
--------- -------- - --- Interactive SC34-4254-0

- -- ----------- ,-
System Productivity Facility/
Program Development Facility (ISPF/PDF)

ISPF/PDF Software Configuration and
Library Manager (SCLM) Guide and Reference

Version 3 Release 2 for MVS

--------- -------- - --- Interactive SC34-4254-0

- - - -----------,- System Productivity Facility/
Program Development Facility (ISPF/PDF)

ISPF/PDF Software Configuration and
Library Manager (SCLM) Guide and Reference

Version 3 Release 2 for MVS

First Edition (March 1990)

This publication applies to Version 3 Release 2 of the licensed program Interactive System Productivity
Facility/Program Development Facility (ISPF/PDF or PDF) for MVS (5665-402) and to all subsequent
releases and modifications until otherwise indicated in new editions of this publication or Technical
Newsletters. It is for use with the Interactive System Productivity Facility (ISPF) for MVS (5685-054),
Version 3 Release 2, MVS Version 2 Release 2 or later, and TSO/E Version 2 Release 1.

This edition applies to subsequent releases and modifications of this program until otherwise indicated.
The licensed programs and related licensed material described herein are provided by IBM under the
Agreement for IBM Licensed Programs.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. This
disclaimer does not apply in the United Kingdom or elsewhere if inconsistent with local law.

This publication may include inaccuracies or errors. IBM may change this publication and/or the product
described herein. Textual changes are indicated by a vertical line to the left of the change.

This book contains technical information that is not supported by IBM, such as examples of code,
programs, and samples. Information herein serves as technical reference and guidance only.

IBM may have patents or pending patent applications covering subject matter described herein. This
document neither grants nor implies any license or immunity under any IBM or third-party patents, patents
applications, trademarks, copyrights, or other similar rights, or any right to refer to IBM in any marketing
activities. Other than responsibilities assumed via the Agreement for Purchase of IBM Machines and the
Agreement for IBM Licensed Programs, IBM assumes no responsibility for any infringement of third-party
rights that may result from use of the subject matter disclosed in this document or from the manufacture,
use, lease, or sale of machines or programs described herein.

Licenses under IBM's utility patents are available on reasonable and nondiscriminatory terms. IBM does
not grant licenses under its appearance design patents. Direct licenSing inquiries in writing to the IBM
Director of Commercial Relations, International Business Machines Corporation, Armonk, New York, 10504.

References in this publications to IBM products or services do not imply that they will be available
everywhere IBM operates, nor that only IBM's products or services may be used.

Publications are not stocked at the address below. Request IBM publications from your IBM representative
or branch office.

A form for comments is provided at the back of this publication. Or you may address comments to: IBM
Corporation, Department T45, P.O. Box 60000, Cary, North Carolina 27511. IBM may use and distribute
information you supply without obligation to you.

Note to U.S. Government users - Documentation is related to restricted rights; use, duplication, or
disclosure is subject to restrictions set forth in the GSA ADP Schedule Contract with IBM Corp.

© Copyright International Business Machines Corporation 1989, 1990. All rights reserved.

Special Notices

Before using this publication in connection with the operation of IBM systems,
consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibliography,
GC20-0001, IBM System/370 and 4300 Processors Bibliography of Industry Systems
and Application Programs, GC20-0370, for the editions that are applicable and
current.

The following names, used in this publication, are trademarks or registered
trademarks of International Business Machines Corporation in the United States
and/or other countries:

IBM
MVS
MVS/OFP
Operating System/2
OS/2
Personal System/2
PS/2.

An asterisk (*) is used to identify the first time a trademarked name is used in the
text.

This publication contains sample programs. Permission is hereby granted for you
to copy and store the sample programs into a single data processing machine and
for you to use the stored copies for internal study and instruction only. No
permission is granted to use the sample programs for any other purpose.

© Copyright IBM Corp. 1989, 1990 Special Notices iii

iv ISPF/PDF Software Configuration and Library Manager

Preface

This book provides reference and usage information, along with conceptual and
functional descriptions of the Software Configuration and Library Manager (SCLM).

About This Book
This book is divided into three parts:

• "Programming Reference" contains information on all product functions for
programmers, as well as an explanation of the architecture definition functions.

• "Library Administration" contains administrative and diagnostic information for
project administrators. It defines the SCLM database, tells how to establish
and monitor such a database, and explains the library functions.

• "Messages and Codes" contains a complete listing and description of
messages and return codes issued by the SCLM functions.

General-Use Programming Interfaces -----------------,

Unless specifically stated otherwise, the information in this manual must not be
used for programming purposes. However, general-use programming
interfaces are provided to allow the customer to write programs that use the
services of ISPF/PDF. These interfaces are discussed in the following sections:

• Chapter 3, "SCLM Variables," describes the SCLM system variables.

• Chapter 5, "SCLM Services," describes the SCLM services.

• Chapter 8, "SCLM Macros," describes the SCLM macros.

• Chapter 9, "Advanced Topics," covers the following:

"Dynamic Include Tracking" describes how SCLM tracks dynamic
includes.

"Change Code Verification Routines" describes how to code a change
code verification routine.

"Build and Promote User Exit Routines" describes how to create a
build and promote user exit routine.

• Chapter 12, "Messages and Codes" describes FLMCMD and Translator
retu rn codes.

Who Should Use This Book
This book is for:

• Programmers whose projects are controlled by SCLM

• Project administrators who use SCLM to manage the software development
process.

© Copyright IBM Corp. 1989, 1990 Preface V

The ISPF and ISPF/PDF Library for MVS

General

Evaluation and Planning

Installation and Migration

Customization

ISPF and ISPF/PDF
Version 3 Release 2

Master Index

SC34-4278

ISPF and ISPF/PDF
Version 3 Release 2

General Information

GC34-4250

ISPF
Version 3 Release 2

Program Directory

SC34-4090

ISPF and ISPF/PDF
Version 3 Release 2

Planning
and Customizing

SC34-4257

vi ISPF/PDF Software Configuration and Library Manager

ISPF and ISPF/PDF
Version 3 Release 2

Planning
and Customizing

SC34-4257

ISPF/PDF
Version 3 Release 2

Program Directory

SC34-4202

Programming

End Use

ISPF
Version 3 Release 2

Dialog Management
Guide and Reference

SC34-4266

ISPF/PDF
Version 3 Release 2

ISPF/PDF Guide

SC34-4258

ISPF and ISPF/PDF
Version 3 Release 2

Primer

SC34-4256

ISPF
Version 3 Release 2

Dialog Management
Examples

SC34-4265

ISPF/PDF
Version 3 Release 2

ISPF/PDF Services

SC34-4259

ISPF/PDF
Version 3 Release 2

Guide and Reference
for the Workstation
Platform for OS/2

SC34-4255

ISPF and ISPF/PDF
Version 3 Release 2

Reference Summary

SC34-4252

ISPF
Version 3 Release 2

Dialog Tag Language
Guide and Reference

SC34-4267

ISPF/PDF
Version 3 Release 2

ISPF/PDF Edit
and Edit Macros

SC34-4253

ISPF/PDF
Version 3 Release 2

ISPF/PDF
Library
Management
Facility

SC34-4260

Preface vii

Related Publications
• OS/VS2 MVS JCL, GC28-0692
• MVS Resource Access Control Facility (RACF) Command Language Reference,

SC28-0733
• OS/VS2 MVS Utilities, GC26-3902
• TSO Extensions Version 2 Command Language Reference, SC28-1881
• MVSIXA Supervisor Services and Macro Instructions, GC28-1154
• OS Assembler H Language, GC26-3771.
• TSO Extensions Version 2 CLiSTs, SC28-1876

viii ISPF/PDF Software Configuration and Library Manager

Contents

Part 1. Programming Reference

Chapter 1. SCLM Concepts and Terminology 5
How to Use This Manual 5
Library Structures and Naming Conventions 6
SCLM Data Set Naming Conventions 9
SCLM Functions ... 10

Chapter 2. Architecture Definition 21
Architecture Members 21
Defining Compiler Processed Components 22
Defining Link Edit Processed Components 23
Defining Application and Subapplication Components 25
Defining Specially Processed Components 25
Architecture Statements 27
Sample Application Using Architecture Definitions 31
Ensuring Synchronization with Architecture Definitions 34

Chapter 3. SCLM Variables 37

Chapter 4. SCLM Dialog Interface 43
SCLM Primary Option Menu 43
Browse (Option 1) .. 45
Edit (Option 2) .. 46
Utilities (Option 3) .. 52
Build (Option 4) ... 91
Promote (Option 5) ... 94
Batch Processing ... 100
Output Disposition .. 101

Chapter 5. SCLM Services ... " 103
Invoking the SCLM Services 103
SCLM Service Descriptions 116
BUILD-Build a Member 117
DBACCT-Retrieve Accounting Records for a Member 122
DBUTIL-Generate a Tailored Data Set and Report 124
DELETE-Delete Database Components 129
END-End an SCLM Services Session 132
FREE-Free an SCLM 10 from its Association with a Database 134
INIT -Generate an SCLM ID for a Database 136
LOCK-Lock a Member or Assign an Access Key 138
PARSE-Parse a Member for Statistical and Dependency Information 142
PROMOTE-Promote a Member from One Library to Another 145
RPTARCH-Generate an SCLM Architecture Report 149
SAVE-Lock, Parse, and Store a Member 152
START-Generate an Application 10 for a Services Session 157
STORE-Store Member Information in an Accounting Record 158
UNLOCK-Unlock a Member in a Private Library 162

Chapter 6. A Sample Program Using SCLM Services 165

© Copyright IBM Corp. 1989, 1990 Contents ix

Pascal Example .. 165

Part 2. Project Administration 185

Chapter 7. Defining the Project ,. .. 189
Step 1: Determine Database Structure 189
Step 2: Identify Supported Types of Data .. 191
Step 3: Establish Authorization Codes 191
Step 4: Create PROJDEFS Data Set 192
Step 5: Allocate Project Data Sets 193
Step 6: Protect Project Data Sets 197
Step 7: Specify the Project Definition 197
Step 8: Modify Language Definitions 198
Step 9: Modify Control Options 202
Step 10: Assemble and Link Project Defi nition 206
Step 11: Bui Id INFO Member . 207

Chapter 8. SCLM Macros 209
Introduction to SCLM Macro Instructions 209
FLMABEG Macro ... 210
FLMAEND Macro
FLMAGRP Macro
FLMALLOC Macro
FLMCMPLB Macro
FLMCNTRL Macro
FLMCPYLB Macro
FLMGROUP Macro

211
212
213
217
218
222
223

FLMLANGL Macro .. 224
FLMSYSLB Macro 227
FLMTRNSL Macro . 228
FLMTYPE Macro 231

Chapter 9. Advanced Topics 233
Impact Assessment Techniques 233
New Language Definitions 234
Authorization Code Usage 252
Concurrent Development and Maintenance 255
Dynamic Include Tracking 256
Alternate Project Definitions 257
Primary Non-Key Grouy Testing Techniques 258
Change Code Verification Routines 261
Build and Promote User Exit Routines 263
Project Conversion to SCLM 268
Security ... 271
Backup and Recovery of Project Database 271
Dependency Processing Implementation 272
Development and Performance 274
Workstation Platform for OS/2 277
The SSI Field in Load Module Directories 278

Chapter 10. Language Restrictions 279
SCLM Parser Restrictions 279
Ada Language Restrictions
Ada Sublibrary Restrictions
Multiple SING Statements

X ISPF/PDF Software Configuration and Library Manager

280
282
283

Chapter 11. IBM Ada Setup 285

Language Definitions 285
Ada Sublibrary Setup 286
IBM Ada Compiler Restrictions 286
Debugger .. 287
Multiple Load Module Support 287
Optimizer Support . 289

Part 3. Messages and Codes 291

Figures

Chapter 12. Messages and Codes 293

Messages .. 295
FLMCMD Return Codes 328
SCLM Translator Return Codes 328

Glossary of SCLM Terms 331

Index

1.
2.
3.
4.
5.
6.
'7
I.

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

335

Typical Project Database Organization 7
Two Hierarchical Views of the Same Database Organization 8
Application APPL 1 31
Architecture Members For Application Sample 32
Example of Synchronization 34
SCLM Primary Option Menu 43
SCLM Browse - Entry Panel 45
SCLM Edit - Entry Panel 47
SCLM Edit Profile 50
SCLM Utilities 52
SCLM Library Utility 53
Member Selection List 54
Accounting Record 55
Accounting Record Statistics 57
Change Code List 59
Include List .. 60
Com pool List ... 61
Compilation Units 62
Cross-Reference Record 63
User Data Entries 64
Bui Id Map Record 65
Bui Id Map Contents 67
Authorization Code Update 68
Sublibrary Management Utility 69
Member Selection List 70
Intermediate Records 71
SCLM Migration Utility 72
SCLM Database Contents Utility 74
SCLM Database Contents - Additional Selection Criteria 76
Database Contents Utility Report 78

Contents xi

31. SCLM Database Contents - Customization Parameters 79
32. Database Contents Tailored Data Set, Page 1 80
33. Database Contents Utility Tailored Report 81
34. Change Code Report, Page 2 82
35. Accounting Statistics Report, Page 2 82

. 36. Source Listing Report, Page 2 82
37. Cleanup Report, Page 2 83
38. SCLM Architecture Report 84
39. Architecture Report, Part I - Architecture Information 85
40. Architecture Report, Part II - Cross-Reference Information 87
41. Architecture Report, LEC Report Cutoff 89
42. SCLM Build .. 91
43. Bui Id Report . 93
44. SCLM Promote .. 94
45. Promote Report 97
46. Verify Batch Job Information 100
47. Output Disposition 101
48. $msg_array Contents 110
49. $list_info Contents .. 114
50. Example of Other Common SCLM Database Structures 190
51. SKELS Parser Definition 241
52. Parser for ISPF Skeletons . 242
53. L1STINFO Module 250
54. STATINFO Module 250
55. DATRC Module 251
56. Sample Hierarchy with Authorization Codes 252
57. Default (primary) Project Database Structure 259
58. Alternate Project Database Structure with Primary Non-key Integration

Group ... 260
59. Workstation Platform for OS/2 System Overview 278
60. Example of a Disallowed Recursive Genericllnline Dependency 281

Tables

1. ISPF and ISPF/PDF Library for MVS xvii
2. Uses of Architecture Members 21
3. Valid Keywords for Architecture Member Statements 27
4. SCLM Field Name Variables and their SCLM Functions 37
5. SCLM Variables and their SCLM Functions 40
6. Pattern Examples 75
7. Message Variables 294

xii ISPF/PDF Software Configuration and Library Manager

Summary of Changes

This Summary of Changes lists the major changes and enhancements for ISPF and
ISPF/PDF Version 3 Release 2 (Version 3.2) for MVS'.

Functional Changes for ISPF Version 3 Release 2 for MVS
The following functional changes have been made for ISPF Version 3.2.

Improvements to Dialog Tag Language and Conversion Utility
Extensions to the Dialog Tag Language (DTL) have been made to support
additional tags and tag attributes. The extensions include support for the following:

• Defining horizontal layout of panel elements as provided by the DIR = HORIZ
attribute of the REGION tag. This enhancement allows multiple fields on the
same line and the ability to define interactive fields on one side of the panel
and an explanatory information area on the other side of the panel and other
combinations of panel layout.

• Using the HELP = help-panel-name attribute on ABC and PDC tags. This
provides field-level help capability for action bar and pull-down choices.

• Specifying cursor position on the PANEL tag. The developer can position the
cursor at panel development time instead of using the cursor parameters of the
DISPLAY and TBDISPL service.

• Specifying group headings for columns of ISPF table data. The new LSTGRP
tag defines headings (in addition to the individual list column headings) for a
single column or multiple columns.

• Using the HELP = help-panel-name attribute for LSTCOL tag. This provides
field-level help for columns of ISPF table data.

• Using XLATL FORMAT = UPPER to allow translations of user input to
uppercase prior to validation check.

• Specifying AUTOTAB attribute for data fields and list columns.

• Imbedding tag files into the DTL source through ENTITY definitions.

• Concatenating multiple DTL source files for a single execution of the
conversion utility.

Enhanced DTL Compatibility with OS/2 Version 1.2 Dialog Manager
Changes have been made to DTL and the conversion utility to provide a greater
level of compatibility with the DTL supported by the Dialog Manager component of
Operating System/2' (OS/2') Version 1 Release 2. All DTL supported by the OS/2
Dialog Manager is checked for syntax, and a warning message is issued for all DTL
that is not supported by ISPF. While changes have been made to the syntax of
some tags supported by ISPF, the conversion utility continues to support the syntax
documented for the prior release and issues a warning message advising that the
DTL source file be updated to the new syntax level (especially if the DTL source
will be ported to OS/2 for use with the OS/2 Dialog Manager).

, See "Special Notices" on page iii for a complete list of the trademarks used in this book.

© Copyright IBM Corp. 1989, 1990 Summary of Changes xiii

The ISPF Version 3.2 DTL conversion utility formats SBCS and DBCS panel text
according to a more precise set of Asian formatting rules.

Significant improvements have been made to the ISPF Dialog Tag Language Guide
and Reference. These improvements include the addition of a guide to using DTL
and additional wording for many tags that better defines the formatting that occurs.

Adjustments have been made to ISPF run-time support for the ISPF Version 3.2 DTL
en hancem ents.

Starting the DTL compiler has been simplified with the addition of an invocation
panel that contains the input fields required by the DTL compiler.

Additional Help Support

Dialog Test Facility

ISPF Help support has been expanded to include the following:

• Support for field-level (contextual) help on action bar choices, pull-down
choices, and list columns.

• Support for extended help after field-level help and message help.

• Support for keys help. The application developer can define a help panel that
can provide the application user with a brief description of each key defined for
a panel.

In addition, the handling of the display of help panels has been improved to ensure
that the full help panel is displayed. Help panels always appear in a pop-up
window if they are defined using DTL or if you specify the WINDOW keyword on the
)BODY statement of the ISPF panel language.

The width and depth values specified on the HELP tag or on the WINDOW keyword
must be valid for the device on which these help panels are displayed. As these
values were not always referenced in ISPF Version 3.1, you may need to update
existing ISPF Version 3.1 help panels with valid depth and width values before
displaying them under ISPF Version 3.2.

The Dialog Test facility is now included in ISPF. Previously this was part of
ISPF/PDF.

Message Text Definitions Increased
The long message text field of ISPF message definitions can now be up to 512
characters. This allows developers to define clearer, more descriptive messages.

You should update existing dialogs in which the system variable ZERRLM is
defined to 78 characters. Using VDEFINE, set this variable to 512 characters.

Miscellaneous Enhancements
Three new system variables (ZCURFLD, ZCURPOS, and ZCURINX) provide the
dialog application with information on the position of the cursor when the user
submits a panel.

xiv ISPF/PDF Software Configuration and Library Manager

Functional Changes for ISPF/PDF Version 3 Release 2 for MVS
The following functional changes have been made to ISPF/POF Version 3.2.

Partitioned Data Set Extended (POSE)
ISPF/POF Version 3.2 offers support for the partitioned data set extended (POSE), a
new data set type introduced in Oata Facility Product (MVS.OFP*) Version 3.2.
ISPF/POF can allocate a POSE through the ISPF/POF data set utility option (Option
3.2). Unlike a partitioned data set (POS), a POSE automatically reuses space
created when members are updated. POSEs can use all current ISPF/POF
functions, such as Edit and Browse.

C/370 Language Support
ISPF/POF Version 3.2 offers support for the C/370 language, including C/370
language models. These models help you define dialog elements while you are
editing C/370 language files. In addition, ISPF/POF Version 3.2 provides an
interface into the foreground and batch compile dialogs supplied with the C/370
compiler.

Workstation Platform for OS/2
ISPF/POF Version 3.2 provides a Workstation Platform for OS/2, a Personal
System/2* (PS/2*) interface into SCLM. By using the Workstation Platform for OS/2
you can obtain a list of SCLM-controlled projects, check out members from these
projects, perform work against the members, and check them back in.

• The Library List is an application that serves as a programmable workstation
(PWS) front end to a development system using SCLM. It allows
SCLM-controlled members to be downloaded to the PWS by using member
lists of SCLM-controlled libraries.

• The Library List allows you to install PWS tools to manipulate SCLM-controlled
library members. It also allows you to organize tools under generic "verbs"
(called actions) which are sensitive to the type of the members selected.

• The Library List allows you to keep multiple member lists open at the same
time. The information displayed in the member list can be customized by each
user, and all information in the member list is saved across invocations.

• The Workstation Platform for OS/2 provides an Application Programming
Interface (API) to a subset of the host SCLM functions.

• The Workstation Log serves as a central location for recording significant
events (such as the invocation of a command or an error condition
encountered during the processing of a command) that occur during
application processing. An API to the log is provided to allow tools to add
entries into the log along with an end-user interface to allow review of some or
all entries in the log.

* See "Special Notices" on page iii for a complete list of the trademarks used in this book.

Summary of Changes XV

Additional Enhancements
• The browse interface service (BRIF) provides support for temporary end-of-file

and dialog-specific primary commands.

• The Library Member List service (LMMLlST) now allows a dialog to specify that
the entire list of members generated by the LMMLIST service is to be written to
either the ISPF List data set or a sequential data set.

• The Data List Services (LMDINIT, LMDFREE, and LMDLlST) allow your dialog
to manipulate data sets in a manner similar to ISPF/PDF Option 3.4. The
services are processed similarly to the LMINIT, LMMLlST, and LMFREE
services, creating an internal list of data sets and passing one data set name
back on each LMDLlST request.

• The deletion of migrated data sets from the Data Set List utility (Option 3.4) no
longer causes a recall of the data set. The installation can specify the volume
name for the migrated data sets and a command (such as HDELETE) to be run
agai nst those data sets.

• There is now one more "Additional Input Library" field on each of the
Foreground and Batch compiler interface panels.

• A new type of line number has been added to the Edit COPY command. This
allows the end user to determine whether COPY should be sensitive to
ISPF/PDF statistics mode and use the proper portion of the line number.

• The LMF problem resulting when a needed part is locked and the owner is out
sick, on vacation, or away from the office has been corrected. Any authorized
project administrator can now promote or free the locked part on behalf of the
user.

• ISPF/PDF Version 3.2 supports more edit models for SCLM project definition
macros and for architecture definitions.

• The ISPF/PDF Logo panel now includes copyright information.

ISPF and ISPF/PDF Version 3 Release 2 for MVS Library
• Two new books have been added:

- ISPF and ISPF/PDF Master Index
- ISPF/PDF User's Guide and Reference for the Workstation Platform for

OS/2.

• Titles of three previous books have been changed and some restructuring done
to each:

- ISPF Dialog Management Services and Examples has been renamed to
ISPF Dialog Management Examples.

This restructured manual contains only ISPF examples. ISPF services are
now in ISPF Dialog Management Guide and Reference.

ISPF Dialog Management Guide has been renamed to ISPF Dialog
Management Guide and Reference.

This manual contains the information from ISPF Dialog Management
Guide, as well as information about the ISPF services.

- ISPF Conversion Utility User's Guide and Reference has been renamed to
ISPF Dialog Tag Language Guide and Reference.

xvi ISPF/PDF Software Configuration and Library Manager

This manual has been expanded for Version 3.2 to include additional
information on using the Dialog Tag Language (DTL).

See Table 1 for a comparison of the complete Version 2.3, Version 3, and Version
3.2 libraries.

Table 1 (Page 1 of 2). ISPF and ISPF/PDF Library for MVS

ISPF and ISPF/PDF Version 2 ISPF and ISPF/PDF Version 3 ISPF and ISPF/PDF Version 3
Release 3 Release 2

ISPF and ISPF/PDF ISPF and ISPF/PDF ISPF and ISPF/PDF
General Information General Information General Information
GC34-4116 GC34-4133 GC34-4250

ISPF and ISPF/PDF Installation ISPF and ISPF/PDF Planning ISPF and ISPF/PDF Planning
and Customization and Customizing and Customizing
SC34-4117 SC34-4134 SC34-4257

ISPF and ISPF/PDF Primer ISPF and ISPF/PDF Primer ISPF and ISPF/PDF Primer
SC34-4122 SC34-4139 SC34-4256

What's New in ISPF and ISPF/PDF What's New. in ISPF and ISPF/PDF Not available for Version 3.2 \, "
GC34-2172-3 GC34-2172-4 library. See "Summary of ~'\ \'"

Changes" in this book. P ,-
ISPF and ISPF/PDF Directory of Not available for Version 3.2
Programming Interfaces for library. Information
Customers integrated in Version 3.2
GC34-4128 library.

ISPF Licensed Program ISPF Licensed Program ISPF Licensed Program
Specifications Specifications Specifications
GC34-4114 GC34-4212 GC34-4262

ISPF Dialog Management Guide ISPF Dialog Management Guide ISPF Dialog Management Guide
SC34-4112 SC34-4213 and Reference

SC34-4266

ISPF Dialog Management Services ISPF Dialog Management Services ISPF Dialog Management Examples
and Examples and Examples SC34-4265
SC34-4113 SC34-4215

ISPF Conversion Utility ISPF Dialog Tag Language
User's Guide and Reference Guide and Reference
SC34-4216 SC34-4267

ISPF/PDF Licensed Program ISPF/PDF Licensed Program ISPF/PDF Licensed Program
Specifications Specifications Specifications
GC34-4115 GC34-4185 GC34-4251

ISPF/PDF Guide ISPF/PDF Guide ISPF/PDF Guide
SC34-4118 SC34-4135 SC34-4258

ISPF/PDF Services ISPF/PDF Services ISPF/PDF Services
SC34-4119 SC34-4136 SC34-4259

ISPF/PDF Library Management ISPF/PDF Library Management ISPF/PDF Library Management
SC34-4120 Facility Facility

SC34-4137 SC34-4260

ISPF/PDF Edit and Edit Macros ISPF/PDF Edit and Edit Macros ISPF/PDF Edit and Edit Macros
SC34-4121 SC34-4138 SC34-4253

ISPF/PDF User's Guide and
Reference for the Workstation
Platform for OS/2
SC34-4255

Summary of Changes xvii

Table 1 (Page 2 of 2). ISPF and ISPF/PDF Library for MVS

ISPF and ISPF/PDF Version 2 ISPF and ISPF/PDF Version 3 ISPF and ISPF/PDF Version 3
Release 3 Release 2

ISPF and ISPF/PDF Master Index
SC34-4278

ISPF/PDF Software Configuration ISPF/PDF Software Configuration
and Library Manager (SCLM) and Library Manager (SCLM)
Guide and Reference Guide and Reference
SC34-4235 SC34-4254

ISPF Summary Card, SC34-4124 ISPF and ISPF/PDF Reference ISPF and ISPF/PDF Reference
ISPF/PDF Summary Card, Summary Summary
SC34-4125 SC34-4214 SC34-4252
ISPF/PDF Edit and Edit Macros
Summary, SC34-4126

Bill of Forms Number SBOF-0420 Bill of Forms Number Bill of Forms Number
includes: SBOF-1032-0 orders all SBOF-1196-0 orders all

ISPF Dialog Management Guide of the ISPF and ISPF/PDF for of the ISPF and ISPF/PDF for
SC34-4112 MVS library books. MVS library books.
ISPF Dialog Management
Services and Examples No new binders or cover inserts No new binders or cover inserts
SC34-4113 are available. are available.
ISPF Summary Card, SC34-4124
ISPF Binder, SX66-0209
ISPF Cover Inserts, SX66-0210

Bill of Forms Number SBOF-0419
includes:

ISPF/PDF Guide, SC34-4118
ISPF/PDF Services, SC34-4119
ISPF/PDF Summary Card,
SC34-4125
ISPF/PDF Binder, SX66-0209
ISPF/PDF Cover Inserts,
SX66-0211

Bill of Forms Number SBOF-0361
includes:

ISPF/PDF Edit and Edit Macros,
SC34-4121
ISPF/PDF Edit and Edit Macros
Command Summary Card,
SC34-4126
ISPF/PDF Edit Macros Binder,
SX66-0213
ISPF/PDF Edit Macros
Cover Inserts,
SX66-0212

Ordering Information
You can order the ISPF and ISPF/PDF Version 3.2 for MVS books separately or use
Bill of Forms number SBOF-1196-0 to order the complete set.

The ISPF and ISPF/PDF Version 3.2 library will be available when the Version 3.2
products are generally available.

xviii ISPF/PDF Software Configuration and Library Manager

Part 1. Programming Reference

Chapter 1. SCLM Concepts and Terminology 5
How to Use This Manual 5
Library Structures and Naming Conventions 6
SCLM Data Set Naming Conventions 9
SCLM Functions ... 10

Browse Function ... 10
Edit Function ... 10
Utilities Function ... 13
Build Function .. 14
Promote Function .. 17

Chapter 2. Architecture Definition 21
Architecture Members 21

Kinds of Architecture Members 21
Defining Compiler Processed Components 22

Compilation Control Architecture Members 22
Specifying Source Members 23

Defining Link Edit Processed Components 23
Defining Application and Subapplication Components 25
Defining Specially Processed Components 25

Generic Architecture Members 26
Specifying Source Members 26

Architecture Statements 27
Statement Format .. 27
Statement Uses ... 27

Sample Application Using Architecture Definitions 31
Ensuring Synchronization with Architecture Definitions 34

Chapter 3. SCLM Variables 37

Chapter 4. SCLM Dialog Interface 43
SCLM Primary Option Menu 43
Browse (Option 1) .. 45
Edit (Option 2) .. 46

SAVE .. 48
SCREATE ... 49
SMOVE ... 49
SPROF ... 50
SREPLACE 51

Utilities (Option 3) .. 52
Library Utility ... 52
Ada Sublibrary Management Utility 68
Migration Utility ... 72
Database Contents Uti I ity 74
Architecture Report 83
Architecture Report Example 85

Build (Option 4) ... 91
Build Report Example 93

Promote (Option 5) ... 94
Promote Report ... 96
Processing Errors .. 99

Batch Processing ... 100

© Copyright IBM Corp. 1989, 1990 Part 1. Programming Reference 1

Output Disposition 101

Chapter 5. SCLM Services 103
Invoking the SCLM Services 103

Notation Conventions Used in this Chapter 103
Command Invocation of the SCLM Services 104
The FLMCMD Interface 104
The FLMLNK Subroutine Interface ..
SCLM Service Return Codes

SCLM Service Descriptions
BUILD-Build a Member

Command Invocation Format
Call Invocation Format
Parameters
Return Codes
Examples

DBACCT-Retrieve Accounting Records for a Member
Command Invocation Format
Call Invocation Format
Parameters
Return Codes
Example

DBUTIL-Generate a Tailored Data Set and Report ..
Command Invocation Format
Call Invocation Format
Parameters
Return Codes
Example

DELETE-Delete Database Components
Command Invocation Format
Call Invocation Format
Parameters
Retu rn Codes
Examples

END-End an SCLM Services Session
Command Invocation Format
Call Invocation Format
Parameters
Return Codes
Example

FREE-Free an SCLM 10 from its Association with a Database .
Command Invocation Format
Call Invocation Format
Parameters
Return Codes
Example

INIT -Generate an SCLM 10 for a Database
Command Invocation Format
Call Invocation Format
Parameters
Return Codes
Example

LOCK-Lock a Member or Assign an Access Key
Command Invocation Format
Call Invocation Format
Parameters

2 ISPF/PDF Software Configuration and Library Manager

107
115
116
117
117
118
118
120
120
122
122
122
122
123
123
124
124
125
125
127
128
129
129
129
129
130
131
132
132
132
132
132
133
134
134
134
134
134
135
136
136
136
136
136
137
138
138
139
139

Return Codes .. 140
Examples .. 141

PARSE-Parse a Member for Statistical and Dependency Information 142
Command Invocation Format .. 142
Call Invocation Format 142
Parameters ... 142
Return Codes .. 144
Example ... 144

PROMOTE-Promote a Member from One Library to Another 145
Command Invocation Format .. 145
Call Invocation Format 145
Parameters ... 146
Return Codes .. 147
Examples .. 147

RPTARCH-Generate an SCLM Architecture Report 149
Command Invocation Format 149
Call Invocation Format 149
Parameters ... 149
Return Codes 150
Example ... 151

SAVE-Lock, Parse, and Store a Member 152
Command Invocation Format
Call Invocation Format
Parameters .. .
Return Codes
Examples

START-Generate an Application ID for a Services Session
Command Invocation Format
Call Invocation Format
Parameters .. .
Return Codes
Example .. .

STORE-Store Member Information in an Accounting Record
Command Invocation Format
Call Invocation Format
Parameters
Return Codes
Example .. .

UNLOCK-Unlock a Member in a Private Library
Command Invocation Format
Call Invocation Format

152
153
153
155
156
157
157
157
157
157
157
158
158
158
159
160
161
162
162
162

Parameters 162
Return Codes .. 163
Examples .. 163

Chapter 6. A Sample Program Using SCLM Services 165
Pascal Example 165

Main Program SERV1 165
Included Member SERV1D 173
Included Member SERV1S 176

Part 1. Programming Reference 3

4 ISPF/PDF Software Configuration and Library Manager

How to Use This Manual

Chapter 1. SCLM Concepts and Terminology

The Software Configuration and Library Manager (SCLM) allows you to define a
project database. It has functions for building, manipulating, and tracking data
stored in the database.

How to Use This Manual
This manual is part of the ISPF/PDF library and assumes that you are familiar with
the operation of ISPF/PDF in the MVS environment.

Chapter 1, "SCLM Concepts and Terminology" provides an overview of SCLM. All
SCLM users should read this chapter first. The rest of the chapters in the manual
assume that you have read and understood Chapter 1. The fi rst part of the chapter
describes the library structure and gives you an overview of the SCLM functions.
In particular, one section explains the SCLM database structure. The rest of the
chapter describes basic SCLM functions and discusses the capabilities and uses of
each function. After reading Chapter 1, project administrators can go directly to
Chapter 7, "Defining the Project." Developers and project managers should
continue with Chapter 2 .

..,------------Chapter 2, "Architecture Definition," describes how to use architecture members
(individual software component definitions). It provides examples of each kind of
architecture member and describes the special command statements that the
architecture members require. It also provides an example of the format of each
statement and lists any restrictions.

Chapter 3, "SCLM Variables," lists the SCLM variables by field name and
identifies each function you can use them with.

Chapter 4, "SCLM Dialog Interface," describes how to use the ISPF dialog
interface, select SCLM functions to retrieve or process certain information, and
generate reports on the information stored in project databases. It also describes
information stored in accounting, cross-reference, and intermediate records for
members in the project databases.

Chapter 5, "SCLM Services," introduces and describes the services that you use
to retrieve and process certain information that you store in the project databases.
It lists the general categories of SCLM service return codes and provides
command and call invocation formats, return codes, and parameters for each
service. It also explains the notation conventions used to document the services.

_Chapter 6, "A Sample Program Using SCLM Services," provides a sample
program in Pascal that allows you to invoke SCLM services.

Chapter 7, "Defining the Project," describes how to generate a project definition
by discussing the steps you use to customize the database for a specific project. It
explains the steps that enable you to create the database that best meets the
needs of your project.

___ ~'"·-Chapter 8, "SCLM Macros," introduces and describes the macros that you use to
create project definitions in SCLM. It also explains the notation conventions used
to document the macros.

© Copyright IBM Corp. 1989, 1990 Chapter 1. SCLM Concepts and Terminology 5

Library Structures and Naming Conventions

~-'---Chapter 9, "Advanced Topics," describes advanced topics that aid you in
managing complex configurations.

--~'"'-Chapter 10, "Language Restrictions," describes restrictions that apply to the
support SCLM provides for languages.

_,"~ Chapter 11, "IBM Ada Setup," describes the language definitions that you must
use and the setup operations you must perform to use the IBM Ada compiler.

--- Chapter 12, "Messages and Codes," explains the messages that you receive using
SCLM. The chapter shows programmer responses, project administrator
responses, and an explanation for each code. It also lists the FLMCMD command
processor and SCLM translator return codes.

Library Structures and Naming Conventions
A project database in SCLM is a set of logically ordered MVS partitioned data sets
(known as libraries) under a single high-level qualifier. Database organization is
flexible enough to accommodate both small and large projects. Data can reside in
a single data set or can be distributed among a series of data sets. SCLM does not
control or limit the number of data sets you can maintain. Your ability to access
data anywhere in the database eliminates the need for duplicating data.

SCLM tracks all updates to the database, thus allowing you to concentrate on
developing programs rather than on locating data in data sets.

Projects, Groups, and Types
Data set names in SCLM must follow a standard naming convention consisting of
three levels of qualification, for example, PROJECTl. USERl. SOURCE. You can allocate
data set names using any attribute as long as the data sets are partitioned data
sets. All data sets belonging to a specific project have the same high-level
qualifier, known as the project identifier.

Related project data sets must be organized with a common middle-level qualifier
to form groups. Each group consists of a set of data sets that contain the different
kinds of data maintained.

Groups can contain a variety of project data. The low-level qualifier of the
SCLM-controlled data sets, such as SOURCE, OBJECT, and LOAD, identifies the
kinds of data maintained in a specific group (source code, object code, load
modules that can be processed), which are known as types.

A group is made up of a set of types. You can store source code for programs in
one type and object code in another type. However, you do not have to limit
similar kinds of data to one type. In a project you can have source code distributed
among multiple types or all source code residing in one type. You must declare
the same types for all the groups in a project. For example, if the development
group has SOURCE, OBJECT, LOAD, and LISTING types, all the other groups in the
project must have those same types.

6 ISPF/PDF Software Configuration and Library Manager

Members

Library Structures and Naming Conventions

Each component in a partitioned data set controlled by SCLM is a member.
Libraries are composed of a series of members representing different units of data.
A member can contain any kind of data. For example, a load module or an included
unit for a program can be a member. SCLM stores units of data in the database as
members of partitioned data sets. Therefore, members are the discrete elements
of an SCLM database.

Figure 1 depicts a typical database organization. In the sample project there are
nine different groups - the release group, the test group, the integration group,
three staging groups, and three development groups. Groups USER1, USER2, and
USER3 are the development layer, while STAGE1, STAGE2, and STAGE3 are the
staging layer. Similarly, groups INT, TEST, and RELEASE are called the
integration, test, and release layers, respectively.

Note: Libraries that make up a development group are called private libraries. A
private library is a partitioned data set (PDS) or partitioned data set
extended (PDSE) belonging to a group in the development layer of the
hierarchy. A development layer contains groups that do not allow other
groups to promote into them.

STAGING LAYER

DEVELOPMENT
LAYER

I
STAGE1

I
USER1

RELEASE
LAYER

TEST
LAYER

INTEGRATION
LAYER

Figure 1. Typical Project Database Organization

RELEASE

TEST

INT

I
STAGE2 STAGE3

I
USER2 USER3

Chapter 1. SCLM Concepts and Terminology 7

Library Structures and Naming Conventions

Hierarchies
The project database illustrated above is organized into groups, each group being
subordinate to the one above it. This form of database organization is known as a
hierarchy. The concept of a multiple group hierarchy allows you to concatenate
groups to form a complete project. A concatenation of groups is called a
hierarchical view.

Hierarchies are always allocated from bottom to top. Thus, when you reference
data, the members at lower positions in the hierarchy take precedence over
members at higher positions.

Hierarchies allocated from different layers can represent different versions of the
project. See Figure 2 for an illustration of two hierarchical views.

RELEASE RELEASE

I I

TEST TEST

I I

INT INT

I

I
STAGE1

I

USER1

Figure 2. Two Hierarchical Views of the Same Database Organization

Key/Non-Key Groups
You can further distinguish groups in the project database as key groups and
non-key groups. A maximum of 16 groups in any hierarchy must contain all the
software components of the application under development. These 16 groups are
key because of this special significance. A project can have as many key groups
as you want as long as any hierarchical view has no more than 16.

8 ISPF/PDF Software Configuration and Library Manager

SCLM Data Set Naming Conventions

SCLM allows a project to specify up to 16 transition groups between key groups.
These groups are known as non-key groups. When you move data up in a
hierarchy, SCLM does not purge data from a key group until it reaches the next key
group. Therefore, in a project with non-key groups, SCLM temporarily duplicates
data in the non-key groups and the next lower key group.

Moving Data Through the Hierarchy
When you move data from group to group, the following rules apply.

• Copy units from key groups to non-key groups

• Move units from non-key groups to non-key groups

• Move units from key groups to key groups

• Move units from non-key groups to key groups and purge from the previous
key group.

In this manner, the combination of all key groups represents all the software
components of the project.

In general, when SCLM accesses a hierarchy from a particular group, it allocates
only the necessary groups. If the lowest level in the hierarchy to be accessed is
non-key, SCLM allocates it, and all the non-key groups above it, up to the next key
group. From there, SCLM allocates only the key groups. If the starting group in
the hierarchy to be accessed is key, then SCLM allocates only it and the key
groups above it. The number of allocated groups cannot exceed 16.

The one exception to this allocation involves non-key groups that have more than
one group promoting into them. Non-key groups of this kind are as significant as
key groups, and SCLM must also allocate them in a hierarchy. Groups that must
be allocated when a hierarchy is to be accessed are known as primary groups.
Thus, all key groups and all non-key groups with more than one group promoting
into them are primary groups. Any hierarchy can have a combined maximum of 16
primary groups.

Guidelines for Defining Groups
Select key groups and non-key groups with the following set of guidelines:

• The lowest (development) groups must be key.

• Any group with more than one lower group promoting into it should be key.
For exceptions, see "Primary Non-Key Group Testing Techniques" on
page 258.

SCLM Data Set Naming Conventions
SCLM limits data set names to three levels of qualification. See "Projects, Groups,
and Types" on page 6 for a more detailed description of the qualifiers.

The first level of qualification corresponds to the project name. All data sets
controlled by SCLM for a specific project must have the same high-level qualifier.
The middle-level and low-level qualifiers correspond to the group and type,
respectively. Therefore, form partitioned data set names in the following manner:

project_name.group_name.type_name

Chapter 1. SCLM Concepts and Terminology 9

SCLM Functions

SCLM Functions

Browse Function

Edit Function

SCLM functions allow you to browse, create, update, delete, compile, link, promote
up the hierarchy, and report on data stored in a project's database. You can
generate reports with the build, promote, and utilities functions.

You can call SCLM functions in a variety of environments. In addition to the SCLM
dialog interface, you can call SCLM functions independently with a command line
processor or a program service interface except for the browse, edit, SCLM library
utility, and migration utility functions. See Chapter 5, "SCLM Services," for more
information.

This part of the chapter describes the basic SCLM functions and discusses the
capabilities and uses of each. The five basic functions are:

• Browse
• Edit
• Utilities
• Build
• Promote.

Chapter 4, "SCLM Dialog Interface," describes how to call these functions.

The browse function uses ISPF/PDF Browse to allow you to display data in a
project database. For more information on browse, see "Browse (Option 1)" on
page 45.

The edit function is an interface to the ISPF/PDF editor. The SCLM editor ensures
that editing occurs only in private libraries. It automatically locks the member
when you begin the edit session. When you end an edit session, it parses and
stores edited members and their accounting information.

The editor uses the LOCK, PARSE, and STORE services to identify and control
members. This process verifies user authorization and prohibits simultaneous
updates of members. The following pages describe these services.

LOCK: The LOCK service ensures that even though two versions of the same
member may exist concurrently in parallel private libraries, only one copy can be
promoted to a higher group in the hierarchy.

In most cases, LOCK allows one member to be modified by only one user at a time
(see Note). When you edit a member in one private library, LOCK prohibits others
from editing the same member in their private libraries. Another user cannot edit
the member until you delete the member and its accounting information from your
group or you promote the member to a common group.

Note: Depending upon the software configuration management plan for a project,
a temporary copy of a member may exist in two private libraries at the
same time. See "Defining Authorization Codes for a Group" on page 192
for more information, or see the project administrator for the project.

10 ISPF/PDF Software Configuration and Library Manager

SCLM Functions

The LOCK service provides the following capabilities:

• Verifying a group

SCLM locks members only when you copy them into a private library. SCLM
copies a member to your private library when you edit the member. Group
verification allows SCLM to control all source modifications to the higher levels
of the hierarchy through the promote function.

• Verifying an authorization code

The project administrator defines a list of authorization codes to each group in
the project's database. An authorization code is an identifier that SCLM uses
to control authority to update and promote members within a hierarchy.

The LOCK service can only lock those members in the group that are assigned
one of the authorization codes defined to the group. See "Defining
Authorization Codes for a Group" on page 192 for more information.

• Verifying predecessors

The LOCK service guarantees that the member to be locked in the private
library is the most current version of the member within the hierarchical view.
Predecessors of the member are previous versions of a member existing
within the same hierarchical view.

The LOCK service ensures that the member to be locked does not overlay
changes to a predecessor. LOCK does this by verifying that the predecessor of
each version of the member within the hierarchical view has not been
modified.

• Verifying build output

You cannot lock members that are outputs of a build. This verification prevents
accidental modification of a build output member, such as object files. (These
members are referred to as "non-editable" elsewhere in this book.)

• Verifying access keys

The LOCK service also prevents you from accidentally modifying or deleting a
member you do not control. The access key that you store with the accounting
information for a member provides this verification. Locking a member with an
access key allows you to prevent others from accidentally modifying or
promoting the member if they make changes while working outside of SCLM.

Use the access key as a signal to other developers, not as a security measure.
For example, you can use the access key to indicate the location of the
member or the reason it was locked.

PARSE: SCLM gathers statistical and dependency information by parsing each
member it controls according to the syntax rules of the language of the member.
Parsers supplied with SCLM gather the following statistical information for each
member:

• Number of comment statements
• Number of non-comment statements
• Total number of statements
• Number of comment lines
• Number of non-comment lines
• Number of blank lines
• Total number of source lines
• Names of members referenced by an include construct
• Names of JOVIAL com pools referenced

Chapter 1. SCLM Concepts and Terminology 11

SCLM Functions

• Names of compilation units and their dependencies (Ada-type language only).
A compilation unit is the smallest Ada language unit that compiles separately.

SCLM provides parsers for a variety of languages. But you can define
project-specific parsers to use instead. See "Invoking User-Defined Parsers" on
page 239 for more information. If you define a project-specific parser, you can
gather the following additional statistical information:

• Prolog lines
• Control statements
• Assignment statements.

See "Statistics" on page 57 for a description of each of these fields.

SCLM supplies parsers for the following languages:

• Ada • FORTRAN
• Assembler • JOVIAL
• BookMaster • Pascal
• CLiST • PLII
• COBOL • SCRIPT/VS.

• EDL

Note: A packed member will not parse correctly if you use an SCLM-supplied
parser. Before you promote the member, make sure the profile for the
member you are editing has the ISPF/PDF pack mode off. See "Edit (Option
2)" on page 46 for more information.

STORE: For every member it processes, SCLM stores statistical, dependency, and '
historical information in the project's database. SCLM gathers this information
from a variety of sources: dependency and statistical information from the PARSE
service, historical information from partitioned data set (PDS) or partitioned data
set extended (PDSE) di rectory information and user input, and change code
information from user input to the STORE service.

The STORE service removes duplicate dependency information for each member.
For example, if a member is referenced as an include ten times, the STORE
service records the reference only once in the accounting information.

Change code information relates problem report (PR) and change request (CR)
numbers to individual source members. The STORE service can validate change
codes you input to the STORE service before it enters them into the accounting
records and saves the member. See "Change Code Verification Routines" on
page 261 for more information.

Use the STORE service to enter data in the accounting information for a member.
To add user data to the accounting information, you must design a software
configuration management system, taking advantage of the SCLM services, or
design a user-defined parser. But you cannot add user data through the ISPF/PDF
dialog directly.

Because SCLM treats each compilation unit as an independent entity, many of the
rules defined for members apply to compilation units as well. For example, you
lock compilation units the way you lock members. However, compilation units are
not locked until SCLM stores the member containing the compilation unit.

12 ISPF/PDF Software Configuration and Library Manager

Utilities Function

Library Utility

SCLM Functions

The STORE service verifies that any compilation units to be stored with the
member are not present outside the hierarchy. The STORE service also verifies
that the compilation unit does not reside in a different member within the
hierarchy. It uses the authorization code of the member for the compilation unit
verification.

You can retrieve accounting information using the database contents and the
library utilities or the SCLM services.

The SCLM utilities function allows you to browse accounting information,
members, or build maps for a project. The utilities also allow you to extract
accounting information for a project for purposes of reporting, generating
command data sets, or creating input for other tools.

The SCLM utilities consist of the library, Ada sublibrary management, migration,
database contents, and architecture report utilities.

The library utility allows you to browse accounting records, members, and build
map records. In addition, you can use this utility to delete members and their
accounting records and to update authorization codes.

Ada Sublibrary Management Utility

Migration Utility

The Ada sublibrary management utility allows you to browse or delete
intermediate records and forms for compilation units.

The migration utility allows you to verify authorization codes, to prohibit
simultaneous updates of members, and to collect statistical, dependency, and
historical information for each member processed without using the SCLM edit
function. SCLM collects dependency information, which identifies software
components that need another software component to complete successfully.

Use this utility when you have a large number of members that have not been
entered in your project database, such as members that you did not create with the
edit function.

Database Contents Utility
The database contents utility allows you to create an input stream containing
variables associated with SCLM accounting data. This accounting data can then be
extracted for members in the database that meet selection criteria you specify.
You also control the order and format of the data extracted. The utility generates a
report that lists the members that match your selection criteria.

Unlike other SCLM functions, the database contents utility does not verify the
group, type, or member parameters you specify. This feature allows you to report
on accounting information that is no longer defined in the project definition. For
example, if the project administrator removes a development group from the
hierarchy, the utility can still retrieve accounting information for that group.

Chapter 1. SCLM Concepts and Terminology 13

SCLM Functions

Architecture Report

Build Function

Build Input

This report examines the requested architecture and all of its references, and then
constructs a report of the architecture. In this book, architecture refers simply to
the organization of software components to form integrated applications.

The architecture report is divided into three parts: header, architecture information
and cross-reference information. The architecture report header lists the
accounting and architecture selection criteria plus the customization parameters
you specify. The architecture information lists all of the software components, by
type, in a given application. This part of the report can help you eliminate
unnecessary code. The cross-reference information indicates where a given
software component is imbedded in the architecture of the application.

Examples of the architecture report appear in Figure 39 on page 85, Figure 40 on
page 87, and Figure 41 on page 89.

The build function does the following:

• Ensures total project integrity by verifying that all components defined to the
architecture being built are present and complete

• Performs necessary (or requested) compiles and links

• Conditionally saves compiler and linkage editor output in the database.

Build compiles, links, and integrates software components according to the
architecture. For any group in the database, the build function uses the software
components within the hierarchy of that group to update the out-of-date members.
Use build to compile and link individual components as well as to integrate the
smaller components into larger components.

Build uses internal data, such as accounting records and build maps, to determine
when components have changed. With this information, the build function
selectively builds components in the database to conserve machine resources. At
the completion of the build, SCLM produces a report identifying which components
were built and which components were out of date.

Input to the build can be either a source member or an architecture member. An
architecture member defines an individual software component, which may be a
collection of other architecture members, by specifying its relationship to other
software components of an application.

For a complex application, you can use architecture members to specify how the
individual components of an application relate and how they are processed. You
can create architecture members and treat them as source, but you must register
them with SCLM (using the SCLM editor or migration utility) before the build.
Chapter 2, "Architecture Definition," discusses the contents and uses of
architecture members in greater detail.

14 ISPF/PDF Software Configuration and Library Manager

Build Maps

Build Processing

SCLM Functions

SCLM creates build maps to identify how the build changed the database. Build
maps contain a complete analysis of the database at the time of the build; that is,
they include the names of all referenced members and the last change date and
version number of each member. Additionally, build maps list those source
members in the build that are include structures of other members in the build.

An include structure is a generic term for code that you insert when the source
member is compiling. The syntax of an include statement in a program is
language-dependent and is defined by language syntax rules.

SCLM stores the build maps with the accounting records. Once generated, the
build maps are used by subsequent builds to determine whether changes have
occurred since the last build.

The promote function also uses build maps to determine which members can be
promoted.

Build processing consists of verification and dependency processing.

• Verification

First, SCLM determines which architecture and source members will take part
in the build. Then it verifies that all necessary architecture and source
members have correct accounting information. SCLM also verifies that the
build scope you specify is consistent with, and not less than, the scope defined
in the language definition. If SCLM detects an error during this scope
verification, it does not call the next phase, regardless of the build mode. See
"Build (Option 4)" on page 91 for more information.

• Dependency processi ng

Dependency processing consists of generating a build map, calling appropriate
translators, and generating a report.

Generating a build map

This task creates a build map for each software component taking part in
the build. SCLM uses the build map to determine whether the translators
are to be called. If an error occurs while generating a build map,
processing for this component ends. However, SCLM can continue
processing the remaining unbuilt members depending on the build mode
you specify.

Calling translators

Build calls appropriate translators if the build maps created contain
out-of-date com ponents.

SCLM compares return codes from the translators to the return codes
defined in the language definition to determine whether the translation was
successful.

Chapter 1. SCLM Concepts and Terminology 15

SCLM Functions

Build Scopes

Build Modes

Build Report

Build Messages

Generating a report

The final step in dependency processing is generating a report. The build
report lists the results of the build.

SCLM provides four scopes of build processing to accommodate the special
processing required for compilation unit dependencies (Ada-type languages).
Build scopes include the following: limited, normal, subunit, and extended.

Build processes two types of compilation unit dependencies: upward dependency
and downward dependency.

• An upward dependency member is processed before a given member.
• A downward dependency member is processed after a given member.

For more information, see "Build (Option 4)" on page 91.

SCLM provides four modes of build processing: conditional, unconditional, forced,
and report only.

You can use the modes to do the following:

• Check for unacceptable compile or link return codes (conditional)

• Generate translator listings for all components processed (conditional)

• Process software components despite translator errors (unconditional)

• Force build to compile and link all requested components again regardless of
the previous status of the modules (forced)

• Generate a complete build report without performing the actual build (report
only).

For more information, see "Build (Option 4)" on page 91.

The build report provides a synopsis of the build. It includes:

• The date and time of the build
• The scope and the mode used
• The name of the component that was requested to be built
• The component's last change date and time
• The project definition used.

The build rep_ort also lists the software components that were rebuilt and saved in
the database, that is, those components that passed the compilation or linkage edit
phase. The report also shows the build maps that required regeneration, along
with a list ot out-ot-date software components that caused the regeneration.

Figure 43 on page 93 shows an example of a build report.

The build function issues processing messages to allow you to monitor the build
progress during the verification and the dependency processing.

16 ISPF/PDF Software Configuration and Library Manager

Build Listings

Automatic Ordering

SCLM Functions

During verification, the error messages identify only those components that do not
have correct accounting information or that do not exist. During dependency
processing, the messages identify those components being compiled and linked.

Build also issues return codes from all translators called. If any errors occur
during processing, it generates appropriate informational messages.

The build function generates compiler and linkage editor listings in a listings data
set. You can specify in the project definition, individual architecture members, or
both, to have your listings saved in the database.

You can choose to receive all compiler and linkage editor listings or only error
listings in the listings data set. If you request error listings, build only produces the
listings that resulted from compiles or links with unacceptable return codes.

The build function orders compiles and links to provide complete application
integrity. Build compiles programs in the correct sequence to ensure that all
dependencies are resolved. SCLM provides link ordering when load modules
include other load modules and processes all load modules in the correct order.

Promote Function
The promote function does the following:

• Determines which components are eligible for promotion

• Verifies that the database is complete and current

• Promotes the components that are at the current group and scope

• Potentially purges the components from the current group (and possibly lower
key groups)

• Generates a promote report.

Promote gives you an easy and efficient method to move data through a database.
As you build software components, they become eligible for promotion to the next
group in the hierarchy. Promote is based on architecture or source members; thus
you must build software components successfully before you can promote them to
the next group. Using architecture members, you can promote individual software
components or sets of software components during one promote. SCLM processes
all data types associated with a component as a unit.

At the completion of the promote, the promote function generates a report
identifying the components promoted.

Promote Processing
Promote processing consists of verification, copy, purge, and report generation.

Processing occurs sequentially. Depending on the promote mode you select, one
or more of these phases may not occur. The following paragraphs discuss each
phase.

• Verification

This phase ensures that all software components to be promoted are available,
have correct accounting information, and are current. To be current, the
application to be promoted must not have been modified since its software

Chapter 1. SCLM Concepts and Terminology 17

SCLM Functions

components were successfully built into an application. Promote compares
each software component to be promoted to the database to verify that it has
not been modified. A verification error results when SCLM finds an out-of-date
software component. Verification always occurs.

• Copy

This phase copies members to a group in the next layer of the hierarchy. The
promote occurs alphabetically by type, one type at a time. Promote performs
enqueuing during promotion to ensure that the database is secure. Therefore,
multiple promotions may occur concurrently with no loss of database integrity.
Verification always occurs.

Copy errors occur when the target group does not have enough space or
directory blocks. If a copy error occurs, promote again after you correct the
problem. The second promote does not repeat work completed during the first
promote.

• Purge

This phase deletes members from the current and possibly the lower groups
after they are successfully copied to the next higher group.

Depending upon the classification of the "from" group and the target group,
SCLM mayor may not purge members from the lower group after promotion.
SCLM may not delete a member to ensure that its most recent version is in a
key group (even though it may also be in a non-key group). For more
information, see "Key/Non-Key Groups" on page 8.

The purge process uses the following strategy for groups that promote from:

Key group to key group: SCLM deletes members of the "from" group after
a successful copy.

Key group to non-key group: SCLM does not delete members of the "from"
group after the copy.

Non-key group to non-key group: SCLM deletes members of the "from"
group after a successful copy.

Non-key group to key group: SCLM compares copied members to the
corresponding members at the next lower key group.

If you can edit the copied member and it exactly matches the lower key
group, SCLM deletes the member from both groups.

If the member is an output of the build and exactly matches or is a
more recent version of the member at the lower key group, SCLM
deletes the member from both groups.

• Report Generation

SCLM generates a report no matter what the results were from the previous
phases. If verification fails, the report reflects which software components are
eligible for promotion. Otherwise, the report indicates the results of the
promote.

18 ISPF/PDF Software Configuration and Library Manager

Promote Scopes

Promote Modes

Promote Report

Promote Messages

SCLM Functions

The promote function provides three processing scopes. They are normal, subunit,
and extended. SCLM provides the subunit and extended scopes for promoting
members with compilation units.

Promote processes components and members the same way build processes
these scopes. See "Promote (Option 5)" on page 94 for more information.

Promote has three processing modes: conditional, unconditional, and report only.
Each mode is available to all SCLM users.

You can use the modes to do the following:

• Bypass the copy and purge phases if promote discovers a verification error
(conditional)

• Perform copy and purge processing despite verification errors, but promote
only those members with correct accounting information (unconditional)

• Promote software components for incomplete or partial applications
(unconditional)

• Perform verification and report generation processing (report only).

For more information, see "Promote (Option 5)" on page 94.

The promote report provides an accurate account of the promote. It lists all
members promoted to the next group and all members purged from lower groups.
In report-only mode, the report displays a list of members eligible for promotion.

Figure 45 on page 97 shows an example of a promote report.

The promote function issues processing messages to allow you to monitor the
promote progress during verification, copy, and purge processing. If any errors
occur during processing, promote generates appropriate informational messages.

During verification, the error messages identify only those components that do not
have correct accounting information or that do not exist.

Chapter 1. SCLM Concepts and Terminology 19

20 ISPF/PDF Software Configuration and Library Manager

Architecture Members

Chapter 2. Architecture Definition

If you are responsible for a given software component, you must define how SCLM
should process that component. SCLM allows you to define the architecture for an
application that determines how individual software components are to be tracked
and maintained.

To define the architecture, you need to describe all subcomponents that make up
the component, all data types of the component, and any special options for the
component. You also need to select where all data types of a component will
reside. You can provide this information in one architecture member for each
software component.

This chapter discusses the methods you can use to define the architecture,
provides several different examples of architecture members, and explains the use
of architecture member statements.

Architecture Members
Architecture members define the application at a high level by referencing lower
level architecture members. You can generate them top down or bottom up, using
an iterative approach. Create architecture members by using the edit function.

The capability to define an architecture allows you to control and track any discrete
division of an application from the most encompassing definition down to the
individual component. You can maintain the architecture members in a separate
type in the project database. Use the architecture members to describe the
different versions or variations of a project or application.

Kinds of Architecture Members
SCLM provides four kinds of architecture members that you can use to generate an
architecture definition for an application. They are compilation control (CC),
linkedit control (LEC), high-level (HL), and generic.

Each kind of architecture member controls a different kind of component that SCLM
processes. Table 2 categorizes the use of each kind of architecture member.

Table 2. Uses of Architecture Members

Architecture Member Use

Compilation Control (CC) Define compiler processed components.

Li nkedit Control (LEC) Define link edit processed components.

High-Level (HL) Define application and subapplication
components.

Generic Define specially processed components.

Each of these uses is described in the following pages. See "Sample Application
Using Architecture Definitions" on page 31 for an example of an application
consisting of architecture members.

© Copyright IBM Corp. 1989. 1990 Chapter 2. Architecture Definition 21

Defining Compiler Processed Components

Defining Compiler Processed Components
Standard compilers produce object modules as output. SCLM creates object
modules if you specify either a compilable source member or a compilation control
architecture member as input to the build function. The following discusses both
methods for producing object modules; however, specifying source members
simplifies the architecture definition.

Compilation Control Architecture Members
One method of creating object modules is through an architecture definition with
Compilation Control (CC) architecture members.

CC architecture members contain all the information necessary to produce and
track software components with object module output. Use CC architecture
members to provide the following:

• The source member or members to be compiled

• Information concerning the target type names for the compiler outputs, such as
object, listings, and com pools

• Compiler options.

CC architecture members must have at least one SINC statement. See
"Architecture Statements" on page 27 for more information. CC architecture
members cannot reference other types of architecture members; therefore, you
can only reference source to be compiled in the CC architecture member.

Because SCLM tracks included members, you only need to reference main source
members. SCLM extracts the name of the compiler to be called from the language
assigned to the referenced source member. If more than one source member is
referenced, SCLM uses the language of the first referenced member. SCLM
passes source members to the compiler in the order of reference; thus SCLM
supports manual ordering of compiler input. One CC architecture member
generates one call to a compiler regardless of the number of source members
referenced.

You can override default compiler options by using the PARM statement. Use the
statement as many times as necessary to specify all options you want. For source
members being processed directly, you can only pass the default parameters
defined in the language definition for the processor.

You can pass parameters directly to the translator by using the PARMx statement.

You can pass compile directives directly to the compiler using the CMD statement.
You can insert the statements along with the source by careful positioning in the
CC architecture member. In this manner, you can control compiler processing
without modifying the source member. Use this feature to force titles on listings or
to control compiler listing flow.

SCLM provides special statements for creating CC architecture members for
JOVIAL programs. Use the COMP statement to identify database targets for
generated JOVIAL com pools. Use the statement the same way as the OBJ and
LIST statements.

22 ISPF/PDF Software Configuration and Library Manager

Defining Link Edit Processed Components

A compoo/ reference is a reference to a JOVIAL data mapping structure that SCLM
must compile before it can compile the current member. Com pool references are
specific to the JOVIAL languages. (JOVIAL programs that reference compools
must use the CREF statement to indicate which type SCLM is to extract the
referenced com pools from.) If SCLM finds more than one CREF statement in a CC
architecture member, it only uses information from the last one. For JOVIAL
programs with no com pool references, SCLM ignores the information.

Note: You must order compiles for JOVIAL programs with compool references.
SCLM compiles the programs in the correct sequence to ensure that all
dependencies are resolved if you create architecture members that
reference all dependencies.

You must also order compiles for programs that have upward and
downward dependencies, such as Ada. SCLM processes an Ada program
after processing the upward dependencies, but before processing the
downward dependencies. Thus SCLM compiles Ada programs in the
correct sequence if the architecture member references all dependencies.

SCLM allows you to track and maintain all forms of generated data. Often, due to
space limitations, you do not want to save it all. SCLM gives you the option of
saving listings in the database or discarding them. Therefore, the architecture
member statement LIST is optional. Nonetheless, SCLM generates listings to
temporary listing data sets for your viewing during the build.

Specifying Source Members
The alternate method of creating object modules is to specify a source member to
the build function. The source member's language definition in the project
definition identifies which translators SCLM calls and where it saves output in the
database. The language definition also specifies which compiler SCLM will call.

SCLM does not require that you use architecture members. You only need to
reference the compilable source member because SCLM automatically tracks
included members. See "Defining a Software Component using the FLMALLOC
Macro" on page 216 for implementation details. This technique only works for
source members.

Defining Link Edit Processed Components
Standard linkage editors produce load modules as output. To define software
components with load module outputs from standard linkage editors, use Linkedit
Control (LEC) architecture members. LEC architecture members contain all the
information necessary to produce a complete load module. Use the LEC
architecture member to identify the following:

• The load module name and the type you want it saved in
• The linkage editor listing name and the type you want it saved in
• All object and other load modules the load module is to contain.

You can also specify linkedit control statements and linkage editor options. LEC
architecture members must have at least one INCL or INCLD statement.

Construct a load module architecture member by creating an LEC architecture
member that references source members, CC architecture members, LEC
architecture members, or a combination. If the LEC architecture member
references a CC architecture member or a source member, SCLM includes the

Chapter 2. Architecture Definition 23

Defining Link Edit Processed Components

object module that results from a build of the member. If the LEC architecture
member references another LEC architecture member, SCLM includes the load
module produced during a build.

An LEC architecture member can have any number of CC and LEC architecture
member references. However, LEC architecture members cannot reference
high-level or generic architecture members. During processing, SCLM passes
object and load modules to the linkage editor in the order of reference. Thus if
linkage editor dependencies exist, carefully organize the CC and LEC architecture
member references to resolve any problems.

You can use two methods to include other load modules in the load module to be
generated. As previously discussed, a reference to the LEC that generated the
other load module automatically includes it in the load module being generated.
Alternately, you can link other load modules into the load module being generated
by using the LINK statement. Although each method produces the same results,
each allows you a different amount of control.

If you reference the LEC that generated the other load module, SCLM verifies that
the other load module is also up-to-date. If you link the other load module, SCLM
bypasses verification and includes the other load module even if it is not current.

Note: SCLM provides link ordering when load modules include other load
modules. In other words, SCLM processes all load modules in the correct
order.

Because the load module referenced by the LINK statement is not part of
the build, the architecture member must reference this LEC to allow link
ordering. SCLM does not order linked load modules unless specifically part
of the build.

You can override default linkage editor options by using the PARM statement. Use
the statement as many times as necessary to specify all options you want. SCLM
uses the standard IBM S/370 linkage editor for all linkedits. To override the default
linkage editor, use the LKED statement. You must define other linkage editors to
be invoked in the project definition for the project. See "Step 5: Allocate Project
Data Sets" on page 193 for more information.

You can specify that SCLM pass linkage edit control statements directly to the
standard S/370 linkage editor in the LEC by using the CMD statement. Insert the
control statements along with the object and load modules by careful positioning in
the LEC architecture member.

Due to space limitations, you may not want online linkage editor listings. SCLM
allows you to save listings in the database or discard them. Therefore, the
architecture member statement LMAP is optional. Nonetheless, SCLM generates
listings to temporary listing data sets for your viewing during the build.

You can use SCLM variables in LEC architecture members by using PARM and
PARMx statements. SCLM substitutes the variables with the appropriate values
before calling translators.

You cannot use the SETSSI linkage editor command in an LEC architecture
member. If SCLM finds a CMD SETSSI statement in an LEC architecture member
during a build, the build function overrides the statement with its own SETSSI
command.

24 ISPF/PDF Software Configuration and Library Manager

Defining Specially Processed Components

Defining Application and Subapplication Components
You can define applications and subapplications by using High-Level (HL)
architecture members. HL architecture members allow you to categorize groups of
related load modules, object modules, and other software.

You can maintain one HL architecture member to define an entire application for a
project. This HL architecture member references other architecture members
which eventually reference every component in the application. It can also
reference the source directly, with the language of the source defining the outputs
to be produced. A reference to this HL architecture member results in a reference
to every software component in the application. Therefore, you can control the
entire application through one HL architecture member. In this way, you can
guarantee the integrity of an entire application.

You can also use an HL architecture member to define subapplication software
components. Subapplications can be a combination of load modules or merely a
list of internal data items to be controlled. Subapplications can, in turn, reference
other subapplications to any depth. Conscientious use of HL architecture members
contributes to application modularity.

SCLM can control and track ISPF/PDF panels, skeletons, and messages that are
not processed by a compiler or linkage editor or used to invoke processors.
Because these unique forms of software are not processed by compilers, linkage
editors, or other processors, they are considered data dependencies and,
therefore, you can control them by using the PROM statement.

In most cases, you do not want panel, skeleton, and message dependencies in
LEC, CC, and generic architecture members. Use HL architecture members to
control all dialog software. For example, you can use one HL architecture member
for panels, one for skeletons, one for messages, and one for the entire dialog that
references the three previous HL architecture members.

If you want dialog-specific implied dependencies, you can reference the software
components in other architecture members. As with other members referenced by
the PROM statement, the date_check parameter allows SCLM to ignore implied
dependencies. Otherwise, if you change the member, SCLM recompiles, relinks,
or reprocesses the other software components referenced by the architecture
member.

Careful use of the PROM statement in this manner can eliminate unnecessary
SCLM processing and improve processing efficiency.

Defining Specially Processed Components
Generic outputs are produced by processors other than standard compilers and
linkage editors. The SCRIPT/VS processor is an example of a nonstandard
processor. You can create generic outputs by specifying the generic architecture
member or source member as input to the build function. The following sections
discuss both methods. However, keep in mind that referencing source members
simplifies the architecture definition.

Chapter 2. Architecture Definition 25

Defining Specially Processed Components

Generic Architecture Members
One method to create generic outputs is through a definition using generic
architecture members. You can reference generic architecture members with HL
architecture members.

Generic architecture members identify the source member or groups of source
members to be processed by a processor other than a standard compiler or
linkage editor. You should save information concerning the target types for the
processor outputs in the generic architecture member. Generic architecture
members must have at least one SINC statement.

Generic architecture members are equivalent to CC architecture members and,
therefore, cannot reference other architecture members. Use them to invoke
processors that do not produce standard object or load modules.

Generic architecture members allow you to use nonstandard processors. SCLM
extracts the identification of the processors to be invoked from the language
assigned to the source member last referenced. You must provide the definition of
processor invocations in the project definition. See Chapter 7, "Defining the
Project," for more information. You can insert processor directives along with the
processor inputs by conscientious positioning of the CMD statements between
processor input references.

You can specify parameters for the processor in the generic architecture member
by using the PARMx and PARM statements. SCLM concatenates parameters to the
default parameters defined for the processor in the language definition and passes
them as specified to the processor .. See Chapter 7, "Defining the Project." SCLM
separates concatenated parameters by a comma and removes extraneous blanks.
For a source member being processed directly, SCLM only passes the default
parameters defined for the processor in the language definition.

Often, due to space limitations, you do not want to save all forms of data. SCLM
gives you the option of saving listings in the database or discarding them.
Therefore, the architecture member statement LIST is optional. Nonetheless,
SCLM generates listings to temporary listing data sets for your viewing during the
build.

Specifying Source Members
The alternate method of creating generic output is to specify a source member as
input to the build function, or reference it with an HL architecture member. The
source member's language definition in the project definition identifies where the
compiler outputs are to be saved in the database.

You only need to reference main source members due to SCLM's automatic
include tracking capability. Processors can generate up to 10 outputs to be saved
in the database. You must identify each output to be saved by using a different
OUTx statement. Indicate the processor to be invoked with the language identifier
of the referenced member. See the DFL TTYP parameter description in
"FLMALLOC Macro" on page 213.

26 ISPF/PDF Software Configuration and Library Manager

Architecture Statements

Architecture Statements
You must use a special SCLM architecture language when you create architecture
members. This language consists of statements that identify necessary
information. The following paragraphs discuss the statements and their formats.

Statement Format

Statement Uses

You must use a specific format for architecture statements. Architecture
statements must be fixed block (FB) with a length of 80 bytes or characters. Only
one statement can appear in each 80-byte record. A record ranges from columns 1
through 72 and the records cannot be continued. SCLM ignores information that
appears after column 72.

Write the statements in either upper or lower case. You can write all statements,
except for CMD, in a free format as long as the items within the statements are in
the correct order. The number of blank spaces between each item is not
significant.

Member and type names must follow MVS naming conventions. SCLM does not
check parameters and control statements for validity. They may continue through
column 72.

SCLM distinguishes architecture members from one another by their contents. For
example, it assumes that members containing compilation information are CC
architecture members and members containing linkedit information are LEC
architecture members.

You use architecture statements to provide information about the design of
applications in the project database.

Table 3 shows valid statements for each type of member.

Table 3. Valid Keywords for Architecture Member Statements

HL LEe CC Generic

* * * *
COpy ALIAS CMD CMD
INCL CMD CaMP CaMP
INCLD COpy COpy COpy
PROM INCL CREF CREF

INCLD LIST LIST
LINK OBJ OUTx
LKED OUTx PARM
LMAP PARM PARMx
LOAD PARMx PROM
OUTx PROM SINC
PARM SINC SREF
PARMx SREF
PROM
SREF

Chapter 2. Architecture Definition 27

Architecture Statements

Each architecture statement is comprised of a keyword followed by one or more
operands. The following list shows the valid statements, their usage, and their
format:

*

ALIAS

Identifies an architecture comment statement.

* <comment>

Identifies load module aliases to be generated. Use it only in LEC
architecture members.

ALIAS <member_name> <type_name> <optional_comment>

CMD Identifies command statements to be included with inputs to the
compiler, linkage editor, or other processors. The statement is
positional; therefore, all blanks following this statement starting after the
first blank are significant. Do not use the optional_comment with the
CMD statement because it can calise unpredictable results. The CMD
statement is not valid in HL architecture members.

COMP

COpy

CREF

CMD <control_statements>

Identifies the name of the compool to be created (for JOVIAL programs
only) and the type in which it is to reside. Use it only in CC and generic
architecture members.

CaMP <member_name> <type_name> <optional_comment>

Identifies another architecture member to be inserted into this
architecture member.

The COPY statement of the architecture language provides you with the
ability to simplify related, complex architecture members. To simplify
architecture members with similar contents, isolate identical statements
into a separate member and reference the member using the COPY
statement. Referenced members must follow all formatting rules for
architecture members.

The COPY directive results in a direct insert of the contents of the
specified member into the respective architecture members. Therefore,
using a copy architecture member is an efficient way to group sets of
commonly used architecture statements into a single area. Additions to
and deletions from the common architecture member affect all the
architecture members referencing the member.

COpy <member_name> <type_name> <optional_comment>

Identifies the type from which JOVIAL com pools are to be resolved. This
statement allows you to specify from which type SCLM accesses all
referenced JOVIAL compools. Use it only in CC and generic architecture
members.

CREF <type_name> <optional_comment>

INCL Identifies another architecture member that this architecture member
references. It is not valid in generic or CC architecture members. You
cannot use INCL to reference source members.

INCLD

INCL <member_name> <type_name> <optional_comment>

Identifies a source member that this architecture member references. It
is not valid in generic or CC architecture members.

INCLD <member_name> <type_name> <optional_comment>

28 ISPF/PDF Software Configuration and Library Manager

Architecture Statements

LINK Identifies a load module to be linked into the load module being created.
The referenced load module must be the product of another LEG. The
build function does not verify the contents of a load module referenced
by LINK. You can substitute the INCL statement to perform this
verification. Use the LINK statement only in LEG architecture members.

LINK <member_name> <type_name> <optional_comment>

LIST Identifies the member and type in which the compiler listing is to reside.

LKED

LMAP

LOAD

Use it only in CG and generic architecture members.

LIST <member_name> <type_name> <optional_comment>

Identifies the linkage editor to be invoked. Use it only in LEC
architecture members.

LanguageJd is an eight-character language identifier for a translator.
The language ID specified must correspond to a valid language identifier
defined in the project definition. See Chapter 7, "Defining the Project,"
for more information.

LKED <language_id> <optional_comment>

Identifies the member and type in which the linkage editor listing (load
map) is to reside. Use it only in LEC architecture members.

LMAP <member_name> <type_name> <optional_comment>

Identifies the name of the load module to be created and the type in
which it is to reside. Use it only in LEC architecture members.

LOAD <member_name> <type_name> <optional_comment>

OBJ Identifies the name of the object module to be created and the type in
which it is to reside. Use it only in CC architecture members.

OUTx

PARM

OBJ <member_name> <type_name> <optional_comment>

Identifies the name of the output member to be created and the type in
which it is to reside. Replace the x with an integer to identify the specific
statement. Valid integer replacements are 0 through 9. You can use
these statements to track additional outputs other than the standard
outputs described by the statements OBJ, COMP, LIST, LOAD, and
LMAP. Use the OUTx statement in an LEC, CC, or generic architecture
member.

OUTx<member_name> <type_name> <optional_comment>

Identifies parameters (options) to be passed to all translators of a
compiler, linkage editor, or other processor. Use it in generic, CC, or
LEC architecture members.

SCLM offers a set of variables that you can use to dynamically provide
information to compilers, linkage editors, and other processors. Use
these variables with the PARM statement. See Chapter 3, "SCLM
Variables," for more information.

Do not use the optional_comment with the PARM statement because it
can cause unpredictable results.

PARM <parameters>

Chapter 2. Architecture Definition 29

Architecture Statements

PARMx Identifies parameters (options) to be passed to specific translators of an
SeLM language. Replace the x with an integer to identify the specific
statement. Valid integer replacements are 0 through 9. You can use the
SeLM variables, mentioned previously, with the PARMx statement. You
can use the PARMx statement in generic, ee, and LEe architecture
members.

PROM

Do not use the optional_comment with the PARMx statement because it
can cause unpredictable results.

If the PARMx keyword used in the architecture member is not specified
in one of the FLMTRNSL macros (using the PARMKWD parameter),
SeLM ignores the PARMx statement.

PARMx <parameters>

Identifies a text member, such as design, data, or test plans, to be
promoted along with the modules processed in this architecture
member. The member specified is not processed (for example,
compiled or linked) but is tracked during promotions. You can specify an
additional parameter to indicate whether date checking is to be
performed for the member.

Date_check is a special optional parameter for the PROM statement to
bypass date checking for noncompilable/nonlinkable members. A
nonblank, such as N, as a third parameter on the PROM statement
indicates to the build and promote functions to bypass date checking for
that member (thereby eliminating the need to build before promoting)
when you modify the member.

The date_check parameter for the PROM statement can alleviate implied
dependencies. Specify with the date_check parameter that SCLM should
disregard the last change date on the module. Thus SeLM ignores all
implied dependencies. SeLM tracks members with the architecture
member, but does not check them to verify that they are up-to-date.

Do not use the optional_comment with the PROM statement because it
can cause unpredictable results.

PROM <member_name> <type_name> <date_check>

SINe Identifies the source member or group of source members to be
processed. Use it only in generic and ee architecture members.

SREF

SINe <member_name> <type_name> <optional_comment>

Identifies the type to be referenced during processing. Use it in generic,
ee, and LEe architecture members.

SREF <type_name> <optional_comment>

30 ISPF/PDF Software Configuration and Library Manager

Sample Application Using Architecture Definitions

Sample Application Using Architecture Definitions
The following application is composed of two subapplications. Each subapplication
consists of two load modules, which are composed of a series of object modules.
Load module LMOD1 and LMOD2 contain one object module each, while LMOD3
and LMOD4 contain multiple object modules. Figure 3 shows a diagram of the
design of this application.

Subapp 1 i cat,i ons

Application

Figure 3. Application APPL 1

LEC Architecture CC Architecture
Members

LMOD3

LMOD4

Member

Copy
Architecture

Member

Source
Modules

Figure 4 on page 32 shows the architecture members for the APPL 1 application.

Chapter 2. Architecture Definition 31

Sample Application Using Architecture Definitions

High-Level Architecture Members

*
*
*

APPLl

Application APPLI

INCL SUBAPPLI ARCHDEF
INCL SUBAPPL2 ARCHDEF

SUBAPPLl

*
* Subapplication 1
*
INCL LMODI
INCL LMOD2

ARCHDEF
ARCHDEF

SUBAPPL2

*
* Subapplication 2
*
INCL LMOD3
INCL LMOD4

ARCHDEF
ARCHDEF

Linkedit Control Architecture Members

LMODI

*
* load Module lMODl
*
LOAD LMODI LOAD
LMAP LMODI LMAP
INCL CMODI ARCHDEF
PARM MAP, NCAl
PARM LET
CMD ALIAS MAINI

LMOD3

*
* Load Module LMOD3
*
LOAD LMOD3 LOAD
LMAP LMOD3 LMAP
COpy ARCHCOPY ARCHDEF
INCLD MODUlE3 SOURCE

LMOD2

*
* load Module lMOD2
*
LOAD LMOD2 LOAD
LMAP LMOD2 LMAP
INCLD MODULE2 SOURCE
PARM MAP,NCAL,lET
CMD ALIAS MAIN2

LMOD4

*
* Load Module LMOD4
*
LOAD LMOD4 LOAD
lMAP LMOD4 LMAP
COPY ARCH COPY ARCHDEF
INCLD MODULE4 SOURCE

Figure 4 (Part 1 of 2). Architecture Members For Application Sample

32 ISPF/PDF Software Configuration and Library Manager

Sample Application Using Architecture Definitions

Compilation Control Architecture Members

CMODI

*
* Obj ect Module 1
*
OBJ MODULEI OBJ
LIST MODULEI LIST
CMD %CHECK ON
SINC MODULEI SOURCE
CMD %CHECK OFF
PARM NOXREF~LC(75)

Copy Architecture Members

ARCHCOPY

*
* COPY ARCHITECTURE
*
INCLD MODULE5 SOURCE
INCLD MODULE6 SOURCE
PARM MAP

Figure 4 (Part 2 of 2). Architecture Members For Application Sample

The HL architecture member in Figure 4 on page 32 includes references to two
subapplications (SUBAPPL 1 and SUBAPPL2). The subapplication HL architecture
members reference the LEC architecture members that define the load modules
they contain. Note that the referenced LEG architecture members have the same
names as the load modules they produce.

The LEC architecture members contain all the information necessary to produce
the load modules in the application. CMD statements in LMOD1 and LMOD2 pass
linkedit control statements to the linkage editor. Leading blanks are significant on
CMD statements. (Note that inserting an extra blank before the statement satisfies
linkage editor requirements for control statements.) Two PARM statements
override the default linkage editor options.

Load modules LMOD3 and LMOD4 contain COpy statements. These statements
identify the LEC architecture member ARCHCOPY, which references two source
modules for SCLM to insert into the LMOD3 and LMOD4 load modules.

Thus, copy architecture members are an efficient technique for grouping commonly
used architecture statements into a single member. Additions to and deletions
from ARCHCOPY affect LMOD3 and LMOD4 and all the other architecture members
that might reference ARCHCOPY.

Because the CC architecture member is one of the lowest levels of architecture
members, it references the actual source to be compiled or processed rather than
other architecture members; that is, it only references main source members.

Chapter 2. Architecture Definition 33

Ensuring Synchronization with Architecture Definitions

The control statements, designated by the CMD statement in the CC architecture
member CMOD1, cause special compiler processing for the program. In addition,
CMOD1 specifies compiler options with the PARM statement to override the default
compiler options. The SINC statement references a source member rather than
another architecture member.

See Figure 39 on page 85 for an architecture report of the APPL 1 application.

Ensuring Synchronization with Architecture Definitions
SCLM ensures that all modules within the scope of a build are synchronized. If you
build a source module, SCLM sychronizes the resulting object and listing with the
source. If you build an architecture definition, SCLM sychronizes all members
used as input to the builds and all members output from the builds. However, if
there are object or load modules outside the scope of a particular build that are
dependent on source modules within the scope of that build, then those source,
object, and load modules may no longer be synchronized.

In the example below, object modules OBJ1, OBJ2 and OBJ3 are produced by
compiling source modules SOURCE1, SOURCE2 and SOURCE3, respectively.
SOURCE2 might be the source module for an I/O routine used by many
applications. Load module LOAD1 is the result of linking OBJ1 and OBJ2, while
LOAD2 results from the link edit of OBJ2 and OBJ3. LOAD1 and LOAD2 might be
two separate programs that run against the same kind of data and would therefore
need to have a common I/O routine (SOURCE2). APPL 1 and APPL2 are LEC
architecture definitions that describe how to link edit LOAD1 and LOAD2,
respectively. Finally, TOPARCH is a high-level architecture definition that includes
APPL 1 and APPL2.

OBJ2

Figure 5. Example of Synchronization

In this example, all of the modules shown in the diagram exist only in the
production level of yourSCLM-controlied hierarchy and a" source, object and load
modules are synchronized. For each load module, the hierarchy contains the exact
version of the object modules that were used to link edit that load module. For
each object module, the hierarchy contains the exact version of the source that
was compiled to create that object module. You can always recreate exactly
(except for timestamps) the object and load modules for the applications.

34 ISPF/PDF Software Configuration and Library Manager

Ensuring Synchronization with Architecture Definitions

With this structure, you must pay close attention to which architecture definitions
you use to build and promote development changes. The scenario below
describes the INCORRECT use of architecture definitions, which leads to a loss of
synchronization between source and load.

A user puts in a request for a change to LOAD1 and you decide that the way to
implement that change is to modify SOURCE2. Because you are making a change
to LOAD1, you also decide (in error as it will turn out) to use APPL 1 to drive your
builds and promotes. When your changes are made and you are ready to build,
you cause SCLM to rebuild OBJ2 (because SOURCE2 changed) and LOAD1
(because OBJ2 changed), by specifying APPL 1 on the BUILD panel. LOAD2 will not
be rebuilt, even though OBJ2 changed, because LOAD2 is outside of the scope of
architecture definition APPL 1. Herein lies the problem. When you promote APPL 1,
SCLM checks that everything that needs to be rebuilt (within the scope of APPL 1)
has been rebuilt. Unfortunately, modules outside the scope of APPL 1 should be
rebuilt as well.

When complete, all modules within the scope of APPL 1 are synchronized and
recreatable. However, LOAD2 was outside the scope of the architecture definition
you used and is not recreatable. Therefore LOAD2 is not synchronized with its
source.

To avoid this problem, you must analyze the architecture of the applications in your
SCLM-controlled project and choose an architecture definition with a scope that
contains all modules that need to be rebuilt. The correct architecture definition
would have been TOPARCH in the example because only TOPARCH has both
LOAD1 and LOAD2 within its scope. These modules have to be relinked because
of a change to SOURCE2.

It is strongly suggested that you have one high-level architecture definition with a
scope that includes every module controlled by an SCLM project. You can use
architecture definitions with much smaller scopes in your day to day development
work. However, if you do that, you should also check the synchronization of all
modules in the project by performing a build on the top high-level architecture
definition (in REPORT mode) as part of your testing. The build in REPORT mode
indicates any out-of-sync modules by listing those modules that need to be rebuilt.

Chapter 2. Architecture Definition 35

36 ISPF/PDF Software Configuration and Library Manager

SCLM Variables

Chapter 3. SCLM Variables

General-Use Programming Interface ----------------,

The SCLM variables are general-use programming interfaces, which you may
use for programming purposes.

SCLM variables are character strings that SCLM replaces with a value. SCLM
replaces these variables with eight-character values except for the following:

• @@FLM$XN variable has a value with a maximum length of 110.
• @@FLM$UD variable has a value with a maximum length of 128.
• @@FLM$LlS variable contains an address in decimal character format.
• @@FLM$STP variable contains an address in decimal character format.

Many of the variables can be used for certain SCLM functions only. Table 4 lists
the SCLM variables in alphabetical order by field name and indicates which SCLM
functions they can be used for. Table 5 on page 40 lists the SCLM variables in
alphabetic order.

Table 4 (Page 1 of 3). SCLM Field Name Variables and their SCLM Functions

SCLM Field Name Variable Parse Build Promote Utilities

Access Key @@FLMACK X

Accounting Group @@FLMGRP X X X X

Accounting Member @@FLMMBR X X X X

Accounting Record @@FLMATP X
Type

Accounti ng Status @@FLMSTA X X X

Accounti ng Type @@FLMTYP X X X X

Alternate Project @@FLMALT X X
Definition

Assignment @@FLMASG X
Statements

Authorization Code @@FLMACD X

Authorization Code @@FLMACC X
Change

Blank Lines @@FLMBLL X

Buffer Size in Bytes @@FLMSIZ X

Build Map Date @@FLMMDT X

Build Map Name @@FLMMNM X

Build Map Time @@FLMMTM X

Build Map Type @@FLMMSC X

Change Code @@FLM$CC X

© Copyright IBM Corp. 1989, 1990 Chapter 3. SCLM Variables 37

SCLM Variables

Table 4 (Page 2 of 3). SCLM Field Name Variables and their SCLM Functions

SCLM Field Name Variable Parse Build Promote Utilities

Change Code Date @@FLM$CD X

Change Code Time @@FLM$CT X

Change Date @@FLMCDT X

Change Group @@FLMCLV X

Change Time @@FLMCTM X

Change User ID @@FLMCUS X

Comment Lines @@FLMCML X

Comment @@FLMCMS X
Statements

Compilation Unit @@FLM$XN X
Name

Compilation Unit @@FLM$XT X
Type

Compool @@FLM$CM X

Control Statements @@FLMCNS X

Creation Date @@FLMIDT X

Creation Time @@FLMITM X

Database Qualifier @@FLMDSQ X X

ddname Substitution @@FLMDDN X X X
List

Default Type @@FLMSRF X

Dependencies @@FLMLIS X
Pointer

Dynamic Includes @@FLMINC X
Pointer

Include @@FLM$IN X

Language @@FLMLAN X

Language Version @@FLMLVS X

Member Version @@FLMMVR X

Next Group @@FLMTOG X

Number of Change @@FLMNCC X
Codes

Number of @@FLMNCU X X
Compilation Units

Number of @@FLMNCM X
Compools

Number of Includes @@FLMNIN X

38 ISPF/PDF Software Configuration and Library Manager

SCLM Variables

Table 4 (Page 3 of 3). SCLM Field Name Variables and their SCLM Functions

SCLM Field Name Variable Parse Build Promote Utilities

Number of @@FLMNCL X
Noncomment Lines

Number of @@FLMNCS X
Noncomment
Statements

Number of User @@FLMNUE X
Entries

Predecessor Date @@FLMBDT X

Predecessor Time @@FLMBTM X

Project @@FLMPRJ X X X X

Prolog Lines @@FLMPRL X

Promote Date @@FLMPDT X

Promote Time @@FLMPTM X

Promote User ID @@FLMPUS X

SCLM Internal Data @@FLMINF X
Pointer

SCLM Version @@FLMVER X

Static Pointer @@FLMSTP X

System User ID @@FLMUID X

Top CU Name @@FLMCUN X

Total Lines @@FLMTLL X

Total Statements @@FLMTLS X

Translator Version @@FLMTVS X

User Data Entry @@FLM$UD X

Note: The build function does not support the use of SCLM variables on the
FLMCPYLB macro.

Chapter 3. SCLM Variables 39

SCLM Variables

Table 5 lists the SCLM variables in alphabetic order.

Table 5 (Page 1 of 3). SCLM Variables and their SCLM Functions

Variable SCLM Field Name Parse Build Promote Utilities

@@FLMACC Authorization Code X
Change

@@FLMACD Authorization Code X

@@FLMACK Access Key X

@@FLMALT Alternate Project X X
Definition

@@FLMASG Assignment X
Statements

@@FLMATP Accounting Record X
Type

@@FLMBDT Predecessor Date X

@@FLMBLL Blank Lines X

@@FLMBTM Predecessor Time X

@@FLMCDT Change Date X

@@FLMCLV Change Group X

@@FLMCML Comment Lines X

@@FLMCMS Comment X
Statements

@@FLMCNS Control Statements X

@@FLMCTM Change Time X

@@FLMCUN Top CU Name X

@@FLMCUS Change User 10 X

@@FLMDBQ Database Qualifier X X

@@FLMDDN ddname Substitution X X X
List

@@FLMGRP Accounting Group X X X X

@@FLMIDT Creation Date X

@@FLMINC Dynamic Includes X
Pointer

@@FLMINF SCLM Internal Data X
Pointer

@@FLMITM Creation Time X

@@FLMLAN Language X

@@FLMLIS Dependencies X
Pointer

@@FLMLVS Language Version X

40 ISPF/PDF Software Configuration and Library Manager

SCLM Variables

Table 5 (Page 2 of 3). SCLM Variables and their SCLM Functions

Variable SCLM Field Name Parse Build Promote Utilities

@@FLMMBR Accounting Member X X X X

@@FLMMDT Build Map Date X

@@FLMMNM Build Map Name X

@@FLMMSC Build Map Type X

@@FLMMTM Build Map Time X

@@FLMMVR Member Version X

@@FLMNCC Number of Change X
Codes

@@FLMNCL Number of X
Noncomment Lines

@@FLMNCM Number of X
Com pools

@@FLMNCS Number of X
Noncomment
Statements

@@FLMNCU Number of X X
Compilation Units

@@FLMNIN Number of Includes X

@@FLMNUE Number of User X
Entries

@@FLMPDT Promote Date X

@@FLMPRJ Project X X X X

@@FLMPRL Prolog Lines X

@@FLMPTM Promote Time X

@@FLMPUS Promote User 10 X

@@FLMSIZ Buffer Size in Bytes X

@@FLMSRF Default Type X

@@FLMSTA Accounting Status X X X

@@FLMSTP Static Pointer X

@@FLMTLL Total Lines X

@@FLMTLS Total Statements X

@@FLMTOG Next Group X

@@FLMTVS Translator Version X

@@FLMTYP Accounti ng Type X X X X

@@FLMUIO System User 10 X

@@FLMVER SCLM Version X

@@FLM$CC Change Code X

Chapter 3. SCLM Variables 41

SCLM Variables

Table 5 (Page 3 of 3). SCLM Variables and their SCLM Functions

Variable SClM Field Name Parse Build Promote Utilities

@@FLM$CD Change Code Date X

@@FLM$CM Com pool X

@@FLM$CT Change Code Time X

@@FLM$IN Include X

@@FLM$UD User Data Entry X

@@FLM$XN Compilation Unit X
Name

@@FLM$XT Compilation Unit X
Type

Note: The build function does not support the use of SCLM variables on the
FLMCPYLB macro.

Chapter 4, "SCLM Dialog Interface," defines and lists the SCLM fields (as they are
displayed in the dialog) for each record that is stored in the project database.

You can use the variables with the following:

• The FLMTRNSL OPTIONS parameter
• The PARM and PARMx architecture member keywords
• The COPYLIB parameter
• The line format parameter of the database contents utility
• Build and promote user exits.

42 ISPF/PDF Software Configuration and Library Manager

SCLM Primary Option Menu

Chapter 4. SCLM Dialog Interface

This chapter describes the panels you use to access the SCLM functions and the
various options you can select from each panel. It also describes the panels that
allow you to generate reports and provides several examples of the reports.

This chapter also compares SCLM to ISPF/PDF and notes the differences in the edit
commands and the similarities of the utilities.

You can access all SCLM functions interactively through a set of panels under
ISPF/PDF dialog management by selecting Option 10 from the ISPF/PDF Primary
Option Menu.

Note: A virtual region size of 4096K is recommended when you use the SCLM
dialog. Increase the virtual region size if you encounter GETMAIN
problems.

SCLM Primary Option Menu
Select the six SCLM primary functions from the SCLM Primary Option Menu shown
in Figure 6.

------------------------- SCLM PRIMARY OPTION MENU ------------------------
OPTION =:=>

1 BROWSE
2 EDIT
3 UTILITIES
4 BUILD
5 PROMOTE
X EXIT

- ISPF/PDF Browse
- Create or change source data in SCLN databases
- Perform SCLM database utility/reporting functions
- Construct SCLM-controlledcomponents
- Move components up SCLM hierarchy
- Terminate SCLM

SPECIFY SCLM PROJECT CONTROL INFORMATION:
PROJECT ===> PROJl (Project high-level qualifier)
ALTERNATE ===> (Project definition: defaults to project)
DEV GROUP ===> USERl (Development group: defaults· to user TO)

Figure 6. SCLM Primary Option Menu

© Copyright IBM Corp. 1989, 1990 Chapter 4. SCLM Dialog Interface 43

SCLM Primary Option Menu

When you select one of these options and press the Enter key, SCLM displays
another panel that is determined by the option you selected. Figure 6 on page 43
shows the options that this chapter describes. You can use the options to:

Option
1
Browse

2
Edit

3
Utilities

4
Build

5
Promote

Description
Display data without changing it and see large data sets, such as
compiler listings. You can scroll browse displays up, down, left, or
right. Browse commands, entered on the COMMAND line, allow you
to do tasks like finding a character string. See "Browse (Option 1)"
on page 45 for more information.

Create or change source data, such as program code and
documentation. SCLM uses the ISPF/PDF editor, which is a
full-screen editor. Unlike Browse, Edit allows you to type over the
data displayed on your screen. You can scroll the data up, down, left,
or right. You can change the data by using the edit line commands,
which are entered directly on the line number of the line or lines to be
affected, and by using primary commands, which are entered on the
COMMAND line. See "Edit (Option 2)" on page 46 for more
information.

Carry out library and data set maintenance tasks, such as browsing or
deleting members, accounting records, build maps, and intermediate
records and forms; updating member authorization codes; migrating
project databases to SCLM; and creating database contents and
architecture reports. See "Utilities (Option 3)" on page 52 for more
information.

Build data set members or components of an application,
automatically compiling and linking modules that require processing.
See "Build (Option 4)" on page 91 for more information.

Promote data set members or components of an application. See
"Promote (Option 5)" on page 94 for more information.

The fields on the SCLM Primary Option Menu are:

PROJECT
The common identifier for all ISPF libraries belonging to the same
programming project. This field is required to access any SCLM function.

ALTERNATE
You can enter an alternate project definition. Leaving this field blank results in
the project definition being the same as the project high level qualifier. For
more information, see "Primary Non-Key Group Testing Techniques" on
page 258 for alternate project definition.

DEV GROUP
A group at the bottom of the SCLM hierarchy. Your private library is in this
group. This field defaults to your TSO PREFIX or to your user 10 if no TSO
PREFIX has been created.

44 ISPF/PDF Software Configuration and Library Manager

Browse (Option 1)

Browse (Option 1)
The Browse option allows you to display data in a project database. The SCLM
browse interface analyzes the database structure for the project you specify and
automatically provides the appropriate concatenation sequence for the groups. It
presents the four lowest key groups identified in the project definition, starting from
the DEV GROUP specified on the Primary Option Menu.

SCLM browse is functionally equivalent to ISPF/PDF browse. (Refer to ISPFIPDF
Guide for more information.) For example, you can specify a member name unless
you want to see a member selection list. Additionally, you can modify the
displayed library (or "group") concatenation sequence. You can also browse a
non-SCLM data set, a partitioned data set (PDS), or a partitioned data set extended
(PDSE). Figure 7 shows the panel SCLM displays when you select Option 1
BROWSE from the SCLM Primary Option Menu.

COMMAND ===>

I SPF LIBRARY:
PROJECT ===> PROJl
GROUP ===> USERl
TYPE ===> SOURCE

SCLM BROWSE - ENTRY PANEL

===> INT ===> TEST ===> RELEASE

MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

MIXED MODE ===> NO (Specify YES or NO)

FORMAT NAME ===>

Figure 7. SCLM Browse - Entry Panel

The fields on the SCLM Browse - Entry panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The development group that you specified in the DEV GROUP field on the
SCLM Primary Option Menu. The default is your user ID. This group is
followed by the next key group in the hierarchy for up to four groups.

TYPE
The identifier for the type of information in the ISPF library, such as PUI,
SCRIPT, and PANELS.

MEMBER
The name of an ISPF/PDF library or other partitioned data set member.
Leaving this field blank or typing a character string followed by an asterisk
causes SCLM to display a member list.

Chapter 4. SCLM Dialog Interface 45

Edit (Option 2)

Edit (Option 2)

DATA SET NAME
Any fully-qualified data set name, such as I USERID.SYS1.MACLIB I. If you
include your TSO user prefix (defaults to user 10), you must enclose the data
set name in single quotes. However, if you omit the TSO user prefix and single
quotes, your TSO user prefix is automatically added to the beginning of the
data set name.

VOLUME SERIAL
A real DASD volume or a virtual volume residing on an IBM 3850 Mass Storage
System. To access 3850 virtual volumes, you must also have MOUNT
authority, which is acquired through the TSO ACCOUNT command. ISPF/PDF
does not allow the use of data sets that contain more than one volume. SCLM
does not use the system catalog when you specify a volume serial.

DATA SET PASSWORD
The password for OS password-protected data sets. This is not your TSO user
ID password.

MIXED MODE
You can browse unformatted mixed data that contains both EBCDIC (one-byte)
characters and Double Byte Character Set (DBCS or two-byte) characters. To
do this, you must specify mixed mode. Valid values for this field are:

YES Indicates mixed data

NO Indicates no mixed data.

If your terminal does not support DBCS, ISPF/PDF ignores the operation mode.

FORMAT NAME
The name of a format defi nition or blank if no format is to be used. A format
definition can include EBCDIC fields, DBCS fields, and a mixed field. If the
specified format includes a mixed field definition, and you specify NO in the
MIXED MODE field, ISPF/PDF ignores the operation mode.

The Edit option of SCLM is provided by the ISPF/PDF editor. Within SCLM, the
editor automatically locks the member when you begin the edit session and parses
and stores edited members and their accounting records when you end the edit
session.

When you select the Edit option, the SCLM editor analyzes the database structure
for the specified project and displays the concatenation sequence of the groups in
your library concatenation. It presents the four lowest key groups for the project
previously specified in the project definition. This preprocessing, coupled with the
ISPF/PDF "drawdown" feature, ensures that the member you want to modify is the
most current version of a component in the library concatenation.

SCLM copies or draws down the member or compilation unit to your private libra.,
in the deveJop,rnent.grbupJrom its first appearance in a higher key or pri"4Pry
group in the library concate:nation. lhe member or compilation unit remains
locked until you delete it or promote it ~o a higher group.

Figure 8 on page 47 shows the panel SCLM displays when you select Option 2
EDIT from the SCLM Primary Option Menu.

~

46 ISPF/PDF Software Configuration and Library Manager

Edit (Option 2)

-------------------------- SCLM EDIT - ENTRY PANEL ---------------------------
COMMAND ===>

ISPF LIBRARY:
PROJECT ===> PROJl
GROUP ===> USERl
TYPE ===> SOURCE
MEMBER ===~ MODULE5

PROFILE NAME

INITIAL MACRO
MIXED MODE

===>

===>
===> NO

CHANGE CODE ===> 2

AUTHORIZATION CODE ===>
PARSER VOLUME ===>

===> INT ===> TEST ===> RELEASE

(Blank or pattern for member selection list)

(If blank, defaults to data set type)

(YES or NO)

(If blank, default auth code used)
(If blank, default volume used)

Figure 8. SCLM Edit - Entry Panel

The fields on the SCLM Edit - Entry panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The development group that you specified in the DEV GROUP field on the
SCLM Primary Option Menu. The default is your user 10. This group is
followed by the next key group in the hierarchy up to four groups.

The SCLM editor ensures that editing occurs'only in private libraries by not
allowing you to modify this field. SCLM guarantees that the group is a valid
private library by verifying it against the specified project definition. (All other
displayed groups are in unprotected fields and you can alter them.)

Also, if you specify an incorrect order for the drawdown of a given member
(that is, the concatenation sequence of groups does not match the order of the
key groups in the library concatenation), SCLM does not allow the edit session.
SCLM then displays a panel indicating all groups that comprise the complete
hierarchy.

TYPE
The identifier for the type of information in the ISPF library, such as PLlI,
SCRIPT, and PANELS.

MEMBER
The name of an ISPF library or other partitioned data set member. Leaving
this field blank or typing a pattern as a member name causes SCLM to display
a member list.

PROFILE NAME
The name of an edit profile, which you can use to override the default edit
profile. Refer to ISPFIPDF Edit and Edit Macros for more information.

INITIAL MACRO
An edit macro to be processed before you begin editing. This initial macro
overrides any IMACRO value in your profile.

Chapter 4. SCLM Dialog Interface 47

Edit (Option 2)

SAVE

If you leave the INITIAL MACRO field blank and your edit profile includes an
IMACRO specification, the initial macro from your edit profile is processed.

If you want to suppress the processing of an initial macro in your edit profile,
enter NONE in the INITIAL MACRO field. Refer to ISPFIPDF Edit and Edit Macros
for more information.

MIXED MODE
You can edit unformatted mixed data that contains both EBCDIC (one-byte)
characters and Double Byte Character Set (DBCS or two-byte) characters. To
do this, you must specify mixed mode. Valid values for this field are:

YES Specifies that the editor is to look for shift-out and shift-in delimiters
surrounding DBCS data.

NO No mixed data.

If your terminal does not support DBCS, SCLM ignores the operation mode.

CHANGE CODE
Specify a change code to indicate why you updated the member.

AUTHORIZATION CODE
Specify the current authorization code for the member.

PARSER VOLUME
The specific volume ID in which SCLM stores output from the SCLM parser.
This field is not required.

The SCLM editor provides all of the functions of the ISPF/PDF editor. For example,
you can specify a profile name and an initial macro before editing a member.
Enhancements now allow you to lock a member; to parse, create, or update an
accounting record; and to specify change codes.

The parser supplied with SCLM does not recognize ISPF/PDF packed data. If the
ISPF/PDF pack mode is on, the parser supplied with SCLM returns statistical
values reflecting packed data. You must unpack the data before it is parsed by
SCLM to obtain correct statistical values.

The following paragraphs describe how additional features of the SCLM editor
differ from the ISPF/PDF editor.

The SCLM SAVE command is similar to the ISPF/PDF SAVE command except that
the member is automatically parsed and the member's accounting record is
created or updated.

The first time you save a member, SCLM displays the SCLM Edit Profile panel (see
Figure 9 on page 50) for you to specify a change code and the member's
language.

The SCLM editor supports two modes of operation, UPARSE and USUBDD, that
allow you to force save an Ada language member. Each of these modes allows an
Ada language member to be parsed or drawn down, or both, even when it contains
a compilation unit that already exists in another member at a higher group in the
hierarchy.

48 ISPF/PDF Software Configuration and Library Manager

Command Format

SCREATE

Command Format

SMOVE

Edit (Option 2)

If you specify the UPARSE mode, SCLM parses the member and stores the
accounting information for that member.

If you specify the USUBDD mode, SCLM allows the compilation unit to be drawn
down to your group. You can specify either one or both modes.

Note: Be careful when you use these options to save an Ada member because
doing so can cause SCLM to track a compilation unit defined in two different
members. A forced save for a non-Ada language member has the same
effect as a save.

SAVE [UPARSE] [USUBDD]

The SCLM SCREATE command is similar to the ISPF/PDF CREATE command
except that the SCLM editor automatically parses, locks out, and creates an
accounting record for the created member.

If you do not enter a change code on the SCLM Edit - Entry panel (and it is
required), SCLM displays the SCLM Edit Profile panel shown in Figure 9 on
page 50. Also, if the language of the member you want to create differs from the
language of the member you are editing, enter the SPROF command. SCLM
displays the SCLM Edit Profile panel so you can specify another language.
Otherwise, the newly-created member has the same member attributes as the
current member.

Note: If the member to be created already exists in your library, SCLM
automatically defaults to the SREPLACE command.

The SCLM SCREATE command does not offer an extended panel for creating a
member outside the hierarchy.

SCREATE member-name [line-range]

SCRE

The SCLM SMOVE command is similar to the ISPF/PDF MOVE command except
that the SCLM editor deletes the accounting information of the member being
moved if the member is moved from a development library.

The SCLM SMOVE command does not offer an extended panel for moving a
member from outside the hierarchy.

Chapter 4. SCLM Dialog Interface 49

Edit (Option 2)

Command Format

SPROF

SMOVE member-name [AFTER label]
[BEFORE 1 abe 1]

The SPROF command allows you to specify parameters that SCLM requires to
track a member through the hierarchy. SCLM displays the SCLM Edit Profile
panel, shown in Figure 9, when you end the edit session (if you did not enter a
change code on the SCLM Edit - Entry panel and it is required) or whenever you
enter the SPROF command. SCLM also displays the SCLM Edit Profile panel to
specify a language for a new member.

MEMBER: MODULE5 -------~--- SCLM EDIT PROFILE -----------~------------~~------
COMMAND ===>

LANGUAGE =:::=> PASCAL
CHANGE CODE ===> 2 (Use 11=" to retrieve last entry)

Enter CANCEL command to exit without processing the member.

Figure 9. SCLM Edit Profile

The fields on the SCLM Edit Profile panel are:

LANGUAGE
The language definition name to be used to process the member. This field is
required.

CHANGE CODE
Specify a change code to indicate why you updated the member. This field is
requi red if your project has a change code verification routi ne. See "Change
Code Verification Routines" on page 261 for more details.

You can change the information on this panel at any time during the edit session.
If you alter the LANGUAGE field or modify the member, or both, SCLM parses and
creates or updates the member's accounting record while saving the member.

SCLM processes the member and saves it in your private library if you alter the
language or change code and if the member does not exist in your private library.
If you alter the change code but do not modify the member and it exists in the
private library, SCLM regenerates only the accounting information.

50 ISPF/PDF Software Configuration and Library Manager

SREPLACE

Command Format

Edit (Option 2)

When you enter SCLM edit profile information, SCLM maintains it across SCLM
edit sessions. Enter END from the SCLM Edit Profile panel to end SCLM edit
profile specifications and return to the SCLM edit session. Enter CANCEL to cancel
any changes you have made on the panel, end SCLM edit profile specifications,
and return to the SCLM edit session.

The SCLM SREPLACE command is similar to the ISPF/PDF REPLACE command
except that the SCLM editor automatically parses, locks out, and creates an
accounting record for the replaced member. Use this command, not SCREATE,
when the member exists in the library.

If you do not enter a change code on the SCLM Edit - Entry panel (and it is
required), SCLM displays the SCLM Edit Profile panel shown in Figure 9 on
page 50. Also, the replaced member will have the same member attributes as the
current member.

The SCLM SREPLACE command does not offer an extended panel for replacing a
member outside the hierarchy.

SREPLACE member-name [line-range]

SREPL

Because the SCLM editor uses ISPF/PDF edit macros to perform its functions, do
not override SCLM command macro definitions, especially the END, SAVE,
CANCEL, and RETURN macros. If you need a user-defined end macro, define an
alternate command name such as QUIT. At the end of this alternate end macro,
you must enter the END, RETURN, SAVE, or CANCEL command to start the SCLM
end routines.

If you override an SCLM macro by using the DEFINE command, the macro is not
redefined until you begin a new edit session.

You can also override SCLM edit macros by entering the ISPF/PDF BUILTIN
command (for example, BUILTIN SAVE).

Note: Be careful if you override SCLM command macros. If you call SCREATE or
SREPLACE as BUILTIN, for instance, SCLM does not automatically parse,
lock, and update accounting records for the created member.

Chapter 4. SCLM Dialog Interface 51

Utilities (Option 3)

Utilities (Option 3)

Library Utility

Figure 10 shows the panel SCLM displays when you select Option 3 UTILITIES
from the SCLM Primary Option Menu.

---------------------~------- SCLM- UTILITIES ---~----------------------------
OPTION ===>

LIBRARY - Browse or delete. members, accounting records,
build maps, and update member authorization codes

2 SUBlIB MGMT - Browse or delete intermediate records and forms
3 MIGRATION - Regi ster the contents of a 1 ibrary with SCLM
4 DATA BASE CONTENTS - Create reports and tailored data sets against SCLM

database
ARCHITECTURE REPORT - Create architecture. report

Figure 10. SCLM Utilities

When you select one of these options and press the Enter key, SCLM displays
another panel that is determined by the option you selected. Figure 10 shows the
following options that you can use to:

Option Description

Browse or delete source members and their accounting records and build
maps. You can also update authorization codes and browse statistical
information, such as the number of change codes, includes, compools,
compilation units, and user entries for an accounting record.

2 Browse or delete intermediate records or forms for Ada members.

3 Migrate a large number of members into a project database.

4 Create reports and tai lored data sets on the contents of a project
hierarchy.

5 Create reports that show the architecture of an application or a
subapplication.

The library utility is completely interactive and parallels the ISPF/PDF library
utility.

Figure 11 on page 53 shows the panel SCLM displays when you select Option 1
LIBRARY from the SCLM Utilities panel.

52 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

--------------------------- SCLM - LIBRARY UTILITY ---------------------------
COMMAND ===>

A - Browse accounting record
B - Browse member
D - Delete member. accounting record. build map. and cross reference records
M - Browse build map
U - Update accounting record authorization code
blank - Display member list

SCLM LIBRARY:
PROJECT ===> PROJI
GROUP ===> USERl
TYPE ===> SOURCE
MEMBER ===>

Figure 11. SCLM Library Utility

The fields on the SCLM Library Utility panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The development group that you specified in the DEV GROUP field on the
SCLM Primary Option Menu.

TYPE
The identifier for the type of information in the ISPF/PDF library. If you specify
an invalid SCLM type, enter the HELP command (the default is PF1) to display
all valid types for the current project definition.

MEMBER
The name of an ISPF/PDF library or other partitioned data set member.
Leaving this field and the COMMAND field blank causes SCLM to display a
member list.

Library Utility Commands
Enter your selection in the COMMAND field.

• If you enter A, B, or M, SCLM displays the specified member or record if it is
present.

• If you enter D, SCLM deletes all portions of the member such as text,
accounting, and build map records.

If you delete a member from a key group that also exists in a non-key group in
a higher layer of the hierarchy, you need to delete the member from the
non-key group.

• If you enter U, SCLM displays an input panel and updates the authorization
code according to your input. (To delete or update any data, you must have
UPDATE authority to the specified data set.)

• To delete, browse, or update several members, use the member selection list.

Chapter 4. SCLM Dialog Interface 53

Utilities (Option 3)

Member Selection List
You can delete, browse, or update members by making selections from a member
selection list. To display a member selection list, do the following:

1. Leave the COMMAND field blank.
2. Enter the project, group, and type information in the appropriate fields.
3. Leave the MEMBER field blank.

Use the scroll commands or the LOCATE command to scroll the list.

Figure 12 shows the panel SCLM displays when you select the member selection
list.

DATA SET;';''.. PRO~1.USERl.SOURCE .. ------------~~--~::_-~---------~,.---. ROW 1 OF6
COHMAND ===:> SCROLL ===> CSR

:. Line· Commands:
Browse: A - Account 1 n9 B - Text M ~ Build map
A Her D - Del ete text, account i 09 ,buil dmap U - Update auth code

Meinber Status Text Accounting Build Map
-----_ _-- ---------

MODULEl X X X
MODULE2 X X
MODULE3 X X X
MODULE4 X X X

A MODULE5 X X X
MODULE6 X X X

**********~******************** BOTTOM·OF DATA********************************

Figure 12. Member Selection List

The fields for the panel shown in Figure 12 are:

MEMBER
The names of the members in the project, group, and type you specified on the
SCLM Library Utility panel.

STATUS
SCLM displays the status of the member according to the line command you
select. Enter a line command to do the following:

A Display an accounting record
B Browse a member
D Delete a member (see Note)
M Display a build map record
U Update an authorization code.

To delete the accounting records for a member that you deleted outside the
SCLM dialog, enter the name of the member in the member selection list.
Then enter the D line command.

Note: SCLM can only delete accounting records and build maps from libraries
that you can allocate; that is, the libraries these records are from must
exist.

54 ISPF/PDF Software Configuration and Library Manager

Accounting Record

Utilities (Option 3)

TEXT
An X in this field indicates that the member exists.

ACCOUNTING
An X in this field indicates that the accounting information for the associated
member exists.

BUILD MAP
An X in this field indicates that the build map record for the associated member
exists.

If you enter the A line command to display an accounting record, SCLM displays a
panel showing the information recorded for the member as shown in Figure 13.

DATA SET -- PROJ1.USER1.S0URCE(MODULE5) - ACCOUNTING RECORD ------------------
COMMAND ===>

GENERAL DATA:
Accounting Status
Change User ID
Member Version
Language
Creation Date
Creation Time
Promote User ID
Promote Date
Promote Time
Predecessor Date
Predecessor Time

EDITABLE
VEND107
3
PASCAL
01/31/89
12:45:33

: 00/00/00
: 00:00:00
: 02/01/89
: 14:21:00

Display Statistics
Number of Change Codes 5
Number of Includes 1
Number of Compools : 0
Number of Compilation Units: 0
Number of User Entries : 2

Figure 13. Accounting Record

Change Group
Authorization Code
Auth. Code Change
Translator Version
Change Date
Change Time
Access Key
Build Map Name
Build Map Type
Build Map Date
Buil d. Map Ti me

: USER1
: REL

02/14/89
17:03:00

: 02/14/89
: 17:03:00

(Enter US" to select)
(Enter US" to select)
(Enter US" to select)
(Enter US" to select)
(Enter US" to select)
(Enter "S" to se 1 ect)

The fields on the Accounting Record panel are:

ACCOUNTING STATUS
The status of the member.

EDITABLE

NON-EDIT

LOCKOUT

INITIAL

CHANGE USER 10

Members that you can edit.

Members that SCLM creates as a result of build processing.

Members that you could edit if they were not locked out.

Members that you could edit if SCLM were not verifying
whether they are locked out.

The user ID of the person who made the last update to the member.

MEMBER VERSION
The number of times the member was drawn down. (A version of 1 is used for
new members.)

LANGUAGE
The language of the member.

Chapter 4. SCLM Dialog Interface 55

Utilities (Option 3)

CREATION DATE
The date the member was first registered with SCLM.

CREATION TIME
The time the member was first registered with SCLM.

PROMOTE USER 10
The user ID of the person who last promoted the member.

PROMOTE DATE
The date the member was last promoted.

PROMOTE TIME
The time the member was last promoted.

PREDECESSOR DATE
The change date of the member that this member overlays when it is promoted
up the hierarchy.

PREDECESSOR TIME
The change time of the member that this member overlays when itis promoted
up the hierarchy.

CHANGE GROUP
The name of the group in which the member was last updated.

AUTHORIZATION CODE
The current authorization code for the member.

AUTH. CODE CHANGE
A temporary authorization code used during verification. When set, it
represents the "change to" authorization code.

TRANSLATOR VERSION
The version of the translator used during build processing.

CHANGE DATE
The last date a developer modified the member.

CHANGE TIME
The last time a developer modified the member.

ACCESS KEY
An identifier that indicates who has exclusive access to the member.

BUILD MAP NAME
The name of the map that created the member.

BUILD MAP TYPE
The name of the type containing the map.

BUILD MAP DATE
The date the map created the member.

BUILD MAP TIME
The time the map created the member.

DISPLAY STATISTICS
SCLM displays the Accouting Record Statistics panel, shown in Figure 14 on
page 57, if you enter S in this field.

NUMBER OF CHANGE CODES
The number of change codes entered against the member.

56 ISPF/PDF Software Configuration and Library Manager

Statistics

Utilities (Option 3)

NUMBER OF INCLUDES
The number of include references in the source member.

NUMBER OF COMPOOLS
The number of JOVIAL compool references in the member.

NUMBER OF COMPILATION UNITS
The number of compilation units in the member.

NUMBER OF USER ENTRIES
The number of user data entry records associated with the member.

Type S in the appropriate input fields and press the Enter key to display additional
panels. You can browse the statistics or lists of change codes, includes, JOVIAL
com pools, compilation units, or user entries referenced by a member. You can
also scroll the lists.

Figure 14 through Figure 18 show the panels SCLM displays when you select each
of the items in the Accounting Record panel.

SCLM displays statistical information, as shown in Figure 14, when you enter S in
the DISPLAY STATISTICS field on the Accounting Record panel.

DATA SET -- PROJ1.USER1.S0URCE(MODULE5) - ACCOUNTING RECORD ------------------
COMMAND ===>

STATISTICS:
Total Lines : 13
Comment Lines : 2
Noncomment Lines : 5
Blank Lines : 6
Prolog Lines : 0

Figure 14. Accounting Record Statistics

Total Statements : 4
Comment Statements : 2
Control Statements : 0
Assignment Statements : 0
Noncomment Statements : 2

The fields on the Accounting Record Statistics panel are:

TOTAL LINES
The total number of lines in the member, which is equal to the sum of comment
lines, noncomment lines, and blank lines.

COMMENT LINES
The number of comment lines. A comment line is any line that has comment
information only.

Chapter 4. SCLM Dialog Interface 57

Utilities (Option 3)

NONCOMMENT LINES
The number of source lines. A noncomment line is a source line that contains
at least part of a noncomment statement. If a line has both a statement and a
comment, SCLM considers it a noncomment line.

BLANK LINES
The number of blank lines in the member. A blank line is
language-independent; no nonblank characters can be on it.

PROLOG LINES
The number of prolog lines in the member.

TOTAL STATEMENTS
The sum of the comment statements and the noncomment statements in the
member.

COMMENT STATEMENTS
The number of comment statements. A comment statement is denoted by a set
of beginning and ending comment delimiters for the particular language being
parsed. If an ending delimiter is not defined for a language, the end of the line
is used. A comment statement can span several lines, or several comment
statements can exist on a single line.

CONTROL STATEMENTS
The number of logical control statements.

ASSIGNMENT STATEMENTS
The number of assignment statements.

NONCOMMENT STATEMENTS
The number of complete statements that SCLM can process. Noncomment
statements are language-dependent, follow language syntax rules, and are
separated by the language delimiter. A noncomment statement can span
several lines, or several noncomment statements can exist on a single line.

58 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Change Code List: Figure 15 is an example of the information SCLM displays
when you enter S in the NUMBER OF CHANGE CODES field on the Accounting
Record panel.

DATA SET -- PROJ1.USER1.S0URCE(MODULE5) - CHANGE CODE LIST ------- ROW 1 OF 5
COMMAND ===> SCROLL ===> CSR

Line Command: D - Delete change code

Delete Status Change Number Change Date Change Time
------------- ----------- -----------

*SELECT 31 02/14/89 17:03:00
2 02/14/89 17:00:00
PR3573 02/01/89 14:21:00
CR3582 02/01/89 11:34:00
PR3456 02/01/89 11:31:00

******************************* BOTTOM OF DATA ********************************

Figure 15. Change Code List

The fields on the Change Code List panel are:

DELETE
You specify that you want to delete the change code when you enter 0 in this
field. SCLM selects the change code for deletion.

STATUS
SCLM displays *SELECT to indicate the change code you selected. Enter the
END command to confirm the delete request.

CHANGE NUMBER
A change code assigned to indicate why a member was updated.

CHANGE DATE
The last date a developer modified the member for the associated change
number. The CHANGE DATE on the top of the list is the most recent.

CHANGE TIME
The last time a developer modified the member; it is associated with the
CHANGE DATE.

Chapter 4. SCLM Dialog Interface 59

Utilities (Option 3)

Include list: Figure 16 is an example of the information SCLM displays when you
enter S in the NUMBER OF INCLUDES field on the Accounting Record panel.

DATA SET-- PROJl.USER1.S0URCE(MODULE5} - INCLUDE LIST -----;...:---- ROW 1 OF 1
COMMAND===> SCROLL ===> CSR

INCLUDE

INCLUDE3
******************************* BOTTOM OF DATA ********************************

Figure 16. Include List

The field on the Include List panel is:

INCLUDE
The name of an include reference in the source member. An include reference
is a generic term for code that you insert when SCLM compiles the source
member. The syntax of an include statement in a program is
language-dependent and is defined by language syntax rules.

60 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Com pool List: Figure 17 is an example of the information SCLM displays when
you enter S in the NUMBER OF COMPOOLS field on the Accounting Record panel.

DATA SET -- PROJl.USERl.SOURCE(MODULE4) - COMPOOL LIST ------------------------
COMMAND ===> SCROLL ===> CSR

COMPOOL

COMPI
COMP2

******************************* BOTTOM OF DATA ********************************

Figure 17. Com pool List

The field on the Com pool List panel is:

COM POOL
The name of a com pool reference in the source member. A compool reference
is a reference to a JOVIAL data mapping structure that SCLM must compile
before it compiles the current member. Compool references are specific to the
JOVIAL languages.

Chapter 4. SCLM Dialog Interface 61

Utilities (Option 3)

Compilation Units: Figure 18 is an example of the information SCLM displays
when you enter S in the NUMBER OF COMPILATION UNITS field on the Accounting
Record panel.

.DATASE"f e :

j - ,PRoJf.lJ$t'R'l ~SOURCE(MODUl:.E3) -. COMP ILAT:I9NUNIIS~~-- ~- ~ ~,::-~-- ~-.;':.,-
..•.. tOMM~NQ.=.=7> . SCROLL '===>CSR

Li fie . Command: S ;..$e 1 ecf.cross. reference record forrevi e.w

Compilation
Select Type Compilation Unit Name

---~-~-~---~-~--------~-------~--------~------------------
BODY XPKG2
SPEC XPKG2

~****~***":********************* BOTTOM,OFOATA:I<***:I<:I<****:I<**,*******'I;*******~***

Figure 18. Compilation Units

The fields on the Compilation Units panel are:

SELECT
SCLM displays the contents of the cross-reference record for the selected
compilation unit when you enter S in this field.

COMPILATION TYPE
The type of the compilation unit:

SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main procedures.

COMPILATION UNIT NAME
The name of the compilation unit. A compilation unit is an Ada language entity
that compiles separately.

SCLM considers each compilation unit contained in an Ada source member to
be an entity. The PARSE service obtains dependency information for each
compilation unit. The compilation unit names are not necessarily member
names.

62 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Cross-Reference Record: Figure 19 is an example of the information SCLM
displays when you enter S in the SEL field on the Compilation Units panel.

DATA SET -- () - CROSS-REFERENCE RECORD ---------------------------------------
COMMAND ===> SCROLL ===>

Compilation Unit; XPKG2

Compilation Type
CU Qualifier
Accounting Member
Accounting Type

; BODY
: ADACODE
: MODULE1
: SOURCE

Authorization Code: TEST
Generic Flag : GENERlC
Change Date 11/22/88
Change Time : 11:44:32

Dependency Information
Depend-
ency Compilation
Type Type Dependency Name

UP BODY· XYZPKG
DOWN SPEC ABCPKG

Figure 19. Cross-Reference Record

The fields on the Cross-Reference Record panel are:

COMPILATION UNIT
The name of the compilation unit.

COMPILATION TYPE
The type of the compilation unit.

CU QUALIFIER
The name of the compilation unit (CU) qualifier specified in the language
definition.

ACCOUNTING MEMBER
The member that generated this cross-reference record.

ACCOUNTING TYPE
The type containing the source that generated this cross-reference record.

AUTHORIZATION CODE
The current authorization code for the cross-reference record.

GENERIC FLAG
A flag indicating whether this compilation unit contains an Ada generic or an
inline construct.

CHANGE DATE
The last date a developer modified the cross-reference record.

CHANGE TIME
The last time a developer modified the cross-reference record.

DEPENDENCY TYPE
The type of dependency the current compilation unit has: UP for upward
dependency and DOWN for downward dependency.

Chapter 4. SCLM Dialog Interface 63

Utilities (Option 3)

• Upward dependency

A compilation unit has an upward dependency on the units it references
using the WITH and IS SEPARATE language structures. It is a package or
procedure body that has an upward dependency on its specification. An
upward dependency member is processed before a given member.

• Downward dependency

A compilation unit has a downward dependency on the units it references
with the IS SEPARATE language structure. It is a package or procedure
specification that has a downward dependency on its body. A downward
dependency member is processed after a given member.

COMPILATION TYPE
The type of the compilation unit:

SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main procedures.

DEPENDENCY NAME
The name of a compilation unit on which this compilation unit has a
dependency.

User Data Entries: Figure 20 is an example of the information SCLM displays
when you enter S in the NUMBER OF USER ENTRIES field on the Accounting
Record panel.

DATA SET -- PROJ1.USERLSOURCE(MODULEq) - USER DATA ENTRIES ----------..:--------
COMMAND ===> SCROll ===> CSR

line .Command: D - Delete User Data Entry

Del Stat Recl! user Data Entry
--- ---- ---- --~-~-~---~-~~~--------~-~-------------~----~-------------------

This record is. very long tOPfovethat two lines can be shown in
one record.

2 This record is short.
******************************* BOTTOM OF DATA· ************-/(***********~*******

Figure 20. User Data Entries

The fields on the User Data Entries panel are:

DEL
You specify that you want to delete the user data entry record when you enter D
in this field.

64 ISPF/PDF Software Configuration and Library Manager

Build Map Record

Utilities (Option 3)

STAT
SCLM displays *SEL to indicate the user data entry record you selected. Enter
the END command to confirm the delete request.

REC#
SCLM displays a record number with the first line of each user data entry
record.

USER DATA ENTRY
Project-specific information entered into the accounting record. The user data
entry record can span two lines for a maximum of 128 characters.

Enter the M line command on the SCLM Library Utility panel or on the member
selection list to display a build map record. The Build Map Record panel, shown in
Figure 21, displays the fixed build map information SCLM records for a member.

DATA SET -- PROJl.USERl.SOURCE(MODULE5) - BUILD MAP RECORD -------------------
COMMAND ===>

GENERAL DATA:
Change User ID
Member Version
Language
Creation Date
Creation Time

: VEND107
: 5
: CCMAP
: 01/3i/89
: 14:57:16

Translator Version
Language Version
Build Map Name
Build Map Type

: 1.0
: MODULE5"
: SOURCE

Change Group
Change Date
Change Time
Promote Date
Promote Ti me
Promote User 10

Build Map Date
Buil d Map Ti me

USER1
02/14/89
17:10:57
00/00/00

: 00:00:00

: 02/14/89
: 17:10:57

_ Review Build Map Contents (Enter US" to select)

Figure 21. Build Map Record

The fields on the Build Map Record panel are:

CHANGE USER 10
The user ID of the person who made the last update to the member.

MEMBER VERSION
The number of times the member was drawn down. (A version of 1 is used for
new members.)

LANGUAGE
The language of the member.

CREATION DATE
The date the build map was first created.

CREATION TIME
The time the build map was first created.

CHANGE GROUP
The name of the group in which the member was last updated.

Chapter 4. SCLM Dialog Interface 65

Utilities (Option 3)

CHANGE DATE
The last date a developer modified the member.

CHANGE TIME
The last time a developer modified the member.

PROMOTE DATE
The date the member was last promoted.

PROMOTE TIME
The time the member was last promoted.

PROMOTE USER 10
The user ID of the person who last promoted the member.

TRANSLATOR VERSION
The version of the translator used during build processing.

LANGUAGE VERSION
The version of the language that SCLM uses in language-based builds.

BUILD MAP NAME
The name of the map that created the member.

BUILD MAP TYPE
The name of the type containing the map.

BUILD MAP DATE
The date the map created the member.

BUILD MAP TIME
The time the map created the member.

REVIEW BUILD MAP CONTENTS
SCLM displays the Build Map Contents panel, shown in Figure 22 on page 67,
when you enter S in this field.

66 ISPF/PDF Software Configuration and Library Manager

Build Map Contents

Utilities (Option 3)

SCLM displays the build map contents in a browse data set. Figure 22 shows the
contents of a build map record for an architecture defined in a CC architecture
member.

BROWSE -- PROJ1.USER1.MODULE5 -------------------- LINE 00000000 COL 001 080
COMMAND ===> SCROLL ===> CSR

********************************* TOP OF DATA *********************************
BUILD MAP CONTENTS

Keyword Member Type Last Time Modified Version

OBJ MODULE5 OBJ 02/14/89 17:10:57 5
LIST MODULE5 LIST 02/14/89 17:10:57 5
11* INCLUDE3 SOURCE2 02/14/89 16:50:00 2
SINC MODULE5 SOURCE 02/14/89 17:03:00 3

* INTERNAL KEYWORDS
1# - INCLUDED MEMBER REFERENCED BY SINe MEMBER, # = IMBEDDED GROUP

******************************** BOTTOM OF DATA ********************************

Figure 22. Build Map Contents

The fields on the Build Map Contents panel are:

KEYWORD
You can use certain keywords to identify architecture information. See
"Architecture Statements" on page 27 for more details.

The architecture member example contains three keywords: OBJ, LIST, and
SINC. The actual parameters from the architecture member (prior to
substitution) are kept for PARM and PARMx keywords. Keywords denoted with
an asterisk (*) are include references found in source member MODULES.

MEMBER
The name of the source member referenced in the architecture member.

TYPE
The name of the type containing the source member.

LAST TIME MODIFIED
The last time SCLM parsed and stored the specified member. For
SCLM-generated code, that is, OBJ and LIST, it is the last time SCLM
generated the member.

VERSION
The number of times SCLM parsed and stored the member. SCLM has parsed
and stored source member MODULES only once but has generated its
corresponding object module and listing two times.

INTERNAL KEYWORDS
Keywords that SCLM uses to track references. The internal keyword 1#
indicates the group in which the members were first referenced.

Chapter 4. SCLM Dialog Interface 67

Utilities (Option 3)

Authorization Code Update
Enter U on the Library Utility panel or the member selection list to display the
Authorization Code Update panel. Figure 23 shows the panel SCLM displays for
you to update the authorization code for a member.

" ,,0

. DATA.SH .. .,.PROJJ.lJSER1. SOURCE (MODULES) .. '" AUTH ·COOE.UPDATE.,.~..,.,-,..----------.,.--~·
pOMMAND ;.;;.;=>. . .

Memp~r ... to.be updated:. PRQJ 1·.USERl..SOURCE(MODUtE5)

OLD.,AUTHORIZATIQN CODE"'''';> REL
NEW AUTHORIZATION CODE ===>

Instructions!
~r~ss·· ENTER. key :.to. cQnfi rm . theupdat:e.r~q~~st ~

Figure 23. Authorization Code Update

The fields on the Authorization Code Update panel are:

MEMBER TO BE UPDATED
The member name you entered in the MEMBER field on the SCLM Library
Utility panel.

OLD AUTHORIZATION CODE
The current authorization code for the member.

NEW AUTHORIZATION CODE
The new authorization code for the member.

Enter the new authorization code in this field. Then press Enter to confirm the
update request and update the authorization code, or enter the END command
to cancel the update request.

Ada Sublibrary Management Utility
Use the Ada sublibrary management utility to delete or browse Ada intermediate
records and intermediate forms for compilation units. Ada intermediate records
are accounting records that SCLM tracks for the Ada intermediate form of
compilation units. The build function creates these records after a successful
compile.

To delete intermediate records and forms for compilation units, you must have
UPDATE authority to the specified source member data set. SCLM deletes the
intermediate form by starting Ada compiler utility programs. The utility is
completely interactive.

Figure 24 on page 69 shows the panel SCLM displays when you select Option 2
SUBLIB MGMT from the SCLM Utilities panel.

68 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

------------------------ SUBLIBRARY MANAGEMENT UTILITY -----------------------
COMMAND ===>

ADA DATABASE:
CU (compilation unit) QUALIFIER ===>

I SPF LI BRARY:
PROJECT ===> PROJl
GROUP ===> USERl
TYPE ===> ("*" for all types)

Press ENTER key to browse or delete Ada intermediate records and forms.

Figure 24. Sublibrary Management Utility

The fields on the Sublibrary Management Utility panel are:

CU QUALIFIER
The name of the compilation unit qualifier specified in the language definition.
SCLM uses it to distinguish between different Ada languages when searching
for compilation unit dependencies.

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The private library that you specified on the SCLM Primary Option Menu. The
default is your user 10.

TYPE
The name of the type you want processed.

Member Selection List
You can delete or browse intermediate records and forms for compilation units by
making selections from a member selection list. To display a list of the Ada
intermediate records, enter the following:

1. The Ada database in the CU QUALIFIER field.

2. The appropriate group in the GROUP field.

3. The appropriate type in the TYPE field or an asterisk (*) for all types in a given
group.

SCLM displays the name of the compilation unit and its type on each line of the
member selection list, as shown in Figure 25 on page 70.

Chapter 4. SCLM Dialog Interface 69

Utilities (Option 3)

CQmpilation
Se 1 ekt St~tusType Compil
__ .. _-._' , ___ ,_.;.0. ""'~__ .. __ "!",!,,, ______ .. o_,~ ___ "" __ ""_: _______ ~ _________ ~ ___ ' _________ .. __ _

BODY FlMlA·
.SPEC FlMlA
XREF . FlMlA
BODY PARSE
SPEC PARSE
BODY PARSE.DO ACCEPT

Figure 25. Member Selection List

The fields on the Member Selection List panel are:

SELECT
SCLM selects one or more Ada intermediate records and forms for processing
when you enter line commands D (for delete) or B (for browse) in this field for
the compilation units you want.

Figure 26 on page 71 shows the panel SCLM displays when you enter the B
line command.

STATUS
SCLM displays the delete selection status in this field if you entered D in the
SELECT field:

*DELETED Indicates the compilation unit you want to delete.

Enter the END command to confirm the delete request.

*ERROR SCLM cannot delete the selected compilation unit intermediate
record or form because an error occurred.

SCLM records detailed error information in a temporary data set.
Enter the HELP command (the default is the PF1 key) to obtain the
name of this data set.

COMPILATION TYPE
The type of the compilation unit:

SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main procedures.

COMPILATION UNIT NAME
The name of the compilation unit.

70 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Intermediate Record
SCLM displays the contents of the intermediate record for the selected compilation
unit, shown in Figure 26, when you enter B in the SELECT field on the Intermediate
Record Member Selection List panel. SCLM stores the accounting information for
the compilation unit in an Ada sublibrary.

DATA SET -- PROJl.USER1.S0URCE / ADACODE - INTERMEDIATE RECORDS ----------
COMMAND ===>

Compilation Unit : ADA@2

Compilation Type : BODY

HISTORY
Change User ID : USER1
Creation Date : 01/12/77
Creation Time : 12:44:50

GENERAL INFORMATION
Member Version
Language
Translator Version
Change Group

: 1
: ADA
: 3

Change Date
Change Time

12/22/87
11:22:30

Map Name
: USERl
: ADAMAP
: SOURCE

Accounting Member : ADA1
Map Type Accounting Type : SOURCE

Figure 26. Intermediate Records

The fields on the Intermediate Records panel are:

COMPILATION UNIT
The name of the compilation unit.

COMPILATION TYPE
The type of the compilation unit:

SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record created for dependency tracking of main procedures.

CHANGE USER 10
The user ID of the person who made the last update to the member.

CREATION DATE
The date a developer first registered the intermediate form with SCLM.

CREATION TIME
The time a developer first registered the intermediate form with SCLM.

CHANGE DATE
The last date a developer modified the intermediate form.

CHANGE TIME
The last time a developer modified the intermediate form.

MEMBER VERSION
The number of times the member was drawn down. (A version of 1 is used for
new members.)

Chapter 4. SCLM Dialog Interface 71

Utilities (Option 3)

Migration Utility

LANGUAGE
The language of the member.

TRANSLATOR VERSION
The version of the translator.

CHANGE GROUP
The name of the group in which the member was last updated.

MAP NAME
The name of the map that created the member.

MAP TYPE
The name of the type containing the map.

ACCOUNTING MEMBER
The member that generated this compilation unit.

ACCOUNTING TYPE
The type that generated this compilation unit.

In addition to the SCLM editor, the migration utility allows you to indicate the
members you want tracked. Use this utility to enter a large number of members
into a project's database, such as during a conversion to SCLM. You can also use
it to lock, parse, and create accounting records for members that were edited
without using the SCLM edit function.

Like the SCLM editor, the migration utility verifies authorization codes, prohibits
simultaneous updates of members, and collects statistical, dependency, and
historical information for every member processed. SCLM stores this information
in the project's database. For a complete description of the lock, parse, and store
process, see "Edit Function" on page 10.

Figure 27 shows the panel SCLM displays when you select Option 3 MIGRATION
from the Utilities panel.

---------------.;.---------- SCLM MIGRATI ON· UTI LITY -----------------:---:-------:-"'---
COMMAND ===> EX (EXECUTE or SUBMIT)

SELECTION CRITERIA:
PROJECT ===>PROJI
GROUP===>USERI
TYPE ===> . SOURCE
MEMBER ===> MODULE*

Figure 27. SCLM Migration Utility

72 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

To migrate a set of SCLM members, you must enter information for each field. The
fields for the Migration Utility panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The private library that you specified on the SCLM Primary Option Menu. The
default is your user 10.

TYPE
The name of the type you want processed.

MEMBER
The name of the member you want processed. You can use patterns for the
member name. See "Specifying Selection Criteria" on page 75 for details.

AUTHORIZATION CODE
The authorization code for a member. SCLM cannot process a member if the
authorization code assigned to a member is not in the group being accessed.

CHANGE CODE
The current change code entered against the member. To enter a different
change code for the member, type over the displayed change code. SCLM
verifies the code you entered before it processes the member. See "STORE"
on page 12 for more information.

LANGUAGE
The language of the member. See "PARSE" on page 11 for a list of languages
that SCLM supplies parsers for.

OUTPUT CONTROL
Specify destinations, such as TERMINAL, PRINTER, or DATASET, for the
outputs. Also specify which printer output class you want to use and the
volume on which SCLM should save data sets.

JOB STATEMENT INFORMATION
You can call the processing part of the migration utility from the interactive or
batch environment. Enter the EXECUTE command if you want interactive
processing, or enter the SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

Chapter 4. SCLM Dialog Interface 73

Utilities (Option 3)

Database Contents Utility
You can use the SCLM database contents utility to generate reports on the contents
of a project hierarchy. You can define the format of the report, or you can use the
default format. Database contents utility reports can contain build map or
accounting information, or both, from a project database.

Figure 28 shows the panel SCLM displays when you select Option 4 DATABASE
CONTENTS from the Utilities panel.

~----:--.;.--.;.;-----:-;..--.,.- SCL.M DATABASE CONTENTS UTILITY-.,.---:----------.,.------.,.--
COMMAND :,==>. EX (EXECUTE or SUBMIT)

SEL~CTIONCI;UTERIA:
PROJECT "'=;:=> PROJI
GROUP :::,=> USERl

===>
TYPE ===>SOURC*
MEMBER ===> *

===> INT
===;:>

(Patterns. may.beused)

::;==> ===>

CHANGE ADDITIONAL.SEL.ECTION CRITERIA ===> YES

OUTPUT CONTROL.:

(YES or NO)

MESSAGES
REPORT

===> TERMINAL.
===> DATASET
===> DATASET

(TERMINAL., PRINTER. DATASET, or NONE)

TAILORED OUTPUT
PRINTER
VOL.UME ===>

JOB STATEMENT INFORMATION:

(Printer output class)
(If blank, the default volume is used)

::;===>/ /JOBNA.ME~· JOB (ACCOUNT;DEPT,BIN) , 'TSo.UStRNAME',
===> II MSGCL.ASS=A.CL.ASS=A,NOTIFY=JOBNAME.
==::;> .. / /.U5ER=,GROUP=:????????,PASSWORD=????????
===> / /*

Figure 28. SCLM Database Contents Utility

You can use patterns for each of the SELECTION CRITERIA fields. The fields on
the Database Contents Utility panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The groups that are to be reported.

TYPE
The name of the type you want processed.

MEMBER
The name of the member you want processed.

CHANGE ADDITIONAL SELECTION CRITERIA
Enter YES if you want to change the additional selection criteria; otherwise,
enter NO. The panel shown in Figure 29 on page 76 appears if you enter YES.

OUTPUT CONTROL
Specify destinations for the outputs. If you enter TERMINAL, PRINTER, or DATASET
in the TAILORED OUTPUT field, the panel shown in Figure 31 on page 79
appears.

Also specify which printer output class you want to use and the volume SCLM
should save data sets on.

74 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

JOB STATEMENT INFORMATION
Enter the EXECUTE command if you want interactive processing, or enter the
SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

Specifying Selection Criteria
You can use patterns to specify a variety of acceptable values for the accounting
information fields. A pattern consists of alphanumeric characters and three special
characters: an asterisk (*), a logical NOT symbol ("I), and an equal sign (=).

Use an asterisk to match any string of characters including the null string. You can
use it more than once.

Use the logical NOT symbol ("I) to negate the result of a match with the pattern.
You can specify it only once. The logical NOT symbol is removed from the pattern
before a match is attempted. Therefore, the position of the logical NOT symbol
within the pattern is not significant.

Use an equal sign (=) to indicate all groups that are at the same layer in the
hierarchy as the group you specify.

Note: Do not use an equal sign (=) as the first character in a pattern because it is
a special character in ISPF/PDF.

Use the patterns shown in Table 6 to select accounting information.

Table 6. Pattern Examples

Pattern Match

AB*Z ABZ,ABCZ,ABCZYZ

"lAB*Z ABC,XABZ,ABZX

*AB*Z ABZ,XABZ,ABCABZ

USER1= USER1,USER2,USER3

STAGE3= STAGE1,STAGE2,STAGE3

Note: See Figure 1 on page 7 for an illustration of the hierarchy represented
in the last two rows.

The portion of the project database that SCLM displays is determined by the
parameters you specify.

The panel in Figure 29 on Rage 76 appears if you enter YES in the CHANGE
ADDITIONAL SELECTION dRITERIA field on the Database Contents Utility panel.

If you enter NO, SCLM does not display the panel and the reports are generated
with the values that already exist on the Additional Selection Criteria panel.

Chapter 4. SCLM Dialog Interface 75

Uti I ities (Option 3)

=,==> , YES
===> ACCT

ARCHITECTURE =i::=> IN
GROUP ===> USERl
TYPE ===> ARCHDEF
MEMBER ===>LMOD4
SCOPE ===> NORMAL

,(YES, or NO)
(ACCT, "'BNAP or "*")

(IN, PUT, ~r "*" fordo not check)
(Hierarchy search begins at this level)

(NORMAL, SUBUNIT, or,EXTENDE[)

Figure 29. SCLM Database Contents - Additional Selection Criteria

The fields on the Additional Selection Criteria panel allow you to specify
accounting and architecture information that the utility uses to identify the
members to be processed.

Accounting Information Fields
When you specify values or patterns for the accounting information fields, the utility
selects any member that has accounting information matching all of the patterns or
values for all fields you specify.

Use the following accounting information fields to select members:

AUTHORIZATION CODE
Members that are assigned an authorization code matching the authorization
code.

Use a blank value for the authorization code to select build outputs. Use a
logical NOT symbol ("I) to select all members that can be edited. Build map
information always contains a blank authorization code.

CHANGE CODE
Members that can be edited that were assigned a change code matching the
change code pattern.

Only one of the change codes assigned to the member must match the pattern.
The logical NOT symbol ("I) in the pattern specifies only the members that are
not assigned a change code matching the pattern. If a member has more than
one change code, only one of the change codes must match the pattern for the
member to be selected.

CHANGE GROUP
Members that were last changed in a group matching the change group
pattern.

CHANGE USER ID
Members that were last changed by the user ID matching the change user ID
pattern.

76 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

LANGUAGE
Members whose language matches the language pattern.

FIRST OCCURRENCE ONLY
If you specify YES, and use more than one group pattern, a precedence system
determines which members are selected.

The group1 pattern takes precedence over the group2 pattern, which takes
precedence over the group3 pattern, and so on. If SCLM finds versions of a
member in groups matching more than one pattern, it selects only the version
at the group with the most precedence. If more than one version of the
member matches the pattern with the most precedence, it selects all of those
versions.

This capability is particularly useful if you specify the groups in a hierarchy for
the group patterns. The result is a member list for the hierarchy.

If you specify NO, SCLM selects all versions of all members.

DATA TYPE
Specify the following:

ACCT To report exclusively on accounting information.
BMAP To report exclusively on build map information.

To report on build map and accounting information.

DATA TYPE is always required, but if it is left blank it defaults to ACCT.

Architecture Definition Fields
You can also use architecture definition criteria to select members. The
architecture definition fields identify subapplications or software components.

To guarantee correct data, use the build function to update the architecture in the
architecture defi nition field. If you specify an architecture that has never been
built, none of the members are selected. If you specify an architecture that has
been built but is out of date, the resulting data is inaccurate. Promote the
architecture in report only mode to see which components are out of date.
Patterns are not valid for architecture definition fields.

ARCHITECTURE
Specify the following:

IN To select members controlled by the architecture definition.

OUT To select members not controlled by the architecture definition.

To indicate that an architecture definition is not used to identify selected
members.

The following fields are required if you enter IN or OUT in the ARCHITECTURE
field:

GROUP
The group identifying the lowest level in the hierarchy where SCLM should
find the architecture definition.

TYPE
The type containing the architecture definition that controls the selected
members.

MEMBER
The member containing the architecture definition that controls the
selected members.

Chapter 4. SCLM Dialog Interface 77

Utilities (Option 3)

SCOPE
Specify the following architecture scope:

NORMAL
To select members that do or do not have compilation unit
dependencies.

SUBUNITIEXTENDED
To select members that do have compilation unit dependencies.

See "Architecture Definition Fields" on page 77 for information on how
scopes affect the architecture definition.

Note: You cannot use patterns in the GROUP, TYPE, and MEMBER fields on the
Additional Selection Criteria panel.

The database contents report contains a list of all members that you select from
the selection criteria. If you request a tailored data set, SCLM generates the data
set from this list of accounting and build map information.

Figure 30 shows an example of a database contents utility report that SCLM
generates when you enter NONE in the TAILORED OUTPUT field on the SCLM
Database Contents Utility panel.

0
DATABASE CONTENTS UTILITY REPORT

0
SELECTION CRITERIA

0 PROJECT : PROJI
AL TERNATE: PROJ 1 AUTHORIZATION CODE : REL

0 TYPES : SOURC* CHANGE CODE . *
MEMBERS : * CHANGE GROUP : USERI

0 GROUP 1 : USERI CHANGE USER ID : *
GROUP 2 : INT LANGUAGE : *

0 GROUP 3 : FIRST OCCURRENCE ONLY: YES
GROUP 4 : DATA TYPE : ACCT

0 GROUP 5 :
GROUP 6 :

0
ARCHITECTURE SELECTION CRITERIA : IN

0 GROUP : USERI
TYPE : ARCHDEF

0 MEMBER : LMOD4
SCOPE : NORMAL

0
DATE: 02/23/89 TIME: 11: 26: 18

0

Figure 30 (Part 1 of 2). Database Contents Utility Report

o
o
o
o
o

DATABASE CONTENTS REPORT PAGE 2
----------------------------- TYPE: SOURCE ----------------------------------
MEMBER GROUPI GROUP2 GROUP3 GROUP4 GROUP5 GROUP6

MODULE4 USER 1
MODULE5 INT
MODULE6 INT
----------------------------- TYPE: SOURCE2 ---------------------------------
INCLUDE3 INT

Figure 30 (Part 2 of 2). Database Contents Utility Report

0

0

0

0

0

0

0

0

0

0

0

0

o
o
o
o
o

78 ISPF/PDF Software Configuration and Library Manager

Tailored Output

Utilities (Option 3)

Note: An asterisk (*) next to the group name on the report indicates that the
member represents build map information.

If you want to tailor the database contents output, enter TERMINAL, PRINTER, or
DATASET in the TAILORED OUTPUT field on the Database Contents Utility panel.
SCLM displays the Customization Parameters panel, shown in Figure 31, which
you use to generate the tailored report.

------------- SCLM DATABASE CONTENTS - CUSTOMIZATION PARAMETERS ---------------
COMMAND ===> (Enter END command to cancel)

PAGE HEADERS ===> YES
SHOW TOTALS ===> YES
REPORT NAME ===> SAMPLE REPORT

REPORT LINE FORMAT:

(YES or NO)
(YES or NO)

===> @@FLMALT @@FLMGRP @@FLMTYP @@FLMMBR

Figure 31. SCLM Database Contents - Customization Parameters

The fields on the Customization Parameters panel are:

PAGE HEADERS
Enter YES to include page and column header information in the tailored output.

If you want to output a page header, input parameter information appears in
the tailored output. You can also specify a title.

SHOW TOTALS
Enter YES to total the numeric data fields and show the totals in the tailored
output. SCLM outputs a summary line at the end of the output that totals the
values of the numeric fields in the output. The output also includes a count of
the number of members reported.

REPORT NAME
The title of the report in the tailored output. The maximum length is 35
characters.

REPORT LINE FORMAT
The format of a line of data in the tailored output. The line format can be up to
160 characters long.

If you use the SCLM @@FLM$XN or @@FLM$UD variables, keep in mind that
their values can exceed eight characters. Place these variables at the end of
the report line to ensure that the columns in the report line up evenly.

Press Enter to confi rm these requests or enter the END command to cancel them.

Chapter 4. SCLM Dialog Interface 79

Utilities (Option 3)

Figure 32 shows an example of a tailored outptJt. The title of the report is TESTREP.
The report line format, specified as @@FLMMBR @@FLM$IN, causes the utility to
generate output consisting of the members reported in the database contents
report and their associated included members.

~:,:;'~~~': ~:::",<:"~~~~,,,~::~',~,,~:,:s~,:/, <'-', , ,>/>~", > \'

\~··~·,.b1~~e .
~ ~ " 0 ,

*@@~~Mk~R @@~{M$lN'"
B0iRt~, · •. ··B0f1REEI

. B.0fRtH:ll::~~~~I2.
BPSAVOOTBaS:AV 1.' .. ' .

. ·.~~~s.~v~:.· .
.... i:.>.> 'B0~AV3

'saHEl< .' .~gHEl
~0SAVE· .•......
~~SAVOUT.B0SAVOOl

Figure 32. Database Contents Tailored Data Set, Page 1

Tailored Output Examples
The report that appears in Figure 33 on page 81 is a formatted representation of
the accounting and build map information you specified for the database contents
report. The tailored output format specification consists of report variables and
constant values. The report displays the report variables as headers over the lines
of variable values. If multiple lines are output, it does not repeat constant values
such as the member name.

Chapter 3, "SCLM Variables," provides a list of report variables.

80 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

0

0
DATABASE CONTENTS UTILITY REPORT

SELECTION CRITERIA
0 PROJECT : PROJl

ALTERNATE: PROJl AUTHORIZATION CODE REL
0 TYPES : SOURC* CHANGE CODE *

MEMBERS : * CHANGE GROUP USERl

0 GROUP 1 : USERl CHANGE USER ID *
GROUP 2 : INT LANGUAGE *

0 GROUP 3 : FIRST OCCURRENCE ONLY YES
GROUP 4 : DATA TYPE ACCT

0
GROUP 5 :
GROUP 6 :

0 ARCHITECTURE SELECTION CRITERIA : IN
GROUP : USER1

0 TYPE : ARCHDEF
MEMBER : LMOD4

0 SCOPE : NORMAL

0 CUSTOMIZATION PARAMETERS
PAGE HEADERS : YES

0
SHOW TOTALS : YES
REPORT NAME : SAMPLE REPORT

0 DATE: 02/15/89 TIME: 09: 52: 17

0

0

Figure 33 (Part 1 of 2). Database Contents Utility Tailored Report

0 PAGE 2
SAMPLE REPORT

0
@@FLMALT @@FLMGRP @@FLMTYP @@FLMMBR

0 ---
PROJ1 USERl SOURCE MODULE4

0 PROJ1 INT SOURCE MODULE5
PROJ1 INT SOURCE MODULE6

0 PROJ1 INT SOURCE2 INCLUDE3
--

0 PROJ1 4

Figure 33 (Part 2 of 2). Database Contents Utility Tailored Report

The reports in Figure 34 on page 82 through Figure 37 on page 83 show
examples of a change code, accounting statistics, source listing, and cleanup
report.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Change Code Report: The report line format input for this example is: @@FLMGRP
@@FLMTYP @@FLMMBR @@FLM$CD @@FLM$CC. The page headers appear on all pages of
the report; totals do not appear; and the report name is CHANGE CODE REPORT.
Figure 34 on page 82 shows the tailored output.

Chapter 4. SCLM Dialog Interface 81

Utilities (Option 3)

0 PAGE 2
CHANGE CODE REPORT

0
@@FLMGRP @@FLMTYP @@FLMMBR @@FLM$CD @@FLM$CC

0 ---
USER1 SOURCE MODULE4

0 INT SOURCE MODULE5 02/14/89 2
02/01/89 PR3573

0
02/01/89 CR3582

0
02/01/89 PR3456

0
INT SOURCE MODULE6 02/14/89 2

0 02/01/89 PR3573

0 INT SOURCE2 INCLUDE3 02/14/89 2

0

Figure 34. Change Code Report, Page 2

Accounting Statistics Report: The report line format input for this example is:
@@FLMMBR @@FLMLAN @@FLMTLL @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS.

0

0

0

0

0

0

0

0

0

0

The page headers appear on all pages of the report; totals appear for all numeric
data; and the report name is ACCOUNTING STATISTICS REPORT. Figure 35
shows the tailored output.

0 PAGE 2 0

0
ACCOUNTING STATISTICS REPORT

0

0
@@FLMMBR @@FLMLAN @@FLMTLL @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS

0 ---

0
MODULE4 PASCAL 8 0 4 4 2 0

0 MODULE5 PASCAL 13 2 5 6 4 2

0
MODULE6 PASCAL 8 0 4 4 2 0

0 INCLUDE3 PASCAL 5 5 0 0 5 5
--

0 4 34 7 13 14 13 7 0

Figure 35. Accounting Statistics Report, Page 2

Source Listing Report: This example shows a generated script data set that the
SCRIPT/VS processor can process. However, the data resulting from this
formatted input begins in column 2. The SCRIPT/VS processor cannot process the
generated data set correctly until you edit the data set so that all command lines
begin in the first column. The tailored report uses column 1 for carriage returns.

The report line format input for this example is: .IM @@FLMMBR.

The report does not have page headers, totals, or a name. Figure 36 shows the
tailored output.

0
.IM MODULE4

O·

0 .IM MODULE5 0
.IM MODULE6

0 . I M I NCLUDE3 0

Figure 36. Source Listing Report, Page 2

82 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

Cleanup Report: The cleanup data set is a command data set that can be passed
as input to the SCLM command processor. See "Using the FLMCMD File Format"
on page 104 for more information on the SCLM command processor.

The report line format input for this example is:
DELETE,@@FLMPRJ,@@FLMALT,@@FLMGRP,@@FLMTYP,@@FLMMBR.

The report does not have page headers, totals, or a name. Figure 37 shows the
sample tailored report.

0 DELETE,PROJI ,PROJI ,USERI ,SOURCE ,MODULE4 0

0 DELETE,PROJI ,PROJI ,INT ,SOURCE ,MODULE5 0 DELETE,PROJI ,PROJI ,INT ,SOURCE ,MODULE6

0 DELETE,PROJI , PROJI ,INT ,SOURCE2 ,INCLUDE3 0

Figure 37. Cleanup Report, Page 2

Architecture Report
The architecture report provides listings of all the components in a given
application. The report generator examines the requested architecture and all of
its references, and then constructs an indented report of the architecture. The
report lists software components in each type referenced by the architecture to
help you eliminate unnecessary code. The title page of the report identifies the
date and time SCLM generated the report, names the architecture member you
requested, and is based on the report cutoff you select. It also identifies any
alternate project definition used.

The report is divided into two sections: architecture and cross-reference
information.

• Architecture

Lists all architecture and source members subordinate to a given architecture
to the report cutoff you specify. The architecture information is particularly
useful during the development stages of a project to identify the current status
of the application architecture. It is also useful at any time to determine a list
of the software components of an application.

The report uses an indentation format to present a visual concept of the
structure of the application. It also lists the number of various architecture
types processed.

• Cross-reference

Lists all the members, by type, that were listed in the first part of the
architecture report. Use this information to determine the origin of a particular
member.

An example of the architecture report appears in Figure 39 on page 85.

SCLM displays the panel in Figure 38 on page 84 when you select Option 5
ARCHITECTURE REPORT on the Utilities panel.

Chapter 4. SCLM Dialog Interface 83

Utilities (Option 3)

Figure 38. SCLM Architecture Report

The fields on the SGLM Architecture Report panel are:

PROJECT
The project that you specified on the SGLM Primary Option Menu.

GROUP
The group used to identify the lowest level in the hierarchy where the
architecture begins.

TYPE
The type containing the architecture definition that controls the selected
member.

MEMBER
The member containing the architecture definition.

REPORT CUTOFF
You must specify one of the following report cutoff values (which determine the
depth of the report):

HL (High-level)
To print only the HL architecture members in the application represented
by the architecture member you specified in the MEMBER field.

LEC (Linkedit control)
To print all of the HL and LEG architecture members in the application
represented by the architecture member you specified in the MEMBER
field.

CC (Compilation control)
To print all of the HL, LEG, and GG architecture members in the application
represented by the architecture member you specified in the MEMBER
field.

GEN (Generic)
To print all of the HL and generic architecture members in the application
represented by the architecture member you specified in the MEMBER
field.

84 ISPF/PDF Software Configuration and Library Manager

Utilities (Option 3)

TOP SOURCE
To print all of the HL, LEC, CC, and generic architecture members and the
top source members in the application represented by the architecture
member you specified in the MEMBER field.

NONE
To print all HL, LEC, CC, and generic architecture members in each of the
types and all source member names down to the lowest include group in
the application represented by the architecture member you specified in
the MEMBER field.

OUTPUT CONTROL
Specify destinations, such as TERMINAL, PRINTER, or DATASET for the
outputs. Also specify which printer output class you want to use and the
volume on which SCLM should save data sets.

JOB STATEMENT INFORMATION
Enter the EXECUTE command if you want interactive processing, or enter the
SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

Figure 39 and Figure 40 on page 87 show an example of the architecture report
with a report cutoff of NONE. Figure 41 on page 89 shows an example of the
architecture report with a report cutoff of LEG.

Architecture Report Example
This report provides listings of all the components in a given application. The title
page identifies the date and time the report was generated, the architecture
member requested, and the report cutoff. It also identifies the alternate project
definition, if specified.

0 0

0 SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) 0

0 ARCHITECTURE REPORT
0

0
02/15/89 09:22:48

0

0 0

0
PROJECT: PROJl

0 GROUP: USERl

0
TYPE: ARCHDEF

0 MEMBER: SUBAPPL2

0
CUTOFF: NONE

0

Figure 39 (Part 1 of 2). Architecture Report, Part 1- Architecture Information

Chapter 4. SCLM Dialog Interface 85

Utilities (Option 3)

0 PAGE 2 0

0 == 0
* *

0 * ARCHITECTURE REPORT * 0
* *

0 * H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR * 0
* L = LINKEDIT CONTROL G = GENERIC I = INCLUDED D = DEFAULT *

0 * * 0
==

0 CODE: H MEMBER: SUBAPPL2
0

0
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+---

0

0
H SUBAPPL2

0

0 L LMOD3 0
D MODULE5

0 T MODULE5 0
I INCLUDE3

0 D MODULE6 0
T MODULE6

0 D
T

MODULE3
MODULE3

0

0 I
L

INCLUDE2
LMOD4

0

0 D MODULE5 0
T MODULE5

0 I INCLUDE3 0
D MODULE6

0 T MODULE6 0
D MODULE4

0 T MODULE4 0

0 0
NUMBER OF HIGH GROUP MEMBERS PROCESSED = 1

0 NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED = 2 0
NUMBER OF COMPILATION CONTROL MEMBERS PROCESSED = 0

0 NUMBER OF GENERIC MEMBERS PROCESSED = 0 0
NUMBER OF DEFAULT MEMBERS PROCESSED = 4

0 NUMBER OF TOP MEMBERS PROCESSED = 4 0
NUMBER OF INCLUDED MEMBERS PROCESSED = 2

0 NUMBER OF ERROR MEMBERS FOUND = 0 0

Figure 39 (Part 2 of 2). Architecture Report, Part 1- Architecture Information

86 ISPF/PDF Software Configuration and Library Manager

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

Utilities (Option 3)

PAGE 3 o
==

*
*
*

CROSS REFERENCE FOR TYPE:

MEMBER REF. ARCH. MEM. TYPE

LMOD3
LMOD4
SUBAPPL2

SUBAPPL2
SUBAPPL2

ARCHDEF
ARCHDEF

*** UNAVAILABLE ***

TOTAL MEMBERS PROCESSED FOR TYPE = 3

*
*
*

CROSS REFERENCE FOR TYPE:

MEMBER REF. ARCH. MEM. TYPE

MODULE3
MODULE4
MODULES
MODULE6

MODULE3
MODULE4
MODULES
MODULE6

SOURCE
SOURCE
SOURCE
SOURCE

TOTAL MEMBERS PROCESSED FOR TYPE = 4

*
* CROSS REFERENCE FOR TYPE:
*

MEMBER REF. ARCH. MEM. TYPE

LMOD3
LMOD4

LMOD3
LMOD4

ARCHDEF
ARCHDEF

TOTAL MEMBERS PROCESSED FOR TYPE = 2

*
*
*

CROSS REFERENCE FOR TYPE:

MEMBER REF. ARCH. MEM. TYPE

LMOD3
LMOD4

LMOD3
LMOD4

ARCHDEF
ARCHDEF

TOTAL MEMBERS PROCESSED FOR TYPE = 2

ARCHDEF

LIST

LMAP

LOAD

* 0
*
*

*
*
*

*
*
*

*
*
*

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

Figure 40 (Part 1 of 2). Architecture Report, Part II - Cross-Reference Information

Chapter 4. SCLM Dialog Interface 87

Utilities (Option 3)

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

*
*
*

CROSS REFERENCE FOR TYPE:

MEMBER REF. ARCH. MEM. TYPE

MODULE3
MODULE4
MODULE5
MODULE6

MODULE3
MODULE4
MODULE5
MODULE6

SOURCE
SOURCE
SOURCE
SOURCE

TOTAL MEMBERS PROCESSED FOR TYPE = 4

*
*
*

MEMBER

INCLUDE2
INCLUDE3
MODULE3

MODULE4

MODULE5

MODULE6

CROSS REFERENCE FOR TYPE:

REF. ARCH. MEM. TYPE

MODULE3 SOURCE
MODULE5 SOURCE
MODULE3 SOURCE
LMOD3 ARCHDEF
MODULE4 SOURCE
LMOD4 ARCHDEF
LMOD4 ARCHDEF
MODULE5 SOURCE
LMOD3 ARCHDEF
LMOD4 ARCHDEF
MODULE6 SOURCE
LMOD3 ARCHDEF

TOTAL MEMBERS PROCESSED FOR TYPE = 12

PAGE 4

OBJ

SOURCE

*
*
*

*
*
*

Figure 40 (Part 2 of 2). Architecture Report, Part II - Cross-Reference Information

88 ISPF/PDF Software Configuration and Library Manager

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

Utilities (Option 3)

Figure 41 shows an example of the architecture report with an LEG report cutoff.

0
SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)

0
ARCHITECTURE REPORT

0
02/15/89 09:25:04

0

0
PROJECT: PROJ1

0 GROUP: USER1
TYPE: ARCHDEF

0 MEMBER: SUBAPPL2
CUTOFF: LINK EDIT CONTROL

0

Figure 41 (Part 1 of 3). Architecture Report, LEC Report Cutoff

o
o
o
o
o
o
o
o
o
o
o
o

PAGE 2

* *
* ARCHITECTURE REPORT *
* *
* H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR *
* L = LINKEDIT CONTROL G = GENERIC I = INCLUDED 0 = DEFAULT *
* *

CODE: H MEMBER: SUBAPPL2

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+---

H SUBAPPL2
L LMOD3
L LMOD4

NUMBER OF HIGH GROUP MEMBERS PROCESSED
NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED
NUMBER OF ERROR MEMBERS FOUND

1
2
o

Figure 41 (Part 2 of 3). Architecture Report, LEC Report Cutoff

0

0

0

0

0

0

0

0

o
o
o
o
o
o
o
o
o
o
o
o

Chapter 4. SCLM Dialog Interface 89

Utilities (Option 3)

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

*
*
*

MEMBER

LMOD3
LMOD4
SUBAPPL2

CROSS REFERENCE FOR TYPE:

REF. ARCH. MEM. TYPE

SUBAPPL2 ARCHDEF
SUBAPPL2 ARCHDEF

*** UNAVAILABLE ***

TOTAL MEMBERS PROCESSED FOR TYPE = 3

*
CROSS REFERENCE FOR TYPE:

*

MEMBER REF. ARCH. MEM. TYPE

LMOD3
LMOD4

LMOD3
LMOD4

ARCHDEF
ARCHDEF

TOTAL MEMBERS PROCESSED FOR TYPE = 2

*
*
*

CROSS REFERENCE FOR TYPE:

MEMBER REF. ARCH. MEM. TYPE

LMOD3
LMOD4

LMOD3 ARCHDEF
LMOD4 ARCHDEF

TOTAL MEMBERS PROCESSED FOR TYPE = 2

*
* CROSS REFERENCE FOR TYPE:
*

PAGE 3

ARCHDEF

LMAP

LOAD

SOURCE

*
*
*

*
*
*

*
*
*

*
*
*

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o == 0
o MEMBER REF. ARCH. MEM. TYPE 0

o
o
o
o
o
o
o
o

MODULE3
MODULE4
MODULE5

MODULE6

LMOD3
LMOD4
LMOD4
LMOD3
LMOD4
LMOD3

ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF

TOTAL MEMBERS PROCESSED FOR TYPE = 6

Figure 41 (Part 3 of 3). Architecture Report, LEC Report Cutoff

PAGE 4

o
o
o
o
o
o
o
o

90 ISPF/PDF Software Configuration and Library Manager

Build (Option 4)

Build (Option 4)
The build processor automatically compiles and links modules requiring
processing. The panel shown in Figure 42 appears when you select Option 4
BUILD from the SCLM Primary Option Menu.

------------------------------- SCLM - BUILD ----------------------------------
COMMAND ===> EX (EXECUTE or SUBMIT)

BUILD INPUT:
PROJECT
GROUP
TYPE
MEMBER

===> PROJl
===> USERl
===> ARCHDEF
===> LMOD3

BUILD SCOPE ===> NORMAL
BUILD MODE ===> FORCED

OUTPUT CONTROL:
MESSAGES ===> TERMINAL
REPORT ===> DATASET
LISTINGS ===> DATASET
PRINTER ===> H
VOLUME ===>

JOB STATEMENT INFORMATION:

(LIMITED, NORMAL, SUBUNIT, or EXTENDED)
(CONDITIONAL, UNCONDITIONAL, FORCED
or REPORT)

. (TERMINAL, PRINTER, DATASET, or NONE)

ERROR LISTINGS ONLY ===> YES
(Printer output class)
(If blank, the default volume is used)

===> IIJOBNAME$ JOB (ACCOUNT,DEPT,BIN), 'TSOUSERNAME',
===> II MSGCLASS=A,CLASS=A,NOTIFY=JOBNAME,
===> II USER=.GROUP=????????,PASSWORD=????????
===> 11*

Figure 42. SCLM Build

The fields for the SCLM Build panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

GROUP
The group in which the build is to occur.

TYPE
The type of the member.

MEMBER
The name of the member to be built.

BUILD SCOPE
Select one of the following:

Limited
To process those components that the architecture members directly
reference. If you use a source member, the build function processes only
that member.

Normal
To process the components and members referenced by the specified
architecture member. In addition, this scope processes upward
dependencies for all Ada-type source members referenced directly by the
architecture member and all source members referenced as upward
dependencies.

Chapter 4. SCLM Dialog Interface 91

Build (Option 4)

Subunit
To process the components and members processed in normal scope as
well as downward dependencies for all Ada-type source members
referenced directly by the architecture members.

Extended
To process the components and members processed in normal scope as
well as downward dependencies for all source members within the normal
scope.

Note: Do not specify a scope other than NORMAL unless each source member
you want translated has compilation unit dependencies. Otherwise,
specify a scope equal to or greater than the scope specified with the
SCOPE keyword in the FLMLANGL macro.

BUILD MODE
Select one of the following:

Conditional
To check for unacceptable compile or link return codes. Processing stops
immediately if build detects any unacceptable codes.

SCLM saves build maps and translator output only for compiles and links
that complete successfully. SCLM generates translator listings for all
components processed, and the build report reflects the final results of the
build.

Unconditional
To continue processing despite translation errors.

Use this mode when you need to update complete applications or large
subapplications. You can also use this mode initially to detect compile and
link errors in several components.

Forced
To force all requested components to be compiled and linked again
regardless of the previous status of the modules.

Use this mode to create a listing for a current component whose listing is
not tracked by SCLM.

Report only
To generate a complete build report without performing an actual build.
The report reflects the potential results of an unconditional build.

OUTPUT CONTROL
Specify destinations, such as TERMINAL, PRINTER, or DATASET, for these
outputs. Also specify which printer output class you want to use and the
volume on which SCLM should save data sets.

JOB STATEMENT INFORMATION
Enter the EXECUTE command if you want interactive processing, or enter the
SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

92 ISPF/PDF Software Configuration and Library Manager

Build (Option 4)

Build Report Example
This report provides a synopsis of the build. The title page identifies the date and
time of the build, as well as the scope and mode used. It also lists the member you
specified on the Build panel and the project definition specified on the SCLM
Primary Option Menu.

The report lists the components that were rebuilt and saved in the database, that
is, those components that passed the compilation or linkage edit phase. It also
shows the build maps that required regeneration, along with a list of software
components that caused the regeneration.

If you enter REPORT ONLY in the BUILD MODE field, the report indicates what would
be rebuilt if you requested an unconditional build.

Figure 43 shows an example of a build report.

0 0
SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)

0 0
B U I L D REP 0 R T

0 0
02/15/89 09:28:35

0 0
PROJECT: PROJl

0 . GROUP: USERl 0
TYPE: ARCHDEF

0 MEMBER: LMOD3 0
ALTERNATE: PROJl

0 SCOPE: NORMAL 0
MODE: FORCED

0 0

0 0
*************** B U I L D OUT PUT S *************** Page 1

0 0
MEMBER TYPE VERSION KEYWORD

0 ------ ---- ------- ------- 0

0 MODULE3 OBJ 6 OBJ 0
MODULE5 OBJ 6

0 MODULE6 OBJ 6 0

0 MODULE3 LIST 6 LIST 0
MODULES LIST 6

0 MODULE6 LIST 6 0

0 LMOD3 LOAD 6 LOAD 0

0 LMOD3 LMAP 6 LMAP 0

Figure 43 (Part 1 of 2). Build Report

Chapter 4. SCLM Dialog Interface 93

Promote (Option 5)

0 ******* B U I L D MAP S G ENE RAT E D ******* Page 2 0

0 (REASON FOR REBUILD) 0

0 MEMBER TYPE VERSION MEMBER TYPE 0 ------ ---- ------- ------- ----

0 LMOD3 ARCHDEF 6 *** FORCE MODE *** 0

0 MODULE3 SOURCE 6 *** FORCE MODE *** 0 MODULE5 SOURCE 6 *** FORCE MODE ***

0 MODULE6 SOURCE 6 *** FORCE MODE *** 0

Figure 43 (Part 2 of 2). Build Report

Promote (Option 5)
The promote function moves members from any group to the next higher group.
The panel shown in Figure 44 appears when you select Option 5 PROMOTE from
the SCLM Primary Option Menu.

------------------------------- SCLM - PROMOTE -------------- .. -----------------
COMMAND ===> EX (EXECUTE or SUBMIT)

PROMOTE INPUT:
PROJECT ===> PROJl
FROM GROUP ===> STAGEl
TYPE :==> ARCHDEF
MEMBER ===> LMOD3

PROMOTE SCOPE ===> NORMAL
PROMOTE MODE ===> CONDITIONAL

OUTPUT CONTROL:
MESSAGES ===> TERMINAL
REPORT ===> DATASET
PRINTER ===> H
VOLUME ===>

JOB STATEMENT INFORMATION:

(NORMAL. SUBUNIT, or EXTENDED)
(CONDITIONAL, UNCONDITIONAL, or REPORT)

(TERMINAL, PRINTER, DATASET, or NONE)

(Printer output class)
(If blank, the default volume is used)

===> IIJOBNAME$ JOB (ACCOUNT,DEPT,BIN),'TSOUSERNAME',
===> II MSGCLASS=A,CLASS=A,NOTIFY=JOBNAME.
===> II USER=, GROUP=???????? • PASSWORD=????????
===> 11*

Figure 44. SCLM Promote

The fields on the SCLM Promote panel are:

PROJECT
The project that you specified on the SCLM Primary Option Menu.

FROM GROUP
The group from which to promote the material that the architecture member
refers to.

TYPE
The type of the architecture member.

MEMBER
The name of the architecture member to be promoted.

For information on architecture members, see Chapter 2, "Architecture
Definition. "

94 ISPF/PDF Software Configuration and Library Manager

Promote (Option 5)

PROMOTE SCOPE
Select one of the following:

Normal
To process the components and members directly referenced by the
specified architecture member. In addition, this scope processes upward
dependencies for all Ada-type source members referenced directly by the
architecture member and all source members referenced as upward
dependencies.

Subunit
To process the components and members processed in normal scope as
well as downward dependencies for all Ada-type source members
referenced directly by the architecture members.

Extended
To process the components and members processed in normal scope as
well as downward dependencies for all source members within the normal
scope.

Note: Do not specify a scope other than NORMAL unless each source member
you want translated has compilation unit dependencies. Otherwise,
specify a scope equal to or greater than the scope specified with the
SCOPE keyword in the FLMLANGL macro.

PROMOTE MODE
Select one of the following:

Conditional
To bypass the copy and purge steps if promote discovers a verification
error.

Promote compares dates in the build maps against dates in the database
for all software components taking part in the promote. Software
components are not promoted if they are deemed out of date. Use this
mode to guarantee complete project integrity.

Unconditional
To perform copy and purge processing despite verification errors and to
promote only those members with correct accounting information.

Use this mode to promote software components for incomplete or partial
applications. For example, if some software components referenced by an
architecture member are not complete but are required in the next group of
the hierarchy anyway, you can use this mode to promote those software
components.

The use of the unconditional mode does not guarantee application
integrity, and you should use it with extreme caution. It is, however, an
effective method of promoting dependent software components that you
plan to integrate at a later date.

Report only
To perform verification and report generation processing. The report
contains a list of members eligible for promotion.

OUTPUT CONTROL
Specify destinations, such as TERMINAL, PRINTER, or DATASET, for the
outputs. Also specify which printer output class you want to use and the
volume on which SCLM should save data sets.

Chapter 4. SCLM Dialog Interface 95

Promote (Option 5)

Promote Report

JOB STATEMENT INFORMATION
Enter the EXECUTE command if you want interactive processing, or enter the
SUBMIT command if you want batch processing.

See Figure 46 on page 100 for a sample of the job statement information you
must provide if you select batch processing.

Figure 45 on page 97 shows an example of the promote report.

The promote report provides an accurate account of the promote. It lists a"
members promoted to the next group and all members purged from lower groups.
It also marks "out-of-scope" software components with an asterisk (*) (see Note).

Note: An out-of-scope software component is an architecture that is referenced
with a LINK or CREF statement but not with an INCL statement. It is not
within the domain of the architecture specified.

The report displays specific information according to the promote modes and
scopes you select.

• For a promote of a member from a non-key group to a key group, the report
indicates that the member was:

Copied to the next group
Purged from the "from" group
Purged from the last key group.

• For a promote of a member in a key group to a non-key group, it indicates that
a copy was made.

• For a second promote that follows a failed promote, it indicates the work
completed by that promote only.

For more information on key and non-key groups, see "Key/Non-Key Groups" on
page 8.

If a verification error occurs for a member, the report displays the message
number that identifies the error in the MESSAGE field.

96 ISPF/PDF Software Configuration and Library Manager

Promote (Option 5)

0
SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)

0

0 0
PRO MOT E REP 0 R T

0 0
02/15/89 09:35:41

0 0

0 PROJECT: PROJ1 0
TO GROUP: INT

0 FROM GROUP: STAGEl 0
TYPE: ARCHDEF

0 ARCH. MEM.: LMOD3 0
ALTERNATE: PROJ1

0 SCOPE: NORMAL 0
MODE: CONDITIONAL

0 0

0 ** NOTE: "*" INDICATES "OUT OF SCOPE" ITEMS. 0

0 PAGE 2 0

0 TYPE: ARCHDEF 0

0 COPIED TO PURGED FROM PURGED FROM 0

0 MEMBER DATE TIME MESSAGE INT STAGE 1 USER1 0 -------- -------- -------- -------- --------- ----------- -----------

0 ARCH COpy 02/14/89 16:52:00 X X X 0

0
LMOD3 02/14/89 16:54:00 X X X

0

0 0
PAGE 3

0 0
TYPE: LIST

0 0
COPIED TO PURGED FROM PURGED FROM

0 MEMBER DATE TIME MESSAGE INT STAGE1 USER1 0
-------- -------- -------- -------- --------- ----------- -----------

0 0
MODULE3 02/15/89 09:30:00 X X X

0 MODULE5 02/15/89 09:29:00 X X X 0
MODULE6 02/15/89 09:29:00 X X X

0 0

0 0
PAGE 4

0 0
TYPE: LMAP

0 0
COPIED TO PURGED FROM PURGED FROM

0 MEMBER DATE TIME MESSAGE INT STAGEl USER 1 0
-------- -------- -------- -------- --------- ----------- -----------

0 0
LMOD3 02/15/89 09:31:00 X X X

0 0

Figure 45 (Part 1 of 3). Promote Report

Chapter 4. SCLM Dialog Interface 97

Promote (Option 5)

0 PAGE 5 0

0 TYPE: LOAD 0

0 COPIED TO PURGED FROM PURGED FROM 0
MEMBER DATE TIME MESSAGE INT STAGE1 USER1

0 0 -------- -------- -------- -------- --------- ----------- -----------

0 LMOD3 02/15/89 09:31:00 X X X 0

0 PAGE 6 0

0 TYPE: OBJ 0

0 COPIED TO PURGED FROM PURGED FROM 0
MEMBER DATE TIME MESSAGE INT STAGE1 USER1

0 -------- -------- -------- -------- --------- ----------- ----------- 0

0 MODULE3 02/15/89 09:30:00 X X X 0
MODULE5 02/15/89 09:29:00 X X X

0 MODULE6 02/15/89 09:29:00 X X X 0

0 PAGE 7 0

0 TYPE: SOURCE 0

0 COPIED TO PURGED FROM PURGED FROM 0
MEMBER DATE TIME MESSAGE INT STAGE1 USER1

0 -------- -------- -------- -------- --------- ----------- ----------- 0

0 MODULE3 02/14/89 16:33:00 X X X 0 MODULE5 02/14/89 17:03:00 X X X

0
MODULE6 02/14/89 16:48:00 X X X

0
PAGE 8

0 0
TYPE: SOURCE2

0 0
COPIED TO PURGED FROM PURGED FROM

0 MEMBER DATE TIME MESSAGE INT STAGEl USER1 0 -------- -------- -------- -------- --------- ----------- -----------
0 INCLUDE2 02/14/89 19:49:00 X X X 0

0
INCLUDE3 02/14/89 16:50:00 X X X

0

Figure 45 (Part 2 of 3). Promote Report

98 ISPF/PDF Software Configuration and Library Manager

Promote (Option 5)

0 PAGE 9 0

0 ** ** 0
** B U I L D MAP S **

0 ** ** 0

0 0

0
PAGE 10

0

0
TYPE: ARCHDEF

0

0
COPIED TO PURGED FROM PURGED FROM

0 MEMBER DATE TIME MESSAGE INT STAGE! USERI
-------- -------- -------- _ ... _----- --------- ----------- -----------

0 0

0
LMOD3 02/15/89 09:28:35 X X X

0

0
PAGE 11

0

0
TYPE: SOURCE

0

0
COPIED TO PURGED FROM PURGED FROM

0 MEMBER DATE TIME MESSAGE INT STAGE 1 USERI

0
-------- -------- -------- -------- --------- ----------- ----------- 0

0
MODULE3 02/15/89 09:28:35 X X X

0 MODULE5 02/15/89 09:28:35 X X X

0
MODULE6 02/15/89 09:28:35 X X X

0

Figure 45 (Part 3 of 3). Promote Report

Processing Errors

Data Set Overflow

Data Contention

The promote function can recover from most database errors. However, data set
overflow and data contention, as described below, may occur during a promote.

Partitioned data sets tend to become full and require compression. When a target
data set runs out of space during a promote, promote attempts to recover and
continue the promote. Although you get system ABEND messages, the promote
ignores the ABEND and continues. However, processing bypasses making a copy
to this data set and it also bypasses the subsequent purge step for members that
were not copied.

If data set overflow occurs, follow these steps:

1. Compress or reallocate the data set.
2. Increase the directory block allocation, if necessary.
3. Promote again.

The second promote copies only the members that did not copy in the original
promote. If successful, the purge step is normal. The resulting promote report
identifies only the copied and purged members in the second promote.

Be careful when you process certain combinations of SCLM builds and promotes
simultaneously. You should not promote or build members while they are
processing during another promote. Compiler errors or promote verification errors
in one or more of the concurrent jobs can occur. You can recover from all errors
by running the failed function again.

Chapter 4. SCLM Dialog Interface 99

Batch Processing

Batch Processing
The Verify Batch Job Information panel shown in Figure 46 is the standard panel
for the SCLM functions that allow you to select batch processing. When you enter
the SUBMIT command and when the JOB statement is not on the submittal panel,
this panel appears. SCLM requires JCL job statements when you process in batch
mode.

------------------------ VERIFY BATCH JOB INFORMATION--------,,--------------
COMMAND ===>

Enter/verify JOB statement information below to continue SUBMIT processing.!

===> // USERID$ JOB (ACCOUNT,DEPT,BIN), 'TSOUSERNAME',
===> /1 USGCLASS=A, CLASS=A,NOTIFY=USERID.
===> II USER=,GROUP=????????,PASSWORD=????????
===> /1*
===> //*
===> 11*
===> 11*
===>

Figure 46. Verify Batch Job Information

100 ISPF/PDF Software Configuration and Library Manager

Output Disposition

Output Disposition
The Output Disposition panel shown in Figure 47 is the standard end panel for
many SCLM functions when you have sent output to a data set. It allows you to
determine the disposition of the report or messages data set previously displayed.
You can choose between keeping the data set, deleting the data set, printing and
keeping the data set, or printing and deleting the data set.

----------------------------- OUTPUT DISPOSITION ---------------------------
COMMAND ===> PO

PK - Print and keep data set K - Keep data set (without printing)
PD - Print and delete data set D - Delete data set (without printing)

If END command is entered. data set is kept without printing.

DATASET NAME: 'userid.filename'

General purpose printlpunch SYSOUT class information:
PRINT ===> A
PUNCH ===>

JOB STATEMENT INFORMATION:
===> Iljobname JOB (wrkpkg,dept,bin).'NAME'.CLASS=C,MSGCLASS=H.
===> II USER=????????,PASSWORD=????????,
===> II GROUP=????????,NOTIFY=????????
===> 11*

Figure 47. Output Disposition

When you send output to a data set, the database contents, architecture, build, and
promote functions display a report data set if they complete with an acceptable
return code. The migration utility displays a message data set because its report
is a set of messages.

If you allocate the output to a data set and 99 data sets have already been
allocated, SCLM either overlays a new data set over an old one or concatenates a
new data set with an old one. To avoid this problem, delete old data sets to allow
allocation of new data sets.

If error conditions occur in any of these functions and SCLM routes messages to a
data set, SCLM displays the message data set, not the report data set. In either
case, the Output Disposition panel appears after you finish browsing the displayed
data set.

The browse, edit, library, and sublibrary management utility functions do not
create report or message data sets and, consequently, do not display the Output
Disposition panel.

Chapter 4. SCLM Dialog Interface 101

102 ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

Chapter 5. SCLM Services

General-Use Programming Interface -----------------,

The SCLM services are general-use programming interfaces, which you can
use for programming purposes.

This chapter describes each of the SCLM services and the syntax conventions and
return codes for the services. It discusses how to call the services from your
terminal with interactive command processing, procedures, or programs. This
chapter also provides several brief examples of sample command data sets,
procedures, and programs.

Included in each service description is an example of its use in the command
procedure format and the Pascal call format. See Chapter 6, "A Sample Program
Using SCLM Services," for an example of service invocations and declarations
coded in Pascal.

For information on how to use the SCLM services without ISPF/PDF, see
"Development and Performance" on page 274. For instructions on encrypting and
decrypting partitioned data sets, see "Data Set Protection" on page 276.

Invoking the SCLM Services
Invoke the SCLM services by a program function dialog through a call to FLMCMD
or FLMLNK, or by a command function dialog (CLIST or REXX) through the.
ISPF/PDF interface.

Notation Conventions Used in this Chapter
This chapter uses the following notation conventions to describe the format of the
SCLM services:

Uppercase Uppercase commands or parameters must be spelled out as shown
(in either uppercase or lowercase).

Lowercase Lowercase parameters are variables; substitute your own values.

Underscore Underscored parameters are the system default.

Brackets ([]) Parameters in brackets are optional.

Braces ({}) Braces show two or more parameters from which you must select
one.

ORe!) The OR (I) symbol shows two or more parameters from which you
must select one.

Single Quotes (I I)
Single quotes show service names and keywords in call invocation
examples.

Stacked Parameters

© Copyright IBM Corp. 1989, 1990

Stacked parameters show two or more parameters from which you
can select. If you do not choose any, ISPF/PDF uses the default
parameter.

Chapter 5. SCLM Services 103

Invoking the SCLM Services

Command Invocation of the SCLM Services
Call the SCLM services by using the FLMCMD command in a CUST or REXX
command procedure or by issuing the FLMCMD command as a TSO command.

You cannot invoke the following services using the FLMCMD command:

DBACCT
END
FREE
INIT

The FLMCMD Interface

PARSE
START
STORE

The general format for a command invocation is:

FLMCMD serv;ce_name,project_name,prj_def_name,parameterl,parameter2, ...

The maximum length of the command invocation statement is 512 characters.

FLMCMD Parameter Conventions
service_name

Alphanumeric; up to eight characters long.

project_ name
Alphanumeric; up to eight characters long.

prLdef_name
Alphanumeric; up to eight characters long.

The remaining parameters are positional. They must appear in the order
described for each service.

Although lowercase parameters are optional, SCLM uses default values for those
parameters you do not choose.

If you omit a parameter, account for it by inserting a comma in its place. The
following example shows how you would omit parm2:

FLMCMD serv;ce_name,project_name,&prj_def_name,parml"parm3

Using Command Invocation Variables
You can use a GUST variable anywhere within a statement as the service name or
as a parameter. A CUST variable consists of a name preceded by an ampersand
(&). The CUST processor replaces each variable with its current value before
processing the FLMCMD command.

Note: SCLM follows all rules pertaining to TSO GUSTs. For more information,
refer to TSO Extensions Version 2 Command Language Reference
(SC28-1881) and TSO Extensions Version 2 CLiSTs (SG28-1876).

Using the FLMCMD File Format
Use the FILE format of FLMCMD to process multiple commands as a single
command invocation. You can enter the multiple commands either in a data set or
from your screen. The FILE format of the command invocation is:

FLMCMD FILE,ddname

104 ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

The ddname is the data definition name allocated to the FLMCMD command
dataset. If you do not specify the ddname, SCLM prompts you for command lines.
The record length of the command data set cannot exceed 256 bytes. For more
information, see "Interactive Command Processing" on page 106.

All messages from FLMCMD appear on your screen. To reroute the messages to
another destination, allocate the FLMMSGS ddname to the desired destination.

Note: "Performance Considerations" on page 276 discusses the use of the FILE
format for efficient processing.

The following example shows a command data set. The first command calls the
SCLM LOCK service; the second command calls the SCLM UNLOCK service.

*
* This is an example of a command data set.

* Note that comments do not have to start in column 1.
*
* The following command calls the SCLM LOCK service.
LOCK,PROJ1"USER1,SOURCE,MODULE2,TESTAC,XXX#04,USERID
*
* The following command consists of four lines,
* and calls the SCLM UNLOCK service.
UNLOCK, PROJ 1, ,+
USER1,+
SOURCE,+
MODULE2,XXX#04

Command Data Set Conventions
Command data sets use the following conventions:

• SCLM processes all commands in the command data set regardless of the
success or failure of previous commands.

• If a command line exceeds the maximum record length of the command data
set, continue the command by adding a plus sign (the continuation character)
in column one of the succeeding lines. You can add any number of
continuation lines for any command.

• The maximum command length is 512 bytes. Note that if a command consists
of several command lines, SCLM deletes trailing blanks.

• An asterisk (*) indicates comment lines. Place it in the first nonblank character
of a command line. You can enter any number of comments within the
command data set, but you cannot add a comment line within a series of
command continuation lines.

Chapter 5. SCLM Services 105

Invoking the SCLM Services

The following example shows a GLiST command procedure that calls the FILE
format of FLMGMD.

PROC c:)

ALLOC DDNAME(SCLMIN) DA(IUSERID.FLMCMD.INPUT 1
) SHR

FLMCMD FILE,SCLMIN
SET &FLMCMDCC = &LASTCC
FREE DDNAME(SCLMIN)
EXIT CODE(&FLMCMDCC)

END

Interactive Command Processing
To use interactive command processing, omit the ddname input parameter when
using the FILE format of FLMGMD. You then get a prompt for the command lines.
SGLM processes your input exactly as if the commands were in a command data
set. During interactive command processing, you can enter comment lines but you
cannot enter continuation lines.

To end interactive command processing, enter the QUIT command.

If you allocate the ddname to your screen and also specify it on the FILE format of
FLMCMD, you can get unpredictable results.

The following example shows a sample interactive command session.

READY
FLMCMD FILE
Enter a command line; press Enter to process a command; or "QUIT":
LOCK,PROJ1"USER1,SOURCE,MODULE2,TESTAC,XXXH84.USERID

<messages will appear here>

Enter a commahdline; press Enter to process a command; or "QUIT":
UNLOCK,PROJ1 •• USER1.SOURCE,MODULE2.XXXH84

<messages will appear here>

Enter a command line; press Enter to process a command; or "QUIT":
QUH

READY

106 ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

The FLMLNK Subroutine Interface

Call Invocation

Programs in the FLMLNK subroutine interface call the SCLM services. This
chapter shows call statements in Pascal syntax and service names and keywords
as literals enclosed in single quotes (I I).

Note: None of the languages require you to use literals. You can specify
parameters as variables, as in the examples on the following pages.

You cannot call the following services using the FLMLNK subroutine interface:

DBUTIL
RPTARCH

SCLM services can be issued from function modules that reside either below or
above the 16-megabyte line. The interface module FLMLNK has the attributes
RMODE(24) and AMODE(ANY). These attributes allow both 24-bit and 31-bit
addressing mode callers. Data areas above the 16-megabyte line are also
supported.

Note: The FLMLNK module is shipped with the RMODE(24) attribute to provide
compatibility with function modules that have the AMODE(24) attribute and
that will use a load and call interface to FLMLNK. Modules that reside
above the 16-megabyte line (RMODE(ANY)) and include FLMLNK in their
load module can override the RMODE(24) attribute during link edit.
FLMLNK can reside above the 16-megabyte line.

Standard register conventions are used. Registers 2-14 are preserved across the
call.

Other than for Pascal and FORTRAN, the general call format for invoking SCLM
services from functions by using FLMLNK is:

CALL FLMLNK(service_name,parameterl,parameter2, ...);

FLMLNK Parameter Conventions
service_name

Alphanumeric; up to eight characters long.

Programs in the FLMLNK subroutine interface use the following conventions:

• The service_name parameter is pOSitional and required. All other parameters
must appear in the order described for each service. You cannot omit required
parameters from the call statement. SCLM uses the maximum parameter
length when referencing and updating parameter values. Parameter values
with fewer characters than the maximum must be padded with blanks for the
remainder of the field. Parameters that are not padded with blanks cause
unpredictable results.

• Some of the service input parameters are optional, but SCLM uses a default
value if you do not choose a parameter.

• To omit a parameter, insert a blank enclosed in single quotes (' I) in its place.

• You must indicate the last parameter in the calling sequence with a 111 as the
high order bit in the last entry of the address list. PLlI, COBOL, Pascal, and
FORTRAN call statements automatically generate this high-order bit. In
assembler call statements, you must use the VL keyword.

Chapter 5. SCLM Services 107

Invoking the SCLM Services

FORTRAN, Pascal, and C
For FORTRAN, Pascal, and C, the general call format for invoking SCLM services
from functions by using FLMLNK is:

lastrc := FLMLNK(service_name,parameterl,parameter2, ...);

The parameters for the FORTRAN, Pascal, or C invocation are the same as those
shown for the call invocation.

SCLM returns the return code from the specified SCLM service in the FORTRAN,
Pascal, or C integer variable specified on the invocation. In the following
examples, the variable LASTRC is used.

FORTRAN Example: For functions written in FORTRAN, pass arguments as
FORTRAN variables or literals.

INTEGER
CHARACTER
DATA
DATA
DATA

LASTRC*4
SERVIS*8,SCLMID*8,GROUP*8
SERVIS/'DELETE '/
SCLM_ID/'SCLM00001'/
GROUP/'USERI '/

LASTRC=FLMLNK(SERVICE,SCLM_ID,GROUP, ...)

For FORTRAN service requests, initialize parameter variables by using literals in
assignment statements. You must use previously-defined constants in assignment
statements.

CHARACTER
DATA

SERVIS=DELETE

DELET*8,SERVIS*8
DELET/'DELETE '/

Pascal Example

CONST
SERVICE = 'DELETE ';
SCLM_ID = 'SCLM00001';
GROUP 'USERl' ;

LASTRC := FLMLNK(SERVICE,SCLM_ID,GROUP, ...);

For service calls in Pascal, initialize parameter variables by using literals in
assignment statements:

SERVICE:='DELETE';

C Example: In C programs, include the following declare statements and compiler
di rectives:

#pragma linkage(flmlnk,OS);
extern int flmlnk();

108 ISPF/PDF Software Configuration and Library Manager

PL/I

COBOL

Example

int retcode;
chars SERVICE, SCLMID, GROUP, ...
SERVICE = "DELETE II

SCLMID = ISCLM00001"
GROUP = "USERl

lastrc = flmlnk(SERVICE,SCLMID,GROUP, ...);

Invoking the SCLM Services

In PUI programs, include the following declare statements:

DECLARE FLMLNK
ENTRY
EXTERNAL
OPTIONS (
ASM,
INTER,
RETCODE);

/* NAME OF ENTRY POINT */

/* EXTERNAL ROUTINE */
/* NEEDED OPTIONS */
/* DO NOT USE PL/I DOPE VECTORS */
/* INTERRUPTS */
/* EXPECT A RETURN CODE */

PUI Example

DECLARE SERVICE
SCLM ID
GROUP

CHAR(8) INn(' DELETE '),
CHAR (8) INn ('SCLM00001') ,

CHAR(8) INn(' USERl '),

CALL FLMLNK(SERVICE,SCLM_ID,GROUP, ...);

For service calls in PLlI, initialize parameter variables by using literals in
assignment statements:

SERVICE='DELETE';

COBOL does not allow literals within a call statement. Therefore, SCLM does not
require the use of literals. You can specify all parameters as variables, as in the
following example:

COBOL Example

WORKING-STORAGE TYPE.
77 SERVIS PICTURE A(8) VALUE 'DELETE '.
77 SCLM_ID PICTURE A(8) VALUE 'SCLM00001'.
77 GROUP PICTURE A(8) VALUE 'USERl

PROCEDURE DIVISION.
CALL 'FLMLNK' USING SERVICE SCLM_ID GROUP

For service calls in COBOL, initialize parameter variables by using literals in
assignment statements:

MOVE 'DELETE' TO SERVIS.

Chapter 5. SCLM Services 109

Invoking the SCLM Services

DDNAME Parameters
SCLM services send output to data sets associated with the ddnames you provide
in the parameters passed to the service. You should allocate ddnames with the
attributes specified in the parameter descriptions. However, if you use different
attributes to allocate the ddnames, SCLM creates the data set using the attributes
specified, but the format of the resulting file may not be usable.

Character Parameters

Pointer Parameters

Left-justify all character input parameters (character strings) to the SCLM services.
Left-justify all character output parameters (character strings) from the SCLM
services. Make the calling program buffer the length specified in the service
descriptions. Failure to provide a buffer of the proper size causes unpredictable
results.

All pointer parameters to the SCLM services provide a fullword address to a
predefined array or record structure.

The SCLM services use four pointer parameters:

$msg_array
$acctJnfo
$statsJnfo
$listJnfo

(message array)
(accounting information)
(statistical information)
(list information array)

For Pascal declarations of the services program invocations, see Chapter 6, "A
Sample Program Using SCLM Services."

Note: SCLM frees all memory associated with an output pointer parameter at the
start of the next service call. Copy any data associated with an output
pointer parameter that is to be referenced after the start of the next service
call to the function module's local storage.

For example, if you want to pass the $listJnfo array from the PARSE service
to the STORE service, you must first copy the $listJnfo array to a local
buffer. Then you must pass the local buffer pointer to the STORE service.

For examples of copying the $listJnfo array and the $statsJnfo record, see
Chapter 6, "A Sample Program Using SCLM Services."

Pointer Parameter Descriptions
The following describes each of the four pointer parameters:

$msQ_array: A pointer to an array of messages SCLM services produce. Each
record in the message array is 80 bytes in length. An END record denotes the end
of the message array. Figure 48 shows the contents of a message array with one
message consisting of two message lines.

Record 1: FLM80500 - ACCESS KEY INCORRECT, ACCESS KEY: WRONG_KEY
Record 2: GROUP: USER1, TYPE: SOURCE, MEMBER: MODULE1
Record 3: END

Figure 48. $msg_array Contents

110 ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

$acctJnfo: A pointer to a record containing the static portion of an accounting
record. The following describes the format of the record fields. For a description
of the record field contents, see "Accounting Record" on page 55.

The following fields contain data common to all members:

acct_group
acct_type
acct_member
SCLM version
accounting_status

change_date
change_time
change_group
change_userid
member_version
language
authorization code
authorization_code_change
access_key
creation date
creation_time
map_date
map_time
predecesso r _date
predecessor time
promote date
promote_time
promote userid
db_qual

8 characters
8 characters
8 characters
2 characters (160 I)

1 character:
E Editable
N Non-editable
L Lockout
I Initial
6 characters (YYMMDD format)
6 characters (HHMMSS format)
8 characters
8 characters
Fullword integer
8 characters
8 characters
8 characters
16 characters
6 characters (YYMMDD format)
6 characters (HHMMSS format)
6 characters (YYMMDD format)
6 characters (HHMMSS format)
6 characters (YYMMDD format)
6 characters (HHMMSS format)
6 characters (YYMMDD format)
6 characters (HHMMSS format)
8 characters
8 characters

All of the following eight-character fields are blank unless the accounting_status is
N.

translator_version
map_name

language_version
map_type

The following fields contain statistical data for a member. The fields preceded with
an asterisk refer to statistics that the parsers, supplied by SCLM, do not collect.

total lines
commentJines
non comment lines - -
blankJines

* prologJines
total stmts
comment stmts

* control_stmts

* assignment_stmts
non_comment_stmts
number _ of_ user_entries
number_ofJncludes
number _of_compools
number _ of_ changecodes
number of cus

Each field is a fullword integer.

Chapter 5. SCLM Services 111

Invoking the SCLM Services

$statsJnfo: A pointer to a record containing a member's statistical information.
The following describes the format of the record fields. The fields preceded with
an asterisk refer to statistics that the parsers, supplied by SCLM, do not collect.

totalJines
commentJines
non_com mentJ i nes
blank_lines

total_stmts
comment stmts

* control_stmts
* assignment_stmts

non_com m ent_ stmts * prologJines

Each of the fields is a fullword integer. For a description of the record field
contents, see "Statistics" on page 57.

$list_info: A pointer to an array of records containing the dynamic portion of an
SCLM accounting record. The array contains records detailing a member's
include, compool, compilation unit, change code, and user entry information. Each
record in the array is 228 bytes in length.

Some of the SCLM services place restrictions on the data that you can specify with
this parameter. See the description for the service you want to use to verify
whether it restricts the $listJnfo parameter data.

The records in the array contain two fields. The first field, which is four characters,
indicates the record type. Valid record type values are:

END

INCL

CaMP

CODE

USER

CU

Indicates the end of the array

Indicates an include

Indicates a compool; only used for compool languages, such as JOVIAL

Indicates a change code

Indicates user data

Indicates a compilation unit; only used for the Ada language.

The second field varies depending on the record type. For the following
discussion, "member" refers to the member whose array contains dynamic
accounting record information.

The following is a description of the data in the second field for each record type:

END

INCL

CaMP

CODE

USER

No data.

Member name (8 characters) upon which the "member" has an include
dependency.

Com pool name (8 characters) upon which the "member" has a compool
dependency.

A record detailing a change code associated with the "member." The
total record length is 20 bytes. The record contains a change code (8
characters), a change code date stamp (6 characters, YYMMDD format),
and a change code time stamp (6 characters, HHMMSS format).

User data (128 characters) associated with the" member."

112 ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

CU A record containing two parts, which describes a compilation unit. The
total record length is 224 bytes.

Part one of the record is 112 bytes in length and identifies a compilation
unit that is contained within the "member." Part one contains the
following information:

cu name

genericJlag

Compilation unit name (110 characters).

Compilation unit type (1 character). Valid values are:

B Indicates that the cu_name is either a package
body or procedure body

S Indicates that the cu_name is either a package
specification or procedure specification

X Indicates the cu_name to use for the Ada bind
process.

Compilation unit attribute (1 character). Valid values
are:

G Indicates that the compilation unit is generic

Indicates that PRAGMA INLINE has been
referenced

B Indicates that the compilation unit is generic and
PRAGMA INLINE has been referenced

N Indicates that the compilation unit is not generic
and PRAGMA INLINE has not been referenced.

Part two identifies a compilation unit that the part one compilation unit
depends upon. Part two contains the following information:

depend_cu_name
Compilation unit name (110 characters).

depend_cu_type Compilation unit type (1 character). Valid values are:

B Indicates that the depend_cu_name is either a
package body or procedure body

S Indicates that the depend_cu_name is either a
package specification or procedure specification.

depend_cu_depend_type
Indicates the type of dependency (1 character). Valid
values are:

U The dependency is upward; indicates that the
dependent compilation unit (depend_cu_name)
must be compiled before the current compilation
unit (cu_name).

o The dependency is downward; indicates that the
current compilation unit (cu_name) must be
compiled before the dependent compilation unit
(depend_cu_name).

Chapter 5. SCLM Services 113

Invoking the SCLM Services

Notes:

1. A compilation unit (cu_name/cu_type) may appear on more than one CU entry
in the $listJnfo array. To identify all compilation unit dependencies, the
compilation unit must appear once (in part one of the record) for each of its
dependent compilation units.

2. All Ada compilation units need at least one dependency. But if for some
reason a compilation unit were to have no dependencies, only one CU entry
would appear for that compilation unit. The depend_cu_name,
depend_cu_type, and depend_cu_depend_type are set to blank for the CU
entry.

3. Only one CU record may be present in the $listJnfo array if a record with a
cu_type of X exists. SCLM uses X to abbreviate XREF or cross-reference.

4. A CU record with a cu_type of X must have the following:

• A dependency
• A generic_flag of N
• A cu_name that matches the depend_cu_name
• A depend_cu_depend_type of U.

Also, a CU record with a cu_type of X should have a depend_cu_type of B.

5. The SAVE service restricts the $listJnfo record type to CODE and END. SCLM
deletes all existing user data records if you use the SAVE service.

Figure 49 shows the contents of a list information array. Two change codes
(PR1234 on 12/16/87 at 12:01 :33 and CR000032 on 1/4/88 at 00:53:16) and a user
entry indicating a customized member are associated with the "member."

The "member" also contains one compilation (the TEST_DRIVER generic package
specification) unit with a downward dependency on the TEST_DRIVER package
body and an upward dependency on the COMMON_TYPES package specification.

Record 1: CODEPR1234 871216120133
Record 2: CODECR000032880104005316
Record 3: USERTEST MEMBER - CUSTOMIZED
Record 4: CU TEST_DRIVER ... <99 blanks> ... SGTEST_DRIVER ... <99 blanks> ... SD
Record 5: CU TEST_DRIVER ... <99 blanks> ... SGCOMMON_TYPES .. <98 blanks> ... SU
Record 6: END

Figure 49. $listJnfo Contents

114 ISPF/PDF Software Configuration and Library Manager

Invoking the SCLM Services

SCLM Service Return Codes
Each service returns a numeric code, called a return code, indicating the results of
the operation. The following are possible return codes:

o Indicates successful completion. SCLM mayor may not generate
messages.

4 Indicates a warning condition. SCLM mayor may not generate messages.

8 Indicates an error condition. SCLM generates messages detailing the error.

> 8 Indicates a severe error condition. SCLM does not generate messages.

> 32 Indicates an ABEND. The hexadecimal value of the return code determines
system completion.

Return codes and their meanings vary for each service and are listed with each
service description.

For command invocation, SCLM returns the code in the CLIST variable &Iastcc.
For call invocation, SCLM returns the code in registers 15 and O. When using the
FILE format of FLMCMD command invocation, SCLM sets the return code to the
maximum return code encountered while processing the command data set.

Programs coded in Pascal or FORTRAN can examine the return code by using an
integer variable, such as lastrc, in the following example:

lastrc := FLMLNK(service_name,parameterl,parameter2, ...);

Programs coded in PLII can examine the return code by using PLlRETV, a built-in
function. You need the following declare statements:

DECLARE FLMLNK EXTERNAL ENTRY OPTIONS(ASM INTER RETCODE);
DECLARE PLIRETV BUILTIN;

Programs coded in COBOL can examine the return code by using RETURN-CODE,
a built-in variable.

Chapter 5. SCLM Services 115

SCLM Service Descriptions

SCLM Service Descriptions
This section contains information about the services available for SCLM.

Each service description consists of the following information:

Description

Format

Parameters

A description of the function and operation of the service. This
description also refers to other services that you can use with this
service.

Each service description shows the formats for:

• Command invocation, for use in a CLiST or REXX command
procedure or as a TSO command

• Call invocation from a program module.

The syntax that you use to code the service, showing both
command invocation and call invocation.

Because this chapter shows command and call invocation formats
in Pascal, a semicolon (;) ends statements. This is a Pascal
convention, but you should use the syntax appropriate for your
programming language.

A description of any required or optional keywords or parameters.

Return Codes A description of the codes the service returns. For all services, a
return code of 12 or higher implies a severe error. This error is
usually a syntax error, but it can be any severe error detected
when usi ng the services.

Examples Sample usage of the service.

116 ISPF/PDF Software Configuration and Library Manager

BUILD

BUILD-Build a Member
The BUILD service compiles, links, and integrates software components according
to a project's architecture definition. Before building a member, the member's
dependency information must exist in the project database. For this reason, either
the STORE or SAVE service must complete successfully for the member before you
call the BUILD service.

For more information on the SCLM build function, see "Build Function" on
page 14.

Command Invocation Format

FLMCMD BUILD,project

,group

,type

,member

, [useri d]

, [E I L IN IS]

,Lei FIR I U]

, [1. IN]

, [1. IN]

,[prefix_userid]

,[dd_bldmsgs]

,[dd_bldrept]

,[dd_bldlist]

, [dd_bldexit]

Chapter 5. SCLM Services 117

BUILD

Call Invocation Format

Parameters

lastrc := FLMLNK(IBUILDI,sclm_;d

project

,group

,type

,member

, {user; d II I}

,{EILINIS}

,{eIFIRIU}

,{YIN}

,{YIN}

,{pref; x_user; d II I}

,dd_bldex;t};

The project name. The maximum parameter length is eight characters.

prLdef
The project definition name used for the build. It defaults to the project
parameter. The maximum parameter length is eight characters.

sclmJd
An SCLM 10 associated with a given project and project definition. The SCLM
10 is generated by the INIT service. The maximum parameter length is eight
characters.

group
The group in which the build occurs. The maximum parameter length is eight
characters.

type
The type containing the member to be built. The maximum parameter length is
eight characters.

member
The member to be built. The maximum parameter length is eight characters.

userid
The user 10 of the person requesting the build. It defaults to your TSO prefix or
user 10 if no TSO prefix has been created. The maximum parameter length is
eight characters.

118 ISPF/PDF Software Configuration and Library Manager

BUILD

EILI!!IS
Indicates the build scope (E = extended, L=limited, N=normal, S=subunit).
The maximum parameter length is 24 characters. See the field definitions in
"Build (Option 4)" on page 91 for more details.

~IFIRIU

YIN

YIN

Indicates the build mode (C = conditional, F=forced, R = report,
U = unconditional). The maximum parameter length is 24 characters. See the
field definitions in "Build (Option 4)" on page 91 for more details.

Y indicates that translator listings are to be copied to the dd_bldlist ddname
only if errors occur. N indicates that all translator listings are to be copied to
the dd_bldlist ddname. The maximum parameter length is 24 characters. See
"Build Listings" on page 17 for more details on build listings.

Y indicates that a build report is to be produced and routed to the dd_bldrept
ddname. N indicates that a build report is not to be produced. The maximum
parameter length is 24 characters. See "Build Report" on page 16 for more
details.

prefix _ use rid
The high group qualifier to be used when allocating and cataloging temporary
data sets. It defaults to the user 10 parameter. The maximum parameter
length is 17 characters.

dd_bldmsgs
The ddname indicating the destination of the build messages. If you specify a
blank ddname, SCLM routes the build messages to the default output device,
such as your terminal. Otherwise, before you call the BUILD service, you must
allocate the ddname with the following attributes: RECFM=F, LRECL=80,
BLKSIZE=80. The maximum parameter length is eight characters. See "Build
Messages" on page 16 for more details.

dd_bldrept
The ddname indicating the destination of the build report. If you specify a
blank ddname, SCLM routes the build report to the default output device, such
as your terminal. Otherwise, before you call the BUILD service, you must
allocate the ddname with the following attributes: RECFM=FBA, LRECL=80,
BLKSIZE=3120. The maximum parameter length is eight characters. See "Build
Report" on page 16 for more detai Is.

dd_bldlist
The ddname indicating the destination of the build listings. If you specify a
blank ddname, SCLM does not generate the build listings. Otherwise, before
you call the BUILD service, you must allocate the ddname with the following
attributes: DISP=MOD, RECFM=VBA, LRECL=137, BLKSIZE=3120. The maximum
parameter length is eight characters. See "Build Listings" on page 17 for
more details.

dd_bldexit
The ddname indicating the destination of the build user exit data. Specify this
parameter only if your project definition defines a build user exit routine. Ask
your project administrator if your project is using a build user exit routine. If
you specify a blank ddname, SCLM routes the build user exit data to NULLFILE.
Otherwise, before you call the BUILD service, you must allocate the ddname
with the following attributes: RECFM=FB, LRECL=160, BLKSIZE=3200. The
maximum parameter length is eight characters.

Chapter 5. SCLM Services 119

BUILD

Return Codes

Examples

Possible return codes are:

o Normal completion. See the dd_bldmsgs parameter description for more
details.

4 Warning condition. See the dd_bldmsgs parameter description for more
details.

8 Error condition. See the dd_bldmsgs parameter description for more details.

12 Severe error condition. SCLM does not produce messages because there
was an error invoking the build module.

16 Severe error condition. SCLM does not produce messages because it was
unable to retrieve SCLM ID information.

20 Severe error condition. SCLM does not produce messages because the
SCLM ID is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application ID
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

These examples call the BUILD service.

Command Invocation

FLMCMD BUILD,PROJ1"USER1,ARCHDEF,CMOD1",U"N

This service command builds the CMOD1 member of the ARCHDEF type in the
USER1 group. The project name is PROJ1. The build mode is unconditional and
SCLM does not generate a build report. SCLM sends messages and listings to the
terminal. All other parameters are defaults.

120 ISPF/PDF Software Configuration and Library Manager

Call Invocation

lastrc .= FLMLNK('BUILD',sclm_id,
'USERI','ARCHDEF','CMODI ' ,
I ','N','F','N','Y',
'PROJECT.WORKFILE I,

BUILD

'BLDMSGS', 'BLDREPT ' , 'BLDLIST ' , 'BLDEXIT ');

The service call builds the CMOD1 member of the ARCHDEF type in the USER1
group. The sclmJd parameter contains a valid SCLM ID returned from the INIT
service. The build scope is normal and the build mode is forced. SCLM copies all
build listings to the build listings data set and generates a build report. All
temporary data sets are allocated with the high-group qualifier of
PROJECT.WORKFILE. The ddnames for the messages, report, listings, and user
exit data set (BLDMSGS, BLDREPT, BLDLlST, and BLDEXIT, respectively) must be
allocated before calling FLMLNK.

Chapter 5. SCLM Services 121

DBACCT

DBACCT-Retrieve Accounting Records for a Member
The OBACCT service retrieves accounting records from the project database and
returns the information to you. SCLM retrieves the first occurrence of the
accounting record in the hierarchy, starting at the specified group. Accounting
records exist for any member for which the LOCK, SAVE, or STORE service
completes successfully. For more information on SCLM accounting records, see
"Accounting Record" on page 55.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters

lastrc := FLMLNK('DBACCT',sclm_id

,group

,type

,member

,$msg_array);

sClmJd
An SCLM 10 associated with a given project and project definition. The SCLM
10 is generated by the INIT service. The maximum parameter length is eight
characters.

group
The group in which the accounting record search begins. The maximum
parameter length is eight characters.

type
The type containing the accounting record retrieved. The maximum parameter
length is eight characters.

member
The member whose accounting record is retrieved. The maximum parameter
length is eight characters.

found_group
An output parameter that indicates the group in which SCLM finds the first
occurrence of the member's accounting record within the hierarchy. The
maximum parameter length is eight characters.

122 ISPF/PDF Software Configuration and Library Manager

Return Codes

Example

Call Invocation

DBACCT

$acctJnfo
An output parameter pOinting to a record containing the static portion of the
member's accounting record. See "Pointer Parameters" on page 110 for more
details on $acctJnfo.

$listJnfo
An output parameter pointing to an array of records containing the dynamic
portion of the member's accounting record. See "Pointer Parameters" on
page 110 for more details on $listJnfo.

$ms9_array
An output parameter pointing to the message array. See "Pointer Parameters"
on page 110 for more details on $ms9_array.

Possible return codes are:

o Normal completion.

4 Warning condition. SCLM could not find the accounting record.

S Error condition. See the $msg_array parameter description for more details.

20 Severe error condition. SCLM does not produce messages because the
SCLM 10 is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application 10
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

This example calls the DBACCT service.

lastrc 0= FLMLNK('DBACCT',sclm_id,
'USERl ' , 'SOURCE ' , 'MODULEl ' ,
found group,
$acct=info,$list_info,$msg_array);

This service call returns the first occurrence of the accounting record for the
MODULE1 member of the SOURCE type beginning in the USER1 group. The
sclmJd parameter contains a valid SCLM 10 returned from the INIT service. SCLM
returns all messages produced in the $msg_array.

Chapter 5. SCLM Services 123

DBUTIL

DBUTIL-Generate a Tailored Data Set and Report
The DBUTIL service retrieves information from the project database and creates a
tailored data set and a report. SCLM generates the tailored data set in the format
you specify. It also reflects the contents of the project database based on the
selection criteria you supply. You can use the tailored data set as input to future
FLMCMD command invocations (using the FILE format of FLMCMD) or as input to
other project-defined processors.

If you use the FILE format of FLMCMD to call the DBUTIL service, you can save the
input parameters in a data set, then use the data set for future invocations of the
DBUTIL service. See "Using the FLMCMD File Format" on page 104 for details on
using the FILE format of FLMCMD.

The report indicates the contents of the project database based on the selection
criteria you supply to the DBUTIL service. For more information on the SCLM
database contents utility function, see "Database Contents Utility" on page 74.

Command Invocation Format
/\

FLMCMD DBUTIL,project,[prj_def]

, [acct_group3],[acct_group4]

, [acct_group5],[acct_group6]

, [authcodel:],[change_codel:]

I ~) , [1 anguage I:] , [YES 1 NOr~

, [ACCTIBMAPI*]

,[INIOUTI:] 1~J

,[arch_group],[arch_type],[arch_member]

, [EXTENDEDINORMALISUBUNIT]

, [YES 1 NO] ~t. :~

, [YES 1 NO]/

,[dd_rept],[dd_tai1or]

, [report_1 ine] -? ~

124 ISPF/PDF Software Configuration and Library Manager

DBUTIL

Call Invocation Format

Parameters

You cannot use call procedures to start this service.

project
The project name. The maximum parameter length is eight characters.

prLdef
The project definition name to be used for the data extraction. It defaults to the
project. The maximum parameter length is eight characters.

acct_group1 - acct_group61:
The accounting group associated with the accounting member. The maximum
parameter length is eight characters. You can specify up to six individual
acct_groups, an asterisk for all, or up to six valid patterns. For more
information on patterns see "Specifying Selection Criteria" on page 75.

acct_ type I:
One of a set of partitioned data sets, which makes up a group associated with
the accounting record and which contains members of a particular data type.
The maximum parameter length is eight characters. You can specify an
individual acct_type, an asterisk for all of them, or a valid pattern. For more
information on patterns see "Specifying Selection Criteria" on page 75.

acct_memberl:
The discrete element of a project database, which represents a single data
type of a software component. The maximum parameter length is eight
characters. You can specify an individual acct_member, an asterisk for all of
them, or a valid pattern. For more information on patterns see "Specifying
Selection Criteria" on page 75.

authcodel:
The current authorization code for the member. The maximum parameter
length is eight characters. You can.specify an individual authcode, an asterisk
for all of them, or a valid pattern. For more information on patterns see
"Specifying Selection Criteria" on page 75.

change_code I:
A change code you assign to indicate why you are updating the member. The
maximum parameter length is eight characters. You can specify an individual
change_code, an asterisk for all of them, or a valid pattern. For more
information on patterns see "Specifying Selection Criteria" on page 75.

change_group I:
The name of the group in which the member was last updated. The maximum
parameter length is eight characters. You can specify an individual
change_group, an asterisk for all of them, or a valid pattern. For more
information on patterns see "Specifying Selection Criteria" on page 75.

change _ userid I:
The user ID of the person who made the last update to the member. The
maximum parameter length is eight characters. You can specify an individual
change_userid, an asterisk for all of them, or a valid pattern. For more
information on patterns see "Specifying Selection Criteria" on page 75.

Chapter 5. SCLM Services 125

DBUTIL

language I:
The language of the member. The maximum parameter length is eight
characters. You can specify an individual language, an asterisk for all of them,
or a valid pattern. For more information on patterns see "Specifying Selection
Criteria" on page 75.

YESINO
If you specify YES and use more than one group pattern, a precedence system
determines which members are selected. If you specify NO, SCLM selects all
versions of all members. The maximum parameter length is 24 characters.
See "Accounting Information Fields" on page 76 for more information.

ACCTIBMAPI*
Specify the following data type to report on:

ACCT Accounting information
BMAP Build map information

Build map and accounting information.

The maximum parameter length is 24 characters.

INIOUTI~
Specify the following to select members:

IN Controlled by the architecture definition
OUT Not controlled by the architecture definition

Without using an architecture definition to identify them.

The maximum parameter length is 24 characters.

arch_group
The group used to identify the lowest level in the hierarchy where the
architecture begins. The maximum parameter length is eight characters.

arch_type
The type containing the architecture definition that controls the selected
members. The maximum parameter length is eight characters.

arch_member
The member containing the architecture definition that controls the selected
members. The maximum parameter length is eight characters.

EXTENDEDINORMALISUBUNIT
Specify the following architecture scope to select:

NORMAL
Members that do or do not have compilation unit dependencies.

EXTENDEDISUBUNIT
Members that do have compilation unit dependencies.

The maximum parameter length is 24 characters.

YESINO
Specify YES to include page header information in the tailored data set. The
maximum parameter length is 24 characters.

YESINO
Specify YES to sum numeric data fields and to show the sum totals in the
tailored data set. The maximum parameter length is 24 characters.

report_name
The title of the report to be written in the tailored data set. The maximum
parameter length is 35 characters.

126 ISPF/PDF Software Configuration and Library Manager

Return Codes

DBUTIL

dd_msgs
The ddname indicating the destination of the OBUTIL service messages. If you
specify a blank ddname, SCLM routes the OBUTIL service messages to the
default output device, such as your terminal. Otherwise, before you call the
OBUTIL service, you must allocate the ddname with the following attributes:
RECFM=F, LRECL=80, BLKSIZE=80. The maximum parameter length is eight
characters.

dd_rept
The ddname indicating the destination of the report. If you specify a blank
ddname, SCLM routes the report to the default output device, such as your
terminal. Otherwise, before you call the OBUTJt'ser\tice, you must allocate the
ddname with the following attributes: RECFMfFBA,/(RECL=80, BLKSIZE=3120. The
maximum parameter length is eight charkers~~

dd_tailor
The ddname indicating the destination of the tailored data set. If you specify a
blank ddname, SCLM does not generate the tailored data set. Otherwise,
before you call the OBUTIL service, you must allocate the ddname with the
following attributes: RECFM=F, V, FB, VB; LRECL = 512 (maximum). The
maximum parameter length is eight characters.

report_line
A line of data input that determines the content of the tailored output. Note that
you can include commas in the report_line. If you specify all other parameters
or if they default correctly, SCLM does not parse the reportJine for commas.
The maximum parameter length is 160 characters.

If you use the SCLM @@FLM$XN or @@FLM$UO variables, keep in mind that
their values can exceed eight characters. Place these variables at the end of
the report line to ensure that the columns in the report line up evenly.

The default value for the report_line is the following:

@@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS @@FLMNCS

Possible return codes are:

o Normal completion. See the dd_msgs parameter description for more
details.

4 Warning condition. See the dd_msgs parameter description for more
details.

8 Error condition. See the dd_msgs parameter description for more details.

> 8 Severe error condition and SCLM does not produce messages. See "Return
Codes" on page 157 for a description of the return code.

Chapter 5. SCLM Services 127

DBUTIL

Example
This example calls the DBUTIL service.

Command Invocation

FLMCMD DBUTIL,PROJ1"USER1"",,+
,"""N,ACCT,*"",N,N,NAME",+
UTILTAIL,DELETE,@@FLMPRJ,PROJ1,@@FLMGRP,@@FLMTYP,@@FLMMBR

This service command retrieves accounting information in the USER1 architecture
group. SCLM selects all versions of the member without using an architecture
definition to identify them. SCLM also selects all accounting types and accounting
members that match the pattern.

The dd_tailor parameter, UTILTAIL, indicates the destination of the tailored report
called NAME. The report_line parameter passes SCLM variables to produce a
cleanup report, which you can use to delete all of the members in a group. The
cleanup report does not have header information and does not total numeric data
fields.

128 ISPF/PDF Software Configuration and Library Manager

DELETE

DELETE-Delete Database Components
The DELETE service deletes database components. You can delete an entire
member plus its associated accounting record and build map, a member's
accounting record and build map, or a member's build map. For more information
on accounting records and build maps, see "Accounting Record" on page 55.

If you delete a member from a development group, delete the same member in the
next higher non-key group if it exists there.

Command Invocation Format

FLMCMD DELETE,project

,group

,type

,member

,[ACCTIBMAPITEXT]

Call Invocation Format

Parameters

lastrc := FLMLNK('DELETE',sclm_id

,group

,type

,member

,{ACCTIBMAPITEXT}

,$msg_array) ;

project
The project name. The maximum parameter length is eight characters.

prLdef
The project definition name to be used for the delete. It defaults to the project.
The maximum parameter length is eight characters.

sclmJd
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM 10. The maximum parameter length is eight
characters.

Chapter 5. SCLM Services 129

DELETE

Return Codes

group
The group in which the delete is to occur. The maximum parameter length is
eight characters.

type
The type containing the member, accounting record, and/or build map to be
deleted. The maximum parameter length is eight characters.

member
The name of the member, accounting record, and/or build map to be deleted.
The maximum parameter length is eight characters.

access_key
The access key assigned to the member with the LOCK service. If you supply
the incorrect access key, the delete fails. The maximum parameter length is
eight characters. For more information on access keys, see "Edit Function" on
page 10.

ACCTIBMAPITEXT
Indicates which types of data SCLM is to delete for the member. If you specify
BMAP, SCLM deletes only the member's build map. If you specify ACCT,
SCLM deletes the member's build map and accounting record. If you specify
TEXT, SCLM deletes the member's build map, the member's accounting
record, and the member. The maximum parameter length is 24 characters.

$msg_array
An output parameter pointing to the message array. See "$msg_array" on
page 110 for more details.

Possible return codes are:

o Normal completion.

4 Warning condition. The member, accounting record, and/or build map were
not found.

8 Error condition. See the $msg_array parameter for more details.

20 Severe error condition. SCLM does not produce messages because the
SCLM ID is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application ID
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

130 ISPF/PDF Software Configuration and Library Manager

DELETE

Examples
These examples call the DELETE service.

Command Invocation

Call Invocation

FLMCMD DELETE,PROJl"USERl,SOURCE,MODULE2,XXX#04,ACCT

This service command deletes the build map and accounting record for the
MODULE2 member of the SOURCE type in the USER1 group. The project name is
PROJ1. The access key for the member is XXX#04.

lastrc := FLMLNK('DELETE' ,sclm_id,
'USERl', 'SOURCE ' , 'MODULE2 1

,

'XXX#04 1
,

'ACCT ' ,
$ms9_array);

This service call deletes the accounting record and the build map for the MODULE2
member of the SOURCE type in the USER1 group. The sclmJd parameter contains
a valid SCLM ID returned from the INIT service and the access key is XXX#04.
SCLM returns all messages in the $msg_array.

Chapter 5. SCLM Services 131

END

END-End an SCLM Services Session
The END service stops an SCLM services session. It frees an application 10
generated by the START service. Each START service invocation needs a
matching END service invocation. This service also calls the FREE service to free
any SCLM IDs associated with the given application 10 that have not been explicitly
freed.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters

Return Codes

lastrc := FLMLNK('END',appl_id

applJd
The application 10 associated with the SCLM services session you want to
stop. You must generate the application 10 using the START service. The
maximum parameter length is eight characters.

mS9_line
An output parameter that has a buffer containing the END service error
message. The maximum parameter length is 80 characters.

Possible return codes are:

o Normal completion.

4 Warning condition. SCLM cannot free an SCLM 10 associated with the
application 10.

S Error condition. See the msgJine parameter description for more details.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application 10
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

132 ISPF/PDF Software Configuration and Library Manager

Example

Call Invocation

END

This example calls the END service.

lastrc := FLMLNK('END',appl_id,ms9_1ine);

This service call ends the SCLM services session identified by the applJd
parameter. The applJd parameter contai ns a valid application 10 returned from
the START service. SCLM returns messages in the msgJine parameter.

Chapter 5. SCLM Services 133

FREE

FREE-Free an SCLM ID from its Association with a Database
The FREE service frees an SCLM ID generated by the INIT service. Each INIT
service invocation needs a matching FREE service invocation. After freeing the
SCLM ID, SCLM closes the project database and frees the project definition
specified on the INIT service.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters

Return Codes

lastrc := FLMLNK('FREE',sclm_id

sclmJd
The SCLM ID to be freed. The INIT service must generate the SCLM ID. The
maximum parameter length is eight characters.

mS9_line
An output parameter that is a buffer containing the FREE service error
message. The maximum parameter length is 80 characters.

Possible return codes are:

o Normal completion.

S Error condition. See the msgJine parameter description for more details.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application ID
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

134 ISPF/PDF Software Configuration and Library Manager

Example

Call Invocation

FREE

This example calls the FREE service.

lastrc := FLMLNK('FREE',sclm_id,ms9_1ine);

This service call frees the SCLM ID identified by the sClmJd parameter. The
sclmJd parameter contains a valid SCLM ID returned from the INIT service. SCLM
returns messages in the msgJine parameter.

Chapter 5. SCLM Services 135

INIT

INIT-Generate an SCLM 10 for a Database
The INIT service initializes an SCLM 10. During this process, it also initializes both
the specified project definition and the project database. After the INIT service
generates an SCLM ID, it can be passed to other SCLM services, such as DELETE
and LOCK. Each INIT service invocation needs a matching FREE service
invocation.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters

Return Codes

lastrc := FLMLNK('INIT',appl_id

,project

applJd
The application ID to which the generated SCLM ID is to be associated. The
application ID must be generated by the START service. The maximum
parameter length is eight characters.

project
The project name. The maximum parameter length is eight characters.

prLdef
The project definition name to be initialized for the SCLM ID. The maximum
parameter length is eight characters.

sclmJd
The generated SCLM ID. Each time you invoke the INIT service, it generates a
unique SCLM ID. The maximum parameter length is eight characters.

msgJine
An output parameter that is a buffer containing the INIT service error message.
The maximum parameter length is 80 characters.

Possible return codes are:

o Normal completion.

S Error condition. See the msgJine parameter description for more details.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application ID
for a Services Session" on page 157 for information on initializing an SCLM
services session.

136 ISPF/PDF Software Configuration and Library Manager

Example

Call Invocation

INIT

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

This example calls the INIT service.

lastrc :: FLMLNK('INIT' ,appl_id,'PROJ1 1 ,'PROJ1 1 ,sclm_id,ms9_1ine);

This service call initializes an SCLM ID for the PROJ1 project using the PROJ1
project definition. The applJd parameter contains a valid application ID returned
from the START service. SCLM returns messages in the msg-,ine parameter.

Chapter 5. SCLM Services 137

LOCK

LOCK-Lock a Member or Assign an Access Key
The LOCK service locks a member in a private library or assigns the member an
access key, or both. Locking a member guarantees you exclusive use of the
member until you either unlock or promote it. Locking a member also ensures that
updates to the member can occur only in the specified private library until you
unlock or promote the member. The member to be locked does not have to exist in
a private library or anywhere in the hierarchy.

You can assign an access key to the member to make the member even more
secure than just locking it does. If you assign an access key to a member, you
must, thereafter, provide that access key to further modify the member. For an
explanation on using access keys, see "Development Scenario" on page 274.
When using access keys, remember:

• Access keys have no effect on the BUILD, DBACCT, DBUTIL, PARSE, and
RPT ARCH services.

• You must supply the correct member access key when you call the DELETE,
SAVE, STORE, and UNLOCK services.

• Before you can promote a member, you must call the UNLOCK service to
remove a member's access key. The PROMOTE service promotes any
member that has a blank access key.

• If you have successfully completed the SAVE or STORE service for a member,
the member remains locked. You can still use the LOCK service to assign an
access key to the member.

For more information on the LOCK service and access keys, see "Edit Function" on
page 10.

Command Invocation Format

FLMCMD LOCK,project

,group

,type

,member

,[authcode]

,[access_key]

,[userid]

138 ISPF/PDF Software Configuration and Library Manager

LOCK

Call Invocation Format

Parameters

lastrc := FLMLNK(ILOCK I ,sclm_id

,group

, type

,member

,authcode

, [useri d II I]

,$acct_info

,$msg_array);

project
The project name. The maximum parameter length is eight characters.

prLdef
The project definition name to be used for the lock. It defaults to project. The
maximum parameter length is eight characters.

sclmJd
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is eight
characters.

group
The group in which the member is to be locked. The specified group must be a
private library. The maximum parameter length is eight characters.

type
The type containing the member to be locked. The maximum parameter length
is eight characters.

member
The member to be locked. The maximum parameter length is eight characters.

authcode
The authorization code to be used for the lock. SCLM uses the authorization
code for the verification steps described for the LOCK service in "Edit
Function" on page 10. If you do not supply an authcode or a blank authcode,
SCLM uses one of the following default values:

• The authorization code from the existing member if the member being
locked exists in the hierarchy.

Chapter 5. SCLM Services 139

LOCK

Return Codes

• The default authorization code for the group if the member does not exist
in the hierarchy.

The maximum parameter length is eight characters.

access_key
The access key to be assigned to the member. It defaults to blank. The
maximum parameter length is 16 characters. You must use the access key for
any further manipulation of the member until you use the UNLOCK service to
remove the access key. For more information on access keys, see "Edit
Function" on page 10.

userid
User 10 of the person requesting the lock. It defaults to the current system
user 10. The maximum parameter length is eight characters.

found_group
An output parameter that indicates the group in which the first occurrence of
the member exists within the hierarchy. The maximum parameter length is
eight characters.

max_prom_group
An output parameter that indicates the highest group in the hierarchy that the
member can be promoted to. This member's maximum promotable group is
based on the authorization code you use for the lock. The maximum
parameter length is eight characters.

$acct_info
An output parameter pointing to a record containing the static portion of the
member's accounting record. See "$acctJnfo" on page 111 for more details.

$listJnfo
An output parameter pointing to an array of records that contains the dynamic
portion of the member's accounting record. See "$listJnfo" on page 112 for
more details.

$msg_array
An output parameter pointing to the message array. See "$msg_array" on
page 110 for more details.

Possible return codes are:

o Normal completion.

8 Error condition. See the $msg_array parameter description for more details.

20 Severe error condition. SCLM does not produce messages because the
SCLM 10 is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application 10
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

140 ISPF/PDF Software Configuration and Library Manager

LOCK

Examples
These examples call the LOCK service.

Command Invocation

Call Invocation

FLMCMD LOCK,PROJ1"USER1,SOURCE,MODULE2"XXX#04

This service command locks the MODULE2 member of the SOURCE type in the
USER1 group. The project name is PROJ1. The access key to be assigned to the
member is XXX#04. The authcode and userid parameters are defaults.

lastrc 0= FLMLNK('LOCK ' ,sclm_id,
'USER1','SOURCE','MODULE21,
'TESTAC ' ,
'XXX#041,
I USERID I,
found_group, max_prom_group,
$acct_info,$list_info,$msg_array);

This service call locks the MODULE2 member of the SOURCE type in the USER1
group. The sclmJd parameter contains a valid SCLM ID returned from the INIT
service. The authorization code to be used for the lock verification is TESTAC and
the access key is XXX#04. USERID is the user requesting the lock. SCLM returns
all messages in the $msg_array parameter.

Chapter 5. SCLM Services 141

PARSE

PARSE-Parse a Member for Statistical and Dependency
Information

The PARSE service parses a member for statistical information and dependency
information. SCLM returns two buffers containing the member's vital information
that you can pass on to the STORE service. When the STORE service receives this
information, it places it in the member's accounting record. For more information
on the PARSE service, see "Edit Function" on page 10.

If the ISPF/PDF pack mode is on, the parser that was supplied with SCLM returns
statistical values reflecting the pack mode. For instance, the number of comment
and noncomment lines stored in the accounting records is less than the number of
comment and noncomment lines that appear when you display the member.
However, the number of comment and noncomment statements is the same when
you parse the member.

The member to be parsed does not have to be locked nor does it have to reside in
a private library.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters

lastrc := FLMLNK('PARSE',sclm_id

,group

,type

,member

,language

,{'Y'I'N'}

,ddname

,$msg_array);

sclmJd
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is eight
characters.

group
The group in which the member is to be parsed. The maximum parameter
length is eight characters. Note that a member can be parsed in any group;
the specified group does not have to be a private library.

142 ISPF/PDF Software Configuration and Library Manager

PARSE

type
The type containing the member to be parsed. The maximum parameter
length is eight characters.

member
The member to be parsed. The maximum parameter length is eight
characters.

language

YIN

The language of the member to be parsed. The maximum parameter length is
eight characters.

Y indicates parser listings to be copied to the ddname parameter if parser
errors occur. N indicates all parser listings to be copied to the ddname. The
maximum parameter length is 24 characters.

If the parser for the specified language does not produce a listing, specify Y.
(The language parsers supplied by SCLM do not produce a listing.) If the
parser for the specified language does produce a listing, specify either value.
For more efficient performance, specify Y. Project-specific parsers mayor
may not produce a listing. See "Invoking User-Defined Parsers" on page 239
for more information on project-defined parsers.

ddname
The ddname indicating the destination of the parser listings. If you specify a
blank ddname, SCLM does not generate parser listings. The maximum
parameter length is eight characters.

If the parser for the specified language does not produce a listing, you should
specify a blank ddname. The parsers supplied by SCLM do not produce a
listing. If the parser for the specified language does produce a listing and you
specify a ddname, allocate the ddname with the attributes the parser requires.
Project-specific parsers mayor may not produce a listing. See "Invoking
User-Defined Parsers" on page 239 for more information on project-defined
parsers.

$statsJnfo
An output parameter pointing to a record containing the member's statistical
information derived from parsing the member. See "$statsJnfo" on page 112
for more details.

$listJnfo
An output parameter pointing to an array of records that contains the
member's include, compool, compilation unit, change code, and user entry
information derived from parsing the member. See "$listJnfo" on page 112
for more details.

$msg_array
An output parameter pointing to the message array. See "$msg_array" on
page 110 for more details.

Chapter 5. SCLM Services 143

PARSE

Return Codes

Example

Call Invocation

Possible return codes are:

o Normal completion.

4 Warning condition. A parser error occurred.

8 Error condition. See the $msg_array parameter description for more details.

20 Severe error condition. SCLM does not produce messages because the
SCLM ID is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application ID
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

This example calls the PARSE service.

lastrc ,= FLMLNK('PARSE ' ,sclm_id,
'USER1 ' ,'SOURCE ' ,'MODULE2 1

,

1 PASCAL I,
1 Y I,
'PARSEDD I,
$stats_info,$list_info,$ms9_array);

This service call parses the MODULE2 member of the SOURCE type in the USER1
group. The sclmJd contains a valid SCLM ID returned from the INIT service.
SCLM uses the PASCAL parser and copies the parser listings to the PARSEDD
ddname only if errors occur. You must allocate the PARSEDD ddname before you
call FLMLNK. SCLM returns the parse results in the $statsJnfo and $listJnfo
parameters and all messages in the $msg_array parameter.

144 ISPF/PDF Software Configuration and Library Manager

PROMOTE

PROMOTE-Promote a Member from One Library to Another
The PROMOTE service moves data, that is, promotes data through the project
database according to a project's architecture definition and project definition.
Before SCLM can promote a member, it must have a blank access key and
successfully complete the BUILD service. If a member has an access key, you
must call the UNLOCK service to reset the access key before you can promote the
member.

For more information on the SCLM promote function, see "Promote Function" on
page 17.

Command Invocation Format

FLMCMD PROMOTE,project

Call Invocation Format

,group

,type

,member

, [useri d II I]

, [E IN I S]

,[~I R I U]

,[dd_promrept]

,[dd_promexit]

, [dd_copyerr]

lastrc := FLMLNK(IPROMOTEI,sclm_id

,group,type,member

, [useri d II I]

,{EINIS}

,{CIRIU}

,dd_promexit,dd_copyerr);

Chapter 5. SCLM Services 145

PROMOTE

Parameters
project

The project name. The maximum parameter length is eight characters.

prLdef
The project definition name to be used for the promote. It defaults to project.
The maximum parameter length is eight characters.

sclmJd
An SCLM 10 associated with a given project and project definition. The INIT
service generates the SCLM 10. The maximum parameter length is eight
characters.

group
The group the promote occurs from. The maximum parameter length is eight
characters.

type
The type containing the member to be promoted. The maximum parameter
length is eight characters.

member
The name of the architecture member or source member to be promoted. The
maximum parameter length is eight characters.

userid
The user 10 of the person requesting the promote. It defaults to the current
system user 10. The maximum parameter length is eight characters.

EINIS
Indicates the promote scope (E = extended, N = normal, S = subunit). The
maximum parameter length is 24 characters. See the field definitions in
"Promote (Option 5)" on page 94 for more details.

~IRIU
Indicates the promote mode (C = conditional, R = report, U = unconditional).
The maximum parameter length is 24 characters. See the field definitions in
"Promote (Option 5)" on page 94 for more details.

dd_prommsgs
The ddname indicating the destination of the promote messages. If you specify
a blank ddname, SCLM routes the promote messages to the default output
device, such as your terminal. Otherwise, before you call the PROMOTE
service, you must allocate the ddname with the following attributes: DISP=MOD,
RECFM=F, LRECL=88, BLKSIZE=88. The maximum parameter length is eight
characters. See "Promote Messages" on page 19 for more details on promote
messages.

dd_promrept
The ddname indicating the destination of the promote report. If you specify a
blank ddname, SCLM routes the promote report to the default output device,
such as your terminal. Otherwise, before you call the PROMOTE service, you
must allocate the ddname with the following attributes: RECFM=FBA, LRECL=88,
BLKSIZE=3128. The maximum parameter length is eight characters. See
"Promote Report" on page 19 for more details.

dd _promexit
The ddnameindicating the destination of the promote user exit data. Specify
this parameter only if your project administrator defined a promote user exit
routine in your project definition. Ask your project administrator if your project
is using a promote user exit routine. If you specify a blank ddname, SCLM

146 ISPF/PDF Software Configuration and Library Manager

Return Codes

Examples

PROMOTE

routes the promote user exit data to NULLFILE. Otherwise, before you call the
PROMOTE service, you must allocate the ddname with the following attributes:
RECFM=FB, LRECL=160, BLKSIZE=3200. The maximum parameter length is eight
characters.

dd_copyerr
The ddname indicating the destination of the promote copy error information.
The promote copy error information consists of system messages indicating
the cause of copy errors during promote processing.

If you specify a blank ddname, SCLM routes the promote copy error
information to the default output device, such as your terminal. Otherwise, you
must allocate the ddname before you call the PROMOTE service. If you
allocate the copy error ddname, you should allocate it to da(*), the default
output device. The maximum parameter length is eight characters.

Possible return codes are:

o Normal completion. See the dd_prommsgs parameter description for more
details.

8 Error condition. See the dd_prommsgs parameter description for more
details.

12 Severe error condition. SCLM does not produce messages because there
was an error invoking the promote module.

16 Severe error condition. SCLM does not produce messages because SCLM
cannot retrieve SCLM ID information.

20 Severe error condition. SCLM does not produce messages because the
SCLM 10 is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application 10

for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

These examples call the PROMOTE service.

Command Invocation

FLMCMD PROMOTE,PROJl"USERl,ARCHDEF,CMODl",U

This service command promotes the CMOD1 member of the ARCHDEF type and all
of its dependent members from the USER1 group to the next group in the
hierarchy. The project name is PROJ1. The promote scope is normal (by default)
and the promote mode is unconditional. SCLM sends messages, reports, and
listings to the terminal.

Chapter 5. SCLM Services 147

PROMOTE

Call Invocation

lastrc 0= FLMLNK(IPROMOTE 1 ,sclm_id,
IUSERl1,IARCHDEF1,ICMODl 1,
1 USERID I,
1 E I,
IR 1

,

IPROMMSGS1,IPROMREPT 1 ,IPROMEXIT 1, ICOPYDD I};

This service call performs a report-only promote on the CM001 member of the
ARCHOEF type in the USER1 group. The sclmJd parameter contains a valid SCLM
10 returned from the INIT service and USERIO identifies who is requesting the
promote. The promote scope is extended. You must allocate the ddnames
(PROMMSGS, PROMREPT, PROMEXIT, and COPYOO, respectively) before you call
FLMLNK.

148 ISPF/PDF Software Configuration and Library Manager

RPTARCH

RPT ARCH-Generate an SCLM Architecture Report
The RPTARCH service generates an SCLM architecture report. The report consists
of the architecture definition. For more information on the SCLM architecture
report, see" Architecture Report" on page 83.

Command Invocation Format

FLMCMD RPTARCH,project,[prj_def]

,group

,type

,member

,[HLILECICCIGENITOP SOURCEINONE]

Call Invocation Format

Parameters

You cannot use call procedures to start this service.

project
The project name. The maximum parameter length is eight characters.

prLdef
The project definition name to be used for generating the architecture report.
It defaults to project. The maximum parameter length is eight characters.

group
The group the report is to be generated from. The maximum parameter length
is eight characters.

type
The type containing the member to be reported on. The maximum parameter
length is eight characters.

member
The member to be reported on. The maximum parameter length is eight
characters.

HLILECICCIGENITOP SOURCEINONE
Indicates the cutoff (determines depth) for the architecture report.

The architecture report contains the following if you specify:

HL
The HL architecture members in the application represented by the
architecture member you specified with the member parameter.

Chapter 5. SCLM Services 149

RPTARCH

Return Codes

LEC

CC

The HL and LEG architecture members in the application represented by
the architecture member you specified with the member parameter.

The HL, LEG, and GC architecture members in the application represented
by the architecture member you specified with the member parameter.

GEN
The HL and generic architecture members in the application represented
by the architecture member you specified with the member parameter.

TOP SOURCE
The HL, LEG, CG, and generic architecture members and top source
members in the application represented by the architecture member you
specified with the member parameter.

NONE
The HL, LEG, GG, and generic architecture members in each of the types
and all source members down to the lowest include group in the
application represented by the architecture member you specified with the
member parameter.

The maximum parameter length is 24 characters.

dd_rptmsgs
The ddname indicating the destination of the RPTARGH service messages. If
you specify a blank ddname, SGLM routes the RPTARCH service messages to
the default output device, such as your terminal. Otherwise, before you call
the RPTARCH service, you must allocate the ddname with the following
attributes: RECFM=F, LRECL=80, BLKSIZE=80. The maximum parameter length is
eight characters.

dd_rptrept
The ddname indicating the destination of the architecture report. If you specify
a blank ddname, SCLM routes the architecture report to the default output
device, such as your terminal. Otherwise, before you call the RPTARCH
service, you must allocate the ddname with the following attributes:
RECFM=FBA, LRECL=80, BLKSIZE=3120. The maximum parameter length is eight
characters. See "Architecture Report" on page 83 for more details on
architecture reports.

Possible return codes are:

o Normal completion. See the dd_rptmsgs parameter description for more
details.

8 Error condition. See the dd_rptmsgs parameter description for more details.

> 8 Severe error condition; SCLM does not produce messages. See "Return
Codes" on page 157 for a description of the return code.

150 ISPF/PDF Software Configuration and Library Manager

RPTARCH

Example
This example calls the RPTARCH service.

Command Invocation

FLMCMD RPTARCH,PROJl"USERl,SOURCE,MODULEl,NONE

This service command generates an architecture report for the MODULE1 member
of the SOURCE type in the USER1 group. The project name is PROJ1. The report
cutoff is NONE, and SCLM sends messages and the architecture report to your
terminal.

Chapter 5. SCLM Services 151

SAVE

SAVE-Lock, Parse, and Store a Member
The SAVE service locks and parses a member, and stores that member's
statistical, dependency, and historical information all in one service call. The
SAVE service calls the LOCK, PARSE, and STORE services.

Note: The SAVE service does not parse a member correctly if the member is
packed. Make sure that the pack mode is off in the member's profile.

Before you start the SAVE service, the member must exist in the private library you
specify. (The LOCK, SAVE, or STORE service may have completed successfully for
the member.) Upon completion of the SAVE service, the member has been locked
and its access key has been set. (You must supply the correct access key for
previously locked members.) A typical development scenario follows:

1. Lock the member using the LOCK service. (The member mayor may not yet
exist.)

2. Update or create the member.

3. Start the SAVE service to parse the member and store the member's
statistical, dependency, and historical information.

For more information on the LOCK, PARSE, and STORE services, see their service
descriptions in this chapter.

Note: Use of the SAVE service causes SCLM to delete all previously-stored
$listJnfo data from the member's dependency and historical information.
Each invocation of the SAVE service creates a new set of statistical,
dependency, and historical information for the member.

If you need preexisting historical information, such as user entry data, do
not invoke the SAVE service. Use the LOCK, PARSE, and STORE services
instead.

Command Invocation Format
FLMCMD SAVE,project,[prj_def]

,group,type,member

, [authcode], [access_key]

,[userid],[language]

, LYI N]

, [ddname] , [~I U]

,[~IU],[change_code]

152 ISPF/PDF Software Configuration and Library Manager

SAVE

Call Invocation Format

Parameters

lastrc := FLMLNK(ISAVE I ,sclm_id

project

,group,type,member

,authcode,access_key

, [useri d II I], 1 anguage

,{YIN}

,ddname

,{CIU}

,{CIU}

,{YIN}

,$msg_array);

The project name. The maximum parameter length is eight characters.

prLdef
The project definition name to be used for the lock, parse, and store. It
defaults to the project parameter. The maximum parameter length is eight
characters.

sclmJd
An SCLM ID associated with a given project and project definition. The SCLM
ID is generated by the INIT service. The maximum parameter length is eight
characters.

group
The group in which the lock, parse, and store are to occur. The specified group
must be a private library. The maximum parameter length is eight characters.

type
The type containing the member. The maximum parameter length is eight
characters.

member
The member to be locked and parsed, and whose accounting information is to
be stored. The maximum parameter length is eight characters.

authcode
The authorization code to be used for the lock. SCLM uses the authorization
code for the verification steps described in "LOCK" on page 10. If you do not
supply an authcode or a blank authcode, SCLM uses default values as follows:

• The authorization code from the existing member if the member being
locked exists in the hierarchy

Chapter 5. SCLM Services 153

SAVE

• The default authorization code for the group if the member does not exist
in the hierarchy.

The maximum parameter length is eight characters.

access_key
The access key assigned to the member. The access key is required for any
further manipulation of the member until you use the UNLOCK service to
remove the access key. It defaults to blank. The maximum parameter length
is 16 characters. For more information on access keys, see "Edit Function" on
page 10.

userid
User ID of the person requesting the SAVE service. It defaults to the current
system user 10. The maximum parameter length is eight characters.

language

YIN

The language of the member. The maximum parameter length is eight
characters. You must specify the language the first time you save a member.

Y indicates that SCLM is to copy parser listings to the ddname parameter only
if parser errors occur. N indicates that SCLM is to copy all parser listings to
the ddname. The maximum parameter length is 24 characters.

If the parser for the specified language does not produce a listing, specify Y.
The language parsers supplied by SCLM do not produce a listing. If the parser
for the specified language does produce a listing, you can specify either value.
For more efficient performance, specify Y. Project-specific parsers mayor
may not produce a listing. See "Invoking User-Defined Parsers" on page 239
for more information on project-defined parsers.

ddname

~IU

The ddname indicating the destination of the parser listings. If you specify a
blank ddname, SCLM does not generate the parser listings. The maximum
parameter length is eight characters.

If the parser for the specified language's parser does not produce a listing,
specify a blank ddname. The language parsers supplied by SCLM do not
produce a listing. If the parser for the specified language does produce a
listing and you specified a ddname, allocate the ddname with the attributes
required by the parser. Project-specific parsers mayor may not produce a
listing. See "Invoking User-Defined Parsers" on page 239 for more
information on project-defined parsers.

Specify C to indicate that the member's statistical and dependency information
is not to be saved in the event of a parser error; that is, the STORE service is
not to be called if the PARSE service completes with a return code of 4.
Specify U to indicate that the member's statistical and dependency information
is to be saved even in the event of a parser error. The maximum parameter
length is 24 characters.

Specify C to indicate that a compilation unit cannot be drawn down into a
different member. Specify U to indicate that a compilation unit can be drawn
down into a different member. The maximum parameter length is 24
characters.

154 ISPF/PDF Software Configuration and Library Manager

Return Codes

YIN

SAVE

Y tells SCLM to verify change code records appearing in $listJnfo with the
change code verification routine specified in the project definition. N tells
SCLM not to verify change code records. The maximum parameter length is 24
characters.

This parameter is only valid for the FLMLNK call invocation. SCLM always
verifies change code records for the FLMCMD command format.

Specify N if your project definition does not specify a change code verification
routine. Ask your project administrator if your project is using a change code
verification routine. See "Change Code Verification Routines" on page 261 for
more details.

change_code
A change code to be added to the information obtained by parsing the member.
If the member's accounting record lists the change code, SCLM updates the
date and time stamps for the existing change code entry. The maximum
parameter length is eight characters.

$Iist_info
An output parameter pointing to an array of records that contains change code
information. SCLM adds any change codes appearing in the array to the
information it obtains by parsing the member. If you are not adding change
code information to the parser information, SCLM may pass a fullword zero
buffer address. The array contains only change code records.

SCLM deletes all information associated with the member (such as user entry
data) previously stored through the STORE service with the $listJnfo
parameter.

SCLM ignores the date and time stamp fields on all change code entries in the
$listJnfo array. The SAVE service assigns the current system date and time to
all change codes it finds in the array. Note that SCLM does not update the
array itself.

SCLM adds all change code data listed in $listJnfo to the existing change code
data in the member's accounting record. If the member's accounting record
already lists the change code, SCLM updates the date and time stamps for the
existing change code entry.

See "Pointer Parameters" on page 110 for more details on $listJnfo.

max_prom_group
An output parameter indicating the highest group in the hierarchy that the
member can be promoted to. Based on the authorization code you used for the
lock, SCLM determines the highest group that you can promote this member
to. The maximum parameter length is eight characters.

$msg_array
An output parameter pointing to the message array. See "$msg_array" on
page 110 for more details.

Possible return codes are:

o Normal completion.

4 Warning condition. See the $msg_array parameter description for more
details.

Chapter 5. SCLM Services 155

SAVE

Examples

8 Error condition. See the $msg_array parameter description for more details.

20 Severe error condition. SCLM does not produce messages because the
SCLM ID is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application ID
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

These examples call the SAVE service.

Command Invocation

Call Invocation

FLMCMD SAVE,PROJl"USERl,SOURCE,MODULEl"XXX#05"PASCAL"",CC00l234

This service command locks, parses, and stores the information for the member
MODULE1 of the type SOURCE in the USER1 group. The project name is PROJ1
and the access key is XXX#05. Change code CC001234 is to be added to the
information obtained by parsing the member with the PASCAL parser. All other
parameters are default values.

$list_info := NIL; (* Sets the buffer address to X'00000000 ' *)

lastrc := FLMLNK('SAVE',sclm_id,
'USERl','SOURCE','MODULEl',
'TESTAC ' ,'XXX#05 1

,

'USERID','PASCAL',
I Y I , I PARSEDD I ,

I U I,
I C' ,
I Y I,
$list_info,max_prom_9roup,$ms9_array);

This service call locks, parses, and stores the information for member MODULE1 of
the SOURCE type in the USER1 group. The sclmJd parameter contains a valid
SCLM ID returned from the INIT service. The authorization code to be used for the
lock verification is TESTAC and the access key is XXX#05. The PASCAL parser
parses the member.

SCLM copies parser listings to the PARSEDD ddname only if errors occur. If a
parser error does occur, the STORE still completes, SCLM does not draw down
compilation units into a different member, and the service verifies all change
codes found in $listJnfo. SCLM returns all messages produced in the $msg_array
parameter. You must allocate the PARSEDD ddname before you call FLMLNK.

156 ISPF/PDF Software Configuration and Library Manager

START

START-Generate an Application 10 for a Services Session
The START service initializes an SCLM services session. It generates an
application 10 that identifies the services session. Later, you can use the
application 10 to call the INIT service to initialize an SCLM 10. Each START service
invocation needs a matching ENO service invocation.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters

Return Codes

Example

Call Invocation

lastrc := FLMLNK('START',appl_id);

appl_id
The generated application 10 identifying the SCLM services session. Each
time you invoke the START service, SCLM generates a unique application 10 in
this output parameter. The maximum parameter length is eight characters.

Possible return codes are:

o Normal completion.

12 Severe error condition. The maximum application ID limit was exceeded.

16 Severe error condition. An invalid version of the SCLM table was loaded.

20 Severe error condition. An invalid version of the National Language Support
(NLS) table was loaded.

24 Severe error condition. SCLM is unable to load the SCLM table.

28 Severe error condition. SCLM is unable to load the NLS table or the SCLM
lID load module.

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

This example calls the START service.

lastrc := FLMLNK('START',appl_id);

This service call initializes an SCLM services session.

Chapter 5. SCLM Services 157

STORE

STORE-Store Member Information in an Accounting Record
The STORE service saves a member's statistical, dependency, and historical
information in an accounting record in the project database. SCLM usually obtains
statistical and dependency information by parsing the member (using either the
PARSE service or your own parser), and it is a required input to the STORE
service. SCLM retains the historical information in the project database and
automatically generates it for the member.

Before you call the STORE service, you must lock the member using the LOCK
service, and the member must exist in the private library you specify. After the
STORE service ends, the member remains locked and the access key also remains
unchanged. A typical development scenario follows:

1. Use the LOCK service to lock the member. (The member mayor may not yet
exist.)

2. Update or create the member.

3. Parse the member using the PARSE service.

4. Save the member's statistical, dependency, and historical information using
the STORE service.

Use the following equation to determine the maximum amount of accounting
information that you can store for an SCLM source member:

14(Number of compilation units) + 16(Number of user entries) +
Number of includes + Number of compools +
3(Number of change codes) <= 3980

For more information on the STORE service, see "STORE" on page 12.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format
lastrc := FLMLNK('STORE',sclm_id

,group,type,member

,language

,{'Y'I'N'}

,$msg_array);

158 ISPF/PDF Software Configuration and Library Manager

Parameters

STORE

sClmJd
An SCLM 10 associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is eight
characters.

group
The group in which the store is to occur. The specified group must be a private
library. The maximum parameter length is eight characters.

type
The type containing the member whose information is to be stored. The
maximum parameter length is eight characters.

member
The member whose information is to be stored. The maximum parameter
length is eight characters.

access_key
The access key assigned to the member with the LOCK service. If you supply
an incorrect access key, the service fails. The maximum parameter length is
16 characters. For more information on access keys, see "Edit Function" on
page 10.

language
The language of the member. If you used the PARSE service to parse the
member, this language should be the same as the one specified as input to the
PARSE service. The maximum parameter length is eight characters.

userid

CIU

YIN

The user 10 of the person requesting the STORE service. Defaults to the
current system user 10. The maximum parameter length is eight characters.

C indicates conditional; SCLM does not draw down a compilation unit into a
different member. U indicates unconditional; SCLM can draw down a
compilation unit into a different member. The maximum parameter length is 24
characters.

Y tells SCLM to verify change code records appearing in $listJnfo with the
change code verification routine specified in the project definition. N tells
SCLM not to verify change code records. The maximum parameter length is 24
characters.

Ask your project administrator if your project is using a change code
verification routine. If it is not, specify N. See "Change Code Verification
Routines" on page 261 for more information.

$statsJnfo
A pointer to a record containing the member's statistical information. You
must have a valid buffer address.

Note: If you used the PARSE service to generate the record, you must copy
the buffer to the calling program's local storage before calling the
STORE service. Failure to copy the buffer to local storage causes
unpredictable results.

See "Pointer Parameters" on page 110 for more details on the $statsJnfo
parameter and copying the record contents.

Chapter 5. SCLM Services 159

STORE

Return Codes

$ Ii stJnfo
A pointer to an array of records that contains the member's include, compool,
compilation unit, change code, and user entry information. If the member has
none of this information, you can pass a fullword zero buffer address.

All include, compool, compilation unit, and user entry information data listed in
$listJnfo replaces existing accounting record data for the member. If you
want to maintain existing information (such as user entry history) for the
member, it must appear in the $listJnfo parameter.

SCLM ignores the date and time stamp fields on all change code entries in the
$listJnfo array. The STORE service assigns the current system date and time
to all change codes it finds in the array. Note that SCLM does not update the
array itself.

SCLM adds all change code data listed in $listJnfo to the existing change code
information in the member's accounting record. If the change code is already
listed in the member's accounting record, SCLM updates the date and time
stamps for the existing change code entry.

The order of the include, compool, and compilation unit entries in $listJnfo
determines the order in which the build function processes the member's
dependencies.

Note that SCLM does not permit duplicate record entries in the $listJnfo array.
If it encounters duplicate records, it flags an error.

Note: If you used the PARSE service to generate the array, you must copy the
buffer to the calling program's local storage before you call the STORE
service. Failure to copy the buffer to local storage causes unpredictable
results. See "Pointer Parameters" on page 110 for more information on
the $listJnfo parameter and copying the array contents.

$ms9_array
An output parameter pointing to the message array. See "Pointer Parameters"
on page 110 for more information on $msg_array.

Possible return codes are:

o Normal completion.

4 Warning condition. See the $msg_array parameter description for more
details.

8 Error condition. See $msg_array parameter description for more details.

20 Severe error condition. SCLM does not produce messages because the
SCLM 10 is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application 10
for a Services Session" on page 157 for information on initializing an SCLM
services session.

160 ISPF/PDF Software Configuration and Library Manager

Example

Call Invocation

STORE

32 Severe error condition. SCLM does not produce messages for one of the
following reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

This example calls the STORE service.

lastrc 0= FLMLNK('STORE',sclm_id,
'USER1','SOURCE','MODULE21,
'XXX#841,
I PASCALI ,
I I ,
I CI,
I Y I,
$stats_info,$list_info,$ms9_array);

This service call stores the statistical and dependency information (obtained from
$statsJnfo and $listJnfo) in member MODULE2's accounting record in the project
database. The sClmJd parameter contains a valid SCLM ID returned from the INIT
service.

The member MODULE2 must exist in the SOURCE type in the USER1 group and
must have previously been locked with an access key of XXX#04. The member is
identified as a PASCAL member.

SCLM does not draw down compilation units into a different member and it verifies
all change codes found in $listJnfo. SCLM returns all messages in the $msg_array
array.

Chapter 5. SCLM Services 161

UNLOCK

UNLOCK-Unlock a Member in a Private Library
The UNLOCK service resets the member access key to blank. If you unlock a
member, you cannot guarantee exclusive use of the member in a private library.

If SAVE or STORE completes successfully for a member and that member has an
access key, you can reset the access key by calling the UNLOCK service.

Before you can promote a member, you must call the UNLOCK service to remove
its access key. The PROMOTE service does not promote any member that has an
access key. For more information on the LOCK service and access keys, see
"LOCK" on page 10.

Command Invocation Format

FLMCMD UNLOCK,project

,group

,type

,member

,[access_key]

Call Invocation Format

Parameters

lastrc := FLMLNK('UNLOCK',sclm_id

,group

,type

,member

,$msg_array);

project
The project name. The maximum parameter length is eight characters.

prLdef
The project definition name to be used for the unlock. It defaults to project.
The maximum parameter length is eight characters.

sclmJd
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is eight
characters.

162 ISPF/PDF Software Configuration and Library Manager

Return Codes

Examples

UNLOCK

group
The group in which the member is to be unlocked. The specified group must
be a private library. The maximum parameter length is eight characters.

type
The type containing the member to be unlocked. The maximum parameter
length is eight characters.

member
The member to be unlocked. The maximum parameter length is eight
characters.

access_key
The access key assigned (with the LOCK or SAVE service) to the member. If
you supply an incorrect access key, the unlock fails. The maximum parameter
length is 16 characters. For more information on access keys, see "Edit
Function" on page 10.

$msg_array
An output parameter pointing to the message array. See "$msg_array" on
page 110 for more details on $msg_array.

Possible return codes are:

o Normal completion.

4 Warning condition. See the $msg_array parameter description for more
details.

8 Error condition. See the $msg_array parameter description for more details.

20 Severe error condition. SCLM does not produce messages because the
SCLM 10 is invalid.

24 Severe error condition. SCLM does not produce messages because SCLM
services have not been initialized. See "START-Generate an Application 10
for a Services Session" on page 157 for information on initializing an SCLM
services session.

32 Severe error condition. SCLM does not produce messages for one of the
followi ng reasons:

• You requested an invalid service.
• You supplied an invalid parameter list for the requested service.
• The version of the FLMLNK subroutine does not match the version of the

SCLM services module (for future use).

These examples call the UNLOCK service.

Command Invocation

FLMCMD UNLOCK,PROJ1"USER1,SOURCE,MODULE1,XXX#05

This service command unlocks the MOOULE1 member of the SOURCE type in the
USER1 group. The project name is PROJ1. The access key value for the member
is XXX#OS.

Chapter 5. SCLM Services 163

UNLOCK

Call Invocation

lastrc 0= FLMLNK('UNLOCK ' ,sclm_id,
'USERl ' , 'SOURCE ' , 'MODULEl ' ,
'XXX#05 1

,

$ms9_array);

This service call unlocks the MODULE1 member of the SOURCE type in the USER1
group. The sclmJd parameter contains a valid SCLM ID returned 'from the INIT
service. The access key value for the member is XXX#05. SCLM returns all
messages in the $msg_array parameter.

164 ISPF/PDF Software Configuration and Library Manager

Pascal Example

Chapter 6. A Sample Program Using SCLM Services

This chapter contains an example of Pascal program invocations that call the
following SCLM services in this order:

• START • STORE

• INIT • BUILD

• LOCK • FREE

• PARSE • END.

Pascal Example
The following is a sample Pascal program you can use to migrate and build a
component registered with SCLM. SCLM prompts you for responses as it
processes the component. The program prolog contains a description of the
required ddnames to be allocated before you start the program.

Main Program SERV1

PROGRAM SERVI

(***)
(* *)
(* This program allows you to call SCLM services from a *)
(* Pascal program. *)
(* *)
(* The function of this program is to register a software component *)
(* with SCLM and then build it. *)
(* The member in the SCLM controlled library (PDS) to be processed *)
(* is referenced by the variables "project.group.type(member)." *)
(* You must allocate the following ddnames as specified below: *)
(* *)
(* PRSLIST - for parser listings (RECFM=VBA,LRECL=137,BLKSIZE=3120) *)
(* BLDMSGS - for build messages (RECFM=F, LRECL=80, BLKSIZE=80) *)
(* BLDREPT - for build report (RECFM=FBA,LRECL=80, BLKSIZE=3120) *)
(* BLDLIST - for build listings (RECFM=VBA,LRECL=137,BLKSIZE=3120) *)
(* BLDEXIT - for build user exit (RECFM=FB, LRECL=160,BLKSIZE=3200) *)
(***)

© Copyright IBM Corp. 1989, 1990 Chapter 6. A Sample Program Using SCLM Services 165

Pascal Example

(***)
(* Declare program and interface constants *)
(***)
CONST

(* Declare the maximum number of records the accounting record *)
(* list information array can hold. *)
max_list_info_entries = 200 ;

(* Declare the required ddnames as constants. *)
bldmsgs I BLDMSGS I

bldrept 'BLDREPT '
bldlist 'BLDLIST '
bldexit 'BLDEXIT '

(* Include SCLM Interface common type declarations. *)
%INCLUDE SERVID

(* Include SCLM Interface procedure definitions. *)
%INCLUDE SERVIS

166 ISPF/PDF Software Configuration and Library Manager

Pascal Example

(**)
(* Declare program local variables *)
(**)
VAR

$acct_info $acct_info_type
$list_info $list_info_type
$list_info_copy $list_info_type
$stats info $stats_info_type
$stats-info copy $stats_info_type
$msg_array $msg_array_type
breport_check char24
build_scope char24
build_mode char24
access_key char16
appl_id char8
authcode char8
ddname char8
dd_bldmsgs char8
dd_bldrpt char8
dd_bldlist char8
dd_bldexit char8
error_listings_only char24
found_group char8
language char8
group char8
listing_check char24
max_prom_group char8
msg_line char8e:>
prefix_userid char17
project char8
project_def char8
retncode INTEGER
pds_type char8
member char8
sclm id char8
sub_drawdown_mode char24
userid char8
verify_cc char24

Chapter 6. A Sample Program Using SCLM Services 167

Pascal Example

(**)
(* Define the main program *)
(**)

BEGIN

(* Initialize terminal I/O. *)
TERMIN (INPUT)
TERMOUT(OUTPUT) ;

(* Initialize some working variables. *)
$stats info copy .= NIL
$list_info_copy := NIL;

(* Get the PDS/member name of the component to process. *)
WRITELN (IEnter the name of the project to process. 1);

READLN (project) ;
WRITELN (IEnter the name of this user ID 1

,

READLN
WRITELN
READLN
WRITELN
READLN
WRITELN
READLN

1 (which will be the private library to process). 1);

(userid)
(IEnter the name of the type to process. I);
(pds_type) ;
(IEnter the name of the member to undergo processing. I);
(member) ;
(IEnter the language of the source member to register. I);
(language) ;

(* Default the group to process to be the user ID. *)
group := userid ;

(* Issue a request to begin an SCLM service session. *)
SRVSTART (appl_id,

retncode);

(* Continue processing only if the request succeeded. *)
IF

retncode <> 0
THEN

WRITELN (ISCLM service START failed, error code = 1 retncode:-3)
ELSE BEGIN

168 ISPF/PDF Software Configuration and Library Manager

(* Issue a request to initialize an SCLM 10. *)
project_def := project
msg_l i ne := I I

SRVINIT (appl_id,
project,
project_def,
sclm_id,
msg_line,
retncode);

(* Continue processing only if the request succeeded. *)
IF

retncode <> 0
THEN BEGIN

Pascal Example

WRITELN ('SCLM service INIT failed, error code = I retncode:-3);
WRITELN (msg_line);

END

ELSE BEGIN

(* Issue a request to lock the component. *)
authcode : = I I

$acct_info := NIL
$list_info := NIL
$msg array := NIL
SRVLOCK (sclm_id,

group,
pds_type,
member,
authcode,
I I

userid,
found_group,
max_p rom_g roup ,
$acct_info,
$list info,
$msg_array,
retncode);

(* access_key *)

Chapter 6. A Sample Program Using SCLM Services 169

Pascal Example

(* If the lock failed, print associated error messages. *)
IF

retncode <> 0
THEN BEGIN

WRITELN ('SCLM service LOCK failed, error code = I retncode:-3);
PUTMSGS ($msg_array);

END
ELSE BEGIN

(* Display some of the accounting record fields *)
WRITELN ('The component has been locked. I);

WRITELN ('The component last changed date is:
$acct_info@.change_date);

WRITELN ('The component last changed time is:
$acct info@.change time);

WRITELN ('The component change-userid is: I

$acct_info@.change_userid);
WRITELN ('The component version number is: I

$acct_info@.member_version:-3);
END;

(* Continue processing only if the member has been locked. *)
IF

retncode = 0
THEN BEGIN

(* Issue a request to parse the component to obtain *)
(* the statistical information SCLM requires. *)
$stats_info := NIL;
SRVPARSE (sclm_id,

group,
pds_type,
member,
language,
I y I,

I PRSLIST' ,
$stats_info,
$list_info,
$msg_array,
retncode);

(* error_listings_only = yes *)
(* ddname *)

170 ISPF/PDF Software Configuration and Library Manager

Pascal Example

(* If the parse failed, print associated error messages. *)
IF

retncode·<> 0
THEN BEGIN

WRITELN (I SCLM servi ce PARSE fail ed, I,
lerror code = ',retncode:-3);

PUTMSGS $msg_array);
END
ELSE BEGIN

(* Copy all buffered service output into new buffers so *)
(* subsequent service calls do not delete the information. *)
WRITELN ('The component has been parsed. I);

NEW ($stats_info_copy);
$stats_info_copy@ := $stats_info@

NEW ($list info copy);
COPYLIST ($list_info, $list_info_copy);

END;
END;

(* Continue processing only if the member has been parsed. *)
IF

retncode = 0
THEN BEGIN

(* Issue a request to register the component with SCLM *)
$stats info := $stats info copy
$list_info := $list_info_copy

SRVSTORE (sclm_id,
group,
pds_type,
member,

language,
useri d,
Ie',
I N I,
$stats_info,
$list info,
$ms9_array,
retncode);

(* access_key *)

(* sub_drawdown_mode = condo *)
(* verify_cc = no *)

Chapter 6. A Sample Program Using SCLM Services 171

Pascal Example

(* If the store failed, print associated error messages. *)
IF

retncode <> 0
THEN BEGIN

WRITELN ('SCLM service STORE failed, I,
lerror code = ',retncode:-3);

PUTMSGS ($msg_array);
END;

END;

(* Continue processing only if the member has been stored. *)
IF

retncode = 0
THEN BEGIN

(* Issue a request to build the component registered with SCLM.*)
WRITELN ('The component has been stored. I);
prefix_userid := STR(userid)

SRVBUILD (sclm_id,
group,
pds_type,
member,
userid,
I N I,
I C I,
I N I,
I Y I,

prefix_userid,
bldmsgs,
bldrept,
bldlist,
b 1 dexit,
retncode);

(* build_scope = normal *)
(* build_mode = conditional *)
(* listing_check = no *)
(* breport_check = yes *)

(* dd_bldmsgs *)
(* dd_bldrpt *)
(* dd_bldlist *)
(* dd_bldexit *)

(* If the build failed, print error messages. *)
IF

retncode <> 0
THEN BEGIN

WRITELN (I SCLM servi ce BUI LD failed, I,
lerror code = ',retncode:-3);

WRITELN (ISee the data set allocated to ddname=BLDMSGS I
'for associated error messages. I);

END
ELSE

WRITELN ('The component has undergone a build. I);
END;

172 ISPF/PDF Software Configuration and Library Manager

(* Issue a request to free the SCLM ID. *)
SRVFREE (sclm_id,

msg_line,
retncode);

END; (* INIT succeeded *)

(* Issue a request to end this SCLM service session. *)
SRVEND (appl_id,

msg_line,
retncode);

END; (* START succeeded *)

(* Free buffer memory if it is still allocated. *)
IF

$stats_info_copy <> NIL
THEN

DISPOSE ($stats_info_copy);

IF
$list_info_copy <> NIL

THEN
DISPOSE $list_info_copy);

END. (* Main Program *)

Included Member SERV1D

Pascal Example

(***)
(* Declare Common SCLM Interface Types *)
(***)
TYPE

(* Declare arrays of various sizes. *)
char2 = PACKED ARRAY (. 1.. 2 ·) OF CHAR
char4 = PACKED ARRAY (. 1.. 4 ·) OF CHAR
char6 = PACKED ARRAY (. 1.. 6 ·) OF CHAR
char8 = PACKED ARRAY (. 1.. 8 ·) OF CHAR (* type = ALFA *)
char12 = PACKED ARRAY (. 1 .. 12 ·) OF CHAR
char16 = PACKED ARRAY (. 1 .. 16 ·) OF CHAR (* type = ALPHA *)
char17 = PACKED ARRAY (. 1.. 17 ·) OF CHAR
char24 = PACKED ARRAY (. 1 .. 24 ·) OF CHAR
char80 = PACKED ARRAY (. 1 .• 80 ·) OF CHAR
char110 = PACKED ARRAY (. 1..110 ·) OF CHAR
char128 = PACKED ARRAY (. 1. .128 ·) OF CHAR

(* Declare a pointer to an SCLM message array. *)
$msg_array_type = @ mS9_array_type ;
msg_array_type = PACKED ARRAY (. 1 .. 9999 .) OF char80

(* Declare a pointer to the static portion *)
(* of an SCLM accounting record. *)
$acct_info_type = @ acct_info_type
acct_info_type =

Chapter 6. A Sample Program Using SCLM Services 173

Pascal Example

RECORD
acct_group char8
acct_type char8
acct member char8
sclm version char2
accounting_status CHAR
change_date char6
change_time char6
change_group char8
change_userid char8
member_version INTEGER
language char8
authorization_code char8
authorization_code_change char8
access_key char16
creation_date char6
creation_time char6
map_date char6
map_time char6
predecessor_date char6
predecessor_time char6
promote date char6
promote_time char6
promote_userid char8
db_qual char8
translator version char8
map_name char8
map_type char8
language_version char8
total lines INTEGER
comment_lines INTEGER
non_comment_lines INTEGER
blank lines INTEGER
prolog_lines INTEGER
total stmts INTEGER
comment_stmts INTEGER
control_stmts INTEGER
assignment_stmts INTEGER
non_comment_stmts INTEGER
number_of_user_entries INTEGER
number_of_includes INTEGER
number_of_compools INTEGER
number_of_changecodes INTEGER
number_of_cus INTEGER

END;

174 ISPF/PDF Software Configuration and Library Manager

(* Declare a pointer to the statistical
(* of an SCLM accounting record.
$stats_info_type = @ stats_info_type
stats_info_type =

RECORD
tota 1 1 i nes
comment lines
non_comment_lines
blank_lines
prolog_lines
total_stmts
comment_stmts
control stmts -
assignment_stmts
non_comment_stmts

END;

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

portion *)
*)

(* Declare an SCLM list-info change code entry. *)
change_code_record_type =

RECORD
change_code char8
date char6
time char6

END;

(* Declare an SCLM list-info compilation unit entry. *)
cu_record_type =

RECORD
cu_name
cu_type
generic_flag
depend_cu_name
depend_cu_type
depend_cu_depend_type

END;

char110
CHAR
CHAR
char110
CHAR
CHAR

Pascal Example

(* Declare an SCLM accounting record list-info entry overlay. *)
list_info_record_type =

RECORD
record_kind : char4
CASE INTEGER OF

END;

1: (member
2: (compool
3: (change_code_record
4: (user_entry
5: (cu_record

char8);
char8) ;
change_code_record_type);
char128);
cu_record_type);

(* Declare a pointer to an SCLM accounting record list-info array. *)
$list info type = @ list info type;
list=info=type = PACKED-ARRAY (.l .. max_list_info_entries.)

OF list_info_record_type ;

Chapter 6. A Sample Program Using SCLM Services 175

Pascal Example

Included Member SERV1S

(**)
(* SCLM SERVICE INTERFACE PROCEDURE DEFINITIONS *)
(**)

(**)
(* SCLM START Service Interface *)
(**)
PROCEDURE SRVSTART (VAR appl_id char8

VAR rc : INTEGER);

FUNCTION FLMLNK char8 CONST service
VAR appl_id
FORTRAN ;

char8): INTEGER

BEGIN
rc ,= FLMLNK (ISTARTI, appl_id);

END;

(**)
(* SCLM INIT Servi ce Interface *)
(**)
PROCEDURE SRVINIT (CONST appl_id

CONST project
CONST project_def
VAR sclm id
VAR mS9_1ine
VAR rc

FUNCTION FLMLNK (CONST service
CONST appl_id
CONST project
CONST project_def
VAR sclm id

BEGIN

VAR mS9_1ine
FORTRAN ;

char8
char8
char8
char8
char80
INTEGER

char8
char8
char8
char8
char8
char80 INTEGER

rc ,= FLMLNK (IINITI, appl_id, project, project_def, sclm_id,
mS9_1ine);

END;

176 ISPF/PDF Software Configuration and Library Manager

Pascal Example

(**)
(* SCLM FREE Servi ce Interface *)
(**)
PROCEDURE SRVFREE (CONST sclm_id char8

VAR mS9_1ine char80
VAR rc INTEGER

FUNCTION FLMLNK (CONST service
CONST sclm id
VAR mS9_1ine
FORTRAN ;

BEGIN

char8
char8
char80

rc 0= FLMLNK (IFREEI, sclm_id, mS9_1ine);
END;

INTEGER

(**)
(* SCLM END Servi ce Interface *)
(**)
PROCEDURE SRVEND (CONST appl_id char8

VAR mS9_1ine char80
VAR rc INTEGER

FUNCTION FLMLNK (CONST service
CONST appl_id
VAR mS9_1ine
FORTRAN ;

BEGIN

char8
char8
char80

rc 0= FLMLNK (IENDI, appl_id, mS9_1ine);
END;

INTEGER

Chapter 6. A Sample Program Using SCLM Services 177

Pascal Example

(**)
(* SCLM BUILD Service Interface *)
(**)
PROCEDURE SRVBUILD (CONST sclm id char8

CONST group char8
CONST pds_type char8
CONST member char8
CONST useri d char8
CONST build_scope char24
CONST buil d 'mode char24
CONST listing_check char24
CONST breport_check char24
CONST prefi x_useri d charI7
CONST dd_bldmsgs char8
CONST dd_bldrept char8
CONST dd bldlist char8
CONST dd_bldexit char8
VAR rc INTEGER

FUNCTION FLMLNK (CONST service char8
CONST sclm id char8
CONST group char8
CONST pds_type char8
CONST member char8
CONST userid char8
CONST build_scope char24
CONST build_mode char24
CONST listing_check char24
CONST breport_check char24
CONST prefix_userid char17
CONST dd_bldmsgs char8
CONST dd_bldrept char8
CONST dd bldlist char8
CONST dd b 1 dexit char8 INTEGER
FORTRAN ;

BEGIN
rc := FLMLNK ('BUILD', sclm_id, group, pds_type, member, userid,

build_scope, build_mode, listing_check, breport_check,
prefix_userid,
dd_bldmsgs, dd_bldrept, dd_bldlist, dd_bldexit) ;

END;

178 ISPF/PDF Software Configuration and Library Manager

Pascal Example

(***)
(* SCLM LOCK Servi ce Interface *)
(***)
PROCEDURE SRVLOCK (CONST sclm_id char8

CONST group char8
CONST pds_type char8
CONST member char8
CONST authcode char8
CONST access_key char16
CONST userid charS
VAR found_group char8
VAR max_prom_group char8
VAR $acct info $acct_info_type
VAR $list=info $list_info_type
VAR $msg_array $msg_array_type
VAR rc INTEGER)

FUNCTION FLMLNK (CONST service char8
CONST sclm id char8
CONST group char8
CONST pds_type charS
CONST member char8
CONST authcode char8
CONST access_key char16
CONST userid charS
VAR found_group char8
VAR max_prom_group charS
VAR $acct_info $acct_info_type
VAR $list_info $list_info_type
VAR $msg_array $msg_array_type):

INTEGER ;
FORTRAN ;

BEGIN
rc := FLMLNK ('LOCK ' , sclm_id, group, pds_type, member, authcode,

access_key, userid,
found_group, max_prom_group,
$acct_info, $list_info, $msg_array);

END;

Chapter 6. A Sample Program Using SCLM Services 179

Pascal Example

(***)
(* SCLM PARSE Service Interface *)
(***)
PROCEDURE SRVPARSE (CONST sclm_id char8

CONST group char8
CONST pds_type char8
CONST member char8
CONST language char8
CONST error_listings_only char24
CONST ddname char8
VAR $stats_info $stats_info_type
VAR $list_info $list_info_type
VAR $msg_array $msg_array_type
VAR rc INTEGER)

FUNCTION FLMLNK (CONST service char8
CONST sclm_id char8
CONST group char8
CONST pds_type char8
CONST member char8
CONST language char8
CONST error_listings_only char24
CONST ddname char8
VAR $stats_info $stats_info_type
VAR $list_info $list_info_type
VAR $msg_array $msg_array_type):

INTEGER ;
FORTRAN ;

BEGIN
rc := FLMLNK ('PARSE', sclm_id, group, pds_type, member, language,

error listings only, ddname,
$stats_info, $list_info, $msg_array);

END;

180 ISPF/PDF Software Configuration and Library Manager

Pascal Example

(***)
(* SCLM STORE Servi ce Interface *)
(***)
PROCEDURE SRVSTORE (CONST sclm id char8

CONST group char8
CONST . pds_type char8
CONST member char8
CONST access_key char16
CONST language char8
CONST userid char8
CONST sub_drawdown_mode char24
CONST verify_cc char24
CONST $stats_info $stats_info_type
CONST $list_info $list_info_type
VAR $msg_array $msg_array_type
VAR rc INTEGER)

FUNCTION FLMLNK (CONST service char8
CONST sclm_id char8
CONST group char8
CONST pds_type char8
CONST member char8
CONST access_key char16
CONST language char8
CONST userid char8
CONST sub_drawdown_mode char24
CONST verify_cc char24
CONST $stats_info $stats_info_type
CONST $list_info $list_info_type
VAR $msg_array $msg_array_type)

INTEGER
FORTRAN ;

BEGIN
rc := FLMLNK ('STORE', sclm_id, group, pds_type, member,

END;

access key, language, userid, sub drawdown mode,
verify=cc, $stats_info, $list_info, $msg_a~ray);

Chapter 6. A Sample Program Using SCLM Services 181

Pascal Example

(**)
(* Procedure to print the contents of an SCLM "$msg_array." *)
(**)
PROCEDURE PUTMSGS (VAR $msg_array: $msg_array_type);

VAR
i ndx INTEGER

BEGIN (* Procedure PUTMSGS *)

(* Print message header information. *)
WRITELN (IMessage array information ... I);

(* If the pointer is valid, print the information. *)
IF

$msg_array <> NIL
THEN BEGIN

(* Loop through the list information. *)
i ndx := 1 ;
WHILE

$msg_array@(.indx.) <> IENDI
DO BEGIN

WRITELN ($msg_array@(.indx.))
indx .= indx + 1

END;
END; (* if $msg_array <> nil *)

(* Reset "$msg_array" to NIL. *)
$ms9_array .= NIL;

END; (* Procedure PUTMSGS *)

182 ISPF/PDF Software Configuration and Library Manager

Pascal Example

(***)
(* Procedure to copy an accounting record list information array. *)
(***)
PROCEDURE COPYLIST (CONST $list info $list info type ;

VAR $list=info_copy: $list=info=type) ;

VAR
indx INTEGER

BEGIN· (* Procedure COPYLIST *)

(* Only perform the copy if the input list is not nil. *)
IF

$list_info <> NIL
THEN BEGIN

(* Allocate storage for the copy list if the caller *)
(* has not yet done thi s. *)
IF

$list_info_copy = NIL
THEN

NEW ($list_info_copy);

(* Loop through the list information, copying entry-by-entry. *)
i ndx : = 1 ;
REPEAT

$list_info_copy@(.indx.) := $list_info@(.indx.)
indx := indx + 1

UNTIL
($list_info@(.indx-l.).record_kind = lEND I)

OR
(indx > max_list_info_entries)

(* Check for overflow condition. *)
IF

indx > max_list_info_entries
THEN BEGIN

WRITELN (1*** ERROR *** List information array overflowed! I);
WRITELN (1*** ERROR *** Increase size of program constant. I);

END;
END;

END;
(* if $list_info <> nil *)
(* Procedure COPYLIST *)

Chapter 6. A Sample Program Using SCLM Services 183

184 ISPF/PDF Software Configuration and Library Manager

Part 2. Project Administration

Chapter 7. Defining the Project 189
Step 1: Determine Database Structure 189
Step 2: Identify Supported Types of Data .. 191
Step 3: Establish Authorization Codes 191

Defining Authorization Codes for a Group 192
Assigning an Authorization Code to a Member 192

Step 4: Create PROJDEFS Data Set 192
Step 5: Allocate Project Data Sets 193

Defining a VSAM User Catalog and Alias 193
Allocating SCLM Partitioned Data Sets 193
Defining Accounting Data Set (SCLM Internal Data) 194
Defining Cross-Reference Data Set (SCLM Internal Data) 195

Step 6: Protect Project Data Sets 197
Step 7: Specify the Project Definition 197

Specifying the Project Identifier 198
Defining Authorization Groups 198
Defining Groups and Authorization Codes 198
Defining Types ... 198

Step 8: Modify Language Definitions 198
Creating Language Definitions 199
Modifying Language Definitions 199

Step 9: Modify Control Options 202
SCLM Internal Data Sets 203
Maximum Report Lines 203
Translator Option Override 203
Maximum VIO Limit 204
Change Code Verification Routine Specification 204
Build and Promote User Exit Routine Specification 204

Step 10: Assemble and Link Project Definition 206
Step 11: Build INFO Member . 207

Chapter 8. SCLM Macros 209
Introduction to SCLM Macro Instructions 209
FLMABEG Macro ... 210

Macro Format .. 210
Parameters ... 210
Example ... 210

FLMAEND Macro ... 211
Macro Format .. 211
Parameters ... 211

FLMAGRP Macro ... 212
Macro Format . 212
Parameters ... 212
Example 212

FLMALLOC Macro .. 213
Macro Format . 213
Parameters ... 213
Example 1 .. 216
Example 2 .. 216

FLMCMPLB Macro .. 217
Macro Format . 217
Parameters 217

© Copyright IBM Corp. 1989, 1990 Part 2. Project Administration 185

Example ... 217
FLMCNTRL Macro .. 218

Macro Format 218
Parameters ... 218
Example .. 221

FLMCPYLB Macro .. 222
Macro Format 222
Parameters ... 222
Example ... 222

FLMGROUP Macro .. 223
Macro Format 223
Parameters ... 223
Example ... 223

FLMLANGL Macro .. 224
Macro Format .. 224
Parameters ... 224
Example ... 226

FLMSYSLB Macro ... 227
Macro Format .. 227
Parameters ... 227
Example ... 227

FLMTRNSL Macro . 228
Macro Format .. 228
Parameters ... 228
Exam pi e ... 230

FLMTYPE Macro .. 231
Macro Format . 231
Parameters ... 231
Example ... 231

Chapter 9. Advanced Topics 233
Impact Assessment Techniques 233
New Language Definitions 234

Using Multiple Translators in a Language Definition 235
Invoking User-Defined Parsers 239
Processing Conditionally Saved Components 251

Authorization Code Usage 252
Concurrent Development and Maintenance 255
Dynamic Include Tracking 256
Alternate Project Definitions 257
Primary Non-Key Group Testing Techniques 258
Change Code Verification Routines 261

Change Code Verification Routine Requirements 261
Change Code Verification Routine Example 262

Build and Promote User Exit Routines 263
User Exit Routine Requirements 263
Build and Promote User Exit Output Data Sets 265
User Exit Routine Example 266

Project Conversion to SCLM 268
Prerequisites for Existing Hierarchies 268
Create Alternate Project Definitions 269
Create Architecture Definitions for the Project 269
Register Existing PDF Members with SCLM 270
Initialize Non-key Groups 270
Introducing Fixes to the Converted Hierarchy 270

Security ... 271

186 ISPF/PDF Software Configuration and Library Manager

Backup and Recovery of Project Database 271
Synchronizing Accounting Data Sets 271

Dependency Processing Implementation 272
Development and Performance 274

Development Scenario 274
Data Set Protection 276
Performance Considerations . 276

Workstation Platform for OS/2 277
The SSI Field in Load Module Directories 278

Chapter 10. Language Restrictions 279
SCLM Parser Restrictions 279

Cross-Section References 279
Non-explicit References 279
Separation of References 280

Ada Language Restrictions 280
GenericllNLlNE Specification Ordering 281
GenericllNLlNE Recursive Dependencies 281

Ada Sublibrary Restrictions 282
Ada Compilations 282
Ada Sublibrary Content Updates 282
Ada Sublibrary Updates 282

Multiple SINC Statements 283

Chapter 11. IBM Ada Setup 285
Language Definitions 285

FLM@ADA 285
FLM@ADAB ... 285

Ada Sublibrary Setup 286
IBM Ada Compiler Restrictions 286
Debugger .. 287
Multiple Load Module Support 287

Use of Multiple Load Modules 287
Optimizer Support . 289

Part 2. Project Administration 187

188 ISPF/PDF Software Configuration and Library Manager

Step 1: Determine Database Structure

Chapter 7. Defining the Project

The primary concern of a project administrator is generating an SCLM project
definition. A project definition enables SCLM to function for an individual project
(with project-specific customization). Further, a project definition defines the
development environment for a project by identifying languages and processors,
types, groups, and hierarchies. It also defines authorization codes, which are used
to control users' authority to update and promote members within a hierarchy, and
internal data sets. Internal data sets contain accounting, statistical, dependency,
status, and tracking information about all controlled members.

You can generate more than one project definition for a project. The primary
project definition for an SCLM project is the default project definition. All other
project definitions for a project are alternate project definitions. You should,
however, keep the number of project definitions for a project to a minimum,
preferably a single project definition. See "Step 10: Assemble and Link Project
Definition" on page 206 for more information.

To generate a project definition, take the following steps:

1. Determine the structure of the project database.

2. Identify types of data to be maintained.

3. Establish authorization codes.

4. Create PROJDEFS data set.

5. Allocate the project data sets.

6. Protect the data sets.

7. Specify the project definition.

8. Modify the language definitions.

9. Modify the control options.

10. Assemble and link the project definition.

11. Build INFO member.

Step 1: Determine Database Structure
The project manager usually participates in determining the database structure for
the project. As project administrator, you are responsible for generating and
updating the project definition to accommodate project requirements. The
following paragraphs discuss methods for defining an efficient database.

First, assess how many layers and groups you need for the project. Each layer
corresponds to a phase of development. Large projects usually require many
layers while smaller projects require fewer layers.

Next, diagram the database to illustrate the development strategy for the project.
You must design the database in a tree structure, where the predecessor or
release layer is the root, and the test, integration, and development layers are the
branches. Each group can have no more than one parent group. Figure 1 on
page 7 shows an example of a common SCLM database structure.

© Copyright IBM Corp. 1989. 1990 Chapter 7. Defining the Project 189

Step 1: Determine Database Structure

SCLM does not restrict the number of groups in a layer or the names of the groups.
Each user can be assigned to an individual development group or share a group. If
you want to have stage groups, as in Figure 1 on page 7, you can individualize
them for each developer or group them for several users. Hierarchies are limited
to up to 16 key groups. There are also MVS limitations on concatenating data sets
that affect a project's database structure. See "Key/Non-Key Groups" on page 8
for detai Is.

Figure 50 shows two more diagrams of common database structures.

RELEASE

TEST

INT

STAGE

I I

USER1 USER2 USER3

Figure 50 (Part 1 of 2). Example of Other Common SCLM Database Structures

190 ISPF/PDF Software Configuration and Library Manager

Step 3: Establish Authorization Codes

RELEASE

I

I I
STAGE1 STAGE2

I I
, ,

I I

USER1 USER2 USER3 USER4

Figure 50 (Part 2 of 2). Example of Other Common SCLM Database Structures

Step 2: Identify Supported Types of Data
SCLM supports the same data that MVS partitioned data sets support. If size
permits, you should group similar kinds of data into the same SCLM type.
Determine the number of types you need based on the data you want to maintain
for the project. For example, if you want to maintain compiler listings, a listing
type is necessary. At a minimum, use four types to produce executable code:

• Architecture type-for architecture definition
• Source type-for project source code
• Object type-for generated object code
• Load type-for generated load modules.

Similar kinds of data can reside in separate types. For example, you can divide
source code into assembler source code and Pascal source code. Thus, you would
need to identify an assembler type and a Pascal type.

Step 3: Establish Authorization Codes
You can use authorization codes in SCLM to determine whether a member can be
updated in a given group and to control the groups a member can be modified in.
Authorization codes can allow temporary copies of a member to exist concurrently
in two different groups without creating integrity problems. You can also use
authorization codes to prevent certain members from being promoted to a
particular group of the hierarchy. You can use a character string up to eight
characters long to represent an authorization code.

Chapter 7. Defining the Project 191

Step 4: Create PROJDEFS Data Set

Defining Authorization Codes for a Group
You define a list of authorization codes for each group in the SCLM hierarchy. You
can use these codes to control the contents of the groups in the SCLM hierarchy. A
group can have any number of authorization codes associated with it. Only
members assigned to one of the authorization codes associated with a group can
exist at that group.

Assigning an Authorization Code to a Member
Assign a single authorization code to an editable member when you introduce that
version of the member into the SCLM-controlled hierarchy using the migration
utility, SCLM editor, LOCK service, or SAVE service. You must assign an
authorization code to all versions of every editable member. If you do not assign
an authorization code to a new version, SCLM uses the authorization code of the
most current version of the member already in the hierarchy. If no previous
version exists, SCLM uses a default authorization code defined in the project
definition. Authorization codes do not affect non-editable members.

You can change the authorization code assigned to a version of a member by using
the SCLM library utility.

The use of authorization codes is necessary in certain circumstances but can be
misused if not controlled properly. For other possible uses of authorization codes,
see" Authorization Code Usage" on page 252. In most cases, you should use a
single authorization code for the entire hierarchy. The example on page 205
illustrates how a single authorization code is used for the first hierarchy shown in
Figure 50 on page 190.

Step 4: Create PROJDEFS Data Set
Define a project database structure to SCLM using a load data set containing a
compiled and linked project definition. Name the load data set in the following
manner:

project_id. PROJDEFS. LOAD

where projectJd is the name of the project. The complete project definition, once
assembled and linked, resides in the project's PROJDEFS data set. The
PROJDEFS data set should be protected with Resource Access Control Facility
(RACF) or an equivalent security system. As the project administrator, only you
should have update authority to the data set.

Allocate a source and object data set with the same naming conventions. For
example:

project_id.PROJDEFS.SOURCE

and

project_id.PROJDEFS.OBJ

These data sets contain the source and object forms of the project definition.

192 ISPF/PDF Software Configuration and Library Manager

Step 5: Allocate Project Data Sets

Step 5: Allocate Project Data Sets
The SCLM database for a project consists of a series of partitioned data sets and a
VSAM data set under a single high-level qualifier. All partitioned data set names
must conform to SCLM naming conventions. See "Projects, Groups, and Types" on
page 6. The VSAM data set requires that the project high-level qualifier be an
alias in a VSAM user catalog or system catalog. You should create a VSAM user
catalog and alias specifically for the project, although you can use an existing
VSAM catalog and alias.

Defining a VSAM User Catalog and Alias
To create a user catalog, you must use Access Method Services (AMS). Use the
following form of the DEFINE command to create a new user catalog:

DEFINE USERCATALOG (NAME(entryname) VOLUME(volume)
TRACKS(primary secondary))

You can also use the DEFINE command to create a user catalog alias for the
high-level qualifier for the project. Use the following form of the DEFINE command:

DEFINE ALIAS (NAME(high-group qualifier) RELATE(entryname))

Note: For more information on the DEFINE command, see OS/VS2 Access Method
Services, GC26-3S41.

Allocating SCLM Partitioned Data Sets
Form data set names for the database in the following manner:

project.group.type

SCLM does not restrict the format of a data set. However, you must allocate data
sets of the same type with the same attributes. The table below shows a listing of
recommended data set attributes for some typical types.

Type RECFM LRECL BLKSIZE

Source FB SO 3120
Object FB SO 3200
Load U 0 6144
Listings VBA 137 3120
Linkedit Maps VBA 137 3120
Architectu re FB SO 3120
Other Text FB SO 3120

Allocate data sets according to expected content. You should allocate all data sets
anticipating 60% capacity. Determine directory blocks using the following formula:

Directory Blocks == (# members) / 5

Note: During development or maintenance, developers constantly update data
sets, and they usually require additional space. The formula shown merely
estimates what is needed and can vary from project to project.

Chapter 7. Defining the Project 193

Step 5: Allocate Project Data Sets

Defining Accounting Data Set (SCLM Internal Data)
The accounting data set for the project must be a VSAM cluster. A VSAM cluster is
a named structure consisting of a group of related components. You must define
the VSAM cluster with the IDCAMS utility. The primary and secondary accounting
data set must be defined correctly or else the results are unpredictable. The JCL
used to define the accounting data set for the project follows.

//jobname JOB (wkpkg,dpt,bin),'name'
//**

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

THIS JCL DEFINES A VSAM CLUSTER TO BE USED AS THE SCLM ACCOUNT
DB FOR A GIVEN PROJECT

THE HIGH LEVEL QUALIFIER MUST BE AN ENTRY IN AN ICF USER CATALOG
IN ORDER TO CREATE THIS CLUSTER.

TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER IN THE
FOLLOWING MANNER:
1) CHANGE ALL XXX.YYY.ZZZ TO THE DESIRED FILE NAME.

ACCOUNTING FILE NAMES ARE USUALLY CHOSEN IN THE FOLLOWING
MANNER - II PROJECT. ACCOUNT. FI LE" (WHICH IS THE DEFAULT
USED IN THE PROJECT DEFINITION IF NONE IS SPECIFIED).

2) MODIFY CYLINDERS (PRIMARY SECONDARY)
3) SPECIFY THE VOLUME ON WHICH IT WILL BE ALLOCATED

//* A JOB STEP IS THEN PROCESSED TO INITIALIZE THE FILE
//*
//**
//STEP1 EXEC PGM=IDCAMS
//*
//SYSPRINT DD SYSOUT=H
//*
//SYSIN DD *

DELETE 'XXX.YYY.ZZZ' CLUSTER
DEFINE CLUSTER -
(NAME('XXX.YYY.ZZZ') CYLINDERS(4 1) VOLUMES(VVVVVV) -
KEYS(26 0) IMBED RECORDSIZE(264 32000) SHAREOPTIONS(4,3)
SPEED UNIQUE SPANNED) -
INDEX(NAME('XXX.YYY.ZZZ.INDEX')) -
DATA(NAME('XXX.YYY.ZZZ.DATA') CISZ(2024) FREESPACE(50 50))

/*
//**

//*
//* INITIALIZE THE ACCOUNTING FILE
//*
//**
//STEP2 EXEC PGM=IDCAMS
//INPUT DD *

VSAM FILE INITIALIZATION RECORD
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

REPRO INFILE(INPUT) OUTDATASET('XXX.YYY.ZZZ')
/*
//

The JCL shown above establishes a VSAM cluster to store accounting and build
map information for a sample project. You can adjust the JCL to allocate
additional space by modifying the space parameter (shown as CYLINDERS in the
example JCL). See the next section, "Space Computations for the Accounting Data
Set Definition," for more information on modifying the space parameter. In the

194 ISPF/PDF Software Configuration and Library Manager

Step 5: Allocate Project Data Sets

project definition, you must define the data set name you chose for the accounting
data set. See "Step 9: Modify Control Options" on page 202 for more information.

Space Computations for the Accounting Data Set Definition
SCLM stores internal data in VSAM data sets. Compute space parameters
according to the specifications below.

Number of members Cylinders
being controlled (3350)

1,000 3

10,000 6

The following chart shows the conversion factors necessary to compute direct
access capacities for various devices:

Bytes!
Tracks! Bytes! Bytes! Device

Device Cylinders Cylinder Track Cylinder (millions)

3350 555 30 19,069 572,070 317.5

3375 959 12 35,616 427,392 409.8

3380 885 15 47,476 712,140 630.2

Defining Cross-Reference Data Set (SCLM Internal Data)
The cross-reference data set for the project must be a VSAM cluster. Use the
IDCAMS utility to define the VSAM cluster. The primary and secondary
cross-reference data set must be defined correctly or else the results are
unpredictable. The following page shows the JCL used to define the
cross-reference data set for the project.

Chapter 7. Defining the Project 195

Step 5: Allocate Project Data Sets

//jobname JOB (wkpkg,dpt,bin),'name'
//**

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

THIS JCL DEFINES A VSAM CLUSTER TO BE USED AS THE SCLM CROSS REF
FOR A GIVEN PROJECT

THE HIGH LEVEL QUALIFIER MUST BE AN ENTRY IN AN ICF USER CATALOG
IN ORDER TO CREATE THIS CLUSTER.

TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER IN THE
FOLLOWING MANNER:
1) CHANGE ALL XXX.YYY.ZZZ TO THE DESIRED FILE NAME.

ACCOUNTING FILE NAMES ARE USUALLY CHOSEN IN THE FOLLOWING
MANNER - "PROJECT.CROSSREF.FILE,"

2) MODIFY CYLINDERS (PRIMARY SECONDARY)
3) SPECIFY THE VOLUME ON WHICH IT WILL BE ALLOCATED

//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE
//*
//**
//STEP1 EXEC PGM=IDCAMS
//*
//SYSPRINT DD SYSOUT=H
//*
//SYSIN DD *

DELETE IXXX.YYY.ZZZI CLUSTER
DEFINE CLUSTER -
(NAME('XXX.YYY.ZZZ') CYLINDERS(4 1) VOLUMES(VVVVVV) -
KEYS(128 0) IMBED RECORDSIZE(264 32000) SHAREOPTIONS(4,3)
SPEED UNIQUE SPANNED) -
INDEX(NAME('XXX.YYY.ZZZ.INDEX'» -
DATA(NAME('XXX.YYY.ZZZ.DATA') CISZ(2024) FREESPACE(50 50»

/*
//**

//*
//* INITIALIZE THE CROSS REF FILE
//*
//**
//STEP2 EXEC PGM=IDCAMS
//INPUT DD DSN=TEMP.XREF.RECORD,DISP=SHR
//OUTPUT DD DSN=XXX.YYY.ZZZ,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

REPRO INFILE(INPUT) OUTFILE(OUTPUT)
/*
//

The JCL above establishes a VSAM cluster to handle cross-reference information
for an average sized project. You can adjust the JCL to allocate additional space
by modifying the CYLINDERS parameter.

You need to create an input data set (TEMP.XREF.RECORD) before running the
sample JCL. The input data set must contain a nonblank record of at least 160
bytes in length to initialize the cross-reference data set. Define the data set name
you chose for the cross-reference data set in the main project definition for the
project. See "Step 9: Modify Control Options" on page 202 for more information.

196 ISPF/PDF Software Configuration and Library Manager

Step 7: Specify the Project Definition

Step 6: Protect Project Data Sets
Use a data access control facility to protect your SCLM project data sets. A
commonly used security product is RACF.

All SCLM project data sets normally have a universal access READ to allow each
developer maximum access to the application software. Development and staging
data sets need update authority for the developers of those data sets, while
higher-level data sets should be protected so that only developers who control
those groups have update authority to the data sets. All developers in the project
must have update access to the VSAM accounting data set.

As project administrator, you should restrict the project definition data set so that
only you have update authority. All other developers need READ access only to
this data set.

For additional information on RACF, refer to OSIVS2 MVS Resource Access Control
Facility (RACF) Command Language Reference, SC28-0733.

See "Security" on page 271 for a discussion of non-bypassable security for the
SCLM database.

Step 7: Specify the Project Definition
Create the project definition by using the SCLM macro set provided with the SCLM
product. The six SCLM macros provided are:

FLMABEG Put this macro at the beginning of the project definition. It initializes
the project definition by defining the project 10. You can use it only
one time.

FLMAGRP Use this macro to define a group of authorization codes. You can use
it multiple times.

FLMGROUP Use this macro to define one group in the project database. You can
use it multiple times.

FLMTYPE Use this macro to define one type in the project database. You can
use it multiple times.

FLMCNTRL Use this macro to specify project-specific control options. You can
use it only one time.

FLMAEND Put this macro at the end of the project definition to conclude the
project definition. You can use it only one time.

Chapter 8, "SCLM Macros," describes the use of these macros in detail. The
example project definition on page 205 is used throughout this chapter as a
reference in explaining how to generate the project definition

Note: Because these are S/370 assembler language macros, all rules pertaining
to macros apply. Namely, assembler does not support blanks in macro
parameters. If a line of code requires more than 71 characters, you must
put a continuation character in column 72 and begin the remaining lines at
column 16. Refer to OS Assembler H Language, GC26-3771, for more
information on the use of macros.

Chapter 7. Defining the Project 197

Step 8: Modify Language Definitions

Specifying the Project Identifier
Specify the identifier name for the project using the FLMABEG macro. This macro
must appear at the top of every project definition you generate. If you want more
than one project definition for a project, keep the identifier name in the alternates
the same. See "Alternate Project Definitions" on page 257 for more information.
The format of this macro is shown in "FLMABEG Macro" on page 210. In the
example on page 205, the FLMABEG macro defines project PROJ1.

Defining Authorization Groups
Define authorization groups using the FLMAGRP macro. "FLMAGRP Macro" on
page 212 shows the format of this macro. You must use authorization groups
when the list of authorization codes defined for a group becomes too large for the
group macro. Use a single authorization code for most projects that include
normal development activities. The example on page 205 defines only one
authorization code. The FLMAGRP macro is for illustration only; it is not required.
You can obtain an equivalent result by removing the FLMAGRP macro and
changing GRP1 to REL as the authorization code for each group.

Defining Groups and Authorization Codes

Defining Types

Define groups by using the FLMGROUP macro. Each group in the project requires
an FLMGROUP statement. "FLMGROUP Macro" on page 223 shows the format of
this macro.

The use of authorization codes is necessary in certain circumstances but can be
misused if not controlled properly. In most cases, you should use a single
authorization code for the entire hierarchy. The example on page 205 shows how
this is done for the hierarchy shown in Figure 50 on page 190.

Define types using the FLMTYPE macro. "FLMTYPE Macro" on page 231 shows
the format of this macro. In the example project definition depicted on page 205,
type ARCHDEF is used to contain architecture members. See Chapter 2,
"Architecture Definition," for more information. Maintain a separate architecture
definition type. You may determine the actual name for this type.

Step 8: Modify Language Definitions
SCLM includes sample language definitions for the following widely used
compilers and linkage editors:

• Ada
• BookMaster
• COBOL
• FORTRANIV
• JOVIAL
• Pascal
• PLII Optimizing Compiler
• SCRIPT/VS
• Series/1 assembler
• Series/1 COBOL
• Series/1 EDL
• Series/1 PUI
• S/370 assembler
• S/370 assembler H.

198 ISPF/PDF Software Configuration and Library Manager

Step 8: Modify Language Definitions

You can get project support for these languages by copying each language
definition member from the SCLM macro set into the data set containing the project
definition (see "Step 4: Create PROJDEFS Data Set" on page 192) and by
modifying the language definition according to project needs. You may need to
modify language definitions depending on variations in compilers from project to
project. The following paragraphs provide modification instructions. Put a copy
reference for each language definition member in the project definition for each
language the project will use. See page 205 for an example.

Creating Language Definitions
Produce language definitions with the following macros:

FLMLANGL

FLMTRNSL

FLMALLOC

FLMCPYLB

FLMSYSLB

FLMCMPLB

Use this macro to specify the language identifier.

Use this macro once for each translator to be invoked for a
language.

Use this macro for each data set allocation required by a
translator. Specify one for each ddname in the ddname
substitution list for a translator. The ddname substitution list is a
string of ddnames allocated for the translator. The ddnames are in
the order you specify. Refer to MVS/XA Data Administration:
Utilities, GC26-4018, for more information about the ddname list
substitution.

Use this macro to identify other data sets to be concatenated to a
ddname.

Use this macro to define a set of data sets by languages which
contain project and/or system macros or includes.

Use this macro to define a set of data sets by language which
contain project com pool dependencies. It applies only to
languages containing compool dependencies, such as JOVIAL.

Use the language definition macros in a specific pattern and combination. Use an
FLMSYSLB or FLMCMPLB macro first, if you use them. Next, use FLMLANGL, the
main macro, immediately followed by the FLMTRNSL macro. Use FLMALLOC
multiple times with each FLMTRNSL macro. Then use FLMCPYLB one or more
times after each FLMALLOC macro. You can repeat the FLMTRNSL macro, along
with FLMALLOC and FLMCPYLB. Do not use FLMSYSLB, FLMCMPLB, and
FLMLANGL again in the language definition.

The example on page 201 shows how to specify a language definition. Chapter 8,
"SCLM Macros," gives details on the use of each language definition macro.

Modifying Language Definitions
You may have to modify your language definitions due to specific project needs.
Limit these modifications to project-specific requirements. For each language,
take the following actions as necessary:

• Specify data sets containing dependencies that are not to be tracked, such as
system services (macro FLMSYSLB).

• Verify translator load module names and load data sets for accuracy (macro
FLMTRNSL; keywords COMPILE and DSNAME).

Chapter 7. Defining the Project 199

Step 8: Modify Language Definitions

• Verify existence and accuracy of copy libraries specified for the FLMCPYLB
macro. Library names must match those in the FLMSYSLB macro for this
language.

• Adjust translator return codes to project requirements if nonzero return codes
are acceptable (macro FLMTRNSL; keyword GOOORC).

• Update default translator options (macro FLMTRNSL; keyword OPTIONS).

• Verify translator version information (macro FLMTRNSL; keyword VERSION).

Note: If you change the language of a source member (for example PLiC to
PLIO) using the SPROF macro, but do not perform a save on the
member, the BUILD service recompiles the component automatically
only if the new and old languages have unique version IDs. Project
administrators should use a unique version 10 on the FLMLANGL macro
for each language definition in the project.

• Specify output listings (macro FLMALLOC; keyword PRINT).

• Specify output default types (macro FLMALLOC; keyword OFL TTYP) to match
the FLMTYPE type specified in the project definition.

The following pages provide an example of a language definition for the S/370
assembler H language.

200 ISPF/PDF Software Configuration and Library Manager

Step 8: Modify Language Definitions

* FLM@ASMH -- ASSEMBLER 'H'

*
ASMH FLMSYSLB SCLM.RELEASE.MACROS

FLMSYSLB SYS1.MACLIB
*

FLMLANGL LANG=ASMH
*
* PARSER TRANSLATOR
*

*

*

FLMTRNSL CALLNAM='ASM H PARSER ' ,
FUNCTN=PARSE,
COMPILE=FLMLSS,
PORDER=l,
OPTIONS=(PTABLEDD=,
SOURCEDD=SOURCE,
TBLNAME=FLMPASM,
STATINFO=@@FLMSTP,
LISTINFO=@@FLMLIS,
LISTSIZE=@@FLMSIZ,
CONTIN=72,
EOLCOL=72)

(* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE

FLMCPYLB @@FLMPRJ.@@FLMGRP.@@FLMTYP(@@FLMMBR)

* BUILD TRANSLATOR(S)
*
*

* 1

* 2

* 3

* 4

--ASSEMBLER 'H' INTERFACE--
FLMTRNSL CALLNAM='ASSEMBLER HI,

FUNCTN=BUILD,
COMPILE=IEV90,
DSNAME=SYS1.LINKLIB,
VERSION=V05,
GOODRC=0,
OPTIONS=(XREF(SHORT),LINECOUNT(75),OBJECT,RENT)

--SYSLIN--
FLMALLOC IOTYPE=O,KEYREF=OBJ ,RECFM=FB, LRECL=80,

RECNUM=9000,DFLTTYP=OBJ
--N/A--
FLMALLOC IOTYPE=N
--N/A--
FLMALLOC IOTYPE=N
--SYSLIB--
FLMALLOC IOTYPE=I,KEYREF=SINC

FLMCPYLB SCLM.RELEASE.MACROS
FLMCPYLB SYS1.MACLIB

C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

c

Chapter 7. Defining the Project 201

Step 9: Modify Control Options

* 5

* 6

* 7

* 8

* 9

--SYSIN--
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80,

RECNUM=9000
--SYSPRINT--
FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=FBA,LRECL=121,

RECNUM=20000,PRINT=Y,DFLTTYP=LIST
--SYSPUNCH--
FLMALLOC IOTYPE=A

FLMCPYLB NULLFILE
--SYSUT1--
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=15000
--SYSTERM--
FLMALLOC IOTYPE=A

FLMCPYLB NULLFILE

C

C

In the previous example, FLMSYSLB and FLMCPYLB specify data sets that contain
project and system macros or includes which are not tracked by SCLM. Note that
the FLMSYSLB macro is always specified first. The name of the language, ASMH,
is always specified next using the FLMLANGL macro.

Use keywords supported by the FLMTRNSL macro to specify the following: the
translator to be invoked for a language, ASSEMBLER H; translator load module
name, IEV90; version of the translator, 1.0; and translator options. An FLMALLOC
macro addresses each ddname in the ddname substitution list for translator IEV90.
Specify the kind of data set to be allocated, size, logical record length, and record
format using keywords the FLMALLOC macro supports. An FMNCPYLM macro
addresses each data set to be concatenated to a ddname (for example,
SYS1.MACUB).

Step 9: Modify Control Options
The SCLM project definition allows you to select project-specific controls that
dictate SCLM processing. In particular, the following project controls are
available:

• Accounting data set specification
• Secondary accounting data set specification
• Cross-reference data set specification
• Maximum lines per page
• Translator option override
• Maximum VIO limit
• Change code verification routine specification
• Build and promote user exit routine specification.

Specify control options using the FLMCNTRL macro. You can use only one
reference to the FLMCNTRL macro for each project definition. "FLMCNTRL
Macro" on page 218 shows the format of this macro.

In the example of a project definition on page 205, the accounting data set name is
PROJ1.ACCOUNT. FILE, the maximum number of lines per page on listings is 75, and
you can use overrides to the default translator options.

202 ISPF/PDF Software Configuration and Library Manager

Step 9: Modify Control Options

SCLM Internal Data Sets
The control options that follow allow you to designate specific SCLM internal data
sets for the project.

Accounting Data Set Specification
The ACCT control option allows you to specify the VSAM accounting data set
name. The data set you specify must be the name of the VSAM cluster you want.
The default accounting cluster name is project_id.ACCOUNT.FILE, where project_id
is the eight-character identifier for the project. The high-level qualifier must be a
VSAM alias as described in "Step 5: Allocate Project Data Sets" on page 193.

Secondary Accounting Data Set Specification
The ACCT2 control option allows you to specify a backup VSAM accounting data
set name for the project. Allocate this secondary VSAM data set following the
same criteria as the primary one outlined in the previous section. You must
choose a unique name for this data set and put it on a different volume than the
primary one. If a severe problem occurs with the primary data set, for example a
head crash on that disk, you could use this data set as a backup to restore the
primary data set.

If you use this option, additional accounting updates that affect performance take
place.

Cross-Reference Data Set Specification
The XREF control option allows you to specify the VSAM cross-reference data set,
which is used to relate Ada compilation unit names with SCLM internal key
information. The data set you specify must be the name of the VSAM cluster you
want. The high-level qualifier must be a VSAM alias as described in "Step 5:
Allocate Project Data Sets" on page 193. There is no default cross-reference
cluster name.

Maximum Report Lines
Use MAXLINE to specify the maximum lines per page for all SCLM-generated
reports. The default is 60.

Translator Option Override
The OPTOVER control option allows you to keep developers from overriding
project-defined translator options. If you specify Y, developers can override the
translator options for any of the languages by using the PARM statement in the
architecture members. See Chapter 2, "Architecture Definition," for specifying
translator options in architecture members.

If you specify N, SCLM uses only translator options you specify in the language
definition for the translators. Specifying N also overrides the OPTFLAG parameter,
which allows option override by the translator. See Chapter 2, "Architecture
Definition," for overriding translator defaults during an individual translation. The
default for the OPTOVER control option is Y.

Chapter 7. Defining the Project 203

Step 9: Modify Control Options

Maximum VIO Limit
The MAXVIO control option allows you to adjust the maximum VIO limit. Much of
the processing in SCLM revolves around the use of temporary data sets. To
increase performance, use VIO to allocate all temporary data sets. bue to memory
limitations, however, SCLM establishes a VIO limit to restrict the amount of
memory allocated. The maximum VIO limit forces SCLM to allocate the temporary
data set on DASD if the function requests an amount greater than the limit. SCLM
measures requests in the number of records. The default value is 5000. If SCLM
functions fail for lack of memory (S80A ABEND), reduce this value.

Change Code Verification Routine Specification
The control option allows you to specify a change code verification routine to be
used for the project. If you specify the routine, SCLM calls it to verify all change
codes entered when a developer defines an update to a member to SCLM using the
SCLM editor, migration utility, or services. If you specify a change code
verification routine, developers can enter only members with valid change codes
into the project database. There are performance implications associated with the
specification of a change code verification routine. SCLM does not provide a
default change code verification routine.

See "Change Code Verification Routines" on page 261 for details.

Build and Promote User Exit Routine Specification
The user exit options allow you to specify build and promote user exits to provide
additional functions not supplied with SCLM. The user exits can perform logging
functions, additional verification, or coordinated processing with non-SCLM tools.
SCLM invokes the build user exit at the end of the build. SCLM invokes the
promote verification user exit, the promote copy user exit, and the promote purge
user exit routines at the end of promote verification, copy, and purge phases,
respectively.

SCLM does not provide user exit routines. If you do not want any user exit routines
for your project, you can skip the user exit specifications. See "Build and Promote
User Exit Routines" on page 263 for more information.

The following page shows a sample project definition.

204 ISPF/PDF Software Configuration and Library Manager

Step 9: Modify Control Options

PROJI
*

TITLE '***PROJECT DEFINITION FOR PROJECT=PROJI ***1
FLMABEG

* **
* * DEFINE THE AUTHORIZATION CODES *
* **
*
GRPI FLMAGRP AC"=(REL)
*
* **
* * DEFINE THE TYPES *
* **
*
ARCHDEF
LIST
LMAP
LOAD
OBJ
SOURCE
SOURCE2
*

FLMTYPE
FLMTYPE
FLMTYPE
FLMTYPE
FLMTYPE
FLMTYPE EXTEND=SOURCE2
FLMTYPE

* **
* * DEFINE THE GROUPS *
* **
*
USERI
USER2
USER3
STAGEI
STAGE2
STAGE3
INT
TEST
RELEASE
*

FLMGROUP AC=(GRPl),PROMOTE=STAGEl,KEY=Y
FLMGROUP AC=(GRPl),PROMOTE=STAGE2,KEY=Y
FLMGROUP AC=(GRPl),PROMOTE=STAGE3,KEY=Y
FLMGROUP AC=(GRPl),PROMOTE=INT,KEY=N
FLMGROUP AC=(GRPl),PROMOTE=INT,KEY=N
FLMGROUP AC=(GRPl),PROMOTE=INT,KEY=N
FLMGROUP AC=(GRPl),PROMOTE=TEST,KEY=Y
FLMGROUP AC=(GRPl),PROMOTE=RELEASE,KEY=Y
FLMGROUP AC=(GRPl),KEY=Y

* **
* * PROJECT CONTROLS
* **
*

*

FLMCNTRL ACCT=PROJl.ACCOUNT.FILE,
MAXLINE=75,
OPTOVER=YES

C
C

Chapter 7. Defining the Project 205

Step 10: Assemble and Link Project Definition

* **
* * LANGUAGE DEFINITION TABLES
* **

*
COBOL FLMSYSLB SYS1.EXAMPLE.MACROS

COPY FLM@ARCD -- ARCHITECTURE DEF. LANGUAGE
COPY FLM@TEXT TEXT LANGUAGE
COPY FLM@SCRP SCRIPT 3 LANGUAGE
COPY FLM@ASM 370 ASSEMBLER LANGUAGE
COPY FLM@COBL COBOL LANGUAGE
COPY FLM@FORT FORTRAN IV LANGUAGE
COPY FLM@PSCL PASCAL LANGUAGE
COPY FLM@PLIC PL/I CHECKOUT LANGUAGE
COpy FLM@PLIO PL/I OPTIMIZER LANGUAGE
COPY FLM@L370 370 LINKAGE EDITOR

*
*

FLMAEND

(end of project definition example)

Step 10: Assemble and Link Project Definition
Assemble all project definitions with the SCLM macro set using the standard IBM
S/370 assembler. Once assembled, link the object using the standard IBM S/370
linkage editor, and store the project definition load module into the PROJDEFS
data set. Make sure all project definition load modules are reentrant.
Non-reentrant project definition load modules can cause error conditions. Specify
the RENT option during link edit.

The load module name of the main (default) project definition for a project must
match the project identifier on the FLMABEG macro. Alternate project definitions
can have any load module name, but all alternate projects must have the same
project identifier on the FLMABEG macro as the default project. All project
definitions must reside in the PROJDEFS data set to allow invocation. Access the
project definition when you invoke SCLM and use it for the duration of the SCLM
invocation. An updated project definition does not affect an active SCLM
invocation.

The SCLM macro set performs some verification of the project definition. When
warning or error conditions are detected, the macros issue MNOTES, which are
SCLM-specific diagnostic comments. If the text of an MNOTE is missing, verify that
the FLMABEG macro appears at the top of the project definition and is referenced
correctly. The return code from the assembler indicates the following:

o The macros detected no errors.

4 The macros detected a potential error. The project definition may be usable,
but may not reflect the desired options. Review the assembler listing for
details.

8 The macros detected errors. Do not use the project definition until you
correct the errors identified in the assembler listing.

206 ISPF/PDF Software Configuration and Library Manager

Step 11: Build INFO Member

Step 11: Build INFO Member
If you plan to use the Workstation Platform for Operating System/2 (OS/2), you must
generate the members in the PROJDEFS.INFO data set. You create the
PROJDEFS.INFO data set after your project definitions have been generated into
your PROJDEFS data set.

The PROJDEFS.INFO data set is a partitioned data set with LRECL=40 and must
be pre-allocated. It contains one member for each member in the
PROJDEFS.LOAD data set. To create a member of the PROJDEFS.INFO data set,
run the following JCL:

//INFO EXEC PGM=ISRFLMGI,PARM=('project,projdef ')
//STEPLIB DD DSN=<pdf_'oad_'ib>,DISP=SHR
//SCLMLOAD DD DSN=<project>.PROJDEFS.LOAD,DISP=SHR
//SCLMINFO DD DSN=<project>.PROJDEFS.INFO,DISP=SHR

where:

project

projdef

The project name to which this project definition belongs

The project definition name for which the INFO member is being
generated

The load library where the ISPF/PDF load modules reside if they
are not in your normal system search sequence.

For example, if you wanted to generate the PROJDEFS.INFO member for a project
definition called AL TVIEW under project PROJECT1, you would use the following
JCL:

//INFO EXEC PGM=ISRFLMGI,PARM=('PROJECT1,ALTVIEW ')
//STEPLIB DD DSN=SYS1.PDF.LOAD,DISP=SHR
//SCLMLOAD DO DSN=PROJECT1.PROJDEFS.LOAD,DISP=SHR
//SCLMINFO DO DSN=PROJECT1.PROJDEFS.INFO,DISP=SHR

When ISRFLMGI completes, one of the following return codes is returned:

o Member successfully created in < project> .PROJDEFS.INFO.

20 OPEN failed for ddname SCLMINFO.

21 OPEN failed for ddname SCLMLOAD.

22 Write to ddname SCLMINFO failed.

23 Invalid project name length.

24 No project specified.

25 Invalid project definition length.

26 No project definition specified.

27 Allocation of the Allocation Retrieval Area (ARL) failed.

28 OBTAIN failed.

29 The PROJDEFS.INFO data set is not partitioned with LRECL = 40.

Chapter 7. Defining the Project 207

208 ISPF/PDF Software Configuration and Library Manager

Introduction to SCLM Macro Instructions

Chapter 8. SCLM Macros

General-Use Programming Interface -------------------,

The SCLM macros are general-use programming interfaces, which you may
use for programming purposes.

Introduction to SCLM Macro Instructions
SCLM supplies a set of macro instructions you can use to define project definitions.
This chapter describes those macro instructions, explaining the format of each.

The macros appear in alphabetical order. For each macro, the chapter provides
the command format, a description of the parameters you use, and an example.

This chapter uses the following notation conventions to describe the format of the
SCLM macros:

Uppercase Uppercase commands or parameters must be spelled out as shown
(in either uppercase or lowercase).

Lowercase Lowercase parameters are variables; substitute your own values.

Underscore Underscored parameters are the system default.

Brackets ([]) Parameters in brackets are optional.

Braces ({}) Braces show two or more parameters from which you must select
one.

OR (I) The OR (I) symbol shows two or more parameters from which you
must select one.

Stacked Parameters
Stacked parameters show two or more parameters from which you
can select. If you do not choose any, PDF uses the default
parameter.

The example below shows the macro format for the SAMPLE macro.

SAMPLE PARM1=parml input
,PARMIA=XXXIYYYIZZZ

[,PARM2=parm2 input]
[,PARM2A=YIN]

Note that because these are S/370 assembler macros, all rules pertaining to
macros apply. Assembler does not support blanks in macro parameters. If you
need more than 71 characters for a line of code, you must put a continuation
character in column 72 and begin the remaining lines in column 16. You can find
more information on the use of macros in as Assembler H Language, GC26-3771.

If an optional keyword is specified without a value, the default value is used; for
example, PARM2A = causes PARM2A to default to Y.

© Copyright IBM Corp. 1989, 1990 Chapter 8. SCLM Macros 209

FLMABEG Macro

FLMABEG Macro

Macro Format

Parameters

Example

Use this macro to define the project name of the project definition. It must appear
before the other SCLM macros in the project definition.

name FLMABEG

name
An eight-character project name. The project name is also the high-level
qualifier for SCLM partitioned data sets.

PROJ1 is the project name for the project definition.

PROJI FLMABEG

210 ISPF/PDF Software Configuration and Library Manager

FLMAEND Macro

FLMAEND Macro

Macro Format

Parameters

Use this macro as the last macro in the project definition. All SCLM macros you
use to define the project definition must appear between the FLMABEG and
FLMAEND macros.

FLMAEND

This macro has no parameters.

Chapter 8. SCLM Macros 211

FLMAGRP Macro

FLMAGRP Macro

Macro Format

Parameters

Example

Use this macro to define a group of authorization codes. You can then specify the
group name in the AC field on the FLMGROUP macro to assign the group of
authorization codes to that level.

name FLMAGRP AC=(codel,code2, ...)

name
An eight-character authorization group name containing no special characters
or imbedded blanks.

AC = (code1 ,code2, ...)
A list of authorization codes and authorization groups you can assign to the
authorization group name. If code# is an authorization group, then you must
have previously defined it with the FLMAGRP macro. See "Authorization Code
Usage" on page 252 for more information.

Authorization group GRP1 contains the authorization codes R3MO, R3M1, and
R3M2. Authorization group GRP2 contains two authorization codes, R1 MO and
R2MO, and one previously defined authorization group, GRP1, for a total of five
authorization codes (R1 MO, R2MO, R3MO, R3M1, and R3M2).

GRPl FLMAGRP AC=(R3MO,R3Ml,R3M2)
GRP2 FLMAGRP AC=(RIMO,R2MO,GRP1)

212 ISPF/PDF Software Configuration and Library Manager

FLMALLOC Macro

FLMALLOC Macro

Macro Format

Parameters

Use this macro for each ddname in the ddname substitution list for a translator.
Specify the kind of data set to be allocated, size, logical record length, and record
format using this macro's keywords.

FLMALLOC IOTYPE={AIIILINIOIPISIUIW}

[, CATLG=N I Y]

[,DDNAME=file_name]

[,DIRBLKS=directory_blocks]

[,DFLTTYP=default_type]

[,KEYREF=keyword_reference]

[,LRECL=record_length]

[, PRINT=N I Y 11]

[,RECFM=record_format]

[,RECNUM=number_of_records]

IOTYPE = {AIIILINIOIPISIUIW}
Specifies the type of files to be allocated and how these files will be used.

IOTYPE = A Allocate a data set or set of data sets to a specified ddname.
You need the FLMCPYLB macro to identify the data sets. You
can allocate a maximum of 16 data sets to the ddname.

IOTYPE = I Allocate libraries in the hierarchy for a particular type. The
KEYREF parameter indicates the type. If the type has an
extended type, the hierarchy for the extended type will be
allocated after the first hierarchy.

IOTYPE = L Pass a member name in the ddname substitution list. See the
PORDER parameter in "FLMTRNSL Macro" on page 228 for
more information. The KEYREF parameter identifies the
member name. This IOTYPE is commonly used to identify the
load module name for S/370 linkage editor.

IOTYPE = N Skip over a field during ddname substitution. SCLM passes
eight hexadecimal ODs to the translator.

IOTYPE = 0 Allocate a sequential data set for a translator output that is to be
saved in the database. The KEYREF parameter identifies the
output module name and type. Valid KEYREF values are OBJ,
COMP, LIST, LOAD, LMAP, and OUTx. You need the RECFM,
LRECL, and RECNUM parameters for allocation of the data set.

Chapter 8. SCLM Macros 213

FLMALLOC Macro

IOTYPE = P Allocate a partitioned data set into which the translator writes a
member to be saved in the database. Use the KEYREF
parameter to identify the target member for copying of the data
set. Specify either KEYREF=LOAD or OUTx. You need the RECFM,
LRECL, RECNUM, and DIRBLKS parameters for allocation of
this data set.

IOTYPE = S Allocate a temporary data set and create the input stream for
the translator. Use the KEYREF parameter to identify the
members used to create the input stream.

IOTYPE = U Use the preallocated ddname specified on the DDNAME
parameter.

IOTYPE = W Allocate a temporary work data set for translator use. You need
the RECFM, LRECL, and RECNUM parameters for allocation of
this data set.

SCLM generates ddnames for all 10TYPES during build processing. In all
cases (except 10TYPE = U), the DDNAME parameter is optional, and you should
use it only if the translator requires a specific ddname which cannot be
substituted. The position of the FLMALLOC macros is very important because
SCLM may pass ddnames directly to the translator (see PORDER field). SCLM
passes ddnames to the translator in the order of the FLMALLOC macros.

SCLM does not deallocate temporary data sets that were allocated with
10TYPE = 0, P, S, and W, and temporary hierarchies allocated with 10TYPE = A
and I until all translators in the language definition complete processing. Thus,
a translator output data set can become an input data set for the next translator
step.

,CATLG=NIY
Indicates whether a data set is to be cataloged. Valid for 10TYPE = W, 0, P and
S, SCLM allocates cataloged data sets with a predefined high-level qualifier,
usually the user ID. This is necessary for translators that require all data sets
to have RACF. The default is N, but, generally, you should not use it.

,OONAME = file_name
The ddname to be used for this allocation. If you do not specify a ddname for
the allocation, SCLM generates one for you.

,OIRBLKS = directory_blocks
The numeric directory block size of the data set. The default is zero. It is valid
for 10TYPE = P.

,OFL TTYP = default_type
Indicates the name of the target area for translator outputs. Allocate translator
outputs with 10TYPE = 0 or P. The target member name is the same as the
source member. SCLM ignores this field during a build if you use an
architecture member to build the source member. If you are using an
architecture member, define target outputs with an output keyword such as
OBJ, OUTx, or LOAD.

The type for the translator output can be based on the type of the source input
by using an asterisk as a special match character. The asterisk will be
replaced by the name of the source member. If the substitution of the source
type would result in a name longer than eight characters, the source type is
truncated to produce an eight character result. If the DFL TTYP parameter is
*LST, a source type of SRC1 would cause the output to be stored in type
SRC1 LST. The type specified on this parameter, or the type generated if an
asterisk is used, must be defined to the project definition with the FLMTYPE

214 ISPF/PDF Software Configuration and Library Manager

FLMALLOC Macro

macro. No verification of this parameter is performed when the project
definition is generated.

,KEYREF = keyword reference
Refers to a keyword (in the build map) or a statement (in the architecture
definition). The member name and type associated with the keyword are used
by other parameters in this macro:

• If 10TYPE = L, keyword_reference identifies the member name the macro
passes in the ddname substitution list for the translator.

• If 10TYPE = S, keyword_reference identifies the input members for the
translator.

• If 10TYPE = I, keyword_reference determines the type name of the
hierarchy to allocate.

• If 10TYPE = 0 or P, keyword_reference identifies the member written to by
the translator.

,LRECL = record_length
Logical record length of the data set (numeric). It is valid for 10TYPE = W, 0, P,
and S. The default is 80.

,NOSAVRC = no_save_rc
A return code value indicating whether or not SCLM stores translator output in
this data set (valid for 10TYPE = 0 and Pl. Use this field when a translator
produces an optional output, which can be determined by the return code from
the translator. The build processor determines that the translator did not store
output to the data set if no_save_rc is equal to a nonzero translator return
code. The default is O.

This feature can be used in conjunction with the field DEPPRCS on the
FLMLANGL macro to allow or disallow dependency processing to continue.
See "Processing Conditionally Saved Components" on page 251 for more
information.

,PRINT = NIYII
Indicates whether SCLM sends the contents of a sequential data set to the
listings data set. This parameter is valid only for data sets allocated with
10TYPE = W, S, or O. The valid values are:

• Print=N indicates the data set is not to be printed.

• Print=Y indicates the data set is to be printed.

• Print= I indicates the data set is to be initialized when allocated by SCLM
and is to be printed.

Data sets that you specify for print but do not open with the invoked translator
can result in an ABEND during printing. In such cases, specify PRINT=!. If you
specify PRINT=I, build performance is slightly degraded. The default is N.

,RECFM = record_format
Record format of the data set. It is valid for 10TYPE=W, 0, P, and S. The
default is FB (fixed blocks).

,RECNUM = number _of_records
Number of records to be allocated (numeric). It is valid for 10TYPE =W, 0, P,
and S. The default is 500.

Chapter 8. SCLM Macros 215

FLMALLOC Macro

Defining a Software Component using the FLMALLOC Macro

Example 1

Example 2

You can specify a software component either with an architecture member or with
the FLMALLOC macros you specified in the language definition. For example, the
language definition for member xxxxxxxx in type SOURCE contains the following
FLMALLOC macros:

FLMALLOC IOTYPE=S
FLMALLOC IOTYPE=O,KEYREF=LIST,DFLTTYP=LISTING
FLMALLOC IOTYPE=O,KEYREF=OBJ,DFLTTYP=OBJECT

Building the member is the same as building the following architecture definition:

SINC xxxxxxxx SOURCE
LIST xxxxxxxx LISTING
OBJ xxxxxxxx OBJECT

Always use the SINC keyword to identify the input member. The FLMALLOG
macros you use can only specify the output targets (lOTYPE = I and P). You can
also use the fields DFL TCRF and DFL TSRF on the FLMLANGL macro to define
compool and source dependency types, respectively. If you need multiple SING
keywords, then you must use an architecture member to specify the software
component. Options to override the translator options (using the PARMx
keywords) also require that you use an architecture member.

Two data sets are allocated: one to contain the input stream (lOTYPE = S), the
other to contain the output from the translator (lOTYPE = 0). The input stream is
the member you specify on the SING statement of an architecture member. The
output is copied to the member specified with the LIST statement of an architecture
member. The output is also copied to the listing data set for the SCLM function.

FLMALLOC IOTYPE=S,KEYREF=SINC,RECNUM=5000,LRECL=80,RECFM=FB

FLMALLOC IOTYPE=O,KEYREF=LIST,RECNUM=5000,LRECL=133,RECFM=VBA, X
PRINT=Y

The hierarchy for the type specified on the SINC statement of an architecture
member is allocated. Two additional data sets are allocated after the hierarchy by
the FLMCPYLB macro.

FLMALLOC IOTYPE=I,KEYREF=SINC
FLMCPYLB SYSl.LINKLIB
FLMCPYLB SYSl.MACLIB

216 ISPF/PDF Software Configuration and Library Manager

FLMCMPLB Macro

FLMCMPLB Macro

Macro Format

Parameters

Example

Use this macro to define a set of data sets for a language containing project
com pool dependencies. SCLM does not track com pool dependencies that exist in
the hierarchy and that are found in these partitioned data sets. The total number of
data sets may not exceed 16 for any language.

[language] FLMCMPLB dataset name

language
An eight-character language name. You must specify the language with the
same name as the language you specify in the LANG parameter on the
FLMLANGL macro. In order to specify multiple data sets for a language, omit
the language on all but the first data set.

dataset_name
The partitioned data set containing members that SCLM does not track.

When a JOVC source member is parsed, SCLM first checks the project hierarchy
for each compool dependency it finds. If it finds the compool member in the
hierarchy, SCLM tracks the compool member. If it does not find it, SCLM searches
the two FLMCMPLB libraries specified for the language. If it finds the compool
member in the concatenation of these data sets, the member is removed from the
list of compool dependencies that SCLM tracks. However, if it does not find the
compool member in the FLMCMPLB data sets, SCLM still tracks the nonexistent
compool member.

JOVC FLMCMPLB SYS1.SYSTEM.COMPLIB
FLMCMPLB SYS1.EXCLUDE.COMPLIB

JOV FLMCMPLB SYSl.SYSTEM.COMPLIB

Chapter 8. SCLM Macros 217

FLMCNTRL Macro

FLMCNTRL Macro

Macro Format

Parameters

Use this macro to specify project-specific control options. You can use this macro
only one time.

FLMCNTRL [ACCT=primary_file]

[,ACCT2=secondary_file]

[,BLDEXT1=build_exit_routine]

[,BEXTIDS=build_exit_dataset]

[,BEXTIOP=build_exit_options]

[,OPTOVER=NIYJ

[,PEXTIDS=promote_exitl_dataset]

[,PEXT2DS=promote_exit2_dataset]

[,PEXT3DS=promote_exit3_dataset]

[,PEXTIOP=promote_exitl_options]

[,PEXT20P=promote_exit2_options]

[,PEXT30P=promote_exit3_options]

[,PRMEXT1=promote_exitl_routine]

[,PRMEXT2=promote_exit2_routine]

[,PRMEXT3=promote_exit3_routine]

[,VERCC=change_code_routine]

[,VERCCDS=change_code_dataset]

[,VERCCOP=change_code_options]

[,XREF=cross_reference_file]

ACCT = primary _file
The name of the VSAM accounting data set for the project. The data set you
specify must be the name of the VSAM cluster you want. The default
accounting cluster name is project.ACCOUNT. FI LE, where project is the project
name specified on the FLMABEG macro. The high-level qualifier must be a
VSAM alias as described in "Step 5: Allocate Project Data Sets" on page 193.

218 ISPF/PDF Software Configuration and Library Manager

FLMCNTRL Macro

,ACCT2 = secondary _file
The name of a backup VSAM accounting data set for the project. Allocate this
secondary VSAM data set following the same criteria as the primary
accounting data set. Choose a unique name for this data set. It should reside
on a different volume than the primary one. If a severe problem occurs with
the primary data set (for example, a head crash on that disk), you can use this
backup data set to restore the primary data set. The default is no secondary
accounting data set.

Because additional accounting updates take place if you use this option, the
updates may degrade performance.

,BLOEXT1 = build_exit_routine
The member name of the build user exit routine. SCLM invokes the routine at
the completion of the build process. It does not invoke the routine if the build
mode is REPORT. Specify the load data set containing the routine in the
BEXT1 DS parameter. If you do not specify the BLDEXT1 parameter, then
SCLM does not invoke the exit routine. See "Build and Promote User Exit
Routines" on page 263 for more information.

,BEXT1 OS = build_exit_dataset
The load data set name containing the member name specified in the BLDEXT1
parameter. Specify this parameter if you specify BLDEXT1. See "Build and
Promote User Exit Routines" on page 263 for more information.

,BEXT1 OP = build_exit_options
Option list to be passed to the build user exit routine. You can specify a
maximum of 256 characters for the options. You can delimit the options with
single quotes. The option list precedes the options passed by the build
processor's parameters, thus allowing developers to specify run-time options
with this parameter. See "Build and Promote User Exit Routines" on page 263
for more information.

,MAXLINE = max_line _countl60
An integer value indicating the maximum number of lines per page for all
SCLM reports. The minimum value you can specify is 20, and the default is 60.

,MAXVIO = max_vio_countI5000
An integer value indicating the maximum number of records permitted for VIO
allocation. The default is 5000.

,OPTOVER = N IY
Indicates whether translator option overrides are allowed or disallowed. If
OPTOVER = Y, developers can add or override the translator options by
specifying the keyword PARMx in the architecture member followed by the
user options. The default is Y.

,PEXT1 OS = promote _ exit1_ dataset
The load data set name containing the member name specified in the
PRMEXT1 parameter. Specify this parameter if you specify PRMEXT1. See
"Build and Promote User Exit Routines" on page 263 for more information.

,PEXT20S =promote_exit2_dataset
The load data set name containing the member name specified in the
PRMEXT2 parameter. Specify this parameter if you specify PRMEXT2. See
"Build and Promote User Exit Routines" on page 263 for more information.

,PEXT30S = promote_exit3_dataset
The load data set name containing the member name specified in the
PRMEXT3 parameter. Specify this parameter if you specify PRMEXT3. See
"Build and Promote User Exit Routines" on page 263 for more information.

Chapter 8. SCLM Macros 219

FLMCNTRL Macro

,PEXT10P = promote_exit1_options
The option list to be passed to the first promote user exit routine. You can
specify a maximum of 256 characters for the options. Delimit the options with
single quotes. The option list precedes the options passed by the promote
process's parameters, thus allowing developers to specify run-time options in
this parameter. See "Build and Promote User Exit Routines" on page 263 for
more information.

,PEXT20P = promote _ exit2 _options
The option list to be passed to the second promote user exit routine. You can
specify a maximum of 256 characters for the options and delimit them with
single quotes. The option list precedes the options passed by the promote
processor's parameters, thus allowing developers to specify run-time options
in this parameter. See "Build and Promote User Exit Routines" on page 263
for more information.

,PEXT30P = promote _ exit3 _options
The option list to be passed to the third promote user exit routine. You can
specify a maximum of 256 characters for the options and delimit them with
Single quotes. The option list precedes the options passed by the promote
processor's parameters, thus allowing developers to specify run-time options
in this parameter. See "Build and Promote User Exit Routines" on page 263
for more information.

,PRMEXT1 = promote_exit1_routine
The member name of the first user exit routine for the promote process. SCLM
invokes this exit after the verification phase of the promote process. This
member exists in the load data set specified by the PEXT1DS parameter. If you
do not specify PRMEXT1, SGLM does not invoke the exit routine. See "Build
and Promote User Exit Routines" on page 263 for more information.

,PRMEXT2 = promote _ exit2_routine
The member name of the second user exit routine for the promote process.
SGLM invokes this exit after the copy phase of the promote process. Ensure
that this member exists in the load data set specified by the PEXT2DS
parameter. If you do not specify PRMEXT2, SGLM does not invoke the exit
routine. See "Build and Promote User Exit Routines" on page 263 for more
information.

,PRMEXT3 = promote _ exit3 _routine
The member name of the third user exit routine for the promote process.
SGLM invokes this exit after the purge phase of the promote process. This
member must exist in the load data set specified by the PEXT3DS parameter.
If you do not specify PRMEXT3, SGLM does not invoke the exit routine. See
"Build and Promote User Exit Routines" on page 263 for more information.

,VERCC = change_code_routine
The name of the change code verification routine. If you do not specify the
VERGG parameter, SGLM does not invoke the verification routine. See
"Change Code Verification Routines" on page 261 for more information.

,VERCCDS = change_code _dataset
The load data set name containing the member name specified in the VERCG
parameter. If you specify this parameter, the verification routine named by
VERGC must exist in this data set. See "Change Code Verification Routines"
on page 261 for more information.

220 ISPF/PDF Software Configuration and Library Manager

Example

FLMCNTRL Macro

,VERCCOP = change_code_options
The option list to be passed to the change code verification routine. You can
specify a maximum of 256 characters for the options and delimit them with
single quotes. The option list precedes the options passed by the routines
invoking the verification routine, thus allowing developers to specify run-time
options in this parameter. See "Change Code Verification Routines" on
page 261 for more information.

,XREF = cross_referencejile
The name of a VSAM cross-reference data set for the project. Use the
cross-reference data set to store compilation unit dependency information.
The data set you specify must be the name of the VSAM cluster you want. The
high-level qualifier must be a VSAM alias as described in "Step 5: Allocate
Project Data Sets" on page 193. This data set is not necessary unless you use
a language with cross-reference dependencies, for example, Ada. There is no
default cross-reference cl uster name.

The accounting data set is specified. Allocate data sets using the FLMALLOC
macro with VIO if the RECNUM parameter is not greater than 10000. The macro
calls a change code verification routine when a member is parsed.

FLMCNTRL ACCT=PROJ1.ACCOUNT.FILE, X
MAXVIO=10000, X
VERCC=CCCHECK, X
VERCCDS=PROJ1.VERIFY.LOAD

Chapter 8. SCLM Macros 221

FLMCPYLB Macro

FLMCPYLB Macro

Macro Format

Parameters

Example

Use this macro to identify additional data sets to be concatenated to a ddname. It
is preceded by an FLMALLOC macro used to specify the ddname.

FLMCPYLB dataset_namelNULLFILE

dataset_namelNULLFILE
Use the FLMCPYLB macro to allocate a data set to a ddname. Place the
FLMCPYLB after an FLMALLOC macro with IOTYPE = I or A. See the IOTYPE
parameter on the FLMALLOC macro for more information. In all other cases,
SCLM ignores the data sets. If you specify more than one FLMCPYLB, SCLM
concatenates the data sets in the order they are specified. When you use them
with the IOTYPE = I, SCLM allocates the data sets behind the type hierarchy
libraries. SCLM can concatenate up to 16 data sets. Thus, when you use
IOTYPE = I, ensure that the number of levels in the hierarchy (primary levels),
plus the number of FLMCPYLB macros you specify, do not exceed 16. If you
concatenate more than 16 data sets, the project definition assembles without
errors, but using it produces unpredictable results.

Specify NULLFI LE for the data set name for allocation of a dummy data set.

The three data sets specified by the FLMCPYLB macro are allocated to the ddname
ISPLOAD.

FLMALLOC IOTYPE=A,DDNAME=ISPLOAD
FLMCPYLB PROJl.INTERNAL.LOAD
FLMCPYLB SYS2.ISPF.LOAD
FLMCPYLB SYSl.LINKLIB

The number of concatenated data sets and the names of the data sets are verified
when the translator is invoked.

222 ISPF/PDF Software Configuration and Library Manager

FLMGROUP Macro

FLMGROUP Macro

Macro Format

Parameters

Example

Use this macro to define one group in the project definition.

name FLMGROUP

[AC=(codel,code2, ...)]

[,KEY=NIY]

[,PROMOTE=next_group]

name
An eight-character group name.

AC = (code1 ,code2, ...)
A list of authorization codes and authorization groups which defines the
authorization codes that are valid for the given group. If code# is an
authorization group, then you must have previously defined it with the
FLMAGRP macro. See" Authorization Code Usage" on page 252 for more
information.

The fi rst authorization code you specify is the default authorization code used
when a member is introduced to SCLM in this group. The maximum number of
characters allowed within the parentheses is 256.

If you omit this parameter, you cannot edit any members in this group. In
addition, no editable members may be promoted into or out of this group.

,KEY=NIY
Defines whether the group is a key group or a non-key group. The default is Y.
See "Key/Non-Key Groups" on page 8 for more information.

,PROMOTE = next group
Defines the next group within the hierarchy for this group. If you do not specify
it, SCLM does not allow any promotions out of this group.

Seven groups are defined for this project definition. The hierarchy consists of five
layers. Groups DEV1 and DEV2 are defined as development groups because no
groups can be promoted into them. All groups except for the TEST group are
defined as key groups. A list of authorization codes are assigned to each group.
Group RELEASE is defined as the highest group in the hierarchy because it does
not specify the PROMOTE parameter.

DEVI FLMGROUP AC=(R6MO),KEY=Y,PROMOTE=STAGEI
DEV2 FLMGROUP AC=(R7MO),KEY=Y,PROMOTE=STAGE2
STAGEI FLMGROUP AC=(R6MO,R7MO),KEY=Y,PROMOTE=INT
STAGE2 FLMGROUP AC=(R6MO,R7MO),KEY=Y,PROMOTE=INT
INT FLMGROUP AC=(R6MO,R7MO),KEY=Y,PROMOTE=TEST
TEST FLMGROUP AC=(R6MO,R7MO),KEY=N,PROMOTE=RELEASE
RELEASE FLMGROUP AC=(R6MO),KEY=Y

Chapter 8. SCLM Macros 223

FLMLANGL Macro

FLMLANGL Macro

Macro Format

Parameters

Use this macro to define a language to SCLM. Specify the name of the language
and processing characteristics using the keywords supported by this macro.
Specify the translators to be invoked for this language (using the FLMTRNSL
macro) after FLMLANGL.

FLMLANGL LANG=language

[,ADABIND=N I Y]

[,ARCH=N I Y]

[,BUFSIZE=buffer_sizeI188]

[,CANEDIT='y'I N]

[, COMPOOL=N I Y]

[,CUQUAL=compilation_unit_qualifier]

[, DEPPRCS=.Y.I N]

[,DFLTCRF=default_compool_reference]

[,DFLTSRF=default_source_reference]

[, IMPSPEC=.Y.I N]

[,SCOPE=LIMITEDINORMALISUBUNITIEXTENDED]

[,VERSION=language_version]

LANG = language
An eight-character language name. It is stored with the accounting information
of editable members. The developer specifies this name when you first define
a member to SCLM.

,ADABIND = NIY
Indicates whether this language controls the bind operation for compilation
units. Use only for Ada languages. The default is N.

,ARCH=NIY
Indicates whether a member parsed in this language is an architecture
member. The default is N.

,BUFSIZE = buffer _sizel100
The number of $listJnfo records SCLM allocates for a parser translator. The
parser translator returns dependency information in the allocated memory.
The default size is 100. SCLM requires one record for each include, compool,
change code, user data record, or compilation unit the parser translator
returns.

224 ISPF/PDF Software Configuration and Library Manager

FLMLANGL Macro

,CANEDIT = YIN
Indicates whether the language can be assigned to editable members. You
should specify language definitions for linkage editors with CANEDIT = N. The
default is Y.

,COM POOL = NIY
Indicates whether this is a com pool language. This keyword controls whether
or not build processes the compool dependencies for source members parsed
under this language. The default is N.

,CUQUAL = compilation_unit_qualifier
The compilation unit qualifier associated with cross-reference data sets for this
language. Use this parameter to distinguish between different Ada languages,
for example, IBM Ada with MVS targets as opposed to VM targets. SCLM uses
the parameter as the lowest level qualifier of a sublibrary name when you
invoke the compiler. This parameter is required for Ada languages.

,DEPPRCS = YIN
Indicates whether other components depending on this component will be
rebuilt if some outputs from the translator were not saved. See "Processing
Conditionally Saved Components" on page 251 for more information.

,DFLTCRF = default_compool_reference
The type name containing the compaol dependencies. SCLM ignores this
parameter during a build if it uses an architecture member to build the source
member. For architecture members, you define the type name of compool
dependencies with a CREF keyword. If you do not specify it, SCLM sets this
parameter to blank.

,DFLTSRF = default_source_reference
The type name containing source dependencies. The build process allocates
the hierarchy of this type. SCLM ignores this parameter during a build if it
uses an architecture member to build the source member. For architecture
members, you define the type name of source references with an SREF
keyword. Allocate the hierarchy for the type by specifying an FLMALLOC
macro with IOTYPE = I and KEYREF = SREF to identify the type. If you do not
specify this parameter, SCLM sets it to blank.

,IMPSPEC = YIN
Indicates whether implicit specifications are allowed for builds of Ada
languages with compilation unit dependencies. For example, if a procedure
BODY is present but the SPEC is not and IMPSPEC = N, the build function
issues an error message. The default is Y.

,SCOPE = LlMITEDINORMALISUBUNITIEXTENDED
Indicates the minimum scope allowed. SCLM compares this parameter with
the mode specified as input to build and promote functions to allow or disallow
processing. The input mode must be of equal or greater value than the
language scope. Valid scope values, in ascending order, are LIMITED,
NORMAL, SUBUNIT, and EXTENDED. Scopes are only used to control the
processing scope of compilation unit dependencies during builds and
promotes. See Chapter 9, "Advanced Topics," for more information. The
default is NORMAL.

,VERSION = language_version
The eight-character version name associated with this language. Altering this
parameter causes all source members under this language to be rebuilt. If you
do not specify it, SCLM sets this parameter to blank. See "Modifying Language
Definitions" on page 199 for additional information.

Chapter 8. SCLM Macros 225

FLMLANGL Macro

Example
The language definition for PASCAL is defined.

FLMLANGL LANG=PASCAL,VERSION=1.8

226 ISPF/PDF Software Configuration and Library Manager

FLMSVSLB Macro

FLMSYSLB Macro

Macro Format

Parameters

Example

Use this macro to define a set of data sets for a language that contains project
system macros or includes. SCLM does not track included members that do not
exist in the hierarchy but are found in these partitioned data sets. Do not define
more than 16 data sets for any language.

[language] FLMSYSLB dataset name

language
An eight-character language name. The language must be the same name as
the language specified in the LANG field on the FLMLANGL macro. In order to
specify multiple data sets for a language, omit the language on all but the first
data set.

dataset_name
The partitioned data set containing members that are not to be tracked by
SCLM.

When an ASMH source member is parsed, the project hierarchy is first checked for
each include dependency found. If the included member is found in the hierarchy,
SCLM tracks it. If it is not found, SCLM searches the three FLMSYSLB libraries
specified for the language for the include member. If SCLM finds the include
member in the concatenation of these data sets, it removes the member from the
list of included dependencies that it tracks. However, if it does not find the member
in the FLMSYSLB data sets, SCLM still tracks the nonexistent include member.

ASMH FLMSYSLB SYS1.MACHLAL
FLMSYSLB SYS1.MACLIB
FLMSYSLB PROJECT.SPECIAL.INCLUDES

ASM FLMSYSLB SYSl.MACHLAL
FLMSYSLB SYSl. MACLIB

SIMPLE FLMSYSLB SYSl.MACHLAL
FLMSYSLB SYSl.MACLIB

Chapter 8. SCLM Macros 227

FLMTRNSL Macro

FLMTRNSL Macro

Macro Format

Parameters

Use this macro once for each translator to be invoked for a language. Specify the
translator load module name, translator load data set name, version of the
translator, and translator options using this macro's keywords.

FLMTRNSL CALLNAM='call_name '

,COMPILE=compiler

[,DSNAME=dataset_name]

[,FUNCTN=PARSEIBUILDICOPY I PURGE]

[,GOODRC=good_return_codeIQ]

[, OPTFLAG=N I Y]

[,OPTIONS=option_list]

[,PARMKWD=parameter_keyword]

[,PORDER=OI112IJ]

[,VERSION=translator_version]

CALLNAM = 'call name'
The name of the translator with a maximum of 16 characters. This name
appears in SCLM messages along with translator return codes. If you want
imbedded blanks in the call name, surround the string with single quotes.

,COMPILE = compiler
The entry point name on the translator load module.

,DSNAME = dataset_name
The name of the data set containing the translator load module (COMPILER
parameter). If the translator load module resides in JOSUS, STEPUS,
TASKUS, or LPA, do not specify data set name.

,FUNCTN = PARSEIBUILDICOPYIPURGE
Identifies the function performed by the translator. The parse function invokes
the parse translators. The build function invokes translators. The promote
function invokes copy and purge translators. The default is PARSE.

,GOODRC = good_return_codeIQ
Definition of an acceptable return code from the translator that must be a
positive integer or O. If you get a return code message greater than
good_return_code from a translator, the process has failed. No outputs are
saved in the hierarchy. The default is O.

,NOSVEXT = no_save_external_rcIQ
A return code value indicating whether any translator outputs targeted to an

external data set, for example, Ada sublibraries, were saved (valid for
FUNCTN=BUI LD). Use this parameter in conjunction with the DEPPRCS

228 ISPF/PDF Software Configuration and Library Manager

FLMTRNSL Macro

parameter on the FLMLANGL macro. It allows or disallows dependency
processing if you save some outputs produced by the translator.

The build processor determines that external outputs were not saved by the
translator if no_save_external_rc is equal to a translator return code other than
zero. See" Processing Conditionally Saved Components" on page 251 for
more information. The default is O. If you have DEPPRCS=Y, this parameter has
no effect.

,OPTFLAG = NIX
Indicates whether developers can override default translator options. The
default is Y. This parameter has no effect if you specify OPTOVER=N on the
FLMCNTRL macro.

,OPTIONS = option_list
The default translator options (maximum 256 characters). Delimit the options
with single quotes or parentheses. They can also contain variables to provide
dynamic information to a translator. See Chapter 3, "SCLM Variables."

,PARMKWD = parameter_keyword
The keyword (PARMO .. PARM9) used in architecture members to specify
additional options for this translator. SCLM takes the options specified for this
keyword and concatenates them after the translator options (OPTIONS
parameter) to form the final option list for the translator.

,PORDER = 011121~
An integer indicating the parameter order to the translator. The translator
parameter order must be an integer from 0 to 3. The default is 3. SCLM can
pass two kinds of parameters to the translator: the option list and the ddname
substitution list. The option list contains the translator options (OPTIONS
parameter) concatenated with the options specified in the architecture member
(see PARMKWD parameter). The ddname substitution list contains the
ddnames specified for allocation. See the DDNAME parameter of "FLMALLOC
Macro" on page 213. The following list defines the valid values for the
translator parameter order:

o No parameters passed

1 Pass option list

2 Pass ddname subsitution list

3 Pass option list followed by ddname substitution list.

,VERSION = translator _version
An eight-character representation of the translator version. This parameter is
for informational purposes only. SCLM stores it in its internal data for each
output member saved from the translators. If you do not specify this
parameter, SCLM sets it to blank.

Chapter 8. SCLM Macros 229

FLMTRNSL Macro

Example
A translator for the Pascal compiler is defined. The compiler is member
PASCALVS in data set SYS2. VSPASCAL. LOAD. The translator can only be invoked by
the build processor (FUNCTN = BUILD). The build processor refers to the compiler
by its call name, PASCAL COMPILER. Only the option list can be passed to the
translator (PORDER = 1). The default options for this translator are specified by the
OPTIONS parameter. Build considers any translator return code greater than 4 as
an error (GOODRC = 0).

FLMTRNSL CALLNAM='PASCAL COMPILER',
FUNCTN=BUILD,
COMPILE=PASCALVS,
DSNAME=SYS2.VSPASCAL.LOAD,
VERSION=1.0,
GOODRC=0,
PORDER=l,
OPTIONS='NOXREF,CHECK,LINECOUNT(75),NOOPT'

x
X
X
X
X
X
X

230 ISPF/PDF Software Configuration and Library Manager

FLMTYPE Macro

FLMTYPE Macro

Macro Format

Parameters

Example

Use this macro to define one FLMTYPE in the project definition.

name FLMTYPE [EXTEND=extended_type]

name
An eight-character type name.

EXTEND = extended_type
An eight-character name that defines an alternate type to use when resolving
include dependencies. This parameter allows the include dependencies to
exist in a type different from the one containing the including member. If you
do not specify it, you must ensure that all include dependencies being tracked
reside in the same type containing the including member. Define the name to
SCLM as another type.

EXTEND creates a single-level deep search sequence. The extended type
cannot be further extended. For example, if the SOURCE was extended to
SOURCE2, and SOURCE2 was extended to SOURCE3, SCLM resolves only
SOURCE and SOURCE2.

Six types are defined. Type SOURCE2 is an extension of type SOURCE. In SCLM,
if a member exists in type SOURCE, its include dependencies can exist in either
SOURCE or SOURCE2.

OBJ
LIST
LMAP
LOAD
SOURCE
SOURCE2

FLMTYPE
FLMTYPE
FLMTYPE
FLMTYPE
FLMTYPE EXTEND=SOURCE2
FLMTYPE

Chapter 8. SCLM Macros 231

232 ISPF/PDF Software Configuration and Library Manager

Impact Assessment Techniques

Chapter 9." Advanced Topics

This chapter describes advanced topics that aid you in managing complex
configurations. Topics discussed in this chapter include:

• Impact assessment techniques

• New languages definitions

• Authorization code usage

• Dynamic include tracking

• Alternate project definitions

• Primary non-key group testing techniques

• Change code verification routines

• Build and promote user exit routines

• Project conversion to SCLM

• Security

• Backup and recovery of the project database

• Dependency processing implementation

• Development and performance

• Workstation platform for OS/2

• The SSI field in load module directories.

Impact Assessment Techniques
Making updates to an application without full knowledge of their effect on the
application can create costly surprises. Impact assessment is a technique you can
use to assess the impacts of updates to an application before they occur. In effect,
it allows developers to determine what effect changing a given component of the
application will have on the rest of the application or a given subapplication.
Impact assessment enables you to avoid costly and unnecessary integration work.

Follow the procedure below to use the build processor to create an impact
assessment:

1. Use the SCLM editor to update the members you want to change.

2. Invoke the build function in the report mode on the top architecture definition
for the application affected.

3. Examine the resulting build report. This report reflects all translator
invocations that would have occurred as a result of the updates.

4. If the results are acceptable, you can build the proper architecture definition
and promote it.

5. If the results are too costly, you can do the updates at another time. To avoid
accidental builds, use the SCLM library utility to delete the members that were
modified in Step 1.

© Copyright IBM Corp. 1989, 1990 Chapter 9. Advanced Topics 233

New Language Definitions

You can construct a second method of assessing impacts by using an SCLM
architecture report. Examine this report for the members that the developer wants
to modify. Starting with the members to be modified, you can identify all
architecture members that control the modified members. While this technique is
more meticulous than the first, it does not require that the member be drawn down,
modified, and built.

Either technique outlined above will help prevent costly recompilation impacts.

New Language Definitions
An important feature of SCLM is that you can tailor it to work with almost any
language. You define the languages supported for a particular SCLM project in the
project definition. The definition of a language to be supported by SCLM is called a
language definition.

Define a language definition using the FLMLANGL macro and translator definitions.
Use translator definitions to specify what translators are to be called by SCLM to
support a language, and when and how these translators are to be called. The
parameters of the FLMLANGL macro define some global information about a
language, such as its name.

Define a translator definition, in turn, using the FLMTRNSL macro and allocation
definitions. Use allocation definitions to specify what ddnames are to be allocated
to support a translator and how these ddnames are to be allocated and used. The
parameters of the FLMTRNSL macro define all the attributes needed to call a given
translator. Of particular interest is the FLMTRNSL FUNCTN parameter, which
defines the function or purpose for which a translator is to be called. SCLM uses
translators for the following functions:

• Parsing source code to determine statistics and dependency information.
SCLM calls these translators during the save process of editing.

• Translating one form of code into another. Some sample code translations are:

- COBOL code to object code and listings
- Script input to a formatted document
- Object modules to load modules.

SCLM calls these translators during the build process.

• Copying intermediate code for compilation units. SCLM calls these translators
during the promote process.

• Purging intermediate code for compilation units. SCLM calls these translators
primarily during the promote process.

Because most languages do not have compilation units, you only need translators
for the functions of translating code and parsing.

In turn, you define an allocation definition using the FLMALLOC macro and, in
some cases, a series of copy library definitions. Copy library definitions simply
consist of a FLMCPYLB macro specification.

234 ISPF/PDF Software Configuration and Library Manager

New Language Definitions

In summary, a language definition consists of a hierarchy of the following
subdefinitions:

• System library definition
• Language identifier defi nition
• Translator definition
• Allocation definition
• Copy library definition.

Because a macro exists for each of these definitions and because each macro
accepts a number of different parameters, you can specify an unlimited variety of
language definitions.

To determine what modifications you can make to the language definition, become
familiar with the parameters of the language definition macros as documented in
Chapter 8, "SCLM Macros." Typically, if you want to write a new language
definition, you should copy an old language definition, and then modify it to meet
your specific needs. The best way to learn how to modify language definitions is to
study language definitions supplied with SCLM and observe what makes them
work.

In the remainder of this section, several translator definitions are examined more
closely in order to describe some of the more complicated things that can be done
with language definitions.

Using Multiple Translators in a Language Definition
Most SCLM-supplied language definitions have two translator definitions. The first
translator definition defines the parser to be used, and the second translator
definition defines the translator to be used during a build. SCLM provides you with
the ability to create language definitions that have more than one translator
definition for a function. SCLM invokes these build processes in the defined order
and passes data forward. This capability allows you to customize the SCLM
product for unique build processing requirements in your project.

The following example shows a language definition that uses multiple translators.
Notice that the ddname SYSLIN is used for both translators. For the SYSLIN
ddname in the link editor translator, however, IOTVPE=U is used because the
translator is using a preallocated ddname.

Chapter 9. Advanced Topics 235

New language Definitions

* COBLOAD COBOL II COMPILER AND LINKEDIT

COBLOAD FLMSYSLB

FLMLANGL
PROJl.COBOL.COPYLIB
LANG=COBLOAD

*
* PARSER TRANSLATOR
*

*

*

FLMTRNSL CALLNAM='COBOL PARSER',
FUNCTN=PARSE,
COMPILE=FLMLSS,
PORDER=l,
OPTIONS=(PTABLEDD=,
SOURCEDD=SOURCE,
TBLNAME=FLMPCOB,
STATINFO=@@FLMSTP,
LISTINFO=@@FLMLIS,
LISTSIZE=@@FLMSIZ,
CONTIN=0,
EOLCOL=72)

(* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE

FLMCPYLB @@FLMPRJ.@@FLMGRP.@@FLMTYP(@@FLMMBR)

* BUILD TRANSLATOR(S)
*
*

* 1

* 2

* 3

* 4

* 5

* 6

* 7

* 8

* 9

--COBOL INTERFACE--
FLMTRNSL CALLNAM='COBLOAD COBOL II COMPILER',

FUNCTN=BUILD,
COMPILE=IGYCRCTL,
DSNAME=IGZ.VIR2M0.COB2COMP,
VERS ION=2. 0,
GOODRC=0,
OPTIONS=(XREF,LIB,APOST)

(* SYSLIN *)
FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80,

RECNUM=5000,DFLTTYP=OBJ,DDNAME=SYSLIN
(* N/A *)
FLMALLOC IOTYPE=N
(* N/A *)
FLMALLOC IOTYPE=N
(* SYSLIB *)
FLMALLOC IOTYPE=I,KEYREF=SINC

FLMCPYLB PROJl.COBOL.COPYLIB
(* SYSIN *)
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80,

RECNUM=2000
(* SYSPRINT *)
FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=FBA,LRECL=121,

RECNUM=5000,PRINT=N,DFLTTYP=LIST
(* SYSPUNCH *)
FLMALLOC IOTYPE=A

FLMCPYLB NULLFILE
(* SYSUTI *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
(* SYSUT2 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

236 ISPF/PDF Software Configuration and Library Manager

C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

C

C

C

New Language Definitions

* 10 (* SYSUT3 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 11 (* SYSUT4 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 12 (* SYSTERM *)
FLMALLOC IOTYPE=A

FLMCPYLB NULLFILE
* 13 (* SYSUT5 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
*
*
* 370/LINKAGE EDITOR
*

*

FLMTRNSL CALLNAM='COBLOAD 370 LINK EDITOR',
FUNCTN=BUILD,
COMPILE=IEWL,
VERSION=2.0,
GOODRC=0,
OPTIONS=(DCBS,MAP)

* 1 (* SYSLIN *)
FLMALLOC IOTYPE=U,DDNAME=SYSLIN

*
* 2 (* LOAD MODULE NAME *)

FLMALLOC IOTYPE=L,KEYREF=OUTI
*
'!c 3

*

(* SYSLMOD *)
FLMALLOC IOTYPE=P,KEYREF=OUT1,RECFM=U,LRECL=6144,

RECNUM=500,DIRBLKS=20,DDNAME=SYSLMOD,DFLTTYP=LOAD

* 4 (* SYSLIB *)

*

FLMALLOC IOTYPE=A,DDNAME=SYSLIB
FLMCPYLB IGZ.VIR2M0.COB2LIB
FLMCPYLB SYSl.LINKLIB

* 5 (* N/A *)

*
* 6

*

FLMALLOC IOTYPE=N

(* SYSPRINT *)
FLMALLOC IOTYPE=O,KEYREF=OUT2,RECFM=FBA,LRECL=121,

RECNUM=2500,PRINT=N,DFLTTYP=LMAP

* 7 (* N/A *)

*
* 8

*

FLMALLOC IOTYPE=N

(* SYSUTI *)
FLMALLOC IOTYPE=W,RECFM=U,LRECL=6144,RECNUM=200,

DDNAME=SYSUTI

* 9 (* N/A *)
FLMALLOC IOTYPE=N

*

C
C
C
C
C

C

C

C

Chapter 9. Advanced Topics 237

New Language Definitions

* 10 (* N/A *)
FLMALLOC IOTYPE=N

*
* 11 (* N/A *)

FLMALLOC IOTYPE=N
*
* 12 (* SYSTERM *)

*

FLMALLOC IOTYPE=A,DDNAME=SYSTERM
FLMCPYLB NULLFILE

238 ISPF/PDF Software Configuration and Library Manager

New Language Definitions

Invoking User-Defined Parsers
SCLM allows you to replace an SCLM-supplied source parser with a user-defined
parser. This option is particularly important when you are defining a new language
for a project, because such a language is likely to have a syntax unlike any of the
languages which the SCLM-supplied parsers can recognize.

When you write a new parser for a language, you must do the following:

1. Define the information tracked by SCLM in terms of the syntax of the language
you want to support.

2. Write a program, based on what you determine in step (1), that passes to SCLM
the statistical and dependency information for a module written in this new
language. This program is called a parser.

3. Tell SCLM how to invoke your parser.

At the end of this section is a parser, written in PL/I and Assembler, for the ISPF
skeleton language. We'll take you through the three steps above and use the
SKELS parser as an example.

Defining Information Tracked by SCLM
SCLM tracks two kinds of information for each module: statistical information and
dependency information. Statistical information includes such data as the total
lines and the number of comments in the module. See "Statistics" on page 57 for
a description of the 10 statistics kept by SCLM. Dependencies tracked by SCLM
are generally the names of other modules that are used when this module is built.
When you write a new parser, you have to defi ne exactly how the parser derives
this information from a module.

For the SKELS (ISPF skeleton) language, we define the 10 SCLM statistics as
follows:

Total lines

Comment lines

Noncomment lines

Blank lines

Prolog lines

The number of lines in the skeleton

The number of lines that start with)CM

The number of lines that do not start with)CM

The number of lines that start with)BLANK

The number of comment lines before the first
noncomment line or the number of comment lines if
there are no noncomment lines

Total statements Same as Total Lines

Comment statements Same as Comment Lines

Control statements The number of lines that start with I) I

Assignment statements Always zero (0) for skeletons

Noncomment statements Same as Noncomment Lines

Note that these definitions may not exactly agree with the definitions in "Statistics"
on page 57. It does not matter. It is your language and these statistics are kept for
your benefit, not for SCLM.

Chapter 9. Advanced Topics 239

New Language Definitions

Writing the Parser

For this example, suppose that if a line starts with)IM, SCLM is to track the named
skeleton as a dependency. You also want to use the user fields in the account
records to store the name of each ISPF table that appears on a)DOT control
statement.

There are several things to consider when you write your own parser:

• If any information is to be passed to the parser from SCLM, it is passed
through a single parameter string as if your program had been invoked from
TSO as:

CALL program 'parameter list'

• There is a set of SCLM variables (see Chapter 3, "SCLM Variables") that can
be used to pass information to the parser about the module to be parsed.

• You can allocate any files you need (including the module to be parsed) to
ddnames or pass the data set names directly through the parameter list.

• SCLM allocates space for an array and a structure. It is up to the parser to
place statistical and dependency information in the structure and array as it
parses the module. SCLM can pass the address of the structure and of the
array to the parser through the parameter list string. If the parser returns a
successful return code, SCLM moves the parsed information into the module's
account record.

In the SKELS parser example, the routine consists of five routines. Together, these
routines perform the work needed to parse an ISPF skeleton as we have described.

GETPTRS Takes the addresses from the parameter list and places them in the

INITIAL

PARSE

appropriate pointer variables.

Initializes the counter variables and the parse structure (STAT JNFO).

Reads the lines of the skeleton, one at a time, and saves any statistical
or dependency information it finds.

WRAPUP Readies the parse structure and the parse array (LIST JNFO) to be
passed back to SCLM.

DATRC Is an assembler routine that returns a fullword integer return code to
SCLM. PLII routines cannot return fullword integer return codes.

Telling SCLM How to Invoke Your Parser
You need to add a few SCLM macros to your project definition for SCLM to invoke
your parser. The macros used to define the SKELS parser are shown before the
source listing. For your parser, you need the following:

• An FLMLANGL to define your language (if it is not already there)

• An FLMTRNSL to define your parser

• An FLMALLOC for each ddname required by your parser

• An FLMCPYLB for each data set name you want to specify.

In the example, there are several keywords on the macros that bear close scrutiny.

240 ISPF/PDF Software Configuration and Library Manager

New Language Definitions

On the FLMLANGL macro, the LANG keyword indicates the string (in this case it is
"SKEL") that needs to be given to SCLM when you want SCLM to treat a module
like a skeleton. The BUFSIZE parameter is the number of elements in the
LIST JNFO array that SCLM passes to the parser.

On the FLMTRNSL parameter, the COMPILE and DSNAME keywords tell SCLM that
the parser can be found in 'GERKEN.PROJECT.LOAD(FLM@SKLS)'. The OPTIONS
keyword contains three SCLM variables: @@FLMSTP, @@FLMLlS, and
@@FLMSIZ. When the parser converts the character string values of @@FLMLIS
and @@FLMSTP to fullword binary integers, the result will be the addresses of the
LIST JNFO array and the STATSJNFO structure, respectively. The value of
@@FLMSIZ is the number of bytes allocated for the LIST JNFO array.

The fi rst FLMALLOC macro allocates the module to be parsed to ddname
SSOURCE. The SKELS parser looks at this ddname for the skeleton source. The
second FLMALLOC macro allocates an error listings file. If an error occurs during
the parse, the SKELS parser writes out a message explaining the situation and
what needs to be done to correct it. If the SKELS parser passes back a return code
greater than that specified on the GOODRC keyword of the FLMTRNSL macro, the
contents of this listings file is written to the edit listings file for the parse. This is
how you can pass messages and information about the parse to your users.

/***/
/* ISPF SKELETON LANGUAGE DEFINITION*/
/***/

FLMLANGL LANG=SKEL,VERSION=V2.3,BUFSIZE=50

PARSER TRANSLATOR

FLMTRNSL CALLNAM='SKEL PARSER ' ,
COMPILE=FLM@SKLS,
DSNAME=GERKEN. PROJECT. LOAD,
FUNCTN=PARSE,
PORDER=l,
GOODRC=0,
VERSION=VIR0M0,
OPTIONS='/@@FLMSTP,@@FLMLIS,@@FLMSIZ,'

(* SOURCE *)
FLMALLOC IOTVPE=A,DDNAME=SSOURCE
FLMCPVLB @@FLMPRJ.@@FLMGRP.@@FLMTVP(@@FLMMBR)
(* LISTING *)
FLMALLOC IOTVPE=W,RECFM=VBA,LRECL=133,

RECNUM=6000,DDNAME=ERROR,PRINT=V

Figure 51. SKELS Parser Definition

C
C
C
C
C
C
C

C

Chapter 9. Advanced Topics 241

New Language Definitions

PROCESS;
/**/
/*** ***/
/*** Program: PSKELS ***/
/*** ***/
/*** Purpose: Performs an SCLM parse of ISPF skeletons after ***/
/*** SCLM edit and during migration of source to SCLM ***/
/*** ***/
/*** Inputs: A parameter list containing addresses of a ***/
/*** structu~e and a variable-length array into which ***/
/*** parse information is placed. The length of the ***/
/*** array, in bytes, is also passed. ***/
/*** ***/
/*** In addition, source from the member to be parsed ***/
/*** is read from ddname SSOURCE. ***/
/*** ***/
/*** Outputs: The structure and array are filled with parse ***/
/*** information by this program. Any error messages ***/
/*** are written to ddname ERROR. ***/
/*** ***/
/*** Retcode: A fullword integer value, indicating the overall ***/
/*** success of the parse, is returned in register 15 ***/
/*** ***/
/*** 0 = Successful parse; parse information is ***/
/*** returned in the structure and array. ***/
/*** ***/
/*** 4 = Variable-length array was too small to hold ***/
/*** all of the parsed information. Not all ***/
/*** information was passed back to SCLM. The ***/
/*** number of elements needed is shown in the ***/
/*** 1 i st i ngs data set. *** /
/*** ***/
/*** To correct this problem, either: ***/
/*** ***/
/*** 1) Increase the value of BUFSIZE in the ***/
/*** FLMLANGL macro for this parser, or ***/
/*** 2) Break the skeleton being parsed into ***/
/*** smaller skeletons and use)IM to "join" ***/
/*** them back together. *** /
/*** ***/
/*** Logic: 1) Obtain addresses of structure and array from ***/
/*** parameter list. ***/
/*** 2) Initialize counters in structure. ***/
/*** 3) For each line of skeleton source: ***/
/*** a) Increment appropriate counters. ***/
/*** b) If record starts with)IM, find and save ***/
/*** imbedded skeleton name. ***/
/*** c) Scan the record for variable names and ***/
/*** save in a program array any new names. ***/
/*** d) If record starts with)DEFAULT, get new ***/
/*** 1&1 and I) I characters. ***/
/*** 4) Calculate summary statistics. ***/
/*** 5) Write an lEND I element to end of parse array.***/
/*** 6) Return. ***/
/*** ***/
/**/

Figure 52 (Part 1 of 11). Parser for ISPF Skeletons

242 ISPF/PDF Software Configuration and Library Manager

New Language Definitions

PSKElS: PROC(PARMlIST) OPTIONS(MAIN);
DCl PARMlIST CHAR(256) VAR; /* Parameter list */
DCl PARMlISTx CHAR(256) VAR; /* Copy of the parameter list */
DCl PAREN CHAR(1), /* Contains I) 1 special char */

NAME CHAR(8) , /* Contains a referenced name */
NAMECHRS CHAR(39), /* Valid name characters */
RECORD CHAR(80) , /* Output buffer for error list */
STAT_PTR POINTER, /* Points to stats structure */
lIST_PTR POINTER, /* Points to parse array */
NON COM READ BIT(1), /* Prolog flag */
EOF- - BIT(1), /* End-of-file flag */
(I,J,K) FIXED BIN(31), /* Simple counters */
USED_ElMTS FIXED BIN(31), /* Number of parse array */

LISTlEN

RETCODE
DCl ADDR

INDEX
lENGTH
MIN
REPEAT
SUBSTR
VERIFY

DCl DATRC
DCl SSOURCE
DCl ERROR
DCl FXB OV

PTR OV

FIXED BIN(31),

FIXED BIN(31);
BUILTIN,
BUILTIN,
BUll TIN,
BUILTIN,
BUILTIN,
BUILTIN,
BUILTIN;

/* elements used so far */
/* Total number of available */
/* parse array elements */
/* Return code */

EXTERNAL ENTRY OPTIONS(ASM INTER);
FILE STREAM INPUT;
FILE STREAM PRINT;
FIXED BIN(31), /* Fullword integer
POINTER BASED(ADDR(FXB_OV));

*/

/* Pointer variable overlay on */
/* top of a fullword integer */
/* variable */

%INClUDE(STATINFO);
%INClUDE(lISTINFO);
RETCODE = 0;
CAll GETPTRS;
CAll INITIAL;
CAll PARSE;
CAll WRAPUP;
CAll DATRC(RETCODE);

Figure 52 (Part 2 of 11). Parser for ISPF Skeletons

Chapter 9. Advanced Topics 243

New Language Definitions

GETPTRS: PROC;
/**/
/*** ***/
/*** Routine: GETPTRS ***/
/*** ***/
/*** Purpose: Converts the information passed to this program ***/
/*** into addresses and array length information. ***/
/*** ***/
/*** Inputs: A varying length string containing parameters in ***/
/*** the following format: ***/
/*** ***/
/*** '<stat_ptr>,<list_ptr>,<length>,' ***/
/*** ***/
/*** where stat_ptr is the EBCDIC representation ***/
/*** of the address of the static ***/
/*** portion of the account ***/
/*** record for this member, ***/
/*** list_ptr is the EBCDIC representation ***/
/*** of the address of the ***/
/*** dynami c portion of the *** /
/*** account record, and ***/
/*** length is the number of bytes ***/
/*** allocated to the dynamic ***/
/*** portion of the account ***/
/*** record. This value is equal ***/
/*** to 228 times the number of ***/
/*** elements in that array. ***/
/*** ***/
/*** Note that this format is consistent with the ***/
/*** OPTIONS keyword on the FLMTRNSL macro that ***/
/*** specifies how to invoke this parser. ***/
/*** ***/
/*** Outputs: The three variables, STAT_PTR, LIST_PTR and ***/
/*** LISTLEN are set from the values in the ***/
/*** parameter list. ***/
/*** ***/
/*** Logic: 1) Find the first comma. ***/
/*** 2) Convert the contents of the character string ***/
/*** before that comma into integer format. For ***/
/*** example, the string 119,1 would be converted ***/
/*** into an integer (X ' 00000013 1

) ***/
/*** 3) Find the next comma. ***/
/*** 4) Convert the contents of the character string ***/
/*** before that comma into integer format. ***/
/*** 5) Find the last comma. ***/
/*** 6) Convert the contents of the character string ***/
/*** before that comma into integer format. ***/
/*** ***/
/*** Note: We take advantage of PL/I's ability to convert ***/
/*** a number in character string format into a ***/
/*** fullword binary value. ***/
/*** ***/
/**/

Figure 52 (Part 3 of 11). Parser for ISPF Skeletons

244 ISPF/PDF Software Configuration and Library Manager

PARMLISTX = PARMLIST;
I = INDEX(PARMLIST,I, I);
FXB_OV = SUBSTR(PARMLIST,1,I-1);
STAT_PTR = PTR_OV;

New Language Definitions

PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

I = INDEX(PARMLIST, I, I);
FXB_OV = SUBSTR(PARMLIST,1,I-1);
LIST_PTR = PTR_OV;
PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

I = INDEX(PARMLIST,I, I);
LISTLEN = SUBSTR(PARMLIST,1,I-1);
LISTLEN = LISTLEN / 228;

END GETPTRS;

Figure 52 (Part 4 of 11). Parser for ISPF Skeletons

INITIAL: PROC;
/**/
/*** ***/
/*** Routine: INITIAL ***/
/*** ***/
/*** Purpose: Initializes the counters and variables to be ***/
/*** used during the parse. ***/
/*** ***/
/*** Inputs: None. ***/
/*** ***/
/*** Outputs: Initialized variables. ***/
/*** ***/
/**/

STATINFO.LINES.TOTAL = 0; /* # of lines in the skeleton */
STATINFO.LINES.COMMENT = 0; /* # of lines starting with)CM */
STATINFO.LINES.NON_COMMENT= 0; /* # lines not starting w/)CM */
STATINFO.LINES.BLANK = 0; /* # lines starting with)BLANK */
STATINFO. LINES. PROLOG = 0; /* # lines before 1st noncomment */

/**/
STATINFO.STMTS.TOTAL = 0; /* = LINES.TOTAL */
STATINFO.STMTS.COMMENT = 0; /* = LINES. COMMENT */
STATINFO.STMTS.CONTROL = 0; /* # of lines starting with) */
STATINFO.STMTS.ASSIGNMENT = 0; /* = 0 */
STATINFO.STMTS.NON_COMMENT= 0; /* = LINES.NON_COMMENT */

/**/
USED_ELMTS = 0;

/**/
NAMECHRS IABCDEFGHIJKLMNOPQRSTUVWXYl0123456789@#$I;
PAREN = 1)1;

END INITIAL;

Figure 52 (Part 5 of 11). Parser for ISPF Skeletons

Chapter 9. Advanced Topics 245

New Language Definitions

PARSE: PROC;
/**/
/*** ***/
/*** Routine: PARSE ***/
/*** ***/
/*** Purpose: Parses the skeleton and places the result in the ***/
/*** account record structures whose addresses were ***/
/*** passed to the program. ***/
/*** ***/
/*** Inputs: Skeleton source from ddname SSOURCE. ***/
/*** ***/
/*** Outputs: Parse results in structure STAT_INFO and array ***/
/*** LIST_INFO. ***/
/*** ***/
/*** Logic: 1) Read each record of the skeleon. For each ***/
/*** line read, increment the appropriate ***/
/*** counters. ***/
/*** ***/
/**/

OPEN FILE(SSOURCE);
EOF = 10 18;
NON_COM_READ = 10 18;
ON ENDFILE(SSOURCE) EOF = 1118;
GET FILE(SSOURCE) EDIT(RECORD) (A(80));
DO WHILE (-,EOF);

/**/
/*** Perform this loop for each record in the skeleton. ***/
/**/
/*** Increment total line counter. ***/
/**/

STATINFO.LINES.TOTAL = STATINFO.LINES.TOTAL + 1;
/**/
/*** If the line starts with)IM, save the name of the ***/
/*** imbedded member in LIST_INFO in an IINCL I array element. ***/
/**/

IF SU8STR(RECORD,1,3) = PAREN II IIMI THEN
DO;

CALL GETNAME;
USED_ELMTS = USED_ELMTS + 1;
IF USED ELMTS < LISTLEN THEN

DO;
LISTINFO(USED_ELMTS).TYPE
LISTINFO(USED_ELMTS).DATA

END;
ELSE;

END;
ELSE;

I INCL I;
NAME;

Figure 52 (Part 6 of 11). Parser for ISPF Skeletons

246 ISPF/PDF Software Configuration and Library Manager

New Language Definitions

/**/
/*** If the line starts with)DOT, save the name of the ***/
/*** referenced table in LIST_INFO in a IUSER I array element. ***/
/**/

IF SUBSTR(RECORD,1,4) = PAREN II IDOT I THEN
DO;

CALL GETNAME;
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN

DO;
LISTINFO(USED ELMTS).TVPE
LISTINFO(USED=ELMTS).DATA =

END;
ELSE;

END;
ELSE;

I USER I;
I TABLE: I II NAME;

/**/
/*** If the line starts with)CM, increment the comment ***/
/*** counter. Otherwise, increment the non-comment counter. ***/
/**/

IF SUBSTR(RECORD,1,3) = PAREN II ICM I THEN
STATINFO.LINES.COMMENT = STATINFO.LINES.COMMENT + 1;

ELSE
STATINFO.LINES.NON_COMMENT = STATINFO.LINES.NON_COMMENT + 1;

/**/
/*** If the line starts with)BLANK, increment the blank line ***/
/*** counter. ***/
/**/

IF SUBSTR(RECORD,1,6) = PAREN II IBLANKI THEN
STATINFO.LINES.BLANK = STATINFO.LINES.BLANK + 1;

ELSE;
/**/
/*** If the line starts with), increment the control ***/
/*** statement counter. ***/
/*** ***/
/*** If the line does not start with), increment the data ***/
/*** line counter. ***/
/*** ***/
/*** If this is the first data line, then we have reached the end***/
/*** of the prolog (defined here as the comment lines before the ***/
/*** first data line). Set the prolog count to the number of ***/
/*** comments read so far. ***/
/**/

IF SUBSTR(RECORD,1,1) = PAREN THEN
STATINFO.STMTS.CONTROL = STATINFO.STMTS.CONTROL + 1;

ELSE
DO;

IF ~NON COM READ THEN
DO;

STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;
NON_COM_READ = 111B;

END;
ELSE;

END;

Figure 52 (Part 7 of 11). Parser for ISPF Skeletons

Chapter 9. Advanced Topics 247

New Language Definitions

/**/
/*** If this line starts with)DEFAULT, then the special ***/
/*** character (the left parenthesis) for control cards may ***/
/*** have changed. Get the new character. ***/
/**/

IF SUBSTR(RECORD,1,8) = PAREN II 'DEFAULT ' THEN
DO;

I = VERIFY(SUBSTR(RECORD,9,72),' I) + 8;
PAREN = SUBSTR(RECORD,I,l);

END;
ELSE;

/**/
/*** End of parse-a-line loop. If there's another line, read it ***/
/*** and go back through the loop. ***/
/**/

GET FILE(SSOURCE) EDIT(RECORD) (A(8e));
END;
CLOSE FILE(SSOURCE);

/**/
/*** If there were no non-comment lines, then set the number of ***/
/*** prolog lines to the number of comment lines. ***/
/**/

IF ~NON COM READ THEN
STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;

ELSE;
END PARSE;

Figure 52 (Part 8 of 11). Parser for ISPF Skeletons

GETNAME: PROC;
/**/
/*** ***/
/*** Routine: GETNAME ***/
/*** ***/
/*** Purpose: Returns the name specified on an)IM or)DOT ***/
/*** statement. ***/
/*** ***/
/*** Inputs: An 8e-byte record in variable RECORD. ***/
/*** ***/
/*** Outputs: The 8-byte name in variable NAME. ***/
/*** ***/
/*** Logic: 1) Find the first blank after the)IM or)DOT. ***/
/*** 2) Find the next non-blank after that blank. ***/
/*** 3) Move that non-blank and the next 7 bytes into ***/
/*** variable NAME. ***/
/*** ***/
/**/

I = INDEX(RECORD,' I);
I = VERIFY(SUBSTR(RECORD,I,81-I),' I) + I-I;
NAME = SUBSTR(RECORD,I,8);

END GETNAME;

Figure 52 (Part 9 of 11). Parser for ISPF Skeletons

248 ISPF/PDF Software Configuration and Library Manager

New Language Definitions

WRAPUP: PROC;
/**/
/*** ***/
/*** Routine: WRAPUP ***/
/*** ***/
/*** Purpose: Saves the last of the parse information in the ***/
/*** SCLM structures and outputs error messages to ***/
/*** the listing file if the LIST_INFO array was not ***/
/*** large enough to hold all of the information. ***/
/*** ***/
/*** Inputs: None. ***/
/*** ***/
/*** Outputs: More data in LIST_INFO and STAT_INFO. ***/
/*** ***/
/*** Logic: 1) Calculate summary information. ***/
/*** 2) Write an lEND I element to LIST INFO. ***/
/*** 3) If there was not enough room in LIST_INFO, ***/
/*** write out messages that describe the error ***/
/*** and that indicate how to solve the problem. ***/
/*** ***/
/**/

STATINFO.STMTS.TOTAL = STATINFO.LINES.TOTAL;
STATINFO.STMTS.COMMENT = STATINFO.LINES.COMMENT;
STATINFO.STMTS.NON_COMMENT = STATINFO.LINES.NON_COMMENT;
/**/
/* WRITE AN END ELEMENT TO LIST ARRAY */
/**/
USED_ELMTS = USED_ELMTS + 1;
IF USED ELMTS < LISTLEN THEN

DO;
LISTINFO(USED_ELMTS).TYPE = lEND I;
LISTINFO(USED_ELMTS).DATA = I I;

END;
ELSE

DO;
OPEN FILE(ERROR);

/**/
PUT FILE(ERROR) SKIP LIST(

I ERROR: INFORMATION RESULTING FROM PARSE DOES NOT I I I
'FIT IN PARSE ARRAYS. I);

/**/
PUT FILE(ERROR) SKIP LIST(

PARSE ARRAY ELEMENTS: I, LISTLEN);
/**/

PUT FILE(ERROR) SKIP LIST(
ELEMENTS NEEDED:

/**/
PUT FILE(ERROR) SKIP(2) LIST(

I USED_ELMTS);

'FIX: 1) INCREASE BUFSIZE VALUE IN FLMLANGL MACRO,');
/**/

PUT FILE(ERROR) SKIP LIST(
I _ OR _ I);

/**/
PUT FILE(ERROR) SKIP LIST(

I 2) BREAK THIS SKELETON UP INTO SMALLER I I I
'SKELETONS AND IMBED THEM I);

Figure 52 (Part 10 of 11). Parser for ISPF Skeletons

Chapter 9. Advanced Topics 249

New Language Definitions

/**/
PUT FILE(ERROR) SKIP LIST(

IN A NEW "TOP LEVEL" SKELETON I);
/**/

PUT FILE(ERROR) SKIP(2) LIST(
I PARAMETER LIST: I II PARMLISTX);

/**/
LISTINFO(LISTLEN).TYPE = lEND I;
LISTINFO(LISTLEN) . DATA = I I;

/**/
CLOSE FILE(ERROR);

/**/
RETCODE = 4;

END;
END WRAPUP;
END PSKELS;

Figure 52 (Part 11 of 11). Parser for ISPF Skeletons

/***/
/*** ***/
/*** LISTINFO Structure ***/
/*** ***/
/*** Maps the static portion of the account record. ***/
/*** ***/
/*** The number of elements declared for this array should not ***/
/*** be greater that the value specified on the BUFSIZE keyword ***/
/*** on the FLMLANGL macro. ***/
/*** ***/
/***/

DCL 1 LISTINFO(50) BASED(LIST_PTR),
2 TYPE CHAR(4) ,
2 DATA CHAR(224);

Figure 53. LlSTINFO Module

/***/
/*** ***/
/*** STATINFO Structure ***/
/*** ***/
/*** Maps the static portion of the account record. ***/
/*** ***/
/***/

DCL 1 STATINFO BASED (STAT_PTR),
2 LINES,

3 TOTAL
3 COMMENT
3 NON_COMMENT
3 BLANK
3 PROLOG

2 STMTS,
3 TOTAL
3 COMMENT
3 CONTROL
3 ASSIGNMENT
3 NON_COMMENT

Figure 54. STATINFO Module

FIXED BIN(31) ,
FIXED BIN(31),
FIXED BIN(31) ,
FIXED BIN(31),
FIXED BIN(31),

FIXED BI N (31) ,
FIXED BIN(31),
FIXED BIN(31) ,
FIXED BIN(31),
FIXED BIN(31);

250 ISPF/PDF Software Configuration and Library Manager

New Language Definitions

*
* Interface program to load R15 with return code from exits and
* other routines written in PL/I. This routine is used because
* PL/I routines cannot pass a return code to a caller through
* register 15.
*

DATRC
DATRC

*

*

CSECT
AMODE 31
L 15,0(1)

L 15,0(15)
L 13,4(13)
L 13,4(13)
RETURN (14,12),RC=(15)

END DATRC

Figure 55. DATRC Module

Processing Conditionally Saved Components

SET AMODE
LOAD ADDRESS OF RETURN CODE FROM
PL/I ROUTINE
LOAD RETURN CODE FROM THAT ADDRESS
LOAD PREVIOUS SAVE AREA
LOAD THE SAVE AREA ONCE REMOVED
GO BACK TO WHOEVER CALLED THE
PL/I ROUTINE
END OF DATRC SOURCE

SCLM provides a feature to conditionally start rebuilds of dependencies for a
software component if some outputs produced by the translator were not saved.
However, these rebuilds only take place if the translator can indicate to SCLM, by
means of its return code, which output data sets were not saved.

For example, suppose a translator can determine if a developer changed only
comments in the source code. In such cases, the translator creates a listing output
in order for the listings to match the current source. However, creating object code
for the source is unnecessary because comment changes to source do not alter
object code. Therefore, you do not need to rebuild components dependent on the
object code because the object code did not change.

To access this feature, use the FLMALLOC, FLMLANGL, and FLMTRNSL macros.
A description on how to use these macros follows.

The FLMALLOC macro defines a temporary data set to be used by the translator.
For example, output produced by the translator is saved in these temporary data
sets. In this macro, you supply the parameter NOSAVRC. SCLM determines if the
translator saved output in a specific temporary data set by comparing the return
code value specified on the NOSAVRC parameter with the translator return code.
If the NOSAVRC value is equal to a translator return code other than zero, then the
build function determines that no output was saved to this data set. Under this
condition, build does not save the temporary data set to the SCLM hierarchy. Or,
in other words, the build function considers the current version of this output in the
SCLM hierarchy to be up-to-date.

Likewise, the translator can directly store output in an external database not under
SCLM control. For example, the Ada translator controls output stored in the Ada
database, not SCLM. Under such circumstances, the build function requires a
signal from the translator to detect whether or not some of the external outputs
were saved to an external database. SCLM uses NOSVEXT on the FLMTRNSL
macro in the same fashion as the parameter NOSAVRC on the FLMALLOC macro
to detect whether or not external outputs were saved.

Chapter 9. Advanced Topics 251

Authorization Code Usage

Because the build function can control whether a translator output data set was
saved in the SCLM hierarchy or in an external database, dependencies on this
output that were not saved do not require a rebuild. On the FLMLANGL macro, you
define the parameter DEPPRCS to enable this feature. If DEPPRCS=N, then SCLM
rebuilds dependencies on the software component only if all translator outputs are
saved. If DEPPRCS=Y, then SCLM rebuilds dependencies provided there is a good
translator return code.

Authorization Code Usage
Authorization codes restrict promotions and drawdowns on a member-by-member
basis. This section discusses some uses of authorization codes.

First, some facts about authorization codes:

• An authorization code is a character value up to 8 bytes long.

• When you create the project definition, you assign zero or more authorization
codes to each group.

• Each member of every library within an SCLM-controlled project is assigned
one authorization code.

• In order to put a member into a group, the authorization code of that member
must be one of the authorization codes that have been assigned to the group.

• When you promote a member from one group to the next, the member retains
its authorization code. If, as a result, an older version was replaced, the
authorization code assigned to that older version is not kept.

• You cannot promote or migrate members into a group that has no authorization
codes.

In the example below, there is a simple hierarchy with four groups: RELEASE,
TEST, PRIV1 and PRIV2. The group RELEASE has been assigned only one
authorization code: DEV. Group TEST has two authorization codes: DEV and
TESTONL Y. Three authorization codes (DEV, PROTO and TESTONL Y) have been
assigned to PRIV1. Group PRIV2 has DEV and LO as its authorization codes.

DEV, PROTO
TESTONLY

DEV

DEV, TESTONLY

Figure 56. Sample Hierarchy with Authorization Codes

252 ISPF/PDF Software Configuration and Library Manager

DEV, LO

Authorization Code Usage

This information can be coded in the project definition as follows:

RELEASE FLMGROUP
TEST FLMGROUP
PRIVl FLMGROUP
PRIV2 FLMGROUP

KEY=Y,AC=(DEV)
KEY=Y,AC=(DEV,TESTONLY),PROMOTE=RELEASE
KEY=Y,AC=(DEV,TESTONLY,PROTO),PROMOTE=TEST
KEY=Y,AC=(DEV,L0),PROMOTE=TEST

From the example above, we see the following:

• A member in PRIV1 with an authorization code of PROTO cannot be promoted
because group TEST does not have PROTO as an authorization code.

• For the same reason, a member in PRIV1 with an authorization code of
TESTONL Y can be promoted to TEST, but cannot be promoted to RELEASE.

• Similarly, a member in PRIV1 or PRIV2 with an authorization code of DEV can
be promoted all the way up to group RELEASE.

• A member in PRIV2 cannot have an authorization code of TESTONL Y or
PROTO-it must be either DEVor LO.

When you edit a member in a development level, SCLM looks at the authorization
code you specified and tells you the following:

• If that authorization code is not valid for that development group. You have to
enter an authorization code that is assigned to that group. If you ask for help,
SCLM shows you a list of valid authorization codes for that group.

• If use of that code prevents promotion of that member at some point in the
group hierarchy. SCLM gives you the name of the group into which promotion
is not allowed because of the authorization code you specified.

• If use of that authorization code leads to a potential promotion conflict with
another member of the same name. An example of this problem follows.

SCLM allows you to have two members of the same name and type residing in
two different development groups (such as PRIV1 and PRIV2 above) under
certain conditions. Each of those members has an authorization code
assigned to it and those codes, along with the authorization codes assigned to
the groups in the hierarchy, determine how far up the hierarchy each of those
members can be promoted. If the two promotion paths do not intersect, SCLM
lets you put those members in those libraries. However, if there is at least one
group through which both members can be promoted, then changes made to
one member are lost when the other member is promoted. In that case, SCLM
does not let you put the members in those libraries with those authorization
codes.

If a member exists in group PRIV1, SCLM uses authorization codes to
determine whether or not you can edit a member with the same name and type
in group PRIV2:

Chapter 9. Advanced Topics 253

Authorization Code Usage

Auth. Code Auth. Code Allowed? Why?
for member for member
in PRIV1 in PRIV2

DEV DEV No Both members can be
promoted through TEST.

DEV LO Yes Promotion paths do not
intersect.

PROTO TESTONLY No TESTONL Y is not a valid
authorization code for PRIV2.

PROTO LO Yes Promotion paths do not
intersect.

TESTONLY DEV No Both members can be
promoted through TEST.

TESTONLY LO Yes Promotion paths do not
intersect.

254 ISPF/PDF Software Configuration and Library Manager

Concurrent Development and Maintenance

Concurrent Development and Maintenance
We can use the information in the previous section to set up a project in which we
can make modifications to what we have in production (development) while being
able to make quick fixes to production modules (maintenance). We will use a very
simple hierarchy as an example. In reality the hierarchy would have many more
groups and levies.

FIXED

BETTER

Define the groups as follows:

PROD
DEV
FIX

FLMGROUP
FLMGROUP
FLMGROUP

KEY=Y,AC=(FIXED)
KEY=Y,AC=(BETTER),PROMOTE=PROD
KEY=Y,AC=(FIXED),PROMOTE=PROD

FIXED

We have three groups. PROD is our production library, DEV is our development
library and FIX is our maintenance library. In practice, there would be a much
larger sub-hierarchy under both DEV and FIX in order to allow for multiple
developers and to allow for testing of applications before moving them to
production.

DEV, FIX and PROD each have a single authorization code, BETTER, FIXED and
FIXED respectively, and could have more. More importantly, there is no
authorization code that is assigned to both DEV and PROD. It is this aspect of our
project definition that prevents the promotion of any modules from group DEV into
group PROD.

If a programmer is going to make changes to a module for the next release of an
application, that module would be drawn down from PROD into DEV and would be
given an authorization code of BETTER. Changes would be made and tested in
DEV. Meanwhile, a user encounters a problem with that application and another
programmer determines that the fix requires a change to the module that has been
drawn down to DEV.

The module to be fixed can be be drawn down into FIX even though that same
module has been drawn down into DEV. This is possible because the promotion
paths of the two modules do not intersect: the module in DEV cannot be promoted
into PROD because of authorization codes. Therefore, ctlanges made to one
module do not overwrite changes made to the other copy.

When the fix has been made to the module in FIX and the application has been
rebuilt at that group, the user can be told to run the application from group FIX until
the fix has been verified and moved to PROD.

Before you promote the fix, you should incorporate the changes you made for the
fix into the copy of the modules in DEV. This is a manual change made by the
current owner of the modules in DEV with the assistance of the person who made
the changes inFIX.

Chapter 9. Advanced Topics 255

Dynamic Include Tracking

Keep in mind that although authorization codes can be used to restrict promotion
paths, they do not provide security against modifications to SCLM-controlled data
made outside of the SCLM environment. You should use RACF (or the functional
equivalent) for that purpose.

Dynamic Include Tracking

General-Use Programming Interface

Dynamic include tracking is a general-use programming interface, which you can
use for programming purposes.

The SCLM build processor attempts to resolve all include references to source
members before it invokes any translator. However, for some translators, the
include for a source member cannot be resolved until after the translator
invocation. Such includes are referred to as dynamic includes. SCLM has the
ability to track dynamic includes given the following two conditions:

• The translator produces an output data set containing the list of the dynamic
includes.

• The dynamic includes for a member can be altered only by modification of the
member or one of the included members.

To support dynamic includes, SCLM invokes an additional build translator step
(FLMTRNSL macro) following the translator that produces the output data set
containing a list of dynamic includes. This additional translator should parse the
output data set for dynamic includes and store them in memory supplied by the
build processor. You pass the address of this memory to the translator by
specifying the SCLM variable @@FLMINC in the translator options (OPTION
parameter on FLMTRNSL macro). @@FLMINC is a pointer to a set of includes
relating to a given member. The value of @@FLMINC is a string of decimal characters
that you must convert to a fullword binary value before using it as an address. The
following is the record layout used to store the dynamic includes:

COUNT
MEMBER!
TYPEl
MEMBER2
TYPE2

MEMBER#
TYPE#

4 bytes
8 bytes
8 bytes
8 bytes
8 bytes

8 bytes
8 bytes

You must specify the number of dynamic includes in the first four bytes as a
fullword binary integer, followed by the list of dynamic include member and type
names. The amount of memory that the SCLM build processor supplies limits the
number of dynamic includes to 1000. Be sure to remove any duplicate include
references.

~ ______ End of General-Use Programming Interlace ______ ----'

256 ISPF/PDF Software Configuration and Library Manager

Alternate Project Definitions

Alternate Project Definitions
You can generate more than one project definition for a project. Each project
definition defines the relationships between groups in the project database and the
processes that you can perform on the data in the project database. Each project
definition can define a different database structure, specify different control
options, or support different languages for the project. This capability is powerful
but potentially troublesome. Integrity problems can arise through the use of
multiple project definitions.

Limit the use of alternate project definitions to satisfying a temporary need for a
capability that the default (primary) project definition does not provide. You can
use alternate project definitions successfully if they are never used to introduce or
update members controlled under the primary project definition. Thus, you could
use an alternate project definition to export data from the database definition or
reference data in the primary database definition. However, if you use an alternate
project definition to restrict an SCLM verification capability for data that is intended
for the primary project definition, you can introduce integrity problems.

You can have an unlimited number of alternate project definitions for a project.

The example on page 258 shows an alternate project definition with a primary
non-key integration group defined for the project database structure shown in
Figure 57 on page 259.

Chapter 9. Advanced Topics 257

Primary Non-Key Group Testing Techniques

PROJ 1 FLMABEG
*
*
* TYPE SPECIFICATION
*
ARCHDEF FLMTYPE
DESIGN FLMTYPE
LIST FLMTYPE
LOAD FLMTYPE
OBJ FLMTYPE
SOURCE FLMTYPE
*
*
* GROUP SPECIFICATION, DEFINE THE AUTHORIZATION CODES
*
RELEASE
TEST
INT
GHOST
USERl
USER2
USER3
*
*

FLMGROUP AC=(REL),KEY=Y
FLMGROUP AC=(REL),KEY=Y,PROMOTE=RELEASE
FLMGROUP AC=(REL),KEY=Y,PROMOTE=TEST
FLMGROUP AC=(REL),KEY=N,PROMOTE=INT
FLMGROUP AC=(REL),KEY=Y,PROMOTE=GHOST
FLMGROUP AC=(REL),KEY=Y,PROMOTE=GHOST
FLMGROUP AC=(REL),KEY=Y,PROMOTE=GHOST

* PROJECT CONTROLS
*

*
*

FLMCNTRL ACCT=PROJ1.ACCOUNT.FILE,
MAXLINE=75,OPTOVER=YES

* LANGUAGE DEFINITIONS
*

COPY FLM@ARCD -- ARCHITECTURE LANGUAGE
COPY FLM@TEXT -- TEXT LANGUAGE
COPY FLM@SCRP -- SCRIPT 3 LANGUAGE
COpy FLM@ASM -- 370 ASSEMBLER LANGUAGE
COPY FLM@COBL -- COBOL LANGUAGE
COPY FLM@FORT FORTRAN IV LANGUAGE
COPY FLM@PSCL -- PASCAL LANGUAGE
COPY FLM@PLIO -- PL/I OPTIMIZER LANGUAGE
COPY FLM@L370 -- 370 LINKAGE EDITOR

*
FLMAEND

Primary Non-Key Group Testing Techniques

C

You can use primary non-key groups as a technique to allow integration and
testing of a software application in a primary non-key group. In this way, you do
not affect development work going on in the SCLM database. The technique is
useful where integration work can have far-reaching and undesirable effects, for
example, w'hen a global change to an application affects the majority of
developers. The technique is also useful when schedule or other pressures are
such that you must perform high-risk integration of software. SCLM does not allow
you to promote from a primary non-key group.

258 ISPF/PDF Software Configuration and Library Manager

Primary Non-Key Group Testing Techniques

In a normal SCLM scenario, you promote code from individual development
libraries to a common integration group before performing integration testing.
However, you can generate an alternate project definition that deviates from the
default project definition. The alternate project definition defines an intermediate
non-key group for integrating subsets of development groups. Define the non-key
group so that only key groups promote into the non-key group. Developers
authorized to this intermediate group can then promote code to it for unit and
function testing. Testing takes place in this group before promotion to the normal
integration group. Because being at a non-key group does not cause members to
be purged from a key group during a promote, no members are removed from the
default project definition. In this way, you avoid potential integrity problems.

Using this technique, the activities of small groups of integrators do not affect the
normal database until their testing is complete. By switching to the alternate
project definition, developers and integrators can easily test against the primary
non-key configuration. Because the primary non-key level is a non-key group,
code still exists in the normal database in the development libraries. SCLM
promotion from the development libraries, using the default project definition,
would then incorporate the code into the normal integration group. New code can
go through an accurate configuration test before being applied to the normal
database. Code developed using this scenario is potentially more complete and
accurate than code developed in a normal scenario.

The following two figures compare a default database structure with an alternate
database structure. Figure 57 shows an example default database structure for a
project. You can perform all normal development activities within this
organization.

RELEASE KEY

TEST KEY

INT KEY

I I

USER1 KEY USER2 KEY USER3 KEY

Figure 57. Default (primary) Project Database Structure

Figure 58 shows an alternate database structure with a primary non-key
integration group for the project shown in Figure 57.

Chapter 9. Advanced Topics 259

Primary Non-Key Group Testing Techniques

RELEASE KEY

TEST KEY

Primary
Non-Key 1-------------

Group
INT KEY

I
USER1 KEY USER2 KEY USER3 KEY

Figure 58. Alternate Project Database Structure with Primary Non-key Integration Group

In the example, the developers (USER1, USER2, USER3) can use the alternate
project definition to promote code into the primary non-key group. You cannot
promote up from the primary non-key group, but you can draw down from it.

Promotion to a non-key primary group does not cause deletion of the components
from the respective private libraries. Building in the primary non-key group allows
the developers to integrate and test pieces of code still under development. Code
that is then complete can be promoted through the default project definition from
the private libraries into the normal integration group. The promotion to the
normal integration libraries causes the components to be deleted from the
respective private libraries, but not from the primary non-key group. Deletion from
the primary non-key group must be done manually using the SCLM library utility or
through SCLM services.

260 ISPF/PDF Software Configuration and Library Manager

Change Code Verification Routines

Change Code Verification Routines

General-Use Programming Interface

A change code verification routine is a general-use programming interface, which
you can use for programming purposes.

SCLM calls a change code verification routine to verify all change codes that are
entered when you update a member using the SCLM editor, migration utility, or
services. See "Change Code Verification Routine Specification" on page 204.

This section explains how to create a change code verification routine.

Change Code Verification Routine Requirements
To validate member updates for a project against a project-defined set of criteria,
you can supply a user-generated verification routine to SCLM. If you supply this
routine to SCLM, the SCLM editor, migration utility, and SAVE service invoke it.
The following paragraphs describe requirements you must follow when designing
this routine.

SCLM passes a string of seven parameters separated by commas to the
verification routine. Register 1 contains the address of the address of the input
data. The first halfword of the input data is the length of the input string.
Immediately following the halfword length is the input parameter string. The return
code from the routine is the only parameter passed back. The return code is
returned in register 15. SCLM saves members only if it receives a return code of 0
from the verification routine. SCLM informs you if it detects a non-zero return
code.

A project can use any combination of the parameters to determine the validity of
change codes entered. The format and description of parameters SCLM passes to
the verification routine are as follows:

OPTION LIST

GROUP

TYPE

MEMBER

LANGUAGE

USE RID

AUTHCODE

Up to 256-character parameters specified on the FLMCNTRL
macro using the macro parameter VERCCOP. For more
information, see "FLMCNTRL Macro" on page 218. Delimit
this string so that the SCLM parameters that follow can be
identified by the verification routine.

The eight-character name of the group in which the member is
being created or modified (capitalized, left justified, blank
padded).

The eight-character name of the member type being created or
modified (capitalized, left justified, blank padded).

The eight-character name of the member that is being created
or modified (capitalized, left justified, blank padded).

The eight-character name of the language specified for the
member (capitalized, left justified, blank padded).

The eight-character user 10 of the developer performing the
modification (capitalized, left justified, blank padded).

The eight-character authorization code for the member
(capitalized, left justified, blank padded).

Chapter 9. Advanced Topics 261

Change Code Verification Routines

CHANGE CODE The eight-character change code that has been entered
(capitalized, left justified, blank padded).

The verification routine can be complicated or simple. You can use a problem
reportlchange request (PR/CR) tracking system to track changes to the application,
or you can just maintain valid PR/CR values in a data set that you can access for
verification. You should link any routine you produce using linkage editor options
RENT and REUS to make the routines reentrant and the invocation as efficient as
possible. You can write the verification routine in any language. Use the standard
IBM 370 linkage convention.

If the verification routine needs accounting information in addition to the
parameters passed by SCLM, include the SCLM internal data access that the
DBACCT service provides.

Change Code Verification Routine Example
The following example shows a simple program written in Pascal to perform
minimal verification. This routine verifies that the change code has been entered.
A return code of 0 indicates that the change code is valid. A return code of 4
indicates that the change code failed verification.

The example calls the Pascal PARMS function to retrieve the string of input
parameters. The example calls the Pascal RETCODE procedure to pass the
verification routine return code to SCLM in register 15.

The Pascal PARMS function and the RETCODE procedure follow the IBM 370
subroutine linkage convention.

PROGRAM EXITCCV;
(***)
(* Change Code Verification User Exit *)
(***)
(* Inputs:
(* PARMS-
(* option list
(* group
(* , type
(* ,member
(* ,language
(* , useri d
(* ,authcode
(* change code

*)
*)

- Options list (if specified on FLMCNTRL). *)
- Group where the change is being made. *)
- Type containing the member being changed. *)
- Member bei ng changed. *)

Language of member being changed. *)
- User 10 performing the change. *)
- Authorization code of the member. *)
- Change code being used for the change. *)

(***)
(* Outputs: *)
(* return_code Return code in register 15. *)
(* 0 - Change code is val ide *)
(* 4 - Change code is inval id. *)
(***)
(* Process: *)
(* This program verifies that a change code has been entered. *)
(***)

VAR
comma index
i
input_data
return_code

INTEGER;
INTEGER;
STRING(120) ;
INTEGER;

262 ISPF/PDF Software Configuration and Library Manager

Build and Promote User Exit Routines

BEGIN (* program EXITCCV *)

END.

(* Initialize the variables. *)
input_data .= PARMS;
return_code:= 0;

(* Parse until you get the change code. *)
FOR

DO
i := 1 to 6

BEGIN
comma index := INDEX(input_data, 1 ,I);
input_data := SUBSTR(input_data,comma_index+l);

END; (*FOR*)

(* If the change code is blank, signal an error. *)
I F TRIM (i nput_data) 1 1

THEN
BEGIN

return_code := 4;
END; (*IF*)

(* Set the return code. *)
RETCODE(return_code);

(* EXITCCV *)

L-______ End of General-Use Programming Interface ______ ---'

Build and Promote User Exit Routines

General-Use Programming Interface

The build and promote user exit routines are general-use programming interfaces,
which you can use for programming purposes.

Specify build and promote user exits to provide additional functions not supplied
with SCLM. The sections below provide details on creating build and promote user
exit routines. See "Build and Promote User Exit Routine Specification" on
page 204.

User Exit Routine Requirements
If you specify a user option parameter, SCLM passes it to the user exit routine,
followed by a string of eight parameters separated by commas. The address of
this input data is contained at the address contained in register 1. The first
halfword of the input data is the number of characters comprising the input data
string. Immediately following this halfword length is the input parameter string
itself. The user exit routine must pass back a return code value to SCLM in
register 15. A return code of zero is always considered to be successful and
processing continues. Non-zero return code values from user exit routines are
handled in the following ways:

Chapter 9. Advanced Topics 263

Build and Promote User Exit Routines

• Both the build user exit (BLDEXT1) and the promote purge phase user exit
(PRMEXT1) can return any positive integer value and normal processing
continues.

• The processing that occurs after the promote verification phase user exit
(PRMEXT2) has been invoked depends on the promote mode in effect. In
conditional mode, any non-zero return code causes promote processing to
terminate. In unconditional mode, any return code greater than zero, but less
than 20, allows promote processing to continue.

• The processing that occurs after the promote copy phase user exit (PRMEXT3)
has been invoked depends only on the return code value returned. A return
code greater than zero, but less than 20, allows normal promote processing to
continue. A return code greater than or equal to 20 causes promote
processing to terminate regardless of the specified promote mode.

The format and description of the parameters passed from SCLM through all user
exits are:

option list

'xxxxxxxx'

PROJECT

LlBDEF

USERID

GROUP

TYPE

MEMBER

SCOPE

MODE

Up to 256 characters long. Parameter specified in the
FLMCNTRL macro using macro parameter BEXT10P,
PEXT10P, PEXT20P, and PEXT30P. Delimit this string so
that the SCLM parameters that follow can be identified by
the user exit routine.

An eight-character literal value indicating the exit type
(capitalized, left justified, blank padded). Valid types are:

BUILD Build (BLDEXT1)

PVERIFY Promote verification (PRMEXT1)

PCOPY Promote copy (PRMEXT2)

PPURGE Promote purge (PRMEXT3).

The eight-character name of the project (capitalized, left
justified, blank padded).

The eight-character name of the project definition
(capitalized, left justified, blank padded).

The eight-character value of the user's logon 10.

The eight-character name of the group (capitalized, left
justified, blank padded). The group is the "from level" for
the promote and the "build level" for the build.

The eight-character name of the type (capitalized, left
justified, blank padded).

The eight-character name of the member (capitalized, left
justified, blank padded).

The eight-character name of the scope (capitalized, left
justified, blank padded). Valid scopes are as follows:

Build scope Limited, normal, subunit, extended.

Promote scope Normal, subunit, extended.

The thi rteen-character name of the mode (capitalized, left
justified, blank padded). Valid modes are as follows:

264 ISPF/PDF Software Configuration and Library Manager

GROUP

Build mode

Build and Promote User Exit Routines

Forced, conditional, unconditional, and
report only.

Promote mode Conditional, unconditional, and report.

The eight-character name of the group (capitalized, left
justified, blank padded). The group is the "to-group" for
the promote exit routines. This parameter is blank for the
build exit routine.

A user exit routine can be complicated or simple. One purpose of a user exit
routine is to track changes to an application. The SCLM outputs can be copied and
maintained in a data set that you can access for reports. The passed parameters
can be used to maintain a time log of SCLM builds and promotes. You should
link-edit all user exit routines with the options RENT and REUS to make the
routines reentrant and, therefore, the invocation as efficient as possible. You can
write a user exit routine in any language.

If you need accounting information in addition to the input parameters passed by
SCLM, application program access to SCLM internal data is available using the
OBACCT service. See "OBACCT-Retrieve Accounting Records for a Member" on
page 122 for more information.

Build and Promote User Exit Output Data Sets
If you specify control options for the build or promote exit routine, SCLM generates
a sequential data set containing a record for each member changed or verified by
build or promote. Verified members are those eligible for promotion during the
promote verification phase. Changed members for build are those members
produced due to translator calls. Changed members for promote are those
members copied or purged. SCLM puts new data in the data set for the invocation
of each exit. User exit routines can use the output data set when called, but the
data set is rewritten for later exits and is deleted when the SCLM processor ends.

The data definition (00) names for build and promote exit output data sets are
BLOEXT and PROMEXIT respectively. Following are the attributes of the output
data sets; they are the same for all the exit routines:

RECFM
BLOCK SIZE
LRECL

FB
3200
160

The format of the data set is the same for every exit. The data set contains three
8-character fields and one 16-character status field. All fields are separated by a
blank. The following list defines the fields generated for every exit routine:

GROUP

TYPE

MEMBER

STATUS

BUILT

This field specifies the 8-character name of the group beginning in
column 1.

This field specifies the 8-character name of the type beginning in
column 10.

This field specifies the 8-character name of the member beginning in
column 19.

This field gives the 16-character status beginning in column 28.

This field indicates whether or not the specified member was
successfully built. This is written by BLDEXT1.

Chapter 9. Advanced Topics 265

Build and Promote User Exit Routines

PROMOTABLE/NOT PROMOTABLE
These fields indicate whether or not the member is eligible for
promotion (written by PRMEXT1).

COpy SUCCESSFUl/COPY FAILED
These fields indicate whether or not the member was successfully
copied (written by PRMEXT2).

PURGE SUCCESSFUl/PURGE FAILED
These fields indicate whether or not the member was successfully
purged (written by PRMEXT3).

The following is an example of a build user exit output data set:

USERl TYPEl MEMBERl BUILT
USERl TYPE MEMl BUILT
USERl TYPE2 MEMBER5 BUILT

User Exit Routine Example
An example program written in Pascal to perform minimal user exit activity
follows. This routine writes the passed parameters to the data set PROMOUT1,
copies the user exit output data set contents to the PROMOUT1 data set, and
passes a return code of zero (0) to SCLM.

The program calls the Pascal PARMS function to retrieve the string of input
parameters. It calls the Pascal RETCODE procedure to pass the verification
routine return code to SCLM in register 15. The Pascal PARMS function and
RETCODE procedure assume the IBM S/370 subroutine linkage convention.

266 ISPF/PDF Software Configuration and Library Manager

Build and Promote User Exit Routines

PROGRAM EXIT001;
(***)
(* Promote User Exit *)
(***)
(* Inputs: *)
(* PARMS - *)
(* option list Options specified in FLMCNTRL macro. *)
(* exit type PVERIFY, PCOPY, or PPURGE literal. *)
(* ,project Name of the project. *)
(* ,libdef Name of the project definition. *)
(* ,userid User ID performing the promote. *)
(* ,group Group the member is being promoted from. *)
(* ,type Type the member is being promoted from. *)
(* ,member The member being promoted. *)
(* ,scope NORMAL, SUBUNIT, or EXTENDED literal. *)
(* ,mode CONDITIONAL, UNCONDITIONAL, or REPORT. *)
(* ,group Group the member is being promoted to. *)
(* *)
(* PROMEXIT Promote user exit output data set. *)
(* *)
(***)
(* Output: *)
(* PROMOUT1 Output text file contains promote log *)
(* info for thi s promote phase. *)
(* *)
(* return code Return code in register 15. *)
(* 0 - Successful. *)
(***)
(* Process: *)
(* This program saves the contents of the PROMEXIT file. *)
(***)

VAR
out fil e
in fil e
parm_string
line

TEXT;
TEXT;
STRING(100) ;
STRING(52);

Chapter 9. Advanced Topics 267

Project Conversion to SCLM

BEGIN (* program EXIT001 *)

(* Open the file for write *)
REWRITE(out_file,IDDNAME=PROMOUTl 1

);

(* Open the file for read *)
RESET(in_file,IDDNAME=PROMEXIT 1

);

(* Retrieve input parameters and write them to the output file *)
parm string := PARMS;
WRITELN(out_file,IUser exit 1 entered. I);
WRITELN(out file,IParms=I,TRIM(parm string»;
WHILE NOT EOF(in_file) DO -

BEGIN
READLN(in file, line);
WRITELN(out file,line);

END;

(* Close both files and set the program return code *)
CLOSE(out file);
CLOSE(inj~ile) ;
RETCODE(0);

END.

1.--______ End of General-Use Programming Interface ______ ----'

Project Conversion to SCLM
To convert an existing project to an SCLM-controlled project, bring the project
groups under control one at a time beginning with the top of the hierarchy, which is
the production (frozen) group, and work downward. Most projects to be converted
already exist in some kind of logical hierarchy. If all production source code
resides in one logical place and code under development resides elsewhere, then
you have at least a two-level hierarchy. Before migration can begin, you must
place the source code to be converted into partitioned data sets.

The advantages of using the method above are many. First, you can bring a
project under SCLM control in discrete steps, over a period of time. Second, SCLM
can locate integrity problems in the existing hierarchy and fix them systematically
during the conversion process. Third, SCLM performs the conversion using the
same tools that developers use in the normal development process. Thus, you
ensure consistency within the hierarchy, and you become familiar with SCLM.
Finally, from the conversion process you get an indication of the performance that
you can expect of SCLM during the development process.

Prerequisites for Existing Hierarchies
The best time for you to begin the conversion process is when the components to
be controlled are concentrated in a small number of groups-immediately following
a software release, for example. The following actions help you prepare a
hierarchy for the conversion process.

• Verify that all partitioned data sets to be controlled are available online. If the
data is not in partitioned data sets, allocate partitioned data sets by following
"Step 5: Allocate Project Data Sets" on page 193, and copy data from the
existing data sets to the partitioned data sets.

268 ISPF/PDF Software Configuration and Library Manager

Project Conversion to SCLM

• Create the project definition to be used with the converted hierarchy. See
Chapter 7, "Defining the Project," for details.

• Delete all unnecessary data from the libraries being converted. If you cannot
identify the unnecessary data, SCLM can help, as you will see later in this
section.

• If you intend to use non-key groups in the converted hierarchy, ensure that they
do not contain any data prior to conversion.

Create Alternate Project Definitions
You need to create several alternate project definitions to complete the conversion
process. Because the SCLM migration utility can only run against private libraries,
which are in the lowest layer of the hierarchy, you need an alternate project
definition for each layer of the proposed hierarchy. The first alternate project
definition you use defines only the topmost group. That group becomes a
development group. The second project definition defines the topmost group and
those groups that promote into it, and so on. You do not need to define non-key
groups in the alternate project definitions you use for the conversion process
because they should not contain any members.

Create Architecture Definitions for the Project
Although you can perform the conversion process without architecture definitions,
their creation can greatly simplify the conversion process as well as support future
development needs. Define a set of architecture members first for the code in the
topmost group of the hierarchy. These architecture members must reference only
members that are present in the topmost group because only those members will
be visible during the first group conversion. For more information, see "Build
Function" on page 14.

To determine which architecture members you need:

1. Determine whether all translations can use the default translator options in the
language definitions. If they can, you do not need compilation control
architecture members.

2. Determine the contents of every load module to be controlled. The IEHLlST
utility prints the names of all objects in a load module.

3. Produce a linkage edit control architecture member for every load module, and
reference each object (actually compilable source members) with an INCLD
statement. Use the INCL statement in place of INCLD to reference compilation
control architecture members if they are created above.

4. Produce high-level architecture members as needed to control any
nontranslatable data or data that is not included in load modules.

5. Produce a high-level architecture member and reference each linkage edit
control architecture member and high-level architecture member defined
above with an INCL statement.

The high-level architecture member now defines, through its dependencies, the
entire application architecture.

Once you create the architecture members for the topmost group, you may need to
add modifications in the lower groups of the hierarchy. Members that were added
during the development process, which were not moved to the topmost group, may
require additional architecture members. You must introduce architecture
modifications in the group requiring the change. This action allows the

Chapter 9. Advanced Topics 269

Project Conversion to SCLM

architecture for the hierarchy to match the members controlled in the hierarchy.
See Chapter 2, "Architecture Definition," for a description of the process and
syntax for defining architecture members.

Register Existing PDF Members with SCLM
Specifically, editable members and non-editable members are processed in
separate and unique ways by SCLM.

Editable members, such as source members, are not created by the SCLM build
function. Editable members must be registered with SCLM through the migration
utility. Both the language associated with the member and a change code are
required as input to the migration utility. TEXT can be used as the language of
members that do not need to be compiled, assembled, or processed, such as
panels and messages. Call the migration utility for each library containing editable
members.

The SCLM build function creates non-editable members. Object code, listings, and
load modules are examples of non-editable members. The SCLM build function
must be called to create all of the non-editable members to be tracked within the
hierarchy. If all of the customization related to language translators has been
completed and tested, run the build processor in the unconditional mode using the
topmost architecture member for your application. If errors are anticipated and the
application is large, use architecture members with smaller scopes. For example,
use an LEC architecture member rather than an HL. Using the conditional mode of
the build processor causes processing to stop when a member containing an error
is encountered.

Initialize Non-key Groups
Initialize non-key groups using the promote function once the group promoting into
the non-key group has been built successfully. Initially, the non-key group cannot
contain any members. Use the conditional mode of the promote function to
initialize non-key groups. Run the promote function using the topmost architecture
definition to initialize non-key groups.

Introducing Fixes to the Converted Hierarchy
During the conversion process, SCLM might discover integrity errors existing in
the current development hierarchy. If it encounters these errors in the topmost
group of the hierarchy, the errors have an effect on the rest of the conversion
process. You can encounter two kinds of errors:

• Dependency errors can occur for editable members. Errors can be caused
when an included member or macro cannot be found within the hierarchy. If
you want the included member tracked in the hierarchy, you must copy the
correct version of the included member to the group being converted. If you do
not want the missing member tracked in the hierarchy, define it to SCLM using
the FLMSYSLB macro and the FLMCPYLB macro in the language definition of
the member.

• Compile errors, or any similar translator errors in any group, can be located
during the build process. Errors found at the upper groups of the hierarchy
may have been fixed by versions existing in lower groups. If this is the case,
once the correct version is converted, it is eligible for promotion to the group
requi ring the fix. If a correct version is not present in the hierarchy, the
incorrect version may be fixed in place or introduced at the bottom of the
hierarchy.

270 ISPF/PDF Software Configuration and Library Manager

Security

Backup and Recovery of Project Database

SCLM provides a controlled environment to maintain and track all software
components. However, SCLM is not a security system. You must rely on RACF or
an equivalent security system to provide complete database security. Consider
limiting authority to data sets in the hierarchy above the development level as
follows:

• All developers require READ authority to these data sets.

• The build coordinator responsible for promotes requires UPDATE authority.

SCLM works cooperatively with the security system to provide total control of all
software components.

Backup and Recovery of Project Database
SCLM does not have built-in backup and recovery for a project database. Use
standard IBM utilities for backup or recovery. You need to use a manual process
to coordinate this activity and to ensure data integrity.

Use what is convenient for your project to create backup copies of the
SCLM-controlled data. You could use IEBCOPY utilities to write to tape or HSM to
write to a backup disk. The important point is that the entire database is
synchronized. Therefore, you must save and restore it as a unit. For example, the
source, object, load, and listing data sets are a matched set along with their
associated internal data in the VSAM data sets. Therefore, you must back up and
restore all of these data sets in a coordinated fashion. The VSAM data set contains
the internal data for the entire project database. Restoring it implies that all
project data sets are being restored.

The recommended procedure for backing up the project database is to run a
background job when no one is working with the database. You should determine
how often to run this job. Remember that the topmost group of the hierarchy (the
production group) usually contains most of the software and is usually frozen.
Therefore, repeated backups of that group accomplish nothing. You should always
back up the topmost level immediately after an integration of production code
takes place, but do not back it up when the level is frozen. The lower groups in the
hierarchy are subject to change much more often, and the private library code
usually changes daily. You can best determine which groups need to be backed up
and when. Again, remember that you must back up the entire group as a unit,
including the internal data in the VSAM data set.

Be careful when recovering a project database. When you restore a group, it
returns to the version that was in effect when you backed it up. This change can
affect code below the restored version. Also, the VSAM data set, if restored
completely, reflects the status of the entire database when that data set was saved.

Synchronizing Accounting Data Sets
The SCLM FLMCNTRL macro allows you to select dual accounting data sets to be
maintained. In the event that a non-recoverable problem occurs with one of the
accounting data sets, use the following JCL to synchronize the two accounting data
sets. You can use the same JCL to back up or restore an internal data set.

Chapter 9. Advanced Topics 271

Dependency Processing Implementation

//jobname JOB (wkpkg,dpt,bin),'name'
//***
//* *
//* JCL TO INITIALIZE/SYNCHRONIZE BACKUP ACCOUNTING FILE *
//* *
//***
//STEPl EXEC PGM=IDCAMS
//INPUT DD DISP=OLD,DSN='PROJl.ACCOUNT.FILE '
//OUTPUT DD DISP=OLD,DSN='PROJl.ACCOUNT2.FILE '
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

REPRO INFILE(INPUT) OUTFILE(OUTPUT)
/*
//

You can also use this JCL to initialize a backup data set for a project that is
currently running under SCLM. If problems occur with the backup data set, SCLM
issues warning messages. You must restore the backup data set when problems
occur.

Dependency Processing Implementation
SCLM supports three kinds of dependencies, which are derived from the parsing of
a member. They are:

• Include
• Compool
• Compilation unit.

This information is stored as SCLM internal data, and it enables SCLM to process
members in the correct order.

The following describes the processing involved for each dependency:

• Include

Include dependencies exist where members are required for the proper
construction of the including member. In other words, a member and its
included members are built (compiled) together. A member that cannot be
included is defined as a campi/able member. Both compilable members and
included members can have include dependencies.

Updates to an included member flag both the included member and its
including member for rebuild. Likewise, if an included member is flagged for
rebuild, then its including member is also flagged for rebuild. This ripple effect
eventually flags the compilable member (the topmost member in this chain) for
rebuild.

• Compool

Compool dependencies for an up-to-date member are translator-produced
outputs from other software components that require processing before the
member is processed. SCLM allows com pool dependency processing only if
the field COM POOL = Y is set on the FLMLANGL macro for the language
definition of the member containing these dependencies. SCLM originally
implemented this kind of dependency to handle the processing order for
JOVIAL programs. However, this dependency can be used for other languages
also.

272 ISPF/PDF Software Configuration and Library Manager

Dependency Processing Implementation

SCLM supplies only the member names of the com pools in the dependency list
for a member. Therefore, a developer must specify the type name of the
compool. Specifying the compool type depends on whether you use an
architecture member to define the software component for the member
containing the compool dependencies. If you use an architecture member,
specify the compool type with the CREF keyword. If you do not use an
architecture member, SCLM derives the software component from the
language definition of the depending member. In the latter case the compool
type is specified with the DFL TCRF parameter on the FLMLANGL macro.

Note: Because you can specify only one type, all compool dependencies must
reside in the same type.

Once the compool has been identified, SCLM determines from its internal data
the (last) software component used to build the output. This fact implies that
the software component must have been built the first time in order for SCLM
to contain internal data information on the compool. This software component
is then processed only if it falls within the architecture definition selected to be
processed.

• Compilation Unit

Compilation units are subunits residing in a member. Compilation units can
have dependencies on one another. However, SCLM treats these
dependencies as dependencies between the members containing the
compilation units. SCLM originally implemented this kind of dependency to
handle the processing order for Ada programs.

Two kinds of dependencies can exist between two compilation units: upward
and downward dependencies. An upward dependency identifies those
members that SCLM must process before processing of the member containing
the dependencies. A downward dependency identifies those members that
SCLM must process after processing the member containing the
dependencies.

SCLM can identify the software component containing the dependent
compilation unit due to the information it stores as internal data. For example,
SCLM can determine that member X contains compilation unit X1 and that
compilation unit X1 has a dependency (upward or downward) on compilation
unit Y1, which resides in member Y. Thus SCLM concludes that member X has
a dependency on member Y. Once it finds the dependent member, SCLM
determines whether an architecture member is being specified to process the
member. First, it checks whether any of the architecture members within the
architecture definition reference the member. If so, it identifies the
architecture member as the software component to process. Otherwise,
SCLM determines if the associated intermediate form for the dependent
compilation unit has been built and, if so, retrieves the name of the software
component used to build it (similar to compool dependencies). However, if the
intermediate form was never built, SCLM creates the software component from
the language definition of the dependent member.

Chapter 9. Advanced Topics 273

Development and Performance

Development and Performance
SCLM services provide the means to extend an existing development environment
with SCLM functions. Development and performance considerations for using the
SCLM services are discussed in this section. The functions provided by the
services and their interfaces are described in Chapter 5, "SCLM Services."

Development Scenario
SCLM users who perform their development activities with ISPF are provided with
an SCLM development environment. SCLM has an ISPF dialog interface that
provides access to all of the SCLM services. Especially convenient is the
integration of the LOCK and SAVE services into the ISPF/SCLM editor. Not all
developers requiring configuration management of their host software are
ISPF/SCLM users. For example, someone might use a PC connected to a host.
Using a programmable workstation (PWS), a developer can construct host software
but use editors, analysis tools, text formatters, and other tools in a non-ISPF
environment.

The following development scenario lists the basic steps that you can take to use
SCLM services and maximize productivity using a programmable workstation.

Step 1: Lock a member
Step 2: Update or create a member
Step 3: Start the SAVE service
Step 4: Build a member
Step 5: Unlock a member
Step 6: Promote a member.

Step 1: Lock a Member: Before you make any modifications to a member, you
need to lock it. For information on why locking a member is necessary, see "Edit
Function" on page 10. To lock a member, enter the following command:

FLMCMD LOCK,PROJl"USERl,SOURCE,PROGRAMl"USERKEY

If the LOCK service completes successfully, you now have member PROGRAM1
locked in the USER1 private library, and you can proceed with the modifications.
The access key is USERKEY.

If the LOCK service does not complete successfully, it returns a non-zero return
code and sets a message in $msg_array.

Step 2: Update or Create a Member: Now that the member is locked, download
member PROGRAM1 if it exists in the hierarchy. Once you download it, you can
use any tools to update it.

Step 3: Start the SAVE Service: When modifications are complete, upload member
PROGRAM1 back to the host and into the USER1 private library. At this point, call
the SAVE service to parse the member and store the member's statistical,
dependency, and historical information. If PROGRAM1 is a FORTRAN program, the
command invocation is as follows:

FLMCMD SAVE,PROJl"USERl,SOURCE,PROGRAM1"USERKEY"FORTRAN

Note that you must specify the access key to call the SAVE service.

274 ISPF/PDF Software Configuration and Library Manager

Development and Performance

Step 4: Build (or compile) a Member: After modifying a member, you can compile
it. The compilation process is simplified under SCLM by the BUILD service. To
compile PROGRAM1, enter the following command:

FLMCMD BUILD,PROJ1"USER1,SOURCE,PROGRAMl

Note that the access key is not an input parameter to the BUILD service. If
compilation errors occur and the build fails, return to "Step 2: Update or Create a
Member" on page 274 to correct the errors.

Step 5: Unlock a Member: If the build was successful in Step 4, you can promote
PROGRAM1 so that other developers can access it and possibly make further
enhancements. Before you can promote a member, the member must have a
blank access key. To remove an access key, call the UNLOCK service as follows:

FLMCMD UNLOCK,PROJ1"USER1,SOURCE,PROGRAM1,USERKEY

Step 6: Promote a Member: After removing the access key, promote member
PROGRAM1 using the following command:

FLMCMD PROMOTE,PROJ1"USER1,SOURCE,PROGRAMl

SCLM relieves much of the burden from programmers in the development process.
But the burden could be even further reduced by providing an automated interface
to the previously described steps, therefore eliminating the need to enter long
commands. Candidates for automation include the following:

• Automated LOCK service invocation and member download

• Automated upload of the member to the host and SAVE service invocation

• Automated BUILD service invocation

• Automated UNLOCK and PROMOTE service invocation.

Projects not using the ISPF dialog interface for member updates should always use
a unique, nonblank access key for each developer. Use the developer-unique
access key to guarantee that the developer who locked the member is the only
person replacing the member when modifications are complete.

In the following situation, access keys are not used:

1. Developer 1 and developer 2 are both working on members in the same private
library.

2. Developer 1 locks member PROGRAMX at a development group using a blank
access key, copies the member to his PWS, and begins modifying the member.

3. Shortly afterward, developer 2 locks member PROGRAMX at the same
development group also using a blank access key, copies the member to his
PWS, and begins making a different set of modifications.

In this example, both users assume that they have exclusive use of member
PROGRAMX. Unfortunately, the first set of modifications returned to the host is
lost when the second set of modifications is returned to the host.

Chapter 9. Advanced Topics 275

Development and Performance

Data Set Protection
As part of the processing for several of its services, SCLM updates partitioned data
sets. For instance, the BUILD service copies compiler-produced object modules
into an SCLM-controlled object partitioned data set. To eliminate the risk of
corrupting a partitioned data set, SCLM enqueues data sets before performing any
updates.

The enqueue SCLM uses is identical to the one ISPF uses. If you do not use the
ISPF dialog to invoke SCLM services, use an enqueue that matches ISPF and
SCLM befor.e updating a partitioned data set.

The following is a description of the ISPF and SCLM ENQ macro parameters:

qname
control
scope
rname length
rname

SPFEDIT
E (exclusive)
SYSTEMS
44
44 character buffer in the format project.group. type

For example, to replace a member in the USER1 private library with SOURCE type
for project SAMPPROJ1, the ENQ macro may look as follows:

ENQ(QNAME,RNAME,E,44,SYSTEMS)

QNAME DC CL8 1 SPFEDIT I

RNAME DC CL44 I SAMPPROJl.USERl.SOURCE '

For more information on the ENQ and DEQ macros, refer to MVS/XA Supervisor
Services and Macro Instructions, GC28-1154.

Performance Considerations
The START service loads the SCLM modules that can be processed into memory
and initializes the SCLM service environment. The INIT service loads a project's
project definition load module into memory and initializes (or opens) the project
databases. Both of these functions take time. Therefore, to optimize the SCLM
services execution time, minimize the number of START and INIT service calls.

You can reduce the number of START and INIT service calls by using the FILE
format of FLMCMD. As an SCLM service program, the FLMCMD command
processor must call the START service to begin a service session. It must also call
the INIT service for every unique project/prj_l i b_def combination it encounters.

Therefore, ten separate invocations of the FLMCMD command processor result in
nine more calls to the START service and nine more calls to the INIT service than
one invocation of the FLMCMD command processor that has all ten commands in a
data set.

In addition, opening a command file takes time. In processing a single command,
the general format of FLMCMD processes faster than the FILE format of FLMCMD.

276 ISPF/PDF Software Configuration and Library Manager

Workstation Platform for OS/2

Workstation Platform for OS/2
The Workstation Platform for OS/2 provides a programmable workstation (PWS)
interface to the SCLM host library of ISPF/PDF. A PWS can be a Personal System/2
(PS/2) or an equivalent workstation.

The Workstation Platform consists of three main functional areas:

Facilities

Library List

Tools

Library
Services

Functions provided

The library list provides an interactive interface on the PWS to
SCLM on the host. It displays lists of available libraries and
library members, and allows for the invocation of tools to work
on members. The available tools may differ depending on the
library types selected.

A central site coordinator can create a standard set of tools and
distribute it to users of the Workstation Platform for OS/2. In
addition, you can easily add your own tools to the system and
site-supplied set.

Tools are programs that operate on SCLM members. They can
be called by using the library list, rather than by other tools.
Tools may call Workstation Platform for OS/2 services and are
invoked as OS/2 commands.

Library services perform SCLM library functions.

For complete information on the library lists and the library services provided,
refer to ISPF/PDF User's Guide and Reference for the Workstation Platform for
OS/2 User's Guide.

By using the facilities of the Workstation Platform for OS/2, an organization can
take advantage of both the library control facilities of SCLM and the tools available
for OS/2. In addition, tools can be written to integrate directly with SCLM from the
PWS.

You and integrated tools can use the Workstation Platform for OS/2 to access the
contents of the host SCLM development level as if the PWS and the host were the
same system. For example, references to controlled library members are always
made using the host entry level library name, even though the member may
actually exist (as a copy) at the PWS.

Since Workstation Platform for OS/2 uses HLLAPI as its PWS-host communication
vehicle, tools that requi re upload and download services can use the SEND and
RECEIVE services provided with the OS/2 Communications Manager.

A system view of the Workstation Platform for OS/2 is shown in Figure 59.

Chapter 9. Advanced Topics 277

The SSI Field in Load Module Directories

MVS Data sets

----1---------------------------
1
\ Data and

Files

HLLAPI
Connnunications

..

Library A
Services

p

I ..

Files

I OS/2 File System I

Non-SCLM Files
via SEND/RECEIVE

Data •
r----+

Data - -+-

f----+

Files

User
Tools

i
Library
List

Figure 59. Workstation Platform for OS/2 System Overview

The SSI Field in Load Module Directories
SCLM uses the SSI field to signify that the last update of a load module was made
through SCLM. The SSI field data that SCLM generates consists of the following:
the most significant bit is defined as a flag; the next most significant 11 bits specify
hour and minute in binary form; and the least significant 20 bits specify Julian date
in packed decimal form. SCLM sets the flag bit and writes these items into the SSI
field during build processing when it generates a load module.

SS! field 1--1
o 1 ---- 5 6 ------ 11 12 ------------------- 31

flag hour
bit binary

278 ISPF/PDF Software Configuration and Library Manager

minute
binary

Julian date
packed decimal

SCLM Parser Restrictions

Chapter 10. Language Restrictions

There are restrictions to the support SCLM provides for languages. This chapter
describes what these restrictions are.

SCLM Parser Restrictions
The SCLM parsers gather statistics on various language constructs. See "PARSE"
on page 11 for more information. This section describes the constructs that the
SCLM parser cannot identify. Because a user-defined parser can be used to
replace an SCLM parser, the restrictions of the SCLM-supplied parsers can be
overcome, if necessary.

Unsupported constructs do not necessarily prevent members from being used in
SCLM. Invalid constructs, however, prevent statistics from being gathered
accurately and can result in SCLM finding too many or too few include, compool, or
compilation unit references. The existence of extra or missing includes, com pools,
and compilation units can result in latent errors occurring in the build and promote
processors.

SCLM does not support three general types of language constructs due to internal
differences. Each of these differences involves include and com pool references.
The constructs discussed in this chapter are:

• Cross-section references
• Non-expl icit references
• Separation of references.

Cross-Section References
You can apply include references to member names only. This restriction applies
to user-defined parsers as well as to SCLM-supplied parsers. SCLM always
assumes that the type name of the include or compool reference is the same as the
member in which the reference was found. Therefore, SCLM does not support
include and compool references for members outside the type in which a member
is located. For example, SCLM does not support the following PUI source code
statement:

%INCLUOE PROJl.LIBl.SECTl(MEMl)

SCLM does not support similar constructs in other languages.

Non-explicit References
SCLM-supplied parsers do not support include and compool references that are not
explicitly stated on a single line of code.

The following list shows three kinds of non-explicit reference constructs.

• Conditional References

© Copyright IBM Corp. 1989, 1990

Conditional references are include or compool reference constructs that
depend on information outside the scope of a single line. For the assembler
language parser, for instance, all macros are considered include references
whether or not they are internally defined. All include references must exist as

Chapter 10. Language Restrictions 279

Ada Language Restrictions

SCLM members, or they must exist in FLMSYSLB for build and promote to
verify them.

• Dynamic References

Dynamic references are references that involve a variable. SCLM does not
support macro names passed as parameters in assembler language for
include references. The following source statements for SCRIPT/VS depict a
simple case of a dynamic include reference that SCLM does not support:

.set count = 1

.im member&count.

• Variable Delimiters

The delimiters you use to identify information must have fixed values. For
example, SCLM does not support the following format of the .DM script
keyword:

.OM name /.im segl/.im seg2/.im seg3/

where / can be any character. This character delimits statements in the
macro. SCLM does not find imbed statements entered in the .DM macro when
the macro appears in this way.

SCLM also does not support the following format of the .DM macro:

.OM name ON
· im segl
• im seg2
· im seg3
.OM OFF

Separation of References
You must separate include and compool reference verbs of a language from
referenced member names with blanks only, and they must appear on the same
line.

SCLM does not support the following Pascal source statement because a comment
separates the referenced member name.

%INCLUDE C* comment *) SEGNAME;

The include reference verb and the reference name must reside on the same line.
SCLM does not support the following Pascal statement:

%INCLUDE
INCLSEG ;

Ada Language Restrictions
There are a few Ada constructs that SCLM does not fully support. To control code
containing these constructs, you must take special actions. This part of the chapter
describes these unsupported constructs and how to use SCLM to control code
containing them.

280 ISPF/PDF Software Configuration and Library Manager

Ada Language Restrictions

Generic/iNLINE Specification Ordering
SCLM currently requires the IS SEPARATE declaration of Generic and
PRAGMA(INLlNE) subunits to be declared before the IS SEPARATE declarations of
subunits that call them. An IS SEPARATE declaration is the specification in an Ada
compilation unit that a subunit is to be compiled separately. See the explanations
of upward and downward dependencies on page 64.

This restriction lets SCLM properly order the compilation of Ada subunits. If you
do not follow this restriction, compilations of generic subunits may fail, and
compilations of PRAGMA(INLlNE) statements may be ignored by the compiler.

Generic/iNLINE Recursive Dependencies
The current version of SCLM does not allow a body of a compilation unit containing
PRAGMA(INLlNE) or Generic constructs to have dependencies on compilation units
which in turn have direct or indirect dependencies on the Generic or
PRAGMA(INLlNE) compilation unit. An example of such a recursive dependency is
a generic package with a body that has a WITH reference on another package,
which, in turn, has a WITH reference to the generic package. This example is
shown in Figure 60.

WITH
p

WITH
PACKAGE

SPEC

GENERIC
PACKAGE

SPEC

Ada Li
depen

"

GENERIC
PACKAGE

BODY

nk time
dency

Figure 60. Example of a Disallowed Recursive Generic/lnline Dependency

SCLM can support code that contains recursive genericllNLlNE references in two
different ways.

First, you can place all compilation units involved in a recursive genericllNLlNE
reference in a single source member. SCLM only tracks dependencies between
source members; SCLM does not use intra-member dependencies and, therefore,
they are not a problem to handle.

Alternately, you can place all compilation units involved in a recursive
genericllNLlNE reference under the control of a single generic architecture
member. SCLM does not track intra-architecture member dependencies, so it does
not process these recursive references.

Chapter 10. Language Restrictions 281

Ada Sublibrary Restrictions

Ada Sublibrary Restrictions
SCLM can verify the integrity of a standard SCLM database, but is unable to extend
this verification to an SCLM-controlled Ada sublibrary. A sublibrary is a data set
that contains Ada intermediate form in a form that only the Ada compiler can use.
When you update a member in an SCLM database, SCLM can discover this update
whether or not you used SCLM to make the change. SCLM does this by verifying
certain attributes of the member's directory against the accounting information it
maintains for the member. SCLM is unable to make this check for the intermediate
form of Ada compilation units.

If you compile Ada source into an Ada sublibrary outside the control of SCLM, then
a subsequent build of the code proceeds as if the compile was never performed.
Because the compiler updates Ada intermediate form, and Ada intermediate form
can be used to create an object module using the Ada binder, it is possible that
SCLM will create an object module that does not match the source code SCLM is
maintaining in the database.

One of SCLM's primary functions is to ensure that machine-generated code
matches its source code. If you make updates to an Ada sublibrary outside SCLM
control, however, SCLM does not assure the match. Therefore, if you make
updates to an Ada sublibrary without using SCLM, perform them manually and
exercise caution.

The following subsections describe SCLM consequences for each kind of Ada
sublibrary.

Ada Compilations
You should never make Ada compilations to an Ada sublibrary that is under SCLM
control unless you are using SCLM. Compiling into an SCLM-controlled Ada
sublibrary without using SCLM causes changes to the database that SCLM cannot
discover. Thus, unpredictable results can occur when you perform later Ada
compilations using SCLM.

Ada Sublibrary Content Updates
You can copy Ada intermediate form to and purge it from an Ada sublibrary.
However, you should not copy to and purge from an SCLM-controlled Ada
sublibrary without using SCLM. SCLM cannot discover this kind of change and,
therefore, cannot perform the necessary recompilations this change requires. If
you need to purge a particular compilation unit, use the SCLM sublibrary utility.

Ada Sublibrary Updates
You can recreate, delete, and rename Ada sublibraries. You should avoid making
changes to Ada sublibraries unless absolutely necessary. When you install a new
version of a compiler, for example, you may need to delete and recreate all Ada
sublibraries for an SCLM project. If you replace an Ada sublibrary for which SCLM
has accounting information, you must take special actions.

Whenever you recreate, delete, or rename an Ada sublibrary, you must delete all
SCLM accounting information for that sublibrary using the SCLM sublibrary utility.
See "Ada Sublibrary Management Utility" on page 68 for details about the SCLM
sublibrary utility. The new name of a renamed Ada sublibrary must never match
an SCLM-controlled sublibrary.

282 ISPF/PDF Software Configuration and Library Manager

Multiple SINe Statements

Multiple SINe Statements
Ada compiler performance can often be enhanced by specifying multiple SINC
statements within the same architecture definition. By doing this, all of the source
includes (INCL statements) are processed by one invocation of the compiler.

If, however, one or more of the source includes is a generic Ada unit, SCLM
considers all of the source includes to be generic. Therefore, if a package
references one of the source includes using a WITH language structure, it is
referencing a generic Ada unit. If any part of the pseudo-generic package changes,
the original package is flagged as out-of-date.

Chapter 10. Language Restrictions 283

284 ISPF/PDF Software Configuration and Library Manager

Language Definitions

Chapter 11. IBM Ada Setup

Unlike other compilers, Ada compilers maintain their own data sets called
sublibraries. To use the Ada language with SCLM, you must create a set of Ada
sublibraries. This chapter describes the language definitions you must use and the
setup operations you must perform to use the IBM Ada compiler.

The first part of this chapter describes language definitions for the IBM Ada
compiler. The second part of the chapter describes the Ada sublibrary setup
procedures that you must follow before you can use the IBM Ada compiler with
SCLM.

Language Definitions

FLM@ADA

FLM@ADAB

Ada compilations do not produce object modules. Ada compilations update an Ada
sublibrary by storing Ada intermediate form in it. A second process, called Ada
binding, produces object modules from Ada intermediate form. Thus, to produce
object modules, two sets of invocations and, therefore, two language definitions
are required. These language definitions are FLM@ADA and FLM@ADAB.

FLM@ADA controls Ada compiles. Ada compiles produce no object modules, but
instead produce Ada intermediate form. Ada intermediate form is stored in data
sets called Ada sublibraries. SCLM produces accounting records to track Ada
intermediate form. These accounting records are called intermediate accounting
records. SCLM creates an intermediate accounting record for each Ada
compilation unit that compiles successfully. You must compile Ada source code in
a certain order because SCLM uses intermediate accounting records to determine
when it must recompile Ada source code. In addition, SCLM uses information in
Ada source segment accounting records to determine appropriate compilation
orders. You can browse this dependency information using the SCLM library
utility. You can browse the information in an intermediate accounting record using
the SCLM Ada sublibrary management utility.

To produce object modules, you must use an Adabind language. This language
produces object modules from Ada intermediate form stored in an Ada sublibrary.

Because the source code for many object modules can exist in an Ada sublibrary,
you must specify the name of the compilation unit to be used to create an object
module. Specify this compilation unit name by creating a source member that
contains only this name and assigns the segment the language of ADABIND
(FLM@ADAB). This source member can contain comments, blank lines, or a
compilation unit name, in uppercase or lowercase. By default, building an Adabind
source segment produces an object module with the same segment name as the
Adabind segment.

© Copyright IBM Corp. 1989, 1990 Chapter 11. IBM Ada Setup 285

IBM Ada Compiler Restrictions

Ada Sublibrary Setup
This section describes the setup operations you must perform before building and
promoting source code using the IBM Ada compiler. The IBM Ada compiler
requires special handling because not all of the output the compiler creates
resides in partitioned data sets.

To use a language that invokes the IBM Ada compiler, you must create an Ada
sublibrary for every data set that holds Ada source code. A sublibrary must have
the same data set name as its source data set with the project CU qualifier
appended to the end of it. A CU qualifier is the name of the compilation unit (CU)
qualifier specified in the language definition. For example, for the SCLM data set
PROJ 1. DEV1.ADA, create a sublibrary by the name of PROJ1. DEV1.ADA. cu_qua 1 i fi er.

To create the sublibraries for an SCLM project, perform the following steps:

1. Log on with 4000K of region. Use the Ada compiler to create sublibraries.

2. Make sure that a data set by the name of userid.ADA.LlBRARY does not exist.
If the data set does exist, alter it in the next step and save it under a different
name.

3. Create a sublibrary by issuing the following TSO command:

EX IADA.V21.CLISTS(A370) I IDUMMY NOC INIT(j=IIPROJ1.DEV1.ADA(cu.qualifier) II) I

where ADA. V21.CLISTS is the name of the data set where the A370 CLiST is
installed, and PROJ1.DEV1.ADA is the name of an Ada source data set. You
should perform this step for every data set to contain Ada source code to be
compiled.

IBM Ada Compiler Restrictions
SCLM does not provide automatic support for all features of the IBM Ada compiler.
However, you can overcome these limitations with a manual procedure using
SCLM functions. This part of the chapter contains procedures that you can use to
provide support for the following IBM Ada compiler capabilities:

• Debugger
• Multiple Load Modules
• Optimizer.

There are other ways to solve these problems depending on how you use the
capabilities on a project.

286 ISPF/PDF Software Configuration and Library Manager

Debugger

Multiple Load Module Support

The SOURCE command for the debugger supplied with the IBM Ada compiler is not
completely compatible with SCLM. The IBM Ada compiler records the source file
name of each member compiled with the debug option in the sublibrary. The Ada
debugger uses the source file name to list source statements when the "source"
command is executed. When an Ada source member is promoted, the source file
name of that member changes but the source file name recorded by the IBM Ada
compiler does not. Thus the debugger command SOURCE does not work for
source members that have been promoted since they were built. To avoid this
problem, use the following procedure:

1. Customize language macro FLM@ADAD for use with all debug compiles. The
sample language macro FLM@ADAD contains a translator that initializes the
source file name stored by the Ada compiler.

2. After each promotion involving Ada source, force a recompilation of the
promoted source members. You can accomplish this with the forced mode of
the build function. By rebuilding the source member at the higher level, the
new source file is established in the sublibrary.

Note: You only need to perform the rebuild if the promoted code is to be run
through the debugger.

Multiple Load Module Support
The IBM Ada compiler has the option of producing multiple object and load
modules for one Ada main member. By using the multiple load system
sublibrary, the compiler looks for a user-defined Multiple Load Module
Definition Data Set (MLMDDS). If this data set exists, then the compiler
produces all of the output defined within. If you do not specify this data set,
then the compiler automatically produces two object modules: one to run
above the 16 megabyte line and one to run below the 16 megabyte line. From
these two object modules, you must generate load modules. Note that if the
regular system sublibrary is specified instead, only one object file is
generated. You must perform compilations and binds using the same system
sublibrary.

Use of Multiple Load Modules
SCLM has the capability to support two object and load modules for each Ada
main member under the multiple load system sublibrary. That is, if you use
the multiple load system sublibrary to compile and bind an Ada main member,
SCLM creates two object and load modules and inserts them into the SCLM
hierarchy. If you specify the regular system sublibrary, SCLM creates one
object file for the bind, and a separate call to the LE370 translator becomes
necessary to create a load module. SCLM does not support the IBM Ada
compiler MLM Definition Data Set option.

Chapter 11. IBM Ada Setup 287

Multiple Load Module Support

The following is a step-by-step approach to using multiple load modules.

• Use three separate language definitions:

An Ada language definition where you specify
xxxxx.xxxxx.xxxxx.MLSUBLlB. This compiles the Ada members in
preparation for the multiple load bind step. (See FLM@ADAM in the
macro library.)

An Ada bind language definition where you specify
xxxxx.xxxxx.xxxxx.MLSUBLlB. (See FLM@ADAO in the macro library.)
This language definition calls an additional translator after the
compiler translator that retrieves from the ADAOBJ ddname the two
generated object files and separates them into two temporary data
sets. Each data set has a unique ddname associated with it. You
should then copy these object files to the hierarchy. This results in two
separate object modules. The translator then calls load module
FLMTSPLT.

A link-edit language definition where you use the object files you
created in the previous step as input. (See FLM@ADAL in the macro
library.) To create load modules from the generated object files, the
following is required:

You must create two separate generic architecture members: one
for each link. The example below shows you how the lists should
appear:

* GENERIC LEC TO BUILD AN MLM OBJECT MODULE
CMD ALIAS XXXXXXXX
SINC YYYYYYYY AAAAAAAA * STUB USED TO DEFINE THE LANGUAGE
SINC ZZZZZZZZ BBBBBBBB * INPUT TO LE370
OUTl XXXXXXXX CCCCCCCC * BELOW THE LINE LOAD MODULE
OUT2 XXXXXXXX DDDDDDDD * LINK MAP

where:

XXXXXXXX is the member name for the output generated by the
build processor.

YYYYYYYY is a one line stub member with language from
FLM@ADAL that must contain the characters SETSSI 00000000
(starting in column 2).

ZZZZZZZZ is the name of the object module that is to be input to
the linkage editor.

AAAAAAAA is the type name for the associated member name.

BBBBBBBB is the type name for the associated member name.

CCCCCCCC is the type name for the associated member name.

DDDDDDDD is the type name for the associated member name.

You should build the generic architecture members to generate the
load modules. You can use a high-level architecture member to
control these architecture members (along with the compile and
bind operations for the main unit). The following example shows a
high-level architecture member:

288 ISPF/PDF Software Configuration and Library Manager

Optimizer Support

* HIGH LEVEL LIST FOR GENERATION OF MULTIPLE LOAD MODULES
INCLD XXXXXXXX AAAAAAAA * BIND MEMBER
INCL YYYYYYYY BBBBBBBB * GENERIC FOR LOAD MODULE GENERATION
INCL YYYYYYYY CCCCCCCC * GENERIC FOR LOAD MODULE GENERATION

where:

XXXXXXXX is the member name used to identify the main unit to
be "bound."

YYYYYYYY is the member name for the generic architecture
member.

AAAAAAAA is the type name for the associated member.

BBBBBBBB is the type name for the associated member.

CCCCCCCC is the type name for the associated member.

DDDDDDDD is the type name for the associated member.

• You should define two separate object output types for the user
environment: one for above-the-16-megabyte-line object modules and one
for below-the-16-megabyte-line object modules. The first object data set
you specify in the language macro (referenced by a DFL TTYP) is used to
store below-the-line object modules. The second object data set is used to
store above-the-line object modules.

• You should define two separate load output types for the user environment:
one for above-the-line load modules and one for below-the-line load
modules. The architecture members define these load modules as
described in the previous step.

• Finally, you must have two unique language definitions: one for single
object and load modules, and one for multiple object and load modules.

The language versions in the architecture definition language definition and
FLM@ADAL must be either nonexistent or equal.

Depending on which language definition you use to compile and bind the Ada
code, you can choose one or two object and load modules.

Optimizer Support
The IBM Ada compiler has optimization support. The optimizer effectively
changes the dependencies between compilation units in a way that SCLM
cannot predict. Some Ada compiles using the optimizer might fail due to these
changes. If you have dependency problems while using the optimizer, perform
a forced build in extended scope to correct the problem. If dependency
problems are widespread, consider limiting use of the optimizer to the final
stages of the development cycle-such as integration test-if possible. You can
then restrict the forced builds to the group used to perform the testing and
perform them only after promotions to that group are complete.

When using the IBM Ada compiler, generated load module names must match
the corresponding compilation unit names (excluding the underscore, and only
for the first eight characters). For example:

cu_name = MAIN_PROCEDURE
load module name = MAINPROC

Chapter 11. IBM Ada Setup 289

Optimizer Support

When defining LEG architecture members, the load module name must follow
the above naming conventions.

If the above restriction is not acceptable, the generic method described in
"Multiple Load Module Support" on page 287 can be used to create an alias
load module name.

290 ISPF/PDF Software Configuration and Library Manager

Part 3. Messages and Codes

Chapter 12. Messages and Codes 293
Messages ... 295
FLMCMD Return Codes 328
SCLM Translator Return Codes 328

© Copyright IBM Corp. 1989. 1990 Part 3. Messages and Codes 291

292 ISPF/PDF Software Configuration and Library Manager

Messages and Codes

Chapter 12. Messages and Codes

This chapter provides a complete listing and description of messages and
return codes issued by the SCLM functions. ABEND codes are issued with
associated error messages. This chapter also lists the codes returned by the
SCLM command processor and translators.

Message Organization

© Copyright IBM Corp. 1989, 1990

The messages are organized alphabetically and ordered by message number.
The message descriptions are composed of the following:

1. A message number, in the format FLMnnnnn, where nnnnn is a numerical
identifier.

2. A message explanation, listing causes of printed messages. For error
messages, it describes probable causes of the errors. For warning
messages, it explains the warnings given. For information messages,
messages that are not error or warning messages, the message
explanation elaborates on the information presented in the message.

3. A programmer response, which gives return codes, describes possible
causes of problems, and discusses how to correct problems mentioned in
the message explanation.

4. A database administrator response, which discusses additional ways that a
project administrator rather than a programmer can correct problems
mentioned in the message explanation.

Chapter 12. Messages and Codes 293

Messages and Codes

Message Variables
Messages can contain one or more variables, which identify specific
components that cause SCLM to generate a message. For example, these
variables can be the name of a member, group, or type. Variables with a
length of more than eight characters are truncated to three characters and the
maximum length is indicated in parentheses. Table 7 lists the maximum
length for each variable.

Table 7. Message Variables Table 7. Message Variables

Maximum Maximum
Variable Length Variable Length

ACCESS KEY 16 KEYREF 8

ACCOUNTING 8 KIND 4
GROUP

LANGUAGE 8
ARCHITECTURE 8
MEMBER

LENGTH 3

AUTHORIZATION 8
LINE 4

CODE LRECL 8

BUILD MAP 8 MEMBER 8

CHANGE CODE 8 MODULE 8

CODE 3 or 4 NUMBER 3 or 10

COMMAND 60 NUMREC 6

COMPOOLNAME 8 PARAMETER 24

COPYLIB NAME 44 PREFIX USER ID 17

CU NAME 55 PROJECT 8

CU QUALIFIER 8
DEFINITION NAME

CU TYPE 4
QNAME 8

DATA SET NAME 8 or 26
RECFM 8

DATA TYPE 10
REPORT 21

DATE 8
RETURN CODE 8 or 26

DDNAME 8
ROUTINE NAME 8, 16, or

40
DISP 4

RNAME 60
DEPEND NAME 55

SERVICE NAME 9
DSNAME 44

STATUS 8
EXIT 2

TIME 8
FILE NUMBER 2

TRANSLATOR 8 or 16
FLAG 4

TYPE 8
GROUP 8

VERSION 8
ID or USER ID 8

INCLUDE NAME 8

294 ISPF/PDF Software Configuration and Library Manager

Messages
FLM00101 MEMBER NAME IS BLANK

Explanation: You left the MEMBER field blank.

Programmer Response: Verify that the member
parameter was specified and is in the correct position.

Project Administrator Response: None.

FLM00102 SEVERE ERROR OCCURRED AT aaa(40)
CODE: bbb

Explanation: The message identifies the name of the
SCLM routine, which failed unexpectedly, and the return
code.

Programmer Response: None.

Project Administrator Response: Contact SCLM Program
Support.

FLM01001 ERROR RETRIEVING ACCOUNTING
INFORMATION,

CODE: aaa GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: No accounting record exists or could be
retrieved for the specified member within the hierarchy
beginning in the specified group.

Programmer Response: Possible return codes are:

8 SCLM did not find the member's accounting
information. Register the member with SCLM using
the SCLM editor, migration utility, or the SAVE
service. Run the processor again.

12 SCLM successfully retrieved the member's
accounting and dependency information; however,
some of the dependency information failed a
verification check.

16

20

To determine the nature of the verification error,
use the library utility to browse the member's
accounting and dependency information. The utility
performs this check and displays the fields being
validated.

To correct the problem, you may need to edit and
save the member.

SCLM found an invalid group in the project
definition. Contact the project administrator.

A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM01002 ERROR UPDATING ACCOUNTING
INFORMATION

CODE: aaa GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: An error occurred while attempting to write
a member's accounting information. The error code
associated with the error message provides specifics
regarding the nature of the error.

Programmer Response: Possible return codes are:

© Copyright IBM Corp. 1989, 1990

4

8

12

FLM00101 - FLM01004

An lID error occurred while writing the member's
accounting information to the secondary accounting
data set. Because the primary accounting data set
was correctly updated, SCLM will use the correct
information for all references. However, the two
accounting data sets are no longer identical.
Contact the project administrator.

The number of dependent members (compools,
included members, andlor compilation units)
referenced in the source member exceeds the
maximum allowed by SCLM. Consequently, the
accounting information was not written.

Change the member so that the number of
referenced dependents is decreased below the
maximum supported. Delete unnecessary change
codes and user data.

Contact SCLM Program Support.

20 An lID error occurred while writing the member's
accounting information to the primary accounting
data set. The failure to create accounting
information implies that SCLM will not be able to
track the member. Resubmit the job and if the
error recurs, contact the project administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem. If the
secondary accounting data set has been damaged,
reallocate it and initialize with data from the primary
accounting data set.

FLM01003 ERROR PURGING ACCOUNTING
INFORMATION,

CODE: aaa GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: A VSAM error occurred while the system
was deleting the accounting record specified.

Programmer Response: Resubmit the job. If the problem
recurs, contact the project administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM01004 ERROR RETRIEVING ACCOUNTING
INFORMATION,

CODE: aaa GROUP: bbbbbbbb
TYPE: ecce ecce MEMBER: dddddddd

Explanation: No accounting record exists or could be
retrieved for the specified member in the given group.

Programmer Response: Possible return codes are:

8

12

The member's accounting information was not
found. Introduce the member to SCLM using the
SCLM editor, migration utility, or SAVE service.
Run the processor again.

The member's accounting and dependency
information was successfully retrieved; however,
some of the dependency information failed a
verification check. To determine the nature of the
verification error, browse the member's accounting
and dependency information using the SCLM
library utility. The utility performs this check and
displays the fields being validated. To correct the

Chapter 12. Messages and Codes 295

FLM01011 - FLM01502

20

problem, you may need to edit and save the
member.

A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM01011 ERROR RETRIEVING ACCOUNTING OR
CROSS-REFERENCE INFORMATION

CODE: aaaaaaaa ERROR GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: An error occurred while attempting to
retrieve a member's accounting or dependency
information.

Programmer Response: Possible return codes are:

8

12

16

The member's accounting information was not
found. Introduce the member to SCLM using the
SCLM editor, migration utility, or SAVE service.
Run the processor again.

The member's accounting and dependency
information was successfully retrieved; however,
some of the dependency information failed a
verification check. To determine the nature of the
verification error, browse the member's accounting
and dependency information using the SCLM
library utility. The utility performs this check and
displays the fields being validated. To correct the
problem, you may need to edit and save the
member.

SCLM found an invalid group in the project
definition. Contact the project administrator.

20 A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM01012 ERROR UPDATING ACCOUNTING OR
CROSS-REFERENCE DATA SET
INFORMATION

CODE: aaa ERROR GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: An error occurred while attempting to write
a member's accounting and dependency information.

Programmer Response: Possible return codes are:

8 An I/O error occurred while writing the member's
accounting information and no attempt was made to
write the dependency information. Errors may
occur if SCLM attempts to reference this member.
Resubmit the job, and if the error recurs, contact
the project administrator.

12 An I/O error occurred while writing dependency
information for a compilation unit. Errors may
occur if SCLM attempts to reference this member.
Resubmit the job, and if the error recurs, contact
the project administrator.

Project Administrator Response: Run IDCAMS against the
accounting and cross-reference data sets to determine the
problem.

296 ISPF/PDF Software Configuration and Library Manager

FLM01013 ERROR PURGING ACCOUNTING OR
CROSS-REFERENCE DATA SET
INFORMATION

CODE: aaa ERROR GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: A VSAM error occurred while the system
was deleting the accounting record specified.

Programmer Response: Resubmit the job. If the problem
recurs, contact the project administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM01501 ERROR RETRIEVING BUILD MAP
INFORMATION

CODE: aaa GROUP: bbbbbbbb
TYPE: ecce ecce MEMBER: dddddddd

Explanation: No build map record could be retrieved for
the specified member.

Programmer Response: Possible return codes are:

8 The specified build map record does not exist.

12

16

20

Build the appropriate architecture member. Invoke
the processor again.

The format of the data retrieved was incorrect.
Delete the build map and build again to regenerate
it.

An invalid group was found in the project definition.
Contact the project administrator.

A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: If the return code is:

16 Reassemble the project definition. Verify that no
errors occurred. Relink the project definition. For
more information, see "Step 10: Assemble and Link
Project Definition" on page 206.

20 A VSAM error occurred. Run IDCAMS against the
accounting data set to determine the problem.

FLM01502 ERROR UPDATING BUILD MAP
INFORMATION

CODE: aaa GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: An error occurred while attempting to insert
or update build map information in the accounting data
set.

Programmer Response: Possible return codes are:

4 An I/O error occurred while writing the member's
accounting information to the secondary accounting
data set. Because the primary accounting data set
was correctly updated, SCLM will use the correct
information for all references. However, the two
accounting data sets are no longer identical.
Contact the project administrator.

8 The length of the build map exceeds the maximum
size allowed by the accounting data set.

12 Contact SCLM Program Support.

20 A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem. If the
return code is 8, contact SCLM Program Support.

FLM01503 ERROR PURGING BUILD MAP
INFORMATION

CODE: aaa GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: A VSAM error occurred while deleting the
accounting record specified.

Programmer Response: Resubmit the job. If the problem
recurs, contact the project administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM03001 ERROR RETRIEVING CROSS-REFERENCE
INFORMATION

CODE: aaa CU NAME: bbb(55) ccc(55)
CU TYPE: dddd CU QUALIFIER: eeeeeeee
GROUP: ffffffff

Explanation: SCLM could not retrieve a build map record
for the specified compilation unit.

Programmer Response: Possible return codes are:

8

12

16

The accounting information for the compilation unit
was not found. Register the member with SCLM
using the SCLM editor, migration utility, or the
SAVE service. Run the processor again.

The member's accounting and dependency
information was successfully retrieved; however,
some of the dependency information failed a
verification check. To determine the nature of the
verification error, browse the accounting and
dependency information for the compilation unit
using the library utility. The library utility performs
a verification check and displays the fields while
validating them. To correct the problem, you may
need to edit and save the member.

SCLM found an invalid group in the project
definition. Contact the project administrator.

20 A severe I/O error occurred. Contact the project
administrator.

24 The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

20 A VSAM error occurred. Run IDCAMS against the
cross-reference data set to determine the problem.

24 Identify the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM03002 ERROR UPDATING CROSS-REFERENCE
INFORMATION

CODE: aaa CU NAME: bbb(55) ccc(55)
CU TYPE: dddd CU QUALIFIER: eeeeeeee
GROUP: ffffffff

Explanation: An error occurred while attempting to insert
or update information in the cross-reference data set.

FLM01503 - FLM03021

Programmer Response: Possible return codes are:

8 The length of the cross-reference information
exceeds the maximum size allowed by the
cross-reference data set. Reduce the number of
dependencies for the compilation unit.

12

20

24

SCLM internal error. Contact the project
administrator.

A severe I/O error occurred. Contact the project
administrator.

The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

12 Contact SCLM Program Support.

20

24

A VSAM error occurred. Run IDCAMS against the
cross-reference data set to determine the problem.

Define the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM03003 ERROR PURGING CROSS-REFERENCE
INFORMATION

CODE: aaa CU NAME: bbb(55) ccc(55)
CU TYPE: dddd CU QUALIFIER: eeeeeeee
GROUP: ffffffff

Explanation: An I/O error occurred while deleting
cross-reference information for the compilation unit
specified.

Programmer Response: Possible return codes are:

8

16

24

A severe I/O error occurred. Contact the project
administrator.

The cross-reference data set is enqueued. Try the
job again later.

The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

8 A VSAM error occurred. Run IDCAMS against
the cross-reference data set to determine the
problem.

24 Define the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM03021 ERROR ACCESSING ACCOUNTING
INFORMATION FOR DEPENDENT
COMPILATION UNIT

CU NAME: aaa(55) bbb(55) CU TYPE: dddd
CU QUALIFIER: dddddddd CODE: eee

Explanation: No accounting record could be retrieved for
the dependent compilation unit due to an I/O error.

Programmer Response: Resubmit the job. If the problem
recurs, contact the project administrator.

Project Administrator Response: Run IDCAMS against the
cross-reference data set to determine the problem.

Chapter 12. Messages and Codes 297

FLM03501 - FLM03504

FLM03501 ERROR RETRIEVING ACCOUNTING
INFORMATION FOR INTERMEDIATE FORM
OF

CU NAME: aaa(55) bbb(55) CU TYPE: eeee
CU QUALIFIER: dddddddd CODE: eee
GROUP: tffffftf TYPE: gggggggg
MEMBER: hhhhhhhh

Explanation: An error occurred while attempting to
retrieve accounting information for the specified
intermediate form.

Programmer Response: Possible return codes are:

8 The accounting information for the intermediate
form of the compilation unit was not found in any
group in the hierarchy defined by group. This
means that the compiled intermediate form is
missing or out of date. The member containing the
compilation unit needs to undergo an SCLM build.

12 SCLM internal error. Contact the project
administrator.

16 An invalid group was found in the project definition.
Contact the project administrator.

20 An I/O error occurred while retrieving the
accounting information for the intermediate form of
the compilation unit. Resubmit the job and if the
error recurs, contact the project administrator.

24 The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

12

16

20

24

Contact SCLM Program Support.

Reassemble the project definition. Verify that no
errors occurred. Relink the project definition. For
more information, see "Step 10: Assemble and Link
Project Definition" on page 206.

A VSAM error occurred. Run IDCAMS against the
cross-reference data set to determine the problem.

Define the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM03502 ERROR UPDATING ACCOUNTING
INFORMATION OF INTERMEDIATE FORM
FOR

CU NAME: aaa(55) bbb(55) CU TYPE: eccc
CU QUALIFIER: dddddddd CODE: eeeeeeee
TYPE: ffffffff MEMBER: gggggggg

Explanation: An error occurred while attempting to
update accounting information for the specified
intermediate form.

Programmer Response: Possible return codes are:

12

20

The record format of the member's intermediate
accounting data is incorrect for the current version
of SCLM. Contact the project administrator.

An I/O error occurred while updating the member's
intermediate accounting data. Resubmit the job,
and if the error recurs, contact the project
administrator.

298 ISPF/PDF Software Configuration and Library Manager

24 The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

12 Verify that the cross-reference data set is
compatible with the current release of SCLM.

20 Run IDCAMS against the cross-reference data set
to determine the problem.

24 Define the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM03503 ERROR PURGING ACCOUNTING
INFORMATION OF INTERMEDIATE FORM
FOR

CU NAME: aaa(55) bbb(55) CU TYPE: eeec
CU QUALIFIER: dddddddd CODE: eee
GROUP: ffffffff TYPE: gggggggg
MEMBER: hhhhhhhh

Explanation: An error occurred while attempting to purge
accounting records of intermediate form.

Programmer Response: Possible return codes are:

8 An I/O error occurred while purging. Resubmit the
job. Contact the project administrator if the error
recurs.

16 Target data set enqueued. Resubmit the job after
the data set is no longer exclusively in use by
another job.

24 The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

8 Run IDCAMS against the cross-reference data set
to determine the problem.

24 Define the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM03504 ERROR RETRIEVING ACCOUNTING
INFORMATION FOR INTERMEDIATE FORM
OF

CU NAME: aaa(55) bbb(55) CU TYPE: ccce
CU QUALIFIER: dddddddd CODE: eee
GROUP: ffffffff TYPE: gggggggg
MEMBER: hhhhhhhh

Explanation: An error occurred while attempting to
retrieve accounting information for the specified
intermediate form. The error code associated with the
error message provides specifics regarding the nature of
the error.

Programmer Response: Possible return codes are:

8 The accounting information for the intermediate
form of the compilation unit was not found in the
specified group. This means that the compiled
intermediate form is missing or out of date. The
member containing the compilation unit needs to
be rebuilt.

12

20

24

SCLM internal error. Contact the project
administrator.

An I/O error occurred while retrieving the
accounting information for the intermediate form of
the compilation unit. Resubmit the job and if the
error recurs, contact the project administrator.

The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

12 Contact SCLM Program Support.

20 A VSAM error occurred. Run IDCAMS against the
cross-reference data set to determine the problem.

24 Define the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM04001 GROUP: aaaaaaaa IS NOT DEFINED IN THE
PROJECT DEFINITION.

Explanation: The specified group is not defined to the
project definition.

Programmer Response: Verify that aaaaaaaa is the
intended group. Verify that the correct project definition
name was specified. Contact the project administrator.

Project Administrator Response: Add the group to the
project definition. For more information, see Chapter 7,
"Defining the Project."

FLM04002 SPECIFIED GROUP: aaaaaaaa IS NOT A
DEVELOPMENT GROUP

Explanation: The specified group is not valid for the
function requested and must be defined to SCLM as a
development group. A development group is a group that
no groups can promote into.

Programmer Response: Select a group that is defined in
the project definition as a development group.

FLM04003 TYPE: aaaaaaaa IS NOT DEFINED IN THE
PROJECT DEFINITION.

Explanation: The specified type has not been defined in
the current project definition.

Programmer Response: Verify that aaaaaaaa is a type
that is supposed to contain SCLM data. If so, contact the
project administrator.

Project Administrator Response: Add the type to the
project definition.

FLM04005 AUTHORIZATION CODE: aaaaaaaa IS NOT
DEFINED TO GROUP: bbbbbbbb

Explanation: The specified authorization code has not
been defined to SCLM as a valid authorization code for the
specified group.

Programmer Response: Use an authorization code that
has been defined to the specified group. Contact the
project administrator for a list of valid authorization codes.
If the specified authorization code is valid, contact the
project administrator.

Project Administrator Response: Check the project
definition that defines the specified group. The valid
authorization codes for the group are defined there. If
authorization groups are used, you may need to reference

FLM04001 - FLM05001

the FLMAGRP macros in the project definition as well. If
the authorization code is valid, add it to the project
definition.

FLM04006 LANGUAGE: aaaaaaaa IS NOT DEFINED IN
THE PROJECT DEFINITION

Explanation: The specified language is not defined in the
project definition used.

Programmer Response: Verify that the language of the
member is defined in the project definition. Specify a valid
language and resubmit. To determine whether a language
is defined, type an invalid language on the SCLM Edit
Profile panel using the SCLM editor, and then type HELP
twice.

Project Administrator Response: None.

FLM04007 LANGUAGE: aaaaaaaa IS NOT DEFINED
FOR MEMBER: bbbbbbbb TYPE: cccccccc

Explanation: The language is not defined in the project
definition used. If this message is received for an existing
member, the project definition has probably changed since
the last time the source member was modified.

Programmer Response: Verify that the language of the
member is defined in the project definition. Specify a valid
language and resubmit. To find the valid languages
defined to SCLM, type an invalid language on the SCLM
Edit Profile panel using the SCLM editor, and then type
HELP twice.

Project Administrator Response: None.

FLM04008 ACCOUNTING RECORD FOR
MEMBER: aaaaaaaa TYPE: bbbbbbbb IS IN
STATE: cccccccc

Explanation: The member has been locked but not parsed
or stored. This error can result when you call the LOCK
service or when you edit a member but do not save it.

Programmer Response: Use a new member name or
have the owner of the specified member free it.

Project Administrator Response: None.

FLM04009 ACCOUNTING RECORD FOR
MEMBER: aaaaaaaa TYPE: bbbbbbbb
IS IN ST ATE: cccccccc

Explanation: The member has been locked.

Programmer Response: You must unlock the member
before it can be edited. It must also not exist in another
private library with an accounting record.

Project Administrator Response: None.

FLM05001 EXISTING MEMBERS AUTHORIZATION
CODE IS NOT DEFINED TO THE GROUP

GROUP:aaaaaaaa TVPE:bbbbbbbb
MEMBER: cccccccc
ERROR GROUP: dddddddd
AUTHORIZATION CODE: eeeeeeee

Explanation: The authorization code is not defined to the
specified group. This implies that the member is not
authorized to replace the version of the member in the
error group.

Programmer Response: It is possible that the function will
succeed with a different authorization code. Contact the
project administrator for a list of authorization codes that

Chapter 12. Messages and Codes 299

FLMOS002 - FLMOSS01

are valid for the group. If none of the authorization codes
defined to the group work, try the same function at a
different group. Contact the project administrator if all
attempts fail.

Project Administrator Response: The FLMGROUP macro
lists the valid authorization codes defined for this group in
the project definition. Do not attempt to add authorization
codes to the project definition unless you are familiar with
risks outlined in "Authorization Code Usage" on page 252.

FLM05002 PREDECESSOR VERIFICATION FAILED
INPUT GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: eeeeecee
ERROR GROUP1: dddddddd
DATE: eeeeeeee TIME: ffffffff
ERROR GROUP2: gggggggg
DATE: hhhhhhhh TIME: iiiiiiii

Explanation: The version of the member in dddddddd was
not based on the member in gggggggg. During a
promotion, this usually means that a version of the
member between these two groups has been deleted. If
the authorization code is being changed, changes to the
member in gggggggg will be lost if the version in
dddddddd is promoted.

The predecessor date and time fields in the accounting
information for the member in dddddddd should contain
the last modified date and time fields for the next
occurrence of the member within the hierarchy.

See Chapter 4, "SCLM Dialog Interface," for specific
contents of the predecessor date and time fields.

For the promote processor, if gggggggg is not the group
being promoted into, this message is a warning. However,
the promote processor, in conditional mode, prevents the
member in aaaaaaaa from replacing the member in
gggggggg.

Programmer Response: For the promote processor,
verify that the member in aaaaaaaa contains all of the
required changes present in the member in gggggggg. If
it does, and no other promote verification errors are
present, promote again in unconditional mode. If other
promote verification errors are present, either correct the
errors or use an architecture member that controls as few
members as possible.

If you have tried to change the authorization code, and the
member is in a private library, verify that all of the
changes from the version in gggggggg have been
incorporated in aaaaaaaa. Then delete and recreate the
accounting information for the member using the SCLM
editor or the SAVE service. If aaaaaaaa is not a private
library, the member must be drawn down to a private
library, and you must delete the member in aaaaaaaa
before using the procedure outlined above.

Project Administrator Response: None.

FLM05010 MEMBER LOCKED AT ANOTHER GROUP
INPUT GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: eceeeecc
ERROR GROUP: dddddddd
AUTHORIZATION CODE: eeeeeeee

Explanation: The member has already been updated in
another hierarchy. The changes currently reside in
dddddddd, which is not in your hierarchy. You are not
allowed to update the member because you would not be
working with the most current version of the member.

300 ISPF/PDF Software Configuration and Library Manager

Programmer Response: Have the member promoted into
a group that is in your hierarchy (that is, one that appears
on the SCLM Edit - Entry panel). If the member cannot be
promoted, the member and its accounting information
must be deleted in dddddddd using the SCLM library utility
or the DELETE service.

Project Administrator Response: None.

FLM05020 ERROR ALLOCATING HIERARCHY VIEW
FOR TYPE: aaaaaaaa FROM
GROUP: bbbbbbbb CODE: cee

Explanation: One of the following has occurred:

• The specified type does not exist or is not defined.

• One or more data sets are not allocated in the
hierarchy or are allocated with different attributes.

• One or more data sets in the hierarchy are allocated
exclusively to another job.

Programmer Response: Resubmit the job and check for
the following:

1. Check input parameters and verify that the type exists
in the project definition.

2. Verify that all data sets in the hierarchy exist for this
type and were allocated with the same attributes.

3. Verify that data sets are not allocated exclusively to
another job.

Project Administrator Response: None.

FLM05501 ARCHITECTURE MEMBER: aaaaaaaa IN
TYPE: bbbbbbbb IS INVALID.

GROUP: cccceccc CODE: ddd

Explanation: A problem was encountered with the
architecture member specified. Use the return code to
identify and correct the problem.

Programmer Response: Possible return codes are:

12 An incorrect keyword was found in the specified
architecture member. Verify the contents of the
architecture member, and resubmit the job.

20

24

28

32

The specified member could not be allocated.
Verify that the member exists and that the data set
is not allocated exclusively to another job.

A subordinate copy member could not be allocated.
Verify that all members referenced through the use
of the COPY keyword exist and that the members
are not allocated exclusively to another job.

An error occurred while attempting to allocate the
hierarchy for the type starting in ccceccce. Verify
that the type bbbbbbbb exists in the project
definition. Verify that all data sets in the hierarchy
exist for this type and were allocated with the same
attributes. Verify that data sets are not allocated
exclusively to another job.

In processing the given architecture member,
either the nesting limit of copied architecture
members was exceeded, or the architecture
definition has a recursive copy and the recursion
limit was exceeded. The maximum number of
nested copies currently allowed is 75. Modify the
architecture definition and resubmit the job.

Other The specified member has an invalid keyword or is
not an architecture member. Verify that the
specified member is an architecture member and
resubmit the job.

Project Administrator Response: None.

FLM06501 TRANSLATOR RETURN CODE FROM
= = = > aaa(16) = = = > bbb

Explanation: This message identifies the return code
received from the specified translator. . If the return
code indicates success as defined on the FLMTRNSL
macro, all output is saved in the hierarchy and no
response is necessary. If the return code from the
translator did not meet the GOODRC specified for the
translator, SCLM saves translator output, such as compiler
listings, in the listings data set for the processor if
requested in the language definition.

Programmer Response: Use the listings data set to locate
and correct all errors identified by the translator. If the
return code from the translator is acceptable and build
indicated that the translator failed, contact the project
administrator.

Project Administrator Response: Change the GOODRC
parameter of the FLMTRNSL macro, which is defined in
the project definition.

FLM06502 ERROR INVOKING TRANSLATOR: aaaaaaaa,
CODE: bbb

Explanation: The translator could not be invoked by
SCLM. The load module containing the translator may be
allocated exclusively to another job. There is a possible
error in the language definition that defines the translator.

Programmer Response: If the·translator has been used
successfully in the past and no changes were anticipated
(for example, a new compiler release), invoke the
processor again. If the translator is new or the problem
recurs, contact the project administrator.

Project Administrator Response: Verify that the
parameters of the FLMTRNSL macro, which are defined in
the project definition, are correct. For more information,
see "FLMTRNSL Macro" on page 228.

FLM06503 PROBABLE SYSTEM/USER ABEND FOR
TRANSLATOR: aaaaaaaa HEXADECIMAL
VALUE OF RETURN CODE: bbbbbbbb

Explanation: SCLM issues this message when an ABEND
occurs. A translator return code over 4096 indicates an
ABEND. SCLM also provides the hexadecimal value of the
translator return code.

Programmer Response: Use the information provided in
this message to correct the cause of the ABEND, and
resubmit the job.

Project Administrator Response: None.

FLM06511 ERROR INVOKING USER EXIT ROUTINE:
aaa(16), CODE: bbb

Explanation: SCLM could not invoke the user exit. The
load module containing the user exit may be allocated
exclusively to another job. There is a possible error in the
project definition that defines the user exit.

Programmer Response: If the user exit has been used
successfully in the past, run the job again. If the user exit
is new or the problem recurs, contact the project
administrator.

FLM06501 - FLM07001

Project Administrator Response: Verify that the user exit
executes correctly outside of SCLM. Verify that the user
exit is defined correctly in the project definition. For more
information on user exits, see "Build and Promote User
Exit Routines" on page 263.

FLM06512 VERIFICATION ERROR FROM USER EXIT
ROUTINE: aaa(16), CODE: bbbb

Explanation: The return code from the user exit invoked
did not meet the acceptable criteria specified for the user
exit. Output produced will depend on the user exit routine.

Programmer Response: Review the local software
configuration management for information about the user
exit.

Project Administrator Response: For more information on
user exits, see "Build and Promote User Exit Routines" on
page 263.

FLM06513 PROBABLE SYSTEM/USER ABEND FOR
USER EXIT ROUTINE: aaa(16)
HEXADECIMAL VALUE OF RETURN
CODE: bbbbbbbb

Explanation: SCLM issues this message when an ABEND
(user exit return code greater than 4096) occurs. SCLM
also provides the hexadecimal value of the user exit return
code.

Programmer Response: Use the information provided in
this message to correct the cause of the ABEND.

Project Administrator Response: None.

FLM07001 AUTHORITY CODE: aaa ON DATA SET:
bbb(44) RESULTED FROM ATTEMPT TO
UPDATE DATA. ATTR: c MACRO RC: ddd
EXIT RC: eee EXIT REASON: fff

Explanation: An attempt was made to perform an SCLM
function without the proper authority. Programmers
cannot update SCLM internal data, using SCLM functions,
unless they have the authority to update the data set to
which the internal data is related.

Possible return codes are:

8 LOCATE macro failed.

12 RACROUTE macro failed.

DSNAME
Data set being accessed.

ATTR R:READ,U:UPDATE,C:CONTROL,A:ALTER.

MACRO RC
For a return code of 8, this value contains the
return code from the LOCATE macro. For a return
code of 12, this value contains the return code from
the RACROUTE macro. Otherwise it is set to zero.

EXIT RC
For a return code of 12 and MACRO RC of 8, this
value contains the return code from RACF or the
SAF router exit routine. For RACF, this is the
RACHECK return code. Otherwise it is set to zero.

Note: For the INIT service call using a program,
only the first line will appear, indicating the
user does not have READ access to the
project definition data set.

Programmer Response: Verify that you specified the
correct group and type for the function you are requesting.

Chapter 12. Messages and Codes 301

FLM07002 - FLM07008

If the request was valid, get update authority to the data
set identified in the message.

Project Administrator Response: None.

FLM07002 ERROR PERFORMING AN ENQUEUE

CODE: aaa QNAME: bbbbbbbb RNAME
LENGTH: eee RNAME: ddd(60)

Explanation: The requested resource was enqueued by
another job. The enqueued ~esource is identified by the
RNAME. RNAME is usually a data set. RNAME LENGTH
identifies the size of RNAME in bytes because RNAME may
contain trailing blanks. QNAME is the name of the queue
used for the enqueue operation.

Programmer Response: Try the job again later.

Project Administrator Response: None.

FLM07003 ERROR PURGING MEMBER

CODE: aaa ERROR GROUP: bbbbbbbb
TYPE: eeeeeeee MEMBER: dddddddd

Explanation: An error occurred while attempting to delete
the specified member.

Possible return codes are:

4 The specified member does not exist.
8 The target data set is enqueued.
12 An I/O error exists in the target data set.
16 SCLM is unable to allocate the data set.
20 An internal error exists.

Programmer Response: Verify that the data set exists and
that it is not allocated exclusively to another job.
Resubmit the job.

Project Administrator Response: None.

FLM07004 ERROR ALLOCATING A TEMPORARY DATA
SET

CODE: aaaa DDNAME: bbbbbbbb
LRECL: eeeeeeee RECFM: dddddddd
NUMRECS: eeeeee DISP: ffff
DSNAME: ggg(44)

Explanation: An error occurred in attempting to allocate a
temporary data set. The file number identifies the
unallocated data set for the translator being invoked.

Possible return codes are:

8 SVC 99 error.

12 SCLM internal error. Contact SCLM Program
Support.

16

20

Missing or incorrect data set name.

Invalid file attribute specified.

24 A member of a PDS was requested but the data set
is not partitioned.

28 The requested member could not be found.

32 The requested member was not available.

>64 SVC 99 error, reason code (decimal):

528 Data set cannot be exclusively WRITE
allocated.

302 ISPF/PDF Software Configuration and Library Manager

5896 Data set does not exist.

Programmer Response: Resubmit the job. If the error
recurs, contact SCLM Program Support.

Project Administrator Response: None.

FLM07005 ERROR RETRIEVING DIRECTORY
INFORMATION FOR TYPE: aaaaaaaa
CODE: bbb

Explanation: One or more data sets in the hierarchy are
allocated exclusively to another job.

Programmer Response: Verify that data sets are not
allocated exclusively to another job.

Project Administrator Response: None.

FLM07006 ERROR ACCESSING MEMBER: aaaaaaaa
TYPE: bbbbbbbb, CODE: eee

Explanation: One of the following has occurred:

• The specified type does not exist or is not defined.
• One or more data sets in the hierarchy are allocated

exclusively to another job.

Possible return codes are:

8 The member is not registered with SCLM or is not
allocated.

16 SCLM cannot retrieve the directory for the member.

Programmer Response: Check for the following and
resubmit the job:

• Check input parameters and verify that the type exists
in the project definition.

• Verify that data sets are not allocated exclusively to
another job.

Project Administrator Response: None.

FLM07007 ACCOUNTING INFORMATION IS NOT
ACCURATE FOR MEMBER: aaaaaaaa
TYPE:bbbbbbbb
ACCOUNTING GROUP: eeeeeeee
MEMBER GROUP: dddddddd

Explanation: The accounting information for the member
does not match the contents of the member. If neither
group is a private library, it is possible that the member
has been updated outside of SCLM control.

Programmer Response: If the member is editable,
register the member with SCLM using the SCLM editor,
migration utility, or the SAVE service. If the member is
non-editable, delete the member with the SCLM library
utility or the DELETE service and regenerate the member
with the SCLM build function.

Project Administrator Response: None.

FLM07008 ERROR ACCESSING MEMBER: aaaaaaaa
TYPE: bbbbbbbb, CODE: eee

Explanation: The specified member could not be
allocated or opened.

Programmer Response: Verify that the member exists
and that the data set is not allocated exclusively to another
job. Resubmit the job.

Project Administrator Response: None.

FLM07009 ERROR ACCESSING MEMBER: aaaaaaaa
TYPE: bbbbbbbb, CODE: ccc

Explanation: The message indicates that a possible I/O
error occurred in accessing the member.

Programmer Response: Verify that the member exists
and that the data set is not allocated exclusively to another
job. Resubmit the job.

Project Administrator Response: None.

FLM07010 ERROR UPDATING DIRECTORY
INFORMATION AT GROUP: aaaaaaaa
TYPE: bbbbbbbb MEMBER: ccceccce
CODE: ddd

Explanation: SCLM could not update the data set
directory for this member.

Programmer Response: Reallocate the data set with
more directory blocks.

Project Administrator Response: None.

FLM07011 ERROR ALLOCATING DATA SET FOR
TRANSLATOR: aaa(16)

(FILE NUMBER: bbb) CODE: cce

Explanation: An error occurred in allocating a temporary
data set for the specified translator. The file number
identifies the unallocated data set for that translator.

Possible return codes are:

8

12

16

20

24

SVC 99 error.

SCLM internal error. Contact SCLM Program
Support.

Missing or incorrect data set name.

Invalid file attribute specified.

A member of a PDS was requested but the data set
is not partitioned.

28 The requested member could not be found.

32 The requested member was not available.

> 64 SVC 99 error, reason code (decimal).

Programmer Response: Resubmit the job. If the error
recurs, contact SCLM Program Support.

Project Administrator Response: None.

FLM09002 THE REPORT WILL APPEAR IN aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM09004 THE MESSAGES WILL APPEAR IN aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM07009 - FLM32303

FLM09006 THE LISTING WILL APPEAR IN aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM09008 RETURN CODE = aaaaaaaa

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM20001 IF PARSER LISTINGS WERE CREATED,
THEY WILL APPEAR IN DSN: aaa(44)

Explanation: If the dsname value is blank assure that the
language macro asks for an error file to be allocated via
the Print = I or Print = Y option.

Programmer Response: None.

Project Administrator Response: None.

FLM32101 MIGRATION UTILITY INITIATED - aaaaaaaa
ON bbbbbbbb

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM32201 UNABLE TO READ DIRECTORY FOR DATA
SET

CODE: aaa

Explanation: An error occurred while attempting to read
the directory of the data set to be migrated.

Possible return codes are:

16 SCLM is unable to open the data set.

20 A severe error occurred attempting to read the data
set directory.

Programmer Response: Verify that the data set directory
can be accessed by using the SCLM editor to browse the
data set. If you cannot browse the data set, correct the
problem and resubmit the job. Possible problems are that
the data set is enqueued or the data set does not contain a
valid directory.

Project Administrator Response: None.

FLM32303 NO MEMBERS MATCHING SELECTION
CRITERIA NEED MIGRATION

Explanation: The migration utility did not attempt to
migrate any members into SCLM control, because there
are no members that are not under SCLM control which
match the PROJECT, GROUP, TYPE, and MEMBER
parameters. Members are considered under SCLM
control if SCLM has accurate accounting information for
them.

Programmer Response: Verify that the members to be
migrated are not already under SCLM control and that
they match the PROJECT, GROUP, TYPE, and MEMBER
parameters.

Project Administrator Response: None.

Chapter 12. Messages and Codes 303

FLM32310 - FLM40517

FLM32310 USER DEFINED DDNAME: aaaaaaaa FOR
MIGRATION MESSAGES IS NOT
ALLOCATED

Explanation: The ddname specified for the migration
messages was not allocated. If the migration function is
invoked via the services, the ddname for the migration
messages is optional. If not specified, the migration report
is defaulted to the terminal. If the ddname is specified it
must be allocated.

Programmer Response: Verify that the user-supplied
ddname for the migration messages is allocated.
Resubmit the job.

Project Administrator Response: None.

FLM32320 USER DEFINED DDNAME: aaaaaaaa FOR
MIGRATION LISTING IS NOT ALLOCATED

Explanation: The ddname specified for the migration
listing was not allocated. If the migration function is
invoked via the services, the ddname for the migration
listing is optional. If not specified, the migration listing is
defaulted to the terminal. If a ddname is specified it must
be allocated.

Programmer Response: Verify that the user-supplied
ddname for migration listing is allocated. Resubmit the
job.

Project Administrator Response: None.

FLM32401 MIGRATION UTILITY COMPLETED

Explanation: The migration utility finished processing.

Programmer Response: See the accompanying
messages that appear with this message on your screen
for additional information regarding the status of this
report.

Project Administrator Response: None.

FLM32501 INVOKING MIGRATION UTILITY

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM40501 NO TRANSLATOR INVOKED FOR
LANGUAGE: aaaaaaaa

Explanation: No translator was invoked for the specified
language.

Programmer Response: If a translation was expected,
contact the project administrator.

Project Administrator Response: Verify that a translation
was expected.

FLM40507 ERROR ALLOCATING DATA SET: aaa(44)
FOR TRANSLATOR: bbb(16)
(FILE NUMBER: ece CODE: ddd

Explanation: An error occurred in allocating the data set
for the translator. The data set is being allocated for the
file number.

Possible problems:

• More than one IOTYPE = I may have been specified in
the FLMALLOC list for a translator.

304 ISPF/PDF Software Configuration and Library Manager

Possible return codes are:

8 SVC 99 error.
12 SCLM internal error. Contact SCLM Program

Support.
16 Missing or incorrect data set name.
20 Invalid file attribute specified.
24 A member of a PDS was requested but the data set

is not partitioned.
28 The requested member could not be found.
32 The requested member was not available.
> 64 SVC 99 error, reason code (decimal).

Programmer Response: Resubmit the job. If the error
recurs, contact SCLM Program Support.

Project Administrator Response: None.

FLM40510 ERROR ALLOCATING DATA SET: aaa(44)
FOR TRANSLATOR: bbb(16) CODE: eee

Explanation: An error occurred in allocating the data set
for the translator. This data set should contain the
translator to be invoked.

Possible return codes are:

8 SVC 99 error.
12 SCLM internal error. Contact SCLM Program

Support.
16 Missing or incorrect data set name.
20 Invalid file attribute specified.
24 A member of a PDS was requested but the data set

is not partitioned.
28 The requested member could not be found.
32 The requested member was not available.
> 64 SVC 99 error, reason code (decimal).

Programmer Response: Resubmit the job. If the error
recurs, contact the project administrator.

Project Administrator Response: Verify that the data set
in error exists and is specified in the language definition
for that translator (DSNAME parameter on the FLMTRNSL
macro).

FLM40516 MEMBER: aaaaaaaa TYPE: bbbbbbbb WAS
UPDATED DURING THE BUILD

Explanation: The SCLM editor updated the specified
member during processing of the build. SCLM does not
save translator output because it may have been created
from the previous version of the member.

Programmer Response: Resubmit the job.

Project Administrator Response: None.

FLM40517 DUPLICATE FLMALLOC
KEY REF = aaaaaaaa NOT ALLOWED FOR
TRANSLATOR OUTPUT

Explanation: The translator invoked has two temporary
output data sets, allocated with either IOTYPE = 0 or P,
both targeted to the same output member (with the
KEYREF parameter). The build processor cannot copy
multiple output data sets produced by the translator to a
single targeted member.

Programmer Response: See the project administrator.

Project Administrator Response: Verify in the language
definition that no two FLMALLOC macro calls with either
IOTYPE = 0 or P have the same KEYREF value.

FLM40519 NUMBER OF ALLOCATED DATA SETS FOR
HIERARCHY SEARCH AS SPECIFIED IN
DATA SET eee FOR TRANSLATOR ddd(16)
HAS BEEN EXCEEDED (aaa DATA SETS
WERE ALLOCATED, MAXIMUM ALLOWED IS
bbb)

Explanation: The number of data sets allocated for the
translator hierarchy search has exceeded the maximum
value for the system. This message is preceded with the
call name of the translator in question. The ddname
allocated for hierarchy search is specified by the
FLMALLOC macro with IOTYPE = I.

Programmer Response: For the translator in question,
verify that all FLMALLOC macros with IOTYPE = I do not
exceed the system limit for allocating data sets to a
ddname. This error can be caused by the following:

• Defining too many groups for the project

• Using the extended type option (field EXTEND on the
FLMTYPE macro)

• Specifying too many FLMCPYLBs for the ddname.

Project Administrator Response: None.

FLM41002 ERROR OCCURRED DURING
INITIALIZATION

Explanation: An error occurred during the initialization
phase of the build processor.

Programmer Response: See the message data set for all
the messages related to this error.

Project Administrator Response: None.

FLM41 005 ERROR ALLOCATING DATA SET: aaa(44)
FOR USER EXIT: #bb CODE: eee

Explanation: An error occurred in allocating the data set
for the user exit. This data set should contain the user exit
routine to be invoked.

Possible return codes are:

8 SVC 99 error.
12 SCLM internal error. Contact SCLM Program

Support.
16 Missing or incorrect data set name.
20 Invalid file attribute specified.
24 A member of a PDS was requested but the data set

is not partitioned.
28 The requested member could not be found.
32 The requested member was not available.
> 64 SVC 99 error, reason code (decimal).

Programmer Response: Resubmit the job. If the error
recurs, contact the project administrator.

Project Administrator Response: Verify that the data set
in error exists and is specified in the control type in the
project definition (FLMCNTRL macro) for that user exit.

FLM42000 BUILD PROCESSOR INITIATED - aaaaaaaa
ON bbbbbbbb

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM42004 INVALID INPUT PARAMETER

GROUP aaaaaaaa

FLM40519 - FLM42106

TYPE bbbbbbbb

MEMBER eeeeeeee

USERID dddddddd

BUILD MODE e

BUILD SCOPE

ERROR LISTINGS ONLY 9

REPORT REQUEST h

PREFIX USER ID iii(17)

Explanation: You specified an invalid input parameter to
the build processor. The values of the parameters are
listed. Only the first character is listed for build mode and
build scope.

Valid values for build mode are CONDITIONAL,
UNCONDITIONAL, REPORT, and FORCED. Valid values for
build scope are LIMITED, NORMAL, SUBUNIT, and
EXTENDED. Valid values for report request are Y and N.

If the build processor was invoked through the SCLM
dialog. SCLM retrieves the user ID and prefix user ID input
parameters from the ISPF/PDF shared and profile pools,
respectively.

Programmer Response: Verify that all input parameters
are specified correctly. Resubmit the job, and if the
problem recurs, contact SCLM Program Support.

Project Administrator Response: None.

FLM42100 USER DEFINED DDNAME: aaaaaaaa FOR
BUILD MESSAGE NOT ALLOCATED

Explanation: The ddname specified for the build
messages was not allocated. If the build function is called
through the SCLM services, the ddname for the build
messages is optional. If not specified, the build messages
are defaulted to the terminal. If a ddname is specified, it
must be allocated.

Programmer Response: Verify that the user-supplied
ddname for build messages is allocated. Resubmit the
job.

Project Administrator Response: None.

FlM42104 USER DEFINED DDNAME: aaaaaaaa FOR
BUILD REPORT NOT ALLOCATED

Explanation: The ddname specified for the build report
was not allocated. If the build function is invoked through
the SCLM services, the ddname for the build report is
optional. If not specified, the build report is defaulted to
the terminal. If a ddname is specified, it must be
allocated.

Programmer Response: Verify that the user-supplied
ddname for build report is allocated. Resubmit the job.

Project Administrator Response: None.

FLM42106 USER DEFINED DDNAME: aaaaaaaa FOR
BUILD LISTING NOT ALLOCATED

Explanation: The ddname specified for the build listing
was not allocated. If the build function is invoked through
the SCLM services, the ddname for the build listing is
optional. If not specified, the build listing is defaulted to
the terminal. If the ddname is specified, it must be
allocated.

Programmer Response: Verify that the user-supplied
ddname for build listing is allocated. Resubmit the job.

Chapter 12. Messages and Codes 305

FLM42108 - FLM43120

Project Administrator Response: None.

FLM42108 USER DEFINED DDNAME: aaaaaaaa FOR
USER EXIT DATA SET NOT ALLOCATED

Explanation: The ddname specified for the user exit data
set was not allocated. If the build function is invoked
through the SCLM services, the ddname for the user exit
data set must be specified if a user exit routine has been
specified. Otherwise the ddname is optional. If not
specified, a user exit data set is allocated to NULLFILE. If
a ddname is specified, it must be allocated.

Programmer Response: Verify that the user-supplied
ddname for user exit file is allocated. Resubmit the job.

Project Administrator Response: None.

FLM43001 ERROR RETRIEVING ACCOUNTING
INFORMATION

CODE: aaa GROUP: bbbbbbbb
TYPE: eeeeeeee MEMBER: dddddddd
(REFERENCED BY MEMBER: eeeeeeee
TYPE: ffffffff)

Explanation: No accounting information exists or could be
retrieved for the specified member. If the member is an
include, then the referencing member is provided. If the
member is a compilable member, then the referencing
member is the name of the build map.

Possible problems:

• Member was moved to another type after a previous
successful build.

• Member referenced in an architecture definition does
not exist.

• FLMSYSLB macros have been added or removed from
the project definition since the source members being
built were last parsed or migrated.

Programmer Response: Verify that the accounting
database is correct, or register both the specified member
and the referencing source member with SCLM using the
SCLM editor, SAVE service, or migration utility. Then
resubmit the job.

Project Administrator Response: None.

FLM43007 LANGUAGE SCOPE: a FOR
MEMBER: bbbbbbbb TYPE: eeceeeee
CONFLICTS WITH BUILD SCOPE SPECIFIED

Explanation: The scope specified in the project definition
for the specified member is of greater range than the
scope specified on the build panel. The first letter of the
scope defined in the project definition is listed.

Programmer Response: You can specify the following
four scopes (in ascending order): LIMITED, NORMAL,
SUBUNIT, and EXTENDED. Verify that the range specified
as input to the build processor is of equal or greater range
than the scope specified in the project definition for the
source member being built.

Project Administrator Response: None.

306 ISPF/PDF Software Configuration and Library Manager

FLM43008 ERROR PROCESSING DEPENDENCIES FOR
MEMBER: aaaaaaaa TYPE: bbbbbbbb

Explanation: Errors occurred while processing the
dependencies for the specified member. Other messages
preceding this one provide more detail on the exact errors
that occurred.

Programmer Response: See the message data set for all
the messages related to this error.

Project Administrator Response: None.

FLM43109 NO ACCOUNTING INFORMATION EXISTS
FOR COMPILATION UNIT

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd (ACCOUNTING
INFORMATION EXISTS FOR INTERMEDIATE
FORM)

Explanation: Accounting information does not exist for the
compilation unit; however, accounting information does
exist for the associated intermediate form.

This error can be caused when you delete a source
member (using the library utility) but forget to delete the
intermediate forms produced by the compiler for those
compilation units contained in the deleted source member.

Programmer Response: Delete the intermediate form
from all groups in the hierarchy used in the build.

Project Administrator Response: None.

FLM43111 SPECIFICATION MISSING FOR
COMPILATION UNIT

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd

Explanation: The specified compilation unit has a
dependency on an implicit specification. Implicit
specifications are not allowed.

Programmer Response: Create a specification for the
compilation unit.

Project Administrator Response: None.

FLM43119 VERIFICATION ERROR OCCURRED FOR
COMPILATION UNIT

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd

Explanation: Accounting information for the specified
compilation unit does not match accounting information for
the member that contains the source for the compilation
unit. The member in question is identified in the
messages that appear on your screen after this message.

Programmer Response: Register the member with SCLM,
using the SCLM editor, migration utility, or SAVE service,
and resubmit the job.

Project Administrator Response: None.

FLM43120 ERROR PROCESSING DEPENDENCIES FOR
COMPILATION UNIT:

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd

Explanation: Errors occurred while processing the
dependencies for the specified compilation unit.

Programmer Response: See the messages that appeared

before this message on your screen for additional
information.

Project Administrator Response: None.

FLM44001 MEMBER: aaaaaaaa TYPE: bbbbbbbb
REFERENCES MEMBER: ecce ecce
TYPE: dddddddd - LOOP FOUND

Explanation: SCLM found a loop in the specified
reference. A loop is a recursive reference. For example,
if member X includes member Y and member Y includes
member X, a loop results.

Programmer Response: Verify that the dependency
structure of the member being built does not contain any
loops. Resubmit the job.

Project Administrator Response: None.

FLM44032 WARNING, "COMP" KEYWORD NOT
SPECIFIED FOR MEMBER: aaaaaaaa
TYPE:bbbbbbbb

Explanation: The message is a warning indicating that
you have not specified a COMP keyword for a JOVIAL
compoo!. This missing keyword (COMP) will result in the
data dictionary not being updated for the compoo!.

Programmer Response: Verify that the translator to be
invoked for the member contains an FLMALLOC macro
with IOTYPE = 0 and KEYREF = COMPo If the specified
member is an architecture member, add a COMP keyword.

Project Administrator Response: None.

FLM44035 FLMALLOC MACRO WITH
KEY REF = aaaaaaaa DOES NOT EXIST FOR
LANGUAGE bbbbbbbb

Explanation: The specified language does not contain an
FLMALLOC macro with KEYREF aaaaaaaa. An
architecture member contains the keyword aaaaaaaa and
controls invocation of the translators for the language
bbbbbbbb.

Programmer Response: Verify that an FLMALLOC macro
with a KEY REF = aaaaaaaa parameter exists for the
language; otherwise, remove the keyword from the
architecture member.

Project Administrator Response: None.

FLM44037 ERROR PROCESSING MEMBER: aaaaaaaa
TYPE:bbbbbbbb

Explanation: An error occurred while processing the
specified member. The member may either be a source
member or an architecture member. Other error
messages are generated that describe the exact problem.

Programmer Response: See the message data set for all
the messages related to this error.

Project Administrator Response: None.

FLM44039 MULTIPLE "SINC" KEYWORDS MUST
REFERENCE THE SAME TYPE SINCE
COMPILATION UNIT DEPENDENCIES ARE
PRESENT

Explanation: Multiple SINC statements with different types
were specified in the architecture member in which
compilation dependencies existed for the members
specified on the SINC statement. SCLM requires that all
source members referenced with the SINC keyword reside
in the same type if any of the members contain

FLM44001 - FLM44230

compilation units. The message that appears after this
message identifies the architecture member in question.

Programmer Response: If you specify multiple source
inputs with the SINC keyword, verify that they reside in the
same type.

Project Administrator Response: None.

FLM44101 ARCHITECTURE MEMBER: aaaaaaaa
TYPE: bbbbbbbb NOT FOUND WITHIN
SCOPE OF ARCHITECTURE DEFINITION
BEING BUILT

Explanation: The specified member is being referenced
during the build; however, it was not predefined by build to
be within the scope of processing. This error may occur if,
for example, during the building of a system, a subsystem
of that system is rebuilt by another build or promoted into
the hierarchy (perhaps by another user).

The rebuilding of the subsystem may increase the scope of
the build for the system. The building of the system may
have proceeded too far to identify any more members
within the scope.

Programmer Response: Verify that no other builds or
promotes are occurring within your hierarchy and
resubmit the job.

Project Administrator Response: None.

FLM44201 ARCHITECTURE MEMBER: aaaaaaaa
TYPE: bbbbbbbb HAS INVALID SYNTAX

Explanation: The indicated architecture member is not
correct. Additional messages are generated that describe
the exact problem with this architecture member.

Programmer Response: See the message data set for all
the messages related to this error.

Project Administrator Response: None.

FLM44203 MEMBER: aaaaaaaa TYPE: bbbbbbbb IS
INCORRECTLY REFERENCED BY
MEMBER: ecce ecce TYPE: dddddddd

Explanation: An incorrect dependency exists when this
reference occurs. This error occurs when an LEC
architecture member references a member that does not
produce either an object module or a load module when
built. Processing of member eeeeeeee cannot continue.

Programmer Response: Verify that member aaaaaaaa in
type bbbbbbbb produces an object or load module. An
object module must be identified by the OBJ keyword. A
load module must be identified by the LOAD keyword.

Project Administrator Response: None.

FLM44230 ERROR RETRIEVING ACCOUNTING
INFORMATION

CODE: aaa GROUP: bbbbbbbb
TYPE: ceeeeeee LOAD MODULE: dddddddd

Explanation: No accounting information exists or could be
retrieved for the specified member within the hierarchy
beginning in the specified group. The member in
question is a load module being referenced by the LINK
keyword.

Programmer Response: Possible return codes are:

8 The member's accounting information was not
found. Build the architecture member that creates
the load module.

Chapter 12. Messages and Codes 307

FLM44231 - FLM44309

20 A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM44231 INVALID REFERENCE TO LOAD
MODULE: aaaaaaaa TYPE: bbbbbbbb

Explanation: The load module referenced with the LINK
keyword is a member that can be edited.

Programmer Response: For the architecture member that
contains the error, verify that the LINK keyword specifies a
load module and not the architecture member that creates
the link load module.

Project Administrator Response: None.

FLM44280 SYNTAX ERROR IN ARCHITECTURE
MEMBER: aaaaaaaa TYPE: bbbbbbbb
CODE: eee

Explanation: Possible return codes are:

4

8

12

16

20

24

The specified architecture member contains
keywords that identify it as both an LEC and a CC
or a generic architecture member.

Depending on the architecture member that you
were processing, a SINC keyword was not
specified.

The architecture member was identified as a CC or
generic architecture member (contains the SINC
keyword). However, the architecture member
contains a keyword used only for HL and LEC
architecture members (INCL, INCLD, and LINK
keywords).

The architecture member was identified as an LEC
(contains the ALIAS, LOAD, LKED, LMAP, or any
combination of these keywords). However, the
architecture member does not contain a keyword to
identify the inputs (INCL, INCLD, and LINK
keywords).

The architecture member was identified as an HL.
However, the architecture member contains either
a PARM, PARMx, or CMD keyword. These
keywords are not allowed for an HL architecture
member.

The architecture member was identified as an LEC
but is missing the keyword LOAD.

Programmer Response: If the return code is:

4

8

12

16

20

If the architecture member is to be used to create a
load module, use only the LOAD keyword in it.
Otherwise, use only OBJ keywords for architecture
members intended to create object modules and
OUTx keywords for architecture members intended
to create other generic output. Check the
architecture member for a SINC keyword and
resubmit.

Check the architecture member for a SINC keyword
and resubmit.

See "Statement Uses" on page 27 for valid
keywords in architecture members.

See "Statement Uses" on page 27 for valid
keywords in architecture members.

See "Statement Uses" on page 27 for valid
keywords in architecture members.

308 ISPF/PDF Software Configuration and Library Manager

24 SCLM identified the architecture member as an
LEC, but it does not have a LOAD keyword.

Project Administrator Response: None.

FLM44304 COMPOOL DEPENDENCY TYPE WAS NOT
SPECIFIED FOR MEMBER: aaaaaaaa
TYPE:bbbbbbbb

Explanation: Build processor could not find the CREF type
for the indicated member.

Programmer Response: If the member is an architecture
member then verify that a CREF keyword exists. If the
member is source, verify that the language definition
(FLMLANGL macro) specifies the DFL TCRF parameter.

Project Administrator Response: None.

FLM44306 ERROR RETRIEVING ACCOUNTING
INFORMATION

CODE: aaa GROUP: bbbbbbbb
TYPE: eeeeeeee COMPOOL: dddddddd

Explanation: No accounting information exists or could be
retrieved for the specified member within the hierarchy
beginning in group bbbbbbbb. The member in question is
a com pool reference where type is defined either by the
CREF keyword in an architecture member or the DFL TCRF
parameter (FLMLANGL macro) in the language definition.

Programmer Response: Possible return codes are:

8 The member's accounting information was not
found. Build the member that creates the specified
compoo/.

20 A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM44307 ERROR REFERENCING
COMPOOL: aaaaaaaa TYPE: bbbbbbbb

Explanation: The referenced compool is a member that
can be edited. It must be a member that was created by
the build function.

Programmer Response: Delete the compool from the
hierarchy. Rebuild the member that created the compool
member. Resubmit the job.

Project Administrator Response: None.

FLM44309 MEMBER: aaaaaaaa TYPE: bbbbbbbb WAS
FOUND AT GROUP: eeeeeeee BUT IS BEING
CROSS REFERENCED AT GROUP: dddddddd

Explanation: A reference was made to a compilation unit
contained in member aaaaaaaa in type bbbbbbbb at group
dddddddd. However, a more current version of the
member exists at group eceececc. The member at group
eeeeeeee does not contain the compilation unit nor does
any other member in the hierarchy below group
dddddddd. This problem can occur when the language of
member aaaaaaaa is changed to one that has no
compilation units or uses a different CUQUAL. Use the
sublibrary utility to purge the intermediate form. Check
error messages for additional information. If the
intermediate form is deleted outside of SCLM control, use
the sublibrary utility to delete accounting information for
the intermediate form.

Programmer Response: Change the language of member
aaaaaaaa if appropriate. Add a new member with the
compilation units contained in member aaaaaaaa at group
dddddddd. Remove the references to the compilation
units in member aaaaaaaa at group dddddddd.

Project Administrator Response: None.

FLM44311 ERROR PROCESSING COMPILATION UNITS
FOR MEMBER: aaaaaaaa TYPE: bbbbbbbb

Explanation: An error occurred during processing of the
compilation units for the specified member. Other
messages are generated that describe the exact errors
that occurred.

Programmer Response: See the message data set for all
the messages related to this error.

Project Administrator Response: None.

FLM44315 INVOKE PURGE ROUTINE FOR
INTERMEDIATE FORM

CU NAME: aaa(55) bbb(55) CU TYPE: cccc
CU QUALIFIER: dddddddd
OLD RECORD - TYPE: eeeeeeee
MEMBER: ffffffff LANG: gggggggg
NEW RECORD - TYPE: hhhhhhhh
MEMBER: iiiiiiii LANG: jjjjjjjj

Explanation: The intermediate form is no longer valid. It
was previously created by another source member, or the
language of the source member was changed. A routine
is being invoked to purge the intermediate form. This
message is provided for information only.

Programmer Response: None.

Project Administrator Response: None.

FLM44319 UNABLE TO PURGE INTERMEDIATE FORM

CODE: aaaa

Explanation: The purge of the intermediate form was not
successful.

Programmer Response: Resubmit the job. If the error
recurs, contact the project administrator.

Project Administrator Response: Verify that the sublibrary
containing the intermediate form is not corrupted.

FLM44410 MEMBER: aaaaaaaa TYPE: bbbbbbbb HAS
DEPENDENCY ON INLINE/GENERIC
MEMBER: cccccccc TYPE: dddddddd -
LOOP NOT ALLOWED.
TRACE BACK OF DEPENDENCIES:
MEMBER: cccccccc ... aaaaaaaa
TYPE:bbbbbbbb ... dddddddd

Explanation: A dependency loop involving a generic or
inline member was detected when member cceccccc
referenced member aaaaaaaa. SCLM does not allow this
structure. See "Generic/lNLlNE Recursive Dependencies"
on page 281.

Programmer Response: Edit the necessary source
members to remove the dependency loop back to the
inline/generic member. See" Ada Language Restrictions"
on page 280 for alternate responses.

Project Administrator Response: None.

FLM44311 - FLM44506

FLM44500 > > > > > INVOKE TRANSLATOR(S) FOR
TYPE: aaaaaaaa MEMBER: bbbbbbbb

Explanation: Translators are being invoked for the
specified member. This member may be either a source
member or an architecture member. This message is
provided for information only.

Programmer Response: None

Project Administrator Response: None.

FLM44501 REPORT: INVOKE TRANSLATOR(S) FOR
TYPE: aaaaaaaa MEMBER: bbbbbbbb

Explanation: The translators would be invoked for the
specified member if the build mode were not report-only.

Programmer Response: None

Project Administrator Response: None.

FLM44504 ERROR PRINTING TO BUILD LISTING DATA
SET FOR FILE NUMBER aa IN
TRANSLATOR: bbb(16) CODE: eee

Explanation: An error occurred during the printing of a
translator data set to the build listing data set. The file
number identifies the relative position of the FLMALLOC
macro used to allocate the data set for that translator.

Note: Only data sets allocated with 10TYPE = 0, W, and S
can be printed to the build listing data set.

Programmer Response: Contact the project
administrator.

Project Administrator Response: If the return code is:

12

16

20

The ddnames are not allocated properly. Verify
that the build listing data set and the translator data
set are allocated. The problem may be due to
conflicting attributes between the two data sets.

The build listing data set is full. Reallocate the data
set with more storage.

Data access failed or SCLM did not find the input
member. Verify that the type of access (RACF) is
allowed. Verify that the translator data set still
exists after all translator steps in the language
definition have been completed. A user-created
translator may have purposely deallocated the data
set.

An ABEND may occur during the printing if the translator
data set is allocated with PRINT = Y on the FLMALLOC
macro and the data set is never opened by the translator.
In such cases, specify PRINT = I on the FLMALLOC macro.
This attribute forces the data set to be opened before the
translator is invoked, and the data set will be targeted for
printing to the build listing data set.

FLM44506 ERROR SAVING FILE NUMBER aa FOR
TRANSLATOR: bbb(16) TO MEMBER:
ecceeeec TYPE: dddddddd,
CODE: eeeeeeee

Explanation: An error occurred during the copying of a
translator data set to the member. The file number
identifies the relative position of the FLMALLOC macro
used to allocate the data set for that translator (the data
set is a sequential data set allocated with 10TYPE = 0).

Programmer Response: Contact the project
administrator.

Chapter 12. Messages and Codes 309

FLM44507 - FLM51002

Project Administrator Response: Possible return codes
are:

12

16

20

28

The ddnames are not allocated properly. Verify
that the type is allocated properly. The problem
may be due to conflicting attributes between the
translator data set and the type.

The target type may be full. Compress the type or
reallocate with more space or directory.

Data access failed or SCLM did not find the input
member. Verify that the type of access (RACF) is
allowed. Verify that the type is not allocated
exclusively to another job.

The member entry could not be created because
the input member is an alias or has TTR notes.
Verify that the member is not an alias or does not
have TTR notes.

FLM44507 ERROR SAVING FILE NUMBER aa FOR
TRANSLATOR: bbb(16) TO
MEMBER: cccccccc TYPE: dddddddd,
CODE: eeeeeeee

Explanation: An error occurred while copying a translator
data set to the member. The file number identifies the
relative position of the FLMALLOC macro used to allocate
the data set for that translator. The data set is a PDS
allocated with IOTYPE = P.

Programmer Response: Possible return codes are:

4

8

12

16

Copy error. The translator data set may be empty.
The member created in the PDS may not match the
name specified in the architecture member.

Enqueue error. Resubmit the job, and if the error
recurs, verify that the data set is not allocated
exclusively to another job.

SCLM is unable to allocate the target member.
Verify that the type of access (RACF) is allowed.
Verify that the type is not allocated exclusively to
another job.

Error allocating temporary data sets for IEBCOPY.
Resubmit the job.

20 Error opening target output data set. Resubmit the
job.

> 20 IEBCOPY completion code in decimal.

14905344 (E37)
The directory is full; the maximum of 16
extents is exceeded, or the volumelVTOC
that the target data set resides on is full and
no secondary volumes are available.

Project Administrator Response: None.

FLM44513 TRANSLATOR ERROR FOR
MEMBER: aaaaaaaa TYPE: bbbbbbbb

Explanation: A translator error occurred for the specified
member. The return code from the translator was not
considered acceptable. The acceptable return codes are
specified on the FLMLANGL macro with the GOODRC
parameter.

Programmer Response: Check listing for translator
errors.

310 ISPF/PDF Software Configuration and Library Manager

Project Administrator Response: None.

FLM44514 TARGET OUTPUT MEMBER: aaaaaaaa
TYPE: bbbbbbbb IS EDITABLE

Explanation: The build processor cannot copy the
translator output data set. The specified member was
created by the SCLM editor or registered with the
migration utility or SAVE service. The build processor
only updates members that were created through the build
process (non-editables).

Programmer Response: If the specified member is no
longer to be used as an editable component in the system,
delete it from the hierarchy. Otherwise, specify a new
target member. Resubmit the job.

Project Administrator Response: None.

FLM46000 BUILD PROCESSOR COMPLETED -
aaaaaaaa ON bbbbbbbb

Explanation: The build processor completed.

Programmer Response: See the message data set for all
the messages regarding the outcome of this build.

Project Administrator Response: None.

FLM49000 INVOKING BUILD PROCESSOR

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM51000 PROMOTE PROCESSOR INITIATED
aaaaaaaa ON bbbbbbbb

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM51001 BLANK USER ID IS SPECIFIED AS AN INPUT
TO THE PROMOTE PROCESSOR

Explanation: A blank user ID was specified as an input
parameter. If the processor was invoked through the
SCLM Promote panel, SCLM retrieves the user ID from the
ISPF/PDF variable pool.

Programmer Response: Verify that the user ID specified
in the input parameter is correct and non-blank. See
"PROMOTE-Promote a Member from One Library to
Another" on page 145 for more information about the
promote input parameters.

Project Administrator Response: None.

FLM51002 INVALID SCOPE SPECIFIED

Explanation: The promote scope specified is invalid.
Valid promote scopes are NORMAL, SUBUNIT, and
EXTENDED.

Programmer Response: Verify that the input parameters
specified for the promote processor are correct.

Project Administrator Response: None.

FLM51 003 INVALID PROMOTE MODE SPECIFIED

Explanation: The promote mode specified is invalid.
Valid promote modes are CONDITIONAL,
UNCONDITIONAL, and REPORT.

Programmer Response: Verify that the input parameters
specified for the promote processor are correct.

Project Administrator Response: None.

FLM51004 GROUP: aaaaaaaa IS TOP GROUP -
PROMOTE BYPASSED

Explanation: The group specified does not promote to
another group for this project definition. The promote
report is created as if this were a report-only promote.

Programmer Response: Verify that the group specified as
an input parameter to the promote processor is the group
containing the data to be promoted. Also verify that you
specified the correct project definition as an input to the
promote processor.

Project Administrator Response: None.

FLM51 006 SPECIFIED GROUP: aaaaaaaa IS A
PRIMARY NON-KEY GROUP

Explanation: The specified group is a primary non-key
group. Promoting from a primary non-key group is not
allowed.

Programmer Response: Verify that the group and project
definition specified as inputs to the promote processor are
correct. See "Primary Non-Key Group Testing
Techniques" on page 258 for more information about
primary non-key groups.

Project Administrator Response: None.

FLM51 008 USER DEFINED DDNAME: aaaaaaaa FOR
PROMOTE MESSAGES NOT ALLOCATED

Explanation: The ddname specified for the promote
messages was not allocated. If the promote function is
invoked through the SCLM services, the ddname for the
promote messages is optional. If the ddname is not
specified, the promote messages are defaulted to the
terminal. If the ddname is specified, it must be allocated.

Programmer Response: Verify that the user-supplied
ddname for promote messages is allocated. Resubmit the
job.

Project Administrator Response: None.

FLM51 009 USER DEFINED DDNAME: aaaaaaaa FOR
PROMOTE REPORT NOT ALLOCATED

Explanation: The ddname specified for the report was not
allocated. If the promote function is invoked through
SCLM services, the ddname for the promote report is
optional. If the ddname is not specified, the promote
report is defaulted to the terminal. If the ddname is
specified, it must be allocated.

Programmer Response: Verify that the user-supplied
ddname for promote report is allocated. Resubmit the job.

Project Administrator Response: None.

FLM51010

FLM51003 - FLM52103

USER DEFINED DDNAME: aaaaaaaa FOR
COpy ERROR MESSAGES NOT ALLOCATED

Explanation: The ddname specified for promote copy
error messages was not allocated. If the promote function
is invoked through SCLM services, the ddname for the
copy error messages is optional. If the ddname is not
specified, the copy error messages are defaulted to the
terminal. If the ddname is specified, it must be allocated.

Programmer Response: Verify that the user-supplied
ddname for copy error messages is allocated. Resubmit
the job.

Project Administrator Response: None.

FLM51011 USER DEFINED DDNAME: aaaaaaaa FOR
USER EXIT FILE NOT ALLOCATED

Explanation: The ddname specified for the user exit data
set was not allocated. If the promote function is invoked
through the SCLM services, the ddname for the user exit
data set is optional. If not specified, a user exit data set is
allocated to NULLFILE. If the ddname is specified, it must
be allocated.

Programmer Response: Verify that the user-supplied
ddname for user exit data set is allocated. Resubmit the
job.

Project Administrator Response: None.

FLM51103 NO KEY GROUP EXISTS BELOW
GROUP: aaaaaaaa

Explanation: No key group exists below the specified
group, or the specified group is not defined to SCLM.

Programmer Response: Contact the project
administrator.

Project Administrator Response: This condition violates
the guideline for a project hierarchy. The lowest groups of
the hierarchy must be key groups. Modify the project
definition to make the lowest group key and resubmit the
job.

FLM52000 INITIATING VERIFICATION PHASE
aaaaaaaa ON bbbbbbbb

Explanation: Indicates that the promote verification phase
has been initiated. In this phase, SCLM verifies all
members within the scope of the architecture definition.
All members must be up to date (for example, source
matches object) and must have correct accounting
information.

Programmer Response: None.

Project Administrator Response: None.

FLM52103 ERROR RETRIEVING BUILD MAP
INFORMATION

CODE:aaa TYPE:bbbbbbbb
MEMBER: cccccccc REFERENCED BY
BUILD MAP AT TYPE: dddddddd
MEMBER: eeeeeeee

Explanation: SCLM could not retrieve build map
information for the specified member.

Programmer Response: Possible return codes are:

8 The specified build map information does not exist.
Build the architecture member used as input for
this promotion again. Invoke the promote function
again, and resubmit the job.

Chapter 12. Messages and Codes 311

FLM52105 - FLM52911

12

16

The format of the data retrieved was incorrect.
Delete the build map and build again to regenerate
it.

An invalid group was found in the project definition.
Contact the project administrator.

20 A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: If the return code is:

16

20

Reassemble the project definition. Verify that no
errors occurred. Relink the project definition. For
more information, see "Step 10: Assemble and Link
Project Definition" on page 206.

A VSAM error occurred. Run IDCAMS against the
accounting data set to determine the problem. See
"Defining Accounting Data Set (SCLM Internal
Data)" on page 194.

FLM52105 VERSION MISMATCH FOR LANGUAGE:
aaaaaaaa BUILD MAP MEMBER: bbbbbbbb
IN TYPE: cccccccc LANGUAGE VERSION IN
BUILD MAP: dddddddd LANGUAGE
DEFINITION VERSION: eeeeeeee

Explanation: Since the last build, a new version of the
translator for the language was installed.

Programmer Response: Rebuild the specified member
using the current project definition.

Project Administrator Response: None.

FLM52901 SCOPE: a SPECIFIED AS INPUT IS
INCOMPATIBLE WITH SCOPE: b FOR
LANGUAGE: ecce ecce OF
MEMBER: dddddddd IN TYPE: eeeeeeee

Explanation: Scope a requested for this promote has a
smaller range than the scope b specified in the project
definition for the member's language. Promote accepts
three values for scope: NORMAL, SUBUNIT, and
EXTENDED. NORMAL has the smallest range; EXTENDED
has the greatest range.

Programmer Response: Specify an equal or a larger
range scope than the scope of the member's language
being promoted. If a non-Ada source is being promoted,
NORMAL is usually sufficient for the promote scope.
Otherwise, EXTENDED scope is always compatible with
the languages. Verify that the architecture definition being
promoted has been built with the scope used as input to
the promote function.

Project Administrator Response: None.

FLM52902 WARNING:
THE FOLLOWING DOWNWARD
DEPENDENCY COMPILATION UNIT NOT
FOUND

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd
OF MEMBER: eeeeeeee TYPE: fftftftf

Explanation: The downward dependency of the member
was not found in the hierarchy. This message occurs
when an Ada package specification is being promoted, but
the body of the compilation unit cannot be found within the
hierarchy.

Programmer Response: If the compilation unit identified
is a specification that contains only Ada-type declarations
or a package body is not required for other reasons, no

312 ISPF/PDF Software Configuration and Library Manager

action is necessary. If a package body was expected for
the compilation unit, define the body, rebuild, and promote
it.

Project Administrator Response: None.

FLM52904 ARCHITECTURE MEMBER: aaaaaaaa IN
TYPE: bbbbbbbb IS NOT CURRENT
THE SOURCE MEMBER: ecce ecce IN TYPE:
dddddddd WAS COMPILED WITHOUT THE
DEPENDENT COMPILATION UNIT

CU NAME: eee(55) fff(55) CU TYPE: gggg
CU QUALIFIER: hhhhhhhh

Explanation: The compilation unit identified in this
message was added since the last build of the source
member.

Programmer Response: Rebuild the architecture
definition using the specified scope. Resubmit the job.

Project Administrator Response: None.

FLM52905 ARCHITECTURE MEMBER: aaaaaaaa IN
TYPE: bbbbbbbb IS NOT CURRENT
THE DOWNWARD DEPENDENCY
COMPILATION UNIT

CU NAME: ccc(55) ddd(55) CU TYPE: eeee
CU QUALIFIER: ffffffff
OF MEMBER: gggggggg TYPE: hhhhhhhh
HAS NOT BEEN BUILT.

Explanation: The specified compilation unit has never
been built. This error could occur for one of the following
reasons:

• The specified compilation unit was introduced to the
product after the architecture member was built.

• The specified member has never been built in
EXTENDED scope.

Programmer Response: Rebuild the specified
architecture definition in EXTENDED scope, and resubmit
the job.

Project Administrator Response: None.

FLM52910 ARCHITECTURE MEMBER: aaaaaaaa IN
TYPE: bbbbbbbb IS NOT CURRENT

Explanation: The architecture member is an architecture
member of an Adabind member. One or more compilation
units referenced for the Adabind member has been rebuilt
since the last time the Adabind member was built.

Programmer Response: Rebuild the architecture member
and resubmit the job.

Project Administrator Response: None.

FLM52911 ARCHITECTURE MEMBER: aaaaaaaa IN
TYPE: bbbbbbbb DEPENDS ON
ARCHITECTURE MEMBER: cccccccc
TYPE: dddddddd WHICH HAS REBUILT
GENERIC/INLINE SUBUNITS

Explanation: One or more generic or inline compilation
units of the specified architecture member has been
rebuilt since the last time the architecture member was
built.

Programmer Response: Rebuild the architecture member
being promoted and resubmit the job.

Project Administrator Response: None.

FLM53005 ARCHITECTURE MEMBER: aaaaaaaa IN
TYPE: bbbbbbbb IS NOT CURRENT
DATE/TIME MISMATCH ON
MEMBER: ecce ecce IN TYPE: dddddddd
BUILD MAP ENTRY DATE/TIME: eeeeeeee
ffffffff ACCOUNTING DATE/TIME: gggggggg
hhhhhhhh

Explanation: A change has occurred since the last build
of the architecture member. The output of the build does
not match the input (for example, source does not match
object). Build output for the architecture member was
based on a version of the source member. The specified
source member has since been updated but the updates
have not been built

Programmer Response: Rebuild the architecture member
being promoted and resubmit the job.

Project Administrator Response: None.

FLM53106 PREDECESSOR VERIFICATION FAILED

INPUT GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: ecce ecce
ERROR GROUP1: dddddddd
DATE: eeeeeeee TIME: ffffffff
ERROR GROUP2: gggggggg
DATE: hhhhhhhh TIME: ;;;;;;;;

Explanation: The version of the member in dddddddd was
not based on the member in gggggggg. This error usually
means that a version of the member between the two
groups has been deleted.

The predecessor date and time fields in the accounting
information for the member in dddddddd should contain
the last modified date and time fields for the next
occurrence of the member within the hierarchy.

The promote processor, in CONDITIONAL mode, prevents
the member in gggggggg from being replaced.

Programmer Response: Verify that the member contains
all of the required changes present in the member in
gggggggg. If it does, and no other promote verification
errors are present, promote again in UNCONDITIONAL
mode.

If other promote verification errors are present, either
correct the errors or use an architecture member that
controls as few members as possible.

Project Administrator Response: None.

FLM53108 MEMBER: aaaaaaaa TYPE: bbbbbbbb AT
GROUP: cccccccc IS NOT ELIGIBLE FOR
PROMOTION

Explanation: One or more of the accounting information
fields for the member has an invalid value, which prevents
SCLM from promoting the member. The fields are:

• AUTHORIZATION CODE CHANGE
• ACCESS KEY
• ACCOUNTING RECORD TYPE.

If the AUTHORIZATION CODE CHANGE field is not blank,
an attempt was made to change the authorization code of
the member, which did not complete successfully.

If the ACCESS KEY field is not blank, the member has
been reserved for use outside the project hierarchy or
blocked from promotion.

If the ACCOUNTING RECORD TYPE is initial or lockout, a
lock has been placed on the member but changes to the

FLM53005 - FLM53901

member have not been registered with SCLM. The source
for the member either does not exist or does not match the
accounting information.

Programmer Response: Use the SCLM library utility to
review the contents of the specified fields. If the
AUTHORIZATION CODE CHANGE field is not blank, verify
that the authorization code for the member is correct. If it
is, use the update capability of the utility to reset the field.
If the field should be changed, use the utility to complete
the change in progress or assign a new authcode.

If the ACCESS KEY is not blank, refer to local software
configuration management procedures to determine the
cause of action based on the values of the access key. If
the access key is eligible for removal, use the UNLOCK
service to reset the access key to blanks.

If the ACCOUNTING RECORD TYPE is initial or lockout and
the member is not present in the group you are promoting
from, delete the accounting information using the library
utility (or use an equivalent function such as the UNLOCK
service).

If the member exists, use the SCLM editor or SAVE service
to create correct accounting information. Rebuild the
architecture member being promoted after the accounting
information has been either deleted or updated.

Project Administrator Response: None.

FLM53109 WARNING, PREDECESSOR VERIFICATION
FAILED

INPUT GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: cccccccc
ERROR GROUP1: dddddddd
DATE: eeeeeeee TIME: ffffffff
ERROR GROUP2: gggggggg
DATE: hhhhhhhh TIME: ;;;;;;;;

Explanation: The version of the member in dddddddd was
not based on the member in gggggggg. This error usually
means that a version of the member between the two
groups has been deleted.

The predecessor date and time fields in the accounting
information for the member in dddddddd should contain
the last modified date and time fields for the next
occurrence of the member within the hierarchy.

This message is a warning. However, the promote
processor, in CONDITIONAL mode, prevents the member
from replacing the member in gggggggg.

Programmer Response: For this promote, no action is
required. An attempt to promote member cccccccc to
group gggggggg will fail in CONDITIONAL mode.

Project Administrator Response: None.

FLM53901 ERROR RETRIEVING ACCOUNTING
INFORMATION FOR INTERMEDIATE FORM
OF: CU NAME: aaa(55) bbb(55)
CU TYPE: ecce CU QUALIFIER: dddddddd
CODE: eee GROUP: ffffffff

Explanation: An error occurred while attempting to
retrieve accounting information for the specified
intermediate form. The error code associated with the
error message provides specifics regarding the nature of
the error.

Programmer Response: Possible return codes are:

Chapter 12. Messages and Codes 313

FLM53902 - FLM55000

8

12

16

The accounting information for the intermediate
form of the compilation unit was not found in the
specified group in the hierarchical view. The
compiled intermediate form may be missing or out
of date. You need to build the member containing
the compilation unit.

SCLM internal error. Contact the project
administrator.

SCLM found an invalid group in the project
definition. Contact the project administrator.

20 An I/O error occurred while retrieving the
accounting information for the intermediate form of
the compilation unit. Submit the job again. If the
error recurs, contact the project administrator.

24 The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

12 Contact SCLM Program Support.

16

20

24

Reassemble the project definition. Verify that no
errors occurred. Link the project definition again.
For more information, see "Step 10: Assemble and
Link Project Definition" on page 206.

A VSAM error occurred. Run IDCAMS against the
cross-reference data set to determine the problem.

Identify the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM53902 ARCHITECTURE MEMBER: aaaaaaaa IN
TYPE: bbbbbbbb IS NOT CURRENT
VERIFICATION ERROR FOR COMPILATION
UNIT

CU NAME: ccc(55) ddd(55) CU TYPE: eeee
CU QUALIFIER: ffffffff BUILD MAP
DATE/TIME: gggggggg hhhhhhhh
ACCOUNTING DATE/TIME: iiiiiiii jjjjjjjj

Explanation: A change has occurred since the last build
of the architecture member being promoted. The output of
the build does not match the input. Build output for the
specified compilation unit was based on the build map
date and time indicated. The specified compilation unit
has since been updated but the updates have not been
built.

Programmer Response: Rebuild the architecture member
being promoted and resubmit the job.

Project Administrator Response: None.

FLM53903 WARNING, INTERMEDIATE FORM AND
ACCOUNTING INFORMATION FOR THE
FOLLOWING COMPILATION UNIT WILL BE
PURGED FROM GROUP: aaaaaaaa
CU NAME: bbb(55) ccc(55) CU TYPE: dddd
CU QUALIFIER: eeeeeeee
FROM-GROUP MEMBER: ffffffff
TYPE: gggggggg LANGUAGE: hhhhhhhh
ABOVE-GROUP MEMBER: iiiiiiii TYPE: jjjjjjjj
LANGUAGE: kkkkkkkk

Explanation: The source for the compilation unit identified
in the messages was moved to a different member. This

314 ISPF/PDF Software Configuration and library Manager

move would cause the intermediate form of the
compilation unit to exist in more than one sublibrary in the
specified group unless the intermediate form is purged.
SCLM does not allow multiple copies of a member's
compilation unit to exist in one group of the hierarchy;
therefore, the old compilation unit is purged.

Programmer Response: No action is necessary unless
the promote fails to copy the compilation unit identified. If
the copy failed, the group will not contain a copy of the
compilation unit until the promote competes successfully.

Project Administrator Response: None.

FLM53905 ERROR RETRIEVING ACCOUNTING
INFORMATION FOR INTERMEDIATE FORM
OF: CU NAME: aaa(55) bbb(55)
CU TYPE: ecce CU QUALIFIER: dddddddd
CODE: eee GROUP: ffffffff

Explanation: An error occurred while attempting to
retrieve accounting information for the specified
intermediate form.

Programmer Response: Possible return codes are:

8 The accounting information for the intermediate
form of the compilation unit was not found at the
specified group. This error indicates that the
compiled intermediate form is missing or out of
date. You need to build the member containing the
compilation unit.

12

16

20

SCLM internal error. Contact the project
administrator.

An invalid group was found in the project definition.
Contact the project administrator.

An 1/0 error occurred retrieving the accounting
information for the intermediate form of the
compilation unit. Resubmit the job, and if the error
recurs, contact the project administrator.

24 The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

12

16

20

Contact SCLM Program Support.

Reassemble the project definition. Verify that no
errors occurred. Relink the project definition. For
more information, see "Step 10: Assemble and Link
Project Definition" on page 206.

A VSAM error occurred. Run IDCAMS against the
cross-reference data set to determine the problem.

24 Identify the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM55000 INITIATING COPY PHASE - aaaaaaaa ON
bbbbbbbb

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM55004 COpy FAILED FOR TYPE: aaaaaaaa
CODE: bbb

Explanation: One of the following has occurred:

• The target type does not exist or is not allocated with
the same attributes as the type specified.

• The target type may be allocated exclusively to
another job.

• One or more members were deleted between the
promote verification and copy phases.

Programmer Response: Check the following:

• Verify that the target data set exists and is allocated
with the same attributes as specified type.

• Verify that the target data set is not allocated
exclusively to another job.

• If MVS messages were produced, review those
messages for more information.

Project Administrator Response: None.

FLM55104 COpy FAILED FOR TYPE: aaaaaaaa ABEND
CODE: bbbb

Explanation: Promote was unable to update the data set
associated with the specified type because of an ABEND
during copy.

Common ABEND codes and their meanings are:

037
Primary space is full and secondary space is not
requested in the target data set.

B37 or E37
The directory is full; the maximum of 16 extents
were exceeded; or the volumeNTOC that the target
data set resides on is full and secondary volumes
are not available.

Programmer Response: Check for MVS system error
messages for detailed information. Resubmit the job after
you check the following:

1. Compress target data set or reallocate with more
space or directory blocks.

2. Verify that the volume and VTOC of the target data set
are not full. Move the data set if they are.

Project Administrator Response: None.

FLM55201 ERROR OCCURRED DELETING
ACCOUNTING INFORMATION FOR
INTERMEDIATE FORM OF DISCREPANCY
ITEMS

Explanation: An error occurred while attempting to purge
an intermediate form or intermediate accounting record in
the "from" group. The intermediate form's type or
member name at the "from" group does not match the
"to" group. Check that the source for a compilation unit
was not moved to a different member.

Programmer Response: See the message data set for all
the messages relating to this error.

Project Administrator Response: None.

FLM55004 - FLM57001

FLM55904 COPY OF INTERMEDIATE FORM FAILED
FOR LANGUAGE: aaaaaaaa

Explanation: An error occurred while copying an
intermediate form of a compilation unit in the specified
language.

Programmer Response: See the message data set for all
the messages relating to this error.

Project Administrator Response: None.

FLM55905 ERROR PURGING CROSS-REFERENCE
INFORMATION FOR EXTRA COMPILATION
UNIT

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd CODE: eee
GROUP: ffffffff TYPE: gggggggg
MEMBER: hhhhhhhh

Explanation: The promote processor deletes all the
cross-reference information for extra compilation units in
the specified group before it copies new text and
accounting records of all the members. An extra
compilation unit is a compilation unit that exists in the "to"
group but does not exist in the "from" group for a member
existing in both groups. This situation occurs when you
modify a member with an extra compilation in a private
library and then delete the extra compilation unit of the
member from the private library.

While deleting the cross-reference information from the
group for the compilation unit specified, an error occurred
and SCLM issued a return code.

Programmer Response: Possible return codes are:

8 A severe I/O error occurred. Contact the project
administrator.

16 The cross-reference data set is enqueued. Try the
job again later.

24 The cross-reference data set was not defined in the
project definition. Contact the project
administrator.

Project Administrator Response: If the return code is:

8

24

A VSAM error occurred. Run IDCAMS against the
cross-reference data set to determine the problem.

Identify the cross-reference data set on the
FLMCNTRL macro of the project definition. For
more information, see "FLMCNTRL Macro" on
page 218.

FLM57000 INITIATING PURGE PHASE - aaaaaaaa ON
bbbbbbbb

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM57001 INITIATING PURGE FROM GROUP:
aaaaaaaa

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

Chapter 12. Messages and Codes 315

FLM57007 - FLM61015

FLM57007 PURGE FAILED FOR GROUP: aaaaaaaa
TYPE: bbbbbbbb CODE: eee

Explanation: An error occurred while purging members
from the specified type/group.

Possible return codes are:

8
12
16
20

The target data set is enqueued.
An I/O error exists in target data set.
SCLM is unable to allocate data set.
SCLM internal error.

Programmer Response: Verify that the data set exists and
the data set is not allocated exclusively to another job.
Resubmit the job.

Project Administrator Response: If the return code = 20,
contact SCLM Program Support.

FLM57011 WARNING, UNABLE TO PURGE MEMBER(S)
BECAUSE MEMBER(S) ARE MISSING FROM
GROUP: aaaaaaaa TYPE: bbbbbbbb

Explanation: One or more members in the specified type
are mIssing. Only accounting information exists in the
specified group. The accounting information will be
deleted.

Programmer Response: Verify that no members involved
in the promotion should have existed in the specified
group.

Project Administrator Response: None.

FLM57101 WARNING, ACCOUNTING INFORMATION IS
NOT CURRENT FOR GROUP: aaaaaaaa
TYPE: bbbbbbbb MEMBER: eeeeceee

Explanation: The accounting information for the member
does not match the contents ofthe member. It is possible
that the member has been updated outside of SCLM
control.

Programmer Response: Define the member to SCLM
using the SCLM editor or the SAVE service. If the member
is not needed, delete it using the SCLM library utility or the
DELETE service.

Project Administrator Response: None.

FLM57201 PURGE OF INTERMEDIATE FORM FAILED
FOR GROUP: aaaaaaaa

Explanation: Unable to purge intermediate form from the
group.

Programmer Response: See the message data set for all
the messages related to this error.

Project Administrator Response: None.

FLM58000 PROMOTE PROCESSOR COMPLETED
aaaaaaaa ON bbbbbbbb

Explanation: The promote processor completed.

Programmer Response: See the message data set for all
the messages related to this error.

Project Administrator Response: None.

316 ISPF/PDF Software Configuration and Library Manager

FLM59001 INVOKING PROMOTE PROCESSOR

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM61 001 THE REPORTS WILL APPEAR IN aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None

Project Administrator Response: None.

FLM61 002 THE MESSAGES WILL APPEAR IN aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM61007 DATABASE CONTENTS UTILITY INITIATED
aaaaaaaa ON bbbbbbbb

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM61008 NUMBER OF PAGES GENERATED FOR THE
REPORT - aaa(10)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM61 009 NUMBER OF PAGES GENERATED FOR THE
TAILORED OUTPUT - aaa(10)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM61011 NO RECORDS FOUND FOR DATA TYPE
aaa(10)

Explanation: SCLM cannot find a list of members for the
data type entered.

Programmer Response: None.

Project Administrator Response: None.

FLM61015 ERROR RETRIEVING ACCOUNTING OR
CROSS-REFERENCE INFORMATION

CODE: aaa ERROR GROUP: bbbbbbbb
TYPE: cceeecee MEMBER: dddddddd

Explanation: No accounting record exists or could be
retrieved for the specified member within the hierarchical
view beginning at the group identified in the message.

Programmer Response: Possible return codes are:

8

12

16

SCLM did not find the member's accounting
information. Register the member with SCLM using
the edit function, migration utility, or the SAVE
service. Run the processor again.

The member's accounting and dependency
information was retrieved successfully; however,
some of the dependency information failed
verification processing. To determine the nature of
the verification error, browse the member's
accounting and dependency information by using
the library utility. The utility performs this
verification and displays the fields you want to
validate. You may need to edit and then save the
member to correct the problem.

SCLM found an invalid group in the project
definition. Contact the project administrator.

20 A severe I/O error occurred. Contact the project
administrator.

Project Administrator Response: Run IDCAMS against the
accounting data set to determine the problem.

FLM61020 NO MEMBERS MATCHING SELECTION
CRITERIA

Explanation: SCLM could not find a match for project,
group, type, and member.

Programmer Response: Verify that the selection criteria
are under SCLM control.

Project Administrator Response: None.

FLM61021 DATABASE CONTENTS UTILITY
COMPLETED - aaaaaaaa ON bbbbbbbb

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM61025 USER DEFINED DDNAME: aaaaaaaa FOR
DBUTIL REPORT NOT ALLOCATED

Explanation: The ddname specified for the DBUTIL report
was not allocated. If the DBUTIL function is invoked via
the services, the ddname for the DBUTIL report is optional.
If the ddname is not specified, the DBUTIL report is
defaulted to the terminal. If a ddname is specified, it must
be allocated.

Programmer Response: Verify that the user-supplied
ddname for DBUTIL output is allocated. Resubmit the job.

Project Administrator Response: None.

FLM61 028 USER DEFINED DDNAME: aaaaaaaa FOR
TAILORED OUTPUT NOT ALLOCATED

Explanation: The ddname specified for the tailored output
was not allocated. If the DBUTIL function is invoked via
the services, the ddname for the tailored output is
optional. If not specified, the tailored output is defaulted to
the terminal. If a ddname is specified, it must be
allocated.

Programmer Response: Verify that the user-supplied
ddname for the tailored output is allocated. Resubmit the
job.

Project Administrator Response: None.

FLM61030

FLM61020 - FLM62008

USER DEFINED DDNAME: aaaaaaaa FOR
DBUTIL MESSAGES IS NOT ALLOCATED

Explanation: The ddname specified for the messages is
not allocated. If the DBUTIL function is invoked via the
services, the ddname for the messages is optional. If a
ddname is not specified, the messages are defaulted to
the terminal. If a ddname is specified, it must be
allocated.

Programmer Response: Verify that the user-supplied
ddname for the messages is allocated. Resubmit the job.

Project Administrator Response: None.

FLM61035 TAILORED REPORT LINE LENGTH EXCEEDS
LIMIT

Explanation: The output line that is written to the tailored
file exceeded the 512 character limit.

Programmer Response: Verify that the length of the lines
being written as output to the tailored file is not greater
than 512. If it is greater than 512, change your formatted
report line to contain SCLM variables that write 512
characters or less to the tailored file.

Project Administrator Response: None.

FLM62000 ARCHITECTURE REPORT PROCESSOR
INITIATED - aaaaaaaa ON bbbbbbbb

Explanation: This message is provided for information
only.

Programmer Response: None

Project Administrator Response: None.

FLM62001 STARTING ARCHITECTURE MEMBER TYPE
EXCEEDS CUTOFF

Explanation: The architecture report could not be
generated because the type of architecture member
specified exceeded the type of architecture definition
given for the cutoff of the report. The report cutoff should
be equal to or lower than the architecture member kind.

For information on architecture members, see Chapter 2,
.. Architecture Definition."

Programmer Response: Specify a lower report cutoff and
resubmit the job.

Project Administrator Response: None.

FLM62004 MISSING INPUT PARAMETER

Explanation: The programmer has specified blanks in one
of the input parameter fields.

Programmer Response: Check the input parameters and
resubmit the job.

Project Administrator Response: None.

FLM62008 INVALID CUTOFF PARAMETER: aaa(24)

Explanation: The report cutoff for the architecture report
is invalid.

Programmer Response: Verify that the report cutoff
parameter specified is:

CC For HL, LEC, and CC architecture members.

GEN For HL, LEC, and generic architecture members.

HL For HL architecture members.

LEC For HL and LEC architecture members.

Chapter 12. Messages and Codes 317

FLM62024 - FLM69025

NONE For all architecture members and source
members (no cutoff).

TOP SOURCE
For all top source members and all architecture
members.

Project Administrator Response: None.

FLM62024 MAXIMUM RECURSION LIMIT EXCEEDED
WHILE PROCESSING MEMBER: aaaaaaaa

Explanation: In processing the given member, either the
group of included architecture members exceeded the
maximum allowed or the architecture member included
itself and recursion limit was exceeded.

Programmer Response: Modify the architecture member
and resubmit the job.

Project Administrator Response: None.

FLM62025 USER DEFINED DDNAME: aaaaaaaa FOR
ARCHITECTURE REPORT NOT ALLOCATED

Explanation: The ddname specified for the architecture
report was not allocated. If the architecture function is
invoked via the services, the ddname for the architecture
report is optional. If a ddname is not specified, the
architecture report is defaulted to the terminal. If a
ddname is specified, it must be allocated.

Programmer Response: Verify that the user-supplied
ddname for the architecture report is allocated. Resubmit
the job.

Project Administrator Response: None.

FLM62030 USER DEFINED DDNAME: aaaaaaaa FOR
ARCHITECTURE MESSAGES NOT
ALLOCATED

Explanation: The ddname specified for the architecture
messages was not allocated. If the architecture function is
invoked via the services, the ddname for the architecture
messages is optional. If a ddname is not specified, the
architecture messages are defaulted to the terminal. If a
ddname is specified, it must be allocated.

Programmer Response: Verify that the user-supplied
ddname for the architecture messages is allocated.
Resubmit the job.

Project Administrator Response: None.

FLM62104 INVALID STATEMENT IN ARCHITECTURE
MEMBER: aaaaaaaa TYPE: bbbbbbbb

Explanation: The specified architecture member contains
an invalid statement. The architecture member may
contain keywords that are specific to both an LEC and a
CC (for example, an OBJ keyword and a LOAD keyword).
The architecture member may also have two LMAP
statements or a COPY keyword with an LMAP statement in
the copied member. Any of these errors will cause this
message to occur.

Programmer Response: This error will not affect the
architecture report. Before attempting a build, check the
specified architecture member for any of the above listed
errors. Modify the architecture member

Project Administrator Response: None.

318 ISPF/PDF Software Configuration and Library Manager

FLM62108 ERROR RETRIEVING ACCOUNTING
INFORMATION

CODE: aaa GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: No accounting information exists or could be
retrieved for the specified member.

Programmer Response: If the report was being run
simply to view the high-level architecture of the system, no
programmer response is necessary. If you want to see the
entire system, including the included source members,
you must register all source members with SCLMusing
the SCLM editor, the migration utility, or the SAVE service.

Project Administrator Response: None.

FLM62900 ARCHITECTURE REPORT PROCESSOR
COMPLETED

Explanation: The architecture report processor finished
executing.

Programmer Response: See the message data set for all
the messages related to this error.

Project Administrator Response: None.

FLM69005 INVOKING ARCHITECTURE REPORT
PROCESSOR

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM69010 INVOKING DATABASE CONTENTS UTILITY

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM69015 THE REPORT WILL APPEAR IN aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM69020 THE MESSAGES WILL APPEAR IN aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM69025 THE COMMANDS WILL APPEAR IN aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM69030 DATABASE CONTENTS UTILITY RETURN
CODE = aaa(26)

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM70002 PARAMETER STRING EXCEEDS
MAXIMUM SIZE ALLOWED FOR
TRANSLATOR aaaaaaaa

Explanation: The parameter string for the specified
translator is greater than the allowed maximum of 512
characters. The parameter string is formed by
concatenating the values of the OPTIONS parameter of the
FLMTRNSL macro with the PARM and the PARMx
architecture member keywords. All SCLM variables in the
resulting string are then replaced with the variables'
values. Any of the allowable sources for creation of the
parameter string could cause the parameter string size to
be exceeded.

Programmer Response: Reduce the size of one of the
sources for the parameter string.

Project Administrator Response: None.

FLM70003 SUBSTITUTION LIST EXCEEDS
MAXIMUM SIZE ALLOWED FOR
TRANSLATOR aaaaaaaa

Explanation: The ddname substitution list for the
translator is greater than the maximum of 512 allowed.
Every FLMALLOC macro for the translator causes an
eight-character ddname to be put into the ddname
substitution list.

Programmer Response: Either reduce the number of
FLMALLOC macro invocations for the specified translator
or change the PORDER parameter of the FLMTRNSL
macro to 0 or 1 so that SCLM will not attempt to pass a
ddname substitution list.

Project Administrator Response: None.

FLM70101 INVALID COPYLIB NAME: aaa(44)

Explanation: The copylib name is too long.

Programmer Response: Reduce the size of the copylib
name. SCLM variables might be causing the name to
expand to a larger size than expected.

Project Administrator Response: None.

FLM70212 INVOKING C.OPY ROUTINES FOR
LANGUAGE: aaaaaaaa

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM70214 INVOKING PURGE ROUTINE FOR
LANGUAGE: aaaaaaaa.

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM69030 - FLM70801

FLM70216 INVOKING TRANSLATORS FOR
LANGUAGE: aaaaaaaa

Explanation: This message is provided for information
only.

Programmer Response: None.

Project Administrator Response: None.

FLM70501 ERROR COPYING ALLOCATION DATA SET
aaa FOR TRANSLATOR bbb TO LISTINGS
DATA SET, CODE: eee

Explanation: One of the following may have occurred:

• The listing data set was not allocated.
• The listing data set had an insufficient amount of

space allocated.

Possible return codes are:

4 The input data set is empty; output data set is
cleared.

8 The data was copied but truncated, or the directory
entry data was not copied but an entry was created.

12 The ddnames are not allocated properly due to the

16

20

24

28

following:

• The ddname is not allocated.
• The partitioned data set has no member name.
• The sequential data set member name is

incorrect.

The output data set is full.

Data access failed due to the following:

• RACF protection
• Input member was not found.

The input parameter is invalid.

The member entry could not be created because
the input member is an alias, or it has TTR notes
(TTRN).

Programmer Response: Check listings data set and
resubmit the job.

Project Administrator Response: None.

FLM70502 LISTINGS NOT COPIED BECAUSE BLANK
LISTINGS DDNAME SPECIFIED

Explanation: SCLM did not copy listings to the listings
data set because you specified a blank ddname.
Therefore, you will not be able to see any listings that the
translators produced.

Programmer Response: Specify the listings ddname for
the given function and run the function again.

Project Administrator Response: None.

FLM70801 ERROR DEALLOCATING DATA SET
NUMBER: aaa FOR LANGUAGE: cccccccc
TRANSLATOR: bbb(16) CODE:ddd

Explanation: An error occurred while deallocating a data
set for the specified translator. The file number identifies
the allocated data set for that translator.

Note: For the FREE and END services called using a
program, only the first line will appear. This
message indicates that a data set for one of the
translators defined for the specified language could
not be deallocated. Since the condition occurs
during cleanup, it can usually be treated as a

Chapter 12. Messages and Codes 319

FLM71002 - FLM80003

warning. Verify that the program has not
deallocated the data sets specified for the
language.

Possible return codes are:

8

12

16

20

24

28

32

SVC 99 error.

SCLM internal error. Contact SCLM Program
Support.

Missing or incorrect data set name.

Invalid file attribute specified.

A member of a PDS was requested but the data set
was not partitioned.

The requested member could not be found.

The requested member was not available.

> 64 SVC 99 error, reason code (decimal):

528

5896

Data set cannot be exclusively WRITE
allocated.

Data set does not exist.

Programmer Response: Resubmit the job. If the error
recurs, contact SCLM Program Support.

Project Administrator Response: None.

FLM71 002 ERROR INVOKING TRANSLATOR: aaa(16)

Explanation: SCLM could not invoke the specified
translator. The load module containing the translator may
be allocated exclusively to another job, or there is an error
in the language definition that defines the translator.

Programmer Response: If the translator has been used
successfully in the past and changes were not anticipated
(for example, a new compiler release), invoke the
processor again. If the translator is new or the problem
recurs, contact SCLM Program Support.

Project Administrator Response: None.

FLM71004 TRANSLATOR RETURN CODE FROM
= = = > aaa(16) = = = > bbbb

Explanation: The return code from the invoked translator
did not match the GOODRC parameter specified for the
translator. Translator output, such as compiler listings,
will be saved in the listings data set for the processor if
requested in the language definition.

Programmer Response: Use the listings data set to locate
and correct all errors identified by the translator. If the
specified return code is acceptable for the translator,
contact the project administrator.

Project Administrator Response: Change the GOODRC
parameter of the FLMTRNSL macro, which defines the
specified return code, in the project definition.

FLM71006 ERROR ALLOCATING DATA SET: aaa(44)
DDNAME: bbbbbbbb CODE: eee

Explanation: An error occurred while attempting to
allocate a data set. Possible return codes are:

8 SVC 99 error.

12 Internal error. Contact SCLM program support.

320 ISPF/PDF Software Configuration and Library Manager

16

20

24

Incorrect data set name.

Invalid file attribute specified.

A member of a PDS was requested but the data set
is not partitioned.

28 The requested member could not be found.

32 The requested member was not available.

> 64 SVC 99 error; reason code (deCimal):

528 The data set cannot be exclusively WRITE
allocated.

5896 The data set does not exist.

Programmer Response: Resubmit the job. If the error
recurs, contact the project administrator.

Project Administrator Response: None.

FLM80001 I END I RECORD NOT FOUND IN THE
"ACCOUNTING LIST INFO ARRAY"

Explanation: The accounting $lisUnfo array has
exceeded its buffer size.

Programmer Response: Contact the project
administrator.

Project Administrator Response: Increase the size of the
accounting $lisUnfo array defined for the language on the
FLMLANGL macro. For more information on the
FLMLANGL macro and how to specify the size of the
accounting $lisUnfo array, see "FLMLANGL Macro" on
page 224.

FLM80002 INVALID RECORD TYPE FOUND IN THE
"ACCOUNTING LIST INFO ARRAY" RECORD
TYPE:aaaaaaaa

Explanation: The record type is unknown.

Programmer Response: Contact the project
administrator.

Project Administrator Response: Either the parser
created or the user defined an accounting $Iist_info array
that contained an invalid record type. If a parser was used
to create the array, check that the passed values are
correct. For more information, see Chapter 5, "SCLM
Services."

FLM80003 INVALID COMPOOL NAME FOUND IN THE
"ACCOUNTING LIST INFO ARRAY" RECORD
KIND: aaaa COMPOOL NAME: bbbbbbbb

Explanation: The accounting $list_info array contained an
entry for a compool with either an invalid or blank
associated compool name.

Programmer Response: If a parser was used, parse the
members in question again. If the same error occurs or a
parser was not used, contact the project administrator.

Project Administrator Response: Either the parser
created or the user defined an accounting $Iist_info array
that contained an invalid or blank compool name. If a
parser was used to create the array, check that the passed
values are correct. For more information, see Chapter 5,
"SCLM Services."

FLM80004 INVALID INCLUDE NAME FOUND IN THE
"ACCOUNTING LIST INFO ARRAY" RECORD
KIND: aaaa INCLUDE NAME: bbbbbbbb

Explanation: The accounting $lisUnfo array contained an
entry for an include with either an invalid or blank
associated include name.

Programmer Response: If a parser was used, parse the
members in question again. If the same error occurs or a
parser was not used, contact the project administrator.

Project Administrator Response: Either the parser
created or the user defined an accounting $lisUnfo array
that contained an invalid or blank include name. If a
parser was used to create the array, check that the passed
values are correct. For more information, see Chapter 5,
"SCLM Services."

FLM80005 INVALID CU DATA FOUND IN THE
"ACCOUNTING LIST INFO ARRAY"

RECORD KIND: aaaa
CU NAME: bbb(55) ccc(55) CU TYPE: d
GENERIC FLAG: e DEPEND NAME: fff(55)
ggg(55) DEPEND CU TYPE: h DEPENDENCY
TYPE: i

Explanation: The accounting $list_info array contained
invalid data for a CU.

Programmer Response: If you used a parser, parse the
members in question again. If the same error occurs or
you did not use a parser, contact the project administrator.

Project Administrator Response: Either the parser
created or the user defined an accounting $list_info array
that contained the invalid CU data. If a parser was used to
create the array, check that the passed values are correct.
For more information, see Chapter 5, "SCLM Services."

FLM80010 CONFLICTING GENERIC FLAGS FOUND FOR
THE SAME CU IN THE" ACCOUNTING LIST
INFO ARRAY"

RECORD KIND: aaaa CU NAME: bbb(55)
ccc(55) CU TYPE: d

Explanation: Dependencies for the same CU have
different generic flags. The generic flags must always be
the same for all dependencies within a CU.

Programmer Response: Contact the project
administrator.

Project Administrator Response: Either the parser
created or the user defined an accounting $Iist_info array
that contained the invalid CU data. If a parser was used to
create the array, check that the passed values are correct.
For more information, see Chapter 5, "SCLM Services."

FLM80011 CONFLICTING DEPENDENCY TYPE FLAGS
FOUND IN THE "ACCOUNTING LIST INFO
ARRAY"

RECORD KIND: aaaa CU NAME: bbb(55)
ccc(55) CU TYPE: d GENERIC FLAG: e
DEPEND NAME: fff(55) ggg(55) DEPEND CU
TYPE:h

Explanation: Different type flags exist for the same CU
within the accounting $lisUnfo array. For example, the

FLM80004 - FLM80022

same CU is specified as a SPEC in one instance and a
BODY in another.

Programmer Response: Contact the project
administrator.

Project Administrator Response: Either the parser
created or the user defined an accounting $list_info array
that contained the invalid CU data. If a parser was used to
create the array, check that the passed values are correct.
For more information, see Chapter 5, "SCLM Services."

FLM80012 ONLY ONE CU RECORD MAY BE PRESENT
IN THE" ACCOUNTING LIST INFO ARRAY"

Explanation: If a CU record with a type of X exists in the
accounting $list_info array, it can be the only CU record in
the array.

Programmer Response: Contact the project
administrator.

Project Administrator Response: Either the parser
created or the user defined an accounting $lisUnfo array
that contains the invalid CU data. If a parser was used to
create the array, check that the passed values are correct.
For more information, see Chapter 5, "SCLM Services."

FLM80020 ERROR ALLOCATING THE CHANGE CODE
VERIFICATION ROUTINE

DATA SET DSNAME: aaa(44)

Explanation: The specified data set could not be
allocated. The data set may not exist or it may be
allocated exclusively to another user or job.

Programmer Response: Do the following:

• Allocate the required data set and move the change
code verification routine into it.

• Free the data set so that it can be allocated in SHR
mode.

Project Administrator Response: None.

FLM80021 ERROR INVOKING THE CHANGE CODE
VERIFICATION ROUTINE

NAME: aaaaaaaa DSNAME: bbb(44)

Explanation: The change code verification routine could
not be invoked. Verify that the routine exists within the
specified data set.

Programmer Response: If the routine does not exist,
move it into the proper data set. If it does exist, contact
SCLM Program Support.

Project Administrator Response: None.

FLM80022 INVALID CHANGE CODE: aaaaaaaa
CHANGE CODE VERIFICATION ROUTINE
RETURN CODE: bbb

Explanation: The change code verification routine
completed with a return code> O.

Programmer Response: Check change code verification
routine for return code explanations. See "Change Code
Verification Routine Specification" on page 204 for more
information.

Project Administrator Response: None.

Chapter 12. Messages and Codes 321

FLM80030 - FLM81204

FLM80030 THE SIZE OF THE" ACCOUNTING LIST INFO
ARRAY" HAS BEEN EXCEEDED

Explanation: The accounting $Iist_info array has
insufficient space to contain the data specified.
Dependency information, user data records, and change
code information must fit into the array.

Programmer Response: If possible, eliminate unneeded
user data and/or change code information from the
accounting record using the SCLM library utility. If all of
the information is required, contact the project
administrator.

Project Administrator Response: Increase the size of the
accounting $Iist_info array defined for the language on the
FLMLANGL macro. For more information on the
FLMLANGL macro and how to specify the size of the
accounting $list_info array, see "FLMLANGL Macro" on
page 224.

FLM80031 "ACCOUNTING LIST INFO ARRAY" MUST
ONLY CONTAIN CHANGE CODE RECORDS

RECORD KIND: aaaa

Explanation: An invalid change code record was found in
the accounting $lisUnfo array. Verify that the change
codes in the accounting record are correct.

Programmer Response: Contact the project
administrator.

Project Administrator Response: Ensure that correct
change code values exist in the accounting record. If not,
check the parser. If it is correct, increase the size of the
accounting $lisUnfo array defined for the language on the
FLMLANGL macro. For more information on the
FLMLANGL macro and how to specify the size of the
accounting $lisUnfo array, see "FLMLANGL Macro" on
page 224.

FLM80035 "$LlST JNFO" DOES NOT CONTAIN A
CHANGE CODE TO BE VERIFIED

Explanation: The project definition indicates that change
code verification is in affect, but there are no change
codes in the accounting $lisUnfo array.

Programmer Response: Contact the project
administrator.

Project Administrator Response: The "accounting list info
array" must exist and contain valid change code
information if change code verification is in effect.
Determine why the "accounting list info array" pointer is
NIL.

FLM80500 ACCESS KEY INCORRECT

ACCESS KEY: aaa(16) GROUP: bbbbbbbb
TYPE: cccccccc MEMBER: dddddddd

Explanation: The access key specified was invalid. The
member is currently locked out with an access key. Only if
you specify the correct access key can you save the
member in the SCLM hierarchy.

Programmer Response: If another user has the member
"checked out," wait until it is checked in. Otherwise,
specify the correct access key for the member.

Project Administrator Response: None.

322 ISPF/PDF Software Configuration and Library Manager

FLM81001 INVALID APPLICATION ID: aaaaaaaa

Explanation: An INIT or END operation was attempted
with an invalid application ID specified.

Programmer Response: Make sure that the application ID
passed back from the START function is used in the INIT
and END functions.

Project Administrator Response: None.

FLM81201 INVALID PROJECT IDENTIFIER: aaaaaaaa

Explanation: An invalid project identifier was passed to
an SCLM service. A valid project identifier is required by
the SCLM service requested.

Programmer Response: Supply a valid project identifier
in the SCLM service parameter list.

Project Administrator Response: None.

FLM81202 INVALID PROJECT DEFINITION
NAME: aaaaaaaa

Explanation: An invalid project definition name was
passed to an SCLM service. A valid project definition
name is required by the SCLM service requested.

Programmer Response: Supply a valid project definition
name in the SCLM service parameter list.

Project Administrator Response: None.

FLM81203 MAXIMUM SCLM ID LIMIT EXCEEDED

Explanation: No more SCLM IDs are available at this
time.

Programmer Response: Free some previously allocated
SCLM IDs.

Project Administrator Response: None.

FLM81204 ERROR INITIALIZING THE PROJECT
DEFINITION, CODE: aaa

Explanation: The return codes are defined below.

Programmer Response: Possible return codes are:

4 The specified project definition load module is not
RMODE(24). Generate the project definition load
module again and specify the RMODE(24)
parameter to the linkage editor.

8

12

16

20

24

An error occurred while attempting to obtain the
specified project definition for the project. Check
the project definition and resubmit.

The project definition is out of date. Reassemble
the project definition with new SCLM macros.
Resubmit the job.

The project name specified does not match the
project name in project definition. Verify that the
project name (on the FLMABEG macro) specified
and the project name in the project definition are
the same.

An attempt to open or close the project definition
failed.

The project definition data set could not be
allocated.

Project Administrator Response: None.

FLM8120S ERROR ACCESSING INTERNAL DATA
DATA SET(S) FOR THE PROJECT,
CODE: aaa

Explanation: An error occurred while attempting to
access internal data.

Programmer Response: Possible return codes are:

8 The cross-reference data set could not be opened.
Verify that the user is authorized to update the
cross-reference data set. Verify that the
cross-reference data set is intact. Resubmit the
job. Contact the project administrator if the
problem recurs.

12 The cross-reference data set could not be
allocated. Check the project definition for this
project to ensure that the correct cross-reference
data set has been specified. If it is, verify that the
data set is not allocated exclusively to another job.
Check the input parameters and resubmit the job.
If the problem recurs, contact the project
administrator.

16

20

24

28

The backup accounting data set could not be
opened. Verify that the user is authorized to
update the backup accounting data set. Verify that
the backup accounting data set is intact. Resubmit
the job. If the problem recurs, contact the project
administrator.

The backup accounting data set could not be
allocated. Check the project definition for this
project to ensure that the correct backup
accounting data set has been specified. If it is
correct, verify that the data set is not allocated
exclusively to another job. Check input
parameters, and resubmit the job. If the problem
recurs, contact the project administrator.

The accounting data set could not be opened.
Verify that the user is authorized to update the
accounting data set. Verify that the accounting data
set is intact. Resubmit the job. If the problem
recurs, contact the project administrator.

The accounting data set could not be allocated.
Check the project definition for this project to
ensure that the correct accounting data set has
been specified. If it is, verify that the data set is not
allocated exclusively to another job. Check input
parameters and resubmit the job. If the problem
recurs, contact the project administrator.

Project Administrator Response: None.

FLM81302 ERROR PROCESSING MEMBERS WITH
ACCOUNTING INFORMATION TYPE: INITIAL

Explanation: This is a warning message.

Programmer Response: None.

Project Administrator Response: None.

FLM82002 MEMBER IS NON-EDITABLE
GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: cccccccc

Explanation: The specified member cannot be edited
because it is SCLM output. This member cannot be
updated in this way.

Programmer Response: If the user needs to ed it a
non-editable member, select a new member and copy the
non-editable data into the new member.

FLM81205 - FLM82008

Project Administrator Response: None.

FLM82003 MEMBER IS NOT LOCKED
GROUP:aaaaaaaa TVPE:bbbbbbbb
MEMBER: cccccccc

Explanation: The UNLOCK service was called but the
requested member was not locked. If this error occurred
while you were using the STORE service, no accounting
information was available. If this error occurred while you
were in the editor, the accounting information created at
the beginning of your edit session was lost.

Programmer Response: For the STORE service, verify
that the LOCK service completed successfully before
calling the STORE service. For the UNLOCK service, this
message is a warning and can be ignored. If you are in an
edit session, your data has been saved. However, the
accounting information is lost. Cancel this edit session
and re-edit the member. Then issue the SAVE command
immediately to establish accurate accounting information.

Project Administrator Response: None.

FLM82004 LANGUAGE: aaaaaaaa CANNOT BE USED
FOR EDITABLE MEMBERS

Explanation: The language specified to the PARSE
routine is not a valid language. Check the list of valid
languages in the project definition.

Programmer Response: Use a language that is in the
project definition. If the language that you need is not in
the project definition, contact the project administrator.

Project Administrator Response: Add the required
language to the project definition in the form of a language
definition and reassemble. For more information on
language definitions, see "New Language Definitions" on
page 234.

FLM8200S INPUT PARAMETER
"ERROR_LISTINGS_ONLY" MUST BE 'V' OR
'N'

Explanation: An invalid parameter was passed to an
SCLM service.

Programmer Response: Supply the valid parameter in the
SCLM service parameter list.

Project Administrator Response: None.

FLM82006 INPUT PARAMETER "VERIFY_CC" MUST BE
'Y' OR 'N',
VERIFV _ CC: a

Explanation: An invalid parameter was passed to an
SCLM service.

Programmer Response: Supply the valid parameter in the
SCLM service parameter list.

Project Administrator Response: None.

FLM82008 INPUT PARAMETER
"SUB_DRAWDOWN_MODE" MUST BE 'c'
OR 'U'
SUB_DRAWDOWN_MODE: a

Explanation: An invalid parameter was passed to an
SCLM service.

Programmer Response: Supply the valid parameter in the
SCLM service parameter list.

Project Administrator Response: None.

Chapter 12. Messages and Codes 323

FLM82203 - FLM82505

FLM82203 THE MEMBER HAS ACCOUNTING
INFORMATION WITH TYPE: EDITABLE
AUTHORIZATION CODE CANNOT BE
UPDATED

GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: eeeeeeee

Explanation: The authorization code in the service
parameter list does not match the authorization code
already assigned to the member. Only the library utility is
capable of changing an existing member.

Programmer Response: Use the SCLM library utility for
this function.

Project Administrator Response: None.

FLM82301 EDITABLE MEMBER'S ACCESS KEY IS
BLANK

GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: eceeeeee

Explanation: You tried to unlock a member that has an
editable accounting record and the access key was
already blank.

Programmer Response: If you want to unlock the member
rather than just reset the access key, use the DELETE
service to delete the member's accounting record.

Project Administrator Response: None.

FLM82401 ERROR PROCESSING SYSTEM LIBRARIES
FOR PARSING

CODE: aaa LANGUAGE: bbbbbbbb ERROR
DSNAME: ecc(44)

Explanation: SCLM was unable to allocate the system
library defined in the language definition for the language
specified in the message.

Programmer Response: Check that the system libraries
specified in the language definition exist and are not
allocated exclusively. If one or more do not exist, contact
the project administrator.

Project Administrator Response: Remove the invalid
system libraries from the language definition and
regenerate the project definition.

FLM82501 EXISTING CU 'S AUTHORIZATION CODE
NOTDERNEDTOGROUP

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd
GROUP: eeeeeeee
ERROR GROUP: ffffffff
AUTHORIZATION CODE: gggggggg

Explanation: The authorization code is not defined to the
group. This implies that the CU is not authorized to
replace the version of the member in the error group.

Programmer Response: It is possible that the function will
succeed with a different authorization code. Contact the
project administrator for a list of authorization codes that
are valid for this group. If none of the authorization codes
defined to the group work, try the same function at a
different group. Contact the project administrator if all
attempts fail.

Project Administrator Response: The list of valid
authorization codes defined for group may be found in the

324 ISPF/PDF Software Configuration and Library Manager

project definition on the FLMGROUP macro. Do not
attempt to add authorization codes to the project definition
unless you are familiar with the risks outlined in
"Authorization Code Usage" on page 252.

FLM82S02 INPUT PARAMETER "$STATS_INFO"
CANNOT BE NIL

Explanation: $STATSJNFO has not been initialized with
data. The SCLM service requested must have data in this
record.

Programmer Response: Initialize $STATSJNFO and
invoke the service again.

Project Administrator Response: None.

FLM82503 DUPLICATE CHANGE CODE RECORDS
FOUND IN THE" ACCOUNTING LIST INFO
ARRAY"

RECORD KIND: aaaa
CHANGE CODE: bbbbbbbb

Explanation: The change code was specified multiple
times within the same accounting $list_info array. A
service call using a user-specified parser had duplicate
entries for the change code.

Programmer Response: Remove duplicate entries for the
change code in the SCLM services parameter list and call
the service again.

Project Administrator Response: Rewrite the involved
parser to add logic that will remove duplicate entries. For
more information, see "Invoking User-Defined Parsers" on
page 239.

FLM82504 DUPLICATE COMPOOL RECORDS FOUND IN
THE "ACCOUNTING LIST INFO ARRAY"

RECORD KIND: aaaa
COM POOL NAME: bbbbbbbb

Explanation: The compool was specified multiple times
within the same accounting $lisUnfo array. A service call
to a user-specified parser generated duplicate entries for
the compool.

Programmer Response: If the STORE service was called,
remove duplicate entries for the compool in the SCLM
services parameter list and call the service again. If the
SAVE service was called, or data was passed to the
STORE service as a result of the PARSE service, contact
the project administrator.

Project Administrator Response: Rewrite the involved
parser to add logic that will remove duplicate entries. For
more information, see "STORE-Store Member Information
in an Accounting Record" on page 158.

FLM8250S DUPLICATE INCLUDE RECORDS FOUND IN
THE" ACCOUNTING LIST INFO ARRAY"

RECORD KIND: aaaa
INCLUDE NAME: bbbbbbbb

Explanation: The include was specified multiple times
within the same accounting $lisUnfo array. A service call
to a user-specified parser generated duplicate entries for
the include.

Programmer Response: If the STORE service was called,
remove duplicate entries for the include in the SCLM
services parameter list and call the service again. If the
SAVE service was called, or data was passed to the

STORE service as a result of the PARSE service, contact
the project administrator.

Project Administrator Response: Rewrite the involved
parser to add logic that will remove duplicate entries. For
more information, see "STORE-Store Member Information
in an Accounting Record" on page 158.

FLM82506 DUPLICATE CU RECORDS FOUND IN THE
"ACCOUNTING LIST INFO ARRAY"

RECORD KIND: aaaa
CU NAME: bbb(55) ccc(55) CU TYPE: d
GENERIC FLAG: e
DEPEND NAME: fff(55) ggg(55)
DEPEND CU TYPE: h

Explanation: The CU was specified multiple times within
the same accounting $listJnfo array. A service call to a
user-specified parser generated duplicate entries for the
CU.

Programmer Response: If the STORE service was called,
remove duplicate entries for the CU in the SCLM services
parameter list and call the service again. If the SAVE
service was called, or data was passed to the STORE
service as a result of the PARSE service, contact the
project administrator.

Project Administrator Response: Rewrite the involved
parser to add logic that will remove duplicate entries. For
more information, see "STORE-Store Member Information
in an Accounting Record" on page 158.

FLM82507 ERROR ALLOCATING THE SPECIFIED
MEMBER

GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: ccececce

Explanation: The member does not exist in the specified
group and type.

Programmer Response: Put the member in the hierarchy,
or remove the reference to the member source code or
member lists.

Project Administrator Response: None.

FLM82508 CU LOCKED ELSEWHERE

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd
ERROR GROUP: eeeeeeee
TYPE: ffffffff MEMBER: gggggggg
ERROR AUTHORIZATION CODE: hhhhhhhh

Explanation: The CU has already been updated in another
hierarchical view or the CU is in the current view but in
another type. The changes currently reside in the group
specified in this message. This group is not in your view
of the hierarchy. You cannot update the member because
you would not be working with the most current version of
the member.

Programmer Response: Promote the member into a
group that is in your hierarchy (that is, one that appears
on your SCLM Edit - Entry panel). If the member cannot be
promoted, you must delete the member and its accounting
information in the error group using the SCLM library
utility or the DELETE service.

Project Administrator Response: None.

FLM82509

FLM82506 - FLM82603

DRAWDOWN VERIFICATION ERROR

CODE: aaa CU NAME: bbb(55) ccc(55)
CU TYPE: dddd CU QUALIFIER: eeeeeeee
GROUP: ffffffff AUTHORIZATION
CODE: gggggggg

Explanation: One of the following errors has occurred:

• The group is an invalid SCLM group.

• An I/O error occurred in retrieving the XREF record
from the accounting database.

Programmer Response: Correct the group and contact
the project administrator.

Project Administrator Response: Verify that the
cross-reference record in the accounting database is
correct.

FLM82511 CU DRAWN DOWN FROM ANOTHER
MEMBER

CU NAME: aaa(55) bbb(55) CU TYPE: ecce
CU QUALIFIER: dddddddd
DRAWN DOWN FROM GROUP: eeeeeeee
TYPE: ffffffff MEMBER: gggggggg

Explanation: SCLM is now tracking two sessions of this
compilation unit in separate members.

Programmer Response: None.

Project Administrator Response: None.

FLM82601 INPUT PARAMETER "PARSE_MODE" MUST
BE 'C' OR 'U',

Explanation: An invalid parameter was passed to an
SCLM service.

Programmer Response: Supply the valid parameter in the
SCLM service parameter list.

Project Administrator Response: None.

FLM82602 "LANGUAGE" CANNOT BE DEFAULTED
AN EDITABLE ACCOUNTING RECORD DOES
NOT EXIST FOR THE MEMBER

GROUP: aaaaaaaa TYPE: bbbbbbbb
MEMBER: ceeeeeee

Explanation: A valid language has not been assigned to
the member specified in this message. The language is
obtained from SCLM accounting information.

Programmer Response: Add a valid language to the
service call or command.

Project Administrator Response: None.

FLM82603 WARNING: A PARSER ERROR OCCURRED
BUT AN UNCONDITIONAL PARSE WAS
REQUESTED

Explanation: An error occurred while parsing the member
but you requested an unconditional parse. The SAVE
service continues and saves the statistical and
dependency information that the parser returned for the
member.

Programmer Response: If possible, you should try to
correct the parser errors. A parser error can cause
incorrect dependency information to be saved for the

Chapter 12. Messages and Codes 325

FLM84101 - FLM87125

member. If the parser error cannot be corrected at this
time, call the SAVE service for this member at a later date
to correct the parser error.

Project Administrator Response: None.

FLM84101 INPUT PARAMETER "DELETE_FLAG" MUST
BE 'BMAP', 'ACCT', OR 'TEXT'

DELETE_FLAG:aaaa

Explanation: An invalid parameter was passed to the
DELETE service.

Programmer Response: Supply the valid parameter in the
SCLM service parameter list. See" DELETE-Delete
Database Components" on page 129 for more information.

Project Administrator Response: None.

FLM84200 NEW AUTHORIZATION CODE IS EQUAL TO
OLD AUTHORIZA nON CODE. NO CHANGE
IS REQUIRED FOR: GROUP: aaaaaaaa
TYPE: bbbbbbbb MEMBER: cccccccc

Explanation: The authorization code currently assigned to
the specified member is equal to the new authorization
code.

Programmer Response: Verify that the new authorization
code was specified correctly.

Project Administrator Response: None.

FLM84204 WARNING, MEMBER: aaaaaaaa COULD BE
REPLACED BY MEMBER AT
GROUP: bbbbbbbb TYPE: ccceecce WITH
AUTHORIZATION CODE: dddddddd

Explanation: The member that is being updated was
found at a lower group. The lower group member is within
the promotable hierarchy and could replace the member
that is currently being updated. The update is performed
as requested.

Programmer Response: Report this situation to the
project administrator.

Project Administrator Response: The authorization code
for the lower group member should be updated to match
the higher group member to avoid overlaying the update
made in the higher group.

FLM87100 ERROR, PARAMETER STRING MUST BE
SHORTER THAN aaa CHARS LONG

Explanation: The input parameter string exceeded the
maximum length.

Programmer Response: Shorten the input parameter
string to a valid length.

Project Administrator Response: None.

FLM87103 RECURSIVE "FILE" COMMAND
INVOCATIONS ARE NOT ALLOWED

Explanation: A FILE command cannot be invoked within
another FILE.

Programmer Response: Remove the recursive
occurrence of the FILE command. The contents of the
referenced data set can be copied directly into the original
data set if desired.

326 ISPF/PDF Software Configuration and Library Manager

Project Administrator Response: None.

FLM87105 THE COMMAND IS NOT SUPPORTED

COMMAND: aaa(60)

Explanation: The command is not supported by this
release of SCLM.

Programmer Response: For a list of and descriptions of
valid SCLM service commands, see Chapter 5, "SCLM
Services."

Project Administrator Response: None.

FLM87107 aaaaaaaa bbb(24) FOR MEMBER eeceecee
AT dddddddd, CODE: eee

Explanation: The FLMCMD command termination
message (aaaaaaaa) represents the command that was
executed. bbb(24) represents the completion status of the
command.

Programmer Response: For information on the return
code, see the appropriate service in Chapter 5, "SCLM
Services."

FLM87110 ERROR FOUND ON LINE aaaa OF bbbbbbbb
DATA SET

Explanation: Check to see if another error message was
printed. If it was, correct the error indicated by the other
error message first. If the error message FLM87110 is the
only error message printed, then an error was found on
the indicated line number of the data set.

Programmer Response: The error should be corrected in
the data set. For more details, see Chapter 5, "SCLM
Services."

Project Administrator Response: None.

FLM87115 DBUTIL aaa(9) AT bbbbbbbb, CODE: eee

Explanation: Completion message for DBUTIl.

Programmer Response: For information on the return
code, see "DBUTIL-Generate a Tailored Data Set and
Report" on page 124.

Project Administrator Response: None.

FLM87120 ERROR, aaa(24) PARAMETER IN COLUMN
bbb IS TOO LONG

Explanation: The parameter is longer than the maximum
allowed.

Programmer Response: Shorten the parameter. For
more details on the SCLM services, see Chapter 5, "SCLM
Services."

Project Administrator Response: None.

FLM87125 ERROR, aaa(24) PARAMETER MUST BE
SPECIFIED

Explanation: The parameter has not been specified.

Programmer Response: Add the parameter to the SCLM
service invocation. For more details on the SCLM
services, see Chapter 5, "SCLM Services."

Project Administrator Response: None.

FLM87130 INVALID VALUE IN COLUMN aaa FOR
bbb(24) PARAMETER

Explanation: The value for the parameter is invalid. The
column number identifies the starting location of the
invalid value with the command.

Programmer Response: Correct the value of the
parameter in the command data set. For more details on
the SCLM services, see Chapter 5, "SCLM Services."

Project Administrator Response: None.

FLM87133 EXTRANEOUS PARAMETER(S) DETECTED
IN SERVICE CALL

Explanation: An SCLM service was passed a parameter
string that contained more parameters than it requires.

Programmer Response: Remove the extra parameters
from the SCLM service invocation. For more details on the
SCLM services and their parameters, see Chapter 5,
"SCLM Services."

Project Administrator Response: None.

FLM87135 THE DDNAME: aaaaaaaa IS ALREADY IN
USE

Explanation: The ddname is currently reserved for use by
the command processor.

Programmer Response: Change the ddname and
resubmit the command.

Project Administrator Response: None.

FLM87140

FLM87130 - FLM87202

THE DDNAME: aaaaaaaa HAS NOT BEEN
ALLOCATED

Explanation: The ddname specified was passed to SCLM
as a parameter, but the ddname has not been allocated.

Programmer Response: Allocate the ddname and
resubmit the command.

Project Administrator Response: None.

FLM87150 THE COMMAND INVOCATION IS TOO LONG

Explanation: The command invocation statement is
longer than the maximum 256 characters allowed.

Programmer Response: Edit the command and resubmit
it.

Project Administrator Response: None.

FLM87201 SCLM ID: aaaaaaaa IS NOT IN USE

Explanation: The SCLM ID corresponds to members that
have been locked but not freed by either the UNLOCK or
the STORE service. These will be converted from initial
state to lockout. This is just a warning message.

Programmer Response: None.

Project Administrator Response: None.

FLM87202 INVALID SCLM ID: aaaaaaaa

Explanation: The syntax of the SCLM ID is not valid.
SCLM IDs are generated in the format FLMddddd where d
represents a digit from 0-9.

Programmer Response: Check the SCLM ID specified for
accuracy, or make sure you used the INIT service to
generate an SCLM ID before you try to use the FREE
service on it.

Project Administrator Response: None.

Chapter 12. Messages and Codes 327

Translator Return Codes

FLMCMD Return Codes

FLMCMD

General-Use Programming Interface

The FLMCMO return codes are a general-use programming interface, which
you can use for programming purposes.

The SCLM command processor and translators provide you with return codes.
This part of the chapter lists the categories of return codes.

Each function returns a numeric code, called a return code, that indicates the
results of the operation.

o Successful completion. Messages mayor may not be generated.
4 A warning condition. Messages mayor may not be generated.
8 An error condition. Messages are generated.
12 Maximum application 10 limit exceeded.
16 SCLM table verification failed.
20 NLS table verification failed.
24 Unable to load the SCLM table (FLMTABLE).
28 Unable to load the NLS table or the SLM 1/0 load module (FLMI024).

L-______ End of General-Use Programming Interface ______ ---'

SCLM Translator Return Codes

FLMDEBG

FLMLA

General-Use Programming Interface

The translator return codes are a general-use programming interface, which
you can use for programming purposes.

The translators return the following codes for the specified functions.

o Indicates a successful completion.
8 Indicates that allocation of a source file failed. Check the input

parameter from the translator.

o Indicates successful completion.
4 Indicates a warning condition. See error messages for details.
8 Indicates a syntax error condition. See error messages for details.
12 Indicates a severe error condition. Messages are not generated.

328 ISPF/PDF Software Configuration and Library Manager

FLMLABND

FLMLSS

FLMS7C

FLMTALI

FLMTAPM

FLMTAPV

Translator Return Codes

o Indicates successful completion.
8 Indicates an error condition. SCLM found more than one compilation

unit.
12 Indicates an error condition. SCLM found an invalid input parameter or

could not find an input parameter.
16 Indicates an error condition. SCLM did not find any compilation unit.
20 Indicates an error condition. SCLM found extraneous information after

the compilation unit.

o Indicates successful completion.
4 Indicates a warning condition. The continuation line limit of 3000

characters was exceeded.
8 Indicates a parser translator error condition.
12 Indicates a parser FLMLI error condition.
16 Indicates an error condition. SCLM found an invalid input parameter or

could not find an input parameter.
20 Indicates an error condition. There are too many includes and compools

for the size of the $infoJist array.

:h3'.FLMS1S

0
16
20
24
28

0
4

8
12
16
20
24
28

Successful completion.
SCLM table verification failed.
NLS table verification failed.
Unable to load SCLM table (FLMTABLE).
Unable to load the NLS table or the SCLM I/O load module (FLMI024).

Successful completion.
A warning condition. Messages are generated.
An error condition. Messages are generated.
Maximum application ID limit exceeded.
SCLM table verification failed.
NLS table verification failed.
Unable to load the SCLM table (FLMTABLE).
Unable to load the NLS table or the SCLM I/O load module (FLMI024).

8 The input option string is invalid.

8 The input parameters are invalid.

o SCLM found a string for every compilation unit.
4 SCLM found the alternate search string at least once. Alternate search

string + search string = the number of compilation units passed.
8 SCLM did not find search strings for every compilation unit.

Chapter 12. Messages and Codes 329

Translator Return Codes

FLMTMSI

FLMTSPLT

o See the SCRIPT/VS translator code explanation.
4 See the SCRIPT/VS translator code explanation.
8 See the SCRIPT/VS translator code explanation. Messages are

generated.
12 See the SCRIPT/VS translator code explanation.
16 See the SCRIPT/VS translator code explanation.
20 See the SCRIPT/VS translator code explanation.
24 SCLM did not allocate TEXTOUT.
28 SCLM did not allocate TEXTIN.
32 SCLM cannot generate a unique name.
36 The user ID was not specified in the input.

o Indicates a successful completion.
8 Indicates an error in allocating the SCLM hierarchy. This error is based

on input from the translator.
12 An "above the 16 megabyte line" object member for the main unit which

was created previously is missing. Delete the load module definition for
the main unit and resubmit.

End of General-Use Programming Interface ______ ---l

330 ISPF/PDF Software Configuration and Library Manager

Glossary of SCLM Terms

A
access key. An identifier used to restrict access to a
member.

accounting record. Internal data record containing
statistical, historical, and dependency information.

application. Software that performs a service for an
end user.

architecture. The organization of software components
to form integrated applications.

architecture definition. The specification of
relationships between software components of an
application.

architecture member. Defines an individual software
component, which may be a collection of other
architecture members, by specifying its relationship to
other software components of an application.

authorization code. An identifier used by SCLM to
control authority to update and promote members
within a hierarchy.

authorization group. A set of authorization codes.

B
build. To process architecture members through
translators defined in the appropriate language
definition. During a build, compilers and linkage
editors may be invoked.

build map. Internal data record containing a complete
analysis of the database at the time of the build; it
includes the names of all referenced members and the
last change date and version number of each member.

c
change code. Reason code associated with a software
update.

code. Program(s) written in a language that is subject
to a given translation process.

compilable member. A member recognized by the
compiler or translator as an independent unit or a
controlling unit for the language.

compilation unit. The smallest compilable unit for the
Ada language.

© Copyright IBM Corp. 1989, 1990

complib. A library containing frozen project level
compools.

compool. A JOVIAL data mapping structure.

compool reference. A reference to a JOVIAL data
mapping structure that SCLM must compile before it
can compile the current member.

concurrent updates. Two programmers update the
same member in different ways at different
development levels.

conditional reference. An include or compool
reference construct that depends on information
outside the scope of a single line.

copylib. A library containing include referenced
source code.

cross-reference record. Internal data record
containing Ada compilation unit/member relationship
information.

D
data. All information stored in the SCLM database.

database. SCLM-controlled data sets for a project.

database administrator. Individual responsible for
customization and maintenance of an SCLM database.

ddname substitution list. A string of ddnames
allocated for the translator. The ddname substitution
list is usually documented in the Programmer's Guide
for compilers and linkage editors.

dependency. A software component necessary for the
completion of another software component.

development level. Level of an SCLM hierarchy which
has no subordinate level.

downward dependency. A dependency indicating a
compilation unit which must be compiled after the
current compilation unit is compiled.

drawdown. To copy a member or a compilation unit to
a development group from its first appearance in a
higher key or primary group in the library
concatenation.

dynamic include. An include for a source member that
cannot be resolved until after the translator invocation.

Glossary of SCLM Terms 331

dynamic reference. A reference that involves a
variable.

E
editable/non-editable. Source members (created by an
edit session) are editable; members produced by a
processor during a build are non-editable.

G

group. A set of project data sets with the same
middle-level qualifier that contain the different kinds of
data maintained for that project.

H
hierarchical view. A concatenation of groups to form a
complete project.

hierarchy. The organization of project database
groups where each group is subordinate to the one
above it.

include. A member that is necessary for the proper
construction of a module (defined by an architecture
definition).

include structure. A generic term for code that you
insert when the source member is compiling.

internal data set. Data sets that contai n statistical,
include, dependency, status and tracking information
about all controlled members.

IS SEPARATE declaration. The specification in an Ada
compilation unit that a subunit is to be compiled
separately.

K

key group. A group that data is moved into (as
opposed to copied into) during promotion.

L

language definition. A process or set of processes that
source members associated with this language will
undergo during Build.

layer. A given tier of the hierarchy, made up of levels
of equivalent rank.

level. A (complete) set of libraries forming a single
element of a hierarchy.

library (MVS). A partitioned data set.

line commands. Editing commands that are entered
directly on the line number of the line or lines to be
affected.

lock. To preclude other programmers from updating a
member (usually associated with drawdown).

M
maximum promotable level. The topmost level to
which a segment can be promoted.

member. The discrete element of an SCLM database,
representing a single data type of a software
component.

migration. Introduction of software components into an
SCLM database.

N
non-key group. A group that data is copied into (as
opposed to moved into) during promotion.

o
out-of-scope software component. An architecture that
is referenced with a LINK or CREF statement but not
with an INCL statement; it is not within the domain of
the architecture specified.

p

parse. To scan the source input from an edit session
(or migration request) to gather SCLM internal data.

predecessor date/time. The last modified date/time
stamp taken from the previous version of the current
member.

predecessor verification. The process of verifying that
changes to the previous version of a member have not
been made.

predecessors. Previous versions of a member existing
within the same hierarchical view.

primary commands. Editing commands that are
entered on the COMMAND line.

primary group. A group that must be allocated when a
hierarchy is to be accessed.

private library. A partitioned data set or partitioned
data set extended belonging to a group in the
development layer of the hierarchy.

332 ISPF/PDF Software Configuration and Library Manager

project. An undertaking with prescribed objectives,
magnitude, and duration.

project database. A set of logically ordered MVS
partitioned data sets (known as libraries) under a
single high-level qualifier.

project definition. A project-specific customization of
the SCLM product.

project identifier. The high-level qualifier used by all
data sets belonging to a particular project.

promotable hierarchy. A subset of a hierarchical view
whose top level is the maximum promotable level.

promote. To move (or copy) members and associated
internal data up through the hierarchy one level at a
time.

s
SCLM_id. Identifier used to communicate information
between the SCLM services. There is a unique
SCLM_id generated for each invocation of the INIT
service.

software component. An element of the architecture
definition, composed of members of one or more data
types.

software configuration management. A common point
of integration for all planning, oversight, and
implementation activities for a project.

sublibrary. A data set that contains Ada intermediate
form in a form that only the Ada compiler can use.

syslib. A library containing frozen project level source
code.

T
text. Data present in its natural language form (not
translatable).

translator. A software program that transforms data
from one representation to another.

type. The low-level qualifier of SCLM-controlled data
sets, such as SOURCE, OBJECT, and LOAD, that
identifies the kinds of data maintained in a specific
group.

u
unlock. To make a member (formerly locked out)
available for updating (usually associated with
promote).

upward dependency. A dependency indicating a
compilation unit that must be compiled before the
current compilation unit is compiled.

v
VSAM cluster. A named structure consisting of a
group of related components.

Glossary of SCLM Terms 333

334 ISPF/PDF Software Configuration and Library Manager

Index

A
access key

definition of 56
incorrect 130
locking a member 138
purpose for 11
removing 275
resetti ng 162
variable 37, 40
verification 11

access method services 193
accounting data set

defining 194, 195
space computation 195
specification 203
synchronizing 271

accounting group
definition of 125
variable 37,40

accounting information
change codes 12, 59
field descriptions 55,76
field format 111
include references 15,60
maximum amount stored 158
per member 11
retrieve 13
selection criteria 76

accounting member
definition of 63
variable 37, 41

Accounting Record panel 55
Change Code List panel 59
Compilation Units panel 62
Compool List panel 61
Include List panel 60
Statistics panel 57
User Data Entries panel 64

accounting record type
definition of 77
variable 37,40

accounting records
DBACCT service 122
DELETE service 129
deleting 52
field descriptions 55
historical information 55
panel 55
retrieve 122
statistical information 57
variables 37

accounting statistics report 82

© Copyright IBM Corp. 1989, 1990

accounting status
definition of 55
variable 37,41

accounting type
definition of 63
variable 37,41

ACCT control option 203
ACCT2 control option 203
Ada

automatic ordering 23
cross-reference records 63
intermediate records 71
language definitions

FLM@ADA 285
FLM@ADAB 285

language restrictions
generic/lNLlNE recursive dependencies 281
generic/lNLlNE specification ordering 281

setup 285
sublibrary definition

intermediate record 69,71
member selection list 69

sublibrary management utility 13
sublibrary restrictions

compilations 282
content updates 282
updates 282

sublibrary setup 286
adabind 285
ALIAS keyword

format 28
use of 193

allocating project data sets 193
allocating SCLM data sets 101,110,193,202
allocation definition 234
alternate project definition

creating 269
defining 257
selecting 44

application
See a/so high-level architecture member
controlling 25
defining 25
sample 31

architecture
definition of 14
scope 78

architecture definition
See a/so architecture member
compilation control 22, 33
copy 33
creating 27
creation 269
definition of 14

Index 335

architecture definition (continued)
fields 77
generic 26, 33
high-level 25
kinds of 21
language 27
link edit control 23, 31
sample 31
statement

format 27
optional 23, 24, 26
uses 27

synchronization with 34
use of 21
val id keywords 27

architecture member 7
architecture report

architecture information 14, 83
cross-reference information 83
impact assessment 234
panel 84
RPT ARCH service 149
utility 14,83

arrays
accounting information 111
list information 112
message 110
statistical information 112

assemble project definition 206
assembler

See translator
assignment statement

in accounting records 58
variable 37, 40

authority
MOUNT 46
UPDATE 68

authorization code
assigning to a member 192
defining for a group 192
definition of 11
establishing 191
for concurrent development and maintenance 255
for controlling

member updates 252
SCLM promotions 252
test versions of members 252

update panel 68
variable 37,40
verification 11,139,153

authorization code change
definition of 56
variable 37, 40

authorization code usage 252
authorization group, defining 198
automatic ordering

compile 17,23
link 17,24

B
backup of database 271
batch processing 100
blank lines variable 37,40
Browse - Entry panel 45
browse function 10,45
buffer size

definition of 224
variable 37, 41

build function
architecture member 95
automatic ordering 17
build map

accounting records 56
contents 67
date verification 95
deleting 53,54
generation 15
record 65
using 15
variables 37,41

function summary 14
generating a report 16,92
input 14
listings 17,92
messages 16, 92
modes 16,92
panel 91
parameters 118
processing 15
report 16, 93
scopes 16, 91

build INFO member 207
build map 15

See a/so build function, build map
Contents panel 67
Record panel 65

BUILD service 117,178
build user exit routine specification 119
build/promote user exit routine

C

data set 265
example 266
parameters 264
requirements 263
specification 204, 263

call format
C 108
COBOL 109
FORTRAN 108
Pascal 108
PLII 109

catalog, VSAM 193
change code

accounting records 59

336 ISPF/PDF Software Configuration and Library Manager

change code (continued)
array record 112
deleting 59
input 12, 50
list of 59
report 81
variables 37,41
verification 12

Change Code List panel 59
change code verification routine

creation 204, 261
example 262
parameters 261
requirements 261

change request 262
character parameters 110
cleanup report 83
CLiST

command procedure 106
variable 104

CMD statement
format 28
restriction 28
use of 24,26

code
copying 234
parsing 234
purging 234
translating 234

code, authorization
assigning to a member 192
defining for a group 192
definition of 11
establishing 191
for concurrent development and maintenance 255
for controlling

member updates 252
SCLM promotions 252
test versions of members 252

update panel 68
variable 37, 40
verification 11, 139, 153

code, change
accounting records 59
array record 112
deleting 59
input 12,50
list of 59
report 81
variables 37, 41
verification 12

code, return
BUILD service 120
DBACCT service 123
DBUTIL service 127
DELETE service 130
END service 132
FREE service 134

code, return (continued)
general categories 115
GOODRC 228
INIT service 136
LOCK service 140
PARSE service 144
PROMOTE service 147
RPTARCH service 150
SAVE service 155
START service 157
STORE service 160
UNLOCK service 163

command
data set conventions 105
DEFINE 51
EXECUTE 73
FLMCMD 104

See a/so FLMCMD command
interactive processing 106
invocation format 104
line 44
macro definitions 51
primary 44
QUIT 106
SAVE 48
SCREATE 49
service invocation 104
SETSSI 24
SMOVE 49
SPROF 50
SREPLACE 51
SUBMIT 73
TSO ACCOUNT 46

command processing, interactive 106
comment lines

definition of 57
variable 38, 40

comment statements
definition of 58
variable 38, 40

COMP statement
format 28
use of 22

compilation control architecture member
for JOVIAL programs 22
requirement 22
restrictions 22
use of 22

compilation unit 273
accounting records 55,112-114
attri butes 113
cross-reference record 63
definition of 12,62
deleting records and forms for 69
dependency 113
forced save 48
intermediate record 69, 71
list of 62

Index 337

compilation unit (continued)
types 113
variables 38,42
verification 13

Compilation Units panel 62
compile

Ada 282
automatic ordering 23
errors 270
manual ordering 22

compiler
See a/so translator
Ada 285

debugger 287
optimizer support 289

name extraction 22
options override 22
processing control 22
saving output 26
used by SCLM 198

com pool 272
Compool List panel 61
com pool reference

definition of 23, 61
identify database targets for 22
panel 61
variable 38, 42

concurrent development and maintenance 255
conditional mode

build 92
promote 95

conditionally saved components 251
considerations, performance 276
constant values 80
contention, data 99

See a/so promote function
control options

ACCT 203
ACCT2 203
MAXLINE 203
MAXVIO 204
OPTOVER 203
XREF 203

control statements
in accounting records 58
validation 27
variable 38, 40

controlling member test versions 252
controlling member updates 252
conventions, naming

of architecture members 27
of data sets 9

conversion to SCLM
architecture definitions 269
initialization of non-key groups 270
introduction of fixes 270
prerequisites 268
project definitions 269

conversion to SCLM (continued)
registration of members 270

copy
architecture member 33
library definition 234
processing errors 18

COPY statement
format 28
use of 28

creating object modules 22
CREF statement

format 28
use of 23,96

cross-reference
data set 195, 203
panel 63
records 63
report 83, 87

cutoff, report 84, 150

D
data contention 99

See a/so promote function
data entries, user

accounting records 57,64
array record 112
variable 39, 42

data set
accounting 203
allocation 193
attributes 193
concatenations
cross reference
exit output 265

101, 189
195,203

naming conventions 9
overflow 99
overlay 101
password 46
protection 276
secondary accounting 203
synchronizing 271
tailored 80

database
accounting records 55
backup 271
cross-reference records 63
determine structure 189
historical information 55
intermediate records 69, 71
organization 7, 8
overview 6
recovery 271
statistical information 57
structures and naming conventions 6

database contents utility
Additional Selection Criteria panel 76
Customization Parameters panel 79

338 ISPF/PDF Software Configuration and Library Manager

database contents utility (continued)
field names 74
panel
report 78
selection criteria

accounting information 76
architecture definition 77
pattern examples 75

tailored data set
definition of 78
example 80
options 79
report 80

database qualifier
format 111
variable 38,40

date_check parameter 25, 30
DBACCT service 122
DBUTIL service 124
DDNAME parameters 110
ddname substitution list

use of 213
variable 38, 40

debugger 287
default project definition 189
default type

use of 30
variable 38, 41

DEFINE command 193
defining

application 25
architecture 21
authorization groups 198
compiler processed components 22
cross-reference data set 195
language definition 234
library 189, 192
link edit processed components 23
project 189
software component 216
specially processed components 25
subapplication 25
translator definition 234

definition,architecture
See also architecture member
compilation control 22, 33
copy 33
creating 27
creation 269
definition of 14
fields 77
generic 26, 33
high-level 25
kinds of 21
language 27
link edit control 23, 31
sample 31
statement

format 27

definition,architecture (continued)
statement (continued)

optional 23, 24, 26
uses 27

synchronization with 34
use of 21
val id keywords 27

DELETE service 129
deleting

accounting records 52, 54
build map records 54
change codes 59
compilation unit records and forms 70
cross-reference records 53
data sets 101
from a key group 53
intermediate records 52,68
members 52
user data entry records 64

dependencies pointer variable 38,40
dependency

compilation unit 113,273
downward 16, 64, 273
errors 270
implied 25
information 13,62
processing 15
upward 16, 64, 273

dependency processing
compilation unit 273
com pool 272
include 272

development and maintenance, concurrent 255
development layer 189,203
dialog interface

Browse (option 1) 45
Build (option 4) 91
Edit (option 2) 46
primary option menu 43
Promote (option 5) 94
Utilities (option 3) 52,74·
virtual region size 43

directory blocks 193
discrete element

See member
downward dependency 64
drawdown feature 46
dynamic includes

E

definition of 256
pointer 256
tracking 256
using 256
variable 38,40

edit
change code support 12,50

Index 339

edit (continued)
commands

SAVE 48
SCREATE 49
SMOVE 49
SPROF 50
SREPLACE 51

drawdown feature 46
function 10,46
panel 47
process 46
records and field names 47
service

LOCK 10
PARSE 11
STORE 12

Edit - Entry panel 47
Edit Profile panel 50
END service 132, 177
ENQ macro 276
ensuring synchronization of hierarchy 34
errors

compile 270
dependency 270
hierarchy 270

establish authorization codes 191
EXECUTE command 73
exit routine

build 204, 263
example 266
output data sets 265
promote 204, 263
specification 204, 263

extended scope
architecture 78
build 92
promote 95

F
feature, drawdown 46
FILE format 104

See also FLMCMD command
FLMABEG macro 197, 198,206,210
FLMAEND macro 197,211
FLMAGRP macro 197, 198,212
FLMALLOC macro 199,213,234,251
FLMCMD command

CLiST command procedure 106
command line format 105
data set example 105
FILE format 104
interactive processing 106
invocation format 104
parameters 104

FLMCMPLB macro 199,202, 217
FLMCNTRL macro 197,202,218

340 ISPF/PDF Software Configuration and Library Manager

FLMCPYLB macro 199, 222, 234
FLMGROUP macro 197, 198,223
FLMLANGL macro 199,224,234,252
FLMLNK subroutine interface 107

call invocation 107
character parameters 110
parameter conventions 107
pOinter parameters 110

See also arrays
FLMSYSLB macro 199,200,227
FLMTRNSL 199, 202, 228, 234, 251, 256
FLMTRNSL FUNCTN parameter 234
FLMTYPE macro 197, 198,231
FLM@ADA 285
FLM@ADAB 285, 286
forced mode, build 92
format name 46
formula, maximum storage 158
FREE service 134, 177
functions

browse 10,45
build 14, 91
edit 10,46
promote 17,94
util ities 13, 52

G
generic architecture member

requirement 26
restriction 26
use of 26

generic output 25
GETMAIN problems 43
GOODRC 228
group

H

defining authorization codes for 192
description 6
development layer 8
guidelines for defining 9
integration 7
key 9, 18, 96
non-key 9,18,96,258
primary non-key 258
private library 11
staging layer 8
test 7,258
verification 11, 47

hierarchical view 8
hierarchy

conversion errors 270
defining 192
description 8
ensuring synchronization 34
group concatenation 8

high-level architecture member
application modularity 25
controlling dialog software 25
use of 25

HLLAPI 277

IDCAMS utility 194, 195
impact assessment techniques 233
implied dependency, ignore 25
INCL statement

format 28
use of 23

INCLD statement
format 28
use of 23

include 272
Include List panel 60
include reference

definition of 15,60
of LEC architecture members 24
panel 60
variable 38, 42

included members
SERV1 D, Pascal 173
SERV1 S, Pascal 176

INFO member 207
INIT service 136, 176
initialize parameter variables 108
input data set 196
integration

group 7
layer 8, 189

interactive command processing 106
interactive processing 100
intermediate records

field descriptions 71
panel 71
variables 38, 42

internal data sets 189

J
JCL 194,196
JCL job card, sample 100
job statement 100
JOVIAL

K

automatic ordering 23
compilation control architecture member 22
com pool references 23, 61
variables 38, 42

key groups 8, 18,96
See a/so group

keywords
assembler call statement 107
build map 67
in architecture member statements 27,47
notation 103
use of 96

L
language

architecture member 27
constructs 279
processor identifier 26
variable 38, 40

language definitions
Ada 285
FLM@ADA 285
FLM@ADAB 285
macros 199
modify 198
new 234
using multiple translators 235
using the edit function 50

language restrictions
Ada constructs 280
genericllNLlNE recursive dependencies 281, 282
genericllNLlNE specification ordering 281
on cross-section references 279
on non-explicit references 279
on separation of references 280

language tables 193
layer

development 6, 189
staging 8

library
concatenations 8
defining 189
structures and naming conventions 6

library utility
authorization code update 68
browse accounting record 55
browse statistics 57
build map contents 67
build map record 65
change code list 59
compilation units 62
com pool list 61
cross-reference record 63
include list 60
member selection list 54
options 53
panel 52
update authorization code 68
user data entries 64

Library Utility panel 53
limited scope 91
line commands 44

Index 341

link
ordering 24
project definition 206

link edit control architecture member
See a/so load module
requirement 23
restriction 24
sample 31
use of 23
using SCLM variables 24

LINK statement
format 29
use of 24,96

linkage editor
See a/so load module
creating 23
include 24
multiple 287
override options 24
processing order 24
producing 23
sample 32
specify options 23
SSI field 278
using 23
verification 24, 29

list information array 112
LIST statement

format 29
use of 23,26

listing data set
build 17,92
output specification 119
temporary 23, 24, 26

listings
forcing titles 22
saving 23, 24, 26

LKED statement
format 29
use of 24

LMAP statement
format 29
use of 24

load module 6
LOAD statement

format 29
use of 27

load type 191
LOCK service

edit function 10
invocation of 138
Pascal program invocation 179

M
macro

ENQ 276
FLMABEG 197, 198,210

macro (continued)
FLMAEND 197,211
FLMAGRP 197,198,212
FLMALLOC 199,213,234
FLMCMPLB 199,217
FLMCNTRL 197,202,218
FLMCPYLB 199, 202, 222, 234
FLMGROUP 197, 198,223
FLMLANGL 199, 202, 224, 234
FLMSYSLB 199,202,227
FLMTRNSL 199,202,228,234
FLMTYPE 197, 198, 231
initial 47
instructions 209
user-defined 51

maximum report lines 203
maximum VIO limit 204
MAXLINE control option 203
MAXVIO control option 204
member

compilable 272
definition 7
deleting 52, 53
dependency information 63
historical information 72
maximum accounting information stored 158
statistical information 11

member selection list
accounting records 54
Ada sublibrary management utility 69
intermediate records 70
library utility 54

member, architecture 7
message

ABEND 99
array 110
build 16
data set 101
DBUTIL service 127
FLMCMD command 105
ISPF/PDF 25
list of 295
output specification 119
promote 19,96
RPTARCH service 150

migration utility 72
mixed mode 46,48
modes

build 16,92
forced save 48
mixed 46,48
promote 19, 95
SHR 321

modify control options 202
modify language definitions 199
module, load 6
module, object

creating 22

342 ISPF/PDF Software Configuration and Library Manager

module, object (continued)
include 23
sample 33
specify options 22

MOVE command 49
multiple SINC statements 283
multiple translator usage 235
MVS limitations 8,189

N
name

data set 46
format 46
language definition 50
profile 47

naming conventions
of architecture members 27
of data sets 9

non-key groups 8, 18, 96
See a/so group
initialization 270

normal scope
build 91
promote 95

notation conventions 103,209

o
OBJ statement

format 29
use of 33,67

object module
creating 22
include 23
sample 33
specify options 22

object type 191
Operating System/2 (OS/2) 277
OPTFLAG 229
optimizer support 289
options, control

ACCT 203
ACCT2 203
MAXLINE 203
MAXVIO 204
OPTOVER 203
XREF 203

OPTOVER control option 203, 229
ordering compiler inputs

automatically 23
manually 22

output
creating generic 26
processor target types 26
saving compiler 26
sending to a data set 101

Output Disposition panel 101
OUTx statement

format 29
use of 26

p
packed data set

editing 48, 142
parsing 12, 142
saving 152

panels
accounting record 55
accounti ng record statistics 57
architecture report 84
authorization code update 68
browse entry 45
build 91
build map 65
build map contents 67
change code list 59
compilation units list 62
com pool list 61
controlling software for 25
cross-reference record 63
database contents - additional selection criteria 76
database contents customization parameters 79
database contents utility 74
database contents-tailored 79
edit 47
include list 60
intermediate records 71
library utility 53
member selection list

accounting records 54
intermediate records 70

migration utility 72
output disposition 101
primary option menu 43
promote 94
SCLM edit profile 50
sublibrary management 69
user data entries 64
utilities 52
verify batch job information 100

parameters
BUILD service 118
character 110
DBACCT service 122
DBUTIL service 125
DDNAME 110
DELETE service 129
END service 132
ENQ macro 276
FLMABEG macro 210
FLMAEND macro 211
FLMAGRP macro 212
FLMALLOC macro 213

Index 343

parameters (continued)
FLMCMPLB macro 217
FLMCNTRL macro 218
FLMCPYLB macro 222
FLMGROUP macro 223
FLMLANGL macro 224
FLMSYSLB macro 227
FLMTRNSL macro 228
FLMTYPE macro 231
FREE service 134
INIT service 136
LOCK service 139
PARSE service 142
pointer 110
PROMOTE service 146
RPTARCH service 149
SAVE service 153
START service 157
STORE service 159
UNLOCK service 162

PARM statement
format 29
use of 24,26

PARMx statement
format 30
use of 22,26

PARSE service
accounting information 11
description of 11
edit function 11
invocation of 142
Pascal program invocation 170, 180

parser
invoking 239,240
restrictions 279
supplied by SCLM 12
user-defined 239
volume 48
writing 240

Pascal
integer variable 115
program sample 165

password, data set 46
patterns for selection criteria 75
performance considerations 276
pointer parameters

$acctJ nfo 111
$listJnfo 112
$msg_array 110
$stats J nfo 112

precedence
system 77
verification 11

predecessor, definition of 11
primary

commands 44
groups 9
non-key groups 258

primary non-key group 258
Primary Option Menu panel 43
printing data sets 101
private library 7
problem report 262
processing

batch 100
build 15
conditionally saved components 251
errors 99
interactive command 106
interactively 100
promote 17

program sample, Pascal 165
project

controls 202
converting to SCLM 268
database

backup and recovery 271
description 6

define new languages for 234
defining 189
definition

alternate 189, 257
assembly of 206
default 189
generation of 189
linkage of 206
specification 197

identifier 6, 198
PROM statement

format 30
use of 25

promotable hierarchy
definition
example

promote function
data contention 99
data set overflow 99
error messages 95, 96
generating a report 18, 95
messages 19
modes 19,95
panel 94
processing 17, 95
report 19, 96
scopes 19,95
summary of 17

PROMOTE service 145
protect SCLM data sets 202
purge process 18, 99

R
RACF (Resource Access Control Facility) 197
READ access 197
records

accounting 55

344 ISPF/PDF Software Configuration and Library Manager

records (continued)
build map 65
cross-reference 63
intermediate 69, 71
user data entries 65

recovery of database 271
reference, com pool

definition of 23, 61
identify database targets for 22
panel 61
variable 38, 42

reference, include
definition of 15,60
of LEC architecture members 24
panel 60
variable 38,42

RELEASE
group 8
layer 8, 189

report
accounting statistics 82
architecture information 14,83-85
build 16,93
change code 81
cleanup 83
cross-reference information 83, 87
cutoff 84
data set 101
database contents uti I ity 78
examples 78-90, 93-99
generation 16, 18
lines, maximum 203
output specification 119
problem 262
promote 19,96
source listing 82
tailored 79, 80
variables 80

report only mode
build 92
promote 95

Resource Access Control Facility (RACF) 197
restrictions

Ada compiler 286
Ada sublibrary 282

return codes
BUILD service 120
DBACCT service 123
DBUTIL service 127
DELETE service 130
END service 132
FREE service 134
general categories 115
GOODRC 228
INIT service 136
LOCK service 140
PARSE service 144
PROMOTE service 147

return codes (continued)
RPTARCH service 150
SAVE service 155
START service 157
STORE service 160
UNLOCK service 163

RPTARCH service 149

5
sample program, Pascal 165
SAVE

command 48
service 152

SCLM internal data pointer
definition of 111
variable 39, 40

SCLM internal data sets 203
SCLM macros 197

See also macro
SCLM services 103-164

data set protection 276
development scenario 274
performance considerations 276

scopes
architecture 78
build 16,91
promote 19,95

secondary accounting data set 203
security 271
selection criteria 75

See also database contents uti I ity
service

BUILD 117
character parameters 110
DBACCT 122
DBUTIL 124
DELETE 129
END 132
FLMCMD interface 104
FLMLNK subroutine interface 107
FREE 134
INIT 136
interactive command processing 106
invocation from programs 104
LOCK 10,138
notation conventions 103
PARSE 11, 142
pOinter parameters 110
PROMOTE 145
return code categories 115
RPTARCH 149
SAVE 152
START 157
STORE 12, 158
UNLOCK 162

SETSSI command 24

Index 345

SHR mode 321
SINC statement

format 30
required 22
SINC statements 283
use of 34

skeletons, ISPF/PDF 25
source listing report 82
source type 191
space computations

accounting data set definition 195
SPACE parameter 194
SREF statement

format 30
use of 225

SREPLACE command 51
SSI field 278
staging

group 8, 190
layer 8

START service 157
static pointer

definition of 111
use of 110
variable 39, 41

statistical information
array 112
field descriptions 57
panel 57
Pascal program invocation 176
record field format 112
variables 38, 41

STORE service
accounting information 12
change code information 12
dependency information 12
edit function 12
historical information 55
invocation of 158
Pascal program invocation 181
statistical information 57

subapplication
See a/so high-level architecture member
controlling 25
defining 25
sample 31

sublibrary management utility 68
intermediate record 71
member selection list 70
panel 69

SUBMIT command 73
subunit scope

architecture 78
build 92
promote 95

supported data 191
synchronization, architecture definition 34

synchronizing data sets 271

T
tailored data set

definition of 78
format specification 80
options 79
report 80
sample of 80

temporary listing data set 23,24, 26
test

group 7
layer 8, 189

testing with primary non-key group 258
title

on listings 22
on tailored report 79, 126

top CU name
definition of 113
variable 39, 40

tracking dynamic includes 256
translator

definition 234
invocation 15, 24
option override 203

TTR notes 319
type

u

architecture 191
description 6
load 191
object 191
source 191

unconditional mode
build 92
promote 95

UNLOCK service 162
UPARSE mode 49
UPDATE 197
update authorization code 68
upward dependency 64
user catalog 193
user data entries

accounting records 57,64
array record 112
variable 39, 42

User Data Entries panel 64
user-defined

macros 51
parsers 239

user exit routine specification
build 263
example 266
promote 263

346 ISPF/PDF Software Configuration and Library Manager

USUBDD mode 49
utilities function

Ada sublibrary management utility 13,68
architecture report 14,83
database contents utility 13,74
DBUTIL service 124
function summary 13
library utility 13,52
migration utility 13,72
panel 52
tailored data set 74, 80
tailored report 79

Utilities panel 52

v
variables

CLiST 104
COBOL return code 115
descri ption of 37
FORTRAN 108
in LEC architecture members 24
initialize parameter 108-109
list of 37
message 294
Pascal 108
report 37-42, 80
uses for 37

verification
access key 11
authorization code 11, 72
build output 11
build processing 15
bypass 24, 30
change code 12,261
compilation unit 13
error processing 95
group 11
load module 24
predecessor 11
promote processing 17,99

VIO limit 204
volume serial 46
VSAM

accounting data set 203
alias 203
cluster 194, 196
data set 193
system catalog 193
user catalog 193

workstation platform for OS/2 277-278
library list 277
methods 277
tools 277

X
XREF

compilation unit type 69
control option 203

Special Characters
$acctJnfo 111
$listJnfo 112
$msg_array 110
$statsJnfo 112

Index 347

ISPF /PDF Software Configuration and
Library Manager (SCLM) Guide and
Reference V3 R2 for MVS

SC34-42S4-0
READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication, its
organization, or subject matter, with the understanding IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you. Your comments will be sent
to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation? ______________________________ _

Number of latest Newsletter associated with this publication: __________________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address in
the Edition Notice on the ·back of the front cover or title page.)

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- ---- - - ------------,-
®

Please Do Not Staple

BUSI N ESS REPLY MAl L
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT T45 INFORMATION DEVELOPMENT
PO BOX 60000
CARY NC 27511

1 •• 1.11 ••• 1.1.1 •••• 1111.111.1 •• 1.1 •• 1.1 •• 11 ••• 111.11

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

u .,
.:! .,
c ,
(j
C"
r
~

i

Ci
c

c
c.
)

c.
C
c.
.j

J
" Co
.j

--------- - ------- - ---- - - ----------_ .-
<!!I

Printed in U.S.A.

Program Number
5665-402

File Number
S370/4300-39

