


The DFSORT Library 

...s: -Reference 
General Getting Planning Application Diagnosis Summary 
Information Started with and Programming Guide 

DFSORT Installation Guide 

GC33-4033 SC26-4109 SC33-4034 SC33-4035 SY26-3971 SX33-8001 I-

Order Today 

Just fill in the appropriate quantity to order IBM DFSORT publications. 

D 
D 

D 

D 
D 
D 

DFSORT General Information is an introduction to DFSORT. It is a source of general information 
for people involved in planning, managing, system support, or programming at an installation. 

Getting Started with DFSORTis for the new DFSORT user. It shows you step-by-step how to 
perform sort, merge, and copy applications and teaches you some techniques for using DFSORT 
efficiently. 

DFSORT Planning and Installation is written for experienced system programmers, has planning 
considerations and general instructions for installing DFSORT. It is designed to be used with the 
DFSORT Program Directory, which has more detailed installation instructions. 

DFSORT Application Programming: Guide enables the programmer to prepare all the input 
necessary to perform a sort, merge or copy application. It provides detailed information on how to 
use program control statements and how to estimate storage used by DFSORT during its execution. 

DFSORT Diagnosis Guide provides instructions for diagnosing and resolving program failures. 

DFSORT Reference Summary is a quick reference providing program control statements, job 
control statements, and parameter lists. 

To order the IBM DFSORT product, simply check the box below. 

D Yes, I want to improve my sort performance. Please send me DFSORT Release 8.0 (5740-SMl), 
which includes a FREE one month test period. 

Fill in the section below or call us, toll free, at 800-IBM-2468 (Software and Education). 

Signature Company---------------

Name Address 
-------------------------------------------------

Phone City, State _____________ _ 

IBM Customer Number ZIP 

Note: Your IBM Customer Number is required for billing purposes. 



GC33-4033-12 

Fold arid tape 

Fold and tape 

--...- ------- ----- - -- -.. ---- -------- ---~- .. -® 

Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

ORO/Software 
I BM Corporation 
1 Culver Road 
Dayton, New Jersey 08810 

Please do not staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

F o Id and tape 



--------- ----- - -- -. ----- - - -----------·-

Order Number: 
GC33-4033-12 

DFSORT 
General Information 

Program Number: 
5740-SM1 

Program 
Product 

Release Number: 
8.0 



Thirteenth Edition (January 1986) 

This is a major revision of, and makes obsolete, GC33-4033-ll. 

This edition applies to Release 8.0 of IBM DFSORT, Program Product 5740-SMl, and to 
any subsequent releases until otherwise indicated in new editions or technical newsletters. 

The changes for this edition are summarized under "Summary of Amendments" following 
the preface. Specific changes are indicated by a vertical bar to the left of the change. 
These bars will be deleted at any subsequent republication of the page affected. Editorial 
changes that have no technical significance are not noted. 

Changes are made periodically to this publication; before using this publication in 
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx, 
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and 
current. 

References in this publication to IBM products, programs, or services do not imply that 
IBM intends to make these available in all countries in which IBM operates. Any 
reference to an IBM program product in this publication is not intended to state or imply 
that only IBM's program product may be used. Any functionally equivalent program may 
be used instead. 

Requests for IBM publications should be made to your IBM representative or to the IBM 
branch office serving your locality. If you request publications from the address given 
below, your order will be delayed because publications are not stocked there. 

A form for readers' comments is provided at the back of this publication. If the form has 
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020, 
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. 

©Copyright International Business Machines Corporation 1973, 1979, 1981, 1983, 
1984, 1985, 1986 



Preface 

This publication provides an introduction to the IBM DFSORT (Data Facility Sort) 
Program Product 5740-SMl. It is intended as a source of general information for 
people involved in planning, managing, system support, or programming at an 
installation. 

The publication gives a general description of the DFSOR T program and its 
relationship to the operating systems and the machine environments. It also 
outlines compatibility considerations. 

The reader is assumed to be familiar with the terminology and concepts of the 
operating system used. 

Organization of Manual 

This manual contains the following chapters: 

Chapter 1, " Introduction" on page 1 describes the program, its performance, 
and its features. 

Chapter 2, " Program Description" on page 9 describes the functional 
organization of the DFSORT program and the types of records, data set formats, 
devices that can be used, and other related information, including a control 
statement summary. 

Chapter 3, "System Interface and Requirements" on page 25 describes the 
relationship of DFSORT to its operating systems, the minimum hardware 
configuration required for its residence and execution, and how it is installed. 

Chapter 4, " Performance" on page 31 tells how you can aid the program's 
optimization toward higher performance. 

Preface iii 



Notational Conventions 

A uniform system of notation describes the format of the job control language and 
DFSORT control statements. This notation is not part of the language; it merely 
provides a basis for describing the structure of the commands. 

The control statement command-format summary shown in "Program Description" 
uses these conventions: 

• Brackets,[], indicate an optional parameter. 

• Braces,{}, indicate a choice of entry; unless a default is indicated, you must 
choose one of the entries. 

• Items separated by a vertical bar, I, represent alternative items. No more than 
one of the items may be selected. 

An ellipsis, ... , indicates that multiple entries of the type immediately preceding 
the ellipsis are allowed. 

• Other punctuation (parentheses, commas, apostrophes, etc.) must be entered 
as shown. 

iv DFSORT General Information 



Summary of Amendments 

Release 8.0, January 1986 

New features added to DFSORT include: 

• An enhancement to the variable-length record sorting technique, 
VLR-Blockset, which improve performance when sorting variable-length 
records. On MYS/Extended Architecture (MVS/XA) systems, utilization of 
extended addressing capability is available with VLR-Blockset. 

• More efficient use of processor cache memory, which improves performance 
when sorting fixed-length records. 

• The COPY function, which copies a data set without performing any sorting or 
merging operation. It can be used with most of the same control statements, 
exits, and options available when sorting or merging. 

• An enhancement to the Blockset technique, which can now be used to continue 
sorting when encountering a record too short to contain all specified control 
fields. New installation and execution options have been added for ease of use. 
In addition, the Blockset technique can now be used for VSAM input and 
output data sets. 

Release 7.1, June 1985 

New enhancements added to DFSORT are the ability to: 

• 

• 

• 

Preserve the original order of identically collating records when doing a 
Blockset merge, if the EQUALS option is used. 

Specify, using the EQUALS option, that the first record will be retained when 
summarizing identically collating records when doing a Blockset sort or merge. 

Use the Blockset technique when merging spanned variable .. length records . 

Features that were removed from prior releases and that are now being 
reimplemented: 

• Processing of multivolume SORTOUT data sets with the EXCP access method 
rather than with the BSAM access method, whenever possible. 

Summary of Amendments V 



• Dynamical link-editing of user exit routines. Note that the SORT cataloged 
procedure has been changed to include link-edit DD statements. 

• Writing program messages to the master console. 

Release 7 .0, January 1985 

New features added to DFSORT are: 

• For MVS/XA, the ability to reduce the processor time for sorting done in large 
storages by using IBM System/370 Extended Architecture Sorting 
Instructions. 

• Virtual storage constraint relief (VSCR) for MVS/XA: 

Improved performance because certain buffers and modules can now be 
placed above 16-megabyte virtual when sorting fixed-length records. 

The ability to specify: 

The upper limit of the amount of main storage above and below 
16-megabyte virtual available to DFSORT (TMAXLIM). 

The number of bytes reserved above 16-megabyte virtual for system 
use (ARESALL). 

The number of bytes reserved above 16-megabyte virtual for a 
program that invokes DFSORT (ARESINV). 

• COBOL-related enhancements: 

The ability to invoke DFSORT from VS COBOL II programs. 

The ability to use the VS COBOL II FASTSRT compile-time option, 
which enhances performance. 

The ability to write E15 and E35 exit routines in COBOL. 

The ability to specify an alternative message data set when invoking 
DFSORT with JCL. This is especially useful when exits are written in 
COBOL. 

• Support of the IBM 3480 Magnetic Tape Subsystem. 

• Removal of the upper limit of 48K bytes for the RESALL option. 

The ability to specify the maximum number of records to be accepted for 
sorting. 

Vi DFSORT General Information 



Contents 

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . • . • . . • . . . . 1 
How Well Does DFSORT Perform? .................................. 2 
What Does DFSORT Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Features ..................................................... 5 

Chapter 2. Program Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . 9 
Control Fields and Collating Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Control Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Collating Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Alternative Collating Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Control Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Control Statement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Control Statement Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

Input/ Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Record Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Statistical Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

Program Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Invoking DFSORT from a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Converting to the Extended Parameter List . . . . . . . . . . . . . . • . . . . . . . . . . 20 
Overriding Parameter List Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Overriding Installation Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
Using Job Control Language (JCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

User-Written Routines at Program Exits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Functions of Routines at User Exits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Chapter 3. System Interface and Requirements . . . . . . . . . . . . . . . . . . . . . • • . 25 
Relationship to OS/VS and MVS/XA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Minimum Hardware Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Program Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Program Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Chapter 4. Performance . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . 31 
Using System/ 3 7 0-XA Sorting Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Planning Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Efficient Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 
Variable-Length Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
User-Written Exit Routines .... .'........ . . . . . . . . . . . . . . . . . . . . . . . . 33 

Being Generous with Main Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 
Using Efficient Sort/Merge Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

Sort Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Merge Techniques ............................................ 34 

Using Work Storage Devices Efficiently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Direct-Access Work Storage Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Contents vii 



Device Data Transfer Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Tape Work Storage Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 

Specifying Input/Output Data Set Characteristics Correctly . . . . . . . . . . . . . . 37 
Data Set Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 
Variable-Length Records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
Direct Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
Tape ....................................................... 38 

Using JCL to Initiate DFSORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
Using Options That May Enhance Performance ........................ 39 

COBEXIT .................................................. 40 
FASTSRT ................................................... 40 
INCLUDE or OMIT, STOPAFT, and SKIPREC ..................... 40 
INREC and OUTREC ......................................... 41 
SUM ....................................................... 41 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

viii DFSORT General Information 



Figures 

1. Performance Improvement under MVS/XA ....................... 3 
2. Performance Improvement under MVS/370 ....................... 3 
3. An Input/ Output Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
4. Data Set Characteristics of Input and Output Records . . . . . . . . . . . . . . 17 
5. Overview of DFSORT Program Initiation from Four Sources . . . . . . . . . 19 
6. Converting to the Extended Parameter List . . . . . . . . . . . . . . . . . . . . . . . 20 
7. Functions of Routines at Program Exits . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
8. Information about Work Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
9. Comparative Data Transfer Rates of Disk Work Storage Devices . . . . . . 36 

10. Number of Tracks per Cylinder for Direct-Access Devices . . . . . . . . . . . 38 
11. External Work Storage Requirements of the Various Tape Techniques . . 39 
12. Performance is Improved with FASTSRT ........................ 40 

Figures ix 





Chapter 1. Introduction 

DFSORT is a member of a family of products that perform essential data 
processing tasks. These products are designed to work together so that the total 
benefits derived from the family may exceed the sum of the benefits of each 
individual product. 

user 

interactive interactive 

RACF DFDSS DFHSM DFP Application 
Subsystem 

.______, ,___.., 
0 

[ data 

.---- ,___.., D 
DFSORT 

DFDSS Data Facility Data Set Services is a high performance data mover. It 
performs data backup and recovery, DASO conversion, and DASO 
space management tasks. 

DFHSM Data Facility Hierarchical Storage Manager is the manager of inactive 
data. It is a key product for automating functions that involve space 
and availability. 

DFP The Data Facility Product is the manager of active data and is a base 
for hardware and software. It manages programs, devices, and data. 

DFSORT Data Facility Sort is a high performance data arranger that provides an 
efficient and flexible way to handle sorting, merging, and copying 
applications. 

Together, DFDSS, DFHSM, DFP, and DFSORT make up the Data Facility family 
of products, the foundation for response to expanding storage management 
requirements. These products, along with the Resource Access Control Facility 
(RACF - the manager of data security and resource authorization) form the 

Chapter 1. Introduction 1 



strategic base from which IBM is evolving to system-managed storage in the 
MYS/Extended Architecture (MVS/XA) environment. 

DFSORT is an important component of the Data Facility family with the potential 
to individually contribute significant benefits to data processing resources. 
DFSORT supports input and output data sets on any device supported by VSAM 
or QSAM. IBM's high performance direct access or tape storage devices can be 
used for intermediate storage. 

DFSORT is a frequently invoked program and major user of system resources. In 
fact, it is not uncommon for the program to be invoked 4000 to 5000 times a week 
in a large installation. Typically it consumes from 10 to 20 percent of the processor 
resources and from 15 to 25 percent of the channel resources. Any improvement 
in a program that uses the system resources so heavily can result in significant 
dollar savings. Designed specifically for such perf orinance improvements, 
DFSORT: 

• Exploits device geometry, processor memory, and processor cache 

• Exploits MVS/XA extended addressing 

• Utilizes MVS/XA sorting instructions 

• Supports VS COBOL II FASTSRT compile-time option 

How Well Does DFSORT Perform? 

Because reductions in CPU time, elapsed time, and the number of EXCPs issued 
by the program are such important considerations, the results from DFSORT test 
cases are noteworthy. 

The following two figures show the improvement of Release 8.0 over Release 7 .1 
when sorting variable-length records. 

2 DFSORT General Information 



save 
50% 

ELAPSED TIME 

save 
483 

CPU SECONDS EXCP COUNTS 

Figure 1. Performance Improvement under MVS/XA. This figure shows measured 
performance improvements for variable-length record sorts in Release 8.0, when 
compared to equivalent sorts in Release 7 .1. Release 7 .1 used JCL region sizes 
from 256Kb to lMb. Release 8.0 used the 2Mb virtual storage default. 

save 
2% 

ELAPSED TIME CPU SECONDS EXCP COUNTS 

Figure 2. Performance Improvement under MVS/370. This figure shows the measured 
performance improvements for variable-length record sorts in Release 8.0, when 
compared to equivalent sorts in Release 7 .1. 

When sorting fixed-length record files, Release 8.0 has shown performance 
improvements over Release 7 .1 to be approximately an 8 percent reduction of CPU 
time in the MVS/XA environment when using the two-megabyte virtual storage 
default. 

Chapter 1. Introduction 3 



Note: Many factors affect the performance of sort products: device speed, CPU 
model, record size, file size, region size, and so forth. IBM, therefore, does 
not wa"ant or represent that users will experience the same changes in 
performance indicated by the test results. 

When comparing DFSORT Release 8.0 to 7.1, the tests were executed on a 
partitioned dyadic configuration of an IBM 3084 Model QX processor having 
32 megabytes of storage. All data sets were on IBM 3380 Direct Access 
Storage Devices. Record sizes, file sizes, and JCL region sizes were selected to 
be representative of many user environments. 

A number of factors contribute to the overall improved performance of DFSORT 
Release 8.0 when compared to Release 7.1: 

• The significant enhancement of VLR (Variable-Length Record) Blockset 

• The utilization of extended addressing capability and use of virtual storage 
above the 16-megabyte address boundary for VLR sorts on MVS/XA systems 

• The use of DFSORT's highest performing processing technique, Blockset, for 
VSAM record processing 

• The efficient use of processor cache memory which improves performance of 
fixed-length record sorts 

• The removal of some restrictions that prevented the use of the more efficient 
Blocksettechnique 

What Does DFSORT Do? 

DFSORT offers five techniques for sorting, merging, and copying (hereafter 
referred to as "processing"): Fixed-Length Records (FLR) Blockset, 
Variable-Length Records (VLR) Blockset, Peerage, Vale, and Conventional 
techniques. 

FLR- and VLR-Blockset are two high-performance techniques for processing 
fixed-length records and variable-length records. Because FLR-Blockset and 
VLR-Blockset are DFSORT's most efficient techniques, the program selects 
them whenever possible. 

If conditions for selection of the Blockset techniques are not met, DFSORT 
will use either the Peerage, Vale, or Conventional technique, depending on 
several factors, including whether you are sorting or merging, whether you are 
working with FLR or VLR records, and whether you use disk or tape for 
intermediate storage. For a discussion of sorting and merging techniques, see 
Chapter 4, " Performance" on page 31. 

4 DFSORT General Information 



Functions 

Features 

DFSORT will: 

Sort 

The primary function of DFSORT is to sort data sets. Input can be blocked or 
unblocked sequential data sets containing fixed- or variable-length records on any 
device that can be used with QSAM or VSAM. Output can be either QSAM or 
VSAM output, regardless of the input form, but it must be of the same type (fixed 
or variable) as the input. 

While sorting you can perform record-level editing operations such as reformatting 
and including or excluding certain records from the input file. 

Merge 

You can merge as many as 16 previously sorted QSAM or VSAM input data sets 
(but not both types together). Output can be either QSAM or VSAM output, 
regardless of the input form, but it must be of the same type (fixed or variable) as 
the input. 

Record-level editing is supported. 

Copy 

The COPY function enables you to copy data sets without performing any sorting 
or merging operations. 

Record-level editing is supported. 

Input can be blocked or unblocked sequential data sets containing fixed- or 
variable-length records on any device that can be used with QSAM or VSAM. 
Output can be either QSAM or VSAM output, regardless of the input form, but it 
must be of the same type (fixed or variable) as the input. 

For sort, merge, and copy, VSAM output data sets must be predefined using the 
Access Method Services facility. 

The features of DFSORT include: 

Control Statements and Options 

Control statements provide flexibility in controlling DFSORT applications. 
They facilitate record-level editing operations. 

• All control statements can be specified in the SYSIN or SORTCNTL data set 
regardless of what processing technique is used by DFSORT. (SORTCNTL is 
valid only when DFSORT is dynamically invoked by another program.) 

• Control statements can be used instead of complex programming logic. 

Chapter 1. Introduction 5 



Program Exits 

• You can temporarily override most specifications made during installation of 
DFSORT. 

User-written routines can be used to perform a variety of operations, such as 
deleting, inserting, and altering records. 

Operadon in MVS/XA Mode 

Long Records 

Auxiliary Storage 

User exit routines and programs that invoke DFSORT will be able to reside above 
or below 16-megabyte virtual, execute in 24-bit or 31-bit mode, and pass data that 
resides above or below 16-megabyte virtual to DFSORT. 

DFSORT places certain modules and buffers above 16-megabyte virtual leaving 
more space below for user programs. More and larger buffers provide greater 
optimization opportunities. For MVS/XA users who install DFSORT resident, 
most of the Blockset modules will be placed above 16-megabyte virtual in the 
extended link pack area. 

Use of IBM System/370 Extended Architecture sorting instructions (hereafter 
referred to as System/370-XA sorting instructions), which are part of the extended 
architecture hardware, reduces the processor time for sorting done in large 
storages. 

The maximum record length for variable-length records is 32756 bytes, and, for 
fixed-length records, is 32760 bytes. 

These features involve auxiliary storage: 

Mixed Device Types 

Disk work data sets can be allocated on mixed device types, and space need not be 
contiguous. As many as 32 work data sets can be allocated for a disk sort. 

Automatic Release 

Disk work space and output data set space that is no longer needed after all records 
have been read in may automatically be released and thus given back to the system 
before processing ends. The DFSORT program can be installed with or without 
this option. 

Automatic Secondary Allocation 

DFSORT automatically allocates secondary extents on your disk work and output 
data sets if there are insufficient primary extents. This minimizes the probability of 
exceeding intermediate storage capacity and prevents DFSORT from terminating 
before the whole file is processed. The DFSORT program can be installed with or 
without this option. 

6 DFSORT General Information 



Main (virtual) Storage Sort 

Collating Options 

System Facilities 

Dynamic Allocation (MVS) 

You can assign to DFSORT the task of dynamically allocating needed work space. 
(This will relieve you of the necessity of calculating and specifying, through JCL, 
the amount of intermediate work space needed by the program.) The program, by 
use of the dynamic allocation facility of the operating system, allocates work space 
for the current sort application. 

Small data sets that can be contained within main storage can be sorted without 
any work data sets, subject to some conditions for the Blockset sorting techniques. 

DFSORT provides several collating options: 

Long Control Fields 

Control fields may be contiguous separated, or may overlap. The control fields 
may occur anywhere within the first 4092 bytes of a data record but their total 
length must not exceed 4092 bytes. 

EQUALS Preservation 

Input order of records with equal control fields can be preserved. 

Alternative Sequence 

You can specify a deviation from the standard EBCDIC collating sequence 
(alternative collating sequence) when DFSORT is installed. You can also, 
optionally, designate an alternative collating sequence for character format. 

Two system facilities provided by DFSORT are: 

SMF Records 

Additional SMF records can be used to gather statistical information about 
DFSORT applications. 

Checkpoint/ Restart 

The system checkpoint/ restart facility can be used with the Peerage, Vale, and 
Conventional techniques. 

Chapter 1. Introduction 7 



Mesages 

• Messages include a diagnostic message trace character to identify the source of 
the message in the code. 

• Information messages are issued containing statistical information (such as the 
average record length for variable-length record sort applications) about the 
sort run. 

• You can determine the level of messages issued (diagnostic, informative, 
critical, or none). 

• You can control whether control statements will be printed. 

• You can control whether DFSOR T messages will be written to the master 
console. 

8 DFSORT General Information 



Chapter 2. Program Description 

This chapter describes the types of records, data set formats, and devices that can 
be used with DFSORT. It describes the collating sequences used, the program 
control statements, and program initiation methods. 

It also gives a functional description of the exits provided in the program for entry 
into routines written by the user for particular applications. In addition, it tells how 
you can collect statistical data. 

Control Fields and Collating Sequences 

Control Fields 

Collating Sequences 

Control fields are portions of records, designated by the user, which are used by 
the program to sort or merge records into a specified sequence. 

DFSORT determines the sequence of data records by using one or more control 
fields, which must appear in the same relative position in each record. The 
sequence for each control field can be ascending or descending. 

Starting with the first control field, the contents of the control fields are compared 
when all previous comparisons have resulted in an equal condition. 

For a sort or a merge, the order of equally collating records is preserved when the 
EQUALS option is active. When the EQUALS option is not active, the order of 
equally collating records is not preserved. 

Control fields may be contiguous, separated, or may overlap. The control fields 
may occur anywhere within the first 4092 bytes of a data record but their total 
length must not exceed 4092 bytes. 

The sequence of output records is determined by the standard EBCDIC collating 
sequence, the ISCH/ ASCII collating sequence, or a user-specified collating 
sequence. 

Chapter 2. Program Description 9 



Alternative Collating Sequence 

The EBCDIC collating sequence can be modified at program installation time by 
specifying the AL TSEQ option, or at execution time with the AL TSEQ program 
control statement. Modifying the collating sequence means that one or more 
characters in the sequence can be changed. 

The AL TSEQ translation table applies to the AQ field format. The user can now 
specify, at either installation or execution time, whether the AL TSEQ translation 
table should also apply to the CH field format. 

Control Statements 

DFSORT control statements provide details about how the records are to be 
processed. They also provide information about the control fields and collating 
sequence in addition to information such as a description of the input data, whether 
the order of equally collating records is to be preserved from input to output, 
whether any user-written routines are to be included during program execution, and 
soon. 

You can select one of three applications. 

SORT 

MERGE 

OPTION 

Can be used to specify a sort or copy application. 

Can be used to specify a merge or copy application. 

Can be used to specify a copy application. Also, it can be used to 
modify certain program options specified at installation time or 
specified on the SORT or MERGE control statement, and to supply 
other optional information. 

Other control statements include: 

ALTSEQ 

DEBUG 

END 

INCLUDE 

INREC 

MODS 

OMIT 

OUTREC 

10 DFSORT General Information 

Specifies modifications to the standard EBCDIC collating sequence. 

Specifies an abend and/ or a return code 16 on a critical error, 
and/ or specifies use of BSAM for input/ output. 

Causes DFSORT to discontinue reading SYSIN or SORTCNTL. 

Specifies that only records whose fields meet certain criteria will be 
included. 

Specifies how records will be reformatted before they are processed. 

Normally required when program exits are to be used. 

Specifies that records whose fields do not meet certain criteria will 
be deleted. 

Specifies how records .will be reformatted before they are output. 



RECORD 

SUM 

Required when record lengths will be changed during execution of 
the program, when there is no SORTIN DD statement, or when 
input is a VSAM data set. 

Specifies that summary fields in records with equal control fields 
will be summarized in one of the records, and that the other records 
will be deleted. 

Note: The INPFIL and OUTFIL control statements, which are used by other IBM 
sort/ merge programs, are ignored. 

Control Statement Parameters 

A list of the statements and their parameters is given below: 

Chapter 2. Program Description 11 



Statement Parameters 

ALTSEQ CODE={fftt ... ,fftt) 
DEBUG [ABENDINOABEND] 

[ ,ABSTP] 
[ ,BSAM] 
[,BUFFERS={ANYIBELOW}] 
[ ,CTRx=n] 
[ , FMTABEND] 
[ ,NOASSIST] 

END None 
INCLUDE {COND=(logical expression) I 

COND={logical expression),FORMAT=f} 
INREC FIELDS=([s,]p,mf ,al ... 

[,s] [,p,m[,a]] [,s]) 
MERGE {FIELDS=(p,m,f,s ... ,p,m,f,s) I 

FIELDS=(p,m,s ... ,p,m,s) ,FORMAT=fl 
FIELDS=COPY} 
[, CKPT] 
[,EQUALSl,NOEQUALS] 
[ ,FILES=n] 
[,FILSZ=xl,SIZE=y] 

MODS exit= ( n, m, s [ , e] ) ... , exit= ( n, m, s [ , e] ) 
OMIT {COND=(logical expression) I 

COND={logical expression) ,FORMAT=f} 
OPTION [ARESALL={nlnK}] 

[,ARESINV={nlnK}] 
[,CHALTl,NOCHALT] 
[,CHECKl,NOCHECK] 
[, CKPT] 
[,COBEXIT={COB1 ICOB2}] 
[,COPY] 
[ , DYNALLOC [ = { d I ( d) I ( , n) I ( d, n) } ] ] 
[,EQUALSl,NOEQUALS] 
[,FILSZ=xl,SIZE=y] 
[,LIST I , NOLIST] 
[,MAINSIZE={nlnKIMAX]} 
[ , MSGDDN=ddname] 
[,MSGPRT={ALLINONEICRITICAL}] 
[ , NOBLKSET] 
[ , NOOUTREL] 
[, NOOUTSEC] 
[ , NOS TIMER] 
[ , NOWRKREL] 
[ , NOWRKSEC] 
[,RE SALL= {n I nK}] 
[,RES INV= {n Ink}] 
[ , SKIPREC=z] 
[,SORTDD=cccc] 
[,SORTIN=ddname] 
[,SORTOUT=ddname] 
[, STOPAFT=n] 
[,VERIFYl,NOVERIFY] 
[,VLSHRTI ,NOVLSHRT] 

OUTREC FIELDS=([s,]p,m[,a] ... 
[,s] [,p,m[,a]] [,s]) 

RECORD [LENGTH={L1,L2,L3,L4,L5,L6,L7)] 
[, TYPE=x] 

12 DFSORT General Information 



SORT {FIELDS=(p,m,f,s ... ,p,m,f,s) I 
FIELDS=(p,m,s ... ,p,m,s) ,FORMAT=fl 
FIELDS=COPY} 
[, CKPT] 
[ ,DYNALLOC[={dl (d) I ( ,n) I (d,n)}]] 
[ , EQUALS I ,NOEQUALS] 
[,FILSZ=xl,SIZE=y] 
[, SKIPREC=z] 

SUM {FIELDS=(p,m,f ... ,p,m,f) I 
FIELDS=(p,m ... ,p,m) ,FORMAT=fl 
FIELDS=NONE} 

Control Statement Examples 

Example 1: SORT 

The following control statements could be used in a sort application: 

SORT 
RECORD 

FIELDS=(14,2,D,5,8,A),FORMAT=AQ 
TYPE=V,LENGTH=(120,,,80,90) 

******************************************** 
* * 
* 
* 

CHANGE COLLATING SEQUENCE * 
* 

******************************************** 
ALT SEQ 
OPTION 

CODE=SBEA 
FILSZ=E20000 

The SORT statement tells the program to sort the input data according to two 
control fields. The major control field is located at byte 14 and is two bytes long. 
The major control field will be in descending sequence in the output data set. The 
minor control field begins at the fifth byte in the record and is eight bytes long. 
(The first 4 bytes of a variable-length record contain the record descriptor word 
(RDW).) The minor control field will be in ascending sequence in the output. 
Both control fields are in EBCDIC character format, and the collating sequence is 
to be modified. 

The RECORD statement tells the program that the input data set contains 
variable-length records. The maximum record length is 120 bytes, and the 
minimum is 80 bytes. The average record length in the input data set is 90 bytes. 

The comment statements are printed but otherwise ignored. 

The ALTSEQ statement specifies that X'SB' ('$')is to collate after X'E9' ('Z'). 

The OPTION statement tells the program that the estimated size of the data set is 
20000 records. 

For compatibility with previous releases, some of the options available on the 
OPTION statement can also be coded on the SORT or MERGE statement. 
However, if you code the same options on both the OPTION and SORT or 
MERGE statements, those on the OPTION statement will be used. It is preferable 
to code all your options on the OPTION statement only. 

Chapter 2. Program Description 13 



Example 2: INCLUDE 

Example 3: INREC 

Example 4: OUTREC 

Example S: SUM 

INCLUDE COND=(S,8,GT,13,8, I ,105,4,LE,1000) ,FORMAT=FI 

This statement will include only records in which: 

• The fixed-integer number in bytes 5 through 12 is greater than the 
fixed-integer number in bytes 13 through 20, or 

• The fixed-integer number in bytes 105 through 108 is less than or equal to 
1000. 

Note that all four fields have the same format. 

INREC FIELDS=(1,32) 

This statement reformats the input record before it is sorted. The reformatted 
input/ output record will contain only bytes 1 to 32 of the input record. 

OUTREC FIELDS=(1,42,4X,100,5) 

This statement specifies that the output record will contain bytes 1 to 42 of the 
input record, 4 blanks, and bytes 100 to 104 of the input record. 

SUM FIELDS=(41,8,ZD,49,4,FI) 

This statement designates an 8-byte zoned decimal field at byte 41, and a 4-byte 
fixed-integer field at byte 49, as summary fields. 

14 DFSORT General Information 



Input/ Output 

User Input and Output 

Data Set Identification 

Input to DFSORT consists of JCL and program control information, and records to 
be processed. Output consists of a data set containing the processed records, a 
return code, optional program control information (such as a listing of program 
control statements and messages), and an SMF record as defined at installation 
time. Input and output record types (fixed or variable) must be the same. 

When user-written exit routines are used, output can contain records generated by 
the routines themselves, as well as records altered or inserted by the routines. If 
desired, the output data set can contain only records created by user routines. User 
routines can have input and output data sets independent of those involved in 
DFSORT processing. (See "User-Written Routines at Program Exits" on 
page 23.) 

The data sets used for DFSORT are identified using the operating system's JCL. 
DD statements with special ddnames describe the physical and logical organization 
of the input, output, and work data sets for DFSORT. These and other JCL 
statements are discussed under "Program Initiation" on page 18. 

Figure 3 on page 16 is an overview of input and output for a DFSORT 
application. 

Chapter 2. Program Description 15 



Miscellaneous 

DFSORT 
Concentrated 
Input 

Independent 1/0 

DFSORT 

USER ROUTINES 

•Open and Close Master File and Output Files 

• Update Master File 

• Generate Inter-departmental Notices, 
Listings, Card Decks 

• Generate Customer Account Statements 

• 
• 
• 

Figure 3. An Input/Output Overview 

16 DFSORT General Information 

Ordered 
Valid 
Transactions 

SMF Record 

DFSORT Output 



Record Limitations 

The characteristics of input and output records are shown in Figure 4. 

Data set Input to a Sort or Copy Input to a Merge Output 

Organization Sequential ( QSAM or Sequential ( QSAM or Sequential ( QSAM or 
VSAM). VSAM). VSAM). 

Number Up to 255 concatenated 2 through 16. 1 (can be multivolume). 
QSAM or 1 VSAM. 

Content Unsorted or sorted Records previously Sorted or copied records. 
records. sorted on the same basis 

as that required for 
output. 

Blocking Blocked or unblocked. Blocked or unblocked. Blocked or unblocked. 
Data sets can have Data sets can have 
different block sizes if different block sizes. 
the largest is specified 
first. 

Code EBCDIC, ISCH, or EBCDIC, ISCII, or EBCDIC, ISCH, or 
ASCII. ASCII. ASCII. 

Record Format Fixed or variable Fixed or variable Fixed or variable 
(including spanned}, but (including spanned), but (including spanned). 
must all be the same. must all be the same. 

Record Length Min: 18 bytes if tape Min: QSAM/VSAM, Same as for input. 
devices used; otherwise, Max: QSAM/VSAM 
1 byte. (but see under "Record 
Max: see Figure 7. Limitations"). 

Figure 4. Data Set Characteristics of Input and Output Records 

The maximum record length the program can handle depends on the amount of 
main storage available to it. For sorting, it also depends on the type and number of 
intermediate storage devices. Maximum record lengths are shown in Figure 4. 
With the standard disk sorting techniques, if the input file is small enough to be 
contained in main storage, no intermediate storage will be used. 

When spanned records are processed, a work area is used to assemble the records. 
As a result, the available space for buffers and for processing is decreased and the 
maximum record length the program can accept becomes less for a given main 
storage size. The maximum record length for variable-length records is 32756 
bytes, and, for fixed-length records, 32760 bytes. 

Chapter 2. Program Description 17 



Statistical Data Collection 

If you want to collect statistical data concerning execution time, record distribution, 
and so on, you can use the SMF installation option. SMF is a parameter operand 
of the ICEMAC installation macro. 

If SMF is specified, DFSORT causes an SMF record to be written for each 
application that completes successfully. If an SMF record is desired, either a short 
or full SMF record can be produced by means of the SMF parameter on the 
ICEMAC installation option. A full SMF record will be produced by DFSORT 
only if requested (SMF=FULL)~ and only if the sorting operation is for 
variable-length records. 

Note: If you want DFSORT to produce SMF type-16 records under the MVS 
operating system, an SVC routine for DFSORT must be installed. If SMF records 
under the VSl operating system are desired, an SVC routine for DFSORT must be 
installed. 

Program Initiation 

As Figure 5 on page 19 shows, DFSORT can be initiated from: 

• A job stream entered from tape, disk, or cards. 

• An assembler language program that invokes DFSORT. 

• A COBOL program that invokes DFSORT using the COBOL SORT or 
MERGE verb. 

• A PL/I program that invokes DFSORT using sorting subroutines. 

18 DFSORT General Information 



Assembler 
Program* 

COBOL V3 
and later 

PL/I 

input 
stream 

system 
macro 
instruction 

special 
facility 

special 
facility -------

EXEC 

{ATTACH I 
LINK} 

XCTL 

{SORTI 
MERGE} 

CALL 

!PGM=SORTI 
PGM=ICEMAN I ,PARM= ... 
PROC='SORTI 
PROC=SORTD I 

IEP=SORTI 
EP=ICEMAN I passed 

\EP=SORTI 
parameter 

EP=ICEMAN I list 

PL/I sort procedure 
name ... 

*If DFSORT is called by any type of LOAD and BALR interface, the 
invoking program is overlaid. 

initiate 
OF SORT 

Figure S. Overview of DFSORT Program Initiation from Four Sources 

Invoking DFSORT from a Program 

Programs written in Basic Assembler Language, OS/VS COBOL, VS COBOL II, 
or OS/VS PL/I can invoke DFSORT. 

Note: If you have installed VS COBOL II and want to make use of its features, 
make sure that your invoking programs have been recompiled. 

When invoking DFSORT from a program, you can pass DFSORT control 
statements by using the SORTCNTL data set. Later, you can add or change 
control statements in the SORTCNTL data set without recompiling the invoking 
program. 

Chapter 2. Program Description 19 



Converting to the Extended Parameter List 

Programs that invoke DFSORT dynamically pass control statements and other 
options using either a 24-bit or extended parameter list. Programs that use the 
24-bit parameter list can be converted to use the extended parameter list by using a 
combination of the parameters in the extended parameter list and the control 
statements in its control statement area. Figure 6 shows the relationship between 
the two parameter lists. 

24-Bit List Equivalent in Extended List 

SORT I MERGE, RECORD, MODS, Corresponding control statements 
AL TSEQ control statements 

Address of E 15 or E3 2 routine Address of E 15 or E3 2 routine 

Address of E35 routine Address of E35 routine 

Main storage value MAINSIZE option of the OPTION 
control statement 

Reserved main storage value RESINY option of the OPTION 
control statement 

Message ddname MSGDDN option of the OPTION 
control statement 

Number of input files to a merge-only FILES option of the MERGE control 
statement 

AL TSEQ translation table AL TSEQ translation table 

ST AE information ST AE information 

Message type option MSGPRToption of the OPTION 
control statement 

Option characters for ddnames SORTDD option of the OPTION 
control statement 

Short records VLSHRT option of the OPTION 
control statement 

Figure 6. Converting to the Extended Parameter List 

Overriding Parameter List Options 

Control statements other than DEBUG and OPTION specified in the SORTCNTL 
data set will completely override corresponding control statements specified in the 
24-bit or extended parameter list. 

Note: SORT and MERGE, and INCLUDE and OMIT, are considered to be 
corresponding control statements. 

20 DFSORT General Information 



For example: 

SORT FIELDS=(23,10,CH,A),NOEQUALS,SKIPREC=100 

specified in the SORTCNTL data set will completely override: 

SORT FIELDS=(23,10,CH,A) ,DYNALLOC,EQUALS 

specified by means of the parameter list; that is, the statement specified in the 
parameter list will be ignored, so DYNALLOC and EQUALS will also be ignored 
for this run. 

When specified in the SORTCNTL data set, the OPTION statement will selectively 
override corresponding options specified in the 24-bit or extended parameter list. 

For example: 

OPTION NOEQUALS,DYNALLOC=(3330,1) ,SIZE=12352 

specified in the SORTCNTL data set will selectively override: 

SORT FIELDS=(23,10,A,10,5,D) ,FORMAT=CH,DYNALLOC=3350 
OPTION NOCHECK,FILSZ=E12000,ARESALL=2K 

specified in the extended parameter list; that is, DYNALLOC=3350 and 
FILSZ=E12000 will be ignored, but NOCHECK will be used. 

Note: The OPTION statement cannot be specified by using the 24-bit parameter 
list, but some of the equivalent options can be specified in the parameter list fields 
and on the SORT or MERGE statements. 

When specified in the SORTCNTL data set, the DEBUG statement also selectively 
overrides corresponding options specified in the 24-bit or extended parameter list. 

DEBUG ABEND 

Chapter 2. Program Description 21 



specified in the SORTCNTL data set will selectively override: 

DEBUG NOABEND,BSAM 

specified in a parameter list; that is, NOABEND will be ignored, but BSAM will be 
used. 

Overriding Installation Defaults 

You can temporarily override most specifications made during installation of 
DFSORT by using the following at execution time: 

• PARM field of the JCL EXEC statement (when DFSORT is invoked by JCL) 

• PARAMETER list passed to DFSORT (when DFSORT is invoked by another 
program) 

• Control statements specified in the SYSIN data set (when DFSORT is invoked 
by JCL) 

• Control statements specified in the SORTCNTL data set (when DFSORT is 
invoked by a program) 

Note: For details on overriding installation defaults, see DFSORT Application 
Programming: Guide. 

Using Job Control Language (JCL) 

In addition to the standard JCL statements required for normal program execution, 
DFSORT uses other dedicated JCL ddnames. These ddnames are as follows: 

SORTLIB 
SORT IN 
SORTO UT 
SORTWKnn 
SORTDIAG 

SORTINnn 
SORTCKPT 
SORTCNTL 
SORTDKnn 
SORTMODS 

Note: You should not specify SORTDKnn in your JCL. 

In some circumstances, cataloged procedures (SORT or SORTD) can be used to 
supply certain required statements. 

If DFSORT is dynamically invoked, the prefix SORT in some of these ddnames, 
and the ddnames SORTIN and SORTOUT, can be changed. 

22 DFSORT General Information 



User-Written Routines at Program Exits 

User-written routines may receive control at predesignated points (exits) in 
DFSORT. The available exits and the functions for which they can be used are 
shown in Figure 7. 

Linkage Conventions and Programming Languages 

User-written routines must follow standard linkage conventions. All user-written 
routines can be written in any language that provides the ability to pass the 
location/ address of a record or parameter list in register 1 and pass the return code 
values in register 15. Examples of such languages are assembler and PL/I. (PL/I 
users, however, must use the special SORT subroutine facilities of their language.) 

El5 and E35 routines can also be written in COBOL. 

Dynamic link-editing of user exit routines is supported for user exit routines written 
in any language that can pass the location/ address of a record or parameter in 
register 1 and a return code in register 15. (For complete details, see DFSORT 
Application Programming: Guide.) 

Functions of Routines at User Exits 

Figure 7 summarizes the functions of user exit routines, and the exits and phases 
with which they may be associated. 

Input Output 
Exit Routine Functions Phase Phase 

Open user data sets/initialize Ell, El5 E31, E35 

Insert records El5 E32, E35 

Delete I Alter records El5 E35 

Terminate the program El5 E35 

Summarize records E35t 

Determine action when intermediate El62 
storage insufficient 

Figure 7 (Part 1 of 2). Functions of Routines at Program Exits 

Chapter 2. Program Description 23 



Input Output 
Exit Routine Functions Phase Phase 

Handle special I/ 0 conditions: 

Input (incl. handling labels, read El8 E382 
errors, EOF) 

VSAM password insertion, E18 E382 

journaling, and other 
VSAM exits 

Output (incl. handling labels, El92 E39 
write errors) 

VSAM password insertion, E39 
journaling, and other 
VSAM exits 

Modify control fields E61 

Close user data sets/housekeeping E15, E17 E35, E37 

Figure 7 (Part 2 of 2). Functions of Routines at Program Exits 

Notes to Figure 7: 

The SUM control statement may be used instead of your own routine to 
summarize records. 

2 Not valid for a disk work data set sort; it is ignored if specified. 

24 DFSORT General Information 



Chapter 3. System Interface and Requirements 

This chapter describes the relationship of DFSORT to its operating system, the 
minimum hardware configuration required for its residence and execution, and how 
it is installed. 

Relationship to OS/VS and MVS/XA 

The program operates under OS/VSl, MVS/370, and MVS/XA. Additionally, 
the above operating systems run as guests under VM. 

DFSORT must be initiated according to operating system conventions. 

• Any data sets processed by DFSOR T must be defined according to operating 
system standards. 

Minimum Hardware Requirements 

Permanent Requirements 

DFSORT is designed to operate with: 

All IBM processors supported by OS/VSl, MVS/370, or MVS/XA 
(System/370-XA sorting instructions must be activated to be used.) 

Any device supported by OS/VSl, MVS/370, or MVS/XA for program 
residence 

• Any device supported by QSAM or VSAM for input and output 

• Direct access or tape storage devices for intermediate storage 

When installing DFSORT, you will need direct-access space for the DFSORT 
cataloged procedures, DFSORT link modules, and other DFSORT program 
modules. For details, see DFSORT Installation. The modules can reside on any of 
the following devices: 2305, 2314/2319, 3330/3333, 3340/3344, 3350, 3375, or 
3380. 

If DFSORT is installed resident, it will require space in the link pack area; for 
MVS/XA, it will also require space in the extended link pack area. 

Chapter 3. System Interface and Requirements 25 



Intermediate Storage Requirements 

Most sorting operations need work data sets, as described in Figure 8. See also 
"Using Work Storage Devices Efficiently" on page 35. 

Work Data Sets Comments 

When needed Never used for a merge or copy. 
Always used for a sort unless the whole input file 
can be contained in available main storage. 

Type Disk, tape, or virtual I/O. The types cannot be 
mixed, but need not be he same as input or output. 

When on tape Can be on 2400 and/ or 3400 series tapes. 

• 3 to 32 tape units may be used . 

• 7-track tape can be used, but only if input is 
also on 7-track tape. 

When on disk Work areas can be on a mixture of any of the 
following devices: 

- 2314/2319 
- 3330/3333 
- 3340/3344 
- 3350 
- 3375 
- 3380 
- 38501 

The minimum number of areas is 0 and the 
maximum is 32. Noncontiguous allocations can be 
used and secondary allocation will be used 
automatically if needed. All system supported 
models of the 3880 are also supported for use with 
3380. 

When executing Can be dynamically allocated by means of a 
underMVS parameter on the SORT or OPTION control 

statement. 

When VIO For performance reasons, VIO is not 
recommended. 

Figure 8. Information about Work Data Sets 

Note to Figure 8: 

For performance reasons, the 3850 is not recommended. 

For more details, see DFSORT Application Programming: Guide. 

26 DFSORT General Information 



Performance Considerations 

Note: The number of SORTWK data sets specified is limited to 32; if more than 
32 SORTWK data sets ar:e specified, only the first 32 will be used. The JCL for 
existing programs that do not allocate enough intermediate storage space using the 
first 32 SORTWK data sets must be changed. 

The amount of storage available directly affects the performance of DFSORT; this 
should, therefore, be taken into consideration when planning your hardware 
configuration (see Chapter 4, " Performance" on page 31). The minimum main 
storage requirement is 88K bytes. 

Program Distribution 

DFSORT is distributed as a multifile installation tape that can be installed using 
System Modification Program, Release 4 (SMP), or System Modification Program, 
Extended (SMP /E). 

Program Installation 

Installation of DFSORT can be done any time after your operating system is 
generated. 

DFSORT can be "tuned" to meet your installation's special requirements by setting 
various values in the ICEMAC installation macro and recompiling the macro. For 
further information on the installation process, refer to DFSORT Installation. 

The following is a summary of the DFSORT installation default parameters and 
functions that may be set when the program is generated. 

Parameters 

ALTSEQ 

ARES ALL 

ARES INV 

CHALT 

CHECK 

COB EXIT 

Functions 

Alters the normal EBCDIC collating sequence. 

Specifies, for MVS/XA, the number of bytes reserved above 
16-megabyte virtual for system use. 

Specifies, for MVS/XA, the number of bytes reserved above 
16-megabyte virtual for the invoking program when DFSORT is 
dynamically invoked. 

Translates format CH as well as format AQ, or translates format 
AQ only. 

Suppresses record count checking for sorting applications that 
use the E35 user exit routine without a SORTOUT data set. 

Indicates whether the E 15 and E3 5 routines will be executed 
with the VS COBOL II libraries. 

Chapter 3. System Interface and Requirements 27 



DYNALOC 

EQUALS 

ERET 

EXCPVR 

IGNCKPT 

INVIJCL 

LIST 

MAX LIM 

MINLIM 

MSGCON 

MSGDDN 

MSGPRT 

OUTREL 

OUTSEC 

OVERRGN 

RE SALL 

RESDNTx 

RES INV 

SIZE 

28 DFSORT General Information 

Specifies the default values for device name and number of work 
data sets to be dynamically allocated on MYS systems when 
DYNALLOC is specified at execution time (on either SORT or 
OPTION statement) without these values. 

Preserves the input order of equally collating records. 

Specifies the action to be taken if DFSORT encounters a critical 
error. 

Uses EXCPVR for SORTWK I/0. 

Specifies whether the checkpoint/ restart facility is to be ignored 
if it is requested at execution time and the Blockset technique 
(which does not support the checkpoint/restart facility) can be 
used. 

Indicates whether the specified JCL defaults are to be used when 
DFSORT is JCL invoked or dynamically invoked. One of these 
must immediately follow ICEMAC= and be followed, in turn, by 
other options, if desired. 

Lists program control statements. 

Sets an upper limit to amount of address space available. 

Sets a minimum limit to amount of address space available. 

Specifies the class of program messages to be written to the 
master console. 

Specifies an alternate name for the message data set. 

Specifies the class of program messages to be printed on the 
message data set. 

Specifies whether unused temporary SORTOUT data set space is 
to be released. 

Specifies whether DFSORT should use automatic secondary 
allocation for SORTOUT data sets that are temporary or new. 

Specifies the amount of main storage above the REGION value 
available to Blockset. 

Reserves storage for system and application use. 

Indicates for OS/VSl systems whether DFSORT modules reside 
in the pageable supervisor area. 

Reserves space for programs invoking DFSORT. 

Sets maximum amount of main storage. 



SMF 

STIMER 

SVC 

TMAXLIM 

VERIFY 

VIO 

VLSHRT 

WRKREL 

WRKSEC 

Produces SMF records. 

Specifies whether DFSORT should use the STIMER macro. If 
DFSORT does not use the STIMER macro, processor timing data 
will not appear in SMF records. 

Specifies a user SVC number for DFSORT. 

Specifies, for MVS/XA, the upper limit of the amount of main 
storage above and below 16-megabyte virtual available to 
DFSORT. 

Verifies sequence of output records. 

Indicates whether virtual allocation of work data sets is accepted. 

Allows DFSOR T to continue sorting when it encounters a 
variable length record not long enough to contain all specified 
control fields. 

Specifies whether unused temporary SORTWK data set space is 
to be released. 

Specifies whether or not DFSORT should use automatic 
secondary allocation for temporary SORTWK data sets. 

Chapter 3. System Interface and Requirements 29 





Chapter 4. Performance 

DFSORT automatically optimizes performance by analyzing the information given 
to it. This automatic optimization results in setting variables (such as buffer sizes) 
and selecting the proper sorting or merging technique. 

You can improve DFSORT's performance by: 

• Using System/ 3 7 0-XA sorting instructions. 

• Planning your application development (including data formats) for efficient 
use of the program. 

• Being generous with main storage. 

• Using the most efficient sort/merge techniques. 

• Planning for most efficient use of work storage devices. 

Specifying the input/ output data set characteristics correctly. 

Using JCL to initiate DFSORT. 

• Using options that may enhance performance. 

These techniques are described in detail below. 

Using System/370-XA Sorting Instructions 

On MVS/XA systems, the System/370-XA sorting instructions can enhance 
DFSORT's performance when sorting FLR records. DFSORT will usually select 
the System/370-XA sorting instructions if the following requirements are met: 

The System/370-XA sorting instructions are activated. 

• FLR records are being sorted. 

• The Blockset sorting technique is being used. 

Chapter 4. Performance 31 



Planning Applications 

You should consider several factors when you design new applications. Some of 
these factors are discussed in the following sections. 

Location of Control Fields: The following example illustrates the benefit of 
locating control fields at the beginning of a record. 

Assume that your input record has the following layout: 

where 1 = the more significant control field 
2 = the less significant control field 
A, B, and C are not control fields. 

Internally, the program reorganizes the record fields prior to the actual sort or 
merge as follows: 

B c 

When the sort or merge is completed, the record fields are restored to their original 
positions. 

By designing your record format to conform to the second diagram, you can 
improve program performance. 

Control Field Data Formats and Descriptions: Whenever possible, 

• Use either EBCDIC character or binary control fields. 

• Place binary control fields so as to start and end on byte boundaries. 

• A void using the alternative collating sequence character translation, since this 
function not only increases processor time, but also increases the total length 
of the internal record. 

• Specify fixed-point, packed decimal, and zoned decimal control fields (if you 
know they will always be positive) so that they can be sorted or merged as if 
they were binary control fields. 

• Use packed decimal format rather than zoned decimal, because DFSORT 
packs the control fields and also increases the total length of the internal 
record. 

• If several contiguous character or binary control fields in the correct order of 
significance are to be sorted or merged in the same order (ascending or 
descending), specify them as one control field. 

• A void overlapping control fields. 

32 DFSORT General Information 



Efficient Blocking 

Performance of DFSORT is normally improved if you block input and output 
records. 

V arlable-Length Records 

You can help the program's optimization toward high performance if you: 

• Keep the difference between the longest and the shortest variable-length 
record as small as possible. By splitting your long logical record into several 
shorter physical records, you can achieve a record length distribution that 
improves the program's performance. 

Give DFSORT the correct information about your variable-length record 
sorting application. This includes, among other things, average and minimum 
record lengths. 

User-Written Exit Routines 

User-written exit routines in a DFSORT application usually increase the time 
required to run a job, especially if dynamic link-edit of the routines is performed. 
Several control statements may provide the same function as a user routine, and 
you should use them whenever possible. Examples of these control statements are 
INCLUDE, OMIT, and SUM. 

By carefully designing your application from the beginning with the 
above-mentioned considerations in mind, you will experience improved 
performance for your DFSORT applications. 

Being Generous with Main Storage 

In general, the more virtual storage you make available to DFSORT (up to a 
certain limit), the better the performance. However, your virtual storage allocation 
should not exceed the amount of real storage generally available for one initiator; 
otherwise, excessive paging may occur. 

DFSORT requires a minimum of 88K bytes, but you can improve performance by 
using larger regions, on the order of 1 megabyte. Improved performance will be 
most noticeable with large files (3 megabytes and larger). 

Note: When using the Blockset technique for a sort application, DFSORT can 
place selected buffers above 16-megabyte virtual. This makes more storage 
available to DFSORT without having to increase the region size in the job control 
language. A region size of at least 300K bytes should be available to allow 
DFSORT to use storage effectively. 

For more details of main storage size definitions, see DFSORT Installation and 
DFSORT Application Programming: Guide. 

Chapter 4. Performance 3 3 



Using Efficient Sort/Merge Techniques 

Sort Techniques 

Blockset Sorting Techniques 

Depending on various conditions, DFSORT selects different techniques for sorting 
and merging. For a copying application, the Blockset technique is always selected. 
Message ICE1431 will inform you which technique has been selected. 

One condition that affects which sorting technique is selected is the type of device 
used for intermediate storage. The Blockset, Peerage, and Vale techniques can be 
used only with disk devices. If you use a tape device, the less efficient 
Conventional technique will be used. The Blockset, Peerage, and Vale techniques 
are discussed below. For more information on using tape devices for intermediate 
storage, see "Tape Work Storage Devices" on page 37. 

Fixed-Length Records: DFSORT's most efficient fixed-length record technique, 
FLR-Blockset, will be used for most sorting applications. If one or more of the 
conditions for the FLR-Blockset technique are not met (for example, if the control 
field is too long), the Peerage or Vale technique will be used. 

Variable-Length Records: The high-performance VLR-Blockset technique will be 
used for sorting variable-length records in most cases. If one or more of the 
conditions for the VLR-Blockset technique are not met (for example, if the control 
field is too long), the Vale technique will be used. 

Note: The Blockset techniques may require more intermediate work space than 
Peerage or Vale. For more information, see DFSORT Application Programming: 
Guide. 

Peerage and Vale Sorting Techniques 

Merge Techniques 

If the conditions for use of the Blockset sorting techniques are not met, DFSORT 
will use Peerage or Vale. 

For merging applications, DFSORT uses the Blockset and Conventional 
techniques. 

Blockset Merging Techniques 

Fixed-Length Records: DFSORT's most efficient merging technique, FLR-Blockset, 
will be used for merging fixed-length records in most cases. 

Variable-Length Records: The high-performance VLR-Blockset technique will be 
used for merging variable-length records in most cases. 

34 DFSORT General Information 



Conventional Merge Technique 

If the conditions for use of the Blockset merging techniques are not met (for 
example, if the control field is too long), DFSORT will use the Conventional merge 
technique. 

Using Work Storage Devices Efficiently 

Performance is enhanced when multiple channels are available. Performance is 
also improved if the device is connected so that two channel paths exist between 
each device and the central processing unit that is running the program. 

Direct-Access Work Storage Devices 

You can get the best performance using direct-access intermediate storage devices 
when: 

One work data set is assigned per actuator. 

• The devices are of the same type. 

• Two channel paths to devices exist. 

• Input/ output, and work data sets are on different channels and spindles. 

For more information on direct-access work storage usage, see DFSORT 
Application Programming: Guide. 

Device Data Transfer Rate 

In general, the faster the data transfer rate of the storage device, the faster the sort. 
Therefore, the data in Figure 9 on page 36 should be taken into consideration 
when planning for your DFSORT applications. 

Chapter 4. Performance 35 



3000 

2500 

2000 

1500 

1000 

500 

rn 
.91 
Ji 
0 0 ii1 Ill 
M ..,. 

"" M M M M 
M M M M 

i.-....,j .._ 1---1 1....--.j 

Direct-Access Devices 

g 
M 
M 

.....__ 

Scale in kilobytes 
per second 

Note: The data transfer rate of any processor is limited by the speed of the 
channel to which it is attached. For example, the 3880 Model 2 or 3 with the 
Speed Matching Buffer Feature permits attachment of the 3880 to systems with 
block multiplexor channels with data rates less than 3 megabytes per second. 

Figure 9. Comparative Data Transfer Rates of Disk Work Storage Devices 

36 DFSORT General Information 



Tape Work Storage Devices 

The use of tape work storage devices prevents the use of the more efficient 
Blockset technique. The best performance using tape work storage is normally 
obtained when you use six or more tape drives. 

Note: Frequency of tape direction changes, which occur during DFSORT workfile 
operations, will have more of an impact on the effective data rate of IBM 3480 
Magnetic Tape Subsystems than on IBM 3420 Magnetic Tape Units. Because of 
this characteristic, performance comparisons between these tape units for 
intermediate storage cannot be reliably predicted and may vary widely. 

For more detailed information on tape work storage usage, see DFSORT 
Application Programming: Guide. 

Specifying Input/Output Data Set Characteristics Correctly 

Data Set Size 

DFSORT uses the information given it (about the operation it is to perform) to 
optimize for highest efficiency. When you supply incorrect information or do not 
supply information such as data set size and record format, the program makes 
assumptions which, if incorrect, lead to inefficiency or program termination. 

When DFSOR T has accurate information about the data set size, it can make the 
most efficient use of both main and intermediate work storage. Therefore, if the 
exact number of records to be sorted or merged is known, it should be specified as 
the value of the FILSZ parameter in the SORT, MERGE or OPTION control 
statement. When the exact number of records is not known, an estimated value, as 
accurate as possible, should be specified to obtain the best results for each 
application. 

V ariable-:-Length Records 

When the input data set consists of variable-length records, the maximum, 
minimum, and average record lengths should be specified as accurately as possible 
in the RECORD statement. 

Chapter 4. Performance 3 7 



Direct Access 

Tape 

For MYS, system performance is improved if storage is specified in cylinders rather 
than tracks. Storage on sortwork data sets will be reallocated in cylinders. The 
number of tracks per cylinder for direct-access devices is shown in Figure 10. 

Tracks per 
Device Cylinder 

2314/2319 20 

3330/3333 19 

3340/3344 12 

3350 30 

3375 12 

3380 15 

Figure 10. Number of Tracks per CyUnder for Direct-Access Devices 

If DFSORT has been installed with the option WRKSEC=YES and the data set is 
not virtual 1/0, DFSORT will allocate secondary extents as required, even if not 
requested in the J CL. 

For allocation of sort work data sets, it is normally adequate to allocate twice the 
space used by the input data set(s). Certain conditions may cause additional space 
requirements. These include: 

Long control words (more than 150 bytes) 

• Using different device types or work data sets 

Use of an alternative collating sequence 

Care should be taken to ensure that the LRECL parameter of the DCB 
corresponds to the actual maximum record length contained in your data set. 

Three different techniques are available to the program: Balanced, Polyphase, and 
Oscillating. For information on how to calculate their requirements, see Figure 11 
on page 39. 

3 8 DFSORT General Information 



Tape Maximum Work Storage Max. No. of 
Technique Input Areas Required Work Area Comments 

Balanced 15 volumes Min=2(V + 1) tape 32 volumes Used if more than 3 work 
tapeBALN units storage tapes provided and 

file size not given. 

Polyphase 1 volume Min= 3 tape units 17 volumes Used if 3 work storage 
tape POLY tapes provided. 

Oscillating 15 volumes Min=V+2 or 4 17 volumes File size must be given. The 
tape OSCL tape units, tape drive containing 

whichever is SORTIN cannot be used as 
greater a work unit. 

Figure 11. External Work Storage Requirements of the Various Tape Techniques 

Key to Figure 11: 

V =Number of input volumes. 

Note: The value you obtain for "min" is literally a minimum value; if, for example, 
your input uses a more efficient blocking factor than the sort program or it is 
spanned, you will need more work storage. DFSORT selects the most appropriate 
tape technique using these criteria. 

Using JCL to Initiate DFSORT 

You may enhance performance by initiating DFSORT by means of JCL instead of 
invoking it from a COBOL, assembler, or a PL/I program. 

Using Options That May Enhance Performance 

To obtain optimum performance, you should fine-tune the options specified at 
installation time and execution time. 

Certain options may adversely affect performance, and should be used only when 
necessary. For example, the CK.PT option, which activates checkpoint/restart, 
prevents use of the efficient Blockset techniques. 

Other options may enhance performance, and should be used whenever possible. 
Several of these options are described below. 

For more detailed information about options that affect performance, see DFSORT 
Application Programming: Guide. 

Chapter 4. Performance 39 



COBEXIT 

FASTSRT 

To take advantage of the COBOL II interface with DFSORT, and enhance 
performance thereby, specify COB2 in the COBEXIT parameter when running 
exits compiled with VS COBOL II. 

By specifying the VS COBOL II FASTSRT compile-time option, you can 
significantly reduce DFSORT processor time, EXCPs, and elapsed time. With 
FASTSRT, DFSORT input/output operations are more efficient because DFSORT 
rather than COBOL does the input and output (see Figure 12). For more details, 
see the VS COBOL II publications. 

Figure 12. Performance is Improved with FASTSRT 

INCLUDE or OMIT, STOPAFT, and SKIPREC 

You can use either the INCLUDE or OMIT statement and the STOPAFT and 
SKIPREC options to reduce the size of the input file. Reducing the size of the 
input file may reduce processor and data transfer time. 

The INCLUDE and OMIT statements allow you to select records by 
comparing fields with constants and/ or other fields. 

40 DFSORT General Information 



INREC and OUTREC 

SUM 

• The STOP AFT option allows you to specify the maximum number of records 
that should be accepted for sorting or copying. 

The SK.IPREC option allows you to skip records at the beginning of the input 
file for sorting or copying applications. 

You can reduce the size of your records and thus make DFSORT more efficient by 
using the INREC statement to reformat the input records before processing. 

You can use OUTREC to lengthen the record after processing, aligning the data 
fields and introducing blanks to separate fields to make the output more legible. 

You can reduce processor and data transfer time by using SUM to add the contents 
of fields. The SUM statement works by adding the contents of fields defined in the 
statement whenever two records with equal control fields are found. The result is 
placed in one record while the other record is deleted, reducing in this way the 
number of records to be sorted or merged by DFSORT. 

Note: For more details on program options available at execution time, see 
DFSORT Application Programming: Guide. 

Chapter 4. Performance 41 





Index 

ABEND parameter 12 
access methods 1 7 
ALTSEQ 

parameter 10, 27 
statement 

description 10 
example 13 
format 12 

application development 32 
ARESALL parameter 

ICEMAC macro 27 
OPTION statement 12 

ARESINV parameter 
ICEMAC macro 27 
OPTION statement 12 

ASCil 9, 17 
assembler 

converting parameter list 20 
invoking from 18 

balanced (BALN) 39 
basic assembler language 

converting parameter list 20 
invoking from 18 

block sizes 1 7 
blocking 1 7, 3 3 
Blockset techniques 

merge 34 
sort 34 

BSAM 10 
BSAM parameter 12 
BUFFERS parameter 12 

CHAL T parameter 
ICEMAC macro 27 
OPTION statement 12 

CHECK parameter 
ICEMAC macro 27 
OPTION statement 12 

CKPT parameter 12, 39 

COBEXIT parameter 
ICEMAC macro 27 
OPTION statement 12 
performace 40 

COBOL 
exits 23 
invoking from 18 

COBOL II 
exits 23 
invoking from 18 

CODE parameter 12 
collating sequences 9, 10 
COND parameter 12 
control fields 

collating sequences 9 
data format 32 
length 9 
location· 32 
ordering 9 
performance 32 

control statement parameters 11 
control statements 

examples 13-14 
features 5-8 
list 10-11 

conventional technique 34, 35 
CTRx parameter 12 
cylinders 3 8 

data set characteristics 
input/ output records 17 
size 37 

DD statements 22 
DEBUG statement 

description 10 
format 12 

deleting records 23 
designing applications 32 
devices 

direct access 26, 35 
performance 35-37 
tape 26 
transferring data 35 

direct access 
device types 26 
performance 36, 38 

dynamic allocation 
DYNALLOC parameter 12 
DYNALOC parameter 28 

Index 43 



EBCDIC 
collating sequence 9, 1 7 
modifying 10 
performance 3 2 

efficiency 
using disk 3 5 
using tape 3 5 

END statement 
description 10 
format 12 

EQUALS parameter 
ICEMAC macro 28 
OPTION statement 12 

ERET parameter 28 
EXCPVR parameter 28 
exits 

functions 23 
language requirements 23 
link-editing 23 

extended parameter list 
converting 20 
overriding 20 

FASTSRT 40 
features 5-8 
FIELDS parameter 12 
FILES parameter 12 
FILSZ parameter 12, 3 7 
FLR-Blockset 

performance 31 
technique 34 

FMT ABEND parameter 12 
FORMAT parameter 12 

hardware requirements 25 

ICEMAC macro 27 
IGNCKPT parameter 28 
INCLUDE statement 

description 10 
example 14 
format 12 
performance 40 

44 DFSORT General Information 

initiating DFSORT 19 
INPFIL statement 11 
input/ output 

characteristics for a merge 5, 17 
characteristics for a sort 5, 1 7 
data set identification 15 
error handling 23 
order of records 9 
performance 3 7 
record limitations 1 7 

INREC statement 
description 10 
~xample 14 
format 12 
performance 41 

inserting records 23 
installation 

macro 27 
overriding options 22 
parameters 27-29 
SMP and SMP/E 27 

intermediate storage 
dynamic allocation of 7 
performance 39 
requirements 26-27 

INV parameter 28 
invoking DFSORT 19 
ISCH/ ASCII 9, 17 

JCL 
data set identification 15 
invoking from 22 
parameter 28 
performance 3 9 

languages 23 
LENGTH parameter 12 
linkage conventions 23 
LIST parameter 

ICEMAC macro 28 
OPTION statement 12 

macro for installation options 27 
main storage 3 3 
MAINSIZE parameter 12 
MAXLIM parameter 28 
MERGE statement 



description 10 
format 12 

merge techniques 
Blockset 34 
Conventional 35 

messages 
data set 12, 28 
printing 12, 28 
types 8 

MINLIM parameter 28 
MODS statement 

description 10 
format 12 

MSGCON parameter 28 
MSGDDN parameter 

ICEMAC macro 28 
OPTION statement 12 

MSGPRT parameter 
ICEMAC macro 28 
OPTION statement 12 

MVS/XA 
operating system 25 
region size 33 
space benefits 6 

NOABEND parameter 12 
NOASSIST parameter 12 
NOBLKSET parameter 12 
NOCHAL T parameter 12 
NOCHECK parameter 12 
NOEQUALS parameter 12 
NOLIST parameter 12 
NOOUTREL parameter 12 
NOOUTSEC parameter 12 
NOSTIMER parameter 12 
NOVERIFY parameter 12 
NOWRKREL parameter 12 
NOWRKSEC parameter 12 

OMIT statement 
description 10 
format 12 
performance 40 

operating systems 25 
OPTION statement 

description 10 
example 13, 21 
format 12 

OS/VS 25 
oscillating (OSL) 39 
OUTFIL statement 11 
OUTREC statement 

description 10 
examples 14 
format 12 
performance 41 

OUTREL parameter 28 
OUTSEC parameter 28 
OVERRGN parameter 28 
overriding 

installaton options 22 
parameter list 20-22 

parameter list 
converting to extended list 20 
overriding 20-22 

PARM field 19, 22 
Peerage 34 
performance 31-41 

using disk 3 5 
using tape 3 5 

permanent storage requirements 25 
PL/I 18, 19 
polyphase(POL Y) 39 
program 

control statements 11 
description 23 
distribution 27 
exits 23 
features 5-8 
initiation 18 
installation 27 
performance 31-41 
relationship to operating systems 25 

programming languages 23 

QSAM 17 

record 
blocking 33 
characteristics for a merge 5, 17 
characteristics for a sort 5, 17 
comparison 9 
fixed-length 34 
length 17, 33 
limitations 17 
SMF 18, 29 
spanned 17 
variable-length 34 

Index 45 



RECORD statement 
description 11 
example 13 
format 12 

RESALL parameter 
ICEMAC macro 28 
OPTION statement 12 

RESDNTx parameter 28 
RESINY parameter 

ICEMAC macro 28 
OPTION statement 12 

SIZE parameter 
control statements 12 
ICEMAC macro 28 

SKIPREC parameter 12, 40 
SMF parameter 18, 29 
SMP 27 
SMP/E 27 
SORT statement 

cataloged procedure 22 
description 10 
example 13, 21 
format 13 

sort techniques 
Blockset 34 
Conventional 34 
Peerage 34 
Vale 34 

SORTCKPT DD statement 22 
SORTCNTL DD statement 

overriding installation defaults 22 
overriding parameter list 20 
passing control statements 5, 19 

SORTDD parameter 12 
SORTDIAG DD statement 22 
SORTDKnn DD statement 22 
SOR TIN 

OPTION statement 12 
SORTIN DD statement 22 
SORTINnn DD statement 22 
SORTLIB DD statement 22 
SOR TOUT 

OPTION statement 12 
SORTOUT DD statement 22 
SORTWK.nn DD statement 22 
statistical data collection 18 
STIMER parameter 29 
STOP AFT parameter 12, 40 
storage 

intermediate 26-27 
main 33 

46 DFSORT General Information 

performance 27 
permanent 25 

SUM statement 
description 11 
example 14 
format 13 
performance 41 

SVC parameter 18, 29 
System/370-XA sorting instructions 

performance 6, 31 

tape 
device types 26 
performance 37, 38-39 

TMAXLIM parameter 29 
tracks 38 
transferring data 35 
TYPE parameter 12 

user-written routines 
functions 23 
language requirements 23 
link-editing 23 
performance 33 
records 15 

Vale 34 
VERIFY parameter 

ICEMAC macro 29 
OPTION statement 12 

VIO parameter 29 
Virtual Storage Constraint Relief 6 
VLR-Blockset 

intermediate storage 17 
technique 34 

VLSHRT parameter 29 
VS COBOL II 

COBEXIT 40 
exits 23 
FASTSRT 40 
invoking from 19 

.VSAM 17 
VSCR 6 



work data sets 
dynamic allocation of 7 
performance 3 9 
requirements 26-27 

WRKREL parameter 29 

WRKSEC parameter 29, 38 

Index 47 





Q) 

0 
z 

DFSORT 
General Information 
GC33-4033-l 2 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications 
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of 
publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office 
serving your locality. 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL -----------

Previous TNL ----------

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



GC33-4033-12 

>Id and tape 

:I and tape 

---- ----.- .-- ----- - -- -.. ---- --------- --_ _...._' -
® 

Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

Please do not staple 

F o Id and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

0 ..,., 
(.() 

0 
:0 
-I 
G) 
(1) 

:J 
(1) 
""I 
QJ 

..,., 
ct> 
z 
0 

(.() 
w 
-...J 
0 
N 
9 



GC33-4033-12 I 

11111111111111 ~ 


