that may appear in the skeleton file:

1. Data Records - a continuous stream of intermixed text, variables,
and control characters that are processed to create an output
record.

2. Control Statements - to control the file tailoring process. Control
statements start with a right parenthesis ")" in column 1. Records
containing a ")" in column 1, and a blank in column 2, are
interpreted as data records. Records containing a ")" in column 1
and a non-blank character in column 2, are interpreted as control
statements.

Note: A)DEFAULT control statement can be used for assigning
different special characters for syntactical purposes.

254 ISPF Dialog Management Services

Data Records

Columns 1-71 of each data record are scanned and processed as described
below. If the result of variable substitution is an output record
larger than 80 characters, file tailoring is terminated and a message is
displayed.

If more than one input record maps to a single output record,
continuation is specified by a question mark (7) in column 72 of each
input record that is to be continued. If any character other than a
question mark appears in column 72 of an input record, it is copied to
column 72 of the output record. In this situation, column 72 of the
output record must not contain generated data (i.e., it must be blank)
for the continuation character to be copied. Otherwise, a severe error
results.

Any blank data records are deleted from file tailoring output.

The following control characters have special meanings:

• An exclamation point (!) is used as a tab character. It tabs the
output record to the next tab stop and fills with blanks. The next
character following exclamation point in the input record is put at
the tab stop location in the output record. Tab stops are specified
by use of the)TB control statement.

• A less-than «), vertical bar (I), and greater-than (» symbol,
respectively, specify the beginning, middle, and end of a
conditional substitution string:

<string11 string2>

where "string1" must contain at least one variable name. "string2"
can be null.

If the first variable in "string1" is not null, "stringl" is
substituted in the output record. If the first variable in
"string1" is null, "string2" is substituted in the output record.

Chapter 7. Panel and Message Definition and Skeleton Formats 255

Control Statements

The general format of a control statement, which must begin in column 1,
is:

)control-word tokenl token2 token31

where each token represents a name, value, operator, or keyword.

The tokens must be separated by one or more blanks, and may not contain
embedded blanks. A token may be coded as:

• A character string

• A dialog variable name, preceded by an ampersand

• A concatenation of variable names and character strings

The current value of each variable is substituted prior to evaluation of
the control statement. The rules for delimiting a variable name and for
the use of ampersands, periods, double ampersands, and double periods
are the same as for data records; see "Data Records," above.

Specific control statements are described below.

)DEFAULT abcdefg

The seven characters, represented by "abcdefg" override the use of the
")", "&", "?", "!", "<", "I", and u>" characters, respectively. Exactly
seven characters must be specified, and they must be special
(non-alphameric) characters.

The)DEFAULT statement takes effect immediately, when it is encountered.
It remains in effect until the end of FTINCL processing, or until
another)DEFAULT statement is encountered.

)TB value1 value8

Up to eight tab stops can be specified. A tab stop specifies a tab
position in the output record, and must be in the range 1-80. The
default is one tab stop at location 80.

)IM skel-name ~ [OPT]

The specified skeleton is imbedded at the point where the)IM statement
is encountered. Up to three levels of imbedding are permitted. The
optional NT parameter indicates that no tailoring is to be performed on
the imbedded skeleton.

The optional OPT parameter indicates that the skeleton may not be
present. If OPT is coded and the skeleton is not present, no error

256 ISPF Dialog Management Services

indication is given, and the ~ecord is ignored. If OPT is not coded,
and the skeleton is not present, a severe error occurs.

)SEL relational-expression

)ENDSEL

The relational expression is evaluated for a true or false condition.
If the condition is true, the skeleton input records between the)SEL
and the corresponding)ENDSEL are processed. If the condition is false,
these records are skipped. Up to eight levels of nesting are
permitted.: The relational expression consists of a simple comparison
of the form:

valuel operator value2

or a combination of up to eight simple comparisons joined by connectors.
The system variable Z may be used to represent a null or blank value.

The allowable operators are:

EQ or = LE or <=
NE or ~= GE or >=
GT or > NG or ~>

LT or < NL or ~<

The allowable connectors are I (OR) and && (AND).

Examples:

)SEL
)SEL
)SEL

&COND = YES
&TESTl ~= &Z
&TESTI ~= &Z

)DOT table-name

)ENDDOT

I
&&

&ABC = 5
&ABC = 5

The skeleton input records between the)DOT and the corresponding
)ENDDOT are iteratively processed, once for each row in the named table,
beginning with the first row. At the start of each iteration, the
contents of the current table row are retrieved (stored into the
corresponding dialog variables). Those values can then be used as
parameters in control statements or substituted into data records. Up
to four levels of nesting are permitted. The same table cannot be
processed recursively.

If the table was already open, it remains open after file tailoring with
the CRP positioned at TOP. If it was not open, it is opened
automatically and then closed upon completion of file tailoring.

Chapter 7. Panel and Message Definition and Skeleton Formats 257

For an example showing use of)DOT and)ENDDOT, see "File Tailoring" in
Chapter 2.

)SET variable = expression

)SET allows a value to be assigned to a dialog variable. The variable
name should not be preceded by an ampersand, unless the variable name is
itself stored as a variable. The expression can be specified as either:

valuel
or:
valuel operator value2 operator value15

where "operator" can be a plus sign (+) or a minus sign (-).

2.,glL comment

The statement is treated as a comment. No tailoring is performed, and
the record is not placed in the output file.

Note: The)N comment statement of PDF edit models is not a valid
control statement for file tailoring. It causes file tailoring
termination.

Sample Skeleton File

A sample skeleton file is shown in Figure 43.

The sample skeleton references several dialog variables (ASMPARMS,
ASMIN, MEMBER, etc.). It also illustrates use of select statements
")SEL" and ")ENDSELIf to conditionally include records. The first part
of the example has nested selects to include concatenated macro
libraries if the library names have been specified by the user (i.e., if
variables ASMMACl and ASMMAC2 are not equal to the null variable Z).

In the second part of the example, select statements are used to
conditionally execute a load-go step. An imbed statement, If)IM", is
used to bring in a separate skeleton for the load-go step.

258 ISPF Dialog Management Services

IIASM
II

EXEC

IISYSIN DD
IISYSLIB DD
)SEL &ASMMAC1
II DD
)SEL &ASMMAC2
II DD
)ENDSEL
)ENDSEL

PGM=IFOXOO,REGION=128K,
PARM=(&ASMPARMS)
DSN=&ASMIN(&MEMBER),DISP=SHR
DSN=SYS1.MACLIB,DISP=SHR
-.= &Z
DSN=&ASMMAC1,DISP=SHR
-.= &Z
DSN=&ASMMAC2,DISP=SHR

IISYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,2))
IISYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
IISYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
IISYSPRINT DD SYSOUT=(&ASMPRT)
)C~1 IF USER SPECIFIED "GO", WRITE OUTPUT IN TE~lP DATA SET
) CH THEN HfBED "LINK AND GO" SKELETON
)SEL &GOSTEP = YES
IISYSGO DD DSN=&&&&OBJSET,UNIT=SYSDA,SPACE=(CYL,(2,1)),
II DISP=(HOD,PASS)
)IM LINKGO
)ENDSEL
)CM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET
)SEL &GOSTEP = NO
IISYSGO DD DSN=&ASMOUT(&MEMBER),DISP=OLD
)ENDSEL
I I"'~

Figure 43. Sample Skeleton File

Chapter 7. Panel and Message Definition and Skeleton Formats 259

260 ISPF Dialog Management Services

APPENDIX A. USING THE DISPLAY SERVICE

This appendix describes the use of the DISPLAY, TBGET, and TBADD
services in a dialog function that allows a user to add data to a table.

Sections of this publication, containing information needed to
understand this appendix, are listed in the Reading List on the next
page.

During function processing, the DISPLAY service is used to control
displays requesting the user to enter data for new employees. The data
consists of employee serial number (which is entered on panel SER) and
name and phone number (which are entered on panel DATA). After the data
is entered by the application user, it is added to the table, as a row,
through use of the TBADD service.

If the application user enters an employee serial number for which an
employee record already exists in the table, the message DUPLICATE
NUt-iBER is displayed on line one of the panel, SER. If the user enters
the HELP command or presses the HELP PF key 1, the message EMPLOYEE
RECORD ALREADY EXISTS FOR THIS NUt-iBER. ENTER ANOTHER is displayed on
line three of the panel.

When the user successfully enters data for an employee, the message NEW
RECORD INSERTED is displayed on line one of panel SER. Then the user
may enter the serial number of the next employee for which data is to be
added to the table.

The user ends function processing by entering the END or RETURN command
(or by pressing the END or RETURN PF key), on any panel that the
function displays.

Logic that updates or deletes existing rows in the table is not
included. Also, logic is not included to process any function commands
originated by the user. (Logic that updates table rows and processes
function commands is illustrated in Appendix C, "Using the TBDISPL
Service" on page 289).

(The function may be initiated by a user from a terminal by means of the
ISPSTART command. If the user has already started ISPF, the function
may be initiated, at the terminal, from a menu (on which the function is
to be invoked by one of the provided selections) or from any display
containing a command line, by means of SELECT action in a command table.
Or, the function may be initiated from another function by use of the
SELECT service.)

Steps in dialog function processing are listed on a following page.
Each step has a step identifier (la, 1b, 2a, etc.). This identifier
refers to a descriptioh, on a following page, of the processing
performed by the step.

Appendix A. Using the DISPLAY Service 261

READING LIST

Selected topics in this publication are listed below. They contain
descriptions of the ISPF facilities illustrated by this appendix. The
purpose is to allow a reader to gain, with a minimum of study,
information to understand the example given on the following page.

Sections to be Read

Chapter 1, in its entirety (7 pages)

Chapter 2, selected topics (15 pages):
Dialog Organization
Dialog Services Overview

Display Services
Panel Definitions
Message Definitions

Table Services
Table Residency
Accessing Data
Example

Variable Services
Variable Access - Order of Search
Relationship of Function Pools to Dialog Functions
The Function Pool for Command Procedures
The Function Pool for Programs (first paragraph only)

Chapter 3, selected topic (1 page):
END and RETURN Commands (first two paragraphs only)

Chapter 6, selected topics (12 pages):
Invocation of Services

Command Invocation
Return Codes from Services

DISPLAY - Display Panels and Messages
TBADD - Add a Row to a Table
TBCLOSE - Close and Save a Table
TBGET - Retrieve a Row from a Table
TBOPEN - Open a Table

Chapter 7, selected topics (10 pages)
Panel Definitions

Panel Body Section
Sample Body Section

Initialization and Processing Sections
Statement Formats

IF Statement
VER Statement

Message Definitions
Message ID
Message Library

262 ISPF Dialog Management Services

STEPS IN FUNCTION PROCESSING

This section lists the steps in the function. Dialog service requests (CONTROL,
TBOPEN, DISPLAY, etc.) issued in the steps, are in the command procedure format.

Note: Program format dialog service requests are illustrated with each
service description in Chapter 6. Additional examples of services requests in
both the command procedure (CLIST, EXEC) and program (COBOL, FORTRAN, PL/I)
format may be found in ISPF Dialog Management Services Examples.

Additional comments about function processing follow in "Description of Steps in
Function Processing."

Step
Id Function Processing

la. CONTROL ERRORS CANCEL
lb. TBOPEN TAB1 WRITE

2a. DISPLAY PANEL(SER)

2b. if return code = 0,
2c. if return code = 8,

3a. TBGET TAB1
3b. if return code = 0,
3c. if return code = 8,

go to 3a
go to 8a

go to 4a
go to Sa

4a. DISPLAY PANEL(SER) MSG(EMPX210)

4b. if return code = 0, go to 3a
4c. if return code = 8, go to 8a

Sa. Set dialog variables to blanks
Sb. DISPLAY PANEL(DATA)

Sc. if return code = 0, go to 6a
Sd. if return code = 8, go to 8a

6a. TBADD TAB1
6b. if return code = 0, go to 7a

7a. DISPLAY PANEL(SER) ~lSG(EMPX211)

7b. if return code = 0, go to 3a
7c. if return code = 8, go to 8a

8a. TBCLOSE TABl
8b. End the function

Comment

Terminate if 12 or higher return code.
Open table TAB1.

Display panel SER requesting serial number.
- User enters employee serial number.

Go retrieve any existing employee record.
END or RETURN entered.

Attempt retrieval of employee record. ° = record exists.
8 = no record exists.

Display DUPLICATE NUMBER message.
- User enters another number.

Go retrieve any existing employee record.
END or RETURN entered.

Blank variables LNA~1E, FNAME, I, PA, PHNUM.
bisplay panel DATA requests employee data.

- User enters employee name and phone no.
Go write data to the table.
END or RETURN entered.

Write new record to the table.

Display NEW RECORD INSERTED message.
- User enters next number to be added.

Go retrieve any existing employee record.
END or RETURN entered.

Write the table to permanent storage.
End the function.

Appendix A. Using the DISPLAY Service 263

DESCRIPTION OF STEPS IN FUNCTION PROCESSING

The description below is related, by step id, to "Steps in Function
Processing" above. Referenced figures are collected at the end of the
description.

Step
Id

la

lb

2a

2b

Description

This ISPF service request specifies that the function is to be
terminated for a return code of 12 or higher from an ISPF
service request.

Open the table: read table TAB1 (contents of which are shown
in Figure 44) into virtual storage.

This DISPLAY operation uses panel definition SER (shown in
Figure 45) to control the format and content of the display
(shown in Figure 46). The display requests the user to enter
a serial number for an employee. After the user enters the
serial number (in the field labled EMPLOYEE SERIAL NUMBER),
the DISPLAY service verifies it after storing it in function
pool variable EMPSER. The verification is specified in aVER
statement in the)PROC section of the panel definition, as
shown in Figure 45:

VER (&EMPSER,NONBLANK,PICT,NNNNNN)

This statement specifies ~hat EMPSER must be nonblank and must
consist of six digits, each in the range of 0 - 9.

When the input passes the verification, the DISPLAY service
returns control to the function.

If the input fails the verification, the panel is
automatically displayed again, but with an appropriate
ISPF-supplied message displayed, right justified, on line 1.

For example, if the user fails to enter the required employee
serial number, an ISPF-provided message, ENTER REQUIRED FIELD,
is displayed (shown in Figure 47).

After reentry by the user, the information is stored again in
function pool variable EMPSER and, again, it is verified. The
process is repeated until the verification tests are passed.

(Another example of verification processing is given in the
step 5b description).

If the return code is 0, the display operation is successfully
completed. Go to step 3a to verify that no record exists for
this employee number.

264 ISPF Dialog Management Services

2c

3a

3b

3c

4a

4b

4c

If the return code is 8, the END or RETURN command was entered
on the display by the user. Go to step 8a to end processing.

This TBGET uses the employee serial number, stored in EMPSER
in step 2a or 7a, to attempt retrieval of an employee record
from the TABl table. The table is a keyed table and was
created by the TBCREATE service, in another dialog, by the
following request:

TBCREATE TABl KEYS(EMPSER) NAMES(LNAME FNAME I PHA PHNUM)

If the return cude is 0, the record is found, which means that
a record already exists for the employee serial number entered
by the user. Go to step 4a to display the DUPLICATE NUMBER
message.

If the return code is 8, no record is found. Go to step 5a to
request the user to enter employee data.

This DISPLAY operation uses panel definition SER (shown in
Figure 45) and message EMPX2l0 (shown in Figure 48) to control
the format and content of the display.

Note: The following DISPLAY request, omitting the
PANEL(SER) parameter, could have been used in this step:

DISPLAY MSG(EMPX210)

When the PANEL parameter is omitted, the specified
message is superimposed on the panel currently being
displayed, which, in this case, is the panel SER.

The short form of the message EMPX210, DUPLICATE NUMBER, is
superimposed - right justified, on line 1 of the panel display
(shown in Figure 49). While viewing this message, the user
may enter the HELP command by pressing PF key 1. This causes
the long form of the message to appear, superimposed - left
justified, on line 3 of the display, as follows: EMPLOYEE
RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER. (See
Figure 50).

After the user enters the requested serial number, the DISPLAY
service stores it in function pool variable EMPSER and
verifies it as described for step 2a. After the input passes
verification, the DISPLAY service returns control to the
function.

If the return code is 0, the display operation is successfully
completed. Go to step 3a to verify that no record already
exists for this employee number.

If the return code is 8, the END or RETURN command was entered
on the display by the user. Go to step 8a to end processing.

Appendix A. Using the DISPLAY Service 265

5a

5b

5c

5d

Sa

These function pool variables are blanked to prepare to
receive data for a new employee record.

The DISPLAY operation uses panel definition DATA (shown in
Figure 51) to control the format and content of the display
(shown in Figure 52).

The variables blanked in step 5a are displayed along with the
new employee serial number, which was entered in step 2a or
7a. The user is asked to enter, in the blanked fields
displayed on the screen, the name and phone number for the
employee.

After the user enters these fields, the DISPLAY service stores
the input in function pool variables LNAME, FNAME, I, PHA, and
PHNUM. Then, verification of the input is performed as
specified in VER statements in the)PROC section of the panel
definition (shown in Figure 51).

The input fields may pass the verification tests. If they do,
the DISPLAY service returns control to the function.

The input fields may fail the verification tests. If they do,
a short form message is displayed superimposed on line 1 of
the display.

The message may be provided by ISPF (as described for step 2a)
or the number of the message displayed may have been specified
in the VER statement that defined the verification test (see
VER statements containing message-ids EMPX212, EMPX213, and
E~1PX214 in Figure 51). Where a message-id is specifi.ed, this
message is displayed instead of an ISPF-provided message. In
either case, if the user enters the HELP command, the long
form of the message is displayed, left justified, on line 3.

The text of the messages request reentry of information. When
reentered, this information is stored again in function pool
variables and, again, it is verified. The process is repeated
until the verification tests are passed.

If the return code is 0, the display operation is successfully
completed. Go to step 6a to add the record to the table.

If the return code is 8, the END or RETURN command was entered
on the display by the user. Go to step 8a to end processing.

This TBADD adds a row to table TAB1 by copying values from
function pool variables to the table row. The values copied
are employee serial number (stored in the function pool
variable EMPSER by step 2a or 7a) and employee name and phone
number (stored in function pool variables LNAME, FNAME, I,
PHA, and PHNUM by step 5b).

266 ISPF Dialog Management Services

6b

7a

7b

7c

8a

8b

Note: Function pool variables must have the same names
as the table variables to which they are to be copied by
the TBADD operation.

Therefore, the names used in the TBCREATE that
establishes the table (see the names EMPSER, LNAME,
FNAME, I, PHA, and PHNUM in the TBCREATE illustrated in
the step 3a description) are the same as the names used
in the panel definitions (shown in Figure 45 and
Figure 51) that establish function pool variables in
which user-entered information is stored by the DISPLAY
service.

If the return code is 0, the TBADD operation is successfully
completed. Go to step 7a to display the NEW RECORD INSERTED
message.

This DISPLAY operation uses panel definition SER (shown in
Figure 45) and message EMPX211 (shown in Figure 48) to control
the format and content of the display. The short form of
message EMPX211, NEW RECORD INSERTED, is superimposed - right
justified, on line 1 of the display. If the user enters the
HELP command while this message is being displayed, the long
form of the message (also shown in Figure 48), ENTER SERIAL
NUMBER FOR NEXT EMPLOYEE RECORD TO BE INSERTED, is
superimposed - left justified, on line 3 of the display.

The user enters another serial number. The DISPLAY service
verifies it as described for step 2a. When the serial number
passes the verification tests, the DISPLAY service returns
control to the function.

If the return code is 0, the display operation is successfully
completed. Go to step 3a to verify that no record already
exists for this employee number.

If the return code is 8, the END or RETURN command was entered
on the display by the user. Go to step 8a to end processing.

Close the table TAB1: write it from virtual storage to
permanent storage.

End the function.

Appendix A. Using the DISPLAY Service 267

EMPSER LNAME FNAME I PHA PHNUM
------ ------------ --------- --------
598304 ROBERS TON RICHARD P 301 840-1224
172397 Sr-lITH SUSAN A 301 547-8465
813058 RUSSELL CHARLES L 202 338-9557
395733 ADAMS JOHN Q 202 477-1776
502774 CARUSO VINCENT J 914 294-1168

Figure 44. Five Rows in Table Library Member TAB1 (TAB 1 is Referenced by Steps
3a, 6a, and 8a)

)BODY
%-------------------------- EMPLOYEE SERIAL ------------------------------------
%COMMAND ===> ZCMD
+
%ENTER ENPLOYEE SERIAL BELOW:
+
+
+ EMPLOYEE SERIAL~~===> EMPSER+
+
+
+

(MUST BE 6 NUMERIC DIGITS)

+PRESS%ENTER+TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.
+
+PRESS%END KEY+(PF 3) TO END THIS SESSION.

)PROC
VER (&EMPSER,NONBLANK,PICT,NNNNNN)

)END

1b,

Figure 45. Panel Library Member, Panel Definition SER (Used in Steps 2a, 4a, and
7a)

268 ISPF Dialog Management Services

-------------------------- EMPLOYEE SERIAL ------------------------------------
COMMAND ===>

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF E~lPLOYEE DATA.

PRESS END KEY (PF 3) TO END THIS SESSION.

Figure 46. Panel Display SER (Displayed by Steps 2a, 4a, and 7a)

Appendix A. Using the DISPLAY Service 269

-------------------------- EMPLOYEE SERIAL --------------- ENTER REQUIRED FIELD
COMMAND ===>

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF 3) TO END THIS SESSION.

Figure 47. Panel Display SER With an ISPF-provided Message Superimposed on Line 1
(Displayable During Steps 2a and 7a)

EMPX210 'DUPLICATE NUMBER' . ALARM=YES
'EMPLOYEE RECORD ALREADY EXI STS FOR THI S NU~1BER. ENTER ANOTHER. '

EMPX211 'NEW RECORD INSERTED'
'ENTER SERIAL NUMBER FOR NEXT EMPLOYEE RECORD TO BE INSERTED.'

EMPX212 'ENTER PHONE NUMBER'
'IF THE E~lPLOYEE HAS NO PHONE, ENTER 000-0000.'

EMPX213 'ENTER FIRST NAME'
'A FIRST NAME OR FIRST INITIAL IS REQUIRED.'

EMPX214 'ENTER LAST NAME'
'A LAST NAME IS REQUIRED.'

Figure 48. Message Library Member EMPX21 (Used by Steps 4a, 5b, and 7a)

270 ISPF Dialog Management Services

- - - - - - - - - - - - --- - - - - - --- - -- EHPLOYEE SERIAL - - - -- - - - - - - - - - - - - DUPLICATE NUMBER
COMMAND ===>

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> 598304 (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF 3) TO END THIS SESSION.

Figure 49. Panel Display SER With the Short Form of Message EMPX210 Superimposed on
Line 1 (Displayed by Step 4a)

Appendix A. Using the DISPLAY Service 271

-- - - - - - -- -- - - - - -- - - -- - - -- - ENPLOYEE SERIAL -- - - - -- - - - - - - - - - - - - DUPLICATE NUMBER
CONNAND ===>
EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.
ENTER EHPLOYEE SERIAL BELOW:

ENPLOYEE SERIAL ===> 598304 (HUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF E~lPLOYEE DATA.

PRESS END KEY (PF 3) TO END THIS SESSION.

Figure 50. Panel Display SER With the Long Form of Hessage EHPX210 Superimposed on
Line 3 (Displayable During Step 4a)

272 ISPF Dialog Management Services

)BODY
%------------------------------------ EMPLOYEE RECORDS -----------------------
%COMHAND ===> ZCHD
+
% E~lPLOYEE SERIAL: &EMPSER
+
+
+
+
+
+
+
+
+
+
+

E~lPLOYEE NAME:
LAST ~~===> LNAME -
FIRST ~~===> FNAME -
INITIAL~6===> 1+ -

HOHE PHONE:
AREA CODE ~~===> PHA+ -
LOCAL NUMBER%===> PHNUH -

+
+

+

+PRESS~~ENTER+TO STORE EMPLOYEE DATA AS ENTERED ABOVE.
+
+PRESS%END KEY+(PF 3) TO END THIS SESSION.

)INIT
.CURSOR = LNAME
IF (&PHA = ' ')

&PHA = 914

)PROC
VER (&LNA~lE, ALPHA)
VER (&FNAME,ALPHA)
VER (&I,ALPHA)
VER (&PHA,NONBLANK,PICT,NNN)
VER (&PHNUM,PICT,'NNN-NNNN')
VER (&LNAME, NONBLANK, ~ISG=EMPX214)
VER (&FNAME,NONBLANK,MSG=EMPX213)
VER (&PHNUM,NONBLANK,MSG=EMPX212)

)END

Figure 51. Panel Library Member, Panel Definition DATA (Used in Step 5b)

Appendix A. Using the DISPLAY Service 273

------------------------------------ EMPLOYEE RECORDS -----------------------
COMl'fAND =---=>

EMPLOYEE SERIAL: 106085

EMPLOYEE NAME:
LAST ===>
FIRST ===>
INITIAL ===>

HOl'tE PHONE:
AREA CODE ===>
LOCAL NUMBER ===>

PRESS ENTER TO STORE EMPLOYEE DATA AS ENTERED ABOVE.

PRESS END KEY (PF 3) TO END THIS SESSION.

Figure 52. Panel Display DATA (Displayed by Step 5b)

274 ISPF Dialog Management Services

APPENDIX B. USING THE ISPF PARMS OPTION

The Parms option allows a user to display and change a variety of ISPF
parameters at any time during the ISPF session. Changes remain in
effect until the user changes the parameter again, and are saved from
session to session. The parameter options menu is shown in Figure 53.

------------------------- ISPF PARAHETER OPTIONS ---------------------------
OPTION ===>

1 TERNINAL
2 LOG/LIST
3 PF KEYS

- Specify terminal characteristics
- Specify ISPF log and list defaults
- Specify PF keys for 3277 terminal with 12 PF keys

Figure 53. Parameter Options Menu

SPECIFY TERMINAL CHARACTERISTICS (OPTION 0.1)

When a user selects this option, a panel is displayed that allows him to
specify the terminal type, number of program function (PF) keys, the
default pad character for panel input fields, the mode of operation for
a 3278 Hodel 5, and the command stacking delimiter.

For MVS and VH/SP, the initial defaults are shown in Figure 54.

Appendix B. Using the ISPF PARMS Option 275

For VSE, the initial defaults are shown in Figure 55.

The allowable alternatives for these defaults are indicated on the
display.

After review and any changes are made to these parameters, enter the END
command to return to the previous menu.

----------------------- TERNINAL CHARACTERISTICS ---------------------------
COHHAND ===>

TERHINAL TYPE ===> 3277

NUHBER OF PF KEYS ===> 12

INPUT FIELD PAD ===> N

SCREEN FORHAT ===> DATA
(3278 Model 5 only)

COHHAND DELIHITER ===>

(3277
(3277A
(3278
(3278A
(3278T

- 3275/3277 terminal)
- 3275/3277 with APL keyboard)
- 3276/3278/3279 terminal)
- 3276/3278/3279 with APL keyboard)
- 3276/3278/3279 with TEXT keyboard)

(12 or 24)

(N - Nulls)
(B - Blanks)

(DATA - Format based on data width)
(STD - Always format 24 lines by 80 chars)
(MAX - Always format 27 lines by 132 chars)

(Special character for command stacking)

Figure 54. Terminal Characteristics Panel (MVS and VM/SP)

276 ISPF Dialog Management Services

----------------------- TERHINAL CHARACTERISTICS ---------------------------
COMHAND ==>

TERHINAL TYPE => 3277 (3277
(3277A
(3278
(3278A
(3278T

- 3275/3277 terminal)
- 3275/3277 with APL keyboard)
- 3276/3278/3279 terminal)
- 3276/3278/3279 with APL keyboard)
- 3276/3278/3279 with TEXT keyboard)

NUMBER OF PF KEYS ===> 12 (12 or 24)

INPUT FIELD PAD ===> N

OPTIMIZE DISPLAY ==> N

cm-mAND DELIMITER ==>

(N - Nulls)
(B - Blanks)

(Y - Optimize display data)
(N - No optimization of display data)

(Special character for command stacking)

Figure 55. Terminal Characteristics Panel (VSE)

Specification of terminal type allows ISPF to recognize valid
(displayable) characters. A 3278 terminal can display six more
characters than a 3277. If you have a 3279 terminal, specify 3278 as
the terminal type, since a 3279 terminal has the same character set as a
3278.

Note: One or more of following installation-dependent options
for terminal type may also be included on this panel:

3277KN - for 3277 Katakana terminals
3278CF - for 3278 Canadian French terminals
3278KN - for 3278 Katakana terminals

Specification of the number of PF keys controls the particular set of PF
key definitions currently in use, and also affects the panel displayed
by option 0.3.

Appendix B. Using the ISPF PARMS Option 277

In the following cases, ISPF automatically senses the terminal type and
number of PF keys:

• If the screen size is greater than 24 lines (determined when the
user logs on), ISPF sets the terminal type to 3278.

• If the user presses a PF key higher than 12, ISPF sets the terminal
type to 3278 and the number of PF keys to 24.

ISPF cannot sense the terminal type or number of PF keys in the
following cases:

• If the user switched between a 3277 and 3278 Model 2 (both 24-line
terminals).

• If the user switched from a terminal with 24 PF keys to a terminal
with 12 PF keys.

In these cases, the user must inform ISPF of the terminal type and
number of PF keys using option 0.1 or 0.3. Otherwise, incorrect
character set and PF key definitions will be used (see option 0.3).

ISPF automatically determines the terminal type during ISPF
initialization, and sets it to the appropriate value.

ISPF automatically sets (or changes) the number of PF keys in the
following cases:

•

•

•

If the terminal type is 3277, ISPF initializes the number of keys to
12.

If the terminal type is 3278, ISPF initializes the number of keys to
whatever was "remembered" from the user's last ISPF session (for a
new user, the number of keys is initialized to 12).

If the user presses a PF key higher than 12, ISPF sets the number of
keys to 24.

ISPF cannot sense the number of PF keys if a user has switched from a
3278 with 24 PF keys to a 3278 with 12 PF keys. In this case, the user
must inform ISPF of the number of PF keys through option 0.1 (Terminal
Characteristics). Otherwise, the incorrect set of "remembered" key
definitions will be used (see option 0.3).

Specification of a pad character controls the initial padding of panel
input fields (including selection panels) but not the data portion of an
edit display. Within edit, null or blank padding is controlled with
edit commands.

Specification of display optimization controls the amount of data
written to the terminal during each display operation. Specify N to
have the complete screen image written to the terminal for each display
request. This option is appropriate for terminals that are locally
attached to the processor. Specify Y to have only changes to the screen

278 ISPF Dialog Management Services

image written to the terminal. This option is appropriate for terminals
remotely attached to the processor.

Users can stack commands on the command line by separating them with a
delimiter. The default delimiter, the semicolon, may be changed using
this option. Stacking allows the user to enter, for example:

===> FIND DEPT;HEX ON

which finds the characters DEPT and then displays the file at that point
in hex mode.

MVS: SPECIFY LOG AND LIST DEFAULTS (OPTION 0.2)

When an MVS user selects this option, a panel (Figure 56) is displayed
that allows him to specify default processing for log and list files,
lines per page, and allocation parameters, to be used when he terminates
ISPF using primary option X.

------------------------- LOG AND LIST DEFAULTS -----------------------------
COMMAND ===>

LOG DATA SET DEFAULT OPTIONS LIST DATA SET DEFAULT OPTIONS
----------------------------- -----------------------------
Process option ==> J Process option ===> J
SYSOUT class ===> A SYSOUT class ==> A
Local printer ID ===> Local printer ID ===>
Lines per page ===> 60 Lines per page ===> 60
Primary pages ===> 10 Primary pages ===> 100
Secondary pages ===> 10 Secondary pages ==> 100

VALID PROCESS OPTIONS:
J - Submit job to print (and delete) K - Keep data set (do not print)
L - Route to local printer (and delete) D - Delete data set (do not print)

JOB STATEMENT INFORMATION: (If option "J" selected)
===> //HOSTETLA JOB (U602,B043), 'HOSTETLER RS' ,NOTIFY=HOSTETL
===>
===>
===>

Figure 56. Log and List Defaults Panel (MVS)

Appendix B. Using the ISPF PARMS Option 279

The initial defaults are:

Log File List File

SYSOUT Class ===> A ===> A
Lines per Page ===> 60 ===> 60
Primary Pages ===> 10 ===> 100
Secondary Pages ===> 10 ===> 200

No defaults are supplied for the other parameters on this panel.

Normal values for lines per page are:

60 - for printing 6 lines per inch
80 - for printing 8 lines per inch

Primary/secondary allocation parameters are specified in terms of
anticipated number of pages of printout. These values are automatically
converted by ISPF to the appropriate number of blocks prior to
allocating space for the log and list files.

If the user modifies the primary/secondary allocation parameters after
the files have been allocated, the new values take effect the next time
you enter ISPF. (The list file is allocated the first time the user
requests a print function. The log file is allocated the first time a
user performs some action that results in a log message, such as saving
edited data or submitting a batch job.)

For the log file, the user may specify a primary allocation of 0 (zero)
to prevent allocation and generation of the log. Users can avoid
allocating the list file by simply not requesting any print functions.

If a user requests default processing options for the log and list
files, the following rules apply:

• If printing as a batch job is specified, SYSOUT class and job
statement information must also be specified. (If option J for both
log and list is specified, different SYSOUT classes may be specified
but only one job is submitted for printing both files.)

• If routing to a local printer is specified, a printer id must also
be specified.

If these rules are not observed, or if no default processing options are
specified, primary option X or the RETURN command causes the termination
menu to be displayed.

After reviewing or changing the parameters on this panel, enter the END
command to return to the previous menu.

280 ISPF Dialog Management Services

VM/SP: SPECIFY CONSOLE, LOG, AND LIST DEFAULTS (OPTION 0.2)

When a VN/SP user selects this option, a panel (Figure 57) is displayed
that allows him to specify default processing for the virtual console
and for the log and list files, to be used when he terminates ISPF using
primary option X. If the user has not specified default processing
options, primary option X will cause the ISPF termination menu to be
displayed.

------------------- CONSOLE, LOG, AND LIST ~EFAULTS
COHHAND ===>

CONSOLE PROCESS OPTION ===> (K or D) LINES PER PAGE:
LOG PROCESS OPTION ===>
LIST PROCESS OPTION ===>

VALID PROCESS OPTIONS:
P - Print file (and delete)
K - Keep file - do not print
D - Delete (purge) file - do
N - Do not generate log file

LOG/LIST SPOOL OPTIONS:
NUHBER OF COPIES ===> 1
BIN NUHBER ===>
3800 KEYWORDS ===>

(P, K, D, or N)
(P, K or D)

not print

SPOOL CLASS ===> A
'FOR' USER ===>

FOR SPOOLING LOG/LIST TO ANOTHER PERSON OR ~1ACHINE:
USER/HACHINE ID ===>
NODE/LINK ID ===>
TAG TEXT ===>

Figure 57. Console, Log, and List Defaults Panel (VH/SP)

LOG ===> 80
LIST ===> 80

Users may also specify the number of lines per page and spool parameters
for printing the log and list files. The initial defaults are:

Lines per page ===> 80 (for both log and list)
Number of copies ===> 1
Spool class ===> A

No ISPF-supplied defaults are provided for the other parameters on this
panel.

Appendix B. Using the ISPF PARHS Option 281

Normal values for lines per page are:

60 - for printing 6 lines per inch
80 - for printing 8 lines per inch

The virtual console is automatically started the first time ISPF invokes
a CHS command (typically, a LINK or ACCESS executed automatically) Upon
termination of ISPF, the console may be kept (in "start" status) or
deleted (purged and set to "stop" status). An appropriate processing
option for the console would be:

K - for users who normally run with a virtual console.

D - for users who normally run without a virtual console.

The ISPF log file is created the first time the user performs some
action which results in a log message, such as saving edited data or
submitting a job to the batch machine. The ISPF list file is created
the first time a user requests a print function.

For the log file, users may specify a process option of N to prevent
generation of the log. Users may avoid generation of the list file by
simply not requesting any print functions.

See Chapter 5, "Invocation and Termination" for a discussion of spool
parameters that may be specified for the log and list files.

After reviewing or changing the parameters on this panel, enter the END
command to return to the previous menu.

VSE: SPECIFY LOG AND LIST DEFAULTS (OPTION 0.2)

When a VSE user selects this option, a panel (Figure 58) is displayed
that allows him to specify default processing for the log and list
files, lines per page, and POWER JECL statements to be used when he
terminates ISPF using primary option X.

The initial defaults are:

Log File List File

Lines per Page ===> 60 ===> 60

Normal values for lines per page are:

60 - for printing 6 lines per inch
80 - for printing 8 lines per inch

If a user requests default processing option J (print via a batch job),
the POWER JECL statement information must be specified.

282 ISPF Dialog Management Services

-------------------------- LOG AND LIST DEFAULTS ---------------------------
COMMAND ===>

LOG DATA SET DEFAULT OPTIONS LIST DATA SET DEFAULT OPTIONS

Process option
Lines per page

===>
===> 60

Process option
Lines per page

===>
===> 60

VALID PROCESS OPTIONS FOR LOG AND LIST DATA SETS:
J - Submit job to print (and delete) K - Keep data set (do not print)
P - Write to ICCF print area and D - Delete data set (do not print)

display on terminal (and delete)

POWER JECL STATEHENTS: (If option "J" selected)
===> .. ~ $ $ JOB JNH=ZLWGA
===> .. '~
===> .. '~
===> .. ~

Figure 58. Log and List Defaults Panel (VSE)

Note: Option D means that the data in the data set is not
reused. The physical data set is not deleted.

If option K is requested, ISPF attempts to extend the log or list data
set in the next session, unless the data set was defined with a/FILE
statement specifying DISP=D.

Note: Extending the data set is accomplished by saving the next
available record location for the log and list data sets in the
system profile table ISPSPROF. This information is used, in the
next session, to position to the next available record in the log
or list data set.

Thus, there is a relationship between the system profile table
ISPSPROF and the physical location of the log and list data sets.
Should the log or list data set starting location not match the
information in the profile table or should the next available
record address not be within the current log or list data set,
that data set will be written from the beginning, just as though
DISP=K had not been specified in the previous session.

Appendix B. Using the ISPF PARHS Option 283

Sharing the same log or list data set between different users is
not permitted because this could lead to conflicting or erroneous
information being placed in the system profile table.

If option P is selected, ISPF prints the data set using system logical
unit SYSLST. This causes ICCF to display the data on the terminal and
to write the data to the ICCF $$PRINT area.

If default processing options are not specified, primary option X or the
RETURN command causes the termination menu to be displayed.

After reviewing or changing the parameters on this panel, enter the END
command to return to the previous menu.

SPECIFY PROGRAM FUNCTION KEYS (OPTION 0.3)

The PF key definition panel allows users to assign PF keys to ISPF
commands. A user may assign PF keys to system commands (such as HELP or
END), to commands that are meaningful within a particular function or
environment (such as the edit FIND and CHANGE commands), and to line
commands (such as edit or dialog test I or D commands).

When entering the KEYS command or select option 3 from the ISPF Parms
option menu, the panel shown in Figure 59 is displayed.

The PF key definitions shown in the figure are the default definitions
distributed with ISPF.

Before changing PF key assignments, verify the terminal type and the
number of PF keys (12 or 24). The terminal type must be one of the
following:

3277, 3277A, 3277KN, 3278, 3278A, 3278CF, 3278KN, 3278T

The panel shown in Figure 59 is the panel that is displayed for
terminals with 12 PF keys. For terminals with 24 PF keys, the first
panel displayed by the KEYS command or by option 0.3 shows the "primary"
keys (PF13-PF24). When the ENTER key is pressed, a panel is displayed
showing the "alternate" keys (PF1-PF12). Flip-flop between the two
panels by continuing to press ENTER. See Figure 60.

Users can define or change a PF key function simply by equating the key
to a command. Example:

PF9 ===> CHANGE ALL ABC XYZ
PF12 ===> PRINT

In the example, PF9 has been equated to an edit command, and PF12 has
been equated to the system-defined PRINT command.

284 ISPF Dialog Management Services

---------------------------- PF KEY DEFINITION --------------------------
COHHAND ===>

NUHBER OF PF KEYS ===> 12 TER~I I NAL TYPE ===> 3278

PF1 ===> HELP
PF2 ==> SPLIT
PF3 ===> END
PF4 ===> RETURN
PF5 ===> RFIND
PF6 ===> RCHANGE
PF7 ===> UP
PF8 ===> DOWN
PF9 ===> SWAP
PF10 ===> LEFT
PF11 ===> RIGHT
PF12 ===> CURSOR

INSTRUCTIONS:
Verify number of PF keys and terminal type before proceeding.
Press ENTER key to process changes.
Enter END command to process changes and exit.

Figure 59. PF Key Definition Panel (12 PF Keys)

If a blank is entered for any PF key definition, the key is restored to
its ISPF default. The defaults are discussed under "Program Function
Keys."

When a PF key definition begins with a colon, it indicates a line
command. The colon is stripped off and the command to which the key is
equated is inserted in the first input field in the line at which the
cursor is currently positioned.

When a PF key definition begins with a greater-than sign, the command is
passed through to the dialog via the command field. The command table
is not searched. This is provided for compatibility with the previous
SPF product.

Appendix B. Using the ISPF PARMS Option 285

-------------------- PF KEY DEFINITION - PRIMARY KEYS ------------------------
COMHAND ===>

NUHBER OF PF KEYS ===> 24 TER~lINAL TYPE ===> 3278

PF13 ===> HELP
PF14 ===> SPLIT
PF15 ===> END
PF16 ===> RETURN
PF17 ===> RFIND
PF18 ===> RCHANGE
PF19 ===> UP
PF20 ==> DOWN
PF21 ===> SWAP
PF22 ===> LEFT
PF23 ===> RIGHT
PF24 ===> PRINT

INSTRUCTIONS:
Verify number of PF keys and terminal type before proceeding.
Press ENTER key to process changes and display alternate keys.
Enter END command to process changes and exit.

Figure 60 (Part 1 of 2). PF Key Definition Panels (24 PF Keys)

286 ISPF Dialog Hanagement Services

------------------ PF KEY DEFINITION - ALTERNATE KEYS ------------------------
COHHAND ===>

NOTE: The definitions below apply only to terminals with 24 PF keys.

PFl ===> HELP
PF2 ===> SPLIT
PF3 ===> END
PF4 ===> RETURN
PF5 ===> RFIND
PF6 ===> RCHANGE
PF7 ===> UP
PF8 ===> DOWN
PF9 ==> SWAP
PF10 ===> LEFT
PFll ===> RIGHT
PF12 ===> CURSOR

INSTRUCTIONS:
Press ENTER key to process changes and display primary keys.
Enter END command to process changes and exit.

Figure 60 (Part 2 of 2). PF Key Definition Panels (24 PF Keys)

Appendix B. Using the ISPF PARt-1S Option 287

288 ISPF Dialog Management Services

APPENDIX C. USING THE TBDISPL SERVICE

This appendix describes the use of the TBDISPL and TBPUT services in a
dialog function that displays rows of a table for possible modification
by a user.

During function processing, the TBDISPL service is used to control
displays of a table, TAB1. Changes the user desires to make in TAB1,
are entered on the display directly in fields of displayed lines. Each
field corresponds to a table variable. Each line corresponds to a row
of the table.

After the user enters changes to a line or lines of the display, the
function, by using TBDISPL, locates each line changed by the user and
positions the table current row pointer (CRP) at the row in the table
that corresponds to the line. TBDISPL operation then stores the
contents of this row and values from the changed line of the display in
function pool variables. Finally, the function uses the TBPUT service
to write the updated function pool variables to the table row.

A user may originate a function command while viewing the displayed
panel. Logic is included that checks for this eventuality.

The user ends function processing by entering the END or RETURN command
(or by pressing the END or RETURN PF key) on the panel displayed by the
function.

Logic that deletes or inserts rows in the table is not included .in the
function. Also, not illustrated is the capability to perform
verification of user-enter information, in conjunction with panel
display, through specifications on the panel definition. That is
illustrated in Appendix A, "Using the DISPLAY Service"; see processing
description step Sb.

(The function may be initiated by a user at a terminal by means of the
ISPSTART command. If the user has already started ISPF, the function
may be initiated, at the terminal, from a menu (on which the function is
invoked by one of the provided selections) or from a display, containing
a command line, by means of SELECT action in a command table. Or, the
function may be initiated by another function using the SELECT service.)

Steps in dialog function processing are listed on the next page. Each
step has a step identifier (la, 2a, 2b, etc.). This identifier refers
to a description, on the page following, of the processing performed by
the step.

Appendix C. Using the TBDISPL Service 289

STEPS IN FUNCTION PROCESSING

This section lists the steps in the function.

Additional comments about function processing follow in "Description of Steps in
Function Processing."

Note: Dialog service requests in the steps (TBOPEN, TBDISPL, etc.), are in
the command procedure format. Program format dialog service requests are
illustrated with each service description in Chapter 6. Additional examples
of services requests in both the command procedure (CLIST, EXEC) and program
(COBOL, FORTRAN, PL/I) format may be found in ISPF Dialog Management Services
Examples.

Step
Id Function Processing

1a. TBOPEN TAB1 WRITE

2a. TBDISPL TAB1 PANEL(T1PANEL)
2b. if return code = 0, go to 3a
2c. if return code = 4, go to 4a

2d. if return code = 8, go to Sa

3a. TBQUERY TAB1 POSITION(CHECKCRP)
3b. if CHECKCRP = 0, go to 7a
3c. TBPUT TAB1
3d. if ZCMD is not null, go to 7a
3e. if ZCMD is null, go to 2a

4a. TBPUT TAB1
4b. TBDISPL TAB1
4c.
4d.

if return code = 0, go to 3a
if return code = 4, go to 4a

Sa. TBQUERY TAB1 POSITION(CHECKCRP)
5b. if CHECKCRP = 0, go to 6a
5c. TBPUT TAB1
5d. TBDISPL TAB1
5e. go to Sa

6a. TBCLOSE TAB1
6b. End the function

7a. process function command
7b. CONTROL DISPLAY SAVE

7c. CONTROL DISPLAY RESTORE

7d. go to 2a

290 ISPF Dialog Management Services

Comment

Open table TAB1.

Display table TAB1. ° = one line modified and/or command entered.
4 = two or more lines modified. A command

may have been entered, as well.
8 = END or RETURN entered.

If CRP=O, scrollable line was not changed,
but command field (ZCMD) was changed.

Process final line on this screen.
If not null, a value is in the command field.
If null, redisplay the table.

Process one of two or more lines remaining.

° = one line and/or a command remain.
4 = two or more lines remain to be processed.

User entered END or RETURN command on the
screen just displayed. Process any lines
changed on this screen and then end the
function.

End the function.

Function command processing
- Save screen contents and status.
- Process the function command, including

any displays.
- Restore screen contents and status

that were stored in step 7b.
Redisplay the table.

DESCRIPTION OF STEPS IN FUNCTION PROCESSING

The description below is related, by step id, to "Steps in Function
Processing" above. Referenced figures are collected at the end of the
description.

Step
Id Description

la Open the table: read table TABl (contents of which are shown
in Figure 61) into virtual storage for update.

2a Display table TABl (beginning with the row at which the CRP is
positioned). The display, as it appears at the terminal, is
shown in Figure 62. Format of the display is controlled by a
panel definition named TlPANEL (shown in Figure 63). TBDISPL,
in addition to displaying the table, allows the user to scroll
up and down the scrollable data in the display.

2b

2c

The user may continue, indefinitely, to scroll through the
displayed table. Control will be returned to the function
when the user does one of the following:

• enters the END or RETURN command without entering data on
the panel.

• enters a change in one or more lines of scrollable data
and/or enters data in the command field (which is variable
ZCMD, shown in Figure 63) and presses the ENTER key,
enters a SCROLL command, or enters the END or RETURN
command.

When a line in the scollable part of the display has been
changed, TBDISPL retrieves - from the table - the row
corresponding to that line (i.e., the row values are stored in
the function pool). The table CRP is positioned at this row
when the row is retrieved. Next, values from the changed line
are stored in the function pool. If no lines are changed, the
CRP is set to zero. Any value entered in the command field is
stored in variable ZCMD.

If the return code is 0, a single line was changed by the
user; or an entry made in the command field (ZCMD) by the
user, was passed through to this function; then the user
pressed the ENTER key or entered a SCROLL command. Go to step
3a to process the line and/or the value in the command field.

If the return code is 4, more than one line was changed and
the ENTER key was pressed or a SCROLL command was entered by
the user. Go to step 4a to update the table.

Appendix C. Using the TBDISPL Service 291

2d

3a

3b

3c

3d

3e

4a

4b

4c

4d

5a

5b

If the return code is 8, the END or RETURN command was entered
by the user, go to step 5a to determine if any lines were
changed.

Use TBQUERY to obtain the position of the CRP in a variable
named CHECKCRP.

If the CRP is 0, no scrollable lines were changed by the user,
but the command field (ZCMD) contains data that was originated
by the user while viewing the display.

This TBPUT writes values stored in the function pool to the
table row.

A single line was changed by the user or several lines were
changed and the line currently being processed is the final
one to be processed.

When ZCMD is not null, it contains data that was originated by
the user while viewing ths display.

Go to step 2a to redisplay the table, positioning the most
recently changed line at the top of the display.

This TBPUT writes values stored in the function pool to the
table row.

More than one line was changed by the user.

A TBDISPL request issued with no panel name and message-id
specified, positions the CRP to the row corresponding to the
next line of the screen in which the application user made a
change. That row is retrieved (i.e., stored in the function
pool). Next, values from the line are stored in the function
pool.

Go to step 3a if a single line remains to be processed.

Go to step 4a if more than one line remains to be processed.

The END or RETURN command was entered by the application user.
Save the position of the CRP in a variable named CHECKCRP.

If the CRP is 0, no changed lines remain to be processed for
the just displayed screen, or the END or RETURN command was
issued by the user without having changed any lines.

(The processing logic ignores any function command originated
by the application user in conjunction with the END or RETURN
command. The function developer, however, may choose to
accept for processing function commands entered with END or
RETURN. Function command processing is described by steps 3d
and 7a through 7c.)

292 ISPF Dialog Management Services

5c

5d

5e

6a

6b

7a

7b

7c

7d

If the CRP is nonzero, update the row of the table at which
the CRP is positioned.

A TBDISPL request issued with no panel name and message-id
specified, positions the CRP to the row corresponding to the
next line of the screen in which the application user made a
change. That row is retrieved (i.e., stored in the function
pool). Next, values from the line are stored in the function
pool.

(Because the END or RETURN command has been entered by the
user, a return code of 8 is returned each time for this
TBDISPL request.)

Go to Sa to test the CRP for O. If 0, no more lines
containing changes remain to be processed.

Close the table: write table TAB1, as revised, from virtual
storage to permanent storage.

End the function.

Process the data, in ZCMD - the command field, originated by
the user. (This data is either a bona fide function command -
i.e., data anticipated by function processing - or invalid
data entered by the user).

If function command processing is to include any BROWSE, EDIT,
DISPLAY, or TBDISPL operations, use CONTROL DISPLAY SAVE to
save the contents and status of the currently displayed
screen.

CONTROL DISPLAY RESTORE restores the screen previously saved
by CONTROL DISPLAY SAVE so that processing can be resumed.

If non-ISPF displays are processed, instead of using CONTROL
DISPLAY SAVE and RESTORE, use CONTROL DISPLAY REFRESH either
before or after the non-ISPF display is done.

Go to 2a to resume processing by redisplaying the table.

Appendix C. Using the TBDISPL Service 293

ENPSER LNAME FNAME I PHA PHNUH
------ ------------ --------- --------
598304 Roberston Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Caruso Vincent J 914 294-1168

Figure 61. Table TAB 1 Contents

---------------------------- EMPLOYEE LIST --------- LINE 000001 COL 001 080
COMMAND INPUT ===> SCROLL ===> PAGE

ENTER NECESSARY REVISIONS (OTHER THAN CHANGES TO EMPLOYEE SERIAL):

------ E~1PLOYEE NA~1E ------- --- PHONE --- EMPLOYEE
LAST FIRST MI AREA NUMBER SERIAL

Roberston Richard P 301 840-1224 598304
Smith Susan A 301 547-8465 172397
Russell Charles L 202 338-9557 813058
Adams John Q 202 477-1776 395733
Caruso Vincent J 914 294-1168 502774

Figure 62. Table TAB1 as Displayed

294 ISPF Dialog Management Services

)ATTR
_ TYPE(INPUT) INTENS(LOW)
@ TYPE(OUTPUT) INTENS(LOW)

)BODY
%---------------------------- EMPLOYEE LIST ---------------------------------
%COMMAND INPUT ===> ZCMD ~~SCROLL ===> AMT +
%
+ENTER NECESSARY REVISIONS (OTHER THAN CHANGES TO EMPLOYEE SERIAL):
+
+------ E~IPLOYEE NAME ------- --- PHONE --- EMPLOYEE
+LAST FIRST MI AREA NUHBER SERIAL
+
)~IODEL

LNAME FNA~1E I PHA PHNUM EMPSER+
)INIT

&A~1T = PAGE
)END

Figure 63. Table Display Panel Definition TIPANEL

Appendix C. Using the TBDISPL Service 295

296 ISPF Dialog Management Services

APPENDIX D. COMMAND TABLE UTILITY

The command table utility is a component of ISPF. It may be invoked as
option 1 from the sample primary option menu (ISP@PRIM) distributed with
ISPF. It may also be invoked as a utility from the PDF primary option
menu (option 3.9) if PDF is installed. Use of this utility allows
command tables to be generated or modified.

The first panel displayed by this utility prompts the user for an
application ide See Figure 64. The name of the command table is
derived by appending "C~1DS" to the application ide If the table
in the table input library, it is displayed and may be modified.
table does not exist in the table input library, a new table is
generated.

exists
If the

Note: This utility cannot be used to modify a command table that
is currently in use. Command table ISPCMDS (the system command
table) is always in use by ISPF. To modify this table, the user
must make a copy of the table, rename the copy, modify the copy,
and replace the original with the copy outside the ISPF
environment.

Appendix D. Command Table Utility 297

--------------------- COMMAND TABLE UTILITY --------------------------
COMNAND ===>

ENTER/VERIFY APPLICATION ID BELOW:
APPLICATION ID ===>

The name of the command table to be processed is formed by prefixing
the application id to the string 'C~1DS'. For example:

APPLICATION ID ===> TST
results in a command table name of 'TSTCNDS'.

Figure 64. Command Table Utility Panel

The second panel displayed by the command table utility is shown in
Figure 65. For each row of the table, it shows the command verb, the
truncation amount (T), the action, and the description. The description
is displayed on a separate line, offset under the action.

For a new table, this panel initially contains a full screen of dummy
entries in which all fields are displayed with underscores. The
underscores are pad characters, and need not be blanked out.

The entries in this display may be scrolled up and down, and one or more
entries may be modified simply by overtyping. In addition, the
following line commands may be entered at the left of any entry by
overtyping the four quote marks:

• I or In - insert one or "n" lines. The inserted line(s) will
contain underscores (pad characters) in all field positions.

• R or Rn - repeat one or "n" lines. The repeated line(s) will
contain underscores (pad characters) in the verb and truncation
fields, but the action and description fields will be replicated
from the line on which the "R" or "Rn" was entered.

298 ISPF Dialog Management Services

• D or Dn - delete one or "n" lines.

In addition to the two scroll commands (UP and DOWN), the following
primary commands are supported:

• END - causes the table to be saved in the table output library, and
terminates the utility.

• CANCEL - terminates without saving the table. Nay be abbreviated
"CAN".

Notes:

1. Nultiple line commands or modifications may be entered in a single
interaction. The lines are processed in the order in which they
appear on the screen.

2. Any line commands or modifications that are entered concurrently
with the END command are processed before the table is saved.

3. Any null entries (in which at least the verb contains all
underscores) are automatically deleted when the table is saved.

CONNAND TABLE - TSTCNDS ------------------------------- LINE 000001 COL 001 080
CONNAND ===> SCROLL ===> PAGE

INSERT, DELETE, AND CHANGE CONNAND ENTRIES. UNDERSCORES NEED NOT BE BLANKED.
ENTER END CONNAND TO SAVE CHANGES OR CANCEL TO END WITHOUT SAVING.

VERB T ACTION
DESCRIPTION

" " SORT 0 SELECT PGN(PQRSORT) PARN(&ZPARM)
SORT ENTRIES BY ASCENDING ORDER

" " PREPARE 4 SELECT CMD(XPREP &ZPARM) NEWPOOL
PREPARE FILE FOR FORMATTING

" " QUIT 2 ALIAS END
QUIT COMMAND - SAME FUNCTION AS END

t, , ,
EXPLAIN 4 ALIAS HELP

EXPLAIN CONNAND - SANE FUNCTION AS HELP , , , ,
UP 0 &SCRVERT

SCROLL UP CONNAND
" " DOWN 0 &SCRVERT

SCROLL DOWN COMNAND

Figure 65. Command Table Editing Panel

Appendix D. Command Table Utility 299

300 ISPF Dialog Management Services

APPENDIX E. SUMMARY OF ISPF SYNTAX

This appendix contains a quick reference of syntax for invoking an ISPF
application, message definitions, skeleton control statements, panel
definitions, and dialog service requests.

INVOKING AN ISPF APPLICATION

(See page 88)

ISPSTART PANEL(panel-name) [OPT(option)]
C~1D (command)
PG~1(program-name) [PARN(parameters)]

[LANG(PLI\PL1) [,storage-area]]
[LANG(COBOL)]

[NEWAPPL[(application-id)]]
[TEST\TESTX\TRACE\TRACEX]
[NOABEXIT]

MESSAGE DEFINITIONS

(See page 251)

msgid ['short message'] [. HELP = panel-name \~] [. ALARM = YES \ NO]
'long message'

SKELETON CONTROL STATEMENTS

(See page 256)

)DEFAULT abcdefg

)TB value1 ... value8

)IM skel-name [NT] [OPT]

)SEL relational-expression

)ENDSEL

)DOT table-name

)ENDDOT

Appendix E. Summary of ISPF Syntax 301

)SET variable = expression

)CM comment

PANEL DEFINITIONS

Panel' Header Statements

All parameters on header statements are optional. When preparing a
panel header statement, use only one line.

Attribute Section

Body Section

(Optional section, see page 206)

)ATTR [DEFAULT (abc I %+_)]

(Required section, see page 210)

)BODY [CMD(field-name)]
[SMSG(field-name)]
[LMSG(field-name)]

Model Section --G-'IV- 1)\

(Optional section, see page 244)

[DEFAULT(abc I %+_)]
[KANA]

)MODEL [CLEAR(var-name,var-name ...)] [ROWS (ALL I SCAN)]

Initialization Section

(Optional section, see pag~ 213)

)INIT

Processing Section

(Optional section, see page 213)

)PROC

302 ISPF Dialog Management Services

Statement Specifying the End of a Panel Definition

(Required statement, see page 199)

)END

Panel Statements and Built-in Functions

Attribute Section

One or more parameters are required with each attribute character
specified. These parameters are (see page 207):

TYPE(TEXTIINPUTIOUTPUT)
INTENS(HIGHILOWINON)
JUST(LEFTIRIGHTIASIS)
SKIP(ONIOFF)

CAPS(ONIOFF)
PAD (NULLS I char)
ATTN (ON I OFF)

Initialization and Processing Sections

(See page 214)

variable = value

TRUNC (variable, value)

TRANS (variable value,value ... [MSG=message-id})

IF (variable operator value[,value ...])

VPUT name-list [ASIS I SHAREDI PROFILE]

VER (variable[,NONBLANK] ,keyword [,value ...] [,HSG=message-id]

Panel Control Variables

(See page 223)

. CURSOR = field-name

.RESP = ENTER I END \\('i ,

. HELP = panel-name

.TRAIL = variable

Appendix E. Summary of ISPF Syntax 303

.MSG = message-id

.ZVARS = '(name-list)'

DIALOG SERVICES

The command invocation syntax (for CLIST and EXEC 2) for all services is
shown first, followed by the call invocation syntax for PL/I. For other
language syntax, refer to "Call Invocation" in Chapter 6. The services
are described in Chapter 6 in alphabetic sequence.

Command I nvocation Syntax

Refer to Chapter 6 for complete description of the services, where they
appear in alphabetic sequence.

Display Services

Table

ISPEXEC DISPLAY [PANEL(panel-name))
[MSG(message-id)]
[CURSOR(field-name)]

ISPEXEC TBDISPL table-name [PANEL(panel-name))
[MSG(message-id)]
[CURSOR(field-name)]
[CSRROW(table-row-number))

ISPEXEC SETMSG ~1SG(message-id)

Services - General

ISPEXEC TBCREATE table-name [KEYS(key-name-list))
[NAMES(name-list)]
[WRITE I NOWRITE]
[REPLACE]

ISPEXEC TBOPEN table-name [WRITE I NOWRITE]

ISPEXEC TBQUERY table-name [KEYS(key-name)]
[NAMES(var-name)]
[ROWNUM(rownum-name)]
[KEYNUM(keynum-name))
[NAMENUM(namenum-name)]
[POSITION(crp-name)]

ISPEXEC TBSAVE table-name [LIBRARY(library-name)]
[NEWCOPYIREPLCOPY]
[NAME(alt-name)]
[PAD(percentage)]

304 ISPF Dialog Management Services

Table

ISPEXEC TBCLOSE table-name [LIBRARY(library-name)]
[NEWCOPYIREPLCOPY]
[NAHE(alt-name)]
[PAD(percentage)]

ISPEXEC TBEND table-name

ISPEXEC TBERASE table-name [LIBRARY(library-name)]

Services - Row Operations

ISPEXEC TBADD table-name [SAVE(name-list)]

ISPEXEC TBDELETE table-name

ISPEXEC TBGET table-name [SAVENAHE(var-name)]

ISPEXEC TBPUT table-name [SAVE(name-list)]

ISPEXEC TBMOD table-name [SAVE(name-list)]

ISPEXEC TBEXIST table-name

ISPEXEC TBSCAN table-name [ARGLIST(name-list)]
[SAVENAME(var-name)]

ISPEXEC TBSARG table-name [ARGLIST(name-list)]

ISPEXEC TBTOP table-name

ISPEXEC TBBOTTOM table-name [SAVENAME(var-name)]

ISPEXEC TBSKIP table-name [NUMBER(number)]
[SAVENAME(var-name)]

ISPEXEC TBVCLEAR table-name

File Tailoring Services

ISPEXEC FTOPEN

ISPEXEC FTINCL

ISPEXEC FTCLOSE

[TEMP]

skel-name [NOFT]

[NAME(member-name)] [LIBRARY(library-name)]
[NOREPL]

ISPEXEC FTERASE member-name [LIBRARY(library-name)]

Appendix E. Summary of ISPF Syntax 305

Variable Services

ISPEXEC VGET name-list [ASISISHAREDIPROFILE]

ISPEXEC VPUT name-list [ASIS I SHARED I PROFILE]

Other Services

ISPEXEC SELECT {PANEL(panel-name) [OPT(option)] l)
CHD(command)
PGM(program-name) [PARM(parameters)]

[NEWAPPL[(application-id)] INEWPOOL]

ISPEXEC CONTROL

ISPEXEC BROWSE

ISPEXEC BROWSE

ISPEXEC EDIT

ISPEXEC EDIT

ISPEXEC LOG

DISPLAY { LOCK J LINE [START(line-number)]
SM [START(line-number)]
REFRESH
SAVE I RESTORE

NONDISPL [ENTERIEND]
ERRORS [CANCEL I RETURN]
SPLIT {ENABLE }

DISABLE

DATASET (dsname) [VOLUME(serial)]
[PASSWORD(pswd-value)]

FILE(fileid) [MEMBER(member-name)]

DATASET(dsname) [VOLU~1E (s er ial)]
[PASSWORD(pswd-value)]

FILE(fileid) [MEMBER(member-name)]

~ISG(message- id)

306 ISPF Dialog Management Services

Call I nvocation Syntax

Refer to Chapter 6 for complete description of the services, where they
appear in alphabetic sequence.

DisElay Services

CALL ISPLINK ('DISPLAY' [, panel-name]
[,message-id]
[,field-name]) ;

CALL ISPLINK ('TBDISPL', table-name [, pane I-name]
[,message-id]
[,field-name]
[,table-raw-number]) ;

CALL ISPLINK ('SETMSG', message-id);

Table Services - General

CALL ISPLINK ('TBCREATE ' , table-name [,key-name-list]
[, name -1 is t]
[, 'WRITE' I 'NOWRITE']
[, 'REPLACE']) ;

CALL ISPLINK ('TBOPEN' , table-name [, 'WRITE' I 'NOWRITE']) ;

CALL ISPLINK ('TBQUERY' , table-name [, key -name]
[, var-name]
[,rownum-name]
[, keynum-name]
[, namenum -name]
[, crp -name]) ;

CALL ISPLINK ('TBSAVE', table-name [, 'NEWCOPY' I 'REPLCOPY']
[, al t -name]
[, percentage]
[,library-name]);

CALL ISPLINK ('TBCLOSE', table-name [, 'NEWCOPY' I 'REPLCOPY']
[, al t-name]
[, percentage]
[,library-name]);

CALL ISPLINK ('TBEND' , table-name);

CALL ISPLINK (, TBERASE ' , table-name [,library-name]) ;

Appendix E. Summary of ISPF Syntax 307

Table Services - Row 0Eerations

CALL ISPLINK ('TBADD' , table-name [,name-list]) ;

CALL ISPLINK (' TBDELETE' , table-name) ;

CALL ISPLINK (' TBGET' , table-name [,var-name]) ;

CALL ISPLINK ('TBPUT' , table-name [,name -1 is t]) ;

CALL ISPLINK ('TBNOD' , table-name [,name-l ist]) ;

CALL ISPLINK (' TBEXIST' , table-name) ;

CALL ISPLINK ('TBSCAN' , table-name [,name-list]
[,var-name]) ;

CALL ISPLINK ('TBSARG' , table-name [,n am e - 1 is t]) ;

CALL ISPLINK ('TBTOP' , table-name);

CALL ISPLINK (, TBBOTTOM' , table-name [, var-name]) ;

CALL ISPLINK (' TBSKIP' , table-name [,number]
[, var-name]) ;

CALL ISPLINK ('TBVCLEAR', table-name);

File Tailoring Services

CALL ISPLINK ('FTOPEN' [, 'TEMP']) ;

CALL ISPLINK (' FTINCL' , skel-name [, 'NOFT' J) ;

CALL ISPLINK ('FTCLOSE' [,member-name] [,library-name]
[, 'NOREPL']) ;

CALL ISPLINK ('FTERASE', member-name ,[library-name]);

308 ISPF Dialog Management Services

Variable Services

CALL ISPLINK ('VGET' , name-list [, 'ASIS' I 'SHARED' I 'PROFILE']) ;

CALL ISPLINK ('VPUT' , name-list [,'ASIS' I 'SHARED' I 'PROFILE']) ;

CALL ISPLINK ('VDEFINE ' , name-list, variable, format, length
[, options -list] [, user-data]) ;

CALL ISPLINK ('VDELETE' , name-list);

CALL ISPLINK (' VCOpy' , name-list, array-l, array-2
[, 'LOCATE' I 'NOVE']) ;

CALL ISPLINK (' VREPLACE' , name-list, lengths, values);

CALL ISPLINK ('VRESET') ;

Other Services

CALL ISPLINK ('SELECT', buf-length, buffer);

Note: parameters which may appear in buffer are:

PANEL(panel-name) [OPT(option)]

CND(command)

PGM(program-name) [PARM(parameters)]
[LANG(PLIIPLl [,storage-area])]
[LANG(COBOL)]

[NEWAPPL [(application-id)] INEWPOOL]

CALL ISPLINK ('CONTROL', type [,mode]
[,line-number]);

CALL ISPLINK ('BROWSE', dsname [,serial]
[,pswd-value]) ;

CALL ISPLINK ('BROWSE', fileid [, member -name]) ;

CALL ISPLINK ('BROWSE', dsname [, recfm]
[,lrecl]
[,blks ize]
[,sysno
[,volser]) ;

CALL ISPLINK ('EDIT', dsname [,serial]
[,pswd-value]) ;

CALL ISPLINK ('EDIT', fileid [, member -name]) ;

Appendix E. Summary of ISPF Syntax 309

CALL ISPLINK ('EDIT', dsname ['profile]
[, recfm]
[,lrecl]
[,blksize]
[, sysno
[,volser]) ;

CALL ISPLINK (' LOG' , message-id);

310 ISPF Dialog Management Services

APPENDIX F. VDEFINE EXIT ROUTINE

The dialog writer may specify an exit routine to define dialog variables
when program variables are nonstandard (other than CHAR, FIXED, BIT, or
HEX). Then, when a variable is accessed by any ISPF service, the exit
routine is invoked to perform any conversion necessary between the
program variable's format and the character string format required for a
dialog variable.

This type of exit is specified with the format of USER. A data area
must be supplied that contains the address of the exit subroutine along
with any other user data. If the defined variable name is '*', all
unresolved dialog variable accesses result in invocation of the exit
routine. (Unresolved dialog variables are those which were not
implicitly entered or defined in the function pool.)

The exit routine is invoked by a call (BALR 14,15) and standard as
linkage conventions must be followed. When a variable read is being
performed a return code of 8 by the user exit indicates that the
variable was not found. All other nonzero return codes for either read
or write requests are considered severe errors.

The parameters are a request flag, data length, data address, defined
storage length, defined storage address, and the user data area. The
exit is invoked with:

CALL XRTN(UDATA,
SRVCODE,
NAMESTR,
DEFLEN,
DEFAREA,
SPFDLEN,
SPFDATAP) ;

UDATA

/"': invoke exit and pass user area ,,': /
/* request code */
/* name length and name chars */
/* defined area length */
/* defined area */
/* ISPF data length */
/* ISPF data address */
/* to ISPF data on read request */

An area that follows the exit routine address parameter, specified
on the VDEFINE statement. This area may contain any additional
information the user desires. Its format is CHAR(*).

SRVCODE
Service request-type code, as a fullword fixed value. The
allowable values are 0 for a read and 1 for a write. Other values
should be accepted without error, in order to allow further
extensions. (Codes of 2 and 3 are used by the dialog test facility
variable query function. Code 2 is a request for the number of
variables to be returned in the SPFDLEN field. Code 3 is a request
for the names of the variables to be returned in the buffer pointed
to by SPFDATAP. The names are entered as contiguous 8-byte
tokens.)

Appendix F. VDEFINE Exit Routine 311

NAMESTR
Name of the dialog variable being requested, preceded by the
one-byte name length.

DEFLEN
The length of the area specified to the VDEFINE service. Its
format is a fullword fixed value.

DEFAREA
The area specified to the VDEFINE service. Its format is CHAR(*);

SPFDLEN
For a write request, the length of the SPFDATA area is supplied.
For a read request, the length of the data is returned to ISPF. It,
must be supplied by the exit routine. Its format is a fullword
fixed value.

SPFDATAP
For a write request, the address of the data to be stored is
supplied. For a read request, the address of the data is returned
to ISPF. Its format is a fullword pointer.

The following return codes are possible and should be set in the exit
routine:

o - Successful operation
8 - Variable not found on read request

Others - Severe error

312 ISPF Dialog Management Services

APPENDIX G. CHARACTER TRANSLATIONS FOR APL, TEXT, AND KATAKANA

ISPF permits use of APL keyboards for all models of 3270 terminals, and
text keyboards for 3278 and 3279 terminals. The 2-byte transmission
codes for APL and text characters are translated by ISPF into I-byte
codes for internal storage as shown in Figure 66 and Figure 67.

ISPF also permits use of 3277 and 3278 Japanese Katakana terminals. The
character codes are documented in IBM 3270 hardware manuals. Many of
the Katakana codes overlay the lowercase EBCDIC codes. In a panel
definition, it is assumed that lowercase EBCDIC characters are to be
displayed for these codes, unless the)BODY header statement includes
the keyword KANA. Example:

)BODY KANA

The keyword, KANA, is used on a)BODY header statement when Katakana
characters are included within the panel. When KANA is specified, rules
for display of text fields are as follows (input and output fields and
model line fields are not affected by use of the KANA keyword):

• If the terminal type is Katakana, and

the KANA keyword is present, text characters are left as is.

the KANA keyword is not present, any lowercase text characters
are translated to uppercase and uppercase text characters are
left as is.

• If the terminal type is not Katakana, and

the KANA keyword is present, any lowercase text characters are
treated as being non-displayable and are translated to a period.
Any uppercase text characters are left as is.

the KANA keyword is not present, lowercase and uppercase text
characters are left as is.

Appendix G. Character Translations for APL, TEXT, and Katakana 313

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 OF

10 1F

20 2F

30 3F

40 sp 8 § g Q 5 E § t! ! ¢ ... < (+ I 4F
..01

50 & .4 .IS. 1. M N Q E Q B. I $... *) , -, 5F
..01 ,..

I 60 - / ~ I 11 Y Y:1. ~ Y. ~ % > ? 6F
I ... , -

70 1\ ..
V \ : # ..01

@
,

= " 7F01 ..01

80 "v a b c d e f g h i t + $; r L -+ 8F

90 0 j k I m n 0 p q r :J C 0 -+- 9F

AO
- n u .1 [~ 0 AF 'V s t u v w x y z ...

BO ex s I P w x \ V !:. T] 1= I BF

CO { ... A B C D E F G H I A
f'"'o,J

4> ~ CF v

DO ,.. } J K L M N 0 P Q R I ! " • [!] A DF ... ,..
m qi EO \ S T U V W X Y Z ~ ~ e EF ...

FO 0 1 2 3 4 5 6 7 8 9 '" 6 • c.P FF 'iJ -

D 3278 only; invalid character on 3277.

D National use character. Graphics shown are for U.S. keyboards; graphics differ in other countries.

Figure 66. Internal Character Representations for APL Keyboards

314 ISPF Dialog Management Services

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 OF

10 1F

20 2F

30 3F

40 sp ¢ < (+ I 4F
50 & 1 2 3 -} ! $... *) , -. 5F

....

60 - / I % > ? 6F I , -....

70
0 ,

: # @ , = " 7F n

80 a b c d e f g h i t { 5
(+ + 8F

90 0 j k I m n 0 p } tI
)

± • 9F q r

-
AO 'V S t

..01IIII

u v w x y z • L I [~ • AF

BO 0 1 2 3 4 5 6 7 8 9 Ij -.l I] ;t - BF

CO { A B C D E F G H I 6 .1 T V -- -\- CF

DO } ... J K L M N 0 P Q R m 6 § ~ ~ --* DF

EO \ \ S T U V W X ... Y Z 'V I- ~ .. '+' ;\ EF

FO 0 1 2 3 4 5 6 7 8 9 I L <P <P r FF

DNational use character. Graphics shown are for U.S. keyboards; graphics differ in other countries.

Figure 67. Internal Character Representations for Text Keyboards

Appendix G. Character Translations for APL, TEXT, and Katakana 315

316 ISPF Dialog Management Services

APPENDIX H. MVS AND VM/SP: SUMMARY OF CHANGES FROM SPF

For MVS and VM/SP, the dialog management functions of ISPF and the
program development functions of ISPF/PDF were previously combined in
the predecessor program product, System Productivity Facility (SPF).
While some functions have been added and some SPF functions revised in
the ISPF product, many SPF dialogs can run, without change, on ISPF.
New and revised function in ISPF that may require changes in an SPF
dialog to be processed using ISPF, are listed at the end of this
section.

NEW AND REVISED FUNCTIONS

New and revised ISPF functions are listed below.

•

•

•

Invoke ISPF using the ISPSTART command instead of the ISPF command.

Name-List Syntax

A name-list parameter in a CALL ISPLINK need not be enclosed in
parentheses when there is only one variable in the list.

NEWAPPL Keyword

The SELECT service and the ISPSTART command allow specification of
an optional application id on the NEWAPPL keyword. For example:

SELECT PANEL(ABCTOP) NEWAPPL(xxxx)

where xxxx is the application id.

The application id, which must be unique to the individual
application, may be up to four characters. It serves as a prefix to
identify the user's application profile and/or command table
associated with the application, as follows:

xxxxPROF - User Application Profile
xxxxEDIT - Edit Profile
xxxxCMDS - Command Table

The NEWAPPL keyword does not automatically designate a menu as being
a primary option menu. To designate a menu as a primary option
menu, set -- in the)INIT section of menu -- the &ZPRIM system
variable to "YES."

• NOCHECK Keyword

Appendix H. MVS and VMjSP: Summary of Changes From SPF 317

A NOCHECK keyword may be specified with either the CMD or PGM
keyword on selection panels. With this keyword, the dialog function
(command or program) is invoked even if the user specifies a chain
of options.

• Variable Services

Profile variables are included in standard search sequence.

A name-list interface is provided for the VCOPY and VREPLACE
services.

User exits are provided for variable access and conversion.

• Command Tables

A facility is included that allows the dialog manager to intercept
user-entered commands and take appropriate action.

• Program Function (PF) Key

Program function keys are not required for operation of ISPF.
All functions for which PF keys were required for SPF may now be
entered in the command field of any display.

All panels may now have a command entry field, which is also
used for option entry on menus.

PF keys may now be used to simulate command entry.

All previous PF key functions (HELP, SPLIT, END, etc.) may now
be entered as commands.

The FIND and CHANGE PF key functions have been renamed RFIND
(repeat find) and RCHANGE (repeat change) to avoid confusion
with the FIND and CHANGE commands passed through to browse and
edit.

• Light Pen and Cursor Select

Fields on a panel can be specified to be light pen detectable or
detectable via the cursor select key.

• Set Next Selection Menu

•

A system variable, ZPARENT, allows the developer to indicate the
next panel to be displayed when the user presses the end key or when
a function completes operation. This allows a dialog developer to
control the sequence of menu display, if he should require it.

Display Services

318 ISPF Dialog Management Services

A set next message function provides the ability to specify a
message to be displayed with the next panel that is written by
ISPF to the terminal.

The table display services have been enhanced with the following
features:

Multiple line selection or modification

New)MODEL header statement keywords

Variable names on model lines

Multiple model lines

Explicit cursor placement within scrollable data

Enhancements to the panel display service include:

Extended verification functions

"Z"variables as field name placeholders

Truncation remainder function

Alternate locations for command and message fields

Profile variable support

New attribute keywords (SKIP and ATTN)

KANA keyword for Japanese keyboards

Help panels may now contain variables so that dialog information
(including information entered by the user) may be displayed on
the help panel.

• Control Services

An option has been added to allow display output without
unlocking the keyboard.

Split screen mode may be enabled or disabled by a function.

The panel and table display environments may be saved and
restored.

• Batch Execution of Dialog Services

Non-interactive dialogs may be executed in the background.

• IPF Table Migration Utility (VM/SP only)

A utility is provided to assist with the conversion of tables.

Appendix H. MVS and VM/SP: Summary of Changes From SPF 319

•

•

•

•

•

APL and TEXT keyboards may now be used. However, although the
terminals are capable of displaying a mixture of characters from
both keyboards at one time, only those characters appropriate for
the keyboard in use are displayed by ISPF.

New commands:

TSO

CP, eMS

PANELID

(MVS only) allows a TSO command or CLIST to be entered
from any panel.

(VM/SP only) allows CP or CMS commands or EXECs to be
entered from any panel.

Used on a panel, allows all subsequently displayed
panels to include, in their display, the name of the
specified panel.

Specify PF Keys (Option 0.3)

The PF key specification is changed. For 24-key terminals, two
panels are now displayed: The first for specification of "primary"
keys (13-24), and the second for specification of "alternate" keys
(1-12).

The command table utility is provided for generation and
modification of application command tables.

A selection panel update utility is provided, which adds selections
to existing selection panels. Use of this utility is described in
ISPF and ISPF/PDF Installation and Customization.

MIGRATION OF DIALOGS FROM SPF TO ISPF

Differences between ISPF and SPF may require that some dialogs, written
to run under SPF, be modified if they are to run under ISPF:

•

•

•

Changes to default variable pool setting of the VGET/VPUT services
may cause a different variable value to be obtained when in ISPF.

Additional VGET/VPUT Return codes.

SPF dialogs that use EDIT/BROWSE interfaces will require that PDF be
installed to execute under ISPF.

Command tables should be reviewed if a dialog is to be invoked from a
new dialog which uses command tables. The 'new' dialog may have defined
commands in the command table that conflict with commands that were
processed by the dialog function routine or panels of the SPF dialog.

ISPPARMS does not exist in ISPF. It is replaced by ISPPROF in a
different format. A conversion process is described in ISPF and
ISPF/PDF Installation and Customization.

320 ISPF Dialog Management Services

ISPF primary option menus are no longer determined by the NEWAPPL
keyword on a SELECT request. To identify a panel as a primary option
menu, set the variable ZPRIM to YES in the INIT section of the panel
definition.

Tables created using SPF can be processed by ISPF. However, tables
created using ISPF cannot be processed by SPF. After an SPF table is
processed in WRITE mode by ISPF, it can not be processed by SPF.

Programs that ran on SPF and which call ISPLINK, must be link edited
again to use the ISPF version of the ISPLINK module.

Although not required it is recommended that:

• Panels using OPT and SEL (SPF variable names) be converted to use
ISPF variable names ZCMD and ZSEL, respectively.

• Help/tutorial panels be converted to use ZUP and ZCONT in place of
UP and CONT. Variable ZIND be set to YES in the PROC section of
tutorial index pages. This will cause a higher level tutorial text
page to be displayed when the user enters the UP command in response
to a tutorial page that was displayed as a result of a selection
from the index instead of redisplaying the index page as was done in
SPF. If ZIND is not set to YES in the index page, the tutorial
function will continue to work as it did in SPF.

Appendix H. MVS and VM/SP: Summary of Changes From SPF 321

322 ISPF Dialog Management Services

APPENDIX I. VM/SP: USE OF SHARED MINIDISKS

ISPF permits multiple users to have concurrent write access to the same
minidisks (shared minidisk support). Thus multiple users may
concurrently create or update different files, library members, or
tables on a shared minidisk without destructive conflicts. ISPF ensures
the integrity of shared minidisks if updating of them is done via ISPF
services. However, ISPF cannot prevent destructive conflicts if other
means (e.g., ordinary CMS commands) are used to update shared minidisks.
To guard against destructive conflicts, the following procedures are
recommended:

•

•

•

•

Do not attempt to use any user's 191 disk (A-disk) a.s a shared
minidisk; ISPF does not provide shared disk support for such
minidisks.

Isolate shared user files, ISPF tables, and file tailoring output
files on minidisks that do not have other types of files.

Caution users to update shared minidisks only by using ISPF
services.

Control LINKing and ACCESSing:

Allow ISPF to dynamically link and access shared minidisks.
This is done automatically for ISPF libraries, and may be
specifically requested in the appropriate panel fields for
native CMS files.

LINK and ACCESS shared minidisks using VM/CMS services, but
always access them as read-only extensions. This avoids
inadvertent updating (e.g., by some compilers). For example:

CP LINK TO BLVIT 291 AS 591 MW
ACCESS 591 DID

In this example, the disk is linked in multiple write mode, thus
providing for concurrent upda.ting by multiple users. However,
since the disk is accessed as a read-only extension of itself
(DID), writing to the disk is prevented, except when under ISPF
control. ISPF automatically reaccesses the disk when it needs
to write to the disk, and then restores the original access mode
(in this case, DID) when the writing is completed.

Whenever ISPF updates a shared minidisk, it serializes all simultaneous
update requests for the same minidisk by mUltiple users via a locking
mechanism. Additionally, when ISPF is finished writing to a minidisk
for a given user, but before ISPF "unlocks" the minidisk, it checks to
see if the user has any other minidisks currently accessed (i.e., as
another mode letter) which are in fact the same minidisk as the one

Appendix I. VM/SP: Use of Shared Minidisks 323

being currently updated by that user. If so, every such "redundant"
minidisk will be reaccessed so as to keep its in-memory eMS master file
directory current.

324 ISPF Dialog Management Services

INDEX

Special Characters

.CURSOR control variable
description 223
example

see figure on page ·225
when not initialized or set to
blank 226

.HELP control variable 239
description 223
example

see figure on page 225,
in message definition 252

.MSG control variable
description 223

.RESP control variable
description 224

.TRAIL control variable
description 224
example 215, 231

.ZVARS control variable 226
description 224
example

see figure on page 227
&PRESUHE statement 105
)CH file tailoring control
statement 258

237

)DEFAULT skeleton control statement 256
)DOT file tailoring control
statement 257

example 31
)END statement required on panel
definition 203

)ENDDOT file tailoring control
statement 257

example 31
)ENDSEL file tailoring control
statement 257

example 30
)IM file tailoring control
statement 256

)SEL file tailoring control
statement 257

example 30
)SET file tailoring control
statement 258

)TB
file tailoring control statement 256

% sign
beginning a command with 89, 121,

141

r--l

I A I
L-J

abbreviated (generic) search argument
See TBSARG
See TBSCAN

abend intercept
VSE 95

access skeleton files (FTOPEN) 137
accessing table data 23
add row to table (TBADD) 147
ALIAS action

specified via ZCTACT 54
aliases

for commands 56
allocating libraries

MVS 66
VMjSP 69

ALPHA parameter
on VER statement 220

alt-name parameter
on TBCLOSE 150
on TBSAVE 177

APL keyboards
character translations 313

application
definition of 38

application commands
description 45

application profile pool
creation of 38
definition of 33
description of 38
life of 38

application-id parameter
on ISPSTART 87
on SELECT 140

ARGLIST(name-list) parameter
on TBSARG 176
on TBSCAN 180

Index 325

ASIS parameter
on VGET 192
on VPUT 194
on VPUT statement in panel)INIT and

)PROC sections 223
with JUST keyword 208

assembler language
VL keyword 106

assignment statement
in panel definition

)INIT section 214
)PROC section 214

attention exits, CLIST 104
attention field

command entry 45, 47
selection 47

attention key (PAl)
HVS and VN/SP 62
VSE 63

ATTN exits, CLIST 104
ATTN Keyword

in)ATTR section 210
in panel)ATTR section 207
used to define attention fields 63

attribute characters 207
attribute section of panel
definition 199, 206

automatic and non-automatic entry into
line mode 121, 141

r--I
I B I
L--J

BACK tutorial command 16, 239
batch environment

TSO 95
Vt>1/SP 98
VSE 100

batch execution 95
TSO error processing 96
TSO sample job 96
VM/SP error processing 98
VM/SP sample job 98
VSE error processing 101
VSE sample job 100

beginning ISPF 87
BIT parameter

on VDEFINE 189
on VER statement 220

blksize parameter
on BROWSE

VSE 116

326 ISPF Dialog Management Services

on EDIT
VSE 129

body section of panel definition 199,
210

BROWSE and EDIT service 42
BROWSE service

description
MVS and VM/SP 113
VSE 116

example
MVS and VM/SP 115
VSE 119

browse services panel definition
scroll field, location of 201

bypassing display
See jump function

r--l

I C I
L-.J

calculation of DTCB size 28
calculation of table size 28
call invocation 105

general format 106
positional parameters 106

CANCEL mode
effect on error processing 109

CANCEL parameter
on CONTROL 120

CAPS keyword
in panel)ATTR section 207, 208

change row in table
TBMOD 167
TBPUT 171

changes, differences between ISPF and
SPF 317

changing number of lines to be scrolled
See scrolling amount

CHAR parameter
on VDEFINE 189
with PAD keyword 209

character translations for APL, TEXT and
Katakana keyboards 313

check variable content 219
checking the content of panel input
fields (use of the VER statement) 219

clear table variables to nulls
(TBVCLEAR) 185

CLIST libraries
MVS 67

CLIST variables used in commands 104
close and save table (TBCLOSE) 150

close table without saving (TBEND) 162
CM file tailoring control statement

See)CM
CMD parameter

on panel body section 211
CMD(command) parameter

in)PROC section 230
on ISPSTART 89
on SELECT 140

CMS system command 49
COBOL

return codes from services
MVS and VM/SP 110
VSE 111

COBOL, compiler used with ISPF 1
column display position

table display operations 201
column of a table, defining 22
command entry

concatenated with PF key
restriction 47

command field
key-in of command entries 45
naming via the CMD parameter 211
panel body section 211
position in panel definition 201

command field, naming of 201
command invocation 103

general format 103
positional parameters 104

command parameter
in panel)PROC section 230

command procedure function pool 35
command processing restriction

split screen mode 48
with HELP command 46

command stacking
restriction with HELP command 46

command table utility 297
command tables 53

action commands 54
dynamically specified command

actions 58
format of 53
modification of 297
used for assigning command
aliases 56

used for overriding system
commands 56

used for passing commands to a dialog
function 57

commands
entry of 45
interception by ISPF 45

levels of 45
processing of

by ISPF 46
stacking for execution 46
system

See system commands
comment statements 204
communication between functions and
panels via shared pool 38

compare variable content 219
compilers used with ISPF 1
concatenation of PF key entered value
with command entry

restriction 47
console default for VM/SP

See also specifying options using
parms

setting using parms 281
CaNT system variable

on tutorial panels 240
control facilities 12
control of scrolling

See CSR
CONTROL service

description 43, 120
error disposition

when CANCEL specified 109
when RETURN specified 109

example 123, 263, 290
control statements

skeleton definition 254
control variables 223

example
see figure on page 225

initialization 224
list of 223
when reset 224

copy a variable (VCOPY) 186
COpy parameter

on VDEFINE 190
copy variables to shared pool or profile

(VPUT) 194
CP system command 49
create a new table (TBCREATE) 153
creating a table

example 26
creating dialog components 3
creation of application profile
pools 38

creation of shared pools 38
CRP (current row pointer) 24
crp-name parameter

on TBQUERY 173
CRP, movement of

Index 327

See TBBOTTOM
See TBSCAN
See TBSKIP
See TBTOP

CSRROW(table-row-number) parameter
on TBDISPL 157

CUR
scrolling amount 52

current-row-pointer
See CRP

CURSOR (.CURSOR) control variable
See .CURSOR

cursor control of scrolling
See CUR

cursor positioning
default 226

example 226
cursor select 63

processing of selected fields 63
cursor select key

selection of attention field 47
CURSOR system command 48
CURSOR(field-name) parameter

on DISPLAY 124

r-t
I D I
L---.J

data communications within ISPF 7
data records

in skeleton definition 254
data table control block (DTCB)

calculation of size 28
DATASET(dsname) parameter

on BROWSE
MVS and VM/SP 113
VSE 116

on EDIT
MVS and VM/SP 126
VSE 129

defaultPF Key assignments 59
DEFAULT skeleton control statement

See)DEFAULT
define a table search argument

(TBSARG) 175
define function variable

VDEFINE 188
defined variables 36
defining display images 3
defining primary option menus 232
delete (set to nulls) table values

(TBVCLEAR) 185

328 ISPF Dialog Management Services

delete a table (TBERASE) 163
delete row from table (TBDELETE) 155
determine if row exists in table

(TBEXIST) 164
determining table size 28
DEVADDR(sysno) parameter

on EDIT
VSE 129

dialog
beginning with menu or function 5, 9
control concepts 9
cross-system use 1
definition of 1
development of 3

MVS and VM/SP 72
VSE/AF 1.3.5 78
VSE/AF 2.1 85

example 261, 289
initiation of 12, 93
invocation of

using application master menu 6
organization concepts 9
processing concepts 9
recursive entry into 56
running of 5
services overview 17
termination of 93
typical organization 9

dialog abend intercept
VSE 95

dialog components
creation of· 3, 8
test of 3

MVS and VM/SP 72
VSE/AF 1.3.5 78
VSE/AF 2.1 85

dialog development libraries
MVS and VM/sp 72
VSE/AF 1.3.5 78
VSE/AF 2.1 85

dialog function
languages used for coding 1

dialog variable
See variables

differences between ISPF and SPF 317
DISABLE parameter

on CONTROL 120
display bypassing

See jump function
display data set

MVS and VM/SP (BROWSE) 113
VSE (BROWSE) 116

display file
MVS and VM/SP(BROWSE) 113

VSE(BROWSE) 116
display menu (SELECT) 140
DISPLAY parameter

on CONTROL 120
DISPLAY service

description 17, 124
example 27, 125, 261, 263

display services 17
syntax summary - calls 307
syntax summary - commands 304

display table data (TBDISPL) 156
display, set the next message to

(SETNSG) 145
display, specification of 3
DOT file tailoring control statement

See)DOT
DOWN scroll command 52
DOWN system command
dsname parameter

on BROWSE
NVS and Vi'1jSP
VSE 116

on 'EDIT
MVS and Vi'1jSP
VSE 129

on VER statement
DTCB

47

113

126

221

calculation of size 28
dynamically specified command

actions 58

r--l
I E I
L--.l

EDIT and BROWSE service 42
EDIT service

description
i'1VS and VMjSP 126
VSE 129

example
MVS and Vi'1jSP 128
VSE 132

edit services panel definition
scroll field, location of 201

editing the content of panel input
fields (use of the VER statement) 219

ENABLE parameter
on CONTROL 120

end file tailoring (FTCLOSE) 133
END parameter

on CONTROL 120
END statement 199
END system command 47

See also RETURN system command
distinguishing from RETURN 51
processing 50

ENDDOT file tailoring control statement
See)ENDDOT

ending display
See END system command

ending function or dialog
See END system command
See RETURN system command

ending ISPF 93
ENDSEL file tailoring control statement

See)ENDSEL
ENQ issued by TBOPEN 169
enqueuing for table write operations 25
ENTER parameter

on CONTROL 120
entry of commands

See commands
ENTRY statement required when link
editing VSE programs 112

environment 1
erase (set to nulls) table variables

(TBVCLEAR) 185
erase a table (TBERASE) 163
erase member of file tailoring output
library (FTERASE) 135

error modes
CANCEL and RETURN 109

error processing
TSO batch execution 96
VMjSP batch execution 98
when put into effect 93

ERRORS parameter
on CONTROL 120

examples of menus 234
EXEC variables used in commands
EXEC 2 libraries, VM

SP 71
EXIT parameter

in)PROC section
exit routine

VDEFINE service
explicit chain mode
extended return

See jump function
extension variables

table 24

230, 231

311
233

104

Index 329

r--l
I F I
L-----1

field select~on via cursor position
field selection via light pen 63
field type specification

in panel)ATTR section 208
field-name parameter

on DISPLAY 124
on TBDISPL 157

file tailoring end (FTCLOSE) 133
file tailoring libraries

NVS 66
VH/SP 69
VSE 78, 84

file tailoring services
description 28
example 31
output 28
processing 28

in conjunction with table
processing 29

skeleton
example 29

syntax summary - calls 308
syntax summary - commands 305

FILE(fileid) parameter
on BROWSE

MVS and VM/SP 113
VSE 116

on EDIT: HVS and EDIT 126
fileid parameter

on BROWSE
MVS and VH/SP 113

on EDIT
MVS and VH/SP 126

on VER statement 220
find table variable

TBSARG 175
TBSCAN 180

FIXED parameter
on VDEFINE 189

format
command invocation 103

format of skeleton control
statements 256

format of skeleton definition 254
format parameter

on VDEFINE 188

63

formula for table size calculation 28

330 ISPF Dialog Management Services

FORTRAN
return codes from services

MVS and VM/SP 110
VSE 111

FORTRAN, compiler used with ISPF 1
FTCLOSE service

description 133
example 31, 134

FTERASE service
description 135
example 135

FTINCL service
description 136
example 31, 136

FTOPEN service
description 137
example 31, 138

function
dialog

example 261, 289
function pool

creation of 35
definition of 33
description of 35
for command procedures 35
for programs 36
life of 35
relationship to dialog functions 35

function variables, define in function
pool (VDEFINE) 188

function, dialog
creation of 3
description of 7
languages used for coding 1

r--l
I G I
L--J

general table services 26
generic search argument

specification of
TBSCAN 180

generic search argument, specification
of

TBSARG 175
get a copy of variable (VCOPY) 186
get row from table (TBGET) 165
get variable from shared pool or profile

(VGET) 192

r--l

I H I
L-J

HALF
scrolling amount 52

HELP (.HELP) control variable
See .HELP

HELP command
entry to tutorial 16
stacking restriction 46

HELP system command 47, 239
help tutorial

special definition requirements
HEX parameter

on VDEFINE 189
HIGH parameter

with INTENS keyword 208

r--l

I I I
L-J

ICCF system command 48
identical variable names 37
IF statement

in panel)INIT section 218
in panel)PROC section 218

1M file tailoring control statement
See)IM

implicit variables 36
include file tailoring skeleton

(FTINCL) 136

228

INCLUDE statements required when link
editing VSE programs 112

INDEX tutorial command 16, 239
initialization of control variables 224
initialization section of panel
definition 199, 213

initiating a dialog 93
input

protecting table 25
INPUT parameter

with TYPE keyword 208
INTENS keyword

in panel)ATTR section 207, 208
interception of commands by ISPF 45
introduction 1
invocation of ISPF 87
invoking a dialog (SELECT) 140
invoking an ISPF application 5

from master application menu 6
invoking SELECT service 93

invoking services 103
ISPF differences with SPF 317
ISPFILE ddname 66, 69
ISPLINK 106
ISPLINK routine, invoking services from
programs 2

ISPLLIB ddname 67
ISPLNK 106
ISPLNK routine, invoking services from

FORTRAN programs 2
ISPMLIB ddname 65, 68
ISPPLIB ddname 65, 68
ISPPROF ddname 65, 68
ISPSLIB ddname 65, 68
ISPSTART

description 87
example 5

ISPSTART syntax 88
ISPTABL ddname 66, 69
ISPTLIB ddname 65, 66, 68, 69

r--l
I J I
L-J

JCL
allocating libraries for MVS 66

job for batch execution
TSO 96
VM/SP 98
VSE 100

jump function 51
JUST keyword

in panel)ATTR section 207, 208

r--l
I K I
L-..J

Katakana keyboards
character translations 313

key-name parameter
on TBQUERY 173

Key-name-list parameter
on TBCREATE 153

KEYNUM(keynum-name) parameter
on TBQUERY 173

KEYS system command 48
used for defining PF key

functions 60
KEYS(key-name) parameter

on TBQUERY 173

Index 331

KEYS(key-name-list) parameter
on TBCREATE 153

keyword parameter
coding in requests for services 108

r---l
I L I
L-..J

LANG(COBOL) parameter
in panel)PROC section Z30
on ISPSTART 89
on SELECT 140

LANG(PLI) parameter
in panel)PROC section 230
on ISPSTART 89
on SELECT 140

languages used for coding functions 1
LEFT parameter

with JUST keyword 208
LEFT scroll command 52
LEFT system command 48
length parameter

on VDEFINE 190
length-array parameter

on VCOPY 186
lengths parameter

on VREPLACE 196
levels of ISPF commands 45
library setup

HVS 65
VM/SP 68
VSE/AF 1.3.5 73
VSE/AF 2.1 79

LIBRARY(library-name) parameter
on FTCLOSE 133
on FTERASE 135
on TBCLOSE 150
on TBERASE 163
on TBSAVE 177

light pen 63
processing of selected fields 63
sample panel 64
selection of attention field 47

line mode
automatic and non-automatic entry
into line mode 121, 141

LINE parameter
on CONTROL 120

lines
number to be scrolled

See scrolling amount
link editing VSE programs

332 ISPF Dialog Management Services

ENTRY statement required 112
INCLUDE statements required 112

linking requirement for split screen
mode 68

list file defaults
specifying

using parms option 275
LIST parameter

on VER statement 221
LMSG parameter

on panel body section 211
LOCATE parameter

on VCOPY 186
LOCK parameter

on CONTROL 120
locks for table write operations 25
log file defaults

specifying, using parms option 279,
281, 282

LOG service
description 43, 139
example 139

logging a message
See LOG service

logical screens
See split screen mode

long message 20
LOW parameter

with INTENS keyword 208
lower-level menu

example of 237
lrecl parameter

on BROWSE
VSE 116

on EDIT
VSE 129

r--l
I M I
L-J

master application menu 6, 234
example of 234

MAX
scrolling amount 52

MEMBER(member-name) parameter
on BROWSE

MVS and VM/SP 113
VSE 116

on EDIT
MVS and VM/SP 126

member-name parameter
on FTCLOSE 133

on FTERASE 135
menu

definition of primary option 232
entry to tutorial 16
example of primary option 236
lower-level

example of 237
master application

example 234
special definition requirements 228,

229
use of ZPARENT to set next
display 233

message
description of 7
set the display of next (SETMSG) 145

message definition 199
creation of 20
in message library 21
long

example 22, 252
message-id 251
parts of 20
processing 251
short

example 22, 252
syntax 251

message fields
panel body section 211

message library 251
example 22, 252

message logging
See LOG service

message-id parameter
on DISPLAY 124
on LOG 139
on SETMSG 145
on TBDISPL 157

minidisk, shared support 323
model section of panel definition 199
modes of operation

set by use of CONTROL service
CANCEL 109
RETURN 109

test 91
trace 93

modify command tables 297
modify row in table

TBMOD 167
TBPUT 171

modifying displayed tables using
TBDISPL 289

modifying tables
example 261

MOVE parameter
on VCOPY 186

move row pointer (CRP)
See TBBOTTOM
See TBSCAN
See TBSKIP
See TBTOP

MS commands referencing ISPF files can
cause unpredictable results 141

MSG (.MSG) control variable
See .MSG

MSG(message-id) parameter
on DISPLAY 124
on LOG 139
on SETMSG 145
on TBDISPL 157

MSG=value parameter
on assignment statement 215

MVS
allocating libraries 66
batch environment 95
invocation of ISPF 87
invoking an ISPF application 5
library setup 65
PA keys

definition of 62
specifying options using parms 279
starting a dialog 12
TSO PCF 67
use of libraries 72

r-I
I N I
L---1

name of variable too long for panel
definition 226

NAME parameter
on VER statement 221

NAME(a1t-name) parameter
on TBCLOSE 150
on TBSAVE 177

NAME(member-name) parameter
on FTCLOSE 133

name-list parameter
how to code on requests for
services 108

on TBADD 147
on TBCREATE 153
on TBMOD 167
on TBPUT 171
on TBSARG 176
on TBSCAN 180

Index 333

on VCOPY 186
on VDEFINE 188
on VGET 192
on VPUT 194
on VREPLACE 196

NAMENUM(namenum-name) parameter
on TBQUERY 173

NAMES(name-list) parameter
on TBCREATE 153

NAMES(var-name) parameter
on TBQUERY 173

naming the command field via CMD
parameter 211

NB parameter
on VER statement 220

nested dialogs 51
NEWAPPL(application-id) parameter

in)PROC section 230
on ISPSTART 89
on SELECT 140

NEWCOPY parameter
on TBCLOSE 150
on TBSAVE 177

NEWPOOL parameter
in)PROC section 230
on SELECT 140

next message, set the display of
(SETMSG) 145

NOBSCAN parameter
on VDEFINE 190

NOCHECK parameter
in)PROC section 230

example 231
NOFT parameter

on FTINCL 136
NON parameter

with INTENS keyword 208
non-ISPF displays, using REFRESH
after 50

NONBLANK parameter
on VER statement 220

NONDISPL parameter
on CONTROL 120

nonreusable program used when split
screen mode use anticipated 68

NOP action
specified via ZCTACT 54

NOREPL parameter
on FTCLOSE 133

NOWRITE parameter
on TBCREATE 153
on TBOPEN 169

NULLS parameter
with PAD keyword 209

334 ISPF Dialog Management Services

NUM parameter
on VER statement 220

number of lines to scroll
See scrolling amount

number parameter
on TBSKIP 182

NUMBER(number) parameter
on TBSKIP 182

numeric value parameter
how to code on requests for

services 108

r---l

I 0 I
L-..J

obtain a copy of variable (VCOPY) 186
obtain copy of variable

from shared pool or profile
(VGET) 192

obtain table information (TBQUERY) 173
OFF parameter

with ATTN keyword 210
with CAPS keyword 208
with SKIP keyword 210

ON parameter
with ATTN keyword 210
with CAPS keyword 208
with SKIP keyword 210

online tutorial 16
open a table (TBOPEN) 169
open skeleton files (FTOPEN) 137
open table, create and (TBCREATE) 153
operating system

passing commands to 46
operation in test mode 91
operation in trace mode 93
OPT system variable 229

on tutorial panels 240
OPT(option) parameter

on ISPSTART 89
on SELECT 140

optional libraries
MVS 66
VM/SP 69

options-list parameter
on VDEFINE 190

order of panel definition sections 200
order of search

variable pools 33
output

protecting table '25
OUTPUT parameter

with TYPE keyword 208
overriding system commands by use of

command tables 56

r--l

I P I
L---.I

PA keys
definition, VSE 63

PA keys/definition
HVS and VH/SP 62

PAD keyword
in panel)ATTR section 207, 209

PAD (percentage) parameter
on TBCLOSE 150
on TBSAVE 177

PAGE
scrolling amount 52

panel body section 210
panel definition 199

attribute section 199
default characters 206
statement format 207

body section 199, 210
sample 211
statement format 210

command field 211
specification 211

creation of 3, 19
description of 3, 18
design suggestions 202
example of 19
for help and tutorial panels 239
format 200
formatting guidelines 200
initialization section 199, 213

statement formats 214
line 1

content 201
line 2 content 201
line 3 content 201
location of

command field 200
message field 200
panel title 200
scroll amount 200

message field
specification 211

model section 199
order of sections 200
position of command field 201
position of long message 201

processing 20, 227
processing section

statement formats 214
sections of 199
short message for TBDISPL
operations 201

special requirements 228
specifying field type 208
syntax rules 202
tutorial and help panels 239
used by TBDISPL 18

panel display
description of 7
specification of 3

panel processing considerations 227
PANEL(panel-name) parameter

in)PROC section 230
on DISPLAY 124
on ISPSTART 89
on SELECT 140
on TBDISPL 157

PANELID system command 48
parameters for service requests

coding rules for iv, 108
parameters specified as variables 107
PARM(parameters) parameter

in)PROC section 230
on ISPSTART 89
on SELECT 140

parms option
See also specifying options using
parms

description of 17
instructions for use of 275
terminal characteristics panel 276,

277
used for specifying ISPF parameter
options 275

parms option use
MVS 279
VH/SP 281
VSE 282

partitioning display screen
See split screen mode

parts of a dialog
dialog components 7

passing commands
See command tables

passing commands to a dialog
function 57

passing control
from program-coded to command-coded
function 9

using the SELECT service 33

Index 335

PASSTHRU action
specified via ZCTACT 54

PASSWORD(pswd-value) parameter
on BROWSE

HVS and VHjSP 113
VSE 116

on EDIT
HVS and VHjSP 126

PAl key
HVS and VHjSP 62

PAl key, VSE 63
PA2 key

HVS and VH/SP 62
PA2 key, VSE 63
PCF

TSO Programming Control Facility 67
percent (%) sign

beginning a command with 121, 141
percentage parameter

on TBCLOSE 150
on TBSAVE 177

permanent table 23
PF key-entered value

concatenated with PF key
restriction 47

PF keys 59
definition of functions for 60
definition panel 60
providing default settings 62
saving function definitions for 62
specifying

using parms option 275, 284
used for command entry 45, 46

PGH(program-name) parameter
in)PROC section 230
on ISPSTART 89
on SELECT 140

PICT parameter
on VER statement 220

PL/I
return codes from services

MVS and VMjSP 110
VSE 111

PL/I, compiler used with ISPF 1
PLIRETV/PLI built-in function

HVS and VHjSP 110
pointer, move current row

See TBBOTTOH
See TBSCAN
See TBSKIP
See TBTOP

POSITION(crp-name) parameter

336 ISPF Dialog Management Services

on TBQUERY 173
positional parameters

call invocation 106
command invocation 104

PRESUHE statement 103, 105
primary option menus 232
PRINT system command 49
PRINT-HI system command 49
processing

file tailoring services 28
light pen and cursor selected
fields 63

table services 23
processing a dialog 5
processing file tailoring skeletons

example 31
processing prior to panel display 213
processing tables

example use of table services 26
processing, panel 227
profile

See also application profile pool
definition of 33

PROFILE parameter
on VGET 192
on VPUT 194
on VPUT statement in panel)INIT and

)PROC sections 223
program access (PA) keys

HVS and VH/SP 62
VSE 63

program function keys 59
program function pool 36
program libraries

HVS 67
VH/SP 71

program linkage
VSE 3

program linking requirement for split
screen mode 68

program-name parameter
in panel)PROC section 230
on ISPSTART 87
on SELECT 140

program, copy a variable to (VCOPY) 186
pswd-value parameter

on BROWSE
HVS and VH/SP 113

on EDIT
MVS and VM/SP 126

put variables in shared pool or profile
(VPUT) 194

r--l
I R I
L-J

RANGE parameter
on VER statement 221

RCHANGE system command 47
read a table into virtual storage

(TBOPEN) 169
read row from table

TBBOTTOH 149
TBGET 165
TBSCAN 180
TBSKIP 182

read variable from shared pool or
profile (VGET) 192

recfm parameter
on BRO\{SE

VSE 116
on EDIT

VSE 129
recursive entry into dialog

functions 56
redisplaying contents of a screen using

PA Key
HVS and VH/SP 62
VSE 63

reentrant program used when split screen
mode use anticipated 68

reference of dialog variables by a
program function (VDEFINE) 188

referencing data in dialogs
See variable services description

REFRESH parameter
on CONTROL 120

relationship of function pools to dialog
functions 35

remove definition of variables from
function pool

VDELETE 191
VRESET 198

REPLACE parameter
on TBCREATE 153

replace variable in function pool
(VREPLACE) 196

REPLCOPY parameter
on TBCLOSE 150
on TBSAVE 177

representation of dialog variables 39
required libraries

HVS 65
VH/SP 68
VSE 73
VSE/AF 2.1 79

requirements
special for panel definition 228

reset of control variables 224
reset table variables to nulls

(TBVCLEAR) 185
reset variables (VRESET) 198
reshow key (PA2)

HVS and VM/SP 62
VSE 63

residency of tables 23
resource protection

table services 25
RESP (.RESP) control variable

See .RESP
RESTORE parameter

on CONTROL 120
restriction

on use of ISPF services 6
retrieve row from table

TBBOTTON 149
TBGET 165
TBSCAN 180
TBSKIP 182

retrieve variables from shared pool or
profile (VGET) 192

return codes from services 109
MVS and VN/SP 110
VSE 111

RETURN mode
effect on error processing 109

RETURN parameter
on CONTROl?(c"i20

RETURN system command 47
distinguishing from END 51
processing 50

RETURN-CODE
COBOL built-in variable

HVS and VH/SP 110
RFIND system command 47
RIGHT parameter

with JUST keyword 208
RIGHT scroll command 52
RIGHT system command 48
row deletion (TBDELETE) 155
row display position

table display operations 201
row pointer, move

See TBBOTTOH
See TBSCAN
See TBSKIP
See TBTOP

row table services 26
row, determine existence (TBEXIST) 164
rownum-name parameter

Index 337

on TBQUERY 173
rows of a table

content of 22
defining 23

rules
coding parameters for service
requests iv, 108

running a dialog 5

r-J
I S I
L...:....J

save and close table (TBCLOSE) 150
SAVE parameter

on CONTROL 120
save table (TBSAVE) 177
SAVE(name-list) parameter

on TBADD 147
on TBNOD 167
on TBPUT 171

SAVENAME(var-name) parameter
on TBBOTTOM 149
on TBGET 165
on TBSCAN 180
on TBSKIP 182

saving PF key definitions, system
variables for 62

scrolling
commands to control 52
scroll amount 52
tutorial panels 52

search
order of

for variable pools 33
search a table (TBSCAN) 180
search argument, specification of

TBSARG 175
TBSCAN 180

SEL file tailoring control statement
See)SEL

SEL system variable 229
See also ZSEL system variable
on tutorial panels 240

SELECT action
specified via ZCTACT 54

SELECT action command 55
SELECT Service 14

creation of shared pools 38
description 14, 140
example 144
invocation 93
panel processing 229

338 ISPF Dialog Nanagement Services

used to pass control within a
dialog 33

selecting an attention field 47
selection panel

See menu
serial parameter

on BROWSE
VSE 116

on EDIT
HVS and VN/SP 126
VSE 129

serial/parameter
on BROWSE

HVS and VN/SP 113
service interface routine, ISPLINK and

ISPLNK 2
service name parameter

coding in requests for services 108
services

invocation 2
overview 17
to dialogs 1
to interactive applications 1

services description
BROWSE 42
CONTROL 43
display .17
EDIT 42
file tailoring 28
LOG 43
SELECT 14
syntax for command and call
statements iv, 103, 105, 112

table 22
variable 32

SET file tailoring control statement
See)SET

set next menu (ZPARENT) 233
set processing modes (CONTROL) 120
set row pointer

See TBBOTTOM
See TBSCAN
See TBSKIP
See TBTOP

SETMSG service
description 18, 145
example 146

SETVERB action
specified via ZCTACT 54

shared minidisks, using, in VM 323
SHARED parameter

on VGET 192
on VPUT 194

on VPUT statement in panel)INIT and
)PROC sections 223

shared pool
creation of 38
definition of 33
description of 38
life of 38
used for communication between

functions and panels 38
shared pool variables

as affected by menu processing 35
short mesEage 20
single name parameter

how to code on requests for
services 108

skel-name parameter
on FTINCL 136

skeleton
description of 8

skeleton definition
assigning a value to a variable 258
comment statement 258
description of 254
example 30, 259
format of 254
imbedding of 256
specifying table processing 257
types of records in 254

skeleton formats 199
SKIP keyword

in)ATTR section 210
in panel)ATTR section 207

SKIP tutorial command 16, 239
skipping display

See jump function
SM parameter

on CONTROL 120
SMSG parameter

on panel body section 211
specify a table search argument

TBSARG 175
TBSCAN 180

specify PF keys
alternate 287
primary 286

specifying a table 23
specifying ISPF parameter options

using parms option 275
specifying log and list file defaults

using parms option 275
specifying options using parms

MVS log and list defaults 279
PF keys 284

terminal characteristics (option
0.1) 275

VMjSP console, log, and list
defaults 281

VSE log and list defaults 282
specifying terminal characteristics

using parms option 275
SPF

changes from 317
SPLIT command 17
SPLIT ENABLE,DISABLE parameters

on CONTROL 120
split screen mode 16

command processing restriction 48
entering 17
program linking requir~ment 68
terminating 17
VSE restriction 93

SPLIT system command 47
stacking commands

for execution 46
HELP restriction 46

START(line-number) parameter
on CONTROL 120

starting a dialog 12
starting ISPF 87
steps in dialog development

HVS and VHjSP 72
VSEj AF 1. 3.5 78
VSEjAF 2.1 85

STOPAT system command 48
storage-area parameter

in panel)PROC section 230
on ISPSTART 89
on SELECT 140

storing variables from a panel in shared
and profile pools (VPUT) 223

subpools used by EDIT and BROWSE 42
summary of changes from SPF 317
summary of services syntax 301
SWAP system command 47
syntax rules

message definition 251, 253
panel definition 202
services requests (parameters) 108
services requests (service names and
operands) iv

services summary 304
skeleton definitions 254

sysno parameter
on BROWSE

VSE 116
on EDIT

VSE 129

Index 33'9

system commands 47
description 45
list of 47
overriding by use of command
tables 56

PF key defaults 47
system profile pool

See also application profile pool
accessible by 39
description of 39
order of search 39

system variables 40
for saving PF key definitions 62
in shared pool 40
list of 41
used for communication between
dialogs and ISPF 41

system-defined default areas, panel 200

r---l
I T I
L--J

table
avoiding concurrent update of 25
columns 22, 23
definition 22
description 7
example 23
input and output protection 25
input library

when same as output l~brary 23
library access 23
permanent 23
processing 23

in conjunction with file tailoring
processing 29

number of table limit 28
residency 23
rows 22, 23
size calculation 28
temporary 23
types 23
updates 23
when created or updated 8

table display (TBDISPL) 156
table display output

example 248, 250
table display panel definition 243

attribute section 244
body section 244
example 247
example of mUltiple model lines 249

340 ISPF Dialog Management Services

initialization section 245
message, location of 201
model line 243
model section 244
scroll field, location of 201
special requirements 228

table display panel defintion
short message area content 201

table input and output protection 25
table libraries

MVS 66
VMjSP 69
VSE 78, 84

table save (TBSAVE) 177
table search (TBSCAN) 180
table services

description 21, 22
example 26
general services 24
resource protection 25
row services 26
syntax summary - calls 307
syntax summary - commands 304
used to modify displayed tables 289

table update
avoiding concurrent 25

table-name parameter
on TBADD 147
on TBBOTTOH 149
on TBCLOSE 150
on TBCREATE 153
on TBDELETE 155
on TBDISPL 157
on TBEND 162
on TBERASE 163
on TBEXIST 164
on TBGET 165
on TBMOD 167
on TBOPEN 169
on TBPUT 171
on TBQUERY 173
on TBSARG 176
on TBSAVE 177
on TBSCAN 180
on TBSKIP 182
on TBTOP 184
on TBVCLEAR 185

table-row-number parameter
on TBDISPL 157

TB
file tailoring control statement

See)TB
TBADD service

description 147

example 27, 148, 263
TBADD services

used to modify displayed tables 261
TBBOTTOH service

description 149
example 149

TBCLOSE service
description 150
example 28, 152, 263, 290

TBCREATE seTvice
description 153
example 26, 154, 265

TBDELETE service
description 155
example 155

TBDISPL service
description 18, 156, 246
example 161, 289

TBDISPL services
used to modify displayed tables 289

TBEND service
description 162
example 162

TBERASE service
description 163
example 163

TBEXIST service
description 164
example 164

TBGET service
description 165
example 166, 263

TBNOD service
description 167
example 168

TBOPEN service
description 169
example 170, 263, 290

TBPUT service
description 171
example 290
examples 172

TBQUERY service
description 173
example 174, 290

TBSARG service
description 175
example 176

TBSAVE service
description 177
example 179

TBSCAN service
description 180
example 181

TBSKIP service
description 182
example 183

TBTOP service
description 184
example 184

TBVCLEAR service
description 185
example 185

TENP parameter
on FTOPEN 137

temporary table 23
terminal characteristics

specifying
using parms option 275

terminal display, specification of 3
terminal keys 59
terminating a dialog 93
terminating display

See END system command
terminating function or dialog

See END system command
See RETURN system command

terminating ISPF 87, 93
terminating TSO commands of CLIST using

PA Key 62
TEST and TEXTX parameters

on ISPSTART 89
test mode operation 91
test value of variable during panel
processing 218

testing dialog components 3
TEXT keyboards

character translations 313
TEXT parameter

with TYPE keyword 208
TOP tutorial command 16, 239
TRACE and TRACEX parameters

on ISPSTART 89
trace mode operation 93
TRAIL (.TRAIL) control variable

See .TRAIL
TRANS parameter

on assignment statement 215
example 216, 217, 226, 230
example, nested 217

translation of defined variable 40
TRUNe parameter

on assignment statement 215
example 215, 217, 230

truncation of defined variable 40
TSO

batch environment 95
TSO batch execution job 96

Index 341

TSO Programming Control Facility 67
TSO system command 48
tutorial

commands 16, 239
ending of 16
entry to 16
invocation of 239
sample hierarchy of panels 241
sample panel 242
use of 16, 239

TYPE keyword
in panel)ATTR section 207, 208

r--l

I U I
L-.--1

UP scroll command 52
UP system command 47
UP system variable

on tutorial panels 240
UP tutorial command 16, 239
update of tables

avoiding concurrent 25
update row in table

TB}lOD 167
TBPUT 171

update variables in shared pool or
profile (VPUT) 194

updating tables 23
example use of table services 26

use of commands, program keys, and light
pen 45

use of libraries
NVS and VNjSP 72
VSEjAF 1.3.5 78
VSEjAF 2.1 85

use of subpools by EDIT and BROWSE 42
USER parameter

on VDEFINE 189
user-data parameter

on VDEFINE 190
using ISPF services 2

restricted to ISPF environment 6
using shared minidisks 323
using the DISPLAY service 261
using the parms option 275

See also specifying options using
parms

using the TBDISPL service 289

342 ISPF Dialog Management Services

r---l
I V I
L--.l

validity checking user entered data on
panel displays (use of the VER
statement) 219

value test of variable value during
panel processing 218

value-array parameter
on VCOPY 186

values parameter
on VREPLACE 196

var-name parameter
on TBGET 165
on TBQUERY 173
on TBSCAN 180
on TBSKIP 182

variable
parameter in panel definition

)INIT section 214
)PROC section 214

variable parameter
on assignment statement 215, 216
on VDEFINE 188

variable pools
order of search 33

variable services
description 32
summary 42
syntax summary - calls 309
syntax summary - commands 306

variables
access by functions written in a

command procedure 35
access by functions written in a

programming language 36
copy (VCOPY) 186
creation of 35
define in function pool

(VDEFINE) 188
defined type 36, 40
definition of 32
format of 39
identical names 37
implicit type 37
in message definition 253
maximum length of 32
names of

passed as parameter to
services 104

names too long for panel
definition '226

naming of 32

on panels, restricted size 203
order of accessing pools of 32
pools of

order of search 33
processing on menus 35
remove definition of

from function pool (VDELETE) 191
from function pool (VRESET) 198

replace in function pool
(VREPLACE) 196

reset 198
retrieve from shared pool or profile

(VGET) 192
services description

, See variable services description
storing from a panel in shared and
profile pools (VPUT) 223

table extension 24
update in shared pool or profile

(VPUT) 194
value test during panel
processing 218

variables, table
clearing to nulls using TBVCLEAR 185
KEY type 23
non-key type 23

VCOpy service
description 186
example 187
used to access

system variables 40
VDEFINE service

description 188
example 190
exit routine 188, 311
use of 36

VDELETE service
description 191
example 191

VER statement
in panel)INIT section 219

example 220, 221, 226
in panel)PROC section 219

VER statement example 264
verify variable content 219
verlay phase structures n

t permitted in VSE 112
VGET service

description 192
example 192
used to access

application profile pool 39
shared pool 33
system variables 40

virtual machine communciation facility
(VMCF), use of 44

VL keyword
assembler language 106

VM
shared minidisk support 323

VM/SP
&PRESUME statement 105
allocating libraries 69
batch environment 98
batch execution job 98
invocation of ISPF 87
invoking and ISPF application 5
library setup 68
PA keys

definition of 62
PRESUME statement 103
restrictions on use of module
files 72

specifying options using parms 281
starting a dialog 12
use of libraries 72
use of the virtual machine

communication facility (VMCF) 44
VMCF, virtual machine communciation
facility, use of 44

VOLUME (serial) parameter
on EDIT

VSE 129
VOLUME(serial) parameter

on BROWSE
HVS and VM/SP 113
VSE 116

on EDIT
MVS and VM/SP 126

VPUT service
description 194
example 195
used to access

application profile pool 39
shared pool 33

VPUT statement
example 223
in panel)INIT section 223
in panel)PROC section 223

VREPLACE service
description 196
example 197

VRESET service
description 198
example 198

VSE
AF 1.3.5 library setup 73
batch environment 100

Index 343

batch execution job 100
dialog abend intercept 95
ENTRY statement required when link
editing programs 112

INCLUDE statements required when link
editing programs 112

invocation of ISPF 87
invoking an ISPF application 5
PA keys

definition of 63
program linkage 3
specify log and list defaults (Option
0.2) 282

specifying options using parms 282
split screen mode restriction 93
starting a dialog 12

VSEjAF 1.3.5
use of libraries 78

VSEjAF 2.1 79
use of libraries 85

r--I
I w I
~

write message to log file (LOG) 139
WRITE parameter

on TBCREATE 153
on TBOPEN 169

writing dialogs, steps in
MVS and VMjSP 72
VSEjAF 1.3.5 78
VSEjAF 2.1 85

r--I
I Z I
~

Z system variable 41
Z variables used for field name
placeholders 226

ZAPPLID system variable 41
ZCMD system variable 41

example 230
on tutorial panels 240
processing 229

blank 231
invalid option 231

ZCMD, use of, versus other names for
command field 201

ZCONT system variable 41
on tutorial panels 240

344 ISPF Dialog Management Services

ZCTACT system variable 53
actions specified with 54

ZCTDESC system variable 53
ZCTTRUNC system variable 53
ZCTVERB system variable 53
ZDATE system variable 41
ZDAY system variable 41
ZERRHM system variable 41
ZERRLM system variable 41
ZERRMSG system variable 41
ZERRSM system variable 41
ZHINDEX system variable 41, 239

example
see figure on page 237

ZHTOP system variable 41
example

see figure on page 237
ZHTOP variable 239
ZIND system variable

on tutorial panels
ZJDATE system variable
ZKEYS system variable
ZLOGON system variable
ZMONTH system variable

41
240

41
41

41
41

ZPARENT system variable 41, 233
processing 233

ZPFOl-24 system variables 41
ZPF01, ZPF02, ... , ZPF24 system
variables 62

ZPREFIX system variable 41
ZPRIM system variable 41, 232

example
see figure on page 237

ZSCBR system variable 41, 53
ZSCED system variable 41, 53
ZSCML system variable 41, 53
ZSEL system variable 41

contains result of truncating
ZCMD 229

example 230
on menus 229
on tutorial panels 240
parameters and keywords used
with 230

ZTDTOP system variable 41, 159
ZTEMPF system variable 41, 137
ZTERM system variable 41
ZTIME system variable 41
ZUP system variable 41

on tutorial panels 240
ZUSER system variable 41
ZVARS (.ZVARS) control variable

See .ZVARS
ZVERB system variable 41

ZYEAR system variable 41

Index 345

346 ISPF Dialog Management Services

Interactive
System Productivity Facility
Dialog Management Services SC34-2088-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication. It will
be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments
may be written in your own language; use of English is not required. ,
mM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? ______________________________ _

Number of latest Technical Newsletter (if any) concerning this publication: ____________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an mM
office or representative will be happy to forward your comments.)

SC34-2088-2

Reader's Comment Form

Fold and tape Please Do Not Staple

" I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department T 46
P.O. Box 60000
Cary, North Carolina 27511

Fold and tape

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

••• •• ',' •••••••• II

Fold and tape Please Do Not Staple Fold and tape

==..~.=® - - --.----- -... ---- - - --------
-~-,-

--------- -------- - ---- - - ----------_.-®

