
Program Product

GC28-1300-2
File No. S370-36

MVSJCL
MVS/System Product - JES2 Version 1
5740-XYS
MVS/System Product - JES3 Version 1
5740-XYN

--- ------ ----- ------ - ---- - - ------- --_.-

This edition applies to the following program products:

MVS/System Product - JES2 Version 1 Release 3.4 (Program No. 5740-XYS)

MVS/System Product - JES3 Version 1 Release 3.4 (Program No. 5740-XYN)

MVS/370 Data Facility Product (DFP) Release 1.1 (Program No. 5665-295)

Resource Access Control Facility (RACF) Version 1 Release 6 and later (Program No. 5740-XXH)

Do not replace your existing documentation until your system consists of the above releases (1) of the base
control program with JES2 or JES3 and (2) of DFP.

Note: Because the book has been extensively revised, JES2 installations using Version I Release 3.4
should use this edition, even though the previous edition also reflects Version 1 Release 3.4.

Third Edition (December, 1984)

This is a major revision of, and obsoletes, GC28-1300-1. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.
Technical changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition applies to the program releases listed in the box above and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters. Changes are
made periodically to the information herein; before using this publication in connection
with the operation of IBM systems, consult the latest IBM System/370 and 4300
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program
may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department 058, Building 920-2, PO Box 390, Poughkeepsie, New York,
U.S.A. 12602. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1984

Preface

This publication describes how to control job processing and the resources needed to run a job.
These resources include storage, data sets, devices, and volumes. Job and resource control is
specified in job control language (JCL) statements, job entry subsystem 2 (JES2) control
statements, and job entry subsystem 3 (JES3) control statements.

Who Should Use This Publication

This book is needed by programmers who code JCL, JES2, and JES3 control statements.
Those using this book should understand the concepts of job management and data
management.

Major Sections of This Publication

Part 1. Introduction: In this part, chapter I introduces job control. It is intended primarily for
the programmer who is inexperienced in job control.

Chapter 2 explains the coding conventions for JCL~ JES2, and JES3 control statements. These
coding conventions are used throughout the book.

Part 2. Guide to Job and Step Control: This part discusses how to control jobs and steps using
JCL, JES2, and JES3 control statements. It contains:

• The background needed to understand why you should code each parameter.
• Examples to show when to code the parameters.
• Descriptions of how to code combinations of parameters to obtain particular results.

The descriptions of job and step control are grouped into the following chapters:

Chapter 3. Guide to Job Control tells how to control the system's handling of your job. It
describes the parameters you can code on the JCL JOB statement and on the JES2 or JES3
control statements to direct the system.

Chapter 4. Guide to Step Control tells how to control the system's handling of your job
step. It describes the parameters you can code on the JCL EXEC statement and on the
JES2 or JES3 control statements to direct the system.

Chapter 5. Guide to Job and Step Control tells how to control the system's handling of your
job and its steps. It describes the parameters you can code on the JCL JOB statement, on
the JCL EXEC statement, and on the JES2 or JES3 control statements to direct the system.

The parameters and control statements in this chapter not only influence the job and its
steps, but they influence each other.

Preface 111

Chapter 6. Guide to Data Allocation Control tells how to control the system's allocation of
data resources. It describes the parameters you can code on the JCL JOB and EXEC
statements and on the JES3 control statements to direct allocation.

Part 3. Guide to Data Set Control: This part discusses how to control yourjob's data set
resources using JCL DD statements and JES2 or JES3 control statements.

Chapter 7. Guide to Specifying Data Set Information tells how to control the system's
handling of your data sets. It describes the parameters you can code on JCL DD
statements and on JES2 or JES3 control statements to tell the system the following:

• Data set information
• The location of a data set
• The size of a data set
• Data attributes
• Data set processing options

Chapter 8. Guide to Special Data Sets tells how to use special data sets. It describes the
parameters on the JCL, JES2, and JES3 control statements for special data sets.

Chapter 9. Guide to Cataloged and In-Stream Procedures tells how to use cataloged and
in-stream procedures of JCL statements. It describes how to:

• Create procedures and place them in catalogs.
• Modify and add parameters and statements to cataloged procedures.
• Use symbolic parameters in cataloged procedures.

Part 4. Reference to Job Control Statements and Parameters: This part details the coding of
each JCL, JES2, and JES3 control statement and of each parameter, in alphabetical order by
statement. The chapters are:

Chapter 10. Coding the JOB Statement
Chapter 11. Coding the EXEC Statement
Chapter 12. Coding the DD Statement
Chapter 13. Coding Special DD Statements
Chapter 14. Coding the OUTPUT JCL Statement
Chapter 15. Coding Special JCL Statements
Chapter 16. Coding JES2 Control Statements
Chapter 17. Coding JES3 Control Statements

For each statement and parameter, this part gives the following information, as needed:

• Parameter type.
• Purpose. '
• References to related information in this book or other IBM publications.
• Syntax and coding rules.
• Parameter or subparameter definitions.
• Defaults.
• Overrides.
• Mutually exclusive parameters and subparameters.
• Relationship to other parameters and control statements.
• Programming considerations.

IV MVS JCL

• System action in response to the parameter or subparameter.
• Examples.
• Other information required to code the statement or parameter.

Part 5. Reference Tables: In this part, chapter 18 contains reference tables that summarize
some job control information. Figures, which follows the Contents, lists the tables.

Guide to Using this Publication

If your system contains MVS/System Product - JES2 Version 1 program number 5740-XYS,
JES2 information in this manual refers to the JES2 function in the MVS/System Product
Version 1, unless otherwise noted.

If your system contains MVS/System Product - JES3 Version I program number 5740-XYN,
JES3 information in this manual refers to the JES3 function in the MVS/System Product
Version 1, unless otherwise noted.(

Your system must contain Resource Access Control Facility (RACF) Program Product,
program number 5740-XXH, in order for you to specify the PROTECT parameter on your DD
statements.

Restrictions on Use of SYSCHK DD Statement and DD Statement RESTART Parameter: If
your system contains (1) MVS/System Product - JES2 Version I Release 3 (5740-XYS) or (2)
MVS/System Product - JES3 Version 1 Release 3 (5740-XYN) or (3) any subsequent release of
these products, but does not contain MVS/370 Data Facility Product program number
5665-295, do not use the SYSCHK DD statement or the RESTART parameter on the JOB
statement.

If your system contains the MVS/370 Data Facility Product with JES2 or JES3 Release 3 or a
subsequent release, you can use the SYSCHK DD statement or the RESTART parameter on
the JOB statement, with certain restrictions. For detailed information on checkpoint/restart, see
Checkpoint/ Restart.

JCL Statements no Longer Supported or Supported Differently: Parameters introduced in OS
but not supported in MVS/System Product are:

• Main storage hierarchy support and rollout/rollin. The system will check the
HIERARCHY and ROLL parameters only for correct syntax.

• The SEP and AFF parameters and the UNIT = SEP subparameter on the DD statement.
The system will check them only for correct syntax. The job will fail if they are coded
incorrect! y.

JCL DD parameters supported differently are:

• SPLIT and SUBALLOC. Their values are converted internally to SPACE requests. When
the SUBALLOC keyword is coded, the DD statement from which space is allocated
becomes a dummy DD.

• If JES3 is used, the UNIT parameter on a DD statement that names a cataloged data set
cannot specify a device type that conflicts with the cataloged device type. For example, a
3330 and a 3375.

Preface V

Prerequisite Publication

Introduction to Virtual Storage in System/370, GR20~4260.

Publications Cited in the Text

General

Vocabulary for Data Processing, Telecommunications, and Office Systems, GC20-1699.

Base Control Program

OS/VS2 MVS System Programming Library: Job Management, GC28-1303.
OS/VS2 System Programming Library: Supervisor, GC28-1046.
OS/VS2 MVS Supervisor Services and Macro Instructions, GC28-1114.
Operator's Library: OS/VS2 MVS System Commands, GC28-1031.
OS/VS2 MVS System Programming Library: Initialization and Tuning Guide, GC28-1029.
MVS/370 System Generation Reference, GC26-4063.
MVS Diagnostic Techniques, SY28-1133.
OS/VS2 System Programming Library: Debugging Handbook, Volumes 1 through 3,
GC28-1047 through GC28-1049.
MVS/370 Message Library: System Messages, Volume 1, GC28-1374, and Volume 2,
GC28-1375.
OS/VS Message Library: VS2 System Codes, GC38-1008.

Data Facility Product

JES2

vi MVS JCL

MVS/370 Data Management Services, GC26-4058.
MVS/370 System Programming Library: Data Management, GC26-4056.
MVS/370 Data Management Macro Instructions, GC26-4057.
MVS/370 Catalog Users Guide, GC26-4053.
MVS/370 Checkpoint/Restart, GC26-4054.
MVS/370 Magnetic Tape Labels and File Structure, GC26-4064.
MVS/370 Access Method Services Reference for the Integrated Catalog Facility,
GC26-4051.
MVS/370 Access Method Services Reference for VSAM Catalogs, GC26-4059.
MVS/370 VSAM Reference, GC26-4074.
MVS/370 VSAM Users Guide, GC26-4066.
OS/VS2 MVS System Programming Library: VT AM, GC28-0688.
OS/VS2 TCAM Programmer's Guide, (levels 8 and 9), GC30-2041.
OS/VS TCAM System Programmer's Guide, (level 10), GC30-2051.
OS/VS BTAM, GC27-6980.

System Programming Library: JES2 Initialization and Tuning, SC23-0046.
Operator's Library: JES2 Commands, SC23-0048.

JES3

Programs

Hardware

JES3 System Programming Library: Initialization and Tuning, SC23-0041.
JES3 Commands, SC23-004S.
JES3 Messages, GC23-0044.
JES3 System Programming Library: Diagnosis, LC28-1369.
JES3 System Programming Library: User Modifications and Macros, LC28-1371.

OS/VS2 MVS Interactive Problem Control System (IPCS) System Information, GC34-2004.
OS/VS Mass Storage System (MSS) Services General Information, GC3S-0016.
OS/VS Mass Storage System (MSS) Services Reference Information, GC3S-0017.
Resource Access Control Facility (RACF) General Information Manual, GC28-0722.
OS/VS2 MVS System Programming Library: Service Aids, GC28-0674.
OS/VS2 MVS System Programming Library: System Management Facilities (SMF),
GC28-1030.
OS/VS2 TSO Command Language Reference, GC28-0646.
MVS/370 Utilities, GC26-406S.

Print Management Facility User's Guide and Reference, SH3S-00S9.
IBM 3800 Printing Subsystem Models 3 and 8 Programmer's Guide, SH3S-0061.
OS/VS Graphic Programming Services (GPS) for IBM 2260 Display Station, GC27-6972.
2821 Control Unit Component Description, GA24-3312.
3340 Disk/Storage - Fixed Head Feature User's Guide, GA26-1632.
OS and OS/VS Programming Support for the IBM 3505 Card Reader and IBM 3525 Card
Punch, GC21-S097.
OS/VS2 IBM 3540 Programmer's Reference, GC24-S111.
3800 Printing Subsystem Programmer's Guide, GC26-3846.
Forms Design Reference Guide for the IBM 3800 Printing Subsystem, GA26-1633.

Preface Vll

viii MVS JCL

Contents

Part 1. Introduction

Chapter 1. Introduction to Job Control 1-1
The JCL Statements 1-1
The JES2 Control Statements 1-3
The JES3 Control Statements 1-5
Cataloged and In-Stream Procedures 1-7
Submitting and Executing Your Job 1-7

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-1
Notation Used to Show Syntax 2-1
Fields in Control Statements 2-3
The Parameter Field 2-5

Continuing Control Statements 2-6
Coding Conventions for JES2 Control Statements 2-8
Coding Conventions for JES3 Control Statements 2-8
Concatenating Data Sets 2-9
Character Sets 2-10

Coding Special Characters 2-10
Backward References 2-13
Symbolic Parameters 2-15

Defining Symbolic Parameters When Writing a Procedure 2-15
Assigning Values to and Nullifying Symbolic Parameters 2-16
Example of an In-Stream Procedure Containing Symbolic Parameters 2-21

Part 2. Guide to Job and Step Control

Chapter 3. Guide to Job Control 3-1
Naming the Job 3-1
Installation Management Information 3-2

Job Accounting Information Parameter 3-2
JES2 Accounting Information 3-4
Network Accounting Information 3-4
Programmer Information: The programmer-name parameter 3-5

Networking 3-6
Routing a Job in a Network (JES2) 3-7
Transmitting Data in a Network (JES2) 3-7
Controlling Output Destination in a JES2 Network 3-7
Example of Obtaining Output (JES2) 3-9
Routing a Job in a Network (JES3 Networking) 3-10
Example of Routing a Job Through a JES3 Network 3-11
Controlling Job Execution Node Using JES3 Networking 3-11

Contents IX

X MVS JCL

Controlling Sysout Routing in a JES3 Network 3-11
Controlling Output Destination Using JES3 3-12
Remote Job Processing in JES3 3-12
Example of Obtaining Output (JES3) 3-13

Job Log 3-14
MSGLEVEL Parameter 3-14
MSGCLASS Parameter 3-16
JES2 Hard-Copy Log 3-16
JES3 Main Device Scheduler Messages 3-17
JES3 System Messages 3-18

TSO 3-18
NOTIFY Parameter 3-18
The JES2 NOTIFY Control Statement 3-19
The USER Parameter on the JES3 MAIN Control Statement· 3 .. 19

Remote Job Processing 3-20
JES2 Remote Job Processing 3-20
JES3 Remote Job Processing 3-22

Special Job Processing 3-23
Deadline Scheduling for JES3 3-27
Dependent Job Control for JES3: The Job Net 3-27
The JES3 NET Control Statement 3-28
How to Code NET Statements 3-29

JES3 Spool Partitioning 3-33

Chapter 4. Guide to Step Control 4-1
Naming a Job Step 4-3
Processing Program Information 4-4

Selecting a Processing Program 4-4
Identifying the Program to be Executed 4-4
The IEFBR14 Program 4-7
Selecting a Cataloged Procedure Library 4-7

Passing Information to the Program in Execution 4-8
P ARM Parameter 4-9

Installation Management Information: The ACCT Parameter 4-10
ACCT Parameter 4-11

Dynamically Allocatingand Dealloc~ting Data Sets 4-12
Example of Dynamically Deallocating Data Sets 4-13

Chapter 5. Guide to Job and Step Control 5-1
Scheduling a Job 5-1
Selecting a Processor in JES2 5-3

Selecting a Processor in JES3 5-4
Conditionally Executing Job Steps 5-5

Specifying Return Code Tests on the JOB Statement 5-5
Specifying Return Code Tests on the EXEC Statement 5-7
Limiting Job and Job Step Execution Time 5-16
Using the TIME Parameter for Cataloged Procedures 5-17
Examples of Coding the Time Parameter on JOB and EXEC Statements 5-18

Conffi51ling Job Queuing through Job Classes and Priorities 5-18
Establishing job processing . balance in JES3 5-19

Assigning a Job to a Job Class in JES2 5-19
Assigning a Job to a Job Class in JES3 5-19
Assigning a Priority to a Job forJES2 5-20
Assigning a Priority to a Job in JES3 5-20

Assigning a Dispatching Priority to Job Steps 5-21
DPRTY Parameter 5-21
Performance of Jobs and Job Steps in JES2 5-22
Performance of Jobs and Job Steps in JES3 5-22

Requesting Storage for Execution 5-23
When to Request Real Storage 5-23
Specifying Storage Requirements with the REGION Parameter
U sing the JES3 LREG ION Parameter to Define Logical Storage

Restarting a Job at a Step or Checkpoint 5-26
The RD Parameter on the JOB Statement 5-27
The RESTART Parameter on the JOB Statement 5-28
The RD Parameter on the EXEC Statement 5-28
The JES2 RESTART Parameter 5-29
The JES3 FAILURE Parameter 5-29

Chapter 6. Guide to Data Allocation Control 6-1
Using JES3 Spool Partitioning 6-1
Controlling Access to RACF-Protected Data Sets 6-2
Dynamically Allocating and Deallocating Data Sets 6-3

Example of Dynamically Deallocating Data Sets 6-4
Allocating Data Resources in a JES3 System 6-4

Part 3. Guide to Data Set Control

Chapter 7. Guide to Specifying Data Set Information 7-1
Specifying the DDNAME Parameter 7-1
When You Code the DDNAME Parameter 7-1
Specifying the DSNAME Parameter 7-2
Creating or Retrieving a Nontemporary Data Set 7-3
Creating or Retrieving a Temporary Data Set 7-4
Associated Data Sets (3540 Diskette) 7-6
Copying the Data Set Name ftom an Earlier DD Statement 7-6
Specifying the DSNAME Parameter in Apostrophes 7-7
Specifying the LABEL Parameter 7-7
Example of Identifying Data Sets to the System 7 -13
Disposition Processing of Non-VSAM Data Sets 7-13
Specifying Data Set Status 7-14
Specifying a Disposition for the Data Set 7-14
Default Disposition Processing 7-19
Bypassing Disposition Processing 7 -19
Insuring Data Set Integrity 7-19

5-24
5-25

Examples of Disposition Processing of Non-VSAM Data Sets 7-23
Requesting Units and Volumes 7-24

Specifying Volume Information 7-24
Specifying Unit Information 7-28
Example of Requesting Units and Volumes 7-31
Example of UNIT and VOLUME Affinities 7-35

Specifying Data Sets for Mass Storage Systems (MSS) 7-37
Mass Storage Volume Groups 7-37
Nonspecific Volume Requests for Mass Storage Volumes 7-38
Specific Volume Requests for Mass Storage Volumes 7-38

Requesting Space for Non-VSAMData Sets 7-39
The Basic Space Request: Unit of Measurement and Primary Quantity 7-40
Assigning Specific Tracks 7-42

Contents Xl

Example of Requesting Space 7 -43
Specifying Data Set Processing Options 7-43

Processing Output Data Sets for the JOB 7-44
Processing System Output Data Sets Using the OUTPUT JCL Statement 7-44
Using the OUTPUT JCL Statement to Tailor the Job Stream 7-46
Specifying a Destination for the Data Set 7-49
Grouping Data Sets Using the OUTPUT JCL Statement 7-49
Managing the System-Managed Data Sets: The JESDS Parameter 7-49
Assigning System Output Data Sets to Output Classes 7-51
Specifying the Device 7 -52

Specifying the Internal Reader 7-52
Example of Using the Internal Reader 7-53
JES Output Class Processing 7-54
Delaying the Writing of an Output Data Set 7-55
Suppressing the Writing of an Output Data Set 7-55
Limiting Output Records 7-55
Specifying JES2 Page Overflow Processing 7-56
Specifying JES3 Forms Overflow Processing and Printer Spacing 7-56
Interpretation of Punched Output 7-57
JES2 Support of the 3211 Indexing Feature 7-57
Requesting Multiple Copies of an Output Data Set Using JES2 7-57-
Requesting Multiple Copies of an Output Data Set Using JES3 7-58
Requesting Copy Modification 7-58
Requesting Printer Form and Character Control 7-58
Requesting Forms Overlay 7-62
Bursting of Output 7 -62

Chapter 8. Guide to Special Data Sets 8-1
Creating and Using Private and Temporary Libraries 8-1

Creating a Private Library 8-2
Retrieving an Existing Private Library 8-3
Using Private Catalogs 8-5
Temporary Libraries 8-5

Requesting an Abnormal Termination Dump 8-6
Defining a Dummy Data Set 8-8

Coding the DUMMY Parameter 8-8
Coding DSNAME = NULLFILE 8-9
Requests to Read or Write a Dummy Data Set 8-9

Using Virtual Input/Output (VIO) for Temporary Data Sets 8-10
Defining a VIO Temporary Data Set 8-10
Backward References to VIO Data Sets 8-11
Using Virtual Input/Output (VIO) to Pass Temporary Data Sets Among Job Steps 8-12

Entering Data Through the Input Stream 8-13
VSAM Data Sets 8-14
Creating and Retrieving Indexed Sequential Data Sets 8-18

Creating an Indexed Sequential Data Set 8-18
Retrieving an Indexed Sequential Data Set 8-22
Examples of Creating and Retrieving an Indexed Sequential Data Set 8-24

Creating and Retrieving Generation Data Sets 8-25
Building a Generation Data Group Base Entry 8-25
Creating a Generation Data Set 8-26
Retrieving a Generation Data Set 8-28
Deleting and Uncataloging Generation Data Sets 8-30
Submitting a Job for Restart 8-30

XU MVS JCL

Example of Creating and Retrieving Generation Data Sets 8-31
Creating and Using a Subsystem Data Set 8-32

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-1
Writing Cataloged and In-Stream Procedures 9-1

Identifying an In-Stream Procedure 9-2
Placing a Cataloged Procedure in a Procedure Library 9-2
Allowing for Changes in Cataloged and In-Stream Procedures 9-3

Using Cataloged and In-Stream Procedures 9-3
How to Call Cataloged and In-Stream Procedures 9-3
Modifying Cataloged and In-Stream Procedures 9-4
Adding DD Statements to a Procedure 9-8
Adding OUTPUT JCL Statements to a Procedure 9-10
Identifying Procedure Statements on an Output Listing 9-13

Part 4. Reference to Job Control Statements and Parameters

Chapter 10. Coding the JOB Statement 10-1
Name Field 10-1
Parameter Field 10-1
Comments Field 10-2
Location in the JCL 10-2
Examples of JOB Statements 10-2

Accounting Information Parameter 10-3
Subparameter Definition 10-4
JES2 Accounting Information Format 10-4
Examples of the Accounting Information Parameter 10-5

ADDRSPC Parameter 10-7
Subparameter Definition 10-7
Defaults 10-7
Overrides 10-7
Relationship to the JOB REGION Parameter 10-7
Examples of the ADDRSPC Parameter 10-8

CLASS Parameter 10-9
Subparameter Definition 10-9
Defaults 10-9
Overrides 10-9
Example of the CLASS Parameter

COND Parameter 10-10
Subparameter Definition 10-10
Overrides 10-11
Summary of COND Parameters
Examples of the COND Parameter

GROUP Parameter 10-12
Subparameter Definition 10-12
Defaults 10-12
Relationship to Other Parameters
Example of the GROUP Parameter

MSGCLASS Parameter 10-14
Subparameter Definition 10-14
Defaults 10-14

10-9

10-11
10-11

10-13
10-13

Significance of Output Classes 10-14
Examples of the MSGCLASS Parameter 10-15

MSGLEVEL Parameter 10-16

Contents XUl

Subparameter Definition 10-16
Defaults 10-17
Examples of the MSGLEVEL Parameter 10-17

NOTIFY Parameter 10-18
Subparameter Definition 10-18
Relationship to JES2 j*JOBPARM SYSAFF Paramete'r 10-18
Receiving Notification of Job Completion 10-18
Example of the NOTIFY Parameter 10-19

PASSWORD Parameter 10-20
Subparameter Definition 10-21
Relationship to Other Parameters 10-21
Examples of the PASSWORD Parameter 10-21

PERFORM Parameter 10-22
Subparameter Definition 10-22
Defaults 10-22
Overrides 10-22
Example of the PERFORM Parameter 10-23

Programmer's Name Parameter 10-24
Parameter Definition 10-24
Examples of the Programmer's Name Parameter 10-25

PRTY Parameter 10-26
Subparameter Definition 10-26
Defaults in a JES3 System 10-26
Relationship to Other Control Statements in a JES2 System 10-26
Example of the PRTY Parameter 10-27

RD Parameter 10-28
Subparameter Definition 10-29
Defaults 10-30
Overrides 10-30
Relationship to Other Control Statements 10-30
Examples of the RD Parameter 10-30

REGION Parameter 10-31
Subparameter Definition 10-31
Defaults 10-31
Overrides 10-32
Relationship to the JOB ADDRSPC Parameter 10-32
Examples of the REGION Parameter 10-32

RESTART Parameter 10-33
Subparameter Definition 10-34
Relationship to Other Control Statements 10-34
Cautions When Coding the RESTART Parameter 10-34
Generation Data Sets in Restarted Jobs 10-35
Examples of the RESTART Parameter 10-35

TIME Parameter 10-36
Subparameter Definition 10-36
Overrides 10-37
Defaults 10-37
Time Handling 10-37
Examples of the TIME Parameter 10-37
Examples of the TIME Parameter on JOB and EXEC Statements 10-38

TYPRUN Parameter 10-39
Subparameter Definition 10-39
Example of the TYPRUN Parameter 10-40

USER Parameter 10-41

XIV MVSJCL

Subparameter Definition 10-41
Defaults 10-41
Relationship to Other Parameters 10-42
Example of the USER Parameter 10-42

Chapter 11. Coding the EXEC Statement 11-1
~ame Field 11-1
Parameter Field 11-2
Comments Field 11-3
Location in the JCL 11-3
Examples of EXEC Statements 11-3

ACCT Parameter 11-4
Subparameter Definition 11-5
On EXEC Statement that Calls a Procedure 11-5
Examples of the ACCT Parameter 11-5

ADDRSPC Parameter 11-6
Subparameter Definition 11-6
Defaults 11-6
Overrides 11-6
Relationship to the JOB or EXEC REGIO~ Parameter 11-6
On EXEC Statement that Calls a Procedure 11-7
Examples of the ADD RSPC Parameter 11-7

CO~D Parameter 11-8
Subparameter Definition 11-9
Overrides 11-10
On EXEC Statement that Calls a Procedure
Cautions when Specifying CO~D Parameters
Summary of CO~D Parameters 11-11
Examples of the CO~D Parameter 11-12

DPRTY Parameter 11-13
Subparameter Definition 11-13
Defaults 11-14
On EXEC Statement that Calls a Procedure
Examples of the DPRTY Parameter 11-14

DY~AM~BR Parameter 11-15
Subparameter Definition 11-15
Defaults 11-15

11-10
11-10

11-14

On EXEC Statement that Calls a Procedure
Example of the DYNAM~BR Parameter

11-15
11-16

P ARM Parameter 11-17
Subparameter Definition 11-17
On EXEC Statement that Calls a Procedure 11-18
Examples of the P ARM Parameter 11-18

PERFORM Parameter 11-19
Subparameter Definition 11-19
Defaults 11-19
Overrides 11-19
On EXEC Statement that Calls a Procedure 11-20
Example of the PERFORM Parameter 11-20

PGM Parameter 11-21
Subparameter Definition 11-21
Checking JCL Syntax without Executing the Step 11-22
Examples of the PGM Parameter 11-22

PROC and Procedure ~ame Parameters 11-24

Contents xv

Subparameter Definition 11-24
Effect of PROC Parameter on Other Parameters and Following Statements 11-24
Examples of the PROC Parameter 11-25

RD Parameter 11-26
Subparameter Definition 11-27
Defaults 11-28
Overrides 11-28
Relationship to Other Control Statements
On EXEC Statement that Calls a Procedure
Examples of the RD Parameter 11-29

REGION Parameter 11-30
Subparameter Definition 11-30
Defaults 11-31
Overrides 11-31

11-28
11-28

Relationship to the EXEC ADDRSPC Parameter 11-31
Examples of the REGION Parameter 11-31

TIME Parameter 11-32
Subparameter Definition 11-32
Defaults 11-33
Overrides 11-33
Time Handling 11-33
Examples of the TIME Parameter 11-33

Chapter 12. Coding the DD Statement 12-1
Name Field 12-1
Parameter Field 12-3
Comments Field 12-3
Location in the JCL 12-3
DD Statements for Cataloged and In-stream Procedures 12-3
Examples ofDD Statements and ddnames 12-5

* Parameter 12-6
Defaults 12-6
Relationship to Other Parameters 12-6
Relationship to Other Control Statements 12-7
Location in the JCL 12-7
Unread Records 12-7
Examples of the * Parameter 12-7

ACCODE Parameter 12-9
Subparameter definition 12-9
Defaults 12-9
Overrides 12-10
Example of the ACCODE Parameter 12-10

AMP Parameter 12-11
Subparameter Definition 12-12
Relationship to Other Parameters 12-14
Buffer Requirements 12-15
Examples of the AMP Parameter 12-15

BURST Parameter 12-16
Subparameter Definition 12-16
Default 12-16
Overrides 12-16
Relationship to Other Parameters 12-17
Relationship to Other Control Statements 12-17
Example of the BURST Parameter 12-17

xvi MVS JCL

CHARS Parameter 12-18
Subparameter Definition 12-18
Defaults 12-19
Overrides 12-19
Relationship to Other Parameters 12-19
Relationship to Other Control Statements 12-20
Printing Device Reassignment 12-20
Requesting a High-Density Dump in a JES3 System 12-20
Examples of the CHARS Parameter 12-20

CHKPT Parameter 12-21
Subparameter Definition 12-21
Overrides 12-21
Relationship to Other Parameters 12-21
Relationship to the SYSCKEOV DD Statement 12-21
Checkpointing Concatenated Data Sets 12-22
Examples of the CHKPT Parameter 12-22

CNTL Parameter 12-23
Subparameter Definition 12-23
Examples of the CNTL Parameter 12-23

COPIES Parameter 12-25
Subparameter Definition 12-25

Defa ul ts 12-26
Overrides 12-26
Relationship to Other Parameters 12-26
Relationship to Other Control Statements 12-27
Examples of the COPIES Parameter 12-27

DATA Parameter 12-28
Defaults 12-28
Relationship to Other Parameters 12-28
Relationship to Other Control Statements 12-29
Location in the JCL 12.:.29
Unread Records 12-29
Examples of the DATA Parameter 12-29

DCB Parameter 12-31
Subparameter Definition 12-32
Defaults 12-32
Relationship to Other Parameters 12-33
Completing the Data Control Block 12-33
Examples of the DCB Parameter 12-35

DDNAME Parameter 12-49
Subparameter Definition 12-49
Relationship to Other Parameters 12-49
Overrides 12-49
Location in the JCL 12-50
Referenced DD Statement 12-50
Backward References 12-51
Examples of the DDNAME Parameter 12-51

DEST Parameter 12-53
Subparameter Definition for JES2 Systems
Subparameter Definition for JES3 Systems
Defaults 12-55
Overrides 12-55
Relationship to Other Parameters 12-55
Relationship to Other Control Statements

12-53
12-54

12-56

Contents XVll

Examples of the DEST Parameter 12-56
DISP Parameter 12-57

Sub parameter Definition 12-57
Defaults 12-60
Relationship to Other Parameters 12-60
Disposition of VSAM Data Sets 12-61
Disposition of Temporary Data Sets 12-61
Disposition of Partitioned Data Sets 12-61
DISP = MOD for a Multivolume Data Set 12-61
Examples of the DISP Parameter 12-62

DLM Parameter 12-64
Subparameter Definition 12-64
Default 12-65
Relationship to Other Parameters 12-65
Invalid Delimiters 12-65
Example of the DLM Parameter 12-65

DSID Parameter 12-66
Subparameter Definition 12-66
Relationship to Other Parameters 12-67
Example of the DSID Parameter 12-67

DSNAME Parameter 12-68
Subparameter Definition 12-69
Relationship to Other Parameters 12-71
Examples of the DSNAME Parameter 12-71

The DUMMY Parameter 12-73
Parameters on DD DUMMY Statements 12-73
Relationship to Other Parameters 12-74
Relationship to Other Control Statements 12-74
Relationship to Access Methods 12-74
Examples of the DUMMY Parameter 12-74

DYNAM Parameter 12-76
Relationship to Other Parameters 12-76
Relationship to Other Control Statements 12-76
Example of the DYNAM Parameter 12-76

FCB Parameter 12-77
Subparameter Definition 12-77
Defaults 12-78
Overrides 12-78
Relationship to Other Parameters 12-78
Relationship to Other Control Statements 12-79
Defining an FCB Image for a Work Station 12-79
Requesting a High-Density Dump in a JES3 System 12-79
Examples of the FCB Parameter 12-79

FLASH Parameter 12-81
Sub parameter Definition 12-81
Defaults 12-81
Overrides 12-82
Relationship to Other Parameters 12-82
Relationship to Other Control Statements 12-82
Verification of Forms Overlay Frame 12-82
Printing without Flashing 12-83
Example of the FLASH Parameter 12-83

FREE Parameter 12-84
Subparameter Definition 12-84

XVl11 MVS JCL

Defaults 12-84
Overrides 12-84
Relationship to Other Parameters 12-84
Relationship to Other Control Statements 12-85
Relationship to the CLOSE Macro Instruction 12-85
Examples of the FREE Parameter 12-85

HOLD Parameter 12-87
Subparameter Definition 12-87
Defaults 12-87
Overrides 12-87
Relationship to Other Parameters 12-88
Relationship to Other Control Statements 12-88
Example of the HOLD Parameter 12-88

LABEL Parameter 12-89
Subparameter Definition 12-89
Defaults 12-93
Relationship to Other Parameters 12-93
Deleting a Data Set Before its Expiration Date 12-93
Translation 12-94
Examples of the LABEL Parameter 12-94

MODIFY Parameter 12-95
Subparameter Definition. 12-95
Defaults 12-96
Overrides 12-96
Relationship to Other Parameters 12-96
Relationship to other Control Statements 12-96
Example of the MODIFY Parameter 12-97

MSVGP Parameter 12-98
Subparameter Definition 12-98
Relationship to Other Parameters 12-99
Allocation when MSVGP is Not Coded 12-99
Examples of the MSVGP Parameter 12-100

OUT LIM Parameter 12-101
Subparameter Definition 12-101
Default 12-101
Relationship to Other Parameters 12-101
Relationship to Other Control Statements 12-102
Example of the OUTLIM Parameter 12-102

OUTPUT Parameter 12-103
Subparameter Definition 12-104
Defaults 12-104
Overrides 12-104
Relationship to Other Subparameters 12-105
Location in the JCL 12-105
No Match for OUTPUT Name 12-105
Processing Options in Multiple References 12-105
Examples of the OUTPUT Parameter 12-105

PROTECT Parameter 12-109
Subparameter Definition 12-109
Relationship to Other Parameters 12-109
Requirements for Protecting a Tape Volume 12-109
Requirements for Protecting a Direct Access Data Set 12-110
Examples of the PROTECT Parameter 12-110

QN AME Parameter 12-111

Contents XIX

Subparameter Definition 12-111
Relationship to Other Parameters
Example of the QNAME Parameter

12-111
12-111

SPACE Parameter 12-112
Subparameter Definition 12-113
Relationship to Other Parameters 12-115
SPACE for New Data Sets on Mass Storage Volumes 12-116
Examples of the SPACE Parameter 12-116

SUBSYS Parameter 12-117
Subparameter Definition 12-117
Relationship to Other Parameters 12-118
Examples of the SUBSYS Parameter 12-118

SYSOUT Parameter 12-120
Subparameter Definition 12-121
Defaults 12-121
Overrides 12-121
Relationship to Other Parameters 12-122
Relationship to Other Control Statements 12-122
Starting an External Writer when Requested 12-122
Backward References 12-122
Held Classes in a JES2 System 12-123
Significance of Output Classes 12-123
Examples of the SYSOUT Parameter 12-123

TERM Parameter 12-125
Subparameter Definition 12-125
Relationship to Other Parameters 12-125
Location in the JCL 12-125
Examples of the TERM Parameter 12-126

UCS Parameter 12-127
Subparameter Definition 12-127
Defaults 12-128
Overrides 12-128
Relationship to Other Parameters 12-129
Using Special Character Sets 12-129
Examples of the UCS Parameter 12-129

UNIT Parameter 12-130
Subparameter Definition 12-130
Overrides 12-133
Relationship to Other Parameters 12-133
Location in the JCL 12-133
Examples of the UNIT Parameter 12-134

VOLUME Parameter 12-135
Subparameter Definition 12-136
Overrides 12-139
Relationship to Other Parameters 12-139
VOLUME Information for a Checkpoint/Restart Data Set 12-140
VOLUME Parameter in a JES3 System 12-140
VOLUME Parameter for Optical Readers 12-140
Examples of the VOLUME Parameter 12-140

Chapter 13. Coding Special DD Statements 13-1
JOBCAT DD Statement 13-2

XX MVS JCL

Parameters on JOBCAT DD Statements
Relationship to STEPCAT DD Statement

13-2
13-2

Relationship to Other Control Statements
Location in the JCL 13-2
Example of the JOBCAT DD Statement

JOBLIB DD Statement 13-4
Parameters on JOBLIB DD Statements
Relationship to Other Control Statements
Location in the JCL 13-5
Relationship of a JOB LIB to a STEPLIB
Examples of the JOB LIB DD Statement

STEPCAT DD Statement 13-7
Parameters on STEP CAT DD Statements
Relationship to Other Control Statements
Location in the JCL 13-7
Example of the STEPCAT DD Statement

STEPLIB DD Statement 13-8

13-2

13-3

13-4
13-5

13-5
13-6

13-7
13-7

13-7

Parameters on STEPLIB DD Statements 13-8
Relationship to Other Control Statements 13-9
Location in the JCL 13-9
Relationship of a STEPLIB to a JOBLIB 13-9
Examples of the STEPLIB DD Statement 13-10

SYSABEND, SYSMDUMP, and SYSUDUMP DD Statements 13-11
Location in the JCL 13-11
Storing a Dump 13-11
Printing a Dump 13-12
Overriding Dump DD Statements 13-13
Duplicate Dump Requests 13-13
Examples of the SYSABEND, SYSMDUMP, and SYSUDUMP DD Statements 13-13

SYSCHK DD Statement 13-15
Parameters on SYSCHK DD Statements
Relationship to Other Control Statements
Location in the JCL 13-17
Examples of the SYSCHK DD Statement

SYSCKEOV DD Statement 13-18
Parameters on SYSCKEOV DD Statements
Coding SYSCKEOV for VSAM Data Sets
Example of the SYSCKEOV DD Statement

13-15
13-17

13-17

13-18
13-19

13-19

Chapter 14. Coding the OUTPUT JCL Statement 14-1
Name Field 14-2
Parameter Field 14-2
Comments Field 14-3
Location in the JCL 14-3
Overrides 14-4

BURST Parameter 14-6
Subparameter Definition 14-6
Defaults 14-6
Overrides 14-6
Example of the BURST Parameter 14-6
CHARS Parameter 14-7
Subparameter Definition 14-7
Defaults 14-8
Overrides 14-8
Requesting a High-Density Dump in a JES) System 14-9
Example of the CHARS Parameter 14-9

Contents XXI

CKPTLINE Parameter 14-10
Subparameter Definition 14-10
Defaults 14-10
Example of the CKPTLINE Parameter 14-10

CKPTP AGE Parameter 14-11
Subparameter Definition 14-11
Defaults 14-11
Relationship to Other Parameters 14-11
Example of the CKPTPAGE Parameter 14-11

CKPTSEC Parameter 14-12
Subparameter Definition 14-12
Defaults 14-12
Relationship to Other Parameters 14-12
Example of the CKPTSEC Parameter 14-12

CLASS Parameter 14-13
Subparameter Definition 14-13
Overrides 14-13
Held Classes 14-13
Significance of Output Class~s 14-14
Examples cf the CLASS Par~meter 14-14

COMPACT Parameter 14-15
Subparameter Definition 14-15
Defaults 14-15
Overrides 14-15
Example of the COMPACT Parameter 14-15

CONTROL Parameter 14-16
Subparameter Definition 14-16
Defaults 14-16
Example of the CONTROL Parameter 14-16

COPIES Parameter 14-17
Subparameter Definition 14-17
Defaults 14-18
Overrides 14-18
Relationship to Other Parameters 14-18
Relationship to Other Control Statements 14-18
Examples of the COPIES Parameter 14-18

DEFAULT Parameter 14-20
Subparameter Definition 14-20
Defaults 14-20
Location in the JCL 14-20
References to Default OUTPUT JCL Statements 14-21
Example of the DEFAULT Parameter 14-21

DEST Parameter 14-23
Subparameter Definition for JES2 Systems 14-23
Subparameter Definition for JES3 Systems 14-24
Defaults 14-25
Overrides 14-25
Examples of the DEST Parameter 14-25

FCB Parameter 14-26
Subparameter Definition 14-26
Defaults 14-27
Overrides 14-27
Relationship to Other Parameters 14-27
Requesting a High-Density Dump in a JES3 System 14-27

XXll MVS JCL

Example of the FCB Parameter 14-27
FLASH Parameter 14-28

Subparameter Definition 14-28
Defaults 14-29
Overrides 14-29
Relationship to Other Parameters 14-29
Verification of Forms Overlay Frame 14-29
Printing without Flashing 14-29
Example of the FLASH Parameter 14-30

FORMDEF Parameter 14-31
Subparameter Definition 14-31
Overrides 14-31
Example of the FORMDEF Parameter 14-32

FORMS Parameter 14-33
Subparameter Definition 14-33
Defaults 14-33
Overrides 14-33
Example of the FORMS Parameter 14-33

GROUPID Parameter 14-34
Subparameter Definition 14-34
Examples of the GROUPID Parameter 14-34

INDEX Parameter 14-36
Subparameter Definition 14-36
Defaults 14-36
Relationship to Other Parameters
Example of the INDEX Parameter

JESDS Parameter 14-37
Subparameter Definition 14-37
Overrides 14-38
Location in the JCL 14-38

14-36
14-36

Destination for the System Data Sets 14-38
Example of the JESDS Parameter 14-38

LINDEX Parameter 14-39
Subparameter Definition 14-39
Defaults 14-39
Relationship to Other Parameters 14-39
Example of the LINDEX Parameter 14-39

LINECT Parameter 14-40
Subparameter Definition 14-40
Defaults 14-40
Example of the LINECT Parameter 14-40

MODIFY Parameter 14-41
Subparameter Definition 14-41
Defaults 14-42
Overrides 14-42
Relationship to Other Parameters 14-42
Example of the MODIFY Parameter 14-42

PAGEDEF Parameter 14-43
Subparameter Definition 14-43
Overrides 14-44
Example of the PAGEDEF Parameter 14-44

PIMSG Parameter 14-45
Subparameter Definition 14-45
Defaults 14-45

Contents XXlll

Example of the PIMSG Parameter 14-45·
PRMODE Parameter 14-46

Subparameter Definition 14-46
Defa ul ts 14-46
Printing a Line-Mode Data Set Using PSF 14-47
Example of the PRMODE Parameter 14-47

PRTY Parameter 14-48
Subparameter Definition 14-48
Defaults 14-48
Overrides 14-48
Example of the PRTY Parameter 14-48

THRESHLD Parameter 14-49
Subparameter Definition 14-49
Defaults 14-49
Example of the THRESHLD Parameter 14-50

TRC Parameter 14-51
Subparameter Definition 14-51
Defaults 14-51
Relationship to Other Parameters
Example of the TRC Parameter

UCS Parameter 14-53
Subparameter Definition 14-53
Defaults 14-54
Overrides 14-54

14-51
14-52

Using Special Characters Sets 14-55
Example of the UCS Parameter 14-55

WRITER Parameter 14-56
Subparameter Definition 14-56
Defaults 14-56
Overrides 14-56
Starting an External Writer 14-56
Example of the WRITER Parameter 14-57

Chapter 15. Coding Special JCL Statements 15-1
JCL Command Statement 15-2

Command 15-2
Parameter Field 15-3
Comments Field 15-3
Location in the JCL 15-3
Example of the Command Statement 15-3

Comment Statement 15-4
Location in the JCL 15-4
Listing of Comments Statements 15-4
Example of the Comment Statement 15-4

CNTL Statement 15-5
Label Field 15-5
Parameter Field 15-5
Comments Field 15-5
Location in the JCL 15-6
Program Control Statements 15-6
Program Control Statements in Procedures 15-6
Example of the CNTL Statement 15-6

Delimiter Statement 15-7
Relationship to the DD Statement DLM Parameter 15-7

XXIV MVS JCL

Example of the Delimiter Statement 15-7
ENDCNTL Statement 15-8

La bel Field 15-8
Comments Field 15-8
Location in the JCL 15-8
Example of the ENDCNTL Statement 15-8

Null Statement 15-9
Location in the JCL 15-9
Example of the Null Statement 15-9

PEND Statement 15-10
Name Field 15-10
Comments Field 15-10
Location in the JCL 15-10
Examples of the PEND Statement 15-10

PROC Statement 15-11
Name Field 15-11
Parameter Field 15-11
Comments Field 15-12
Overrides 15-12
Using Symbolic Parameters 15-12
Examples of the PROC Statement 15-12

Chapter 16. Coding JES2 Control Statements 16-1
Location in the JCL 16-1
Internal Reader 16-1

Command Statement 16-2
Parameter Definition 16-2
Location in the JCL 16-3
Examples of the Command Statement 16-3

j*JOBPARM Statement 16-4
Parameter Definition 16-4
Overrides 16-7
Location in the JCL 16-7
Execution Node 16-7
Example of the j*JOBPARM Statement 16-8

j*MESSAGE Stateme"nt 16-9
Relationship to the j*ROUTE XEQ Statement 16-9
Location in the JCL 16-9
Example of the j*MESSAGE Statement 16-9

j*NETACCT Statement 16-10
Parameter Definition 16-10
Defaults 16-10
Overrides 16-10
Location in the JCL 16-10
Example of the j*NETACCT Statement 16-10

j*NOTIFY Statement 16-11
Parameter Definition 16-11
Overrides 16-11
Relationship to Other Control Statements 16-12
Examples of the NOTIFY Statement 16-12

j*OUTPUT Statement 16-13
Parameter Definition 16-14
Overrides 16-20
Relationship to Other Control Statements 16-21

Contents XXV

Location in the JCL 16-21
Example of the /*OUTPUT Statement 16-21

/*PRIORITY Statement 16-22
Parameter Definition 16-22
Overrides 16-22
Relationship to Other Control Statements 16-22
Location in the JCL 16-23
Example of the PRIORITY Statement 16-23

/*ROUTE Statement 16-24
Parameter Definition 16-24
Location in the JCL 16-26
Processing of /*ROUTE Statements 16-26
Multiple /*ROUTE Statements 16-26
Examples of the ROUTE Statement 16-26

/*SETUP Statement 16-28
Parameter Definition 16-28
Location in the JCL 16-28
Example of the /*SETUP Statement 16-28

/*SIGNOFF Statement 16-29
Example of the /*SIGNOFF Statement 16-29

/*SIGNON Statement 16-30
Location in the JCL 16-30
Parameter Definition 16-30
Examples of the /*SIGNON Statement 16-31

/*XEQ Statement 16-32
Parameter Definition 16-32
Location in the JCL 16-32
Multiple I*XEQ Statements 16-32
Example of the XEQ Statement 16-32

/*XMIT Statement 16-33
Parameter Definition 16-33
Defaults 16-34
Location in the JCL 16-35
Example of the XMIT Statement 16-35

Chapter 17. Coding JES3 Control Statements 17-1
Location in the JCL 17-1
Internal Reader 17-1
Examples of JES3 Control Statements 17-2

Command Statement 17-3
Parameter Definition 17-3
Location in the JCL 17-4
Examples of the Command Statement 17-4

//*DATASET Statement 17-5
Parameter Definition 17-5
Examples of the I/*DATASET Statement 17-6

II*ENDDATASET Statement 17-7
Location in the JCL 17-7
Example of the I/*ENDDATASET Statement 17-7

I/*ENDPROCESS Statement 17-8
Location in the JCL 17-8
Example of the /I*ENDPROCESS Statement 17-8

//*FORMAT PR Statement 17-9
Parameter Definition 17-10

XXVI MVS JCL

Relationship to Sysout DD and OUTPUT JCL Statements 17-17
Relationship to / /*PROCESS Statement 17 -17
Examples of the //*FORMAT PR Statement 17-17

//*FORMAT PU Statement 17-18
Parameter Definition 17-19
Relationship to Sysout DD and OUTPUT JCL Statements 17-22
Relationship to //*PROCESS Statement 17-22
Example of the //*FORMAT PU Statement 17-22

/ /*MAIN Statement 17-23
Parameter Definition 17-24
Location in the JCL 17-34
Example of the / /*MAIN Statement 17-34

/ /*NET Statement 17-35
Parameter Definition 17-35
Examples of the //*NET Statement 17-39

/ /*NETACCT Statement 17-40
Parameter Definition 17-40
Defaults 17-41
Example of the //*NETACCT Statement 17-41

//*OPERATOR Statement 17-42
Example of the / /*OPERATOR Statement 17-42

//*PAUSE Statement 17-43
Example of the //*PAUSE Statement 17-43

/ /*PROCESS Statement 17-44
Parameter Definition 17-44
Location in the JCL 17-45
Examples of the / /*PROCESS Statement 17 -46

/ /*ROUTE XEQ Statement 17-47
Parameter Definition 17-47
Location in the JCL 17-47
Example of the / /*ROUTE XEQ Statement 17-48

/*SIGNOFF Statement 17-49
Example of the /*SIGNOFF Statement 17 -49

/*SIGNON Statement 17-50
Parameter Definition 17-50
Example of the /*SIGNON Statement 17-51

Part 5. Reference Tables

Chapter 18. Reference Tables 18-1

Index X-I

Contents XXVll

XXVl11 MVS JCL

Figures

I-I.
1-2.
1-3.
1-4.
1-5.
1-6.
2-I.
2-2.
4-I.
4-2.
5-I.
5-2.
6-I.
7-I.
7-2.
8-I.
8-2.
9-I.
9-2.

10-1.
ll-I.
11-2.
12-1.
14-1.
14-2.
17-I.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.

18-10.
18-II.
18-12.
18-13.

Job Control Statements
JES2 Control Statements
JES3 Control Statements
A Job in the Input Stream
A Job with Several Job Steps
Job Boundaries in the Input Stream
JCL Control Statement Fields

1-1
1-3
1-5
1-9

1-10
1-10
2-5

Character Sets ... 2-10
Using the EXEC Statement 4-1
Modifying a Cataloged Procedure 4-2
U sing the COND Parameter 5-11
Using the COND Parameter within a Failing Step 5-13
Types of JES3 Setup .. 6-7
How Device Status Affects Eligibility for Allocation 7-24
Unit and Volume Affinity 7-34
DD parameters used with VSAM 8-15
DD parameters you should avoid with VSAM 8-16
Identification of Cataloged Procedure Statements on the Output Listing 9-13
Identification of In-stream Procedure Statements on the Output Listing 9-14
Continuation or Termination of the Job Based on COND Parameter 10-11
Execution or Bypassing of Current Step Based on COND Parameter 11-11
Effect of EVEN and ONLY Subparameters on Step Execution 11-11
Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers 12-128
Using job- and step-level OUTPUT JCL statements 14-1
Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers 14-54
Table of Allowable DSPs for PROCESS Statements 17-45
DD Parameters for Creating a Data Set 18-2
DD Parameters for Retrieving a Data Set 18-4
DD Parameters for Extending a Data Set 18-5
DD Parameters for Retrieving or Extending an Indexed Sequential Data Set .. 18-6
Area Arrangement of Indexed Sequential Data Sets 18-7
Table of Mutually Exclusive DD Parameters 18-8
Disposition Processing Table 18-9
Direct Access Capacities .. 18-10
Track Capacities ... 18-11
The JOB Statement ... 18-13
The EXEC Statement .. 18-14
The DD Statement .. 18-15
The OUTPUT JCL Statement 18-18

Figures XXIX

XXX MVS JCL

:ontents Directory

)B Statement

(EC Statement

D Statement

tecial DD Statement

UTPUT Statement

Jecial JCL Statements

['S2 Statements

[S3 Statements -------------------..
eference Tables

tdex __ __

Contents Directory XXXi

XXXll MVS J CL

Summary of Amendments

Summary of Amendments
for GC28-1300-2
as updated December 21, 1984

This revision supports MVS/System Product Version 1 Release 3.4 with the following changes:

• The OUTPUT JCL statement can now be used in JES3 systems.

• The DEST parameter on the DD statement and on the JES3 //*FORMAT statement; JES3 now defines
the default origin as the submitting node.

The revision also includes maintenance and editorial changes.

Summary of Amendments
for GC28-1300-1
as updated October 12, 1984
by TNL GN28-1016

This technical newsletter contains information to support changes in the Resource Access Control Facility
(RACF) requirements for the JOB statement USER, PASSWORD, and GROUP parameters and to support
early authorization verification.

Summary of Amendments
for GC28-1300-1
as updated December 1983

This revision contains:

• Information to support MVS/System Product Version 1 Release 3.4.

• Maintenance updates, which reflect the changes made in response to comments from our readers.

Summary of Amendments XXXlll

XXXIV MVS JCL

Part 1. Introduction

You write your program in a programming language such as FORTRAN, assembler, or
COBOL. The operating system translates this programming language into machine language,
so that the computer can execute the instructions and perform work.

The program you code has specific resource requirements: storage, data sets, devices, and
volumes. To communicate these resource requirements to the operating system, you use a
programming language called job control language (JCL) in the input stream.

In addition, the job entry subsystem in use at your installation provides certain resources for
your job and your job's data sets. Using Job Entry Subsystem 2 (JES2) and/or Job Entry
Subsystem 3 (JES3) control statements, you can specify processing requirements for:

• Your job
• All data sets for your job
• Specific data sets in your job

A collection of related programs you submit to the operating system is a job. A job is made up
of one or more job steps; each step is the unit of work associated with one of the programs that
make up the job.

To introduce you to job control, the first chapter in this part describes:

• The JCL statements.

• The JES2 control statements.

• The JE83 control statements.

• Cataloged and in-stream procedures, which are standard sets of JCL statements for jobs
you run frequently.

• Submitting and executing your job.

The second chapter in this part explains the coding conventions used throughout the book to
describe the JCL statements and JE82 and JES3 control statements.

Part 1. Introduction

Chapter 1. Introduction to Job Control

The JCL Statements

Job control language (JCL) consists of the statements summarized in Figure 1-1. Each
statement is described in detail in later chapters.

Statement Name Purpose

// JOB job Marks the beginning of a job; assigns a name to the job.

II EXEC execute Marks the beginning of a job step; assigns a name to the step; identifies
the program or the cataloged or in-stream procedure to be executed in
this step.

I I DD data definition Identifies and describes a data set.

1/ OUTPUT output Specifies the processing options that the job entry subsystem is to use for
printing output data sets.

II CNTL control Marks the beginning of one or more program control statements.

I I ENDCNTL end control Marks the end of one or more program control statements.

II PEND procedure end Marks the end of an in-stream procedure.

/ / PROC procedure Marks the beginning of an in-stream procedure and may mark the
beginning of a cataloged procedure; assigns default values to parameters
defined in the procedure.

/1 command command Enters a system operator command through the input stream. The
command statement is used primarily by the operator.

Note: JES3 ignores the JCL command statement.

1/* comment comment Contains comments. The comment statement is used primarily to
document a program and its resource requirements.

1* delimiter Indicates the end of data placed in the input stream.

Note: Any two characters can be designated by the user to be the
delimiter.

II null Marks the end of a job in a JES3 system.

Note: JES2 ignores the null statement.

Figure 1-1. Job Control Statements

In addition to using JCL statements to identify your job, job steps, and data sets, you use JCL
statement parameters to request resources and services from the operating system. The
operating system, together with your job entry subsystem, is responsible for managing all the

Chapter 1. Introduction to Job Control 1-1

resources of the computing system. It performs many job processing services automatically, but
you can influence the way your job is processed by the JCL parameters you code. For
example, the job entry subsystem selects jobs for execution, but you can speed up or delay
selection of your job by the parameters you code on the JOB statement in a JES2 system or on
the //*MAIN statement in a JES3 system. Also, you can ask for a specific volume on which to
write a data set.

The following paragraphs describe some of the functions that are requested through the major
JCL statements:

JOB statement: Parameters on the JOB statement can:

• Provide accounting information to the installation's accounting routines.
• Define execution characteristics.
• Specify conditions for early termination of the job.
• Request a specific class for system messages and JCL statements.
• Hold a job for later execution.
• Limit the time that the job can use the processor.

EXEC statement: Parameters on the EXEC statement can:

• Identify the program or cataloged or in-stream procedure that the system is to execute.
• Provide job step accounting information.
• Give conditions for bypassing or executing a job step.
• Limit the time that the job step can use the processor.
• Pass information to a processing program, such as the linkage editor.

DD statement: Parameters on the DD statement can provide the system with information:

• The name of the data set.
• The type of I/O device that holds the data set.
• The serial number of the volume on which it resides.
• Whether a data set is old, new, or temporary.
• What to do with the data set after processing is finished.
• The format of the records in the data set.
• The size of newly created data sets.
• The access method that will be used to create or refer to the data.

OUTPUT statement: Parameters on the OUTPUT statement provide the system with
processing options for system output data sets. Parameters on this statement can:

• Specify processing options for output data sets.
• Route output to a specific destination.
• In JES2 systems, process output data sets as a group.

1-2 MVS JCL

The JES2 Control Statements

In a JES2 installation, you can use JES2 control statements in the input stream to control the
input, output, and processing of a program. See Figure 1-2 for the purpose of the JES2
statements that you can use with JCL statements to define your job's resource and processing
requirements to the system.

Statement Purpose

j*$command Enters JES2 operator commands through the input stream.

j*JOBPARM Specifies certain job-related parameters at input time.

j*MESSAGE Sends messages to the operator via the operator console.

j*NETACCT Specifies an account number for a network job.

j*NOTIFY Specifies the destination of notification messages.

j*OUTPUT Specifies characteristics and options of groups of SYSOUT data sets or
of a specific SYSOUT data set.

j*PRIORITY Assigns a job queue selection priority.

/*ROUTE Specifies the default output destination.

/*SETUP Indicates volumes needed to execute the job.

j*SIGNOFF Ends a remote job stream processing session.

j*SIGNON Begins a remote job stream processing session.

j*XEQ Specifies the execution node for a job.

j*XMIT Indicates a job or data stream to be transmitted to another JES2 node
or eligible non-JES2 node.

Figure 1-2. JES2 Control Statements

Several of these statements are briefly discussed here.

JES2 /*JOBPARM Statement: Parameters on the JES2 j*JOBPARM statement can specify:

• The estimated number of cards to be produced as output from a job.
• The number of copies of printed output desired.
• The default print or punch forms for this job.
• The number of output lines on each page.
• The estimated total number of output lines from the job.
• The estimated total number of system output data set bytes from the job.
• Your office number.
• Any system affinity that may be required.
• The estimated job execution time.
• The printing of the job log.
• The name of the cataloged procedure library to be used to convert the JCL for the job.

JES2 /* NETACCT Statement: The network account number on the JES2 j*NETACCT
statement lets you specify accounting information that can be accepted and interpreted by all
nodes. Some nodes may use the number as is, while others can translate it to a local account
number.

Chapter 1. Introduction to Job Control 1-3

JES2 /*ROUTE Statement: Parameters on the JES2/*ROUTE statement can:

• Route the execution of a job to any processor in the network.
• Route the printed or punched output to any local device, remote terminal, or node in the

network.

JES2/* XEQ Statement: The JES2 /*XEQ statement causes JES2 to send the job to any
processor in the JES2 network for execution.

JES2 /* XMIT Statement: The JES2 /*XMIT statement causes JES2 to transmit a data stream
or job to a specified JES2 node or eligible non-JES2 node without JES2 input service functions
being performed on the data stream.

1-4 MVS JCL

The JES3 Control Statements

In a JES3 installation, you can use JES3 control statements in the input stream to control the
input, output, and processing of a program. See Figure 1-3 for the purpose of the JES3
statements that you can use with JCL statements to define your job's resource and processing
requirements to the system.

Statement Purpose

/ /**command Enters JES3 operator commands, except *DUMP and *RETURN, through
the input stream.

//*DATASET Begins each additional input data set in the input stream.

/ /*ENDDATASET Ends the input data set that began with a DATASET statement.

/ /*ENDPROCESS Ends a series of PROCESS statements.

//*FORMAT Specifies special destination and format-related instructions for a specific
SYSOUT or JES3-managed print 'Or punch data set.

//*MAIN Defines selected processing parameters for the current job.

//*NET Identifies relationships between predecessor and successor jobs in a
dependent job control net.

//*NETACCT Specifies an account number for a network job.

/ /*OPERATOR Sends messages to the operator.

//**PAUSE Halts the input reader.

//*PROCESS Identifies a nonstandard job.

//*ROUTE Specifies the destination node in a network.

//*SIGNOFF Ends a remote job stream processing session.

//*SIGNON Begins a remote job stream processing session.

Figure 1-3. JES3 Control Statements

Several of these statements are briefly discussed here.

JES3 //*FORMAT Statement: Parameters on the JES3 //*FORMAT statement differ
according to the type of request you are making. For print and punch data sets, keyword
parameters specify such options as:

• Output destination.
• Number of output copies.
• Types of output forms.

JE'S3 //* MAIN Statement: Parameters on the JES3 //*MAIN statement specify such options
as:

• The main processor name or type of system to be used for the job.
• The type of control program to be used.
• The estimated number of cards or lines of output.
• The job class for the job.
• The time that the job is due to be completed.

Chapter 1. Introduction to Job Control 1-5

JES3 / /* PROCESS Statement: A job, which is identified by a JOB statement, is a serie~ of
related problem programs, each identified by an EXEC statement. A job is also a series of
JES3 processing functions. Standard processing needs only the standard scheduler elements:
converter/interpreter service, main service, output service, and purge service.

A standard job consists of related programs to be processed by MVS; a standard job requires
no special processing. A nonstandard job requires one or more special processing functions in
place of or in addition to standard processing. Specify a nonstandard job by following the JOB
statement with a JES3 /I*PROCESS statement for each job processing function.

For example, it is not always necessary to have all of the standard processes in a job. You can
submit a job for debugging only. Because JES3 is not to execute the debugging job, you can
skip some of the standard processing.

JES3 1/* ROUTE XEQ Statement: Parameters on the JES3 ROUTE statement direct a job to
another node in the network for execution.

1-6 MVS JCL

Cataloged and In-Stream Procedures

You often use the same set of JCL statements repeatedly with little or no change, for example,
to compile, link-edit, and execute a program. To save time and prevent errors, you can prepare
standard job step definitions and place, or catalog, them in a partitioned data set known as the
procedure library. Such a set of JCL statements in the system procedure library,
SYSl.PROCLIB, is called a cataloged procedure. A cataloged procedure consists of EXEC and
DD statements.

Note: Do not place any JES2 or JES3 control statements within a cataloged procedure.

To retrieve a cataloged procedure, use a JOB statement and an EXEC statement. On the
EXEC statement, specify the name of the procedure. Your job uses the JCL statements in the
cataloged procedure as if the JCL statements appeared in the input stream. If necessary, you
can modify the cataloged procedure by a process known as overriding.

Before putting a procedure into the procedure library, you should test it. For testing, create an
in-stream procedure; an in-stream procedure is a set of JCL statements starting with a PROC
statement and ending with a PEND statement. You call this procedure with an EXEC
statement that is in the same job as the procedure. After testing the procedure, catalog the
in-stream procedure and call it with an EXEC statement whenever you want to use it.

Note: The maximum number of in-stream procedures you can code within any job is 15.

Cataloged and in-stream procedures are not checked for correct syntax until an EXEC
statement that calls the procedure is syntax checked. Therefore, to test a procedure, an EXEC
statement must call it.

Submitting and Executing Your Job

To have the computer execute your job, submit your JCL statements and any input data to the
operating system through an input/output (I/O) device or an internal reader. The input device
can be a card reader, a magnetic tape device, a terminal, or a direct access device. The input
stream consists of the JCL statements and input data for all the jobs being submitted through
an input device. The operating system distinguishes a job control statement from data in the
input stream by the contents of the records.

A job can be simple or complex; you can have a procedure in the input stream or call a
cataloged procedure. A job can consist of up to 255 job steps, including all steps in any
procedure that the job calls. Specification of a greater number of steps produces unpredictable
results.

See Figure 1-4 for some examples of jobs. One example shows the use 0[JES2 statements;
these statements could have been plac}'d within all of the jobs. In a system that uses JES3, the
JES3 statements can be used in any 6f the jobs and are placed after the JOB statement.

Figure 1-5 shows a job that contains several job steps: a compilation, a link-edit, and a
program execution.

Figure 1-6 shows how several jobs run one after another through the input stream. Your job
would be one job in the group of jobs that make up an input stream.

Chapter 1. Introduction to Job Control 1-7

delimiter

delimiter

SYS1.PROCLIB

/I JOB

DO

EXEC

I*PRIORITY

Figure 1-4. A Job in the Input Stream

1-8 MVS JCL

--

A Job With One Job Step

The EXEC statement defines the program to be
executed; the DO statements define the data to
be used. There is also data in the input stream.

A Job With a Cataloged Procedure

The EXEC statement is calling a cataloged
procedure to process the data in the input
stream.

~ DDNAME=XY

A Job With an In-stream Procedure

The EXEC statement refers to an in-stream
procedure which is shown using the PROC and
PEND statements.

A Job With J ES2 Statements

A simple job using JES2 control statements. The
PRIORITY, command, and any comment
statements would be the only control statements
to be placed in front of the JOB statement.

input data

Figure 1-5. A Job with Several Job Steps

Figure 1-6. Job Boundaries in the Input Stream

Chapter 1. Introduction to Job Control 1-9

1-10 MVS JCL

Chapter 2. Coding Conventions for JCL, JES2, and JES3
Statements

Syntax rules define how to code job control statements and their parameters. The syntax
indicates:

• What the system requires.
• What is optional for the specific purpose or process you are requesting.
• How the statement and its parameters are to appear.

Some syntax rules are the same for JCL and JES parameters.

The following rules apply to all job control statements: JCL statements, JES2 control
statements, and JES3 control statements. Additional coding conventions for JES2 and JES3
control statements are given under separate headings below.

You must follow the syntax rules in coding job control statements to achieve specific results. If
you do not follow the rules, you may get error messages or unpredictable results. IBM does
not support the use of statements or parameters to achieve results other than those stated in
this publication.

Notation Used to Show Syntax

The syntax of the job control statements and of their parameters appear in the chapters that
describe the statements. The notation used in this publication for the syntax follows.

Uppercase letters, words, and characters
Code uppercase letters, words, and the characters listed below exactly as they appear in
the syntax.

& ampersand

* asterisk
comma
equal sign

() parentheses
period

Lowercase letters, words, and symbols
Lowercase letters, words, and symbols in the syntax represent variables. When you code
the parameter, you substitute specific information for them.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-1

For example, CLASS = jobclass is the syntax for the CLASS parameter. When you code
the CLASS parameter on a JOB statement, you substitute an alphanumeric character for
the word "jobclass."

(vertical bar)
A vertical bar indicates an exclusive OR. Never code it on a control statement. It is used
in the syntax between choices within braces or brackets; it indicates that you code only
one of the items within the braces or brackets.

For example, FREE = {ENDICLOSE} is the syntax for the FREE parameter. On a DD
statement, you are to code either FREE = END or FREE = CLOSE.

{} (braces)
Braces surround required, related items and indicate that you must code one of the
enclosed items. Never code them on a control statement.

For example, the following is part of the syntax for the SPACE parameter on the DD
statement.

{TRK }
{CYL }
{blocklength}

When coding the SPACE parameter, you must code TRK, CYL, or a numerical value
substituted for "blocklength."

(J (brackets)

2 ... 2 MVS JCL

Brackets surround an optional item or items and indicate that you can code one or none
of the enclosed items. Never code them on a control statement.

For example, [,DEFER] is part of the format description for the UNIT parameter. When
you code the UNIT parameter, you can include ,DEFER in the UNIT parameter or omit
it.

An example of several items in brackets appears in the LABEL parameter of the DD
statement:

[, RETPD=nnnn]
[, EXPDT=yyddd]

You can code either ,EXPDT= yyddd or ,RETPD=nnnn in the LABEL parameter, or
you can omit both.

Sometimes one of the items in brackets is a comma. Code the comma when you are not
coding any of the other items in the brackets but you are coding a following part of the
parameter. For example, the SYSOUT parameter of the DD statement appears in the
format description as:

SYSOUT=({class-namel ,}[,writer-namel,] [,form-namel ,code-name])

You can code both ",writer-name" and ",form-name":

SYSOUT=(A,writer-name,form-name)

You can omit both:

SYSOUT=A

Or you can code only one:

SYSOUT=(A,writer-name) or SYSOUT=(A"form-name)

Note in the second example that the comma after the vertical bar in the first set of
brackets [,writer-namej,] must be coded when ",writer-name" is omitted and ",form-name"
is included.

_ (underline)
An underline indicates the default that the system uses when you do not code a
subparameter. For example:

ADDRSPC={VIRT I REAL}

Th~ underline indicates that VIRT is the default if you do not code the ADDRSPC
parameter.

(ellipsis)
An ellipsis follows an item that you can code more than once. Never code it on a control
statement.

For example, COND = «code,operator)[,(code,operator)]) is the syntax for the COND
parameter on the JOB statement. The ellipsis indicates that you can repeat
",(code,operator)."

COND=, ((12 , GE) , (8, EQ) , (4, EQ))

.. (two consecutive periods)
Two consecutive periods indicate that a parameter consists of a symbolic parameter
followed by other information; only part of the field is variable. For example,
&DEPT .. MACS is such a parameter. If &DEPT = D58, then the actual value is
D58.MACS.

Fields in Control Statements

A job control statement consists of one or more 80-byte records. Each record is in the form of
an 80-column punched-card image. Each job control statement is logically divided into the
following five fields. All five fields do not appear on every control statement.

Identifier field
The identifier field indicates to the system that a statement is a job control statement
rather than data. The identifier field consists of the following:

• Columns 1 and 2 of all JCL statements, except the delimiter statement, contain / /

• Columns 1 and 2 of the delimiter statement contain either /* or two other characters
designated by the user in a DLM parameter to be the delimiter

• Columns 1, 2, and 3 of a comment statement contain / /*

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-3

Name field
The name field identifies a control statement so that other statements and the system can
refer to it. For lCL control statements, code the name as follows:

• The name must begin in column 3.

• The name is 1 through 8 alphanum.eric or national characters. See Figure 2-2 on
page 2-10 for the character sets.

• The first character must be an alphabetic or national character.

• The name must be followed by at least one blank.

For lES control statements, code the name field as it appears in the control statement
syntax.

Operation field
The operation field specifies the type of control statement, or, for the command
statement, the command. Code the operation field as follows:

• The operation follows the name field.
• The operation must be preceded and followed by at least one blank.

Parameter field
The parameter field contains parameters separated by commas. Code the parameter field
as follows:

• The parameter field follows the operation field.
• The parameter field must be preceded and followed by at least one blank.

See "The Parameter Field" on page 2-5 for details on coding the parameter field.

Comments field
The comments field contains any information you deem helpful when you code the
control statement. Code the comments field as follows:

• The comments field follows the parameter field.
• The comments field must be preceded by at least one blank.

You can code comments after the parameter field even though you continue the
parameter field on a subsequent statement; see "Continuing Control Statements" on
page 2-6.

F or most statements, if you do not code any parameters, do not code any comments.

Location of Fields on Statements: Code the identifier field beginning in column 1 and the name
field immediately after the identifier, with no intervening blanks. Code the operation,
parameter, and comments fields in free form. Free form means that the fields need not begin in
a particular column. Separate between fields with at least one blank; the blank serves as the
delimiter between fields.

Do not code fields, except on the comment statement, past column 71. If the total length of the
fields exceeds 71 columns, continue the fields onto one or more following statements.

2-4 MVS JCL

Continuing fields is described under "Continuing Control Statements" on page 2-6. The
comment statement can be coded through column 80.

Use Keywords Only for Parameters or Sub parameters: Do not use parameter or subparameter
keywords from any JCL, JES2, or JES3 statements as symbolic parameters, names, or labels.

Statement Identifier Fields

JOB / / name JOB parameter! comments2

EXEC / / name! EXEC parameter comments2

DD / / namel DD parameter comments2

OUTPUT / / name OUTPUT parameter comments2

PROC(cataloged) / / namel PROC parameter comments2

· PROC (in-stream) / / name PROC parameter! comments2

PEND / / name l PEND comments l

Command / / command parameterl comments l

Delimiter /* comments!
xx commentsl

Null / /

Comment / /* comments

1 Optional
2 Optional -- If parameters are not coded, comments cannot be coded.

If parameters are coded, comments are optional.

Figure 2-1. JCL Control Statement Fields

The Parameter Field

The parameter field is made up of two types of parameters: positional parameters and keyword
parameters. Positional parameters must precede all keyword parameters. Keyword parameters
follow the positional parameters.

Commas: You must use commas to separate all positional parameters, keyword parameters,
and subparameters coded in the parameter field.

Positional Parameters: A positional parameter consists of (1) characters that arvear in
uppercase in the syntax and must be coded as shown, (2) variable information, or (3) a
combination. For example, DATA on a DD statement, programmer's-name on a JOB
statement, and PGM = program-name on an EXEC statement.

C~de positional parameters first in the parameter field in the order indicated in the syntax. If
you omit a positional parameter and code a following positional parameter, code a comma to
indicate the omitted parameter. Do not code the replacing comma if:

• The omitted positional parameter is the last positional parameter.
• All following positional parameters are also omitted.
• Only keyword parameters follow.
• All positional parameters are omitted.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-5

Keyword Parameters: A keyword consists of characters that appear in uppercase in the syntax
and must be coded as shown followed by an equals sign followed by either characters that must
be coded as shown or variable information. For example, RD = Rand
MSGCLASS = class-name on the JOB statement.

Code any of the keyword parameters for a statement in any order in the parameter field after
the positional parameters. Because of this positional independence, do not code a comma to
indicate the absence of a keyword parameter.

Multiple Sub parameters: A positional parameter or the variable information in a keyword
parameter sometimes consists of more than one item, called a subparameter list. A
subparameter list can consist of both positional and keyword subparameters. These
subparameters follow the same rules as positional and keyword parameters.

When a parameter contains more than one subparameter, separate the subparameters by
commas and enclose the subparameter list in parentheses or, if indicated in the syntax, by
apostrophes. If the list is a single keyword subparameter or a single positional subparameter
with no omitted preceding sub parameters, omit the parentheses or apostrophes.

Symbolic Parameters: The EXEC and DD statements in cataloged and in-stream procedures
can contain one other type of parameter: a symbolic parameter. A symbolic parameter consists
of an ampersand (&) followed by a name. For example, DEST=&LOC on a pro'cedure DD
statement.

A symbolic parameter stands as a symbol for a parameter, a subparameter, or a value. Use
symbolic parameters to make variable any information in the parameter field of a procedure
EXEC statement or DD statement. You assign a value to a symbolic parameter by coding the
value on the EXEC statement that calls the procedure. This value is in effect only for this
execution of the procedure. For example:

//STEPI EXEC PROC=A,LOC=NYC

For a detailed discussion of symbolic parameters, see "Symbolic Parameters" on page 2-15.

Continuing Control Statements

When the total length of the fields on a control statement exceeds 71 columns, continue the
fields onto one or more following statements.

JCL statements that you cannot continue follow. While you cannot continue these statements,
you can code as many separate statements as you need.

Command statement
Comment statement
Delimiter statement
Null statement

For all other JCL statements, you can continue the parameter field or the comments field.

2-6 MVS JCL

Continuing the Parameter Field: The continuation conventions for the parameter field are:

1. Interrupt the field after a complete parameter or subparameter, including the comma that
follows it, at or before column 71.

2. Include comments by following the interrupted parameter field with at least one blank.

3. Code a nonblank character in column 72 when you are continuing a comments field and,
optionally, when you are continuing the parameter field.

Note: The system treats a following statement as a continuation, even when column 72 is
blank, when conventions 4, 5, and 6 are followed.

4. Code II in columns 1 and 2 of the following statement.

5. Continue the interrupted parameter or field beginning in any column from 4 through 16. If
you begin coding after column 16, the system treats this statement as a comment field.

6. If column 3 contains a nonblank character other than an asterisk, the system assumes the
following statement is a new statement. The system issues an error message indicating that
no continuation is found and fails the job.

Continuing the Comments Field:

1. Interrupt the comment at a convenient place before column 72.
2. Code a nonblank character in column 72.
3. Code I I in columns 1 and 2 of the following statement.
4. Continue the comments field beginning in any column after column 3.

Identifying Comments on an Output Listing

The system lists in the job log the control statement and how it was interpreted.

11* in columns 1 through 3: indicates a control statement in the input stream, other than a
comment statement, that the system considers to contain only comments.

XX* in columns I through 3: indicates a control statement in a cataloged procedure, other
than a comment statement, that the system considers to contain only comments.

*** in columns 1 through 3: indicates a comment statement.

+ + in columns 1 and 2: indicates any control statements in an in-stream procedure.

For additional information, see "Identifying Procedure Statements on an Output Listing" on
page 9-13.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2 ... 7

Coding Conventions for JES2 Control Statements

Code JES2 control statements with JCL statements to control the input and output processing
of jobs. The rules for coding JCL statements, including syntax, discussed in the preceding
topics, apply to the JES2 control statements. However, there are additional rules for coding
JES2 statements. They are:

• Columns 1 and 2 always contain the characters /*.

• The /*OUTPUT statement is the only JES2 control statement that you can continue.

For all other JES2 control statements, code multiple control statements if you require more
than one statement.

• If you code more than one of the same parameters on the same statement, JES2 uses the
last parameter value coded.

When coding more than one of the same JES2 control statements, be aware of the following
system actions:

'-

• If you code more than one statement with the same parameter, JES2 uses the parameter
value coded on the last statement.

• If you code more than one statement with different parameters, JES2 uses all parameters.

Coding Conventions for JES3Controi Statements

You can code JES3 statements in combination with JCL statements to control the input and
output processing of your job. Rules for coding JCL, including syntax, discussed in previous
topics, apply to the JES3 statements. However, there are additional rules for coding JES3
statements. They are:

• Columns I through 3 usually contain the characters / /*. There are some JES3 control
statements that have /* in columns 1 and 2.

• Columns 3 and 4 must be nonblanks.

• Continue JES3 statements, except command statements, by:

1. Coding a comma as the last character of the first statement.
2. Coding / /* in columns 1 through 3 of the continuation statement.
3. Resuming the text in column 4 of the continuation statement.

• Do not include comments on JES3 control statements, except ENDPROCESS and PAUSE
statements.

2-8 MVS JCL

Concatenating Data Sets

You can logically connect (concatenate) up to 255 sequential or 16 partitioned input data sets
for the duration of a job step. Each of these data sets may reside on a different volume.

To concatenate data sets, omit the ddnames from all the DD statements except the first in the
sequence. When MVS encounters this ddname in a data control block in the processing
program, MVS processes each data set in the same sequence as the DD statements defining
them.

You may concatenate data sets on different devices as long as you do not concatenate data sets
on RPS devices to data sets on non-RPS devices, or vice versa.

You may also concatenate data sets that have different block sizes as long as the data set with
the largest block size appears first in the concatenation. For further details on concatenating
data sets, refer to Data Management Services Guide.

Concatenation Cautions

• If you make a backward reference to a concatenation (using *.), the system obtains
information only from the first data set defined in the sequence.

• If you make a forward reference to a concatenation (using the DDNAME parameter), the
system only obtains information from the first data set defined in the sequence.

• If you issue a RDJFCB macro instruction to a DD statement that is concatenated, only the
job file control block (JFCB) for the first data set is read.

• If you define a data set using the DUMMY parameter you should not concatenate other
data sets to it. When the processing program asks to read a dummy data set, the system
takes an end-of-data set exit immediately and ignores any data set that might be
concatenated to the dummy.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-9

Character Sets

You can code job control statements using a combination of the characters from three different
character sets. Figure 2-2 illustrates the contents of each of the character sets.

Character Set Contents

Alphanumeric Alphabetic A through Z

Numeric o through 9

"At" sign @

National Dollar sign $

(See Note) Pound sign #

Comma ,
Period

Slash /
Apostrophe

Left parenthesis (

Special Right parenthesis)

Asterisk *
Ampersand &

Plus sign +
Hyphen -
Equal sign =

Blank

Note: The system recognizes the following hexadecimal representations of the U.S. National
characters; @ as X'7C'; $ as X'SB'; and # as X'7B'. In.countries other than the U.S., the
U.S. National characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the $
character may'generate a X'4A'.

Figure 2-2. Character Sets

When coding any special characters, you must follow certain rules. The description and use of
these rules follows.

Coding Special Characters

You use special characters in the job control language to:

• Delimit parameters (the comma).

• Delimit fields (the blank).

• Perform syntactical functions. (For example, the appearance of && as the first two
characters following DSNAME = tells the system that a temporary data set name follows.)

Sometimes you can code a special character that does not satisfy one of the above uses of
special characters. In most of these cases, indicate that you are using special characters by
enclosing the item that contains the special characters in apostrophes, for example,

2-10 MVS JCL

ACCT = '123 + 456'. If one of the special characters is an apostrophe, you must code two
consecutive apostrophes in its place, for example, 'O"NEILL'.

The following list contains those parameters that can have special characters as part of their
variable information, and indicates when you do not have to code the apostrophes. Where
applicable, this information is repeated for each parameter in "Part 4. Reference to Job
Control Statements and Parameters."

• The accounting information on the JOB statement. The account number and additional
accounting information can contain hyphens without being enclosed in apostrophes. For
example:

IIJOBD JOB D58-D04

• The programmer's name on the JOB statement. The programmer's name can contain
periods and/or hyphens without being enclosed in apostrophes.

IIJOBN JOB
IIJOBX JOB
IIJOBC JOB

,P.F.M,CLASS= .. .
,S.M-TU,CLASS= .. .
,M-T,CLASS= ...

However, because a comma cannot immediately follow a period, the following is invalid:

IIJOBY JOB ,LEIGH.,TYPRUN= ...

• The checkidfield in the RESTART parameter on the JOB statement can contain an
asterisk. For example:

IIJOBZ JOB A709I,NAT,RESTART=*

• The ACCT parameter on the EXEC statement. The ACCT parameter can contain hyphens
and plus zero (+0, an overpunch) without being enclosed in apostrophes. For example:

IISTEPI EXEC
IISTEP2 EXEC

PRINT,ACCT=D58-LOC
PGM=PUB,ACCT=D57+0

• The P ARM parameter on the EXEC statement may contain an ampersand for symbolic
param~ters. When coding the ampersand for symbolic parameters, you need not code an
apostrophe. F or example:

IISTEPX EXEC MYPROC,PARM=&UNIT

• The DSNAME parameter on the DD statement.

You can code hyphens in the DSNAME parameter without enclosing it in apostrophes.
F or example:

II DD DSN=NAT-SMT, ...

You can code periods in a qualified data set name without enclosing it in apostrophes.
The use of periods within the data set name qualifies the DSNAME and eliminates the
need to enclose it in apostrophes. For example:

II DD DSN=BPT. DATA. GROUP

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2~ 11

However, the following combinations are invalid when you do not enclose the
parameters within apostrophes.

A period immediately after a left parenthesis or immediately before a right
parenthesis, for exampl~:'

I I DD DSN=(.ABC)
II DD, DSN={ABC~)

A period immediately followed by a comma, -for example:

II DD DSN=P.D.S.,

You can code a plus or minus (hyphen) sign to identify a generation of a generation
data group in the DSNAME parameter without enclosing it in apostrophes. For
example:

II DD DSN=PAYROLL{+l)

You can code ampersands as the ,first two characters when defining a temporary data
set in the DSNAME parameter without enclosing them in apostrophes.

II DD DSN=&&ELM

You can code parentheses in the DSNAME parameter when defining a member of a
partitioned data set, a generation of a generation data group, or an area of an indexed
sequential data set. The parentheses that enclose the member name, generation
number, or area name do not have to be enclosed in apostrophes. For example:

II DD DSN=PDS(MEM1)

• The volume serial number of the<VOLUME parameter can contain hyphens without being
enclosed in apostrophes. For example:

II DD VOL=SER=PUBS-RD

• Subsystem-defined parameters in the SUBSYS DD parameter can contain special characters
without being enclosed in apostrophes.

• The device type subparameter of the UNIT parameter on the DO statement can contain
hyphens without being enclosed in apostrophes ..

II DD UNIT=3330-1

Backward References

Many parameters in job control statements allow you to make use of the backward reference to
fill in information. The backward reference lets you copy previously coded information or refer
to DD statements that appear earlier in your job. Most backward references are coded as
* .stepname.ddname, where stepname is the' name of an earlier step that contains the DD
statement to which ddname is referring. The step you name must contain the DD statement to
which you are referring.

For example:

IIREFBAKl
IlsTEPl
IIPOKDD

IISTEP2
II

JOB
EXEC
DD

EXEC
DD

DSN=D58.POK.PUBSOl

DSN=*.STEP1.POKDD

If the DD statement appears earlier in the same step as the backward reference, code the
backward reference as *.ddname. The 00 statement to which you are referring must precede
the backward reference. '

For example:

IIREFBAK2
IlsTEP
IIPUBSDD

II

JOB
EXEC
DD

DD

DSN=D04.POK.PUBS04

DSN=*.PUBSDD

Do not make back~ard references to a 00 statement that contains a SYSOUT parameter.

You can also refer to a DD statemen.t that is contained in a cataloged or in-stream procedure
step by coding * . stepname.procstepname.ddname.

You must:

• Code an asterisk (*) indicating to the system that this is a backward reference.

• Code the name of the step in your job,that invokes the procedure.

• Code the name of the procedure step that contains the DD statement to which you are
referring.

• Code the name of the DO statement to which you are referring.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2; 13

The cataloged procedure PUBS contains:

IISPELL EXEC
4

IIWRITE DD
5

Your job contains:

IIREFBAK3 JOB
IISTEPCALL EXEC

3

IIWKSTEP EXEC

II DD

PROC=PUBS
1

DSN=*.STEPCALL.SPELL.WRITE
2 3 4 5

1. Step STEPCALL invokes the cataloged procedure named PUBS.

Later in your job, you wish to make a backward reference to a nn statement in the cataloged
procedure PUBS.

2. The asterisk (*.) indicates to the system that this is a backward reference.

3. STEPCALL is the name of the previous step in your job that invoked the cataloged
procedure that contains the nn statement to which you want to refer.

4. SPELL is the name of the step within the cataloged procedure that contains the nn
statement to which you want to refer.

5. WRITE is the name of the nn statement in the cataloged procedure to which you want to
refer.

2-14 MVS JCL

Symbolic Parameters

In order to be modified easily, cataloged and in-stream procedures can contain symbolic
parameters. A symbolic parameter is a symbol preceded by an ampersand that stands for a
parameter, a subparameter, or a value. In the following procedure step, the symbolic
parameters are underlined:

//STEP1
//DD1
//DD2

EXEC PGM=UPDATE,ACCT=(PGMG,&DEPT)
DD DSNAME=INIT,UNIT=&DEVICE,SPACE=(CYL,(&SPACE,10))
DD DSNAME=CHNG,UNIT=3400-6,DCB=BLKSIZE=&LENGTH

When this procedure is executed, every symbolic parameter must either be assigned a value or
nullified on the EXEC statement calling the procedure; the changes are in effect only for the
current execution of the procedure. Therefore, without being permanently changed, the
procedure can be modified each time it is executed. Details on how to assign values to or
nullify symbolic parameters are included under "Assigning Values to and Nullifying Symbolic
Parameters. ,;. How to include symbolic para~eters when writing a cataloged or in-stream
procedure is described in the next section, "Defining Symbolic Parameters When Writing a
Procedure. "

Defining Symbolic Parameters When Writing a Procedure

Any parameter, subparameter, or value in a procedure that can vary each time the procedure is
called is a good candidate for definition as a symbolic parameter. For example, if different
values can be passed toa processing program by means of the PARM parameter on one of the
EXEC statements, you could define the PARM field as one or more symbolic parameters, for
example,

PARM=&ALLVALS
or
PARM=&DECK&CODE

The symbolic parameter itself is one to. seven alphanumeric and national (#,@,$) characters
preceded by a single ampersand. The first character must be alphabetic or national. Since a
single ampersand defines a symbolic parameter, you code double ampersands to indicate to the
system that you are not defining a symbolic parameter. For example, if you want to pass
543&LEV to a processing program by means of the PAR~i parameter, you must code
P ARM = '543&&LEV'. The system treats the double ampersand as if a single ampersand had
been coded, and only one ampersand appears in the results.

If you enclose a symbolic parameter with apostrophes, a symbolic parameter not enclosed in
apostrophes must precede the one enclosed in apostrophes for correct substitution to occur.

Keyword pa.rameters that you may code on the EXEC statement (such as ACCT, COND, and
PARM) cannot be used as the name of a symbolic parameter. Also, you cannot use EXEC
statement keyword parameters to define symbolic parameters in JCL procedures that you intend
to start from the console using the START command.

For example, you cannot code ®ION = 200K or REGION = ®ION on the EXEC
statement, but you can code REGION = &SIZE.

The definitions used to signify symbolic parameters should be consistent in all the cataloged
and in-stream procedures at an installation. For example, every time the programmer is to
assign his department number to·a symbolic parameter, no matter which procedure he is

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-115

calling, the symbolic parameter could be defined as &DEPT. In different procedures, you could
code ACCT=(43877,&DEPT) and DSNAME= LIBRARY.&DEPT.TALLY. The programmer
would assign his department number to the symbolic parameter wherever that symbolic
parameter appears in a procedure.

The same symbolic parameter can appear more than once in a procedure, as long as the value
assigned to the symbolic parameter·is a constant in the procedure. Therefore, you could use
&DEPT more than once in a procedure, if the department number to be assigned is the same in
each use. But if you have two DD statements and include a symbolic parameter for the
primary quantity of the space request on each DD statement, you would not want to use the
same symbolic parameter, since the requests for primary quantity could be different for the two
data sets.

Only one value can· be assigned to each symbolic parameter used in a procedure; if you assign
more than one value to a symbolic parameter, only the first value is used and that value is
substituted wherever the symbolic parameter occurs.

Assigning Default Values to Symbolic Parameters

You can assign default values to the symbolic parameters coded in the proct(,dure on the PROC
statement. The PROC statement must always appear as the first statement in an in-stream
procedure; the PROC statement must be coded as the first statement in a cataloged procedure
only if you want to assign defaults. Generally, you should assign defaults to every symbolic
parameter in a procedure to limit the amount of coding necessary each time the procedure is
called. For details, see the next section, "Assigning Values to and Nullifying Symbolic
Parameters. "

You can use symbolic parameters on nn statements that you are adding to a procedure.
However, if you are adding a DD statement to' the last step of a procedure - do not use
symbolic parameters that are not used elsewhere in the procedure.

Assigning Values to and Nullifying Symbolic Parameters

When a procedure containing symbolic parameters is used, each symbolic parameter must either
be assigned a value or nullified. If the symbolic parameter is not assigned a value or nullified,
the symbolic parameter remains in the JCL for that job.

Symbolic parameters are assigned values or nullified in one of two ways:

1. The programmer who uses the procedure codes the symbolic parameter on the EXEC
statement that calls the procedure, either assigning it a value or nullifying it. Symbolic
parameters specified on the EXEC statement calling the procedure must appear in the
procedure.

2. The programmer who writes the procedure assigns a default value to or nullifies the
symbolic parameter on the PROC statement, which must be the first statement in an
in-stream procedure and can be the first statement in a cataloged procedure.

The default assigned to a symbolic parameter on a PROC statement is overridden when that
symbolic parameter is assigned a value or nullified on the EXEC statement that calls the
procedure.

2-16 MVS JCL

Default val,ues are not necessarily assigned to symbolic parameters in a procedure. Before using
any procedure, find out what symbolic parameters are used, the meaning of each symbolic
parameter, and what default, if any, is assigned. The PROC statement is optional in cataloged
procedures; if the PROC statement is not included, no default values can be assigned to
symbolic parameters in the procedure.

You need not code the symbolic parameters in any specific order when you assign values to or
nullify them.

Assigning a Value to a Symbolic Parameter

To assign a value to symbolic parameter, you code:

symbolic parameter=value

Omit the ampersand that precedes the symbolic parameter in the procedure. For example, if
the symbolic parameter &NUMBER appears on a DD statement in the procedure, code
NUMBER = value on the PROC statement (if you are writing the procedure and assigning
defaults) or on the EXEC statement that calls the procedure (if you are using the procedure and
want this value to be in effect only for the current execution of the procedure).

There are some rules for assigning values to symbolic parameters:

• The length of the value assigned is limited as follows:

The value cannot be continued on to another statement.

The length of the value you assign, combined with the length of all following
parameters and delimiters in the operand field of a single statement, cannot exceed 120
characters. For example:

//INIT EXEC PGM=MYPROG,PARM='O

The length of the value assigned to &X must be less than 103 characters because the
length of the remainder of the operand field ",TIME=10,REGION=5" is 17
characters.

Note: The PARM keyword on the EXEC statement is given special consideration when
processing symbolic parameters. Any symbolic parameter appearing in a P ARM keyword
operand that is enclosed in apostrophes is replaced by its assigned value. (&X in the
example above is replaced.) For any other use of a symbolic parameter in an operand
enclosed in apostrophes, the symbolic parameter is not replaced. For example,

//DDX DD DSN='&PRM' ,DISP=(,SHR)

&PRM is not replaced by its assigned value.

If the, character string that includes the ampersand is not enclosed in apostrophes, the
ampersand causes a JCL error.

• If the value contains special characters, enclose the value in apostrophes (the enclosing
apostrophes are not considered part of the value). If the special characters include
apostrophes, each apostrophe must be shown as two consecutive apostrophes.

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-17

• If more than one value is assigned to a symbolicparametet as a default on the PROC
statement, only the first value encountered is used; likewise, if mote than one value is
assigned to a symbolic parameter on an EXEC statement, only the 'first value encountered
is used.

• If a symbolic parameter is a positional parameter followed by other parameters in the
statement, it should be followed in the procedure by a period instead of a comma; for
example:

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=OLD

• Do not use a value of literal blanks, that is, VALUE = , ',to nullify a symbolic parameter.

Symbolic parameters that are keyword subparameters should appear in the procedure
without a preceding comma; for example:

VOLUME=SER=(111111&SERNO)

This is necessary so that, if the symbolic parameter is nullified, a leading or trailing comma
will not cause a JCL syntax error. (For a more complete discussion of this, see "Caution
Concerning Leading and Trailing Commas.")

In these cases, you must include a comma when you assign a value to the symbolic
parameter; that is:

POSPARM= , DUMMY, ,
SERNO=' ,222222'

Since the comma is a special character, the value must then be enclosed in apostrophes.

• Two consecutive periods (..) indicate that a p~rameter consists of a symbolic parameter
followed by other information; only part of the field is variable. For example,
&DEPT .. MACS is such a parameter. If &DEPT=D58, then the actual value is
D58.MACS.

Nullifying a Symbolic Parameter

To nullify a symbolic parameter, code:

symbolic parameter=

Omit the ampersand that precedes the symbolic parameter in the procedure and do not follow
the' equal sign with a value.

For example, a DD statement in an in-stream procedure named TIMES is:

//DD8 DD UNIT=3211,ueS=&UeSINFO

If you are writing the procedure and want to nullify &UCSINFO as a default on the PROC
statement, code:

'j/TIMES PRoe ueSINFO=

2-18 MVSJCL

If you are calling the procedure, andno default was assigned to &UCSINFO, or if &UCSINFO
was assigned a value on the PROC statement, nullify the parameter on the EXEC statement
that calls the procedure by coding:

//CALL EXEC TIMES,UCSINFO=

If a symbolic parameter appears as the last parameter on a statement that is being continued, it
cannot be nullified and must be assigned a value. An attempt to nullify such a parameter
results in a JCL error.

Caution Concerning Leadin~ and Trailing Commas

All symbolic parameters must be assigned values or nullified before the procedure is executed.
(When you write a procedure, you can assign default values to the symbolic parameters, or the
programmer can assign values when he calls the procedure; for details, see "Assigning Values to
and Nullifying Symbolic Parameters.") When a symbolic parameter is nullified, a delimiter,
such as a leading or trailing comma, is not automatically removed. Only when the symbolic
parameter is a positional subparameter followed by other subparameters should the comma
remain. In other cases, the remaining comma will cause a. syntax error.

For example, you code for a unit request:

UNIT=(3350,&MORE,DEFER)

If &MORE is nullified, the comma before it must remain, since the unit count subparameter is
positional and a comma must indicate its absence if other subparameters follow. When
&MORE is nullified, the parameter will appear as:

UNIT=(3350"DEFER)

However, if you code:

VOLUME=SER=(llllll,&SERNO)

and &SERNO is nullified, a leading comma will remain and cause a JCL syntax error. If a
symbolic parameter is a positional parameter followed by other parameters in the statement,
such as

//DEFINE DD &POSPARM,DSN=ATLAS,DISP=OLD

the comma will remain at the beginning of the operand field if &POSP ARM is nullified and
again cause a syntax error.

In these cases, do not code the comma. When a symbolic parameter follows information that
does not vary, such as in VOLUME = SER=(l 11111,&SERNO), you do not have to code any
delimiter. The system recognizes the symbolic parameter when it encounters the single
ampersand. For this example, you would code:

VOLUME=SER=(111111&SERNO)

When a value is assigned to the symbolic parameter, a comma must be included in the value,
that is SERNO=',222222'. (Because the comma is a special character, you must enclose the
entire value within single apostrophes.)

When a syml?olic parameter precedes information that does not vary, a period may be required
after the symbolic parameter to distinguish the end of the symbolic parameter from the

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-19

beginning of the information that does not vary. A peri0d is required after the symbolic
parameter when the character following the symbolic parameter is:

• An alphabetic, numeric, or national (#,@,$) character

• A period

The system recognizes the period as a delimiter and the period does not appear in the procedure
after the symbolic parameter is assigned a value of-nullified. (A period will appear after the
value when two consecutive periods are coded.)

Therefore, place a period after a symbolic parameter that stands for a positional parameter
followed by other parameters in the statement:

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=OLD

If &POSPARM is nullified, the statement appears as:

//DEFINE DD DSN=ATLAS,DISP=OLD

When assigning a value to.&POSPARM, you must include a comma:

POSPARM='DUMMY, ,

These rules are in effect whenever you· are concatenating a symbolic parameter with information
that does not vary. In the following examples, a symbolic parameter is placed after information
that does not vary.

In these examples, the system recognizes the symbolic parameter when it encounters the &:

• DSNAME=LIBRARY(&MEMBER)
• DSNAME=USERLIB.&LEVEL

In the following examples, a symbolic parameter is placed before information that does not
vary:

• PARM =' &OPTION + 15'. &OPTION is not followed by period because of the +.

• DSNAME = &QUAL.246. The period is required because a numeric character follows the
symbolic parameter.

• DSNAME= &DOCNO .. TXT. The period is required because a period follows the
symbolic parameter. A single period will appear in the results.

You can also define two or more symbolic parameters in succession without including a
comma, for example, PARM = &DECK&CODE. If you want a comma in the results, you
must include a comma in the value assigned to the symbolic parameter.

12 ... 20 'MVS JCL

Example of an In-Stream Procedure Containing Symbolic Parameters

The following example illustrates the execution of an in-stream procedure to test symbolic
parameters prior to placing the procedure in a procedure library.

The in-stream procedure named TESTPROC contains the following statements:

IITESTPROC
II

PROC A=IMB406,B=ABLE,C=3330,D=WXYZ1,
E=OLD,F=TRK,G='10,10,1'

IISTEP
11001
II
II

EXEC PGM=&A
DO DSN=&B,UNIT=&C,VOL=SER=&D,DISP=&E,

SPACE=(&F, (&G)
PEND

To execute the above in-stream procedure with certain overrides (change DSN to BAKER,
PGM to IEFBRl4, DISP to (NEW, KEEP) and leave the remainder of the parameters the
same), code the following statements:

IISTEPX EXEC TESTPROC,A=IEFBR14,B=BAKER,E=' (NEW,KEEP)'

After the symbolic substitution, the statements will look like this:

IISTEP
11001
II

EXEC PGM=IEFBR14
DO DSN=BAKER,UNIT=3330,VOL=SER=WXYZ1,

OISP=(NEW,KEEP),SPACE=(TRK,(10,10,1»)

To execute the above in-stream procedure and change DOl to resemble a temporary scratch
space, code the following statement:

IISTEPX EXEC TESTPROC,A=IEFBR14,B=,C=3350,D=,E=

After the symbolic substitution, the statements will look like this:

IISTEP
11001

EXEC PGM=IEFBR14
OD OSN=,UNIT=3350,VOL=SER=,DISP=,SPACE=(TRK,(10,10,1»

Chapter 2. Coding Conventions for JCL, JES2, and JES3 Statements 2-21

2-22 MVSJCL

Part 2. Guide to Job and Step Control

The operating system provides some resources for all the programs in a job. It provides other
resources for a particular job step, that is, a particular program in a job.

You code parameters on a JOB statement to ask the operating system for resources for your
entire job. There are also some JES control statements that you can use to request resources
for the entire job. The parameters and control statements for resources for the entire job are
discussed in Chapter 3, "Guide to Job Control."

You code parameters on an EXEC statement to ask the operating system for resources for a
particular job step. The parameters for resources for a particular step are discussed in Chapter
4, "Guide to Step Control."

Some parameters that you can code on a JOB statement you can also code on an EXEC
statement. Because these parameters have a relationship 'to each other when you code them on
both the JOB and EXEC statements, they are discussed together in Chapter 5, "Guide to Job
and Step Control."

Part 2. Guide to Job and Step Control

Chapter 3. Guide to Job Control

Normally the JOB statement is the first JCL statement of your job. Certain JES control
statements can precede the JOB statements; these are discussed with the JOB statement
parameter to which they relate. The JOB statement must contain a valid jobname in its name
field and the word JOB in its operation field. The format of the JOB statement is:

//jobname JOB positional-parameters[,keyword-parameter] ... comments

If you do not .code any parameters on the JOB statement, you cannot code comments on the
JOB statement.

The JOB statement parameters and JES control statements allow you to specify information in
the following areas:

• Installation management information.
• Networking.
• Operating system messages.
• TSO (time sharing option).
• Remote job processing.
• Special job processing.
• JES3 spool partitioning.
• RACF-protected data sets.,

In this chapter, each area is discussed; the discussions center around the JCL statements that
you can code to direct the system's handling of your job. Where a JES2 or JES3 control
statement also affects an area, the appropriate JES control statement and/or parameter is also
discussed.

Naming 'the Job

Your job must have a name. The job scheduler component of the operating system requires a
jobname.

Code the jobname in the name field of the JOB statement. It can range from one to eight
characters in length and can contain any alphanumeric characters. However, the first character
of the name must be an alphabetic or national character and must begin in column 3.

Chapter 3. Guide to Job Control 3-1

The following are examples of jobnames in JOB statements:

//MYJOB JOB
//MCS167 JOB
//R#123 JOB
//@5AB JOB

Installation Management Information

You can specify two types of installation 'management information in the JOB statement: job
accounting information and programmer's name. These are positional parameters: You must
code them before coding any other parameters on a JOB statement. The first positional
parameter is for job accounting information; the second positional parameter is for the
programmer's name:

//jobname JOB account,programmer

If you omit the job accounting information, you must indicate its absence with a comma:

//jobname JOB ,programmer

If you omit both the job accounting information and the programmer's name and you specify
other parameters (such as MSGLEVEL), you do not need to indicate their absence with
commas:

//jobname JOB MSGLEVEL= ...

The installation can make mandatory the job accounting information or programmer's name or
both. That is, your job will fail if you do not . specify them on your JOB statement. Your
manager or supervisor should inform you of this requirement.

Job Accounting Information Parameter

The first positional parameter of the JOB statement allows you to supply job accounting
information. It has the following format:

([account-number] [,accounting-information] ...)

Replace the term "account-number" with the account number to which you want to charge the
job; replace the term "accounting-information" with other items your installation's accounting
routines require. Your manager or supervisor should tell you exactly how to code the job
accounting information parameter. The following are -general rules for coding accounting
information.

• The account number and each item of accounting information. are subparameters; you
must separate them with a comma.

• You can enclose the job accounting information with either parentheses or apostrophes.

J-2 . MVSJCL

For example:

//JOBOZ JOB (12A75,DEPTD58,920)
or
//JOBOX JOB '12A75,DEPTD58,920'

If you use apostrophes, the system considers all accounting information within the
apostrophes as one field.

• If a subparameter contains special characters (except hyphens), you must code it as follows:

Enclose that subparameter in apostrophes and all the job accounting information in
parentheses. For example:

//JOBON JOB (12A75,'DEPT/D58' ,920)

Enclose all the job accounting information in apostrophes. For example:

//JOBOK JOB '12A75,DEPT/D58,920'

• If the special character is an apostrophe, you must code two consecutive apostrophes. For
example, code DEPT'D58 as:

//JOBGO JOB (12A75,'DEPT' 'D58' ,920)
or
//JOBDO JOB '12A75,DEPT' 'D58,920'

• If your job accounting information consists of only an account number and the number
does not contain special characters, you need not enclose the number in parentheses or
apostrophes., If the account number contains special characters, enclose it in apostrophes.
F or example:

//JOBOl
//JOB02
//JOB03

JOB 12A75
JOB' '12A. 75'
JOB ' 12A' , 75 '

• If your job accounting information does not include an account number, you must indicate
its absence by coding a ~omma preceding the additional accounting information. For
example: .

//JOB04 JOB
//JOB05 JOB
//JOB06 JOB

(,DEPTD58,920)
(,'DEPT/D58' ,920)
, ,DEPT/D58, 920'

• Job accounting information can consist of up to 142 characters, including the commas that
separate the subparameters. If your installation's parameter is long, you will have to
continue it onto another statement. Keep the following in mind when you continue it:

• Enclose the job accounting information in parentheses.

• Do not continue a subparameter enclosed in apostrophes. Break for the continuation
before or after such a subparameter.

• Follow the continuation conventions outlined in "Continuing Control Statements" on
page 2-6. The following example shows job accounting information continued onto
another statement.

//YOURJOB JOB
//

(2G29,'DEPT/D58' ,
920)

Chapter 3. Guide to Job Control 3.-3.

JES2 Accounting Information

JES2 systems assume that the accounting informationparameter.contains information that you
can, alternatively, specify on the JES2 /*JOBPARM statement. Specify the accounting
information in the following format:

(pano ,room, time, lines, card, forms, copies', log, linect)

JES2 will interpret and use the subparameters of this accounting information as explained in
"Accounting Information Parameter" on page 10-3.

However, your installation might initialize JES2 to ignore accounting field subparameters that
are illegal by JES2 standards. If your installation has initialized JES2 to terminate a job that
has an accounting field subparameter that is illegal by JES2 standards, then you must code the
first two subparameters (pano and room).

For a discussion of the JES2 scan of the accounting information parameter, refer to SPL:
JES2 Initialization and Tuning.

Network Accounting Information

Both job entry subsystems allow you to transmit a job to some other node in a network.
Therefore, both JES2 and JES3 provide a means .of specifying <l:n account number that is
available to all nodes in a network.

JES2 NETACCT Control Statement

The JES2 NET ACCT statement is an account number that JES2 makes available to all nodes
in the JES2 network. The format of the JES2 NET ACCT statement is:

I /*NETACCT network-account-number

The "network-account-number" is from 1 to 8 alphanumeric characters that represent this job's
accounting throughout the JES2 network. The JES2NETACCT statement follows the JOB
statement.

//JOBAB JOB
/*NETACCT NETNUM9

For complete coding information on the JES2 NETACCT statement,see "/*NETACCT
Statement" on page 16-10.

3-4 MVS JCL

JES3 NETACCT Control Statement

The JES3 NET ACCT statement allows you to specify a variety of accounting information that
JES3 makes available to other nodes in the JES3 network. The format of the JES3 NET ACCT
statement is:

/ /*NETACCT parameter [,parameter] ...

The parameters are:

PNAME=programmer's-name
ACCT=nnnnnnnn
BLDG=nnnnnnnn
DEPT=nnnnnnnn
ROOM=nnnnnnnn
USERID=nnnnnnnn

The JES3 NETACCT statement follows the JOB statement. For example:

//JOBAC JOB
//*NETACCT PNAME=BETH,ACCT=D57706

For complete coding information on the JES3 NETACCT statement, see "jj*NETACCT
Statement" on page 17-40.

Programmer Information: The programmer-name parameter

The second positional parameter on the JOB statement indicates your name or identification to
your install~tion's accounting routines. This parameter must follow the job accounting
information. The following are rules for coding the programmer's name:

• The programmer's name must not exceed 20 characters, including all special characters.

• Enclose the name in apostrophes if it contains:

Special characters, other thim hyphens. Blanks are special characters.
Leading or imbedded periods, including a period at the end of the name.

F or example:

//JOBAl JOB
//JOBA2 JOB
//JOBA3 JOB
//JOBA6 JOB

,T.JONES
, 'T JONES'
,'SP/4 T.JONES'
,'L.NORRIS.'

• If the special character is an apostrophe, you must code it as two consecutive apostrophes.
For example, specify the names O'Neill and J.O'Brien as:

//JOBA4 JOB
//JOBA5 JOB

,'O"NEILL'
, 'J. 0 I 'BRIEN I

• If you do not code the job accounting information, you must indicate its absence by a
comma preceding the programmer's name. F or example:

//MCS JOB ,LORRAYN

Chapter 3. Guide to Job Control 3~5

• If you do not intend to code the programmer's name parameter, you do not have to
indicate its absence with a comma. For example:

//JOBA8 JOB A709P,CLASS=A

Networking

JES2 networking lets you:

• Enter a job on one system and execute it on another system.

• Send output from one system to a remote device or an output device on another system.

• From a JES2 node, send data to nodes to which the sending node does not have a direct
connection via an intermediate node.

For further information, see JES2 Initialization and Tuning.

JES3 networking lets you:,

• From one JES3 node, send jobs to another node for execution.

• From a JES3 node, send output to other nodes for processing.

• From a JES3 node, send data to nodes to which the sending node does not have a direct
connection via an intermediate node.

For further information, see JES3 SPL: Initialization and Tuning.

Ask the system programmers at you~'installation and at other node(s) for the specific
information required to properly prepare jobs for execution or output processing at the node.

Factors you should consider are:

• The content and format of the JOB statement: The receiving node might have different
parameter requirements than the submitting node.

• The job entry subsystem in use at the receiving node: The receiving node, if using a different
job entry subsystem, will have different control statement requirements.

• The content of the procedure library (PROCLIB): The procedure library might not be the
same at the receiving node and at the submitting node.

• Data set identification: To use data sets at the receiving node, you need to know their
names and the data set values to code in your JCL parameters. '

• Installation specific unit names in use at the receiving node might include devices different
from the submitting node.

• SYSOUT classes might have different meanings at the receiving node than at the submitting
node.

3-6 MVS JCL

• Execution classes might have different meanings at the receiving node than at the
submitting node.

Routing a Job in a Network (JES2)

In a JES2 system, jobs can be routed in two ways:

• An operator can issue a JES2 command through a console or input reader. Refer to J ES2
Commands.

• JES2 control statements can be specified within the JCL.

Execution routing through JCL may be accomplished with either of two control statements:

• The ROUTE statement with the XEQ parameter. Specifying the XEQ option with the
name of a node sends the job to that node for execution. The output returns to the node of
origin, unless you code the PRINT or PUNCH option on another ROUTE statement.

• The XEQ statement with the name of a node. This statement sends the job to that node
for execution. The output returns to the node of origin, unless you code the PRINT or
PUNCH option on a ROUTE statement.

The job may be entered at an RJE terminal, a TSO terminal, an input reader, or an internal
reader before being routed to some other node for execution. However, neither a started task,
such as a task begun by an operator START command, nor a TSO logon can be executed at
any node other than the node of entry.

Transmitting Data in a Network (JES2)

By using the JES2 XMIT control statement you can submit and route a non-JES2 job or data
through a JES2 node to a non-JES2 node (for example, a VM node or JES3 node) for
processing. You can also use the XMIT statement to send jobs and data from a JES2 node to
another JES2 node. When you use this control statement, JES2 will not check the information
between the XMIT statement and the delimiter for JES2 syntax.

Controlling Output Destination in a JES2 Network

JES2 allows you to submit jobs to a central computing center from a work station anywhere in
the network; you can route output to any node or work station in the network.

Unless overridden by the system programmer or operator, the default output location is the
submitting location, either a remote work station or the central site (destination of LOCAL).
To receive the. output at the submitting location, simply assign output data sets to any output
class (with the SYSOUT parameter or the CLASS parameter on the OUTPUT JCL statement)
and assign messages from your job to an output class (with the MSGCLASS parameter on a
JOB statement or on theJESDS parameter, and the CLASS parameter on the OUTPUT JCL

Chapter 3. Guide to Job Control 3-7

statement). You can request atremote stations, most of the same JES2 options for writing data
sets that you can request when submitting the job at the central computing center. You can
request that:

• A data set be held until the dperator requests that it be printed.

• A special output form be used by specifyillg a Corm-name in the SYSOUT parameter. You
can also request special forms using the JES2 j*OUTPUT statement or the OUTPUT JCL
statement.

• Multiple copies of the data set be produced.

Whether at a remote station or at the central computing center, you can also request that a
data set be routed to another destination. With JCL and JES2 control statements, you have the
following ways of routing the output data set:

• JES2 ROUTE Statement (with PRINT and PUNCH options) - Allows the user to specify
the destination of jobs or output for any node or any remote station. All output that has
no other specific assignment is directed to the destination specified in the JES2 ROUTE
statement.

Note that if you send a job to execute at a remote node and you have a ROUTE PRINT"
RMTnnn statement in the job, JES2 returns the output to RMTnnn at the node of origin.
To have JES2 print the output at RMTnnnat the executing node, use the DEST parameter
on a JES2 OUTPUT control statement, OUTPUT JCL statement, or sysout DD statement
with the form DEST=NnnnRmmm.

• DD SYSOUT Statement - Allows a specific data set assignment by the DEST parameter
on a DD statement containing a SYSOUT parameter, thus routing that data set to a
particular destination.

• OUTPUT JCL Statement - Permits another way of specifying a DEST parameter for a
system output data set.

• SYSOUT DD Parameter - Allows the user to specify a code name that points to a JES2
OUTPUT statement, which in tum might contain a DEST parameter identifying up to four
actual destinations. This method allows the user to send more than one (but not necessarily
all) data sets to the same place without coding DEST on each SYSOUT statement. If the
destination should change, only the JES2 OUTPUT statement need be altered.

• Default Output Destination - Defined implicitly: when the job enters the job entry
network, the default destination is determined by the device upon which the job entered the
system.

If you code a destination on the SYSOUT DD statement, the JES2 OUTPUT statement, or the
OUTPUT JCL statement, it will override the destination in the ROUTE statement. Work
stations are identified bya destination identification established by the system programmer.
The DEST parameter causesJES2 to route output to local printers or punches or to any remote
station, or any node.

Example of Obtaining Output (JES~)

This example shows the use of JES2 and JCL statements to obtain output.

I*PRIORITY 5
IIOUTJOB JOB BAKER,PERFORM=lOO,MSGCLASS=J
I*JOBPARM COPIES=2,LINECT=20,ROOM=233,FORMS=GRNl
I*OUTPUT PSET OEST=PRINT.ER8, FCB=STD3 , FORMS=2PRT ,UCS=TN
I*SETUP SCHLIB
IISTEP1 EXEC PGM=TESTSYSO
IIOUT1 OUTPUT JESOS=ALL
11001 00 OSN=OATA, UNIT=3350 ,'VOL=SER=SCHLIB,
II OISP=(OLO,KEEP) ,SPACE=(TRK,(5,2))
11002 00 OSN=&&TEMP,UNIT=3350,OISP=(NEW,OELETE),
II SPACE=(TRK,(lO,5))
11003 00 SYSOUT=(A"PSET)
11004 00 SYSOUT=(A"GRPH)
11005 00 SYSOUT=L,OUTPUT=*.OUT1,OEST=HOQ

1. The job will be selected at priority levelS.:

2. The job will run in performance group 100;,.the meaning of 100 is defined by the
installation. All system messages are to be written to output class J.

3. The JOBPARM statement indicates that:

a. Two copies of the entire job-related output will be printed.

b. No more than 20 lines per page will be printed (LINECT = 20). You can override this
LINECT parameter by coding the LINECT parameter on the OUTPUT JCL
statement.

c. The programmer's room number is 233. This appears on the separator page and is
used for distributing output.

d. Forms name GRNI is the name of the form to be used by all data sets unless a specific
form is defined on a DD~ JES2 I*OUTPUT, or JCL OUTPUT statement.

4. The /*OUTPUT statement indicates that:

a. PSET is the code that, when indicated on a SYSOUT DD statement, causes all
parameters on the I*OUTPUT . statement to override default parameters, except those
coded on the OUTPUT JCL statement(s). For further information, see "Processing
System Output Data Sets Using the OUTPUT JCL Statement" on page 7-44.

b. The destination for the output is PRINTER8. PRINTER8 does not necessarily have to
be defined as a printer, it can be defined as any output device.

c. If the printer has the formscontrotbuffer feature, STD3 must be the name of a
member of SYS1.IMAGELIB.:STD3 defines the special forms control buffer image to
be used for processing any data set that has PSET coded in the SYSOUT parameter.

d. Forms name 2PRT is the name of the form JES2 uses for printing any data sets that
have PSET coded in the SYSOUT parameter (for example, DD3).

e. TN is the train or UCS used in output processing.

Chapter 3. Guide to Job ContrqI

5. The SETUP statement indicates that volume SCHLIB should be mounted before this job
begins processing.

6. SYSOUT data sets (except DD3 and DD4) are printed on the form called GRNI. The
DD4 SYSOUT data set is printed on the form called GRPH; the DD3 SYSOUT data set is
printed on the form called 2PRT because the code name subparameter of DD3 contains the
value PSET (referring to the /*OUTPUT statement).

7. The output data set and the accompanying system data sets from DD5 will be processed at
HDQ.

Note: For more examples of obtaining output using the OUTPUT JCL statement, see Chapter
14, "Coding the OUTPUT JCL Statement." and "OUTPUT Parameter" on page 12-103.

Routing a Job in a Network (JES3 Networking)

To prepare a job for execution at a remote node:

1. Code a JOB statement the same as the JOB statement you normally code to execute a job
at your installation.

2. Code a JES3 ROUTE XEQ statement. This statement specifies the node that is to execute
the job. It causes JES3 to divert the incoming job stream to a special input service
function. This special input service function transmits the data that follows the ROUTE
XEQ statement to the specified node.

Note: Without the ROUTE XEQ statement, the job will execute at the submitting node.

3. Code a second JOB statement that allows the remote job to execute at the node specified in
the ROUTE XEQ statement. Because procedures· vary between installations, the format of
this JOB statement might be different from the format you normally use at your
installation. For example, the accounting field of this JOB statement might not contain the
same parameters in the same format that you are accustomed to using.

• An error on the ROUTE XEQ statement might cause the second JOB statement to
signal the start of a job for local execution. To avoid this possibility, specify NJB in
the second JOB statement in place of JOB. NJB is changed to JOB by JES3 input
service prior to transmitting the job through the network.

Note: TSO users submitting jobs through a JES3 network must specify NJB in place of
JOB on the second JOB statement.

4. Code the remainder of the JCL statements for the job that is to execute at the remote node.

3-10 MVS JCL

Example of Routing a Job Through a JES3 Network

//REMOTE JOB
//*ROUTE XEQ
//EXAM NJB
//*MAIN
/*

058-2951
MSC
(OL01,2E44,12,8)

1. REMOTE is a valid JOB statement for the submitting JES3 location.

2. The ROUTE XEQ statement directs the following job to the remote node MSC.

3. EXAM is a valid JOB statement that allows the job to execute at the remote location,
MSC, specified on the ROUTE XEQ statement.

Note: TSO users submitting jobs through a JES3 network must specify NJB in place of
JOB on the second JOB statement.

Controlling Job Execution Node Using JES3 Networking

To control routing within the JES3 network, you specifically designate any jobs to be sent to
other nodes with a JES3 ROUTE XEQ control statement. A ROUTE XEQ statement
encountered after a local JOB statement causes JES3 to route the next job to the node specified
on the ROUTE XEQ control statement. A ROUTE XEQ control statement has the format:

//*ROUTE XEQ nodename[.vmguestid]

The nodename refers to an MVS JES3 system on a global processor. The node name cannot
refer to a local processor within a JES3 node. If the nodename specifies the node on which the
job was entered, the first JOB statement and the ROUTE XEQ statement will be flushed and
the job that follows will execute on the node of entry.

You can also specify an MVS JES2 system, a VSE POWER node, or a VM system in the
nodename. If a VM system, then specify a VM guest system id as a qualifier for the nodename.

Controlling Sysout Routing in a JES3 Network

You can route sysout data to other nodes in a JES3 network using one or more of the
following:

• The ORG parameter on the JES3 MAIN statement.
• The DEST parameter on the JES3 FORMAT statement.
• The DEST parameter on the OUTPUT JCL statement.

In addition, you can have sysout data processed by an external writer at the destination node
by specifying the EXTWTR parameter on the JES3 FORMAT control statement. See SP L:
Job Management for further information on external writers.

Chapter 3. Guide to Job Control 3-11

Controlling Output Destination Using JES3

JES3 allows you to submit jobs to a host processing center from a work station·and to route
output (submitted anywhere) to work stations.

When you submit a job from a local processor or a work station, the output is returned to the
place where it is submitted unless you code the ORG parameter on a MAIN statement, or you
specifically route the output.

JES3 offers most of the same options for writing data sets at remote stations that you can
request when submitting the job at the central computing center.

You can request that:

• A data set be held until the operator requests that it be printed.

• A special output form be used by specifying a form name on the sysout DD or the
OUTPUT JCL statement.

• Multiple copies of the data set be produced.

Whether at a remote station or at the host processing center, you can also request that a data
set be routed to another destination. To route an output data set to another destination, code
the identification of that destination in one of the following:

• the DEST parameter on the DDstatement defining the data set.
• the MAIN ORG statement.
• the DEST parameter on a JES3 FORMAT PR statement.
• theDEST parameter on a JES3 FORMAT PU statement.
• the DEST parameter on an OUTPUT JCL statement.

Work stations are identified by a destination identification that the system programmer
establishes. The DEST parameter on the DD statement, the JES3 FORMAT PR and PU
statements, and the OUTPUT JCL statement routes individual data sets to a remote destination
(work station), a local destination (central computing center), or a specific local device.

Remote Job Processing in JES3

Jobs can be submitted to JES3 for processing from remote work stations using remote job
processing (RJP). Any job submitted from a remote work station will, by default, have its
output (print and punch) returned to. the originating work station unless you have instructed
JES3 to do otherwise using JES3 FORMAT, MAINORG, or OUTPUT JCL statements. The
remote user has almost all the capabilities of the local JES3 user, except that he cannot use
column binary input and output or uniquely specify printer overflow specifications.

You can route a job's output to a remote destination using the DEST parameter on the DD
statement, the OUTPUT JCL statement, or the JES3 FORMAT statement. See "DEST
Parameter" on page 12-53, "DEST Parameter" on page 14-23, and "jj*FORMAT PR
Statement" on page 17-9.

Example of Obtaining Output (JES3)

This example shows some of the JES3 and JCL statements that can be used to obtain output.

IIOUTJOB JOB BAKER,PERFORM=lOO,MSGCLASS=J
II*FORMAT PR,DDNAME=,COPIES=2,FORMS=GRNl
II*FORMAT PR,DDNAME=DD3,DEST=PRINTER8,CARRIAGE=STD3,
II*FORMS=2PRT,TRAIN=TN
IISTEPl EXEC PGM=TESTSYSO
IIDDl DD DSN=DATA,UNIT=3350,VOL=SER=SCHLIB,
II DISP=(OLD,KEEP),SPACE=(TRK,(5,2»
IIDD2 DD DSN=&TEMP,UNIT=3350,DISP=(NEW,DELETE),
II SPACE=(TRK,(lO,5»
IIDD3 DD SYSOUT=(A)
IIDD4 DD SYSOUT=(A"GRPH)
IIDD5 DD SYSOUT=L

1. All system messages are to be written to output class J.

2. The first / /*FORMAT statement indicates that:

a. All print data sets (according to class) that do not have //*FORMAT statements will be
printed according to the parameters on this statement unless the output class defines
specific processing characteristics because DDNAME is coded without a name
(DDNAME = ,) and applies to all output data sets for the job.

b. JES3 uses the form named GRNI and prints two copies of all data sets unless a specific
form or number of copies is defined on a DD statement or for a class by the
installation.

3. The second //*FORMAT statement indicates that:

a. The destination for the output is a printer that has an installation-defined name of
PRINTER8.

b. If PRINTER8 has the forms control buffer feature, STD3 must be the name of a
member of SYS1.IMAGELIB. STD3 defines the special forms control buffer image or
carriage tape to be used for processing the job.

c. Forms name 2PRT is the name of the forms for DD3.

d. TN means text printing on a 1403, 3211, or 3203-5 printer.

Note: For examples of obtaining output using the OUTPUT JCL statement, see Chapter
14, "Coding the OUTPUT JCL Statement," and "OUTPUT Parameter" on page 12-103.

Chapter 3~ Guide to Job Control 3-13

Job Log

The system produces a job log, which is a record· of job-related information for the
programmer. It is a system output (sysout) data set written to the output listing for the job's
message class, which is specified by the MSGCLASS parameter on the JOB statement. The job
log can consist of:

• The JOB statement.

• Other JCL statements from the input stream and cataloged procedures.

• JCL messages.

• JES and operator messages about the job: the allocation of devices and volumes,
disposition of data sets, and termination of job ~teps and the job.

By coding the MSGLEVEL parameter on the JOB statement, you inform the system of what
statements and messages you want included in the job log. The notation used on the job log to
identify cataloged and in-stream procedure statements is described in Chapter 9, "Guide to
Cataloged and In-Stream Procedures" on page 9-1.

By coding the MSGCLASS parameter on the JOB statement, you assign the job log to an
output class. The system uses an installation-defined default if MSGCLASS is not coded.

By coding the NOLOG parameter on the JES2 JOBP ARM statement, you can control the
printing of the JES2 job log.

By coding the FETCH parameter on the JES3 MAIN statement, you can control whether JES3
routes or displays the fetch messages from the JES3 main device scheduler. However, JES3 still
sends the main device scheduler fetch messages to the JESMSG data set.

By coding the DDNAME parameter on the JES3 / /*FORMAT statement, you can control the
printing of messages that pertain to the output data set the system is processing.

You can also control the processing options of the system data sets by using the JESDS
keyword on the OUTPUT JCL statement. For further information, see "Managing the
System-Managed Data Sets: The JESDS Parameter" on page 7-49.

MSGLEVEL Parameter

The MSGLEVEL parameter on the JOB statement tells the operating system what message
information you want as output from your job. You can request the following output:

• The JOB statement

• All input JCL statements

3-14 MVS JCL

• All cataloged procedure statements for procedures invoked by the job's steps, and the
internal representation of procedure statements after symbolic parameter substitution

• Allocation and disposition (allocation/termination) messages.

The format of the MSGLEVEL parameter is:

MSGLEVEL=([statements] [,messages])

Replace "statements" with one of the following:

o
only print the JOB statement.

1
print all JCL statements in your job, cataloged procedure. statements, and the internal
representation of statements after symbolic substitution.

2
only print the JCL statements in your job (cataloged procedure statements will not
appear).

Replace "messages" with one of the following:

o
no allocation/termination messages are to appear, unless the job abnormally terminates.
If abnormal termination occurs, these messages will appear as output.

1
all allocation/termination messages are to appear.

If you omit the MSGLEVEL parameter or one of the subparameters, MVSassumes a default
value established by your installation. Your manager or supervisor should tell you the defaults
chosen in your installation.

For example, if you want MVS to display only the JOB statement and no
allocation/termination messages, code:

MSGLEVEL=(O,O)

If you want MVS to display only the JCL statements in your job and all allocation/termination
messages, code:

MSGLEVEL=(2,1)

If you want to use your installation's default for JCL statements and MVS is not to display any
allocation/termination messages, code:

MSGLEVEL= (, 0)

If you want all your JCL statements, cataloged procedures, and internal representation of
statements, and your installation's default for allocation/termination messages, code:

MSGLEVEL=l

Chapter 3. Guide to Job Control). . ., 15

If you want your installation's defaults for both JCL statements and allocation/termination
messages, omit the MSGLEVEL parameter.

For information on coding the MSGLEVEL parameter, see "MSGLEVEL Parameter" on
page 10-16.

MSGCLASS Parameter

The MSGCLASS parameter allows you to specify the output class to which MVS is to write the
job log.

The format of the MSGCLASS parameter is:

I MSGCLASS=class-name

Replace "class-name" with a letter (A-Z) or a number (0-9).

The system produces your job log on a device assigned to the class you selected. If,you omit
the MSGCLASS parameter, JES determines the default for the MSGCLASS parameter by the
input source of the job. That is, the particular card reader or work station, or whether the job
was submitted by a time-sharing user.

You can route the job log and output data sets to the same output class. To do this, code the
same output class in both the MSGCLASS parameter on the JOB statement and the SYSOUT
parameter on the DD statements for the data sets. Or, if you code SYSOUT = * on all DD
statements for the output data sets, the system uses the same output class you specified in the
MSGCLASS parameter on the JOB statement. Note that the MSGCLASS parameter can be
overridden on the OUTPUT JCL statement.

Your manager or supervisor should tell you which output classes are available in your
installation. Some of these output classes are standard and some are reserved for special uses.
You may have to notify the operator if you are using a special output class in your job because
he has to start an output writer for that output class in order to obtain the output. For further
information, see SPL: Job Management.

For additional information on coding the MSGCLASS parameter, see "MSGCLASS
Parameter" on page 10-14.

JES2 Hard-Copy Log

In addition to the job log, JES2 produces a hard-copy log for the job. The job's JES2
hard-copy log contains a list of job-related console messages and operator replies that JES2
produces while processing your job. You can request that JES2 suppress the hard-copy log
output using the JES2 JOBPARM statement. The format of the JES2 JOBPARM statement is:

I /*JOBPARM parameters

To suppress the job's JES2 hard-copy log, code:

/*JOBPARM NOLOG

3..:16 MVS JCL

Place the JES2 JOBPARM statement after the JOB statement:

IIJOBXO JOB
I*JOBPARM NOLOG
IIS1 EXEC

For additional information on coding the JOBPARM statement, see "/*JOBPARM Statement"
on page 16-4.

You can also control the job's JES2 hard-copy log by using the JESDS parameter on the
OUTPUT JCL statement. For further information on the JESDS parameter, see "JESDS
Parameter" on page 14-37.

JES3 M-ain Device Scheduler Messages

The JES3 main device scheduler (MDS) issues allocation (fetch), mounting, and deallocation
messages for all JES3 and JES3/MVS (jointly) managed devices.

Using the FETGH parameter on the JES3 MAIN statement you can override the default
speCified for FETCH at JES3 initialization. The format of the JES3 MAIN statement is:

I II*MAIN parameters

Using the FETCH parameter you can request that the MDS:

• Issue all fetch messages for all volumes in DD statements that use JES3 setup devices

• Issue no fetch messages

• Issue fetch messages for volumes in DD statements specified by the SETUP parameter on
the JES3 MAIN statement

• Issue fetch messages for volumes on specific DD statements

• Not issue fetch messages for volumes on specific DD statements

The format of the FETCH parameter on the JES3 MAIN statement is:

FETCH=(ALL I NONE I SETUP I [I] (ddname[,ddname] ...)}

For specific information on coding the FETCH parameter, see "//*MAIN Statement" on
page 17-23.

Chapter 3. Guide to Job Control 3-17

JES3 System Messages

TSO

The JES3 FORMAT statement allows you to code the ddname of the DD statement that
defines the output data set characteristics you want to specify. If you want system messages,
code on the FORMAT statement:

//*FORMAT PR DDNAME=SYSMSG

If you want the JCL statements and messages, code on the FORMAT statement:

//*FORMAT PR DDNAME=JESJCL

If you want JES3 and system operator messages Gob log), code on the FORMAT statement:

//*FORMAT PR DDNAME=JESMSG

You can also control JES3 job log messages, system messages, and JCL statement messages by
using the JESDS parameter on the OUTPUT JCL statement. For further inforniation on the
OUTPUT JCL statement, see Chapter 14, "Coding the OUTPUT JCL Statement."

For additional information on coding the FORMAT PR statement, see "jj*FORMAT PR
Statement" on page 17-9.

TSO allows a number of users to execute programs concurrently and to interact with the
programs during execution.

You can request that the system notify you when your background job completes. Under TSO,
a background job is one that is entered through a time sharing terminal by means of the
SUBMIT command or by executing a step to run TSO in the background. For more
information, see OSjVS2 TSO Command Language Reference.

The JCL NOTIFY parameter, on the JOB statement, allows you to indicate to the system that
you want automatic notification when your job completes.

The JES2 NOTIFY control statement allows you to indicate to the system that you want
notification messages directed to the userid you specify.

The USER parameter on the JES3 MAIN control statement allows you to specify a userid that
indicates, to JES3, a TSO user who can access, receive, or inquire about a data set.

NOTIFY Parameter

By coding NOTIFY on the JOB statement, you are requesting that a message be sent to your
terminal when your job completes.

The format of the NOTIFY parameter is:

NOTIFY=userid

3-18 MVS JCL

Replace the term "userid" with a user identification expressed in 1 to 7 alphanumeric
characters; the first character must be alphabetic. The user identification can be the same one
you use when you start your terminal session; that is, the same user identification you use in the
LOGON command must be the one used in the NOTIFY parameter, if you want to notify
yourself. You can notify any other user using their valid ID in place of your own. For
example, if a user submits a job named FORMS through the terminal and his user
identification is JOHNHC, and he wants to be notified upon completion of his job, then his
JOB statement if he used NOTIFY should be:

//FORMS JOB NOTIFY=JOHNHC

For more information on coding the NOTIFY parameter on a JOB statement, see "NOTIFY
Parameter" on page 10-18. For a more detailed discussion of TSO, refer to TSO Command
Language Reference.

The JES2 NOTIFY Control Statement

Use the JES2 NOTIFY control statement to have the system direct a job's notification messages
to the userid you specify. The format of the NOTIFY statement is:

((.userid }}
(nodename(:userid }}

/*NOTIFY ((/userid }}
(((userid)}}
(userid }

To specify that the system is to send a job's notification mess~ges to a node other than the job's
node of origin, code:

/*NOTIFY nodename.userid

To specify that JES2 is to send a job's notification messages to the job's node of origin, code:

/*NOTIFY userid

Note: The userid you code on this statement overrides any specification you code in the
NOTIFY parameter on the JOB statement.

For more information on coding the JES2 NOTIFY statement, see "/*NOTIFY Statement" on
page 16-11.

The USER Parameter on the JES3 MAIN Control Statement

The USER parameter allows:

• A TSO user to access SYSOUT data sets via the TSO OUTPUT command
• A TSO user to inquire about the status of a job or to cancel the job
• Data sets to be sent to a main processor for use by a TSO user

The format of the USER parameter is:

//*MAIN USER=userid

Chapter 3. Guide to Job Control 3-19

To send SYSOUT data sets to an MVS main processor for use by a TSO llSer, code:

//*MAIN ACMAIN=main-name,USER=userid

For additional information on the MAIN statement, see "//*MAIN Statement'~ on page 17-23
and TSO in JES3 SPL: Initialization and Tuning.

Remote Job Processing

Remote job processing allows you to enter a job into the JES2 or JES3job stream by way of a
remote work station or device.

There are some differences between JES2 and JES3; therefore each is discussed under a separate
heading.

JES2 Remote Job Processing

The remote job entry (RJE) facility of JES2 allows a remote work station to use the job entry
subsystem. JES2 processes remote jobs the same way it processes those received JrQlll local
readers, printers, and punches.

Remote job entry is the ability to submit jobs and receive system output at remote facilities as if
the jobs had been submitted at a local facility .. JES2 supports both systellls Iletwork architecture
(SNA) and binary synchronous communication (BSC) remote stations as RJE facilities. The
remote facilities maybe attached to JES2 by synchronous data link control (SDLe) or by a
point-to-point (BSC) communications link. The remote facility b~comes a logicaJextension of
the local computer facility and JES2 expects it to be under the control ofarell1oteoperator.

There are two types of remote facilities. The first type is a remote terminal, which does not
have a processor. A remote terminal, for example a 1780 or 2770, can be used for entering jobs
into and receiving data from JES2. The second type is a remote work station, which has a
processor. A processor, for example, System/3 or System/370, executes a JES2-generated
program that allows the processor to send jobs to, and receive data from, JES2. Also patt of
the remote work station are printers, punches, card readers, and a console.

SNA RJE for JES2

Remote job entry stations that use the facilities of a SNA network gain access to JE~2 t1;1rough
VTAM. For more information, see remote job entry in SPL: JES2 Initialization and Tuning
and SPL: VTAM.

BSC RJE for JES2

Communication between the local processor and BSC remote work stations use a J}!S2facility
called MULTI-LEAVING. Multi-leaving allows the transmission of multiplep:t;illf~ndpullch
streams at the same time and allows JES2 to receive multiple console messages and input
streams. For more information, see remote job entry in SPL: JES2 Initialization and Tuning
and SPL: VTAM.

·3-20 MVS JCL

Remote Job Entry Stations

Installations can configure remote lines as dedicated or nondedicated. This configuration is
established during JES2 initialization. The following discussion pertains to nondedicated
remote lines only.

BSC remote work stations: use the JES2 SIGNON control statement to notify JES2 of a
connection request. See the discussion of the SIGNON statement below.

SNA remote work stations: must use the LOGON command instead of the SIGNON statement
to notify JES2 of a connection request. For a disclission of the LOGON command, refer to
SPL: JES2 Initialization and Tuning and SPL: VTAM.

The JES2 SIGNON Control Statement

Use the SIGNON statement to indicate to the central processor that you wish to begin a
remote job stream processing session. The format of the JES2 SIGNON statement is:

{REMOTEnnn}
I*SIGNON {RMTnnnn } [passwordl]

{RMnnnn }
[password2]

Place the SIGNON statement at the end of the JES2jRTP program deck for multi-leaving
remote stations. For non-multileaving remote stations, JES2 transmits the SIGNON statement
alone as part of the initial connection process.

REM OTEnnn , RMTnnnn, or RMnnnn specifies the identification number assigned to the
remote station requesting to sign on.

Note: If you code REMOTEnnn on the SIGNON statement, and you code RMT on the
ROUTE statement, you are restricted to coding RMT on the ROUTE statement with only
three digits (RMTnnn).

password] is a communication line password assigned to a dial line that allows the remote
station access to JES2 for remote job stream processing. This password guarantees a user or a
group of users the use of a line and prevents unauthorized remote operators from using the line
to gain access to JES2.

password2 is a password that ensures that the remote station signing on is a valid RJE (remote
job entry) station.

For more information on coding the SIGNON statement, see "j*SIGNON Statement" on
page 16-30.

The JES2 SIGNOFF Control Statement

To terminate a remote job stream processing session, use the JES2 SIGNOFF statement. Both
SNA and BSC remote work stations can use the SIGNOFF statement. SNA remote work
stations can also use the LOGOFF command to end a session with JES2. For a discussion of
the LOGOFF command, refer to SPL: JES2 Initialization and Tuning and SPL: VTAM.

Chapter 3. Guide to Job Control 3-21

The format of the SIGNOFF statement is:

I /*SIGNOFF

For more information on coding the SIGNOFF statement, see "j*SIGNOFF Statement" on
page 16-29.

JES3 Remote Job Processing

JES3 remote job processing (RJP) allows you to enter a job into the JES3 job stream using an
input source connected to the global processor by a data line. JES3 processes the job as if it
had be.en submitted locally.

Devices attached to a processor via channels are called local devices; devices attached to a
processor via a data link are called remote devices. Any output from a remotely-entered job
can, at your option, be retained at the host system, transmitted to the originating location, or
sent to another location.

JES3 supports two types of remote devices for RJP. The first type are those attacht(d using
binary synchronous communications (BSC) protocols. The second type are those attached using
synchronous data link control (SDLC) protocols within the IBM systems network architecture
(SNA).

Remote Work Stations (JES3)

Installations can configure remote lines as dedicated or nondedicated. This configuration is
established during JES3 initialization. The following discussion pertains to nondedicated
remote lines only.

BSC remote work stations use the JES3 SIGNON control statement to notify JES3 of a
connection request. See the discussion of the SIGNON statement below.

SNA remote work stations must use the LOGON command instead of the SIGNON statement
to notify JES3 of a connection request. For a discussion of the LOGON command, refer to
JES3 SPL: Initialization and Tuning and SPL: VTAM.

The JES3 SIGNON Control Statement

Use the SIGNON statement to indicate to JES3 that you wish to begin a remote job stream
processing session. The format of the JES3 SIGNON statement is:

/*SIGNON work-station-name {AI (blank)} {RI (blank)] passwdl passwd2

The fields for the JES3 SIGNON statement have the following meanings:

• The work-station-name identifies the remote station requesting to sign on.

• An A in column 22 identifies the remote work station as programmable and specifies that,
for the duration of this session, the processor automatically reads from the reader.

3 ... 22 MVSJCL

• An R in column 23 identifies the remote work station as nonprogrammable and specifies
the output suspension feature. That is, if a print or punch data set is currently active, it
can be suspended if the active device is not ready.

• passwdl is a line password assigned to a dial line that allows the remote station access to
JES3 for remote job stream processing. This password guarantees a user or a group of
users the use of a line and prevents unauthorized remote operators from using the line to
gain access to JES3.

• passwd2 is a password that ensures that the remote station signing on is a valid RJP
(remote job processing) work station.

For more information on coding the SIGNON statement, see "j*SIGNON Statement" on
page 17-50.

The JES3 SIGNOFF Control Statement

To terminate a remote job stream processing session, use the JES3 SIGNOFF statement. Both
SNA and BSC remote work stations can use the SIGNOFF statement. SNA remote work
stations can also use the LOGOFF command to end a session with JES3. For a discussion of
the LOGOFF command, refer to J ES3 SP L: Initialization and Tuning and SP L: VT AM.

The format of the SIGNOFF statement is:

I /*SIGNOFF

For more information on coding the SIGNOFF statement, see "j*SIGNOFF Statement" on
page 17-49.

Special Job Processing

Using JOB statement parameters and JES control statement parameters you can request special
processing options of the operating system. The special processing options you can request are:

• Delaying Initiation of Your Job
• Delaying Initiation of Other Jobs in JES3
• Bypassing Job Initiation
• Testing JCL Without Execution
• Copying JCL Without Execution in JES2
• Reading Column Binary Input
• Deadline Scheduling
• Dependent Job Control for JES3

Delaying Initiation of Your Job in JES2

Although you can influence a job's selection by assigning a job class and priority to the job,
you cannot predict whether JES2 will select a job in one job class for execution before another
job in a different job class.

When jobs exist in the same job class, you cannot be certain that one job will complete
execution before JES2 selects the other job, even if you assign a higher priority to the first job.

Chapter 3. Guide to Job Control 3-23

You must use the TYPRUN = HOLD parameter because the higher priority controls only-the'
selection sequence and does not guarantee that the first job will complete execution before the
second is selected. In some cases, when submitting two jobs, JOB A and JOBB, JOBA must
complete execution before JES2 can initiate JOBB; JOBA might create records that JOBB uses.
You will have to instruct JES2 to delay JOBB's initiation until JOBA completes execution.

It is also possible that resources a job requires will not be available. Therefore, you will want
to delay the job's initiation until required resources are available. The job remains on the
execution queue or JCL conversion queue, but JES2 will not select the job for processing until
the operator releases the job. Use the j*MESSAGE control statement to notify the operator to
release the job. When the operator releases the job, it is again eligible for selection by JES2.

Delay a job's initiation by coding on the JOB statement:

TYPRUN=HOLD
or
TYPRUN=JCLHOLD

Alternatively, you can specify a job class defined by the installation to force a
TYPRUN = HOLD default.

For more information on coding the TYPRUN parameter on a JOB statement, see "TYPRUN
Parameter" on page 10-39.

JES2 users can delay a job's initiation and have specific volumes mounted before the job
executes by coding the JES2 SETUP statement. The SETUP statement notifies the operator
which volumes the job requires.

If you code a JES2 SETUP statement, you can notify the operator what volumesto retrieve
from the library. The operator will mount the requested volumes and then should release the
job that has been held on the execution queue or oil the JCL Conversion Queue.

For more information on coding the JES2 SETUP statement, see "j*SETUP Statement" on
page 16-28.

Note: JES3 does not support the use of TYPRUN = HOLD. Instead JES3 users can specify
the HOLD parameter on the JES3 MAIN statement. This produces the saine effect as coding
TYPRUN = HOLD on the JOB statement. Additionally, JES3 users can use dependent job
control to delay a job's initiation. For information on coding the JES3MAIN statement, see
"jj*MAIN Statement" on page 17-23. For information on using dependent job control, see
"Dependent Job Control for JES3: The Job Net" on page 3-27.

Delaying Initiation of Other Jobs (JES3)

Sometimes the function of your job is to update a member of a procedure library. To prevent
other jobs from using the data set being updated, JES3 users should code the UPDATE
parameter on the JES3 MAIN statement. This parameter identifies the procedure library data
set(s) being updated. The parameter causes all jobs using this data set and all data sets
concatenated to it to be held until the update is complete.

You can also use the UPDATE parameter when updating a private library. The installation
must define any private library at JES3 initialization.

For information on coding the JES3 MAIN statement, see "jj*MAIN Statement" on
page 17-23.

3-24 MVS JCL

Bypassing Job Initiation

. Under certain conditions you may wish to scan the control statements for syntax errors without
submitting the associated input data sets, or you may wish to produce a copy of your input
deck without actually initiating any steps. To scan the control statements for syntax,errors
without initiating the job, code on the JOB statement:

TYPRUN=SCAN

Or you can select a job class that the installation has defined to force the TYPRUN = SCAN
default. When you code this option, the system first scans the job for control statement syntax
errors and then passes directly to the output stage for processing.

TYPRUN = SCAN causes the system to check for coding errors that it can detect at the
converter phase. That is, invalid keywords, illegal characters, and parenthesis errors. The
system does not check for errors that occur at the interpreter phase. For example, misplaced
statements, the syntax of JCL statements in cataloged procedures, or the syntax of
subparameters of JCL parameters.

For more information on coding the TYPRUN parameter on a JOB statement, see "TYPRUN
Parameter" on page 1 0-39.

Testing JCLWithoutExecution (JES3)

JES3 provides another method to test your job's JCL in addition to the TYPRUN = SCAN
parameter on the JOB statement. JES3 users can code PGM = JCL TEST or PGM = JSTTEST
on the EXEC statement. This causes the system to scan the JCL for syntax errors. These
programs will check for invalid keywords, illegal characters, parentheses errors, and excessive
parameters without processing the job or setting up devices. For further information about
JSTTEST and JCLTEST, see JE83 8PL: Diagnosis.

Copying JCL Input Without Execution in JES2

To produce a copy of the input deck without initiating any steps, code on the JOB statement:

TYPRUN=COPY

Or you can select a job class that the installation has defined to force the TYPRUN = COpy
default. When you code this option, JES2 reads the input deck (as submitted) directly to a
SYSOUT data set and schedules it for output processing. The class of the SYSOUT data set is
the same as the message class of the job. Therefore, you can control the class using the
MSGCLASS parameter on the JOB statement.

The SYSOUT data set generated can be processed by either the JES2 print/punch processor or
by an external writer. It is available to the TSO OUTPUT command only if the output class is
a held sysout class. Before adding control statements to the SYSOUT data set, JES2 interprets
control statements that it encounters in the input stream. JES2 copies job control language
(JCL) statements without any processing (that is, without JCL conversion).

When you specify TYPRUN = COpy on a JOB statement, JES2 ignores any OUTPUT JCL
statements during output processing.

For more information on coding the TYPRUN parameter on a JOB statement, see "TYPRUN
Parameter" on page 10-39.

Chapter 3. Guide to Job Control 3-25

Reading Column Binary Input

Jobs that require input from column binary cards can receive this input directly from the DD
statement using JES3. To do this, code the MODE = C DCB subparameter on the DD * or
DD DATA statement that precedes the column binary card input or notify the operator to read
this job into a card reader for which he has specified mode C processing.

The DATASET statement can also be used to read column binary input for installation-written
routines executed as part of nonstandard jobs. For a discussion of nonstandard jobs, see
"jj*PROCESS Statement" on page 17-44.

The JES2 SETUP Statement

Use the JES2 SETUP statement to tell the operator what volumes your job needs to execute.

Use of the SETUP statement in a JES2 network generally requires that the SETUP statement
follow any ROUTE or XEQ statement. This prevents JES2 from requesting the setup on a
node other than the node of execution. If JES2 processes the SETUP statement prior to
processing the ROUTE or XEQ statements, JES2 requests the setup on both the input and
execution nodes.

The format of the JES2 SETUP statement is:

/*SETUP volume-serial-number[,volume-serial-number] ...

• Place all SETUP statements after the JOB statement.
• Code as many SETUP statements as necessary.

F or example:

/*SETUP 666321,149658

When the job enters the system, JES2 lists on the console the two volumes requested. JES2
then places the job in hold status awaiting release by the operator when the required volumes
are available. The message informs the operator to mount the volumes before running the job.

For more information on coding the JES2 SETUP statement, see "j*SETUP Statement" on
page 16-28.

JES3. SETUP Parameter

Use the SETUP parameter on the JES3 MAIN statement to modify the standard algorithm
JES3 uses in assigning device.s to a job prior to job execution. The format of the SETUP
parameter is:

SETUP= { JOB I HWS I THWS I [/] (ddname [, ddname] ...) }

For a discussion of the JES3 SETUP parameter, see "jj*MAINStatement" on page 17-23. For
a discussion of JES3 allocation, see "Allocating Data Resources in a JES3 System" on
page 6-4.

3'726 MVS JCL

Deadline Scheduling for JES3

When a job must be scheduled by a certain time of the day, week, month, or year, specify the
DEADLINE parameter on the JES3 MAIN statement. By indicating that there are time
restrictions, you influence the priority of the job and help insure that the job will be scheduled
when necessary. For example, a job must be scheduled every Friday by 2 p.m. to calculate the
payroll. Request that the job be executed by that time by coding:

//*MAIN DEADLINE=(1400,A,6,WEE~LY).

The subparameter values mean the following:

1400
is 2 p.m. on a 24-hour clock.

A
defines the deadline type that determines the periodic increment of the job's priority (the
installation defines the meaning for A).

6
is the sixth day of the week - Friday (the first day is Sunday; the seventh day is Saturday).

WEEKLY
is the cycle indicating the frequency of scheduling this job.

The purposes of deadline scheduling are to allow submission of a job at its true priority level
and to have JES3 schedule it to best use the available resources. JES3 increases the priority
level only if the job is not scheduled on time. For example, if you work first shift and submit a
job at the end of the day, you do not need results until the next morning. Indicate that the job
must be scheduled by 7 a.m. and assign an initial lower priority, then the job can be scheduled
at any time. If it has not been scheduled a few hours before the 7 a.m. deadline, JES3 increases
the priority periodically to increase the job's chances for being selected by 7 a.m.

If you have requested that a job be scheduled by a certain time on a certain day and the job is
submitted after the deadline time, JES3 increases the priority of the job to the same level it
would have been if the job had been submitted prior to the deadline and had not completed.

For more information on coding the DEADLINE parameter on the JES3 MAIN statement, see
"//*MAIN Statement" on page 17-23.

Dependent Job Control for JES3: The Job Net

JES3 installations can use dependent job control (DJC) when jobs must be executed in a
specific order. There are several reasons to execute one job before another. For example, JES3
fetches data set information from the catalog before scheduling a job. If JOBA changes or adds
to the catalog that JOBB will refer to, use dependent job control to ensure that JOB A runs
before JES3 processes JOBB allocation. Another reason to use DJC is to achieve better device
utilization. If a job requires only one device for the first four steps but requires five devices for
the fifth step, break the job into two jobs (one for the first four steps and one for the fifth step).
Use DJC to make the second job dependent on the first; that is, the second job can run only
after the first job has completed. DJC is also useful in controlling the scheduling of jobs that
have data dependencies. When you use dependent job control, the group of jobs that depend
on each other form a dependent job net. To indicate to JES3 the relationship of jobs to each
other in a dependent job net, use a JES3 NET control statement.

Chapter 3. Guide to Job Control 3-27

I The JES3 NET Control· Statement

To define a dependent job net, submit a NET statement with each job. The NET statement
identifies a job's net and specifies the dependency that must be satisfied before the job can be
scheduled.

Jobs normally must wait for scheduling until a predecessor job completes. Jobs that depend on
one or more predecessor jobs to complete are called successor jobs. To specify the number of
predecessor/successor relationships of a given job in a net, specify_the number of predecessor
jobs on the NHOLD parameter and the name of each successor job in the RELEASE
parameter of the NET statement. The number of predecessors is the number of jobs
immediately prior to the job that depends on other jobs completing; the number of successors is
the total number of all jobs remaining to be processed in the net that depend on this job
completing.

Some of the parameters you use on a JES3 NET statement are discussed in the following topics.
For a discussion of all of the parameters you can code on a NET statement, see "//*NET
Statement" on page 17-35.

Specifying System Action for Termination ofa Job in a Net

A normal or abnormal predecessor completion can be the requirement established for going to
the next job. FQr example, a job might not be requested unless the predecessor job abnormally
terminates. The NORMAL and ABNORMAL parameters on the NET statement specify the
kind of predecessor completion required for the successor dependent job to execute.

A job-net job that has previously completed normally can be resubmitted while the associated
net is still active in the system. The resubmitted job does not enter the net nor does it affect the
net's processing. If you want to resubmit the previously completed job as part of the net, you
must first free the net from the system and then resubmit the entire net. Note that if you code
the COND parameter on a JOB or EXEC statement, and the job terminates due to condition
codes, JES3 treats the job as an abnormally terminated job.

Placing a Job in a Net on Hold

Use the NHOLD parameter to specify the number of immediate predecessor jobs that must
complete before a job is released for scheduling; the number can include jobs from another net
that are predecessors to the dependent job. When this parameter is defined, the job is placed
into dependent job control hold status when it enters the system. A job.is made eligible for
JES3 allocation and scheduling when its NHOLD count becomes zero. This count is decreased
when each predecessor job completes execution or by the operator. However, the NHOLD
value can be decreased before the predecessor job completes execution if you issue a DJC
(dependent job control) WTO (write to operator) macro in the predecessor job problem
program. Refer to Supervisor Services and Macro Instructions, for the format of the write to
operator command and JES3 Messages for message text information.

To place jobs that are in a dependent job net in operator hold, code the NET OPHOLD
parameter; This parameter prevents scheduling of the job until the operator explicitly releases it
from hold.

Upon either normal or abnormal completion of a predecessor job, a successor job can have its
NHOLD count decreased, can be flushed from the system, or can be retained pending operator
action. ,If it is flushed, the job and all of its successor jobs (and their successor jobs) are
canceled, printed, and flushed from the system. If it is retained in the system in the held state,

'3-28 MVS JCL

the NHOLD count is not decreased and the job and all of its successor jobs are suspended from
scheduling until either the predecessor is resubmitted or the operator decreases the NHOLD
count. You can control external dependenci~s by setting the NHOLD value one greater than
normally assigned and asking the operator to decrease the NHOLD count when the dependency
is satisfied.

Specifying Early Setup of Resources for a Job in a Net

Early setup of successor job resources is indicated using the RELSCHCT parameter. It allows
a job to enter JES3 allocation before all predecessor jobs have completed. The job is then
placed in a hold status until all of its predecessors. complete processing. Early setup of
successor job resources is invoked when the NHOLD count becomes less than or equal to the
RELSCHCT count. Do not use this option with jobs that have catalog dependencies. Coding
the RELSCHCT parameter can tie up devices and data sets for a long time, so use it carefully.

Establishing Dependencies Between Different Nets

You can establish dependencies between jobs in different nets. To indicate that a job in one net
is the predecessor to. a job in another net, specify the NETREL parameter. For examples of
using the NETREL parameter, see the dependent job control examples on the following pages.

Specifying Devices Dedicated to a Net

You can dedicate devices to a dependent job net by coding the DEVPOOL parameter. When
you code the DEVPOOL parameter in the first job in a net (it is ignored if not coded in the
first job), the devices specified are dedicated for device allocation and volume mounting only by
jobs in the same net.

To release these devices prior to all jobs completing in the network, code the DEVRELSE
parameter. This paraineter may be specified on one or more jobs in the net, except the first
job. The first completing job that contains DE'yRELSE = YES will cause the dedicated devices
to be released. If no such job is encountered, the devices are released when the net is purged.

How to Code NET Statements

When a job is part of a net, the number of predecessor jobs and the names of all successor jobs
must be indicated on the NET statement. A diagram is a good way to graphically show the
relationship of jobs in a net. Once you describe a net of dependent jobs in a diagram, you can
list the dependencies in a table and then translate that into NET statements (see the following
three examples). The following is a guideline for defining dependent job control nets:

1. Draw a diagram of the net, connecting dependent jobs with lines indicating the flow of job
dependencies. Give the net a name (such as EXAM1) to identify the net; this becomes the
NETID parameter value.

2. List the jobname of each job in the net in the order of their dependencies on one another.
Note next to each jobname the number of predecessors to the job, including predecessors of
other job-nets, if any. The number of predecessors becomes the NHOLD parameter value.
If early setup scheduling is desired, specify RS = count (RELSCHCT = count) where count
specifies setup of a dependent job's resources before all of its predecessors have completed
execution.

3. List the disposition of each successor jobname based on normal or abnormal predecessor
completion.

Chapter 3. Guide to JohControl 3-29

4. List the successor jobnames for each job in the diagram. If there is a successor in a
different net, then list the successor jobname and successor net-id in parentheses. The
successors become the RELEASE':!.rameter values.

5. Construct the necessary NET statements based on the diagram.

One way to verify the net is to execute the IEFBR14 program for each job in the net,
simulating normal and abnormal completions. The general format for each job of the net is:

//jobname JOB
//*NET your specific parameters
//STEPI EXEC PGM=IEFBR14
/*

In this way, all DJC net functions and definitions can be tested without using actual jobs.

Examples of Dependent Job Control

Instead of coding the (ull name of the parameters for every job, you can use the short form of
the following parameters. .

Parameter
NETID
NHOLD
RELEASE
NORMAL
ABNORMAL
OPHOLD
RELSCHCT
NETREL

1. A simple net

Short Form
ID
HC
RL
NC
AB
OH
RS
NR

Given: five jobs, 1\, B, C, D, and E.

NETID Jobname
EXAMl

X
B~

C C
D

DEE

3~30 MVS JtL

Predecessors
(NHOLD)

o
o
2
1
1

Successors
(RELEASE)

job C
job C
jobs D,E
none
none

How to code EXAM1:

Jobname Control
A //*NET
B //*NET
C //*NET
D //*NET
E //*NET

Statement
NETID=EXAMI,RELEASE=(C)
NETID = EXAM1 ,RELEASE = (C)
NETID=EXAMI,NHOLD=2,RELEASE=(D,E)
NETID= EXAMI,NHOLD= I
NETID= EXAMI,NHOLD= I

If the system scheduled this net of jobs with defined dependencies, you could achieve the
desired sequence only through operator action. By using JES3 dependent job control,
operator intervention is not required. Jobs A and B can run concurrently, followed by job
C, and then jobs D and E can run concurrently.

2. Multiple predecessor jobs

Given: six jobs, A, B, C, D, E, and F.

the NETID is EXAM2.

NETID Jobname
EXAM2

Predecessors
(NHOLD)

o
o

2

3

Successors Disposition
(RELEASE)

jobs C,D
jobs C,D,E AB = R (retain job)

NC=D (decrease job)
job F AB = R (retain job)

NC = D (decrease job)
job F AB = F (flush job)

NC = D (decrease job)
job F AB = R (retain job)

NC = D (decrease job)
none AB = R (retain job)

NC=D (decrease job)

How to code EXAM2:

lobname Control
A //*NET
B //*NET
C //*NET
D //*NET
E //*NET
F //*NET

Statement
NETID = EXAM2,RELEASE = (C,D)
NETID = EXAM2,RELEASE = (C,D,E)
NETID = EXAM2,RELEASE = (F),NHOLD = 1 .
NETID = EXAM2,RELEASE = (F),NHOLD = 2,ABNORMAL = F
NETID = EXAM2,RELEASE = (F),NHOLD = 1
NETID = EXAM2,NHOLD = 3

If either job A or B abnormally terminates, job D is flushed from the system, thereby
causing job F also to be flushed. Jobs C and E remain in the system. In this situation,
correct the predecessor and resubmit the jobs to the system. When it completes normally,
its successors, C and E, are made eligible for scheduling. Because job C has NHOLD = I it
requires that only job A or B complete normally. However, job D, which has NHOLD = 2,
requires that both jobs A and B complete normally.

Chapter 3. Guide to Job t 'nntrol 3-31

3. Complex network

Given: two networks, EXAM4 and EXAM3.

EXAM4 contains four jobs, W,X,Y, and Z.

EXAM3 contains ten jobs, A,B,C,D,E,F,G,H,I, and J.

The net to be released (NETREL) for job I is EXAM4, the release jobname is Y.

EXAM4 Jobname Predecessors Successors Disposition
(NHOLD) (RELEASE)

W 0 jobX
X 1 jobY AB = R (retain job)

NC=D (decrease job)
Y 2* job Z AB = F (flush job)

NC=D (decrease job)
Z none AB = F (flush job)

NC=D (decrease job)

*Job Y has one predecessor in this net and one predecessor in EXAM3.

EXAM3 Jobname Predecessors Successors Disposition
(NHOLD) (RELEASE)

A 0 jobC
B 0 jobs C,D AB = R (retain job)

NC = D (decrease job)
C 2 job E AB = R (retain job)

NC=D (decrease job)
D 1 jobs E,I AB = R (retain job)

NC=D (decrease job)
E 2 jobs F,H AB = R (retain job)

NC=D (decrease job)
F 1 job G AB = R (retain job)

NC=D (decrease job)
G 1 none AB = R (retain job)

NC = F (flush job)
H none AB = F (flush job)

NC = D (decrease job)
I 1 (EXAM4,Y) AB = R (retain job)

job J NC = D (decrease job)
J 1 none AB = R (retain job)

NC=D (decrease job)

How to code EXAM4:

Jobname Control Statement
(using short form of parameters)

W jj*NET ID = EXAM4,RL= (X)
X jj*NET ID = EXAM4,RL = (Y),HC = 1
Y jj*NET ID = EXAM4,RL = (Z),HC = 2,AB = F
Z . jj*NET ID=EXAM4,HC=1,AB=F

03-32 'MVS JCL

How to code EXAM3:

Jobname Control

A //*NET
B //*NET
C //*NET
D //*NET
E //*NET
F //*NET
G //*NET
H //*NET
I //*NET
J //*NET

JES3 Spool Partitioning

Statements
(using short form of parameters)
ID = EXAM3,RL = (C)
ID = EXAM3,RL = (C,D)
ID = EXAM3,RL = (E),HC = 2
ID = EXAM3,RL = (E,I),HC = 1
ID =:= EXAM3,RL == (F,H),HC = 2,RS = 1
ID = EXAM3,RL.= (G),HC = 1
ID=EXAM3,HC= l,NC=F
ID=EXAM3,HC= 1,AB=F
ID = EXAM3,RL = (J),HC = 1 ,NR = (EXAM4,Y)
ID = EXAM3,HC = 1

When the system reads a job, it initially places the job on a spool volume or volumes. An
installation can divide its spool volumes into groups, knowp as partitions. Depending on how
your installation defines its partitions, you can make the system allocate all the spool data for a
particular job or all the spool data of a particular type, such as input, output, etc., to the spool
volume or volumes in a specified spool partition. Thus, you can prevent JES3 from spreading a
job's spool data sets across all spool volumes.

See JES3 SP L:" Initialization and Tuning for details on how the installation initializes the spool
partitions and how JES3allocatesa job's data sets to the partitions.

The following examples illustrate how to guide JES3's use of spool partitions during job
execution. '

//ONE JOB
//*MAIN
//STEPl EXEC
//OUTl DD
//OUT2 DD

SYSOUT=N
SYSOUT=S

No SPART parameter is specified on the MAIN statement. Therefore, this job's input spool
data sets are allocated to the default spool partition (PARTA). Because there is no spool
partition specified for SYSOUT = N, these output spool data sets are allocated to the default
spool partition (PARTA). However, if this job executes on the processor named SY2, output
spool data sets for SYSOUT=N are allocated to spool partition PARTC as specified on the
JES3 MAINPROC initialization statement associated with the processor named SY2. Output
spool data sets for SYSOUT = S are allocated to spool partition PARTD as specified on the
SYSOUT initialization statement associated with the class name S.

Chapter 3. Guide to Job Control 3-33

//TWO
//*MAIN
//STEPl
//OUTl
//OUT2

JOB
CLASS=IMSBATCH
EXEC
DD SYSOUT=N
DD SYSOUT=S

No SPART parameter is specified on the MAIN statement. However, because a class is
specified on the MAIN statement, this job's input spool data sets are allocated to the spool
partition specified on the CLASS initialization statement associated with IMSBATCH
(PARTB). Because there is no spool partition specified for SYSOUT=N, these output spool
data sets are allocated to the spool partition specified on the CLASS initialization statement
associated with IMSBATCH (PARTB). Output spool data sets for SYSOUT=S are allocated
to spool partition PARTD as specified on the SYSOUT initialization statement associated with
the class name S.

//THREE
//*MAIN
//STEPl
flOUT
//OUT2

JOB
CLASS=IMSBATCH,SPART=PARTE
EXEC
DD SYSOUT=N
DD SYSOUT=S

This job's input spool data sets are allocated to the spool partition specified"by the SPART
parameter on the MAIN statement (PARTE) overriding the partition defined by the JES3
CLASS initialization statement. Because there is no spool partition specified for SYSOUT =N,
these output spool data sets are allocated to the spool partition specified by the SP ART
parameter on the MAIN statement (PARTE). Output spool data sets for SYSOUT=S are
allocated to spool partition PARTD as specified on the SYSOUT initialization statement
associated with the class name S.

~-34 MVS JCL

Chapter 4. Guide to Step Control

The first JCL statement of each step in your job is the EXEC statement. The EXEC statement
is also the first statement of each procedure step in a cataloged procedure. The format of the
EXEC statement is:

I //stepname EXEC parameters comments

Following the EXEC statement in the input stream are any DD statements and data that
pertain to the step.

The principal functions of the EXEC statement are to:

• Identify the program the system is to execute.
• Identify the cataloged procedure the system is to use.

For example, Figure 4-1 shows the input deck for a three-step job.

Procedure Library

Input Deck

",e~~ .
~ ~DD Statements

'" / / name EXEC
",e~ ~ PGM=PRINT

(' /i / name EXEC

PROC =PROCONE t------~

/ / DO Statements

Figure 4-1. Using the EXEC Statement

Chapter 4. Guide to Step Control 4-1

• The EXEC statement of the first step requests a program named MYPROG. The DD
statements and data that MYPROG requires follow the EXEC statement.

• The EXEC statement of the second step requests a cataloged procedure named PROCONE.
When the system executes the second step, it uses PROCONE.

• PROCONE has two procedure steps.

The EXEC statement of the first procedure step requests a program named XXX.
The EXEC statement bf the second procedure step requests a program named YYY.

After the system uses the cataloged procedure, it will execute the third step of the job.

• The EXEC statement of the third step requests a program named PRINT. The DD
statements required by PRINT follow the third EXEC statement.

Note that you only supply the JCL statements for your job. The cataloged procedure already
exists in the procedure library (SYSl.PROCLIB).'Therefore, you do not have to code the JCL
statements for the cataloged procedure unless you are actually writing the cataloged procedure
to place it in the procedure library. You can, however, modify cataloged procedure statements
by placing the corrections in the input deck for your job. The methods for modifying cataloged
procedures are described in Chapter 9, "Guide to Cataloged and In-Stream Procedures."

Figure 4-2. Modifying a Cataloged Procedure

The EXEC statement must,conta,in tJl~ word ,EXEC inits operation field. The stepname (name
field) and most parameters in the operand field are optional. The only required information in
the operand field is either:

• The name of the program the system executes, or
• The name of the procedure the system invokes

4-2 MVS JCL

The parameters on the EXEC statement that are not related to parameters on the JOB
statement allow you to specify the following types of information:

• Processing program information
• Passing information to the program in execution
• Installation management information
• Dynamically allocating and dealloca.ting data sets

The following paragraphs discuss the stepname and the optional parameters of the EXEC
statement. For a discussion of EXEC statement parameters that are influenced by JOB
statement parameters, see Chapter 5, "Guide to Job and Step Control."

Naming a Job Step

The stepname identifies a step within a job. The stepname is optional. However, when you
want to perform certain functions, you need a valid and unique stepname in the name field for
each job step witpin the job. You must specify a stepname if:

• Later JCL statements refer to the step. See "Backward References" on page 2-13.

• The step is part of a cataloged procedure.

• You are going to override parameters on an EXEC statement or DD statement in a
cataloged procedure step.

• You are going to add DD statements to a cataloged procedure step.

• You are going-to perform step or checkpoint restart at or within the step.

Notes:

1. Name each step in your job; the system uses stepnames in many operating system messages. If
you supply a stepname, 'it is easier for you to find out what part of your job- causes the
messages. (If the step is unnamed, the part of the message where the stepname would appear
is left blank.)

2. Using a stepname can save coding time if you later decide to use backward references or to
turn your JCL statements into a cataloged procedure.

Code the stepname in the name field of the EXEC statement. The stepname can range from
one to eight characters in length and can contain any alphanumeric characters. The first
character of the name must be an alphabetic or national character and must begin in column 3.
Each stepname in a job or procedure must be unique.

The following are examples of stepnames iri several EXEC statements:

//STEPI
//CHECK
//A$9
//LINKEDIT

EXEC •••
EXEC •••
EXEC •••
EXEC •••

Chapter 4. Guide to Step Control 4-3

Processing Program Information

Use the PGM parameter to identify the program the system is to execute. Use the PROC
parameter to identify the cataloged procedure the system is to invoke. You can also identify
the cataloged procedure by name only as the first parameter in the operand field of the EXEC
statement.

The PGM parameter and the PROC parameter (or procedure-name) are mutually exclusive.
That is, you can code only one of them on an EXEC statement. However, you must code one
of them in the EXEC statement.

Your manager or supervisor should give you the names of the programs and cataloged
procedures available in your installation.

Selecting a Processing Program

You must use the PGM parameter to indicate which processing program the system is to use
for this job step and where this program resides. Processing programs can reside in three types
of libraries (partitioned data sets):

• A system library.
• A private library.
• A temporary library.

You must code the PGM parameter as the first parameter in the operand field.

All IBM-supplied processing programs and, probably, the most frequently used programs
written by your installation reside in a system library. The format of the PGMparameter for
specifying programs that reside in a system library is:.

I PGM=prograrn-narne

Replace the term "program-name" with the name or alias associated with the program.

Not all programs have an alias. For example, your installation may have several levels of the
linkage editor, but only one of them can have a particular alias. Your manager or supervisor
should give you a list of the names and aliases of the processing programs in your installation.

Identifying the Program to be Executed

All executable programs are members of partitioned data sets (libraries). The library that
contains the program can be a temporary library or a private library. In order to execute a
program contained in these libraries, code the PGM parameter as the first parameter on the
EXEC statement.

4-4 MVS JCL

Temporary Library

Temporary libraries are temporary partitioned data sets that the system creates to store a
program until it is used in a later job step of the same job. This type of library is particularly
useful for storing the program output (load module) of a linkage editor run until it is executed
by a later job step. The program stored in a temporary library is assigned a name by the
system. This system-assigp.ed' name is nor predictable by the programmer. Therefore, you use
the PGM parameter to identify the 'program by location rather than by name. You do this
using the backward-reference feature of JCL; see "Backward References" on page 2-13. The
format of the PGM parameters for specifying programs that reside in temporary libraries is:

I PGM=*.stepname.ddname

Replace the term "stepname" with the name of the EXEC statement of the job step (of the
same job) that creates the temporary library. Replace the term "ddname" with the name of the
DD statement that defined the library. The following example shows the EXEC statement for
a link edit step, the DD statement in that step that defines the temporary library, and the
EXEC statement that requests the execution of the program stored in the temporary library.

//LINK EXEC

//SYSLMOD DD

//GO EXEC

PGM=IEWL This EXEC statement requests
the linkage editor
This DD st'atement def ines
the temporary library

PGM=*.LINK.SYSLMOD

When the temporary library is created in a cataloged procedure step (of the same job), you may
want to call it in a later job step outside the procedure. In order to call it, you must give both
the name of the job step that invokes the procedure and the procedure stepname. For example:

//jobstep EXEC PGM=*.stepname.procstepname.ddname.

The first part of the following example shows an EXEC statement that calls a cataloged
procedure named ASMFCL (ASMFCL is a cataloged procedure that assembles and link edits a
source program), and the EXEC statement that requests the execution of the program link
edited with the cataloged procedure. The second part of the example shows the EXEC
statement of the procedure step in ASMFCL where the temporary library is created, and the
DD statement that defines the library.

Chapter 4. Guide to Step Control 4-5

Input

·
·
· //CALLEXEC ASMFCL

:~
//GO EXEC PGM=*.CALL.LKED.SYSLMOD

/7 pro/tepname

" / Cataloged Procedure
./

:/L
//LKED EXEC PGM=IEWL
/ /SYSLMOD6 DD ...

You can also specify programs residing in the system library or private libraries by coding
PGM = * .stepname.ddname, provided the named DD statement defines the program as a
member of such a library.

For more information on temporary libraries, refer to the section, "Creating and Using Private
and Temporary Libraries."

Private Library

Private libraries are partitioned data sets that store programs not used often enough to warrant
their inclusion in a system library. For example, a set of programs that prepare quarterly sales
tax reports might be placed in a private library. The format of the PGM parameter for
programs residing in private libraries is the same as for programs residing in a system library.

You indicate to the system the fact that the program resides in a private library by inserting a
special DD statement in your input JCL statements. The use of the DD statements that define
private libraries is explained in Chapter 8, "Guide to Special Data Sets."

Request use of a program that is a member of a private library by coding
PGM = program-name and including a DD statement named JOBLIB or STEP LIB that defines
the private library. The system looks in the private library for a member with the
corresponding name.

A program that resides in a private library can also be executed by coding
PGM = * .stepname.ddname or PGM = * .stepname. procstepname.ddname. this can be done
only when the named DD statement defines the program as a member of a private library.

For more information on private libraries refer to the section "Creating and Using Private and
Temporary Libraries" on page 8-1.

4-6 MVS JCL

The IEFBR14 Program

When this program is called, it gives a return code of 0 and returns to the calling routine. This
program causes the system to check the syntax of the control statements, allocate DASD space,
and/or satisfy requests for disposition processing of data sets. To perform the preceding
functions, substitute IEFBR14 for the program name on the EXEC statement.

For an example of using the IEFBR14 program, see "Using the COND Parameter to Force
Step Execution" on page 5-15.

Note: When you use the IEFBR14 program to allocate data sets, the system does not perform
any data set initialization. Therefore, any attempt to read from the data set will produce
unpredictable results. Also, IBM does not recommend the use of the IEFBR14 program to
allocate multi-volume data sets.

If you created a data set when using this program, the data set's status will be old when you
execute your program. For situations when a disposition of CATLG will not be satisfied, see
"Cataloging a Data Set" on page 7-16.

When you use IEFBR14 to catalog or uncatalog a data set, a message to mount the volume is
issued to the operator. If you do not want the volume mounted, code DEFER on the UNIT
parameter.

JES will honor any JCL OUTPUT statements in an IEFBR14 program. This is especially
important if you wish to give processing options to the system managed data sets. For more
information, see the explanation for the JESDS keyword in Chapter 14, "Coding the OUTPUT
JCL Statement."

Selecting a Cataloged Procedure Library

Instead of executing a particular program, a job step may use a cataloge,d or in-stream
procedure. A cataloged or in-stream procedure can contain JCL statements for several steps,
each of which executes a, particular program. Cataloged procedures are members of the
procedure library. (The IBM-supplied procedure library is named SYS1.PROCLIB; at your
installation, there may be additional procedure libraries, which would have different names.)

The format of the PROC parameter is:

I PROC=procedure-name

Replace the term "procedure-name" with the name of the cataloged procedure or the name on
the PROC statement of the in-stream procedure. The procedure-name must be from 1 to 8
alphanumeric characters, the first of which must be alphabetic or national. If you prefer, omit
"PROC" and simply code the procedure-name. For example, you can request a cataloged
procedure named COBFLG with either of the following EXEC statements:

//name EXEC PROC=COBFLG
//name EXEC COBFLG

The PROC parameter or the procedure name must be the first parameter in the operand field.

Chapter 4. Guide to Step Control 4-7

Notes:

1. You can use subsequent parameters in the operand field to override EXEC statement
parameters in the cataloged procedure.

2. For details on using and modifying cataloged or in-stream procedures, see Chapter 9, uGuide
to Cataloged and In-Stream Procedures."

In a JES2 System

Code the PROCLIB parameter on the JES2 JOBP ARM control statement to choose which of
the installation-specified cataloged procedure libraries JES2 uses for resolving catalog procedure
references in the JCL. If this parameter is omitted, JES2 uses a cataloged procedure library
associated with your job's class.

For more information on coding·the JOBPARM statement, see "/*JOBPARM Statement" on
page 16-4.

In a JES3 System

Code the PROC parameter on the JES3 MAIN control statement to choose which of the
installation-specified cataloged procedure libraries JES3 uses for resolving catalog procedure
references in the JCL. If this parameter is omitted, JES3 uses the installation standard library,
denoted by ST.

If you want to update a cataloged procedure library, code the UPDATE parameter on the JES3
MAIN statement specifying the library to be updated by that job. You can code the UPDATE
parameter whether or not JES3 used that library to resolve the job's library references. JES3
will effectively disable the use of that library, preventing all jobs that request it from entering
the converter interpreter phase until the updating job. terminates. This prevents the use of the
library while the update occurs.

Note: The library update facility cannot be used for concatenated data sets.

For more information on coding the MAIN statement, see "//*MAIN Statement" on
page 17-23.

Passing Information to the Program in Execution

Some information required by a program can vary from application to application, such as
module attributes and options required by the compiler, assembler, and linkage editor
programs. In order to provide this information to the program at the time it is executed, code
the P ARM parameter on the EXEC statement. The program must include instructions that can
retrieve this information. (The exact location and format of the information passed to a
processing program are included in Supervisor Services and Macro Instructions.)

The PARM parameter can also be coded on the EXEC statement of a cataloged or in-stream
procedure step. This establishes fields in which you can pass information to the job. By coding
the P ARM parameter on the EXEC statement of the job calling a cataloged or in-stream
procedure, you can override, add, or nullify parameters in the procedure, or define symbolic
parameters. For more information on the PARM parameter, see Chapter 9, "Guide to
Cataloged and In-Stream Procedures."

4;..8 MVS JCL

PARM Parameter

The P ARM parameter enables you to pass variable information to a program in execution.
Additionally, some IBM-supplied processing programs allow you to select alternatives from a
set of options. The PARM values are listed in the publication associated with the program you
are using.

In many cases, default values can be selected for PARM values during system generation. That
is, the system programmer will select one alternative or assign a fixed value to another. The
system assumes this default option -unless you specify the other alternative or change the fixed
value.

Your manager or supervisor will tell you which default values were generated for the
installation's operating system.

The format of the PARM parameter is:

I PARM=inforrnation

Replace the term "information" with up to 100 characters of data. The following are general
rules for coding the P ARM parameter:

• If the information contains more than one expression separated by commas, you must
enclose the information in either apostrophes or parentheses. For example:

PARM=(DECK,LIST,NOMAP)
PARM=' DECK,LIST,NOMAP,

• If any of the expressions contain special characters, you can:

Enclose that expression in apostrophes and the value in parentheses. For example:

PARM=(DECK,'NAME=FIRST' ,LIST)
PARM=(Pl,167,'P*AA')

Enclose the entire value in apostrophes. For Example:

PARM='DECK,NAME=FIRST,LIST'
PARM='Pl,167,P*AA'

(The enclosing apostrophes and parentheses are not considered part of the information and
do not count towards the maximum of 100 characters of data; commas within apostrophes
are passed as part of the information.)

• If the special character is an apostrophe, code it as two consecutive apostrophes. For
example, show NAT'L as:

PARM='NAT' 'L'

When you code two apostrophes, the system passes only one to the processing program.

• If the special character is an ampersand and you are not defining a symbolic parameter,
code the ampersand as two ,consecutive, .ampersands. For example, show ABC&D as:

PARM='ABC&&D'

Chapter 4. Guide to Step Control -4-9

When you code two ampersands, the system passes only one to the processing program.

• If there is only one value and the value does not contain special characters, you need not
enclose the value in parentheses or apostrophes. If the value contains special characters,
enclose the value in apostrophes. For example:

PARM=LIST
PARM='L.24'
PARM='NAT' 'L'

Since the PARM value can consist of up to 100 characters, you may have to continue the value
onto another statement. If you must continue the value, enclose it in parentheses. You cannot
continue any value enclosed in apostrophes. To continue the value, follow the continuation
conventions as· outlined in the topic "Continuing Control Statements" in the section "Coding
Conventions." The continuation comma is considered part of the value field and counts
towards the maximum of I 00 characters of data. The following is an example of continuing the
value onto another card .

Iiname EXEC
II

... ,PARM=(DECK,LIST,'LINECNT=80' ,
NOMAP)

When the job step uses a cataloged procedure, you can pass information to a step in the
procedure by including the procedure stepname as part of the keyword PARM. The format is:

I PARM[.procstepname]=value

This specification overrides the PARM parameter in the named procedure step, if one is
present. You can code as many parameters of this form as there are steps in the cataloged
procedure. For example, the following EXEC statement passes PARM information to two
procedure steps of a cataloged procedure named PROCTWO. The names of the two procedure
steps are STEP I and STEP2.

IIAl
II
II

EXEC PROC=PROCTWO,PARM.STEP1=(ONE,'TWO=B',
THREE),PARM.STEP2=(FOUR,FIVE,SIX,
'SEVEN=G')

To pass information to the first step in a cataloged procedure and nullify all other PARM
parameters in the procedure, code the PARM keyword without a procedure stepname. For
example:

IIAl EXEC PROCTWO,PARM=(ONE,'TWO=B' ,EIGHT)

Installation Management Information: The ACCT Parameter

Some installations have job step accounting routines in addition to the regular job accounting
routines. Job step accounting is particularly useful in cases where a different programmer is

. assigned to write each step of a job, or where the installation's management wants to know how
much time is spent on different functions such as compilation or link editing.

You can specify job step accounting information instead of, or in addition to, job accounting
information. Specify job step accounting information with the ACCT parameter on the EXEC
statement. Specify job accounting information with the accounting information positional
parameter in the JOB statement; see Chapter 10, "Coding the JOB Statement."

4-10 MVS JCL

ACCT Parameter

The ACCT parameter allows you to supply job step accounting information. It has the
following format:

ACCT[.procstepname]=(accounting-information)

Replace the term "accounting-information" with one or more subparameters separated by
commas. Your manager or supervisor should tell you exactly how to code this parameter. The
following are general rules for coding the accounting information:

• The total number of characters of accounting information, plus the commas that separate
the subparameters, cannot exceed 142.

• If the list contains only one subparameter, you need not enclose it in parentheses. For
example:

AC~T=12345

• If any subparameter contains special characters (exoept hyphens), you can:

Enclose the subparameter in apostrophes and the value in parentheses. For example:

ACCT=(12345,'T/24')

Enclose the entire value in apostrophes.

ACCT='12345,T/24'

Note that the system does not consider the apostrophes as part of the information.

• If the special character is an apostrophe, it must be shown as two consecutive apostrophes.
For example, show O'DONNELL as:

ACCT=(12345,'0' 'DONNELL') or ACCT='12345,0' 'DONNELL'

When the job step uses a cataloged procedure, you can supply accQunting information
pertaining to a single procedure step by including, as part of the keyword ACCT, the procedure
stepname, i.e., ACCT.procstepname. This specification overrides the ACCT parameter in the
named procedure step, if one is present. You can code as many parameters of this form as
there are steps in the cataloged procedure. For example, the follOWIng EXEC statement passes
job step accounting information to two procedure steps of a cataloged procedure named
PROC3. The name of the two procedure steps are ONE and TWO.

//BBB
//

EXEC PROC3,ACCT.ONE=(COMPILE,'J.JONES',
'2/04/82'),ACCT.TWO=(LKED,'J.JONES' ,'2/04/82')

To supply accounting information pertaining to all steps in a procedure, code the ACCT
parameter without a procedure stepname. This specification overrides all ACCT parameters in
the procedure, if any are present. F or example:

//BBB EXEC PROC=PROC3,ACCT=('T.JONES','5/20/69')

Chapter 4. Guide to Step Control 4-11

Dynamically Allocating and Deallocating Data Sets

Dynamic allocation allows you to acquire resources as they are needed. One reason to use
dynamic allocation is that you may not know all of the device requirements for a job prior to
execution. Another reason is that it allows the system to use resources more efficiently; that is,
the system can acquire resources just before their use and/or release them immediately after use.
(Resources, as used here, refer to a ddname-data set combination with its associated volumes
and devices, if any.) The DYNAM DD statemen:t parameter and DYNAMNBR EXEC
statement parameter indicate the number of dynamic allocations to be held in anticipation of
reuse. The system uses these indicators to establish a control limit for tracking resources that it
is holding in anticipation of reuse.

Use the DYNAMNBR parameter on the EXEC statement to replace the DD DYNAM
statements you would have to code. The format of the DYNAMNBR parameter is:

//stepname EXEC PGM=program-name,DYNAMNBR=n

Where n is the number of DD DYNAM statements you would otherwise have to code.

When you code the DYNAMNBR parameter and DD statements, the system uses the sum of
the number of DD statements and the DYNAMNBR value to determine the limit of resources
it is to hold in anticipation of reuse.

You can dynamically deallocate resources during the execution of a job step (at the time the
data set is closed) by coding the FREE = CLOSE parameter on a DD statement.

There are some circumstances when you should not code the FREE parameter.

• The data set name is referenced in a subsequent step.
• The data set name is referenced in another DD statement in the same step.

Do not use the FREE parameter for a data set if a subsequent DD statement requests unit
affinity to this DD statement. For example, do not code the following:

//DDI DD DSN=dsname,DISP=OLD,UNIT=TAPE,VOL=SER=llllll,FREE=CLOSE

//DD3DD DISP=(,KEEP) ,DSN=dsname2,UNIT=AFF=DDl

For more information on coding the FREE parameter, see "FREE Parameter" on page 12-84.
If you do dynamically deallocate a resource at close time, it cannot be reopened in the same
step. If you do not want to dynamically deallocate the resource, either specify nothing or
specify FREE = END to let the system deallocate the resources at the end of the job step.

For more information on how to use dynamic allocation and deallocation and the control
limit, see SPL: Job Management.

4-... 12 MVS JCL

Example of Dynamically Deallocating Data Sets

//PROS
//STEPl
//OUTl
//OUT2
//SYSIN

data

/*

JOB CLASS=A,MSGLEVEL=(2,O),PERFORM=70
EXEC PGM=TEST,DYNAMNBR=4,PARM=(P3,123,MT5)
DD SYSOUT=C,FREE=CLOSE
DD SYSOUT=A
DD *

1. The JOB statement specifies that this job will be processed in class A in performance group
70. Only JCL statements will be printed.

2. The control limit is the sum of the number of DD statements coded and the value. coded in the
DYNAMNBR parameter; in this case, seven. If this control limit is exceeded and a request
for another dynamic allocation is made, the request is not honored unless resources can be
deallocated so that the control value is not exceeded.

3. When OUTl is closed, it is immediately ready for printing.

Chapter 4. Guide to Step Control 4-13

4-14 MVS JCL

Chapter 5. Guide to Job and Step Control

This chapter discusses job and step control using parameters on the JOB statement, the EXEC
statement, and the JES control statements. The discussion covers the following:

• Scheduling a job
• Selecting a processor
• Conditionally executing job steps
• Limiting job and step execution time
• Controlling job queuing through job classes and priorities
• Requesting storage for execution
• Restarting a job at a step or checkpoint

Scheduling a Job

The scheduling of jobs depends on the job entry subsystem in use at your installation. The
following paragraphs discuss job scheduling as it pertains to JES2 or JES3.

In a JES2 System

JES2 controls the selection of jobs for processing. As JES2 reads a job into the system, it
places JCL statements and any input stream data in respective logical data sets. The system
checks the JCL and JES2 statements for syntax errors and issues appropriate error messages. If
the JCL statements are syntactically correct, JES2 places the job on an execution queue. The
execution queue consists of job class queues; JES2 places jobs within each job class queue
according to their priority. Installation programmers assign JES2 initiators to process job
classes. The initiator selects jobs from the first class assigned to it according to the priority of
the jobs until no more jobs exist in that class; it then selects jobs from the next class assigned.

Use the CLASS parameter on the JOB statement and the JES2 PRIORITY control statement
to influence how a job is placed on the execution queue. The format of the CLASS parameter
is:

I CLASS=jobclass

For information on coding the CLASS parameter, see "CLASS Parameter" on page 10-9.

The format of the JES2 PRIORITY control statement is:

/*PRIORITY P

Chapter 5. Guide to Job and Step Control 5-1

- For information on coding the PRIORITY control statement, see "j*PRIORITY Statement" on
page 16~22.

Note that in a multi-access spool environment, more than one JES2 system will be altering the
queues. Due to conversion and processor. timings, jobs of the same class and priority may be
queued for execution out of their reader sequence .. Therefore, to insure that one job is selected
before another or that the desired volumes are mounted before a job is executed, delay the job's
selection by coding TYPRUN = HOLD on the JOB statement, by coding a job class that will
force TYPRUN=HOLD, or by coding a SETUP control statement.

For more information on the TYPRUN parameter and the SETUP statement, see "Special Job
Processing" on page 3-23.

MVS includes support for controlling the processing rate of jobs and job steps. The installation
defines a certain number of performance group definitions. Each of these defines a particular
processing rate formula to use for associated jobs or job steps. To associate a job or job step
with performance group definitions, code the PERFORM parameter on either the JOB or
EXEC statements. The format of the PERFORM. parameter on either the JOB or EXEC
statement is:

I . PERFORM=n

For information on coding the PERFORM parameter on the JOB statement, see "PERFORM
Parameter" On page 10-22. For information on coding the PERFORM parameter on the
EXEC statement, see "PERFORM Parameter" on page H-19~

• If you specify PERFORM on the JOB statement, its value supersedes any PERFORM
specifications on EXEC statements associated with the job.

In a JES3 System

JES3 controls the selection of jobs for processing. When JES3 reads a job into the system, it
initially places the job on a spooling volume. The system checks the JCL and JES3 statements
for syntax errors. If no errors are present, JES3 determines allocation requirements for the job.
JES3 device selection takes place next.

JESJ selects devices based on the requirements for JES3-managed devices established in the
JCL~ JES3 requests that the operator mount any necessary volumes. More information on this
subject is given in "Allocating Data Resources in a JES3 System" on page 6-4. Once all
JES3-managed devices are selected and the first volume on each device is mounted (unless
deferred mounting is requested or high watermark setup is used), JES3 places the job in the
queue for execution. (High watermark setup allocates a minimum number of devices to run a
job.)

When JCL or JES3 statements have syntax errors, appropriate error messages are issued and
the job is terminated. When thejobh.as JES3 allocation errors, error messages are issued and
JES3 bypasses execution. If the error is due to the operator mounting the wrong volume, JES3
issues a message requesting the correct volume.

The execution queue is logically divided into groups of job classes specified by the installation;
within each job class group, jobs are placed according to their job priority. Normally, JES3
places jobs in the same job class group with the same job priority in the execution queue in the
order they are read into the system. Deadline scheduling or operator intervention can cause

5-2 MVSJCL

some jobs to move ahead of other jobs regardless of the order in which JES3 read the jobs into
the system. The various job class groups are assigned priorities by the installation. JES3 starts
system initiators on each processor and assigns them a job class group to process based on the
installation priorities. It selects jobs from any class assigned to it. Jobs are selected by job
class, processor eligibility, workload balancing, and priority order as described in the topics:
"Assigning a Priority to a Job in JES3" on page 5-20, "Establishing job processing balance in
JES3" on page 5-19, and "Assigning a Job to a Job Class in JES3" on page 5-19.

Selecting a Processor in JES2

In a JES2 multi-access spool configuration, jobs enter the common queue from any input
source (local, remote, or another node). If JES2 is not directed to take special actions, the jobs
are eligible to execute in any system in the configuration and are selected by priority and the
class of initiators, as in a single-system operation.

In a multi.:access spool configuration, the JES2 job queue entries contain a system affinity for
up to seven systems and may contain an independent mode affinity.

System affinity is useful for special processing requirements (for example, emulation) not
available on all systems in the configuration. Independent mode is useful for testing new
components with selected jobs while in a shared configuration.

You assign, to a job, affinity to one or more systems (less than the total configuration) and
affinity for independent mode by using the SYSAFF parameter on the JES2 JOBPARM control
statement. The format of the SYSAFF parameter is:

I SYSAFF=(*IANYlcccc} [,IND]

A SYSAFF specification overrides any installation defined input device default.

You specify a specific system in the' JES2 multi-access spool configuration by coding:

/*JOBPARM SYSAFF=cccc

Wherecccc is the system-id of the system, in the JES2 multi-access spool configuration, that is
to .convert and process your job. The output for the job is eligible for processing by any
member of the multi-access spool configuration.

To specify that more than one system can convert and process your job, code:

/*JOBPARM SYSAFF=cccc,cccc

You can repeat cccc up to the number of processors in the configuration.

To specify that a processor operating in independent mode is eligible to convert and process
your job, code:

/*JOBPARM SYSAFF=cccc,IND

Where IND indicates that the system cccc, operating in independent mode, is to convert and
process your job. This same system is to process the job's output.

Chapter 5. Guide to Job and Step Control 5-3

When you specify that a job has affinity to a specific system (or systems) or to independent
mode, only the system you specify can select the job for conversion and processing. The system
selects the job only if the mode of the system (independent or not) matches that of the job.

If you submit a job with the NOTIFY parameter specified on the JOB statement or the job
includes a JES2 NOTIFY statement, then the mode of the job (independent or not) must match
that of the system at which the job is submitted. That is, for TSO submitted jobs, you cannot
change the system affinity using the SYSAFF parameter.

For more information on the JES2 multi-access spool configuration, see SPL: JE82
Initialization and Tuning. For more information on coding the SYSAFF parameter, see
"/*JOBPARM Statement" on page 16-4.

Selecting a Processor in JES3

JES3 automatically selects a processor for a job based on device, volume, and data set
dependencies known to it. However, if any of the dependencies are not known to JES3, the job
can be processed incorrectly or can fail. The section, "Allocating Data Resources in a JES3
System" on page 6-4, discusses these dependencies in more detail. There can also be processor
dependencies: a special system feature such as an emulator, a nonstandard catalog, or a
system-managed device that JES3 will not recognize unless you define which processor is
required using the SYSTEM parameter on the JES3 MAIN statement. The format of the
SYSTEM parameter is:

SYSTEM={ANYIJGLOBALIJLOCALI [I] (main-name[,main-name] ...)}

The subparameters of the SYSTEM parameter, JGLOBAL and JLOCAL, request the global or
a local MVS processor. To specify particular processors or exclude particular processors, code
the main-name value on the MAIN SYSTEM parameter for each processor.

Not all classes are eligible to run on all processors; therefore, make sure that the job class for
the job is eligible before selecting a specific processor.

JES3 flushes a job if it specifies a job class (on the JOB or MAIN statements) and a specific
processor(s) (on the SYSTEM and TYPE subparameters on the MAIN statement) that are
incompatible. A processor(s) is defined for each valid job class on the JES3 CLASS
initialization statement during JES3 initialization. For example, if a job specifies CLASS = C
and SYSTEM = SY1, then the processor SYI must have been defined on the CLASS
initialization statement for class C.

If you do not specify the SYSTEM parameter, or if you omit the MAIN statement, the job is
eligible to run on those processors for which its class is eligible.

If any DD statement in the job contains a device address in the UNIT parameter and that
device is either JES3-managed or jointly-managed (JES3/MVS), you .must use the SYSTEM or
TYPE parameters to restrict job eligibility to the processor that has a path to that device.

5-4 MVS JCL

Conditionally Executing Job Steps

Depending on the results of one step of a job, you may not wish to execute subsequent steps.
For example, if a compilation fails, you would not want to waste computing time attempting
subsequent link-editing or execution steps. You can specify tests to determine whether to bypass
or execute job steps, based on the results from previous steps. To do this code the COND
parameter on either a JOB or EXEC statement.

Programs indicate the results of a job step in a return code. Return codes range from 0 to 4095.
You can code the COND parameter to test the return codes that the compiler, assembler, and
linkage editor programs issue.

Some return codes are standard for certain programs; for example, a return code of 8 issued by
a compiler or linkage editor indicates that serious errors were found and execution is likely to
fail. In problem programs, assign a number as the return code to signify a certain condition.
For example, if STEPI of a job reads accounts that are processed in subsequent job steps, you
might set a return code of 10 if no delinquent accounts are found. Before STEP3 executes to
process delinquent accounts, test the return code from STEP1; if the return code from STEPI is
10 - there are no delinquent accounts - you can skip STEP3. Specify the test to check the
return code from STEPI by coding the COND parameter.

Note: When JES3 determines the setup requirements for any given job, it does so without
regard to any COND parameters that may be specified on the EXEC statements. All jobs are
processed as though each step will be executed. This is necessary because setup requirements
are determined in advance of job execution. The JES3 interpreter DSP (dynamic support
program) has no way of predicting whether any given step will or will not execute, or what
return code the program will produce.

Specifying Return Code Tests on the JOB Statement

In the COND parameter, specify tests to determine if the system should bypass a job step.
When you code the COND parameter on a JOB statement, and if the system determines that a
comparison is true, it bypasses all remaining job steps.

For example, if you code COND = «(10,GT),(20,LT)) on the JOB statement, you are asking, "Is
10 greater than the return code or is 20 less than the return code?" If either is true, the system
skips all remaining job steps.

If any job step return code is 12, neither test is satisfied: no job step is skipped. All the tests
you specify must be false if processing is to continue without skipping any job steps. If the
return code is 25, the first test is still false, but the second test is satisfied: 20 is less than 25.
The system will bypass all remaining job steps, if you code the COND parameter on the JOB
statement.

Note: If any job step abnormally terminates, MVS bypasses all subsequent steps unless you
code the COND parameter on the EXEC statement. (See the section "Specifying the COND
Parameter on the EXEC Statement.") If you want to restart the same step that terminated
abnormally you can use the checkpoint/restart facility of the operating system. (See "Restarting
a JOB" in this chapter.)

Chapter 5. Guide to Job and Step Control 5-5

The format of the COND parameter on the JOB statement is:

COND=«code,operator) [,(code,operator)] •••)

Replace "code" with any number from ° to 4095. Replace the term "operator" with one of the
following:

GT (greater than)
GE (greater than or equal to)
EQ (equal to)
LT (less than)
LE (less than or equal to)
NE (not equal to)

If you coded COND = ((50,GE),(60,LT)), it would read "if 50 is greater than or equal to a
return code, or 60 is less than a return code, I want the remaining job steps bypassed." In
other words, the job continues as long as return codes range from 51 through 60. If you want
to make only one return code test, you need not code the outer parentheses. For example,
COND = (8,NE). A maximum of eight conditions can be established. For example, if you
code:

COND= ((5 , GT) , (8, EQ) , (12 , EQ) , (1 7 , EQ) , (19 , EQ) , (2 1 , EQ) , (23 , LE))

Your job will continue only if the return codes are: 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 20, or
22.

The system applies t~e tests you specify with the COND parameter against the return code, if
any, that each step in your job produces. You can best take advantage of this parameter when
the return codes of each job step have compatible meanings. For example, a return code of 4
from the COBOL compiler indicates that the source program was compiled and some minor
errors were found; the same return code of 4 from the linkage editor indicates that a load
module was produced, but an error that may cause failure at execution time has been found. If
you want to chance processing even if small errors occur, code COND=(4,LT); that is, the job
terminates if the return code of any step is greater than 4. If you only want to continue
processing when no errors occur,code COND=(4,LE); that is, the job terminates if the return
code of any step is greater than or equal to 4. (All codes greater than 4 indicate major errors
for both the COBOL compiler and the linkage editor.)

If the same return code has different meanings in different job steps, or if you want to take
different actions according to which job step produced the return code, use the COND
parameter of the EXEC statement to set up conditions for individual job steps. Using the
COND parameter on both the JOB and EXEC statements allows you to set some conditions
that apply to all steps in the job and other conditions that apply only to particular job steps.

Relationship to the COND Specification on the EXEC Statement

If you code the COND parameter on the JOB statement and on one or more of the job's EXEC
statements, and the return code test requested on the JOB statement is satisfied, the job
terminates. The job terminates regardless of whether or not the return code test requested on
the EXEC statement is satisfied.

If the test requested on the JOB statement is not satisfied and the return code test requested on
the EXEC statement is satisfied, the step is bypassed.

5-6 MVS JCL

If you omit the COND parameter from the JOB statement, no return code tests are performed
for the entire job. If you want return codes tested for a given job step, use the COND
parameter on the EXEC statement for that job step. If you do not code the COND parameter
on either the JOB or the EXEC statements, the system does not perform any return code tests
but tries to execute each step in the job.

Note: The COND parameter of the EXEC statement is slightly different from the COND
parameter of the JOB statement. See the following section, which also contains examples of
using the COND parameter in both the JOB and EXEC statements.

Specifying Return Code Tests on the EXEC Statement

The COND parameter of the EXEC statement lets you:

• Make as many as eight tests on return codes issued by preceding job steps or cataloged
procedure steps, which completed normally. If anyone of the tests is satisfied, the job step
is bypassed.

• Specify that the system execute the job step even if one or more of the preceding job steps
abnormally terminates or only if one or more of the preceding job steps abnormally
terminated.

The system performs the tests you specify with the COND parameter of the EXEC statement in
addition to the tests you specify with the COND parameter of the JOB statement. That is, the
system first performs the tests in the JOB statement. If any conditions you specify on the JOB
statement are met, the job is discontinued regardless of what you specify in the EXEC
statements.

Abnormal termination of a job step normally causes·the system to bypass subsequent steps and
to terminate the job. However, by means of the COND parameter on the EXEC statement,
you can specify execution of a job step after one or more preceding job steps have abnormally
termina ted.

For the system to act on the COND parameter, a job step must abnormally terminate while the
program has control. If a job step abnormally terminates during scheduling, due to failures
such as JCL errors or inability to allocate space, the system bypasses the remaining job steps,
no matter what you specified in any COND parameter.

The format of the COND parameter on the EXEC statement is:

COND=((code,operator[,stepname] [.procstepname])
[,(code,operator[,stepname] [.procstepname])] ... [,EVEN]

[, ONLY]

You can write the term (code,operator[,stepname][.procstepname] up to eight times, or you can·
write either EVEN or ONLY and the term (code,operator[,stepname][.procstepname]) up to
seven times.

Replace the term "code" with any decimal integer from 0 through 4095.

Chapter 5. Guide to Job and Step Control 5-7

Replace the term "operator" with one of the following:

GT (greater than)
GE (greater than or equal to)
EQ (equal to)
LT (less than)
LE (less than or equal to)
NE (not equal to)

Replace the term "stepname" with the name of the previous job step that issues the return code
to be tested. If you do not code a "stepname," the test indicated is performed on all preceding
steps.

For example, if you write:

COND=«20,GT,STEPl),(60,EQ,STEP2»

it would read "Bypass this step if 20 is greater than the return code STEPI issues, or if STEP2
issues a return code of 60."

If you write:

COND=«20,GT,STEPl),(60,EQ»

it would read "Bypass this step if 20 is greater than the return code STEPI issues, or if any of
the preceding steps issues a return code of 60."

If you want only one test made, omit the outer parentheses. F or example:

COND=(lO,LT) or COND=(15,NE,STEP5)

When the return code is issued by a cataloged procedure step, you may want to test it in a later
job step outside of the procedure. In order to test it, you must give both the name of the job
step that invokes the procedure and the procedure stepname, for example:

COND=«code,operator,stepname.procstepname), ...).

If you write:

COND=(7,LT,STEP4.LINK)

it would read "Bypass this step if 7 is less than the return code issued by a procedure step
named LINK in the cataloged procedure called by an EXEC statement named STEP4." For
additional information on using the COND parameter with cataloged procedures, see "Using
the COND Parameter within Cataloged Procedures" on page 5-13.

Using the COND Subparameters EVEN and ONLY

The EVEN subparameter causes the system to execute the step even if one or more of the
preceding job steps abnormally terminated. However, if any return code tests specified in this
job step are satisfied, the system bypasses this step.

The ONLY subparameter causes the system to execute the step only if one or more of the
preceding job steps abnormally terrrllnated. However, if any return code tests specified in this
job step are satisfied, the system bypasses the step.

5-8 MVS JCL

The EVEN and ONLY subparameters are mutually exclusive. You can code whichever
subparameter you select in combination with up to 7 return code tests, and the subparameter
can appear before, between, or after return code tests, for example:

COND=(EVEN,(4,GT,STEP3))
COND=((8,GE,STEP1),(16,GE),ONLY)
COND=((15,GT,STEP4),EVEN,(30,EQ,STEP7))

When a job step abnormally terminates, the system scans the COND parameter on the EXEC
statement of the next step for the EVEN or ONLY subparameter. If neither is present, the the
system bypasses the job step. The system then scans the EXEC statement of the next step for
the EVEN or ONL Y subparameter. If EVEN or ONLY is specified, the system makes any
return code tests on all previous steps specified that executed and did not abnormally terminate.
The step is bypassed if any test is satisfied, or if any previous job step abnormally terminated
because it exceeded the time limit for the job. Otherwise, the job step is executed.

F or example, if you write:

COND=EVEN

it would read, "Execute this step even if one or more of the preceding steps abnormally
terminated during execution."

If you write:

COND=((lO,LT,STEPA),(20,EQ),ONLY)

it would read, "Execute this step only if one of the preceding steps terminated abnormally; but
bypass it if 10 is less than the return code STEPA issues or if any of the steps that terminated
normally issued a return code of 20."

If you write:

COND=((lO,LT,STEPA),(20,EQ),EVEN)

it would read, "Bypass this step if 10 is less than the return code STEP A issues, or if any of the
preceding steps issues a return code of 20; otherwise execute this step even if one of the
preceding steps terminated abnormally."

If you omit the COND parameter,the system makes no return code tests and bypasses the step
if any of the preceding job steps abnormally terminated.

Examples of using the COND Parameter in a Job

Any tests specified via the COND parameter of the JOB statement take precedence over those
specified via EXEC statements. For example, Figure 5-1 on page 5-11 shows .an input deck
with nine steps and the return codes produced by those steps that executed. The fo110wing tests
are performed:

• Before STEP2 (STEP1 produced a return code of 6):

1. Is 10 less than 6? No.
2. Is the return code 2 or 4? No. Execute STEP2

Chapter 5. Guide to Job and Step Control 5-9

• Before STEP3 (STEP2 produced a return code of 2):

1. Is 10 less than 2 or 6? No.
2. Did one or more of the preceding steps terminate abnormally? No. Bypass STEP3.

• Before STEP4:

1. Is 10 less than 2 or 6? No.
2. Is 5 greater than 6? No.
3. Is one of the preceding return codes equal to 2? Yes. Bypass STEP4.

• Before STEP5:

1. Is 10 less than 2 or 6? No. Execute STEP5.

• Before STEP6 (STEP5 produced a return code of 9):

1. Is 10 less than 9, 2, or 6? No.
2. Is 8 greater than 9? No.
3. Did one of the preceding steps terminate abnormally? No. Execute STEP6.

• Before STEP7 (STEP6 produced a return code of 10):

1. Is 10 less than 10, 9, 2, or 6? No.

2. Is 4 greater than return code of STEP4? STEP4 was bypassed and did not produce a
return code so. this test is ignored. Execute STEP7.

• Before STEP8 (STEP7 produced a return code of 12):

1. Is 10 less than 12, 10, 9, 2, or 6? Yes. Bypass STEP8 and STEP9.

5-10 MVSJCL

//MYJOB JOB EXEC A.SMITH,COND=(10,LT) Return Code
//STEP1 EXEC PGM=AAA 6

//STEP2 EXEC PGM=BBB,COND=«2,EQ),(4,EQ)) 2

//STEP3 EXEC PGM=CCC,COND=ONLY •

//STEP4 EXEC PGM=DDD,COND=«S,GT,STEP1),(2,EQ))

//STEPS EXEC PGM=EEE 9

//STEP6 EXEC PGM=FFF,COND=«8,GT,STEPS),EVEN) 10

//STEP7 EXEC PGM=GGG,COND=(4,GT,STEP4) 12

//STEP8 EXEC PGM=HHH

//STEP9 EXEC PGM=III,COND=ONLY

Figure 5-1. Using the COND Parameter

Chapter 5. Guide to Job and Step Control 5-11

Figure 5-2 on page 5-13 is another example of the use of the COND parameter. This figure
shows an input deck with nine steps and the return codes produced by those steps that were
executed. The following tests are performed:

• Before STEP2 (STEPI produced a return code of 4):

1. Is 5 equal to 4? No.
2. Is 7 less than 4? No. Execute STEP2.

• Before STEP3 (STEP2 terminated abnormally):

1. Is 5 equal to 4? No.
2. Is EVEN or ONLY specified in STEP3? Yes.
3. Is 20 greater than 4? Yes. Bypass STEP3.

• Before STEP4:

1. Is 5 equal to 4? No.
2. Is EVEN or ONLY specified in STEP4? Yes.
3. Are any of the preceding return codes equal to 3? No. Execute STEP4.

• Before STEP5 (STEP4 produced a return code of 6):

1. Is 5 equal to 6 or 4? No.

2. Is 2 less than the return code of STEP3? STEP3 was bypassed and did not produce a
return code, so this test is ignored.

3. Is EVEN or ONLY specified in STEP5? No. Bypass STEP5.

• Before STEP6:

1. Is 5 equal to 6 or 4? No.
2. Is EVEN or ONLY specified in STEP6? No. Bypass STEP6.

• Before STEP7:

1. Is 5 equal to 6 or 4? No.

2. Is EVEN or ONLY specified in STEP7? Yes.

3. Is 6 equal to the return code of STEP5? STEP5 was bypassed and did not produce a
return code, so this test is ignored. Execute STEP7.

• Before STEP8 (STEP7 produced a return code of 5):

1. Is 5 equal to 5, 6, or 4? Yes. Bypass STEP8 and STEP9.

5-12 MVS JCL

IIABC
IISTEPl

IISTEP2

IISTEP3

IISTEP4

IISTEP5

IISTEP6

IISTEP7

IISTEP8

IISTEP9

JOB 12345,COND=(5,EQ)
EXEC PGM=A

EXEC PGM=B,COND=(7,LT)

EXEC PGM=C,COND=«20,GT,STEP1),EVEN)

EXEC PGM=D,COND=«3,EQ),ONLY)

EXEC PGM=E,COND=(2,LT,STEP3)

EXEC PGM=F

EXEC PGM=G,COND=«6,EQ,STEP5),ONLY)

EXEC PGM=H,COND=EVEN

EXEC PGM=I

Figure 5-2. Using the COND Parameter within a Failing Step

Using the COND Parameter within Cataloged Procedures

Return Code
4

ABEND

6

5

When the job step uses a cataloged procedure, you can establish return code tests and the
EVEN or ONL Y subparameter for a procedure step by including, as part of the keyword
COND, the procedure stepname. For example:

COND.procstepname=condition codes

This specification overrides the COND parameter in the named procedure step, if one is
present. You can code as many parameters of this form as there are steps in the cataloged
procedure. For example, the following EXEC statement passed COND parameters to two
procedure steps of a cataloged procedure named PROC4. The name of the two procedure steps
are STEP4 and STEP6.

IITEST EXEC
II
II

PROC=PROC4,COND.STEP4=«7,Lr,STEP1) ,
(5,EQ),EVEN),COND.STEP6=«2,EQ),
(lO,GT,STEP4))

To establish one set of return code tests and the EVEN or ONLY subparameter for all steps in
a procedure, code (on the EXEC statement that invokes the procedure) the COND parameter

Chapter 5. Guide to Job and Step Control 5-13

without a procedure stepname. This specification replaces all COND parameters in the
procedure, if any are present. F or example:

//TEST EXEC PROC4,COND=«7,LT,STEP1),(S,EQ))

The stepname you specify in the condition, for example, STEP2 in (5,EQ,STEP2), can be the
name of either a preceding procedure step in the cataloged procedure or of a preceding step in
the job.

Note: Do not use the same stepnames for EXEC statements in your job as those used for
procedure steps in any cataloged procedure used in that job.

You can also test the return code produced by a procedure step of another cataloged procedure
that this job uses. To do this, code the COND parameter with the following format.

COND.procstepname=(codes,stepname.procstepname)

The following example illustrates this use of the COND parameter.

Your job contains

IITWO EXEC PROCA

CD @

IITHREE EXEC PROCB,COND.s:n = (IO,LT,TWO.EDIT)

<D 0 '00) 0)

Cataloged Procedure
PROCA

CD
j/EDIT EXEC

CD

Cataloged Procedure
PROCB

o
IIST3 EXEC

·0

Previous step in your job that calls the cataloged procedure containing the procedure step that issues the return
code you want the system to test.

2 Cataloged procedure called by previous step in your job.

3 Procedure step that issues the return code you want the system to test.

4 Cataloged procedure, called by this step in your job, that includes the procedure step you want the system to
bypass based on the return code tests.

5 Procedure step you want the system to bypass based on return code tests.

6 The return code test the system performs. (If 10 is less than the return code issued by procedure step EDIT,
bypass procedure step ST3.)

5-14 MVS JCL

You can direct the system to bypass all steps in a procedure by coding the COND parameter
without a procedure stepname. In the above example, if you want the system to bypass the
entire PROCB cataloged procedure when 10 is less than the return code issued by step EDIT of
cataloged procedure PROCA, code:

//THREE EXEC PROCB,COND=(lO,LT,TWO.EDIT)

Notes:

1. When ajob step that contains the EVEN or ONLY subparameter references a data set that
was to be created or cataloged in a preceding step, the data set (1) will not exist if the step
creating it was bypassed, or (2) may be incomplete if the step creating it abnormally
terminated.

2. It is meaningless to specify the COND parameter for the first step of a job.

Using the COND Parameter to Force Step Execution

Normally, when you code the COND parameter on an EXEC statement, you are instructing the
system to bypass execution of this step if the return code tests are satisfied.

There might be a job step that you want the system to execute (rather than bypass) if the return
code tests are satisfied. For example, you might want to execute a step that cleans up data sets
if an earlier step executes but issues a return code that indicates there might be a problem that
could cause job failure in a later step.

You can use the COND parameter on an EXEC statement to force the system to execute
(rather than bypass) a step if any return code tests are satisfied by adding an extra step to your
job. To do this,

1. code an additional EXEC statement that executes program IEFBRI4.

2. code on this EXEC statement a COND parameter with condition codes that specify the
conditions under which you want the system to execute the original step. (These codes will
cause the system to bypass this step.)

3. On the step you want to execute, code: COND = (O,EQ,stepname) where stepname is the
name of the step that executes program IEFBRI4.

The following example illustrates using the COND parameter to instruct the system to execute a
job step if return code tests are satisfied.

//jobname JOB
//STEPl EXEC

//STEP2 EXEC

//STEP3 EXEC

//TESTCODE EXEC PGM=IEFBR14,COND=(B,LE)
//CLEANUP EXEC PGM=PROB,COND=(O,EQ,TESTCODE)

Chapter 5. Guide to Job and Step Control 5-15

1. The COND parameter on job step TESTCODE specifies: if any preceding step issues a
return code less than 8, execute· this step. (If 8 is less than or equal to the return code
issued by any preceding step, bypass this step.)

2. The COND parameter on step CLEANUP specifies: if step TESTCODE issues a return
code equal to 0, bypass this step.

3. Step CLEANUP will execute only if step TESTCODE is bypassed because program
IEFBR14 always issues a return code of 0 when it executes.

4. If step 1, 2, or 3 issues a return code of 8 or greater, step TESTCODE is bypassed and step
CLEANUP will execute.

5. If step 1, 2, or 3 issues a return code of less than 8, step TESTCODE will execute issuing a
return code of 0 and the system bypasses step CLEANUP.

Limiting Job and Job Step Execution Time

The TIME parameter specifies the maximum amount of time a job may use the processor. Two
benefits of the TIME parameter are that it allows you to find out through messages how long
the job uses the processor (processor time used appears on the output listing), and it helps limit
the processor time wasted by a step that goes into a loop. Normally, the system terminates a
job that exceeds its time limit.

The format of the TIME parameter on the JOB and EXEC statements is:

I TIME={14401 ([minutes] [,seconds])}

Code 1440 if the job can use the processor for 24 hours or more, or code 1440 if any of the
job's steps should be allowed to remain in a wait state for more than the established time limit.

Coding TIME = 1440 also lifts the restrictions on the amount of time a job step may remain in
a wait state. With System Management Facilities, the installation determines this time limit. In
this case, a job step remaining in a wait state for more than the established time limit causes
termination of the job unless a user-provided exit routine extends the wait-state time limit for
that step.

Replace the term "minutes" and "seconds" with the maximum number of minutes and seconds
that the step can use the processor. The number of minutes must be less than 1440 (24 hours);
the number of seconds must be less than 60. That is, the maximum time you can specify is
TIME = (1439,59).

If you code the processor time limit in minutes only, you need not code the parentheses. For
example, code twelve minutes as

TIME=12

If the processor time limit is given in seconds only, you must code both the parentheses and a
comma to indicate the absence of minutes. For example, code "thirty seconds" as:

TIME={ ,30)

5-16 MVS JCL

Because the processor time-used field is checked at intervals of about 10.5 seconds, the actual
amount of time that a job uses the processor can exceed the time specified on the TIME
parameter by up to 10.5 seconds.

A job that exceeds the specified limit causes termination of the job unless you use a user exit
routine to extend the time.

TIME = 0 is not supported for the JOB statement. The results are unpredictable.

If you code TIME=O on an EXEC statement, the step will fail after the unexpired time from
the previous step is used up.

If the TIME parameter is coded on the JOB statement with a value other than 1440, the time
limit for each step is set to the step time limit (the value coded on the TIME parameter of the
EXEC statement or the limit specified by the installation) or the remaining job time, whichever
is smaller.

If the TIME parameter is not coded on the JOBstaternent, each job step is timed individually
according to the value coded on the TIME parameter of the EXEC statement or the limit
specified by the installation.

The time limit specified for a job or the time remaining for successive steps in a multistep job is
converted, by the system, to seconds and then rounded to the nearest unit (1 unit = 1.048576
seconds). Thus a step can begin execution with up toone-half unit more or one-half unit less
time than expected. For example, if the time remaining for the job is less than one-half unit, a
step will begin execution with zero time, resulting in an abnormal termination.

If you omit the TIME parameter on the JOB statement, there is no processor time limit
assigned to the job; however, each job step is still timed. Y ()u can specify different processor
time limits for each step in the job by coding the TIME parameter on the EXEC statement
associated with each step, as described below.

Using the TIME Parameter for Cataloged Procedures

When the job step uses a cataloged procedure, ypu can set a processor time limit for a single
procedure step by including, as part of the TIME parameter, the procedure stepname. For
example: ' '

//stepname EXEC PGM=program-name,TIME.procstepname=1440

This specification overrides the TIMEparanieter in the named procedure step, if one is present.
You can code as many parameters of this form as there are steps in the cataloged procedure.
For example, the following EXEC statement sets a time limit for two procedure steps of a
cataloged procedure named PROC5. The name of the procedure steps are ABC and DEF.

//AAA EXEC PROC5,TIME.ABC=20,TIME.DEF=(3,40)

Chapter 5. Guide to Job and Step Control 5-17

Examples of Coding the Time Parameter on JOB and EXEC Statements

//FIRST JOB
//STEPl EXEC
//STEP2 EXEC

TIME=2
TIME=l
TIME=l

In this example the total job is allowed 2 minutes of execution time and each step is allowed 1
minute. Should either step attempt to execute beyond 1 minute the entire job will terminate
beginning with that step.

//SECOND JOB
//STEPl EXEC
//STEP2 EXEC

TIME=3
TIME=2
TIME=2

In this example the total job is allowed 3 minutes of execution time. Each step is· allowed 2
minutes of execution time. Should either step attempt to execute beyond 2 minutes, the entire
job will terminate beginning with that step. Should STEPI execute for 1.74 minutes and STEP2
attempt to execute beyond 1.26 minutes, the job will be terminated because of the 3-minute
time limit specified on the JOB statement.

To set a process~r time limit for an entire procedure, code the TIME parameter without a
procedure stepname. This specification overrides all TIME parameters in the procedure if any
are present. For example:

//AAA EXEC PROC5,TIME=20

Specifying the TIME parameter on the JES2 JOBP ARM Statement

When you code the TIME parameter on a JES2 JOBPARM control statement, you instruct
JES2 to issue messages to the operator when the job exceeds the estimated execution time.

Controlling Job Queuing through Job Classes and Priorities

One of the most important features of the operating system is its ability to halance the job mix
by recognizing the classes and priorities assigned to jobs.

There can be up to 36 job classes in your installation (two additional classes are reserved for
started tasks and time sharing users). The type of job assigned to each class is arbitrary and
should be determined by each installation. For example, some installations may assign a class
to each of the following types of jobs:

• I/O-bound jobs.

• Processor-bound jobs.

• Jobs that are being debugged.

• Jobs that use a particular resource. For example, if there are relatively few tape drives in
your installation, two programs that use that tape drives should not be multi programmed.
Therefore, those programs should be assigned to the same job class to avoid their
simultaneous selection. Similarly, if there is a data base that programs must access serially,
Therefore, thqse programs should be assigned to the same job class to avoid their
simultaneous selection.

5~18 MVS JCL

In general, all jobs of the same characteristics should be in the same class.

The priority assigned to each job determines the order of execution within each class. There
can be up to 15 priorities in each class. The higher the priority (the higher the number), the
sooner your job will be executed.

Your manager or supervisor should tell you which class and priority to assign to your job.

Establishing job processing balance in JES3

The lORA TE parameter on the JES3 MAIN statement specifies a value for the job to
determine the mix of jobs for each processor. It defines the relationship between
processor-bound processing and I/O-bound processing for that job. The I/O rate for a job is
expressed as being high, medium, or low. JES3 attempts to provide a balance of
processor-bound and I/O-bound jobs to improve the scheduling of jobs for execution.

The IORATE parameter regulates how a job is scheduled. In contrast, the PERFORM
parameter on either the JOB or EXEC statement regulates how a job executes. The
PERFORM parameter is discussed in "Performance of Jobs and Job Steps in JES3" on
page 5-22.

Assigning a Job to a Job Class in JES2

An installation establishes job classes to group jobs. By assigning jobs to job classes, the
installation tries to avoid contention between jobs that require the same resources by preventing
them from running concurrently; in short, grouping jobs is an attempt to provide a better mix
of jobs for more efficient system use. The installation determines which characteristics are most
important in achieving a good balance of jobs in the computing system.

Assign a job to a job class by coding the CLASS parameter on the JOB statement. The format'
of the CLASS parameter is:

I CLASS=jobclass

Replace the term "jobclass" with a letter from A through Z or a number from 0 through 9.
For example, if your job belongs to class C, code

CLASS=C

If you omit the CLASS parameter the default job class is determined by the input device from
which the job entered the system.

Assigning a Job to a Job Class in JES3

A job class describes the type of job being submitted, that is, production, testing, and so forth.
The installation establishes it; the class has no inherent meaning except as the installation has
defined it. It is used by the installation for scheduling jobs on eligible parameter on the JOB
statement, as discussed above, or the CLASS parameter on the JES3 MAIN control statement.
If neither of these parameters is coded, the job will be assigned an installation-defined standard
class default.

Chapter 5. Guide to Job and Step Control 5-19
I -----

Assigning a Priority to a Job for JES2

Within a job class, jobs are selected for execution from the execution queue according to job
priority. Jobs with the same class and priority are placed in the execution queue in the
execution queue in a first-in first-out order. In most cases, JES2 calculates the job's priority.
However, for certain jobs, you or the operator can assign different priorities. Specify job
priority by coding a JES2 PRIORITY statement or by coding the PRTY parameter on the JOB
statement.

Priority is explicitly stated on a PRIORITY statement. When you do not specify a priority,
JES2 uses the estimated number of cards, lines of output, and the time for job execution,
according to installation algorithms, to calculate the priority. JES2 also uses these factors to
monitor job execution time and output. If you do not code these estimates, JES2 assumes
installation defaults. If your job exceeds any of these estimates, JE82 issues warning messages
to the operator. In some cases, the installation can specify that the operator cancel the job.
For example, an installation might specify that the lower the estimated execution time and
output, the higher the priority. This can enforce programmers specifying the correct amounts
or the job is canceled. JE82 sets a job's selection priority to 1 following execution if the job's
execution priority was 12 or less. If the execution priority was greater than 12, JES2 sets the
selection priority to 15.

If you wish to assign a different priority to your job, use the PRTY parameter.

The format of the PRTY parameter on the JOB statement for JES2 is:

I PRTY=pr ior i ~y

Replace the term "priority" with an integer from 0 through 15. The highest priority number is
15.

Note: To assign a different priority to a job step, code the DPRTY parameter on the EXEC
statement associated with the step, as described in "Assigning a Dispatching Priority to Job
Steps" on page 5-21. The priority assigned to the job applies to any step that does not use the
DPRTY parameter.

Assigning a Priority to a Job in JES3

Within a job class group, jobs are selected for execution according to job priority. Jobs with
the same priority are placed in a first-in first-out order. Specify job priority by coding the
PRTY parameter on the JOB statement.

The format of the PRTY parameter on the JOB statement for JES3 is:

I PRTY=pr ior it Y

Replace the term "priority" with an integer from 0 through 13. The highest priority number is
13.

5-20 MVS JCL

Note: To assign a different priority to a job step, code the DPRTY parameter on the EXEC
statement associated with the step, as described in the next section. The priority assigned to the
job applies to any step that does not use the DPRTY parameter.

The operator can change the priority order for jobs by priority aging or by deadline scheduling.
How the operator changes priority is discussed in JE83 Operator's Library.

Priority aging allows JES3 to increase the priority of a job after JES3 passes over it an
installation-specified number of times. A job can be bypassed because of an insufficient
number of devices or contention for a volume or data set or because there is not enough main
storage on an MVS processor. The installation defines priority aging; it you cannot specify it
using JCL.

Deadline scheduling allows you to specify a time of day when the job should be scheduled. If
the job is not scheduled by this time, JES3 will increase the priority of the job at
installation-defined intervals until it is scheduled. For more information on deadline
scheduling, refer to "Deadline Scheduling for JES3" on page 3-27.

In addition to job selection, raising a job's priority will cause the job to be given preferential
treatment in JES3 device selection. For more information on JES3 device selection, see
"Allocating Data Resources in a JES3 System" on page 6-4.

Assigning a Dispatching Priority to Job Steps

In most jobs, you will want the job's dispatching priority to default to an automatic priority
group (APG) instead of assigning your own dispatching priority. The automatic priority group
function is an algorithm that the system resources manager uses to attempt to increase system
throughput by dynamically adjusting the dispatching priority of associated address spaces.

If you do assign a dispatching priority, code the DPRTY parameter on the EXEC statement.
In the DPRTY parameter, you can code two values. The system substitutes these values in the
following formula to form the dispatching priority:

(value1 x 16) + value2 = step's dispatching priority

If you omit the DPRTY parameter completely, the job step is assigned the APG priority. If
valuel is omitted or it is equal to the APG value, the step is assigned the APG priority and any
value you code for value2 is ignored. In this case, value2 is obtained from the Installation
Performance Specification (IPS) using the performance group associated with the job step. (See
SPL: Initialization and Tuning Guide for information on IPS.) If value2 is not specified in the
IPS, a value of 6 is assigned to value2.

DPRTY Parameter

The format of the DPRTY parameter is:

I DPRTY=([value1] [,value2])

Replace both "value 1 " and "value2" with a number from 0 through 15.

Chapter 5. Guide to Job and Step Control 5-21

If you do not assign a number to "valuel," a default value of 0 is assumed. If you omit
"value!" you must code both the parentheses and a comma preceding "value2" to indicate the
absence of "valuel." For example, if you code:

DPRTY= (,5)

a value of DPRTY = (0,5) is assumed.

If you omit "value2" you need not code the parentheses. For example, if you code:

DPRTY=7

If you omit the DPRTY parameter, the job step is assigned the priority you specified for the
entire job either with the PRTY parameter of the JOB statement, or by default.,

When this step uses a cataloged procedure, you can assign a dispatching priority to a single
procedure step by including, as part of the DPRTY parameter, the procedure stepname, that is,
DPRTY.procstepname. This specification overrides the DPRTY parameter in the named
procedure step, if one is present. You can code as many parameters of this form as there are
steps in the cataloged procedure. For example, the following EXEC statement is used to
establish a dispatching priority for two procedure steps of a cataloged procedure named
PROC6. The names of the procedure steps are UP and DOWN.

//STEP9 EXEC PROC6,DPRTY.UP=(,8),DPRTY.DOWN=(4,6)

To assign a single dispatching priority to an entire cataloged procedure, code the DPRTY
parameter without a procedure stepname. This specification overrides all DPRTY parameters
in the procedure, if any are present. For example:

//STEP9 EXEC PROC=PROC6,DPRTY=(5,9)

Performance of Jobs and Job Steps in JES2

You can associate a job or job step with anyone of several performance group definitions.
Performance group definitions that the installation supplies describe the workload-dependent
processing rate the system should afford to an associated job or job step. Most performance
group definitions prescribe good processing rates under light system workload conditions.
However, when the system workload is moderate or heavy, some performance group definitions
will specify significantly lower processing rates than for other performance groups.

The installation defines the number and definition of performance groups needed to meet the
response requirements of its various users and will probably publish this information for your
use. Make the performance group association with the job or job step by coding an
appropriate performance group number on the PERFORM parameter of the JOB o~:EXEC
statement.

For further information concerning performance, refer to SPL: Initialization and Tuning Guide
and to SPL: JES2 Initialization and Tuning. '

5-22 MVS JCL

Performance of Jobs and Job Steps in JES3

To regulate the execution performance of a job in JES3, associate a job or job step with a
performance group. The installation defines performance groups that determine the rate at
which a given job will have access to the processor, storage, and I/O channels. Most
performance groups designate good processing rates under light system workload conditions.
However, when the system workload is moderate or heavy, some performance groups will have
significantly lower processing rates than others. The installation defines the performance
groups needed to meet the response requirements of its various users and will probably publish
this information for your use. Associate the performance group with a job or job step by
coding a performance group number on the PERFORM parameter on the JOB or EXEC
statements. The PERFORM parameter regulates how a job executes as contrasted with the
MAIN lORA TE parameter that regulates how a job is scheduled. The lORA TE parameter is
described in the section, "Establishing job processing balance in JES3" on page 5-19.

For further information concerning system performance, refer to SPL: Initialization and Tuning
Guide and to JES3 SPL: Initialization and Tuning.

Requesting Storage for Execution

In MVS, the storage available for a program consists of real storage and virtual storage:

• Real storage is the storage from which the central processing unit can directly obtain
instructions and data and to which it can directly return results.

• Virtual storage is addressable space that appears to the user as real storage, from which
instructions and data are mapped into real storage locations. The user address space is 16
million bytes. The user address space consists of the commonly addressable system storage,
the nucleus, and the pnvate address space (which includes the user's region).

When a program is selected, it is brought into virtual storage and divided into pages (a page is
4K bytes). The supervisor component of MVS is responsible for transferring pages of a
program into real storage for execution. This paging is done automatically by the supervisor;
to you, it appears as if the entire program exists in real storage.

Usually you assign a region size through the REGION parameter of the JOB statement, as
described below. In this case, each step of the job will be executed in that region. You can,
however, specify a different region size for each step in the job using the REGION parameter
of the EXEC statement. This is desirable in cases where different steps need a greatly different
region size.

When to Request Real Storage

For most programs, the supervisor transfers pages of a program to real storage as they are
required for execution; not all pages of a program are necessarily in real storage at one time
and the pages that are in real storage at once do not necessarily occupy contiguous space.
Certain programs, however, must have all their pages in contiguous real storage while they are
executing; they cannot be paged during execution. Such programs include:

• Programs that modify a channel program while it is active
• Programs that are highly time dependent

Chapter 5. Guide to Job and Step Control 5-23

These programs must be put into an area of virtual storage called the nonpageable dynamic
area, whose virtual addresses are identical to real addresses; they are the only programs for
which you should request real storage. If a job or job step must not be paged during execution,
identify it by coding ADDRSPC = REAL on either the JOB or the EXEC statement. Request
the amount of real storage needed ·via the REGION parameter.

Specifying Storage Requirements with the REGION Parameter

The meaning of the REGION parameter differs depending on whether the program can be
paged during execution (if ADDRSPC = VIRT is coded or implied) or cannot be paged during
execution (if ADDRSPC = REAL is coded).

Virtual Storage Requirements

When ADDRSPC = VIRT is coded or implied, two values are established internally from either
the REGION parameter or an installation-supplied default. When ADDRSPC = REAL is
coded, one value is established internally from either the REGION parameter or the
installation-supplied default. These internal values are used to limit all GETMAINs. (For
further information, see SPL: Job Management, Supervisor Services and Macro Instructions, and
the sections on the ADDRSPC and REGION parameters in this publication.)

The amount of space requested must include any additional requests the program makes during
its execution (for example, a request made with the GETMAIN macro instruction). Also, the
amount of storage requested must include sufficient space for the task termination function.
Task termination invokes certain system resource managers that can issue GETMAIN macro.
instructions for space in the user's region. The region must have enough unallocated storage
during task termination to allow the task termination function to complete.

If you do not specify the REGION parameter when ADDRSPC = VIRT is coded or implied,
the installation provides a default region size. That value, or if coded, the value. specified on
the REGION parameter, sets the upper boundary to limit region size for variable-length
GETMAINs. In addition, an IBM- or installation-supplied routine (lEALIMIT) uses the
region value to establish a second value, which the system uses to limit fixed-length and
variable-length GETMAINs when the space remaining in the region is less than the requested
minimum. When the minimum requested length for variable-length GETMAINs causes this
second value to be exceeded, the job or job step abnormally terminates. For further
information, see Supervisor Services and Macro Instructions.

Real Storage Requirements

When ADDRSPC = REAL is coded, the minimum region size must be 8K if the program to be
executed is reenterable and resides in an authorized library. In all other cases the minimum
region size must be 12K. Note that this is the minimum region for successful execution, but not
necessarily the minimum region size for successful job completion. If you are going to run
programs in an ADDRSPC = REAL environment, have them perform as much clean-up as
possible before terminating.

When a job step uses a cataloged procedure, you can request a region size for a single
procedure step by including, as part of the region parameter, the procedure stepname. For
example:

REGION.procstepname=valueK

5-24 MVS JCL

This specification overrides the REGION parameter in the named procedure step, if one is
present. You can code as many parameters of this form as there are steps in the cataloged
procedure. For example, the following EXEC statement is used to assign region sizes to two
procedure steps of a cataloged procedure named PROC8. The names of the procedure steps are
FIRST and SECOND.

IISTEP EXEC PROC8,REGION.FIRST=750K
II REGION.SECOND=700K

To request a single region size for an entire cataloged procedure, code the REGION parameter
without a procedure stepname. This specification overrides all REGION parameters in the
procedure, if any are present. For example:

IISTEP EXEC PROC=PROC8,REGION=650K

Note: If you have specified a REGION parameter on the JOB statement, REGION
parameters on the job's EXEC statements are ignored.

The REGION Parameter

The REGION parameter allows you to request:

• The maximum amount of storage to be allocated to the job. This figure must include the
size of those components that are required by your program and are not resident in storage.

The format of the REGION parameter is:

I REGION=valueK

• Code an even number for valueK. If you code an odd number, the system treats it as the
next highest even number.

• When you want to specify a different region size for each job step, code the REGION
parameter on the EXEC statements, instead of the JOB statement.

• If you code the REGION parameter on the JOB statement, REGION parameters coded on
the job's EXEC statements are ignored.

REGION = OK will get you all the storage available in the private area, that is, from the
top of the system region to the bottom of the common service area (CSA). The resulting
size of the region is unpredictable.

Using the JES3 LREGION Parameter to Define Logical Storage

The LREGION parameter of the JE83 / /*MAIN statement allows you to specify the
approximate size of the largest step's working set in real storage. JES3 uses the LREGION to
improve scheduling on an MVS main processor; However, you should consult your system
programming staff before using LREGION. LREGION values that are too small can cause a
performance degradation. For more information, see the JES3 SELECT initialization statement
in the JES3 SPL: Initialization and Tuning.

Chapter 5. Guide to Job and Step Control 5-25

Example of Requesting Storage

The purpose of this example is to·indicate how to request storage for a program when it is
important that it not be paged.

//JOB
//STEPl
//DDl
//STEP2
//DD2

JOB
EXEC
DD
EXEC
DD

BROWN,CLASS=D,MSGLEVEL=l
PGM=REAL,REGION=20K,ADDRSPC=REAL
DSN=DISK1,DISP=OLD
PGM=VIRT,REGION=75K,ADDRSPC=VIRT
DSN=DISK2,DISP=OLD

1. The JOB statement assigns the job to class D and requests the printing of all JCL
statements and messages.

2. STEP 1 is to be executed in real storage.

3. STEP2 is to be executed in virtual storage.

Restarting a Job at a Step or Checkpoint

When a job step abnormally terminates, you may have to resubmit the job for execution; this
means lost computer time and a delay in obtaining the desired results. The operating system
provides restart faCilities to reduce the effects of abnormal termination.

If a job step abnormally terminates or if a system failure occurs, the restart facilities allow you
to request that the job step be restarted either at the beginning of the step (step restart) or at
some point within the step (checkpoint restart). Furthermore, restart can occur automatically
after abnormal terinination, or it can be deferred until the job is resubmitted. Automatic
restarts are specified with the RD parameter, and deferred restarts with the RESTART
parameter. For detailed information on the checkpoint/restart facilities, s~e Checkpoint/Restart.

There are two types of restarts:

• Step restart, from the beginning of a job step.

• Checkpoint restart, from a checkpoint within a job step. You establish checkpoints in a job
step by coding the CHKPT macro instruction for each checkpoint. The CHKPT macro is
described in Data Management Macro Instructions. See also the DD CHKPT parameter.
It specifies that checkpoints are to be taken at end of volume for the data set defined by the
DD statement on which it is coded.

Whether you use step restart or checkpoint restart}the restart facility can be automatic or
deferred.

Automatic restart: To use automatic restart, code the RD (restart definition) parameter on the
JOB or EXEC statement. If you use this facility, the presence of a job journal is required. (A
job journal is established at JES2 initialization, or by coding JOURNAL = YES on the
//*MAIN JES3 statement for JES3, program in execution.) When a system failure occurs or a
job step abnormally terminates, and you have a job journal, the restart facility allows you to
have automatic restart by coding RD = R on the JOB or EXEC statements. If you have taken
checkpoints, the system restarts the job at the last checkpoint regardless of whether you have
coded the RD parameter.

5-26 MVS JCL

For JES2, when you code RD = R or RD = RNC, JES2 forces journaling. When a job step
abnormally terminates or a system failure occurs while the job is in execution and you do not
have a job journal, these jobs are ineligible for automatic restart regardless of whether or not
the RD parameter is coded.

For JES3, when a job step abnormally terminates or a system failure occurs while the job is in
execution and you do not have a job journal, these jobs are ineligible for automatic restart
regardless of whether or not the RD parameter is coded.

Deferred restart: To use deferred restart, code the RESTART parameter on the JOB
statement. This required parameter specifies a job step or a step of a cataloged procedure and
can specify a checkpoint identifier if you are using deferred checkpoint restart. The effect of
the parameter is simply to restart the job at the beginning of the specified step or checkpoint.
The SYSCHK DD statement is required when a job is being submitted for deferred checkpoint
restart and must specify explicit UNIT and VOLUME information if the checkpoint data set is
not cataloged.

Refer to Checkpointj Restart. for a complete description of planning for and using the
checkpoint restart facility.

The RD Parameter on the JOB Statement

A job can be automatically restarted at the beginning of the job step that abnormally
terminated (step restart) or within the step (checkpoint restart). In either case, automatic restart
can occur only if all of the following are true:

1. You use the RD parameter to request restart,

2. The completion code returned during abnormal termination indicates that the step is
eligible for restart, and .

3. The operator authorizes restart.

When you code the RD parameter on the JOB statement, the RD parameter applies to all steps
of the corresponding job and overrides the RD parameter you code on any EXEC s!atements of
the job.

A request for an automatic checkpoint restart (issuing the CHKPT macro instruction) overrides
a request for automatic step restart (coding RD = R on a JOB or EXEC statement).

Use the RD (restart definition) parameter to specify that the operator is to perform automatic
step restart if job failure occurs. You can also use the RD parameter to suppress, partially or
totally, the action of the CHKPT macro instruction. The format of the RD parameter on the
JOB statement is:

I RD={RIRNCINCINR}

When you do not code the RD parameter, the job is eligible for automatic checkpoint restart if
your program has requested checkpoints using the CHKPT macro instruction. However, the
job is not eligible for automatic step restart.

Chapter 5. Guide to Job and Step Control 5-27

When you code RD = R or RD = RNC on either the JOB or EXEC statements JES2 forces
joumaling.

The RESTART Parameter on the JOB Statement

Use the RESTART parameter to perform a deferred restart of a job. You can specify that the
system restart at a step (deferred step restart), or within the step at a checkpoint taken with the
CHKPT macro instruction (deferred checkpoint restart). The format of the RESTART
parameter is:

RESTART= ({* I stepnarne I stepnarne.procstepnarne} [, checkid])

Using the RESTART parameter.

Before resubmitting a job,

• Check all backward references to steps that precede the restart step. Eliminate all
backward references for the following keywords:

PGM on EXEC statements, and
VOLUME = REF = reference onDD.statements.

• Carefully review all EXEC statements that contain the COND parameter. If any of the
COND parameters contain values that refer to a step preceding the restart step, be aware
that the system ignores the COND parameters for these steps.

Using the RESTART parameter With Generation Data Sets

In the restart step or in steps following it, do not use the original relative generation numbers to
refer to generation data sets that were created and cataloged in steps preceding the restart step.
Instead, refer to a generation data set by its present relative generation number. For example,
if the last generation data set created and cataloged was assigned a generation number of + 2,
refer to it as 0 in the restart step and in steps following the restart step. If generation data set
+ I was also created and cataloged, you would refer to it as -1.

If generation data sets created in the restart step were kept instead of cataloged (that is,
DISP=(NEW,CATLG,KEEP) was coded and abnormal termination occurred), refer to
generation data sets during checkpoint restart by the same relative generation numbers that you
used to create them.

The RD Parameter on the EXEC Statement

Use the RD (restart definition) parameter to specify how the step restart facilities are used with
the CHKPT macro instruction, and whether you want to permit or suppress automatic restart.

For detailed information on the checkpoint/restart facilities, refer to Checkpoint/Restart.

The format of the RD parameter on the EXEC statement is:

RD[.procstepname]={RIRNCINCINR}

5-28 MVS JCL

Using the RD Parameter

Automatic restart will not be honored if you do not have a job journal. The journal data set in
JES3 is used if one of the following exists:

• RD = is specified on the JOB or EXEC statement

• JOURNAL=YES is specified on the JES3 MAIN statement

• JOURNAL = YES is specified on the CLASS initialization statement for this job, and the
JES3 MAIN statement did not override it

If you code the RD parameter on the JOB statement, any RD parameters coded on the job's
EXEC statements are ignored and the value coded on the JOB statement is effective for all
steps.

You can use the RD parameter values NC and RNC to suppress the action of the CHKPT DD
parameter.

The JES2 RESTART Parameter

If your job is executing before a re-IPL and you warm start JES2, and your job cannot restart
from a step or checkpoint, code the RESTART parameter on the JES2 JOBPARM control
statement.

The JES3 FAILURE Parameter

The FAILURE parameter on the JES3 MAIN control statement tells JES3 what action to take
if a system failure occurs.

Chapter 5. Guide to Job and Step Control 5-29

5-30 MVS JCL

Chapter 6. Guide to Data Allocation Control

This chapter discusses how to direct the system in its allocation of data resources. The
discussion covers the following:

• Using JES3 spool partitioning
• Controlling access to RACF-protected data sets
• Dynamically allocating and de allocating data sets
• Allocating data resources in a JES3 system

Using JES3 Spool Partitioning

When the system reads a job, it initially places the job on a spool volume or volumes. An
installation can divide its spool volumes into groups, known as partitions. Depending on how
your installation defines its partitions, you can make the system allocate all the spool data for a
particular job or all the spool data of a particular type, such as input, output, etc., to the spool
volume or volumes in a specified spool partition. Thus, you can prevent JES3 from spreading a
job's spool data sets across all spool volumes.

See J ES3 SP L: Initialization and Tuning for details on how the installation initializes the spool
partitions and how JES3 allocates a job's data sets to the partitions.

The following examples illustrate how to guide JES3's use of spool partitions during job
execution.

//ONE
//*MAIN
//STEPl
//OUTl
//OUT2

JOB

EXEC
DD
DD

SYSOUT=N
SYSOUT=S

No SPART parameter is specified on the MAIN statement. Therefore, this job's input spool
data sets are allocated to the default spool partition (PART A). Because there is no spool
partition specified for SYSOUT = N, these output spool data sets are allocated to the default
spool partition (PARTA). However, if this job executes on the processor named SY2, output
spool data sets for SYSOUT=N are allocated to spool partition PARTC as specified on the
JES3 MAINPROC initialization statement associated with the processor named SY2. Output
spool data sets for SYSOUT= S are allocated to spool partition PARTD as specified on the
SYSOUT initialization statement associated with the class name S.

//TWO
//*MAIN
//STEPl
//OUTl
//OUT2

JOB
CLASS=IMSBATCH
EXEC
DD SYSOUT=N
DD SYSOUT=S

Chapter 6. Guide to Data AllocatiOJ?":ontrol 6-1

No SPART parameter is specified on the MAIN statement. However, because a class is
specified on the MAIN statement, this job's input spool data sets are allocated to the spool
partition specified on the CLASS initialization statement associated with IMSBATCH
(PAR TB). Because there is no spool partition specified for SYSOUT = N, these output spool
data sets are allocated to the spool partition specified on the CLASS initialization statement
associated with IMSBATCH (PARTB). Output spool data sets for SYSOUT = S are allocated
to spool partition PARTD as specified on the SYSOUT initialization statement associated with
the class name S.

IITHREE
II*MAIN
IISTEPl
IIOUT
IIoUT2

JOB
CLASS=IMSBATCH,SPART=PARTE
EXEC
DD SYSOUT=N
DD SYSOUT=S

This job's input spool data sets are allocated to the spool partition specified by the SPART
parameter on the MAIN statement (PARTE) overriding the partition defined by the JES3
CLASS initialization statement. Because there is no spool partition specified for SYSOUT = N,
these output spool data sets are allocated to the spool partition specified by the SPART
parameter on the MAIN statement (PARTE). Output spool data sets for SYSOUT=S are
allocated to spool partition PARTD as specified on the SYSOUT initialization statement
associated with the class name S.

Controlling Access to RACF-Protected Data Sets

The IBM Resource Access Control Facility (RACF) is a program product that helps
installations achieve data security by controlling access to data sets. When the data sets a job
uses are RACF protected, the USER and PASSWORD parameters may be required on the JOB
statement to gain access to protected data sets.

For example:

liMINE JOB D58,TOM,USER=userid,PASSWORD=pswd

The USER parameter identifies the RACF-defined user and the PASSWORD parameter
identifies the user's current password.

Depending on the RACF options an installation has chosen, a user may also be required to
specify a RACF group name on the JOB statement in order to access some RACF-protected
resources. When an installation determines that this is necessary, you must code the GROUP
parameter in addition to the USER and PASSWORD parameters.

For example:

IIYOURS JOB D58,CHERI,USER=userid,PASSWORD=pswd,GROUP=groupname

Depending on the installation's procedures, the USER, PASSWORD, and GROUP parameters
may be omitted for jobs submitted through the internal reader by RACF ITSO users or directly
by other jobs.

6-2 MVS JCL

For more information about coding these parameters, see "GROUP Parameter" on page 10-12,
"PASSWORD Parameter" on page 10-20, and "USER Parameter" on page 10-41. For more
information about RACF, see Resource Access Control Facility (RACF) Security
Administrator's Guide.

Dynamically Allocating and Deallocating Data Sets

Dynamic allocation allows you to acquire resources as they are needed. One reason to use
dynamic allocation is that you may not know all of the device requirements for a job prior to
execution. Another reason is that it allows the system to use resources more efficiently; that is,
the system can acquire resources just before their use and/or release them immediately after use.
(Resources, as used here, refer to a ddname-data set combination with its associated volumes
and devices, if any.) The DYNAM DD statement parameter and DYNAMNBR EXEC
statement parameter indicate the number of dynamic allocations to be held in anticipation of
reuse. The system uses these indicators to establish a control limit for tracking resources that it
is holding in anticipation of reuse.

Use the DYNAMNBR parameter on the EXEC statement to replace the DD DYNAM
statements you would have to code. The format of the DYNAMNBR parameter is:

//stepname EXEC PGM=program-name,DYNAMNBR=n

Where n is the number of DD DYNAM statements you would otherwise have to code.

When you code the DYNAMNBR parameter and DD statements, the system uses the sum of
the number of DD-statements and the DYNAMNBR value to determine the limit of resources
it is to hold in anticipation of reuse.

You can dynamically deallocate resources during the execution of a job step (at the time the
data set is closed) by coding the FREE = CLOSE parameter on a DD statement.

There are some circumstances when you should not code the FREE parameter.

• The data set name is referenced in a subsequent step.
• The data set name is referenced in another DD statement in the same step.

Do not use the FREE parameter for a data set if a subsequent DD statement requests unit
affinity to this DD statement. For example, do not code the following:

//DDl DD DSN=dsname,DISP=OLD,UNIT=TAPE,VOL=SER=llllll,FREE=CLOSE

//DD3DD DISP=(,KEEP),DSN=dsname2,UNIT=AFF=DDl

For more information on coding the FREE parameter, see "FREE Parameter" on page 12-84.
If you do dynamically deallocate a resource at close time, it cannot be reopened in the same
step. If you do not want to dynamically deallocate the resource, either specify nothing or
specify FREE = END to let the system deallocate the resources at the end of the job step.

For more information on how to use dynamic allocation and deallocation and the control
limit, see SPL: Job Management.

Chapter 6. Guide to Data Allocation Control 6-3

Example of Dynamically Deallocating Data Sets

//PROS
//STEPl
//OUTl
//OUT2
//SYSIN

data

/*

JOB CLASS=A,MSGLEVEL=(2,O),PERFORM=70
EXEC PGM=TEST,DYNAMNBR=4,PARM=(P3,123,MTS)
DO SYSOUT=C,FREE=CLOSE
DO SYSOUT=A
DO *

I. The JOB statement specifies that this job will be processed in class A in performance'group
70. Only JCL statements will be printed.

2. The control limit is the sum of the number of DD statements coded and the value coded in the
DYNAMNBR parameter; in this case, seven. If this control limit is exceeded and a request
for another dynamic allocation is made, the request is not honored unless resources can be
deallocated so that the control value is not exceeded.

3. When OUTI is closed, it is immediately ready for printing.

Allocating Data Resources in a JES3 System

Data resources, that is, the devices, data sets, and volumes required for each DD statement
request, are allocated either by JES3 or by the sy~tem according to the DSNAME, DISP,
UNIT, and VOLUME parameters on the DD statement. Allocation is handled differently for
existing and new data sets and for devices managed by the system, JES3, or jointly. Allocation
requires access to the catalog.

Existing data sets: If you request an existing data set, data resources are allocated differently
accordIng to how the required or specified device is managed:

• A JES3-managed device: JES3 allocates the request before the job executes. For this
allocation, JES3examines the request in relation to other data requests in this and other
jobs.

• A MVS-manageddevice: The system allocates. the request as the step enters execution.

JES3 does not allocate direct access storage (DASD) space.

For a JES3-managed device, you can change the way JES3 handles the allocation by specifying
the SETUP parameter on the JES3 MAIN statement. See "Types of JES3 Setup" on-page 6-5.

New data sets: If you request a new nonspecific data set and you require or specify a
JES3-managed unit:

• JES3 allocates all tape and MSS requests.
• If you code PRIVATE in the VOLUME parameter, JES3 allocates all DASD requests.

6-4 MVS JCL

Device Management: In a JES3-controlled complex, devices are managed in three ways:
MVS-managed, jointly managed (JES3/MVS), or JES3-managed. The following chart shows
how each type of device can be managed.

Attribute of Device

How Managed
Permanently Resident Removable

MVS managed only X X

Jointly managed (JES3/MVS) X

JES3-managed only X

JES3 allocates JES3-managed devices and jointly managed devices. MVS allocates
MVS-managed and jointly managed devices. The system programmer defines how each device
is managed. Refer to "Requesting Units and Volumes" on page 7-24 for a brief discussion of
MVS allocation. Refer to SPL: Job Management for additional information on MVS
allocation and to JES3 SPL: Initialization and Tuning for additional information on JES3
allocation.

Catalog Access: To allocate data resources, JES3 accesses the catalog at job setup time,
whereas MVS accesses the catalog at step execution time. After job setup and before step
execution, the catalog can be changed by, for example, an IBM utility, user utility, or SVC
routine. Because JES3 and MVS access the catalog at different times, such catalog changes can
cause unpredictable results. Therefore, you must make sure that the catalog remains the same
from job setup until job execution.

Types of JES3 Setup

JES3 allocates devices in three different ways: job setup, high watermark setup, and explicit
setup.

Job setup: Job setup results in allocation of all the JES3-managed and jointly-managed devices
required in the job before the job executes.

To obtain job setup, specify SETUP = JOB on the MAIN statement. If you specify MSS = JOB
on the MAIN statement, JES3 allocates all mass storage system (MSS) requests~ However,
JES3 never mounts or demounts MSS volumes.

JES3 mounts the initial volumes necessary to run all steps before the job executes.

When volumes are no longer needed, they will be demounted and the devices deallocated, that
is, made available for use by another job. If you specify the FREE = CLOSE DD parameter,
JES3 deallocates the device when the data set is closed. If you are using the dequeue at
demount facility (early volume release) for multivolume data sets, JES3 deallocates volumes
when they are demounted. For information on the dequeue at demount facility, see the
TYPE=J OPEN macro option in SPL: Data Management.

Chapter 6. Guide to Data Allocation Control 6-5

High watermark setup:: High watermark setup results in JES3 reserving for a job the highest
number of devices of each type needed for anyone job step. High watermark setup does not
cause premounting of all mountable volumes. When you must use fewer devices for a job, high
watermark setup is better than job setup.

To obtain high watermark setup, specify one of the following:

• For tape, direct access devices, graphics, and unit record devices, SETUP = HWS on the
MAIN control statement for the job.

• For tapes only, SETUP=THWS on the MAIN control statement for the job.

• For direct access devices only, SETUP = DHWS on the MAIN control statement for the
job.

• For MSS devices, MSS = HWS on a MAIN control statement for the job.

• SETUP = THWS, SETUP = DHWS, or SETUP = HWS on the STANDARDS initialization
statement, if the SETUP or MSS parameter is not specified on a MAIN statement.

• MSS = HWS on the SETPARM initialization statement, if the SETUP or MSS parameter is
not specified on a MAIN statement.

High watermark setup, like job setup, causes devices, volumes, and data sets to be returned to
JES3 for use by other jobs as soon as the resource is deallocated in the last step using it.

In the high watermark setup shown in Figure 6-1 on page 6-7, volume A is mounted for use in
STEPI and then demounted until needed in STEP4. Volume K is mounted for use in STEPI
and STEP2 and then demounted until needed in STEP4. When needed in STEP4, volumes A
and K are mounted on any available device.

Explicit setup: Explicit setup is user directed. It uses the number of devices required by job
setup, but premounts volumes according to the explicit setup specifications.

To obtain explicit setup, specify one of the following:

• SETUP = ddname on the MAIN statement, where ddname is the request that JES3 is to use
for this setup.

• SETUP = Jddname on the MAIN statement, where ddname is the request that JES3 is to
remove from consideration for this setup.

An advantage of explicit setup over high watermark setup is that you can force volumes to stay
mounted on devices until they are no longer needed. A disadvantage of explicit setup is that
JES3 does not deallocate devices early: JES3 allocates a certain number of'devices before job
execution and does not deallocate any until the job completes execution. In contrast, JES3
using job setup and high watermark setup can deallocate devices at the end of any step, if the
devices are no longer needed.

In the explicit setup shown in Figure 6-1 on page 6-7, four devices are allocated for both tape
and disk instead of the three allocated using high watermark setup. When you explicitly
request that JES3 mount certain volumes, the volumes you specify, for example volumes A and
K, are not deallocated and remounted for the last step.

6-6 MVS JCL

Three Types of JES3 Setup

Devices and Volumes to be Allocated

Volumes on Devices Set Up Prior to
Execution

Steps in a Job2

STEP1 tape volume=A, B

disk volume=K, L

STEP2 tape volume=B, C, 0

disk volume=K

STEP3 tape volume=D
disk volume=L, M, N

STEP4 tape volume=A, E, F

disk volume=K, N, 0

Total devices used by the job for setup

LEGEND:

_ The device is allocated and in use

_ The device is allocated but not in use

Job Setup
(SETUP=JOB)

Tape

STape

'--___ 1 The device is no longer needed and can be deallocated

Disk

5 Disk

1 High watermark setup can express combinations of tape and disk allocations.
HWS request allocation of the minimal number of devices required to run the job.
THWS requests high watermark setup for tapes and job setup for disks.
DHWS requests high watermark setup for disks and job setup for tapes.

2Volumes mounted after STEP1 are indicated by placing the volume name in the
box for the step in which it is allocated. For example, in high watermark setup,
volume C is mounted at STEP2.

Figure 6-1. Types of JES3 Setup

High Watermark
Setupl

(SETUP=HWS)

Tape Disk

3 Tape 3 Disk

Explicit Setup
(SETUP=ddname)

Tape Disk

4 Tape 4 Disk

Altering JES3 Device Allocation: To prevent JES3 from allocating devices before the first job
step begins execution and holding them until a later job step needs them, you can break a
multiple-step job into several smaller, dependent jobs. "Dependent Job Control for JES3: The
Job Net" on page 3-27 tells how to split a job into smaller, dependent jobs.

Chapter 6. Guide to Data Allocation Control 6-7

'6~8 MVS JeL

Part 3. Guide to Data Set Control

The primary functions of JCL DD statements are to describe the characteristics of data sets and
to indicate their location to the system. These functions allow you a great deal of freedom in
writing your programs. For example, if you are writing a program to process paid bills, you do
not have to indicate in your program the size of the input records, or the type of device where
the records are located. You can postpone these definitions until you run the program. At that
time you code the DD statements for the input data sets.

You can debug your program, and then run it several times with different DD statements for
the input record set. In this way you c~n determine which record size is most efficiently
processed, and whether the input should come from a card reader or a magnetic tape unit. All
your program needs to know to refer to the data set is the name of the DD statement (ddname)
that describes the data set. Each time you execute the program you can use the DD statement
to describe a different data set as long as the ddname remains constant.

You can define data set characteristics within your program so that you will not have to specify
those characteristics that remain constant each time you use a data set. The number and type
of data set characteristics you can specify in your program, rather than in the DD statement,
depends on the language you are using for writing your program. However, regardless of the
facilities of the language you are using, you should only specify in your program those
requirements essential to processing and leave the rest for the DD statement. This gives you
more flexibility in writing the program and places fewer restrictions on any future changes you
may have to make to the program.

All job steps in your job (except those steps that use a cataloged procedure) require DD
statements because every program must have either an input data set, or an output data set,
and, in many cases, work data sets in order to operate. The names of the DD statements
required for IBM-supplied programs, such as compilers and utilities, are predefined and you
must code their parameters according to the rules stated in the publications associated with the
prog:ams.

Only you can determine the DD statements required for your own program. There must be a
DD statement for each data set that you use in your job step that is not dynamically allocated.
DD statements follow the EXEC statement that marks the beginning of the job step. You can
include a maximum of 1635 DD statements in each job step.

Part 3. Guide to Data Set C{)ntrol

MVS JCL

If the job step uses a cataloged procedure, you can use a DD statement either to override
parameters in a DD statement in the procedure, or to add a new DD statement to the
procedure. In either case, the modification remains in effect only for the duration of the job
step, it does not change the procedure permanently.

A DD statement must contain the term DD in its operation field. Although all parameters in
the DD statement's operand field are optional, a blank operand field is invalid except when you
are overriding DD statements defining concatenated data sets in a cataloged procedure.

The parameters in the operand field allow you to specify the following:

• Data set information
• Unit and volume requests
• Data sets for mass storage systems
• Space for non-VSAM data sets
• Data set processing options

Not all DD statement parameters are needed to define a data set. In fact, you cannot use some
combinations of parameters in the same DD statement.

The valid combinations of DD statement parameters allow you to perform the following
functions:

• Create a data set
• Retrieve an existing data set
• Extend an existing data set
• Define special data sets
• Postpone definition of a data set

This section describes the ddname and the parameters you need for each of the above functions.
Also discussed are any JES control statement parameters that you can code for a particular
function.

Chapter 7. Guide to Specifying Data Set Information

You must provide certain data set information to enable the system to deal with your data sets.

Specifying the DDNAME Parameter

You use the DDNAME parameter most often in cataloged procedures and in job steps that call
procedures. It is used in cataloged procedures to postpone defining data in the input stream
until a job step calls the procedure. (Procedures cannot contain DD statements that define data
in the input stream; that is, DD * or DD DATA statements). In job steps that call procedures
it is used on an overriding DD statement to postpone defining data in the input stream until the
last overriding DD statement for a procedure step. Overriding DD statements must appear in
the same order as the corresponding DD statements in the procedure.

When You Code the DDNAME Parameter

When the system encounters a DD statement that contains the DDNAME parameter, it saves
the ddname of that statement. The system also temporarily saves the name specified in the
DDNAME parameter so that it can relate that name to the ddname of a later DD statement.
Once a DD statement with that corresponding name is encountered, the name is no longer
saved. For example, if the system encounters this.statement

//XYZ DD DDNAME=PHOB

the system saves XYZ and, temporarily, PROB. Until the system encounters the ddname
PROB in the input stream, it treats the data set as a dummY- data set.

When the system encounters a statement whose ddname has been temporarily saved, it does two
things. It uses the information contained on this statement to define the data set; it associates
this information with the name of the statement that contained the DDNAME parameter. The
value that appeared in the DDNAME parameter is no longer saved by the system. To continue
the above example, if the system encounters this statement

//PHOB DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=3400-5

the system uses the data set name and the disposition and unit information to define the data
set; it also associates the ddname of the statement that contained the DDNAME parameter
with this information. In this example, the ddname used is XYZ; the ddname PROB is no
longer saved. The data set is now defined just as it would be if you had coded

//XYZ DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=3400-5

The system associates the ddname of the statement that contains the DDNAME parameter with
the data set definition inforrP.ation. It does not use the ddname of the later statement that
defines the data set. Therefore, any references to the data set, before or after the data set is

Chapter 7. Guide to Specifying Data Set Information 7 -1

defined, must refer to the DD statement that contains the DDNAME parameter, not the DD
statement that defines the data set. The following sequence of control statements illustrates
this:

11001 DO

IILATER DO
II

110012 DO
II

DDNAME=LATER

DSN=SET12,DISP=(NEW,KEEP),UNIT=3350,
VOLUME=SER=46231,SPACE=(TRK,(20,5))

DSN=SET13,DISP=(NEW,KEEP),VOLUME=REF=*.DD1,
SPACE=(TRK,(40,5))

DDI postpones defining the data set until the system encounters DD statement LATER.
DDl2 must do a backward reference to DDI because the system associates the data set
information with the DD statement that contains the DDNAME parameter.

When you want to concatenate data sets, the unnamed DD statements must follow the DD
statement that contains the DDNAME parameter, not the DD statement that defines the data
set. The following sequence of control statements illustrates this:

IIDDA DO
II DO
II DO

IIDEFINE DO
data

1*

DDNAME=DEFINE
DSN=A.B.C,DISP=OLD
DSN=SEVC,DISP=OLD,UNIT=3350,VOL=SER=52226

*

You can use the DDNAME parameter up to five times in a job step or procedure step.
However, each time the DDNAME parameter is coded, it must refer- to a different ddname.

Specifying the DSNAME Parameter

When creating a data set, use the DSNAME parameter to assign a name to the data set. The
data set name is part of the information stored with the data set on a volume. Later, when
another job step or job wants to use the data set, it identifies the data s~t name in the
DSNAME parameter; the system uses the data set name to locate the data set on the volume.

How you code the DSNAME parameter depends on the type of data set and whether the it is
nontemporary or temporary.

Note that if you code a data set name ending in .GnnnnVnn (where n = 0 to 9) for a tape, your
data set is always treated as part of a generation data group by data management routines. For
more information on generation data groups, see "Creating and Retrieving Generation Data
Sets" on page 8-25.

,7;.2 MVSJCL

Creating or Retrieving a Nontemporary Data Set

If the data set is non temporary, you can identify:

• A permanent data set by coding DSNAME= dsname

• A member of a nontemporary partitioned data set by coding DSNAME = dsname(member
name)

• A generation of a nontemporary generation data group by coding
DSNAME = dsname(number)

• An area of a nontemporary indexed sequential data set by coding DSNAME= dsname(area
name)

Nontemporary Data Sets

When a nontemporary data set is created, it is assigned a name in the DSNAME parameter and
is assigned a disposition of KEEP or CATLG. (A data set assigned a disposition of KEEP may
be assigned a disposition of CATLG by a later job step or job). All other steps and jobs that
want to use the data set must specify the DSNAME parameter using either the data set's
assigned name or its backward reference.

A nontemporary data set name can be either an unqualified or qualified name. An unqualified
data set name consists of 1 through 8 characters. The first character must be an alphabetic or
national (@,#,$) character; the remaining characters can be any alphanumeric or national
characters, a hyphen, or plus zero (+ 0). Note that national characters are invalid for
ISO/ANSI/FIPS Version 3 tape data set names.

A qualified data set name consists of 1 through 44 characters (including periods), except when
the qualified name identifies a generation data group. In this case, the data set name may
consist of only 1 through 35 characters (including periods). For each eight characters or less
there must be a period, and the first character of the name and the character following a period
must be an alphabetic or national (@,#,$) character.

When you request a data set that is cataloged on a control volume or a private catalog-, the
system attempts to mount this control volume if it is not already mounted. After the system
obtains the pointer to the requested data set, the control volume or private catalog can then be
demounted by the system if the unit on which it was mounted is required by another volume.
The control volume or private catalog is assigned to the job step and is available for disposition
processing when the job step ends.

In the following cases, the control volume or private catalog is not mounted when disposition is
processed:

• The job fails or abnormally terminates and data sets with a conditional disposition of
CATLG or UNCATLG have been passed but not received.

• A job step is deallocated during system warm start.

Chapter 7. Guide to Specifying Data Set Iriformation 7 -3

Members of a Partitioned Data Set

A partitioned data set consists of independent groups of sequential records, each identified by a
member name in a directory. When you want to add a member to a partitioned data set or
retrieve a member, specify the partitioned data set name and follow it with the member name.
The member name is enclosed in parentheses and consists of 1 to 8 characters. The first
character must be an alphabetic or national (@,$,#) character, the remaining characters can be
any alphanumeric or national characters.

Generations of a Generation Data Group

A generation data group is a collection of chronologically related data sets that can be referred
to by the same data set name. When you want to add a generation to a generation data group
or retrieve a generation, specify the generation data group name and follow it with the
generation number. The generation number is enclosed in parentheses and the number is a zero
or a signed integer. A zero represents the most current generation of the group, a negative
integer (for example, -1) represents an older generation; a positive integer (for example, + 1)
represents a new generation that has not as yet been cataloged.

To retrieve all generations of a generation data group (up to 255 generations), code only the
group name in the DSNAME parameter and the DISP parameter.

A complete discussion of creating and retrieving generation data sets is contained in "Creating
and Retrieving Generation Data Sets."

Areas of an Indexed Sequential Data Set

The areas used for an indexed sequential data set are the index, prime, and overflow areas.
When you are creating the data set and define any of these areas on a DD statement, you must
identify the data set name and follow it with the area name you are defining. The area name is
enclosed in parentheses and is either PRIME, INDEX, or OVFLOW. If you are using only
one DD statement to define the entire data set, code DSNAME = dsname or
DSNAME = dsname(PRIME). When you retrieve the data set, you code only the data set
name; you do not include the terms PRIME, INDEX, or OVFLOW.

Creating or Retrieving a Temporary Data Set

If the data set is temporary, you can identify:

• A temporary data set by coding DSNAME=&&dsname

• A member of a temporary partitioned data set by coding DSNAME = &&dsname(member
name)

• An area of a temporary indexed sequential data set by coding DSNAME = &&dsname(area
name)

7 ... 4 MVS JCL

Temporary Data Sets

Any data set that is created and deleted within the same job is a temporary data set. ADD
statement that defines a temporary data set need not include the DSNAME parameter; the
system generates one for you.

If you do include the DSNAME parameter, the temporary data set name can consist of I
through 8 characters and is preceded by two ampersands (&&). The character following the
ampersands must be alphabetic or national (@,#,$) characters; the remaining characters can be
any alphanumeric or national characters. (A temporary data set name that is preceded by only
one ampersand is treated as a temporary data set name as long as you do not assign a value to
it either on the EXEC statement for this job step when it calls a procedure, or on a PROC
statement within the procedure. If a value is assigned to it by one of these means, it is treated
as a symbolic parameter).

The system generates a qualified name for the temporary data set that begins with SYS and
includes the Julian date, the time, the jobname, the temporary name assigned in the DSNAME
parameter if specified (or an identifying name and number if not specified), and other
identifying characters.

Note: The time in the system-generated qualified name is the time that the
converter/interpreter is invoked. Because the system invokes the converter/interpreter only once
per job, if you use the same temporary data set name more than once per job, you might get a
JCL error.

If you attempt to keep or catalog a temporary data set (by specifying a disposition of KEEP or
CATLG in the DISP parameter), the system changes the disposition to PASS and the data set
is deleted at job termination. However, this change is not made for a data set on a tape volume
when the following conditions exist:

• The data set is new
• The data set is not assigned a name
• You specify a status of OLD or SHR in the DISP parameter
• You specify DEFER in the UNIT parameter

The data set is deleted at job termination, but the system tells the operator to keep the volume
on which the data set resided during the job. If you code a conditional disposition for
temporary data sets, it is ignored.

To simplify processing of temporary data sets, see "Using Virtual Input/Output (VIO) for
Temporary Data Sets."

Members of a Temporary Partitioned Data Set

When adding a member to a temporary partitioned data set or retrieving a member during the
job, specify the partitioned data set's temporary name and follow it with the member naine.
The member name is enclosed in parentheses and consists of I through 8 characters. The first
character must be an alphabetic or national (@,$,#) character; the remaining characters can be
any alphanumeric or national characters.

Chapter 7. Guide to Specifying Data Set Information • 7 -5

Areas of a Temporary Indexed Sequential Data Set

The areas you specify for indexed sequential data set are the index, prime, and overflow areas.
When you are creating a temporary indexed sequential data set and define any of these areas on
a DD statement, you must identify the data set's temporary name and follow it with the area
name you are defining. The area name is enclosed in parentheses and is either PRIME,
INDEX, or OVFLOW. If you are using only one DD statement to define the entire temporary
data set, code DSNAME = &&dsname or DSNAME = &&dsname(PRIME). If you want to
retrieve the temporary data set on the same job, you code only the data set's temporary name;
you do not include the term PRIME, INDEX, or OVFLOW.

Associated Data Sets (3540 Diskette)

Associated data sets are data sets on 3540 diskette volumes that are separate from the job
stream data set and are to be spooled as SYSIN data sets. Associated SYSIN data sets are
identified by specifying a data set identifier (on the DD DSID parameter) and, optionally, a
volume identifier on the DD * or DD DATA statement in the job stream.

To have associated data sets merged into the job stream, the job stream containing the diskette
associated data set requests must be processed by the diskette reader program; neither JES2 nor
JES3 can read it.

Data sets are created on 3540 diskette volumes only by using SYSOUT. The SYSOUT DD
statement must contain the DSID parameter and a sysout class (or classes) designed by the
installation to be used by data sets on a 3540 diskette. The diskette writer must be started to
the sysout class to transfer the data sets to diskettes.

For more information on the 3540 diskette, refer to "OSjVS2 IBM 3540 Programmer's
Reference. "

Copying the Data Set Name from an Earlier DD Statement

The name of a data set that is used several times in a job can be copied after its first use in the
job. You can copy the data set name whether specified in the DSNAME parameter or assigned
by the system. This allows you to easily change data sets from job to job and eliminates your
having to assign names to temporary data sets. To copy a data set name, refer to an earlier
DD statement that identifies the data set.

Note: When copying a data set's name from an earlier DD statement, you may also copy other
information from the DD statement. The other information is:

• Whether or not the data set is a partitioned data set (PDS).
• Whether or not the data set is a temporary data set.

Do not copy data set names of subsystem data sets created by a DD * or a DD DATA
. statement.

7-6 MVS JCL

When the earlier DD statement is contained in an earlier job step, code,

DSNAME=*.stepname.ddname

When the earlier DD statement is contained in the same job step, code,

DSNAME=*.ddname

When the earlier DD statement is contained in a cataloged procedure step called by an earlier
job step, code,

DSNAME=*.stepname.procstepname.ddname

Specifying the DSNAME Parameter in Apostrophes

Sometimes, it may be necessary or desirable to specify a data set name that contains special
characters. If the name contains special characters, you must enclose the name in apostrophes,
for example, DSNAME=/DAT+ 5/. If one of the special characters is an apostrophe, you
must identify it by coding two consecutive apostrophes in its place, for example,
DSNAME=/DAY"SEND/. A data set name enclosed in apostrophes can consist of 1 through
44 characters.

There are cases when the data set name must contain required special characters, which tell the
system something about the data set (for example, && in DSNAME = &&name are required
special characters that tell the system that this is a temporary data set). In these cases, the data
set name must not be enclosed in apostrophes because the system will not recognize the
required special characters as having any special significance. The following data set names
contain special characters that tell the system something about the data set and, therefore,
cannot be enclosed in apostrophes:

• DSNAME= name(member name)
• DSNAME=name(area name)
• DSNAME=name(generation number)
• DSNAME=&&name
• DSNAME = * . stepname.ddname
• Part of, or the entire data set name, that is to be symbolically substituted

Keep the following rules in mind:

• If the data set name ends with a blank character, the blank is ignored.

• If the only special character is a period used to create a qualified data set name, a hyphen,
or plus zero (0-12 punch), you need not enclose the data set name in apostrophes.

Specifying the LABEL Parameter

The operating system uses labels to identify volumes and the data sets they contain, and to
store data set attributes. Data sets residing on magnetic tape volumes usually have data set
labels. If data set labels are present, they precede each data set on the volume. Data sets
residing on direct access volumes always have data set labels. These data set labels are
contained in the volume t~ble of contents of the direct access volume.

A data set label may be a standard or nonstandard label. Standard labels can be proc~ssed by
the system; nonstandard labels must be processed by nonstandard label processing routines,

Chapter 7. Guide to Specifying Data Set Inform;ition 7 -7

which the installation includes in the system. Data sets on direct access volumes must have
standard labels. Data sets on tape volumes usually have standard labels, but can have
nonstandard labels or no labels.

The LABEL parameter must be coded if:

• You are processing a tape data set that is not the first data set on the reel; in this case,
indicate the data set sequence number.

• The data set labels are not IBM standard labels; you must indicate the label type.

• You want to specify what type of labels a data set is to have when it is written on a scratch
volume; indicate the label type.

• The data set is to be password protected; specify PASSWORD when creating the data set.

• The data set is to be processed only for input or output and this conflicts with the
processing method indicated in the OPEN macro instruction; specify IN, for input, or
OUT, for output.

• The data set is to be kept for a specific period of time; indicate a retention period (RETPD)
or expiration data (EXPDT).

The Data Set Sequence Number Subparameter

When placing a data set on a tape volume that already contains one or more data sets, specify
where the data set is to be placed, that is, whether the data set is to be the second, third, fourth,
etc., data set on the volume. The data set sequence number causes the tape to be positioned
properly so that the data set can be written on the tape or retrieved.

The data set sequence number subparameter is a positional subparameter and is the first
subparameter that you can code in the LABEL parameter. The data set sequence number is a
1- to 4-digit number. The data set sequence number is ignored for the following types of data
sets:

• For data sets passed from a previous step, the system obtains the data set sequence number
from the passing step.

• For GDG ALL requests, the system always retrieves the data set sequence number from the
catalog.

If you omit the data set sequence number subparameter or code 0, the system assumes 1 (this is
the first data set on the tape) unless the data set is cataloged. If the data set is cataloged, the
system obtains the data set sequence number from the catalog.

Specifying the Label Type

The label type subparameter tells the system the type of labels associated with the data set. The
label type is a positional subparameter and must be coded second in the LABEL parameter,
after the data set sequence number subparameter. You can omit this subparameter if the data
set has IBM standard labels.

7-8 MVSJCL

The label type is specified as:

• SL - if the data set has IBM standard labels.

• SUL - if the data set has both IBM standard and user labels.

• AL - if the data set has ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels.

• AUL - if the data set has ISO/ANSI Version 1 or ISOjANSIjFIPS Version 3 labels, and
ISO/ANSI Version 1 or ISOjANSI/FIPS Version 3 user labels.

• NSL - if the data set has nonstandard labels.

• NL - if the data set has no labels.

• BLP - if you want label processing bypassed.

• L TM - if you want the system to bypass a leading tape mark on unlabeled tape (OS/DOS
in terchange).

SL or SUL is the only label type that can be specified for data sets that reside on direct access
volumes. SL, SUL, AL, AUL, NSL, and NL are the only label types that can be specified for
data sets that reside on tape volumes. BLP and L TM are label type subparameters that can also
be coded for tape.

When SL or SUL is specified, or the label type is omitted and the data set has IBM standard
labels, the system can ensure that the correct tape or direct access volume is mounted.

When referring the operating system to an earlier tape volume request (by receiving a passed
data set or by using VOL = REF = reference), you should specify SL or SUL as the label type.
Specifying any other label type causes the operating system to copy the label type from the
referenced request - overriding the label type you specify on the DD statement making the
reference.

When specifying NSL, installation-provided nonstandard label processing routines must ensure
that the correct tape volume is mounted.

When specifying NL or BLP, the operator must ensure that the correct tape volume is
mounted. If you specify NL, the data set must have no standard labels.

When specifying AL or AUL, the system ensures that the correct tape is mounted; to be
correct, the tape must have a ISO/ANSI Version 1 or ISOjANSjFIPS Version 3 label.

Specifically, if your installation has specified ASCII = INCLUDE during system generation,
then the specification of LABEL = (,AL) or LABEL = (,AUL) requests translation. You can
also request translation by specifying OPTCD = Q. If the tape is not labeled, LABEL = (,NL),
you must specify OPTCD = Q for translation to occur.

For cataloged and passed data sets, label type information is not kept. Therefore, when
referring to a cataloged or passed data set that has other than standard labels, code the LABEL
parameter and specify the label type.

BLP is not a label type, but a request that the system bypass label processing. This
specification allows you to use a blank tape or overwrite a seven-track tape that differs from the

Chapter 7. Guide to Specifying Data Set Information 7-9

current parity or density specifications. If the bypass label processing option is not selected by
the installation and you have codedBLP, the system assumes NL.

When retrieving data sets from each of several NL or BLP tape volumes and you are coding the
data-set-sequence-number subparameter, you must set up a concatenation with one tape volume
for each DD statement and you must repeat the LABEL parameter on each DD statement.

Note: When you request the system to bypass label processing (LABEL = BLP) and the tape
volume has labels, the system treats anything between tapemarks as a data set.

Therefore, in order for a tape with labels to be positioned properly, you must code the
data-set-sequence-number subparameter of the LABEL parameter and the subparameter must
reflect all labels and data sets that precede the desired data set. The Tape Labels publication
illustrates where tapemarks appear.

Nonspecific volume request:: The label type subparameter can also be specified when making a
nonspecific volume request for a tape volume (that is, no volume serial numbers are specified
on the DD statement) and when having a certain type of label. If the volume that is mounted
does not have the corresponding label type desired, you may be able to change the label type.

When you specify NL or NSL and the operator ll<;mnts a tape volume that contains standard
labels, you can use the volume if all the following are true:

1. The expiration data of the existing data set on the volume has passed;
2. The existing data set on the volume is not password protected;
3. You make a nonspecific volume request.

If they are not all true, the system requests the operator to mount another tape volume.

If you specify SL and make a nonspecific volume request, but the operator mounts a tape
volume that contains other than IBM standard labels, the system asks the operator to identify
the volume serial number and the volume's new owner before the IBM standard labels are
written. If the tape volume has ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 labels, the
system asks the operator for permission to destroy the labels.

If you specify SL and make a specific volume request, but the volume that is mounted does not
contain IBM standard labels:

• The system rejects the tape and requests the operator to mount the tape volume specified,
or

• If the volume currently mounted is not labeled, the operator has the option of labeling the
tape volume or rejecting it.

The PASSWORD and NOPWREAD Subparameters

The PASSWORD and NOPWREAD subparameters tell the system that you want the data set
to be password-protected.

• If you specify PASSWORD, the data set cannot be read from, written into, or deleted by
another job step or job unless the operator can supply the system with the correct
password.

7 .. 10 MVS JCL

• If you specify NOPWREAD (no password read), the data set can be read without the
operator supplying the password,· but the password is still required for writing or deleting
data sets.

The PASSWORD and NOPWREAD subparameters are positional and must be coded third,
after the data set sequence number subparameter and the label type subparameter; if you do not
code the preceding positional subparameters, you must code commas to indicate their absence.

F or example,

//EXl
//EX2
//EX3
//EX4

DD LABEL=(data-set-sequence-number,SL,PASSWORD)
DD LABEL=(data-set-sequence-number"PASSWORD)
DD LABEL=(,AL,PASSWORD)
DD LABEL=("PASSWORD)

If you want the data set password-protected, specify PASSWORD when the data set is created.
Password-protected data sets must have standard labels, either IBM standard or ISO/ANSI
Version 1 or ISO/ ANSI/FIPS Version 3 labels.

Overriding OPEN Macro Options: The IN and OUT Subparameters

The basic sequential access method (BSAM) permits a specification of INOUT, OUTIN, or
OUTINX in the OPEN macro instruction as the processing method.

The basic direct access method (BDAM) permits a specification of UPDAT in the OPEN
macro instruction as the processing method.

OPEN macro LABEL subparameter System treats the
specification specification open as If

INOUT (BSAM) IN INPUT was specified in
OPEN macro. See
Note 1.

OUTIN OUT OUTPUT was specified in
OPEN macro. See
Note 1.

OUTINX OUT EXTEND was specified in
OPEN macro. See
Note 2.

Note 1: When you code the IN subparameter, and the OPEN for INOUT or
UPDAT is in effect, any attempt by the processing program to process the
data set for output results in abnormal termination.

Note 2: When you specify the OUT subparameter, and the OPEN for
OUTIN or OUTINX is in effect, any attempt by the processing program
to process the data set for input results in abnormal termination.

The IN and OUT subparameters are positional subparameters and must appear as the fourth
subparameter in the LABEL parameter. That is, IN or OUT must follow the
data-set-sequence-number subparameter, the label-type subparameter, and the PASSWORD

Chapter 7. Guide to Specifying Data Set Information 7 -11

subparameter - or the commas that indicate the absence of a preceding subparameter. For
example;

//DDl
//DD2
//DD3
//DD4

DD LABEL=(data-set-sequence-number,SL,PASSWORD,IN)
DD LABEL=(,AL,NOPWREAD,OUT)
DD LABEL=("PASSWORD,IN)
DD LABEL=(",OUT)

The IN subparameter allows a program that opens for INOUT to read a password protected
data set. Because the OPEN does not allow output processing, the read password and not the
write password allows the data set to be read.

If the data set is protected with the NOPWREAD (read without password) option, no password
is required to read the data set.

You can also use the IN subparameter to avoid operator intervention when reading a data set
that has an unexpired expiration date.

Note: When you specify OUTINX or EXTEND in the OPEN macro instruction or if you
specify the OUT sub parameter, the system adds records to the end of the data set regardless of
what you specify on the DISP parameter of the DD statement.

The RETPDand EXPDT Subparameters

When a data set must be kept for some time, you can tell the system how long when you create
the data set, by means of the LABEL parameter. As long as the time period has not expired, a
data set that resides on a direct access volume cannot be deleted by or overwritten by another
job step or job; this is true even if the job or step has specified a disposition of DELETE for
the data set. If it is necessary to delete a data set before the expiration date or retention period
has passed, use one of the following methods:

• For data sets cataloged in a VSAM catalog use the DELETE command; this makes the
space occupied by the data set available for reallocation. See Access Method Services.

• To delete the catalog entry for data sets that are not cataloged in a VSAM catalog, use the
IEHPROGM utility as described in Utilities.

• To delete the data set control block use the SCRATCH macro with the "OVRD"
parameter; this makes the space occupied by that data set available for reallocation. See
SPL: Data Management.

When the expiration date of a data set is the current date, the data set is considered expired and
another data set can delete or write over it.

There are two different ways to specify a time period:

1. Tell the system how many days you want the data set kept, through the RETPD
subparameter, or

2. Tell the system the exact date after which the data set need not be kept, through the
EXPDT subparameter.

If you code the RETPD subparameter, you specify a 1- to 4-digit number, which represents the
number of days the data set is to be kept. If you code the EXPDT subparameter, you specify a
2-digit year number and a 3-digit day number (for example, January 1 would be 001, July I

7-12 MVS JCL

would be 182); the number you code represents the date after which the data set need not be
kept. When neither the RETPD or EXPDT subparameter is specified for a new data set, the
system assumes a retention period of zero days.

The RETPD or EXPDT subparameter must follow all other subparameters of the LABEL
parameter. If no other subparameters are coded, you can code LABEL = RETPD = nnnn or
LABEL = EXPDT = yyddd.

Example of Identifying Data Sets to the System

This job shows how to use the DSNAME parameter.

I*PRIORITY
IIDATASETS
IISTEP1
IID1
II
IID2
IID3
IID4

1*

8
JOB
EXEC
DD

DD
DD
DD

data

FREEMAN,MSGLEVEL=l
PGM=IEFBR14
DSN=ABC,DISP=(NEW,CATLG),UNIT=3350,
VOL=SER=333001,SPACE=(CYL,(12,1,1),CONTIG)
DSN=&&NAME,UNIT=3330,SPACE=(TRK,(lO,1»
DSN=SYSLIB,DISP=(OLD,KEEP)
*

1. This job runs in priority 8, the meaning of which is defined by the installation.

2. The job statement specifies that system messages and JCL statements are to be printed
(MSGLEVEL = 1).

3. 01 catalogs a newly created data set. The space request is for 12 primary cylinders, 1
secondary, 1 directory, and the space is to be contiguous.

4. 02 creates a temporary data set on a 3330. The space request is for 10 primary tracks and
1 secondary.

5. 03 defines an old cataloged data set.

6. 04 defines a SYSIN data set. This will be followed by data in the input stream.

Disposition Processing of Non-VSAM Data Sets

Processing of data sets at the end of a job step or when closed and FREE = CLOSE is specified,
is known as disposition processing. You request disposition processing for non-V SAM data
sets by coding the DISP parameter on the DO statement defining the data set. (VSAM data
sets are handled differently. For information on VSAM, refer to VSAM Programmer's Guide.)

In the DISP parameter, you can code:

• Data set status as the first subparameter, indicating whether the data set is new, is old, can
be shared with other jobs, or can be lengthened.

Chapter 7. Guide to Specifying Data Set Information 7 ... 13

• Normal disposition as the second subparameter, indicating how the data set should be
handled if the job step terminates normally.

• Conditional dispositiot! as the third subparameter, indicating how the data set should be
handled if the job step terminates abnormally.

If you do not code one of the subparameters, or omit the DISP parameter entirely, the system
supplies default values, as described under "Default Disposition Processing." Refer to
Figure 18-7 on page 18-9 for further information on disposition processing.

Specifying Data Set Status

Indicate a data set's status by coding one of the following:

• NEW - the data set is being created in this job step.

• OLD - the data set existed before this job step.

• SHR - the data set existed before this job step and can be read simultaneously by other
jobs.

• MOD - the system first assumes that the data set exists. However, if the system cannot
find volume information for the data set on the DD statement, in the catalog, or passed
with the data set from a previous step, the system then assumes that the data set does not
exist and the data set is created for the job step. Specifying MOD for a ne~ sequential
data set causes the read/write mechanism to be positioned after the last record in the data
set. The read/write mechanism is positioned after the last record each time the data set is
opened for output when being created.

When coding SHR, you are requesting shared control of the data set and thejob should be
reading the data set only. When coding NEW, OLD, or MOD, you are requesting exclusive
control of the data set. Shared and exclusive control are described in this chapter under
"Insuring Data Set Integrity."

Specifying a Disposition for the Data Set

You can specify one disposition, called a normal disposition, to be used when thejob step
terminates normally (successfully) and another disposition, called the conditional disposition, to
be used when the job step terminates abnormally. (You can specify a conditional disposition for
nontemporary data sets only.)

For normal disposition, you can request as the second subparameter that the data set be:

• Deleted by coding DELETE
• Kept by coding KEEP
• Cataloged by coding CATLG
• Uncataloged by coding UNCATLG
• Passed· by coding PASS

Note: The disposition of a data set is solely a function of the DISP parameter; however, the
disposition of the volumes on which the data set resides is a function of the volume status when
the volume is demounted.

7-14 MVSJCL

For conditional disposition (the third subparameter of the DISP parameter), you may code the
same dispositions as for a normal disposition except for PASS. You should consider using
conditional disposition every time you create or use a data set. Conditional disposition can be
used to keep data sets after a program failure, when they might be needed to determine the
cause of the failure. Conditional disposition can also be used to delete data sets in case of
program failure, thereby restoring the system environment to what it was before the error. This
allows the failing job to be rerun without an intervening clean-up job.

Data sets allocated to steps that have abnormally tenninated and that do not have automatic
restart, are disposed of as specified by the conditional disposition. If a job step abnormally
terminates during execution and a conditional disposition is not specified, the normal
disposition is processed.

If a job step fails during step allocation:

• A data set created in that job step is deleted.
• A data set that existed before that job step is kept.

If you are accessing a data set that was cataloged or kept in a step prior to the step that
abnormally terminates, and you have not coded a disposition, MVS processing follows the
disposition specified in the earlier step.

Disposition processing differs for data sets on direct access volumes and data sets on magnetic
tape volumes. A direct access volume contains a volume table of contents (VTOC), which
consists of control blocks describing the non-VSAM data sets and available space on the
volume. The handling of tape and direct access volumes when specifying a particular
disposition is described below.

Deleting a Data Set

Specifying DELETE requests that the data set's space on the volume be released at the end of
the job step (normal disposition) or if the step abnormally terminates (conditional disposition).
If the data set resides on a public tape volume, the tape is rewound and the volume is available
for use by other job steps. If the data set resides on a private volume, the tape is rewound and
unloaded. In this case, it is rewound and unloaded and a KEEP message is issued. If the data
set exists on a direct access volume, the control block describing the data set is removed from _
the VTOC and the space on the volume is then available to other data sets.

In the following case, however, a data set on a direct access volume will not be deleted.

If a data set previously existed and has an unexpired expiration date or retention period, a
disposition of DELETE does not delete the data set if the step abnormally terminates.

Specify a length of time that a data set must be kept by assigning a retention period or
expiration date in the LABEL parameter on the DD statement. Specifying a retention period
or expiration date is described under "Specifying the LABEL Parameter" on page 7-7.

If you are deleting a cataloged non-VSAM data set, the entry for the data set in the system
catalog is also removed, provided the system obtained volume information for the data set from
the catalog (that is, the volume's serial number was not coded on the DD statement).

If the system did not obtain volume information from the catalog, the data set is still deleted
but its entry in the catalog remains. If an error is encountered while attempting to delete a data
set, its entry in the catalog remains. (The data set will or will not be deleted, depending on

Chapter 7. Guide to Specifying Data Set Information 7 -15

when the error occurs). To delete an entry from a VSAM catalog, use the DELETE command
as described in VSAM Programmer's Guide, which makes the space occupied by the data set
available for reallocation.

To delete the catalog entries for data sets that are not cataloged in a VSAM catalog, use the
UNCATLG statement of IEHPROGM as described in Utilities.

DELETE is the only valid conditional disposition for a data set that has no name or that has a
temporary name. If you specify a disposition other than DELETE, the system assumes
DELETE.

Keeping a Data Set

Specifying KEEP instructs the system to keep a data set intact until a subsequent job step or
job requests that the data set be deleted or at least until the expiration date or retention period
is passed. You can specify an expiration date or retention period, indicating the length of time
a data set must be kept, in the LABEL parameter on the DD statement. If you do not specify
a time period, the system assumes a retention period of zero days. Coding an expiration date
or retention period is described under "Specifying the LABEL Parameter" on page 7-7.

If you are assigning a final disposition of KEEP to a passed data set, make certain that you
follow the rules for receiving a passed data set. See the discussion under "Passing a Data Set"
on page 7-17.

For data sets on direct access devices, the entry in the VTOC describing the data set and the
data set itself are kept intact. For data sets on tape, the volume is rewound and unloaded, and
a KEEP message is issued to the operator.

Cataloging a Data Set

Cataloging allows you to keep track of and retrieve data sets. You can catalog data sets in the
system master catalog or in user (private) catalogs. A private catalog can be either a VSAM
user catalog or an Integrated Catalog Facility (ICP). When retrieving a cataloged data set, you
do not have to specify volume information; you need only code the DSNAME parameter and a
status other than NEW in the DISP parameter.

To catalog a non-VSAM data set, code CATLG as the disposition; the system creates an entry
in the catalog that points to the data set. The disposition CATLG implies KEEP.

You can specify a disposition of CATLG for an' already cataloged data set. Do this when
lengthening the data set with additional output (a status of MOD is coded) and the data set can
exceed one volume. If the system obtained volume information for the data set from the
catalog (that is, the volume's serial number was not coded on the DD statement) and you code
DISP = (MOD,CATLG), the system updates the entry to include the volume serial numbers of
any additional volumes.

We define a collection of cataloged data sets that are kept in chronological order as a
generation data group (GDG). The entire GDG is stored under a single data set name; each
data set within the group, called a generation data set, is associated with a generation number
that indicates how far removed the data set is from the original generation. For more
information on defining and creating generation data groups, see "Generation Data Groups" in
this publication, and VSAM Programmer's Guide.

7..;16 MVS JCL

Note: There are instances when the system will not catalog a data set. The system does not
catalog a data set if the DD statement describing that data set is not opened by the problem
program and;

• You request a nonspecific tape volume (scratch volume is assumed), or

• You request a tape volume for a tape unit with dual density options and you did not
specify the density (DEN subparameter of the DCB parameter) on the DD statement.

Uncataloging a Data Set

To remove the entry describing a non-V SAM data set from the catalog, code UNCATLG as
the disposition. Specifying UNCATLG does not request the initiator to delete the data set;
only the reference in the catalog is removed. When you request use of the data set in a
subsequent job or job step, you must include volume information on the DD statement.

Passing a Data Set

If more than one step in a job requests the same data set, each step using the data set can pass
the data set for a later step to use. A data set can only be passed within a job.

To pass a data set, code PASS as the normal disposition; PASS cannot be the conditional
disposition. You continue to code PASS each time the data set is referred to until the last time
it is used in the job. At this time, you assign it a final disposition.

Specifying the data set name of a passed data set without specifying volume serial number or a
volume reference is called "receiving" the data set. Identical data set names (whether or not the
same data set is referred to) can be passed at the same time. Such identical data set names are
received in the same order in which they are passed. A data set name that has been passed n
times can be received no more than n times. A data set cannot be passed and received within
the same step.

Considerations for Passed Data Sets: Consider the following when you pass data sets:

A data set may be passed more times than it is received. However, a problem can occur when
the same data set is passed more times than it is received in a procedure that is called multiple
times in a job.

For example, the following procedure is called in a job step:

IISTEPI
//DDI
II
IIDD2
II
I/STEP2
IIDD3

EXEC PGM=IEFBR14
DD DSNAME=&A,DISP=(NEW,PASS) ,

SPACE=(TRK,(l,l»,UNIT=SYSDA
DD DSNAME=*.DDl,DISP=(OLD,PASS),

VOL=REF=*.DDI
EXEC PGM=IEFBR14
DD DSNAME=&A,DISP=(OLD,DELETE)

In this example:

• DDI and DD2 pass data set &A.

• DD3 receives data set &A.

• After the procedure has been called the first time, one entry for data set &A remains
unreceived.

Chapter 7. Guide to Specifying Data Set Information 7 -17

• If the procedure is called a second time, DD3 receives data set &A from the first execution
of the procedure and this can result in incorrect data or an abnormal termination.

• If data set &A is not received twice in the job, data set &A is processed as an unreceived
passed data set at the end of the job.

If a job step containing a passed data set abnormally terminates during execution, the passed
data set is passed at the end of the job step. This allows you to receive and process the passed
data set on a following job step (for example, when COND = EVEN or ONL Y is coded). If the
passed data set remains unreceived at the end of the job, then the conditional disposition (if
specified) for the passed data set occurs.

In a JES3 system:If the dataset was extended to additional volumes, code
UNIT = AFF = ddname in the step to receive the data set. This makes JES3 aware of the
additional unit requirement for the extended data set.

For additional information on JES3 allocation, see "JES3 Resource Allocation," "Specifying
Volume Affinity When Using Multivolume Data Sets," and "JES3 Handling of Unit and
Volume References."

Disposition Processing of Passed Unreceived Data Sets

A job step .can pass a data set that is never received by a later step. If a job step abnormally
terminates, unreceived data sets that specified a conditional disposition when passed are
processed as specified in their conditional disposition, with four exceptions, as follows:

If the conditional disposition requires an update to a user catalog and:

• CATLG is specified for a data set that has a first-level qualifier of a catalog name or alias,
the system does not catalog the data set.

• UNCATLG or DELETE (of a cataloged data set) is specified for a data set that has a
first-level qualifier of a catalog name or alias, the system does not uncatalog the data set.

.• CATLG is specified for a data set that does not have a qualifier or has a qualifier that is
not a catalog name, the system catalogs the data set in the master catalog.

• UNCATLG or DELETE (of a cataloged data set) is specified for a data set that does not
have a qualifier or has a qualifier that is not a catalog name, the system tries to uncatalog
the data set from the master catalog.

Unreceived passed data sets that do not specify a conditional disposition, that is, those that
were specified as (NEW,PASS) in this job, are deleted; all others are kept. The system deletes
these data sets even if they have unexpired expiration dates or retention periods. (See "The
RETPD or EXPDT Subparameters")

If unreceived passed data sets are deleted at the end of a job, dynamic allocation is performed
to allocate the unit and volume for deletion. If you have specified the second subparameter of
the MSGLEVEL parameter (MSGLEVEL=(,I» the system issues allocation messages for these
data sets.

If no job step abnormally terminates before it begins execution, unreceived passed data sets that
were specified as (NEW,PASS) are deleted; other data sets are kept.

7-18 MVS JCL

If a step abnormally terminates before it actually begins execution (for example, during
allocation of units and volumes or direct access space), the system ignores the disposition you
code and again automatically keeps existing data sets and deletes new data sets.

For example, if you code:

DISP=(,PASS,CATLG)

the system assumes the data set is new. If this step or any subsequent step prior to the step that
receives this data set, abnormally terminates during its execution, the system tries to catalog the
data set as instructed by the conditional disposition of CATLG. Any attempt by the system to
catalog the data set is subject to the conditions discussed above.

Default Disposition Processing

If you do not code the DISP parameter, or omit one of the subparameters, the system supplies
default values.

If you do not specify a data set status, the system assumes NEW. If you do not code the
second and third subparameters, the system determines how to handle the data set according to
the status of the data set:

• Data sets that existed before the job are automatically kept (data sets for which OLD,
SHR, or MOD is coded when volume information is available)

• Data sets created in the job are automatically deleted (data sets for which you coded NEW
or MOD when volume information is not available, or for which you did not code a status)

Bypassing Disposition Processing

If you define a data set as a dummy data set, the system ignores the DISP parameter (if coded),
and does not perform disposition processing. For details on specifying dummy data sets, see
"Defining a Dummy Data Set" on page 8-8.

Insuring Data Set Integrity

When a job must receive control of the data sets it requests, you can request either exclusive
control, allowing no other job to use the data set, or shared control, allowing the data set to be
used by other jobs that also request shared control. The process of securing control of data sets
for use by a job is called data set integrity processing.

Data set integrity processing avoids conflict between two or more jobs that request use of the
same data set.

For example, two jobs, one named READ and another named MODIFY, both request the data
set FILE.

• READ wants only to read and copy certain records
• MODIFY deletes some records and changes other records in the data set FILE

Chapter 7. Guide to Specifying Data Set Information 7 -19

If both jobs have control of FILE concurrently, READ cannot be certain of the records
contained in FILE; that is, READ cannot be certain of the integrity of the data set.

• MODIFY should have exclusive control of the data set
• READ can share control of FILE with other jobs that also want only to read the data set.

Indicate the type data set control a job requires in the DISP parameter on the DD statement
defining the data set.

Exclusive Control of a Data Set

When a job has exclusive control of a data set, no other job can use that data set until
termination of the last step in the job that refers to the data set. A job should have exclusive
control of a data set in order to modify, add, or delete records.

In some cases, you may not need exclusive control of the entire data set. You can request
exclusive control of a block of records by coding the DCB, READ, WRITE, and RELEX
macro instructions. (These instructions are described in Data Management Macro Instructions.)

To request exclusive control of a data set, you code NEW, OLD, or MOD as the first
subparameter of the DISP parameter.

Shared Control of a Data Set

Special jobs can concurrently use a data set on a direct access storage device, if these jobs
request shared control of the data set; however, none of the jobs should change the data set in
any way.

To request shared control, code SHR as the first subparameter in the DISP parameter. If :n1ore
than one step of your job requests a data set, you must code SHR on every DD statement that
defines the data set if it is to be used by concurrently executing jobs.

How the MVS System Performs Data Set Integrity Processing

The system performs data set integrity processing once for each job, for the following types of
data sets:

• Nontemporary data sets, and

• Non-VIO temporary data sets (see "Using Virtual Input/Output (VIO) for Temporary Data
Sets.")

• Data sets with alias names (created with the access method services DEFINE command; see
Access Method Services).

• Members of generation data groups

The system does not perform data set integrity processing for subsystem data sets.

To secure control for all nontemporary data sets for the job, the system enqueues each data set,
marking the data set as requested by that job and noting what kind of control was requested. A
job can request either shared or exclusive control for a data set. The system assigns control of
the data set until the termination of the last step in the job that refers to that data set occurs.

7-20 MVSJCL

If you code NEW, OLD, or MOD on any reference to a data set, the system assigns exclusive
control. A reference requesting exclusive control overrides any number of references requesting
shared control.

The job receives control of the data set if:

• Another job is not using the data set, or

• Another job is using the data set but both the job requesting the data set and the job using
the data set request shared control and there are no exclusive requests pending.

The job does not receive control of a data set if:

• Another job is using the data set and that job has exclusive control, or

• Another job is using the data set (with either exclusive or shared control), and the job
requesting use of the data set requests exclusive control, or

• Another job is using the data set (with shared control) and there is yet another job that
requested exclusive control of the data set prior to this job.

If a job requests data sets that are not available, the system issues the message "JOB jjj
WAITING FOR DATA SETS" to the operator. The initiator that started the job
automatically waits until the required data sets become available unless the operator cancels the
job.

When the system has secured control of all nontemporary data sets, it allocates and deallocates
resources for each step of the job. The job terminates after the system has deallocated all
resources for the last step in the job.

Non-VIa temporary data sets, data sets with alias names, and members of generation data
groups are reserved or enqueued for each step within the job. The job receives control of the
data set for that step in the same manner as described for nontemporary data sets.

When a job is executing and it requires a non-VIa temporary data set, a data set with alias
names or a member of a generation data group, if the job cannot secure control for the data
set, the job fails. (The system cannot wait for data sets at this point: the job already owns
certain resources and waiting for other resources could create a possible deadlock.)

When each step terminates, the system releases control of any data sets (except non-VIa
temporary data sets) that are not used in any subsequent step of the job. The system releases
control of all other data sets and terminates the job upon completion of the last step in the job.

Chapter 7. Guide to Specifying Data Set Information 7 -21

The following table summarizes data set integrity processing.

Data Set is Data Set Data Set Has
currently not in previous request
in use as: use for:

Shared Exclusive Shared Exclusive

Nontemporary
Data Set Requesting:

Shared Control Note: 1 Note: 2 Note: 1 Note: 1 Note: 2

Exclusive Control Note: 2 Note: 2 Note: 1 Note: 2 Note: 2

Non-VIO Temporary
Data Set Requesting:

Shared Control Note: 1 Note: 3 Note: I Note: 1 Note: 3

Exclusive Control Note: 3 Note: 3 Note: 1 Note: 3 Note: 3

GDG Requesting:

Shared Control Note: 1 Note: 3 Note: 1 Note: 13 Note: 31

Exclusive Control Note: 3 Note: 3 Note: 1 Note: 3 Note: 3

Data Sets with Alias
Names Requesting:

Shared Control Note: 1 Note: 3 Note: 1 Note: 1 Note: 3

Exclusive Control Note: 3 Note: 3 Note: 1 Note: 3 Note: 3

Note I: The requested control will be granted.

Note 2: The requested control will not be granted until the data set is released by the job that has control or the data
set is released by the job that has previously requested control.

Note 3: The requested control will not be granted and the job is terminated at the step requesting that data set.

7-22 ·MVS JCL

Examples of Disposition Processing of Non-VSAM Data Sets

IIDISP
IIS1
IID1
IID2
IID3
II
IID4
II
IIS2
IID1
II

JOB
EXEC
DD
DD
DD

DD

EXEC
DD

MSGLEVEL=l
PGM=IEFBR14
DSN=ABC,DISP=(SHR,KEEP)
DSN=SYSA,DISP=(OLD,DELETE,UNCATLG)
DSN=SYSB,UNIT=33S0,VOL=SER=335001,
SPACE=(CYL,(4,2,1)) ,DISP=(NEW,KEEP,CATLG)
DSN=&&SYS1,DISP=(MOD,PASS) ,UNIT=3350,
VOL=SER=335004,SPACE=(TRK,(15,S,1))
PGM=IEFBR14
DSN=&&SYS1,DISP=(MOD,DELETE),UNIT=3350,
VOL=SER=33S0Q4,SPACE=(TRK,(15,5,1))

1. The JOB statement requests that all JCL statements and system messages be printed.

2. D1 in 81 defines a data set that already exists and can be shared with other data sets. It is
to be kept on the volume after this job step.

3. D2 in Sl defines a data set that already exists, cannot be shared with other data 'sets, is to
be deleted at the end of the job step, and is to be uncataloged if the program abnormally
termina tes.

4. D3 in Sl defines a new data set that is to be assigned a specific volume (335001) on a 3350
device. The data set is to be kept on the volume at the end of this job step for normal
processing but is to be cataloged if the program abnormally terminates.

5. D4 in Sl defines a temporary data set that is to be created in this job step. b is to be
assigned to volume 335004 on a 3350 device with the space request of 15 primary tracks,
five secondary, and a directory. This data set is to be passed for subsequent use by a job
step in this job.

6. D1 in S2 defines the same temporary data set that was defined in D4 of 81. When this step
is completed, the data set is to be deleted.

IIPASS
IIS1
IIDD1
II
IIDD2
IIDD3
IIDD4
IIs2
IIDD5
IIDD6
IIDD7
IIDD8
IIS3
IIDD9

JOB
EXEC
DD

DD
DD
DD
EXEC
DD
DD
DD
DD
EXEC
DD

MSGLEVEL=l
PGM=IEFBR14
DSN=A,DISP=(NEW,PASS),VOL=SER=335000,
UNIT=3350,SPACE=(TRK,1)
DSN=A,DISP=(OLD,PASS),VOL=REF=*.DD1
DSN=B,DISP=(OLD,PASS),VOL=SER=335000,UNIT=33S0
DSN=B,DISP=(OLD,PASS),VOL=SER=335001,UNIT=33S0
PGM=IEFBR14
DSN=A,DISP=OLD
DSN=A,DISP=OLD
DSN=B,DISP=OLD
DSN=B,DISP=(OLD,PASS)
PGM=IEFBR14
DSN=B, DISP=OLD .

1. DDl and DD2 pass the same data set. DD5 and DD6 receive that same data set.

2. DD3 and DD4 pass different data sets of the same name, DD7 receives the data set passed
by DD3 and DD8 receives the one passed by DD4. DD8 also continues to pass the data
set originally passed by DD4.

3. DD9 receives the data set passed by DD4 and DD8.'

Chapter 7. Guide to Specifying Data Set Information. 7 -23

Requesting Units and Volumes

On the DD statement defining a data set, indicate the device and volume on which the data set
can be found or will be written by specifying unit and volume information. Input/output
devices are grouped according to class; a device class refers to a kind of device: direct access,
magnetic tape, unit record, graphic, and communications equipment. A unit is a particular
device: a 3350 direct access device, a 1403 printer, etc.; a volume is a section of auxiliary
storage that is serviced by a single read/write mechanism - for example, a reel of magnetic
tape, a drum, or a disk pack.

Device status can affect the device eligibility for allocation. Figure 7-1 shows the various
devices and the possible status each may have.

Device Type

Status
Direct Access Tape Unit Record Graphic Teleprocessing

Online Eligible for allocation

Offline Eligible for allocation when the operator Eligible for
brings device online allocation

Pending Unload Eligible for allocation
when volume is Not applicable
specifically requested
-

Pending Offline Eligible for allocation Eligible for allocation
when the operator brings when the operator brings Not applicable
the device online and the device online
when the volume is
specifically requested

Figure 7-1. How Device Status Affects Eligibility for Allocation

Specifying Volume Information

Data sets exist on direct access and magnetic tape volumes that must be mounted on devices
before they can be used. To tell the system on which volume an existing data set can be found,
make a specific volume request; to create a new data set, make a specific or nonspecific volume
request. If you request multiple disk volumes to be mounted in JES3, they must all be either
mountable or permanently resident; a mixture of both is not allowed.

Specific Volume Requests

A specific volume request informs the system of the volume serial number of the volume
required. A request for an existing data set implies request for a specific volume. Make either
a specific or nonspecific volume request when creating a data set.

7-24 MVS JCL

You are making a specific request when:

• You specify the serial numbers in the SER subparameter of the VOLUME parameter; for
example, VOL = SER = (948762,945231).

• You refer the system to an earlier specific volume request to copy the volume serial
numbers.

You do this by coding the name of a passed or cataloged data set or a previous DD
statement in the REF subparameter of the VOLUME parameter.

To refer the system to a passed or cataloged data set, code VOL = REF = dsname

To refer to a DD statement in the same step, code VOL = REF = *.ddnartle

To refer to a DD statement in a preceding step, code VOL=REF=*.stepname.ddname

To refer to a DD statement in a procedure step that is in a procedure called by a
preceding step, code VOL = REF = * .stepname. procstepname.ddname. (If you refer to a
multi-device type VSAM data set, the system uses only the volume serial number of the
first device type listed.)

• You pass the data set from an earlier step or you reference the data set from the catalog.

The system obtains the volume serial numbers from the passed data set information or from
the catalog; you need not code the VOLUME parameter unless requesting a private
volume, coding a volume sequence number, or requesting additional volumes. If a
cataloged data set is cataloged in, or is to be cataloged or uncataloged from, a private
catalog other than JOBCAT and STEPCAT, then the system automatically allocates that
private catalog to the job step. (The private catalog must be on a permanently resident
volume for JES3). If this allocation is not successful, the job fails.

How the System Satisfies Specific Volume Requests

A specific volume request informs the system of the volume serial number of the volume
required. In the following cases the system can satisfy a request for a specific volume that is
already mounted:

• The volume is permanently resident or reserved. (The volume is assigned regardless of the
requested use attribute, and the use attribute is not changed by the allocation.)

• The direct access volume is a removable volume that can be shared and is being used by a
concurrently executing step. (If your request would make the volume unable to be shared,
the system will assign you that volume only when all other job steps using the volume have
terminated.)

• The direct access volume is removable but not allocated. The use attribute (private or
public) assigned to the volume when it is allocated is determined by the presence or absence
of the PRIV ATE subparameter.

• The tape volume is a scratch volume and is not in use. The use attribute of private is
assigned to the volume if the request is for a permanent data set or if the PRIV ATE
subparameter is coded.

Chapter 7. Guide to Specifying Data Set Information 7-25

Nonspecific Volume Requests

Nonspecific volume requests can be made only for new data sets. When you make a nonspecific
volume request, do not specify volume serial numbers. You need not code the VOLUME
parameter unless you are requesting a private volume or a volume count.

You can make four types of nonspecific volume requests:

• A private volume for a temporary data set
• A private volume for a nontemporary data set
• A nonprivate volume for a temporary data set
• A nonprivate volume for a nontemporary data set

How the system satisfies these different types of requests is described below. Since the system
satisfies the first two types of requests in the same way, these two requests are described
together.

• When you make a nonspecific volume request for a private direct access or tape volume, the
system always requests the I)perator to mount a volume. The operator should mount a
volume whose space is unus.!d. This allows you to have control over all space on the
volume. Once mounted, the volume is assigned the use attribute of private.

• When you make a nonspecific volume request for a nonprivate direct access volume that is
to contain a temporary data set, the system assigns a public or storage volume that is
already mounted, or if no space is available, it requests the operator to mount a removable
volume. If the system selects a mounted volume, its use attribute is not affected. If a
removable volume-is mounted, it is assigned the use attribute of public. For the definition
of the MOUNT and USE attributes, see SPL: Job Management.

• When you make a nonspecific request for a nonprivate tape volume, data management
(OPEN) will satisfy this request by using any available, physically mounted, tape volume.
This could result in the loss of user data. However, if you use labels on your tape volumes
and specify the types of labels in the LABEL parameter, loss of data can usually be
prevented.

• When you specify labels in the LABEL parameter, data management (OPEN) checks the
first record of the tape. There are various error conditions that can occur during
verification of the first record. These error conditions are described in Tape Labels.

• When you make a nonspecific volume request for a nonprivate tape volume that is to
contain a temporary data set, the system assigns a public or scratch volume that is already
mounted, or it requests the operator to mount a tape volume. Once mounted, the volume
is assigned the use attribute of public.

• When you make a nonspecific volume request for a nonprivate direct access volume that is
to contain a nontemporary data set, the system assigns a storage volume if one is mounted.
Otherwise, the system treats the request as a nonspecific volume request for a private
volume.

• When you make a nonspecific volume request for a nonprivate tape volume that is to
contain a nontemporary data set, the system treats the request as a nonspecific volume
request for a private volume.

7-26 MVS JCL

Note: If your nonspecific volume request requires more than one unit from a group that
contains both single and dual density tape drives, the system assigns the devices so that the
single density drive is the first one used. The default density is the density of the single density
drive. The operator may be requested to mount the volumes in a different order than assigned
by the system.

Using Private Volumes

A private volume is one that can be used only by those who know the serial number. Code
PRIVATE as the first subparameter in the VOLUME parameter for both specific and
nonspecific volume requests. When you make a specific volume request for a direct access
volume, code PRIV A TE if you want a private volume; tape volumes for which you make a
specific volume request are automatically made private, so you need not code the PRIVATE
subparameter.

A volume already made private cannot be allocated to satisfy other nonspecific volume
requests. Therefore, if you request a private volume, you will be the only user using that
volume, unless another job makes a specific volume request for that volume.

If PRIVATE is coded or implied for a direct access volume, the operating system requests that
the operator demount the volume at job termination.

If PRIVATE is coded or implied for a tape volume, the operating system automatically requests
that the operator demount the volume after its last use in the job step unless RETAIN is coded
or the data set is passed. If you expect to use a data set in a subsequent step for which you
requested a private volume, code RETAIN in the VOLUME parameter to ensure that the
volume is not demounted at the end of the step. Even if you specify RETAIN or a disposition
of PASS, the operator can still unload the volume or another step in the same job or another
job can allocate and demount it.

Sharing Volumes Between Data Sets

To use fewer volumes, request that data sets be assigned the same volume. Data sets on the
same volume have volume affinity.

You can request volume affinity either:

• Implicitly, through catalog references or by specifying the same volume serial numbers for
different data sets in the SER subparameter of the VOLUME parameter.

• Explicitly, by using the REF subparameter of the VOLUME parameter to indicate that
volumes identified in the catalog or on an earlier DD statement in the job are to be
assigned to the data set being defined.

Volume affinity influences the allocation of devices. The system can modify a request for a
specific number of units if a data set has volume affinity with at least one other data set. For
examples of volume affinity, see "Example of UNIT and VOLUME Affinities" at the end of
this section.

Chapter 7. Guide to Specifying Data Set Infonnation 7-27

Multivolume Data Sets

If you are creating or extending a data set that can require more than one volume, request the
maximum number of volumes required in the volume count subparameter of the VOLUME
parameter. The maximum number of volumes you can request is 255. For some jobs, each
volume requested must be mounted on a unit before it can be used. For these jobs, be sure to
request as many units as volumes. When you make a specific volume request for more volumes
than units, the system automatically indicates that the volumes on the same unit cannot be
shared.

By coding the volume sequence number subparameter when reading or lengthening an existing
multivolume data set, you can instruct the system to begin processing other than the first
volume. Usually a volume sequence number is coded when you are defining an existing
cataloged or passed data set.

Specifying Unit Information

Use the UNIT parameter to provide the system with the information it needs to assign a device
to a data set. To indicate what unit or type of unit you want, code one of the following:

• Unit address
• Device type (generic name)
• User-assigned group name (esoteric name)

The unit address is a 3-character address made up of the channel, control unit, and unit
number. For example, UNIT = 180 indicates channell, control unit 8, and unit number O.
Specifying a unit address, however, limits unit assignment: the system can assign only that
specific unit, and, if the unit is being used, the job must be delayed or canceled. Only specify
unit addresses when necessary since these specifications restrict the system.

A device type corresponds to a particular set of features of input/output devices. When coding
a device type, you allow the system to assign any available device of that device type. For
example, UNIT = 3350 indicates that you want the system to assign any available 3350 disk
storage facility.

For additional information on specifying device types, see System Generation Reference.

During system generation, each installation can also define user-assigned group names to signify
a group of devices that mayor may not all be of the same type. By coding a user-assigned
group name, you allow the system to assign any available devices included in the group. For
example, if the group named DISK includes all 3350 and 3330 disk storage facilities and you
code UNIT = DISK, the system assigns an available 3350 or 3330 device. If the group named
3350A includes particular 3350's and you code UNIT = 3350A, the system could assign one of
several 3350 devices.

If the group consists of more than one device type, and more than one unit is requested, the
units are allocated from the same device type. For example, if the group named TAPE includes
both 3400-5 and 3400-6 devices, and you request two units by specifying UNIT = (T APE,2), the
system assigns either two 3400-5s or two 3400-6s. If there is an insufficient number of units of
any single type to satisfy the request, the job is flushed.

If a group contains more than one device type or class (for example, SYSSQ can refer to all
tape and direct access devices), you should not code the group name when defining an existing

7-28 MVS JCL

data set or requesting a specific volume. The volume on which the data set resides may require
a device different from the one assigned to it. For example, if the data set resides on a tape
volume, it must be assigned to a tape device.

The same is true if the data set resides on a 3348 Model 70F Data Module and the group. name
includes 3340 drives with and without the Fixed Head Feature. The 3348 Model 70F must be
assigned to a 3340 with the feature. For more information on the Fixed Head Feature, see the
IBM 3340 Fixed Head Feature User's Guide.

Only direct access devices can be simultaneously allocated for two or more jobs. Teleprocessing
equipment is not allowed to be allocated more than once in the same job step. If a unit record,
teleprocessing equipment, or graphics device is designated as a console, it is not eligible for
allocation by a job.

Relationship of a UNIT Specification to System Generation

Installation programmers use the IODEVICE system generation macro instruction to describe
the characteristics and requirements of a device to the system. Each I/O device at your
installation is described in an IODEVICE macro instruction. The UNIT parameter of the
IODEVICE macro instruction describes the device type (generic name) that you code in the
UNIT JCL parameter.

For example, when you code UNIT = 3350 in your JCL, you are coding the same specification
that your installation programmer coded in the UNIT parameter of the IODEVICE macro
instruction at system generation.

Installation programmers use the UNITNAME system generation macro instruction to specify
a name for a group of devices. The NAME parameter of the UNITNAME macro instruction
defines the user-assigned group name (esoteric name) that you code in the UNIT JCL parameter.

For example, when you code UNIT = DISK, YQU are coding the same specification that your
installation programmer coded in the NAME parameter of the UNITNAME macro instruction
at system generation.

For additional information on the IODEVICE and UNITNAME system generation macro
instructions, sss System Generation Reference.

Requesting More than One Unit

To increase operating efficiency, request multiple units for a multivolume data set or for a data
set that may require additional volumes. When each required volume is mounted on a separate
device, execution of the job step is not interrupted to allow the operator to demount and mount
volumes. You should always request multiple units when the data set can be extended to a new
volume when the data set resides on a permanently resident or reserved volume. Permanently
resident and reserved volumes cannot be demounted in order to mount a new volume.

Request multiple units by:

• Coding the unit count subparameter in the UNIT parameter
• Requesting parallel mounting

To request parallel mounting, code P in place of the unit count subparameter when you make a
specific or nonspecific volume request. The system counts the number of volumes requested (by

Chapter 7. Guide to Specifying Data Set Information 7 -29

counting the volume serial numbers specified on the DD statement or counting the volume
serial numbers in cataloged or passed data sets).

It compares this sum to the volume count, if specified, and the system assigns the larger of the
specified number of devices.

Deferred Mounting of Volumes

A job step may include a data set that your program might not use. Use the DEFER
subparameter to request that the system not mount the volume containing the data set until the
data set is opened. This can save the operator the time it takes to mount volumes on direct
access devices.

Note: No other job step can use such a volume until the job step specifying DEFER ends. If
you code DEFER for a new data set that could be placed on a direct access device, then the
system ignores DEFER.

Relationship of the UNIT Parameter to a Volume Reference

The system can obtain unit information from sources other than the UNIT parameter. In
many such cases, you do not have to code the UNIT parameter. However, if coding
VOL = SER = serial-number or VOL = REF = reference, you should know where the system
obtains the unit information.

Normally, you do not have to code unit information when the data set is cataloged. For
cataloged data sets, the system obtains unit and volume information from the catalog. This is
true except when you code VOL = SER = serial-number on a DD statement that defines a
pre-existing data set. When you code VOL = SER = serial-number, the system does not look in
the catalog - you must code the UNIT parameter.

You can override the data set name on a procedure DD statement with the data set name of a
cataloged data set. If you do so but do not override the UNIT parameter on the DD statement
in the procedure, the system will not search the catalog for unit information. Instead, the
system will obtain unit information from the overridden DD statement. Therefore, when you
override the data set name on a procedure DD statement, nullify the unit parameter on the
procedure DD statement and the system will search the catalog for unit information.

Normally, when the data set is pas~ed from a previous job step, you do not have to code unit
information.

For passed data sets, the system obtains unit and volume information from passed data set
information. This is true except when you code VOL = SER = serial-number on a DD statement
that defines a pre-existing data set. When you code VOL = SER = serial-number on a DD
statement that defines a pre-existing data set, the system does not look in the passed data set
information - you must code the UNIT parameter.

You do not have to code unit information when the data set is to use the same volumes
assigned to an earlier data set. You can code VOLUME = REF = ddname. In this case, the
system obtains unit and volume information from:

• the earlier DD statement that specified the volume serial number, or
• the catalog.

7-30 MVSJCL

When you want additional devices assigned or when you want to influence device allocation
code the UNIT parameter. The system uses the coded UNIT parameter if it is a subset of the
unit type referenced. Otherwise, the system ignores it.

Do not code the UNIT parameter when defining a data set included in the input stream. If
UNIT is coded on a DO * or DO DATA statement, MVS terminates the job.

JES3 Handling of UNIT and VOLUME references

When JES3 looks in the catalog, it cannot determine whether or not a given device type is a
subset of another device type. Errors might result if you request a device to be mounted on a
conflicting device type (for example, a 3330 mounted on a 3350). To avoid this error, use the
JES3 HWSNAME initialization statement to define to JES3 which device names are subsets of
other device names.

If, in a multiple-step job, a data set is extended to additional volumes, and if a subsequent step
allocates that data set, MVS allocates the additional units the job requires. JES3 is unaware of
the additional unit requirement; therefore code UNIT = AFF = ddname in the last step to
allocate the extended data set.

For additional information on JES3 allocation, see "Allocating Data Resources in a JES3
System" on page 6-4 and "Specifying Volume Affinity When Using Multivolume Data Sets" on
page 7-35.

Example of Requesting Units and Volumes

This job shows the unit and volume parameters.

IITEST
IisTEP1
IIDD11
II
IisTEP2
IIDD21
II
IIDD22
II
IIDD23
II
IIDD24
II
IIDD25
IIDD26

JOB WIBORG,CLASS=C
EXEC PGM=TESTSYSO
DD DSN=A01DD1,UNIT=3330,DISP=(,PASS),

SPACE=(TRK,1),VOL=SER=333001
EXEC PGM=TESTSYSO
DD DSN=SYSLIB,UNIT=3350,VOL=(PRIVA~E,SER=123456),
DISP=OLD
DD DSN=SYSABC,UNIT=AFF=DD21,VOL=SER=777777,

DISP=(OLD,KEEP)
DD DSN=SYSTAPE,UNIT=(3400-5,P,DEFER),DISP=OLD,

VOL=SER=(342001,342002,342003,342004,342005)
DD DSN=SYSDISK,DISP=(SHR,KEEP),UNIT=(,P),

VOL=SER=(333005,333008,333010)
DD UNIT=3350,VOL=REF=*.DD21,SPACE=(TRK,(5,2))
DD UNIT=3330,VOL=REF=SYSDISK, SPACE= (TRK, (10,5))

1. The job is assigned to class C.

2. 0011 defines a new data set named A010Dl. It is to be on volume 333001 which is
mounted on a 3330 device.

3. 0021 defines an old data set named SYSLIB that exists on a private volume, 123456. The
volume is mounted on a 3350 device.

4. 0022 defines an old data set named SYSABC that is to be kept after this job step is
complete. SYSABC is on volume 777777. This volume is to be mounted on the same 3350
device as the volume defined on 0021.

Chapter 7. Guide to Specifying Data Set Information 7 -31

5. DD23 defines an old data set named SYST APE. There are five volumes that are to be
mounted only after the data set is opened (caused by the DEFER subparameter). The P
requests parallel mounting; that is, all five volumes are to be mounted at the same time on
five different 3400-6 devices. '

6. DD24 defines an old data named SYSDISK that can be shared by another job since it will
only be read. It is to be kept after this job step. The number of units used is determined
by the number of volumes requested.

7. DD25 is a temporary data set (no DSNAME specified) and, therefore, assumes a
disposition of NEW,DELETE. The volume to be used is the same one used in STEP2
DD21; that is, volume 123456.

8. DD26 is also a temporary data set. The backward reference for volume information is to
STEP2 DD24 where the data set named SYSDISK is located.

Sharing a Unit Between Data Sets on Different Volumes

You can conserve the number of devices used in a job step. To do so request that an existing
data set be assigned to the same device or devices as assigned to a data set defined earlier in the
job step. When two or more volumes are assigned the same device, the volumes are said to
have unit affinity. Unit affinity implies deferred mounting for all except one of the volumes,
since all volumes cannot be mounted on the same device at the same time.

Request explicit unit affinity by coding UNIT = AFF = ddname on a DD statement.

The ddname is the name of an earlier DD statement in the same job step. The data set defined
on the DD statement that requests unit affinity is assigned the same device or devices as the
data set defined on the named DD statement; the data set must reside on the same device type.
If the ddname refers to a DD statement that defines a dummy data set, the data set defined on
the DD statement requesting unit affinity is assigned a dummy status.

Unit affinity also exists on one DD statement when there are more volumes than units. This is
implied unit affinity. See examples of unit affinity.

If all of the following conditions are present, the data set defined on the DD statement
requesting unit affinity might be written over by the named data set:

• The named DD statement requests a scratch tape.

• The data set defined on the DD statement requesting unit affinity is opened prior to that
on the named DD statement.

• The tape is not unloaded prior to the OPEN of the data set defined on the named DD
statement and tape label positioning is not specified using the LABEL parameter. (Note
that a tape unit that is allocated to more than one request is not unloaded (1) as a result of
dynamic deallocation, or (2) when it is closed if FREE = CLOSE is specified.)

Note: You cannot request unit affinity for a new data set if the original request is for a direct
access device.

7-32 MVS JCL

Unit and Volume Affinities: It is possible to have unit affinity, volume affinity, and/or unit and
volume affinity occurring in the same step. You can also have unit and volume affinity
occurring on the same DD statement (see example 2, below). However, not all combinations are
possible.

• Explicit unit affinity is requested when UNIT = AFF = ddname is specified.

• Implied unit affinity is requested when more volumes than units are specified on the same
DD statement.

• Volume affinity is requested when two or more DD statements reference the same volume.

Examples of Unit and Volume Affinity

The examples below illustrate the three kinds of relationships possible between unit and volume
affinity.

1. All volume affinity requests are unrelated to any of the unit affinity requests. For example,

//DDl DD
//DD2 DD
//DD3 DD
//DD4 DD

VOL=SER=A,UNIT=3330
UNIT=AFF=DD1,VOL=SER=B
VOL=SER=(C,D),UNIT=3330
VOL=SER=C,UNIT=3330

• Unit affinity is explicitly requested between DDt and DD2.
• Volume affinity is implicitly requested between DD3 and DD4.
• Therefore, the volume affinity request is not related to the unit affinity request.

2. All volume affinity requests are contained in the unit affinity requests. For example,

//DDl DD
//DD2 DD
//DD3 DD

VOL=SER=(A,D),UNIT=3330
UNIT=AFF=DD1,VOL=SER=(A,B)
VOL=SER=X,UNIT=3330

• Unit affinity is explicitly requested between DDt and DD2.

• DD I illustrates implied unit affinity within a DD statement because the unit count
defaults to one. -

• Volume affinity is also implicitly requested between DDt and DD2.

• Therefore, the volume affinity request is contained within the unit affinity request.

3. Some volume affinity requests are contained in the unit affinity requests, but not all. For
example,

//DDl DD
//DD2 DD
//DD3 DD

VOL=SER=A,UNIT=3330
UNIT=AFF=DD1,VOL=SER=B
VOL=SER=B,UNIT=3330

• Unit affinity is explicitly requested between DDt and DD2.

• Volume affinity is implicitly requested between DD2 and DD3.

• Therefore, some volume affinity requests are contained within the unit affinity requests,
but not all.

Chapter 7. Guide to Specifying Data Set Information 7-33

If both unit and volume affinity do exist in the same step, sometimes only one requested affinity
can be honored at a time. Figure 7-2 on page 7-34 indicates what will happen when you code
unit and volume affinity for either tape or direct access devices.

Relationship of
unit and volume
acrIDity requests TaPe Direct Access

Unit and volume Because there is no Because there is no
affinity requests conflict, both unit conflict, both unit
unrelated and volume affinity and volume affinity

requests are honored. requests are honored.

All volume affinity All volumes will use For those volumes having
requests contained the same unit; that volume affinity that are
in unit affinity is, volume affinity contained in the unit
requests. is ignored and unit affinity requests, unit

affinity is honored. affinity is ignored. That
is, they will share the
same unit while the
remaining requests in the
unit affinity will use
a different unit.

Some volume affinity For those volumes having For those volumes having
requests contained volume affinity that are volume affinity that are
in unit affinity contained in the unit contained in the unit
requests. affinity requests, unit affinity requests, unit

affinity is ignored. That affinity is ignored. That
is, they will share the same is, they will share the
unit while the remaining same unit while the
requests in the unit affinity remaining requests in the
will use a different unit. unit affinity will use

a different unit.

"-
Figure 7-2. Unit and Volume Affinity

Note: If a requested volume is mounted on an eligible, permanently-resident or reserved unit,
it must be allocated to that unit regardless of any relationships to other requests. This is done
because that particular volume cannot be dismounted. "

Positioning the Unit Affinity Request

If unity affinity (UNIT = AFF = ddname) to a DD statement is requested before the ddname is
defined within the job stream, the system treats the requesting DD statement as a DUMMY
DD.

F or example;

//STEP
//DD1
//DD2
//DD3

EXEC
DD
DD
DD

PGM=TKM
DDNAME=DD5
DSN=A,DISP=OLD
UNIT=AFF=DD1

The system treats DD3 as a DUMMY DD.

7-34 MVS JCL

Specifying Volume Affinity When Using Multivolume Data Sets

Do not request volume affinity for multivolume data sets without also requesting unit affinity.

When you specify volume affinity for multivolume data sets using VOL = REF = * .ddname,
without specifying unit affinity, the system allocates a unit that is shared between all the DD
statements involved in the volume affinity request. The system then initiates a mount request
for the first volume serial number associated with the referenced DD statement.

Because volume affinity requests are not related to unit affinity requests,
OPEN/CLOSE/END-OF-VOLUME (O/C/EOV) look ahead mounting or end of volume
processing may cause this volume to be demounted and remounted on a unit other than the one
that was originally allocated for the volume affinity request. Your job now goes into a wait
because the system has requested the same volume on two different units.

To enable O/C/EOV to find the volume when such a remount occurs, always specify volume
affinity and unit affinity for multivolume data sets.

Example of UNIT and VOLUME Affinities

The purpose of this job is to show several job steps that use either unit or volume affinity for
their processing.

//AFFIN
//STEPl
//DDl
//DD2
//STEP2
//DDll
//DD12
//STEP3
//DD21
//DD22
//DD23
//STEP4
//DD31
//DD32
//STEP5
//DD41
//DD42
//STEP6
//DD51
//DD52

·//STEP7
//DD61
//DD62
//DD63

JOB
EXEC
DD
DD
EXEC
DD
DD
EXEC
DD
DD
DD
EXEC
DD
DD
EXEC
DD
DD
EXEC
DD
DD
EXEC
DD
DD
DD

(8526,831),WOON,CLASS=J,PERFORM=50
PGM=TESTAFF
UNIT=3400-5,VOL=SER=111111
UNIT=AFF=DD1,VOL=SER=222222
PGM=TESTAFF
UNIT=(3330,2) ,VOL=SER=(A,B)
UNIT=AFF=DDll,VOL=SER=(C,D)
PGM=TESTAFF
UNIT=(3330,2) ,VOL=SER=(A,B)
UNIT=AFF=DD21,VOL=SER=(C,D)
UNIT=3330,VOL=SER=B
PGM=TESTAFF
UNIT=(3330,2),VOL=SER=(E,F)
UNIT=AFF=DD31,VOL=SER=(G,H)
PGM=TESTAFF
UNIT=3400-5,VOL=SER=(llllll,222222)
UNIT=AFF=DD41,VOL=SER=(222222)
PGM=TESTAFF
UNIT=3330,VOL=SER=(ABCDEF,GHIJKL)
UNIT=AFF=DD51,VOL=SER=(ABCDEF)
PGM=TESTAFF
UNIT=3400-5,VOL=SER=111111
UNIT=3400-5,VOL=SER=111111
UNIT=AFF=DD61,VOL=SER=222222

1. The JOB statement assigns jobs to class J in performance group 50.

2. STEPl assigns one unit for both volumes. Volume 111111 will be mounted first, then
222222 will be mounted when DD2 is opened. (This processing is true for both tape and
direct access.)

3. STEP2 allocates two units to DD11 and volumes A and B are mounted. DD12 gets
allocated to the same two units but volumes C and D will be mounted when DDl2 is
opened.

Chapter 7. Guide to Specifying Data Set Information 7-35

4. STEP3 is a direct access example of volume affinity for volume B. The actual allocation of
units will cause volumes A and C to share one unit and volumes Band D to have their own
units.

5. STEP4 is a direct access example. Assume that volume E is currently mounted and has
been assigned the permanently resident or reserved attribute. In this case, since volume E
cannot be dismounted, a separate unit will be allocated for it. Volume G will have its own
unit and volumes F and H will share one unit. Therefore, three volumes will be allocated
for these requests, instead of two, because of the permanently resident or reserved mount
attributes.

6. STEP5 is a tape example. Volume affinity is ignored between the DD statements because
only one tape data set for each tape volume can be open at a time.

7. STEP6 is a direct access example where unit affinity is ignored for the common volume.
Volume ABCDEF of both DD statements will share the same unit while the remaining
request (GHIJKL) will use a different unit.

8. In STEP7, unit affinity is requested between DD61 and DD63. Volume affinity is
requested between DD61 and DD62. Because there is a volume affinity request (DD62)
that is not contained in the chain of unit affinity requests, the UNIT = AFF = DD61
specification is ignored for DD63. STEP7 allocates two units; one for volume 111111, and
another for volume 222222.

Volume Attributes

MVS assigns attributes to every mounted volume. This discussion describes the relationship of
JCL parameters and the disposition of removable tape volumes.

Note that 3330V or MSS volumes, while ultiniately recorded on tape-like media, are treated as
DASD volumes by MVS.

This discussion is not applicable to JES3-managed units.

The JCL disposition parameter (DISP) refers to a data set's disposition, whereas the
disposition of a tape volume is influenced by the volume's mount and use attributes. For further
information see Job Management This discussion centers on tape volumes with the removable
mount attribute. That is, those volumes that are not mounted in response to the operator
MOUNT command. The use attributes for tape volumes are PRIVATE and PUBLIC.

MVS assigns the use attribute of PRIVATE if anyone of the following is true.

• You specify the PRIVATE subparameter of the VOLUME parameter, or

• You make a specific volume request, or

• The data set is a nontemporary data set; that is, it does not have a system-generated data
set name, or it has a data set disposition other than DELETE.

MVS assigns the use attribute of PUBLIC when all of the following are true.

• You do not specify the PRIVATE subparameter of the VOLUME parameter, and

• You do not request a specific volume, and

7-36 MVS JCL

• The data set is a temporary data set; that is, you have allowed the system to generate the
data set name or you have specified a disposition' of DELETE.

Ultimately a tape volume has one of two dispositions; Keep (K) or Scratch (D). However,
situations arise in which a tape volume must be demounted before a job is "finished" with that
volume so that the drive may be used to mount a different volume.

For example, this can occur when a volume is used by job steps I and 3 but not by job step 2
in a three-step job.

In this instance the system assigns the volume the RETAINED (R) designation, in effect
instructing the operator to place the tape nearby for possible later use.

In a multiple step job, if there is a period when a volume is not in use, you can request the
system to attempt to keep the volume mounted by coding the RETAIN subparameter on the
VOLUME parameter.

The designation R causes the system to "remember" that a unit contains such a passed or
retained volume.

When a tape unit is deallocated, for example, at the end of a job step, PRIVATE volumes that
are not passed or retained are demounted with a volume disposition of keep (K).

We define a private volume as one that is usable only by those who know its volume serial
number. The system cannot return the volume to the scratch pool because it has no way of
"knowing" that the users have relinquished the volume serial number.

By definition PUBLIC volumes are available for use by any user and therefore should remain
mounted on units that are no longer in use by a particular job. This enables any subsequent
job to use them. When these volumes cannot remain on the unit they are currently mounted on
(because the unit is being allocated), the volume is demounted with a D (scratch) designation.
This would occur when the system requests that the operator mount a specific volume on that
particular unit.

There are situations where the use attribute can change from private to public and from public
to private, in these cases a demount may not take place. For a discussion of when the use
attributes can change, see SPL: Job Management.

Specifying Data Sets for Mass Storage Systems (MSS)

Mass storage volumes are accessed on virtual direct access devices. All previous descriptions of
direct access device resource requests apply, with several additional functions also available.
The mass storage volume device type is 3330V.

Mass Storage Volume Groups

The mass storage system (3850) can contain up to 4,720 mass storage volumes (3330V). To
assist the installation in managing the volumes, the mass storage system utilities are used to
assign the volumes to groups. When creating a new data set with a nonspecific request, the
desired group can be specified using MSVGP = id. The system then selects the best volume for
the requirements from the specified group.

Chapter 7. Guide to Specifying Data Set Information 7-37

The installation can define as many groups as necessary; one group and its name are standard
in all systems (SYSGROUP). The installation then assigns each mass storage volume to a user
group, to SYSGROUP, or to no group.

Nonspecific Volume Requests for Mass Storage Volumes

Previous descriptions of nonspecific DASD volume requests apply to mass storage volumes.
The type of reque~t can be modified by the MSVGP parameter that specifies an installation
defined subset of all mass storage volumes to be used by the system to satisfy the request.
MSVGP implies a private volume. The system will select a volume from the defined group that
has sufficient space to satisfy the space requirements of the DD statement. (See the section on
mass storage volume control in Mass Storage System (MSS) Services: General Information or
the selection of MSVGP volumes to satisfy space requirements.) If you code the MSVGP
parameter, the VOLUME parameter can be used to specify a volume count, but must not be
used for volume serial numbers. VOLUME = PRIVATE is redundant when MSVGPis used.

You can specify that data sets be allocated to different volumes by coding the ddname operand
on the MSVGP parameter. It may be desirable to specify different volumes for two data sets,
for example, when an existing data set containing a critical master file is used for input and a
new data set is created for the output master file.

If MSVGP is not specified when you make a nonspecific request for a:

• Private mass storage volume, the system always causes a default group of volumes to be
used (MSVGP = SYSGROUP).

• Nonprivate mass storage volume that is to contain a temporary data set, the system assigns
a public or storage mass storage volume that is already mounted (if one is available).
Otherwise, the request is treated as a nonspecifjc volume request for a private volume.

• Nonprivate mass storage volume that is to contain a nontemporary data set, the system
assigns a mass storage 'volume if one is mounted. Otherwise, the request is treated as a
nonspecific volume request for a private volume.

Specific Volume Requests for Mass Storage Volumes

Previously defined descriptions of specific DASD volume requests (direct access storage
volumes) also apply to mass storage volumes.

Because there is no operator involvement or decision making in mounting mass storage
volumes, we recommend (for data integrity purposes) that you catalog all permanent data sets
on mass storage volumes. All specific requests for these data sets should always reference the
volumes using by the catalog, not the VOLUME parameter. Reference to the catalog is
required when extending an existing multivolume data set to one or more volumes. The reason
is that the system must know all volumes on which the data set currently resides before it selects
the new volume. Parallel mounting must also be specified, to ensure proper multivol~e
extensions.

7-38 MVS JCL

Requesting Space for Non-VSAM Data Sets on Mass Storage Volumes

When an installation defines mass storage volume groups, each group is given a default for
space. Specific volume requests for new data sets require the SPACE parameter. Nonspecific
volume requests with the MSVGP parameter can optionally specify the SPACE parameter.
Nonspecific volume requests without the MSVGP parameter can optionally specify the SPACE
parameter if the reque'st will default to MSVGP = SYSGROUP. If other types of space
attributes are desired, the SPACE parameter can be coded to override the specified default.
Neither directory nor index quantities can be provided in the default; therefore, you must code
the SPACE parameter for new BP AM or ISAM data sets on mass storage volumes.

Retrieving Generation Data Groups Residing on DASD Volumes

For generation data groups residing on DASD (including MSS) volumes, when you specify the
generation group name without a generation number (GDG ALL request), and request parallel
mounting in the UNIT parameter, the system mounts all volumes of all generations.

Before using mass storage volumes, refer to Mass Storage System (MSS) Services: General
Information and Mass Storage System (MSS) Services: Reference Information.

Requesting Space for Non-VSAM Data Sets

You must request space for every non-VSAM data set created on a direct access volume. To
request space, code the SPACE parameter on the DD statement that defines the data set. The
SPACE parameter provides two ways to request space:

• Tell the system how much space you want and let the system assign specific tracks.
• Tell the system the specific tracks on which you want the data set written.

Letting the system assign specific tracks is the easiest and most frequently used method of
requesting space. You need only specify the unit of measurement to be used to compute the
space requirement and how many of the units of measurement the data set requires. In
addition, this form of the SPACE parameter offers several options:

• A secondary quantity, to be used if the data set runs out of space
• Space for a directory or index
• Release of unused space
• Contiguous space
• Whole cylinders

OS/MVT and OS/VS2 Release I (SVS) included the SPLIT and SUBALLOC parameters to
request space for a group of data sets on a single direct access volume. These two parameters
are now internally converted to SPACE requests. SUBALLOC requests are not eligible for
virtual input/output (VIO).

Chapter 7. Guide to Specifying Data Set Information 7-39

The Basic Space Request: Unit of Measurement and Primary Quantity

To have the system assign specific tracks, specify only the unit of measurement the system
should use to allocate space and the primary quantity of space needed. As the unit of
measurement, you can specify:

• Average block length of the data, for blocks
• TRK, for tracks
• CYL, for cylinders

As the primary quantity, code an integer that indicates how many blocks, tracks, or cylinders
are required.

It is easiest to specify an average block length: the system will allocate the least number of
tracks required to contain the number of blocks specified. Specifying block length also
maintains device independence; you can change the device type in the UNIT parameter without
altering the space request or you can code in the UNIT parameter a group name that includes
different direct access devices.

When specifying TRK or CYL, compute the number of tracks or cylinders required; consider
such variables as the device type, track capacity, tracks per cylinder, cylinders per volume, data
length (blocksize), key length, and device overhead. These variables, and examples of
estimating space requirements for partitioned and indexed sequential data sets, are described in
Data Management Services Guide.

Cylinder allocation allows faster input/output of sequential data sets than does track allocation.
When you request space in terms of average block length, the system will allocate tracks to
contain the request unless you code ROUND as the last subparameter in the SPACE
parameter. The system will then allocate the smallest number of cylinders needed to contain
the request.

How the System Satisfies Your Primary and Secondary Request

Enough available space must exist on one volume to satisfy the primary request. If there is not
enough space available on a single volume, the system will terminate the job or search another
volume, depending on the type of volume request made:

Specific volume request (for example, you code volume serial numbers): If sufficient space is not
available on the first volume specified, the job is terminated. When extending a multivolume
data set, if sufficient space is not available to satisfy secondary allocation on the next specified
volume, the job is terminated.

Nonspecific volume request (for example, you do not code volume serial numbers): If space is
not available on the first volume chosen, the system will choose another volume and continue
the search, causing volumes to be mounted if necessary. The system continues to search until a
volume with sufficient space is found or the operator cancels the job.

Note: If the first volume selected by allocation to satisfy a request for a new ISAM data set
does not contain sufficient storage to satisfy the request, allocation does not attempt to find
another volume with sufficient space if the request is of the following types.

• A request for multiple volumes or units.
• A request uses the second, third, or subsequent DD statement you used to define the

dataset.

7-40 MVS JCL

The system attempts to allocate the primary and secondary quantity in contiguous tracks or
cylinders. If contiguous space is not available, the system satisfies the request with up to five
noncontiguous extents (blocks) of space. (If user labels are specified - that is, you code SUL in
the LABEL parameter - the system allocates up to four noncontiguous extents of space. The
system allocates a track for user labels separate from the primary quantity; this one track is
considered an extent, and therefore, up to four additional extents can be allocated to satisfy the
primary quantity.)

A Secondary Request for Space

In the primary quantity, you need not anticipate all future demands for space for a data set.
Code a secondary request for space to be used only if the data set exceeds its allocated space.
Do this by coding an integer, following the primary quantity, that indicates how much
additional space should be allocated.

For data sets whose disposition is NEW or MOD, the system allocates this space on the same
volume as the primary quantity until:

1. There is not enough space available on the volume to allocate the secondary quantity, or

2. A total of 16 extents, less the number of extents for the primary quantity and user label
space, have been allocated to the data set. (BDAM data sets cannot be extended.)

If either of these conditions is satisfied, the system must allocate the secondary quantity on
another volume. However, the system will allocate your secondary request on another volume
only if you request more than one volume in the VOLUME parameter or for a specific volume
request, you request more volumes than devices.

If you are making a nonspecific volume request and there exists the possibility that the system
will allocate a permanently mounted volume, code PRIVATE in the VOLUME parameter.

When allocating a secondary quantity for a data set whose disposition is OLD (in other words,
a data set that is preallocated or is being written over), the system will go to the next volume, if
one is specified, and see if there is already a secondary quantity allocated there.

If you did specify another volume and there is already a secondary quantity, the system will

• Use that space instead of making another allocation, or
• Allocate space if no space is already allocated there for the data set.

If you didn't specify another volume, the secondary space will be allocated on the current
volume.

A secondary quantity can be requested when creating a data set or when retrieving an existing
data set, whether or not you coded a secondary quantity in the original request. A secondary
request for an existing data set is in effect only for the duration of the job step and overrides an
original request if one was made.

If you specify SPACE in terms of average block length, code the maximum block length of the
data in either the DCB macro instruction or the BLKSIZE subparameter of the DCB
parameter on the DD statement: the system uses the maximum block length to compute how
many additional tracks to allocate.

Chapter 7. Guide to Spe~ifying Data Set Information 7 -41

Requesting Directory Space for a Partitioned Data Set

To create a partitioned data set, request a primary quantity large enough to include space for a
directory. A directory is an index used by the system to locate members in a partitioned data
set. It consists of 256-byte records, and you must specify, as the third quantity in the SPACE
parameter, how many records the directory is to contain. The directory is included at the
beginning of the primary space, which must be large enough to contain the directory. Request
enough directory space to allow for growth of the data set: you cannot lengthen the directory
as you can lengthen the data set itself, that is, by requesting a secondary quantity. If the
directory runs out of space, recreate the data set.

For a complete description of the directory, including details on member entries that will enable
you to compute how many records to request, see Data Management Services Guide.

Requesting Index Space for an Indexed Sequential Data Set

If you are creating an indexed sequential data set that occupies more than one cylinder, and
you are not defining the index on a separate DD statement, you can request index space in
addition to a primary quantity. Request index space as the third quantity in the SPACE
parameter. The space request for an indexed sequential data set must be in terms of cylinders
or absolute track allocation. The system determines whether the request is for a directory or an
index by examining the DSORG subparameter of the DCB parameter on the DD statement.
DCB = DSORG = IS or DCB = DSORG = ISU must be included on any DD statement defining
an indexed sequential data set.

The index quantity is added to the primary quantity when considering the space requirements.

Assigning Specific Tracks

You can request that specified tracks on a volume· be allocated to a data set. This is the most
stringent request for space: if any of the tracks requested are occupied, the space cannot be
allocated and the job is terminated. An example of where specific track allocation is required is
a data set that is to reside under the fixed heads of a 3348 Model 70F Data Module (cylinders
1-5).

To request specific tracks, you must code:

• ABSTR as the first subparameter, indic~ting absolute tracks
• A primary quantity, specifying the number of tracks to be allocated
• The relative track number of the first track to be allocated

When using the ABSTR subparameter, count the first track of the first cylinder on the volume
as O. Count through the tracks on each cylinder until you reach the track on which you want
your data set to start. Do not request track O.

For example, to allocate one track for a data set and specifically the sec'ond track on a volume,
code:

//DDEX DD SPACE=(ABSTR,(l,l»

7-.. 42 MVS JCL

For a partitioned data set, specify how many records you want allocated for a directory. If
requesting a user-label track, this track will be the first of the space requested.

If you are defining an indexed sequential data set using absolute track allocation, the number of
tracks for the index, primary, or overflow areas must be equal to an integral number of
cylinders and on a cylinder boundary. All of the DD statements defining the indexed sequential
data sets must request specific tracks.

Example of Requesting Space

One purpose of this job is to request space for two temporary data sets. The following steps
refer to these data sets for volume information.

//ALLOC
//STEP1
//0011
//0012
//SYSABENO
//STEP2
//001
//002
//SYSABENO

JOB
EXEC
00
00
00
EXEC
00
00
00

(3416,354),STONER,MSGLEVEL=1,MSGCLASS=C
PGM=TESTSYSO
UNIT=3350,OISP=(,PASS),SPACE=(TRK,(10,5»
UNIT=3330,OISP=(,PASS),SPACE=(TRK,(10,5»
SYSOUT=L
PGM=TESTSYSO
OSN=*.STEP1.0011,OISP=(OLO,OELETE,OELETE)
VOL=REF=*.STEP1.0012,SPACE=(TRK,(3,1)),UNIT=3330

SYSQUT=L

1. The JOB statement specifies that all job related output is to be printed and that system
messages for the job are to be written to output class C.

2. STEPI defines two temporary data sets. Step 2 refers to these data sets for volume
information.

3. The space requirements for these requests indicate that for DDII and DD12 in STEPI you
want 10 primary and 5 secondary tracks; and for DD2 in STEP2 you want 3 primary and 1
secondary track.

Specifying Data Set Processing Options

By coding JCL statements, you can request output data sets, listings of JCL statements, system
messages, and abnormal termination dumps. By coding the OUTPUT JCL statement, you can
request special forms processing, routing of output, grouping of output data sets, and multiple
printing of data sets.

The following topics discuss the functions the system provides to process your job's output.
The specific JCL statement, JES2 control state,merit, or JES3 control statement that performs
the function is discussed under the function it provides.

This section includes the following topics:

• Processing Output Data Sets for the JOB
• Processing System Output Data Sets Using the OUTPUT JCL Statement
• Assigning System Output Data Sets to Output Classes
• Specifying the Device
• JES Output Class Processing
• Delaying the Writing of an Output Data Set
• Suppressing the Writing of an Output Data Set

Chapter 7. Guide to Specifying Data Set Information 7-43

• Limiting Output Records
• Specifying Forms Overflow Processing and Printer Spacing
• Interpretation of Punched Output
• Requesting Multiple Copies of an Output Data Set
• Requesting Copy Modification
• Requesting Printer Form and Character Control
• Requesting Forms Overlay

Processing Output Data Setsfor the JOB

The two ways to process output data sets are:

• Assign processing'options to the data set and allow the job entry subsystem to manage the
output devices. '

• Specify the device on which the output should be written.

When you assign processing options to a data set, it is handled by the job entry subsystem in
use at your installation. The data set is first written to the job entry subsystem spool device
and then written or transmitted to the final output device by either the job entry subsystem or
an external writer.

For either JES2 or JES3, when you specify the output device on the UNIT parameter, the
device, if available, is exclusively assigned to your job and under the control of your program.

Output data sets to be written to a 3540 diskette must be assigned to an output class that is
processed by the diskette writer (an external writer), as described in OSjVS2 IBM 3540
Programmer's Reference. For the diskette writer to receive data sets, the job entry subsystem
initialization deck must specify the SYSOUT classes .to be reserved for diskette output. To
write data sets on a diskette, the operator must start the diskette writer to a 3540 device.

Processing System Output Data Sets Using the OUTPUT JCL Statement

The OUTPUT JCL statement governs the processing of system output data sets. It allows you
to specify:

• The processing options for a system output data set.
• Default processing options for system output data sets.

The general format of the OUTPUT JCL statement is:

//name OUTPUT parameter[,parameter] ...

The OUTPUT JCL statement can be referenced explicitly or implicitly by a sysout DD
statement, as described below.

A sysout DD statement can reference more than one OUTPUT JCL statement. For each
reference to an OUTPUT JCL statement, the system processes the data set defined by the DD
statement according to the output processing options that apply from the DD and the
OUTPUT JCL statements.

7~44 MVSJCL

Explicit Reference

You code an explicit reference to an OUTPUT JCL statement by specifying the name of the
OUTPUT JCL statement on the OUTPUT parameter of the sysout DD statement. You can
have up to 128 explicit references to OUTPUT JCL statements from a single DD statement.
Each reference causes a separate processing of the data set. For example: .

//STEPl
//OUTl
//OUT2
//REFl

EXEC PGM=MFK
OUTPUT COPIES=6,DEST=NY,FORMS=BILLS
OUTPUT COPIES=2,DEST=KY,FORMS=LOG
DD SYSOUT=A,OUTPUT=(*.OUT1,*.OUT2)

In the example, two sets of output are created from DD statement REFI. One of the sets will
go to NY and have six copies printed on the form defined as BILLS. The other set will go to
KY and have two copies printed on the form defined as LOG.

Implicit Reference

To code an implicit (default) reference to an OUTPUT JCL statement, code DEFAULT = YES
on the OUTPUT JCL statement and do not code an OUTPUT parameter on the sysout DD
statement.

Note: You can implicitly reference any number of output JCL statements.

You can place default OUTPUT JCL statements at the job level or the step level. Where you
place the default OUTPUT JCL statement determines the scope of control that the OUTPUT
JCL statement has on the sysout data sets in the job.

A job-level OUTPUT !CL statement is one that appears before the first EXEC statement in the
job. Any sysout DD statement within the job can implicitly reference a job-level OUTPUT
JCL statement, but only if the step does not contain a step-level default OUTPUT JCL
statement and the DD statement does not explicitly reference an OUTPUT JCL statement.

A step-level OUTPUT JCL statement is one that appears anywhere after the first EXEC
statement in the job. Only sysout DD statements within the step can implicitly reference a
step-level OUTPUT JCL statement. You may code more than one job- or step-level default
OUTPUT JCL statement per job or step.

When you explicitly reference an OUTPUT JCL statement, the system ignores all step- and
job-level default OUTPUT JCL statements. For example,

//JOBl
//OUTl
//OUT2
//STEPl
//OUT3
//INPUT
//MFKl
//MFK2

JOB
OUTPUT
OUTPUT
EXEC
OUTPUT
DD
DD
DD

In the preceding example,

options
COPIES=8,DEST=FRANCE
COPIES=2,FORMS=A,DEFAULT=YES
PGM=DEMENT
DEFAULT=YES,COPIES=5,DEST=REMULAC
DSN=RHINO
SYSOUT=A
SYSOUT=B,OUTPUT=*.OUTl

• The system processes the output from DD statement MFKI using the options on the
OUTPUT statement OUT3 (I) because MFKI does not contain an OUTPUT parameter
and (2) because OUT3 contains DEFAULT=YES and is in the same step as MFKl.
MFKI cannot implicitly reference the job-level default statement OUT2 because of

Chapter 7. Guide to Specifying Data Set Information 7-45

step-level default statement OUT3. If STEPI had not contained OUT3, MFKl would have
referenced statement OUT2.

• The system processes the output from DD statement MFK2 according to the processing
options on the job-level OUTPUT JCL statement OUTI because DD statement MFK2
explicitly references OUTI using the OUTPUT parameter. Note that the system ignores
the processing options on all default OUTPUT JCL statements (OUT2 and OUT3).

JES2/*OUTPUT References

If you explicitly or implicitly reference an OUTPUT JCL statement from a DD statement, and
you also reference a JES2 j*OUTPUT control statement(s) from the same DD statement, the
system ignores the JES2 /*OUTPUT control statement(s). If you do not reference an
OUTPUT JCL statement, but you do reference a JES2 j*OUTPUT control statement, the
system uses the output processing options coded on the JES2 /*OUTPUT control statement.

Be careful when you modify a job that includes DD statements that previously referenced JES2
/*OUTPUT control statements. The DD statements referenced the JES2 /*OUTPUT control
statements using the code field in the SYSOUT parameter on the DD statement. If this DD
statement now references an OUTPUT JCL statement, the references to the JES2 j*OUTPUT
statement(s) are ignored and the code field is no longer recognized as a reference to a JES2
/*OUTPUT statement. The system now interprets the code field as a forms name to be used
when processing the data set.

JES3 //*FORMAT Statement with OUTPUT JCL Statement

When a JES3 / /*FORMAT statement explicitly references a sysout DD statement that, in turn,
explicitly references an OUTPUT JCL statement, the processing options from both the
OUTPUT JCL and JES3 //*FORMAT statements ap'ply. For example:

//PUTI OUTPUT options ...
//*FORMAT PR,DDNAME=DD9,options ...
//DD9 DD SYSOUT=A,OUTPUT=*.PUTI

Two separate sets of system output are created from the data set defined by DD statement DD9.
One set of output is created according to the processing options on OUTPUT JCL statement
PUTl. The other is created according to the processing options on the JES3 /j*FORMAT
statement.

Using the OUTPUT JCL Statement to Tailor the Job Stream

When a sysout DD statement references an OUTPUT JCL statement, either explicitly or
implicitly, the system selects the processing options to be used as follows:

• If the same options are on the OUTPUT JCL statement and the sysout DD statement, the
values on the sysout·DD statement override the values coded on the OUTPUT JCL
statement.

• If an option is on only one of the statements, the system uses it.

The system combines the options from the two statements to determine how the sysout data set
is processed.

7-46 MVS JCL

Processing for Explicit References: When you explicitly reference an OUTPUT JCL statement
using the OUTPUT parameter on the sysout DD statement, consider the following:

• The OUTPUT JCL statement must appear earlier in the input stream, before any sysout
DD statement that references it.

• When you code the OUTPUT parameter on a DD statement, the system ignores OUTPUT
JCL statements containing DEFAULT = YES. However, the the OUTPUT parameter can
refer to an OUTPUT JCL statement that contains DEFAULT = YES, and the system will
accept this reference.

Processing for Implicit (Default) References: You can use the OUTPUT JCL statement to
provide output processing options for all or part of the sysout data sets in your job. Then, if
you wish slightly different processing options for a specific data set in the job, specify the
different options on the sysout DD statement. The DD options override those on the
OUTPUT JCL statement for that specific set of output, without affecting other output from the
job.

An Example Using Explicit and Implicit References: This example illustrates the use of the
OUTPUT JCL statement and shows how the statement's position affects the processing of the
output data sets.

IIEXAMP
IloUTl
II
IIOUT2
IlsTEPl
IIRl
IIR2
IisTEP2
IIoUT3
IIBl
IIB2
IISTEP3
IIoUT4
IIRPl
IIRP2
II

JOB
OUTPUT

OUTPUT
EXEC
DD
DD
EXEC
OUTPUT
DD
DD
EXEC
OUTPUT
DD
DD

MSGCLASS=A
DEFAULT=YES,DEST=COMPLEX7,FORMS=BILLING,
CHARS=(AOA,AOB),COPIES=2
DEFAULT=YES,DEST=COMPLEXl
PGM=ORDERS
SYSOUT=A
SYSOUT=A
PGM=BILLING
DEFAULT=YES,DEST=COMPLEX3
SYSOUT=A
SYSOUT=A,OUTPUT=(*.OUT3,*.OUT2)
PGM=REPORTS
FORMS=SHORT,DEST=COMPLEXl
SYSOUT=A
SYSOUT=A,OUTPUT=(*.STEP2.0UT3,*.OUT1)

In STEPI, the system processes DD statements RI and k2 using the processing options
specified on job-level OUTPUT JCL statements OUTl and OUT2 because

• DEFAULT = YES is specified on OUTPUT JCL statements OUTl and OUT2, and
• there is no OUTPUT JCL statement with DEFAULT=YES within STEPI.
• The OUTPUT parameter is not specified on DD statements Rl and R2.

In STEP2, the system processes DD statement Bl using the processing options specified on
OUTPUT JCL statement OUT3 because:

• DEFAULT=YES is specified on OUTPUT JCL statement OUT3 and OUTPUT JCL
statement OUT3 is within the job step STEP2.

• The OUTPUT parameter is not specified on DD statement Bl.

• OUTPUT JCL statement OUT3 is within STEP2; therefore, the system ignores the
DEF AUL T = YES specification on job-level OUTPUT JCL statements OUTl and OUT2
when processing DD statement Bl.

Chapter 7. Guide to Specifying Data Set Information 7 -4 7

In STEP2, the system processes DD statement B2 using the processing options specified on
OUTPUT JCL statements OUT3 and OUT2 because:

• Both of the OUTPUT JCL statements are explicitly referenced from the SYSOUT
statement. Explicitly-referenced OUTPUT JCL statements can be in any previous
procedure or step, before the DD statement in the current step, or at the job-level.

• Note that default OUTPUT JCL statement OUTl is ignored when processing the data set
defined by DD statement B2 because B2 explicitly references OUTPUT JCL statements
OUT3 and OUT2.

In STEP3, the system processes DD statement RPl using the output processing options
specified on the job-level OUTPUT JCL statements OUTI and OUT2 because:

• DEFAULT = YES is specified on OUTPUT JCL statements OUTI and OUT2, and
• no OUTPUT JCL statement with DEFAULT = YES is coded within STEP3.
• The OUTPUT parameter is not specified on DD statement RPl.

Note: In STEP3, OUTPUT JCL statement OUT4 is not used at all because it does not have
DEFAULT=YES coded, and no DD statement explicitly references OUT4.

In STEP3, DD statement RP2 is processed using OUTPUT statements OUT3 and OUTl. You
can explicitly reference an OUTPUT JCL statement in another step if you use a fully qualified
reference, such as the reference to OUTPUT statement OUT3 used on DD statement RP2.

You may explicitly reference an OUTPUT JCL statement with DEFAULT = YES coded, such
as the reference to OUTI from DD statement RP2. The system ignores the DEFAULT
parameter and uses the remaining processing options according to the normal rules that apply
when coding explicit references.

Specifying Sublist Using the OUTPUT JCL Statement

You must be careful when you are coding the COPIES, MODIFY or FLASH parameter on an
OUTPUT JCL statement. If you code the COPIES, FLASH or MODIFY parameter on a
sysout DD statement, you get a JCL error if you code it with a null first subparameter. For
example, you cannot code MODIFY = (,3) on a DD statement, even though you can code
MODIFY = (,3) on an OUTPUT JCL statement. For example:

//EXAMP2 OUTPUT
//FVZ2 DD

FLASH=(,3),DEFAULT=YES
FLASH=(INV)

In the example, INV is used because the FLASH parameter on DD statement FVZ2 overrides
the entire FLASH parameter on OUTPUT JCL statement EXAMP2. This means that the
FLASH count will not be set to 3; instead all copies of the entire data set will be flashed
because the FLASH COUNT subparameter was not specified on the DD statement FVZ2. In
the case of overrides, even though a part may be left off an overriding parameter, the system
replaces the whole overridden parameter with the whole overriding parameter. The system uses
the FLASH parameter as coded on DD statement FVZ2 and ignores whatever is coded on the
FLASH parameter of OUTPUT JCL statement EXAMP2.

7-48 MVS JCL

Specifying a Destination for the Data Set

You can specify a destination for an output data set. You may want a set of reports printed in
Chicago, New York, Paris, and Los Angeles. To do this, you must code and reference four
different OUTPUT JCL statements with a destination specified on each because you can code
only one destination on each OUTPUT JCL statement. However, by referencing OUTPUT JCL
statements, you can specify up to 128 different destinations from a single DD statement. In
addition, you can use the OUTPUT JCL statement to specify the output processing options you
may want to use at any or all of these destinations.

Grouping Data Sets Using the OUTPUT JCL Statement

In JES2 systems, you can group system output data sets together using the GROUPID
parameter on the OUTPUT JCL statement. Output data sets with the same group identifier are
processed together by the system. You can use grouping to keep related information from
different data sets closer together in both the location and time when they are printed.

You may always group system output data sets with similar processing characteristics. But, you
cannot group output data sets with differing SYSOUT classes, destinations, processing modes,
writer names, or groupids. If you attempt to do so, your output group specified via GROUPID
is further broken down into smaller output groups in which all data sets have identical class,
destinations, processing modes (PRMODE), writer name, and groupid.

Your installation controls whether or not you can group output data sets with different printer
setup requirements, such as forms. Such output groups are called demand setup groups. If you
are attempting to create a demand setup group and your installation does not permit demand
setup groups, tne group is further broken down into smaller groups in which all data sets have
identical setup characteristics. Consult with your installation to determine if demand setup
grouping is allowed.

An Example Using the OUTPUT JCL Statement to Group Output: The following example
illustrates grouping of data sets using the OUTPUT JCL statement.

//TESTI
//OUTI
//STEPI
//RPI
//RP2
//RP3

JOB
OUTPUT
EXEC
DD
DD
DD

MSGCLASS=B
GROUPID=GRPIO,UCS=PN,DEST=RT&,DEFAULT=YES
PGM=REPORT
SYSOUT=A
SYSOUT=B
SYSOUT=A

In this example, two groupd are created for the three different system output data sets.

Managing the System-Managed Data Sets: The JESDS Parameter

Sysout DD statements are not coded for the system-generated and -maintained output data sets,
which are the job log, the JCL statements and messages, and the system messages. The JESDS
parameter of the OUTPUT JCL statement indicates that the processing characteristics for these
data sets are coded on the OUTPUT JCL statement. You can code the JESDS parameter only
on job-level OUTPUT JCL statements. Use:

JESDS = LOG to control the job log data set;
JESDS = JCL to control the JCL images data set;
JESDS = MSG to control the system messages data set;
JESDS = ALL to control all of the system-managed data sets.

Chapter 7. Guide to Specifying Data Set Information 7 -49

The following example requests that the three system-managed data sets be printed normally,
but also requests that a copy of each be routed to an external writer named JCLOGGER.

II JOB
II OUTPUT JESDS=ALL
II OUTPUT JESDS=ALL,WRITER=JCLOGGER
II EXEC PGM=REPORT

In the next example, four different output groups are created. Group SYSPROG will contain a
copy of all three of the system-managed data sets. Group OPER will also contain a copy of all
three system managed data sets. Group USER will contain a copy of the system-managed data
sets as well as a copy of the data set defined by DD statement SYSPRINT (this group is
processed locally). The system creates a fourth group without a user-specified group name.
The system generates a group name and that group contains a copy of the three
system-managed data sets and a copy of the data set defined by DD statement SYSPRINT
(this group is processed remotely at destination REMOTE):

II
IISYSPROG
IIOPER
IIUSER
IIREMOTE
II
IISYSPRINT

JOB
OUTPUT
OUTPUT
OUTPUT
OUTPU'r
EXEC
DO

MSGCLASS=A
JESDS=ALL,GROUPID=SYSPROG
JESDS=ALL,GROUPID=OPER
JESDS=ALL,DEFAULT=YES,GROUPID=USER
JESDS=ALL,DEFAULT=YES,DEST=REMOTE
PGM=REPORT
SYSOUT=A

Be careful when combining sysout data sets and system-managed output data sets within an
output group. The values you specify on the sysout DD statements might override those
specified on the OUTPUT JCL statement for the DD-defined data sets; but the values you
specify on the OUTPUT JCL statement always apply to the system-managed data sets.
Therefore, the output characteristics given to the system-managed output data sets and sysout
data sets can vary greatly, even if the data sets all reference the same OUTPUT JCL statement.
An example of how problems can arise when you try to group the system-managed output data
sets and sysout data sets is shown below.

IISYSDS
IloUTl
IISTEPl
IIREQPRT

JOB MSGCLASS=A
OUTPUT JESDS=ALL,CLASS=F,GROUPID=JOINT,DEFAULT=YES
EXEC PGM=REPORT
DO SYSOUT=A

In this example, two groups are produced:

1. The system messages are put in a subgroup of the group called JOINT and are printed in
system output class F, specified in the OUTPUT JCL statement.

2. The REQPRT output data set is put in a different subgroup of the group called JOINT and
is printed in system output class A, specified in the DD statement.

Even though the sysout DD statement REQPRT ~eferences the OUTPUT JCL statement with
the JESDS parameter, the output processing characteristics of the data sets are different. The
data set defined by sysout DD statement REQPRT takes its processing characteristics from a
combination of the values coded on the sysout DD statement and the OUTPUT JCL statement.
The system-managed data sets take their output processing characteristics only from the
OUTPUT JCL statement.

7-50 MVS JCL

Specifying a Priority for Sysout Data Sets.

You can specify a priority for an output data set using the PRIORITY parameter on the
OUTPUT JCL statement. You can use this function to increase an output data set's priority so
it will be printed much sooner than it otherwise might have been.

However, your installation may instruct the system to ignore the priority specified on an
OUTPUT JCL statement. Consult your systems programmer to determine whether you can
specify an output data set's processing priority using the OUTPUT JCL statement.

Assigning System Output Data Sets to Output Classes

Output classes generally include system output data sets that have similar characteristics and
that are written to the same device. There are 36 possible output classes; each is defined by an
alphabetic (A-Z) or numeric (0-9) character. The output class is indicated on the DD statement
SYSOUT parameter, the CLASS parameter of the OUTPUT JCL statement, or the
MSGCLASS parameter on the JOB statement.

The letter and number names have no inherent meaning; each installation defines its own
output classes and can assign special processing characteristics for each class. For example,
output class W might contain low-priority output; class X might contain output to be printed
on a special form (eliminating the need to request the form directly); class J might be reserved
for high-volume output.

If you want the output data set and messages from the job to be printed on the same output
listing, specify one of the following:

• SYSOUT=* on the DD statement.
• CLASS = * on the OUTPUT JCL statement.
• The same output class in the DD SYSOUT parameter or OUTPUT JCL CLASS parameter

as specified in the JOB MSGCLASS parameter.

Held System Output Classes

The installation can designate certain system output classes as held, that is, not able to be
selected by an output device. If the output class specified for the MSGCLASS parameter is not
designated as a held class, the system generated data sets will not be held and none of the job's
data sets assigned to held classes will be held. Data sets can be explicitly held by coding the
HOLD=YES parameter or by coding TSO commands. (Refer to TSO Command Language
Reference for information on the TSO commands.) Jobs can be released from the hold state by
the operator or by the time-sharing user with the TSO OUTPUT command. Control of
holding or not holding of all desired print data sets is done using held classes on the
MSGCLASS parameter on the JOB statement. If MSGCLASS is set to a held class and
SYSOUT class is not set to a held class, the system data sets will be held but the job's data sets
will not be held.

For more information on holding data sets,see "Delaying Initiation of Your Job in JES2" on
page 3-23.

If your installation allows demand setup, output for all data sets could be printed on the same
listing, even if parameters such as FORMS, FCB, and UCS are different.

Chapter 7. Guide to Specifying Data Set Information 7 -51

Specifying the Device

To process an output data set without using the job entry subsystem output service, code the
UNIT parameter on the DD statement defining the device on which the data set is to be
written. The system will· allocate the device exclusively to the job if the device is available: no
other job can write output to that device until it is released. Jobs cannot share an output
device as they can when output is assigned to output classes.

Data management routines write the output from the program to the device specified in the
UNIT parameter. Specifying a particular output device in the UNIT parameter generally is not
the most efficient method for obtaining system output.

Specifying the Internal Reader

You might wish to make the output of a job or job step the input to another job or step.
Instead of directing that output to a card punch or a tape drive and then resubmitting the
output as input to the later job, you can direct the output to an internal reader.

The input to the internal reader must consist of JCL statements to run the later job.

To direct the output of a job or job step to the internal reader, code:

//IROUT DD SYSOUT=(A,INTRDR)

• "INTRDR" is an IBM-reserved name identifying the internal reader as the program to
process this output data set.

• The SYSOUT class of this DDstatement becomes the default message class for the job
going into the internal reader unless you code the MSGCLASS parameter on the JOB
statement. See "Job Log" on page 3-14.

The system places the output records for the internal reader into a buffer in your address space.
When this buffer is full, the contents are copied into the JES address space; JES3 then spools
the data. The JES input service can now process the contents of this buffer as input to the job
you specify.

Instead of waiting for the buffer in your address space to fill up, you can send the contents of
the internal reader buffer directly to the JES input service by coding:

• I*EOF as the last record of the job.

7-52 MVS JCL

For JES2, this control statement delimits the current job and makes it eligible for
immediate processing by JES2 input service.

For JES3, this control statement is a request for special end-of-record processing. The
internal reader facility closes the data set and sends the data set to the JES3 input
service. The internal reader facility closes the data set without deallocating it so it is
available for more records.

• /*DEL as the last record of the job.

For JES2, this control statement cancels the current job and schedules it for immediate
output processing. The output will consist of any JCL submitted followed by a
message indicating that the job was deleted before execution.

For JES3, this control statement is treated like /*EOF.

• /*PURGE as the last record in the job.

For JES2 only, this control statement cancels the current job and schedules it for purge
processing; no output is produced for the job.

• /*SCAN as the last record in the job.

For JES2 only, this control statement requests that JES2 scan the current job for JCL
errors only. The job is not to be executed.

Example of Using the Internal Reader

In the following example, different groups of data are directed to the internal reader. Each
group is started with a JOB statement.

//JOBA
//GENER
//SYSIN
//SYSPRINT
//SYSUT2
//SYSUTl

//JOBB
//REPORTA
//OUTDDl
//INPUT

//JOBC
//REPORTB
//OUTDD2
//INPUT

/*EOF

JOB
EXEC
DD
DD
DD
DD

JOB
EXEC
DD
DD

JOB
EXEC
DD
DD

D58JTH,HIGGIE
PGM=IEBGENER
DUMMY
SYSOUT=A,DEST=NODEl
SYSOUT=(~,INTRDR)
DATA

D58JTH,HIGGIE,MSGLEVEL=(1,1)
PGM=SUMMARY
SYSOUT=*
DSN=REPRTSUM,DISP=OLD

D58JTH,HIGGIE,MSGLEVEL=(1,1)
PGM=SUMMARY
SYSOUT=A,DEST=NODE2
DSN=REPRTDAT,DISP=OLD

• JOBA executes program IEBGENER.

• Program IEBGENER reads JOBB and JOBC from SYSUTI and submits them to the
internal reader.

• The message class for JOBB and JOBC is M, the SYSOUT class specified on the internal
reader DD statement (SYSUT2).

• The message class for the output data set from JOBB (OUTDDl) is M because
SYSOUT=* is coded.

• The /*EOF statement specifies that the preceding jobs are to be sent immediately to thejob
entry subsystem for input processing.

Chapter 7. Guide to Specifying Data Set Information 7-5 3

For more information on the internal reader, see SPL: Job Management, SPL: JES2
Installation, Initialization, and Tuning, or JES3 SPL: Initialization and Tuning.

JES Output Class Processing

Using JES2 or JES3 is an efficient way to write output. The job entry subsystems support the
use of local and remote printers and punches as devices on which data sets are written. An
external writer supports tape and direct access devices and user-written writer routines.

Output for all data sets will generally be printed on the same listing if such parameters as
CLASS, FORMS, FCB, UCS, and DEST have similar characteristics and a user-written writer
is not specified. The installation may choose to print all data sets that specify the same output
class as the MSGCLASS parameter on the same listing, even though FORMS, UCS, FCB, and
DEST are different.

For an external writer, the operator will determine which data sets will be selected. This can
cause certain output to print out on the same listing even though all of the FORMS, DEST,
UCS, and FCB parameters do not indicate the same characteristics.

When an external writer is specified, either an IBM-supplied external writer or a user-written
writer can process the output. The operator must start the external writer to have the data
written. If you want to know more about how to write an external writer routine, refer to
SPL: Job Management.

JES2 Output Class Processing

Job-related output is output that is not held, spun off or processed by a user-written writer. (A
spun off data set is made available for output processing before job termination.) Job-related
output will be retained until the end of the job and printed by JES2. If you release a held data
set in time for it to be printed with other non-held or no longer held output, JES2 will print
them together if the following criteria are satisfied:

• The released data set has not been spun-off; spun-off data sets are always printed
separately.

• Printing of the job-related data sets has not begun, or else released data sets are printed
independent of job related data sets.

• The job-related data set does not have multiple copies; released data sets will not be printed
with job-related data sets for which there are multiple copies.

• The released data sets would have been part of the job-related data set had they not been
held.

7-54 MVS JCL

Dynamically deallocated SYSOUT data sets are spun off and are not considered part of the
job-related output.

Delaying the Writing of an Output Data Set

A data set can be made available for inspection from a time-sharing terminal and its printing
delayed by specifying held classes and/or by coding the HOLD parameter. For example, the
installation can direct the delayed printing of a very large data set to prevent monopolizing an
output device until smaller data sets are written. If a data set requires special forms that are
not immediately available, it can be held until the operator supplies those forms. When
HOLD = YES is specified on the DD statement, the data set is placed on a hold queue until the
operator releases it. Notify the operator (using the NOTIFY parameter for TSO, the
MESSAGE statement for JES2, or the OPERATOR statement for JES3) when that data set is
ready for processing because no message will be sent to the operator. The operator or
time-sharing user can release the data set for output processing.

Suppressing the Writing of an Output Data Set

Whether writing an output data set by coding the SYSOUT parameter or the UNIT parameter,
you can suppress the writing of the data set by defining it as a dummy data set. This is useful
when you are testing a program and you do not want data sets printed until you are sure they
will contain meaningful output. Suppressing the writing of a data set saves processing time.

If you are creating an output data set by coding the SYSOUT parameter, code the DUMMY
parameter to define the data set as a dummy data set. When DUMMY is coded, the system
ignores the SYSOUT parameter and does not print the data set.

You can also suppress the writing of an output data set by specifying a particular
installation-defined sysout class defined to delete all output data sets before they are printed.
Use this technique to suppress the output of started tasks such as START and MOUNT
commands. .

JES3 users can suppress the writing of an output data set by coding COPIES = 0 on the
//*FORMAT PR or //*FORMAT PU (print or punch) control statements.

If the device on which the data set will be written is specified in the UNIT parameter, you can
assign the data set a dummy status by coding DUMMY or by assigning the data set name
NULLFILE. All parameters other than DUMMY or DSNAME = NULLFILE and DCB are
ignored; no units are assigned to the data set. When the program requests'that the data set be
written, the request is recognized but no data is transmitted. Requests to write a dummy data
set are supported by the basic sequential access method (BSAM), virtual st.orage access method
(VSAM), and queued sequential access method (QSAM). If any other access method is used,
the job is terminated.

Limiting Output Records

To limit the number of logical records in the output data set, specify a maximum number of
records on the OUTLIM parameter on a DD statement. For example, a program is printing
and goes into an endless loop. You can anticipate this problem and only have a maximum
number of records printed before having the system abnormally terminate the job.

Chapter 7. Guide to Specifying Data Set Information 7 -55

JES2 Output Limiting

In a JES2 system, you can specify the estimated number of logical records, bytes, or pages for
the job's output using the LINES, BYTES or PAGES parameters on a/*JOBPARM control
statement (for punch data sets, use CARDS instead of LINES). For further information about
JES2 output limiting, see "/*JOBPARM Statement" on page 16-4. '

JES3 Output Limiting

To limit the printed or punched output of a job, specify the estimated number of bytes, lines,
pages or cards of output associated with your job by coding the LINES, BYTES, PAGES
and/or CARDS parameters on the JES3 //*MAIN statement. JES3 uses this information to
monitor output and take whatever action is specified if you exceed the estimates. These actions
request that the operator receive a warning (the WARNING subparameter), that the job be
canceled (the CANCEL subparameter), or that the job be canceled with a storage dump (the
DUMP subparameter). JES3 initialization parameter values are used if you omit the estimates.

The LINES parameter will not limit the size of an internal reader data set because JES3 does
not consider an internal reader data set to be part of the printed output of a job. To restrict
this type of data set, you must use the OUTLIM parameter on the DD statement.

Specifying JES2 Page Overflow Processing

JES2 will automatically limit the number of lines it prints per page, thus preventing printing
over the edge of the form. Overflow processing is specified either by the installation during
JES2 initialization or by the programmer coding JCL or JES2 control statements.

You can code the "linect" field in the Accounting Information parameter on the JOB statement,
or the LINECT parameter on the OUTPUT JCL statement, the JES2 JOBPARM statement, or
the JES2 /*OUTPUT statement. You can override the installation-specified number of lines per
page through the LINECT parameter on the OUTPUT JCL statement, JOBPARM statement,
JES2 /*OUTPUT statement, or on the "linect" field in the accounting information parameter
on the JOB statement. You can tum off line limiting by coding LINECT = o.

Specifying JES3 Forms Overflow Processing and Printer Spacing

Use the overflow parameter (OVFL) on the JES3 //*FORMAT PR control statement to
prevent printing across page folds. Specifying OVFL = ON on the / /*FORMAT PR statement
or the JES3 SYSOUT initialization statement causes the printer to eject a page when it senses
the end-of-forms indicator (channel 12) on the printer's carriage control or in the printer's FCB.

You can also control page ejection by specifying the CONTROL = PROGRAM parameter on
the //*FORMAT PR statement. This causes the format specified in the
DCB = (... ,RECFM = format, ...) parameter on the DD statement to be used for printer carriage
control. Do not use this method if the printer control (tape or RCB) contains channel 12
indicators and OVFL=ON (the default).

JES3 defaults to OVFL=ON and CONTROL = PROGRAM on the //*FORMAT PR
statement. Therefore, you must specify OVFL = OFF on the / /*FORMAT PR statements for
data sets that are program-controlled. You can tum overflow off by specifying OVFL = OFF
on each data set's //*FORMAT PR statement.

7~56 MVS JCL

If the number of data sets requiring OVFL = ON is small, the installation can turn off the
overflow by specifying OVFL = OFF on the SYSOUT initialization statement. For those data
sets requiring overflow, code a jj*FORMAT PR statement with OVFL=ON to override the
SYSOUT initialization statement.

Interpretation of Punched Output

Cards punched on a 3525 card punch from output spooled by either job entry subsystem will be
interpreted if:

• You code FUNC = I as a DCB subparameter on the SYSOUT card, and
• The spooled output is processed by the JES writer rather than an external writer.

If the JES writer processes the spooled output on to a card punch other than the 3525, JES
ignores the FUNC = I subparameter. Check with your installation to determine if a special
output class has been set aside for 3525 output. Card interpretation by the external writer is an
operator-specified function. Output to be interpreted should be placed in a class designated by
the installation as a punch-with-interpretation class.

JES3 Punch Output Interpretation on a 3525

Punched output mayor may not be interpreted depending on the installation-defined standard
for the SYSOUT class. You can specify that punched output is to be interpreted by coding the
INT = YES parameter on the JES3 j j*FORMAT PU statement. If you omit the device name
that specifies a 35251, JES3 attempts to find one for the output. If you specify a
non-interpreting punch device, output is punched on it but not interpreted.

JES2 Support of the 3211 Indexing Feature

You can request that output printed by JES2 on a 3211 printer be indexed to the right or the
left by coding the INDEX or LINDEX parameters, respectively, on the OUTPUT JCL
statement or the JES2 j*OUTPUT statement. JES2 ignores these parameters if the output is
processed by an external writer or is processed to a device other than a 3211. Ask your
installation's system programming staff whether an output class has been set aside for output to
be processed on a 3211 printer.

Requesting Multiple Copies of an Output Data Set Using JES2

You can control the number of hard copies of output data sets that JES2 produces. As many
as 255 copies of an output data set can be obtained by coding the COPIES parameter on a
sysout DD statement that defines the data set, on the OUTPUT JCL statement, or on the JES2
j*OUTPUT statement. As many as 255 copies of the entire job-related output are obtained by
coding the COPIES parameter on the JES2 JOBPARM control statement.

The number of JOB copies can be limited by each installation.

If you request multiple copies of a data set by coding the COPIES parameter on a JES2
j*OUTPUT, OUTPUT JCL, or sysout DD statement and the JOBPARM control statement,
JES2 output processing gives the product of the requested amount for each SYSOUT data set.
For example, if you request two copies of the entire job output (COPIES =2 on the JOBPARM
statement) and three copies of a certain output data set (COPIES = 3 on a sysout DD statement
or OUTPUT JCL statement), you will receive two copies of the entire job output but will

Chapter 7. Guide to Specifying Data Set Information 7-57

receive a total of six copies of the output data set. However, if the data set has been written
directly to an output device, held, spun off, or processed by an external writer, it is no longer a
job-related data set and is not affected by the COPIES parameter on the JOBPARM statement.
In this case, you would receive three copies of the requested output data set.

For the 3800 printer, you can also specify on the sysout DD statement, the OUTPUT JCL
statement, and the JES2 j*OUTPUT statement how the copies of the output data set are to be
grouped. Each group value of the COPIES parameter specifies the number of copies of each
individual page that is to be printed before copies of the next page are printed. The total
number of copies printed equals the sum total of the group values. The system allows a
maximum of eight group values.

Requesting Multiple Copies of an Output Data Set Using JES3

You can control the number of hard copies of the system output data sets that JES3 produces.
You can request as many as 254 copies of an output data set by coding the COPIES parameter
on the sysout DDstatement defining the data set, or up to 255 copies by coding the COPIES
parameter on the JES3 / /*FORMAT PR control statement or on the OUTPUT JCL statement.

For the 3800 printer, you can also specify on the sysout DD statement, on an OUTPUT JCL
statement, or on the JES3 //*FORMAT PR statement how the copies of the output data set are
to be grouped. Each group value of the COPIES parameter specifies the number of copies of
each individual page that is to be printed before copies of the next page are printed. The total
number of copies printed equals the sum total of the group values.

Requesting Copy Modification

When using the 3800 printer, you can modify selected copies of output by specifying a copy
modification module na..me in the MODIFY parameter on the sysout DD statement, on the
OUTPUT JCL statement, on the JES3 //*FORMAT PR control statement, or on the JES2
/*OUTPUT control statement. This allows the printing of predefined data on all pages of a
specific copy or copies of a data set. For example, you may want to vary column headings or
explanatory remarks on different copies of the same printed page of data. Copies might also be
personalized with the recipient's name,address, and other desired information. Blanks or
printable characters, such as asterisks, might also be used to suppress the printing of variable
data on particular copies of a page. (This is a function done in other printers by using short or
spot carbon in the forms set.)

The predefined data is created as a copy modification module and stored on SYSl.IMAGELIB
using the IEBIMAGE utility program. For information on using IEBIMAGE, see the IBM
3800 Printing Subsystem Programmer's Guide.

Requesting Printer Form and Character Control

When requesting that an output data set be printed, you can give the job entry subsystem
special instructions on how to print the data set. You can request:

• A special output form.

• A special character set or arrangement, when output is being printed by a 3211, 3203
Model 5, or 1403 printer with the universal character set feature or oby a 3800 printer.

07-58 MVS JCL

• A specific FCB (forms control buffer) module, which controls how many lines per inch are
printed and the length of the form, when the data set is written to a 3211, 3203 Model 5, or
3800 printer.

• A specific FCB (forms control buffer) module, which controls how many lines per i1l:ch are
printed and the length of the form, when the data is written to a remote job processing
(RJP) printer supported by systems network architecture (SNA) or to a 3211, 3203 Model 5
printer or a 3800 printer.

• A specific carriage control tape, when the data set is written to a 1403 printer.

• A test for printer overflow and spacing.

• Interpretation of punch output on the 3525.

Note: JES2 treats the 3203 Model 5 printer the same as a 3211 printer with the following
exceptions:

• The UCSs (universal character sets) for the 3203 Model 5 are the same as for the 1403
printer.

• The 3203 Model 5 printer does not support indexing; therefore JES2 indexing commands
are ignored.

• You cannot explicitly identify the 3203 Model 5 printer to JES2 via JES2 initialization
parameters. MVS passes the 3203 Model 5 identification to JES2 via the UCB.

For further information on UCSs and UCBs, see SPL: Data Management.

Requesting a Special Output Form

To request special forms for output data set printing, include the form name in the SYSOUT
parameter on the DD statement defining the data set; or code the FORMS parameter on the
OUTPUT JCL statement, on the JES2 ;*OUTPUT control statement, or on the JES3
II*FORMAT PR control statement. For example, assign a data set to an output class to be
routed to a printer and specify the data set be printed on a special form. (Code
SYSOUT = (A"FMS2) on the DD statement.) The job entry subsystem and the external writer
insure that the proper form is mounted.

For JES2, the entire job can be printed on a special form if you code the FORMS parameter
on the JOBPARM statement. If you code a forms name on either the DD statement with the
SYSOUT parameter, the FORMS parameter on the OUTPUT JCL statement, or the JES2
I*OUTPUT statement, it overrides the forms name in the JOBPARM statement.

Requesting a Special Character Set Using the ues Feature

The universal character set (UCS) feature is requested by coding the UCS parameter on a DD
statement defining an output or SYSOUT data set, or:

• For JES2, by coding the UCS parameter on the OUTPUT JCL statement or on the JES2
I*OUTPUT control statement for SYSOUT data sets.

• For JES3, by coding the TRAIN parameter on the II*FORMAT PR control statement.

Chapter 7. Guide to Specifying Data Set Information 7-59

You can request the UCS feature for different sets of characters to be printed for various
applications.

To request a special character set for a 3211, 3203 Model 5, or 1403 printer, specify the code
identifying the character set in the UCS parameter on a DD statement, on an OUTPUT JCL
statement, or on a JES2 j*OUTPUT statement. The codes for the IBM standard special
character sets are in Figure 12-1 on page 12-128

Requesting Character Arrangements with a 3800 Printer

Specify character-arrangement tables to be used when printing with the 3800 on the CHARS
parameter of the sysout DD statement, the OUTPUT JCL statement, or:

• For JES2, on the JES2 j*OUTPUT statement.

• For JES3, on the JES3 j j*FORMAT PR statement.

For the table names supplied for the 3800, see the IBM 3800 Printing Subsystem Programmer's
Guide. See your system programmer for the selection of table names available at your
installa tion.

When more than one character arrangement table is specified, you can code OPTCD = J as a
DCB subparameter to indicate that your data line contains a table reference character for
dynamically selecting the table you want. (See the description of the OPTCD subparameter for
BSAM and QSAM in the topic, "The DCB Parameter.") Using the IEBIMAGE utility
program, you can modify or construct character arrangement tables and graphic character
modification modules to allow substitution of existing or user-designed characters. For details
on using the OPTCD subparameter, see the IBM 3800 Printing Subsystem Programmer's Guide.

You can specify the UCS (universal character set) parameter on the same output DD statement
as the CHARS parameter; do this to permit output to go to either the 3800 or to other printers.
If a printer other than the 3800 is selected for output, the system ignores the CHARS
parameter.

If the UCS value is supplied and the CHARS parameter is not, and you requested that the data
set be printed on a 3800 printer, the UCS value is used as the default value for the missing
CHARS parameter.

Requesting Forms Control

For a 1403 printer and printers supported by systems network architecture (SNA) remote job entry
(RJE):

Request forms control by specifying a specific carriage control tape in the FCB parameter on a
sysout or output DD statement, or

• For JES2, with the FCB parameter on the OUTPUT JCL statement or the JES2
j*OUTPUT control statement.

• For JES3, with the FCB parameter on the OUTPUT JCL statement or the CARRIAGE
parameter on the jj*FORMAT PR control statement.

Carriage specifications are used for JES output processing only; they are ignored by the external
writer.

7-60 MVS JCL

For a 3211 or 3203 Model 5 printer and printers supported by systems network architecture
(SNA) remote job entry (RJE):

Request specific forms control images (for example, the number of lines per page or number of
characters per line) by coding an image identifier in the FCB parameter on a sysout or output
DD statement, the OUTPUT JCL statement, or:

• For JES2, the JES2 j*OUTPUT control statement.

• For JES3, the JES3 / /*FORMAT PR control statement.

You can also specify a carriage control tape for JES3 output processing in the CARRIAGE
parameter on the / /*FORMAT PR control statement.

The FCB image is stored in SYSl.IMAGELIB. IBM provides two standard FCB images:
STDI and STD2. STDI specifies that 6 lines per inch are to be printed on an 8.5-inch form.
STD2 specifies that 6 lines per inch are to be printed on an II-inch form.

Note: Do not specify STDI or STD2 for JES2 or JES3 processing unless instructed to do so
by your installation.

Additional FCB images can be specified by the installation. For information on IBM- and
user-supplied FCB images, see SP L: Data Management.

Programming notes for JES2: JES2 treats the 3203 Model 5 printer the same as a 3211 printer
with the following exceptions:

• The UCSs for the 3203 Model 5 are the same as for the 1403 printer.

• The 3203 Model 5 printer does not support indexing, so JES2 indexing commands are
ignored.

• You cannot explicitly identify the 3203 Model 5 printer to JES2 via JES2 initialization
parameters. MVS passes the 3203 Model 5 identification to JES2 via the UCB.

For further information on UCSs and UCBs, see SPL: Data Management.

For a 3800 printer: Request forms control by specifying an FCB module name in the FCB
parameter on a sysout DD statement, the OUTPUT JCL statement, or:

• For JES2, the JES2 /*OUTPUT control statement.

• For JES3, the JES3 / /*FORMAT PR control statement.

The FCB module is stored in SYS1.IMAGELIB. IBM provides a standard FCB module,
STD3, which specifies output of 80 lines per page at 8 lines per inch on II-inch long paper.
(For a 3800 using ISO paper sizes, STD3 can be redefined by the installation.) Additional FCB
modules can be specified by the installation. For information on IBM- and user-supplied FCB
modules, see the IBM 3800 Printing Subsystem Programmer's Guide.

Chapter 7. Guide to Specifying Data Set Information 7 -61

Requesting Forms Overlay

The forms overlay feature of the 3800 printer allows printing of the image from a forms overlay
negative together with the· data being printed. This reduces the need for pre-printed forms, and
for changing of forms.

Specify a forms overlay using one of the following:

• The FLASH parameter on a sysout DD statement.

• The FLASH parameter on an OUTPUT JCL statement.

• For JES2, the FLASH parameters on the JES2 j*OUTPUT control statement.

• For JES3, the FLASH parameter on the //*FORMAT PR control statement.

Identify the overlay to be used and the number of copies on which that overlay is to be printed.
When you do not specify the FLASH parameter on either a DD statement or a JES control
statement, the 3800 printer uses the default specified at JES initialization.

For information on designing and making or obtaining forms overlay negatives, see the Forms
Design Reference Guide for the IBM 3800 Printing Subsystem.

Bursting of Output

The optional Burster-Trimmer-Stacker of the 3800 printer separates continuous form paper into
individual sheets. To specify to the operator whether the output is to go to the
Burster-Trimmer-Stacker or to the continuous forms stacker, specify one of the following:

• The BURST parameter on an output or sysout DD statement.

• The BURST parameter on an OUTPUT JCL statement.

• For JES2, the BURST parameter on the JES2 /*OUTPUT control statement.

• For JES3, the BURST parameter on the / j*FORMAT PR control statement.

7 .. 62 MVSJCL

Chapter 8. Guide to Special Data Sets

You can define data sets to satisfy a special purpose. Such data sets are usually defined with a
special ddname, a specific data set name, or a specific parameter.

This section includes eight topics:

• Creating and using private and temporary libraries.
• Requesting an abnormal termination dump.
• Defining a dummy data set.
• Using virtual input/output (VIO) for temporary data sets.
• Entering data through the input stream.
• Virtual storage access method (VSAM) data sets.
• Creating and retrieving indexed sequential (ISAM) data sets.
• Creating and retrieving generation data sets.
• Creating and using a subsystem data set.

Creating and Using Private and Temporary Libraries

A library is simply a partitioned data set - a data set in direct access storage that is divided
into partitions, called members, each of which can contain a program or part of a program.
Each partitioned data set contains a directory (or index) that the control program can use to
locate a program in the library. All programs that can be executed must exist in a library; that
is, they must be members of a partitioned data set.

A private library is a partitioned data set that contains user-written programs. To inform the
system that a program exists in a private library code a DD statement defining that library.
You can define a private library to be used throughout the job by coding a DD statement with
the ddname JOBLIB, or you can define a library to be used in a specific step by coding a DD
statement with the ddname STEPLIB. The library defined by a JOBLIB or STEPLIB DD
statement is searched prior to the system libraries (such as SYSl.LINKLIB) for the program to
be executed (that is, the program named in the PGM = field of the EXEC statement).

A temporary library is a partitioned data set created during the job to store a program, as ~
member of the partitioned data set, until it is executed in a following step. For example, if in
the job you want to assemble, link edit, and then execute a program, make the output of the
linkage editor a member of a libra£y. Any library that is created and deleted in the same job is
a temporary library.

Code the PGM parameter as the first parameter on the EXEC statement to execute a program
contained in a library.

If the program exists in a private library, code PGM = program name and either a JOBLIB or
STEPLIB DD statement. If the program exists in a temporary library, code either

Chapter 8. Guide to Special Data Sets 8-1

PGM = * . stepname.ddname or PGM = * .stepname. procstepname.ddname. Ddname is a
temporary library created in and pointed to by stepname and procstepname. They identify the
job step or job step and procedure step defining the library. If you define a private library, the
system looks in that library for the program you want executed.

This chapter describes how to code JCL statements to create or retrieve private and temporary
libraries. Complete information on creating a part~tioned data set, and on adding members to
and deleting members from a partitioned data set appears in Data Management Services Guide.

Creating a Private Library

Use the JOB LIB DD statement to create a private library. The JOB LIB DD statement must
appear immediately after the JOB statement and any JES statements. Do not use the ddname
JOBLIB unless you are defining a private library. The library defined with a JOB LIB DD
statement is automatically available to every step in the job. (The STEPLIB DD statement is
included among the DD statements in a step and is available only to that step unless you pass
the library or redefine it in subsequent steps; since the library on a JOB LIB DD statement is
available to every step, it is easier to create a library with the JOB LIB DD statement.)

When creating the library on the JOBLIB DD statement, you are creating a partitioned data
set. Steps in the job must add members to the library before those members (programs) can be
used by subsequent steps.

On the JOB LIB DD statement, assign the library a name in the DSNAME parameter, give unit
and volume information in the UNIT and VOLUME parameters (a partitioned data set must
be contained on one direct access volume; if, however, you make a nonspecific volume request,
you need not code the VOLUME parameter), request space for the entire library in the SPACE
parameter, and assign a data set status and disposition in the DISP parameter. Code NEW as
the data set status and either CATLG or PASS as the data set disposition. When you specify
CATLG, the library is cataloged, available throughout the job, and kept at the end of the job.
When specifying PASS, the library is available throughout the job, but is deleted at job
termination. (If you do not code a disposition, or code a disposition other than CATLG or
PASS, the system assumes DELETE. This means that the library will be deleted at the end of
the first step and will not be available to any later job steps.) You must also code the DCB
parameter if complete data control block (DCB) information is not included in the processing
program.

Adding Members to a Private Library

For a job step to add members to the library code a DD statement that defines the library and
names the member to be added to the library.

In the DSNAME parameter, follow the library name with the name of the program being added
to the library, for example, DSNAME=LIBRARY(PROGRAM).

Do not code the SPACE parameter; request space for the entire library on the JOBLIB DD
statement.

In the DISP parameter, specify MOD as the data set status; the partitioned data set already
exists since you created it in the JOB LIB statement, and you are lengthening it with a new
member. If you cataloged the library in the JOB LIB DD statement, that is, coded
DISP= (NEW,CATLG), do not specify CATLG again when adding- a member: you need not
code a second disposition at all. For a cataloged library, you do not have to specify unit and

8-2 MVSJCL

volume information, except in one instance: if you are adding a member to the library in the
first step of the job, supply unit and volume information; the library is not cataloged until the
first step completes execution. Refer to the JOBLIB DD statement for unit and volume
information by coding VOL = REF = *.JOBLIB.

In the following example, the JOBLIB DD statement creates a library named GROUPLIB;
STEPl adds the program RATE to the library; STEP2 calls the program RATE:

IIEG JOB
IIJOBLIB DD
II
II
IISTEPl EXEC
IIADDPGMD DD
II
IISTEP2 EXEC

MSGLEVEL=l
DSNAME=GROUPLIB,DISP= (NEW, CATLG) ,
UNIT=3350,VOL=SER=727104,
SPACE=(CYL,(50,3,4))
PGM=FIND
DSNAME=GROUPLIB(RATE),DISP=MOD,
VOL=REF=*.JOBLIB
PGM=RATE

In STEPl, the system looks for the program named FIND in SYSl.LINKLIB - the private
library created on the JOBLIB DD statement does not actually exist until a member is added to
it. In STEP2, the system looks for the program named RATE first in the private library.

Retrieving an Existing Private Library

If you are retrieving several programs from one library (several steps in the job will be using the
library), use the JOB LIB DD statement to define the library: the library will be available in
every step of the job for which you do not code a STEPLIB DD statement. The JOB LIB DD
statement must appear immediately after the JOB statement. To make a library available in a
single step, define the library on a STEPLIB DD statement. The STEPLIB DD statement is
included with the DD statements for a step (in no specific order) and is available only to that
step, unless you pass the library and retrieve it in a subsequent step. Use the ddnames JOBLIB
and STEPLIB only when defining private libraries.

The system will search for a program in the private library you define. If both JOB LIB and
STEPLIB DD statements appear in a job, the STEPLIB definition supersedes the JOB LIB
definition; that is, the private library defined by the JOB LIB DD statement is not searched for
any step that contains the STEPLIB definition. If you want the JOBLIB definition ignored but
the step does not require use of another private library, define a system library on the STEPLIB
DD statement:

IISTEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

Retrieve a private library as you would any partitioned data set: if the library is cataloged, or
in the case of a STEP LIB definition, passed from a previous step, you need not specify unit and
volume information; otherwise, you must code the UNIT and VOLUME parameters.

F or both cataloged and uncataloged libraries, code:

• the DSNAME parameter, specifying the name of the library

• the DeB parameter, if complete data control block information is not included in the data
set label

• the DISP parameter, specifying data set status and disposition.

Chapter 8. Guide to Special Data Sets 8-3

Normally, you will want to specify SHR as the data set status: SHR indicates that the data set
is old, but also allows other jobs to simultaneously use the library. All references to the library
in the job must specify SHR if the data set is to be shared; do not code SHR, however, if you
will be adding members to the library in the job. (A more thorough discussion of sharing a

. data set is included in the topic "Insuring Data Set Integrity.") Code PASS as the data set
disposition for a library defined on the JOB LIB DD statement: PASS makes the library
available throughout the job. (If you do not code a disposition, the system assumes PASS.)
For a library defined on a STEPLIB DD statement, code any valid disposition, depending on
how you want the data set treated after its use in the job step: for example, if the library is not
cataloged, and you want it to be cataloged, code CATLG; if you want the library deleted, code
DELETE.

The following job includes both JOBLIB DD and STEPLIB DD statements:

IICAMILLE
IIJOBLIB
IISTEPl
IISTEP2
IISTEPLIB
II

JOB
DD
EXEC
EXEC
DD

MSGLEVEL=l
DSNAME=LIBS.GRP4,DISP=SHR
PGM=FIND
PGM=GATHER
DSNAME=ACCOUNTS,DISP=(SHR,KEEP),
UNIT=33S0,VOL=SER=727104

• In STEP!, the system searches the library named LIB5.GRP4, defined on the JOB LIB DD
statement, for the program named FIND .

• In STEP2, the system searches the library named ACCOUNTS, defined on the STEPLIB
DD statement, for the program named GATHER.

Add a program to an existing library by coding a DD statement in a job step that defines the
library and names die program to be added - see "Adding Members to a Private Library" for
details on coding this DD statement. The new member must be added to the library before it
can be executed (the step that adds the program to the library must precede the step that calls
the program). Do not code SHR as the data set's status when modifying the library.

Concatenating Private Libraries

If the job uses programs contained in several libraries, you can concatenate these libraries on
one JOBLIB DD statement or one STEP LIB DD statement; all the libraries c9ncatenated must
be existing libraries. Omit the ddname from all the DD statements defining the libraries, except
the first:

IIJOBLIB DD
II DD
II
II DD

DSNAME=DS8.LIB12,DISP=(SHR,PASS)
DSNAME=D90.BROWN,DISP=(SHR,PASS),
UNIT=3330,VOL=SER=411731
DSNAME=A03.EDUC,DISP=(SHR,PASS)

This entire group must appear immediately after the JOB statement. When concatenating
libraries using STEPLIB as the ddname, the entire group appears as part of the DD statements
for the step.

The system will search the libraries for the program in the order in which the DD statements
defining the libraries are coded.

8-4 MVSJCL

Using Private Catalogs

Use access method services to define private user catalogs, as explained in VSAM Programmer's
Guide. A JOBCAT or STEPCAT is a private catalog that is searched prior to the system
catalog whenever a DD statement does not specify unit and volume serial information for a
data set. JOBCAT applies to each step of a job in which a STEPCAT has not been specified.

To locate a data set, VSAM searches catalogs in the following order:

1. User catalogs specified in the current job step (STEPCAT), or if no user catalogs are
specified for the job step user catalogs specified in the current job (JOBCAT).

2. A CVOL or user catalog indicated by the first qualifier of the data set name, if any.

3. The master catalog.

Temporary Libraries

Temporary libraries are libraries that are created and deleted within the job. It is not necessary
to define a temporary library on a JOBLIB DD or STEP LIB DD statement: simply code a DD
statement creating a partitioned data set and adding the program to it in the step that produces
the program. You can then retrieve this program in a later step. (You can also use the VIO
facilities to define temporary data sets. For more information, refer to "Defining a VIO
Temporary Data Set" later in this section.)

For example, STEP2 illustrated below calls the program IEWL, which link edits object modules
to form a load module that can be executed. Place the results of the linkage edit step in a
library so that a subsequent step can use those re.sults. Since the results are not a program
other jobs will call, it is logical to place the program in a temporary library:

IISTEP2
IISYSLMOD
II
IisTEP3

EXEC PGM=IEWL
DD DSNAME=&&PARTDS(PROG),UNIT=3350,

DISP=(NEW,PASS),SPACE=(1024,(50,20,1))
EXEC PGM=*.STEP2.SYSLMOD

Call the program in STEP3 by naming the step in which the library was created and the name
of the DD statement that defines the program as a member of a library. If STEP2 had called a
procedure, and the DD statement named SYSLMOD was included in PROCSTEP3 of the
procedure, you would code PGM = * . STEP2.PROCSTEP3.SYSLMOD.

Chapter 8. Guide to Special Data Sets 8-5

Requesting an Abnormal Termination Dump

To obtain a dump in the event of abnormal termination of a job step, code a DD statement
defining a dump data set. The name of the DD statement must be SYSABEND,
SYSMDUMP, or SYSUDUMP. If more than one of these DD statements is present, the
system uses the last one (provided each has a different ddname).

When MVS encounters dump requests with duplicate ddnames, processing is as follows:

• Under JES2 the job fails with message IEC912I.

• Under JES3

If both DD statements request JES3- or jointly-managed devices, the job is cancelled
during the JES3 interpreter phase.

If only one or neither statement requests JES3- or jointly-managed devices, the job fails
with message IEC912I.

To change the type of dump request DD statement in a cataloged procedure, add a DD
statement with a ddname that is not the same as the ddname of the dump request in the
procedure.

SYSABEND, SYSMDUMP, and SYSUDUMP DD statements can each provide a dump
containing the processing program's virtual storage areas, the system nucleus, the entire system
queue area, all local system queue areas, and any active link pack area (LP A) modules for the
failing task. If either the- Generalized Trace Facility (GTF) or the System Trace is active, the
dump will contain their records. In addition, if your installation permits dumping of the
common storage area, a SYSMDUMP DD statement can provide a dump containing those
parts of the CSA that the failing program is authorized to reference.

You can take subsequent SYSMDUMPs to the same data set if the data set name is
SYSl.SYSMDPxx (where xx can be 00 - FF) and the data set disposition is SHR. Before
attempting to take subsequent SYSUDUMPs see "Rules for Coding" under "The SYSABEND,
SYSMDUMP and SYSUDUMP Facilities" in this pUblication.

If your program has issued an ABEND macro, or if you have written a recovery routine, you
can determine what dump options you want, in addition to the installation defaults, and define
them in a dump option list on the ABEND macro or on a SETRP macro issued by your
recovery routine. How to do this is explained in Supervisor Services and Macro Instructions.

Dumps with more data per page are available with the 3800 Printing Subsystem. By specifying
CHARS = DUMP on the SYSABEND or SYSUDUMP DD statement, the dump is formatted
in a 204-character line containing 64 bytes of storage. If FCB = STD3 is specified, the page is
printed at 8 lines per inch. The dump program recognizes only STD3 for producing 8 lines per
inch.

Descriptions of dumps and information on reading dumps are included in the Debugging
Handbook and Diagnostic Techniques.

To print the dump that was produced for a SYSABEND or SYSUDUMP DD statement, either
assign the dump to an output class using the SYSOUT parameter on the DD .statement, or code
the UNIT parameter and specify the printer on which you want the dump printed. To store the

8-6 MVS JCL

dump, define the data set as you would any other data set, coding the DSNAME, DISP,
UNIT, and VOLUME parameters. If the data set will go to a direct access device, code the
SP ACE parameter.

The dump taken for a SYSMDUMP DD statement is machine-readable (unformatted) and
must be stored on either a magnetic tape unit or a direct access device. If the job or step is
running with nonpageable virtual storage (ADDRSPC = REAL) on the JOB or EXEC
statements, the SYSMDUMP output must be directed to a VIO data set.

To format and print a dump taken for a SYSMDUMP DD statement, use the AMDPRDMP
service aid, which is documented in SP L: Service Aids, or IPCS, which is documented in
Interactive Problem Control System (IPCS) System Information. Do not print the dump by
sending it to SYSOUT = A because the output will be unformatted and difficult to read.

If you are using IPCS to format and print a dump taken for a SYSMDUMP DD statement, the
data set disposition specified will produce the following results:

• DISP = MOD on a SYSMDUMP DD statement permits the collection of dump
information pertaining to each of multiple events that occur during one job step.

Use of DISP=MOD produces a data set that only IPCS can process (although IPCS's
COPYDUMP subcommand can generate AMDPRDMP input from any dump collected in such
a data set).

• DISP = NEW or DISP = OLD on a SYSMDUMP DD statement permits the collection of
only the dump information pertaining to the last of multiple events that occur during one
job step.

Use of either DISP = NEW or DISP=OLD produces a data set that either IPCS or
AMDPRDMP can process.

If a private data set is specified for SYSABEND or SYSUDUMP and more than one dump is
possible, specify the data set with a disposition of MOD because it will be closed after each
dump.

Chapter 8. Guide to Special Data Sets 8-7

Defining a Dummy Data Set

To save processing time, you might not want a data set to be processed every time the job is
executed. For example, while testing a program, you might want to suppress the writing of an
output data set until you are sure it will contain meaningful output; you might want to skip the
reading of a data set to be used only once a week. When you define a dummy data set,
input/output operations are bypassed, disposition processing is not performed, and devices and
storage are not allocated to the data set.

Define a dummy data set by:

• Coding the DUMMY parameter on the DD statement or
• Assigning the data set name NULLFILE in the DSNAME parameter on the DD statement

Coding the DUMMY Parameter

Code DUMMY as the first parameter on the DD st~tement. DUMMY is a positional
parameter: it must precede all keyword parameters on the DD statement.

When you code the DUMMY parameter, the system ignores all other parameters on the DD
statement, except the DCB parameter. (The parameters are checked for syntax, however; if a
parameter is coded incorrectly, a JCL error message is issued.) Therefore, although you can
code UNIT, VOLUME, and DISP, no device or external storage is allocated to the data set
and no disposition processing is performed. The DCB parameter must be coded if you would
code it for normal I/O operations. For example, when an OPEN routine requires a BLKSIZE
specification to obtain buffers and BLKSIZE is not specified in the DCB macro instruction,
you should supply this information in the DCB parameter on the DD statement.

When a DD statement that overrides a procedure DD statement contains the DUMMY
parameter, all of the parameters coded on the procedure DD statement are nullified, except for
the DCB parameter.

When you want the data set to be processed, replace the DD statement containing the
DUMMY parameter with a DD statement containing the parameters required to define the
data set. When a procedure DD statement contains the DUMMY parameter, nullify it by
coding the DSNAME parameter on the overriding DD statement and assigning a data set name
other than NULLFILE.

If you request unit or volume affinity with a dummy data set, the data set requesting affinity is
assigned a dummy status. (Unit and volume affinity are described in the topic "Requesting
Units and Volumes.")

If unit affinity (UNIT =AFF = ddname) to a DD statement is requested before the ddname is
defined within the job stream, the system treats the requesting DD statement as a DUMMY
DD.

F or example:

//STEP
//001
//002
//003
//005

8-8 MVS JCL

EXEC
00
00
00
00

PGM=TKM
00NAME=005
OSN=A,OISP=OLO
OSN=C,OISP=SHR,UNIT=AFF=OOI
OSN=B,DISP=SHR

1. The ddname for step DDl will be defined at DD5.

2. Step DD3 requests unit affinity with step DD1. Because the ddname in step DDl has yet
to be defined, the system treats DD3 as a DUMMY DD.

Coding DSNAME = NULLFILE

Assigning the name NULLFILE in the DSNAME parameter has the same effect as coding
DUMMY. The data set is assigned a dummy status; no device or storage is allocated and no
disposition processing is performed. All parameters except DSNAME and DCB are ignored.
(The parameters are checked for syntax, however; if a parameter is coded incorrectly, a JCL
error message is issued.) Code the DCB parameter when defining a dummy data set if you
would code it for normal I/O operations.

When you want the data set to be processed, replace the name NULLFILE with another data
set name. (Assigning names to data sets is described under "Specifying the DSNAME
Parameter. ")

Requests to Read or Write a Dummy Data Set

When the program asks to read a dummy data set, an end-of-data-set exit is taken immediately.
When the program requests that the data set be written, the request is recognized but no data is
transmitted. VSAM supports dummy data sets for both read and write processing. Otherwise,
use the basic sequential access method (BSAM) or'queued sequential access method (QSAM)
when requesting to write a dummy data set; if any other access method is used, the job is
terminated.

If you define a data set as a dummy data set, the DISP parameter, if coded, is ignored and
disposition processing is not performed.

If you define a data set using the DUMMY parameter, you should not concatenate other data
sets to it. When the processing program asks to read a dummy data set, the system takes an
end-of-data-set exit immediately and ignores any concatenated data set.

Chapter 8. Guide to Special Data Sets 8-9

Using Virtual Input/Output (VIO) for Temporary Data Sets

Temporary data sets can be handled by a facility called virtual I/O (VIO). (VIO processing
does not apply to nontemporary data sets.) Data sets for which VIO is specified reside within
the paging space; however, to a problem program and the access method, the data sets appear
to reside on some other real direct access storage device.

During system generation, the installation can define new and/or existing unit names as eligible
for VIO. You can code these unit names on a DD statement that defines a data set to specify
VIO processing for any system-named temporary data set.

Defining a VIO Temporary Data Set

The DD statement for a VIO data set is similar to the DD statement for a conventional
temporary data set, with the following exceptions:

• Volume serial numbers cannot be specified for VIO.

• The UNIT keyword in the VIO DD statement must specify a name that has been defined as
eligible for VIO.

• If the SPACE parameter is not coded for virtual I/O data sets, the default value is 10
primary and 50 secondary blocks with an average block length of 1000. Up to a
one-volume limit, you will always obtain the full amount of space requested (that is, the
primary quantity plus fifteen secondary requests). If the primary quantity for space is
larger than the..simulated volume, the job will fail. If the primary request is met, but the
secondary request is greater than one volume, you will get up to one volume. When
allocating by average block length for a VIO data set, the secondary request is determined
by the average block length specified in the SPACE parameter.

• VIO does not support ISAM or VSAM, so you cannot specify ISAM or VSAM indicators
in the DSORG parameter of a DD statement for a VIO data set. The "area" of an ISAM
data set cannot be specified in the DSNAME parameter.

• The DISP parameter must be specified as NEW or PASS when creating a data set. Do not
specify KEEP or CATLG in the DISP parameter for a temporary VIO data set.

• The DSNAME parameter need not be coded, but if it is, it must only be specified in &&
name form.

• A VIO data set will be allocated to non-VIO if any of the above exceptions are violated,
except the SPACE parameter request.

• The unit count subparameter of the. UNIT parameter is ignored.

Note: Empty input data sets and SUBALLOC requests are not eligible for VIO.

8-10 MVS JCL

Backward References to VIO Data Sets

If the referring DD statement (VOL = REF =) defines a temporary data set and refers to a DD
statement that defines a VIO data set, the data set is assigned to external page storage as a
VIO data set.

If the referring DD statement requests unit affinity but does not define a temporary data set,
the referring statement takes on the unit specification of the DD statement to which reference is
made, but not the VIO status.

The following examples assume that you defined the user-assigned group name SYSDA and the
device type name 3330 at system generation (with the UNITNAME macro instruction) as group
names eligible for VIO processing.

The data sets defined by the following DD statements are assigned to external page storage for
VIO processing;

//001 DO UNIT=SYSOA

//002 DO UNIT=3330

//003 DO OSN=&&A,OISP=(NEW),SPACE=(CYL,(30,10)),UNIT=SYSOA

//001 DO UNIT=SYSOA
//DD2 DD VOL=REF=*.DD1

//DDA OD UNIT=SYSOA
//OOB OD VOL=REF=*.00A,UNIT=3330

In each of the following examples, the data set defined on the first DD statement is assigned to
external page storage for VIO processing. The second DD statement does not request VIO
because it defines a nontemporary data set.

//D01
//002
//

//001
//002
//

00 UNIT=SYSOA
DO OSN=NONTEMP,OISP=(,KEEP),

VOL=REF=*.001,SPACE=(CYL,10)

DO UNIT=SYSOA
DO DSN=TEMP,OISP=(,KEEP),VOL=SER=665431,

SPACE=(CYL,10),UNIT=AFF=001

Chapter 8. Guide to Special Data Sets 8-11

Using Virtual Input/Output (VIO) to Pass Temporary Data Sets Among Job Steps

VIO data sets are passed in the same way as conventional data sets. For example, the following
JCL statements show the DD statements required by VIO for a job with compilation, linkage
.editor, and execution steps. TheVIO data sets in the various job steps are defined as
system-named temporary data sets. The unit name PAGEDEV has been defined as eligible for
VIO (via the UNITNAME macro instruction during system generation).

(1) IIASM EXEC PGM=IFOXOO

IIASM.SYSGO DD
(2) IILKED EXEC

IISYSLIN DD
II DD
IISYSLMOD DD
II

DSN=&&OBJ,UNIT=PAGEDEV,DISP=(NEW,PASS)
PGM=IEWL
DSN=&&OBJ,DISP=(OLD,DELETE)
DDNAME=SYSIN
DSN=&&LOAD(A),DISP=(NEW,PASS),UNIT=PAGEDEV,
DCB=DSORG=PO,SPACE=(TRK,(5,5,1))

(3) II GO EXEC PGM=*.LKED.SYSLMOD

Note:
You must code the SPACE parameter on the IISYSLMOD DD card to
ensure that directory space is allocated.

8-12 MVS JCL

Entering Data Through the Input Stream

You can enter data through the input stream by coding either the * or DATA parameters on
the DD statement. The DD * statement precedes data in an input stream; the DD DATA
statement precedes data in an input stream when the data contains JCL statements. The DLM
parameter allows the use of a delimiter other than /* to terminate data defined in the input
stream. Code this parameter on either the DD * or DD DATA parameters.

You can include several distinct groups of data in the input stream. Two types of data are for
job steps specifying a program name or for job steps that call a cataloged or in-stream
procedure. However, cataloged and in-stream procedures cannot contain DD statements
defining data in the input stream.

Chapter 8. Guide to Special Data Sets 8-13

VSAM Data Sets

Virtual Storage Access Method (VSAM) is an access method for use with direct-access storage.
It is different from all other access methods and you need to take certain precautions when
coding VSAM data sets. You can use JCL parameters to identify cataloged VSAM data sets
and to specify options for them. To process a VSAM data set, specify a DD statement in the
form:

//ddname DD DSNAME=dsname,DISP={OLDISHR}

The DSNAME parameter specifies the name of the VSAM cluster to which the data set you are
processing belongs.

The DISP parameter must specify either OLD or SHR because the data set is cataloged.

You cannot use JCL to create VSAM data sets; you must use access method services
commands. VSAM data sets cannot be passed within a job.

Some DD parameters and subparameters have different meanings for VSAM data sets. For
example, VSAM data sets are described by the access-method control block (ACB), not the
DCB. Therefore, the DCB parameter is not applicable to VSAM. Parameters that can be used
without modification are explained in Figure 8-1 on page 8-15. Parameters that either should
not be used or should be used only with caution are explained in Figure 8-2 on page 8-16. The
STEPCAT and JOB CAT facilities identify user catalogs. These parameters are similarly used
for all data sets and are discussed in this section under "Creating and Using Private Libraries."

"-
VSAM has one JCL parameter of its own: AMP. The AMP parameter takes effect when the
data set defined by the DD statement is opened. It has subparameters for:

• Overriding operands specified with the ACB, EXLST, or the GENCB macro instructions

• Supplying operands missing from the ACB or GENCB macro instruction

• Indicating checkpoint/restart options

• Indicating options when using ISAM macro instructions to process a key-sequenced data
set

• Indicating that the data set is a VSAM data set when you specify unit and volume
information or DUMMY in a DD statement

• Indicating that you want VSAM to supply storage dumps ofihe access-method control
block(s) that identify this DD statement

8-14 MVS JCL

Parameter

DDNAME

DISP

DSNAME
DUMMY

DYNAM

FREE
PROTECT

UNIT

VOLUME

Subparameter

ddname

SUR

OLD
dsname

address

type

group
p

unit count

DEFER
PRIVATE

SER

Comment

No special considerations for VSAM.
Indicates that you are willing to share the data set with other jobs. This
subparameter alone, however, does not guarantee that sharing will take place. See
VSAM User's Guide for a full description of data-set sharing.
No special considerations for VSAM.

No special considerations for VSAM.
No special considerations for VSAM, except that an attempt to read results in an
end-of-data condition, and an attempt to write results in a return code that indicates
the write was successful. If specified, AMP = AMORG must also be specified.

No special considerations for VSAM.
No special considerations for VSAM.
No special considerations for VSAM.
Must be the address of a valid device for VSAM (2305, 3330V, 3330, 3340, 3344,
3350, 3375, or 3380). If not, OPEN will fail
Must be a type supported by VSAM (2305, 3330, 3330V, 3340, 3350, 3375, or 3380).
If not, OPEN will fail.
Must be a group supported by VSAM. If not, OPEN will fail.
There must be enough units to mount all of the volumes specified. If sufficient units
are available, UNIT = P can improve performance by avoiding the mounting and
demounting of volumes.
If the number of devices requested is greater than the number of volumes on which
the data set resides, the extra devices are allocated anyway. If a key-sequenced data
set and its index reside on unlike devices, the extra devices are allocated evenly
between the unlike device types. If the number of devices requested is less than the
number of volumes on which the data set resides but greater than the minimum
number required to gain access to the data set, the devices over the minimum are
allocated evenly between unlike device types. If devices beyond the count specified
are in use by another task but can be shared and have mounted on them volumes
containing parts of the data set to be processed, they will also be allocated to this
data set.
No special considerations for VSAM.
No special considerations for VSAM.
The volume serial number(s) used in the access method services DEFINE command
for the data set must match the volume serial numbers in the VOLUME = SER
specification when the data set is defined. After a VSAM data set is defined, the
volume serial number(s) need not be specified on a DD statement to retrieve or
process the data set. If, however, VOLUME=SER and UNIT = type are specified,
only those volumes specifically named are initially mounted. Other volumes may be
mounted when they're needed if at least one of the units allocated to the data set is
not shareable or the unit count is equal to the total number of volumes allocated to
the data set. A unit is unshareable when unit count is less than the number of
volume serial numbers specified or when DEFER is specified. If VOLUME = SER
is specified and the data set is cataloged in a user catalog, the user catalog should be
defined as a JOBCAT or a STEPCAT for the current step.

Figure 8-1. DD parameters used with VSAM

Chapter 8. Guide to Special Data Sets 8-15

Parameter

BURST

CHARS

CHKPT

COPIES

DATA

DCB

DEST

DISP

DLM

DSNAME

Subparameter

All

CATLG

DELETE

MOD

KEEP
NEW

UNCATLG

PASS

dsname(area-name)
dsname(generation)
dsname(member)
All temporary
dsnames

All backward
DD references
of the form
*.ddname

Comment

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.

VSAM ignores CHKPT

Because this parameter applies only to unit-record devices, it does not apply
to VSAM.

Because there is no way to get VSAM data into the input stream, this
parameter is not applicable to VSAM.

The access-method control block, not the DCB, describes VSAM data sets;
therefore, the DCB parameter is not applicable to VSAM. An
access-method control block is generated by an ACB or GENCB macro,
and can be modified by a MODCB macro.

Specify DEST only with the SYSOUT parameter.

VSAM data sets are cataloged and uncataloged as a result of an access
method services command; if CATLG is coded, a message is issued, but the
data set is not cataloged.

VSAM data sets are deleted as a result of an access method services
command; if DELETE is coded, a message issued, but the data set is not
deleted.

For VSAM data sets, MOD is treated as if OLD were specified, except for
processing with an ISAM program, in which case MOD indicates resume
load.

Because KEEP is implied for VSAM data sets, it need not be coded.

VSAM data spaces are initially allocated as a result of the access method
services DEFINE command. If NEW is specified,the control program also
allocates space, and it is never used by VSAM. Moreover, an access
method services request for space may fail if the DIS}> = NEW acquisition
of space causes too little space to remain available.

VSAM data sets are cataloged and uncataloged as a result of access method
services commands; if UNCATLG is coded, a message is issued, but the
data set is not uncataloged.

The PASS parameter is not applicable to VSAM. However, because there
is no error checking, coding PASS for a key-sequenced data set whose index
resides on a like device does not result in an error. If a VSAM data set and
its index reside on unlike devices, the results are unpredictable. In either
case, the data set is not passed.

Because there is no way to get VSAM data into the input stream, this
parameter is not applicable to VSAM.

The name is used; area-name is ignored.

The name is used; generation is ignored.

The name is used; member is ignored.

Because VSAM data sets are built by access
method services, which used the data-set name supplied in the DEFINE
command, temporary names cannot be used with VSAM.

If the object referred to is a cluster and the data set
and index reside on unlike devices, the results of a
backward DD reference are unpredictable.

Figure 8-2 (Part 1 of 2). DD parameters you should avoid with VSAM

8-16 MVS JCL

Parameter

FCB

FLASH

Subparameter Comment

Because this parameter applies only to unit-record devices. it does not apply
to VSAM.
Because this parameter applies only to unit-record devices. it does not apply
to VSAM.

LABEL BLP, NL, NSL Because these subparameters have no meaning for direct-access devices.
they do not apply for VSAM data sets. which all reside on direct-access
storage.

MODIFY

MSVGP
SPACE

SYSOUT

UCS

UNIT

VOLUME

IN

OUT

NOPWREAD

PASSWORD

SL, SUL

All

AFF

REF

vol-seq-number
volume-count

•

Figure 8-2 (Part 2 of 2).

Because IN is used to override DCB subparameters and the DCB parameter
does not apply to VSAM data sets. IN does not apply.
Because OUT is used to override DCB subparameters and the DCB
parameter does not apply to VSAM data sets. OUT does not apply.
The password-protection bit is set for all VSAM data sets. regardless of the
PASSWORD/NOPWREAD specification in the LABEL parameter.
The password-protection bit is set for all VSAM data sets. regardless of the
PASSWORD/NOPWREAD specification in the LABEL parameter.
Although these parameters apply to direct-access storage devices. SL is
always used for VSAM. whether you specify SL. SUL. or neither.
Because this parameter applies only to unit-record devices. it does not apply
to VSAM.
You must explicitly specify the volume serial number.
VSAM data spaces are initially allocated as a result of the access method
services DEFINE command. If SPACE is specified. therefore. an extent is
allocated that is never used by VSAM. Moreover. an access method
services request for space may fail as a result of the SPACE acquisition of
space.
If SYSOUT is coded with a mutually exclusive parameter (for example.
DISP). the job step is terminated with an error message.
Because this parameter applies only to unit-record devices. it does not apply
to VSAM.
Use this subparametei carefully. If the cluster components. the data and its
index. reside on unlike devices. the results of UNIT = AFF are
unpredictable.
Use this subparameter carefully. If the referenced volumes are not a subset
of those contained in the catalog record for the data set. the results are
unpredictable.
Results are unpredictable.
This subparameter is used to request some number of nonspecific volumes.
Because all VSAM volumes must be specifically defined before processing.
volume count is not applicable to VSAM data sets.
Because there is no way to get VSAM data into the input stream. this
parameter has no ·application with VSAM.

DD parameters you should avoid with VSAM

Chapter 8. Guide to Special Data Sets 8-17

Creating and Retrieving Indexed Sequential Data Sets

Indexed sequential (ISAM) data sets are created and retrieved using special subsets of DD
statement parameters and subparameters. Each data set can occupy up to three different areas
of space:

1. Prime area - This area contains data and related track indexes. It exists for all indexed
sequential data sets.

2. Overflow area - This area contains overflow from the prime area when new data is added.
It is optional.

3. Index area - This area contains master and cylinder indexes associated with the data set.
It exists for any indexed sequential data set that has a prime area occupying more than one
cylinder.

Indexed sequential data sets must reside on direct access volumes. The data set can reside on
more than one volume and the device types of the volumes may in some cases differ.

Creating an Indexed Sequential Data Set

One to three DD statements can be used to define a new indexed sequential data set. When
using three DD statements to define the data set, each DD statement defines a different area
and the areas must be defined in the following order:

1. Index area
2. Prime area
3. Overflow area

When using two DD statements to define the data set, the areas must be defined in the
following order:

1. Index area
2. Prime area

or

1. Prime area and, optionally, index area
2. Overflow area

When using one DD statement to define the data set, you are defining the prime area and,
optionally, the index area.

When more than one DD statement is used to define the data set, assign a ddname only to the
first DD statement; the name field of the other statements must be blank.

The only DD statement parameters that can be coded when defining a new indexed sequential
data set are the DSNAME, UNIT, VOLUME, LABEL, DCB, DISP, and SPACE parameters.
When to code each of these parameters and what restrictions apply are described in the
following paragraphs.

8-18 MVS JCL

The DSNAME Parameter

The DSNAME parameter is required on any DD statement that defines a new temporary or
nontemporary indexed sequential data set. To identify the area you are defining, you follow
the DSNAME parameter with the area.

For example,

DSNAME=name(INDEX)
DSNAME=name(PRIME)
or
DSNAME=name(OVFLOW) .

If you are using only one DD statement to define the data set, code

DSNAME=name(PRIME)
or
DSNAME=name

When you reuse previously allocated space to create an ISAM data set, the DSNAME
parameter must contain the name of the old data set to be overlaid.

The UNIT Parameter

The UNIT parameter is required on any DD statement that defines a new indexed sequential
data set unless VOLUME = REF = reference is coded .. You must request a direct access device
in the UNIT parameter and must not request DEFER.

If there are separate DD statements defining the prime and index areas, request the same
number of direct access devices for the prime area as there are volumes specified in the
VOLUME parameter. You request only one dire~taccess volume for an index area and one
for an overflow area.

A DD statement for the index area or overflow area can request a device type different than the
type requested on the other statements.

Another way to request a device is to code UNIT=AFF= ddname (except for new data sets),
where the named DD statement requests the direct access device or device type you want.

The VOLUME Parameter

The VOLUME parameter is required if you want an area of the data set written on a specific
volume or the prime area requires the use of more than one volume. (If the prime area and
index area are defined on the same statement, you cannot request more than one volume on the
DD statement.) Either supply the volume serial number or numbers in the VOLUME
parameter or code VOLUME = REF = reference. In all cases, you can use the VOLUME
parameter to request a private volume (VOL = PRIVATE).

Notes:

1. If a new [SAM data set is being created with a nonspecific volume request and its DSNAME
already exists on a volume eligible for allocation, the job might fail due to duplicate names on
the volume. If the old data set that has a duplicate name resides on another volume than the
one selected for the new data set, however, the new data set is not affected and will be added
to the volume. You can correct job failures because of duplicate data set names by scratching
the old data set or by renaming the new data set before resubmitting the job.

Chapter 8. Guide to Special Data Sets 8-19

2. Allocation fails a nonspecific volume request for any new [SAM data set when there is not
sufficient space on any of the volumes eligible for allocation.

3. If the first volume selected by allocation to satisfy a request for a new/SAM data set does not
contain sufficient storage to satisfy the request, allocation does not attempt to find another
volume with sufficient space if the request is of the following types.

• A request for multiple volumes or units.

• A request uses the second, third, or. subsequent DD statement you used to define the
dataset.

The LABEL Parameter

The LABEL parameter need only be coded to specify a retention period (EXPDT or RETPD)
or password protection (PASSWORD).

The DCB· Parameter

You must code the DCB parameter on every DD statement that defines an indexed sequential
data set. At minimum, the DCB parameter must contain DSORG = IS or DSORG = ISU.
Other DCB subparameters can be coded to complete the data control block if the processing
program does not complete it.

When more than one DD statement is used to define the data set, code all the DCB
subparameters on the first DD statement. Code,

DCB=*.ddname

on the remaining statement or statements; ddname is the name of the DD statement that
contains the DCB subparameters.

When reusing previously allocated space and recreating an ISAM data set, desired changes in
the DCB parameter must be coded on the DD statement. Although you are creating a new
data set, some DCB subparameters cannot be changed if you want to use the space the old data
set used. The DCB subparameters you can change are:

BFALN
BLKSIZE
CYLOFL

The DISP Parameter

DSORG
KEYLEN
LRECL

NCP
NTM
OPTCD

RECFM
RKP

If you are creating a new data set and not reusing preallocated space, the DISP parameter need
be coded only if you want to:

Keep the data set: code DISP = (,KEEP)
Catalog the data set: DISP=(,CATLG)
Pass the data set: DISP = (,PASS)

If you are reusing previously allocated space and recreating an ISAM data set, code
DISP = OLD. The newly created data set will overlay the old one.

To update an existing ISAM data set, code DISP = OLD. If you code SHR, the data set will
not open correctly.

8-20 MVS]CL

In order to catalog the data set by coding DISP = (,CATLG) or to pass the data set by coding
DISP = (,PASS), you must define the data set on only one DD statement. If you define the
data set on more than one DD statement and the volumes containing the data set correspond to
the same device type, use the access method services DEFINE command to catalog the data set.
For details, refer to Access Method Services.

The SPACE Parameter

The SPACE parameter is required on any DD statement that defines a new indexed sequential
data set. Use either the recommended nonspecific allocation technique or the more restricted
absolute track (ABSTR) technique. If you use more than one DD statement to define the data
set, each DD statement must request space using the same technique.

Nonspecific Allocation Technique

You must request the primary quantity in cylinders (CYL). When the DD statement that
defines the prime area requests more than one volume, each volume is assigned the number of
cylinders requested in the SPACE parameter.

One of the subparameters of the SPACE parameter, the "index" subparameter, is used to
indicate how many cylinders are required for an index. When you use one DD statement to
define the prime and index areas and you want to explicitly state the size of the index, code the
"index" subparameter.

You can code the CONTIG subparameter in the SPACE parameter. However, if you code
CONTIG on one of the statements, you must code it on all of them.

You cannot request a secondary quantity for an indexed sequential data set. Also, you cannot
code the subparameters RLSE, MXIG, ALX, and ROUND.

Absolute Track Technique

The number of tracks requested must be equal to one or more whole cylinders. The address of
the beginning track must correspond with the first track of a cylinder other than the first
cylinder on the volume. When the DD statement that defines the prime area requests more
than one volume, space is allocated for the prime area beginning at the specified address and
continuing through the volume and onto the next volume until the request is satisfied. (This
can only be done if the volume table of contents of the second and all succeeding volumes is
contained within the first cylinder of each volume.)

Use the "index" subparameter of the SPACE parameter to indicate how many tracks an index
requires. The number of tracks specified must be equal to one or more cylinders. When you
use one DD statement to define the prime and index areas and you want to explicitly state the
size of the index, code the "index" subparameter.

Note: If the indexed sequential data set is to reside on more than one volume and an error is
encountered as the volumes are being allocated to the data set, follow this procedure before
resubmitting the job: Use the IEHPROGM utility program to scratch the data set labels on
any of the volumes to which the data set was successfully allocated. This utility program is
described in Utilities.

Chapter 8. Guide to Special Data Sets 8-21

Area Arrangement of an Indexed Sequential Data Set

When creating an indexed sequential data set, the arrangement of the areas is based on two
criteria:

1. The number of DD statements used to define the data set
2. What area each DD statement defines

An additional criterion is used when you do not include a DD statement that defines the index
area: Is an index size coded in the SPACE parameter on the DD statement that defines the
prime area?

Figure 18-5 on page 18-7 illustrates the different arrangements that can result based on the
criteria listed above. In addition, it indicates what restrictions apply on the number and types
of devices that can be requested.

Retrieving an Indexed Sequential Data Set

If all areas of an existing indexed sequential data set reside on volumes of the same device type,
you can retrieve the entire data set with one DD statement. If the index or overflow resides on
a volume of a different device type, use two DD statements. If the index and overflow reside
on volumes of different device types, use three DD statements to retrieve the data set. The DD
statements are coded in the following order:

1. First DD statement - defines the index area
2.
3.

Second DD statement - defines the prime area
Third DD statement - defines the overflow area

The only DD statement parameters that you may code when retrieving an indexed sequential
data set are:

DSNAME
UNIT

VOLUME
DCB

DISP

When to code each of these parameters and what restrictions apply are described in the
following paragraphs.

The DSNAME Parameter

The DSNAME parameter is always required. Identify the data set by its name; however, it is
not necessary to include the terms INDEX, PRIME, or OVFLOW when retrieving an indexed
sequential data set. If the data set was passed from a previous step; identify it by a backward
reference.

The UNIT Parameter

The UNIT parameter must be coded unless the data set resides on one volume and was passed.
You identify in the UNIT parameter the device type and how many of these devices are
required.

If the data set resides on more than one volume and the volumes correspond to the same device
type, you need only one DD statement to retrieve the data set. Request one device per volume
in the UNIT parameter. If the index or overflow area of the data set resides on a different type
of volume than the other areas, you must use two DD statements to retrieve the data set. On

8-22 MVS JCL

one DD statement, request the device type required to retrieve the index or overflow area. On
the other DD statement, request the device type and the number of devices required to retrieve
the prime area and the overflow area if the overflow area resides on the same device type. If
the index and the overflow areas reside on device types different from the prime area, you need
a third DD statement.

The VOLUME Parameter

The VOLUME parameter must be coded unless the data set resides on one volume and was
passed from a previous step. Identify in the VOLUME parameter the serial numbers of the
volumes on which the data set resides. Code the serial numbers in the same order as they were
coded on the DD statements used to create the data set.

The DCB Parameter

The DCB parameter must always contain DSORG=IS or DSORG=ISU. You do not have to
code other DCB subparameters if the data set is passed from a previous step or is cataloged.
However, you can code other DCB subparameters to complete the data control block if it has
not been completed by the processing program.

The DISP Parameter

The DISP parameter must always be coded. The first subparameter of the DISP parameter
must be SHR or OLD. When you are updating an existing ISAM data set, code DISP=OLD.
If you specify DISP = SHR, the data set will not open correctly. You can, optionally, assign a
disposition as the second subparameter.

Chapter 8. Guide to Special Data Sets 8-23

Examples of Creating and Retrieving an Indexed Sequential Data Set

The following job creates an indexed sequential data set on one 3330 volume.

IIISAMJOB
IISTEPl
IIDDl
II
II
II
II
II
II

JOB
EXEC
DD

DD

DD

"MSGLEVEL=(1,1),PERFORM=25
PGM=INCLUDE
DSN=DATASET1(INDEX),DISP=(NEW,KEEP),UNIT=3330,
VOL=SER=777777,SPACE=(CYL,(lO) "CONTIG),
DCB=(DSORG=IS,RECFM=F,LRECL=80,RKP=1,KEYLEN=8)
DSN=DATASET1(PRIME),DISP=(NEW,KEEP),UNIT=3330,
VOL=REF=*.DD1,SPACE=(CYL,(25)"CONTIG),DCB=*.DDl
DSN=DATASET1(OVFLOW),DISP=(NEW,KEEP),UNIT=3330,
VOL=REF=*.DD1,SPACE=(CYL,(25)"CONTIG),DCB=*.DDl

The following job includes the DD statements required to retrieve the indexed sequential data
set created above.

IIRETRISAM JOB "MSGLEVEL=(1,l),PERFORM=25
IISTEPl EXEC PGM=RETRIEVE
IIDDISAM DD DSN=DATASET1,DCB=DSORG=IS,UNIT=3330,DISP=OLD,
II VOL=SER=777777

The following job creates an indexed sequential data set on one 3330 and two 3350 volumes.

IIISAMJOB JOB
IISTEPl EXEC
IIDDISAM DD
II
II
II DD
II
II DD
II

"MSGLEVEL=(1,1),PERFORM=25
PGM=IEFISAM
DSN=DATASET2(INDEX),DISP=(NEW,KEEP),UNIT=3330,
VOL=SER=888888,SPACE=(CYL,lO"CONTIG),DCB=(DSORG=IS,
EECFM=F,LRECL=80,RKP=1,KEYLEN=8) .
DSN=DATASET2(PRIME),DISP=(,KEEP),UNIT=3350,
VOL=SER=999999,SPACE=(CYL,lO"CONTIG),DCB=*.DDISAM
DSN=DATASET2(OVFLOW) ,DISP=(,KEEP),UNIT=3350,
VOL=SER=AAAAAA,SPACE=(CYL,lO"CONTIG),DCB=*.DDISAM

The following job includes the DD statements required to retrieve the indexed sequential data
set created above.

IIRERISAM
IISTEPl
IIDDISAM
II
II
II

8-24 MVS JCL

JOB
EXEC
DD

DD

"MSGLEVEL=(1,1),PERFORM=25
PGM=IEFISAM
DSN=DATASET2,DCB=DSORG=IS,DISP=OLD,UNIT=3330,
VOL=SER=888888
DSN=DATASET2,DCB=DSORG=IS,DISP=OLD,UNIT=(3350,2),
VOL=SER=(999999,AAAAAA)

Creating and Retrieving Generation Data Sets

\

A generation data set is one of a collection of successive, historically related, cataloged data sets
known as a generation data group. The system keeps track of each data set in a generation
data group as it is created so that new data sets can be chronologically ordered and old ones
easily retrieved.

To create or retrieve a generation data set, identify the generation data group name in the
DSNAME parameter and follow the group name with a relative generation number. When you
create a generation data set, the relative generation number tells the system whether this is the
first data set being added during the job, the second, the third, etc. When retrieving a
generation data set, the relative generation number tells the system how many data sets have
been added to the group since this data set was added.

Relative generation numbers are obtained from the catalog as it existed:

• "'For JES2, at the beginning of the first step that specifies the generation data set by relative
generation number.

Note: In a shared DASD environment, if two or more jobs running on different systems
simultaneously create new generations of the same data set, one of the jobs could fail with
a JCL error.

• For JES3, when the job is set up, and again by the operating system at the beginning of the
first step that specifies the generation data set by relative generation number. If the most
recent data set is not the same at both times, the results are unpredictable.

A generation data group can consist of cataloged sequential and direct data sets residing on
tape volumes,direct access volumes, or both. Generation data sets can have like or unlike
DCB attributes, and data set organizations. If the attributes and organizations of all
generations in a group are identical, the generations can be retrieved together as a single data
set (up to 255 data sets can be retrieved in this way). The retrieval order is last in-first out. If
the generation data group resides on more than one device type, all generations cannot be
retrieved together.

Building a Generation Data Group Base Entry
\ (

Before defining. the first generation data set, you must build a generation data group base entry
in a VSAM" OS CVOL, or ICF catalog. This provides for as many generation data sets (up to
255) as you would like to have in the generation data group. The system uses the base to keep
track of the chronological order of the generatIon data sets. Use the access method services
DEFINE command to build generation data group bases in a VSAM or ICF catalog. This
command is described in Access Method Services.

Another requirement of generation data groups is that a data set label list exist. The system
uses this label to refer to DCB attributes when you define a new generation data set. There are
two ways to satisfy this requirement: (I) create a model data set label on the same volume as
the catalog before defining the first generation data set; or (2) use the DCB parameter to refer
the system to an existing cataloged data set each time you define a new generation data set.

Chapter 8. Guide to Special Data Sets 8-25

Creating a Model Data Set Label

To create a model data set label, define a data set and request that it be placed on the same
volume as the generation data group base. This ensures that there is always a data set label on
the same volume as the catalog to which the system can refer.

The name assigned to the data set can be the same or different than the name assigned to the
generation data group. (If you assign the same name for both, the data set associated with the
model data set label cannot be cataloged.) Request a space allocation of zero tracks or
cylinders. The DCB attributes that can be supplied are DSORG, OPTCD, BLKSIZE, LRECL,
KEYLEN, and RKP.

You need not create a model data set label for every generation data group whose indexes
reside on the same volume. Instead, create one model data set label to be used by any number
of generation data groups. When creating a generation data set, specify the name of the model
in the DCB parameter; follow the name with a list of all the DCB subparameters required for
the new generation data set that are different than specified in the model; that is,
DCB = (dsname,list of attributes).

Referring the System to a Cataloged Data Set

If there is a cataloged data set residing on the same volume as the generation data group index
and you are sure that data set will exist as long as you are adding data sets to the generation
data group, you need not create a model data set label. When creating a generation data
group, specify the name of the cataloged data set in the DCB parameter by coding
DCB = dsname. If all the DCB attributes are not contained in the label of the cataloged data

that is, DCB = (dsname,list-of-attributes).

Creating a Generation Data Set

When defining a new generation data set, always code the DSNAME, DISP, and UNIT
parameters. Other parameters you might code are the VOLUME, SPACE, LABEL, and DCB
parameters.

The DSNAME Parameter

In the DSNAME parameter, code the name of the generation data group followed by a number
enclosed in parentheses. This number must be 1 or greater. If this is the first data'~et you are
adding to a particular generation data group during the job, code + 1 in parentheses. Each
time during the job you add a data set to the same generation data group, increase the number
by one. When the first character is a plus (+), the remaining digits (three digits or less) must
not exceed 255.

Any time you refer to this data set later in the job, use the same relative generation number as
was used earlier. At the end of the job, the system updates the relative generation numbers of
all generations in the group to reflect the additions.

Note: Unpredictable results can occur if you use a relative generation number that causes the
actual generation number to exceed G9999.

8-26 MVS JCL

The DISP Parameter

Assign new generations a status of NEW and a disposition of CATLG in the DISP parameter;
that is, DISP=(NEW,CATLG). If the DISP parameter is not specified, the system assumes
DISP = (NEW,DELETE) and the new generation will be deleted at the end of the step.

The UNIT Parameter

The UNIT parameter is required on any DD statement that defines a new generation data set
unless VOLUME = REF = reference is coded. In the UNIT parameter, identify the type of
devices you want (tape or direct access).

The VOLUME Parameter

You can assign a volume in the VOLUME parameter or let the system assign one for you. The
VOLUME parameter can also be used to request a private volume (PRIVATE) and to indicate
that more volumes may be required (volume count).

The SPACE Parameter

Only code the SPACE parameter when the generation data set is to reside on a direct access
volume.

The LABEL Parameter

You can specify label type, password protection (pASSWORD), and a retention period
(EXPDT or RETPD) in the LABEL parameter. If the data set will reside on a tape volume
and is not the first data set on the volume, specify a data set sequence number.

The DCB Parameter

A model data set label that has the same name as the group name may exist. If this is so, and
if the label contains all the attributes required to define this generation, you need not code the
DCB parameter. If all the attributes are not contained in the label, or if you want to override
certain attributes, code DCB = (list of attributes).

If a model data set label has a different name than the group name and if the label contains all
the attributes required to define this generation data set, you need code only the name of the
data set associated with the model data set label. Code the name in the DCB parameter; that
is, DCB = dsname. If all the attributes are not contained in the label, or if you want to override
certain attributes, follow the data set name with these attributes; that is, DCB = (dsname,list of
attributes).

If a model data set label does not exist, you must code the name of a cataloged data set that
resides on the same volume as the generation data group index. If all the attributes are not
contained in the label for this data set, or if you want to override certain attributes, follow the
data set name with these attributes.

Chapter 8. Guide to Special Data Sets 8-27

Retrieving a Generation Data Set

To retrieve a generation data set, always code the DSNAME and DISP parameters. Other
parameters you might code are the UNIT, LABEL, and DCB parameters.

The DSNAME Parameter

Using the DSNAME parameter you can retrieve a single generation data set or all of the
generation data sets in the generation data group.

Retrieving a Single Generation Data Set: If you want to retrieve a single generation data set,
code in the DSNAME parameter the name of the generation data group followed by a number
enclosed in parentheses. This number can be a maximum of four characters. The number
coded depends on which generation data set is to be retrieved. To retrieve the most recent data
set, code a zero (0). If the first character is zero (0), the remaining characters must be zero or
blanks.

To retrieve data sets created prior to the most recent data set, code a minus value (-nnn).
When nnn is a minus value, the remaining digits (3 digits or less) must not exceed 255. The
value of nnn is determined by the relation of the desired data set to the most current data set.
Minus one (-1) refers to the data set created immediately preceding the most recent data set;
minus two (-2) refers to the data set created preceding the data set identified by the minus one
value.

For example:

WEEKLY.PAYROLL is the name of a generation data group.

DSN=WEEKLY.PAYROLL(O)
DSN=WEEKLY.PAYROLL(-l)
DSN=WEEKLY.PAYROLL(-2)

The most recent generation data set.
Last week's generation data set.
Generation data set of two weeks ago.

Relative generation numbers are maintained by the system only when generation data sets are
specified using relative generation numbers.

Note: When you are retrieving,a generation data set within a started task, and the generation
data set is cataloged in a private catalog or control volume (CVOL), coding a relative
generation number causes unpredictable results.

Retrieving All Generation Data Sets: If you want to retrieve all generations of a generation
data group as a single data set, specify the generation data group name without a generation
number in the DSNAME parameter: for example,

DSNAME=WEEKLY.PAYROLL

where WEEKL Y.PA YROLL is the generation data group name.

To retrieve all generations in this manner, the DCB attributes and data set organization of all
generations must be identical.

When you specify the generation data group name without a generation number, the operating
system treats your request as a concatenation of all existing data sets in the generation data
group, starting with the most recent data set and ending with the oldest data set. In addition,
all data sets, except the most recent, will have unit affinity to the most recent data set. For
further information, see "Concatenating Data Sets" on page 2-9.

8-28 MVS JCL

For generation data groups residing on tape, when you specify the generation group name
without a generation number (GDG ALL request), and request parallel mounting in the UNIT
parameter, the system mounts all volumes of the first generation only.

For generation data groups residing on DASD (including MSS) volumes, when you specify the
generation group name without a generation number (GDG ALL request), and request parallel
mounting in the UNIT parameter, the system mounts all volumes of all generations.

The relative generation number of the most recent data set is obtained from the catalog as it
existed:

• For JES2, at the beginning of the first step that specifies the generation data set by relative
generation number.

Note: In a shared DASD environment, if two or more jobs running on different systems
simultaneously create new generations of the same data set, one of the jobs could fail with
a JCL error.

• For JES3, when the job is set up, and again by the operating system at the beginning of the
first step that specifies the generation data set by relative generation number. If the most
recent data set is not the same at both ti~es, the results are unpredictable.

Note: When retrieving a generation data set within a started task, and the generation data set
is cataloged in a private catalog or control volume (CVOL), coding a relative generation
number causes unpredictable results.

The DISP Parameter

You must always code the DISP parameter. The first subparameter of the DISP parameter
must be OLD, SHR, or MOD. You can, optionally, assign a disposition as the second
subparameter. The second subparameter must be specified for a generation data group. Do
not code PASS as the second subparameter when you retrieve all generations of a generation
data group as a single data set. In all such retrievals, the unit and volume information for each
generation level is obtained from the catalog, and not from the pass mechanism. If you code
the DISP subparameter MOD for a generation data set and the specified relative generation
does not exist in the catalog, the operating system changes the disposition to NEW.

The UNIT Parameter

Code the UNIT parameter when you want more than one device assigned to the data set. Code
the number of devices you want in the unit count subparameter, or, if the data set resides on
more than one volume and you want as many devices as there are volumes, code P in place of
the unit count subparameter.

The VOLUME Parameter

Use the VOLUME parameter to request a private volume (PRIVATE) and to indicate that
more volumes might be required (volume count). A volume serial number specified for an old
generation data group is ignored; the system obtains the volume serial number from the catalog
except for deferred checkpoint restart (see "Submitting a Job for Restart," below).

Chapter 8. Guide to Special Data·Sets 8-29

The LABEL Parameter

Code the LABEL parameter when the data set resides on tape and has other than standard
labels. If the data set is not the first data set on the volume, specify the data set sequence
number. If the data set sequence number is coded for a GDG ALL request, it is ignored; the
data set sequence number will be taken from the catalog.

The DCB Parameter

Code DCB = (list of attributes) when the data set has other than standard labels and DCB
information is required to complete the data control block. Do not code DCB = dsname when
retrieving a generation data set.

Deleting and U ncataloging Generation Data Sets

In a multiple-step job, if you attempt to delete or uncatalog any generation data set except the
oldest member of a generation data group, catalog management can lose orientation within the
data group. This could cause the deletion, uncataloging, or retrieval of the wrong data set
when you later refer to a specific generation. Therefore, if you delete a generation data set in a
multiple step job, do not refer to any previous (older) generation in later job steps.

Also, we recommend that in a multiple-step job, you catalog or uncatalog generation data sets
using JCL instead of IEHPROGM or a user program. Because allocation/deallocation routines
access the catalog during job execution, they are unaware of the functions performed by
IEHPROGM or a user program; you might get unpredictable results. ,

Submitting a Job for Restart

Certain rules apply when you refer to generation data sets in a job submitted for restart (the
RESTART parameter is coded on the JOB statement).

If your installation has installed MVS/System Product Release 3 (5740-XYN or 5740-XYS) or
subsequent releases without installing Data Facility/Device Support Release I Enhancements
(5740-AM7), do not use the checkpoint/restart facility.

If you have installed Data Facility/Device Support with either of the MVS/System Proqucts,
you can use the checkpoint/restart facility with certain restrictions.

For additional information concerning these restrictions, see Checkpoint/Restart.

For step restart: generation data sets that were created and cataloged in steps preceding the
restart step must not be referred to (by means of the same relative generation numbers that
were used to create them) in the restart step or in steps following the restart step. Instead, you
must refer to a generation data set by means of its present relative generation number. For
example, if the last generation data set created and cataloged was assigned a generation number
of + 2, it would be referred to as 0 in the restart step and in steps following the restart step. In
this case, the generation data set assigned number of + 1 would be referred to as -1.

For checkpoint restart: If generation data sets created jn the restart step were kept instead of
cataloged, that is, DISP=(NEW,CATLG,KEEP) was coded, you can, during checkpoint
restart, refer to these data sets and generation data sets created and cataloged in steps preceding
the restart step by means of the same relative generation numbers that were used to create
them.

8-30 MVS JeL

For Deferred Checkpoint Restart: the system does not use the catalog to obtain the volume
serial numbers for a generation data group. Therefore, if you changed the volume serial
numbers in the catalog between the original submission of the job and the restart, you must
code volume serial information.

Example of Creating and Retrieving Generation Data Sets

The following job step includes the DD statements that could be used to add three data sets to
a generation data group.

IISTEPA
IIDDl
II
IIDD2
II
IIDD3
II
II

EXEC
DD

DD

DD

PGM=PROCESS
DSNAME=A.B.C(+1),DISP=(NEW,CATLG),UNIT=3400-6,
VOL=SER=13846,LABEL=(,SUL)
DSNAME=A.B.C(+2),DISP=(NEW,CATLG),UNIT=3330,
VOL=SER=10311,SPACE=(480,(150,20»
DSNAME=A.B.C(+3),DISP=(NEW,CATLG),UNIT=3350,
VOL=SER=28929,SPACE=(480,(150,20»,
DCB=(LRECL=120,BLKSIZE=480)

The first two DD statements do not include the DCB parameter because a model data set label
exists on the same volume as the generation data group index and has the same name as the
generation data group (A.B.C). Since the DCB parameter is coded on the third DD statement,
the attributes LRECL and BLKSIZE, along with the attributes included in the model data set
la bel, are used.

The following job includes the DD statements required to retrieve the generation data sets
defined above when no other data sets have been added to the generation data group.

IIJWC
IlsTEPl
IIDDA
IIDDB
IIDDC

JOB CLASS=B
EXEC PGM=REPORT9
DD DSNAME=A.B.C(-2),DISP=OLD,LABEL=(,SUL)
DD DSNAME=A.B.C(-l),DISP=OLD
DD DSNAME=A.B.C(O),DISP=OLD

Chapter 8. Guide to Special Data Sets 8-31

Creating and Using a Subsystem Data Set

Use the DD SUBSYS parameter to:

• Specify the name of the subsystem that will process the associated subsystem data set

• Specify up to 254 subsystem-defined parameters that describe the subsystem data set to the
subsystem

The subsystem processes the subsystem-defined parameters according to its own rules.

When you specify the SUBSYS parameter,the subsystem may alter the significance of certain
DD statement parameters. To determine if a particular subsystem alters the significance of any
DD statement parameters, and if it does, to determine which statements are affected and how
they are affected, refer to the documentation for the subsystem.

If you specify the DUMMY parameter, MVS invokes the specified subsystem to syntax check
the subsystem-defined parameters. If the syntax is acceptable, MVS assigns a dummy status to
the data set and processes the request as a dummy request.

If you request unit affinity to a subsystem data set, MVS substitutes SYSALLDA as the UNIT
parameter specification.

8-32 MVS JCL

Chapter 9. Guide to Cataloged and In-Stream Procedures

Applications that require many control statements and that are used on a regular basis can be
considerably simplified through the use of cataloged and in-stream procedures. A cataloged
procedure is a set of job control statements that are placed in a partitioned data set known as
the procedure library; an in-stream procedure is a set of job control statements that are placed
in the input stream within a job. You can execute a procedure simply by specifying its name on
an EXEC statement in your job. This section describes how to write and use cataloged and
in-stream procedures.

This section includes the following topics:

• Writing Cataloged and In-Stream Procedures
• Identifying an In-Stream Procedure
• Identifying Procedure Statements on an Output Listing

Writing Cataloged and In-Stream Procedures

Cataloged and in-stream procedures are simply the job control statements needed to perform an
application. A procedure contains one or more procedure steps, each consisting of an EXEC
statement that identifies the program to be executed, DD statements defining the data sets to be
used or produced by the program, and, optionally, OUTPUT JCL statements defining the
processing options the system is to use for output data sets. The program requested on the
EXEC statement must exist in a private library or the system library. If you do request a -
program that is contained in a private library, the procedure step calling that program must
include a DD statement with the ddname STEPLIB that c~fines the private library; the
STEPLIB DD statement is described in the chapter, "Creating and Using Private and
Temporary Libraries."

Cataloged and in-stream procedures cannot contain:

• EXEC statements that refer to other cataloged or in-stream procedures

• JOB, delimiter, or null statements

• DD statements defining private libraries to be used throughout the job (DD statements
with the ddname JOBLIB)

• DD statements defining data in the input stream (statements including the * or DATA
parameters)

• OUTPUT JCL statements prior to the first EXEC statement within the procedure.

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-1

• Any JES2 control statements; they are ignored

• Any JES3 control statements; they are ignored in cataloged procedures only

Identifying an In-Stream Procedure

To identify an in-stream procedure, code the PROC and PEND job control statements.

On the PROC statement, which must be the first statement in an in-stream procedure, assign
the procedure a name. This name is the name that a programmer codes to call the procedure.
Optionally, you can also assign default values to symbolic parameters contained in the
procedure and code comments. (A symbolic parameter is a symbol preceded by an ampersand
that stands for a parameter, a subparameter, or a value in a procedure; including symbolic
parameters in a procedure is described in detail in "Symbolic Parameters" on page 2-15. If you
do not assign default values to symbolic parameters on the PROC statement, you cannot code
comments. The simplest form of the PROC statement, to identify an in-stream procedure
named PAYROLL, would be:

IIPAYROLL PROC

The PEND statement marks the end of the in-stream procedure. You can include a name on
the PEND statement and comments, but these are optional. Both of the following examples are
acceptable:

IIENDPROC PEND end of in-stream procedure
II PEND

The following example illustrates an in-stream procedure named SALES consisting of two
procedure steps. Note that STEP2 includes a STEPI)B DD statement to define the private
library in which the program JUGGLE can be found.

IISALES
IISTEPl
IIDDIA
IIDDIB
IISTEP2
IISTEPLIB
IIDD2A
II

PROC
EXEC
DD
DD
EXEC
DD
DD
PEND

PGM=FETCH
DSNAME=RECORDS(BRANCHES),DISP=OLD
DSNAME=RECORDS(MORGUE),DISP=MOD
PGM=JUGGLE
DSNAME=PRIV.WORK,DISP=OLD
SYSOUT=A

Placing a Cataloged Procedure in a Procedure Library

The major difference between cataloged and in-stream procedures is where they are placed.
Cataloged procedures must be placed in a procedure library before being used. In-stream
procedures are placed within the job that calls them.

A procedure library is simply a partitioned data set containing cataloged procedures. IBM
supplies a procedure library named SYSl.PROCLIB,. but the installation can have additional
procedure libraries with different names. When a programmer calls a cataloged procedure, he
receives a copy of the procedure; therefore, a cataloged procedure can be used simultaneously
by more than one programmer.

To add a procedure to a procedure library, use the IEBUPDTE utility program. You can also
use the IEBUPDTE utility to permanently·modify an existing procedure. (Before modifying an
existing cataloged procedure, however, you must notify the operator; he must delay the

9-2 MVS JCL

execution of jobs that might use the procedure library while it is being updated.) Details on
using the IEBUPDTE utility appear in Utilities. In JES3, you can use the procedure library
update feature to modify an existing procedure. The UPDATE parameter on the JES3 MAIN
statement indicates that a procedure library is being updated and causes all jobs using the
library to be held until the update is complete.

Before placing or modifying a cataloged procedure in a procedure library, test it without
overriding any parameters to ensure that the procedure statements are syntactically correct.
Additionally, test the procedure by first running it as an in-stream procedure. In-stream testing
enables you to detect any errors in overridden parameters prior to cataloging the procedure.

No special job control statements are used to identify a cataloged procedure. The PEND
statement is never used and the PROC statement is optional. You need code the PROC
statement as the first statement in a cataloged procedure only when you want to assign default
values to symbolic parameters. The name of the PROC statement is not necessarily the name
of the cataloged procedure; you assign the procedure a name when adding it to the procedure
library.

Allowing for Changes in Cataloged and In-Stream Procedures

The usefulness of cataloged and in-stream procedures is destroyed if a programmer who uses
the procedure has to permanently modify the procedure every time he wants to make a change.
When writing a procedure, you can define, as symbolic parameters, those parameters,
subparameters and values that are likely to vary each time the procedure is used. For details
on coding symbolic parameters, see "Symbolic Parameters" on page 2-15.

Using Cataloged and In-Stream Procedures

To use a cataloged or in-stream procedure, specify the procedure name on an EXEC statement.
You can modify the procedure by adding DD statements and OUTPUT JCL statements, by
overriding, adding, or nullifying parameters on EXEC, DD, and OUTPUT JCL statements,
and by assigning values to symbolic parameters. Calling and modifying procedures is explained
in greater detail in the following paragraphs.

How to Call Cataloged and In-Stream Procedures

To call a cataloged or in-stream procedure, identify the procedure on the EXEC statement of
the step calling the procedure; do this by coding one of the following as the first operand on the
EXEC statement:

• The procedure name
• PROC= the procedure name

A cataloged procedure must exist in the procedure library before you attempt t6 use it. JES2
or JES3 is responsible for fetching cataloged procedures. Refer to "Scheduling a Job" on
page 5-1 to see how JES2 or JES3 determines what library to select. When using an in-stream
procedure, include the procedure, beginning with a PROC statement and ending with a PEND
statement, with· the job control language for the job; the procedure must follow the JOB
statement but appear before the EXEC statement that calls it. You can include as many as
fifteen uniquely named in~stream procedures in one job and can use each procedure as many
times as you wish in the job.

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-3

To call a cataloged procedure named PROCESSA, you would code:

//CALL EXEC PROCESSA or
//CALL EXEC PROC=PROCESSA

On the EXEC statement, you can also code changes you would like to make for this execution
of the procedure.

Modifying Cataloged and In-Stream Procedures

You can modify a procedure by:

• Assigning values to or nullifying symbolic parameters contained in the procedure

• Overriding, adding, or nullifying parameters on EXEC, DD, and OUTPUT JCL statements
in the procedure

• Adding DD statements to the procedure

• Adding OUTPUT JCL statements to the procedure

All changes you make are in effect only during the current execution of the procedure. For a
discussion of symbolic parameters, see "Symbolic Parameters" on page 2-15. Other
modifications are described in the following sections.

Modifying Parameters on an EXEC Statement

To override, add, or nullify a parameter on an EXEC statement in a procedure, identify on the
EXEC statement that calls the procedure the parameter you are changing, the name of the
EXEC statement on which the parameter appears, and the change to be made:

//CALL EXEC procedurename,parameter.procstepname=value

When overriding a parameter, the value coded for the parameter on the EXEC statement
calling the procedure replaces the value assigned in the procedure. When" adding a parameter,
that parameter is used in the execution of the procedure step. When nullifying a parameter,
you do not follow the equal sign with a value; the value assigned to the parameter in the
procedure is ignored. All changes made are in effect only for the current execution of the
procedure.

You can make more than one change to each EXEC statement in the procedure, and you can
change parameters on more than one EXEC statement in the procedure. You cannot, however,
change the PGM parameter. When making changes to different steps in the procedure, code all
changes for one procedure step before you code changes to a subsequent step.

Test all new procedures without overriding any parameters to ensure that the procedure
statements are syntactically correct and contain no invalid backward references.

Note: You cannot override invalid backward references or syntactical errors on an EXEC
statement within a procedure with valid parameters. The system scans the original text for
errors, and thus an overriding parameter does not eliminate the errpr.

9-4 MVS JCL

For example, the first three EXEC statements in a procedure named IRISH are:

IISTEP1
IISTEP2
IISTEP3

EXEC PGM=YEATS,PARM=' *14863'
EXEC PGM=NOLAN
EXEC PGM=SYNGE,TIME=(2,30)

and you want to make the following changes:

• Nullify the P ARM parameter in STEPI.
• Add the COND parameter, specifying the test (8,LT), in~STEP2.
• Change the time limit in the TIME parameter in STEP3 to 4 minutes.

On the EXEC statement calling the procedure, you would code:

IICALL EXEC IRISH,PARM.STEPI=,
II COND.STEP2=(8,LT),TIME.STEP3=4

In the above example, code TIME.STEP3 = 1440 to nullify the TIME parameter. If you code
TIME.STEP3 =, the default time value for the job class is assigned.

You need not name the procedure step when changing a parameter. When you omit the name,
the procedure is modified as follows:

• If the P ARM parameter is coded, it applies only to the first procedure step. If a P ARM
parameter appears in a later EXEC statement in the called procedure, it is nullified.

• If the TIME parameter is coded, it applies to the total procedure. If the TIME parameter
appears on any of the EXEC statements in the called procedure, it is nullified.

• If any other parameter is coded, it applies to every step in the called procedure. Nullifying
the parameter on the EXEC statement -calling the procedure causes the parameter to be
ignored on every EXEC statement in the procedure; if you assign a value to the parameter
on the EXEC statement calling the procedure, the parameter is overridden where it appears
in the procedure and added to EXEC statements in the procedure on which it does not
appear.

For example, assume the EXEC statements in the procedure named COMPUTE are;.

IISTEP1
IISTEP2
IISTEP3

EXEC PGM=LIST,TIME=(1,30)
EXEC PGM=UPDATE,RD=NC,TIME=2
EXEC PGM=CHECK,RD=RNC,COND=ONLY

You want to make the following changes:

1. Assign a time limit of 4 minutes to the entire procedure; TIME parameters on individual
EXEC statements in the procedure will be nullified.

2. Allow automatic step restart for each step of the job by coding RD = R. The RD
parameter will be added to the first step of the job and will override the RD parameters in
STEP2 and STEP3.

To call the procedure and make these changes, you would code:

IICALL EXEG COMPUTE,TIME=4,RD=R

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-5

During the processing of the JCL statements for the job, the EXEC statements appear as:

IISTEPI
IISTEP2
IISTEP3

EXEC PGM=LIST,RD=R
EXEC PGM=UPDATE,RD=R
EXEC PGM=CHECK,RD=R,COND=ONLY

If any parameter change affects every step of the job (by omitting the procedure step name),
you must code that parameter on the EXEC statement calling the procedure before you code
changes to parameters on different steps (for which, you include the procedure step name).
Time will be a total of four minutes, each step using the remaining amount of time available
from the total. If more than four minutes is required, the step will abnormally terminate.

Modifying Parameters on a DD Statement

To override, add, or nullify parameters on a DD statement in a procedure, include a DD
statement containing the changes you want to make following the EXEC ~tatement that calls
the procedure. The name of the DD statement containing the changes is Icomposed of the
procedure step name and the ddname of the DD statement in the procedure:

Ilprocstepname.ddname DD parameter=value

When overriding a parameter, the value you code replaces the value assigned to the parameter
in the procedure.

When adding a parameter, the parameter is added to the DD statement in the procedure for the
current execution of the procedure.

When nullifying a parameter, do not follow the equal sign with a value; that parameter in the
procedure is ignored. Do not nullify a parameter when you at;e replacing it with a mutually
exclusive parameter; it will be nullified automatically. (See Figure 18-6 on page 18-8 for a
table of mutually exclusive parameters on the DD statement.)

All changes you make are in effect only for the current execution of the procedure. If you are
overriding a DD statement, the system does not check for mutually exclusive parameters on the
DD statement. Therefore, all procedures should be executed once without any overriding
statements to ensure that they do not contain any mutually exclusive parameters.

You can change more than one parameter on a DD statement and you can change parameters
on more than one DD statement in the procedure. However, the DD statements containing the
changes must be coded in the same order as the corresponding DD statements in the procedure.
Test all new procedures without overriding any parameters to ensure that the procedure
statements are syntactically correct.

For example, the first two steps of the cataloged procedure TEA are:

IISTEPI
IIDDIA
II
IIDDIB
IISTEP2
IIDD2A
II

9-6 MVS JCL

EXEC
DD

DD
EXEC
DD

PGM=SUGAR
DSNAME=DRINK,DISP=(NEW,DELETE),
UNIT=3400-6,VOL=SER=568998
UNIT=SYSSQ
PGM=LEMON
UNIT=3350,DISP=(,PASS),
SPACE=(TRK,(20,2»

You want to make the following changes for this invocation:

1. Change the disposition on the DD statement named DDIA to CATLG.

2. Change the volume serial number on the DD statement named DDIA to a nonspecific
request allowing the operating system to choose the volume.

3. Change the unit on the DD statement named DDIB to TAPE.

4. Change the SPACE parameter on the DD statement named DD2A to
SPACE = (CYL,(4,1)).

When calling the procedure, you would code:

//CALL EXEC TEA
//STEP1.DDIA DO DISP=(NEW,CATLG),VOL=SER=
//STEP1.DDIB DO UNIT=TAPE
//STEP2.DD2A DO SPACE=(CYL,(4,1»

When changing DCB keyword subparameters, you need code only those subparameters you are
changing. The DCB keyword subparameters you do not code (and for which you do not code
a mutually exclusive subparameter) remain unchanged. For example, a DD statement named
DDI in a procedure step named STEPI contains,

DCB=(BUFNO=1,BLKSIZE=800,RECFM=FM,BUFL=800)

To change the block size to 320 and the buffer length to 320, you would code:

//STEP1.DDl DD DCB=(BLKSIZE=320,BUFL=320)

The subparameters BUFNO and RECFM remain unchanged.

If a DCB positional subparameter is needed, the DCB positional subparameter must be coded
on the override statement regardless of whether one exists in the statement to be overridden.
To nullify a DCB positional parameter, do not code the DCB positional parameter on the
override statement.

For example, a DD statement named DD2 in a procedure step named STEP2 contains
DCB = (DSNI,BLKSIZE = 80). To change the block size to 400, and copy other DCB
information from the cataloged data set named DSNI, you would code:

//STEP2.DD2 DO DCB=(DSN1,BLKSIZE=400)

To nullify the DCB parameter, you must nullify each subparameter. For example, if aDD
statement in a procedure contains DCB = (RECFM = FB,BLKSIZE = 160,LRECL = 80), you
must code DCB = (RECFM = ,BLKSIZE = ,LRECL =) in order to nullify the DCB parameter.

To nullify the DUMMY parameter, code the DSNAME parameter on the overriding DD
statement and assign a data set name other than NULLFILE. To nullify all the parameters on
a DD statement other than DCB, code DUMMY on the overriding DD statement.

If you code DUMMY on a DD statement, the system ignores all other parameters on the DD
statement, except the DCB parameter. However, the system does syntax check all parameters
so they must be correct. (The DUMMY parameter is described in detail under "Defining a
Dummy Data Set.")

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-7

Modifying Parameters on DD Statements that Define Concatenated Data Sets

When a concatenation of data sets is defined in a cataloged procedure and you attempt to
override the concatenation with one DD statement, only the first (named) DD statement is
overridden. To override others, you must include an overriding DD statement for each DD
statement; the DD statements in the input stream must be in the same order as the DD
statements in the procedure. The second and subsequent overriding statements must not be
named. If you do not wish to change one of the concatenated DD statements, leave the
operand field blank on the corresponding DD statement in the input stream. (This is the only
case where a blank operand field for a DD statement is valid.)

For example, suppose you are calling a procedure that includes the following sequence of DD
statements in STEPC:

IIDD4
II

DD DSNAME=A.B.C,DISP=OLD
DD DSNAME=STRP,DISP=OLD,UNIT=3350,VOL=SER=X12182

II
II

DD DSNAME=TYPE3,DISP=OLD,UNIT=3350,VOLUME=SER=BL1421
DD DSNAME=A.B.D,DISP=OLD

To override the DD statements that define the data sets nanied STRP and A.B.D, you would
code:

IISTEPC.DD4 DD
II DD DSNAME=INV.CLS,DISP=OLD
II DD
II DD DSNAME=PAL8,DISP=OLD,UNIT=3350,VOL=SER=125688

Adding DD Statements to a Procedure

You can add DD statements to a procedure when calling the procedure. These additional DD
statements are in effect only during the current execution of the procedure.

To add a DD statement to a procedure step, place the additional DD statement after the EXEC
statement that calls the procedure and after any overriding DD statements for that step. The
ddname of the DD statement i4entifies the procedure step to which this statement is to be
added; you must assign a ddname that is different from all the ddnames in the pr-ocedure step.
If you do not identify the procedure step in the ddname, the DD statement is added to the step
specified by the last DD statement that contains a stepname and modifies a DD statement in
the procedure. If there are no DD statements that contain stepname.ddname, then the DD
statement is added to the first step of the procedure.

For example, if you use the following procedure:

IILINKSI
IILKI
IISYSUTI
IISYSPRINT
IISYSLMOD
II
IILK2
IISYSUTI
IISYSPRINT
IISYSLMOD
II

9-8 MVS JCL

PROC
EXEC PGM=IEWL,REGION=512K
DD SPACE=(CYL,(5,2)),UNIT=SYSDA
DD SYSOUT=A
DD DISP=OLD,UNIT=3330,VOL=SER=&SER,

DSN=SYSl.TESTLIB
EXEC PGM=IEWL,REGION=512K
DD SPACE=(CYL,(5,2)),UNIT=SYSDA
DD SYSOUT=A
DD UNIT=3330,VOL=SER=TSTVOL,

DSN=COPY.TESTLIB,DISP=OLD

and you specify these DD statements:

IILK2.SYSLMOD DD
II
IIADD DD

DSN=COPY2.TESTLIB,UNIT=3350,
VOL=SER=ATEST,DISP=SHR
DSN=SYS1.LPALIB,DISP=SHR

then the DD statement with the ddname of ADD would be added to step LK2. If you did not
code the DD statement LK2.SYSLMOD, then the DD statement ADD would be added to step
LKI.

You can use symbolic parameters on DD statements that you are adding to a procedure.
However, if you are adding a DD statement to the last step of a procedure, do not use symbolic
parameters that are not used elsewhere in the procedure.

When adding DD statements to a procedure that contains concatenated DD statements, follow
the rules outlined in the previous topic "Modifying Parameters on DD Statements That Define
Concatenated Data Set!?"

Modifying Parameters on an OUTPUT JCL Statement

To override, add, or nullify parameters on an OUTPUT JCL statement in a procedure, include
an OUTPUT JCL statement containing the changes you want to make following the EXEC
statement that calls the procedure. The name of the OUTPUT JCL statement containing the
changes is composed of the procedure step name and the name of the OUTPUT JCL statement
in the procedure:

Ilprocstepname.name OUTPUT parameter=value

When overriding a parameter, the value you code replaces the value assigned to the parameter
in the procedure.

When adding a parameter, the parameter is added to the OUTPUT JCL statement in the
procedure for the current execution of the procedure.

When nullifying a parameter, do not follow the equal sign with a value; that parameter in the
procedure is ignored.

All changes you make are in effect only for the current execution of the procedure.

You can change more than one parameter on an OUTPUT JCL statement and you can change
parameters on more than one OUTPUT JCL statement in the procedure. However, the
OUTPUT JCL statements containing the changes must be coded in the same order as the
corresponding OUTPUT JCL statements in the procedure. Test all new procedures without
overriding any parameters to ensure that the procedure statements are syntactically correct.

For example, the first two steps of the cataloged procedure MOVE are:

IISTEP1
IIOUTA
II
IIDD1
IISTEP2
IIOUTB
II

EXEC
OUTPUT

DD
EXEC
OUTPUT

PGM=TRUCK
GROUPID=RPT,BURST=YES,COPIES=6,
FORMS=STD,DEST=NEWYORK
SYSOUT=A,OUTPUT=*.OUTA
PGM=LOAD
COPIES=2,FORMS=IMG1,FLASH=(AB,2),
DEST=ARIZ

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-9

You want to make the following changes for this invocation:

I. Change the BURST parameter on OUTPUT JCL statement OUTA to NO.
2. Change the COPIES parameter on OUTPUT JCL statement OUTA to 12.
3. Change the COPIES parameter on OUTPUT JCL statement OUTB to 12.
4. Nullify the FORMS parameter on OUTPUT JCL statement OUTB.
'5. Change the DEST parameter on the OUTPUT JCL statement OUTB to NEWYORK.

,When calling the procedure, you would code:

//CALL
//STEP1.OUTA
//STEP2.0UTB

EXEC
OUTPUT
OUTPUT

MOVE
BURST=NO,COPIES=12
COPIES=12,FORMS=,DEST=NEWYORK

Note: The OUTPUT parameter coded on DD statement DDI is still valid. The output data
set for DD statement DDI receives the output processing as specified on OUTPUT JCL
'statement OUTA and the changes specified on the overriding OUTPUT JCL statement
identified by //STEP1.0UTA.

Adding 0U:TPUT JCL Statements to a Procedure

You can add OUTPUT JCL statements to a procedure when calling the procedure. These
additional OUTPUT JCL statements are in effect only during the current execution of the
procedure.

To add an OUTPUT JCL statement to a procedure step, place the additional OUTPUT JCL
statement after the EXEC statement that calls the procedure and after any overriding OUTPUT
JCL statements fOf_that step. The name of the OUTPUT JCL statement identifies the
procedure step to which this statement is to be added; you must assign the OUTPUT JCL
statement a name that is different from all the OUTPUT JCL statement names in the procedure
step. If you do not identify the procedure step in the name, the OUTPUT JCL statement is
added to the step specified by the last overriding OUTPUT JCL statement that contains a
stepname. If there are no overriding OUTPUT JCL statements that contain stepname.name,
then the OUTPUT JCL statement is added to the first step of the procedure.

For example, if you use the following procedure:

//LINKSl
//LKl
//OUTRPl
//SYSPRl
//LK2
//OUTRP2
//SYSPR2

PROC
EXEC
OUTPUT
DD
EXEC
OUTPUT
DD

PGM=IEWL,REGION=512K
BURST=YES,COPIES=2,DEST=POK
SYSOUT=A
PGM=IEWL,REGION=512K
COPIES=2,FORMS=RA
SYSOUT=A

and you specify these OUTPUT JCL statements:

//STEPA
//LK1.OUTRPl
//ADDl
//LK2.0UTRP2
//LK2.0UTRP3
//ADD2

EXEC
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

LINKSl
DEFAULT=YES, FL,ASH= (XA, 2) , DEST=HQ
DEFAULT=YES,DEST=MONT
DEFAULT=YES,FORMS=STD,DEST=HQ
DEFAULT=YES,DEST=FLA
DEFAULT=YES,COPIES=2,DEST=POK

• The OUTPUT JCL statement with the name LK1.0UTRPI adds parameters to OUTPUT
JCL statement OUTRPI in procedure step LKI.

9-10 MVS JCL

• The system adds OUTPUT JCL statement ADD1 to procedure step LK1 because it does
not have a name in the form stepname.name.

• The OUTPUT JCL statement with the name LK2.0UTRP2 adds parameters to OUTPUT
JCL statement OUTRP2 in procedure step LK2.

• The system adds OUTPUT JCL statement LK2.0UTRP3 to procedure step LK2.

• The system adds OUTPUT JCL statement ADD2 to procedure step LK2 because ADD2
does not have a name in the form stepname.name.

Notes:

1. Because OUTPUT JCL statements LK1.0UTRP1 and ADD1 have DEFAULT= YES
specified, the system processes the output data set defined by DD statement SYSPR1 DD
statement SYSPR2 using the processing options specified on OUTPUT JCL statements
OUTRP1 and ADD1.

2. Because OUTPUT JCL statements LK2.0UTRP2, LK2.0UTRP3, and ADD2 have
DEFAULT= YES specified, the system processes the output data set for DD statement
SYSPR2 using the processing options specified on OUTPUT JCL statements OUTRP2,
OUTRP3, and ADD1.

For more information and examples of the relationship between the DEFAULT parameter on
an OUTPUT JCL statement and a DD statement with the SYSOUT DD parameter and
OUTPUT DD parameter, see "OUTPUT Parameter" on page 12-103.

Adding OUTPUT JCL statements when there is an OUTPUT DD Parameter

For example, if you use the following procedure:

//LINKSl
//LKl
//OUTRPl
//SYSPRl
//LK2
//OUTRP2
//SYSPR2
//SYSPR3
//LK3
//SYSPR4

PROC
EXEC
OUTPUT
DD
EXEC
OUTPUT
DD
DD
EXEC
DD

PGM=IEWL,REGION=512K
BURST=YES,COPIE$=2,DEST=POK
SYSOUT=A,OUTPUT=*.OUTRPl
PGM=IEWL,REGION=512K
COPIES=2,FORMS=RA
SYSOUT=A,OUTPUT=*.LK1.OUTRPl
SYSOUT=A
PGM=IEWL,REGION=512K
SYSOUT=A,OUTPUT=*.LK1.OUTRPl

and you specify these OUTPUT JCL statements:

//STEPA
//LK1.OUTRPl
//ADDl
//LK2.0UTRP2

EXEC
OUTPUT
OUTPUT
OUTPUT

LINKSl
DEFAULT=YES,FLASH=(XA,2),DEST=HQ
DEFAULT=YES,DEST=MONT
DEFAULT=YES,FORMS=STD,DEST=HQ

• The OUTPUT JCL statement with the name LKl.OUTRPl adds parameters to OUTPUT
JCL statement OUTRP1 in procedure step LKl.

• The system adds OUTPUT JCL statement ADD1 to procedure step LK1 because it does
not have a name in the form stepname.name.

• The OUTPUT JCL statement with the name LK2.0UTRP2 adds parameters to OUTPUT
JCL statement OUTRP2 in procedure step LK2.

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-11

Notes:

1. Because output DD statement SYSPRI makes an explicit reference to OUTPUT JCL
statement OUTRPl, the system processes the data set using the combined processing options
coded on OUTPUT JCL statements OUTRPI and LKl.0UTRPl.

2. Because output DD statement SYSPR2 makes an explicit reference to OUTPUT JCL
statement OUTRP 1, the system processes the data set using the combined processing options
coded on OUTPUT JCL statements OUTRPI and LKl.0UTRPl.

3. Because output DD statement SYSPR3 does not make an explicit reference to an OUTPUT
JCL statement and because OUTPUT JCL statement LK2.0UTRP2 specifies
DEFAULT= YES, the system processes the data setfor DD statement SYSPR3 using the
combined processing options specified on OUTPUT JCL statements LK2.0UTRP2 and
OUTRP2.

4. Because output DD statement SYSPR4 makes an explicit reference to OUTPUT JCL
statement OUTRP 1, the system processes the data set using the combined processing options
coded on OUTPUT JCL statements OUTRPI and LKl.0UTRPl.

If you add an OUTPUT JCL statement to procedure step LK3, you cannot refer to it from DD
statement SYSPR4, because the system adds the additional OUTPUT JCL statement at the end
of procedure step LK3. Because you are using the backward reference feature of JCL to refer
to an OUTPUT JCL statement, the OUTPUT JCL statement must precede the DD statement
that makes the reference.

If you want the system to process an output data set accorQing to processing options on an
OUTPUT JCL statement that you are adding to the procedure and the DD statement makes an
explicit reference toa different OUTPUT JCL statement, you can use the following method.

For example, if you use the following procedure:

//LINKSI
//LKI
//OUTRPI
//SYSPRI
//LK2
//OUTRP2
//SYSPR2
//SYSPR3
//LK3
//SYSPR4

PROC
EXEC
OUTPUT
DD
EXEC
OUTPUT
DD
DD
EXEC
DD

PGM=IEWL,REGION=512K
BURST=YES,COPIES=2,DEST=POK
SYSOUT=A,OUTPUT=*.OUTRPI
PGM=IEWL,REGION=512K
COPIES=2,FORMS=RA
SYSOUT=A,OUTPUT=*.OUTRP2
SYSOUT=A
PGM=IEWL,REGION=512K
SYSOUT=A,OUTPUT=*.LKl.OUTRPl

and you want the system to process the data set for DD statement SYSPR4 according to the
processing options specified on an OUTPUT JCL statement different from OUTRPl, you
would specify:

//JOBI
//ADD2
//STEPA
//LK3.SYSPR4

JOB
OUTPUT
EXEC
DD

DEFAULT=YES,COPIES=2,DEST=POK
LINKSI
OUTPUT=

OUTPUT JCL statement ADD2 is now a job-level OUTPUT JCL statement and the
DEFAULT parameter applies to any DD statement with the SYSOUT parameter coded for
which there is no step-level OUTPUT JCL statement with DEFAULT=YES coded. Then,
when you nullify the OUTPUT parameter on DD statement SYSPR4, SYSPR4 is processed
according to ADD2. However, because the DEFAULT=YES parameter. applies to any DD

9-12 MVS JCL

statement with the SYSOUT parameter, the system uses OUTPUT JCL statement ADD2 when
processing DD statement SYSPR3 and SYSPR4. To avoid using the DEFAULT=YES
specification you could code:

//JOB1
//ADD2
//STEPA
//LK3.SYSPR4

JOB
OUTPUT
EXEC
DD

COPIES=2,DEST=POK
LINKS1
OUTPUT=*.ADD2

You override the OUTPUT parameter specification on DD statement SYSPR4 with a reference
to a job-level OUTPUT JCL statement. Because there is no DEFAULT = YES specification,
OUTPUT JCL statement ADD2 does not apply to any other output data set unless there is an
explicit reference made to ADD2.

For a discussion of step-level and job-level OUTPUT JCL statements, see "Processing System
Output Data Sets Using the OUTPUT JCL Statement" on page 7-44.

You can use symbolic parameters on OUTPUT JCL statements that you are adding to a
procedure. The use of symbolic parameters on an OUTPUT JCL statement is the same as for a
DD statement. See "Symbolic Parameters" on page 2-15. However, if you are adding an
OUTPUT JCL statement to the last step of a procedure, do not use symbolic parameters that
are not used elsewhere in the procedure.

Identifying Procedure Statements on an Output Listing

You can request that cataloged and in-stream procedure statements be included on the output
listing by coding 1 as the first subparameter in the MSGLEVEL parameter on the JOB
statement. (For a description of the MSGLEVEL parameter, see "Requesting Listings of JCL
Statements and System Messages.")

Procedure statements are identified on the output 'listing as illustrated in Figure 9-1 and
Figure 9-2 on page 9-14. The output listing will also show the symbolic parameters and the
values assigned to them.

Columns
1,2,3

XX cataloged procedure statement you did not override
X/ cataloged procedure statement you did override
XX* cataloged procedure statement, other than a comment

statement, that the system considers to contain
only comments

*** comment statement, JES2, and JES3 statements

Note: The XI identifier applies only to DD statements.

Figure 9-1. Identification of Cataloged Procedure Statements on the Output Listing

Chapter 9. Guide to Cataloged and In-Stream Procedures 9-13

Columns
1,2,3

++ in-stream procedure statement you did not override
+/ in-stream procedure statement you did override
++* in-stream procedure statement, other than a comment

statement, that the system considers to contain
only comments

*** comment statement, JES2, and JES3 statements

Note: The + / identifier applies only to DD statements.

Figure 9-2. Identification of In-stream Procedure Statements on the Output Listing

9-14 MVS JCL

Reference

Part 4. Reference to Job Control Statements and Parameters

This part details the coding of each JCL, JES2, and JES3 control statement. The chapters are:

Chapter 10. Coding the JOB Statement
Chapter 11. Coding the EXEC Statement
Chapter 12. Coding the DD Statement
Chapter 13. Coding Special DD Statements
Chapter 14. Coding the OUTPUT JCL Statement
Chapter 15. Coding Special JCL Statements
Chapter 16. Coding JES2 Control Statements
Chapter 17. Coding JES3 Control Statements

In chapters 10, 11, 12, and 14, which each cover only one statement, the parameters are listed
alphabetically. In chapters 13, 15, 16, and 17, the statements are listed alphabetically and, for
each statement, the parameters are listed alphabetically.

For each statement and parameter, this part gives the following information, as needed:

• Parameter type: positional or keyword, required or optional.

• Purpose of the parameter.

• References to related information in this book or other IBM publications.

• Syntax and coding rules.

• Parameter or subparameter definitions: how to code each parameter or subparameter.

• Defaults if you do not code a statement, parameter, or subparameter.

• Overrides: statements that this statement overrides or is overridden by or parameters that
this parameter overrides or is overridden by.

• Relationship to other parameters, including other parameters or subparameters that must
not be coded with this one.

Part 4. Reference to Job Control Statements and Parameters

Reference

• Relationship to other control statements.

• On EXEC statement that calls a procedure, for EXEC statement parameters.

• Location in the JCL.

• Other information required to code the statement or parameter.

• Examples.

MVS JCL

JOB

Chapter 10. Coding the JOB Statement

Name Field

Purpose: Use the JOB statement to mark the beginning of a job and to tell the system how to
process the job. Also, when jobs are stacked in the input stream, the JOB statement marks the
end of the preceding job.

The parameters you can specify for job processing are arranged alphabetically in the following
pages.

References: For more information on coding JOB-related parameters, see Chapter 3, "Guide
to Job Control" on page 3-1 and Chapter 5, "Guide to Job and Step Control" on page 5-1.
For information about the JES initialization parameters that provide installation defaults, see
8PL: JE82 Initialization and Tuning and 8PL: JE83 Initialization and Tuning.

Syntax:

//jobname JOB positional-parameters[,keyword-parameter] ... comments

The JOB statement consists of the characters / / in columns 1 and 2 and four fields: name,
operation (JOB), parameter, and comments.

A JOB statement is required for each job.

Code a jobname on every JOB statement, as follows:

• Each jobname must be unique.
• The jobname must begin in column 3.
• The jobname is 1 through 8 alphanumeric or national characters.
• The first character must be alphabetic or national.
• The jobname must be followed by at least one blank.

Parameter Field

A JOB statement has two kinds of parameters: positional and keyword. All parameters are
optional unless your installation requires the accounting information parameter and the
programmer's name parameter.

Chapter 10. Coding the JOB Statement 10...; 1

•

JOB

Positional Parameters: A JOB statement can contain two positional parameters. They must
precede all keyword parameters. You must code the two positional parameters in the following
order:

1. accounting information
2. programmer's name

Keyword Parameters: A JOB statement can contain the following keyword parameters. You
can code any of the keyword parameters in any order in the parameter field after the positional
parameters.

ADDRSPC
CLASS
COND
GROUP
MSGCLASS
MSGLEVEL
NOTIFY
PASSWORD
PERFORM
PRTY
RD
REGION
RESTART
TIME
TYPRUN
USER

Do not use JOB statement parameter keywords as syrubolic parameters, names, or labels.

Comments Field

The comments field follows the parameter field after at least one intervening blank. If you do
not code any parameters on a JOB statement, do not code any comments.

Location in the JCL

A JOB statement must be the first statement iIi each job. JOB statements never appear in
cataloged or in-stream procedures.

Examples of JOB Statements

//ALPHA
//LOS
//MART
//TRY8
//RACF1

10-2 MV,S JCL

JOB
JOB
JOB
JOB
JOB

843,LINLEE,CLASS=F,MSGCLASS=A,MSGLEVEL=(1,1)
,'J M BUSKIRK',TIME=(4,30),MSGCLASS=H,MSGLEVEL=(2,O)
1863,RESTART=STEP4 THIS IS THE THIRD JOB STATEMENT.

'083,123' ,USER=RAC01,GROUP=A27,PASSWORD=XYY

JOB: Accounting Information

Accounting Information Parameter

Parameter Type: Positional, required (according to installation procedures)

Purpose: Use the accounting information parameter to enter an account number and any other.
accounting information that your installation requires.

References: For more information on the accounting information parameter, see "Job
Accounting Information Parameter" on page 3-2, and on how to add accounting routines, see
SPL: System Management Facilities.

If you are to provide accounting information for an individual step within a job, code an
ACCT parameter on the EXEC statement for that step. For information on coding the EXEC
statement ACCT parameter, see "ACCT Parameter" on page 11-4.

Syntax:

([account-number] [,accounting-information] ...)

Location: Code the accounting information parameter first in the parameter field.

Omission: If you omit the accounting information parameter but you are coding a
programmer's name parameter, code a comma to indicate the omitted parameter. If you
omit both positional parameters, do not code any commas before the first keyword
parameter.

Length: The entire accounting information parameter must not exceed 142 characters:

• Including any commas, which are considered part of the information.
• Excluding any enclosing parentheses, which are not considered part of the information.

Multiple Subparameters: When the accounting information parameter consists of more than
one subparameter, separate the subparameters by commas and enclose. the parameter in
parentheses or apostrophes. For example, (5438,GROUP6) or '5438,GROUP6'.· If you use
apostrophes, all information inside the apostrophes is considered one field.

Special Characters: When a subparameter contains special characters, other than hyphens,
enclose it in apostrophes and the entire parameter in parentheses or enclose all of the
parameter in apostrophes. For example, (12A75,'DEPTjD58',706) or
, 12A 7 5,DEPT jD58, 706'.

Code each apostrophe or ampersand that is part of the accounting information as two
consecutive apostrophes or ampersands. For example, code DEPT'D58 as
(12A75,'DEPT"D58',706) or '12A75,DEPT"D58,706'. Code 34&251 as '34&&251'.

Continuation onto Another Statement: Enclose the accounting information parameter in
parentheses. End each statement with a comma after a complete parameter. For example:

IIJOBl JOB (12A75,'DEPT/D58',
II 706)

Chapter 10. Coding the JOB Statement 10-3

JOB: Accounting Information

Subparameter Definition

account-number
Specifies an accounting number, as defined by the installation.

accounting-information
Specifies more information, as defined by the installation. For example, your department
and room numbers.

JES2 Accounting Information Format

JES2 assumes that the JOB accounting information parameter could, alternatively, appear on
the JES2 /*JOBPARM statement. If you code the accounting information parameter in the
following format, JES2 can interpret and use it.

References: For a discussion of the JES2 scan of the accounting information parameter, see
SPL: JES2 Initialization and Tuning.

Syntax:

(pano,room,time,lines,cards,forms,copies,log,linect)

Code a comma in place of each omitted subparameter when other subparameters follow.

Sub parameter Definition

pano

room

time

lines

cards

forms

10-4 MVS JCL

Specifies the programmer's accounting number. pano is 1 to 4 alphanumeric characters.

Specifies the programmer's room number. room is 1 to 4 alphanumeric characters.

Specifies the estimated execution time in minutes. time is 1 to 4'decimal numbers. For
example, code 30 for 30 minutes. If you omit time, JES2 uses an installation default
specified at initialization.

Specifies the estimated line count in thousands of lines. lines is 1 to 4 decimal numbers.
For example, code 5 for 5000 lines. If you omit lines, JES2 uses an installation default
specified at initialization.

Specifies the estimated number of cards JES2 is to punch. cards is 1 to 4 decimal
numbers. If you omit cards, JES2 uses an installation default specified at initialization.

Specifies the forms that JES2 is to use for printing output for the entire job. forms is 1 to
4 alphanumeric characters. For example, code 5 for 5":part forms. If you omit forms,
JES2 uses an installation default specified at initialization.

JOB: Accounting Information

copies

log

linect

Specifies the number of times JES2is to print and/or punch this job's output. copies is 1
to 3 decimal numbers not exceeding an installation-specified limit. The maximum is 255.
For example, code 2 for two copies. If you omit copies, JES2 assumes one copy.

The copies subparameter is ignored and only one copy is produced if the output class for •
the job log, as specified in the JOB MSGCLASS parameter, or the output class of any of
the job's system output data sets is a held class.

Specifies whether or not JES2 is to print the job log. Code N to request no job log. If
you code any other character or omit this subparameter, JES2 prints the job log. If your
installation specified NOLOG for this job's class during JES2 initialization, JES2 will not
print a job log.

Specifies the number of lines JES2 is to print per page. linect is 1 to 3 decimal numbers.
When you send a data set across a network, linect cannot exceed 254. When you print
the data set locally, linect cannot exceed 255. If you omit linect, JES2 uses an installation
default specified at initialization. If you code a zero, JES2 does not eject to a new page
when the number of lines exceeds the installation default.

Invalid Sub parameters: Your installation can initialize JES2 to do one of the following if the
accounting information contains subparameters that are invalid to JES2:

• Ignore the invalid subparameters.
• Terminate the job. In this case, JES2 requires the first two subparameters: pano and room.

Overrides: A parameter on any of the following statements overrides an equivalent accounting
information subparameter on the JOB statement:

• JES2 j*JOBPARM statement
• JES2 j*OUTPUT statement
• OUTPUT JCL statement
• DD statement

Examples of the Accounting Information Parameter

//JOB43 JOB D548-8686

//YOURJOB JOB ,SUE,CLASS=A

In this statement, the accounting information parameter is omitted, but indicated by a comma.

Chapter 10. Coding the JOB Statement 10 .. 5

JOB: Accounting Information

//JOB44 JOB (D548-8686,'12/8/85' ,ERICKSON)

Because this statement contains an account-number plus additional accounting-information,
parentheses are required.

//JOB45 JOB (CFH1,2G14,15",2)

This statement shows a JES2 accounting information parameter: programmer's accounting
number, CFHl; room number, 2G14; estimated job time, 15 minutes; and copies, 2.
Parentheses are required. Standard values ,are assumed for the other JES2 subparameters.

10~6 MVS JCL

JOB: ADDRSPC

ADDRSPC Parameter

Parameter Type: Keyword, optional

Purpose: Use the ADDRSPC parameter to indicate to the system that the job requires virtual •
storage (page able) or real storage (nonpageable).

References: For more information on the ADDRSPC parameter, see "Requesting Storage for
Execution" on page 5-23 and "The REGION Parameter" on page 5-25.

Syntax:

ADDRSPC={VIRTIREAL}

Subparameter Definition

Defaults

Overrides

VIRT
Requests virtual storage. The system can page the job.

REAL
Requests real storage. The system cannot page the job and must place each step of the
job in real storage.

If no ADDRSPC parameter is specified, the defa~lt is VIRT.

The JOB statement ADDRSPC parameter applies to all steps of the job and overrides any
EXEC statement ADDRSPC parameters.

Code EXEC statement ADDRSPC parameters when each job step requires different types of
storage. The system uses an EXEC statement ADDRSPC parameter only when no ADDRSPC
parameter is on the JOB statement and only during the job step.

Relationship to the JOB REGION Parameter

When ADDRSPC = REAL: Code a REGION parameter to specify how much real storage the
job needs. If you omit the REGION parameter, the system uses an installation default
specified at JES initialization.

When ADDRSPC= VIRT or ADDRSPC is Omitted: Do not code a REGION parameter. The
system uses an installation default specified at JES initialization.

Chapter 10. Coding the JOB Statement 10-7

JOB: ADDRSPC

Examples of the ADDRSPC Parameter

//PEH JOB ,BAKER,ADDRSPC=VIRT

The ADDRSPC parameter requests virtual (pageable) storage. The space available to the job is
the installation-specified default.

//DEB JOB ,ERIC ,ADDRSPC=REAL ,REGION=100K

The ADDRSPC parameter requests real (nonpageable) storage. The REGION parameter
specifies lOOK of storage for the job.

10-8 MVS JCL

JOB: CLASS

CLASS Parameter

Parameter Type: Keyword, optional

Purpose: Use the CLASS parameter to assign the job to a class. The class you should request
depends on the characteristics of the job and your installation's rules for assigning classes.

References: For more information on the CLASS parameter, see "Assigning a Job to a Job
Class in JES2" on page 5-19 or "Assigning a Job to a Job Class in JES3" on page 5-19. In
JES3 systems, you can also code a CLASS parameter on a JES3 / /*MAIN statement. For
information on the //*MAIN statement, see "//*MAIN Statement" on page 17-23.

Syntax:

CLASS=jobclass

Subparameter Definition

Defaults

Overrides

jobclass
Identifies the class for the job. The jobclass is one character, A through Z or 0 through 9,
and must be a valid class specified at system initialization.

The default is based on the source of the job: The system makes the job's class the same as the
installation-specified default class for the particular card reader, work station, or time-sharing
user that submitted the job. The installation default is specified at JES initialization.

A JES3 / /*MAIN statement CLASS parameter overrides a JOB statement CLASS parameter.

Example of the CLASS Parameter

//SETUP JOB 1249,SMITH,CLASS=M

This statement assigns the job to class M.

Chapter 10. Coding the JOB Statement 10-9

JOB: COND

COND Parameter

Parameter Type: Keyword, optional

Purpose: Use the COND parameter to specify the return code tests the system uses to
determine whether a job will continue processing. Before each job step is executed, the system
performs the COND parameter tests against the return codes from completed job steps. If none
of these tests is satisfied, the system executes the job step; if any test is satisfied, the system
bypasses all remaining job steps and terminates the job.

References: For more information on the COND parameter, see "Conditionally Executing Job
Steps" on page 5-5.

Syntax:

COND=«code,operator) [,(code,operator)] ...)

• One return code test is: (code, opera tor)

• You can omit the outer parentheses if you code only one return code test.

• Specify up to eight return code tests for a job.

Subparameter Definition

code
Specifies a number that the system compares to the return code from each job step. code
is a decimal number from 0 through 4095.

Note: Specifying a decimal number greater than 4095 could result in invalid return code
testing or invalid return codes in messages.

operator

10-10 MVS JCL

Specifies the type of comparison to be made to the return code. Operators and their
meanings are:

Operator Meaning

GT Greater than
GE Greater than or equal to
EQ Equal to
NE Not equal to
LT Less than
LE Less than or equal to

Overrides

JOB: COND

If you code the COND parameter on the JOB statement and on one or more of the job's EXEC
statements, and if a return code test on the JOB statement is satisfied, the job terminates. In
this case, the system ignores any EXEC statement COND parameters.

If the tests on the JOB statement are not satisfied, the system then performs the return code
tests on the EXEC statement. If a return code test is satisfied, the step is bypassed.

Summary of COND Parameters

See Figure 10-1 for a summary of how to code tests in the COND parameter to cause the job
to be continued or terminated.

Return Code (RC) from Just Completed Step

Test in COND Parameter Continue Job Terminate Job

COND = (code,GT) RC ~ code RC < code

COND = (code,GE) RC > code RC ::; code

COND = (code,EQ) RC -, = code RC = code

COND=(code,LT) RC ::; code RC > code

COND = (code,LE) RC < code RC ~ code

COND = (code,NE) RC = code RC -, = code

Figure 10..;1. Continuation or Termination of the Job Based on COND Parameter

Examples of the COND Parameter

//TYPE JOB (611,402),BOURNE,COND=(7,LT)

The COND parameter specifies that if 7 is less than the return code, the system terminates the
job. Any return code less than or equal to 7 allows the job to continue.

//TEST JOB 501,BAXTER,COND=«20,GE) ,(30,LT))

The COND parameter specifies that if 20 is greater than or equal to the return code or if 30 is
less than the return code, the system terminates the job. Any code of 21 through 30 allows the
job to continue.

Chapter 10. Coding the JOB Statement 10-11

JOB: GROUP

GROUP Parameter

Parameter Type: Keyword, optional

Purpose: Use the GROUP parameter to specify a RACF-defined group to which a
RACF-defined user is to be connected. RACF places eacp.;RACF.,.defined user in a default
group; the GROUP parameter is needed only to specify a group other than a user's default
group.

The USER, the PASSWORD, and, optionally, the GROUP parameters are :r:equired on JOB
statements only for the following:

• Batch jobs submitted through an input stream, such as a card reader, (1) if the job requires
access to RACF-protected resources or (2) if the installation requires that all jobs have
RACF identification.

• Jobs submitted by one TSO user for another user. In this case, the JOB statement must
specify the other user's userid and password. The group id is optional.

• Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from JOB
statements. RACF uses the userid, password, and group id of the submitting TSO user or job.

References: For more information on the GROUP parameter, see "Controlling Access to
RACF-Protected Data Sets" on page 6-2, and on RACF-protected facilities, see Resource
Access Control Facility (RACF) General Information Manual.

Syntax:

GROUP=group-name

Subparameter Definition

Defaults

group-name
Identifies the group with which the system is to associate the user. group-name is 1 to 8
alphanumeric or national characters. The first character must be alphabetic or nationaL

If you do not code the GROUP parameter, but do code the USER and PASSWORD
parameters, the system assigns a default group name·it associates with the userid.

10-12 MVS JCL

JOB: GROUP

Relationship to Other Parameters

Code the USER and PASSWORD parameters on the JOB statement when you code the
GROUP parameter.

Example of the GROUP Parameter

//TEST JOB 'D83,123456' ,GROUP=MYGROUP,USER=MYNAME,PASSWORD=ABC

This statement requests that the system connect RACF-defined user MYNAME to the group
named MYGROUP for the duration of the job.

Chapter 10. Coding the JOB Statement 10-13

JOB: MSGCLASS

MSGCLASS Parameter

Parameter Type: Keyword, optional

Purpose: Use the MSGCLASS parameter to assign the job log to an output class. The job log
is a record of job-related information for the programmer. Depending on the JOB statement
MSGLEVEL parameter, the job log can consist of:

• Only the JOB statement.
• All JCL statements.
• Cataloged procedure statements.
• JCL messages;
• JES and operator messages about the job.

References: For more information on the MSGCLASS parameter, see "Job Log" on page 3-14
and "MSGCLASS Parameter" on page 3-16.

Syntax:

MSGCLASS=class-name

Subparameter Definition

Defaults

class-name
Identifies the ou"1put class for the job log. The class-name is one character, A through Z
or 0 through 9, and must be a valid output class specified at system initialization.

The default is based on the source of the job: The system.places the job log in the same output
class as the installation-specified default class for the particular card reader, work station, or
time-sharing user that submitted the job. The installation default is specified at JES
initialization.

Significance of Output Classes

To print thejob log and any output data sets on the same output listing, code one of the
following:

• The same output class in the DO SYSOUT parameter as in the JOB MSGCLASS
parameter.

• DD SYSOUT = * to default to the JOB MSGCLASS output class.

• DD SYSOUT = (,) to default to one of the following:

1. The CLASS parameter in an explicitly or implicitly referenced OUTPUT JCL
statement. In this case, the OUTPUT JCL CLASS parameter should specify the same
output class as the JOB MSGCLASS parameter.

10-14 MVS JCL

JOB: MSGCLASS

2. The JOB MSGCLASS output class, if no OUTPUT JCL statement is referenced or if
the referenced OUTPUT JCL statement contains CLASS = *.

Examples of the MSGCLASS Parameter

//EXMPl JOB ,GEORGE,MSGCLASS=F

In this example, the JOB statement specifies output class F for the job log.

//EXMP2 JOB ,MENTLE,MSGLEVEL=(2,O)

This JOB statement does not specify an output class. In this case, the output class defaults to
the installation default output class for the device from which the job was submitted.

//A1403 JOB , BLACK, MSGCLASS=L
//STEPl EXEC PGM=PRINT
//OUTDDl DD SYSOUT=L

In this example, the JOB statement and sysout DO statement OUTDDI both specify the same
output class. Consequently, the job log and data set OUTDDI are written on the same output
listing.

//B209 JOB
//STEPA EXEC
//OUTDDX DD

,WHITE,MSGCLASS=M
PGM=PRINT
SYSOUT=*

In this example, the JOB statement specifies that the system route the job log to output class
M. The system also routes sysout data set OUTDDX to class M because SYSOUT = * is
specified.

Chapter 10. Coding the JOB Statement 10 .. 15

JOB: MSGLEVEL

MSGLEVEL Parameter

Parameter Type: Keyword, optional

Purpose: Use the MSGLEVEL parameter to control the contents of the job log. You can
request that the system print the following:

• Only the JOB statement.

• All JCL statements.

• Cataloged procedure statements for any procedure a job step calls, including the internal
representation of procedure statement parameters after symbolic parameter substitution.

• JCL messages.

• JES and operator messages about the job: the allocation of devices and volumes,
disposition of data sets, and termination of job steps and the job.

References: For more information on the MSGLEVEL parameter, see "MSGLEVEL
Parameter" on page 3-14.

Syntax:

MSGLEVEL=([statements] [,messages])

You can omit the parentheses if you code only the first subparameter.

Subparameter Definition

statements
Indicates which job control statements the system is to print in the job log. statements is
one of the following numbers:

o The system prints only the JOB statement.

1 The system prints all JCL statements, the cataloged procedure statements, and the
internal representation of procedure statement parameters after symbolic parameter
substitution.

2 The system prints only JCL statements.

messages

10-16 MVS JCL

Indicates which messages the system is to print in the job log. messages is one of the
following numbers:

o The system prints only JCL messages. It prints JES and operator messages only if the
job abnormally terminates.

1 The system prints JCL messages and all JES and operator mess.ages.

Defaults

· JOB: MSGLEVEL

If you do not code the MSGLEVEL parameter, JES uses an installation default specified at
ini tializa tion.

Examples of the MSGLEVEL Parameter

//EXMP3 JOB ,GEORGE,MSGLEVEL=(2,1)

In this example, the JOB statement requests that the system print only JCL statements, JCL
messages, and JES and opera tor messages.

//EXMP4 JOB ,MENTLE,MSGLEVEL=O

In this example, the JOB statement requests that the system print only the JOB statement and
that JES is to use the installation default for messages.

//EXMPS JOB ,MlKE,MSGLEVEL=(,O)

In this example, the JOB statement requests that JES use the installation default for printing
JCL statements and the system is not to print JES and operator messages unless the job
abnormally terminates.

Chapter 10. Coding the JOB Statement 10-17

JOB: NOTIFY

NOTIFY Parameter

Parameter Type: Keyword, optional

Purpose: Use the NOTIFY parameter to request that the system send a message to your TSO
userid or another TSO userid when this background job completes processing.

References: For more information on the NOTIFY parameter, see "TSO" on page 3-18.

Syntax:

NOTIFY=userid

Subparameter Definition

userid
Identifies the user that the system is to notify. The userid is 1 to 7 alphanumeric
characters and must be a valid TSO userid.

Relationship to JES2/*JOBPARM SYSAFF Parameter

If you submit a job with a JOB statement NOTIFY parameter or a JES2 j*NOTIFY statement,
then the mode of the job (independent or not) must match that of the system at which the job is
submitted. That is, for TSO-submitted jobs, you cannot change the system affinity using the
JES2 j*JOBPARM SYSAFF parameter.

Receiving Notification of Job Completion

In a JES2 System: If you are logged on to the member of the JES2 multi-access spool from
which you submitted the job, the system immediately notifies you when the job completes. If
you are not logged on, the system saves the message until you log on to the member from
which you originally submitted the job.

In a JESJ System: If you are logged on, the system immediately notifies yoP when the job
completes. If you are not logged on, the system saves the message until you log on to the
system from which you originally submitted the job.

To receive notification that a job you submitted through batch processing has completed,
supply a main-name on' the ACMAIN parameter 'of the JES3 j /*MAIN statemep.t in addition to
the JOB statement NOTIFY parameter. The ACMAIN parameter should specify the processor
on which your TSO system is running.

10-18 MVS JCL

JOB: NOTIFY

Example of the NOTIFY Parameter

//SIGN JOB ,JEEVES,NOTIFY=POKl

When the job SIGN completes processing, the system sends a message to userid POKI.

Chapter lO.Coding the JOB Statement 10-19

JOB: PASSWORD

PASSWORD Parameter

Parameter Type: Keyword, optional

Purpose: Use the PASSWORD parameter to identify a current RACF password or specify a
new RACF password. You can specify a new password at any time and must specify a new
password when your current one expires. .

Note: If your installation uses the early authorization verification option and has an exit
routine to implement this option, a new password specified in the PASSWORD parameter takes
effect when the job is read in, even if the job fails because of JCL errors or even if the job is
executed later. When changing the password, other jobs that use the new or old password may
fail, depending on when their passwords are verified.

The USER, the PASSWORD, and, optionally, the GROUP parameters are required on JOB
statements only for the following:

• Batch jobs submitted through an input stream, such as a card reader, (1) if the job requires
access to RACF-protected resources or (2) if the installation requires that all jobs have
RACF identification.

• Jobs submitted by one TSO user for another user. In this case, the JOB statement must
specify the other user's userid and password. The group id is optional.

• Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from JOB
statements. RACF uses the userid, password, and group id of the submitting TSO user or job.

References: For more information on the PASSWORD parameter, see "Controlling Access to
RACF-Protected Data Sets" on page 6-2. For more information on using RACF-protected
facilities, see Resource Access Control Facility (RACF) General Information Manual.

Syntax:

PASSWORD=(password[,new-password])

• You can omit the parentheses if you code only the first subparameter.

• The PASSWORD parameter must be on the first statement if the JOB statement is
continued.

10-20 MVS JCL

JOB: PASSWORD

Subparameter Definition

password
Specifies the user's current RACF password. The password is I to 8 alphanumeric or
national characters.

new-password
Specifies the user's new RACF password. The new-password is I to 8 alphanumeric or
national characters. The installation's security administrator can impose additional
. restrictions on passwords; follow your installation's rules.

Relationship to Other Parameters

You must code a PASSWORD parameter when you code a USER or GROUP parameter on a
JOB statement.

You must code a USER parameter when you code a PASSWORD parameter.

Examples of the PASSWORD Parameter

//TEST1. JOB 'D83,123456' ,PASSWORD=ABCDE,USER=MYNAME

This JOB statement identifies ABCDE as the current password for the RACF user.

//TEST2 JOB 'D83,123456' ,PASSWORD=(BCH,A12),USER=RAC1,GROUP=GRPl

This JOB statement requests that the system change the RACF password from BCH to A12.

Chapter 10. Coding the JOB Statement 10-21

..

JOB: PERFORM

PERFORM Parameter

Parameter Type: Keyword, optional

Purpose: Use the PERFORM parameter to specify the performance group for the job. The
installation-defined performance groups determine the rate at which associated jobs have access
to the processor, storage, and channels.

References: For information on performance groups, see "Establishing job processing balance
in JES3" on page 5-19, "Performance of Jobs and Job Steps in JES2" on page 5-22, or
"Performance of Jobs and Job Steps in JES3" on page 5-23.

Syntax:

PERFORM=n

Subparameter Definition

Defaults

Overrides

n
Indicates the performance group. The n is a number from 1 through 999 and must
identify a performance group that has been defined by your installation. The specified
performance group should be appropriate for your job type according to your
installation's rules.

If no PERFORM parameter is specified or if the specified PERFORM number fails validity
checks, the system uses an installation default specified at initialization. If the installation did
not specify a default, the system uses a built-in default:

1 for non-TSO jobs
2 for TSO sessions

See SP L: Initialization and Tuning Guide for details.

A JOB statement PERFORM parameter applies to all steps of the job and overrides any EXEC
statement PERFORM parameters.

Code EXEC statement PERFORM parameters when each job step executes in a different
performance group. The system uses an EXEC statement PERFORM parameter only when no
PERFORM parameter is on the JOB statement and only during the job step.

10-22 MVS JCL

JOB: PERFORM

Example of the PERFORM Parameter

//STEPl JOB ,MARLA,CLASS=D,PERFORM=25

In this example, CLASS = D determines the class in which the system will exec:ute the job.
Once in the system, the job will run in performance group 25. The installation must have
defined the significance of this performance group.

Chapter 10. Coding the JOB Statement 10-23

JOB: Programmer's·Name

Programmer's Name Parameter

Parameter Type: Positional, required (according to installation procedures)

Purpose: Use the programmer's name parameter to identify the person or group responsible
for a job.

References: For more information on the programmer's name parameter, see "Programmer
Information: The programmer-name parameter" on page 3-5.

Syntax:

programmer's-name

Location: Place the programmer's name parameter immediately after the accounting
information parameter and before all keyword parameters.

Omission: Do not code a comma to indicate the absence of the programmer's name
parameter. For example:

//YOURJOB JOB 'D58/706' ,MSGCLASS=A

Parameter Definition

programmer's-name

10-24 MVS JCL

Identifies the job's owner. The name must not exceed 20 characters, including all special
characters.

Special Characters: Enclose the programmer's name in apostrophes when:

• The name contains special characters, other than hyphens, leading periods, or
embedded periods. For example:

//YOURJOB JOB 'BUILD/PAUL'
//YOURJOB JOB 'MAE BIRDSALL'

• The last character of the name is a period. For example:

//YOURJOB JOB 'TIIU.'

• Code each apostrophe that is part of the name as two consecutive apostrophes. For
example, code O'DONNELL as 'Ol/DONNELL'.

JOB: Programmer's Name

Examples of the Programmer's Name Parameter

//APP JOB ,G.M.HILL

This JOB statement specifies a programmer's name with no accounting information. The
leading comma may be optional; check with your installation. • -------------
//DELTA JOB 'T.O' 'NEILL'

The programmer's name contains special characters. The installation requires no accounting
information. The imbedded apostrophe is coded as two consecutive apostrophes; the entire
mime must be enclosed in apostrophes.

//#308 JOB (846349,GROUP12),MATTHEW

This JOB statement specifies an account number, additional accounting information, and a
programmer's name.

//JOBA JOB 'NICOLLE.'

Because this programmer's name ends with a period, it is enclosed in apostrophes.

Chapter 10. Coding the JOB Statement 10-25

JOB:PRTY

PRTY Parameter

Parameter Type: Keyword, optional

Purpose: Use the PR TY parameter to assign:

• In a JES2 system, the queue selection priority for your job and all of its output, except the
JES2 hard-copy log.

Note: Depending on the JES2 initialization options in use at your installation, JES2 may
ignore the PR TY parameter.

• In a JES3 system, the job's initiation or selection priority within its job class.

A job with a higher priority is selected for execution sooner.

References: For more information about priority, see "Assigning a Priority to a Job for JES2"
on page 5-20 and SPL: JES2 Initialization and Tuning or "Assigning a Priority to a Job in
JES3" on page 5-20.

Syntax:

PRTY=priority

Subparameter Definition

priority
Requests a priority for the job. The priority is a number from 0 through 15 for JES2 and
from 0 through 14 for JES3. The highest priority is 15 or 14.

Follow your installation's rules in coding a priority.

Defaults in a JES3 System

If no PRTY parameter is specified, JES3 use an installation default specified at initialization. If
the PRTY specified is invalid, JES3 issues an error message.

Relationship to Other Control Statements in a JES2 System

Instead of coding the PRTY parameter on a JOB statement, JES2 users can code the JES2
j*PRIORITY control statement. For information on coding the j*PRIORITY statement, see
"j*PRIORITY Statement" on page 16-22. If a j*PRIORITY statement is not present or if
JES2 ignores the j*PRIORITY statement, the system derives the priority from the following, in
override order:

1. The PRTY parameter on the JOB statement.
2. The accounting information on a j*JOBPARM statement.
3. The accounting information on the JOB statement.
4. An installation default specified at JES2 initialization.

10-26 MVS JCL

JOB:PRTY

Example of the PRTY Parameter

//JOBA JOB 1,'JIM WEBSTER' ,PRTY=12

This job has a priority of 12.

Chapter 10. Coding,\ JOB Statement 10-27

JOB: RD

RD Parameter

Parameter Type: Keyword, optional

Purpose: Use the RD (restart definition) parameter to:

• Request that the operator perform automatic step restart if the job fails.

• Suppress, partially or totally, the action of the assembler language CHKPT macro
instruction or the DD statement CHKPT parameter.

The system can perform automatic restart only if the job has a job journal. A job journal is a
sequential data set that contains job-related control blocks needed for restart. For JES2,
specify a job journal by one of the following:

• An installation option during JES2 initialization.
• RD = R or RD = RNC on either the JOB statement or anyone EXEC statement in the job.
• RESTART parameter on the JOB statement.

For JES3, specify a job journal by one of the following:

• An installation option during JES3 initialization.
• RD = R or RD = RNC on either the JOB statement or anyone EXEC statement in the job.
• JOURNAL = YES on a JES3 / /*MAIN statement in the job.

References: For more information on the RD parameter, see "The RD Parameter on the JOB
Statement" on-page 5-27, and on restarting jobs, see:

• "Restarting a Job at a Step or Checkpoint" on page 5-26.
• "RESTART Parameter" on page 10-33.
• "RD Parameter" on page 11-26.

For JES2 systems, see the RESTART parameter on the /*JOBPARM control statement in
"/*JOBPARM Statement" on page 16-4.

For JES3 systems, see the FAILURE parameter on the /j*MAIN control statement in
"//*MAIN Statement" on page 17-23.

For detailed information on deferred checkpoint restart, see Checkpoint/Restart.

Syntax:

RD={RIRNCINCINR}

10-28 MVS JCL

JOB:RD

Subparameter Definition

R (Restart)
Indicates that the operator is to perform automatic step restart if the job fails .

RD = R does not suppress checkpoint restarts:

• If the processing program executed in a job step does not include a CHKPT macro
instruction, RD = R allows the system to restart execution at the beginning of the
abnormally terminated step.

• If the program includes a CHKPT macro instruction, RD = R allows the system to
restart execution at the beginning of the step, if the step abnormally terminates before
the CHKPT macro instruction is executed.

• If the step abnormally terminates after the CHKPT macro instruction is executed,
only checkpoint restart can occur. If you cancel the affects of the CHKPT macro
instruction before the system performs a checkpoint restart, the request for automatic
step restart is again in effect.

RNC (Restart and No Checkpoint)
Indicates that the operator is to perform automatic step restart if the job fails.

RD = RNC suppresses automatic and deferred checkpoint restarts. It suppresses:

• Any CHKPT macro instruction in the processing program: That is, the operator is
not to perform an automatic checkpoint restart, and the system is not to perform a
deferred checkpoint restart if the job is resubmitted.

• The DD statement CHKPT parameter.

• The checkpoint at end-of-volume (EOV) facility; see "SYSCKEOV DD Statement"
on page 13-19.

NC (No Checkpoint)
Indicates that the operator is not to perform automatic step restart if the job fails.

RD = NC suppresses automatic and deferred checkpoint restarts. It suppresses:

• Any CHKPT macro instruction in the processing program.

• The DD statement CHKPT parameter.

• The checkpoint at EOV facility.

Chapter 10. Coding the JOB Statement 10-29

•

JO'B:·RD

Defaults

Overrides

NR (No Automatic Restart)
Indicates that the operator is not to perform automatic step restart if the job fails.

RD = NR suppresses automatic checkpoint restart but 'permits deferred checkpoint
restarts. It permits:

• A CHKPT macro instruction to establish a checkpoint.

• The job to be resubmitted for restart at the checkpoint. On the JOB statement when
resubmitting the job, specify the checkpoint in the RESTART parameter;

If the system fails, RD = NR does not prevent the job from restarting.

If no RD parameter is specified, the terminated job step is eligible for automatic
checkpoint/restart, if its program reque~ted checkpoints with a CHKPT macro instruction.

A JOB statement RD parameter applies to all steps of thejob and overrides~my EXEC
statement. RD parameters.

Code EXEC statement RD parameters when each job step requires clifferent restart types. The
system uses an EXEC statement RD parameter only when no RD parameter is on the JOB
statement and only during the job step.

Relationship to Other Control Statements

RD = NC or RD = RNC suppresses the action of the DD statement CHKPT parameter.

Examples of the RD Parameter

//JILL JOB 333,TOM,RD=R

RD = R specifies that the operator is to perform automatic step restart if the job fails.

//TRY56 JOB 333,DICK,RD=RNC

RD = RNCspecifies t~at, if tl1e job fails, the operator is to perform automatic step restart
beginning with the step that abnormally terminates. RD = RNC suppresses automatic and
deferred checkpoint restarts. .

//PASS JOB (721,994),HARRY,RD=NR

RD = NR specifies that the operator is not to perform automatic step restart or automatic
checkpoint restart. However, a CHKPT macro instruction can establish checkpoints to be used
later for a deferred restart.

10-30 MVS JCL

JOB: REGION

REGION Parameter

Parameter Type: Keyword, optional

Purpose: Use the REGION parameter to specify the amount of space that the job requires.

The specified or default region size sets an upper boundary to limit region size for
variable-length GETMAINs. The system uses the upper boundary for variable-length
GETMAINs as long as the region still has available at least the minimum amount c.: storage
requested.

In addition, the IBM- or installation-supplied routine IEALIMIT uses th, r~5io~ size to
establish a second limiting value. The system uses this second value for:

• Fixed-length GETMAINs.

• Variable-length GETMAINs when the space remaining in the region is less than the
minimum requested.

If the minimum requested length for variable-length GETMAINs exceeds this second value, the
job or job step abnormally terminates.

REGION = OK gives the job all the storage available in the private area, that is, from the top of
the system region to the bottom of the common service area (CSA). The resulting size of the
region is unpredictable.

References: For more information on the REGION parameter, see "The REGION Parameter"
on page 5-25. Also, see "ADDRSPC Parameter" on page 10-7. For more information on the
region size and the routine, see OS/VS2 Supervisor Services and Macro Instructions. and SP L:
Supervisor.

Syntax:

REGION=valueK

SubparameterDefinition

Defaults

valueK
Specifies the required storage in thousands (1024) of bytes. The value is 1 to 5 decimal
numbers. Code an even number. For example, REGION = 66K. If you code an odd
number, the system treats it as the next highest even number.

If no REGION parameter is specified, the system uses an installation default specified at JES
initialization.

Chapter 10. Coding the JOB Statement 10-31

Overrides

A JOB statement REGION parameter applies to all steps of the job and overrides any EXEC
statement REGION parameters.

Code EXEC statement REGION parameters when each job step requires a different region size.
The system uses an EXEC statement REGION parameter only when no REGION parameter is
on the JOB statement and only during the job ~tep.

Relationship to the JOBADDRSPC.Parameter

When ADDRSPC = REAL: Code a REGION parameter to specify how much real storage the
job needs. If you omit the REGION parameter, the system uses the default.

When ADDRSPC= VIRTor ADDRSPC;s Omitted: Do not code a REGION parameter. The
system uses the default.

Examples of the REGION Parameter

/

//ACCTI JOB A23,SMITH,REGION=100K,ADDRSPC=REAL

This· JOB statement indicates that the job requires 1 OOKof real storage.

//ACCT4 JOB 175,FRED,REGION=250K

This JOB statement indicates that the job requires 250K of virtual storage. When the
ADDRSPC parameter is omitted, the system defaults to ADDRSPC=VIRT.

10-32 MVS JCL

JOB: RESTART

RESTART Parameter

Parameter Type: Keyword, optional

Purpose: Use the RESTART parameter to restart a job. You can specify that the system
perform either of two restarts:

• Deferred step restart, which is a restart at the beginning of a job step.

• Deferred checkpoint restart, which is a restart from a checkpoint taken during step
execution by a CHKPT macro instruction.

References: For more information on the RESTART parameter, see "The RESTART
Parameter on the JOB Statement" on page 5-28, and on restarting jobs, see:

• "Restarting a Job at a Step or Checkpoint" on page 5-26.
• "The RD Parameter on the JOB Statement" on page 5-27.'
• "The RD Parameter on the EXEC Statement" on page 5-28.
• "RD Parameter" on page 10-28.
• "RD Parameter" on page 11-26.

For JES2 systems, see the RESTART parameter on the /*JOBPARM control statement in
"/*JOBPARM Statement" on page 16-4.

For JES3 systems, see the FAILQRE parameter on the /j*MAIN control statement in
"/ /*MAIN Statement" on page 17-23.

For detailed information on the deferred checkpoint resta:rt, see Checkpoint/Restart.

See "Restrictions on Use of SYSCHK DD Statement and DD Statement RESTART
Parameter" on page v.

Syntax:

RESTART=({*lstepnamelstepname.procstepname} [,checkid])

You can omit the parentheses if you code only the first subparameter.

Chapter 10. Coding the JOB Statement 10-33

•

JOB: RESTART

Subparameter Definition

*
Indicates that the system is to restart execution (1) at the beginning of or within the first
job step or (2), if the first job step calls a cataloged or in-stream procedure, at the
beginning of or within the first procedure step.

stepname
Indicates that the system is to restart execution at the beginning of or within a job step.
Stepname identifies the EXEC statement of the job step. '

stepname.procstepname
Indicates that the system is to restart execution at the beginning of or within a step of a
cataloged procedure. Stepname identifies the EXEC statement of the job step that calls
the procedure; procstepname identifies the EXEC statement of the procedure step.

checkid
Specifies the name of the checkpoint at which the system is to restart execution. This
checkpoint must be in the job step specified in the first subparameter.

Omit checkid to request restart at the beginning of the specified job step.

When the name contains special characters, enclose it in apostrophes. Code each
apostrophe that is part of the name as two consecutive apostrophes. For example, code
CHPT'las 'CHPT"I'.

Relationship to Other Control Statements

When the system is to restart execution in a job step, place a SYSCHK DD statement
immediately following the JOB statement. The SYSCHK DD statement defines the data set on
which the system entered the checkpoint for the step being restarted.

When preparing for a deferred checkpoint, code the DISP abnormal termination disposition
subparameter in the step's DD statements as follows:

• KEEP, to keep all data sets that the restart step is to use.

• CATLG, to catalog all data sets that you are passing from steps preceding the restart step
to steps following the restart step.

For more information, see "DISP Parameter" on page 12-57.

Cautions When Coding the RESTART Parameter

Before resubmitting a job:

• Check all backward references to steps before the restart step. Eliminate all backward
references in EXEC statement PGM parameters and DD statement VOLUME = REF
parameters.

10-34 MVS JCL

JOB: RESTART

• Review all EXEC statement COND parameters. If any of the COND parameters reference
a step before the restart step, be aware that the system ignores. the return code tests for
those steps.

Generation Data Sets in Restarted Jobs

In the restart step or following steps, do not use the original relative generation numbers to
refer to generation data sets that were created and cataloged before the restart step. Instead,
refer to a generation data set by its present relative generation number.

For example, if the last generation data set created and cataloged was assigned a generation
number of + 2, refer to it as 0 in the restart step and following steps. If generation data set + 1
was also created and cataloged, refer to it as -1. For more information on using generation
data sets, see "Creating and Retrieving Generation Data Sets" on page 8-25.

If generation data sets created in the restart step were kept instead of cataloged, that is,
DISP= (NEW,CATLG,KEEP) was coded, then refer to them by the same relative generation
numbers used to create them.

Examples of the RESTART Parameter

//LINES JOB '1/17/85' ,RESTART=COUNT

This JOB statement indicates that the system is to restart execution at the beginning of the job
step named COUNT.

//@LOC5 JOB
//SYSCHK DD

'4/11/86' ,RESTART=(PROCESS,CHKPT3)
DSNAME=CHK,UNIT=3330,DISP=OLD

The JOB statement indicates that the system is to restart execution at checkpoint CHKPT3 in
job step PROCESS. The SYSCHK DD statement must follow the JOB statement; it defines
the data set on which the system wrote checkpoint CHKPT3.

//WORK JOB
//SYSCHK DD

,PORTER,RESTART=(*,CKPT2)
DSNAME=CHKPT,UNIT=3330,DISP=OLD

The JOB statement indicates that the system is to restart execution at checkpoint CKPT2 in the
first job step. The SYSCHK DD statement defines the data set on which the system wrote
checkpoint CKPT2.

//CLIP5 JOB
//SYSCHK DD

,JONES,RESTART=(PAY.WEEKLY,CHECK8)
DSNAME=CHKPT,UNIT=3350,DISP=OLD

The JOB statement indicates that the system is to restart execution at checkpoint CHECK8 in
procedure step WEEKL Y. PAY is the name field on the EXEC statement that calls the
cataloged procedure that contains procedure step WEEKL Y. The SYSCHK DD statement
defines the data set on which the system wrote checkpoint CHECK8.

Chapter 10. Coding the JOB Statement 10-35

:JOBf'DIME

TIME Parameter

Parameter Type: Keyword, optional

Purpose:.lJse the TIME pl:lrameter to specify the maximumlength of time that a job is to use
the process()r and to find out through messages how much processor time the job used.

The system terminates a job that .. exceeds the specified time limit unless a user exit routine
extends the time.

References: For more information on the TIME parameter, see "Limiting Job and Job Step
Execution Time" on page 5-16.

Syntax:

TIME={14401 ([minutes] [,seconds])}

You can omit the parentheses if you code only 1440 or the processor time in minutes.

If you omit the seconds, do not code a null subparameter. For example, TIME = (60,) is
invalid.

Subparameter- Definition

1440
Indicates that the job can use the processor for an unlimited amount of time; 1440
literally means 24 hours. Code TIME = 1440 for the·following reasons:

• To obtain job accounting information.

• To specify that the system is to allow any of the job's steps to remain in a wait state
for more than the installation-established time limit.

minutes
Specifies the maximum number of minutes the job can use the ·processor. The minutes
must be a number from 1 through 1439.

Do not code TIME=O on the JOB statement. The results are unpredictable.

seconds

10 ... 36 MVSJCL

Specifies the maximum number of seconds that the job can use the processor, in addition
to any minutes that are specified. The seconds must be a number from 1 through 59.

Overrides

Defaults

J08:TIME

For a JOB statement TIME parameter other than TIME = 1440, the system sets the time limit
for each step to:

• The step time limit specified on the EXEC statement TIME parameter.

• If no EXEC TIME parameter was specified, (1) the default time limit or (2) the job time
remaining after execution of previous steps, whichever is smaller.

If no TIME parameter is specified, JES uses an installation default specified at initialization.

Time Handling

How the System Converts the Time Value: The job time limit or the time remaining after
execution of previous steps in a job is converted by the system to seconds and then rounded to
the nearest unit, where 1 unit = 1.048576 seconds. Thus, a step can begin execution with up to
one-half unit more or one-half unit less time than expected. If the time remaining for the job is
less than one-half unit, a step will begin execution with zero time, resulting in an abnormal
termination.

Time Checking: Because the system checks the processor time-used field about every 10.5
seconds, the actual time that a job uses the processor can exceed the specified TIME value by
up to 10.5 seconds. For example, the system checks the job's time-used field and finds 0.5
seconds remaining. Because the system does not again check the job's time-used field for about
10.5 seconds, the job can execute for an additional 10.5 seconds and thus exceed the coded
TIME value by 10 seconds.

Examples of the TIME Parameter

//STDl JOB ACCT271,TlME=(12,lO)

This statement specifies that the maximum amount of time the job can use the processor is 12
minutes, 10 seconds.

//TYPE41 JOB ,GORDON,TIME=(,30)

This statement specifies that the maximum amount of time the job can use the processor is 30
seconds.

//FORMS JOB ,MORRILL,TlME=5

This statement specifies that the maximum amount of time the job can use the processor is 5
minutes.

//RAINCK JOB 374231,MORRISON,TlME=1440

This statement specifies an unlimited amount of time for job execution; the job can use the
processor and remain in wait state for an unspecified period of time. The system will issue
messages telling how much processor time the job used.

Chapter 10. Coding the JOB Statement 10-37

•

Examples of the TIME Parameter on JOB and EXEC Statements

//FIRST JOB
//STEPl EXEC

//STEP2 EXEC

,SMITH,TIME=2
PGM=READER,TIME=l

~GM=WRITER,TIME=l

In this example, the job is allowed 2 minutes for execution and each step is allowed 1 minute.
If either step continues executing beyond 1 minute, the entire job abnormally terminates
beginning with that step.

//SECOND JOB'
//STEPl EXEC

//STEP2 EXEC

,JONES,TIME=3
PGM=ADDER, TTME=2

PGM=PRINT,TIME=2

, , ,

, In this example, the job is aIlowed 3 minutes for execution, and each step is allowed 2 minutes.
If either step continues executing beyond 2 minutes, the entire job abnormally terminates
beginning witlJ. that step. If STEPI executes for 1. 74 minutes and STEP2 triestoexecute
beyoild 1.26 minutes, the job abnormally terminates because of the 3-minute limit specified on
the JOB statement '

10~38 MVS JCL'"
,-' , '

JOB: TYPRUN

TYPRUN Parameter

Parameter Type: Keyword, optional

Purpose: Use the TYPRUN parameter to tell the system to:

• Place a job on hold until a special ~vent occurs. When the event occurs, the operator,
following your directions, must release the job from its hold to allow the system to select

J the job for processing.

• Scan a job's JCL for syntax errors.

• In a JES2 system, request that JES2 convert the input job stream directly to a system
output data set and schedule it for output processing.

References: For more information on the TYPRUN parameter, see "Bypassing Job Initiation"
on page 3-25.

For JES2 systems, see related information in "Delaying Initiation of Your Job in JES2" on
. p~ge 3-23, ~'C,opying JCL Input Without Execution in JES2" on page 3-25, and "j*SETUP
Statem~nt" on:p~g~ 16-28.

.' ForJ~S3 sy~t~ms,. see related information in "Delaying Initiation of Other Jobs (JES3)" on
page 3-24~ "Testing' JCL Without Execution (JES3)" on page 3-25, "JES3 SETUP Parameter"
on page 3-26, "Deadline Scheduling for JES3" on page 3-27, and "Dependent Job Control for
JES3: The Job Net" on page 3-27.

Syntax:

TYPRUN={HOLDIJCLHOLDISCANICOPY}

Subparameter Definition

HOLD
Requests that the system hold the job before execution until the operator releases it. The
operator should release the job when a particular event occurs. If an error occurs during
input service processing, JES does not hold the job.

JCLHOLD (JES2 only)
Requests that JES2 hold the job before completing JCL processing. JES2 holds the job
until the operator releases it.

Note: JCLHOLD is supported only in JES2 systems.

Chapter 10. Coding the JOB Statement 10-39

l.· OB:~T¥PR.UN
,. .< ."" '" " , "

SCAN
Requests that the system scan this job's JCL for syntax errors, without executing the job
or allocating devices. This parameter asks the system to check for:

• Invalid keywords.

• Invalid characters.

• Parentheses errors.

• Parameter value errors or excessive parameters in a JES3 system, but not in a JES2
system.

• Invalid syntax on JCL statements in cataloged procedures invoked by EXEC
statements in the job.

The system does not check for misplaced statements.

COPY (JES2 only)
Requests that JES2 convert the input job stream, as submitted, directly to a system output
data set and schedule it for output processing. The class of this sysout data set is the
same as the message class· of the job and is controlled by the MSGCLASS parameter.

Note: COpy is supported only in JES2 systems. This feature is available in JES3 by
using the JES3 / j*PROCESS statement. See" j j*PROCESS Statement" on page 17-44.

Example of the TYPRUN Parameter

//UPDATE JOB ,HUBBARD
//STEPl EXEC PGM=LIBUTIL

//LIST JOB ,HUBBARD,TYPRUN=HOLD
//STEPA EXEC PGM=LIBLIST

Jobs UPDATE and LIST are submitted for execution in the same input stream. UPDATE
executes a program that adds and deletes members of a library; LIST executes a program that
lists the members of that library. For an up-to-date listing of the library, LIST must execute
after UPDATE. To force this execution order, code TYPRUN=HOLD on JOB statement
LIST.

If a MONITOR JOBNAMES command is executed from the input stream or by the operator,
the· system notifies the console operator when UPDATE completes. The operator can then
release LIST, allowing the system to select LIST for execution.

lO~40 MVS JCL

JOB: USER,

USER Parameter

Parameter Type: Keyword, optional

Purpose: Code the USER parameter to identify to the system the person submitting the job.
The userid is used by the Resource Access Control Facility (RACF), the system resources
manager (SRM), and other system components.

The USER, the PASSWORD, and, optionally, the GROUP parameters are required on JOB
statements only for the following:

• Batch jobs submitted through an input stream, such as a card reader, (1) if the job requires
access to RACF-protected resources or (2) if the installation requires that all jobs have
RACF identification.

• Jobs submitted by one TSO user for another user. In this case, the JOB statement must
specify the other user's userid and password. The group id is optional.

• Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from JOB
statements. RACF uses the userid, password, and group id of the submitting TSO user or job.

References: For more information on the USER parameter, see "Controlling Access· to
RACF-Protected Data Sets" on page 6-2, and on RACF-protected facilities, see Resource
Access Control Facility (RACF) General Information Manual.

Syntax:

USER=userid

Subparameter Definition

Defaults

userid
Identifies a user to the system. The userid consists of alphanumeric or national
characters; the first character must be alphabetic or national. It is 1 through 8 characters
or, for TSO users, 1 through 7 characters.

If neither the JOB statement nor the submitting TSO user supplies identification information,
RACF assigns a default userid and group id, unless the job enters the system via a JES internal
reader. In that case, the user and group identification of the submitting TSO user or job is
used.

Chapter 10. Coding the JOB Statement 10 ... 41

Relationship to Other Parameters

Code the USER parameter when you code the GROUP or PASSWORD parameters on the
JOB state1llen~.

Example of the USER Parameter

//TEST JOB 'D83,1234561,USER=MYNAME;,Pl\SSWO~D=rABGP

This statement identifies the user submitting this job as MYNAME.

10-42 MVS JCL

EXEC

Chapter 11. Coding the EXEC Statement

Purpose: Use the EXEC (execute) statement to identify the program or cataloged or in-stream
procedure that this Job step is to execute and to tell the system how to process the job step.
The EXEC statement marks the beginning of each step in a job or a procedure.

A job can have a maximum of 255 job steps. This maximum includes all steps in any
procedures the EXEC statements call.

The parameters you can specify for step processing are arranged alphabetically in the following
pages.

References: For more information on coding EXEC-related parameters, see Chapter 4, "Guide
to Step Control" on page 4-1 and Chapter 5, "Guide to Job and Step Control" on page 5-l.
For information about the JES initialization parameters that provide installation defaults, see
SPL: JES2 Initialization and Tuning and SPL: JES3 Initialization and Tuning.

Syntax:

//[stepname] EXEC positional-parameter[,keyword-parameter] ... comments

The EXEC statement consists of the characters / / in columns 1 and 2 and four fields: name,
operation (EXEC), parameter, and comments.

An EXEC statement is required for each job step.

Name Field

A stepname is optional, but is needed for the following:

• Coding backward references to the step.

• Overriding parameters on an EXEC statement or OD statement in a cataloged or in-stream
procedure step.

• Adding DD statements to a cataloged or in-stream procedure step.

• Performing a step or checkpoint restart at or in the step.

Chapter 11. Coding the EXEC· Statement 11-1

EXEC,'

Code a stepname as follows:

• Each ~tepname must be unique within the job.
• The stepname must begin in column 3.
• The stepname is 1 through 8 alphanumeric or national characters.
• The first character must be alphabetic or national.
• The stepname must be followed by at least one blank.

Parameter Field

An EXEC statement has two kinds of parameters: positional and keyword.

Do not use EXEC statement parameter keywords as symbolic parameters, names, or labels.

Positional Parameters: An EXEC statement must contain one of the following positional
parameters. The positional parameter must precede all keyword parameters.

PGM
PROC
procedure name

Keyword Parameters: An EXEC statement can contain the following keyword parameters.
You can code any of the keyword parameters in any order in the parameter field after the
positional parameter.

ACCT
ADDRSPC
COND
DPRTY
DYNAMNBR
PARM
PERFORM
RD
REGION
TIME

Keyword Parameters on EXEC Statement that Calls a Procedure:, When the EXEC statement
positional parameter calls a cataloged procedure, all of the EXEC statement's keyword
parameters override matching EXEC keyword parameters in the called procedure. If a keyword
parameter is to override a parameter on only one EXEC statemenj in the procedure, code
.procstepname immediately following the keyword. The procstepname is the name field of the
procedure EXEC statement containing the keyword parameter to be overridden. For example:

//STEPI EXEC PROC=WKREPORT,ACCT.PSTEPWED=5670

The accounting information 5670 applies only to step PSTEPWED in the procedure
WKREPORT.

11-2 MYSJCL

E~EC '.

Comments Field

The comments field follows the parameter field after at least one intervening blank.

Location in the J CL

An EXEC statement must be the first statement in each job step or cataioged or in-stream
procedure step.

Examples of EXEC Statements

IISTEP4 EXEC PGM=DREC,PARM='3018,NO '

The. EXEC statement namedSTEP4 invokes a program named DREC and passes the value in
the PARM parameter to DREC.

II EXEC PGM=ENTRY,TIME=(2,30)

This EXEC statement, which does not have a stepname, invokes a program named ENTRY
and specifies the maximum processor time for execution of the step.

IIFOR EXEC PROC=PEOC489

The EXEC statement named FOR invokes a cataloged or in-stream procedure named
PROC489.

Chapter 11. Coding the EXEC Statement 11-3

EXEC: ACCT

ACCT Parameter

Parameter Type: Keyword, optional

Purpose: Use the ACCT parameter to specify one or more subparameters of accounting
information that apply to this step. The system passes the accounting information to the
installation's accounting routines.

References: For more information on the ACCT parameter, see "Installation Management
Information: The ACCT Parameter" on page 4-10, and on how to add accounting routines, see
SPL: System Management Facilities.

Syntax:

ACCT[.procstepname]=(accounting-information)

Single Subparameter: You can omit the parentheses if the accounting information consists of
only one subparameter.

Length: The entire accounting-information must not exceed 142 characters:

• Including any commas, which are considered part of the information.
• Excluding any enclosing parentheses or apostrophes, which are not considered part of

the information.

Multiple Subparameters: When the accounting-information consists of more than one
subparameter, separate the subparameters by commas and enclose the information in
parentheses or apostrophes. For example, ACCT = (5438,GROUP6) or
ACCT = '5438,GROUP6'.

Special Characters: When a subparameter contains special characters, other than hyphens,
enclose it in apostrophes and the information in parentheses or enclose all of the information
in apostrophes. For example, ACCT=(387,'72/159') or ACCT='387,72/159'.

Code each apostrophe that is part of the accounting-information as two consecutive
apostrophes. For example, code DEPT'D58 as ACCT = 'DEPT"D58'

Continuation onto Another Statement: Enclose the accounting-information in parentheses.
End each statement with a comma after a complete subparameter. For example:

IISTEPI EXEC PGM=WRITER,ACCT=(1417,J318, 'D58/920' ,'CHG=2',
II '33.95')

11-4 MVS JCL

EXEC: ACCT

Subparameter Definition

accounting-information
Specifies one or more subparameters of accounting information, as defined by the
installation.

On EXEC Statement that Calls- a Procedure

If the EXEC statement calls a cataloged or in-stream procedure, the ACCT parameter OVerrides.
the ACCT parameter on or is added to: .

• The EXEC statement named in the procstepname qualifier. The information applies only
to the named procedure step. The EXEC statement can have as many ACCT.procstepname
parameters as the procedure has steps; each ACCT parameter must specify a unique
procstepname.

• All EXEC statements in the procedure if procstepname is not coded. Then the information
applies to all steps in the called procedure.

Examples of the ACCT Parameter

IISTEPl EXEC PGM=JP5,ACCT=(LOCATION8,'CHGE+3')

This EXEC statement executes program JP5 and specifies accounting information for this job
step.

IISTP3 EXEC PROC=LOOKUP,ACCT=('/83468')

This EXEC statement calls cataloged or in-stream procedure LOOKUP. The accounting
information applies to this job step, STP3, and to aU the steps in procedure LOOKUP.

IISTP4 EXEC PROC=BILLING,ACCT.PAID=56370,ACCT.LATE=56470,
II ACCT.BILL='121+366'

This EXEC statement calls cataloged or in-stream procedure BILLING. The statement
specifies different accounting information for each of the procedure steps: PAID, LATE, and
BILL.

Chapter 11. Coding the EXEC Statement 11-5

E~E€:.NDDRSPC

ADDRSPC Parameter

Parameter Type: Keyword, optional

Purpose: Use the ADDRSPC parameter to indicate to the system that the job step requires
virtual storage (pageable) or real storage (nonpageable).

References: For more information on the ADPRSPC parameter, see "Requesting Storage for
Execution" on page 5-23 and "The REGION Parameter" on page 5-25.

Syntax:

ADDRSPC[.procstepname]={VIRTIREALJ

Subparameter Definition

Defaults

Overrides

VIRT
Requests virtual storage. The system can page the job step.

REAL
Requests real storage. The system cannot page the job step and must place the job step in
real storage.

If no ADDRSPC parameter is specified, the default is VIRT.

The JOB statement ADDRSPC parameter applies to all steps of the job 'and overrides any
EXEC statement ADDRSPC parameters.

Code EXEC statement ADDRSPC parameters when each job step requires different types of
storage. The system uses an EXEC statement ADDRSPC parameter only when no ADDRSPC
parameter is on the JOB statement and only during)he job step.

Relationship to the JOB or EXEC REGION Parameter

Code a REGION parameter to specify how much storage the job step needs. If you omit the
REGION parameter, the system uses an installation default specified at JES initialization.

11-6 MVSJCL

EXEC:ADDRSPC

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the ADDRSPC parameter
overrides the ADDRSPC parameter on or is added to:

• The EXEC statement named in the procstepname qualifier. The parameter applies only to
the named procedure step. The EXEC statement can have as many
ADDRSPC.procstepname parameters as the procedure has steps; each ADDRSPC
parameter must specify a unique procstepname.

• All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to all steps in the called procedure.

Examples of the ADDRSPC Parameter

//CACl EXEC PGM=A,ADDRSPC=VIRT

This EXEC statement executes program A and requests virtual (pageable) s~orage. Because the
REGION parameter is not specified, the storage available to this job step is the installation
default or the region size specified on the JOB statement.

//CAC2 EXEC PROC=B,ADDRSPC=REAL,REGION=80K

This EXEC statement calls procedure B and requests real (nonpageable) storage. The
REGION parameter specifies 80K of storage.

Chapter 11. Coding the EXEC Statement 11-7

COND Parameter

Parameter Type: Keyword, optional, JES2 only

Purpose: Use the COND parameter to specify the return code tests the system is to use to
determine whether to bypass this job step. The system performs each COND parameter test
against the return code from every previous job step or from the named previous job step(s). If
none of these tests is satisfied, the system executes this job step; if any test is satisfied, the
system bypasses this job step.

If a job step fails, the system normally bypasses all following job steps. To make the system
execute a following step, for instance, to write a dump, code EVEN or ONLY on that step's
EXEC statement. The EVEN or ONL Y subparameters are interpreted first. If they indicate
that the job step should be executed, then the return code tests, if specified, are performed. If
no return code tests were coded or if none of the coded tests is satisfied, the system executes the
step.

Instead of coding a JOB statement COND parameter, code an EXEC statement COND
parameter when you want to:

• Specify different tests for each job step.
• Bypass only one step, rather than all subsequent steps in the job.
• Name a specific step whose return code the system is to test.
• Specify special conditions for executing a job step.

The tests are made against return codes from the current execution of the j~b.

Note: The EXECCOND parameter is supported only on JES2 systems. JES3 processes all
jobs as though each step will execute.

References: For more information on the COND parameter, see "Conditionally Executing Job
Steps" on page 5-5.

Syntax:

COND[.procstepname]=«code,operator[,stepname] [.procstepname])
[, (code ,operator [, stepname] [.procstepnameIJ] . .. [,EVEN]

[, ONLY]

• One return code test is: (code,operator)

• You can omit the outer parentheses if you code only one return code test or only EVEN or ONL Y.

• Specify up to eight return code tests. However, if you code EVEN or ONLY, specify up to seven
return code tests.

• You can omit all return code tests and code only EVEN or ONLY.

• Place the EVEN or ONL Y subparameters before, between, or after the return code tests.

11-8 MVS JCL

EXEC:COND

Subparameter Definition

code
Specifies a number that the system compares to the return codes from all previous steps in
the job or from specific steps. code is a decimal number from 0 throug~ 4095.

Note: Specifying a decimal number greater than 4095 could result in invalid return code
testing or invalid return codes in messages.

operator
Specifies the type of comparison to be made to the return code. Operators and their
meanings are:

Operator Meaning

GT Greater than
GE Greater than or equal to
EQ Equal to
NE Not equal to
LT Less than
LE Less than or equal to

stepname
Identifies the EXEC statement of the earlier job step that issues the return code to be used
in the test. If the specified step is in a procedure, this step must be in the same procedure;
otherwise, the specified step must not be in a procedure.

stepname. procstepname
Identifies a step in a cataloged or in-stream procedure called by an earlier job step.
Stepname identifies the EXEC statement of the calling job step; procstepname identifies
the EXEC statement of the procedure step that issues the return code to be used in the
test.

EVEN
Specifies that this job step is to be executed even if a preceding job step abnormally
terminated. When EVEN is coded, the system:

• Does not test the return code of any steps that terminated abnormally.
• Does test the return code of any steps that terminated normally. If none of the return

code tests for these steps is satisfied, this job step is executed.

If the operator terminated a job step with a CANCEL command, the system ignores
EVEN.

ONLY
Specifies that this job step is to be executed only if a preceding step abnormally
terminated. When ONL Y is coded, the system:

• Does not test the return code of any steps that terminated abnormally.
• Does test the return code of any' steps that terminated normally. If none of the return

code tests for these steps is satisfied, this job step is executed.

If the operator terminated a job step with a CANCEL command, the system ignores
ONLY.

Chapter 11. Coding the EXEC Statement 11-9

EXEC:.COND

Overrides

If you code the COND parameter on the JOB statement and on one or more of the job's EXEC
statements, and if a return code test on the JOB statement is satisfied, the job terminates. In
this case, the system ignores any EXEC statement COND parameters.

If the tests on the JOB statement are not satisfied, the system then performs the return code
tests on the EXEC statement. If a return code test is satisfied, the step is bypassed.

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the COND parameter
overrides the COND parameter on or is added to:

• The EXEC statement named in the procstepname qualifier, which is to the left of the equals
sign. The parameter applies only to the named procedure step. The EXEC statement can
have as many COND.procstepname parameters as the procedure has steps; each COND
parameter must specify a unique procstepname.

• All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to this job step and to all steps in the called procedure.

Cautions when Specifying COND Parameters

Backward References to Data Sets: If a step is bypassed because of its COND parameter or if
a step abnormally terminates, a data set that was to have been created or cataloged in the step
may not exist, may not be cataloged, or may be incomplete. Thus, a job step that specifies the
EVEN or ONLY subparameter should not refer to a data set being created or cataloged in a
step that could be bypassed or abnormally terminated.

JOBLIB and COND = ONLY: If the job contains a JOB LIB DD statement and ONLY is
specified in a job step, the JOBLIB unit and volume information are not passed to the next
step; when the next step is executed, the system searches the catalog for the JOB LIB data set.

Job Time Out: The system abnormally terminates a job with a system cQmpletion code of 322
if the EXEC or JOB statement TIME parameter or the default time limit specified at JES
initialization is exceeded. This time out occurs regardless of any COND parameters.

When the JOB Statement Contains a RESTAl?T Parameter: When restarting a job, do not
specify in the deferred restart step or in any following steps a COND parameter that refers to a
stepname or stepname.procstepname for a step before the restart step. The system ignores any
COND parameters that refer to preceding steps. For information on submitting a job for
restart, see "RESTART Parameter" on page 10-33 and "Restarting a Job at a Step or
Checkpoint" on page 5-26.

11-10 MVS JCL

EXEC: COND

Summary of COND Parameters

See Figure 11-1 for a summary of how to code tests in the COND paramete! to cause the
current step to be executed or bypassed. See Figure 11-2 for the effect of the EVEN and
ONLY subparameters on step execution.

Return Code (RC) from Previous Step

Test in COND Parameter Execute Bypass
Current Step Current Step

COND = (code,GT) RC ~ code RC < code

COND = (code,GE) RC > code RC ~ code

COND = (code,EQ) RC -, = code RC = code

COND = (code,LT) RC ~ code RC > code

COND = (code,LE) RC < code RC ~ code

COND = (code,NE) RC = code RC -, = code

Figure 11-1. Execution or Bypassing of Current Step Based on COND Parameter

EVEN or ONLY Any Preceding Any Tests Current Step
Specified? Abend? Satisfied Execute?

EVEN No No Yes
EVEN No Yes No
EVEN Yes No Yes
EVEN Yes Yes No

ONLY No No No
ONLY No Yes No
ONLY Yes No Yes
ONLY Yes Yes No

Neither No No Yes
Neither No Yes No
Neither Yes No No
Neither Yes Yes No

Figure 11-2. Effect of EVEN and ONLY Subparameters on Step Execution

Chapter 11. Coding the EXEC Statement 11-11

EXEC: COND

Examples of the COND Parameter

/ISTEP6 EXEC PGM=DISKUTIL,COND=(4,GT,STEP3)

In this example, if the return code from STEP3 is 0 through 3, the system bypassesSTEP6. If
the return code is 4 or greater, the system executes STEP6. Because neither EVEN nor ONLY
is specified, the system does not execute this step if a preceding step abnormally terminates.

IITEST2 EXEC PGM=DUMPINT,COND=((16,GE),(90,LE,STEP1),ONLY)

The system executes this step ONL Y if two conditions are met:

I. A preceding job s~ep abnormally terminated.
2. No return code tests are satisfied.

Therefore, the system executes this step only when all three of the following are true:

• A preceding job step abnormally terminated.
• The return codes from all preceding steps are 17 or greater.
• The return code from STEPI is 89 or less.

The system bypasses this step if anyone of the following is true:

• All preceding job steps terminated normally.
• The return codes from all preceding steps are 0 through 16.
• The return code from STEPI is 90 or greater.

IISTP4
II
II

EXEC PROC=BILLING,COND.PAID=((20,LT),EVEN),
COND.L~TE=(60,GT,FIND),
COND.BILL=((20,GE),(30,LT,CHGE))

This statement calls cataloged or in-stream procedure BILLING. The statement specifies
different return code tests for each of the procedure steps: PAID, LATE, and BILL. The
system executes step PAID even if a preceding step abnormally terminates unless the
accompanying return code is satisfied;

11-12 MVS JCL

EXEC: DPRTY'

DPRTY Parameter

Parameter Type: Keyword, optional

Purpose: Use the DPRTY parameter to assign a dispatching priority to the address space for
this job step. The system uses the dispatching priority to determine the order- In which to
execute tasks.

References: For more information on the DPRTY parameter, see "Assigning a Dispatching
Priority to Job Steps" on page 5-21.

Syntax:

DPRTY[.procstepname]=([value1] [,value2])

• You can omit the parentheses if you code only valuel.

• You must include the parentheses and code a comma before value2 if you code only
value2.

Subparameter Definition

value!
Indicates whether this job step is to have the same or a different priority than the job.
valuel is a number from 0 through 15.

JES2 determines the job priority from one of the following:

value2

• The JES2 j*PRIORITY statement.

• A value calculated from the accounting information on the JOB statement or the
JES2 j*JOBPARM statement.

• An installation default.

Specifies a number to be added to valuel to form the dispatching priority. value2 is a
number from 0 through 15. The system forms the internal dispatching priority as follows:

dispatching priority = (value1) (16) + value2

Chapter 11. Coding the EXEC Statement 11-13

•

EXEC: DPRTY

Defaults

If you omit the DPRTY parameter, the system assigns the job step the APG (automatic priority
group) priority.

If you omit valuel or it is equal to the APG priority, the system assigns the step the APG
prio·rity and ignores value2. In this case, the system obtains value2 from the Installation
Performance Specification (IPS) using the performance group associated with the job step. See
SP L: Initialization and Tuning Guide for information on IPS. If value2 is not specified in the
IPS, the system makes value2 equal to 6.

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the DPRTY parameter
overrides the DPRTY parameter on or is added to:

• The EXEC statement named in the procstepname qualifier. The parameter applies only to
the named procedure step. The EXEC statement can have as many DPRTY;procstepname
parameters as the procedure has steps; each DPRTY parameter must specify a unique
procstepname.

• All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to this job step and to all steps in the called procedure.

Examples of the DPRTY Parameter

//BP2 EXEC PGM=FOUR,DPRTY=(13,9)

The system uses the values in this DPRTY parameter to form a dispatching priority for this
step. Because the numbers are relatively high, the dispatching priority will be high: 217.

//STEP EXEC PROC=CLEAN,DPRTY=(11,7)

This EXEC statement calls a cataloged pro~edure named CLEAN, which has three steps. The
DPRTY parameter applies to all three steps. The dispatching priority is 183.

//STEP EXEC PROC=CLEAN,DPRTY.UP=(13,7)

In this statement, the DPRTY parameter applies only to the procedure step UP. The
dispatching priority for UP is 167.

11-14 MVS JCL

EXEC: DYNAMNBR

DYNAMNBR Parameter

Parameter Type: Keyword, optional

Purpose: Use the DYNAMNBR parameter to tell the system to hold a number of resources in
anticipation of reuse. Code DYNAMNBR instead of several DD statements with D~AM
parameters.

Reference: For more information on the DYNAMNBR parameter, see "Dynamically
Allocating and Deallocating Data Sets" on page 4-12.

Syntax:

DYNAMNBR[.procstepname]=n

SubparameterDefinition

Defaults

n
Specifies a value used to calculate the maximum number of data set allocations that the
system can hold in anticipation of reuse. n is a decimal number from 0 through the value:
1635 minus the number of DD statements in the step.

The number of resources that the system actually holds in anticipation of reuse equals n
plus the number of DD statements in the step, including any DD statements in a
cataloged or in-stream procedure called by the step.

If no DYNAMNBR parameter is specified, the default is O. If you code DYNAMNBR
incorrectly, the system uses the default of 0 and issues a JCL warning message.

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the DYNAMNBR parameter
overrides the DYNAMNBR parameter on or is added to:

• The EXEC statement named in the procstepname qualifier. The parameter applies only to
the named procedure step. The EXEC statement can have as many
DYNAMNBR.procstepname parameters as the procedure has steps; each DYNAMNBR
parameter must specify a unique procstepname.

• All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to all steps in the called procedure.

Chapter 11. Coding the EXEC Statement 11-15

Example of the DYNAMNBR Parameter

//STEPl EXEC PROC=ACCT,DYNAMNBR.CALC=12

For the procedure step CALC, this statement specifies that the system should hold the
following data set allocations for reuse: 12 plus the number of DD statements following this
EXEC statement and the number of DD statements in procedure ACCT.

11-16 MVS JCL

EXEC: PARM

P ARM Parameter

Use the PARM parameter to pass variable information to the processing program executed by
this job step.

References.: For more information on the PARM parameter, see "Passing Information to the
Program in Execution" on page 4-8. For details on the format of the passed information, see
SPL: Supervisor Services and Macro Instructions.

Syntax:

PARM[.procstepname]=information

Subparameter Definition

information
Consists of the information to be passed to the processing program.

Length: The entire information passed must not exceed 100 characters:

• Including any commas, which are passed to the processing program.

• Excluding any enclosing parentheses or apostrophes, which are not passed.

For example, PARM='PI,123,MT5' is received by the program as PI,123,MT5.

Commas: When the information consists of more than one expression, separate the
expressions by commas and enclose the information in parentheses or apostrophes. For
example, PARM=(PI,123,MT5) or PARM='PI,123,MT5'.

Special Characters: When an expression contains special characters, enclose it in
apostrophes and the information in parentheses or all the information in apostrophes.
For example, PARM = (P50,'12 + 80') or PARM='P50,12+80'.

Code each apostrophe and ampersand that is part of the information as two consecutive
apostrophes or ampersands. For example, code 3462&5 as P ARM = '3462&&5'.

Continuation onto Another Statement: Enclose the information in parentheses. End each
statement with a comma after a complete expression. For example:

IISTEPl EXEC PGM=WORK,PARM=(DECK,LIST,'LINECNT=80',
II '12+80',NOMAP)

Chapter 11. Coding the EXEC Statement 11-17

EX.EC: PARM

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the P ARM parameter
overrides the P ARM parameter on or is added to:

• The EXEC statement named in the procstepname qualifier. The information applies only
to the named procedure step. The EXEC statement can have asmany
PARM.procstepname parameters as the procedure has steps; each PARM parameter must
specify a unique procstepname.

• The EXEC statement in the procedure if procstepname is not coded; the system nullifies
any P ARM parameters on any following EXEC statements in the procedure.. The
information applies to only the first step in the called procedure.

Examples of the P ARM Parameter

IIRUN3 EXEC PGM=APG22,PARM=tpl,123,P2=5'

The system passes Pl,123,P2 = 5 ~o the processing program named APG22.

II EXEC PROC=PROC81,PARM=MT5

The system passes MT5 to the first step of the procedure named PROC81. If PROC81 contains
more steps and their EXEC statements contain PARMparameters, the system nullifies those
P ARM parameters.

IISTP6 EXEC PROC=ASMFCLG,PARM.LKED=(MAP,LET)

The system passes MAP,LET to the procedure step named LKED in procedure ASMFCLG. If
any other procedure steps in ASMFCLG contain a PARM parameter, those PARM parameters
remain in effect.

IIRUN4 EXEC PGM=IFOXOO,PARM=(NOOBJECT,'LINECNT=50',
II DECK)

The system passes NOOBJECT,LINECNT = 50,DECK to processing program IFOXOO.
Because the PARM parameter is continued on' a second statement, the information is enclosed
in parentheses; notice that the continuation occurs after a comma following a complete
expression.

11-18 MVS JCL

EXEC: PERFORM

PERFORM Parameter

Parameter Type: Keyword, optional .

Purpose: Use the PERFORM parameter to specify the performance group for the job step.
The installation-defined performance groups determine the rate at which associated steps have
access to the processor, storage, and channels.

References: For more information on the performance groups, see "Performance of Jobs and
Job Steps in JES2" on page 5-22 and "Performance of Jobs and Job Steps in JES3" on
page 5-23.

Syntax:

PERFORM[.procstepname]=n

Subparameter Definition

Defaults

Overrides

n
Requests a performance group. The n is a number from 1 through 999 and must identify
a performance group that has been defined by your installation. The specified
performance group should be appropriate for your step type according to your
installation's rules.

If no PERFORM parameter is specified or if the specified PERFORM number fails validity
checks, the system uses an installation default specified at initialization. If the installation did
not specify a default, the system uses a built-in default:

I for non-TSO job steps
2 for TSO sessions

See SP L: Initialization and Tuning Guide for details.

A JOB statement PERFORM parameter applies to all steps of the job and overrides any EXEC
statement PERFORM parameters.

Code EXEC statement PERFORM parameters when each job step is to execute in a different
performance group. The system uses an EXEC PERFORM parameter only when no
PERFORM parameter is on the JOB statement and only during the job step.

Chapter 11. Coding the EXEC Statement 11-19

EXEC: PERFORM

On EXEC Statement that Calls a Procedure

If this EXEC statement calls a cataloged or in-stream procedure, the PERFORM parameter
overrides the PERFORM parameter on or is added to: '

• The EXEC statement named in the procstepname qualifier. The parameter applies only to
the named procedure step. The EXEC statement can have as many
PERFORM.procstepname parameters as the procedure has steps; each PERFORM
parameter .must specify a unique procstepname.

• All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to all steps in the called procedure.

Example of the PERFORM Parameter

//STEPA EXEC PGM=ADDER,PERFORM=60

Thisjobstep will be run in performance group 60 if it passes validity checks. The installation
must have defined the significance of this performance group.

11 ~20 MVS JCL

EXEC: PGM

PGM Parameter

Parameter Type: Positional, optional

Purpose: Use the PGM parameter to name the program that the system is to execute. The
specified program must be a member ora partitioned data set used as a system library, a
private library, or a temporary library.

References: For more information on naming programs and on temporary and private
libraries, see "Processing Program Information" on page 4-4.

Syntax:

{program-name }
PGM={*.stepname.ddname }

{*.stepname.procstepname.ddname}

The EXEC statement parameter field must begin with a PGM parameter or a PROC
parameter. These two parameters must not appear on the same EXEC statement.

Subparameter Definition

program-name
Specifies the member name or alias of the program to be executed. The program-name is
I through 8 alphanumeric or national characters; the first character must be alphabetic
or national.

* .stepname.ddname
Refers to a DD statement that defines, as a member of a partitioned data set, the
program to be executed. Stepname identifies the EXEC statement of the earlier job step
that contains the DD statement with ddname in its name field.

This form of the parameter is usually used when the previous job step created a
temporary partitioned data set to store a program until it is required.

* .stepname.procstepname.ddname
Refers to a DD statement that defines, as a member of a partitioned data set, the
program to be executed. The DD statement is in a cataloged or in-stream procedure that
is called by an earlier job step. Stepname identifies the EXEC statement of the calling job
step; procstepname identifies the EXEC statement of the procedure step that contains the
DD statement with ddname in its name field.

Chapter 11. Coding the EXEC Statement 11-21

EXEC: PGM

Checking J CL Syntax without Executing the Step

In a JES3 system, code PGM = JCLTEST or PGM = JSTTEST to scan the job step's JCL for
syntax errors without executing the job or allocating devices. JCL TEST or JSTTEST provide
the same function as provided by the JOB statement TYPRUN = SCAN parameter.

F or more information, see:

• For PGM = JCLTEST or PGM = JSTTEST, "Testing JCL Without Execution (JES3)" on
page 3-25.

• For the JOB statement TYPRUN = SCAN parameter, "Bypassing Job Initiation" on
page 3-25 and "TYPRUN Parameter" on page 10-39.

Examples of the PGM Parameter

//JOB8 JOB ,BOB,MSGLEVEL=(2,O)
//JOBLIB DD DSNAME=DEPT12.LIB4,DISP=(OLD,PASS)
//STEPl EXEC PGM=USCAN

These statements indicate that the system is to search the private library DEPTI2.LIB4 for the
member named USCAN, read the member into storage, and execute the member.

//PROCESS
//CREATE
//SYSLMOD
//
//GO

JOB ,MARY,MSGCLASS=A
EXEC PGM=IEWL
DD DSNAME=&&PARTDS(PROG),UNIT=3350,DISP=(MOD,PASS),

SPACE=(1024,(50,20,1»
EXEC PGM=*.CREATE.SYSLMOD

The EXEC st~tement named GO contains a backward reference to DD statement SYSLMOD,
which defines a library created in the step named CREATE. Program PROG is a member of
the partitioned data set &&PARTDS, which is a temporary data set. Step GO executes
program PROG. The data set &&PARTDS is deleted at the end of the job.

//JOBC
//STEP2
//DDA
//STEP3

JOB , JOHN,MSGCLASS=H
EXEC PGM=UPDT
DD DSNAME=SYS1.LINKLIB(P40),DISP=OLD
EXEC PGM=*.STEP2.DDA

The EXEC statement named STEP3 contains a backward reference to DD statement DDA,
which defines system library SYSl.LINKLIB. Program P40 is a member of SYS1.LINKLIB;
STEP3 executes program P40.

//CHECK EXEC PGM=IEFBR14

This EXEC statement specifies execution of the program IEFBR14, which is a two-line
user-written program that consists of an entry point and a branch to the contents of register 14.
This program is handy during testing: execute it to test JCL space allocation and disposition
requests before executing your program. The system checks all the job control statements in
the job for syntax.

11-22 MVS JCL

IIUSUAL
IIASM
II
IISYSPRINT
IISYSLIB
IISYSUTl
II
IISYSLIN
II
IISYSIN

IILKED
II
IISYSPRINT
IISYSLIN
IISYSUTl
II
IISYSLMOD
II
IIGO
II
IISYSUDUMP
IISYSPRINT
II
IIOUTPUT
II
II INPUT

1*
II

EXEC: PGM

JOB A2317P,'MAE BIRDSALL'
EXEC PGM=IEV90,REGION=256K, EXECUTES ASSEMBLER

PARM=('OBJECT', 'NODECK,LINECOUNT(50) ')
DD SYSOUT=*,DCB=BLKSIZE=3509 THE ASSEMBLY LISTING
DD DSNAME=SYS1.MACLIB,DISP=SHR THE MACRO LIBRARY
DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET

SPACE=(CYL,(lO,l»
DD DSNAME=&&OBJECT,UNIT=SYSDA, THE OUTPUT OBJECT MODULE

SPACE=(TRK,(lO,2»,DCB=BLKSIZE=3120,DISP=(,PASS)
DD * IN-STREAM SOURCE CODE

code

EXEC PGM=HEWL, EXECUTES LINKAGE EDITOR
PARM='XREF,LIST,LET' ,COND=(8,LE,ASM)

DD SYSOUT=* LINKEDIT MAP PRINTOUT
DD DSNAME=&&OBJECT,DISP=(OLD,DELETE) INPUT OBJECT MODULE
DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET

SPACE=(CYL,(lO,l»
DD DSNAME=&&LOADMOD,UNIT=SYSDA, THE OUTPUT LOAD MODULE

DISP=(MOD,PASS),SPACE=(1024(50,20,l»
EXEC PGM=*.LKED.SYSLMOD,TIME=(,30), EXECUTES THE PROGRAM

COND=((8,LE,ASM) ,(8,LE,LKED»
DD SYSOUT=* 'IF FAILS, DUMP LISTING
DD SYSOUT=*, OUTPUT LISTING

DCB=(RECFM=FBA,LRECL=121)
DD SYSOUT=A, PROGRAM DATA OUTPUT

DCB=(LRECL=lOO,BLKSIZE=3000,RECFM=FBA)
DD * PROGRAM DATA INPUT

data

This example shows JCL that can be used to:

• Assemble object code entered in the input stream: the step named ASM.

• Linkedit the object module, if the assembly did_not result in a return code of 8 or higher:
the step named LKED.

• Execute the linkedited module, if neither the assembly nor the linkage editing resulted in a
return code of 8 or higher: the step named GO.

Chapter 11. Coding the EXEC Statement 11-23

EXEC:'PROC·and Procedure··Name

PROC and Procedure Name Parameters

Parameter Type: Positional, optional

-Purpose: Use the PROC parameter to specify that the system is to call and execute a cataloged
or in,.stre~m procedure.

References: For more information on thePRQC parameter, see "Processing Progr':lm
, Info~ation" on page 4-4, and on cataloged and in-stream procedures, see Chapter 9, "Guide
, to Cataloged and In-Stream Procedures."

Syntax:

{PROC=procedure-name}
{procedure-name }

• The EXEC statement parameter field must begin with a PGM parameter or a PROC
parameter. These two parameters must not appear on the same EXEC statement.

• You can omit PROC = and code only the procedure-name.

Subparamet~r Definition

procedure-name
Identifies the procedure to be called and executed:

• The member name or alias of a cataloged procedure.
• The name of an in-stream procedure. The in-stream procedure must appear earlier in

this job.

The procedure-name is 1 through 8 alphanumeric or national characters; the first
character must be alphabetic or national.

Effect or PROC Parameter on Other Parameters and Following Statements

Because this EXEC statement calls a cataloged or in-stream procedure, the other parameters on
the statement are added to or override corresponding parameters on the EXEC statements in
the called procedure. See the descriptions of the other parameters for details of their effects.

Any DD statements following this EXEC statement are added to the procedure or override or
nullify corresponding DD statements in the procedure. For details, see "DD Statements for
Cataloged and' In-stream Procedures" on page 12-3.

11-24 MVS JCL

Examples of the PROC Parameter

IISP3 EXEC PROC=PAYWKRS

EXEC: PROCand Procedure Name

This statement calls the cataloged or in-stream procedure named P A YWKRS.

IIBK EXEC OPERATE

This statement calls the cataloged or in-stream procedure named OPERATE.

Chapter 11. Coding the EXEC Statement 11-25

EXEC:RD

RD Parameter

Parameter Type: Keyword,optional

Purpose: Use the RD (restart definition) parameter to:

• Specify that the operator is to perform automatic step restart if the job fails.

• Suppress, partially or totally, the action of the assembler language CHKPT macro
instruction or the DD statement CHKPT parameter.

The system can perform automatic restart only if the job has a job journal. A job journal is a
sequential data set that contains job-related control blocks needed for restart. For JES2,
specify a job journal in one ofthe--fol-lowing:

• An installation option during JES2 initialization to specify a checkpoint data set.
• RESTART parameter o,n the JOB statement.
• RD = R or RD = RNC <1>n either the JOB statement or anyone EXEC statement in the job.

For JES3, specify a job journal in one of the following:

• An installation option during JES3 initialization.
• RD = R or RD = RNC on either the JOB statement or anyone EXEC statement in the job.
• JOURNAL = YES on a JES3 / /*MAIN statement in the job.

References: For more information on the RD parameter, see "The RD Parameter on the
EXEC Statement" on page 5-28, and on restarting jobs, see:

• "Restarting a Job at a Step or Checkpoint" on page 5-26.
• "RD Parameter" on page 10-28.

For JES2 systems, see the RESTART parameter on the /*JOBPARM control statement in
"/*JOBPARM Statement" on page 16-4.

For JES3 systems, see the FAILURE parameter on the //*MAIN control statement in
"//*MAIN Statement" on page 17-23.

For detailed information on deferred checkpoint restart, see Checkpoint/Restart.

Syntax:

RD[.procstepname]={RIRNCINCINR}

11-26 MVS JCL

EXEC:RD

Subparameter Definition

R (Restart)
Indicates that the operator is to perform automatic step restart if the job step fails.

RD = R does not suppress checkpoint restarts:

• If the processing program executed in a job step does not include a CHKPT macro
instruction, RD = R allows the system to restart execution at the beginning of the
abnormally terminated step.

• If the program includes a CHKPT macro instruction, RD = R allows the system to
restart execution at the beginning of the step, if the step abnormally terminates before
the CHKPT macro instruction is executed.

• If the step abnormally terminates after the CHKPT macro instruction is executed,
only checkpoint restart can occur. If you cancel the affects of the CHKPT macro
instruction before the system performs a checkpoint restart, the request for automatic
step restart is again in effect.

RNC (Restart and No Checkpoint)
Indicates that the operator is to perform automatic step restart if the job step fails.

RD = RNC suppresses automatic and deferred checkpoint restarts. It suppresses:

• Any CHKPT macro instruction in the processing program: That is, the operator is
not to perform an automatic checkpoint restart, and the system is not to perform a
deferred checkpoint restart if the job is resubmitted.

• The DD statement CHKPT parameter.

• The checkpoint at end-of-volume (EOV) facility; see "SYSCKEOV DD Statement"
on page 13-19.

NC (No Checkpoint)
Indicates that the operator is not to perform automatic step restart if the job step fails.

RD = NC suppresses automatic and deferred checkpoint restarts. It suppresses:

• Any CHKPT macro instruction in the processing program.

• The DD statement CHKPT parameter.

• The checkpoint at EOV facility.

Chapter 11. Coding the EXEC Statement 11-2 7

EXEC:RD

Defaults

Overrides

NR (No Automatic Restart)
Indicates that the operator is not to perform automatic step restart if the job fails.

RD = NR suppresses automatic checkpoint restart but permits deferred checkpoint
restarts. It permits:

• A CHKPT macro instruction to establish a checkpoint.

• The job to be resubmitted for restart at the checkpoint. On the JOB statement when
resubmitting the job, specify the checkpoint in the RESTART parameter.

If you code RD = NR and the system fails, RD = NR does not prevent the job from
restarting.

If no RD parameter is specified, the terminated job step is eligible for automatic
checkpoint/restart, if its program requested checkpoints with a CHKPT macro instruction.

• A JOB statement RD parameter applies to all steps of the job and overrides any EXEC
statement RD parameters.

When no RD parameter is on the JOB statement, the system uses an EXEC statement RD
parameter, but only during the job step. Code EXEC statement RD parameters when you
want to specify different restart types for each job step.

• A request by a CHKPT macro instruction for an automatic checkpoint restart overrides a
request by a JOB or EXEC statement RD = R parameter for automatic step restart.

Relationship to Other Control Statements

Code RD = NC or RD = RNC to suppress the action of the DD statement CHKPT parameter.

On EXEC Statement that Calls a Procedure

If the EXEC statement calls a cataloged or in-stream procedure, the RD parameter is added to
or overrides the RD parameter on:

• The EXEC statement named in the procstepname qualifier. The information applies only
to the named procedure step. The EXEC statement can have as many RD.procstepname
parameters as the procedure has steps; each RD parameter must specify a unique
procstepname.

• All EXEC statements in the procedure if procstepname is not coded. Then the parameter
applies to all steps in the called procedure.

11-28 MVS JCL

EXEC:RD

Examples of the RD Parameter

//STEPl EXEC PGM=GIIM,RD=R

RD = R specifies that the operator is to perform automatic step restart if the job step fails.

//NEST EXEC PGM=T18,RD=RNC

RD = RNC specifies that, if the step fails, the operator is to perform automatic step restart.
RD = RNC suppresses automatic and deferred checkpoint restarts.

//CARD EXEC PGM=WTE,RD=NR

RD = NR specifies that the operator is not to perform automatic step restart or automatic
checkpoint restart. However, a CHKPT macro instruction can establish checkpoints to be used
later for a deferred restart.

//STP4 EXEC PROC=BILLING,RD.PAID=NC,RD.BILL=NR

This statement calls a cataloged or in-stream procedure BILLING. The statement specifies
different restart requests for each of the procedure steps: PAID and BILL.

Chapter 11. Coding the EXEC Statement 11-29

EXEC:~'REGION

REGION Parameter

Parameter Type: Keyword, optional

Purpose: Use the REGION parameter to specify the amount of space that the step requires.

The specified or default region size sets an upper boundary to limit region size for
variable-length GETMAINs. The system uses the upper boundary for variable-length
GETMAINs as long as the region still has available at least the minimum .amount of stof!lge
requested.

In addition, the IBM ... or installation-supplied routine IEALIMIT uses the region size to
establish a second limiting value. The system uses this second value for:

• Fixed-length GETMAINs.

• Variable-length GETMAINs when the space remaining in the region is less than the
requested minimum.

When the minimum requested length for variable-length GETMAINs exceeds this second value,
the job step abnormally terminates.

REGION = OK gives the job step all the storage available in the private area, that is, from the
top of the system region to the bottom of the common service area (CSA). The resulting size of
the region is unpredictable.

References: For more information on the REGION parameter, see "Requesting Storage for
Execution" on page 5-23. Also, see "ADDRSPC Parameter" on page 11-6. For further
information on the region size, see OSjVS2 Supervisor Services and Macro Instructions.

Syntax:

REGION[.procstepname]=valueK

Subparameter Definition

valueK

11-30 MVS JCL

Specifies the required storage in thousands (1024) of bytes. The value is 1 to 5 decimal
numbers. Code an even number. For example, REGION = 66K. If you code an odd
number, the system treats it as the next highest even number.

Defaults

Overrides

EXEC: REGION

If no REGION parameter is specified, the system uses an installation default specified at JES
initialization.

A JOB statement REGION parameter applies to all steps of the job and overrides any EXEC
statement REGION parameters.

When no REGION parameter is on the JOB statement, the system uses an EXEC statement
REGION parameter, but only during the job step. Code EXEC statement REGION
parameters when you want to specify a different region size for each job step.

Relationship to the EXEC ADDRSPC Parameter

When ADDRSPC=REAL: Code a REGION parameter to specify how much real storage the
job needs. If you omit the REGION parameter, the system uses the default.

When ADDRSPC= VIRT or ADDRSPC is Omitted: Do not code a REGION parameter. The
system uses the default.

Examples of the REGION Parameter

//MKBOYLE EXEC PROC=A,ADDRSPC=REAL,REGION=40K

The system assigns 40K bytes of real storage to this job step.

//STP6 EXEC PGM=CONT,REGION=120K

The system assigns a region of 120K bytes. When the ADDRSPC parameter is not specified,
the system defaults to ADDRSPC=VIRT.

Chapter 11. Coding the EXEC Statement 11-31

EXEC: TIME

TIME Parameter

Parameter Type: Keyword, optional

Purpose: Use the TIME parameter to specify the maximum length of time that a job step is ~o
use the processor and to find out through messages how much processor time the step used.

A step that exceeds its allotted time abnormally terminates and causes termination of the job,
unless a user exit routine extends the time for the job.

References.: For more information on the TIME parameter, see "Limiting Job and Job Step
Execution Time" on page 5-16.

Syntax:

TIME[.procstepname]={14401 ([minutes] [,seconds])}

You can omit the parentheses if you code only 1440 or the processor time in minutes.

If you omit the seconds, do not code a null subparameter. For example"TIME = (60,) is
invalid.

Subparameter Definition

1440
Indicates that the step can use the processor for an unlimited amount of time; 1440
literally means 24 hours. Code TIME = 1440 for the following reasons:

• To obtain job step accounting information.

• To specify that the system is to allow this step to remain in a wait state for more than
the installation-established time limit.

minutes
Specifies the maximum number of minutes the step can use the processor. The minutes
must be a number from 1 through 1439.

Code TIME = 0 on the EXEC statement to indicate that the step is to use the unexpired
time from the previous step. If this step exceeds that unexpired time, it abnormally
termina tes.

seconds

11-32 MVS JCL

Specifies the maximum number of seconds that the step can use the processor, in addition
to any minutes that are specified. The seconds must be a number from 1 through 59.

Defaults

Overrides

EXEC: TIME

If no TIME parameter is specified, JES uses an installation default specified at initialization.

For a JOB statement TIME parameter other than TIME = 1440, the system sets the time limit
for each step to:

• The step time limit specified on the EXEC statement TIME parameter.

• If no EXEC TIME parameter was specified, (1) the default time limit or (2) the job time
remaining after execution of previous steps, whichever is smaller.

Time Handling

How the System Converts the Time Value: The job time limit or the time remaining after
execution of previous steps in a job is converted by the system to seconds and then rounded to
the nearest unit, where 1 unit= 1.048576 seconds. Thus a step can begin execution with up to
one-half unit more or one-half unit less time than expected. If the time remaining for the job is
less than one-half unit, a step will begin execution with zero time, resulting in an abnormal
termination.

Time Checking: Because the system checks the processor time-used field about every 10.5
seconds, the actual time that a job uses the processor can exceed the specified TIME value by
up to 10.5 seconds. For example, the system checks the job's time-used field and finds 0.5
seconds remaining. Because the system does not again check the job's time-used field for about
10.5 seconds, the job can execute for an additional 10.5 seconds and thus exceed the coded
TIME value by 10 seconds.

Examples of the TIME Parameter

IISTEPl EXEC PGM=GRYS,TIME=(12,lO)

This statement specifies that the maximum amount of time the step can use the processor is 12
minutes, 10 seconds.

IIFOUR EXEC PGM=JPLUS,TIME=(,30)

This statement specifies that the maximum amount of time the step can use the processor is 30
seconds.

IIINT EXEC PGM=CALC,TIME=5

This statement specifies that the maximum amount of time the step can use the processor is 5
minutes.

Chapter 11. Coding the EXEC Statement 11-33

EXEC: TIME

//LONG EXEC PGM=INVANL,TIME=1440

This statement specifies that the step can have unlimited use of the processor. Therefore, the
step can use the processor and can remain in a wait state for an unspecified period of time, if
not restricted by the JOB statement TIME parameter.

//STP4 EXEC PROC=BILLING,TIME.PAID=(45,30) ,TIME.BILL=(112,59)

This statement calls cataloged or in-stream procedure BILLING. The statement specifies
different time limits for each of the procedure steps: PAID and BILL.

For examples of TIME coded on both the JOB and EXEC statements, see "Examples of the
TIME Parameter on JOB and EXEC Statements" on page 10-38.

11-34 MVS JCL

DD

Chapter 12. Coding the DD Statement

Use the DD (data definition) statement to describe a data set and to specify the input and
output facilities needed for the data set.

The parameters you can specify for data set definition are arranged alphabetically in the
following pages.

References: For more information on coding DD statement parameters, see Chapter 7, "Guide
to Specifying Data Set Information" on page 7-1. For information about the JES initialization
parameters that provide installation defaults, see SPL: JES2 Initialization and Tuning and SPL:
JES3 Initialization and Tuning.

Syntax:

//{ddname } DD [positional-parameter] [,keyword-parameter] ... comments
{procstepname.ddname}

• The DD statement consists of the characters / / in columns 1 and 2 and four fields: name, operation
(DD), parameter, and comments.

• A DD statement is required for each data set.

• The maximum DD statements per job step are:

1635, in a JES2 system.
Determinated by the installation, in a JES3 system.

Name Field

Code a ddname as follows:

• Each ddname should be unique within the job step. If duplicate ddnames appear in a job
step, processing is as follows:

In a JES2 system: The system performs device and space allocation and disposition
processing for both DD statements; however, it directs all references to the first DD
statement in the step.

In a JES3 system: If both DD statements request JES3- or jointly-managed devices,
the system cancels the job during JES3 interpretation. If only one or if neither DD
statement requests JES3- or jointly-managed devices, the system performs device and

Chapter 12 .. Coding the DD Statement 12-1

DD

space allocation and disposition processing for both DD statements; however, it directs
all references to the first DD statement in the step.

• The ddname must begin in column 3'.

• The ddname is 1 through 8 alphanumeric or national characters.

• The first character must be alphabetic or national.

• The ddname must be followed by at least one blank.

Omitting the ddname: Do not code a ddname in two cases:

• The DD statement defines a data-set---tharis concatenated to the data set of the preceding
DD statement.

• The DD statement is the second or third consecutive DD statement for an indexed
sequential data set.

Special ddnames: Use the following special ddnames only when you want to use the facilities
these names represent to the system. These facilities are explained in Chapter 13, "Coding
Special DD Statements" on page 13-1.

JOBCAT
JOB LIB
STEPCAT
STEPLIB
SYSABEND
SYSCHK
SYSCKEOV
SYSMDUMP
SYSUDUMP

The following ddnames have special meaning to JES3; do not use them on a DD statement in a
JES3 system.

JCBIN
JCBLOCK
JCBTAB
JCLIN
JESlnnnn
JESJCL
JESMSG
JOURNAL
JST
SYSMSG

12-2 MVS JCL

DD

Parameter Field

A DD statement contains two kinds of parameters: positional and keyword. All parameters
are optional. However, do not leave the parameter field blank unless the DD, statement
overrides a DD statement that defines a concatenated data set in a cataloged or in-stream
procedure.

Positional Parameters: A DD statement can contain one of the following positional
parameters. It must precede all keyword parameters.

*
DATA
DUMMY
DYNAM

Keyword Parameters: A DD statement can contain the following keyword parameters. You
can code any of the keyword parameters in any order in the parameter field after a positional
parameter, if coded.

ACCODE DDNAME FLASH PROTECT UNIT
AMP DEST FREE QNAME VOLUME
BURST DISP HOLD SPACE
CHARS DLM LABEL SUBSYS
CHKPT DSID MODIFY SYSOUT
CNTL DSNAME MSVGP TERM
COPIES FCB OUT LIM UCS
DCB OUTPUT

Do not use DD statement parameter or subparameter keywords as symbolic parameters, names,
or labels.

Comments Field

The comments field follows the parameter field after at least one intervening blank. If you do
not code any parameters on a DD statement, do not code any comments.

Location in the J CL

Most DD statements define data sets to be used in a step of a job or of a cataloged or
in-stream procedure; these appear after the EXEC statement for the step. Some DD
statements define data sets for the job, for example, the JOB LIB DD statement; these appear
after the JOB statement and before the first EXEC statement.

DD Statements for Cataloged and In-stream Procedures

When a job step calls a cataloged or in-stream procedure, DD statements in the calling step (1)
override, nullify, or add parameters to DD statements in the procedure or (2) are added to the
procedure. These changes affect only the current execution of the job step; the procedure itself
is not changed.

Chapter 12. Coding the DD Statement 12-3

DD

Location in the JCL: Place DD statements that override, nullify, or add parameters
immediately following the EXEC statement that calls the procedure.

Place added DD statements after all overriding DD statements.

Order 0/ Overriding DD Statements: To override more than one DD statement in a procedure,
place the overriding DD statements in the same order as the overridden DD statements in the
procedure.

Coding an Overriding DD Statement: To override parameters on a procedure DD statement,
code in the name field of the overriding DD statement the name of the procedure step
containing the DD statement, followed by a period, followed by the ddname of the procedure
DD statement to be overridden. For example:

//PROCSTPl.PROCDD DD parameters

Coding an Added DD Statement: To add DD statements to a procedure step, code in the name
field of the added DD statement the name of the procedure step, followed by a period, followed
by a ddname of your choosing.

In-stream Data/or a Procedure: To supply a procedure step with data from the input stream,
code a DD * or DD DATA statement in the calling step after the last overriding and added
DD statement. The name field of this statement must contain the name of the procedure step,
followed by a period, followed by a ddname. The ddname can be of your choosing or
predefined in the procedure. If it is predefined, it appears in a DDNAME parameter on a
procedure DD statement.

Words Prohibited as Symbolic Parameters: Do not use the following DD statement keywords
as symbolic parameters in procedures to be started by a START command from the operator
console.

AFFI DISP LABEL SUBALLOCI
AMP DLM MODIFY SUBSYS
BURST DSID MSVGP SYSOUT
CHARS DSNAME OUTLIM TERM
CHKPT DSN PROTECT UCS
COPIES FCB QNAME UNIT
DCB FLASH SEpl VOLUME
DDNAME FREE SPACE VOL
DEST HOLD SPLIT 1

IThese DD statement keywords are from previous releases of MVS. For a description of how
they are currently handled, see "JCL Statements no Longer Supported or Supported
Differently" on page v.

12-4 MVS JCL

Examples of DD Statements and ddnames

II INPUT DD
II DD

DSNAME=FGLIB,DISP=(OLD,PASS)
DSNAME=GROUP2,DISP=SHR

In this example, because the ddname is missing from the second DD statement, the system
concatenates the data sets defined in these statements.

IIPAYROLL.DAY DD DSNAME=DESK,DISP=SHR

DD

In this example, if procedure step PAYROLL contains a DD statement named DAY, this
statement overrides parameters on DD statement DAY. If the step does not contain DD
statement DAY, the system adds this statement to procedure step PAYROLL for the duration
of the job step.

IISTEPSIX.DD4 DD
II DD

DSNAME=WRITER,DISP=(NEW,PASS)
DSNAME=ART,DISP=SHR

In this example, the second data set is concatenated to the first, and both are added to
procedure step STEPSIX. The ddname is omitted from the second DD statement in order to
concatenate data set ART to data set WRITER.

Chapter 12. Coding the DD Statement 12-5

DD: * Parameter

* Parameter

Defaults

Parameter Type: Positional, optional

Purpose: Use the * parameter to begin an in-stream data set. The data records immediately
follow the DD * statement; the records must be in BCD or EBCDIC. The data records end
when the system reads in the input stream a delimiter:

1*
/ / to indicate another JCL statement
The two-character delimiter specified by a DLM parameter on this DD statement

The data can also end when the input stream runs out of card images.

Use a DATA parameter instead of the * parameter if any of the data records start with //.

Syntax:

//ddname DD *[,parameter] ...

When you do not code DCB = BLKSIZE and DCB = LRECL, JES uses installation defaults
specified at initialization.

Relationship to Other Parameters

The only DD parameters that you can code with the * parameter follow. All other parameters
are a JCL error.

DCB = BLKSIZE
DCB=BUFNO
DCB=LRECL
DLM
DSID
VOLUME=SER

For 3540 Diskette Input/Output Units: VOLUME = SER, DCB = BUFNO, and DSID
parameters on a DD * statement are ignored except when they are detected by a diskette reader
as a request for an associated data set. See IBM 3540 Programmer's Reference. On a DD * or
DD DATA statement processed by a diskette reader, you can specify DSID and
VOLUME = SER parameters to indicate that a diskette data set is to be merged into the input
stream following the DD statement.

For JES3 SNA RJP Input: The only parameters you can specify for JES3 systems network
architecture (SNA) remote job processing (RJP) input devices are DCB = BLKSIZE and
DCB=LRECL.

12-6 MVS JCL

DD: * Parameter

Relationship to Other Control Statements

Do not refer to an earlier DD * statement in DCB or DSNAME parameters on following DD
statements.

Location in the JCL

A DD * statement begins an in-stream data set.

In-stream Data for Cataloged or In-stream Procedures: A cataloged or in-stream procedure
cannot contain a DD * statement. When you call a procedure, you can add input stream data
to a procedure step by placing in the calling step one or more DD * or DD DATA statements,
each followed by data.

Multiple In-stream Data Sets for a Step: You can code more than one DD * or DD DATA.
statement in a job step in order to include several distinct groups of data for the processing
program. Precede each group with a DD * or DD DATA statement and follow each group
with a delimiter statement. If you omit a DD statement before input data, the system provides a
DD * statement with the ddname of SYSIN; if you omit a following delimiter statement, the
system ends the data when it reads a JCL statement or runs out of card images.

Unread Records

If the processing program does not read all the data in an in-stream data set, the system skips
the remaining data without abnormally terminating the step.

Examples of the * Parameter

//INPUTl DD *

data

//INPUT2 DD *

data

/*

This example defines two groups of data in the input stream.

Chapter 12. Coding the DD Statement 12-7

DD: * Parameter

//STEP2
//SETUP.WORK
//SETUP.INPUTl

/*
//PRINT.FRM
//PRINT.INP

/*

EXEC PROC=FRESH
DD UNIT=3400-6,LABEL=(,NSL)
DD *

data

DD
DD

data

UNIT=180
*

This example defines two groups of data in the input stream. The input data defined by DD
statement SETUP.INPUTl is to be used by the cataloged procedure step named SETUP. The
input data defined by DD statement PRINT.INP is to be used by the cataloged procedure step
named PRINT.

12-8 MVS JCL

DD:ACCODE

ACCODE Parameter

Parameter Type: Keyword, optional

Purpose: Use the ACCODE parameter to specify or change an accessibility code for an
ISO/ANSI/FIPS Version 3 tape output data set. An installation-written file.-access exit routine
verifies the code, after the code is written to tape. If th,e code is authorized, the job step's
program can use the data set; if not, the system issues messages and may abnormally terminate
the job step.

A data set protected by an accessibility code should reside only on a volume protected by
RACF or a volume accessibility code. The volume should not contain any unprotected data
sets.

Note: ACCODE is supported only for ISO/ANSI/FIPS Version 3 tape data sets. ACCODE is •
ignored for SL (IBM standard) label tapes.

References: For more information on ISO/ANSI/FIPS Version 3 tape data sets, see MVS/370
Magnetic Tape Labels and File Structure.

Syntax:

ACCODE=access-code

Subparameter definition

Defaults

access-code
Specifies an accessibility code. The access-code is 1 through 8 characters; the first
character is an upper case letter from A through Z.

Note: Only the first character is used as the ISO/ANSI/FIPS Version 3 accessibility code;
the other seven characters can be used by the installation. If the first character is other
than an upper case letter from A through Z, the installation does not give control to the
file-access exit routine.

If no accessibility code is specified on a DD statement that defines an ISO/ANSI/FIPS Version
3 tape data set, the system writes a blank character (X' 40') in the tape label: a blank authorizes
unlimited access to the tape's data sets.

If the installation does not supply a file-access exit routine, the system prevents access to any
ISO / ANSI/FIPS Version 3 tape volume.

Chapter 12. Coding the DD Statement 12-9

DD:ACCODE

Overrides

If PASSWORD or NOPWREAD is coded on the DD statement LABEL parameter, password
access overrides the ACCODE parameter.

Example of the ACCODE Parameter

//TAPE DO UNIT=2400,VOLUME=SER=T49850,DSNAME=TAPEDS,
LABEL=(,AL),ACCODE=Z

In this example, the DD statement ACCODE parameter specifies an accessibility code of Z for
tape volume T49850. The volume has ISO/ANSI/PIPS Version 3 labels. The data set
T APEDS is first on the tape.

12-10 MVS JCL

DD: AMP

AMP Parameter

Parameter Type: Keyword, optional

Purpose: Use the AMP parameter to complete information in an access method control block
(ACB) for a VSAM data set. The ACB is a control block for entry-sequenced, key-sequenced,
and relative record data sets.

Note: AMP is supported only for VSAM data sets.

References: For more information on AMP and the ACB, see VSAM Programmer's Guide.

Syntax:

AMP=(subparameter)
AMP=('subparameter[,subparameter] ... ')

The subparameters are:

AMORG
BUFND=number
BUFNI=number
BUFSP=bytes
CROPS={RCKINCKINREINRC}
OPTCD={IILIIL}
RECFM={FIFBIYIVB}
STRNO=number
SYNAD=modulename
TRACE

Parentheses: The subparameter or subparameters are always enclosed in one set of
parentheses. For example, AMP = (AMORG).

Multiple Subparameters: When the parameter contains more than one subparameter,
separate the subparameters by commas and enclose the subparameter list in apostrophes
inside the parentheses. For example, AMP = (' AMORG,STRNO = 4').

Special Characters: When the parameter contains only one subparameter and that
subparameter contains special characters, enclose the subparameter in apostrophes inside
the parentheses. For example, AMP = ('STRNO = 4').

Note: Do not enclose a subparameter in a subparameter list in apostrophes.

Continuation onto Another Statement: Enclose the subparameter list in only one set of
parentheses. Enclose all the subparameters on each statement in apostrophes. End each
statement with a comma after a complete subparameter. For example:

IIDSl
II

DD DSNAME=VSAMDATA,AMP=('BUFSP=200,OPTCD=IL,RECFM=FB,'
'STRNO=6,TRACE')

Chapter 12. Coding the DD Statement 12-11

•

DD: AMP

Subparameter Definition

AMORG
Indicates that the DD statement defines a VSAM data set. Code AMORO for either of
the following reasons:

• When data set access is through an ISAM interface program and the DD statement
contains VOLUME and UNIT parameters or contains a DUMMY parameter.

• To open an ACB for a VSAM data set if the data set is not fully defined at the
beginning of the job step.

BUFND = number
Specifies the number of I/O buffers that VSAM is to use for data records. The minimum
is 1 plus the STRNO subparameter number. If you omit STRNO, BUFND must be at
least 2.

If you omit BUFND from AMP and from the ACB macro instruction, the system uses
the STRNO number plus 1.

BUFNI = number
Specifies the number of I/O buffers that VSAM is to use for index records. If you omit
BUFNI from AMP and from theACBmacro instruction, VSAM uses as many index
buffers as the STRNO subparameter number; if you omit both BUFNI and STRNO,
VSAM uses 1 index buffer.

If data access is through the ISAM interface program, specify for the BUFNI number 1
more than the STRNO number, or specify 2 if you omit STRNO, to simulate having the
highest level of an ISAM index resident. Specify a BUFNI number 2 or more greater
than the STRNO number to simulate having intermediate levels of the index resident.

BUFSP = bytes
Specifies the maximum number of bytes for the data and index buffers in the user area.

If BUFSP specifies fewer bytes than the BUFFERSPACE parameter of the access method
services DEFINE command, the BUFFERSPACE number overrides the BUFSP number.

CROPS = {RCKINCKINREINRC}

12-12 MVS JCL

Requests a checkpoint/restart option. For more information, see Checkpoint/Restart.

RCK
Requests a data-erase test and data set post-checkpoint modification tests. If the
CROPS subparameter is omitted, RCK is the default.

DD: AMP

NCK
Requests no data set post-checkpoint modification tests.

NRE
Requests no data-erase test.

NRC
Requests neither a data-erase test nor data set post-checkpoint modification tests.

If you request an inappropriate option, such as the data-erase test for an input data set,
the system ignores the option.

OPTCD = {lILIIL}
Indicates how the ISAM interface program is to process records that the step's processing
program flags for deletion.

I

L

IL

Requests, when the data control block (DeB) contains OPTeD = L, that the ISAM
interface program is not to write into the data set records marked for deletion by
the processing program.

If AMP = (,OPTCD = I') is specified without OPTeD = L in the DCB, the system
ignores deletion flags on records.

Requests that the ISAM interface program is to keep in the data set records marked
for deletion by the processing program.

If records marked for deletion are to be kept but OPTeD = L is not in the DeB,
AMP = (,OPTeD = L') is required.

Note: This parameter has the same meaning and restrictions for the ISAM
interface as it has for ISAM. While it was not required in the ISAM job control
language, you should code it in the AMP parameter.

Requests that the ISAM interface program is not to write into the data set records
marked for deletion by the processing program. If the processing program had read
the record for update, the ISAM interface program deletes the record from the data
set.

AMP = (,OPTCD = IL') has the same effect as AMP = ('OPTeD = I') coded with
OPTCD=L in the DCB.

RECFM = {FIFBIYJVB}
Identifies the ISAM record format used by the processing program. You must code this
RECFM subparameter when the record format is not specified in the DCB.

Note: This parameter has the same meaning and restrictions for the ISAM interface as it
has for ISAM. While it was not required in the ISAM job control language, you should
code it in the AMP parameter.

Chapter 12. Coding the DD Statement 12-13

•

DD: AMP

All VSAM requests are for unblocked records. If the processing program requests blocked
records, the ISAM interface program sets the overflow-record indicator for each record to
indicate that each is being passed to the program unblocked.

F

FB

v

VB

Indicates fixed-length records.

Indicates blocked fixed-length records.

Indicates variable-length records. If no RECFM is specified in the AMP parameter
or in the DCB, V is the default.

Indicates blocked variable-length records.

STRNO = number
Indicates the number of request parameter lists the processing program uses concurrently.
The number must at least equal the number of BISAM and QISAM requests that the
program can issue concurrently. If the program creates subtasks, add together the
number of requests for each subtask plus 1 for each subtask that sequentially processes
the data set. For details, see VSAM Programmer's Guide. exit

SYNAD = modulename
Names a SYNAD exit routine. The ISAM interface program is to load and exit to this
routine if a physical or logical error occurs when the processing program is gaining access
to the data set.

The SYNAD parameter overrides a SYNAD exit routine specified in the EXLST or
GENCB macro instruction that generates the exit list. The address of the intended exit
list is specified in the access method control block that links this DD statement to the
processing program. If no SYNAD exit is specified, the system ignores the AMP
SYNAD parameter.

TRACE
Indicates that the generalized trace facility (GTF) executes with your job to gather
information about opening and closing data sets and end-of-volume processing. You can
use the AMDPRDMP program to print the trace output; see SP L: Service Aids.

Relationship to Other Parameters

Do not code the following parameters with the AMP parameter.

* DLM QNAME
BURST DYNAM SPACE
CHARS FCB SYSOUT
COPIES FLASH TERM
DATA MODIFY UCS
DCB OUTPUT

12-14 MVS JCL

DD: AMP

Invalid ddnames: The following ddnames are invalid for VSAM data sets:

JOBLIB
STEPLIB
SYSABEND
SYSUDUMP
SYSCHK

Invalid DSNAMEs: When you code the AMP parameter, the DSNAME must not contain
parentheses, a minus (hyphen), or a plus (+) sign. The forms of DSNAME valid for ISAM,
partitioned access method (PAM), and generation data groups (GDG) are invalid with VSAM
data sets.

Buffer Requirements

For a key-sequenced data set, the total minimum buffer requirement is three: two data buffers
and one index buffer. For an entry-sequenced data set, two data buffers are required.

If the number of buffers specified in the BUFND and BUFNI subparameters causes the virtual
storage requirements to exceed the BUFSP space, the number of buffers is reduced to fit in the
BUFSP space.

If BUFSP specifies more space than required by BUFND and BUFNI, the number of buffers is
increased to fill the BUFSP space.

Examples of the AMP Parameter

IIVSAMDSl
II

DD DSNAME=DSM.CLASS,DISP=SHR,AMP=('BUFSP=200,BUFND=2',
'BUFNI=3,STRNO=4,SYNAD=ERROR')

In this example, the DD statement defines the size of the user area for data and index buffers,
specifies the number of data and index buffers, specifies the number of requests that require
concurrent data set positioning, and specifies an error exit routine named ERROR.

IIVSAMDS2
II

DD DSNAME=DSM.CLASS,DISP=SHR,AMP=('BUFSP=23456,BUFND=5',
'BUFNI~lO,STRNO=6,SYNAD=ERROR2,CROPS=NCK,TRACE')

In this example, the DD statement defines the values for BUFSP, BUFNI, STRNO, and
SYNAD, as in the previous example. It also specifies that a data set post-checkpoint
modification test is not to be performed when restarting at a checkpoint and that GTF is to
provide a trace.

Chapter 12. Coding the DD Statement 12-15

•

DD: BURST

BURST Parameter

Parameter Type: Keyword, optional

Purpose: Use the BURST parameter to specify that 3800 Printing Subsystem output is to go
to:

• The burster-trimmer-stacker, to be burst into separate sheets.
• The continuous forms stacker, to be left in continuous fanfold.

If the specified stacker is different from the last stacker used, or if a stacker was not previously
requested, JES issues a message to the operator to thread the paper into the required stacker.

Note: BURST is valid for any output data set that is printed on a 3800 equipped with a
burster-timmer-stacker.

Syntax:

BURST={ [YES I y]}
{ [NO I N] }

Subparameter Definition

Default

Overrides

YES

NO

Requests that the printed output is to be burst into separate sheets. This subparameter
can also be coded as Y.

Requests that the printed output is to be in a continuous fanfold. This subparameter can
also be coded as N.

If you do not code a BURST parameter, but you code a DD SYSOUT parameter and the
output data set is printed on a 3800 that has a burster-timmer-stacker, JES uses an installation
default specified at initialization.

If you do not code a BURST parameter or a DD SYSOUT parameter, the default is NO.

A BURST parameter on a sysout DD statement overrides an OUTPUT JCL BURST
parameter.

12-16 MVS JCL

Relationship to Other Parameters

Do not code the following parameters with the BURST parameter.

*
AMP
DATA
DDNAME
DISP

DLM
DSID
DSNAME
DYNAM
LABEL

MSVGP
PROTECT
QNAME
VOLUME

Relationship to Other Control Statements

The burster-trimmer-stacker can also be requested using the following:

DD: BURST

• The BURST parameter on the OUTPUT JCL statement. See "BURST Parameter" on
page 14-6. 4111

• The STACKER parameter on the JES3 / /*FORMAT PR statement. See" / /*FORMAT
PR Statement" on page 17-9.

• The BURST parameter on the JES2 j*OUTPUT statement. See" /*OUTPUT Statement"
on page 16-13.

Example of the BURST Parameter

//RECORD DD SYSOUT=A,BURST=Y

In this example, the DD statement requests that JES send the output to the
burster-trimmer-stacker of the 3800. The stacker separates the printed output into separate
sheets instead of stacking it in a continuous fanfold.

Chapter 12. Coding the DD Statement 12-17

DD: CHARS

CHARS Parameter

Parameter Type: Keyword, optional

Purpose: Use the CHARS parameter to specify the name of one or more
character-arrangement tables for printing the data set on a 3800 Printing Subsystem.

Note: CHARS is valid for any output data set that is printed on a 3800.

References: For further information on character-arrangement tables, see "Requesting
Character Arrangements with a 3800 Printer" on page 7-60 and the IBM 3800 Printing
Subsystem Programmer's Guide. Refer to System Generation Reference for information on how
to choose during system generation particular groups, other than the Basic group, which is
always available.

Syntax:

{table-name }
CHARS={(table-name[,table-name] ...)}

{DUMP }
{ (DUMP [, table-name] ...) }

• You can omit the parentheses if you code only one table-name.

• Null positions in the CHARS parameter are invalid. For example, you cannot code
CHARS = (,table-name) or CHARS = (table-name"table-name).

Subparameter Definition

table-name
Names a character-arrangement table. Each table-name is 1 to 4 alphanumeric or
national characters. Code from one to four names.

DUMP

12-18 MVS JCL

Requests a high-density dump of 204-character print lines from a 3800. If more than one
table-name is coded, DUMP must be first.

Note:

• DUMP is supported only on JES3 systems.
• DUMP is valid only on a SYSABEND, SYSMDUMP, or SYSUDUMP DD

statement.

Defaults

Overrides

DD: CHARS

If you do not code the DD CHARS parameter, JES uses the following, in order:

1. The CHARS parameter on an OUTPUT JCL statement, if referenced by the DD
statement.

2. The DD UCS parameter value, if coded.
3. The UCS parameter on an OUTPUT JCL statement, if referenced.

If no character-arrangement table is specified on the DD or OUTPUT JCL statements, JES
uses an installation default specified at initialization.

A CHARS parameters on a sysout DD statement overrides the OUTPUT JCL CHARS
parameter.

For a data set scheduled to the Print Services Facility (PSF), the PSF uses the following
parameters, in override order, to select the font list:

1. Font list in the SYSl.IMAGELIB member specified by an OUTPUT JCL PAGEDEF
parameter.

2. DD CHARS parameter.

3. OUTPUT JCL CHARS parameter.

4. DD UCS parameter.

5. OUTPUT JCL UCS parameter.

6. JES installation default for the device.

7. Font list on the PAGEDEF parameter in the PSF cataloged procedure.

See "PAGEDEF Parameter" on page 14-43 for more information.

Relationship to Other Parameters

Do not code the following parameters with the CHARS parameter.

*
AMP
DATA
DDNAME
DISP

DLM
DSID
DSNAME
DYNAM
LABEL

MSVGP
PROTECT
QNAME
VOLUME

Chapter 12. Coding the DD Statement 12-19

•

DD: CHARS

Relationship to Other Control Statements

CHARS can also be coded on the following:

• The OUTPUT JCL statement. See "CHARS Parameter" on page 14-7.
• The JES3 jj*FORMAT PR statement. See "jj*FORMAT PR Statement" on page 17-9.
• The JES2 j*OUTPUT statement. See "j*OUTPUT Statement" on page 16-13.

Printing Device Reassignment

The output device might not be a 3800, for example, if printing were reassigned to a 3211. See
the IBM 3800 Printing Subsystem Programmer's Guide for restrictions that apply.

Requesting a High-Density Dump in a JES3 System

You can request a high-density dump on the 3800 in a JES3 system through two parameters on
the DD statement for the dump data set or on an OUTPUT JCL statement referenced by the
dump DD statement:

• FCB = STD3. This parameter produces dump output at 8 lines per inch.
• CHARS = DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same statement or
one on each statement.

Examples of the CHARS Parameter

//001 DO SYSOUT=A,CHARS=(GS10,GU12)

In this example, the CHARS parameter specifies two character-arrangement tables to be used
when printing the data set. GS10 refers to a Gothic character set, GU12 refers to a Gothic
underscored character set.

//SYSABENO DO UNIT=3800,CHARS=OUMP,FCB=ST03

The CHARS parameter on this SYSABEND DD statement specifies a high-density dump with
204 characters per line. The FCB parameter requests the dump output at 8 lines per inch.

12-20 MVS JCL

DD: CHKPT

CHKPT Parameter

Parameter Type: Keyword, optional

Purpose: Use the CHKPT parameter to request that a checkpoint be written when each
end-of-volume is reached on the multivolume data set defined by this DD statement.
Checkpoints are written for all volumes except the last. Checkpoints can be requested for input
or output data sets.

Note: CHKPT is supported only for multivolume QSAM or BSAM data sets. CHKPT is
ignored for single-volume QSAM or BSAM data sets or for ISAM, BDAM, BP AM, or VSAM
data sets.

References For more information, see Checkpoint/Restart.

Syntax:

CHKPT=EOV

I

Subparameter Definition

Overrides

EOV
Requests a checkpoint at each end-of-volume.

• The RD parameter values of NC and RNC on the JOB or EXEC statements override the
CHKPT parameter. For more information, see "RD Parameter" on page 10-28 and "RD
Parameter" on page 11-26.

• The CHKPT parameter overrides cataloged procedure values or START command values
for checkpoints at end-of-volume.

Relationship to Other Parameters

Do not code the following parameters with the CHKPT parameter.

* DLM
DATA DYNAM
DDNAME OUTPUT

QNAME
SYSOUT

Relationship to the SYSCKEOV DD Statement

If you specify CHKPT, you must also provide a SYSCKEOV DD statement in the job or step.
See "SYSCKEOV DD Statement" on page 13-19.

Chapter 12. Coding the DD Statement 12-21

•

DD: CHKPT

Checkpointing Concatenated Data Sets

For concatenated BSAM or QSAM data sets, CHKPT must be coded on each DD statement in
the concatenation, if checkpointing is desired for each data set in the concatenation.

Examples of the CHKPT Parameter

IIDSI DD DSNAME=INDS,DISP=OLD,CHKPT=EOV,
II UNIT=SYSSQ,VOLUME=SER=(TAPEOl,TAPE02,TAPE03)

In this example, the DD statement defines data set INDS, a multivolume QSAM or BSAM
data set for which a checkpoint is to be written twice: once when end-of-volume is reached on
T APEO 1 and once when end-of-volume is reached on T APE02.

IIDS2 DD DSNAME=OUTDS,DISP=(NEW,KEEP),
II CHKPT=EOV,UNIT=SYSDA,VOLUME=(",8)

In this example, OUTDS is a multivolume data set that is being created. The data set requires
eight volumes. Seven checkpoints will be written: when the end-of-volume is reached on
volumes one through seven.

12-22 MVS JCL

DD:CNTL

CNTL Parameter

Parameter Type: Keyword, optional

Purpose: Use the CNTL parameter to reference a CNTL statement that ap.pears earlier in the
job. The reference causes the system to execute the program control statements within the
referenced CNTL/ENDCNTL group.

The system executes the statements following the first CNTL statement it finds with a label that
matches the label in the CNTL parameter. If the system finds no match, the system issues an
error message.

References: For more information on program control statements, see "CNTL Statement" on
page 15-5.

Syntax:

CNTL={*.label }
{*.stepname.label }
{*.stepname.procstepname.label}

Subparameter Definition

*.label
Identifies an earlier CNTL statement, named label. The system searches for the CNTL
statement first in this step, then before the first EXEC statement of the job.

* .stepname.label
Identifies an earlier CNTL statement, named label, that appears in an earlier step,
stepname, in the same job.

* .stepname. procstepname.label
Identifies a CNTL statement, named label, in a cataloged or in-stream procedure.
Stepname is the name of the job step that calls the procedure; procstepname is the name
of the procedure step that contains the CNTL statement named label.

Examples of the CNTL Parameter

//MONDAY DD CNTL=*.WKLYPGM

In this example, the DD statement requests that the system use the program control statements
following the CNTL statement named WKL YPGM and located earlier in this step or preceding
the first step.

//TUESDAY DD CNTL=*.SECOND.BLOCKS

In this example, the DD statement requests that the system use the program control statements
following the CNTL statement named BLOCKS and located in a preceding step named
SECOND.

Chapter 12. Coding the DD Statement 12-23

•

DD: CNTL

//WEDNES DD CNTL=*.THIRD.PROCTWO.CANETTI

In this example, the DD statement requests that the system use the program control statements
following the CNTL statement named CANETTI and located in the procedure step
PROCTWO of the procedure called in the preceding job step THIRD.

12-24 MVS JCL

DD: COPIES

COPIES Parameter

Parameter Type: Keyword, optional

Purpose: Use the COPIES parameter to specify how many copies of the output data set are to
be printed. The printed output is in page sequence for each copy.

For printing on a 3800 Printing Subsystem, this parameter can instead specify how many copies
of each page are to be printed before the next page is printed.

jl.eferences: For more information on the COPIES parameter, see "Requesting Multiple Copies
of an Output Data Set Using JES2" and "Requesting Multiple Copies of an Output Data Set
Using JES3" on page 7-58.

Syntax:

[nnn }
COPIES=[(nnn,(group-value[,group-value] ...))}

[(, (group-value [, group-valus] ...)) }

You can omit the parentheses if you code only COPIES = nnn.

The following are not valid:

e A null group-value, for example, COPIES = (5,(,)) or COPIES = (5,)
• A zero group-value, for example, COPIES = (5,(1,0,4))
• A null within a list of group-values, for example, COPIES = (5,(1,,4))

Subparameter Definition

nnn
Specifies how many copies of the data set are to be printed; each copy will be in page
sequence order. nnn is a number from 1 through 255 in a JES2 system and from 1
through 254 in a JES3 system

For a data set printed on a 3800, JES ignores nnn if any group-values are specified.

group-value
Specifies how many copies of each page are to be printed before the next page is printed.
Each group-value is a number from 1 through 255 in a JES2 system and from 1 through
254 in a JES3 system. You can code a maximum of eight group-values. Their sum must
not exceed 255 or 254. The total copies of each page equals the sum of the group-values.

Note:

• This subparameter is valid only for 3800 output.
e For 3800 output, this subparameter overrides an nnn subparameter, if coded.

Chapter 12. Coding the DD Statement 12-25

•

DD: COPIES

Defaults

Overrides

If you do not code a COPIES parameter on any of the following, code it incorrectly, or code
COPIES =0, the system uses a default of 1, which is the default for the DD COPIES parameter.

DD statement

OUTPUT JCL statement

For JES2, the j*OUTPUT statement

For JES3, the jj*FORMAT PR or jj*FORMAT PU statement or, if neither is specified,
the SYSOUT initialization statement

A COPIES parameter on a sysout DD statement overrides an OUTPUT JCL COPIES
parameter.

If this DD statement references an OUTPUT JCL statement and that OUTPUT JCL statement
contains a FORMDEF parameter, which specifies a SYS1.IMAGELIB member, the
COPYGROUP parameter on a FORMDEF statement in that member overrides any
group-value subparameters on the OUTPUT JCL COPIES parameter or the sysout DD
COPIES parameter. For more information, see "FORrvtDEF Parameter" on page 14-31.

Relationship to Other Parameters

Do not code the following parameters with the COPIES parameter.

*
AMP
DATA
DDNAME

DISP
DLM
DSNAME
DYNAM

LABEL
MSVGP
QNAME
VOLUME

Relationship to FLASH Parameter: If this DD statement or a referenced OUTPUT JCL
statement also contains a FLASH parameter, JES prints with the forms overlay the number of
copies specified in one of the following:

• COPIES = nnn, if the FLASH count is larger than nnn. For example, if COPIES = 10 and
FLASH = (LTHD,12) JES prints 10 copies, all with the forms overlay.

• The sum of the group-values specified in the COPIES parameter, if the FLASH count is
larger than the sum. For example, if COPIES =(,(2,3,4)) and FLASH = (LTHD,12) JES
prints nine copies in groups, all with the forms overlay.

• The count subparameter in the FLASH parameter, if the FLASH count is smaller than nnn
or the sum from the COPIES parameter. For example, if COPIES = 10 and
FLASH = (L THD, 7) JES prints seven copies with the forms overlay and three copies
without.

12-26 MVS JCL

DD: COPIES

Restriction When Coding UNIT Parameter: The COPIES parameter is normally coded with the
SYSOUT parameter. If, however, both COPIES and UNIT appear on a DD statement, JES
handles the COPIES parameter as follows:

• nnn defaults to 1.
• Only the first group-value is used, if group-values are specified and printing is on a 3800.

Relationship to Other Control Statements

For JES2, if you request copies of the entire job on the JES2 j*JOBPARM COPIES parameter
and also copies of the data set on the DD COPIES or OUTPUT JCL COPIES parameter, and
if this is a sysout data set, JES2 prints the number of copies equal to the product of the two
requests.

The number of copies can also be specified on the COPIES parameter of the following:

• The OUTPUT JCL statement. See "COPIES Parameter" on page 12-25.

• The JES2 /*OUTPUT statement. See "j*OUTPUT Statement" on page 16-13.

• The JES3 //*FORMAT PR statement. See "jj*FORMAT PR Statement" on page 17-9.

• The JES3//*FORMAT PU statement. See "j/*FORMAT PU Statement" on page 17-18.

Examples of the COPIES Parameter

//RECORDl DD SYSOUT=A,COPIES=32

This example requests 32 copies of the data set defined by DD statement RECORD! when
printing on an impact printer or a 3800.

//RECORD2 DD SYSOUT=A,COPIES=(O,(l,2))

In this example, when printing on a 3800, three copies of the data set are printed in two groups.
The first group contains one copy of each page. The second group contains two copies of each
page. When printing on an impact printer, one copy (the default for nnn) is printed.

//RECORD3 DD SYSOUT=A,COPIES=(8,(l,3,2))

In this example, when printing on a 3800, six copies of the data set are printed in three groups.
The first group contains one copy of each page, the second group contains three copies of each
page, and the last group contains two copies of each page. When the output device is not a
3800, the system prints eight collated copies.

//RECORD4 DD UNIT=3800,COPIES=(l,(2,3))

Because the UNIT parameter is coded and the device is a 3800, the system prints only the first
group-value: two copies of each page are printed.

Chapter 12. Coding the DD Statement 12-27

)' ',1

DD:DATA

DATA Parameter

Defaults

Parameter Type: Positional, optional

Purpose: Use the DATA parameter to begin an in-stream data set that contains statements
with I I in columns 1 and 2. The data records immediately follow the DD DATA statement; the
records must be in BCD or EBCDIC. The data records end when the system reads in the input
stream a delimiter:

1*
The two-character delimiter specified by a DLM parameter on this DD statement

The data can also end when the input stream runs out of card images.

Note that, unlike a DD * statement, the data is not ended by the II that indicates another JCL
statement.

Syntax:

//ddname DD DATA[,parameter] ...

When you do not code DCB = BLKSIZE and DCB = LRECL, JES uses installation defaults
specified at initialization.

Relationship to Other Parameters

Restrictions in a JES2 system: For JES2, the only DD parameters that you can code with the
DATA parameter follow. All other parameters are a JCL error.

DCB
DLM
DSID
VOLUME

Restrictions in a JES3 System: For JES3, the only DD parameters that you can code with the
DATA parameter follow. All other parameters are a JCL error.

DCB = BLKSIZE
DCB=BUFNO
DCB=LRECL
DCB=MODE=C
DLM
DSID
VOLUME=SER

12-28 MVS JCL

DD:DATA

For 3540 Diskette Input/Output Units: VOLUME=SER, DCB=BUFNO, and DSID
parameters on a DD DATA statement are ignored except when they are detected by a diskette
reader as a request for an associated data set. See IBM 3540 Programmer's Reference. On a
DD * or DD DATA statement processed by a diskette reader, you can specify DSID and
VOLUME = SER parameters to indicate that a diskette data set is to be merged into the input
stream following the DD statement.

Relationship to Other Control Statements

Do not refer to an earlier DD DATA statement in DCB or DSNAME parameters on following
DD statements.

Location in the J CL

A DD DATA statement begins an in-stream data set.

In-stream Data for Cataloged or In-stream Procedures: A cataloged or in-stream procedure
cannot contain a DD DATA statement. When you call a procedure, you can add input stream
data to a procedure step by placing in the calling step one or more DD * or DD DATA
statements, each followed by data.

Multiple In-stream Data Sets for a Step: You can code more than one DD * or DD DATA
statement in a job step in order to include several distinct groups of data for the processing
program. Precede each group with a DD * or DD DATA statement and follow each group
with a delimiter statement. If you omit a DD statement before input data, the system provides a
DD * statement with the ddname of SYSIN; if you omit a following delimiter statement, the
system ends the data when it reads a JCL statement or runs out of card images.

Unread Records

If the processing program does not read all the data in an in-stream data set, the system skips
the remaining data without abnormally terminating the step.

Examples of the DATA Parameter

//GROUPl

/*
//GROUP2

/*

DO DATA

data

DO DATA

data

This example defines two groups of data in the input stream.

Chapter 12. Coding the DD Statement 12-29

•

DD:DATA

IISTEP2
IIPREP.DD4
II
II
IIPREP.INI

1*
I/ADD.IN2

1*

EXEC PROC=UPDATE
DD DSNAME=A.B.C,VOLUME=SER=D88,

UNIT=3350,SPACE=(TRK,(lO,5)),
DISP=(,CATLG,DELETE)

DD DATA

data

DD *

data

This example defines two groups of data in the input stream. The input defined by DD
statement PREP.lNI is for use by the cataloged procedure step named PREP. This data
contains job control statements. The input defined by DD statement ADD.IN2 is for use by
the cataloged procedure step named ADD. Because this data is defined by a DD * statement,
it must not contain job control statements.

12-30 MVS JCL

DD:DCB

DCB Parameter

Parameter Type: Keyword, optional

Purpose: Use the DCB parameter to complete during execution the information in the data
control block (DCB) for a data set.

The data control block is constructed by the DCB macro instruction in assembler language
programs or file definition statements or language-defined defaults in programs in other
languages.

References: For more information on constructing the data control block, see Data
Management Services Guide.

Syntax:

DCB=(subparameter[,subparameter] ...)

dsname }
*.ddname }

(
(

DCB=(
(

*.stepname.ddname } [,subparameter] ...
*.stepname.procstepname.ddname }

Parentheses: You can omit the parentheses if you code:

• Only one keyword subparameter.

• Only a data set name, dsname, without any subparameters.

• Only a backward reference without any subparameters. A backward reference is a reference to an
earlier DD statement in the job or in a cataloged or in-stream procedure called by a job step. A
backward reference is in the form * .ddname or * .stepname.ddname or
* .stepname. procstepname.ddname.

For example, DCB=RECFM=FB or DCB=WKDATA or DCB=*.STEP3.DD2

Multiple Subparameters: When the parameter contains more than one subparameter, separate the
subparameters by commas and enclose the subparameter list in parentheses. For example,
DCB = (RECFM = FB,LRECL= 133,BLKSIZE=399) or DCB=(*.DDl,BUFNO=4)

Continuation onto Another Statement: Enclose the subparameter list in only one set of parentheses. End
each statement with a comma after a complete subparameter. For example:

IIINPUT
II

DO OSN=WKOATA,OCB=(RECFM=FB,LRECL=80,BLKSIZE=800,
BUFL=800,BUFNO=4)

Chapter 12. Coding the DD Statement 12-31

•

DD:DCB

Subparameter Definition

Defaults

subparameter
Specifies a DCB keyword subparameter needed to complete the data control block. An
alphabetic summary of the DCB keyword subparameters follows this parameter
description.

dsname
Names a cataloged data set. The system is to copy DCB information from the data set's
label. The data set must reside on a direct access volume, and the volume must be
mounted before the job step is executed.

The dsname cannot contain special characters, except for periods used in qualifying the
name. Do not specify a generation data group (GDG) name.

*.ddname
Specifies the ddname of an earlier DD statement in the same step. The system is to copy
DCB information from the DD statement. The DCB parameter of the referenced DD
statement must contain sUhparameters; it cannot name a cataloged data set or refer to
another D:!) statement.

* .stepname.ddname
Specifies the ddname of a DD statement in an earlier step, stepname, in the same job.
The system is to is to copy DCB information from the DD statement. The DCB
parameter of the referenced DD statement must contain subparameters; it cannot name a
cataloged data set or refer to another DD statement.

* .stepname. procstepname.ddname
Specifies the ddname of a DD statement in a cataloged or in-stream procedure called by
an earlier job step. Stepname is the name of the job step that calls the procedure and
procstepname is the name of the procedure step that contains the DD statement. The
system is to is to copy DCB information from the DD statement. The DCB parameter of
the referenced DD statement must contain subparameters; it cannot name a cataloged
data set or refer to another DD statement.

The system obtains DCB information from the following sources, in override order:

• The processing program, that is, the DCB macro instruction in assembler language
programs or file definition statements or language-defined defaults in programs in other
languages.

• The DCB subparameter of the DD statement.

• The data set label.

Therefore, if you supply information for the same DCB field in your processing program and
on a DD statement, the system ignores the DD DCB subparameter. If a DD statement and the
data set label supply information for the same DCB field, the system ignores the data set label
information.

12-32 MVS JCL

Relationship to Other Parameters

Do not code the following parameters with the DCB parameter.

AMP
DYNAM

DD:DCB

With the DDNAME parameter, code only the BLKSIZE, BUFNO, and DIAGNS DCB
subparameters.

The following are also mutually exclusive:

DCB
Subparameter

CPRI
FRID
FUNC
THRESH

Mutually Exclusive With

DD parameter OUTLIM
DD or OUTPUT JCL FeB parameter
Data-set-sequence-number of the DD LABEL parameter
DD parameter OUT LIM

Mutually Exclusive DCB Subparameters: The DCB subparameLers CODE, KEYLEN, MODE,
PRTSP, STACK, and TRTCH apply to different device types; because only one can apply to a
data set, they use the same DCB field. If one of these subparameters is specified on a DD
statement for a device different from the type to which it applies, the system interprets the value
incorrectly.

DCB subparameters CPRI and THRESH are mutually exclusive.

For 3540 Diskette Input/Output Units: The VOLUME::= SER, DCB = BUFNO, and DSID
parameters on a DD * or DD DATA statement are ignored except when they are detected by a
diskette reader as a request for an associated data set. See lBAf 3540 Programmer's Reference.

Completing the Data Control Block

For Assembler Language Programs: You must code the DCB macro instruction in a processing
program written in assembler language. You can specify some DeB options, particularly those
that are different for each execution of the program, on the DD statement DCB parameter, or
you can let the system read them from a data set label.

For Programs in Other Languages: If your processing program is written in a language other
than assembler, DCB options may be (1) specified as part of file definition statements in your
program, as DCB subparameters on a DD statement, or in data set label fields, or (2) taken
from language-defined default values via the DCB open exit routine. Refer to the
programmer's guide for your language to determine how to code DeB options. Refer to Data
Management Services Guide for a description of the DCB open exit routine.

DCB Information from the DD DeB Parameter: Code DCB keyword subparameters to provide
the information required to complete the data control block. You must supply DCB options on
the DD statement DCB parameter if your processing program, the data set label, or your
language's defined values do not complete the data control block.

Chapter 12. Coding the DD Statement 12-33

•

DD:DCB

DCB Information from the Label of a Cataloged Data Set: Code DCB = dsname to copy the
following DCB information from the data set label of a cataloged data set on a currently
mounted direct access volume.

DSORG (used in a backward reference)
RECFM
OPTCD
BLKSIZE
LRECL
KEYLEN
RKP

If you do not specify the volume sequence number, system code, and expiration date of the
cataloged data set, the system copies them from the data set label.

If you code any DCB subparameters after the dsname, these subparameters override any of the
corresponding subparameters in the data set label.

Mounting of Volume: A permanently resident volume is the best place from which to copy
information, because it is always mounted.

To copy from a volume that is neither permanently resident nor reserved, do one of the
following:

• Reference the volume in a job step before the step in which you copy the DCB information.
This reference will ensure that the DCB information is available.

• If the processing program specifies the RDBACK option in the OPEN macro, code the
volume-sequence-number subparameter in the DD VOLUME parameter to make sure that
the correct volume is mounted.

DCB Information From an Earlier DD Statement: To copy DCB information from an earlier
DD statement, code in the DCB parameter one of the following backward references:

*.ddname
* .stepname.ddname
* .stepname. procstepname.ddname

If you code any DCB subparameters following the reference, the subparameters override the
corresponding subparameters on the referenced DD statement. The system copies from the
referenced DD statement only those subparameters not specified on the referencing DD
statement.

Do not reference a DD * or a DD DATA statement.

Note: The system also copies the UCS and FCB parameters from the referenced DD
statement, unless you override them in the referencing DD statement.

12-34 MVS JCL

/

DD:DCB

Examples of the DeB Parameter

IIDD1
II
II

DD DSNAME=ALP,DISP=(,KEEP) ,VOLUME=SER=44321,
UNIT=3400-6,DCB=(RECFM=FB,LRECL=240,BLKSIZE=960,
DEN=l,TRTCH=C)

DD statement DDl defines a new data set named ALP. The DCB parameter contains the
information necessary to complete the data control block.

IIDD2
II
IIDD3
II

DD

DD

DSNAME=BAL,DISP=OLD,DCB=(RECFM=F,LRECL=80,
BLKSIZE=80)
DSNAME=CNANN,DISP=(,CATLG,DELETE),UNIT=3400-6,
LABEL=(,NL) ,VOLUME=SER=663488,DCB=*.DD2

DD statement DD3 defines a new data set named CNANN and requests that the system copy
the DCB subparameters from DD statement DD2, which is in the same job step. •
----------1
IIDD4
II

DD DSNAME=JST,DISP=(NEW,KEEP),UNIT=3350,
SPACE=(CYL,(12,2)),DCB=(A.B.C,KEYLEN=8)

DD statement DD4 defines a new data set named JST and requests that the system copy the
DCB information from the data set label of the cataloged data set named A.B.C. If the data
set label contains a key length specification, it is overridden by the KEY LEN coded on this DD
statement.

I/DD5
II

DD DSNAME=SMAE,DISP=OLD,UNIT=3350,
DCB=(*.STEP1.PROCSTP5.DD8,BUFNO=5)

DD statement DD5 defines an existing data set named SMAE and requests that the system
copy DCB subparameters from DD statement DD8, which is contained in the procedure step
named PROCSTP5. The cataloged procedure is called by EXEC statement STEPl. Any of the
DCB subparameters coded on DD statement DD8 are ignored if the are specified in the
program. If the DCB BUFNO subparameter is not specified in the program, five buffers are
assigned.

Chapter 12. Coding the DD Statement 12-35

DD:DCB

~ Method

~ ~ ~ ~ ~ ~ ~ ~ ~ Description of Subparameters
Sub- < rI:l .< ~ ~ ~ < cj Q ;:; Q.. rI:l E- rI:l
Parameters = = = = I.OJ ~ r:::J r:::J E-o

BFALN X X X X X X X BF ALN = {FID}

Specifies that each buffer starts either on a word boundary that is not also a
doubleword boundary or on a doubleword boundary. If both BF ALN and
BFTEK are specified, they must be specified from the same source.

Default: D (doubleword)

BFTEK X X X X BFTEK=R forBDAM and BSAM
BFTEK = D for BTAM
BFTEK = {SIEIA} for QSAM

R Specifies that the data set is being created for or contains variable-length
spanned records.

D Specifies that dynamic buffering is to be used in the processing program; if
dynamic buffering is specified, a buffer pool must also be defined.

S, E, and A
Specify simple, exchange, or locate mode logical record interface for

spanned records. S, E, or A can be coded only when RECFM = VS.

If both BF ALN and BFTEK are specified, they must be specified from the same
source.

BLKSIZE X X X X X X X BLKSIZE = number-of-bytes

Specifies the maximum length, in bytes, of a block. The maximum is 32760. The
number you specify for BLKSIZE depends on the device type and the record
format for the data set. For ASCII data sets on magnetic tape, the minimum
value for BLKSIZE is 18 bytes and the maximum is 2048 bytes. If you code the
BLKSIZE subparameter in the DCB macro instruction or on a DD statement
that defines an existing data set with standard labels, the DCB BLKSIZE
overrides the block size specified in the label. BLKSIZE can be coded but will
have no effect on EXCP processing.

BUFIN X BUFIN = number-of-buffers

Specifies the number of buffers to be assigned initially for receiving operations for
each line in the line group. The combined BUFIN and BUFOUT values must
not be greater than the number of buffers in the buffer pool for this line group
(not including those for disk activity only).

Default: I

BUFL X X XX X XX X BUFL = number-of-bytes

Specifies the length, in bytes, of each buffer in the buffer pool. The maximum is
32760.

BUFMAX X BUFMAX = number-of-buffers

Specifies the maximum number of buffers to be allocated to a line at one time.
Number must be 2 through 15 and must be equal to or greater than the larger of
the numbers specified by the BUFIN and BUFOUT subparameters.

Default: 2

12-36 MVS JCL

DD:DCB

~
Method

~ '~ ~ ~ ~ Q.,

~ ~
~ ~ Description of Subparameters

Sub- ~ < < ~ ~ < t'-l 1:\.0 t'-l E-t t'-l

~ parameters =:I ;; =:I =:I =:I ~ C!) 5 CI

BUFNO X X X X X X X X BUFN 0 = number-of-buffers

Specifies the number of buffers to be assigned to the DCB. The maximum
normally is 255, but can be less because of the size of the region.

BUFOFF X X BUFOFF={nlL}

n Specifies the length, in bytes, of the block prefix used with an ASCII tape
data set. For input, n can be 0 through 99. For output, n must be 0 for
writing an output data set with fixed-length or undefined-length records.

L Specifies that the block prefix is 4 bytes and contains the block length.
BUFOFF = L is valid only with RECFM = D. For output, only
BUFOFF = L is valid.

BUFOUT X BUFOUT = number-of-buffers •
Specifies the number of buffers to be assigned initially for sending operations for
each line in the line group. The combined number of BUFIN and BUFOUT
values must not be greater than the number of buffers in the buffer pool for this
line group (not including those for disk activity only) and cannot exceed 15.

Default: 2

BUFSIZE X BUFSIZE = number-of-bytes

Specifies the length, in bytes, of each of the buffers to be used for all lines in a
particular line group. Length must be 31 through 65535 bytes.

CODE X X X CODE = {AIBICIFIIINIT}

Specifies the paper tape code used for punched data. The subparameters CODE,
KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually exclusive.
A ASCII (8 track)
B Burroughs (7 track)
C National Cash Register (8 track)
F Friden (8 track)
I IBM BCD perforated tape transmission code (8 track)
N No conversion required
T Teletypel (5 track)

Default: I

CPRI X CPRI = {RIElS}

Specifies the relative transmission priority assigned to the lines in this line group.
R Specifies that CPU receiving has priority over CPU sending.
E Specifies that receiving and sending have equal priority.
S Specifies that CPU sending has priority over CPU receiving.

Note: Subparameter CPRI is mutually exclusive with subparameter THRESH
and with DD parameter OUTUM.

lTrademark of Teletype Corporation, Skokie, Ill.

Chapter 12. Coding the DD Statement 12-37

DD:DCB

~
Method

~ ~ ~ ~ ~ Q., ~ ~ ~ Description of Subparameters
~ < Sub- < ~ < U en < < Q en en E-o ~ < 5 en u

Parameters =:I = =:I =:I =:I ,e.:;, CI E-o

CYLOFL X CYLOFL = number-of-tracks

Specifies the number of tracks on each cylinder to hold the records that overflow
from other tracks on that cylinder. The maximum is 99.

Specify CYLOFL only when OPTCD = Y.

DEN X X X DEN= {011121314}

Specifies the magnetic density, in number of bytes-per-inch, used to write a
magnetic tape data set.

DEN 7-track tape 9-track tape

0 200 -
1 556 -
2 800 800 (NRZI)
3 - 1600 (PE)
4 - 6250 (GCR)

NRZI Non-return-to-zero inverted recording mode.
PE Phase encoded recording mode.
GCR Group coded recording mode.

Default: 800 bpi assumed for 7-track tape and 9-track without dual density.
1600 bpi assumed for 9-track with dual density or phase-encoded

drives.
6250 bpi assumed for 9-track with 6250/1600 bpi dual density or group

coded recording tape.

DIAGNS X X X X X X X X X DIAGNS == TRACE

Specifies the OPEN/CLOSE/EOV trace option, which gives a
module-by-module trace of OPEN/CLOSE/EOV's work area and the DCB. If
the generalized trace facility (GFT) is not running and tracing user events,
DIAGNS is ignored.

DSORG X X X X X X X X X X DSORG == data-set-organization

Specifies the organization of the data set and indicates whether the data set
contains any location-dependent information that would make the data set
unmovable.

Organization Access Method

PS Physical sequential data set BSAM,EXCP,QSAM,TCAM

PSU Physical sequential data set that con- BSAM,QSAM,EXCP
tains location-dependent information

DA Direct access data set BDAM,EXCP

DAU Direct access data set that contains BDAM,EXCP
location-dependent information

IS Indexed sequential data set BISAM,QISAM,EXCP

ISU Indexed sequential data set that con- QISAM,EXCP
tains location-dependent information

PO Partitioned data set BPAM,EXCP

POU Partitioned data set that contains BPAM,EXCP
location-dependent information

CX Communications line group BTAM

GS Graphic data control block GAM

12-38 MVS JCL

DD:DCB

~
Method

~ i ~ ~ ~ ~ ~ i ~ ~ Description of Subparameters
Sub-
Parameters

EROPT X X EROPT=n

BTAM: Requests the BTAM on-line terminal test option.
n=T

QSAM: Specifies the option to be executed if an error occurs in reading
or writing a record.
n=ACC System is to accept the block causing the error.

SKP System is to skip the block causing the error.
ABE System is to cause abnormal end of task.

Default: ABE

FRID X FRID = identifier

Specifies a 1- to 4-character load module name identifying the first format record i.
of the 3886 Optical Character Reader data set. FRID is mutually exclusive with
the DD or OUTPUT JCL FCB parameter.

FUNC X X FUNC = {IIRIPIWIDIXIT}

Specifies the type of data set to be opened for a 3505 Card Reader or 3525 Card
Punch. Unpredictable results will occur if coded for other than a 3505 or 3525.

Note: Subparameter FUNC is mutually exclusive with the
data-set-sequence-number of the DD LABEL parameter.

I Data set is for punching and printing cards.
R Data set is for reading cards.
P Data set is for punching cards.
W Data set is for printing.
D Protected data set is for punching.
X Data set is for both punching and printing.
T Two-line print option.

Default: P, for output data set. R, for input data set.

The only valid combinations of these values are:
I WT RWT RPWXT PWX
R RP PW RPWD RPWX
P RPD PWXT RWX RWX
W RW RPW RWXT

GNCP X GNCP = number-of-channel-programs

Specifies the maximum number of I/O macro instructions that lhe program will
issue before aWAIT macro instruction.

INTVL X INTVL= {integerIO}

Specifies the interval, in seconds, between passes through an invitation list.

Default: 0

IPLTXID X IPL TXID = member-name

Specifies the member name of the partitioned data set that you want loaded into a
3704/3705 Communications Controller. The DCB IPLTXID subparameter
overrides IPLTXID in the TERMINAL macro representing the NCP.

Chapter 12. Coding the DD Statement 12-39

DD:DCB

I~
Method

~
;:g

~ ~ ::; Q., ~ ~ ~
Description of Subparameters

Sub- < -< -< < U ~ -< < -< Cf.) -< r;n

Parameters
0 ; ~ rn E- ~ (5 ~ U = = = /Xl W C.) 0 f-<

KEYLEN X X X X X X KEYLEN = number-of-bytes

Specifies the length, in bytes, of the keys used in a data set. The number is from
1 through 255. KEYLEN = 0 specified in the DCB parameter is ignored. For an
existing data set, the key length can be supplied from the data set label. If a key
length is not specified or supplied, input or output requests must not require keys.
The subparameters CODE, KEYLEN, MODE, PRTSP, STACK, and TRTCH
are mutually exclusive.

LIMCT X LIMCT = number-of-blocks-or-tracks

Specifies how many blocks (if relative block addressing is used) or how many
tracks (if relative track addressing is used) are to be searched for a free block or
available space. This kind of search occurs only when DCB OPTCD = E is also
specified; otherwise, LIMCT is ignored. If the LIMCT number equals or exceeds
the number of blocks or tracks in the data set, the entire data set is searched.

LRECL X X X X X X LRECL = number-of-bytes

Specifies (1) the length, in bytes, for fixed-length records or (2) the maximum
length, in bytes, for variable-length records. When the DCB RECFM is For U,
the length must not exceed the DCB BLKSIZE. For RECFM = D or V, the
length must not exceed BLKSIZE minus 4. For RECFM = VS, the length can
exceed BLKSIZE. For unblocked records when DCB RKP=O, the length is for
only the data portion of the record.

LRECL = nnnnnK

Specifics the length in kilobytes for variable-length spanned records in
ISO/ANSI/FIPS Version 3 tape data sets that are processed the Data Facility
Product using the extended logical record interface (XLRI). nnnnn is from 1
through 16383 and indicates multiples of 1024 bytes. The value in the DCB must
be LRECL = OK or LRECL = nnnnnK. If a K is coded for any other type of data
sct, only the numeric value of LRECL is recognized.

QSAM: LRECL=X
I 1 Specifies that the logical record length exceeds 32760 bytes for variable-length
spanned records. This option is not valid for ISO/ANSI/FIPS Version 3
variable-length records.

12-40 MVS JCL

DD:DCB

I~
Method

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Description of Subparameters

Sub- < < < U
~ < <

Q IZI
~ IZI Eo-< ;x: ~ IZI U

Parameters ~ ;; ~ ~ ~ ~ 0 0 Eo-<

MODE X X X
{C [O]}

MODE= {E [R]}

Specifies the mode of operation to be used with a card reader, a card punch, or a
card read-punch.

C Card image (column binary) mode
E EBCDIC mode
0 Optional mark read mode
R Read column eliminate mode

If you specify R, you must also specify either C or E. Do not code the MODE • subparameter for data entered through the input stream except in a JES3 system.
The subparameters CODE, KEYLEN, MODE, PRTSP, STACK, and TRTCH
are mutually exclusive.

Do not code MODE = C for JES2 or JES3 output.

Default: E

NCP X X X NCP = number-of-channel-programs

Specifies the maximum number of READ or WRITE macro instructions that will
be issued before a CHECK macro instruction is issued to test for completion of
the I/O operation. The maximum number is 99, but may actually be smaller
depending on the size of the region or partition. If chained scheduling is used,
the number must be greater than 1.

Default: 1

NTM X NTM = number-of-tracks

Specifies the number of tracks to be used for a cylinder index. When the specified
number of tracks has been filled, a master index is created. The DCB NTM is
needed only when the DCB OPTCB = M. If you specify OPTCD = M but omit
NTM, the master index option is ignored.

Chapter 12. Coding the DD Statement 12-41

DD:DCB

~
Method

~ ~ ~ ~ ~ =-- ~ ~ ~ ::E Description of Subparameters
Sub- ~ < < < ~ < < CI} <

,~ ~ =-- CI} Eo-< CI} U
Parameters ~ ; ~ ~ ~ ,~ CI CI Eo-<

OPTCD X X X X X X X X Specifies the optional services to be performed by the control program. All
optional services must be requested in one source, that is, in the data set label of
an existing data set, in the DCB macro, or in the DD DCB parameter. However,
the processing program can modify the DCB OPTCD field. Code the characters
in any order; when coding more than one, do not code commas between the
characters.

{{A} }
BDAM: OPTCD = { {R}[E][F][W] }

A indicates that the actual device addresses are to be specified in READ and
WRITE macro instructions.

R indicates that relative block addresses are to be specified in READ and
WRITE macro instructions.

E indicates that an extended search (more than one track) is to be performed
for a block of available space. LIMCT must also be coded. Do not code
LIMCT = 0 because it will cause an abnormal termination when a READ or
WRITE macro instruction is executed.

F indicates that feedback can be requested in READ and WRITE macro
instructions and the device is to be identified in the same form as it was
presented to the control program.

W requests a validity check for write operations on direct access devices.

BISAM: OPTCD = {[L][R][W]}

L requests that the control program delete records that have a first byte of all
ones. These records will be deleted when space is required for new records.
To use the delete option, the DCB RKP must be greater than zero for
fixed-length records and greater than four for variable-length records.

R requests that the control program place reorganization criteria information
in certain fields of the DCB. The problem program can analyze these
statistics to determine when to reorganize the data set.

W requests a validity check for write operations on direct access devices.

Default: R, whenever the OPTCD subparameter is omitted from all sources.

BPAM: OPTCD= {ClWICW}
{ClHIHC}
{ClWHIWHC}

C requests chained scheduling.

W requests a validity check for write operations on direct access devices.

H requests that a partitioned data set being processed and residing on MSS, if
opening for input, is to be staged to end of file (EO F) on the virtual
DASD. Otherwise, only the directory is staged.

12.;.42 MVS JCL

DD:DCB

~
Method

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Description of Subparameters

Sub- -< -< U ~ -<
Q ~ ~ ~ ~ >< -< 5' ~ U

Parameters =:I iii =:I =:I =:I r.:I '-' 0 ~

OPTCD BSAM and QSAM: OPTCD = {B}
(continued) {T}

{U[C]}
{ C[T][B][U]}
{H[Z][B]}
{J[C][U]}
{W[C] [T] [B][U]}
{Z[C][T][B][U]}
{ Q[C][T][B]}
{Z}

B requests that the end-of-volume (EOV) routine disregard the end-of-file
(EOF) recognition for magnetic tape. For an input data set on a
standard-labeled (SL or AL) tape, the EOV routine treats EOF labels as
EOV labels until the volume serial list is exhausted. This option allows SL • or AL tapes to be read out of volume sequence or to be concatenated to
another tape with the same data set name using one DD statement.

C requests chained scheduling.

H requests hopper empty exit for optical readers or bypass of DOS checkpoint
records.

J for a data set to be printed on a 3800 Printing Subsystem, instructs the
system that each output data line begins with a print control character
followed by a table reference character (TRC). The TRC identifies which
character arrangement table in the CHARS parameter is to be used to print
the line. Before specifying OPTCD = J, see the IBM 3800 Printing
Subsystem Programmer's Guide.

Q requests (1) that ASCII tape records in an input data set be converted to
EBCDIC code when the input record has been read, or (2) an output record
in EBCDIC code be converted to ASCII code before the record is written.

T requests user totaling facility. T cannot be specified for a SYSIN or
SYSOUT data set.

U for 1403 or 3211 Printers with the Universal Character Set (UCS) feature
and for the 3800, permits data checks and allows analysis by an appropriate
error analysis routine. If U is omitted, data checks are not recognized as
errors.

U for MSS, requests window processing to reduce the amount of staging space
required to process large sequential data sets. The DCB DSORG must be
PS, the allocation must be in cylinders, and the type of I/O accessing must
be INPUT only or OUTPUT only.

W requests a validity check for write operations on direct access devices.

Z for magnetic tape input, requests that the control program shorten its
normal error recovery procedure. When specified, a data check is
considered permanent after five unsuccessful attempts to read a record.

Z for direct access storage device input, specifies search direct (SD) for
sequential data sets.

Z for direct access input, specifies the search direct technique.

OPTCD = Z is ignored if chained scheduling is used.

EXCP: OPTCD = Z

Z for magnetic tape input, requests that the control program shorten its
normal error recovery procedure. When specified, a data check is
considered permanent after five unsuccessful attempts to read a record.

Z for direct access storage device input, specifies search direct (SD) for
sequential data sets.

Chapter 12. Coding the DD Statement 12-43

DD:DCB

~
Method I

1

~ ~ ~ ~ ~
i=.,

~
I~ ~ ~ Description of Subparameters

Sub- -< ~ i~ !rI,l

5S
CIl

~ t; ~ I : CIl U
Parameters = = ~ :01 iCl E-c

OPTCD QISAM: OPTCD = {[I][L][M][R][U][W][Y]}
(continued)

I requests that ISAM use the independent overflow areas for overflow
records.

L requests that ISAM delete records that have a first byte of all ones. These
records can be deleted when space is required for new records. To use the
delete option, the DCB RKP must be greater than zero for fixed-Ien:;!.h
records and greater than four for variable-length records.

M requests that the system create and maintain one or more master inrlexes,
according to the number of tracks specified in the DCB NTM
subparameter.

R requests that the control program place reorganization criteria information
in the DCB. The problem program can analyze these statistics to determine
when to reorganize the data set.

U requests that the system accumulate track index entries in storage and write
them as a group for each track of the track index. U can be specified only
for fixed-length records.

W requests a validity check for write operations on direct access devices.
y requests that the system use the cylinder overflow areas for overflow

records.

Default: R, whenever the OPTCD subparameter is omitted from all sources.

TCAM: OPTCD = {quIW}

C specifies that one byte of the work area indicates if a segment of a message
is the first, middle, or last segment.

U specifies that the work unit is a message. If U is omitted, the work unit is
assumed to be a record.

W specifies that the name of each message source is to be placed in an 8-byte
field in the work area.

PCI X
{([N][,N])}

PCI= {([R][,R])}
{([A] [,A])}
{ ([X][,X]) }

Specifies (1) whether or not a program-controlled interruption (PCI) is to be used
to control the allocation and freeing of buffers and (2) how these operations are
to be performed. The first operand applies to receiving operations and the second
to sending operations.

N specifies that no PCls are taken while filling buffers during receiving
operations or emptying buffers during sending operations.

R specifies that after the first buffer is filled or emptied, a PCI occurs during
the filling or emptying of each succeeding buffer. The completed buffer is
freed, but no new buffer is allocated to take its place.

A specifies that after the first buffer is filled or emptied, a PCI occurs during
the filling or emptying of the next buffer. The first buffer is freed, and a
buffer is allocated to take its place.

X specifies that after a buffer is filled or emptied, a PCI occurs during the
filling or emptying of the next buffer. The first buffer is not freed, but a
new buffer is allocated.

You can omit the parentheses if you code only the first operand.

Default: (A,A)

12-44 MVS JCL

DD:DCB

~
Method

~ ~)1 ~
)1 t:l..)1 ~: ~)1 Description of Subparameters

Sub- 00 < < U < <I Q = t:l.. CZl tQ ; :><i
5: CZl' U

Parameters =1 = = w' ~, 0': E-<:

PRTSP X X X PRTSP = {OI11213}

Specifies the line spacing for an online printer. PRTSP is valid only for an online
printer and only if the DCB RECFM is not A or M. PRTSP=2 is ignored if
specified with the DD SYSOUT parameter. The subparameters CODE,
KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually exclusive.

0 spacing is suppressed
1 single spacing
2 double spacing
3 triple spacing

Default: 1 • JES2 ignores PRTSP for SYSOUT data sets.

RECFM X X X X X X X Specifies the format and characteristics of the records in the data set. All the
format and characteristics must be completely described in one source, that is, in
the data set label of an existing data set, in the DCB macro, or in the DD DCB
parameter. However, the processing program can modify the DCB RECFM
field.

{U }
{ V[S] }

BDAM: RECFM = { [BS] }
{ F[T] }

U indicates that the records are of undefined length.

V indicates that the records are of variable length.

VS indicates that the records are of variable length and spanned.

VBS indicates that the records .are of variable length, blocked, and spanned, and
that the problem program must block and segment the records.

F indicates that the records are of fixed length.

T indicates that the records may be written using the track-overflow feature.

Default: undefined-length, unblocked records.

{U [T] [A] }
{ [M] }
{ }
{V [B] [A] }

BPAM: RECFM= { [T] [M] }
{ [BT] }
{ }
{F [B] [A] }
{ [T] [M] }
{ [BT] }

A indicates that the record contains ISO/ANSI control characters.
B indicates that the records are blocked.
F indicates that the records are of fixed length.
M indicates that the records contain machine code control c;haracters.
T indicates that the records may be written using the track-overflow feature.

Chained scheduling (OPTCD = C) will be ignored.
U indicates that the records are of undefined length.
V indicates that the records are of variable length.

Default: U

Chapter 12. Coding the DD Stat~m.ent 12-45

DD:DCB

~ Method

~ ::E
~ ::E ::E ~ ~ ~

.:s Description of Subparameters
Sub- < < < u ::E <

Q CIl
~ CIl ~ ><: < fa CIl U

Parameters = ;; = = = ~ C-' CI CI ~

RECFM {U [T] [A] }
(continued) { [M] }

{ }
{ F [B] [A] }
{ [S] [M] }
{ [T] }
{ [BS] }

BSAM,EXCP,& QSAM: RECFM = { [BT] }
{ [BST] }
{ }
{V [B] [A] }
{ [S] [M] }
{ [T] }
{ [BS] }
{ [BT] }
{ [BSTJ }

For BSAM, EXCP, and QSAM using ISO/ANSI/FIPS data sets on tape:

{D [B] S }
{D [BJ [AJ }

RECFM= {U [AJ }
{ F [BJ [AJ }

A or M cannot be specified if the PRTSP subparameter is specified.

A indicates that the record contains ISO/ANSI device control characters.
B indicates that the records are blocked.
D indicates that the records are variable-length ISO/ANSI tape records.
F indicates that the records are of fixed length.
M indicates that the records contain machine code control characters.
S (1) For fixed-length records, indicates that the records are written as

standard blocks, that is, no truncated blocks or unfilled tracks within the
data set, with the exception of the last block or track. (2) For
variable-length records, indicates that a record can span more than one
block.

T indicates that the records can be written using the track-overflow feature, if
required. Chained scheduling (OPTCD = C) is ignored.

U indicates that the records are of undefined length. U is invalid for an
ISO/ANSI/FIPS Version 3 tape data set.

V indicates that the records are of variable length. V cannot be specified for
(1) a variable-length ISO/ANSI tape data set (specify D for this data set),
(2) a card reader data set, or (3) a 7-track tape unless the data conversion
feature (TR TCH = C) is used.

Default: U for IBM standard label tapes.

QISAM: RECFM= { V[B] }
{ F[B] }

B indicates that the records are blocked.
F indIcates that the records are of fixed iength.
V indicates that the records are of variable length; variable records cannot be

in ASCII.

When creating indexed sequential data sets, you can code the RECFM
subparameter; when processing existing indexed sequential data sets, you must
omit RECFM.

Default: V

12-46 MVS JCL

DD:DCB

~
Method

~ ~ ~ ~ ~ Q.. ~ ~ ~ Description of Subparameters
Sub- < < < < U ~ < < CI'.l ~ 0 ; Q.. en Eo-< ~ < CI'.l U
Parameters ~ ~ ~ ~ ~ I.:i 01 01 Eo-<

RECFM TCAM: RECFM= {U }
(continued) { V[B] }

{ F }

B indicates that the records are blocked.
F indicates that the records are of fixed length.
U indicates that the records are of undefined length.
V indicates that the records are of variable length.

Default: U

RESERVE X RESERVE = (numberl ,number2)

Specifies the number of bytes (0 through 255) to be reserved in a buffer for • insertion of data by the DATETIME and SEQUENCE macros.

numberl indicates the number of bytes to be reserved in the first buffer that
receives an incoming message.

number2 indicates the number of bytes to be reserved in all the buffers
following the first buffer in a multiple-buffer header situation.

Default: (0,0)

RKP X X RKP=number

Specifies the position of the first byte of the record key in each logical record.
The first byte of a logical record is position O.

If RKP = 0 is specified for blocked fixed-length records, the key begins in the first
byte of each record. OPTCD = L must not be specified.

If RKP = 0 is specified for unblocked fixed-length records, the key is not written
in the data field. OPTCD = L can be specified.

For variable-length records, the relative key position must be 4 or greater, if
OPTCD = L is not specified; the relative key position must be 5 or greater, if
OPTCD = L is specified.

Default: 0

For EXCP processing, RKP can be coded but is ignored.

STACK X X X STACK = {112}

Specifies which stacker bin is to receive a card. The subparameters CODE,
KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually exclusive.

Default: 1

THRESH X THRESH = number

Specifies the percentage of the nonreusable disk message queue records that are to
be used before a flush closedown occurs.

Default: Closedown occurs when 95} of the records have been used.

Note: Subparameter THRESH is mutually exclusive with subparameter CPRI
and with DD parameter OUTUM.

Chapter 12. Coding the DD Statement 12-47

DD:DCB

~
Method

I

~ ~ ::s I~ ~ ~ ::s ~ ::s ~ Description of Subparamders
Sub-

~ ~ < Ct.l itll S -< ~ ~ U
Parameters = ;; = ~ ~ CI CI Eo--

TRTCH X X X TRTCH = {CiEITIET}

Specifies the recording technique for 7-track tape. The subparameters CODE,
KEYLEN, MODE, PRTSP, STACK, and TRTCH are mutually exclusive.

C specifies data conversion, odd parity, and no translation.

E specifies no data conversion, even parity, and no translation.

T specifies no data conversion, odd parity, and that BCD to EBCDIC
translation is required when reading and EBCDIC to BCD translation
when writing.

ET specifies no data conversion, even parity, and that BCD to EBCDIC
translation is required when reading and EBCDIC to BCD translation
when writing.

Default: no conversion, odd parity, and no translation.

12-48 MVS JCL

DD: DDNAME

DDNAME Parameter

Parameter Type: Keyword, optional

Purpose: Use the DDNAME parameter to postpone defining a data set until later in the same
job step. A DDNAME parameter on a DD statement in a cataloged or in-stream procedure
allows you to postpone defining the data set until a job step calls the procedure; the data set
must be defined in the calling job step.

References: For more information on the DDNAME parameter, see "Specifying the
DDNAME Parameter" on page 7-1.

Syntax:

DDNAME=ddnarne

Subparameter Definition

ddname
Refers to a later DD statement that defines the data set. The ddname must match the
ddname of the defining DD statement.

A job step or procedure step can contain up to five DD statements with DDNAME
parameters. Each DDNAME parameter must refer to a different DD statement.

Relationship to Other Parameters

Overrides

The only DD parameters you can code with the DDNAME parameter are:

AMP
DCB = BLKSIZE
DCB=BUFNO
DCB=DIAGNS

Do not code the DDNAME parameter on a DD statement with a ddname of JOBLIB,
JOBCAT, or STEPCAT.

If any DCB subparameter appears on both DD statements, the DCB subparameter on the
referenced DD statement overrides the DCB subparameter on the DD statement that contains
DDNAME.

Chapter 12. Coding the DD Statement 12-49

•

DD: DDNAME

Location in the JCL

Place the DD statement referenced in the DDNAME parameter later in the job step or in a
cataloged or in-stream procedure called by the job step.

If the referenced data set is to be concatenated with other data sets, the DD statements for the
concatenated data sets must immediately follow the DD statement that contains the DDNAME
parameter.

Errors in Location of Referenced DD Statement: The system treats a DDNAME parameter as
through it were a DUMMY parameter aQd issues a warning message in both of the following
cases:

• If the job step or called procedure does not contain the referenced DD statement.
• If the referenced DD statement appears earlier in the job step.

Location. of DD Statement Requesting Unit Affinity: To use the same device, a DD statement
can request unit affinity to an earlier DD statement by specifying UNIT = AFF = ddname.

If a DD statement requests unit affinity to a DD statement containing a DDNAME parameter,
the DD statement requesting unit affinity must be placed after the DD statement referenced in
the DDNAME parameter. If the DD statement requesting unit affinity appears before, the
system treats the DD statement requesting unit affinity as a DUMMY DD statement.

//STEP EXEC PGM='I'KM
//DD1 DO 00NAME=DD4
//OD2 DO DSNAME=A,OISP=OLO

//D04 DO DSNAME=B,DISP=OLO
//D05 DO UNIT=AFF=OD1

DDI postpones defining the data set until DD4. DD5 requests unit affinity to DDI. Because
DDI is defined when DD5 is.processed, the system assigns DD5 to the same device as DOL

Instead of specifying UNIT = AFF = ddname, both DD statements can specify the same devices
in their UNIT parameters or the same volume serials in their VOLUME parameters. For more
information on unit affinity, see "Sharing a Unit Between Data Sets on Different Volumes" on
page 7-32.

Referenced DD Statement

If the DDNAME parameter appears in a procedure with multiple steps, the ddname on the
referenced DD statement takes the form stepname.ddname. For example, if procedure step
STEPCPI contains:

//INOATA OD 00NAME=OD1

The referenced DD statement in the calling job step is:

//STEPCP1.001 DD *

The referenced DD statement must not contain a DYNAM parameter.

12-50 MVS JCL

DD: DDNAME

Backward References

A backward reference is a reference to an earlier DO statement in the job or in a cataloged or
in-stream procedure called by a job step. A backward reference is in the form * .ddname or
*.stepname.ddname or *.stepname.procstepname.ddname. The ddname in the reference is the
ddname of the earlier DO statement. If the earlier DO statement contains a DDNAME
parameter, the reference is to the ddname in the name field of the earlier statement, not to the
ddname in the DDNAME parameter.

The DO statement referenced in a DDNAME parameter cannot refer to a DO statement
between the statement containing the DDNAME parameter and itself. For example:

IISHOW
IIDDl
IIDD2
IIDD3
II
IIDD4
IIDD5
IIINPUT
II

EXEC
DD
DD
DD

DD
DD
DD

PGM=ABLE
DDNAME=INPUT
DSNAME=TEMPSPAC,SPACE=(TRK,l),UNIT=SYSDA
DSNAME=INCOPY,VOLUME=REF=*.DD1,
DISP=(,KEEP) ,SPACE=(TRK,(5,2))
DSNAME=OUTLIST,DISP=OLD
DSNAME=MESSAGE,DISP=OLD,UNIT=3330,VOLUME=SER=333333
DSNAME=NEWLIST,DISP=(OLD,KEEP),VOLUME=SER=333333,
UNIT=3330

The DDNAME parameter on DOl refers to DO statement INPUT.

The VOLUME parameter of 003 specifies a backward reference to 001, which is the ddname
in the name field of the referenced statement.

DO statement INPUT identifies the volume 333333 in its VOLUME = SER = 333333 parameter.
DO statement INPUT cannot use a backward reference to the VOLUME parameter on 005
because 005 is between the referring DO 1 and the referenced INPUT.

Examples of the DDNAME Parameter

The following procedure step is the only step in a cataloged procedure named CROWE:

EXEC PGM=RECPGM
DD DDNAME=WKREC

/IPROCSTEP
IIDDl
IIPOD DD DSNAME=OLDREC,DISP=OLD

DO statement DO 1 is intended for weekly records in the input stream; these records are
processed by this step. Because the * and DATA parameters cannot be used in cataloged
procedures, the DDNAME parameter is coded to postpone defining the .data set until the
procedure is called by a job step. The step that calls the procedure is:

IISTEPA
IlwKREC

1*

EXEC PROC=CROWE
DD *

data

Chapter 12. Coding the DD Statement 12-51

DD: DDNAME

When the procedure contains multiple steps, use the form stepname.ddname for the ddname of
the referenced DD statement. For example, the following procedure steps appear in a cataloged
procedure named PRICE:

//STEPl EXEC PGM=SUGAR
//DDl DD DDNAME=QUOTES

//STEP2 EXEC PGM=MOLASS
//DD2 DD DSNAME=WEEKB,DISP=OLD

The step that calls the procedure is:

//STEPA EXEC PROC=PRICE
//STEP1.QUOTES DD *

data

/*

12-52 MVS JCL

DD: DEST

DEST Parameter

Parameter Type: Keyword, optional

Purpose: Use the DEST parameter to specify a destination for a system output data set. The
DEST parameter can send a sysout data set to a remote or local terminal, a node, a node and
remote work station, a local device or group of devices, or a terminal at a node.

Note: Code the DEST parameter only on a DD statement with a SYSOUT parameter.
Otherwise, the system checks the DEST parameter for syntax, then ignores it.

References: For more information on the DEST parameter, see "Controlling Output
Destination in aJES2 Network" on page 3-7 and "Controlling Output Destination Using
JES3" on page 3-12.

Syntax:

DEST=destination

The destination subparameter for JES2 is one of the following:

LOCAL
name
Nnnnn
NnnRmmmm
NnnnRmmm
NnnnRmmm
NnnnnRmm
Rnnnn
RMnnnn
RMTnnnn
Unnn
(node,userid)

The destination subparameter for JES3 is one of the following:

ANYLOCAL
device-name
device-address
group-name
nodename
(node,userid)

Subparameter Definition for JES2 Systems

LOCAL
Indicates any local device.

name
Specifies a local or remote device by a symbolic name defined by the installation during
JES2 initialization. The name is 1 to 8 alphanumeric or national characters.

Chapter 12. Coding the DD Statement 12-53

•

DD: DEST

Nnnnn
Specifies a node. nnnn is 1 to 4 decimal numbers from 1 through 1000.

NnnRmmmm
NnnnRmmm
NnnnnRmm

Specifies a node and a remote work station connected to the node. The node number,
indicated in the format by n, is 1 to 4 decimal numbers from 1 through 1000. The remote
work station number, indicated in the format by m, is 1 to 4 decimal numbers from 1
through 4000. Do not code leading zeros in n or m. The maximum number of digits for
nand m combined cannot exceed six.

Note: RO is equivalent to specifying LOCAL at node Nn.

Rnnnn
RMnnnn
RMTnnnn

Unnn

Specifies a remote terminal. nnnn is 1 to 4 decimal numbers from 1 through 4000.

Note: RO is equivalent to LOCAL.

Specifies a local terminal with special routing. nnn is 1 to 3 decimal numbers from 1
through 255.

(node,userid)
Specifies a node and a TSO or VM userid at that node. The node is a symbolic name
defined by the installation during initialization statement; node is 1 to 8 alphanumeric or
national characters. The userid must be defined at the node; userid for TSO is 1 to 7
alphanumeric or national characters and for VM is 1 to 8 alphanumeric or national
characters. Enclose userid in apostrophes when it contains special characters or begins
with a number. For example, DEST = (STL,'VMj370') and DEST = (POK,'921PPC').

A userid requires a node; therefore, code DEST = (node, userid). You cannot code a
userid without a node.

With a program-name subparameter in the SYSOUT parameter, DEST = (node) is valid
but DEST=(node,userid) is invalid. Therefore, you can code
SYSOUT = (A,program-name),DEST = (node).

Subparameter Definition for JES3 Systems

ANYLOCAL
Indicates any local device that is attached to the global processor.

device-name

12-54 MVS JCL

Specifies a local device by a symbolic name defined by the installation during JES3
initialization. device-name is 1 to 8 alphanumeric or national characters.

Defaults

Overrides

DD: DEST

device-address
Specifies the 3-character physical device address.

group-name
Specifies a group of local devices, an individual remote station, or a group of remote
stations by a symbolic name defined by the installation during JES3 initialization.
group-name is 1 to 8 alphanumeric or national characters.

nodename
Specifies a node by a symbolic name defined by the installation during JES3 initialization.
nodename is 1 to 8 alphanumeric or national characters. If the node name you specify is
the same as the node you are working on, JES3 treats the output as though you specified
ANYLOCAL.

(node,userid)
Specifies a node and a TSO or VM userid at that node. The node is a symbolic name •
defined by the installation during initialization statement; node is 1 to 8 alphanumeric or
national characters. The userid must be defined at the node; userid for TSO is 1 to 7
alphanumeric or national characters and for VM is 1 to 8 alphanumeric or national
characters. Enclose userid in apostrophes when it contains special characters or begins
with a number. For example, DEST=(STL,'VMj370') and DEST=(POK,'921PPC').

A userid requires a node; therefore, code DEST= (node,userid). You cannot code a
userid without a node.

With a program-name subparameter in the SYSOUT parameter, DEST=(node) is valid
but DEST = (node,userid) is invalid. Therefore, you can code
SYSOUT = (A, program-name),DEST = (node).

If no DEST parameter is specified, JES directs the sysout data set to the default destination for
the input device from which the job was submitted.

If the specified destination is invalid, the job fails.

The DEST parameter on the sysout DD statement overrides an OUTPUT JCL DEST
parameter.

Relationship to Other Parameters

Do not code the following parameters with the DEST parameter.

* DLM
DATA DYNAM
DDNAME QNAME

You must code a SYSOUT parameter on a DD statement with a DEST parameter.

Chapter 12. Coding the DD Statement 12-55

DD: DEST

Relationship to Other Control Statements

You can also code an output destination using:

• The OUTPUT JCL statement. See "DEST Parameter" on page 14-23.

• The JES2 /*OUTPUT and /*ROUTE control statements. See "/*OUTPUT Statement" on
page 16-l3 and "/*ROUTE Statement" on page 16-24.

• The JES3 //*MAIN, //*FORMAT PR, and /j*FORMAT PU control statements. See
"//*FORMAT PR Statement" on page 17-9, "//*FORMAT PU Statement" on
page 17-18, and "//*MAIN Statement" on page 17-23.

Because DEST = (node,userid) cannot be coded on JES2 or JES3 control statements, you must
code it, if needed, on a DD or OUTPUT JCL statement.

Examples of the DEST Parameter

//JOBOl
//STEPl
//DEBIT
//CALIF
//FLOR

JOB ,'MAE BIRD' ,MSGCLASS=B
EXEC PGM=INTEREST
DD SYSOUT=A
DO SYSOUT=A,DEST=R555
DD SYSOUT=A,DEST=(BOCA,'9212U28')

In this example, the system sends the sysout data set defined by DD statement DEBIT to the
work station that submitted the job, the data set defined by DD statement CALIF to the
remote terminal 555, and the data set defined by DD statement FLOR to VM userid 9212U28
at node BOCA.

12-56 MVS JCL

DD: DISP

DISP Parameter

Parameter Type: Keyword, optional

Purpose: Use the DISP parameter to describe the status of a data set to the system and tell the
system what to do with the data set after termination of the step or job. You <2an specify one
disposition for normal termination and another for abnormal termination.

Note: Disposition of the data set is controlled solely by the DISP parameter; disposition of the
volume(s) on which the data set resides is a function of the volume status when the volume is
demounted.

References: For more information on the DISP parameter, see "Specifying a Disposition for
the Data Set" on page 7-14. For more information on passing data sets, see "Passing a Data
Set" on page 7-17. For information about tape data set processing, see MVSj370 Magnetic •
Tape Labels and File Structure.

Syntax:

{DISP=status }
{DISP=([status] [,norrnal-terrnination-disp] [,abnorrnal-terrnination-disp])}

([NEW] [, DELETE] [, DELETE]
([OLD] [,KEEP] [,KEEP]

DISP=([SHR] [,PASS] [,CATLG]
([MOD] [,CATLG] [,UNCATLG]

[, UNCATLG]
[,]

• You can omit the parentheses if you code only' the status subparameter.

• If you omit the status subparameter but code subparameters for normal or abnormal
termination disposition, you must code a comma to indicate the absence of NEW.

• If you omit the second subparameter but code the third, you must code a comma to
indicate the absence of the second subparameter.

Subparameter Definition

Status Subparameter

NEW

OLD

Indicates that a new data set is to be created in this step.

Indicates that the data set exists before this step and that this step requires exclusive
(unshared) use of the data set.

Chapter 12. Coding the DD Statement 12-57

DD: DISP

SHR

If you specify DISP=OLD, the system does not verify the data set name in the header
label when processing a tape data set for output if the data set is not protected by RACF
or a password or the data set has no expiration date.

Indicates that the data set exists before this step and that another job can share it, that is,
use it at the same time. This subparameter can also be coded as SHARE.

If you specify DISP = SHR, the system does not verify the data set name in the header
label when processing a tape data set for output if the data set is not protected by RACF
or a password or the data set has no expiration date.

MOD

12-58 MVS JCL

Indicates one of the following:

• The data set exists before this step and records are to be added to the end of the data
set. The data set must be sequential.

• A new data set is to be created in this step.

In either case, MOD specifies exclusive (unshared) use of the data set.

When the data set is opened, the read/write mechanism is positioned after the last
sequential record for an existing data set or at the beginning for a new data set. For
subsequent OPENs within the same step, the read/write mechanism is positioned after the
last sequential record.

Note: You cannot specify DISP=MOD to extend ISO/ANSI/FIPS Version 3 tape data
sets, unless the ISO/ANSI/FIPS Version 3 label validation installation exit allows the
extension. For information on using ISO/ANSI/FIPS Version 3 installation exits, see
MVS/370 Magnetic Tape Labels and File Structure.

If you specify DISP = MOD, the system creates a data set when:

• Volume information is not specified by a VOLUME = SER or VOLUME = REF
parameter and the data set is not cataloged or passed from another job step.

• A DD statement containing DISP = MOD refers to another DD statement that makes
a nonspecific volume request and one of the following is also true:

The DSNAME parameters in the two DD statements are not the same.
The two DD statements request different areas of the same ISAM data set.

• The system cannot locate volume information. The system treats the DD statement
as a nonspecific volume request for a new data set. Then, after it chooses a volume,
if the system finds another data set with the same name on that volume, the system
will try to allocate a different volume.

In a JES3 system, if you code DISP = MOD for a multivolume data set and any of the
volumes are JES3-managed, JES3 will not execute the job until all volumes, including
scratch.volumes being added, are allocated. Such a job will wait on the queue until all
volumes are allocated.

DD: DISP

Normal Termination Disposition Subparameter

DELETE
Indicates that the data set's space on the volume is to be released at the end of this step.
The space can be used for other data sets; the data set in not erased from the space.

The data set is deleted only if its retention period or expiration date has passed;
otherwise the data set is kept. See the DD EXPDT or RETPD parameters.

If the system retrieves volume information from the catalog because the DD statement
does not specify VOLUME = SER or VOLUME = REF, then DELETE implies
UNCATALOG. The system deletes the data set and removes its catalog entry.

KEEP
Indicates that the data set is to be kept on the volume at the end of this step .

Only KEEP is valid for VSAM data sets. VSAM data sets should not be passed,
cataloged, uncataloged, or deleted.

PASS
Indicates that the data set is to be passed for use by a subsequent step in the same job.

Note: A data set can be passed only within a job.

CATLG
Indicates that the data set is to be kept at the end of this step and an entry pointing to the
data set is to be placed in the system or user catalog. For CVOL catalogs, any missing
index levels are created. For information about the rules for cataloged data set names,
refer to Access Method Services Reference.

An unopened tape data set is cataloged, unless the request is nonspecific or unless the
data set is allocated to a dual-density tape drive and no density is specified.

UNCATLG
Indicates that the data set is to be kept at the end of this step. The system is to delete (1)
the entry pointing to the data set in the system or user catalog and (2) unneeded inaexes,
except for the highest level entry.

Abnormal Termination (Conditional) Disposition Subparameter

DELETE
Indicates that the data set's space on the volume is to be released if this step abnormally
terminates. The space can be used for other data sets; the data set in not erased from the
space.

The data set is deleted only if its retention period or expiration date has passe.d;
otherwise the data set is kept. See the DD EXPDT or RETPD parameters. If the data
set was being created when the step abnormally terminates, the data set is deleted even
though it has an unexpired retention period or expiration date.

If the system retrieves volume information from the catalog because the DD statement
does not specify VOLUME=SER or VOLUME = REF, then DELETE implies
UNCATALOG. The system deletes the data set and removes its catalog entry.

Chapter 12. Coding the DD Statement 12-59

•

DD:DISP

Defaults

For a cataloged, passed data set, the user catalog is not updated.

KEEP
Indicates that the data set is to be kept on the volume if this step abnormally terminates.

Only KEEP is valid for VSAM data sets. VSAM data sets should not be passed,
cataloged, uncataloged, or deleted.

CATLG
Indicates that the data set is to be kept if this step abnormally terminates. An entry
pointing to the data set is to be placed in the system or user catalog. For CVOL catalogs,
any missing index levels are created. For a cataloged, passed data set, the user catalog is
not updated.

In certain cases, a passed, not received data set is not cataloged; see "Disposition
Processing of Passed Unreceived Data Sets" on page 7-18.

An unopened tape data set is cataloged, unless the request is nonspecific or unless the
data set is allocated to a dual-density tape drive and no density is specified.

UNCATLG
Indicates that the data set is to be kept if this step abnormally terminates. The system is
to delete (1) the entry pointing to the data set in the system or user catalog and (2)
unneeded indexes, except for the highest level entry.

For a cataloged, passed data set, the user catalog is not updated.

• If you omit the status subparameter, the default is NEW.

• If you omit the normal termination disposition subparameter, the default is DELETE for a
NEW data set or KEEP for an existing data set.

• If you omit the abnormal termination disposition subparameter, the default is the
disposition specified or implied by the second subparameter.

• If you omit the DISP parameter, the default is a NEW data set with a disposition of
DELETE for both normal and abnormal termination disposition. Thus, you can omit the
DISP parameter for a data set that is created and deleted during a step.

Relationship to Other Parameters

Do not code the following parameters with the DISP parameter.

*
BURST
CHARS
CHKPT
COPIES

12-60 MVS JCL

DATA
DDNAME
DLM
DYNAM

FLASH
MODIFY
OUTPUT
QNAME
SYSOUT

DD: DISP

DISP Parameters with QSAM Data Sets: You should not code DISP = MOD if the data
control block (DCB) specifies RECFM = FBS when using QSAM. If you specify
RECFM = FBS in the DCB and a block is shorter than the block size you specified, QSAM
assumes that the short block is the last block and starts end-of-file processing. By this action,
QSAM can embed short blocks in your data set and so affect the number of records per track.

Disposition of VSAM Data Sets

Only KEEP is valid for VSAM data sets. VSAM data sets should not be passed, cataloged,
uncataloged, or deleted.

Disposition of Temporary Data Sets

You must specify a normal termination disposition of PASS or DELETE for a temporary data •
set or a data set with a system-generated name, that is, when a DSNAME parameter is omitted
from the DD statement.

For a temporary data set name, the system ignores any abnormal termination disposition
specified in the third subparameter.

Disposition of Partitioned Data Sets

When you specify DISP = MOD or DISP = NEW for a partitioned data set and you also specify
a member name in the DSNAME parameter, the member name must be unique. If the member
name is not unique, the system terminates the job.

When you specify DISP = OLD for a partitioned data set and you also specify a member name
in the DSNAME parameter, the member name need not be unique. If the member name is not
unique, the system replaces the existing member with the new member.

When you specify DISP = MOD for a partitioned data set and you do not specify a member
name, the system positions the read/write mechanism at the end of the data set. The system
does not make an automatic entry into the directory.

When you specify DISP = MOD for a partitioned data set and you do specify a member name,
the system positions the read/write mechanism at the end of the data set. If the member name
already exists, the system terminates the job.

DISP = MOD for a Multivolume Data Set

When you code DISP = MOD and the volume information is for a multivolume data set,
normally the first volume(s) will be mounted on the devices(s) allocated. Then, if the data set is
opened for output, OPEN starts with the last volume. If the number of volumes is more than
the number of allocated devices, the system asks the operator to demount the first volume(s)
and mount the last. To have the last volume mounted without first mounting and then
demounting the first volume(s):

• For DASD, code DEFER in the UNIT parameter or a volume sequence number in the
VOLUME parameter. If you code VOLUME = REF, you must also code either DEFER in
the UNIT parameter or a volume sequence number in the VOLUME parameter.

Chapter 12. Coding the DD Statement 12-61

DD: DISP

• For tape, code VOLUME = REF or DEFER in the UNIT parameter or a volume sequence
number in the VOLUME parameter.

When you code DISP = MOD for a multivolume tape data set, use the volume count and
volume sequence number subparameters of the VOLUME parameter to keep the system from
positioning the read/write mechanism after the last record on the last volume. For example:

IIDDEX1 DD DSNAME=OPER.DATA,DISP=(MOD,KEEP),VOLUME=(,,1,2)

The volume sequence number of 1 specifies that you want to use the first volume, and the
volume count of 2 specifies that the data set requires two volumes.

If you want to extend a cataloged, multivolume data set and have it properly cataloged after it
is kept or passed, code the VOLUME and UNIT parameters to make the system use the values
in the system catalog to process the data set. The following DD statement shows how to keep
and extend a cataloged multivolume data set using the system catalog. Remember that this
data set was created with a volume count of 2.

IIDDEX2 DO OSNAME=OPER.OATA,OISP=(MOO,KEEP),
II VOLUME=(",3),UNIT=(,P)

The VOLUME parameter references the system catalog for volume information about the data
set and increases the maximum number of volumes for OPER.DAT A. Because the UNIT
parameter requests parallel mounting, the system must allocate the same number of units as the
number of volumes in the VOLUME parameter; in this case, 3.

The following is an example of the messages in the job log after the job completes.

IEF2851
IEF2851
IEF2851
IEF2851

OPER.OATA
VOL SER NOS= 333001,333002,333003.
OPER.DATA
VOL SER NOS= 333001,333002,333003.

KEPT

RECATALOGED

If you do not reference the system catalog when extending cataloged multivolume data sets, the
system does not update the system catalog with the newly referenced volumes.

Examples of the DISP Parameter

IIDD2
II

DD DSNAME=FIX,UNIT=3420-1,VOLUME=SER=44889,
DISP=(OLD"DELETE)

DD statement DD2 defines an existing data set and implies by the omitted second
sub parameter that the data set is to be kept if the step terminates normally. The statement
requests that the system delete the data set if the step terminates abnormally.

12-62 MVS JCL

IISTEPA
IIDDl
II
IISTEPB
IIDD2
IIDD3
IISTEPC
IIDD4

EXEC
DD

EXEC
DD
DD
EXEC
DD

DD: DISP

PGM=FILL
DSNAME=SWITCH.LEVEL18.GROUP12,UNIT=3350,
VOLUME=SER=LOCAT3,SPACE=(TRK,(80,15)),DISP=(,PASS)
PGM=CHAR
DSNAME=XTRA,DISP=OLD
DSNAME=*.STEPA.DD1,DISP=(OLD,PASS,DELETE)
PGM=TERM
DSNAME=*.STEPB.DD3,DISP=(OLD,CATLG,DELETE)

DD statement DDl defines a new data set and requests that the data set be passed. If STEPA
abnormally terminates, the data set is deleted because it is a new data set and an abnormal
termination disposition was not coded.

DD statement DD3 in STEPB receives this passed data set and requests that the data set be
passed. If STEPB abnormally terminates, the data set is deleted because of the third
subparameter of DELETE.

DD statement DD4 in STEPC receives the passed data set and requests that the data set be
cataloged at the end of the step. If STEPC abnormally terminates, the data set is deleted
because of the abnormal termination disposition of DELETE.

DD statement DD2 defines an old data set named XTRA. When STEPB terminates, normally
or abnormally, this data set is kept.

Chapter 12. Coding the DD Statement 12-63

•

DD: DLM

DLM Parameter

Parameter Type: Keyword, optional

Purpose: Use the DLM parameter to specify a delimiter to terminate this in-stream data set.
When the DLM parameter assigns a different delimiter, the in-stream data records can include
standard delimiters, such as 1* and II, in the data.

In a JES2 system, when the DLM delimiter appears on a DD * statement, either the assigned
delimiter or II ends the input data set. When the DLM delimiter appears on a DD DATA
statement, only the assigned delimiter ends the input data set.

In a JES3 system, when the DLM delimiter appears on either aDD * or DD DATA statement,
only the assigned delimiter ends the input data set.

Note: When the DLM delimiter overrides any implied delimiter, you must terminate the data
with the DLM characters. Otherwise, the system keeps reading until the reader is empty.

Except for the JES2 I*SIGNON and j*SIGNOFF statements, the system does not recognize
JES2 and JES3 statements in an input stream between the DLM parameter and the delimiter it
assigns. The JES2 I*SIGNON and I*SIGNOFF statements are processed by the remote work
station regardless of any DLM delimiter.

Note: A I*EOF statement in the input stream acts as a delimiter regardless of the DLM value.
A I*EOF statement is used only to end input to the internal reader; see "Specifying the Internal
Reader" on page 7-52.

Syntax:

DLM=delirniter

• If the specified delimiter contains any special characters, enclose it in apostrophes. In
this case, a special character is any character that is neither alphanumeric nor national.

Failing to code enclosing apostrophes produces unpredictable results.

• If the delimiter contains an ampersand or an apostrophe, code each ampersand or
apostrophe as two consecutive ampersands or apostrophes. Each pair of consecutive
ampersands or apostrophes counts as one character.

Subparameter Definition

delimiter
Specifies two characters that indicate the end of this data set in the input stream.

12-64 MVS JCL

Default

DD: DLM

1*

If the system finds an error on the DD statement before the DLM parameter, it does not
recognize the value assigned as a delimiter. The system reads records until it reads a record
beginning with 1* or I I·

Relationship to Other Parameters

The only DD parameters you can code with the DLM parameter are:

*
DATA
DeB
DSID
VOLUME

The DLM parameter has meaning only on statements defining data in the input stream, that.is,
DD * and DD DATA statements. If DLM is specified on any other statement, a JCL error
message is issued.

Invalid Delimiters

If the delimiter is not two characters:

• For JES2, if only one character is specified, JES2 uses the installation-defined default. If
more than two characters are specified, JES2 terminates the job.

• For JES3, if an incorrect number of characters is coded, JES3 terminates the job.

Example of the D LM Parameter

//DDl DD *,DLM=AA

data

AA

The DLM parameter assigns the characters AA as the delimiter for the data defined in the
input stream by DD statement DDI. For JES2, the characters II would also serve as valid
delimiters since a DD * statement was used. JES3 accepts only the characters specified for the
DLM parameter as a terminator for DD * or DD DATA.

Chapter 12. Coding the DD Statement 12-65

•

DD: DSID

DSID Parameter

Parameter Type: Keyword, optional

Purpose: Use the DSID parameter to specify the data set identifier of an input or output data
set on a diskette of the 3540 Diskette Input/Output Unit.

An input data set is read from a 3540 diskette by a diskette reader program, and an output data
set is written on a 3540 diskette by a diskette writer, which is an external writer. Neither JES2
or JES3 can read or write diskette data sets.

To create an output data set on a 3540 diskette, the DD statement must contain:

• A DSID parameter.

• A SYSOUT parameter that specifies the output class that the diskette writer processes and
the name of the diskette writer.

Also, a system command, from the operator or in the input stream, must start the diskette
writer before this DD statement is processed.

References: For more information about associated data sets, see "Associated Data Sets (3540
Diskette)" on page 7-6 and OS/VS2 IBM 3540 Programmer's Reference. External writers are
described in SPL: Job Management.

Syntax:

DSID={id }
{(id,[V])}

You can omit the parentheses if you code only an id.

Subparameter Definition

id

v

12-66 MVS JCL

Specifies the data set identifier. The id is I to 8 characters. The characters must be
alphanumeric, national, a hyphen, or a left bracket. The first character must be
alphabetic or national.

Indicates that the data set label must have been previously verified on a 3741 Data
Station/Workstation. This subparameter is required only on a SYSIN DD statement.

Relationship to Other Parameters

Do not code the following parameters with the DSID parameter.

BURST
CHARS
DDNAME
DYNAM

FLASH
MODIFY
MSVGP
QNAME

DD: DSID

For 3540 Diskette Input/Output Units: A DSID parameter on a DD *, DD DATA, or sysout
DD statement is ignored except when detected by a diskette reader as a request for an
associated data set. See IBM 3540 Programmer's Reference.

On a DD * or DD DATA statement processed by a diskette reader, you can specify DSID,
VOLUME=SER, DCB=BUFNO, and DCB=LRECL to indicate that a diskette data set is to
be merged into the input stream following the DD statement.

Example of the DSID Parameter

IIJOBl
IlsTEP
IISYSIN
II

JOB
EXEC
DD

IISYSPRINT DD

, , MSGLEVEL= (1,1)
PGM=AION
*,DSID=(ABLE,V) ,VOLUME=SER=123456,
DCB=LRECL=80
SYSOUT=E,DCB=LRECL=128,DSID=BAKER

In this example, the SYSIN DD statement indicates that the input is on diskette 123456 in data
set ABLE and must have been verified. The output will be written on a diskette in data set
BAKER.

Chapter 12. Coding the DD Statement 12-67

•

DD: DSNAME

DSNAME Parameter

Parameter Type: Keyword, optional

Purpose: Use the DSNAME parameter to specify the name of a data set. For a new data set,
the specified name is assigned to the data set; for an existing data set, the system uses the name
to locate the data set.

References: For more information on indexed sequential data sets and generation data groups,
see "Specifying the DSNAME Parameter" on page 7-2 and Chapter 8, "Guide to Special Data
Sets." Partitioned data sets are described in Data Management Services Guide.

Syntax:

{dsname }
(dsname(member-name) }
(dsname(generation-number) }

{DSNAME} = (dsname (area-name) }
{DSN } (&&dsname }

(&&dsname(member-name) }
(&&dsname(area-name) }
(*.ddname }
{*.stepname.ddname }
{*.stepname.procstepname.ddname}
(NULLFILE }

• You can abbreviate DSNAME as DSN.
• If the data set name begins with a blank character, the system assigns the data set a

temporary data set name.
• The system ignores blank characters at the end of a data set name.

Special Characters: When a data set name contains special characters not significant to the
system, other than periods or hyphens, enclose it in apostrophes. For example,
DSNAME= 'DSj29'.

Code each apostrophe that is part of the data set name as two consecutive apostrophes. For
example, code DAYS'END as DSNAME='DAYS"END'.

The following special characters are significant to the system. Do not enclose them in
apostrophes.

• Ampersands used to identify temporary data sets.
• Parentheses enclosing the member name of a partitioned data set, the area name of an

indexed sequential data set, or the generation number of a generation data set.
• The asterisk used in a backward reference.

On a DD statement in a cataloged or in-stream procedure, if the data set name is a symbolic
parameter, do not enclose it in apostrophes. If it is enclosed in apostrophes, the system
performs correct substitution only if the symbolic parameter enclosed in apostrophes is
preceded by a symbolic parameter not enclosed in apostrophes.

The data set name should not contain the 44 special characters (X'04') created by the 12-4-9
multiple punch or any operation that converts the value of characters to X'04'.

12-68 MVS JCL

DD: DSNAME

Subparameter Definition

Permanent Data Sets

Assign a permanent data set either an unqualified or qualified name:

Unqualified Name: 1 to 8 alphanumeric or national characters, a hyphen, or a plus zero
(+ 0). The first character must be alphabetic or national.

Qualified Name: multiple names joined by periods. Each name is coded like an unqualified
name. The maximum length of a qualified data set name is:

• 44 characters, including periods.

• For a generation data group, 35 characters, including periods.

• For an output tape data set, 17 characters, including periods. If longer than 17
characters, only the rightmost 17 characters are written to the tape header label. For
more information, see Tape Labels.

dsname
Specifies a data set name.

dsname(member-name)
Specifies a permanent partitioned data set name and the name of a member within that
data set.

dsname(generation-number)
Specifies the name of a generation data group (GDG) and the generation number (zero or
a signed integer) of a generation data set within the GDG.

To retrieve all generations of a generation data group, omit the generation number.

dsname(area-name)
Specifies the name of a permanent indexed sequential data set and an area of the data set.
The area-name is INDEX, PRIME, or OVFLOW.

If you define an indexed sequential data set on only one DD statement, omit the area
name or code it as PRIME. For example, DSNAME= dsname or
DSNAME = dsname(PRIME).

To retrieve an indexed sequential data set, omit the area name.

Chapter 12. Coding the DD Statement 12-69

•

DD: DSNAME

Temporary Data Sets

A temporary data set is created and deleted within a job. When defining a temporary data set,
you can code the DSNAME parameter or omit it; if omitted, the system will generate a name
for the data set.

When coded, the data set name for a temporary data set consists two ampersands (&&)
followed by 1 to 8 alphanumeric or national characters, a hyphen, or a plus zero (+ 0). The
first character following the ampersands must be alphabetic or national.

The system generates a qualified name for the temporary data set. The name begins with SYS
and includes the job name, the data set name from the DSNAME parameter, if coded, and
other identifying characters. If several jobs enter the system at the same time and contain DD
statements with the same temporary data set name or with no data set name, the qualified
names generated by the system will not be unique.

Note: A single ampersand before a data set name in a cataloged or in-stream procedure
signifies a symbolic parameter. However, if no value is assigned to the name on either the
EXEC staten .,t that calls the procedure or on a PROC statement in the procedure, the system
treats the na1 as a temporary data set name.

&&dsname
Specifies the name of a temporary data set.

&&dsname(member-name)
Specifies the name of a temporary partitioned data set and a member within that data set.

&&dsname(area-name)
Specifies the name of a temporary indexed sequential data set and an area of the data set.
The area name is INDEX, PRIME, or OVFLOW.

If you define an indexed sequential data set on only one DD statement, omit the area
name or code it as PRIME. For example, DSNAME=&&dsname or
DSNAME = &&dsname(PRIME).

To retrieve an indexed sequential data set, omit the area name.

Backward References

A backward reference is a reference to an earlier DD statement in the job or in a cataloged or
in-stream procedure called by a job step. A backward reference can be coded in the DSNAME
parameter to copy a data set name from another DD statement.

When copying the data set name, the system also copies the following from the DD statement:

• Whether or not the data set is a PDS.
• Whether or not the data set is a temporary data set.

12-70 MVSJCL'

DD: DSNAME

*.ddname
Asks the system to copy the data set name from earlier DD statement ddname.

* .stepname.ddname
Asks the system to copy the data set name from DD statement, ddname, in an earlier
step, stepname, in the same job.

* .stepname. procstepname.ddname
Asks the system to copy the data set name from a DD statement in a cataloged or
in-stream procedure. Stepname is the name of the job step that calls the procedure,
procstepname is the name of the procedure step that contains the DD statement, and
ddname is the name of the DD statement.

Dummy Data Sets

NULLFILE
Specifies a dummy data set. NULLFILE has the same effect as coding the DD
DUMMY parameter. See "Defining a Dummy Data Set" on page 8-8.

Relationship to Other Parameters

Do not code the following parameters with the DSNAME parameter.

*
BURST
CHARS
COPIES

DATA FLASH SYSOUT
DDNAME MODIFY
DLM OUTPUT
DYNAM QNAME

With DD AMP Parameter: When you code an AMP parameter for a VSAM data set, do not
code a DSNAME:

• That contains parentheses, a minus (hyphen), or a plus (+) sign.
• That is in the form for ISAM.
• That is in the form for PAM (partitioned access method).
• That names a generation data group.

Examples of the DSNAME Parameter

IIDDl
II

DD DSNAME=ALPHA,DISP=(,KEEP),
UNIT=3420,VOLUME=SER=389984

DD statement DDI defines a new data set and names it ALPHA. DD statements in later job
steps or jobs may retrieve this data set by specifying ALPHA in the DSNAME parameter, unit
information in the UNIT parameter, and volume info,nnation in the VOLUME parameter.

IIDD2
II

DD DSNAME=LIB1(PROG12),DISP=(OLD,KEEP),UNIT=3350,
VOLUME=SER=882234

DD statement DD2 retrieves member PROGl2 from the partitioned data set named LIBl.

Chapter 12. Coding the DD Statement 12-71

•

DD: DSNAME

IIDD3 DD DSNAME=&&WORK,UNIT=3420

DD statement DD3 defines a temporary data set. Because the data set is deleted at the end of
the job step, the DSNAME parameter can be omitted. The following example shows why a
temporary data set should be named.

IISTEPI
IIDD4
II
II
IISTEP2
IIDD5

EXEC PGM=CREATE
DD DSNAME=&&ISDATA(PRIME),DISP=(,PASS),UNIT=(3350,2),

SPACE=(CYL,(lO,,2) "CONTIG),VOLUME=SER=33489,
DCB=DSORG=IS

EXEC PGM=OPER
DD DSNAME=*.STEPl.DD4,DISP=(OLD,DELETE)

DD statement DD4 in STEPl defines a temporary indexed sequential data set named ISDATA.
This DD statement defines all of the areas of an indexed sequential data set. DD statement
DDS in STEP2 retrieves the data set by referring to the earlier DD statement that defines the
data set. Since the temporary data set is passed when it is defined in STEPl, STEP2 can
retrieve the data set.

12-72 MVS JCL

DD: DUMMY

The DUMMY Parameter

Parameter Type: Positional, optional

Purpose: Use the DUMMY parameter to specify that:

• No device or external storage space is to be allocated to the data set.
• No disposition processing is to be performed on the data set.
• For BSAM and QSAM, no input or output operations are to be performed on the data set.

One use of the DUMMY parameter is in testing a program. When testing is finished and you
want input or output operations performed on the data set, replace the DD DUMMY
statement with a DD statement that fully defines the data set.

Another use of the DUMMY parameter is in a cataloged or in-stream procedure. Code on the •
DD DUMMY statement all the required parameters. When the procedure is called, code on
the DD statement that overrides the DD DUMMY statement a DSNAME parameter that
matches the DSNAME parameter on the DD DUMMY statement.

References: For more information on the DUMMY parameter, see "Defining a Dummy Data
Set" on page 8-8.

Syntax:

//ddname DD DUMMY[,parameter] 000

All parameters coded on a DD DUMMY statement must be syntactically correct. The
system checks their syntax.

Parameters on DD DUMMY Statements

• Code the DUMMY parameter by itself or follow it with all the parameters you would
normally code when defining a data set, except the DDNAME parameter.

• Code the DCB parameter as you normally would. If the program does not supply all the
data control block information, make sure that the DCB parameter supplies the missing
information.

• Code AMP = AMORG if you are using VSAM.

• If you code either VOLUME = REF = dsname or DCB=dsname with DUMMY, the
referenced dsname must be cataloged or passed; otherwise the job is terminated.

• Because no I/O is performed to the dummy data set, the system ignores the UNIT, SPACE,
and D ISP parameters, if coded.

Chapter 12. Coding the DD Statement 12-73

DD:DUMMY

Relationship to Other Parameters

Do not code the following parameters with the DUMMY parameter.

*
DATA
DDNAME

DLM
DYNAM
QNAME

Relationship to Other Control Statements

Backward References: If a later DD statement in a job refers to a DD DUMMY statement
when requesting unit affinity (UNIT = AFF = ddname) or volume affinity
(VOLUME=REF=*.stepname.ddname), the system assigns a dummy status to the later DD
statement.

Overriding a Procedure DD Statement: Coding DUMMY on a DD statement that overrides a
DD statement in a procedure does not nullify symbolic parameters on the overridden DD
statement. You must assign values to, or nullify, symbolic parameters on the overridden DD
statement as described in "Assigning Values to and Nullifying Symbolic Parameters" on
page 2-16.

The DSNAME parameter on the overriding DD statement must not specify NULLFILE.

If the overriding DD statement contains a SUBSYS parameter, the system nullifies a DUMMY
parameter on the overridden DD statement in the procedure.

Data Sets Concatenated to Dummy Data Sets: The system treats data sets concatenated to a
DUMMY data set as dummy data sets in that I/O operations are bypassed. However, the
system performs disposition processing and allocates devices and storage for any concatenated
data sets.

Relationship to Access Methods

Use one of the following access methods with the DUMMY parameter:

• Basic sequential access method (BSAM).
• Virtual storage access method (VSAM).
• Queued sequential access method (QSAM).
• BDAM load mode (BSAM with MACRF = WL in the data control block).

If you use any other access method, the job is terminated.

Examples of the DUMMY Parameter

IIOUTDDl DD DUMMY,DSNAME=X.X.Z,UNIT=3350,
II SPACE=(TRK,(lO,2)),DISP=(,CATLG)

DD statement OUTDDI defines a dummy data set. The other parameters coded on the
statement are checked for syntax but not used.

12-74 MVS JCL

DD: DUMMY

//INl DD DUMMY,DCB=(BLKSIZE=800,LRECL=400,RECFM=FB)

DD statement IN! defines a dummy data set. The DCB parameter supplies data control block
information not supplied in the program. Without it, the step might be abnormally terminated.

//IN2 DD DUMMY,DSNAME=ELLN,DISP=OLD,VOLUME=SER=112S1,UNIT=33S0

When calling a cataloged procedure that contains DD statement IN2 in procedure step STEP4,
you can nullify the effects of the DUMMY parameter by coding:

//STEP4.IN2 DD DSNAME=ELLN

//TAB DD DSNAME=APP.LEV12,DISP=OLD

If you call a cataloged procedure that contains DD statement TAB in procedure step STEP!, •
you can make this DD statement define a dummy data set by coding:

//STEP1.TAB DD DUMMY

//MSGS DD SYSOUT=A

If you call a cataloged procedure that contains the DD statement MSGS in procedure step
LOCK, you can make this DD statement define a dummy data set by coding:

//LOCK.MSGS DD DUMMY

Chapter 12. Coding the DD Statement 12-75

DD: DYNAM

DYNAM Parameter

Parameter Type: Positional, optional

Purpose: Use the DYNAM parameter to specify that the system can hold a resource in
anticipation of reuse. Even when DYNAM is not coded, the system normally holds resources
in anticipation of reuse. The DYNAM parameter provides compatibility with older systems.

ADD DYNAM statement is a DUMMY request.

References: For further information, see "Dynamically Allocating and Deallocating Data Sets"
on page 4-12.

Syntax:

//ddname DO DYNAM

Relationship to Other Parameters

Do not code any parameters with the DYNAM parameter.

Do not code DYNAM on a DD statement with a ddname that is meaningful to the system; for
example, JOBLIB, SYSCHK.

Relationship to Other Control Statements

• Do not refer to a DD DYNAM statement in a DDNAME parameter.

• To nullify the DYNAM parameter on a DD statement in a cataloged or in-stream
procedure, code a SYSOUT or DSNAME parameter in the overriding DD statement.
DSNAME = NULLFILE does not nullify a DYNAM parameter.

• Do not make a backward reference to a DD DYNAM statement.

• Do not code the DYNAM parameter on the first DD statement for a concatenation.

Example of the DYNAM Parameter

//INPUT DO DYNAM

This DD statement increases by one the control value for dynamically allocated resources held
for reuse.

12-76 MVS JCL

DD: FeB

FeB Parameter

Parameter Type: Keyword, optional

Purpose: Use the FCB parameter to specify:

• The forms control buffer (FCB) image JES is to use to guide printing of the output data set
by a 3211 Printer, 3203 Printer Model 5, 3800 Printing Subsystem, or 4248 Printer, or by a
printer supported by systems network architecture (SNA) remote job entry (RJE).

• The carriage control tape JES uses to control printing of the output data set by a 1403
printer or by a printer supported by SNA RJE.

• The data-protection image JES uses to control output by a 3525 Card Punch.

The FCB image specifies how many lines are to be printed per inch and the length of the form.
JES loads the image into the printer's forms control buffer. The FCB image is stored in
SYS1.IMAGELIB. IBM provides three standard FCB images:

• STD1, which specifies 6 lines per inch on an 8.5-inch-Iong form.
• STD2, which specifies 6 lines per inch on an l1-inch-Iong form.
• STD3, which in a JES3 system specifies 8 lines per inch for a dump.

References: For more information on the FCB parameter, see "Requesting Forms Control" on
page 7-60. For more information on the fonns control buffer, see SPL: Data Management,
Programming Support for the IBM 3505 Card Reader and IBM 3525 Card Punch, or IBM 3800
Printing Subsystem Programmer's Guide.

Syntax:

FCB={fcb-name }
{(fcb-name[,ALIGNI,VERIFY]}

• You can omit the parentheses if you code only the fcb-name.
• Code the fcb-name as STDI or STD2 only to request the IBM-supplied images.
• Code the fcb-name as STD3 only for a high-density dump in a JES3 system.

Subparameter Definition

feb-name
Identifies the FCB image. The name is 1 to 4 alphanumeric or national characters and is
the last characters of a SYS1.IMAGELIB member name:

• FCB2xxxx member for a 3211,3203 model 5, or printer supported by SNA.
• FCB3xxxx member for a 3800.
• FCB4xxxx member for a 4248.

Chapter 12. Coding the DD Statement 12-77

•

DD: FeB

Defaults

Overrides

ALIGN
Requests that the system ask the operator to check the alignment of the printer forms
before the data set is printed.

Note:

• ALIGN is ignored for a sysout data set.

• ALIGN is ignored for a data set printed on a 3800. The 3800 does not use the
ALIGN subparameter.

VERIFY
Requests that the system ask the operator to verify that the image displayed on the
printer is for the desired FCB image. The operator can also take this opportunity to align
the printer forms.

Note: VERIFY is ignored for a sysout data set.

If you do not code the FCB parameter, the system checks the FCB image in the printer's forms
control buffer; if it is a default image, as indicated by its first byte, JES uses it. If it is not a
default image, JES loads the FCB image that is the installation default specified at JES
initialization.

An FCB parameter on a sysout DD statement overrides an OUTPUT JCL FCB parameter.

Relationship to Other Parameters

Do not code the following parameters with the FCB parameter.

*
AMP
DATA
DDNAME

DLM
PROTECT
QNAME

Do not code the following DCB subparameters with the FCB parameter.

CYLOFL
FRID

INTVL
RKP

For output to the 3525, do not code the SYSOUT parameter and the FCB parameter; the
system ignores the FCB parameter.

12-78 MVSJCL

DD: FeB

Relationship to Other Control Statements

You can also code the FCB parameter on the following:

• The OUTPUT JCL statement. See "FCB Parameter" on page 12-77.
• The JES2 j*OUTPUT statement. See "j*OUTPUT Statement" on page 16-13.
• The JES3 jj*FORMAT PR statement. See "jj*FORMAT PR Statement" on page 17-9.

Defining an FCB Image for a Work Station

When a work station uses a peripheral data set information record (PDIR), the FCB image is
defined in the work station. The DD statement FCB fcb-name subparameter must match the
FCB name defined in the PDIR work station.

When a work station does not use a PDIR, add an FCB member to SYS1.IMAGELIB. At •
setup time, JES3 translates the FCB into a set vertical format (SVF).

Requesting a High-Density Dump in a JES3 System

You can request a high-density dump on the 3800 in a JES3 system through two parameters on
the DD statement for the dump data set or on an OUTPUT JCL statement referenced by the
dump DD statement:

• FCB = STD3. This parameter produces dump output at 8 lines per inch.
• CHARS = DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same statement or
one on each statement.

Examples of the FCB Parameter

//DDl DD UNIT=3211,FCB=(IMG1,VERIFY)

In this example, the DD statement defines an output data set to be printed by a 321 L The
FCB parameter requests that the data set be printed under control of the FCB image IMG 1 in
SYS1.IMAGELIB. Because VERIFY is coded, the system displays the FCB image on the
printer before printing the data set.

//DD2 DD SYSOUT=A,FCB=IMG2

This sysout DD statement specifies output class A. If output class A routes output to a printer
having the forms control buffer feature, JES loads the FCB image IMG2 into the forms control
buffer. If the printer does not have the forms control buffer feature, the operator receives a
message to mount the carriage control tape IMG2 on the printer.

//OUTDDS DD UNIT=3211,FCB=(6,ALIGN)

In this example, the DD statement defines an output data set to be printed by a 3211. The
FCB parameter requests that the data set be printed under control of the FeB image named 6.
Because ALIGN is coded, the system issues a message to the operator requesting that the
alignment of the printer forms be checked before the data set is printed.

Chapter 12. Coding the DD Statement 12~ 79

DD: FeB

//PUNCH DD UNIT=3525,FCB=DP2

In this example, the DD statement requests output on a 3525. Therefore, the FeB parameter
defines the data protection image to be used for the 3525.

//SYSUDUMP DD SYSOUT=A,FCB=STD3

In this example, the DD statement requests that the 3800 print a dump at 8 lines per inch.

12-80 MVS JCL

DD: FLASH

FLASH Parameter

Parameter Type: Keyword, optional

Purpose: Use the FLASH parameter to identify the forms overlay to be used in printing the
output data set on a 3800 Printing Subsystem and, optionally, to specify'the number of copies
on which the forms overlay is to be printed.

Note: FLASH is valid only for a data set printed on a 3800.

References: For more information on the FLASH parameter, see "Requesting Forms Overlay"
on page 7-62. For information on forms overlays, see the Forms Design Reference Guide for
the IBM 3800 Printing Subsystem.

Syntax: • r---------------,
{overlay-name }

FLASH={(overlay-name[,count])}
{NONE }

The count subparameter is optional. If you omit it, you can omit the parentheses. However
if you omit it, you must not code it as a null; for example, FLASH = (ABCD,) is invalid.

Subparameter Definition

Defaults

overlay-name

count

Identifies the forms overlay frame that "the operator is to insert into the printer before
printing begins. The name is 1 to 4 alphanumeric or national characters.

Specifies the number, 0 through 255, of copies that JES is to flash with the overlay,
beginning with the first copy printed. Code a count of 0 to flash all copies.

NONE
Suppresses flashing for this data set.

If you do not code a FLASH parameter or specify an installation default at JES2 or JES3
initialization, forms are not flashed.

If you specify an overlay-name without specifying a count or with a count of 0, all copies are
flashed. That is, the default for count is 255.

Chapter 12. Coding the DD Statement 12-81

DD: FLASH

Overrides

A FLASH parameter on a sysout DD statement overrides an OUTPUT JCL FLASH
parameter.

Note: A null first subparameter is invalid in a FLASH parameter on a DD statement, but is
permitted on an OUTPUT JCL statement.

Relationship to Other Parameters

Do not code the following parameters with the FLASH parameter.

*
AMP
DATA
DDNAME
DISP

DLM
DSID
DSNAME
DYNAM
LABEL

MSVGP
PROTECT
QNAME
VOLUME

Relationship to COPIES Parameter: If this DD statement or a referenced OUTPUT JCL
statement also contains a COPIES parameter, JES prints with the forms overlay the number of
copies specified in one of the following:

• COPIES=nnn, if the FLASH count is larger than nnn. For example, if COPIES = 10 and
FLASH = (LTHD, 12) JES prints 10 copies, all with the forms overlay.

• The sum of the group-values specified in the COPIES parameter, if the FLASH count is
larger than the sum. For example, if COPIES = (,(2,3,4)) and FLASH = (LTHD,12) JES
prints nine copies in groups, all with the forms overlay.

• The count subparameter in the FLASH parameter, if the FLASH count is smaller than nnn
or the sum from the COPIES parameter. For example, if COPIES = 10 and
FLASH = (L THD, 7) JES prints seven copies with the forms overlay and three copies
without.

Relationship to Other Control Statements

FLASH can also be coded on the following:

• The OUTPUT JCL statement. See "FLASH Parameter" on page 14-28.
• The JES3 jj*FORMAT PR statement. See "jj*FORMAT PR Statement" on page 17-9.
• The JES2 j*OUTPUT statement. See "j*OUTPUT Statement" on page 16-13.

Verification of Forms Overlay Frame

Before printing starts, JES does not verify that the operator inserted the correct forms overlay
frame for flashing.

12-82 MVS JCL

DD: FLASH

Printing without Flashing

To print without flashing, specify one of the following:

• FLASH = NONE on the DD or OUTPUT JCL statement.

• Omit the FLASH parameter on all of the statements for the data set and on all JES.
initialization statements.

• For a sysout data set, omit the FLASH parameter on the DD statement and specify
FLASH = (,0) on a referenced OUTPUT JCL statement.

Example of the FLASH Parameter

//001 00 SYSOUT=A,COPIES=10,FLASH=(ABCO,5)

In this example, JES issues a message to the operator requesting that the forms-overlay frame
named ABCD be inserted into the printer. Then JES prints the first five copies of the data set
with the forms-overlay and the last five copies without.

Chapter 12. Coding the DD Statement 12-83

•

DD: FREE

FREE Parameter

Parameter Type: Keyword, optional

Purpose: Use the FREE parameter to specify when the system is to deallocate the resources
used for the data set defined by the DD statement. These resources can be devices, volumes, or
exclusive use of a data set. You can specify unallocation at the end of the job step or when the
data set is closed.

Use FREE = CLOSE on a sysout DD statement to make JES print the system output data set
before the job is finished.

Syntax:

FREE={END I CLOSE}

Subparameter Definition

Defaults

Overrides

END
Requests that the system deallocate the data set at the end of the step.

CLOSE
Requests that the system deallocate the data set when it is closed.

If no FREE parameter is specified, the default is END. Also, if the FREE parameter is
incorrectly coded, the system substitutes END and issues a warning message.

FREE = CLOSE is ignored:

• For a data set that is a member of a concatenated group.
• When a task in the step abnormally terminates.
• When the data set is referenced by another DD statement in the same or subsequent step.

Relationship to Other Parameters

Do not code the following parameters with the FREE parameter.

*
DATA
DDNAME

DLM
DYNAM
QNAME

If the DD statement specifies FREE = END and a DISP subparameter of PASS, the data set is
not deallocated until the end of the job or until used for a later DD statement with a
disposition of other than PASS.

12-84 MVS JCL

DD: FREE

Do not specify FREE = CLOSE on a DD statement with a ddname of JOBCAT, JOBLIB,
STEPCA T, or STEPLIB; CLOSE is ignored.

Relationship to Other Control Statements

If a DD statement requests unit affinity in a UNIT = AFF parameter or volume affinity in a
VOLUME = REF parameter with an earlier DD statement, do not code FREE = CLOSE on the
earlier statement.

If you code FREE = CLOSE on a sysout DD statement that references an OUTPUT JCL
statement containing a GROUPID parameter, JES2 will not group the data sets into one
output group. Instead, JES2 produces one copy of the system output data set for each
OUTPUT JCL statement that the DD statement references.

Relationship to the CLOSE Macro Instruction

When FREE = CLOSE is specified for a data set that is opened and closed more than once
during a job step:

• The data set is deallocated after it is closed if the assembler CLOSE macro instruction
specifies DISP, REWIND, or FREE. Then if the data set is reopened after the system has
deallocated it, the job step abnormally terminates, unless the data set is dynamically
allocated in the interval.

• The data set is not deallocated until the end of the job step if the assembler CLOSE macro
instruction specifies LEAVE or REREAD. Then the data set can be reopened.

Examples of the FREE Parameter

IIEA33 DD SYSOUT=D,FREE=CLOSE

In this example, the FREE = CLOSE parameter makes JES deallocate this output class D data
set when it is closed, rather than at the end of the job step. JES schedules the data set for
printing.

IIEA33 DD DSNAME=SYBIL,DISP=OLD,FREE=CLOSE

In this example, the FREE = CLOSE parameter makes JES deallocate the data set, dequeue it,
and make it available to other jobs as soon as it is closed.

Chapter 12. Coding the DD Statement 12-85

•

DD: FREE

//STEP1
//DD1
//STEP2
//DD2

EXEC PGM=ABLE1
DD DSNAME=A,DISP=(,PASS),FREE=END
EXEC PGM=ABLE2
DD DSNAME=A,DISP=(OLD,CATLG),FREE=END

In this example, data set A is passed by STEPI to STEP2. FREE = END on DD statement
DD I is ignored because the disposition is PASS. FREE = END on DD statement DD2 causes
data set A to be deallocated at the end of STEP2, when it is also cataloged.

//STEP1
//DD
//STEP2

EXEC PGM=BAKER1
DD DSNAME=A,DISP=(NEW,PASS),FREE=END
EXEC PGM=BAKER2

In this example, data set A is a new data set. Because PASS is specified, FREE = END is
ignored and the data set remains allocated.

12-86 MVS JCL

DD: HOLD

HOLD Parameter

Parameter Type: Keyword, optional

Purpose: Use the HOLD parameter to tell the system to hold a system output data set until it
is released by the system operator. When the data set is ready for processing, notify the system
operator to release it via a TSO NOTIFY parameter, a JES2 /*MESSAGE statement, or a
JES3 / /*OPERATOR statement.

A TSO user can specify HOLD = YES in order to retrieve a sysout data set and display it on a
terminal.

Note: HOLD is supported only for sysout data sets. If HOLD appears on a DD statement
that does not contain a SYSOUT parameter, it is ignored.

References: For more information on the HOLD parameter, see "Delaying the Writing of an
Output Data Set" on page 7-55.

Syntax:

HOLD= { [YES I Y] I [NO I N]}

Subparameter Definition

Defaults

Overrides

YES

NO

Requests that the system hold the system output data set until the data set is released by
the system operator. This subparameter can also be coded as Y.

Requests that system perform the installation-defined processing for the sysout data set's
output class. This subparameter can also be coded as N.

If no HOLD parameter is specified, the default is NO. If the HOLD parameter is incorrectly
coded; the system assumes the default of NO and issues a warning message; the job continues.

HOLD = NO is overridden by the de allocation verb of dynamic allocation or the TSO FREE
command.

Chapter 12. Coding the DD Statement 12-87

•

DD: HOLD

Relationship to Other Parameters

Do not code the following parameters with the HOLD parameter.

*
DATA
DDNAME

DLM
DYNAM
QNAME

Relationship to Other Control Statements

Code a NOTIFY parameter on the JOB statement to ask the system to send a message to your
TSO userid when job processing is complete. For information on the JOB NOTIFY parameter,
see "NOTIFY Parameter" on page 10-18.

JES2 users can use the j*NOTIFY control statement to direct job notification messages and to
override a JOB NOTIFY parameter. For information on the JES2 j*NOTIFY statement, see
"j*NOTIFY Statement" on page 16-11.

Example of the HOLD Parameter

//JOBOI
//STEPI
//DDI

JOB ,'HAROLD DUQUETTE' ,MSGLEVEL=l
EXEC PGM=MJCOSCO
DD SYSOUT=B,DEST=RMT6,HOLD=YES

Sysout data set DDI from JOBOI is held on a queue until the TSO user at RMT6 asks the
system operator to release the data set.

12-88 MVS JCL

DD:LABEL

LABEL Parameter

Parameter Type: Keyword, optional

Purpose: Use the LABEL parameter to specify for a tape data set:

• The relative position of the data set on the volume.
• The type and contents of the label or labels for the data set.
• If a password is required to access the data set.
• If the system is to open the data set only for input or output.
• The expiration data or retention period for the data set.

References: For more information on the LABEL parameter, see "Specifying the LABEL
Parameter" on page 7-7. For details on tape labels, see Tape Labels. For details on direct
access labels, see Data Management Services Guide. For information on protecting a data set
with a password, see SP L: Data Management.

Syntax:

[, SL])
[,SUL])
[,AL])

([,AUL] [,PASSWORD] [,IN] [,RETPD=nnnn])
LABEL=([data-set-sequence-number] [,NSL] [,NOPWREAD] [,OUT] [,EXPDT=yyddd])

([, NL] [,] [,])
([,BLP])
([, LTM])
([,])

The first four subparameters are positional; the last subparameter is keyword. If you omit any
positional subparameters but code a following positional subparameter, indicate each omitted
subparameter by a comma.

If you specify only the data-set-sequence-number or only the retention period or only the expir~tion
date, you can omit the parentheses. For example, code LABEL = data-set-sequence-number or
LABEL = RETPD = nnnn or LABEL = EXPDT = yyddd.

Subparameter Definition

Data-Set-Sequence-Number

data-set ... sequence-number
Identifies the relative position of a data set on a tape volume. The
data-set-sequence-number is 1 through 4 decimal digits. Omit this subparameter or code
o or 1 to indicate the first data set on the tape volume.

Omit this subparameter for the following:

• Cataloged data sets. The system obtains the data-set-sequence-number from the
catalog.

Chapter 12. Coding the DD Statement 12-89

DD:LABEL

Label Types

• A DD DSNAME parameter that requests all members of a generation data group
(GDG). The system retrieves the data-set-sequence-number from the catalog.

• A data set passed from a preceding step. The system obtains the
data-set-sequence-number from the passing step.

The system does not retain label type information for cataloged data sets; if the label type is
not coded in the LABEL parameter for a cataloged data set, the system assumes SL.

For a data set on a direct access device, the system obtains the label type from the DD
statement; the label type is not obtained from any other source referred to in the DD
statement. Data sets on direct access devices always have standard labels, but can optionally
have user labels also.

SL

SUL

AL

Indicates that a data set has IBM standard labels.

Code only SL or SUL:

• For data sets on direct access devices.

• When referencing an earlier tape volume DD statement. If you specify any other
label type, the system copies the label type from the referenced DD statement,
overriding the label type on the referencing DD statement.

Indicates that a data set has both IBM standard and user labels.

Code only·SL or SUL:

• For data sets on direct access devices.

• When referencing an earlier tape volume DD statement. If you specify any other
label type, the system copies the label type from the referenced DD statement,
overriding the label type on the referencing DD statement.

Do not code SUL for partitioned or indexed sequential data sets.

Indicates that a tape data set has ISO/ANSI Version I or ISO/ANSI/FIPS Version 3
labels.

Note: Do not specify AL or AUL in the LABEL parameter of a SYSCKEOV DD
statement.

If you specify AL for a tape generation data set for output, the ending . Gnnnn Vnn (where
n=O to 9) will not appear as part of the file identifier (data set name field) of the HDRI
label. Instead, the data is placed in the generation and version number fields of the
HDRI label.

12-90 MVS JCL

AUL

NSL

NL

BLP

LTM

DD:LABEL

Indicates that a tape data set has user labels and ISO/ANSI Version 1 or ISO/ANSI/PIPS
Version 3 labels.

Note: Do not specify AL or AUL in the LABEL parameter of a SYSCKEOV DD
statement.

Indicates that a tape data set has nonstandard labels.

Indicates that a tape data set has no labels.

When retrieving two or more data sets from several NL or BLP tape volumes,
concatenate the DD statements and repeat the LABEL parameter on each DD statement .

If you are processing ASCII data on unlabeled tapes, the data control block must specify
OPTCD=Q.

Requests that the system bypass label processing for a tape data set.

If the installation did not specify the BLP feature in the reader cataloged procedure, BLP
has the same effect as NL.

If you code BLP and the tape volume has labels, a tapemark delimits the data set. To let
the system position a tape with labels to the proper data set, code the
data-set-sequence-number subparameter; the number must reflect all labels and data sets
that precede the desired data set.

Do not specify BLP when the DD DSNAME parameter requests all members of a
generation data group (GDG); the system obtains the data-set-sequence-number from the
catalog. Therefore, coding BLP might result in incorrect tape positioning.

When retrieving two or more data sets from several NL or BLP tape volumes,
concatenate the DD statements and repeat the LABEL parameter on each DD statement.

Indicates that the data set has a leading tapemark.

Password Protection

Password protecting data sets requires the following:

• Data set names no longer than 17 characters. MVS retains in the tape label only the
rightmost 17 characters of the data set name. Consequently, longer names could be
identical in password checks.

• Volumes with IBM standard labels or ISO/ANSI/PIPS Version 3 labels.

• A password assigned in the PASSWORD data set. If a password is not assigned, the
system will abnormally terminate a job step when it attempts to open the data set for
output, if NOPWREAD is coded, or for input or output, if PASSWORD is coded.

Chapter 12. Coding the DD Statement 12-91

•

DD:LABEL

To create a password-protected data set following an existing password-protected data set, you
must supply the password of the existing data set. The security indicator must be the same in
both the existing and the new data set.

To password-protect a data set on a tape volume containing other data sets, you must
password-protect all the data sets on the volume and the security indicators must be the same
for ali data sets.

To password-protect an existing data set using PASSWORD or NOPWREAD, open the da!~I.
set for output the first time it is used during the job step.

PASSWORD
Indicates that a data set cannot be read, changed, deleted, or written to unless the system
operator or TSO user supplies the correct password.

NOPWREAD
Indicates that a data set cannot be changed, deleted, or written to unless the system
operator or TSO user supplies the correct password. No password is necessary for
reading the data set.

Input or Output Processing

IN

OUT

Indicates that a BSAM data set opened for INOUT or a BDAM data set opened for
UPDAT is to be read only. The IN subparameter overrides the processing option in the
assembler OPEN macro instruction. Any attempt by the processing program to write in
the data set makes the system give control to the error analysis (SYNAD) routine.

Indicates that a BSAM data set opened for OUTIN or OUTINX is to be written in only.
The OUT subparameter overrides the processing option in the assembler OPEN macro
instruction. Any attempt by the processing program to read the data set makes the
system give control to the error analysis (SYNAD) routine.

Expiration Date for Data Set

If the DD statement contains DISP = (NEW,DELETE) or the DISP parameter is omitted to
default to NEW and DELETE, the system deletes the data set when the step terminates
normally or abnormally, even though an RETPD period or EXPDT date is also specified.

Do not specify or imply RETPD or EXPDT for a temporary data set.

Expiration dates for successive files on an ISOjANSIjFIPS Version 3 volume must be coded in
descending order. For example, a data set with an expiration date of December 7, 1984
(LABEL = EXPDT = 84342) should be followed by a data set with an expiration date of
December 6, 1984 (LABEL = EXPDT = 84341) or earlier.

Note: Do not try to protect valuable data with the RETPD and EXPDT subparameters.
Instead, use password protection or the Resource Access Control Facility for data protection.

RETPD= nnnn

12-92 MVS JCL

Specifies the retention period, in days, for the data set. The nnnn is 1 through 4 decimal
digits. After nnnn days, the data set can be deleted or written over by another data set.

Defaults

DD:LABEL

The system adds nnnn to the current date to produce an expiration date. If the calculated
date is after January 1, 2000, the system will retain the data set only to January 1, 2000.
The calculated expiration date uses 365-day years, ignoring leap years.

EXPDT = yyddd
Specifies an expiration date for the data set. The yy is a two-digit year number and the
ddd is a three-digit day number from 001 through 366. For example, code February 2,
1986 as EXPDT=86033.

• If no data-set-sequence-number subparameter is specified or if the number is coded as 0 or
1, the default is the first data set on the tape volume, unless the data set is passed or
cataloged.

• If no label type subparameter is specified, the default is only IBM standard labels (SL).

Relationship to Other Parameters

Do not code the following parameters with the LABEL parameter.

*
BURST
CHARS
COPIES

DATA FLASH
DDNAME MODIFY
DLM OUTPUT
DYNAM QNAME

SYSOUT

Do not specify the LABEL parameter with the FUNC subparameter of the DCB parameter.
The results are unpredictable.

ISO/ANSI/FIPS Version 3 tape data sets can be protected by use of the ACCODE parameter.
See "ACCODE Parameter" on page 12-9.

Do not specify AL or AUL in the LABEL parameter of a SYSCKEOV DD statement.

Deleting a Data Set Before its Expiration Date

To delete a data set before the expiration date or retention period has passed, use one of the
following:

• For data sets cataloged in a VSAM or ICF catalog, use the DELETE command, as
described in Access Method Services Reference.

• For data sets not cataloged in a VSAM or ICF catalog, use the IEHPROGM utility, as
described in Utilities.

• For the data set control block (DSCB), use the SCRATCH macro with the OVRD
parameter, as described in SPL: Data Management. Deletion of the DSCB makes the space
occupied by the data set available for reallocation.

Chapter 12. Coding the DD Statement 12-93

•

DD:'LABEL

Translation

If the installation specified ASCII = INCLUDE during system generation, then AL or AUL in
the LABEL parameter requests translation. You can also request translation by specifying
OPTCD = Q in the data control block. If the tape is not labeled, LABEL = (,NL), you must
specify OPTCD = Q for translation to occur.

Examples of the LABEL Parameter

IIDDI
II

DD DSNAME=HERBI,DISP=(NEW,KEEP),UNIT=TAPE,
VOLUME=SER=T2,LABEL=(3,NSL,RETPD=188)

This DD statement defines a new data set. The LABEL parameter tells the system:

• This data set is to be the third data set on the tape volume.
• This tape volume has nonstandard labels.
• This data set is to be kept for 188 days.

IIDD2
II

DD DSNAME=A.B.C,DISP=(,CATLG,DELETE) ,UNIT=3400-5,
LABEL= (, NL)

This DD statement defines a new data set, requests that the system catalog it, and indicates that
the data set has no labels. Each time this data set is used by a program, the DD statement
must include LABEL = (,NL).

IIDD3
II

DD DSNAME=SPECS,UNIT=3400-5,VOLUME=SER=10222,
DISP=OLD,LABEL=4

This DD statement indicates an existing data set. The LABEL parameter indicates that the
data set is fourth on the tape volume.

IISTEPI
IIDDX
II
IISTEP2
IIDDY

EXEC PGM=FIV
DD DSNAME=CLEAR,DISP=(OLD,PASS),UNIT=3400-5,

VOLUME=SER=1257,LABEL=(,NSL)
EXEC PGM=BOS
DD DSNAME=*.STEPl.DDX,DISP=OLD,LABEL=(,NSL)

DD statement DDX in STEP1 indicates an existing data set with nonstandard labels and
requests that the system pass the data set. DD statement DDY in STEP2 receives the data set.
DDY does not contain unit and volume information, because the system obtains this
information through the backward reference in the DSNAME parameter. DDY contains the
label type, because the system does not obtain the label type through the backward reference.

12-94 MVS JCL

DD: MODIFY

MODIFY Parameter

Parameter Type: Keyword, optional

Purpose: Use the MODIFY parameter to specify a copy-modification module that tells JES
how to print the output data set on a 3800 Printing Subsystem. The module can specify the
following:

• Legends.
• Column headings.
• Where and on which copies the data is to be printed.

The module is defined and stored in SYSl.lMAGELIB using the IEBIMAGE utility program .

Note: MODIFY is supported only for the 3800 Printing Subsystem Modell and 2 and the
3800 Printing Subsystem Model 3 in compatibility mode.

References: For more information on the MODIFY parameter, see "Requesting Copy
Modification" on page 7-58, and on the copy modification module and the IEBIMAGE utility
program, see the IBM 3800 Printing Subsystem Programmer's Guide.

Syntax:

MODIFY={rnodule-narne }
{(rnodule-narne[,trc])}

• You must code the module-name.

• The trc subparameter is optional. If you omit it, you can omit the parentheses.
However, if you omit it, you must not code it as a null; for example,
MODIFY = (TABl,) is invalid.

Subparameter Definition.

module-name

trc

Identifies a copy-modification module in SYSl.IMAGELIB. The module-name is 1
through 4 alphanumeric or national characters.

Identifies which table-name in the CHARS parameter is to be used. This table reference
character is 0 for the first table-name specified, 1 for the second, 2 for the third, or 3 for
the fourth. The CHARS parameter is on the following, in override order:

1. This DD statement.

2. A referenced OUTPUT JCL statement.

3. A statement in the SYSl.IMAGELIB member specified on the OUTPUT JCL
PAGEDEF parameter.

Chapter 12. Coding the DD Statement 12-95

•

DD: MODIFY

Defaults

Overrides

4. A statement in the SYS1.IMAGELIB member obtained by default.

5. A JES3 initialization statement.

If no MODIFY parameter is specified, JES3 uses an installation default specified at
initialization. JES2 provides no installation default at initialization.

If you do not specify trc or if the trc value is greater than the number of table-names in the
CHARS parameter, JES2 uses the first table named in the CHARS parameter and JES3 uses
the default character arrangement table.

A MODIFY parameter on a sysout DD statement overrides an OUTPUT JCL MODIFY
parameter.

Note: A null first subparameter is invalid in a MODIFY parameter on a DD statement, but is
permitted on an OUTPUT JCL statement.

Relationship to Other Parameters

Do not code the following parameters with the MODIFY parameter.

*
AMP
DATA
DDNAME
DISP

DLM
DSID
DSNAME
DYNAM
LABEL

MSVGP
PROTECT
QNAME
VOLUME

Relationship to other Control Statements

MODIFY can also be coded on the following:

• The OUTPUT JCL statement. See "MODIFY Parameter" on page 14-41.
• The JES3 jj*FORMAT PR statement. See "II*FORMAT PR Statement" on page 17-9.
• The JES2 I*0UTPUT statement. See "j*OUTPUT Statement" on page 16-13.

The second character of each logical record can be a TRC code, so that each record can be
printed in a different font. This way of specifying fonts is indicated by the OUTPUT JCL TRC
parameter.

12-96 MVS JCL

DD: MODIFY

Example of the MODIFY Parameter

//001 DO UNIT=3~OO,MOOIFY={A,O),CHARS={GS15,GS10)

In this example, the MODIFY parameter requests that the data in the copy-modification
module named A replace variable data in the data set to be printed by the 3800. Module A
defines which positions are to be replaced and which copies are to be modified. The second
subparameter in MODIFY specifies that the first character arrangement table in the CHARS
parameter, GS15, be used.

Chapter 12. Coding the DD Statement 12-97

•

DD: MSVGP

MSVGP Parameter

Parameter Type: Keyword, optional

Purpose: Use the MSVGP parameter to place the data set in a group of mass storage volumes
on a mass storage system (MSS) device. MSVGP applies only to a nonspecific volume request,
which is a DD statement for a new data set that can be assigned to any vol\J.me or volumes in a
group.

References: For more information on using mass storage volumes, see "Specifying Data Sets
for Mass Storage Systems (MSS)" on page 7-37, and on defining mass storage groups, see Mass
Storage System (MSS) Services General Information.

Syntax:

{id }
MSVGP={(id[,ddname])}

{SYSGROUP }

You can omit the parentheses if you code only the id subparameter or SYSGROUP.

Subparameter Definition

id
Identifies a group of mass storage volumes. The id is 1 through 8 alphanumeric or
national characters and must be previously defined by the installation using a mass
storage system service.

ddname
Requests that the data set for this DD statement is to be allocated,to volume(s) other
than the volume(s) occupied by the data set for DD statement ddname. DD statement
ddname must appear earlier in the job step.

If volume, separation within the group is not possible, the system terminates the job.

The ddname refers to only the first data set (1) when the named DD statement starts a
concatenation or (2) when the DSNAME parameter of the named DD statement requests
all members of a generation data group (GDG).

SYSGROUP

12-98 MVS JCL

Identifies a default group of mass storage volumes. Code MVSGP = SYSGROUP to
make sure that a nonspecific request is allocated to SYSGROUP.

Relationship to Other Parameters

Do not code the following parameters with the MSVGP parameter.

*
BURST
CHARS
COPIES
DATA

DDNAME FLASH
DLM MODIFY
DSID OUTPUT
DYNAM QNAME

SYSOUT

SPACE Parameter: Code the SPACE parameter for the following reasons:

DD: MSVGP

• To allocate noncontiguous primary space. Contiguous space is the MSVGP default.
• For nonspecific requests for BPAM and ISAM data sets.

Do not code the ABSTR, MXIG, and ALX subparameters in the SPACE parameter .

VOLUME Parameter: Do not code VOLUME = SER with the MSVGP parameter;
VOLUME = SER is a specific volume request, while MSVGP can be used only for nonspecific
volume requests. Other VOLUME subparameters can be specified with MSVGP.

VOLUME = PRIVATE with MSVGP is redundant, because MSVGP causes allocation to a
private volume.

UNIT and VOLUME Counts: The unit count in the UNIT parameter must be less than the
volume count in the VOLUME parameter to guarantee allocation of a nonsharable unit.

Allocation when MSVGP is Not Coded

When a DD statement defines a new, nonspecific data set and does not contain an MSVGP
parameter, the system allocates as follows:

• Places a permanent data set on a mounted 3330V Disk Storage volume, if one exists. If
one does not exist, a volume is selected from SYSGROUP; in this case, the DD statement
must contain a SPACE parameter or the job is terminated.

• Places a temporary data set on a mounted 3330V Disk Storage public volume, if one exists.
If one does not exist or it does not have enough space, a volume is selected from
SYSGROUP.

Chapter 12. Coding the DD Statement 12-99

•

DD:'MSVGP'

Examples of the MSVGP Parameter

IIDDl DD DSNAME=ACCOUNT,DISP=(NEW,CATLG),UNIT=3330V,
II MSVGP=AB$1234@,VOLUME=(",3)

A new, cataloged data set is to be created on one, two, or three mass storage volumes in the
group called AB$1234@. The installation previously defined this group and assigned at least
three volumes to it. If this service provided a space default of SPACE = (CYL,(200, 100)), the
system selects from the group a volume with at least 200 cylinders available.

During step execution, if more than 200 cylinders are required, and if 100 more cylinders are
not available on the mounted volume, the system asks the operator to demount the volume.
The system selects from group AB$1234@ a volume with at least 100 cylinders available and
asks the operator to mount the volume. 'The volume count of three allows the data set to
extend over up to three volumes. If more are required, the step abnormally terminates.

IIDDl DD DSNAME=MASTRIN,DISP=OLD
IIDD2 DD DSNAME=MASTROUT,UNIT=3330V,DISP=(,CATLG),
II MSVGP=(AB$1234@,DD1)

001 requests an existing cataloged data set. 002 defines a new data set that will be allocated
to a volume in mass storage group ABI234@.

Because 001 is specified as the ddname subparameter of MSVGP on 002, the system
allocates the 002 data set, MASTROUT, to different volumes than the volumes for the 001
data set, MASTRIN.

12-100 MVS JCL

DD: OUTLIM

OUTLIM Parameter

Parameter Type: Keyword, optional

Purpose: Use the OUTLIM parameter to limit the number of logical records in the system
output data set defined by this DD statement. When the limit is reached, the system exits to
the SYSOUT limit exit routine. If the installation supplies a user-written routine" the routine
can determine whether to terminate the job or increase the limit. If the installation does not
supply a routine, the system terminates the job.

If the installation supplies a routine, it must be included in the SYSl.LPALIB library.

Note: OUTLIM is valid only on a DD statement with a SYSOUT parameter.

References: For more information on the OUTLIM parameter, see "Limiting Output Records" •
on page 7-55, and on the SYSOUT limit exit routine, see SPL: System Management Facilities.

Syntax:

OUTLIM=nurnber

Subparameter Definition

Default

number
Specifies the maximum number of logical records. The number is 1 through 8 decimal
digits from 1 through 16777215.

(1) If no OUTLIM parameter is specified or OUT LIM =0 is coded and (2) if output is not
limited by JES control statements, JES3 uses an installation default specified at initialization;
JES2 provides no installation default at initialization.

Relationship to Other Parameters

OUTLIM can be coded only when SYSOUT is also coded.

Do not code the following parameters with the OUT LIM parameter.

*
AMP
CHKPT
DATA
DDNAME

DISP MSVGP
DLM PROTECT
DSNAME QNAME
DYNAM SUBSYS
LABEL

Do not code the OUT LIM parameter with the DCB subparameters CPRI or THRESH; these
subparameters can alter the OUTLIM value.

On Dump DD Statements: JES3 ignores an OUTLIM parameter on a SYSABEND or
SYSUDUMP DD statement.

Chapter 12. Coding the DD Statement 12-101

DD: OUTLIM

Relationship to Other Control Statements

Output can also be limited by the following:

• The LINES, BYTES, or PAGES parameters of the JES2 /*JOBPARM statement. See
"/*JOBPARM Statement" on page 16-4.

• The LINES or CARDS parameters of the JES3 //*MAIN statement. See "//*MAIN
Statement" on page 17-23.

Example of the OUTLIM Parameter

//OUTDD DD SYSOUT=F,OUTLIM=lOOO

The limit for the number of logical records is 1000.

12 ... 102 MVS JCL

DD:OUTPUT

OUTPUT Parameter

Parameter Type: Keyword, optional

Purpose: Use the OUTPUT parameter with the SYSOUT parameter to as~ociate a system
output data set explicitly with an OUTPUT JCL statement. JES processes the system output
data set using the options from this DD statement combined with the options from the
referenced OUTPUT JCL statement.

When the OUTPUT parameter references more than one OUTPUT JCL statement, the system
produces separate output for each OUTPUT JCL statement.

Note: Code the OUTPUT parameter only on a DD statement with a SYSOUT parameter.
Otherwise, the system checks the OUTPUT parameter for syntax then ignores it.

References: For information on the OUTPUT JCL statement, see Chapter 14, "Coding the
OUTPUT JCL Statement."

Syntax:

{ (* . name [, * . name] ...) }
OUTPUT={(*.stepname.name[,*.stepname.name] ...) }

{(*.stepname.procstepna~e.name[,*.stepname.procstepname.name] ...)}

• A reference is one of the following:

*.name
* . stepname. name
* .stepname.procstepname.name

• You can omit the parentheses if you code only one reference.

• You must not code a null in an OUTPUT parameter. For example, OUTPUT = (,*.name) is
invalid.

• You can reference a maximum of 128 OUTPUT JCL statements on one OUTPUT parameter.

• You c3;n code references in any combination. For example, the following are valid:

IIEXA DD
IIEXB DD

II

SYSOUT=A,OUTPUT=(*.name,*.name,*.stepname.name)
SYSOUT=A,OUTPUT=(*.stepname.name,
.stepname.procstepname.name,.name)

.• You can code the references to OUTPUT JCL statements in any order.

Chapter 12. Coding the DD Statement 12-103

•

DD:OUTPUT

Subparameter Definition

Defaults

Overrides

*.name
Refers to the earlier OUTPUT JCL statement with name in its name field. The system
searches for the OUTPUT JCLstatement first in the same step, then before the first
EXEC statement of the job.

* .stepname.name
Refers to the earlier OUTPUT JCL statement, name, in this step or an earlier step,
stepname, in the same job.

* .stepname. procstepname.name
Refers to an OUTPUT JCL statement in a cataloged or in-stream procedure. Stepname
is the name of this job step or an earlier job step that calls the procedure, procstepname is
the name of the procedure step that contains the OUTPUT JCL statement, and name is
the name field of the OUTPUT JCL statement.

If no OUTPUT parameter is specified on a sysout DD statement, JES obtains processing
options for the system output data set in the following order:

1. From all OUTPUT JCL statements containing DEFAULT=YES in the same step.

2. From all OUTPUT JCL statements containing DEFAULT=YES before the first EXEC
statement in the job, provided that the step contains no OUTPUT JCL statements with
DEFAULT=YES.

3. Only from the sysout DD statement, provided that neither the step nor job contains any
OUTPUT JCL statements with DEFAULT=YES.

Each OUTPUT JCL statement represents an output processing request that JES is to use in
processing the sysout data set.

When an OUTPUT JCL statement is used with the sysout DD statement to specify processing,
JES handles parameters as follows:

• If a parameter appears on the DD statement, JES uses the parameter.
• If a parameter appears only on the OUTPUT JCL statement, JES uses the parameter.
• If the same parameter appears on both statements, JES uses the DD parameter.

JES uses the whole overriding parameter, ignoring the whole overridden parameter. If a
subparameter is left off the overriding parameter, the system does not pick up that
subparameter from the overridden parameter. For example:

//EXAMP2 OUTPUT
/ /FVZ2 DD

DEFAULT=YES,FLASH=(,3)
SYSOUT=F,OUTPUT=*.EXAMP2,FLASH=(GF12)

Only GF12 is used. The system ignores all of the FLASH parameter on the OUTPUT JCL
statement, including the second parameter.

12~104 MVS JCL

DD:OUTPUT

Relationship to Other Subparameters

Null Sub parameters: A null first subparameter is invalid in a FLASH or MODIFY parameter
on a DD statement, but is permitted on an OUTPUT JCL statement. For example,
MODIFY = (,3) is valid only on an OUTPUT JCL statement.

SYSOUT Code-name Sub parameter: You cannot reference a JES2 j*OUTPUT statement using
the code-name subparameter of the SYSOUT parameter if either of the following is also coded:

• The OUTPUT parameter on the same DD statement.

• An OUTPUT JCL statement containing DEFAULT=YES in the same step or before the
EXEC statement of the job, when the DD statement does not contain an OUTPUT
parameter.

DEFAULT Parameter on OUTPUT ICL Statement: When you code DEFAULT=YES on an •
OUTPUT JCL statement, you can still refer to the OUTPUT JCL statement in the OUTPUT
parameter of a sysout DD statement.

Location in the JCL

All referenced OUTPUT JCL statements must precede the DD statement that refer to them.

No Match for OUTPUT Name

If the system finds no match for the name coded in the OUTPUT parameter, the system issues
a JCL error message and fails the job.

Processing Options in Multiple References

Processing options for a system output data set come from one sysout DD statement and one
OUTPUT JCL statement. Processing options are not cumulative across a group of OUTPUT
JCL statements.

When the OUTPUT parameter on a sysout DD statement explicitly refers to more than one
OUTPUT JCL statement, each combination of the sysout DD statement and one of the
referenced OUTPUT JCL statements produces one set of printed or punched output.

The same rule applies when one sysout DD statement implicitly references several default
OUTPUT JCL statements.

Examples .of the OUTPUT Parameter

//OUT DD SYSOUT=A,OUTPUT=*.OUTA

This OUTPUT parameter specifies that the system is to use the processing options specified on
OUTPUT JCL statement OUTA. OUTPUT JCL statement OUT A is located either in this job
step before this DD statement or before the first EXEC statement in this job.

Chapter 12. Coding the nn Statement 12-105

DD:····OUTPUT

IIoUT2 DD SYSOUT=A,OUTPUT=(*.OUTA,*.STEP1.OUTC),DEST=HQ

This OUTPUT parameter specifies that the system is to produce two sets of output for the
system output data set, as follows:

• Output according to the combined processing options on OUTPUT JCL statement OUTA
and DD statement OUT2. OUTA is earlier in this step or is before the first EXEC
statement of the job.

• Output according to the combined processing options on OUTPUT JCL statement OUTC
and DD statement OUT2. OUTC is in the step STEPI, which can be this step or an earlier
step in this job.

IISTEP5
IIoUT3
II

EXEC
DD

PGM=WRITER
SYSOUT=A,OUTPUT=(*.STEP1.OUTB,*.STEP2.0UTD,
.STEP4.PSTEP1.OUTY,.OUTE,*.STEP3.PSTEP2.0UTX)

This OUTPUT parameter specifies that the system is to produce five separate sets of output for
the system output data set, as follows:

1. For this DD statement and OUTPUT JCL statement OUTB, which is in earlier STEPI.

2. For this DD statement and OUTPUT JCL statement OUTD, which is in earlier STEP2.

3. For this DD statement and OUTPUT JCL statement OUTY, which is in procedure step
PSTEP lof the procedure called by earlier STEP4.

4. For this DD statement and OUTPUT JCL statement OUTE, which is before the first
EXEC statement of this job.

5. For this DD statement and OUTPUT JCL .statement OUTX, which is in procedure step
PSTEP2 of the procedure called by earlier STEP3.

Note that the references to OUTPUT JCL statements are in no particular order.

12; .. 106 MVS JCL

DD:OUTPUT

//EXAMP
//OUTl
//
//OUT2
//OUT3
//STEPl
//OUT4
//Rl
//R2
//STEP2
//Bl
//B2

JOB
OUTPUT

OUTPUT
OUTPUT
EXEC
OUTPUT
DD
DD
EXEC
DD
DD

MSGCLASS=A
DEFAULT=YES,DEST=COMPLEX7,FORMS=BILLING,
CHARS=(AOA,AOB),COPIES=2
DEFAULT=YES,DEST=COMPLEX3
DEST=COMPLEXl
PGM=ORDERS
DEFAULT=YES,DEST=COMPLEX9
SYSOUT=A,OUTPUT=*.OUT3
SYSOUT=A
PGM=BILLING
SYSDUT=A
SYSOUT=A

This job requests that the system produce nine sets of output: eight sets of job output and one
set for the system-managed output data set.

Set 1

Set 2

In STEPI, DD statement RI explicitly references OUTPUT JCL statement OUT3.
Therefore, the system produces one set of output at COMPLEX I for DD statement RI
combined with OUTPUT JCL statement OUT3.

In STEPI, DD statement R2 implicitly references OUTPUT JCL statement OUT4 for
both of the following reasons:

• DD statement R2 does not containan OUTPUT parameter.
• STEPI contains an OUTPUT JCL statement with DEFAULT = YES.

Therefore, the system produces one set of output at COMPLEX9 for DD statement R2
combined with OUTPUT JCL statement OUT4.

Sets 3 through 8
In STEP2, DD statements BI and B2 implicitly reference OUTPUT JCL statements
OUTI and OUT2 for all of the following reasons:

• DD statements BI and B2 do not contain OUTPUT parameters.
• STEP2 does not contain an OUTPUT JCL statement with DEFAULT = YES.
• DEFAULT=YES is specified on OUTPUT JCL statements OUTI and OUT2.

Therefore, the system produces three sets of output each for DD statements BI and B2:

Sets 3 and 4 at COMPLEX7 for DD statement BI combined with OUTPUT JCL
statement OUTl.

Set 5 at COMPLEX3 for DD statement BI combined with OUTPUT JCL statement
OUT2.

Sets 6 and 7 at COMPLEX7 for DD statement B2 combined with OUTPUT JCL
statement OUTI.

Set 8 at COMPLEX3 for DD statement B2 combined with OUTPUT JCL statement
OUT2.

Chapter 12. Coding the DD Statement 12-107

•

DD:·····OUTPUT,

Set 9
The system-managed output data set is processed locally' because of the MSGCLASS .
parameter on the JOB statement.

12-108 MVS'JCL'

DD:PROTECT

PROTECT Parameter

Parameter Type: Keyword, optional

Purpose: Use the PROTECT parameter to tell the Resource Access Control Facility (RACF)
to create a discrete profile to protect:

• A data set on direct access.
• A tape volume.

Use the PROTECT parameter only if RACF is installed and active.

References: For more information on discrete profiles and RACF, see Resource Access Control
Facility (RACF) Security Administrator's Guide.

Syntax:

PROTECT=YES

Subparameter Definition

YES
Requests RACF to create a discrete profile to protect a direct access data set or a tape
volume. This parameter can also be coded as Y.

Relationship to Other Parameters

Do not code the following parameters with the PROTECT parameter.

* DLM QNAME
BURST DYNAM SYSOUT
CHARS FCB TERM
DATA FLASH UCS
DDNAME MODIFY

OUTPUT

Requirements for Protecting a Tape Volume

A DD statement that contains a PROTECT parameter to establish RACF protection for a tape
volume must:

• Request one of the volume's existing data sets in the DSNAME parameter.

• Specify or imply VOLUME = PRIVATE.

• Specify DISP = OLD. The status must not be MOD treated as OLD.

Chapter 12. Coding the DD Statement 12-109

•

DD:PROTECT

• Specify a label type in the LABEL parameter of:

SL or SUL for IBM standard labels.

NSL for nonstandard labels. In this case, the NSL installation exit routine must issue a
RACFDEF m.acro instruction. See SPL: Supervisor for a description of RACFDEF.

Al or AUL for ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 tape labels.

To establish protection, the tape data set must be:

• The first on the volume, except for NSL tapes.

• Located on the first volume of a multivolume data set, except for NSL tapes. Thus, the
volume-sequence-number of the VOLUME parameter must be 1.

• OpeJ?-ed for OUTPUT or OUTIN by the program.

Requirements for Protecting a Direct Access Data Set

A DD statement that contains a PROTECT parameter to establish RAC~ protection for a
direct access data set must:

• Specify a permanent data set in the DSNAME parameter.

• Specify a status of DISP = NEW or MOD treated as NEW. RACF ~an e~tablish protection
only when the data set is being created.

• Specify a normal termination disposition of KEEP, PASS, CATALG, or UNCATLG and
an abnormal termination disposition of KEEP, CATALG, or UNCATLG. A disposition
of DELETE is not allowed, to prevent unauthorized persons from deleting protected data
sets.

Examples of the PROTECT Parameter

IIDASD DD UNIT=3330,VOLUME=SER=333000,DSNAME=USER37.MYDATA,
II DISP=(,CATLG),SPACE=(TRK,l),PROTECT=YES

This DD statement requests RACF protection for the new direct access data set
USER37.MYDATA.

IITAPEDATA DD
II
II

UNIT=3400-5,DISP=(OLD,UNCATLG),
LABEL=(,SL),VOLUME=SER=T498S0,DSNAME=TAPEDS,
PROTECT=YES

This DD statement requests RACF protection for tape volume T49850. Because a specific tape
voluffie is requested, it automatically has the PRIV ATE attribute. The volume has a standard
l~bel, and T APEDS must be the first data set on the tape.

12-110 MVS JCL

DD:QNAME

QNAME Parameter

Parameter Type: Keyword, optional

Purpose: Use the QNAME parameter to indicate that this DD statement defines a data set of
telecommunications access method (TCAM) messages. The QNAME parameter refers to a
TPROCESS macro instruction that defines a destination queue for the'messages. Optionally,
the QNAME parameter can also name a TCAM job to process the messages.

References: For information about TCAM and the TPROCESS macro instruction, see TeAM
Programmer's Guide.

Syntax:

QNAME=procnarne[.tcarnnarne]

Subparameter Definition

procname
Identifies a TPROCESS macro instruction. The procname is 1 through 8 alphanumeric or
national characters; the first character must be alphabetic or national. This procname
must be identical to the procname in the name field of the TPROCESS macro instruction.

tcamname
Names a TCAM job or started task. The tcamname is 1 through 8 alphanumeric or
national characters; the first character must be alphabetic or national.

The job can be a task started by an operator START command.

Relationship to Other Parameters

The only DD parameter that you can code with the QNAME parameter is the DCB parameter.

The only DCB subparameters that you can code with the QNAME parameter are: BLKSIZE,
BUFL, LRECL, OPTCD, and RECFM.

Example of the QNAME Parameter

//DYD DD QNAME=FIRST,DCB=(RECFM=FB,LRECL=80,BLKSIZE=320)

This DD statement defines a data set of TCAM messages. FIRST is the name of the
TPROCESS macro instruction that specifies the destination queue to which the messages are
routed. The DCB parameter supplies information not supplied in the program's DCB macro
instruction for the data control block.

//DXD DD QNAME=SECOND.TCAMOI

This DD statement defines a data set of TCAM messages. SECOND is the name of the
TPROCESS macro instruction that specifies the destination queue to which the messages are
routed. TCAM program TCAMO 1 will process the messages.

Chapter 12. Coding the DD Statement 12 .. 111

•

DD: SPACE

SPACE Parameter

Parameter Type: Keyword, optional

Purpose: Use the SPACE parameter to request space for a new data set on a direct access
volume. You can request space in two ways:

• Tell the system how much space you want and let the system assign specific tracks.
• Tell the system the specific tracks to be allocated to the data set.

Letting the system assign the specific tracks is most frequently used. You specify only that
space is to be measured in tracks, cylinders, or blocks and how many of those tracks, cylinders,
or blocks are required.

The SPACE parameter has no meaning for tape volumes; however, if you assign a data set to a
device class that contains both direct access devices and tape devices, for example,
UNIT = SYSSQ, you should code the SPACE parameter.

References: For more information on the SPACE parameter, see "Requesting Space for
Non-VSAM Data Sets" on page 7-39.

Syntax:

For system assignment of space:

((TRK, } [, CONTIG])
SPACE=«(CYL, } (primary-qty[,second-qty] [,directory]) [,RLSE] [,MXIG] [,ROUND])

«(blklgth,}([,] [,index])[,] [,ALX])
[,]

To request specific tracks:

SPACE=(ABSTR,(primary-qty,address[,directory]»
« [, index]))

• You can omit the parentheses around the primary quantity if you do not code secondary, directory, or
index quantities. For example, SPACE = (TRK,20"CONTIG).

• All the subparameters are positional. Code a comma to indicate an omitted subparameter if any others
follow. Thus:

If you code primary and directory or index quantities and omit a secondary quantity, code a
comma to indicate the omission. For example, SPACE = (TRK,(20,,2».

If you omit RLSE but code a following subparameter, code a comma to indicate the omission. For
example, SPACE = (TRK,(20,lO)"CONTIG).

If you omit CONTIG, MXIG, or ALX and ROUND follows, code a comma to indicate the
omission. For example, SPACE=(400,30",ROUND).

12-112 MVS JCL

DD: SPACE

Subparameter Definition

System Assignment of Space

TRK
Requests that space be allocated in tracks.

CYL
Requests that space be allocated in cylinders.

blklgth
Specifies the average block length of the data. The system computes how many tracks to
allocate. The blklgth is a decimal number from I through 65535.

primary-qty
Specifies one of the following:

• For TRK, the number of tracks to be allocated.
• For CYL, the number of cylinders to be allocated.
• For a block length, the number of data blocks in the data set.
Note: When you specify TRK or CYL for a partitioned data set, the space for the directory
is specified twice: once as part of the primary quantity and a second time separately as the
directory quantity.

One volume must have enough available space for the primary quantity. If you request a
particular volume and it does not have enough space available for your request, the
system terminates the job step. Allow for track overflow when computing track
requirements.

second-qty
Specifies how many additional tracks or cylinders are to be allocated if more space is
needed. The system can allocate up to 16 extents for a data set on a volume. An extent
is space that is not contiguous to other space allocated to the data set. The extents for a
data set include the primary quantity space and user-label space.

Note: BDAM data sets cannot be extended.

The system computes the number of tracks for the secondary quantity based on the DCB
BLKSIZE subparameter, the DCB macro instruction, or the SPACE block length
subparameter. The system does not allocate additional space until it is needed.

When you specify a secondary quantity and the data set requires additional space, the
system allocates the specified quantity:

1. In contiguous tracks or cylinders, if available.
2. If not, in up to five extents.

Each time the data set requires more space, the system allocates the secondary quantity.
This space is allocated on the same volume as the primary quantity until one of the
following occurs:

• The volume does not have enough space available for the secondary quantity.
• 16 extents have been allocated to the data set.

Chapter 12. Coding the DD Statement 12-113

•

DD: SPACE

Then, the system allocates the secondary quantity on another volume. If the requested
volumes have no more available space and if at least one volume is demountable, the
system asks the operator to mount scratch (nonspecific) volumes until the secondary
allocation is complete. If none of the volumes are demountable, the system abnormally
terminates the job step.

directory

index

Specifies the number of 256-byte records needed in the directory of a partitioned data set.

Note: When creating a partitioned data set, you must request space for a directory.

For the index of an indexed sequential data set, specifies one of the following:

• For TRK, the number of tracks needed. The number of tracks must equal one or
more cylinders.

• For CYL, the number of cylinders needed.

RLSE
Requests that space allocated to an output data set, but not used, is to be released when
the data set is closed. Unused space is released only if the data set is open for output and
the last operation was a write.

If you specify RLSE and an abnormal termination occurs, the system does not release
unused space even though the data set is open.

The system ignores a request to release unused space when a data set is closed if:

• Another job is sharing the data set.

• Another task in the same job is processing an OPEN, CLOSE, EOV, or FEOV
request for the data set.

• Another data control block is open for the data set.

The RLSE subparameter is ignored when TYPE = T is coded in the CLOSE macro
instruction.

CONTIG
Requests that space allocated to the data set must be contiguous. This subparameter
affects only primary space allocation.

If CONTIG is specified and contiguous space is not available, the system terminates the
job step.

MXIG
Requests that space allocated to the data set must be (1) the largest area of available
contiguous space on the volume and (2) equal to or greater than the primary quantity.
This subparameter affects only primary space allocation.

Note: Do not code a MXIG subparameter for an indexed sequential data set.

12-114 MVS JCL

ALX

DD: SPACE

Requests that up to five separate areas of contiguous space are to be allocated to the data
set and each area must be equal to or greater than the primary quantity. This
subparameter affects only primary space allocation.

Note: Do not code an ALX subparameter for an indexed sequential data set.

ROUND
When the first subparameter specifies the average block length, requests that space
allocated to the data set must be equal to an integral number of cylinders.

Request for Specific Tracks

ABSTR
Requests that the data set be allocated at the specified location on the volume .

primary-qty
Specifies the number of tracks to be allocated to the data set.

The volume must have enough available space for the primary quantity. If it does not,
the system terminates the job step.

address
Specifies the track number of the first track to be allocated. Count the first track of the
first cylinder on the volume as O. Count through the tracks on each cylinder until you
reach the track on which you want the data set to start.

Note: Do not request track O.

directory
Specifies the number of 256-byte records needed in the directory of a partitioned data set.

Note: When creating a partitioned data set, you must request space for a directory.

index
Specifies the number of tracks needed for the index of an indexed sequential data set.
The number of tracks must equal one or more cylinders.

Relationship to Other Parameters

Do not code the following parameters with the SPACE parameter.

*
AMP
DATA
DDNAME

DLM
DYNAM
QNAME

With DeB KEYLEN for Block Requests: If space is requested in blocks and the blocks have
keys, code the DCB subparameter KEYLEN on the DD statement and specify the key length.

Chapter 12. Coding the DD Statement 12-115

•

DD: SPACE

SPACE for New Data Sets on Mass Storage Volumes

• The SPACE parameter must be coded for new data sets when VOLUME = SER is coded. It
is optional when MSVGP is coded. If you code neither VOLUME = SER nor MSVGP,
SPACE must be coded even if you code VOLUME = PRIVATE.

• Contiguous space is the MSVGP default.' If you want a noncontiguous primary space
allocation, you must specify the SPACE parameter.

Examples of the SPACE Parameter

IIDD1 DD DSNAME=&&TEMP,UNIT=MIXED,SPACE=(CYL,lO)

The DD statement defines a temporary data set. The UNIT parameter requests any available
tape or direct access volume; MIXED is a name for a group of tape and direct access devices.
If a tape volume is assigned, the SPACE parameter is ignored; if a direct access volume is
assigned, the SPACE parameter is used to allocate space to the data set. The SPACE
parameter specifies only the required subparameters: the type of units and a primary quantity.
It requests that the system allocate 10 cylinders.

IIDD2
II

DD DSNAME=PDS12,DISP=(,KEEP),UNIT=3350,
VOLUME=SER=25143,SPAGE=(CYL,(lO"lO)"CONTIG)

The DD statement defines a new partitioned data set. The system allocates 10 cylinders to the
data set, of which ten 256-byte records are for a directory. Since the CONTIG subparameter is
coded, the system allocates 10 contiguous cylinders on the volume.

IIREQUEST1 DD
II

DSNAME=EXM,DISP=NEW,UNIT=3330,VOLUME=SER=606674,
SPACE=(1024,75),DCB=KEYLEN=8

This DD statement requests space in block lengths. The average block length of the data is
1024 bytes. 75 blocks of data are expected as output. Each block is preceded by a key eight
bytes long. The system computes how many tracks are needed, depending on t4e device
requested in the UNIT parameter.

IIREQUEST2 DD DSNAME=PET,DISP=NEW,UNIT=3330,VOLUME=SER=606674,
II SPACE=(1024, (75)),DCB=KEYLEN=8,SPACE=(ABSTR, (1,1))

In this example, the SPACE parameter asks the system to allocate one track, beginning on the
second track of the volume. The first track is O.

12-116 MVS JCL

DD:,SUBSYS

SUBSYS Parameter

Parameter Type: Keyword, optional

Purpose: Use the SUBSYS parameter to request a subsystem to process this data set and,
optionally, to specify parameters defined by the subsystem.

In a loosely-coupled multiprocessing environment, the requested subsystem must be defined on
all processors that could interpret this DD statement.

References: For more information on the SUBSYS parameter and subsystem-defined
parameters, refer to the documentation for the requested subsystem.

Syntax:

SUBSYS=(subsystem-name[,subsystem-subparameter] ...)

Single Subparameter: You can omit the parentheses is you code only the subsystem-name.

Number of Subparameters: Code up through 254 subsystem-subparameters, if needed.

Multiple Subparameters: When the parameter contains more than one the subsystem-name,
separate the subparameters by commas and enclose the subparameter list in parentheses.
For example, SUBSYS = (XYZ,I 724,DT25).

Positional Subparameters: If you omit a subparameter that the subsystem considers
positional, code a comma in its place.

Special Characters: When a subparameter contains special characters, enclose the
subparameter in apostrophes. For example, SUBSYS = (XYZ,1724,'KEY = Y').

Code each apostrophe that is part of a subparameter as two consecutive apostrophes. For
example, code O'Day as SUBSYS = (XYX,I 724,'NAME = O"DA Y').

Continuation onto Another Statement: Enclose the subparameter list in only one set of
parentheses. End each statement with a comma after a complete subparameter. For
example:

IIDSl
II

DD DSNAME=DATA1,SUBSYS=(XYZ,1724,'KEY=Y',
DT25,'NAME=O' 'DAY')

Subparameter Definition

subsystem-name
Identifies the subsystem. The subsystem name is I through 4 alphanumeric or national
characters; the first characters must be alphabetic or national. The subsystem must be
available in the installation.

Chapter 12. Coding the DD Statement 12-117

•

DD:··SUBSYS

subsystem-subparameter
Specifies information needed by the subsystem. A subparameter consists of alphanumeric,
national, or special characters.

Relationship to Other Parameters

Do not code the following DD parameters with the SUBSYS parameter.

*
DATA
DDNAME
DLM

DYNAM
OUTPUT
QNAME
SYSOUT

The specified subsystem can define other parameters that must not be coded with the SUBSYS
parameter.

Ignored hut Permitted DD Parameters: If the following DD parameters are specified, they are
checked for syntax and ignored:

COPIES
DEST
FCB

OUTUM
SPACE
UNIT

DISP Parameter: The system checks the DISP status subparameter for syntax, but always
indicates a status of MOD to the subsystem. If the DISP normal or abnormal termination
subparameter is CATLG or UNCATLG, the system allocates the appropriate catalog to the
subsystem.

DUMMY Parameter: If DUMMY is specified with SUBSYS, the subsystem checks the syntax
of the subsystem subparameters. If they are acceptable, the system treats the data set as a
dummy data set.

When This Statement Overrides a Procedure Statement: If SUBSYS appears on a DD
statement that overrides a DD statement in a cataloged or in-stream procedure, the following
occurs:

• The system ignores a UNIT parameter, if specified, on the overridden DD statement.
• The system nullifies a DUMMY parameter, if specified, on the overridden DD statement.

Examples of the SUBSYS Parameter

IIDDI DD DSNAME=ANYDS,DISP=OLD,SUBSYS=ABC

The DD statement asks subsystem ABC to process data set ANYDS.

IIDDI DD DSNAME=ANYDS,DISP=OLD,SUBSYS={XYZ2,
II 'KEYWORD=DATA VALUEl')

The DD statement asks subsystem XYZ2 to process data set ANYDS. The system passes the
subparameter KEYWORD = DATA VALUEI to the subsystem. The parameter is enclosed in
apostrophes because it contains an equal sign and a blank, which are special characters.

12-118 MVSJCL

DD: SUBSYS

IIDD1 DD DSNAME=ANYDS,DISP=OLD,SUBSYS=(XYZ2,IKJ2,
II 'NAME=' 'MODULE1'" ,'DATE=4/11/86')

The DD statement asks subsystem XYZ2 to process the data set ANYDS. The system passes
three subparameters to the subsystem: IKJ2, NAME = 'MODULEl' and DATE = 4/11/86.
Note that the character string MODULEl is passed to the subsystem enclosed in apostrophes .

Chapter 12. Coding the DD Statement 12-119

•

DD:SYSOUT

SYSOUT Parameter

Parameter Type: Keyword, optional

Purpose: Use the SYSOUT parameter to define this data set as a system output data set, also
called a sysout data set. The SYSOUT parameter also:

• Assigns this sysout data set to an output class.

• Optionally requests an external writer to process the sysout data set rather than JES. An
external writer is an IBM-or installation-written program.

• Optionally identifies the forms on which the data set is to be printed or punched.

• Optionally refers to a JES2 j*OUTPUT statement for processing parameters.

Note: If a system output data set has the same class as the JOB statement MSGCLASS
parameter, the job log appears on the same output listing as this output data set.

References: For more information on output classes, see "Assigning System Output Data Sets
to Output Classes" on page 7-51, and on external writers, see SPL: Job Management.

Syntax:

{class-name 1
{ }

SYSOUT={ ({class-name} [,writer-name] [,form-name])}
{({, }[,] [,code-name])}
{ }
{* }

• You can omit the parentheses if you code only a class-name.

• All of the subparameters are positional. Code a comma to indicate an omitted
subparameter if any others follow. Thus:

12-120 MVS JCL

If you omit the class-name, code a comma to indicate the omission. For example,
SYSOUT = (,XWTR,FM26).

Because the class-name is not optional, its omission must be indicated by a comma
whether other subparameters follow or not. For example, code a null class-name as
SYSOUT = (,).

If you omit a writer-name but code a form-name or code-name, code a comma to
indicate the omission. For example, SYSOUT = (A"FM26).

DD: SYSOUT

Subparameter Definition

Defaults

Overrides

class-name

*

Identifies the output class for the data set. class-name is one character: A through Z or 0
through 9. The attributes of each output class are defined during JES initialization;
specify the class with the desired attributes.

Requests the output class in the MSGCLASS parameter on the JOB statement.

writer-name
Identifies an external writer. The name is 1 to 8 alphanumeric characters.

Two names are reserved for JES: INTROR for JES2 and STDWTR for JES3. Code
INTRDR to specify that JES2 is to treat this data set as an input job stream. For more •
information, see "Specifying the Internal Reader" on page 7-52.

form-name
Identifies the print or punch forms. form-name is 1 to 4 alphanumeric or national
characters.

code-name
Identifies a JES2 j*OUTPUT statement from which JES2 is to obtain processing
characteristics. The code-name is the I to 4 alphanumeric or national characters
appearing as the code parameter on the JES2 /*OUTPUT statement.

Note:

• code-name is supported only on JES2 systems.

• Do not specify the code-name subparameter when the job or job step contains an
OUTPUT JCL statement.

If no writer-name subparameter is specified on this DD statement or a referenced OUTPUT
JCL statement, the installation's job entry subsystem processes the sysout data set.

If no form-name subparameter is specified on this DD statement or a referenced OUTPUT JCL
statement, JES uses an installation default specified at initialization.

The class-name subparameter of the DD statement SYSOUT parameter overrides an OUTPUT
JCL CLASS parameter. On the DDstatement, you must code a null class-name in order to use
the OUTPUT JCL CLASS parameter; for example:

//OUTDS DD SYSOUT=(,)

The writer-name subparameter of the DO statement SYSOUT parameter overrides an
OUTPUT JCL WRITER parameter.

Chapter 12. Coding the DD Statement 12-121

DD: SYSOUT

The form-name subparameter of the DD statement SYSOUT parameter overrides an OUTPUT:
JCL FORMS parameter. Note that the SYSOUT form-name subparameter can be only four
characters maximum while both the OUTPUT JCL FORMS form-name and the JES
initialization default form names can be eight characters maximum.

Relationship to Other Parameters

Do not code the following DD parameters with the SYSOUT parameter.

*
AMP
CHKPT
DATA
DDNAME

DISP
DLM
DSNAME
DYNAM
LABEL

MSVGP
PROTECT
QNAME
SUBSYS

Parameters on Procedure DD Statements that are Overridden: When an overriding DD
statement contains a SYSOUT parameter, the system ignores a UNIT parameter on the
overridden DD statement in the cataloged or in-stream procedure.

If the overridden DD statement contains a DSNAME parameter, the system issues a JCL
warning message.

SYSOUT and DEST Suhparameters: Do not code the SYSOUT writer-name subparameter
when coding a DEST userid subparameter. These subparameters are mutually exclusive. You
can code:

//VALIDl DD
//VALID2 DD

SYSOUT=D,DEST=(node,userid)
SYSOUT=(D,program-name),DEST=node

With DeB Suhparameters: JES2 ignores DCB = PRTSP = 2 on aDD statement that also
contains a SYSOUT parameter.

Relationship to Other Control Statements

SYSOUT cannot specify a code-name subparameter in a job or job step that contains an
OUTPUT JCL statement; in this case, JES2 treats the third subparameter as a form-name,
instead of a reference to a JES2 /*OUTPUT statement.

Starting an External Writer when Requested

A system command, from the operator or in the input stream, must start an external writer
before the system process a JCL statement that specifies it.

Backward References

Do not refer to a earlier DD statement that contains a SYSOUT parameter.

12-122 MVS JCL

DD: SYSOUT

Held Classes in a JES2 System

If SYSOUT specifies a class-name that is defined to JES2 as a held class, the JOB MSGCLASS
parameter should specify (1) the same class-name as the SYSOUT parameter or (2) another
class that is also defined to JES2 as a held class. For information on the JOB MSGCLASS
parameter, see "MSGCLASS Parameter" on page 10-14.

Significance of Output Classes

To print this output data set and the messages from your job on the same output listing, code
one of the following:

• The same output class in the DD SYSOUT parameter as in the JOB MSGCLASS
parameter.

• DD SYSOUT = * to default to the JOB MSGCLASS output class.

• A null class-name, DD SYSOUT = (,) to default to one of the following:

1. The CLASS parameter in an explicitly or implicitly referenced OUTPUT JCL
statement. In this case, the OUTPUT JCL CLASS parameter should specify the same
output class as the JOB MSGCLASS parameter.

2. The JOB MSGCLASS output class, if no OUTPUT JCL statement is referenced or if
the referenced OUTPUT JCL statement contains CLASS = *.

Examples of the SYSOUT Parameter

//DDl DD SYSOUT=P

In this example, the DD statement specifies that JES is to write the system output data set to
the device handling class P output.

//JOB50
//STEPl
//DDX

JOB
EXEC
DD

,'C. BROWN' ,MSGCLASS=C
PGM=SET
SYSOUT=C

In this example, DD statement DDX specifies that JES is to write the system output data set to
the device handling class C output. Because the SYSOUT parameter and the MSGCLASS
parameter specify the same class, the messages from this job and the system output data set can
be written to the same device.

//DD5 DD SYSOUT=(F,,2PRT)

In this example, the DD statement specifies that JES is to write the system output data set to
the device handling class F output. The data set is to be printed or punched on forms named
2PRT.

Chapter 12. Coding the DD Statement 12-123

•

DD: SYSOUT
,.), -I '

//JOB51 JOB ACCT123,MAEBIRD,MSGCLASS=B
//STEPI EXEC PGM=RPTWTR
//OUTI OUTPUT CLASS 7 *
//REPORT DD SYSOUT=(,),OUTPUT=*,OUTI

In this example, JES processes the sysout data set defined in DD statement REPORT in output
class B. Because SYSOUT specifies a null class-name, the CLASS parameter in the explicitly
referenced OUTPUT JCL statement is used. That CLASS parameter specifies the MSGCLASS
output class.

12-124 MVS JCL

DD: TERM

TERM Parameter

Parameter Type: Keyword, optional

Purpose: Use the TERM parameter to indicate to the system that a data set is coming from or
going to a terminal for a TSO user.

Syntax:

TERM=TS

Subparameter Definition

TS
Indicates to the system one of the following:

• That the input or output data set is coming from or going to a TSO user, when
TERM = TS appears in a foreground job submitted by a TSO user.

• That the data set should be treated as an in-stream DD * data set, when TERM = TS
appears on a DD statement in a batch job.

Relationship to Other Parameters

Do not code the following DD parameters with the TERM parameter.

*
AMP
DATA
DDNAME

DLM
DYNAM
PROTECT
QNAME

Code only the DCB and SYSOUT parameters with the TERM parameter. The system ignores
any other DD parameters.

Location in the J CL

In a foreground TSO job, a DD statement containing TERM = TS and a SYSOUT parameter
begins an in-stream data set.

In a batch job, a DD statement containing TERM = TS begins an in-stream data set.

When concatenating DD statements, the DD statement that contains TERMS = TS must be the
last DD statement in a job step.

,
Chapter 12. Coding the DD Statement 12-125

•

DD: TERM

Examples of the TERM Parameter

IIDDI DD TERM=TS,SYSOUT=C

In a foreground job submitted from a TSO terminal, this DD statement defines an in-stream
data set coming from the TSO terminal. In a batch job, TERM =TS is ignored.

IIDD3 DD UNIT=3400-5,DISP=(MOD,PASS),TERM=TS,LABEL=(,NL),
II DCB=(LRECL=80,BLKSIZE=80)

In a foreground job, the system ignores all of the parameters in this example except TERM and
DeB. In a batch job, the system ignores only the TERM parameter.

12-126 MVS JCL

DD:UCS

ues Parameter

Parameter Type: Keyword, optional

Purpose: Use the ues parameter to identify:

• The universal character set (UeS) JES is to use in printing the output data set.

• A print train (print chain or print band) JES is to use in printing the output data set on an
impact printer.

• A character-arrangement table for a data set printed on a 3800 Printing Subsystem in a
JES2 system. In this use, the ues parameter acts like a CHARS parameter.

The ues image specifies the special character set to be used. JES loads the image into the
printer's buffer. The ues image is stored in SYSl.IMAGELIB. IBM provides the special
character set codes in Figure 12-1.

References: For more information on the ues parameter, see "Requesting a Special Character
Set Using the ues Feature" on page 7-59 and SPL: Data Management.

Syntax:

UCS={character-set-code }
{(character-set-code[,FOLDI,] [,VERIFY])}

• You can omit the parentheses if you code only a character-set-code.
• All of the subparameters are positional. If you omit FOLD but code VERIFY, code a

comma to indicate the omission. For· example, ues = (AN "VERIFY).

Subparameter Definition

character-set-code
Identifies a universal character set. The character-set-code is 1 to 4 alphanumeric
characters. See Figure 12-1 for IBM standard special character set codes.

FOLD
Requests that the chain or train for the universal character set is loaded in fold mode.
Fold mode is described in IBM 2821 Control Unit. Fold mode is most often used when
upper- and lower-case data is to be printed only in uppercase.

VERIFY
Requests that, before the data set is printed, the operator verify visually that the character
set image is for the correct chain or train. The character set image is displayed on the
printer before the data set is printed.

Chapter 12. Coding the DD Statement 12-127

•

DD: ues

Defaults

Overrides

1403 3203 3211 Characteristics
ModelS

AN AN All Arrangement A, standard EBCDIC character set, 48 characters
HN HN Hll Arrangement H, EBCDIC character set for FORTRAN and COBOL, 48 characters

GIl ASCII character set
PCAN PCAN Preferred alphanumeric character set, arrangement A
PCHN PCHN Preferred alphanumeric character set, arrangement H
PN PN PH PL/I alphanumeric character set
QN QN PL/I preferred alphanumeric character set for scientific applications
QNC QNC PL/l preferred alphanumeric character set for commercial applications
RN RN Preferred character set for commercial applications of FORTRAN and COBOL
SN SN Preferred character set for text printing
TN TN Tll Character set for text printing, 120 characters
XN High-speed alphanumeric character set for 1403, Model 2
YN High-speed preferred alphanumeric character set for 1403, Model Nl

Note: Where three values exist (for the 1403, 3211,and 3203 Model 5 printers), code anyone of them. JES
selects the set corresponding to the device on which the data set is printed.

Not all of these character sets may be available at your installation. Also, an installation can design
character sets to meet special needs and assign a unique code to them. Follow installation procedures
for using character sets.

Figure 12-1. Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers

If you do not code the UCS parameter, the system checks the UCS image in the printer's
buffer; if it is a default image, as indicated by its first byte, JES uses it. If it is not a default
image, JES loads the UCS image that is the installation default specified at JES initialization.

On an impact printer, if the chainor train does not contain a valid character set, JES asks the
operator to specify a character set and to mount the corresponding chain or train.

For printing on a printer with the UCS feature, the UCS parameter on a sysout DD statement
overrides an OUTPUT JCL UCS parameter. For printing ona 3800, a CHARS parameter on
the sysout DD statement or the OUTPUT JCL statement overrides all UCS parameters.

For a data set scheduled to the Print Services Facility (PSF), the PSF uses the following
parameters, in override order, to select the font list:

1. Font list in the SYSl.IMAGELIB member specified by an OUTPUT JCL PAGEDEF
parameter.

2. DD CHARS parameter.

3. OUTPUT JCL CHARS parameter.

4. DD UCS parameter.

5. OUTPUT JCL UCS parameter.

12-128 MVS JCL

6. JES installation default for the device.

7. Font list on the PAGEDEF parameter in the PSF cataloged procedure.

See "PAGEDEF,Parameter" on page 14-43 for more information.

Relationship to Other Parameters

Do not code the following DD parameters with the DeS parameter.

*
AMP
DATA
DDNAME

DLM
DYNAM
PROTECT
QNAME

DD: ues

Do not code the DeS parameter with the DeB subparameters RKP and eYLOFL.

Do not code the FOLD and VERIFY subparameters on the same statement with a SYSODT
parameter; the system ignores the FOLD and VERIFY subparameters.

Using Special Character Sets

To use a special character set, SYSl.IMAGELIB must contain an image of the character set,
and the chain or train for the character set must be available. IBM provides standard special
character sets, and the installation may provide user-designed special character sets.

Examples of the U CS Parameter

//001 DO UNIT=1403,UCS=(YN"VERIFY)

In this example, the DD statement requests a 1403 Printer. The DeS parameter requests the
chain or train for special character set code YN. Because VERIFY is coded, the system will
display the character set image on the printer before the data set is printed.

//002 DO SYSOUT=G,UCS=PN

In this example, the DD statement requests the device for output class G. If the device is a
printer with the DeS feature, the system will ask the operator to mount the chain or train for
DeS code PN, if it is not already mounted. If the device is a 3800 Printing Subsystem, the
system will use the DeS subparameter to select the font list. Otherwise, the 'system ignores the
the DeS parameter.

Chapter 12. Coding the DD Statement 12-129

•

DD: UNIT

UNIT Parameter

Parameter Type: Keyword, optional

Purpose: Use the UNIT parameter to ask the system to place the data set on:

• A specific device.
• A certain type or group of devices.
• The same device as another data set.

The UNIT parameter can also tell the system how many devices to assign and request that the
operator should defer mounting the volume until the data set is opened.

References: For more information on the UNIT parameter, see "Requesting Units and
Volumes" on page 7-24.

Syntax:

{ ([device-address] [,unit-count])}
{UNIT=([device-type] [,P] [,DEFER])}
{ ([group-name] [,]) }
{ }
{UNIT=AFF=ddname }

• You can omit the parentheses if you code only the first subparameter.

• All of the subparameters are positional. If you omit unit-count or P but code DEFER,
code a comma to indicate the omission. For example, UNIT = (3420"DEFER).

Subparameter Definition

device-address
Identifies a particular device. device-address is the 3-character hexadecimal address for
the device.

Do not identify a device by its address unless it is absolutely necessary. Specifying a
. device address limits device assignment; it will delay a job if another job is using the
device.

device-type
Requests a device by its generic name, which is an IBM-supplied name that identifies a
device by its machine type and model. For example, UNIT = 3350. IBM device types are
listed in· SP L: System Generation Reference. Obtain a list of device types from your
installation.

12~ 13'0' MVS JCL

DD: UNIT

Following are rules for certain devices:

• For a 3330 Disk Storage Model 11, code UNIT = 3330-1.

• If your installation has 3340 Direct Access Storage Facilities both with and without
the Fixed Head feature, do not code the device type in the UNIT parameter. Instead,
code the device address or a group-name.

• For mass storage volumes, code UNIT = 3330V.

group-name
Requests a group of devices by an esoteric name, which the installation assigned to the
device(s) during system generation in the UNITNAME system generation macro or which
IBM assigned to the devices. The group-name is 1 through 8 alphanumeric characters.

A group-name can identify a single device or a group of devices. If it represents a group, •
the group can consist of devices of the same type or of different types. For example, a
group can contain both direct access and tape devices.

When you code a group name, the system assigns any available device from the group. If
a group consists of only one device, the system assigns that device. If the group consists
of more than one device type, the units requested are allocated from the same device type.
For example, if GPDA contains 3330 Disk Storage and 3350 Direct Access Storage
devices, a request for two units would be allocated to two 3330s or to two 3350s.

If a data set that was created using the group-name subparameter is to be extended, the
system allocates additional devices of the same type as the original devices. However, the
additional devices may not necessarily be from the same group.

IBM assigned group-names include SYSALLDA, which contains all direct access devices
defined to the system.

unit-count
Requests the number of devices the system is to assign to the data set. The unit-count is
a decimal number from 1 through 59.

You can receive more devices than the unit-count specifies if:

• You specify VOLUME = REF and/or a permanently resident or reserved volume.

• The VOLUME parameter indicates more devices. The system uses the greatest of the
following: the unit-count, the volume-count of the VOLUME parameter, and the
number of serial numbers in the VOLUME = SER subparameter.

Code a unit count if the data set needs more than one device when the DD statement
receives a passed data set or refers in a VOLUME = REF subparameter to a cataloged
data set or earlier DD statement for volume and unit information. Otherwise, the system
assigns one device.

If two DD statements in a step request the same volume and either DD statement
requests any other volume(s), the system assigns an additional device. For more
information on determining the number of devices for a request, see SP L: Job
Management.

Chapter 12. Coding the DD Statement 12-131

DD:·UNIT

p
Asks the system to allocate the same number of devices as requested in the VOLUME
volume-count or SER subparameter, whichever is higher. Thus, all volumes for the data
set are mounted in parallel.

DEFER
Asks the system to assign the data set to device(s) but requests that the volume(s) not be
mounted until the data set is opened. To defer mounting, DEFER must be specified or
implied for all DD statements that reference the volume.

If you request deferred mounting of a volume and the data set on that volume is never
opened by the processing program, the volume is never mounted during the job step.

Following are restrictions on the use of DEFER:

• The system ignores DEFER for a new data set on direct access.

• Do not code DEFER on a SYSCKEOV DD statement.

• Do not request deferred mounting for volumes belonging to a mass storage volume
group (MSVGP) when the step contains new data set requests for the same mass
storage volume group. The delay can cause volume conflicts within the job or
between jobs and so cause poor performance.

AFF= ddname
Requests that the system allocate different data sets residing on different, removable
volumes to the same device during execution of the step. This request is called unit
affinity. The ddname is the ddname of an earlier DD statement in the same step.

Use unit affinity to reduce the number of devices used in a job step. Request that an
existing data set be assigned to the same device(s) as another existing data set.

Following are restrictions on the use of unit affinity:

• Do not code DISP = NEW with UNIT = AFF = ddname if the referenced data set for
DD statement ddname resides on a direct access device. If coded, the system
terminates the job. If the referenced data set can be allocated to either tape or direct
access devices, the system allocates both requests to tape devices.

• Do not code UNIT=AFF on a DD * or DD DATA statement. The system ignores
UNIT = AFF and defaults the device name to SYSALLDA. SYSALLDA is the
system-defined group-name for all direct access devices defined to the system.

• Do not code UNIT=AFF=ddname when DD statement ddname contains
FREE = CLOSE.

If the referenced DD statement is not earlier in the same step, the system treats the DD
statement containing UNIT=AFF as a DD DUMMY statement.

12..;132 MVS JCL

Overrides

DD: UNIT

If you code SYSOUT and UNIT on the same statement, the SYSOUT specification overrides
the UNIT specification.

The system also obtains device information when the system obtains volume serial information
from:

• A VOLUME = REF = dsname reference to an earlier data set.
• A VOLUME = REF = ddname reference to an earlier DD statement.
• The volume(s) for a passed data set.
• The catalog for a cataloged data set.

However, you can override the retrieved device information if the device you specify is a subset
of the retrieved device information. For example, if the retrieved unit grouping is 3350, and the.
specified unit subparameter is 3350A (a subset of 3350), then the system allocates from the
devices contained in 3350A.

Relationship to Other Parameters

Do not code the following DD parameters with the UNIT parameter.

*
DATA
DDNAME

DLM
DYNAM
QNAME

Do not code the UNIT DEFER subparameteron a SYSCKEOV DD statement.

UNIT=AFF and Other Parameters: Do not code DISP = NEW with UNIT=AFF=ddname if
the referenced data set for DD statement ddname resides on a direct access device. If coded,
the system terminates the job. If the referenced data set can be allocated to either tape or direct
access devices, the system allocates both requests to tape devices.

Do not code UNIT=AFF on aDD * or DD DATA statement. The system ignores
UNIT=AFF and defaults the device to SYSALLDA.

Do not code UNIT = AFF = ddname when DD statement ddname contains FREE = CLOSE.

Location in the JCL

When a DD statement contains a UNIT=AFF=ddname parameter, the DD statement
ddname must appear earlier in the job step. For example:

//STEP
/./DDl
//DD2
//DD3
//DD5

EXEC PGM=TKM
DD DDNAME=DD5
DD DSNAME=A,DISP=OLD
DD DSNAME=C,DISP=SHR,UNIT=AFF=DDl
DD DSNAME=B,DISP=SHR

Chapter 12. Coding the DDStaterneilt 12 .. ;} 33

DD: UNIT

Examples of the UNIT Parameter

IISTEP2 EXEC PGM=POINT
IIDDX DD DSNAME=EST,DISP=MOD,VOLUME=SER=(42569,42570),
II UNIT=(3330,2)
IIDDY DD DSNAME=ERAS,DISP=OLD,UNIT=3330-1
IIDDZ DD DSNAME=RECK,DISP=OLD,
II VOLUME=SER=(40653,13262) ,UNIT=AFF=DDX

DD statement DDX requests two 3330 Disk Storage. DD statement DDZ requests the same
two devices as DDX. Note that the operator will have to change volumes on the two 3330
devices during execution of the job step.

DD statement DDY requests one 3330 Disk Storage Model 11.

IIDD1
II

DD DSNAME=AAG3,DISP=(,KEEP),
VOLUME=SER=13230,UNIT=3400-5

This DD statement defines a new data set and requests that the system assign any 3420
Magnetic Tape Unit that can operate in 800 BPI NRZI nine-track format.

IIDD2 DD DSNAME=X.Y.Z,DISP=OLD,UNIT=(,2)

This DD statement defines a cataloged data set and requests that the system assign two devices
to the data set. The system obtains the device type from the catalog.

IIDD3
II

DD DSNAME=COLLECT,DISP=OLD,
VOLUME=SER=1095,UNIT=(3330"DEFER)

This DD statement defines an existing data set that resides on a direct access volume and
requests that the system assign a 3330 Disk Storage. Because DEFER is coded, the volume will
not be mounted until the data set is opened.

IISTEPA DD DSNAME=FALL,DISP=OLD,UNIT=237

For this data set, the system retrieves the volume and device type from the catalog. The UNIT
parameter, by specifying device 237, overrides the catalog device type; however, device 237
must be the same type of device as stated in the catalog.

12-134 MVS JCL

DD: VOLUME

VOLUME Parameter

Parameter Type: Keyword, optional

Purpose: Use the VOLUME parameter to identify the volume or volumes on which a data set
resides or will reside. You can request:

• A private volume
• Retention of the volume
• A specific volume by serial number
• The same volume that another data set uses

References: For more information on the VOLUME parameter, see "Requesting Units and
Volumes" on page 7-24.

Syntax:

{VOLUME} = ([PRIVATE] [, RETAIN] [, volume-sequence-number] [, volume-count]
{VOL } [,] [,]

[SER=(serial-number[,serial-number] ...)])
[REF=dsname])

[,] [REF=*.ddname])
[REF=*.stepname.ddname])
[REF=*.stepname.procstepname.ddname])
[REF=*.procstepname.ddname])

Single Subparameter: You can omit the parentheses if you code only' PRIVATE or only a keyword
subparameter. For example, VOLUME=/PRIVATE or VOLUME=SER=222001 or
VOLUME=REF=DSI.

Positional Subparameters: The first four subparameters are positional. The last subparameter, SER or
REF, is a keyword subparameter and must follow all positiona1.subparameters. Code a comma to indicate
an omitted positional subparameter as follows:

• If you omit PRIVATE, do not code a comma in its place. For example,
VOLUME = (RETAIN,2,3,SER = (222001,222002,222003».

• Code a comma when RETAIN is omitted and the volume seq uenee number or the volume count
subparameter follows. For example, VOLUME = (PRIVATE,,2,3,SER=(222001,222002,222003».

• Code a comma when the volume sequence number is omitted and the volume count subparameter
follows. For example,. VOLUME = (RETAIN,,3,SER = (222001,222002,222003» and
VOLUME = (PRIVATE",3,SER= (222001,222002,222003» and
VOLUME = (",3,SER = (222001,222002,222003».

• Code a comma when the volume count is omitted, at least one other subparameter precedes it, and a
keyword subparameter follows. For example,
VOL UME = (RETAIN ,2"SER = (22200 1,222002,222003».

Chapter 12. Coding the DD Statement 12-135

DD: VOLUME

Single SER Subparameter: You can omit the parentheses in the SER subparameter if you code only one
serial number. For example, VOLUME = SER = 222001.

Special Characters When a serial number in the SER subparameter contains special characters, other than
hyphens, enclose it in apostrophes. For example, VOLUME = SER = (222001,222-02,'222/03').

When the dsname in the REF subparameter contains special characters, other than the periods used in a
qualified name, enclose it in apostrophes. For example, VOLUME = REF = 'DS/284'.

Code each apostrophe that is part of the serial number or data set name as two consecutive apostrophes.
For example, VOLUME=SER='O"HARE' or VOLUME=REF='DS"371'.

Subparameter Definition

PRIVATE
Requests a private volume. Private means that:

• The· system is not to allocate an output data set to the volume unless the volume is
specifically requested, such as in a VOLUME = SER subparameter.

• If tape, the volume is to be demounted after the data set is closed, unless RETAIN is
also coded or the DD DISP parameter specifies PASS.

• If a demountable direct access volume, the volume is to be demounted after the data
set is closed.

RETAIN
For a private tape volume, RETAIN requests that this volume is not to be demounted or
rewound after the data set is closed or at the end of the step. For a public tape volume,
RETAIN requests that this volume is to be retained at the device if it is demounted
during the job.

Note: RETAIN is supported only by the basic control program and by JES2. If coded
on a DD statement processed by JES3, it is ignored. However, the comma to indicate its
omission is always necessary.

RETAIN has no effect on the handling of direct access volumes.

Coding RETAIN does not ensure that the operator will not unload the volume or that the
system will not deallocate and demount it for another job. Either can occur when the
device on which the volume is mounted is not allocated to the job step containing the DD
statement that specified RETAIN or, for unlabeled tapes, when the volume requires
veri fica ti on.

volume-sequence-number
Identifies the volume of an existing multivolume data set to be used to begin processing
the data set. The volume sequence number is a decimal number from 1 through 255; the
first volume is identified as 1.

The volume sequence number must be less than or equal to the number of volumes on
which the data set exists.

12-136 MVS JCL

DD: VOLUME

For new data sets, the system ignores the volume sequence number.

Normally, you code a volume sequence number when you do not specify volume serial
numbers on the DD statement, for example, when you are retrieving a cataloged data set
or you are referring to an earlier DD statement or data set. If you code both a volume
sequence number and a volume serial number, the system begins processing the data set
with the volume that corresponds to the volume sequence number.

If you code a volume sequence number and request specific volumes, the volume sequence
number must not exceed the number of volume serial numbers or the job fails.

volume-count
Specifies the maximum number of volumes that an output data set requires. The volume
count is a decimal number from 1 through 255.

The total volume count for all DD statements in one job step cannot exceed 4095.

Code the volume count for a new data set that will reside on 6 or more volumes. If a
volume count of I through 5 is specified, the maximum number allowed is 5; if a count of
6 through 20 is specified, the maximum number allowed is 20: for a volume count greater
than 20, the maximum number allowed is a multiple of 15 plus 5, up to a maximum of
255.

If the volume count is greater than the number of specified volume serial numbers, the
system assigns other volumes to the remaining devices. If the volume count is smaller
than the number of specified volume serial numbers, the system ignores the volume count.

If a data set might require more volumes than the number of specified volume serial
numbers, specify in the volume count subparameter the total number of volumes that
might be used. By requesting more volumes in the volume count subparameter, you can
ensure that the data set can be written on more volumes if it exceeds the requested
volumes.

If the request is for a nonspecific, nonprivate volume on a direct access device, the system
ignores the volume count and allocates the number of volumes in the UNIT unit count
subparameter.

If the request is for a nonspecific, private volume, the system treats it like a specific
request if more than one volume is needed and allocates the number of volumes in the
volume count subparameter.

For more information on determining the number of volumes per request, see SPL: Job
Management.

SER = (serial-number[,serial-number) •..)
Identifies by serial number the volume(s) on which the data set resides or will reside. A
volume serial number is 1 through 6 alphanumeric, national, or special characters;
enclose a serial number that contains special characters, other than hyphens, in
apostrophes. If the number is shorter than 6 characters, it is padded with trailing blanks.

You can code a maximum of 255 volume serial numbers on a DD statement.

Do not specify duplicate volume serial numbers in a SER parameter. Each volume must
have a unique volume serial number, regardless of whether it is a tape and disk volume.

Chapter 12. Coding the DD Statement 12-137

•

DD: VOLUME

Do not code a volume serial number as SCRTCH, PRIV AT, or Lnnnnn (L with five
numbers); these are used in messages to ask the operator to mount a volume.

When using some typewriter heads or printer chains, a volume serial number may be
unrecognizable if you code certain special characters.

REF=dsname
REF = * .ddname
REF = * .stepname.ddname
REF = * .stepname.procstepname.ddname
REF = * .procstepname.ddname

Tells the system to obtain volume serial numbers from another data set or an earlier DD
statement.

Referenced Data Set Not Opened: When REF refers to a DD statement in a previous step
and the data set was not opened, the system allocates a device that has the widest range
of eligibility to meet both DD statement requests. Thus, the system might allocate a
device for which the referring data set is not eligible. To prevent this problem for tape
data sets, always code the DCB DEN subparameter on a DD statement that you plan to
reference.

References to Multivolume Tape Data Sets: WhenREF refers to a data set that resides on
more than one tape volume, the system allocates only the last volume. If this job step
extends the the data set to more volumes, this new volume information is not available to
following DD statements.

References to Multivolume Direct Access Data Sets: When REF refers to a data set that
resides on more than one direct access volume, the system allocates all of the volumes.

References to DD Statements with UNIT Group Names: When REF refers to a DD
statement containing a UNIT group-name subparameter, the system allocates a "device of
the same type actually used for the referenced data set, but not necessarily a device in the
referenced group-name.

References to VSAM Data Sets: When REF refers to a multivolume VSAM data set, the
system allocates a device of the same type as the first device type used for the referenced
VSAM data set.

Do Not Refer to In-Stream Data Sets: Do not refer to aDD *, DD DATA, or DD
SYSOUT statement. The system ignores the reference and defaults the device name to
SYSALLDA, which is the system-defined group name for all direct access devices defined
to the system.

References to DUMMY Data Sets: If ddname refers to a DD DUMMY statement, the
data set for this DD statement is also assigned a dummy status.

Other DD Parameter Picked up from Referenced Statement: When REF is coded, the
system also copies the LABEL label type subparameter from the referenced DD
statement.

dsname

12-138 MVS JCL

Names a cataloged or passed data set. The system assigns this data set to the same
volumes containing the cataloged or passed data set. The dsname cannot be a
generation data group (GDG) name or a GDG member.

Overrides

DD: VOLUME

When the dsname contains special characters, other than the periods used in a
qualified name, enclose it in apostrophes.

*.ddname
Asks the system to obtain the volume serial numbers from earlier DD statement
ddname in the same job step.

* .stepname.ddname
Asks the system to obtain the volume serial numbers from DD statement, ddname,
in an earlier step, stepname, in the same job.

* .stepname. procstepname.ddname
Asks the system to obtain the volume serial numbers from a DD statement in a
cataloged on in-stream procedure. Stepname is the name of the job step that calls
the procedure, procstepname is the name of the procedure step that contains the •
DD statement, and ddname is the name of the DD statement.

*procstepname.ddname
Asks the system to obtain the volume serial numbers from a DD statement in a
cataloged or in-stream procedure called by the current job step. Procstepname is
the name of the procedure step that contains the DD statement and ddname is the
name of the DD statement.

The volume sequence number overrides a DISP = MOD parameter. Thus, instead of starting at
the end of the data set on the last volume, according to the MOD subparameter, processing of
the data set begins with the volume indicated by the volume sequence number.

Relationship to Other Parameters

Do not code the following parameters with the VOLUME parameter.

BURST
CHARS
COPIES

DDNAME MODIFY
DYNAM MSVGP
FLASH OUTPUT

QNAME
SYSOUT

Other DD Parameter Picked up from Referenced Statement: When REF is coded, the system
also copies the LABEL label type subparameter from the referenced DD statement.

With Mass Storage Volumes For New Data Sets

• The SPACE parameter is required when VOLUME=SER is coded.

• To guarantee allocation to SYSGROUP for a nonspecific request, specify
VOLUME = PRIVATE or MSVGP=SYSGROUP.

For 3540 Diskette Input/Output Units: The VOLUME=SER, DCB=BUFNO, and DSID
parameters on a DD * or DD DATA statement are ignored except when they are detected by a
diskette reader as a request for an associated data set. See IBM 3540 Programmer's Reference.

Chapter 12. Coding the DD Statement 12-139

DD: VOLUME

VOLUME Information for a Checkpoint/Restart Data Set

When a checkpoint data set is not cataloged, code on the SYSCHK DD statement the
VOLUME = SER parameter to specify the serial number for the volume on which the
checkpoint entry is written.

If a checkpoint data set is cataloged, you can omit the VOLUME parameter unless the
checkpoint entry is on a tape volume other than the first volume of the data set; then, code
either a volume sequence number or the volume serial number. If you code the volume seriql
number, you must also code the UNIT parameter.

VOLUME Parameter in a JES3 System

When you do not code a volume serial number, code PRIVATE if you want JES3 to manage
the allocation. Otherwise, MVS manages the allocation.

RETAIN is ignored in a J~S3 system.

VOLUME Parameter for Optical Readers

For optical readers, if no volume serial number is specified, the system assumes
VOLUME=SER=OCRINP.

Examples of the VOLUME Parameter

IIDDI DD DSNAME=DATA3,UNIT=3350,DISP=OLD,
II VOLUME=(PRIVATE,SER=548863)

The DD statement requests an existing data set, which resides on the direct access volume,
serial number 548863. Since PRIVATE is coded, the system will not assign to the volume
another data set for which a nonspecific volume request is made and will demount the volume
at the end of the job.

IIDD2 DD DSNAME=QUET,DISP=(MOD,KEEP),UNIT=(3400-5,2),
II VOLUME=(",4,SER=(96341,96342»

The DD statement requests an existing data set, which resides on two volumes, serial numbers
96341 and 96342. The VOLUME volume count subparameter requests four volumes, if
required. Thus, if more space is required, the system can assign a third and fourth volume.

IIDD3 DD DSNAME=QOUT,DISP=NEW,UNIT=3400-5

The DD statement defines a temporary data set. By omission of the VOLUME parameter, the
statement requests that the system assign a suitable volume to the data set.

12-140 MVS JCL

IIOUTDD
II
II
IINEXT

DD DSNAME=TEST.TWO,DISP=(NEW,CATLG),
VOLUME=(",3,SER=(333001,333002,333003)),
SPACE=(TRK,(9,10)),UNIT=(3330,P)

DD DSNAME=TEST.TWO,DISP=(OLD,DELETE)

DD: VOLUME

DD statement OUTDD creates a multivolume data set and catalogs it. If the data set does not
require three volumes, it will reside on fewer volumes. DD statement NEXT then deletes the
data set.

If the data set resides on fewer volumes than the number of volumes on which it is cataloged,
the following messages appear in the job log when the system deletes the data set:

IEF2851
IEF2851
IEF2831
IEF2831
IEF2831
IEF2831

TEST.TWO
VOL SER NOS=333001,333003.
TEST. TWO
VOL SER NOS=333002 1.
TEST.TWO
VOL SER NOS=333001,333002,333003.

f

DELETED

NOT DELETED 8

UNCATALOGED

If the data set resides on all specified volumes, the following messages appear in the job log
when the system deletes the data set:

TEST. TWO DELETED IEF2851
IEF2851 VOL SER NOS=333001,333002,333003.

Chapter 12. Coding the DD Staternent 12;..141

•

12-142 MVS JCL

Special DD

:hapter 13. Coding Special DD Statements

Use special DD statements to specify private catalogs, private libraries, and data sets for
storage dumps and checkpoints.

These special statements are arranged alphabetically in the following pages. For more
information on these statements, see "Creating and Using Private and Temporary Libraries" on
page 8-1 and "Requesting an Abnormal Termination Dump" on page 8-6.

Syntax:

//ddname DD keyword-parameter[,keyword-parameter] ... comments

The special data sets are identified by the following ddnames:

JOBCAT
JOBLIB
STEPCAT
STEPLIB
SYSABEND
SYSCHK
SYSCKEOV
SYSMDUMP
SYSUDUMP

Code these ddnames only when you want the special data sets.

-Chapter 13. Coding Special DD Statements 13-1

JOBCAT DD

JOBCAT DD Statement

Purpose: Use the JOBCAT DD statement to define a private VSAM or ICF user catalog for
the duration of a job. The system searches the private user catalog for data sets before it
searches the master catalog or a private catalog associated with the first qualifier of a data set's
name.

You cannot specify OS CVOLs as JOBCAT. Access to an OS CVOL is possible only with a
CVOL pointer in the master catalog.

References: For more information on VSAM data sets, see VSAM Programmer's Guide.

Syntax:

//JOBCAT DD DISP={OLDISHR},DSNAME=user-catalog-name[,parameter] ...

Parameters on JOB CAT DD Statements

Do not specify any unit or volume information. The system obtains the location of the private
catalog from the master catalog.

Relationship to STEPCAT DD Statement

A JOBCAT DD statement applies to any job step for which you do not specify a STEPCAT
DD statement.

Relationship to Other Control Statements

Concatenating Job Catalogs: To specify more than one user catalog for a job:

• Code a JOBCAT DD statement.

• Immediately follow this statement with DD statements that define other private catalogs.
Omit a ddname from these subsequent DD statements.

Location in the J CL

• Place the JOBCAT DD statement after the JOB statement and before the first EXEC
statement.

• Place a JOB LIB DD statement before a JOB CAT DD statement.

13-2 MVS JCL

xample of the JOBCAT DD Statement

IIEXAMPLE
IIJOBLIB
IIJOBCAT
II

JOB WILLIAMS,MSGLEVEL=l
DD DSNAME=USER.LIB,DISP=SHR
DD DSNAME=LYLE,DISP=SHR
EXEC PGM=SCAN

JOBCAT DD

In this example, the JOBCAT DD statement specifies a private catalog. The JOBCAT DD
statement follows the JOBLIB DD statement.

Chapter 13. Coding Special DD Statements 13-3

JOBLIBDD

JOBLIB DD Statement

Purpose: Use the JOBLIB DD statement to define a private library that the system is to search
for the program named in each EXEC statementPGM parameter. If the system does not find
the program in the private library, only then does the system search the system libraries.

References: For more information on private libraries, see "Creating and Using Private and
Temporary Libraries" on page 8-1.

Syntax:

//JOBLIB DD parameter[,parameter] ...

Parameters on JOBLIB DD Statements

When the Library is Cataloged:

• Code the DSNAME parameter.
• Code the DISP parameter. The status subparameter must be OLD or SHR. The

disposition subparameters should indicate what you want done with the private library after
its use in the job step.

• Do not code VOLUME=SER.

When the Library is Not Cataloged:

• Code the DSNAME parameter unless the disposition is DISP=(NEW,PASS).

• Code the DISP parameter. The DISP parameter must be one of the following:

DISP = (NEW,PASS)
DISP=(NEW,CATLG)
DISP = (OLD,PASS)
DISP = (SHR,PASS)

• Code the UNIT parameter.

• Code the VOLUME parameter, if the status of the data set is OLD or SHR.

• Code the SPACE parameter, if the status of the data set is NEW.

Other Parameters: Code the DCB parameter if complete data control block information is not
contained in the data set label.

13-4 MVS JCL

JOBLIB DD

~elationship to Other Control Statements

Relationship to Later DD Statements: Code VOLUME = REF = * .JOBLIB to obtain volume
and unit information when a later DD statement defines a data set that the system is to place
on the same volume as the private library.

To refer to the private library in a later DD statement, code
DSNAME=*.JOBLIB,VOLUME=REF=*.JOBLIB (or VOLUME = SER=serial number,
UNIT = unit information), and the DISP parameter, DISP = (OLD,P ASS).

Concatenating Step Libraries: To specify more than one private library for a step:

• Code a STEPLIB DD statement.

• Immediately follow this statement with DD statenients that define other private libraries.
Omit a ddname from these subsequent DD statements.

Overriding a JOBLIB: If you want the system to ignore the JOB LIB for a particular job step
and the step does not require another private library, define the system library on a STEPLIB
DD statement. For example:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

For this particular job step, the system will search SYSI.LINKLIB as specified on the
STEPLIB DD statement for the program requested in the EXEC statement. The system will
not search the JOBLIB. .

EXEC Statement COND Parameter: If COND = ONLY is specified on the EXEC statement of
a job step and a JOB LIB DD statement is being used, the system does not pass the unit and
volume information to any succeeding steps, and the system must search the catalog for the
JOB LIB data set's unit and volume information .

.Jocation in the J CL

• The JOB LIB DD statement must immediately follow the JOB statement and any JES
statements. There must be no intervening EXEC or other DD statements between the
JOBLIB DD statement and the JOB statement.

• Do not include a JOB LIB DD statement in a cataloged procedure.

telationship of a JOBLIB to a STEPLIB

Use a STEPLIB DD statement to define a private library for one job step in a job. If you
include a STEPLIB DD statement for a job step and a JOB LIB DD statement for the entire
job, the system first searches the step library and then the system library for the requested
program. The system ignores the job library for the step that has a STEP LIB DD statement.

Chapter 13. Coding Special DD Statements 13-5

JOBLIB DD

Examples of the JOBLIB DD Statement

IIPAYROLL JOB JONES,CLASS=C
IIJOBLIB DD DSNAME=PRIVATE.LIB4,DISP=(OLD,PASS)
IISTEP1 EXEC PGM=SCAN
IISTEP2 EXEC PGM=UPDATE
IIDD1 DD DSNAME=*.JOBLIB,DISP=(OLD,PASS)

The private library requested on the JOBLIB DD statement is cataloged. The system passes
catalog information to subsequent job steps. The system searches for the programs SCAN and
UPDATE first in PRIVATE.LIB4, then in SYSI.LINKLIB. DD statement DDI refers to the
private library requested in the JOBLIB DD statement.

IIPAYROLL
IIJOBLIB
II

JOB FOWLER,CLASS=L
DD DSNAME=PRIV.DEPT58,DISP=(OLD,PASS),

IlsTEP
IISTEP2
IIDD1

UNIT=3350,VOLUME=SER=D58PVL
EXEC PGM=DAY
EXEC PGM=BENEFITS
DD DSNAME=*.JOBLIB,VOLUME=REF=*.JOBLIB,

II DISP=(OLD,PASS)

The private library requested on the JOBLIB DD statement is not cataloged; therefore, unit
and volume information is specified. The system searches for the programs DAY and
BENEFITS first in PRIV.DEPT58, then in SYSl.LINKLIB. DD statement DD I refers to the
private library requested in the JOBLIB DD statement.

IITYPE JOB
IIJOBLIB DD
II
II
IISTEP1 EXEC
IIDDA DD
II
IISTEP2 EXEC

MSGLEVEL=(l,l)
DSNAME=GROUP8.LEVEL5,DISP=(NEW,CATLG),
UNIT=3350,VOLUME=SER=148562,
SPACE=(CYL,(50,3,4»
PGM=DISC
DSNAME=GROUP8.LEVEL5(RATE),DISP=MOD,
VOLUME=REF=*.JOBLIB
PGM=RATE

The private library requested on the JOB LIB DD statement does not exist yet; therefore, the
JOB LIB DD statement contains all the parameters required to define the library. The library is
created in STEPI, when DD statement DDA defines the new member RATE for the library.
Therefore, the system searches SYSl.LINKLIB for the program named DISC. In STEP2, the
system searches for the program RATE first in GROUP8.LEVEL5.

IIPAYROLL JOB
IIJOBLIB DD

BIRDSALL,TIME=1440
DSNAME=KRG.LIB12,DISP=(OLD,PASS)
DSNAME=GROUP31.TEST,DISP=(OLD,PASS)
DSNAME=PGMSLIB,UNIT=3350,
DISP=(OLD,PASS),VOLUME=SER=34568

II DD
II DD
II

The three DD statements concatenate the three private libraries. The system searches the
libraries for each program in this order:

13-6 MVSJCL

KRG.LIBI2
GROUP31.TEST
PGMSLIB
SYSI.LINKLIB

STEPCAT DD

3TEPCAT DD Statement

Purpose: Use the STEPCAT DD statement to define a private VSAM or ICF user catalog for
the duration of a job step. The system searches the private catalog for data sets before it
searches the master catalog or a private catalog associated with the first qualifier ora data set's
name.

You cannot specify OS CVOLs as STEPCAT. Access to an OS CVOL is possible only with a
special CVOL pointer in the master catalog.

References: For more information on VSAM data sets, see VSAM Programmer's Guide.

Syntax:

IISTEPCAT DD DISP={OLDISHR},DSNAME=user-catalog-name[,parameter] ...

Parameters on STEP CAT DD Statements

Do not specify any unit or volume information. The system obtains the location of the user
catalog from the master catalog.

Relationship to Other Control Statements

Concatenating Step Catalogs: To specify more than one user catalog for a step:

• Code a STEPCAT DD statement.

• Immediately follow this statement with DD statements that define other private catalogs.
Omit a ddname from these subsequent DD statements.

Overriding a JOBCAT: To override a JOB CAT private catalog with the master catalog for a
particular job step, code the following in the job step:

IISTEPCAT DD DISP=OLD,DSNAME=master-catalog-name

Location in the J CL

Place a STEPCAT DD statement in any position among the DD statements for a step.

Example of the STEPCAT DD Statement

II EXEC PROC=SNZ12
IISTEPCAT DD DSNAME=BETTGER,DISP=SHR

The STEPCAT DD statement immediately following an EXEC statement specifies a private
catalog that the system uses for this job step only.

Chapter 13. Coding Special DD Statements 13-7

STEPLIB DD

STEPLIB DD Statement

Purpose: Use the STEPLIB DD statement to define a private library that the system is to
search for the program named in the EXEC statement PGM parameter. If the system does not
find the program in the private library, only then does the system search the system libraries.

Subsequent job steps in the same job may refer to or receive a private library defined on a
STEPLIB DD statement. Also, you can place a STEP LIB DD statement in a cataloged
procedure.

References: For more information on using private libraries, see "Creating and Using Private
and Temporary Libraries" on page 8-1.

Syntax:

//STEPLIB DD parameter[,parameter] ...

Parameters on STEPLIB DD Statements

When the Library is Cataloged:

• Code the DSNAME parameter.

• Code the DISP parameter. The status subparameter must be either OLD or SHR. The
disposition subparameters should indicate what you want done with the private library after
its use in the job step.

• Do not code VOLUME = SER.

When the Library is Passed from a Previous Step:

• In the passing job step, code a DISP disposition subparameter of PASS when a step library
is to be used by subsequent steps in the job.

• In a receiving step, code the DISP parameter. The status subparameter must be OLD. The
disposition subparameters should indicate what you want done with the private library after
its use in the job step.

When the Library is Neither Cataloged Nor Passed:

• Code the DSNAME parameter.

• Code the DISP parameter. The status subparameter must be OLD or SHR. The
disposition subparameters should indicate what you want done with the private library after
its use in the job step.

• Code the UNIT parameter.

• Code the VOLUME parameter.

13-8 MVSJCL

STEPLIB DD

Other Parameters: Code the DCB parameter if complete data control block information is not
contained in the data set label.

Relationship to Other Control Statements

Concatenating Step Libraries: To specify more than one private library for a step: of DD
statements that define different data sets:

• Code a STEPLIB DD statement.

• Immediately follow this statement with DD statements that define other private libraries.
Omit a ddname from these subsequent DD statements.

Overriding a JOBLIB: If you want the system to ignore the JOBLIB for a particular job step
and the step does not require another private library, define the system library on a STEPLIB
DD statement. For example:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

For this particular job step, the system will first search SYSl.LINKLIB as specified on the
STEPLIB DD statement for the program requested in the EXEC statement. The system will
not search the JOBLIB.

References to a Previous Step Library: To refer to a previously defined step library:

• In the DSNAME parameter, code either the name of the step library or a backward
reference of the form *.stepname.STEPLIB. If the step library was defined in a cataloged
procedure, the backward reference must include the procedure step name:
* .stepname. procstepname. STEPLIB.

• Code the DISP parameter. The status subparameter must be OLD. The disposition
subparameters should indicate what you want done with the private library after its use in
the job step.

Location in the J CL

Place a STEPLIB DD statement in any position among the DD statements for a step.

Relationship of a STEPLIB to a JOBLIB

Use a JOB LIB DD statement to define a private library that the system is to use for an entire
job. If you include a JOB LIB DD statement for the job and a STEPLIB DD statement for an
individual job step, the system first searches the step library and then the system library for the
program requested in the EXEC statement. The system ignores the JOB LIB library for that
step.

Chapter 13. Coding Special DD Statements 13-9

STEPLIB DD

Examples of the STEPLIB DD Statement

IIPAYROLL
IISTEPl
IISTEP2
IISTEPLIB
IISTEP3
IISTEPLIB

JOB
EXEC
EXEC
DD
EXEC
DD

BROWN,MSGLEVEL=l
PROC=LAB14
PGM=SPKCH
DSNAME=PRIV.LIB5,DISP=(OLD,KEEP)
PGM=TIL80
DSNAME=PRIV.LIB12,DISP=(OLD,KEEP)

The system searches PRIV.LIB5 for the program SPKCH and PRIV.LIB12 for TIL80. The
system catalogs both private libraries.

IIPAYROLL
IIJOBLIB
IISTEPl
IISTEP2
IISTEPLIB
II
IISTEP3
IISTEP4
IISTEPLIB
II

JOB
DD
EXEC
EXEC
DD

EXEC
EXEC
DD

BAKER,MSGLEVEL=l
DSNAME=LIB5.GROUP4,DISP=(OLD,PASS)
PROC=SNZ12
PGM=SNAPIO
DSNAME=LIBRARYP,DISP=(OLD,PASS),
UNIT=3350,VOLUME=SER=55566
PGM=A1530
PGM=SNAPll
DSNAME=*.STEP2.STEPLIB,
DISP=(OLD,KEEP)

The system searches LIBRARYP for program SNAPIO; LIBRARYP is passed to subsequent
steps of this job. The STEPLIB DD statement in STEP4 refers to the LIBRARYP library
defined in STEP2; the system searches LIBRARYP for SNAPll. Since a JOB LIB DD
statement is included, the system searches for programs SNZ12 and Al530 first in
LIB5.GROUP4, then in SYSI.LINKLIB.

IIPAYROLL
IIJOBLIB
IISTEPl
IISTEPLIB
IISTEP2
IISTEP3
IISTEPLIB
II
II
II
IisTEP4

JOB
DD
EXEC
DD
EXEC
EXEC
DD
DD

DD
EXEC

THORNTON,MSGLEVEL=l
DSNAME=LIB5.GROUP4,DISP=(OLD,PASS)
PGM=SUM
DSNAME=SYS1.LINKLIB,DISP=OLD
PGM=VARY
PGM=CALC
DSNAME=PRIV.WORK,DISP=(OLD,PASS)
DSNAME=LIBRARYA,DISP=(OLD,KEEP),
UNIT=3350,VOLUME=SER=44455
DSNAME=LIB.DEPT88,DISP=(OLD,KEEP)
PGM=SHORE

For STEP2 and STEP4, the system searches the private library named LIB5.GROUP4 defined
in the JOBLIB DD statement first for programs VARY and SHORE. For STEP 1 , the system
searches SYSl.LINKLIB first for program SUM, because the STEPLIB DD statement names
the system library.

A concatenation of private libraries is defined in STEP3. The system searches for the program
named CALC in this order: PRIV.WORK,LIBRARYA, LIB.DEPT88, SYSl.LINKLIB. If a
later job step refers to the STEPLIB DD statement in STEP3, the system will search for the
program in the private library named PRIV.WORK and, if it is not found there, in
SYSl.LINKLIB; the concatenated libraries are not searched.

13-10 MVS JCL

SYSABEND, SYSMDUMP, SYSUDUMP DD

,YSABEND, SYSMDUMP, and SYSUDUMP DD Statements

Purpose: Use a SYSABEND, SYSMDUMP, or SYSUDUMP DD statement in a job step to
direct the system to produce a dump. The system produces the requested d?mp:

• If the step abnormally terminates.
• If the step ABENDs but system recovery procedures enable the step to terminate normally.

The DD statements for the requested dumps are:

SYSABEND DD statement
Produces a formatted dump that includes only the processing program storage area.

SYSMDUMP DD statement
Produces an unformatted, machine-readable dump that includes the system nucleus and
the processing program storage area.

SYSUDUMP DD statement
Produces a formatted dump that includes the processing program storage area.

For SYSABEND and SYSUDUMP dumps, the installation determines which of the storage
areas addressable by the processing program are to be included in the dump. For more
information, see SP L: Initialization and Tuning Guide

References: For information on how to interpret dumps, see Debugging Handbook and
Diagnostic Techniques.

Syntax:

//SYSABEND
//SYSMDUMP
//SYSUDUMP

Location in the J CL

DD parameter[,parameter] .. .
DD parameter[,parameter] .. .
DD parameter[,parameter] .. .

Do not place in the same job step two DD statements with the same dump ddname.

~toring a Dump

If you wish to store a dump instead of having it printed, code the following parameters on the
dump DD statement:

• The DSNAME parameter.

• The UNIT parameter.

• The VOLUME parameter.

• The DISP parameter. The data set's status is NEW. Because you want to store the data
set, make the data set's abnormal termination disposition KEEP or CATLG.

Chapter 13. Coding Special DD Statements 13-11

SYSABEND, SYSMDUMP, SYSUDUMP DD

• The SPACE parameter, if the dump is written on direct access.

The SYSMDUMP DD statement must specify a magnetic tape unit, a direct access device, or a
sysout data set. If the job or step is running in nonpageable virtual storage
(ADDRSPC = REAL on the JOB or EXEC statement), the SYSMDUMP DD statement must
specify a virtual I/O (VIO) data set.

To write more than one SYSMDUMP dump in the same data set on tape, specify the
following:

• DSNAME= SYSl.SYSMDPxx where xx is 00 through FF. SYSMDPxx is a preallocated
data set that you must initialize with an end-of-file (EOF) mark on the first record.

• DISP=SHR

You can ask the system to write additional dumps only if you off-load any previous dump and
write an EOF mark at the beginning of the SYS1.SYSMDPxx data set. To accomplish this,
your installation must install an exit routine for message IEA993. For information on this exit
routine, see SPL: Supervisor.

Printing a Dump

To print a dump for either a SYSABEND or SYSUDUMP DD statement, code one of the
following on the DD statement for the output data set:

• The UNIT parameter.
• The SYSOUT parameter with the output class subparameter.

To print a dump for a SYSMDUMP DD statement, use one of the following programs:

AMDPRDMP service aid

IPes

This program is described in SPL: Service Aids. When using AMDPRDMP, the
SYSMDUMP DD statement must allocate the dump data set to a magnetic tape or a
direct access device.

If the job or job step is running in nonpageable virtual storage (ADDRSPC = REAL on
the JOB or EXEC statement), the SYSMDUMP DD statement must specify a virtual I/O
(VIO) data set.

This program is described in Interactive Problem Control System (IPCS) System
Information. When using IPCS, the data set disposition affects the collection of events.
See "Requesting an Abnormal Termination Dump" on page 8-6.

If you print the dump on a 3800 Printing Subsystem, code CHARS = DUMP for a dump
with 204 characters per line and FCB = STD3 for 8 lines per inch.

13-12 MVS JCL .

SYSABEND, SYSMDUMP, SYSUDUMP DD

)verriding Dump DD Statements

To override a dumpDD statement in a cataloged or in-stream procedure, use a DD statement
with a ddname that is different from the ddname of the dump DD statement in the procedure.

[)uplicate Dump Requests

You can code more than one dump request in a job step using DD statements that have
different ddnames. When you do this, the system uses the last dump DD statement it
encounters.

When the system finds dump DD statements with duplicate ddnames, processing is as follows:

• In a JES2 system, the job fails with message IEC912I.

• In a JES3 system:

If both DD statements request JES3- or jointly-managed devices, the job is cancelled
during JES3 interpretation.

If only one or neither statement requests JES3- or jointly-managed devices, the job fails
with message IEC912I.

8:xamples of the SYSABEND, SYSMDUMP, and SYSUDUMP DD Statements

IISTEP2 EXEC PGM=A
IISYSUDUMP DD SYSOUT=A

The SYSUDUMP DD statement specifies that you want the dump routed to system output
class A.

IISYSMDUMP DD ,DSNAME=DUMP,DISP=(NEW,KEEP),
II . UNIT=3400-6,VOLUME=SER=147958

The SYSMDUMP DD statement specifies that the dump is to be stored on a tape. Because the
LABEL parameter is not coded, the tape must have IBM standard labels.

IISTEPI EXEC PGM=PROGRAMI
IISYSABEND DD DSNAME=DUMP,UNIT=3350,DISP=(,PASS,KEEP),
II VOLUME=SER=1234,SPACE=(TRK,(40,20»
IISTEP2 'EXEC PGM=PROGRAM2
IISYSABEND DD DSNAME=*.STEPl.SYSABEND,DISP=(OLD,DELETE,KEEP)

Both SYSABEND DD statements specify that the dump is to be stored. The space request in
STEPI is ample and will not inhibit dumping due to insufficient space. If STEPI does not
abnormally terminate but STEP2 does, the system writes the dump for STEP2 in the space
allocated in STEPI. In both steps, an abnormal termination disposition of KEEP is specified
so that the dump is stored if either of the steps abnormally terminates. If both of the steps
successfully execute, the second DISP subparameter, DELETE, in STEP2 instructs the system
to delete the data set and free the space acquired for dumping.

Chapter 13. Coding Special DD Statements 13-13

SYSABEND, SYSMDUMP, SYSUDUMP DD

IISTEPl EXEC
IISYSUDUMP DD
II
I/STEP2 EXEC
IIIN DD
II

PGM=WWK'
DSNAME=DUMP,UNIT=3350,DISP=(,DELETE,
KEEP),VOLUME=SER=54366,SPACE=(1680,(160,80»
PGM=PRINT,COND=ONLY
DSNAME=* • STEP 1. SYSUDUMP , DISP=. (OLD, DELETE) ,
VOLUME=REF=*.STEP1.SYSUDUMP

STEP! specifies that the dump is to be stored if the step abnormally terminates. Beca,use the
EXEC COND = ONLY parameter is specified in STEP2, STEP2 is executed' only if STEP 1
abnormally terminates. STEP2 executes a program that prints the dump.

IISTEP EXEC PGM=EXSYSM
IISYSMDUMP DD UNIT=3330,VOLUME=SER=123456,SPACE=(CYL,(O,1»,
II DISP=(NEW,DELETE,KEEP),DSNAME=MDUMP

The SYSMDUMP DD statement allocates dump data set MDUMP to a direct access device.

IISTEP EXEC PGM=EXSYSMDP
IISYSMDUMP DD DSNAME=SYS1.SYSMDPOO,DISP=SHR

The SYSMDUMP is written in data set SYSl.SYSMDPOO.

Note: When you specify a DSNAME of SYSl.SYSMDPxx and DISP = SHR, the first
SYSMDUMP produced is retained on the data set. This first SYSMDUMP must be off-loaded
and an end-of-file mark written at the beginning of the SYSl.SYSMDPxx data set before
subsequent dumps can be written.

IISTEPA
IISYSMDUMP

EXEC
DD

II
IISTEPB
IISYSUTl
IIPRINTER
IISYSIN

1*

EXEC
DD
DD
DD

FORMAT
LOGDATA
END

PGM=EXSYSM2,ADDRSPC=REAL
UNIT=SYSDA,SPACE=(CYL,(O,l»,
DISP=(NEW,PASS)
PGM=AMDPRDMP,COND=ONLY
DSNAME=*.STEPA.SYSMDUMP,DISP=OLD
SYSOUT=A
*

In STEPA, the SYSMDUMP DD statement directs output to a VIO data set (1) by specifying a
VIO-eligible device group (SYSDA) and (2) by not assigning a data set name to make the data
set temporary and eligible for VIO. STEPB is executed only if STEP A abnormally terminates.
In STEPB, the dump output is printed by the AMDPRDMP service aid on a device assigned to
output class A.

13-14 MVS JCL

SYSCHK DD

SYSCHK DD Statement

Purpose: Use the SYSCHK DD statement to define a checkpoint data set that the system is to
write during execution of a processing program. Use this statement again when the step is
restarted from a checkpoint written in the data set.

Note: If restart is to begin at a step, as indicated by the RD parameter on the EXEC
statement, do not use a SYSCHK DD statement.

References: See "Restrictions on Use of SYSCHK DD Statement and DD Statement
RESTART Parameter" on page v. For detailed information about the checkpoint/restart
facilities, see Checkpoint/Restart.

Syntax:

//SYSCHK DD parameter[,parameter] 000

Parameters on SYSCHK DD Statements

When the Checkpoint Data Set is Cataloged:

• Code the DSNAME parameter.

• Code the DISP parameter to specify a status of OLD and a disposition of KEEP.

• Code the UNIT parameter.

• Code the VOLUME parameter. If the checkpoint entry is on a tape volume other than the
first volume of the checkpoint data set, code the volume serial number or volume sequence
number to identify the correct volume. The serial number of the volume on which a
checkpoint entry was written appears in the console message issued after the checkpoint
entry is written. If you code the volume serial number, you must also code the UNIT
parameter, because the system will not look in the catalog for unit information.

When the Checkpoint Data Set is Not Cataloged:

• Code the DSNAME parameter. If the checkpoint data set is partitioned, do not code a
member-name in the DSNAME parameter.

• Code the DISP parameter to specify a status of OLD and a disposition of KEEP.

• Code the UNIT parameter.,

• Code the VOLUME parameter. The serial number of the volume on which a checkpoint
entry was written appears in the console message issued after the checkpoint entry is
written.

Chapter 13. Coding Special DD Statements 13-15

SYSCHKDD

Other Parameters:

• Code the LABEL parameter if the checkpoint data set does not have standard labels.

• Code DCB = TRTCH = C if the checkpoint data set is on 7-track magnetic tape with
nonstandard labels or no labels.

• If the volume containing the checkpoint data set is to be mounted on a JES3-managed
device, do not code the DEFER subparameter of the UNIT parameter on the SYSCHK
DD statement. '

When Allocating a Checkpoint Data Set:

• Code a SPACE parameter, but do not request secondary space.

The primary space request must be large enough to hold: all checkpoints. Although
your program or the system can write checkpoints in secondary space, the system
cannot perform a restart from checkpoints in secondary s.,ace ..

If you do not request secondary space and the primary space fills up, the job
abnormally terminates. You can successfully restart the job at the last checkpoint;
however, when the processing program or system writes the next checkpoint the job
abnormally terminates again.

If you do request secondary space and the primary space fills up, the processing
program or the system writes one invalid checkpoint followed by successful
checkpoints. An attempt to restart from one of the checkpoint.s following the invalid
checkpoint results in abnormal termination.

• Code the RLSE subparameter of the SPACE parameter only if the prpcessing program
opens the checkpoint data set and the checkpoint data set remains open u.ntil the end of the
program. If you specify RLSE, the system releases unused space after the first CLOSE
macro instruction.

Do not code the RLSE subparameter:

13-16 MVS JCL

If the processing program opens the checkpoint data set before writing each checkpoint
and closes the checkpoint data set after writing each checkpoint. The system releases
all unused space while closing the data set after the first checkpoint, leaving no space
for additional checkpoints.

If the system opens the checkpoint data set. The system opens and closes the
checkpoint data set before it writes the first checkpoint. With RLSE specified, the
system would release all space before the first checkpoint could be written.

Code the CONTIG subparameter of the SPACE parameter to request contiguous space.
The system otherwise provides additional primary space using extents. If the extents
are not contiguous, any checkpoints in these extents cannot be used for a successful
restart.

SYSCHK DD

Relationship to Other Control Statements

Code the RESTART parameter on the JOB statement; without it, the system ignores the
SYSCHK DD statement.

Location in the JCL

• When writing checkpoints, place the SYSCHK DD statement after any JOB LIB DD
statements, if coded; otherwise, after the JOB statement .

• When restarting a job from a checkpoint, place the SYSCHK DD statement immediately
before the first EXEC statement of the resubmitted job.

Examples of the SYSCHK DD Statement

IIJOBl JOB RESTART=(STEP3,CK3)
IISYSCHK DD DSNAME=CHLIB,UNIT=3350,
II DISP=OLD,VOLUME=SER=456789
IISTEPl EXEC PGM=A

The checkpoint data set defined on the SYSCHK DD statement is not cataloged.

IIJOB2 JOB
IIJOBLIB DD
IISYSCHK DD

RESTART=(STEP2,NOTE2)
DSNAME=PRIV.LIB3,DISP=(OLD,PASS)
DSNAME=CHECKPTS,DISP=(OLD,KEEP),
UNIT=3400-6,VOLUME=SER=438291 II

IISTEPl EXEC PGM=B

The checkpoint data set defined on the SYSCHK DD statement is not cataloged. Note that the
SYSCHK DD statement follows the JOB LIB DO statement.

Chapter 13. Coding Special DD Statements 13-17

SYSCKEOVDD

SYSCKEOV DD Statement ~, .~.

Purpose: Use the SYSCKEOV OD statement to define a checkpoint data set for checkpoint
records from the checkpoint at end-of-volume (EOV) facility.' The checkpoint at EOV facility is
invoked by a DD CHKPT parameter.

Note: You must place a SYSCKEOV DD statement in a job step if you have coded the
CHKPT parameter on any DD statements in the step.

References: For information on the DD CHKPT parameter~ see "CHKPT Parameter" on
page 12-21. For information on checkpoint/restart facilities, see Checkpoint/Restart.

Syntax:

//SYSCKEOV DD pararneter[,pararneter] 000

Pa.rameters on SYSCKEOV DD Statements

• Do not code the CHKPT = EOV parameter on the SYSCKEOV DD statement.

• Do not specify the DCB parameter. All DCB information is provided by the checkpoint at
EOV facility.

• Do not code the DEFER subparameter of the UNIT parameter.

• If you code the LABEL parameter, you must specify LABEL = (,SL) for IBM standard
labels.

• The DISP = MOD parameter is recommended to reduce loss of checkpoint data in case of a
system failure during checkpointing.

• The SYSCKEOV DD statement must define a BSAM data set.

• If the SYSCKEOV data set resides on a direct access storage device, that device cannot be
shared with another processor.

When Allocating a Checkpoint Data Set:

• Code a SPACE parameter, but do not request secondary space. The primary space request
must be large enough to hold all checkpoints; if not, the job abnormally terminates.

• Do not code the RLSE subparameter of the SPACE parameter.

• Code the CONTIG subparameter of the SPACE parameter to request contiguous space.
The system otherwise provides additional primary space using extents.

13-18 MVS JCL

SYSCKEOV DD

:oding SYSCKEOV for VSAM Data Sets

The AMP parameter for VSAM data sets has some restrictions and options. Refer to
Checkpoint/Restart for a discussion of these restrictions and options.

Example of the SYSCKEOV DD Statement

//SYSCKEOV DD DSNAME=CKPTDS,UNIT=TAPE,DISP=MOD

This statement defines a checkpoint data set for checkpoint at EOV records.

Chapter 13. Coding Special DD Statements 13-19

13-20 MVS JCL

OUTPUT JCL

Chapter 14. Coding the OUTPUT JCL Statement

Figure 14-1 shows job-level and step-level OUTPUT JCL statements in the input stream.

Step-level
JCL Statement

for PSTEP2 ----74~-~~~~

Step-level Output
JC L Statement
for STEP2

options ...

PGM=ONE

//name OUTPUT
options ...

1-----1 1----- Step-level OUTPUT JCL Statement
for STEP1

.................. ---- Job-level OUTPUT JCL Statement

Figur~ 14-1. Using job- and step-level OUTPUT JCL statements

Step-level OUTPUT JCL
Statement for PSTEP1

Chapter 14. Coding the OUTPUT JCL Statement 14-1

OUTPUT JCL

Name Field

Purpose: Use the OUTPUT JCL statement to specify:

• The characteristics of and/or processing, options for a specific sysout data set.

• In JES2 installations only, the grouping of sysout data sets for processing by a printer or
punch.

• Default processing options for output data sets.

• A destination for an output data set.

The parameters you can specify for sysout data set processing are arranged alphabetically in the
following pages.

References: For more information on coding OUTPUT JCL statement parameters, see
"Processing System Output Data Sets Using the OUTPUT JCL Statement" on page 7-44. For
information about the JES initialization parameters that provide installation defaults, see SPL:
JES2 Initialization and Tuning and SPL: JES3 Initialization and Tuning.

Syntax:

//name OUTPUT parameter[,parameter] ... comments

The OUTPUT JCL statement consists of the characters / / in columns 1 and 2 and four
fields: name, operation (OUTPUT), parameter, and comments.

Code a name in the name field of every OUTPUT JCL statement, as follows:

• Each OUTPUT JCL name must be unique within the job.
• The name must begin in column J.
• The name is 1 through 8 alphanumeric or national characters.
• The first character must be alphabetic or national.
• The name must be followed by at least one blank.

Parameter Field

The OUTPUT JCL statement contains only keyword parameters. All parameters are optional. '
However, do not leave the parameter field blank. You can code any of the keyword parameters
in any order in the parameter field. The following list indicates:

• Parameters supported only in a JES2 system. These parameters cannot be used in a JES3
system.

• Parameters supported only in a JES3 system. These parameters cannot be used in a JES2
system.

14-2 MVS JCL

OUTPUT JCL

Do not use OUTPUT JCL statement parameter keywords as symbolic parameters, names, or
labels.

Parameter JES2 Only, JES3 Only,
Not JES3 Not JES2

BURST
CHARS
CKPTLINE
CKPTPAGE
CKPTSEC

-

CLASS
COMPACT
CONTROL
COPIES
DEFAULT

DEST
FCB
FLASH
FORMDEF
FORMS

GROUPID X
INDEX X
JESDS
LINDEX X
LINECT X

MODIFY
PAGEDEF
PIMSG
PRMODE
PRTY

THRESHLD X
TRC
UCS
WRITER

Default OUTPUT JCL Statement: An OUTPUT JCL statement that contains a
DEFAULT=YES parameter is called a default OUTPUT JCL statement.

Comments Field

The comments field follows the parameter field after at least one intervening blank.

Location in the J CL

You must place an OUTPUT JCL statement in the input stream before any sysout DD
statement that refers to it.

References by Sysout DD Statements: An OUTPUT JCL statement can be referenced by a
sysout DD statement in two ways:

• Explicitly. The sysout DD statement contains an OUTPUT parameter that specifies the
name of the OUTPUT JCL statement.

Chapter 14. Coding the OUTPUT JCL Statement 14-3

OUTPUTJCL

Overrides

• Implicitly. The sysout DD statement does not contain an OUTPUT parameter. I:mplicit'
references are to default OUTPUT JCL statements and require that the job or step contain one

or more default, OUTPUT JCL statements before the sysout DD statement.

Note: If the sysout DD statement does not contain an OUTPUT parameter and the job or
step does not contain a default OUTPUT JCL statement, processing of the sysout data set is
controlled only by the DD statement~ a JES2 j*OUTPUT statement or JES3 j j*FORMAT
statement, and appropriate installation defaults.

Job-Level OUTPUT JCL Statements: This statement appears after the JOB statement and
before the first EXEC statement.

Step-Level OUTPUT JCL Statements: This statement appears in a step, that is, anywhere after
the first EXEC statement in a job.

Location of Default OUTPUT JCL Statements: Where you place default OUTPUT JCL
statements determines which statements a sysout DD statement refers to in an implicit
reference, as follows:

• A sysout • statement implicitly references all step-level default OUTPUT JCL statements
in the sanie step.

• A sysout DD statement implicitly references all job-level default OUTPUT JCL statements
when the step containing the DD statement does not contain any step-level default
OUTPUT JCL statements.

You can place more than one job- or step-level default OUTPUT JCL statement in a job or
step.

OUTPUT JCL Statement with JESDS Parameter: Place an OUTPUT JCL statement with a
JESDS parameter after the JOB statement and before the first EXEC statement.

• Parameters on a sysout DD statement override corresponding parameters on an OUTPUT
JCL statement.

• Parameters that appear only on the sysout DD statement or only on the OUTPUT JCL
statement are used by JES in processing the data set.

Relationship to the JES2/*OUTPUT Statement
."

JES2 ignores a JES2 j*OUTPUT statement when either of the following appears in the same
job or step:

• A default OUTPUT JCL statement implicitly referenced by a sysout DD statement.
• An OUTPUT JCL statement explicitly referenced by the OUTPUT parameter of a sysout

DD statement.

In this case, JES2 uses the form-name subparameter of the DD SYSOUT parameter as a form
name, and not as a reference to a JES2 j*OUTPUT statement.

OUTPUTJCL

Relationship to the JES311*FORMAT Statement

• When a sysout DD statement implicitly or explicitly references an OUTPUT JCL
statement, JES3 ignores any default JES3 //*FORMAT statements in the job. A default
//*FORMAT statement contains a DDNAME=, parameter.

• When a JES3 / /*FORMAT statement contains a DDNAME parameter that explicitly
references a sysout DD statement, JES3 ignores any default OUTPUT JCL statements in
the job.

• JES3 uses the processing options from both a JES3 / /*FORMAT statement and an
OUTPUT JCL statement in a job when (1) the //*FORMAT statement DDNAME
parameter names a sysout DD statement and (2) the sysout DD statement's OUTPUT
parameter names an OUTPUT JCL statement. Two separate sets of output are created
from the data set defined by the sysout DD statement:

One processed according to the options on the JES3 / /*FORMAT statement.
One processed according to the options on the OUTPUT JCL statement.

Chapter 14. Coding the OUTPUT JCL Statement 14-5

OUTPUT JCL: BURST

BURST Parameter

Parameter Type: Keyword, optional

Purpose: Use the BURST parameter to specify that 3800 Printing Subsystem output is to go
to:

• The burster-trimmer-stacker, to be burst into separate sheets.
• The continuous forms stacker, to be left in continuous fanfold.

If the specified stacker is different from the last stacker used, or if a stacker was not previously
requested, JES issues a message to the operator to thread the paper into the required stacker.

Note: BURST is valid only for a data set printed on a 3800 equipped with a
burster-timmer-stacker.

Syntax:

BURST={ [YES I Y]}
{[NOIN] }

Subparameter Definition

Defaults

Overrides

YES

NO

Requests that the printed output is to be burst into separate sheets. This subparameter
can also be coded as Y.

Requests that the printed output is to be in a continuous fanfold. This subparameter can
also be coded as N.

If you do not code a BURST parameter and the output data set is printed on a 3800 that has a
burster-timmer-stacker, JES uses an installation default specified at initialization.

A BURST parameter on the sysout DD statement overrides the OUTPUT JCL BURST
parameter.

Example of the BURST Parameter

//OUTDSl OUTPUT BURST=YES

In this example, the output from the 3800 will be burst into separate sheets.

14-6 MVS JCL

OUTPUT JCL: CHARS

CHARS Parameter

Parameter Type: Keyword, optional

Purpose: Use the CHARS parameter to specify the name of one or more
character-arrangement tables for printing the data set on a 3800 PrintinK Subsystem.

Note:

• CHARS is valid only for a data set printed on a 3800.

• STD and DUMP are valid only on a JES3 system.

References: For more information on character-arrangement tables, see "Requesting Character
Arrangements with a 3800 Printer" on page 7-60 and the IBM 3800 Printing Subsystem
Programmer's Guide. Refer to System Generation Reference for information on how to choose
during system generation particular groups, other than the Basic group, which is always
available.

Syntax:

{table-name }
CHARS={(table-name[,table-name] ...)}

{STD }
{DUMP }
{ (DUMP [, table-name] ...) }

• You can omit the parentheses if you code only one table-name.

• Null positions in the CHARS parameter are invalid. For example, you cannot code
CHARS = (,table-name) or CHARS = (table-name"table-name).

Subparameter Definition

table-name

STD

Names a character-arrangement table. Each table-name is I to 4 alphanumeric or
national characters. Code from one to four names.

Specifies the standard character arrangement table. JES3 uses the standard table specified
at initialization.

Note: STD is supported only on JES3 systems.

Chapter 14. Coding the OUTPUT JCL Statement 14-7

OUTPUT JCL: CHARS

Defaults

Overrides

DUMP
Requests a high-density dump of 204-character print lines from a 3800. If more than one
table-name is coded, DUMP must be first.

Note:

• DUMP is supported only on JES3 systems.

• DUMP is valid only on the OUTPUT JCL statement referenced in a SYSABEND,
SYSMDUMP, or SYSUDUMP DD statement that specifies a SYSOUT data set for
the dump.

If you do not code the OUTPUT JCL CHARS parameter, JES uses the following, in order:

1. The DD CHARS parameter.

2. The DD UCS parameter value, if coded.

3. The OUTPUT JCL UCS parameter value, if coded.

If no character-arrangement table is specified on the DD or OUTPUT JCL statements, JES
uses an installation default specified at initialization.

A CHARS parameter on the sysout DD statement overrides the OUTPUT JCL CHARS
parameter.

For a data set scheduled to the Print Services Facility (PSF), the PSF uses the following
parameters, in override order, to select the font list:

1. Font list in the SYS1.IMAGELIB member specified by an OUTPUT JCL PAGEDEF
parameter.

2. DD CHARS parameter.

3. OUTPUT JCL CHARS parameter.

4. DD UCS parameter.

5. OUTPUT JCL UCS parameter.

6. JES installation default for the device.

7. Font list on the PAGEDEF parameter in the PSF cataloged procedure.

See "PAGEDEF Parameter" on page 14-43 for more information.

14-8 MVS JCL

Requesting a High-Density Dump in a JES3 System

You can request a high-density dump on the 3800 in a JES3 system through two parameters on
the DD statement for the dump data set or on an OUTPUT JCL statement referenced by the
dump DD statement:

• FCB = STD3. This parameter produces dump output at 8 lines per inch.
• CHARS = DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same statement or
one on each statement.

Example of the CHARS Parameter

//OUTDS2 OUTPUT CHARS=(GT12,GB12,GI12)

In this example, the output from the 3800 will be printed in three upper and lower case fonts:
GT12, Gothic 12-pitch; GB12, Gothic Bold 12-pitch; and G112, Gothic Italic 12-pitch.

Chapter 14. Coding the OUTPUT JCL Statement 14-9

OUTPUT JCL: CKPTLINE

CKPTLINE Parameter

Parameter Type: Keyword, optional

Purpose: Use the CKPTLINE parameter to specify the maximum number of lines in a logical
page. JES uses this value, with the CKPTPAGE parameter, to determine when to take
checkpoints while printing the output data set or transmitting the systems network architecture
(SNA) data set.

Note: JES3 support for this parameter is limited to the 3800 Printing Subsystem Models 3 and
8.

Syntax:

CKPTLINE=nnnnn

Subparameter Definition

Defaults

nnnnn
Specifies the maximum number of lines in a logical page. nnnnn is a number from 0
through 32767.

If you do not code the CKPTLINE parameter, JES2 uses an installation default specified at
initialization. JES3 provides no installation default.

Example of the CKPTLINE Parameter

//OUTDS3 OUTPUT CKPTLINE=4000,CKPTPAGE=5

In this example, the output data set will be checkpointed after every 5 logical pages. Each
logical page contains 4000 lines.

14-10 MVS JCL

OUTPUTJCL:CKPTPAGE

CKPTP AGE Parameter

Parameter Type: Keyword, optional

Purpose: Use the CKPTPAGE parameter to specify the number of l()gical pages:

• To be printed before JES takes a checkpoint.

• To be transmitted as a single systems network architecture (SNA) chain to an SNA work
station before JES takes a checkpoint.

The number of lines in these logical pages is specified in the CKPTLINE parameter.

Note: JES3 support for this parameter is limited to the 3800 Printing Subsystem Models 3 and
8.

Syntax:

CKPTPAGE=nnnnn

Subparameter Definition

Defaults

nnnnn
Specifies the number of logical pages to be printed or transmitted before the next output
data set checkpoint is taken. nnnnn is a number from 1 through 32767.

If you do not code the CKPTP AGE parameter, JES2 uses an installation default specified at
initialization; the default may also indicate whether checkpoints are to be based on page count
or time. JES3 provides no installation default.

Relationship to Other Parameters

If you code both the CKPTPAGE and CKPTSEC parameters:

• JES2 uses the value on the CKPTSEC parameter, provided the installation did not specify
at initialization that checkpoints are to be based only on page count or time.

• JES3 uses the value on the CKPTPAGE parameter.

Example of the CKPTPAGE Parameter

//OUTDS4 OUTPUT CKPTPAGE=128,CKPTLINE=58

In this example, the output data set will be checkpointed after every 128 logical pages. Each
logical page contains 58 lines.

Chapter 14. Coding the OUTPUT JCL Statement 14-11

OUTPUTJCL:CKPTSEC

CKPTSEC Parameter

Parameter Type: Keyword, optional

Purpose: Use the CKPTSEC parameter to specify how many seconds are to elapse between
each checkpoint of an output data set that JES is printing.

Note: JES3 support for this parameter is limited to the 3800 Printing Subsystem Models 3 and
8.

Syntax:

CKPTSEC=nnnnn

Subparameter Definition

Defaults

nnnnn
Specifies the number of seconds that is to elapse between checkpoints. nnnnn is a number
from 1 through 32767.

If you do not code the CKPTSEC parameter, JES2 uses an installation default specified at
initialization; the default may also indicate whether checkpoints are to be based on page count
or time. JES3 provides no installation default.

Relationship to Other Parameters

If you code both the CKPTPAGE and CKPTSEC parameters:

• JES2 uses the value on the CKPTSEC parameter, provided the installation did not specify
at initialization that checkpoints are to be based only on page count or time .

• JES3 uses the value on the CKPTPAGE parameter.

Example of the CKPTSEC Parameter

//OUTDS5 OUTPUT CKPTSEC=120

In this example, the output data set will be checkpointed after every 120 seconds, or 2 minutes.

14-12 MVS JCL

OUTPUT JCL: CLASS

CLASS Parameter

Parameter Type: Keyword, optional

Purpose: Use the CLASS parameter to assign this output data set to an output class.

Note: If a system output data set has the same class as the JOB statement MSGCLASS
parameter, the job log appears on the same output listing as this output data set.

References: For more information on output classes, see "Assigning System Output Data Sets
to Output Classes" on page 7-51.

Syntax:

CLASS={class-name}
{* }

Subparameter Definition

Overrides

class-name

*

Identifies the output class for the data set. The class-name is one character: A through Z
or 0 through 9. The attributes of each output class are defined during JES initialization;
specify the class with the desired attributes.

Requests the output class in the MSGCLASS parameter on the JOB statement.

The class-name subparameter of the DD statement SYSOUT parameter overrides the OUTPUT
JCL CLASS parameter. On the DD statement, you must code a null class-name in order to use
the OUTPUT JCL CLASS parameter; for example:

//OUTDS DD SYSOUT=(,)

Held Classes

If CLASS specifies a class-name that is defined to JES2 as a held class, the JOB MSGCLASS
parameter should specify (1) the same class-name as the CLASS parameter or (2) another class
that is also defined to JES2 as a held class. For information on the JOB MSGCLASS
parameter, see "MSGCLASS Parameter" on page 10-14.

Chapter 14. Coding the OUTPUT JCL Statement 14-13

:1 ;

OUTPUT JCL: CLASS

Significance of Output Classes

To print this output data set and the messages from your job on the same outPll.t listing, code
one of the following: " " ".

• The same output class in the DD S'YSOUT parameter as in the JO~ MSGCLASS
parameter.

• DD SYSOUT = * to default to the JOB MSGCLASS output class.

• DD SYSOUT = (,) to default to one of the following:

1. The CLASS parameter in an ,explicitly or implicitly referenced OUTPUT JCL
statement. In this case, the OUTPUT JCL CLASS parameter should specify the same
output class as the JOB MSGCLASS parameter.

2. The JOB MSGCLASS output class, if no OUTPUT JCL statement is referenced or if
the referenced OUTPUT JCL statement contains CLASS = *'.

Examples of the CLASS Parameter

//OUTDS6 OUTPUT CLASS=D
//OUTI DD SYSOUT=(,),OUTPUT=*.OUTDS6

In this example, JES processes the sysout data set definedjn DD statement nUTl in output
class D.

//PRINTALL JOB ACCT123,MAEBIRD,MSGCLASS=H
//STEPI EXEC PGM=PRINTER
//OUTDS7 OUTPUT CLASS=*
//OUTPTR DD SYSOUT=(,) ,OUTPUT=*.OUTDS7

In this example, JES processes the sysout data set defined 'in DD statement OUTPTR in output
class H, as specified in the JOB statement MSGCLASS parameter. The same result could be
obtained by the following:

//PRINTALL JOB
//STEPI EXEC
//OUTPTR DD

14-14 MVS JCL

ACCT123,MAEBIRD,MSGCLASS=H
PGM=PRINTER
SYSOUT=H

,:~J

OUTPUT JCL: COMPACT

COMPACT Parameter

Parameter Type: Keyword, optional

Purpose: Use the COMPACT parameter to specify a compaction table for lES to use when
sending this system output data set, which is a systems network architecture (SNA) data set, to
a SNA remote terminal.

Syntax:

COMPACT=compaction-table-name

Subparameter Definition

Defaults

Overrides

compaction-table-name
Specifies a compaction table by a symbolic name. The name is 1 to 8 alphanumeric
characters. The symbolic name must be defined by the installation during JES
ini tializa tion.

If you do not code the COMPACT parameter, compaction is suppressed for the data set.

This parameter overrides any compaction table value defined at the SNA remote terminal.

Example of the COMPACT Parameter

//OUTDS8 OUTPUT DEST=N555R222,COMPACT=TBL77

In this example, the data set will be sent to remote terminal 222 at node 555; JES will use
compaction table TBL 77.

Chapter 14. Coding the OUTPUT JCL Statement 14-15

OUTPUT JCL:· CONTROL

CONTROL Parameter

Parameter Type: Keyword, optional

Purpose: Use the CONTROL parameter to specify either that each logical record starts with a
carriage control character or that the output is to be printed with single, double, or triple
spacing.

Syntax:

{PROGRAM}
CONTROL={SINGLE }

{DOUBLE }
{TRIPLE }

Subparameter Definition

Defaults

PROGRAM
Indicates that each logical record in the data set begins with a carriage control character.
The carriage control characters are given in Data Management Services.

SINGLE
Indicates forced single spacing.

DOUBLE
Indicates forced double spacing.

TRIPLE
Indicates forced triple spacing.

If you do not code the CONTROL parameter, JES3 uses an installation default specified at
initialization.

In a JES2 system, an installation default can be provided for each local device by an operator
command.

Example of the CONTROL.Parameter

//OUTDS9 OUTPUT CONTROL=PROGRAM

In this example, the output is printed using the first character of each logical record for carriage
control.

14-16 MVS JCL

OUTPUT JCL: COPIES

COPIES Parameter

Parameter Type: Keyword, optional

Purpose: Use the COPIES parameter to specify how many copies of the system output data set
are to be printed. The printed output is in page sequence for each copy.

For printing on a 3800 Printing Subsystem, this parameter can instead specify how many copies
of each page are to be printed before the next page is printed.

References: For more information on the COPIES parameter, see "Requesting Multiple Copies
of an Output Data Set Using JES2" and "Requesting Multiple Copies of an Output Data Set
Using JES3" on page 7-58.

Syntax:

COPIES={nnn }
{(,(group-value[,group-value] ...))}

• You can omit the parentheses if you code only COPIES = nnn.

The following are not valid:
A null group-value, for example, COPIES = (5,(,)) or COPIES = (5,)
A zero group-value, for example, COPIES = (5,(1,0,4))
A null within a list of group-values, for example, COPIES = (5,(1,,4))

Subparameter Definition

nnn
Specifies how many copies of the data set are to be printed; each copy will be in page
sequence order. nnn is a number from 1 through 255 in a JES2 system and from 1
through 254 in a JES3 system.

For a data set printed on a 3800, JES ignores nnn if any group-values are specified.

group-value
Specifies how many copies of each page are to be printed before the next.page is printed.
Each group-value is a number from 1 through 255 in a JES2 system and from 1 through
254 in a JES3 system. You can code a maximum of eight group-values. Their sum must
not exceed 255 or 254. The total copies of each page equals the sum of the group-values.

Note:

• This subparameter is valid only for 3800 output.
• For 3800 output, this subparameter overrides an nnn subparameter, if coded.

Chapter 14. Coding the OUTPUT JCL Statement 14-17

OUTPUT JCL: COPIES

Defaults

Overrides

If you do not code a COPIES parameter on any of the following, code it incorrectly, or code
COPIES =0, the system uses a default of 1, which is the default for the DD COPIES parameter.

DD statement
OUTPUT JCL statement
For JES2, the j*OUTPUT statement
For JES3, the SYSOUT initialization statement

A COPIES parameter on the sysout DD statement overrides the OUTPUT JCL COPIES
parameter.

If the OUTPUT JCL statement contains a FORMDEF parameter, which specifies a
SYSl.1MAGELIB member, the COPYGROUP parameter on a FORMDEF statement in that
member overrides any group-value subparameters on the OUTPUT JCL COPIES parameter or
the sysout DD COPIES parameter. For more information, see "FORMDEF Parameter" on
page 14-31.

Relationship to Other Parameters

If the OUTPUT JCL or the sysout DD statement contains a FLASH parameter, JES prints
with the forms overlay the number of copies specified in one of the following:

• COPIES = nnn, if the FLASH count is larger than nnn. For example, if COPIES = 10 and
FLASH=(,12) JES prints 10 copies, all with the forms overlay.

• The sum of the group-values specified in the COPIES parameter, if the FLASH count is
larger than the sum. For example, if COPIES = (,(2,3,4) and FLASH = (,12) JES prints nine
copies in groups, all with the forms overlay.

• The count subparameter in the FLASH parameter, if the FLASH count is smaller than nnn
or the sum from the COPIES parameter. For example, if COPIES = 10 and FLASH = (,7)
JES prints seven copies with the forms overlay and three copies without.

Relationship to Other Control Statements

For JES2, if you request copies of the entire job on the JES2 /* JOBP ARM COPIES parameter
and also copies of the data set on the DD COPIES or OUTPUT JCL COPIES parameter, JES2
prints the number of copies equal to the product of the two requests.

Examples of the COPIES Parameter

//RPTDS OUTPUT COPIES=4,FORMS=WKREPORT

This example asks JES to print four copies of the weekly report on forms named WKREPORT.

14-18 MVS JCL

OUTPUT JCL: COPIES

//EXPLD OUTPUT COPIES=(,(3)),FORMS=ACCT

This example asks JES to print the first page three times, then the second page three times, the
third page three times, etc., on forms named ACCT.

//QUEST OUTPUT COPIES=(,(8,25,18,80)),FORMS=ANS

This example asks JES to print each page eight times before printing the next page, then 25
times before the next, then 18 times before the next, and finally 80 times before the next. The
forms are named ANS.

//EXMP OUTPUT COPIES=(5,(3,2))

This example asks JES to do one of the following:

• If the data set is printed on other than a 3800, to print five copies.

• If it is printed on a 3800, to print each page three times before printing the next page and
then to print each page twice before printing the next page.

Chapter 14. Coding the OUTPUT JCL Statement 14-19

OUTPUT JCL: DEFAULT

DEFAULT Parameter

Parameter Type: Keyword, optional

Purpose: Use the DEFAULT parameter to specify that this OUTPUT JCL statement can or
cannot be implicitly referenced by a sysout DD statement. An OUTPUT JCL statement that
contains a DEFAULT = YES parameter is called a default OUTPUT JCL statement.

References: For more information on the DEFAULT parameter, see "Processing System
Output Data Sets Using the OUTPUT JCL Statement" on page 7-44.

Syntax:

DEFAULT={[YESIY]}
{ [NO I N] }

Subparameter Definition

Defaults

YES

NO

Indicates that this OUTPUT JCL statement can be implicitly referenced by sysout DD
statements. This subparameter can also be coded as Y.

Indicates that this OUTPUT JCL statement cannot be implicitly referenced by sysout DD
statements. This subparameter can also be coded as N.

If you do not code DEFAULT = YES, the default is NO. In order to take effect, an OUTPUT
JCL statement without DEFAULT = YES must be explicitly referenced in an OUTPUT
parameter on a sysout DD statement.

Location in the J CL

• A step-level OUTPUT JCL statement appears within a step, that is, anywhere after the first
EXEC statement in a job.

• A job-level OUTPUT JCL statement appears after the JOB statement and before the first
EXEC statement.

• You can place more than one job- or step-level default OUTPUT JCL statement in a job or
step.

• You must place an OUTPUT JCL statement in the input stream before any sysout DD
statement that explicitly or implicitly refers to it.

14-20 MVS JCL

OUTPUT JCL: DEFAULT

ces to Default OUTPUT JCL Statements

• A sysout DD statement makes an explicit reference in an OUTPUT parameter that specifies
the name of an OUTPUT JCL statement.

• A sysout DD statement makes an implicit reference when it does not contain an OUTPUT
parameter, and the job or step contains one or more default OUTPUT JCL statements.

• A sysout DD statement implicitly references all step-level default OUTPUT JCL statements
in the same step.

• A sysout DD statement implicitly references all job-level default OUTPUT JCL statements
when the step containing the DD statement does not contain any step-level default
OUTPUT JCL statements.

• A sysout DD statement can explicitly reference a default OUTPUT JCL statement.

e of the DEFAULT Parameter

//EXMP2
//OUTDAL
//OUTPOK
//STEPl
//OUTHERE
//SYSIN

/*
//WKRPT
//RPTl
//RPT2
//STEP2
//OUTHQ
//WKDATA
//MONTH
//SUM
//FULRPT

JOB
OUTPUT
OUTPUT
EXEC
OUTPUT
DD

DD
DD
DD
EXEC
OUTPUT
DD
DD
DD
DD

ACCT555,MAEBIRD,MSGCLASS=B
DEFAULT=YES,DEST=DALLAS
DEST=POK
PGM=REPORT
CLASS=D
*

UNIT=VIO,DISP=(,PASS)
SYSOUT=(,),OUTPUT=*.OUTHERE
SYSOUT=A
PGM=SUMMARY
DEFAULT=YES,DEST=HQ
UNIT=VIO,DISP=(OLD,DELETE),DSNAME=*.STEP1.WKRPT
SYSOUT=(,),OUTPUT=*.STEP1.OUTHERE
SYSOUT=A
SYSOUT=A,OUTPUT=(*.OUTDAL,*.OUTPOK)

In this example, the JOB named EXMP2 contains two job-level OUTPUT JCL statements:
OUTDAL and OUTPOK. OUTDAL is a default OUTPUT JCL statement because it contains
DEFAULT = YES; OUTDAL can be implicitly referenced by a sysout DD statement.
OUTPOK must be explicitly referenced in a sysout DD OUTPUT parameter for its processing
options to be used. The purpose of both of these OUTPUT JCL statements is to specify a
destination for an output data set.

STEPI contains a step-level OUTPUT JCL statement: OUTHERE. The purpose of this
statement is to specify that JES process the data set locally in output class D. OUTHERE can
be used only if it is explicitly referenced.

STEP2 contains a step-level default OUTPUT JCL statement: OUTHQ. The purpose of this
statement is to specify a destination for an output data set. OUTHQ can be implicitly
referenced.

Chapter 14. Coding the OUTPUT JCL Statement 14-21

OUTPUT

OUTPUT JCL: DEFAULT

The references in this job are as follows:

• In STEPI and STEP2, sysout DD statements RPTI and MONTH explicitly reference
OUTPUT JCL statement OUTHERE. These two output data sets are printed locally in
the same output class.

Note: You can explicitly reference an OUTPUT JCL statement in a preceding job step.

• In STEP1, DD statement RPT2 implicitly references OUTPUT JCL statement OUTDAL.
This implicit reference occurs because all of the following are true:

1. DD statement RPT2 contains a SYSOUT parameter but does not contain an OUTPUT
parameter. Thus, this DD statement is making an implicit reference.

2. STEPI does not contain a default OUTPUT JCL statement, so the implicit reference
must be to job-level default OUTPUT JCL statenrents.

3. OUTDAL is the only job-level default OUTPUT JCL statement.

• In STEP2, DD statement SUM implicitly references OUTPUT JCL OUTHQ because all of
the following are true:

1. DD statement SUM contains a SYSOUT parameter but does not contain an OUTPUT
parameter. Thus, this DD statement is making an implicit reference.

2. STEP2 contains a default OUTPUT JCL statement: OUTHQ. Therefore, the implicit
reference is to OUTHQ and cannot be to any job-level default OUTPUT JCL
statements.

• In STEP2, DD statement FULRPT explicitly references OUTPUT JCL statements
OUTDAL and OUTPOK.

14-22 MVS JCL

OUTPUT JCL: DEST

DEST Parameter

Parameter Type: Keyword, optional

Purpose: Use the DEST parameter to specify a destination for the system output data set. The
DEST parameter can send a system data set to a remote or local terminai, a node, a node and
remote work station, a local device or group of devices, or a node and userid.

References: For more information on theDEST parameter, see "Controlling Output
Destination in a JES2 Network" on page 3-7 and "Controlling Output Destination Using
JES3" on page 3-12.

Syntax:

DEST=destination

The destination subparameter for JES2 is one of the following:

LOCAL
name
Nnnnn
NnnRmmmm
NnnnRrnrnrn
NnnnnRmm
nodename.userid
Rnnnn
RMnnnn
RMTnnnn
Unnn

The destination subparameter for JES3 is one of the following:

device-name
group-name
LOCAL
nodename
nodename.remote
(type)

Subparameter Definition for JES2 Systems

LOCAL
Indicates any local device.

name
Specifies a local or remote device by a symbolic name defined by the installation during
JES2 initialization. The name is 1 through 8 alphanumeric or national characters.

Nnnnn
Specifies a node. nnnn is 1 through 4 decimal numbers from 1 through 1000.

Chapter 14. Coding the OUTPUT JCL Statement 14-23

OUTPUT JCL: DEST

NnnRmmmm
NnnnRmmm
NnnnnRmm

Specifies a node and a remote work station connected to the node. The node number,
indicated in the format by n, is 1 through 4 decimal numbers from 1 through 1000. The
remote work station number, indicated in the format by m, is 1 through 4 decimal
numbers from 1 through 4000. Do not code leading zeros in n or m. The maximum
number of digits for nand m combined cannot exceed six.

Note: RO is equivalent to LOCAL specified at node Nn.

nodename.userid
Identifies the nodename and userid of the destination node. Use this parameter to route
information between JES2 nodes and non-JES2 nodes. The nodename is 1 through 8
alphanumeric characters. The userid is 1 through 8 alphanumeric characters, except R,
RM, RMT, comma, right parenthesis, or blank. Enclose the userid in apostrophes when
it contains special characters or begins with a number.

Note: If a data set is queued for transmission and an operator changes its destination,
the userid portion of the original routing is lost.

Rnnnn
RMnnnn
RMTnnnn

Unnn

Specifies a remote terminal. nnnn is 1 through 4 decimal numbers from 1 through 4000.

Note: RO is equivalent to LOCAL.

Specifies a local terminal with special routing. nnn is 1 through 3 decimal numbers from
1 through 255.

Subparameter Definition for JES3 Systems

device-name
Specifies a local device by a symbolic name defined by the installation during JES3
initialization. device-name is 1 through 8 alphanumeric or national characters.

group-name
Specifies a group of local devices, an individual remote station, or a group of remote
stations by a symbolic name defined by the installation during JES3 initialization.
group-name is 1 through 8 alphanumeric or national characters.

LOCAL

14-24 MVS JCL

Indicates any local device that is attached to the global processor and that does not
belong to a group.

Note: When you code DEST = LOCAL, your installation must have at least one local
device that is not assigned to a device group.

Defaults

Overrides

OUTPUT JCL: DEST

nodename
Specifies a node by a symbolic name defined by the installation during JES3 initialization.
nodename is I through 8 alphanumeric or national characters. If the nodename you
specify is the same as the node you are working on, JES3 treats the output as though you
specified LOCAL.

nodename.remote

(type)

Specifies a node and either a remote work station or VM userid at that'node, as follows:

nodename
A symbolic name defined by the installation during JES3 initialization. The
nodename is I to 8 alphanumeric or national characters.

remote
A name for a remote work station. The name is I through 8 alphanumeric or
national characters and must be defined at the node. Enclose it in apostrophes
when it contains special characters or begins with a number.

Specifies a device classification. type is in the form (gggssss), where ggg is the general
device classification and ssss is the specific device classification; type must be enclosed in
parentheses. The type must be defined by the installation during JES3 initialization. For
example, type for a 3800 is (PRT3800).

If you do not code a DEST parameter, JES directs the sysout data set to the default destination
for the input device from which the job was submitted.

If a specified destination is invalid, the job fails.

A DEST parameter on the sysout DD statement overrides the OUTPUT JCL DEST parameter.

Examples of the DEST Parameter

//REMOTI OUTPUT DEST=R444

In this example, JES2 sends the output data set to remote terminal 444.

//REMOT2 OUTPUT DEST=STAT444

In this example, JES sends the output data set to an individual remote station named by the
installation ST AT444.

//REMOT3 OUTPUT DEST=KOKVMBB8.DP58HHHD

In this example, JES sends the output data set to VM userid DP58HHHD at node
KOKVMBB8.

Chapter 14. Coding the OUTPUT JCL Statement 14-25

OUTPUT JCL:FCB-

FeB Parameter

Parameter Type: Keyword, optional

Purpose: Use the FCB parameter to specify:

• The forms control buffer (FCB) image JES is to use to guide printing of the system output
data set by a 3211 Printer, 3203 Printer Model 5, 3800 Printing Subsystem, or 4248 Prirter,
or by a printer supported by systems network architecture (SNA) remote job entry (RTE).

• The carriage control tape JES is to use to control printing of the output data set by a 1403
Printer or by a printer supported by SNA RJE.

• The data-protection image JES is to use to control output by a 3525 Card Punch.

The FCB image specifies how many lines are to be printed per inch and the length of the form.
JES loads the image into the printer's forms control buffer. The FCB image is stored in
SYSl.IMAGELIB. IBM provides three standard FCB images:

• STD1, which specifies 6 lines per inch on an 8.5-inch-Iong form.
• STD2, which specifies 6 lines per inch on an 11-inch-Iong form.
• STD3, which in a JES3 system specifies 8 lines per inch for a dump.

References: For more information on the FCB parameter, see "Requesting Forms Control" on
page 7-60. For more information on the forms control buffer, see SPL: Data Management,
Programming Support for the IBM 3505 Card Reader and IBM 3525 Card Punch, or IBM 3800
Printing Subsystem Programmer's Guide.

Syntax:

FCB={fcb-name}
{STD }

• Code the fcb-name as STD 1 or STD2 only to request the IBM -supplied images.
• Code the fcb-name as STD3 only for a high-density dump in a JES3 system.

Subparameter Definition

feb-name

14-26 MVS JCL

Identifies the FCB image. The name is 1 to 4 alphanumeric or national characters and is
the last characters of a SYS1.IMAGELIB member name:

• FCB2xxxx member, for a 3211, a 3203 model 5, or a printer supported by SNA.
• FCB3xxxx member, for a 3800.
• FCB4xxxx member, for a 4248.

Defaults

Overrides

OUTPUT JCL: FCB

STD
Indicates the standard FCB. JES3 uses the standard FCB specified at JES3 initialization.

Note: STD is supported only on JES3 systems.

If you do not code the FCB parameter, the system checks the FCB image in the printer's forms
control buffer; if it is a default image, as indicated by its first byte, JES uses it. If it is not a
default image, JES loads the FCB image that is the installation default specified at JES
initialization.

An FCB parameter on the sysout DD statement overrides the OUTPUT JCL FCB parameter.

Relationship to Other Parameters

The FCB parameter is mutually exclusive with the FRID subparameter of the DD statement
DCB parameter.

Requesting a High-Density Dump in a JES3 System

You can request a high-density dump on the 3800 in a JES3 system through two parameters on
the DD statement for the dump data set or on an OUTPUT JCL statement referenced by the
dump DD statement:

• FCB = STD3. This parameter produces dump output at 8 lines per inch.

• CHARS = DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same statement or
one on each statement.

Example of the FeB Parameter

//OUTDSl OUTPUT FCB=AA33

In this example, JES will print the output data set using the FCB image named AA33.

Chapter 14. Coding the OUTPUT JCL Statemeni: 14-27

OUTPUT JCL:·FLASH

FLASH Parameter

Parameter Type: Keyword, optional

. Purpose: Use the FLASH parameter to identify the forms overlay to be used in printing the
output data set on a 3800 Printing Subsystem and, optionally, to specify the number of copies
on which the forms overlay is to be printed.

Note: FLASH is va!id only for a data set printed on a 3800.

References: For more information on the FLASH parameter, see "Requesting Forms Overlay"
on page 7-62. For information on forms overlays, see the Forms Design Reference Guide for
the IBM 3800 Printing Subsystem.

Syntax:

{overlay-name }
FLASH={(overlay-name[,count])}

{ (, count) }
{NONE }
{STD }

The count subparameter is optional. If you omit it, you can omit the parentheses. However
if you omit it, you must not code it as a null; for example, FLASH = (ABCD,) is invalid.

Subparameter Definition

overlay-name

count

Identifies the forms overlay frame that the operator is to insert into the printer before
printing begins. The name is 1 to 4 alphanumeric or national characters.

Specifies the number, 0 to 255, of copies that JES is to flash with the overlay, beginning
with the first copy printed. Code a count of 0 to flash no copies.

NONE

STn

14-28 MVS JCL

Suppresses flashing for this data set.

Indicates the standard forms flash overlay. JES3 uses the standard forms overlay
specified at JES3 initialization.

Note: STD is supported only on JES3 systems.

)efaults

>verrides

OUTPUT JCL:FLASH

If you do not code a FLASH parameter or specify an installation default at JES2 or JES3
initialization, forms are not flashed.

If you specify an overlay-name without specifying a count, all copies are fla'Shed. That is, the
default for count is 255.

A FLASH parameter on the sysout DD statement overrides the OUTPUT JCL FLASH
parameter.

telationship to Other Parameters

If the OUTPUT JCL or the sysout DD statement also contains a COPIES parameter, JES
prints with the forms overlay the number of copies specified in one of the following:

• COPIES = nnn, if the FLASH count is larger than nnn. For example, if COPIES = 10 and
FLASH = (LTHD,12) JES prints 10 copies, all with the forms overlay.

• The sum of the group-values specified in the COPIES parameter, if the FLASH count is
larger than the sum. For example, if COPIES = (,(2,3,4)) and FLASH = (LTHD,12) JES
prints nine copies in groups, all with the forms overlay.

• The count subparameter in the FLASH parameter, if the FLASH count is smaller than nnn
or the sum from the COPIES parameter. For example, if COPIES = 10 and
FLASH = (L THD, 7) JES prints seven copies with the forms overlay and three copies
without.

verification of Forms Overlay Frame

Before printing starts, JES does not verify that the operator inserted the correct forms overlay
frame for flashing.

:»rinting without Flashing

To print without flashing, specify one of the following:

• FLASH = NONE on the DD or OUTPUT JCL statement.

• Omit the FLASH parameter on all of the statements for the data set and on all JES
initialization statements.

• FLASH = (,0) on the OUTPUT JCL statement.

Chapter 14. Coding the OUTPUT JCL Statement 14-29

OUTPUT JCL: FLASH

Example of the FLASH Parameter

//OUTDSl OUTPUT COPIES=16,FLASH=(LTHD,7)

In this example, JES issues a message to the operator requesting that the forms overlay frame
named LTHD be inserted in the printer. Then JES prints the first seven copies of the output
data set with the forms overlay and the last nine without.

14-30 MVS JCL

OUTPUT JCL: FORMDEF

~ORMDEF Parameter

Parameter Type: Keyword, optional

Purpose: Use the FORMDEF parameter to identify a library member that contains statements
to tell the Print Services Facility (PSF) how to print the system output data set on a 3800
Printing Subsystem Model 3. The statements can specify the following:

• Overlay forms to be used during printing.
• Location on the page where overlays are to be placed.
• Suppressions that can be activated for specified page formats.

The data set must be in a member of the library named in the cataloged procedure that was
used to initialize the PSF; this library is SYSl.IMAGELIB.

Note: FORMDEF can be specified only for data sets printed on a 3800 model 3.

References: For information on the FORMDEF statement in the SYSl.IMAGELIB member,
see Print Management Facility User's Guide and Reference, and on SYSl.IMAGELIB, see IBM
3800 Printing Subsystem Models 3 and 8 Programmer's Guide.

Syntax:

FORMDEF=membername

:ubparameter Definition

}verrides

membername
Specifies the name of a SYSI.IMAGELIB member. The name is 1 to 6 alphanumeric or
national characters. The first two characters of the membername are pre-defined by the
system.

The SYSl.IMAGELIB member specified by the OUTPUT JCL FORMDEF parameter can
contain:

• Statements that override the installation's FORMDEF defaults in the PSF cataloged
procedure.

• A FORMDEF statement with a COPYGROUP parameter. The COPYGROUP parameter
overrides any group-value subparameters on the OUTPUT JCL COPIES parameter or the
sysout DD COPIES parameter.

Note: The FORMDEF statement in SYSl.IMAGELIB does not override a sysout DD or
OUTPUT JCL COPIES=nnn parameter.

Chapter 14. Coding the OUTPUT JCL Statement 14-31

OUTPUT JCL:.FORMDEF·;

Example of the FORMDEF Parameter

//PRINT3 OUTPUT FORMDEF=JJPRT

In this example, PSF is to print the output data set on a 3800 model 3 according to the
parameters in the SYSl.IMAGELiB member JJPRT.

14-32 MVS JCL

ourrpUT.JCL: FORMS

IORMS Parameter

Parameter Type: Keyword, optional

Purpose: Use the FORMS parameter to identify the forms on which th~ output data set is to
be printed or punched.

Syntax:

FORMS={form-name}
{STD }

Llbparameter Definition

lefaults

• verrides

form-name

STn

Identifies the print or punch forms. form-name is 1 to 8 alphanumeric or national
characters.

Indicates the standard form. JES3 uses the standard form specified at JES3 initialization.

Note: STD is supported only on JES3 systems.

If you do not code a form-name subparameter, JES uses an installation default specified at
ini tializa ti on .

The form-name subparameter of the SYSOUT parameter on the sysout DD statement overrides
the OUTPUT JCL FORMS parameter. Note that the SYSOUT form-name subparameter can
be only four characters maximum while both the OUTPUT JCL FORMS form-name and the
JES initialization default form names can be eight characters maximum.

~xample of the FORMS Parameter

//OUTDSI OUTPUT FORMS=ACCT4010

In this example, the output data set will be printed on forms named ACCT4010.

Chapter 14. Coding the OUTPUT JCL Statement . 14-33

OUTPUTJCL:GROUPID

GROUPID Parameter

Parameter Type: Keyword, optional, JES2 only

Purpose: Use the GROUPID parameter to specify that this output data set belongs to an
output group. The data sets in an output group are processed together in the same location
and time. Data sets to be grouped should have similar characteristics: the same output class,
destination, process mode, and external writer name.

Note: GROUPID is supported only on JES2 systems.

References: For more information on grouping data sets, see "Grouping Data Sets Using the
OUTPUT JCL Statement" on page 7-49.

Syntax:

GROUPID=output-group

Subparameter Definition

output-group
Specifies the name of an output group. The output-group is 1 to 8 alphanumeric
characters and is selected by the programmer to define an output group for this job. The
name is not installation-defined.

Examples of the GROUPID Parameter

//EXMP5 JOB
//OUTRPT OUTPUT
//STEPl EXEC
//SYSIN DD

/*
//RPTDLY DD
//RPTWK DD

ACCT1984,MAEBIRD,MSGCLASS=A
GROUPID=RPTGP,DEFAULT=YES,DEST=TDC
PGM=RPTWRIT
*

SYSOUT=C
SYSOUT=C

In this example, the DD statements RPTDL Y and RPTWK implicitly reference the default
OUTPUT JCL statement OUTRPT. JES2 creates two output groups:

1. Group RPTGP is created because of the GROUPID parameter in the OUTPUT JCL
statement. It contains the two reports from the sysout DD statements RPTDL Y and
RPTWK and is printed at the destination TDC. The programmer named this group
RPTGP.

2. The other group is named by JES2. It contains the system-managed data set for the job's
messages.

14-34 . MVS JCL

//EXAMP
//JOBOUT
//STEPl
//STEPIOUT
//RPTDDl
//STEP2
//STEP20UT
//RPTDD2

JOB
OUTPUT
EXEC
OUTPUT
DD
EXEC
OUTPUT
DD

OUTPUT JCL: GROUPID

MSGCLASS=A
GROUPID=SUMM,DEST=HQS,CHARS=GTIO
PGM=RWRITE
FORMS=STD,CHARS=GSIO,DEST=LOCAL
SYSOUT=A,OUTPUT=(*.STEPIOUT,*.JOBOUT)
PGM=SWRITE
FORMS=lll,CHARS=GBIO,DEST=LOCAL
SYSOUT=B,OUTPUT=(*.STEP20UT,*.JOBOUT)

This job causes JES2 to produce five sets of output:

1.1.1, containing the system-managed data sets. This set is specified through the JOB
statement MSGCLASS parameter.

SUMM.1.1, containing a copy of the data set defined by DD statement RPTDD1. This set
is specified through the second OUTPUT subparameter: * .JOBOUT. It is for output class
A.

SUMM.2.1, containing a copy of the data set defined by DD statement RPTDD2. This set
is specified through the second OUTPUT subparameter: * .JOBOUT. Because it is for
output class B, it is in a separate subgroup from the SUMM.l.l subgroup.

4.1.1, containing a copy of the data set defined by DD statement RPTDDl. This set is
specified through the first OUTPUT subparameter: *.STEPI0UT.

5.1.1, containing a copy of the data set defined by DD statement RPTDD2. This set is
specified through the first OUTPUT subparameter: *.STEP20UT.

Chapter 14. Coding the OUTPUT JCL Statement 14-35

OUTPUT JCL: INDEX

INDEX Parameter

Parameter Type: Keyword, optional, JES2 only

Purpose: Use the INDEX parameter to set the left margin for output on a 3211 Printer with
the indexing feature. The width of the. print line is.reduced by the INDEX parameter value.

Note: INDEX is supported only on JES2 systems and only for output printed on a 3211 with
the indexing feature. JES2 ignores the INDEX parameter if the printer is not a 3211 with the
indexing feature.

Syntax:

INDEX=nn

Subparameter Definition

Defaults

nn
Specifies how many print positions the left margin on 3211 output is to be indented. nn is
a decimal number from 1 through 31. n= 1 indicates flush-left; n=2 through n=31
indent the print line by n-l positions.

The default is 1, which indicates flush left. Thus, if you do not code an INDEX or LINDEX
parameter, JES2 prints full-width lines.

Relationship to Other Parameters

If you code both INDEX and LINDEX, JES2 ignores the first parameter and processes the last
parameter it encounters. Note that you cannot index both the left and right margins.

Example of the INDEX Parameter

//OUT17 OUTPUT INDEX=6

In this example, because the printed report is to be stapled, extra space is needed on the left.
Assuming the data set is printed on a 3211 with the indexing feature, all lines are indented 5
print positions from the left page margin.

14-36 MVS JCL

OUTPUT JCL: JESDS

iESDS Parameter

Parameter Type: Keyword, optional

Purpose: Use the JESDS parameter to process the job's system data sets according to the
parameters on this OUTPUT JCL statement. The system data sets consist of:

• The job log, which is a record of job-related information for the programmer. Printing of
the job log is controlled by two JOB statement parameters: the MSGLEVEL parameter
controls what is printed and the MSGCLASS parameter controls the system output class.

• The job's hard-copy log, which is a record of all message traffic for the job to and from the
opera tor console.

• System messages for the job.

The class for the system data sets is the class that applies to the OUTPUT JCL statement. See
"CLASS Parameter" on page 14-13.

References: For more information on the job log, see "Job Log" on page 3-14 and System
Commands.

Syntax:

JESDS={ALL}
{JeL}
{LOG}
{MSG}

;ubparameter Definition

ALL
Indicates all of the job's system-managed data sets.

JCL

LOG

MSG

Indicates all JCL statements, cataloged or in-stream procedure statements, and JCL
messages.

Indicates the job's hard-copy log.

Indicates any system messages for this job.

Chapter 14. Coding the OUTPUT JCL Statement 14-37

OUTPUT JCL: JESDS

Overrides

The NOLOG parameter on a JES2 j*JOBPARM statement overrides the OUTPUT JCL
JESDS = ALL parameter.

Location in the JCL

Place an OUTPUT JCL statement containing JESDS before the first EXEC statement of the
job. An OUTPUT JCL statement containing JESDS placed after an EXEC statement is a JCL
error.

You can place more than one OUTPUT JCL statement containing JESDS before the first
EXEC statement. JES creates a copy of the job~s system data sets for each.

Destination for the System Data Sets

If you want the job's system data sets processed at a particular destination, code a DEST
parameter on the OUTPUT JCL statement containing JESDS. Otherwise, JES routes the
system data sets to a local device.

Example of the JESDS Parameter

//EXMP
//OUTl
//OUT2

JOB
OUTPUT
OUTPUT

MSGCLASS=A
JESDS=ALL
JESDS=ALL,DEST=AUSTIN

In this example, JES produces two copies of the system data sets: one copy for OUTPUT JCL
statement OUTl and one copy for OUTPUT JCL statement OUT2. The copy for statement
OUT2 is sent to AUSTIN.

14-38 MVS JCL

OUTPUT JCL: LINDEX

INDEX Parameter

Parameter Type: Keyword, optional, JES2 only

Purpose: Use the LINDEX parameter to set the right margin for output on a 3211 Printer
with the indexing feature. The width of the print line is reduced by the LINDEX parameter
value.

Note: LINDEX is supported only on JES2 systems and only for output printed on a 3211 with
the indexing feature. JES2 ignores the LINDEX parameter if the printer is not a 3211 with the
indexing feature.

Syntax:

LINDEX=nn

lIbparameter Definition

'efaults

nn
Specifies how many print positions the right margin on 3211 output is to be moved in
from the full page width. nn is a decimal number from 1 through 31. n = 1 indicates
flush-right; n = 2 through n = 31 move the right margin over by n-l positions.

The default is 1, which indicates flush right. Thus, if you do not code an INDEX or LINDEX
parameter, JES2 prints full-width lines .

. elationship to Other Parameters

If you code both INDEX and LINDEX, JES2 ignores the first parameter and processes the last
parameter it encounters. Note that you cannot index both the left and right margins.

fxample of the LINDEX Parameter

//OUT18 OUTPUT LINDEX=21

In this example, the author of the report wanted extra space on the right side of the paper for
notes. Assuming the data set is printed on a 3211 with the indexing feature, all lines are ended
20 print positions from the right page margin.

Chapter 14. Coding the OUTPUT JCL Statement 14-39

OUTPUT JCL:. LINECT

LINECT Parameter

Parameter Type: Keyword, optional, JES2 only

Purpose: Use the LINECT parameter to specify t1:~e maximum number of lines JES2 is to print
on each output page.

Note: LINECT is supported only on JES2 systems.

Syntax:

LINECT=nnn

Subparameter Definition

Defaults

DDD

Specifies the maximum number of lines JES2 is to print on each page. nnn is a number
from 0 through 255.

Specify LINECT = 0 to keep JES2 from starting a new page when the number of lines
exceeds the JES2 initialization parameter.

If you do not code the LINECT parameter, JES2 uses an installation default specified at
initialization.

Example of the LINECT Parameter

//PRNTDS OUTPUT LINECT=45

In this example, JES2 will start a new page after every 45 lines.

14-40 MVS JCL

OUTPUT JCL: MODIFY

10DIFY Parameter

Parameter Type: Keyword, optional

Purpose: Use the MODIFY parameter to specify a copy-modification module that tells JES
how to print the system output data set on a 3800 Printing Subsystem. The module can specify
the following:

• Legends.
• Column headings.
• Where and on which copies the data is to be printed.

The module is defined and stored in SYSl.IMAGELIB using the IEBIMAGE utility program.

Note: MODIFY is supported only for the 3800 Printing Subsystem Model I and 2 and the
3800 Printing Subsystem Model 3 in compatibility mode. For the 3800 model 3, use the
FORMDEF and PAGEDEF parameters to obtain the same functions.

References: For more information on the MODIFY parameter, see "Requesting Copy
Modification" on page 7-58, and on the copy modification module and the IEBIMAGE utility
program, see the IBM 3800 Printing Subsystem Programmer's Guide.

Syntax:

MODIFY={module-name }
{([module-name] [,trc])}

• You can omit the module-name, thereby obtaining the initialization default. For
example, MODIFY = (,2).

• The trc subparameter is optional. If you omit it, you can omit the parentheses.
However, if you omit it, you must not code it as a null; for example,
MODIFY = (TABI,) is invalid.

iubparameter Definition

module-name
Identifies a copy-modification module in SYSl.IMAGELIB. The module-name is 1
through 4 alphanumeric or national characters.

Chapter 14. Coding the OUTPUT JCL Statement 14-41

OUTPUT Jet: MODIFY

Defaults

Overrides

trc
Identifies which table-name in the CHARS parameter is to be used. This table reference
character is 0 for the first table-name specified, 1 for the second, 2 for the third, or 3 for
the fourth. The CHARS parameter used is on the following, in overrtde order:

I. The'DD statement.

2. This OUTPUT JCL statement.

3. A statement in the SYSI.IMAGELIB member specified on the OUTPUT JCL
PAGEDEF parameter.

4. A statement in the SYS1.IMAGELIB member obtained by default.

5. A JES3 initialization statement.

If the trc value is greater than the number of table-names in the CHARS parameter, JES2
uses the first table named in the CHARS parameter and JES3 uses the default character
arrangement table.

If you do not code module-name in the MODIFY parameter, JES3 uses an installation default
specified at initialization. JES2 provides no installation default at initialization.

If you do not specify tre, the default is o.

A MODIFY parameter on the sysout DD statement overrides the OUTPUT JCL MODIFY
parameter.

Relationship to Other Parameters

The second character of each logical record can be a TRC code, so that each record can be
printed in a different font. This way of specifying fonts is indicated by the OUTPUT JCL TRC
parameter.

Example of the MODIFY Parameter

//OUTDSIOUTPUT CHARS=(GT12,GB12,GI12),MODIFY=(MODA,2)

In this example, JES loads the MODA module in SYSI.IMAGELIB into the 3800 and uses the
GIl2, Gothic Italic 12-pitch font, which is the third one specified in the CHARS parameter.

14-42<' MVS JCL

OUTPU>T J,eL: PAGEDEF

»AGEDEF Parameter

Parameter Type: Keyword, optional

Purpose: Use the PAGEDEF parameter to identify a library member that contains statements
to tell the Print Services Facility (PSF) how to print the output data set on a 3800 Printing
Subsystem Model 3. The statements can specify the following:

• Logical page length and width.
• Fonts.
• Page segments.
• Multiple page types or formats.
• Lines within a page; for example:

Line origin.
- Carriage controls.
- Spacing.

• Multiple logical pages on a physical page.

The member must be in the library named in the cataloged procedure that was used to initialize
the PSF; this library is SYS1. IMAGELIB.

Note: P AGEDEF can be specified only for data sets printed on a 3800 model 3.

References: For information on the PAGEDEF statement in the SYSl.IMAGELIB member,
see Print Management Facility User's Guide and Reference, and on SYSl.IMAGELIB, see IBM
3800 Printing Subsystem Models 3 and 8 Programmer's Guide.

Syntax:

PAGEDEF=membername

Subparameter Definition

membername
Specifies the name of the SYSl.IMAGELIB member. membername is 1 to 6
alphanumeric or national characters; the first two characters are pre-defined by the
system.

Chapter 14. Coding the OUTPUT JCL Statement 14-43

OUTPUT JCL: PAGEDEF

Overrides

The statements in the SYS1.IMAGELIB member specified by the OUTPUT JCL PAGEDEF
parameter override the installation's PAGEOEF defaults in the'PSF cataloged procedure.

The PSF uses the following parameters, in override ()rder, to selectthe font list: .

1. Font list in the SYS1.IMAGELIB member specified by an OUTPUT JCL P AGEOEF
param~ter.

2. DO CHARS parameter.

3. OUTPUT JCL CHARS parameter.

4. DO UCS parameter.

5. OUTPUT JCL UCS parameter.

6. JES installation default for the device.

7. Font list on the PAGEOEF parameter in the PSF cataloged procedure.

Example of the PAGEDEF Parameter

//OUTDSl OUTPUT PRMODE=PAGE,PAGEDEF=SSPGE

In this example, PSF is to print the output data set on a 3800 model 3 Qperating in page mode.
The printing is to be done according to the parameters in the SYSl.IMAGELIB member
SSPGE.

14-44· ·MVS JCL

OUTP,UT· JCL: PIMSG

~IMSG Parameter

Parameter Type: Keyword, optional

Purpose: Use the PIMSG parameter to indicate that messages from a functional subsystem
should or should not be printed in the output listing after the output data set.

The functional subsystem, Print Services Facility (PSF), accumulates messages in the PSF
address space for errors that occur while processing line-mode data when PAGEDEF is
specified and while processing page-mode data. The system prints these messages at the end of
the output data set, unless you code PIMSG = NO.

Note: PIMSG can be specified only for data sets printed on a 3800 Printing Subsystem Models
3 and 8.

Syntax:

PIMSG= { [YES I y] }
{ [NO I N] }

,ubparameter Definition

)efaults

YES

NO

Requests that the system print the messages generated by a functional subsystem. This
subparameter can also be coded as Y.

Requests that the system not print the messages generated by a functional subsystem.
This subparameter can also be coded as N.

If you do not code the PIMSG parameter and the output data set is printed by the PSF on a
3800 model 3, the default is YES.

8:xample of the PIMSG Parameter

//DS17 OUTPUT PRMODE=PAGE,PAGEDEF=H7MEM2,PIMSG=NO·

In this example, PSF prints the output data set on a 3800 model 3 operating in page mode.
PSF processes the data set according to the statements in SYSl.IMAGELIB member
H7MEM2. The output does not contain PSF messages.

Chapter 14. Coding the OUTPUT JCL Statement 14-45

PRMODE Parameter

Parameter Type: . Keyword, optional

Purpose: Use the PRMODE parameter to identify the process mode required to print this
system output data set. JES schedules the data set to a printer that can operate in the specified
mode.

In a JES2 system, you can specify any of the modes that the installation defined. during JES2
initialization. A JES2 installation can specify up to four modes for each device.

In a JES3 system, you can specify only LINE or PAGE.

Syntax:

PRMODE={LINE }
{PAGE }
{process-mode}

Subparameter Definition

Defaults

LINE
Indicates that the data set is to be scheduled to a line-mode printer.

PAGE
Indicates that the data set is to be scheduled to a page-mode printer.

process-mode
Specifies the required process mode. The process-mode is 1 to 8 alphanumeric characters
and must have been specified during JES2 initialization.

For an NJE-transmitted data set, use PRMODE to request specific processing without
having to obtain output classes for the node that processes the data set.

Note: The process-mode subparameter is supported only on JES2 systems.

If you do not code the PRMODE parameter, JES schedules output processing as follows:

• If the system output data set does not contain page-mode formatting controls, to a printer
with a process mode of line.

• If the system output data set contains page-mode formatting controls,

In a JES3 system, to a 3800 Printing Subsystem Model 3 running in page mode.

In a JES2 system, to any printer with a process mode of page.

14-46MVS JCL

OUTPUT JCL: PRMODE

)rioting a Line-Mode Data Set Using PSF

To print a line-mode data set using the Print Services Facility (PSF) and the enhanced
capabilities of the 3800 model 3, code PRMODE = PAGE. The PSF formats this line-mode
data set using the installation's default values for PAGEDEF and FORMDEF defined in the
PSF cataloged procedure; if these defaults are unsatisfactory, code the ·PAGEDEF and
FORMDEF parameters on the OUTPUT JCL statement.

~xample of the PRMODE Parameter

//OS18 OUTPUT PRMOOE=LINE

In this example, JES schedules the output data set to a printer with a process mode of line.

Chapter 14. Coding the OUTPUT JCL Statement 14-47

OUTPUT JCL: PRT'Y

PRTY Parameter

Parameter Type: Keyword, optional

Purpose: Use the PRTY parameter to specify the priority at which the output data set enters
the output queue. A data set with a higher priority is printed sooner.

Syntax:

PRTY=nnn

Subparameter Definition

Defaults

Overrides

nnn
Specifies the initial priority. nnn is a decimal number from 0 through 255; 0 is the lowest
priority while 255 is the highest.

If you do not code the PRTY parameter, JES3 uses an installation default specified at
initialization. JES2 uses a priority that is calculated for all output.

In JES2 systems, the installation can specify at JES2 initialization that JES2 is to ignore the
OUTPUT JCL PRTY parameter.

Example of the PRTY Parameter

//PRESRPT OUTPUT PRTY=200,FORMS=TOPSEC

In this example, JES prints one copy of the president's report, PRESRPT, on forms named
TOPSEC. Because a priority of 200 is specified, the report is probably printed immediately
after entering the output queue.

14-48 MVS JCL

OUTPUT JCL: THRESHLD

~HRESHLD Parameter

Parameter Type: Keyword, optional, JES3 only

Purpose: Use the THRESHLD parameter to specify the maximum size for a sysout data set.
JES3 calculates the sysout data set size as the number of records multiplied by the number of
copies requested. When this size exceeds the THRESHLD value, JES3 creates a new unit of
work, on a data set boundary, and queues it for printing. Consequently, copies of the sysout
data set may be printed simultaneously by different printers.

Use the THRESHLD parameter for jobs that generate many large data sets or many copies of
one large data set.

Note: THRESHLD is supported only on JES3 systems.

Syntax:

THRESHLD=limit

;ubparameter Definition

Defaults

limit
Specifies the maximum number of records for a single sysout data set. limit is a decimal
number from 1 through 99999999.

If you do not code the THRESHLD parameter, JES3 uses an installation default specified at
initialization.

Chapter 14. Coding the OUTPUT JCL Statement 14-49

OUTPUTJCL:THRESHLD

Example of the THRESHLD Parameter

//STEPA EXEC PGM=RPTWRT
//SYSDS3 OUTPUT DEFAULT=YES,THRESHLD=lOOOO
//RPTl DD SYSOUT=A,COPIES=lO
//RPT2 DD SYSOUT=A,COPIES=2
//RPT3 DD SYSOUT=A,COPIES=5

In this example, the report data sets, RPT1, RPT2, and RPT3, are processed in sysout class A.
All three DD statements implicitly reference the step-level default OUTPUT JCL statement
SYSDS3; therefore, the THRESHLD value specified in the OUTPUT JCL statement applies to
the three reports combined. JES3 is to print the following:

DATA RECORDS TOTAL
COPIES SET IN DATA SET RECORDS

10 RPTI 1000 10000
2 RPT2 2000 4000
5 RPT3 500 2500

Total 16500

Because the total exceeds the THRESHLD limit, JES3 divides the sysout data sets into two
units of work. RPTI is printed as one unit, and the other two data sets are printed together as
another unit. If the THRESHLD limit had been 20000, all three data sets would have been
printed as one unit of work.

14-50MVS JCL

OUTPUT JCL: TRC

fRC Parameter

Parameter Type: Keyword, optional

Purpose: Use the TRC parameter to specify whether the output data s~t contains table
reference character (TRC) codes or not. If so, a TRC code is the second character in each
logical record; it immediately follows a carriage control character. The TRC code identifies
which table-name in the CHARS parameter is to be used to print the record.

Note: TRC is supported only on JES3 systems. However, in a JES2 system, TRC can be
specified for a data set processed in a functional subsystem address space (FSA); JES2 passes
the TRC value to the FSA. Thus, TRC can be specified for a data set printed on a 3800
Printing Subsystem Model 3 by the Print Services Facility (PSF).

Syntax:

TRC=([YES I Y]}
([NOIN]}

Subparameter Definition

Defaults

YES

NO

Indicates that the data set contains TRC codes. This subparameter can also be coded as
Y.

Indicates that the data set does not contain TRC codes. This subparameter can also be
coded as N.

If you do not code the TRC parameter, the default is NO.

Relationship to Other Parameters

A table reference character for the entire data set can be specified in the OUTPUT JCL
MODIFY parameter.

Chapter 14. Coding thf OUTPUT JCL Statement 14-51

OUTPUT JCL: TRC

Example of the TRe Parameter

//WRTR
//DS23
//STEPl
//DAILY

JOB ACN077,MAEBIRD,MSGCLASS=B
OUTPUT DEFAULT=YES,FORMS=STD,CONTROL=PROGRAM,TRC=YES
EXEC PGM=DLYRPT
DD SYSOUT=A,CHARS=(GT12,GB12,GI12)

In this example, sysout DD statement DAILY implicitly references the default job-level
OUTPUT JCL statement DS23. This OUTPUT JCL statement directs JES3 to print the daily
report on standard forms. The sysout data set defined by DD statement DAIL Y contains
carriage control characters in the first character of each logical record and a TRC code in the
second character. The TRC characters in the records are 0 to use· the font GT12; I to use
GB12; and 2 to use GIl2.

14-52 ;MVS JCL

OUTPUT JCL:' ues

JCS Parameter

Parameter Type: Keyword, optional

Purpose: Use the UCS parameter to identify:

• The universal character set (UeS) image JES is to use in printing the system output data
set.

• A print train (print chain or print band) JES is to use in printing the system output data set
on an impact printer.

• A character-arrangement table for a data set printed on a 3800 Printing Subsystem in a
JES2 system. In this use, the UCS parameter acts like a CHARS parameter.

The ues image specifies the special character set to be used. JES loads the image into the
printer's buffer. The ues image is stored in SYSl.IMAGELIB. IBM provides the special
character set codes in Figure 14-2.

References: For more information on the UCS parameter, see "Requesting a Special Character
Set Using the UCS Feature" on page 7-59, and SPL: Data Management.

Syntax:

UCS=character-set-code

~ubparameter Definition

character-set-code
Identifies a universal character set. The character-set-code is 1 to 4 alphanumeric
characters. See Figure 14-2 for IBM standard special character set codes.

Chapter 14. Coding the OUTPUT JCL Statement 14-53

OUTPUT JCL: UQS

Defaults

Overrides

1403 3203 3211 CharacteriStiCs
ModelS

AN AN All Arrangement A, standard EBCDIC character set, 48 characters
HN HN Hll Arrangement H, EBCDIC character set for FORTRAN and COBOL, 48 characters

Gll ASCII character set
PCAN PCAN Preferred alphanumeric character set, arrangement A
PCHN PCHN Preferred alphanumeric character set, arrangement H
PN PN Pll PL/I alphanumeric character set
QN QN PL/I preferred alphanumeric character set for scientific applications
QNC QNC PL/I preferred alphanumeric character set for commercial applications
RN RN Preferred character set for commercial applications of FORTRAN and COBOL
SN SN Preferred character set for text printing
TN TN Tll Character set for text printing, 120 characters
XN High-speed alphanumeric character set for 1403, Model 2
YN High-speed preferred alphanumeric character set for 1403, Model Nl

Note: Where three values exist (for the 1403,3211, and 3203 Model 5 printers), code anyone of them. JES selects
the set corresponding to the device on which the data set is printed.

Not all of these character sets may be available at your installation. Also, an installation can design character sets
to meet special needs and assign a unique code to them. Follow installation procedures for using character sets.

Figure 14-2. Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers

If you do not code the UCS parameter, the system checks the UCS image in the printer's
buffer; if it is a default image, as indicated by its first byte, lES uses it. If it is not a default
image, lES loads the UCS image that is the installation default specified at lES initialization.

On an impact printer, if the chain or train does not contain a valid character set, lES asks the
operator to specify a character set and to mount the corresponding chain or train.

For printing on a printer with the UCS feature, a UCS parameter on the sysout DD statement
overrides the OUTPUT lCL UCS parameter. For printing on a 3800, a CHARS parameter on
the sysout DD statement or the OUTPUT lCL statement overrides all UCS parameters.

For a data set scheduled to the Print Services Facility (PSF), the PSF uses the following
parameters, in override order, to select the font list:

1. Font list in the SYS1.IMAGELIB member specified by an OUTPUT lCL PAGEDEF
parameter.

2. DD CHARS parameter.

3. OUTPUT lCL CHARS parameter.

4. DD UCS parameter.

5. OUTPUT JCL UCS parameter.

6. lES installation default for the device.

14-54 MVSJCL

OUTPUT JCL: UCS

7. Font list on the PAGEDEF parameter in the PSF cataloged procedure.

See "PAGEDEF Parameter" on page 14-43 for more information.

Jsing Special Characters Sets

To use a special character set, SYS1.IMAGELIB must contain an image of the character set,
and the chain or train for the character set must be available. IBM provides standard special
character sets, and the installation may provide user-designed special character sets.

Gxample of the U CS Parameter

//PRTDS9 OUTPUT UCS=All

In this example, JES uses standard EBCDIC character set arrangement A, with 48 characters,
to print the output data set on a 3211 printer.

Chapter 14. Coding the OUTPUT JCL Statement 14-55

OUTPUT JCL: WRITER

WRITER Parameter

Parameter Type: Keyword, optional

Purpose: Use the WRITER parameter to name an external writer to process the output data
set rather than JES. An external writer is an IBM- or installation-written program .

. References: For information about external writers, see SPL: Job Management.

Syntax:

WRITER=name

Subparameter Definition

Defaults

Overrides

name
Identifies an external writer. name is 1 to 8 alphanumeric characters.

Two names are reserved for JES: INTRDR for JES2 and STDWTR for JES3. Code
INTRDR to specify that JES2 is to treat this data set as an input job stream. For more
information, see "Specifying the Internal Reader" on page 7-52.

If you do not code the WRITER parameter, the installation's job entry subsystem processes the
output data set.

T.he writer-name subparameter of the SYSOUT parameter on the sysout DD statement
overrides the OUTPUT JCL statement WRITER parameter.

Starting an External Writer

A system command, from the operator or in the input stream, must start an external writer
before the system processes the data set.

14-56MVS JCL

:xample of the WRITER Parameter

IIMYOUT JOB ACCT928,MAEBIRD,MSGCLASS=B
II START XWTR
IIMYDS OUTPUT WRITER=XWTR
IISTEPl EXEC PGM=REPORT
IIRPTl DD SYSOUT=A,OUTPUT=MYDS

OUTPUT JCL: WRITER

In a JES2 system, the second statement is a JCL command statement to start the IBM-supplied
external writer. This writer is invoked by the XWTR cataloged procedure in SYSl.PROCLIB.
The sysout DD statement RPTI explicitly references OUTPUT JCL statement MYDS, which
specifies that the external writer, XWTR, is to process the sysout data set.

II**START XWTR
IIMYOUT JOB ACCT928,MAEBIRD,MSGCLASS=B
IIMYDS OUTPUT WRITER=XWTR
IISTEPl EXEC PGM=REPORT
IIRPTl DD SYSOUT=A,OUTPUT=MYDS

This example is for a JES3 system.

Chapter 14. Coding the OUTPUT JCL Statement 14-57

14-58 MVS JCL

~hapter 15. Coding Special JCL Statements

This chapter details the coding of the special JCL statements. They are:

Command statement
Comment statement
CNTL statement
Delimiter statement
ENDCNTL statement
Null statement
PEND statement
PROC statement

These statements are arranged alphabetically in the following pages.

Special JCL

Chapter 15. Coding Special JCL Statements 15-1

Special JCL: JCL Command Statement

JCL Command Statement

Command

Purpose: Use the JCL command statement to enter an operator command through the input
stream.

Note: The JCL command statement is supported only on JES2 systems. JES3 ignores all JCL
command statements; use JES3 command statements.

The system usually executes an in-stream command as soon as it is read. Therefore, the
command will not be synchronized with"the execution of the job step to which it pertains. To
synchronize a command with the job processing, tell the operator the commands you want and
when they should be issued, and let the operator enter them from the console.

JES2 processes each command according to installation options for the input device from which
the job was read.

References: For more information on commands and for descriptions of their parameters, see
System Commands.

Syntax:

II command [parameters] [comments]

The command statement consists of the characters / / in columns I and 2 and three fields:
operation (command), parameter, and comments.

Do not continue a command statement.

Code the command as follows:

• Precede and follow the command with one or more blanks.

• Code the command or a valid abbreviation for the command. The following operator
commands can be entered through the input stream.

CANCEL
CHNGDUMP
DISPLAY
HOLD
LOG
MODIFY

MONITOR
MOUNT
PAGEADD
RELEASE
REPLY
RESET

SEND
SET
SETDMN
SLIP
START

STOP
STOPMN
UNLOAD
VARY
WRITELOG

15-2 MVS JCL

Special JCL: JCL Command Statement

~ameter Field

Code any required parameters. When more than one parameter is coded, separate them by
commas.

IIlments Field

The comments field follows the parameter field after at least one intervening blank.

~ation in the JCL

A command statement can appear immediately before a JOB statement, an EXEC statement, a
null statement, or another command statement. However, a command statement must not be
placed before the first JOB statement in an input stream.

If a command statement contains errors, it is not executed. If the erroneous statement is
between two jobs in the input stream, the system does not issue a message to indicate that the
command is not executed.

ample of the Command Statement

II DISPLAY TS,LIST

In response to this command statement, the system displays the number and userid of all active
time-sharing users of the system. .

Chapter 15. Coding Special JCL Statements 15-3

Special JCL: Comment Statement

Comment Statement

Purpose: Use the comment statement to enter a comment on the output listing. The comment
statement is used primarily to document a program and its resource requirements.

Syntax:

//*comments

The comment statement consists of the characters //* in columns I, 2, and 3 and one field:
comments.

Code the comments in columns 4 through 80. The comments field does not need to be
preceded or followed by blanks.

Do not continue a comment statement using continuation conventions. Instead, code
additional comment statement •.

Location in the J CL

Place a comment statement anywhere after the JOB statement. You can place a comment
statement between continuations of JCL statements.

Listing of Comments Statements

Use the MSGLEVEL parameter on the JOB statement to request an output listing of all the
JCL statements for your job. On this listing, comment statements have *** in columns I, 2,
and 3.

Example of the Comment Statement

//*THE COMMENT STATEMENT CANNOT BE CONTINUED,
//*BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW A
//*COMMENT STATEMENT WITH MORE COMMENT
//*STATEMENTS.

15-4 MVS JCL

Special JCL: CNTL

'NTL Statement

abel Field

Purpose: Use the CNTL statement to mark the beginning of program control statements in the
input stream. Program control statements specify control information for a subsystem.

The program control statements are ended by an ENDCNTL statement and are called a
CNTL/ENDCNTL group. A DD statement CNTL parameter refers to an earlier CNTL
statement. This reference to a CNTL statement lets the subsystem use the program control
statements in the referenced CNTL/ENDCNTL group in processing the data set defined on the
referencing DD statement.

References: For more information on the CNTL DD parameter, see "CNTL Parameter" on
page 12-23.

The program control statements are documented in the publications for the subsystems. For
example, see IBM 3800 Printing Subsystem Models 3 and 8 Programmer's Guide for information
on program control statements for the Print Services Facility (PSF).

Syntax:

//label CNTL * [comments]

The CNTL statement consists of the characters / / in columns I and 2 and four fields: label,
operation (CNTL), parameter (*), and comments.

Code a label on every CNTL statement, as follows:

• Each label must be unique within the job.
• The label must begin in column 3.
• The label is 1 through 8 alphanumeric or national characters.
• The first character must be alphabetic or national.
• The label must be followed by at least one blank.

arameter Field

The parameter field must contain only an asterisk. The asterisk must be preceded and followed
by at least one blank.

:omments Field

The comments field follows the asterisk after at least one intervening blank.

Chapter 15. Coding Special JCL Statements 15-5

Special JCL: CNTL

Location in the JCL

A CNTL statement can appear in a job step or a cataloged or in-stream procedure.

Program Control Statements

Program control statements supply control information for a subsystem. A subsystem can
require one or more program control statements. The one or more statements must be
immediately preceded by a CNTL statement and immediately followed by an ENDCNTL
statement.

Program control statements have the same format as JCL statements and follow all JCL coding
rules.

Do not code a JCL statement within a program control group.

Program Control Statements in Procedures

You can code symbolic parameters on program control statements in a cataloged or in-stream
procedure.

You can override parameters on program control statements in a procedure. Follow the rules
used for overriding DD statement parameters in a procedure. For more information, see
"Modifying Parameters on a DD Statement" on page 9-6.

Example of the CNTL Statement

//STEPl
//ALPHA
//PRGCNTL
//OMEGA
//AGAR

EXEC PGM=PRINT
CNTL *
PRINTDEV BUFNO=20,PIMSG=YES,DATACK=BLOCK
ENDCNTL
DD UNIT=3800-3,CNTL=*.ALPHA

The PSF subsystem uses the BUFNO, PIMSG, and DATACK options of the PRINTDEV
control statement to print the data set for DD statement AGAR on a 3800 Model 3.

15-6 MVS JCL

Special JCL: Delimiter Statement

~limiter Statement

Purpose: Use the delimiter statement to indicate the end of data placed in the input stream.

Syntax:

/* [comments]
xx [comments]

A delimiter statement consists of the characters /* or the two characters specified in a DD
statement DLM parameter in columns 1 and 2 and one field: comments.

Code the comments in columns 4 through 80. The comments are preceded by at least one
blank.

Do not continue a delimiter statement.

lationship to the DD Statement DLM Parameter

The system recognizes a delimiter other than /* if a DLM parameter is coded on the DD * or
DD DATA statement that defines the in-stream data set.

If the data is preceded by a DD * statement that does not contain a DLM parameter, a
delimiter statement is optional. If the data is preceded by a DD DATA statement, a delimiter
statement is required.

ample of the Delimiter Statement

//JOB54
//STEPA
//DDI

JOB ,'C BROWN',MSGLEVEL=(2,O)
EXEC PGM=SERS
DD *

data

/* END OF DATA FOR DATA SET DDI

Chapter 15. Coding Special JCL Statements 15-7

Special JCL: ENDCNTL

ENDCNTL Statement

Label Field

Purpose: Use the ENDCNTL statement to mark the end of the program control statements
following a CNTL statement.

References: For more information on program control statements, see "CNTL Statement" on
page 15-5.

Syntax:

//[label] ENDCNTL [comments]

The ENDCNTL statement consists of the characters II in columns 1 and 2 and three fields:
label, operation (ENDCNTL), and comments.

Code a label on the ENDCNTL statement, as follows:

• Each label must be unique within the job.
• The label must begin in column 3.
• The label is 1 through 8 alphanumeric or national characters.
• The first character must be alphabetic or national.
• The label must be followed by at least one blank.

Comments Field

The comments field follows the ENDCNTL after at least one intervening blank.

Location in the JCL

The ENDCNTL statement immediately follows the one or more program control statements
following a CNTL statement. Thus, the ENDCNTL statement can appear in a job step or in a
cataloged or in-stream procedure.

Example of the ENDCNTL Statement

//STEPl
//ABLE
//STATEl
//BAKER
//CALLER

15-8 MVS JCL

EXEC PGM=PRINT
CNTL *
PRINTDEV BUFNO=20,PIMSG=YES,DATACK=BLOCK
ENDCNTL
DD UNIT=3800-3,CNTL=*.ABLE

Special JCL: Null Statement

011 Statement

Use the null statement to mark the end of a job.

Note: The null statement is supported only on JES3 systems.

Syntax:

II

• The null statement consists of the characters / / in columns 1 and 2.
• The rest of the statement must be blank.

Ication in the J CL

Place a null statement (1) at the end of a job's control statements and data and (2) at the end of
an input stream.

The system can also recognize the end of a job when it reads the next JOB statement or when
the input stream contains no more records.

A null statement that does not end an input stream should be immediately followed by a JOB
statement. The system ignores statements between a null statement and the next valid JOB
statement.

If a null statement follows a control statement that is being continued, the system treats the null
statement as a blank comment field and assumes that the control statement contains no other
parameters.

~ample of the Null Statement

IIMYJOB JOB
IISTEPl EXEC
IISTEP2 EXEC
IIDDl DD
IIDD2 DD

1*
II

data

, 'c BROWN'
PROC=FIELD
PGM=XTRA
UNIT=3400-5
*

The NULL statement indicates the end of job MYJOB.

Chapter 15. Coding Special JCL Statements 15-9

Special JCL: PEND

PEND Statement

Name Field

Purpose: Use the PEND statement to mark the end of an in-stream procedure.

Syntax:

II[name] PEND [comments]

The PEND statement consists of the characters / / in columns I and 2 and three fields:
name, operation (PEND), and comments.

Do not continue a PEND statement.

A name is optional on the PEND statement. If used, code it as follows:

• Each name must be unique within the job.
• The name must begin in column 3.
• The name is I through 8 alphanumeric or national characters.
• The first character must be alphabetic or national.
• The name must be followed by at least one blank.

If a name is not coded, column 3 must be blank.

Comments Field

The comments field follows PEND after at least one intervening blank.

Location in the J CL

A PEND statement follows the statements of an in-stream procedure. Never place a PEND
statement in a cataloged procedure.

Examples of the PEND Statement

IIPROCENDl PEND THIS STATEMENT IS REQUIRED FOR IN-STREAM PROCEDURES

This PEND statement contains a comment.

II PEND

This PEND statement contains only / / and the operation field with the necessary blanks.

15-10 MVS JCL

Special JCL: PROC

ROC Statement

:me Field

Purpose: The PROC statement must mark the beginning of an in-stream procedure and,
optionally, may mark the beginning of a cataloged procedure. For either procedure, the PROC
statement can assign default values to symbolic parameters, if coded, in the procedure.

Syntax:

II[name] PROC [parameters] [comments]

A PROC statement consists of the characters II in columns I and 2 and four fields: name,
operation (PROC), parameter, and comments.

Multiple Parameters: When more than one parameter is coded, separate parameters by
commas. For example, IIPI PROC PARMI =OLD,PARM2=222001.

Special Characters: When a parameter value contains special characters, enclose the value in
apostrophes. The enclosing apostrophes are not considered part of the value. For example,
IIP2 PROC P ARM3 = '3400-6'.

Code each apostrophe that is part of a value as two consecutive apostrophes. For example,
I/P3 PROC PARM4='O"DAY'.

Continuation onto Another Statement: End each statement with a comma after a complete
parameter. For example:

IIP4 PROC PARM5=OLD,PARM6='SYS1.LINKLIB(P40)',
II PARM7=SYSDA,PARM8=' (CYL,(lO,l),

A name is required on an in-stream PROC statement; it is optional on a PROC statement that
begins a cataloged procedure. Code it as follows:

• Each name must be unique within the job.
• The name must begin in column 3.
• The name is I through 8 alphanumeric or national characters.
• The first character must be alphabetic or national.
• The name must be followed by at least one blank.

If a name is not coded, column 3 must be blank.

rameter Field

The parameters on a PROC statement assign default values to symbolic parameters on
procedure statements. An in-stream PROC statement requires parameters only if the procedure
contains symbolic parameters.

If coded, the parameter field must be preceded and followed by at least one blank.

Chapter 15. Coding Special JCL Statements 15-11

Special JCL: PROC

Comments Field

Overrides

The comments field follows the parameter field, if coded, or PROC, if not, after at least one
intervening blank.

To override a default parameter value on a PROC statement, code the same parameter on the
EXEC statement that calls the procedure.

Using Symbolic Parameters

To assign a value to a symbolic parameter, code:

• The symbolic parameter, an equals sign, and the value.
• Omit the ampersand that precedes the symbolic parameter in the procedure.

For example, if a symbolic parameter on a DD statement is DSNAME = &N, code on the
PROC statement:

liPS PROC N=MYDATA

Note: All symbolic parameters in a procedure must be assigned values when the procedure is
to be executed. Otherwise, the system terminates the step that calls the procedure. To be safe,
assign default values for all symbolic parameters on the PROC statement, even though you
intend the calling EXEC statement to supply values for the symbolic parameters.

If a symbolic parameter is concatenated with other information, for example, &JOBNO.321, the
value assigned to the symbolic parameter cannot exceed a combined total of 120 characters.

Examples of the PROC Statement

IIDEF
IINOTIFY
IIDDl
II
IIDD2
II

PROC
EXEC
DD

DD

STATUS=OLD,LIBRARY=SYSLIB,NUMBER=777777
PGM=ACCUM
DSNAME=MGMT,DISP=(&STATUS,KEEP),UNIT=3400-6,
VOLUME=SER=888888
DSNAME=&LIBRARY,DISP=(OLD,KEEP),UNIT=33S0,
VOLUME=SER=&NUMBER

Three symbolic parameters are defined in this cataloged procedure: &STATUS, &LIBRARY,
and &NUMBER. Values are assigned to the symbolic parameters on the PROC statement.
These values are used when the procedure is called and values are not assigned to the symbolic
parameters on the calling EXEC statement.

IICARDS PROC

This PROC statement can be used to mark the beginning of an in-stream procedure named
CARDS.

15-12 MVS JCL

JES2

Chapter 16. Coding JES2 Control Statements

Code JES2 control statements with JCL statements to control the input and output processing
of jobs. The rules for coding in Chapter 2, "Coding Conventions for JCL, JES2, and JES3
Statements" apply to the JES2 control statements.

Location in the JCL

Place JES2 control statements, except the command and j*PRIORITY statements, after the
JOB statement and its continuations. JES2 ignores JES2 control statements, except the
command and j*PRIORITY statements, that appear before the JOB statement or between
continued JOB statements.

Do not include JES2 control statements in a cataloged or in-stream procedure. JES2 ignores
JES2 control statements in a procedure.

Internal Reader

Use the following control statements when submitting jobs to the internal reader. The use of the
internal reader is described in "Specifying the Internal Reader" on page 7-52, and in SP L:
JES2 Initialization and Tuning and SPL: Job Management.

j*DEL
j*EOF
j*PURGE
j*SCAN

Chapter 16. Coding JES2 Control Statements 16-1

JES2: Command

Command Statement

Purpose: Use the command statement to enter a JES2 operator command through the input
stream, the internal reader, or the system console.

JES2 usually executes an in-stream command as soon as it is read. Therefore, the command
will not be synchronized with the execution of the job step to which it pertains. To synchronize
a command with the job processing, tell the operator the commands you want and when they
should be issued, and let the operator enter them from the console.

Examples in this book illustrate the format for commands entered through the input stream.
Commands entered through an operator console should not have /* in columns 1 and 2.

References: For more information on the command statement and the JES2 verbs and
operands, see JES2 Commands.

Syntax:

/*$command-verb,operand[,operand] ... [N]

The JES2 command statement consists of:

• The characters /* in columns 1 and 2.
• $ or a character chosen by the installation in column 3.
• The command verb beginning in column 4.

• A comma.
• Operands up through column 71.
• N in column 72 if JES2 is not to write the command on the operator console.
• Blanks in columns 73 through 80. JES2 ignores these columns.

Do not continue command statements from one statement to the next, instead code as many
command statements as you need.

Parameter Definition

command-verb
Specifies the operator command that JES2 is to perform. You can enter the following
JES2 commands in the input stream.

operand

$A $E $1 $0
$B $F $L $P
$C $G $M $R
$D $H $N $S

$T
$TRACE
$V
$Z

, Specifies options for the command.

N in column 72
Indicates that JES2 is not to repeat the command on the operator console.

16i.2' MVS Jev

JES2: Command

Location in the JCL

Place command statements before jobs being entered through the input stream. JES2 ignores
any command statements within a job.

If a job contains a JES2 /*XMIT statement, place the command statement:

• Before the /*XMIT statement if you want JES2 to process and display the command at the
input node only.

• After the /*XMIT statement if you want JES2 to process and display the command at the
execution node only.

Examples of the Command Statement

/*$S13-5

This command statement starts initiators three through five. The command is $S and the
operand is I3-5. JES2 executes the command immediately and repeats the command on the
operator console.

/*$TRDR1,H=Y

In response to this command, JES2 places all jobs being read by reader 1 in a hold status. If a
job contains a JES2j*ROUTE XEQ or /*XEQ control statement that specifies an execution
node different from the input· node, JES2 holds the job at the execution node, not the input
node.

Chapter 16. Coding JES2 Control Statements 16-3

JES2: I*JOBPARM

I*JOBPARM Statement

Purpose: Use the j*JOBPARM statement to specify job-related parameters for JES2.

References: For more information on job related processing options, see "Specifying Data Set
Processing Options" on page 7-43.

Syntax:

/*JOBPARM parameter[,parameter] ...

The parameters are:

{BURSTIB}={YIN}
{BYTESIM}=nnnnn
{CARDS I C}=nnnnnnn
{COPIESIN}=nnn
{FORMS IF}={xxxxxxxxl STD}
{LINECTIK}=nnn
{LINESIL}=nnnn
{NOLOGIJ}
{PAGESIG}=nnnnn
{PROCLIBIP}=ddname
{RESTARTIE}={YIN}
{ROOMIR}=xxxx
{SYSAFFIS}={*IANYlcccc} [,IND]
{TIMEIT}=nnnn

The j*JOBPARM statement consists of the characters j* in columns 1 and 2, JOBPARM in
columns 3 through 9, a blank in column 10, and parameters in columns 11 through 71. JES~

ignores columns 72 through 80.

You cannot continue a j*JOBPARM statement, but you can code as many j*JOBPARM
statements as necessary in a given input stream.

You can code any number of the above parameters on a single j*JOBPARM statement.

Parameter Definition

BURST = {YIN}

16-4~ MVS JCL .

Specifies the default burst characteristic of all sysout data sets that JES2 produces for this
job. BURST is valid only when the data set is directed to a 3800 printer with the burst
option installed.

Y
Burst the output listing for this data set.

N
Continuously fold the output listing for this data set.

JES2: I*JOBPARM

BYTES = nnnnn
Specifies the maximum bytes of output the system is to produce for this job. The nnnnn
is a decimal number, in thousands of bytes, from 0 through 99999.

When the job's output exceeds the value you specify in the BYTES parameter, JES2 sends
a message to the operator. The job may be terminated, depending on the installation
options specified at initialization.

CARDS = nnnnnnn
Specifies the estimated number of output cards for this job. The nnnnnnn is a value from
o to 9999999.

COPIES=nnn
Specifies the number of times the spool lines or bytes are to be printed or punched. The
nnn is a decimal number from I through 255. An installation can reduce the upper limit
of this value during JES2 initialization.

The COPIES parameter is ignored and only one copy is produced if any of the following
is true:

• The FREE parameter is coded on the output DD statement.

• HOLD = YES is coded on any sysout DD statement in the job.

• The class to which the data set is assigned is a held output class, and the message
class is also a held class. The message class is specified in the JOB statement
MSGCLASS parameter.

FORMS = {xxxxxxxxISTD}
Specifies the print and/or punch forms JES2 is to use for output data sets for which
FORMS is not specified on the DD statement or on a JES2 /*OUTPUT statement.

xxxxxxxx

STD

Identifies the print or punch forms. The xxxxxxxx is I through 8 alphanumeric or
national characters.

Indicates that JES2 is to use the default specified at JES2 initialization.

LINECT=nnn
Specifies the maximum number of lines that JES2 is to print on each output page for job
output. The nnn is a value from 0 through 255.

If you code LINECT = 0, JES2 does not eject to a new page when the number of output
lines exceeds the page limit that the installation specified during JES2 initialization.

If you code LINECT on the /*OUTPUT statement, it overrides the LINECT value on the
/* JOBPARM statement and the linect value in the accounting information parameter of
the JOB statement.

Chapter 16. Coding JES2 Control Statements 16~5

JES2: I*JOBPARM·

LINES=nnnn
Specifies the maximum lines of output the system is to produce from this job. The nnnn
is a decimal number, in thousands of lines, from 0 through 9999.

NOLOG
Indicates that you do not want the job's JES2 hard-copy log as output. The job's
hard-copy log lists the job-related console messages and operator replies produced during
processing of the job.

PAGES =nnnnn
Specifies the maximum number of pages of output the system is to produce for this job.
The nnnnn is a value from 0 through 99999.

PROCLm = ddname
Requests a JES2 procedure library by its ddname in the system procedure library,
SYSl.PROCLIB. These JES2 procedure library ddnames are in the format PROCnn,
where nn is 1 or 2 decimal numbers from 1 through 99. The requested JES2 procedure
library is used to convert the JCL for this job. If this parameter is omitted or appears but
the library cannot be found, the library can be specified by class-related initialization
parameters; otherwise, the default, PROCOO, is used.

RESTART = {YIN}
Requests one of the following, if this job is executing before a re-IPL and JES2 warm
start, and the job cannot restart from a step or checkpoint.

Y
Requests that JES2 queue the job for re-execution from the beginning of the job.

N
Requests that JES2 take no special action.

Note: If you do not specify RESTART, JES2 assumes N. However, the installation may
override this default in JES2 initialization parameters.

ROOM = xxxx
Indicates the programmer's room number. The xxxx is an alphanumeric value from 1
through 4 characters. JES2 places the room number on the job's separators for routing
system output data sets back to the programmer.

SYSAFF = {*IANYleeee}(,IND)

16-6 MVSJCL

Indicates the systems that are eligible to process the job. The parameter indicates from 1
through 7 system affinities.

*

ANY

ecce

Indicates the system that read the job.

Indicates any system in the JES2 multi-access spool configuration.

Indicates a specific system. cccc must be the 4-alphanumeric-character system id of
one of the systems in the JES2 multi-access spool configuration. To specify more
than one system, code: SYSAFF = (cccc,cccc, ...).

Overrides

,IND

JES2: I*JOBPARM

After any of the other SYSAFF specifications, indicates that JES2 is to use system
scheduling in independent mode.

TIME=nnnn
Estimates the job execution time in minutes of real time. The nnnn is a value from 0
through 9999 minutes.

• The /*JOBPARM statement parameters override the installation defaults specified at JES2
initialization.

• An OUTPUT JCL statement can override parameters on a /*JOBPARM statement.

• A JES2 /*OUTPUT statement can override parameters on a /*JOBPARM statement.

• Any j*JOBPARM statement parameter value overrides the equivalent parameter value
from the accounting field in JES2 format of the JOB statement or from any preceding
/*JOBPARM statement in this job's JCL.

Location in the J CL

Place the /*JOBPARM statement after the JOB statement.

Execution Node

JES2 normally processes /* JOBP ARM statement~ at the node of execution.

When you place a /*JOBPARM statement in front of a /*ROUTE XEQ or /*XEQ statement,
JES2 at the input node checks the j*JOBPARM statement for syntax and parameter validity.
After processing the /*ROUTE XEQ or /*XEQ statement, JES2 then passes the /*JOBPARM
statement to the execution node, where syntax and parameter validity are again checked.

When you place a /* JOBP ARM statement after a /*ROUTE XEQ or /*XEQ statement, JES2
passes the /*JOBPARM to the execution node and performs all syntax and parameter validity
processing at the execution node only.

COPIES Parameter in Remote Processing: In remote processing, the COPIES parameter on
the /*JOBPARM statement determines the number of output copies only when the execution
node is a JES2 node. The /*JOBPARM COPIES parameter is not supported by RSCS,
DOS/VSE POWER, or JES3.

Chapter 16. Coding JES2 Control Statements .16-7

JES2: I*JOBP ARM

Example of the I*JOBPARM Statement

/*JOBPARM L=60,R=4222,T=50,P=PROC03,N=5

The parameter specifications mean the following:

L=60
The job's estimated spool output will be 60,000 lines.

R=4222
The programmer's room is 4222. JES2 places this information in the separators for both
printed and punched data sets.

T=50
The job's estimated execution time is 50 minutes.

P=PROC03
The procedure library that JES2 is to use to convert the JCL for this job is PROC03.

N=5
The estimated 60,000 lines of output will be printed five times.

16-8 MVS JCL

JES2: I*MESSAGE

I*MESSAGE Statement

Purpose: Use the /*MESSAGE statement to send messages to the operator console when the
job is read in by JES2.

Syntax:

/*MESSAGE message

The /*MESSAGE statement consists of the characters /* in columns I and 2, MESSAGE in
columns 3 through 9, a blank in column 10, and the message starting in any column from 11
through 71. JES2 ignores columns 72 through 80.

Relationship to the I*ROUTE XEQ Statement

If the /*MESSAGE statement is in a job that also contains a JES2 /*ROUTE XEQ statement:

• Placing the /*MESSAGE statement before the /*ROUTE XEQ statement directs JES2 to
send the message to the operators at the input node and the execution node.

• Placing the /*MESSAGE statement after the j*ROUTE XEQ statement directs JES2 to
send the message only to the operator at the execution node.

Location in the JCL

If the /*MESSAGE statement is after the JOB statement, JES2 appends the job number to the
beginning of the message.

If the /*MESSAGE statement is not within a job, JES2 appends the input device name to the
beginning of the message.

Example of the I*MESSAGE Statement

/*MESSAGE CALL DEPT 58 WHEN PAYROLL JOB IS FINISHED--EX.1946

This statement requests that the operator call department 58 at extension 1946 when the payroll
job is complete.

Chapter 16. Coding JES2 Control Statements 16-9

JES2: I*NETAc'cT

I*NETACCT Statement

Purpose: Use the /*NETACCT statement to specify an account number that is available to all
the nodes in a network. JES2 uses the account number as is or translates it to local account
numbers.

Syntax:

/*NETACCT network-account-number

The /*NET ACCT statement consists of the characters 1* in columns 1 and 2, NET ACCT in
columns 3 through 9, a blank in column 10, and the network account number starting in any
column from 11 through 71. JES2 ignores columns 72 through 80.

Parameter Definition

Defaults

Overrides

network-account-number
Specifies the job's accounting number. The network-account-number is 1 through 8
alphanumeric characters.

If no /*NET ACCT statement is specified, JES2 attempts to find a network account number
using the local account number in a table lookup.

If you supply both a /*NET ACCT and a local account number, JES2 uses the local account
number on the input node.

Location in the JCL

Place the /*NETACCT statement after the JOB statement.

If a job contains more than one /*NETACCT statement, JES2 uses the network account
number from the last statement.

JES2 ignores the /*NET ACCT statement on any node other than the input node.

Example of the I*NETACCT Statement

/*NETACCT NETNUM10

JES2 transmits the network account number, NETNUMI0, with the job to the destination
node.

16-10 MVS JCL

JES2: I*NOTIFY

I*NOTIFY Statement

Purpose: Use the /NOTIFY statement to direct a job's notification messages to a user.

Note: The /*NOTIFY statement does not affect where the job is executed or where output is
printed or punched.

Syntax:

{ {.userid }}
{nodename{:userid }}

/*NOTIFY { {/userid }}
{ {(userid)}}
{ }
{userid }

The /*NOTIFY statement consists of the characters /* in columns I and 2, NOTIFY in
columns 3 through 8, a blank in column 10, and a parameter starting in any column from 11
through 71. JES2 ignores columns 72 through 80.

Do not code a comma, a right parenthesis, or a blank character in the nodename or userid.

Parameter Definition

Overrides

nodename.userid
nodename:userid
nodename/userid
nodename(userid)

userid

Names the node and the user to be notified. The nodename and the userid are each 1
through 8 alphanumeric characters. They must be separated by a delimiter.

When you specify a nodename and userid, JES2 sets the origin node field in the job's
network job header to the specified node, even though the job origin node may be
different.

Identifies a user. The userid is 1 through 8 alphanumeric characters.

When you specify only a userid, JES2 sends notification messages to that userid at the
origin node.

The JES2 /*NOTIFY statement overrides the NOTIFY parameter on the JOB statement.

Chapter 16. Coding JES2 Control Statements 16-11

JES2: I*NOTIFY

Relationship to Other Control Statements

If you submit a job with a JOB statement NOTIFY parameter or the job includes a JES2
j*NOTIFY statement, then the mode of the job (independent or not) must match that of the
system at which the job is submitted. That is, for TSO-submitted jobs, you cannot change the
system affinity using the JES2 j*JOBPARM SYSAFF parameter.

Examples of the NOTIFY Statement

/*NOTIFY VMNODE.VMUSER

JES2 sends notification messages to user VMUSER on node VMNODE.

/*NOTIFY TSOUSER

JES2 sends notification messages to user TSOUSER on the job's origin node.

16~12 MVS JCL

JES2: I*OUTPUT

I*OUTPUT Statement

Purpose: Use the j*OUTPUT statement to specify characteristics and options for a system
output data set or a group of system output data sets. This statement supplies processing
options in addition to and in place of the options specified on the on statement that defines
the system output data set.

References: For more information on the j*OUTPUT statement, see "Specifying Data Set
Processing Options" on page 7-43.

Note: You should use the OUTPUT JCL statement in place of the I*OUTPUT control
statement because of the OUTPUT JCL statement's enhanced output processing capabilities.

Syntax:

/*OUTPUT code parameter[,parameter] ...

The parameters are:

{BURSTIB}={YIN}
{CHARSIX}={xxxxl (xxxx[,xxxx] ...)}
{CKPTLNSIE}=nnnnn
{CKPTPGSIP}=nnnnn
{COMPACTIZ}=nn
{COPIESIN}=(nnn[,(group-value[,group-value] ...)])
{COPYGIG}={nnnl (nnn[,nnn] ...)}

{LOCAL }
{name }
{Nnnnn }
{NnnRmmmm }
{NnnnRmmm }
{NnnnnRmm }
{ {.userid }}

{DESTID}={nodename{:userid }}
{ {/userid }}
{ {(userid)}}
{Rnnnn }
{RMnnnn}
{RMTnnnn }
{Unnn }

{FCBIC}=xxxx
{FLASHIO}={NONEI (overlay-name[,count])}
{FLASHCIQ}=(overlay-name[,count])
{FORMSIF}={xxxxISTD}

{{INDEXII}=nn }
{{LINDEXIL}=nn}

{LINECTIK}=nnn
{MODIFYIY}=(module-name[,trc])
{MODTRCIM]=trc
{UCSIT}=xxxx

Chapter 16. Coding JES2 Control Statements 16-13

JES2: I*OUTPUT

The j*OUTPUT statement consists of the characters j* in columns 1 and 2, OUTPUT in
columns 3 through 8, a blank in column 9, a code beginning in column 10, followed by a
blank and the keyword parameters. JES2 ignores columns 72 through 80.

Code * in column 10 to indicate that this j*OUTPUT statement is a continuation of the
previous j*OUTPUT statement. An * in column 10 causes JES2 to treat the j*OUTPUT
statement as a continuation, even through the previous j*OUTPUT statement does not
immediately precede the continuation.

Do not specify * in column 10 on the first j*OUTPUT statement in a job.

Parameter Definition

code
Identifies the j*OUTPUT statement. The code is 1 through 4 alphanumeric characters.
A DD statement refers to a j*OUTPUT statement by specifying this code in its
code-name subparameter on the SYSOUT parameter. The referenced j*OUTPUT
statement specifies processing options for the system output data set defined in the
referencing DD statement.

A code of * indicates that this j*OUTPUT statement is a continuation of the previous
j*OUTPUT statement.

Note: If you specify the code-name subparameter on a DD statement SYSOUT
parameter in a job or job step that contains an OUTPUT JCL statement, JES2 uses the
code-name as the name of an output form instead of as a reference to a j*OUTPUT
statement.

If more than one j*OUTPUT statement has the same code starting in column 10, JES2
uses the parameters from the first j*OUTPUT statement.

BURST = {YIN}
Indicates the default burst characteristic of all output data sets that JES2 prints on a 3800
Printing Subsystem equipped with a burster-timmer-stacker in this job.

Y
Requests that the printed output is to be burst into separate sheets.

N
Requests that the printed output is to be in a continuous fanfold.

CHARS=xxxx
CHARS = (xxxx(,xxxx) ...)

Specifies the name of a character-arrangement table for all output that JES2 prints on a
3800 Printing Subsystem in this job. The xxxx is 1 through 4 alphanumeric or national
characters. Up to four names can be coded.

CKPTLNS = noooo

16-14 MVS JCL

Specifies the maximum number of lines or cards contained in a logical page. The nnnnn is
a decimal number from 0 through 32767 for printers and 1 through 32767 for punches.
The default is specified in the JES2 initialization parameter for the device.

JES2: I*OUTPUT

CKPTPGS = nnnnn
Specifies the number of logical pages to be printed before the next checkpoint is taken.
The nnnnn is a decimal number from 1 through 32767. The default is specified in the
JES2 initialization parameter for the device.

COMPACT=nn
Specifies a compaction table for JES2 to use when sending this system output data set,
which is a systems network architecture (SNA) data set, to a SNA remote terminal.

Note: The COMPACT parameter has no effect on compaction for NJE sessions; it
applies only to SNA RJE sessions.

COPIES=nnn
COPIES = (nnn[,(group-value[,group-value) .•• »)

Specifies how many copies of the system output data set to be printed. The printed
output is in page sequence for each copy.

For printing on a 3800 Printing Subsystem, this parameter can instead specify how many
copies of each page are to be printed before the next page is printed.

If you route a job that has a COPIES parameter, the parameter will be used only if the
receiving node is a JES2 node.

nnn
Specifies how many copies of the data set are to be printed; each copy will be in
page sequence order. The nnn is a decimal number from 1 through 255, subject to
an installation-specified limit. nnn is ignored for the 3800 if group values are
specified.

If you omit or incorrectly code the nnn parameter of COPIES, it defaults to 1 and a
warning message is issued.

group~value
Specifies how many copies of each page are to be printed before the next page is
printed. Each group-value is a decimal number from 1 through 255. You can code
a maximum of eight group-values. Their sum must not exceed 255 or the
installation-specified limit. The total copies of each page equals the sum of the
group-values.

Note:

• This subparameter is valid only for 3800 output.
• For 3800 output, this subparameter overrides the nnn subparameter.

The following are not valid:

• A null group-value, for example, COPIES = (5(,» or COPIES = (5,)
• A zero group-value, for example, COPIES = (5,(1,0,4»
• A null within a list of group-values, for example, COPIES = (5,(1,,4»

Chapter 16. Coding JES2 Control Statements 16-15

JES2: I*OUTPUT

COPYG=nnn
COPYG = (nnn(,nnn) •••)

Specifies how many copies of each page are to be printed before the next page is printed.
Each nnn is a decimal number from 1 to 255. You can code a maximum of eight group
values. Their sum must not exceed 255. The total copies of each page equals the sum of
the group values.

Note: This parameter is valid only for 3800 output. If you code COPYG and 1E82
prints the data set on an impact printer, 1E82 ignores COPYG.

DEST = destination
DEST = (destination(,destination) ...)

16-16 MVS JCL

Specifies one to four different destinations for the system output data set. The destination
subparameters follow:

LOCAL

name

Indicates any local device.

Specifies a local or remote device by a symbolic name defined by the installation
during 1E82 initialization. The name is 1 through 8 alphanumeric or national
characters.

Nnnnn
Specifies a node. nnnn is 1 through 4 decimal numbers from 1 through 1000. For
example, NOI03.

NnnRmmmm
NnnnRmmm
NnnnnRmm

Specifies a node and a remote work station connected to the node. The node
number, indicated in the format by n, is 1 through 4 decimal numbers from I
through 1000. The remote work station number, indicated in the format by m, is I
through 4 decimal numbers from 1 through 4000. Do not code leading zeros in n or
m. The maximum number of digits for nand m combined cannot exceed six.

Note: RO is equivalent to LOCAL specified at node Nn.

nodename.userid
nodename:userid
nodename/userid
nodename(userid)

Identifies the nodename and userid of the destination node. Use this parameter to
route a sysout data set between 1E82 nodes and non-1E82 nodes. The node name is
1 through 8 alphanumeric characters. The userid is I through 8 alphanumeric
characters. Enclose userid in apostrophes when it contains special characters or
begins with a number. Do not code a comma, right parenthesis, blank, R, RM, or
RMT in the userid.

JES2: /*OUTPUT

When using the nodename.userid form of the DEST parameter, you may use
continuation statements to specify up to 4 destinations. The continuation statement
must contain the characters /* in columns 1 and 2, OUTPUT in columns 3 through
8, a blank in column 9, an * in or following column 10, followed by one or more
blanks, and the characters DEST = with the specified destinations. For example:

/*OUTPUT ABCD DEST=(POK.USER27,NYC.USER31)
/*OUTPUT * DEST=(BOCA.USER58,STL.USER22)

The form nodename:userid is used by a VM user who submits a job to an MVS
system and wants the output returned to the VM user's virtual reader. The form
nodename. userid makes the output print on the local VM printer.

Note: If a data set is queued for transmission and an operator changes its
destination, the userid portion of the original routing is lost.

Rnnnn
RMnnnn
RMTnnnn

Unnn

Specifies a remote terminal. nnnn is 1 through 4 decimal numbers from 1 through
4000.

Note: RO is equivalent to LOCAL.

Specifies a local terminal with special routing. nnn is 1 through 3 decimal numbers
from 1 through 255.

FCB=xxxx
Specifies the forms control buffer (FCB) image JES2 is to use to guide printing of the
system output data set. The xxxx is 1 through 4 alphanumeric or national characters and
is the last characters of a SYSl.IMAGELIB member name:

• FCB2xxxx member, for a 3211 Printer, a 3203 Printer Model 5, or a printer
supported by systems network architecture (SNA).

• FCB3xxxx member, for a 3800 Printing Subsystem.

• FCB4xxxx member, for a 4248 Printer.

IBM provides two standard FCB images. Code STD 1 or STD2 only to request them.

• STD1, which specifies 6 lines per inch on an 8.5-inch-Iong foIJ.TI.
• STD2, which specifies 6 lines per inch on an ll-inch-Iong form.

If the printer on which JES2 is to print the data set does not have the forms control
buffer feature, JES2 sends the operator a message to mount the proper carriage control
tape.

Chapter 16. Coding JES2 Control Statements 16-17

•

JES2: I*OUTPUT

FLASH = NONE
FLASH = overlay-name
FLASH = (overiay-namel,countJ)

Identifies the forms overlay to be used in printing the system output data set on a 3800
Printing Subsystem and, optionally, specifies the number of copies on which the forms
overlay is to be printed.

NONE
Suppresses flashing for this data set.

overlay-name

count

Identifies the forms overlay frame that the operator is to insert into the printer
before printing begins. The name is 1 to 4 alphanumeric or national characters.

Do not omit the overlay-name. The count subparameter is optional. If you omit it,
you can omit the parentheses. However, if you omit it, you must not code it as a
null; for example, FLASH = (ABCD,) is invalid.

Before printing starts, JES2 does not verify that the operator inserted the correct
forms overlay frame for flashing.

Specifies the number, 1 through 255, of copies that JES2 is to flash with the overlay,
beginning with the first copy printed.

JES2 determines the maximum number of copies to flash with the forms overlay by
the value ornnn or the group value total on the COPIES parameter. If the count
value of the FLASH parameter is greater than the value of the COPIES parameter,
JES2 ignores the difference and uses the lower value.

The count subparameter of the FLASH parameter overrides the count subparameter
of the FLASHC parameter.

Defaults: If you omit this parameter and did not specify FLASH on the DD statement or
FLASHC on the /*OUTPUT statement, JES2 uses the default specified at JES2
initialization.

If you specify an overlay-name without specifying a count, JES2 flashes all copies. That
is, the default for count is 255. If you specify 0 for count, JES2 also flashes all copies.

FLASHC = count

16-18 MVS JCL

Specifies the number, 0 through 255, of copies that JES2 is to flash with the overlay,
beginning with the first copy printed.

Note: For the 3800 printer, if you specify FLASH and omit FLASHC, JES2 flashes all
copies.

The'count subparameter of the FLASH parameter overrides the countsubparameter of
the FLASHC parameter.

JES2: I*OUTPUT

FORMS = {xxxxISTD}
Identifies the forms on which JES2 is to print or punch the system output data set.

xxxx
Identifies the print or punch forms. form-name is 1 through 4 alphanumeric or
national characters.

STD
Indicates that JES2 is to use the default specified at JES2 initialization.

INDEX=nn
Sets the left margin for output on a 3211 Printer with the indexing feature. The width of
the print line is reduced by the INDEX parameter value. The nn specifies how many
print positions the left margin on the 3211 output is to be indented. nn is a decimal
number from 1 through 31. n = 1 indicates flush-left; n = 2 through n = 31 indent the
print line by n-l positions.

JES2 ignores the INDEX parameter on all printers except the 3211 with the indexing
feature.

INDEX and LINDEX are mutually exclusive; if both are coded, JES2 uses the last one
encountered.

LINDEX=nn
Sets the right margin for output on a 3211 Printer with the indexing feature. The width
of the print line is reduced by the LINDEX parameter value. The nn specifies how many
print positions the right margin on 3211 output is to be moved in from the ftill page
width. nn is a decimal number from 1 through 31. n = 1 indicates flush-right; n = 2
through n = 31 move the right margin over by n-l positions.

JES2 ignores the LINDEX parameter on all printers except the 3211 with the indexing
feature.

INDEX and LINDEX are mutually exclusive; if both are coded, JES2 uses the last one
encountered.

LINECT=nnn
Specifies the maximum number of lines JES2 is to print on each output page. The nnn is
a number from 0 through 255.

Specify LINECT=O to keep JES2 from starting a new page when the numbe'r of lines
exceeds the JES2 initialization parameter.

If you code LINECT on the I*OUTPUT statement, it overrides the LINECT value on the
I*JOBPARM statement and the linect value in the accounting information parameter of
the JOB statement.

If the LINECT parameter is omitted from the j*OUTPUT statement, JES2 obtains the
value from one of the following sources, in order:

1. The LINECT parameter on the 1* JOBP ARM statement.
2. The linect field of the accounting information parameter on the JOB statement.
3. The value specified at JES2 initialization.

Chapter 16. Coding JES2 Control Statements 16-19

•

JES2: I*OUTPUT

Overrides

MODIFY = module-name
MODIFY = (module-name(,trc))

Specifies a copy-modification module that tells JES2 how to print the system output data
set on a 3800 Printing Subsystem. The module can specify legends, column headings,
blanks, and where and on which copies the data is to be printed. The module is defined
and stored on SYS1.IMAGELIB using the IEBIMAGE utility program.

module-name

trc

Identifies a copy-modification module in SYS1.IMAGELIB. The module-name is 1
through 4 alphanumeric or national characters.

Do not omit the module-name.

Identifies which table-name in the CHARS parameter is to be used. This table
reference character is 0 for the first table-name specified, 1 for the second, 2 for the
third, or 3 for the fourth.

If the trc value is greater than the number of table-names in the CHARS parameter,
JES2 uses the first table named in the CHARS parameter.

The trc subparameter is optional. If you omit it, you can omit the parentheses.
However, if you omit it, you must not code it as a null; for example,
MODIFY = (TAB1,) is invalid. If you omit the trc subparameter, JES2 uses the
first table-name.

The trc subparameter of the MODIFY parameter overrides the trc subparameter of
the MODTRC parameter.

MODTRC=trc
Identifies which table-name in the CHARS parameter is to be used. This table reference
character is 0 for the first table-name specified, 1 for the second, 2 for the third, or 3 for
the fourth.

If the trc value is greater than the number of table-names in the CHARS parameter, JES2
uses the first table named in the CHARS parameter.

The trc subparameter of the MODIFY parameter overrides the trc subparameter of the
MODTRC parameter.

UCS=xxxx
Identifies the universal character set (UCS) image JES2 is to use in printing the system
output data set. The xxxx is 1 through 4 alphanumeric characters. See Figure 12-1 on
page 12-128 for IBM standard special character set codes.

• j*OUTPUT statement parameters override all equivalent DD statement parameters.

• If a j*OUTPUT statement contains duplicate parameters, the last parameter overrides all
preceding duplicates, except for the DEST parameter.

16-20 MVS JCL

JES2: I*OUTPUT

• Any parameter coded on subsequent j*OUTPUT statements overrides the same parameter
on previous j*OUTPUT statements.

• JES2 adds any parameter you code on subsequent j*OUTPUT statements that you did not
code on previous j*OUTPUT statements to the previous j*OUTPUr statement.

• If you code LINECT on the j*OUTPUT statement, it overrides the LINECT value on the
j*JOBPARM statement and the linect value in the accounting information parameter of the
JOB statement.

Relationship to Other Control Statements

• JES2 processes j*OUTPUT statements placed after a j*ROUTE XEQ statement at the
execution node only.

• JES2 processes j*OUTPUT statements placed before a j*ROUTE XEQ statement at both
the input node and the execution node.

Location in the J CL

Place the j*OUTPUT statement after the JOB statement.

Example of the I*OUTPUT Statement

/*OUTPUT ABCD COPIES=6,COPYG=(1,2,3),DEST=RMT23

This statement refers to all system output data sets defined by a DD statement that specifies
SYSOUT = (c"ABCD). Six copies of each page of output are printed. If the printer is a 3800,
first one copy of each page is printed, then two copies of each page, and finally, three copies of •
each page. If the printer is not a 3800, COPYG is ignored and six copies of the entire data set
are printed. The output is sent to remote terminal 23.

Chapter 16. Coding JES2 Control Statements 16-21

JES2: /*PRIORITY

/*PRIORITY Statement

Purpose: Use the j*PRIORITY statement to assign the queue selection priority for your job
and all of its output, except the iES2 hard-copy log. .

A job with a higher priority is selected for execution sooner.

Note: Depending on the JES2 initialization options in use at your installation, JES2 may
ignore the j*PRIORITY statement.

References: For more information on the j*PRIORITY statement, see "Assigning a Priority to
a Job for JES2" on page 5-20.

Syntax:

/*PRIORITY P

The j*PRIORITY statement consists of the characters j* in columns 1 and 2, PRIORITY in
columns 3 through 10, a blank in column 10, and the priority starting in any column from 11
through 71. JES2 ignores columns 72 through 80.

Parameter Definition

Overrides

p
Requests a priority. The p isa number from 0 through 15. The highest priority is 15.

Follow your installation's rules in coding a/priority.

A priority specified on a j*PRIORITY statement overrides a priority specified in the PRTY
parameter on a JOB statement.

Relationship to Other Control Statements

If a j*PRIORITY statement is not present or if JES2 ignores the j*PRIORITY statement, the
system derives the priority from the following, in override order:

1. The PRTY parameter on the JOB statement.
2. The accounting information on a 1* JOBPARM statement.
3. The accounting information on the JOB statement.
4. An installation default specified at JES2 initialization.

16-22 MVS JCL

JES2: /*PRIORITY

Location in the JCL

The /*PRIORITY statement must immediately precede the JOB statement. If not, or if p is not
a number from 0 through 15, JES2 ignores the /*PRIORITY statement and flushes the input
stream until the next JOB statement or another /*PRIORITY statement.

In a JES2 network, the /*PRIORITY statement must immediately foUow the /*XMIT
statement and precede a JOB statement. If the /*PRIORITY statement does not immediately
follow an /*XMIT statement, JES2 ignores the /*PRIORITY statement at any node except the
input node.

Example of the PRIORITY Statement

/*PRIORITY 7

This statement assigns a job queue selection priority of 7. This value has meaning only in
relation to other jobs in the system.

Chapter 16. Coding 1ES2 Control Statements 16-23

•

JES2: I*ROUTE

I*ROUTE Statement

Purpose: Use the j*ROUTE statement to specify the destination of output that is not routed
by a DEST. parameter or to identify the network node where the job is to execute.

References: For more information, see "Routing a Job in a Network (JES2)" on page 3-7.

Syntax:

(LOCAL }
(name }
(Nnnnn }
(NnnRmmmm }
(NnnnRmmm }
(NnnnnRmm }
([.userid]}

(PRINT} ([:userid]}
/*ROUTE (PUNCH} (nodename[/userid]}

([(userid)]}
(Rnnnn }
(RMnnnn }
(RMTnnnn }
(Unnn }

(Nnnnn }
([.vmquestid]}
([:vmguestid]}

/*ROUTE XEQ (nodename[/vmguestid]}
([(vmguestid)] }

The j*ROUTE statement consists of the characters /* in columns 1 and 2; ROUTE in
columns 3 through 7; at least one blank followed by PRINT, PUNCH, or XEQ; at least one
blank followed by one of the destinations or nodes; and at least one blank before column 72.
JES2 ignores columns 72 through 80.

Code only one destination or node on each /*ROUTE statement.

Parameter Definition

PRINT
Requests that JES2 route the job's printed output.

PUNCH
Requests that JES2 route the job's punched output.

XEQ
Requests that JES2 route the job to a network node for execution.

16-24 MVS JCL

JES2: I*ROUTE

LOCAL

name

Indicates any local device at the node that submitted the job.

Specifies a local or remote device. The name is a symbolic name defined by the
installation during JES2 initialization and is 1 through 8 alphanumeric or national
characters.

Nnnnn
Specifies a node where the job is to be executed or the output printed or punched. nnnn
is 1 through 4 decimal numbers from 1 through 1000.

NnnRmmmm
NnnnRmmm
NnnnnRmm

Specifies a node and a remote work station connected to the node. The node number,
indicated in the format by n, is 1 through 4 decimal numbers from 1 through 1000. The
remote work station number, indicated in the format by m, is 1 through 4 decimal
numbers from 1 through 4000. Do not code leading zeros in n or m. The maximum
number of digits for nand m combined cannot exceed six.

Note: RO is equivalent to specifying LOCAL at node Nn.

nodename.userid
nodename:userid
nodename/userid
nodename(userid)

Specifies a node and a TSO or VM userid at that node. The node is a symbolic name
defined by the installation during system initialization; nodename is 1 to 8 alphanumeric
or national characters. The userid must be defined at the node; userid for TSO is 1 to 7 •
alphanumeric or national characters and for VM is 1 to 8 alphanumeric or national
characters. Enclose userid in apostrophes when it contains special characters or begins
with a number. For example, STL,'VM/370' and POK,'921PPC'. Do not code a comma,
right parenthesis, blank, R, RM, or RMT in the userid.

A userid requires a node; therefore, code nodename.userid. You cannot code a userid
without a nodename.

Note: If a data set is queued for transmission and an operator changes its destination,
the userid portion of the routing is lost.

Rnnnn
RMnnnn
RMTnnnn

Specifies a remote terminal for the output. nnnn is 1 through 4 decimal numbers from 1
through 4000 or the maximum number of work stations assigned to JES2.

Note: RO is equivalent to LOCAL.

When coding the long form, REMOTEnnn, on theJES2 /*SIGNON statement, JES2
restricts RMT to 1 through 3 decimal numbers from 1 through 999.

Chapter 16. Coding JES2 Control Statements 16-25

JES2: I*ROUTE

Unnn
Specifies a local terminal with special routing. nnn is I through 3 decimal numbers from
I through 255.

nodename. vmguestid
nodename:vmguestid
nodename/vmguestid
nodename(vmguestid)

Identifies the network node where the job is to execute. The nodename identifies an MVS
JES2 system, an MVS JES3 system, a VSE POWER node, or a VM system. N odename
should not specify the local node; it if does, the job executes locally. The nodename is 1
through 8 alphanumeric, national, or special characters specified during JES2
initialization.

The vmguestid identifies a guest system running in a virtual machine (VM), for example,
an MVS system running under VM. Do not specify a work station or terminal in this
parameter. The vmguestid is 1 through 8 alphanumeric, national, or special characters,
except a comma, a right parenthesis, a blank, R, RM, or RMT.

Location in the JCL

Place the j*ROUTE statement after the JOB statement.

Place any j*ROUTE XEQ statements before any DD * or DD DATA statement.

Processing of I*ROUTE Statements

• JES2 processes j*ROUTE XEQ statements on the input node only.

• When j*ROUTE PRINT or j*ROUTE PUNCH statement follows a j*ROUTE XEQ
statement, JES2 processes the j*ROUTE PRINT or j*ROUTE PUNCH statement on the
execution node only.

• When a j*ROUTE PRINT or j*ROUTE PUNCH statement precedes a j*ROUTE XEQ
statement, JES2 processes the j*ROUTE PRINT or j*ROUTE PUNCH statement on both
the input and execution nodes. However, printing or punching occurs at the node specified
on the j*ROUTE PRINT or j*ROUTE PUNCH statement.

Multiple I*ROUTE Statements

JES2 uses the last j*ROUTE statement of each category if more than one j*ROUTE PRINT or
PUNCH or XEQ statement appears in a job.

Examples of the ROUTE Statement

/*ROUTE PRINT RMT6

This statement sends the printed output to remote terminal 6.

16-26 MVS JCL

JES2: I*ROUTE

/*ROUTE PUNCH PUNCH2

This statement sends the punched output to device PUNCH2, which was identified to the
system during initialization.

/*ROUTE XEQ DENVER

This statement sends the job to the node named DENVER for execution.

Chapter 16. Coding JES2 Control Statements 16-27

•

JES2: I*SETUP

I*SETUP Statement

Purpose: Use the /*SETUP statement to indicate volumes needed for executing a part of the
job.

References: For more information on the /*SETUP statement, see "The JES2 SETUP
Statement" on page 3-26.

Syntax:

/*SETUP volume-serial-number[,volume-serial-number) ...

The /*SETUP statement consists of the characters /* in columns 1 and 2, SETUP in columns
3 through 7, a blank in column 10, and the volume serial number(s) starting in any column
from 11 through 71. JES2 ignores columns 72 through 80.

Do not continue the /*SETUP statement; code as many j*SETUP statements as necessary.

Parameter Definition

volume-serial-number
Identifies a volume required for execution of the job.

Location in the JCL

Place all /*SETUP statements after the JOB statement.

To prevent JES2 from requesting the setup on a node other than the node of execution, the
/*SETUP statement should follow any /*ROUTE XEQ or /*XEQ statement. If JES2 processes
the j*SETUP statement before processing the /*ROUTE XEQ or /*XEQ statement, JES2
requests the setup on both the input and execution nodes.

Example of the I*SETUP Statement

/*SETUP 666321,149658

When the job enters the system, JES2 issues a message to the operator console, asking the
operator to mount the requested volumes. JES2 then places the job in hold status until the
operator mounts the volumes and releases the job.

16-28 MVS JCL

JES2: I*SIGNOFF

I*SIGNOFF Statement

Purpose: Use the /*SIGNOFF statement to tell JES2 to terminate a remote job stream
processing session. At the completion of the current print and/or punch streams, JES2
disconnects the station from the system. If JES2 is reading jobs from a remote station when the
output completes, JES2 disconnects the remote station when the input is completed.

Note: The remote terminal access processor processes the /*SIGNOFF statement if it is in a
job stream.

Both systems network architecture (SNA) and binary synchronous communication (BSC)
remote work stations can use the /*SIGNOFF statement. . SNA remote stations can also use the
LOGOFF command to end a session with JES2. The LOGOFF command has some options
that the /*SIGNOFF statement does not provide.

References: For information on the LOGOFF command, see SPL: JES2 Initialization and
Tuning and SP L: VT AM.

Syntax:

/*SIGNOFF

The /*SIGNOFF statement consists of the characters /* in columns I and 2 and
/*SIGNOFF in columns 3 through 9.

Example of the I*SIGNOFF Statement

/*SIGNOFF

This statement requests that JES2 terminate a remote job stream processing session.

Chapter 16. Coding JES2 Control Statements 16-29

•

JES2: I*SIGNON

I*SIGNON Statement

Purpose: Use the /*SIGNON statement to tell JES2 to begin a remote job stream processing
session. The /*SIGNON statement can override the remote identification number normally
assigned to the remote station. This statement is optional for all work stations except
non-multi-leaving remote stations on a ,switched line. For non-multi-leaving remote stations,
JES2 transmits the /*SIGNON statement alone as part of the initial connection process.

Note: The remote terminal access processor processes the j*SIGNON statement if it is in a job
stream. When the terminal access processor processes the /*SIGNON statement, ,the line being
processed is restarted.

Systems network architecture (SNA) remote work stations must use the LOGON command
instead of the j*SIGNON statement to notify JES2 of a connection request.

References: For information on the LOGON command, see SPL: JES2 Initialization and
Tuning and SP L: VT AM.

Syntax:

{REMOTEnnn}
/*SIGNON {RMTnnnn } [passwordl]

{RMnnnn }
[password2]

The /*SIGNON statement consists of the characters /* in columns 1 and 2, SIGNON in
columns 3 through 8, blanks in columns 9 through 15, and REMOTEnnn, or RMTnnnn, or
RMnnnn starting in column 16. The /*SIGNON statement can optionally contain two
passwords: one beginning in column 25 and the other in column 73.

Location in the JCL

Place the /*SIGNON statement at the end of the JES2/RTP input stream for multi-leaving
remote stations.

Parameter Definition

REMOTEnnn

16-30 MVS JCL

Specifies the identification number assigned to the remote station asking to sign on. The
nnn is 1 through 3 decimal numbers from 1 through 999.

Note: Do not code any leading zeroes in nnn.

Code REMOTEnnn with the same characters as RMTnnn on the /*ROUTE statement.
If you code REMOTEnnn on the /*SIGNON statement, you are restricted to coding
RMTnnn with only three numbers on the /*ROUTE statement.

RMnnnn
RMTnnnn

JES2: I*SIGNON

Specifies a remote station. nnnn is 1 through 4 decimal numbers from 1 through 4000.

password 1
Specifies the password assigned to a switched connection that allows the remote station
access to JES2 for remote job stream processing. The installation assigns this password
during JES2 initialization. The operator can change or delete this password with the $T
command.

password2
Specifies the password for the remote station that is signing on; this password identifies
the remote station as a valid remote job entry (RJE) station. The installation assigns this
password during JES2 initialization.

Examples of the I*SIGNON Statement

/*SIGNON REMOTE123PSWD

This statement requests that remote station 123 begin a remote job stream processing session.
PSWD, beginning in column 25, is the password assigned to the switched connection.

/*SIGNON RMTIOOO PSWD

This statement requests that remote station 1000 begin a remote job stream processing session.
PSWD, beginning in column 25, is the password assigned to the switched connection .

Chapter 16. Coding JES2 Control Statements 16-31

•

JES2: /*XEQ

/*XEQ Statement

Purpose: Use the j*XEQ statement to identify the network node where the job is to execute.
It performs the same function as the /*ROUTE XEQ statement.

Syntax:

/*XEQ {Nnnnn }
{nodename[.vmguestid]}

The j*XEQ statement consists of the characters /* in columns I and 2, XEQ in columns 3
through 5, a blank in column 6, and a node starting in any column starting with 7.

Parameter Definition

Nnnnn
Specifies a node where the job is to be executed. nnnn is I through 4 decimal numbers
from 1 through 1000.

nodename
Identifies the network node where the job is to execute. The nodename identifies an MVS
JES2 system, an MVS JES3 system, a VSE POWER node, or a VM system. Nodename
should not specify the local node; it if does, the job executes locally. The nodename is 1
through 8 alphanumeric, national, or special characters specified during JES2
initialization.

vmguestid
Identifies a guest system running in a virtual machine (VM), for example, an MVS system
running under VM. Do not specify a work station or terminal in this parameter. The
vmguestid is 1 through 8 alphanumeric, national, or special characters, except a comma, a
right parenthesis, a blank, R, RM, or RMT.

Location in the J CL

Plac~ the /*XEQ statement after the JOB statement. JES2 ignores the /*XEQ statement for any
node except the input node.

Multiple /*XEQ Statements

JES2 uses the node named on the last /*XEQ statement if a job contains more than one /*XEQ
statement.

Example of the XEQ Statement

/*XEQ ATLANTA

JES2 routes and executes this job on the node defined as ATLANTA.

16-32 MVS JCL

JES2: /*XMIT

/*XMIT Statement

Purpose: Use the /*XMIT statement to transmit records from a JES2 node to either another
JES2 node or an eligible non-JES2 node, for example, a VM or JES3 node. JES2 does not
process or check the records for JES2 validity. JES2 builds header and trailer repords from
information on the JOB statement immediately preceding the /*XMIT statement. Then JES2
transmits all the records following the /*XMIT statement.

The records may consist of a job input stream or an in-stream DD * or DD DATA data set. If
the records are a job input stream and the destination node can process JCL, the transmitted
input stream is executed.

The records end when JES2 reads in the input stream a delimiter:

/*
The two-character delimiter specified by a DLM parameter on this /*XMIT statement

The records can also end when the input stream runs out of card images or, if the records are
being read from an internal reader, the internal reader is closed.

Syntax:

{name }
{Nnnnn }

/*XMIT {nodename[.userid } [,DLM=xx]
{ [:userid}
{ [/userid]}
{ [(userid)]}
{nodename[.vmguestid]}
{ [:vmguestid]}
{ [/vmguestid]}
{ [(vmguestid)]}

The /*XMIT statement consists of the characters /* in columns I and 2, XMIT in columns 3
through 6, a blank in column 7, a node name or node-number starting in any column starting
with 8, and optionally followed, with no intervening blank, by a comma and the delimiter
parameter.

Do not continue an /*XMIT statement.

Parameter Definition

name
Specifies the destination node. The name is a symbolic name defined by the installation
during JES2 initialization and is I through 8 alphanumeric or national characters.'

Nnnnn
Specifies the destination node. nnnn is 1 through 4 decimal numbers from 1 through
1000.

Chapter 16. Coding JES2 Control Statements 16-33

•

JES2: /*XMIT

Defaults

nodename
Identifies the destination network node. The nodename identifies an MVS JES2 system,
an MVS JES3 system, a VSE POWER node, or a VM system. The nodename is 1
through 8 alphanumeric, national, or special characters specified during JES2
initialization.

userid
Identifies the destination terminal or work station. The userid must be defined at the
node. The userid for TSO is 1 to 7 alphanumeric or national characters and for VM is 1
to 8 alphanumeric or national characters. Enclose userid in apostrophes when it contains
special characters or begins with a number. For example, STL,'VM/370' and
POK,'921PPC'. Do not code a comma, right parenthesis, blank, R, RM, or RMT in the
userid.

If the data set is queued for transmission and an operator changes its destination node,
the userid portion of the destination is lost.

vmguestid
Identifies the destination guest system running in a virtual machine (VM), for example, an
MVS system running under VM. The vmguestid is 1 through 8 alphanumeric, national,
or special characters, except a comma, a right parenthesis, a blank, R, RM, or RMT.

If the data set is queued for transmission and an operator changes its destination node,
the vmguestid portion of the destination is lost.

DLM=xx

1*

Specifies two characters that indicate the end of the data being transmitted.

Code any two characters for the delimiter. If the specified delimiter contains any special
characters, enclose it in apostrophes. In this case, a special character is any character that
is neither alphanumeric nor national.

Failing to code enclosing apostrophes produces unpredictable results.

If the delimiter contains an ampersand or an apostrophe, code each ampersand or
apostrophe as two consecutive ampersands or apostrophes. Each pair of consecutive
ampersands or apostrophes counts as one character.

If you specify a DLM parameter, you must terminate the transmitted records with the
characters in the DLM parameter. The characters you assign as delimiters override any
delimiter implied by the defaults.

The characters II are not valid delimiters unless specifically indicated by DLM = II.

If you specify for DLM only one character or more than two characters, JES2 uses 1*.

16-34 MVS JCL

JES2: /*XMIT

Location in the J CL

Place the j*XMIT statement immediately after a JOB statement.

Code only one /*XMIT statement in a job.

Example of the XMIT Statement

/*XMIT ATLANTA,DLM=AA

JES2 transmits to the node ATLANTA all records following the /*XMIT statement up to the
specified delimiter, AA.

Chapter 16. Coding JES2 Control Statements 16-35

•

16-36 MVS JCL

JES3

Chapter 17. Coding JES3 Control Statements

Code JES3 control statements with JCL statements to control the input and output processing
of jobs. The rules for coding in Chapter 2, "Coding Conventions for JCL, JES2, and JES3
Statements" apply to the JES3 control statements.

Location in the JCL

Place JES3 control statements, except the command and //*PAUSE statements, after the JOB
statement and its continuations. JES3 ignores JES3 statements, except the command and
/ j*PAUSE statements, that appear before the JOB statement or between continued JOB
statements.

Do not include JES3 control statements in a cataloged procedure. JES3 ignores JES3 control
statements in a cataloged procedure.

Internal Reader

Use the following control statements when submitting jobs to the internal reader. Use of the
internal reader is described in "Specifying the "Internal Reader" on page 7-52 and in SPL: JES3
Initializationand Tuning, and SPL: Job Management.

/*DEL
/*EOF

Chapter 17. Coding JES3 Control Statements 17 -1

•

JES3

Examples of JES3 Control Statements

The following shows JES3 control statements in relation to each other and to JCL statements
for a job entered from a remote work station. No actual job should require all of these
statements.

//**MESSAGE,CNl,ENTER A START COMMAND FOR THIS JOB
//*PAUSE
//TESTI JOB "MSGCLASS=A
//*NETACCT PNAME=MAEBIRD,ACCT=2K14920
//*NET NETID=Nl,NHOLD=O
//*PROCESS CI
//*PROCESS MAIN
//*PROCESS OUTSERV
//*DATASET DDNAME=STEPl.DDl

data

//*ENDDATASET
//*ENDPROCESS
//*OPERATOR THIS IS TEST JOB TESTI.
//*MAIN CLASS=C
//*FORMAT PR,DDNAME=STEPl.DD2,DEST=ANYLOCAL,COPIES=2
//*ROUTE XEQ NODEI
//FARJOBI JOB "MSGCLASS=A
//STEPI EXEC PGM=CHECKER
//DDI DD DSNAME=INPUT
//DD2 DD SYSOUT=A
/*

The following is an ordinary job entered through the local input stream.

//RUN2 JOB "MSGCLASS=A
//*MAIN CLASS=B
//*FORMAT PR,DDNAME=STEPA.DD2,DEST=LOCAL,COPIES=5
//STEPA EXEC PGM=WRITER
//DDI DD DSNAME=INl,DISP=OLD,UNIT=3350,VOLUME=SER=MH2244
//DD2 DD SYSOUT=A
/*

17-2 MVS JCL

JES3: Command

Command Statement

Purpose: Use the command statement to enter a JES3 operator command through the input
stream or the operator console.

JES3 usually executes an in-stream command as soon as it is read. Therefore, the command
will not be synchronized with the execution of the job step to which it pertains. To synchronize
a command with the job processing, tell the operator the commands you want and when they
should be issued, and let the operator enter them from the console.

References: For more information on the command statement and the JES3 verbs and
operands, see J ES3 Operator's Library.

Syntax:

Entered through input stream:

//**command-verb[,operand],ooo

Entered through operator console:

*command-verb,[operand] 000

• JES3 ignores columns 73 through 80.
• Do not continue a command statement on another statement.

Parameter Definition

* command-verb
Indicates one of these JES3 commands:

Command Short Form
CALL X
CANCEL C
DELAY D
DISABLE H
ENABLE N
ERASE E
FAIL
FREE
INQUIRY I
MESSAGEZ
MODIFY F
RESTART R
SEND T
START S
SWITCH
VARY V

You cannot specify a *DUMP or *RETURN command on a JES3 command statement.

Chapter 17. Coding JES3 Control Statements 17-3

•

JES3: Command

operand
Specifies an operand that pertains to the command-verb.

Location in the J CL

• Place all command statements before the first JOB statement in the input stream, if jobs are
also being submitted. JES3 treats any command statements that follow the JOB statement
as comment statements.

• You can enter several command statements at one time.

• You can place command statements at the beginning of the cards in an active card reader
that is being restarted.

• Command statements can be entered through card, tape, or disk readers.

• Command statements cannot be entered through an internal reader.

Examples of the CommaI.d Statement

//**VARY,280,OFFLINE
//**V,281,OFFLINE
//**VARY,282,OFF

//**V,280-282,OFF

In this example, the first three statements each vary one device offline. Alternatively, the fourth
statement varies all three devices offline. If you place these cards in card reader OlC, for
example, and it is currently not in use, the operator would then enter:

*X CR,IN=OlC

//**MESSAGE,CN1,OUTPUT FROM JOB X REQUIRES SPECIAL CONTROLS

This statement instructs the operator from a remote location. Place this statement before the
first job in the input stream.

17-4 MVS JCL

JES3: I/*DAT ASET

//*DATASET Statement

Purpose: Use the //*DATASET statement to identify the beginning of an in-stream data set,
which can contain JCL and/or data. The data set can be used as input to a dynamic support
program (DSP), such as OUTSERV. .

Note: Make sure the operator includes a C operand on the *CALL command for the reader
that reads a job containing this statement if it contains a MODE = C parameter.

Syntax:

[{NO }]
//*DATASET DDNAME=ddname[,MODE={~}] [,J={YES}] [,eLASS={MSGeLASS}]

[{e}] [{NO}] [{class}]

Parameter Definition

DDNAME = ddname
Specifies the ddname of the DD statement that defines the spooled data set. The ddname
can refer to only one DD statement in the job. You must qualify this ddname to identify
the job step and, if appropriate, the procedure step, that contains the DD statement.
Qualification is in the form stepname.ddname or stepname.procstepname.ddname. The
ddname must match exactly the ddname on the DD statement.

MODE={EIC}
Defines the card-reading mode.

E

C

Indicates that JES3 is to read the cards as EBCDIC with validity checking.

Indicates that JES3 is to read the cards in card image form, that is, in column
binary or data mode 2.

MODE = C is not valid for jobs read from disk or tape, or for jobs submitted from
remote work stations.

J={YESINO}
Indicates how JES3 is to recognize the end of the data set.

JES3 ignores the J parameter when you specify MODE = C, so you must terminate the
data set with a //*ENDDATASET statement.

NO

YES

Indicates that a JOB statement terminates the data set.

Indicates that a / /*ENDDAT ASET statement terminates the data set, because JOB
statements may appear in the data set.

Chapter 17. Coding JES3 Control Statements 17 -5

•

JES3: //*DA T ASET

CLASS = {NO I MSGCLASS I class}
Defines the output class that JES3 is to use for processing the job. If you omit the
CLASS parameter, the default is NO.

NO
Indicates that the system is to assign a default output class.

MSGCLASS

class

Indicates that the data set has the same output class as the MSGCLASS specified
on the JOB statement.

Specifies the output class to be used.

Examples of the / /*DATASET Statement

II*PROCESS OUTSERV
II*DATASET DDNAME=MYPRINT,J=YES

data

II*ENDDATASET
II*FORMAT PR,DDNAME=MYPRINT,COPIES=5

In this example, the / /*DAT ASET statement marks the beginning of the in-stream data set
MYPRINT. The //*FORMAT PR statement requests five copies of it. A //*ENDDATASET
statement marks the end of the data set.

IIJOBl JOB
IIMYPRC PROC
IIPROCl EXEC PGM=FETCH
IIDD6 DD DSNAME=TYPE2

II PEND
IISTEPl EXEC PROC=MYPRC

II*DATASET DDNAME=STEP1.PROC1.DD6,J=YES

data

II*ENDDATASET
IISTEP2 EXEC PGM=A

In this example, the //*DATASET statement marks the beginning of the in-stream data set
defined in DD statement DD6. Note the qualification in the ddname: STEPI identifies the
EXEC statement that calls the in-stream procedure, PROCI is the procedure step that contains
the DD statement, and DD6 is the ddname of the DD statement. The end of the data set is
indicated by a //*ENDDATASET statement.

17-6 MVS JCL

JES3: //*ENDDATASET

//*ENDDATASET Statement

Purpose: Use the //*ENDDATASET statement to indicate the end of an in-stream data set
that was begun with a /j*DATASET statement.

Syntax:

I / /*ENDDATASET

Location in the J CL

The / /*ENDDAT ASET statement must appear immediately after the last record for the data
set.

Example of the //*ENDDATASET Statement

//*DATASET DDNAME=INFO,J=YES

data

//*ENDDATASET

In this example, the //*ENDDATASET statement marks the end of the in-stream data set
INFO.

Chapter 17. Coding JES3 Control Statements 17 -7

JES3: //*ENDPROCESS

//*ENDPROCESS Statement

Purpose: Use the j/*ENDPROCESS statement to indicate the end of a series of jj*PROCESS
statements. The j j*ENDPROCESS statement is optional when a JCL statement follows the last
j j*PROCESS statement in the job, but is required when no JCL statements follow the last
j j*PROCESS statement.

Syntax:

I / /*ENDPROCESS comments

Location in the J CL

Do not place any j j*PROCESS statements after the j j*ENDPROCESS statement.

Example of the //*ENDPROCESS Statement

//*ENDPROCESS END OF PROCESS STATEMENTS

17-8 MVS JCL

JES3: //*FORMAT PR

//*FORMAT PR Statement

Purpose: Use the jj*FORMAT PR statement to specify to JES3 processing instructions for
print data sets. These instructions permit special processing of output data sets, such as:

• Multiple destinations.
• Multiple copies of output with different attributes.
• Forced single or double space control.
• Printer overflow checking.

You can code several j j*FORMAT PR statements for a data set to specify special requirements
for different copies of the data set. You can also code a j j*FORMAT PU statement for the
same data set, thereby both printing and punching it.

Output classes are established at JES3 initialization. These classes group output data sets with
similar characteristics for job output. You should determine if you should use one of these
classes or if you should code a j j*FORMAT PR statement.

Note: The j/*FORMAT PR statement applies only to output data sets printed by JES3. The
statement is ignored for data sets sent to a TSO userid or processed by an external writer.

References: For more information, see "Specifying Data Set Processing Options" on
page 7-43.

Syntax:

//*FORMAT PR,DDNAME={, IddnameISYSMSGIJESJCLIJESMSG} [,parameter] ...

The parameters are:

[CARRIAGE={Qlcarriage-tape-name}]
[FCB={Qlimage-name}]
CHARS={STANDARDI (table-name[,table-name] ...)}
CHNSIZE= {DS I (nnn [, mmm]) }
COMPACT=compaction-table-name
CONTROL={PROGRAMI SINGLE I DOUBLE I TRIPLE}
COPIES={[nnnll] Igroup-value[,group-value] ... }

{ANYLOCAL }
{device-name }
{device-address }
{group-name }

DEST={nodename[.remote] }
{LOCAL }
{([,device-name])}
{(type[,device-address])}
{([,group-name])}
{([,LOCAL])}

EXTWTR=name
FLASH={STANDARDI (overlay-name[,cQunt])}
FORMS={STANDARDlform-name}
MODIFY=(module-name[,trc])
OVFL={ONIOFF}
PRTY=nnn
STACKER={STANDARD/SIC}
THRESHLD=limit
TRAIN={STANDARD I train-name}

Chapter 17. Coding JES3 Control Statements 17-9

JES3: //*FORMAT PR

Parameter Definition

PR
Indicates that this statement is associated with a print data set.

DDNAME = {,lddnameISYSMSGIJESJCLIJESMSG}

Indicates a null DDNAME parameter. This null makes the parameters on this
//*FORMAT PR statement the defaults for the job. These parameters then apply
to all of the job's print data sets, except those covered by a //*FORMAT PR
statement with DDNAME = ddname.

Effect of DDNAME =, Parameter: A / /*FORMAT PR statement that contains
DDNAME =, is called nonspecific; a statement that contains DDNAME = ddname
is called specific.

When you code a nonspecific / /*FORMAT PR statement, the parameters you
specify become the defaults for the job. These parameters apply to all of the job's
print data sets unless overridden by a specific / /*FORMAT PR statement.

Parameters coded on a nonspecific / /*FORMAT PR statement are overridden by
parameters coded on sysout DD statements or by parameters in the JES3 SYSOUT
initialization statement.

ddname
Specifies the ddname of the DD statement that defines the data set you want to
print. The ddname can refer to only one DD statement in the job. You must
qualify this ddname to identify the job step and, if appropriate, the procedure step,
that contains the DD statement. Qualification is in the form stepname.ddname or
stepname.procstepname.ddname. The ddname must match exactly the ddname on
the DD statement. (See the example for the //*DATASET statement.)

SYSMSG
Requests printing of system messages.

JESJCL
Requests printing of JCL statements and messages.

JESMSG
Requests printing of JES3 and operator messages about the job.

CARRIAGE = {~Icarriage-tape-name}

17-10 MVS JCL

Specifies the carriage tape for the 3211, 3203 Model 5, or 1403 Printer for printing this
output class.

6
Indicates the installation standard carriage tape.

carriage-tape-name
Identifies the name of the carriage tape. The name is 1 through 8 characters.

JES3: //*FORMAT PR

For the 3211 and 3203-5, SYS1.lMAGELIB must contain a module for each
carriage tape name.

Note: You cannot code both the CARRIAGE and FCB parameters on the same
jj*FORMAT PR statement.

CHARS = {STANDARD I (table-name[,table-name) .•.) }
Specifies the name of one or more character-arrangement tables for printing the data set
on a 3800 Printing Subsystem.

You can omit the parentheses if you code only one table-name.

STANDARD
Indicates the standard character-arrangement table, which was specified at JES3
initialization.

table-name
Specifies the name of a character-arrangement table. Each table-name is 1 to 4
alphanumeric or national characters. When coding more than one table-name,
parentheses are required around the list and null positions are invalid in the list.

CHNSIZE = {DSI(nnn[,mmm»}
Specifies the number of logical records to be transmitted to a work station as a systems
network architecture (SNA) chain and indicates whether normal output checkpoints are to
be taken for this data set.

Note: This parameter is valid only when transmitting to a SNA work station.

Be careful in selecting subparameters, because each affects performance differently.
Sending the data set as a SNA chain provides the best performance, but can cause
duplicate data to be written to the output device if operator intervention is required. The
remote operator can eliminate duplicate data by issuing commands to reposition and
restart the output writers.

When an end-of-chain indicator is sent in the data set, JES3 takes an output checkpoint.
You can provide additional checkpoints for critical data by sending an end-of-chain
indicator. For example, when printing bank checks, you can have an output checkpoint
taken for each check by specifying each check as a SNA chain.

DS

nnn

mmm

Indicates that the data set is to be sent as a single SNA chain and that JES3 is to
take normal output checkpoints. DS is the default.

Specifies the SNA chain size in pages. nnn is a decimal number from 1 through
255. The size of a page is determined by:

• The value of mmm.
• The carriage control characters in the data that skip to channell.

Specifies the number of logical records in a page, when the data contains no
carriage control characters. mmm is a decimal number from I through 255.

Chapter 17. Coding JES3 Control Statements 17 -11

JES3: //*FORMAT PR

COMPACT = compaction-table-name
Specifies the compaction table for JES3 to use when sending a systems network
architecture (SNA) data set to a SNA remote terminal. The compaction-table-name is a
symbolic name defined by the installation during JES3 initialization. The name is 1 to 8
alphanumeric characters.

JES3 performs compaction using an installation-defined default table and writes a
message to the console when:

• You do not specify a compaction table.
• You specify an invalid compaction table.
• You specify a compaction table that JES3 cannot find.

If the installation has not defined a default table, JES3 sends the data without compacting
it.

If the remote printer does not support compaction, JES3 ignores the COMPACT
parameter and sends the data without compacting it.

CONTROL = {PROGRAM I SINGLE I DOUBLE I TRIPLE}
Indicates either that each logical record starts with a carriage control character or that the
output is to be printed with single, double, or triple spacing.

PROGRAM
Indicates that each logical record in the data set begins with a carriage control
character. The carriage control characters can be in either the extended USASCII
code or the actual channel command code. The carriage control characters are
given in Data Management Services.

SINGLE
Requests forced single spacing.

DOUBLE
Requests forced double spacing.

TRIPLE
Requests forced triple spacing.

COPIES = {(nnn 1111 group-value(,group-value) ... }

17-12 MVS JCL

Indicates how many copies of the data set are to be printed. If a COPIES parameter is
not specified, the default is 1.

nnn
Specifies how many copies of the data set are to be printed; each copy will be in
page sequence order. nnn is a number from 0 through 255. If you code
COPIES = 0, JES3 does not print this data set.

You can omit the parentheses if you code only nnn.

JES3 ignores nnn if any group-values are specified.

JES3: //*FORMAT PR

group-value
Specifies how many copies of each page are to be printed before the next page is
printed. Each group-value is a number from 1 through 255. You can code a
maximum of eight group-values. Their sum must not exceed 255. The total copies
of each page equals the sum of the group-values.

This subparameter is valid only for 3800 output. It overrid~s an nnn subparameter.

DEST = destination
Routes the output to a printer. This parameter overrides the / /*MAIN statement ORG
parameter.

If you omit DEST, JES3 assigns the first available printer that is in the origin group and
that fulfills all processing requirements. The origin group is the group of printers defined
for the local or remote submitting location. If the job originated at a remote job
processing (RJP) terminal, JES3 returns the output to the originating terminal group.

ANYLOCAL
Indicates any local device (a printer being used for the output class specified on the
DD statement) attached to the global processor.

device-name
Specifies a local device by a symbolic name defined by the installation during JES3
initialization. device-name is I to 8 alphanumeric or national characters.

device-address
Specifies the 3-character physical device address.

group-name
Specifies a group of local devices, an individual remote station, or a group of
remote stations by a symbolic name defined by the installation during JES3
initialization. group-name is 1 to 8 alphanumeric or national characters.

nodename
Specifies a node by a symbolic name defined by the installation during JES3
initialization. nodename is I to 8 alphanumeric or national characters.

remote
Specifies a remote work station or VM userid to which the receiving node directs
output. remote is 1 to 8 characters.

LOCAL

(type)

Indicates any local device that is attached to the global processor and that does not
belong to a group.

Note: When you code DEST = LOCAL, your installation must have at least one
local device that is not assigned to a group.

Specifies a device classification. type is in the form (gggssss) where ggg is the general
device classification and ssss is the specific device classification. The type must be
enclosed in parentheses. The type must be defined by the installation during JES3
initialization. For example, type for a 3800 is (PRT3800).

Chapter 17. Coding JES3 Control Statements 17 -13

•

JES3: //*FORMAT PR

EXTWTR = name
Identifies the external writer that is to process the data set at the destination node. name
is 1 to 8 alphanumeric characters and must identify a module defined to the remote JES3
node that is to execute the job.

FeB = {~Iimage-name}
Specifies the forms control buffer (FeB) image JES3 is to use to guide printing of the
output data set by a 3211 Printer, 3203 Printer Model 5, or 3800 Printing Subsystem or
by a printer supported by systems network architecture (SNA) remote job processing
(RJP).

If the data set is to be produced on some other device, JES3 ignores the FCB parameter.

6
Indicates the standard FCB. JES3 uses the standard FCB specified at JES3
initialization.

image-name
Specifies the name of the FCB image. The name is 1 to 4 alphanumeric or national
characters and is the last characters of a SYSl.IMAGELIB member:

• The FCB2xxxx member for a 3211, 3203 model 5, or printer supported by SNA.
• FCB3xxxx member for a 3800.

Note: You cannot code both the CARRIAGE and FCB parameters on the same
/ /*FORMAT PR statement.

FLASH = {STANDARD I (overlay-name(,count))}

17-14 MVS JCL

Identifies the forms overlay to be used in printing the output data set on a 3800 Printing
Subsystem and, optionally, to specify the number of copies on which the forms overlay is
to be printed.

You can omit the parentheses if you code only one overlay-name.

If you omit the count subparameter or specify a count of 0, JES3 flashes all copies with
the specified overlay.

STANDARD
Indicates the standard forms flash overlay. JES3 uses the standard forms overlay
specified at JES3 initialization.

overlay-name

count

Identifies the forms overlay frame that the operator is to insert into the printer
before printing begins. The name is 1 to 4 alphanumeric or national characters.

Specifies the number of copies, 0 to 255, of copies that JES3 is to flash with the
overlay, beginning with the first copy printed. If you specify a count of 0, JES3
flashes all copies.

Note: See the Forms Design Reference Guide for the IBM 3800 Printing Subsystem for
information on designing and making forms overlays.

JES3: //*FORMAT PR

FORMS = {STANDARD I form-name}
Specifies the forms on which the output data set is to be printed.

STANDARD
Indicates the standard form. JES3 uses the standard form specified at JES3
initialization.

form-name
Specifies the print forms. form-name is 1 to 8 alphanumeric characters.

MODIFY = (module-name(,tre))
Specifies a copy modification module that tells JES3 how to print the output data set on a
3800 Printing Subsystem. The module can specify how to replace blanks or data in the
data set. You can omit the parentheses if you code only a module-name.

The module is defined and stored in SYS I.lMAGELIB using the IEBIMAGE utility
program. See the IBM 3800 Printing Subsystem Programmer's Guide for more
information.

If you omit the trc subparameter, JES3 prints the data set with the first
character-arrangement table coded in the CHARS parameter.

module-name

tre

Identifies a copy modification module in· SYSl.IMAGELIB. module-name is 1 to 4
alphanumeric or national characters.

Identifies which table-name in the CHARS parameter is to be used. This table
reference character is 0 for the first table-name specified, I for the second, 2 for the
third, or 3 for the fourth. .

OVFL = {ONIOFF}
Specifies whether or not the printer program should test for forms overflow.

Because the overflow test is a responsibility of the terminal package for the remote RJP
terminal, JES3 ignores OVFL for remote job processing. For additional information on
the use of OVFL, see "Requesting Printer Form and Character Control" on page 7-58.

ON

OFF

Indicates that the printer program should eject whenever the end-of-forms indicator
(channel 12) is sensed.

Indicates that forms overflow control is not to be used.

PRTY=nnn
Specifies the priority at which the data set enters the output queue. nnn is a decimal
number from 0 through 255; 0 is the lowest priority while 255 is the highest.

Chapter 17. Coding JES3 Control Statements 17 -15

JES3: //*FORMAT PR

STACKER = {STANDARDISIC}
Specifies the stacker for the 3800 Printing Subsystem output.

STANDARD

S

C

Indicates the standard installation default. This default is specified at JES3
initialization.

Indicates the burster-trimmer-stacker, in which the output is burst into separate
sheets.

Indicates the continuous forms stacker, in which the output is left in continuous
fanfold.

THRESHLD = limit
Specifies the maximum size for the output data set. JES3 calculates the output data set
size as the number of records multiplied by the number of copies requested. When this
size exceeds the THRESHLD value, JES3 creates a new unit of work, on a data set
boundary, and queues it for printing. Consequently, copies of the output data set may be
printed simultaneously by different printers.

Use the THRESHLD parameter for jobs that generate many large data sets. Grouping
data sets as a single unit of work for an output service writer may decrease the time
required for the output service writer to process the data sets.

The value specified in this parameter overrides the value specified during JES3
initialization.

limit
Specifies the maximum records for a single output data set. limit is a decimal
number from I through 99999999. The default is 99999999.

TRAIN = {STANDARD I train-name }

17-16 MVS JCL

Specifies the printer train to be used in printing the output data set. See "Requesting a
Special Character Set Using the UCS Feature" on page 7-59 for the IBM-supplied trains.
Because these trains are not standard machine features, verify that the installation has the
required printer train before specifying it.

Do not code the TRAIN parameter for output destined for a remote job processing (RJP)
terminal.

STANDARD
Indicates the standard installation default. This default is specified at JES3
ini tializa ti on.

train-name
Specifies an installation-supplied printer train. Check with your installation for the
names of trains.

JES3: //*FORMAT PR

Relationship to Sysout DD and OUTPUT JCL Statements

• JES3 ignores the processing options specified on a default / /*FORMAT statement when a
sysout DD statement explicitly or implicitly references an OUTPUT JCL statement.

• JES3 ignores the processing options specified on a default OUTPUT JCL statement when a
/ /*FORMAT statement explicitly references a sysout DD statement.

• When a sysout DD statement explicitly references an OUTPUT JCL statement and a
//*FORMAT statement explicitly references the same DD statement, the processing options
from both the OUTPUT JCL and / /*FORMAT statements apply. Two separate sets of
output are created from the data set defined by the sysout DD statement; one according to
the processing options on the OUTPUT JCL statement, and the other according to the
processing options on the / /*FORMAT statement.

Relationship to //*PROCESS Statement

JES3 accumulates / /*FORMAT PR statements within a job and applies them to any JES3
/ /*PROCESS statement that is normally affected by a j j*FORMAT PR statement.

Examples of the //*FO RMAT PR Statement

//*FORMAT PR,DDNAME=REPORT,COPIES=2

This statement requests two copies of the data set defined by DD statement REPORT. Any
printer with standard forms, train, and carriage tape can be used.

//*FORMAT PR,DDNAME=,DEST=ANYLOCAL

This statement specifies that all data sets without j j*FORMAT PR statements are to be printed
on any local printer.

Chapter 17. Coding JES3 Control Statem~~nts 17 -1 7

JES3: //*FORMAT PU

//*FORMAT PU Statement

Purpose: Use the //*FORMAT PU statement to specify to JES3 processing instructions for
punch data sets. These instructions permit special processing of output data sets, such as:

• Multiple destinations.
• Multiple copies of output with different attributes.

You can code several //*FORMAT PU statements for a data set to specify special requirements
for different copies of the data set. You can also code a / /*FORMAT PR statement for the
same data set, thereby both printing and punching it.

Output classes are established at JES3 initialization. These classes group output data sets with
similar characteristics for job output. You should determine if you should use one of these
classes or if you should code a //*FORMAT PU statement.

Note: The / /*FORMAT PU statement applies only to output data sets punched by JES3.
The statement is ignored for data sets sent to a TSO userid or processed by an external writer.

References: For more information, see "Specifying Data Set Processing Options" on
page 7-43.

Syntax:

//*FORMAT PU,DDNAME={, Iddname} [,parameter] ...

The parameters are:

CHNSIZE={DS I (nnn [,mmm])}
COMPACT=compaction-table-name
COPIES= {nnn I]J

{ANYLOCAL }
{device-name }
{device-address }
{group-name }

DEST={nodename[.remote] }
{LOCAL }
{ ([,device-name]) }
{(type ,device-address])}
{ ([, group-name]) }
{ ([, LOCAL]) }

EXTWTR=name
FORMS={STANDARDlform-name}
INT={YESINO}

17-18 MVS JCL

JES3: //*FORM.I.«\T PU

Parameter Definition

PU
Indicates this statement is associated with a punch data set.

DDNAME = {, Iddname}

Indicates a null DDNAME parameter. This null makes the parameters on this
//*FORMAT PU statement the defaults for the job. These parameters then apply
to all of the job's punch data sets, except those covered by a /j*FORMAT PU
statement with DDNAME = ddname.

Effect of DDNAME =, Parameter: A / /*FORMAT PU statement that contains
DDNAME =, is called nonspecific; a statement that contains DDNAME = ddname
is called specific.

When you code a nonspecific / /*FORMAT PU statement, the parameters you
specify become the defaults for the job. These parameters apply to all of the job's
punch data sets unless overridden by a specific / /*FORMAT PU statement.

Parameters coded on a nonspecific //*FORMAT PU statement are overridden by
parameters coded on sysout DD statements or by parameters in the JES3 SYSOUT
initialization statement.

ddname
Specifies the ddname of the DD statement that defines the data set you want to
punch. The ddname can refer to .only one DD statement in the job. You must
qualify this ddname to identify the job step and, if appropriate, the procedure step,
that contains the DD statement. Qualification is in the form stepname.ddname or
stepname.procstepname.ddname. The ddname must match exactly the ddname on
the DD statement. (See the example for the //*DATASET statement.)

CHNSIZE = {DSI(nnn(,mmm))}
Specifies the number of logical records to be transmitted to a work station as a systems
network architecture (SNA) chain and indicates whether normal output checkpoints are to
be taken for this data set.

Note: This parameter is valid only when transmitting to a SNA work station.

Be careful in selecting subparameters, because each affects performance differently.
Sending the data set as a SNA chain provides the best performance, but can cause
duplicate data to be written to the output device if an operator intervention is required.
The remote operator can eliminate duplicate data by using existing commands to
reposition and restart the output writers.

When an end-of-chain indicator is sent in the data set, JES3 takes an output checkpoint.
You can provide additional checkpoints for critical data by sending an end-of-chain
indicator. For example, when punching bank checks, you can have an output checkpoint
taken for each check by specifying each check as a SNA chain.

Chapter 17. Coding JES3 Control Statements 17 -19

JES3: //*FORMAT PU

DS

nnn

mmm

Indicates that the data set is to be sent as a single SNA chain and that JES3isto
take normal output checkpoints. DS is the default.

Specifies the SNA chain size in pages. nnn is a decimal number from I through
255. The size of a page is indicated by the value you assign to mmm.

Specifies the number of logical records in a page. mmm is a decimal number from 1
through 255.

COMPACT = compaction-table-name
Specifies the compaction table for JES3 to use when sending a systems network
architecture (SNA) data set to a SNA remote terminal. The compaction-table-name is a
symbolic name defined by the installation during JES3 initialization. The name is 1 to 8
alphanumeric characters.

JES3 performs compaction using an installation-defined default table and writes a
message to the console when:

• You do not specify a compaction table.
• You specify an invalid compaction table.
• You specify a compaction table that JES3 cannot find.

If the installation has not defined a default table, JES3 sends the data without compacting
it.

If the remote punch does not support compaction, JES3 ignores the COMPACT
parameter and sends the data without compacting it.

COPIES = {nnnll}
Indicates how many copies of the data set are to be punched. nnn is a number from 0
through 255. If you code COPIES = 0, JES3 does not punch this data set. If a COPIES
parameter is not specified, the default is 1.

DEST = destination

17-20 MVS JCL

Routes the output to a punch. This parameter overrides the / /*MAIN statement ORG
parameter.

If you omit DEST, JES3 assigns the first available punch that is in the origin group and
that fulfills all processing requirements. The origin group is the group of punches defined
for the local or remote submitting location. If the job originated at a remote job
processing (RJP) terminal, JES3 returns the output to the originating terminal group.

ANYLOCAL
Indicates any local device (a punch being used for the output class specified on the
DD statement) attached to the global processor.

device-name
Specifies a local device by a symbolic name defined by the installation during JES3
initialization. device-name is 1 to 8 alphanumeric or national characters.

JES3: //*FORMAT PU

device-address
Specifies the 3-character physical device address.

group-name
Specifies a group of local devices, an individual remote station, or a group of
remote stations by a symbolic name defined by the installation during JES3
initialization. group-name is 1 to 8 alphanumeric or national characters.

nodename
Specifies s node by a symbolic name defined by the installation during JES3
initialization. nodename is 1 to 8 alphanumeric or national characters.

remote
Specifies a remote work station or VM userid to which the receiving node directs
output. remote is 1 to 8 characters.

LOCAL

(type)

Specifies any local device that is attached to the global processor and that does not
belong to a group.

Note: When you code DEST = LOCAL, your installation must have at least one
local device that is not assigned to a group.

Specifies a device classification. type is in the form (gggssss) where ggg is the general
device classification and ssss is the specific device classification. The type must be
enclosed in parentheses. The type must be defined by the installation during JES3
initialization. For example, type for a 3525 is (PUN3525).

EXTWTR = name
Identifies the external writer that is to process the data set at the destination node. name
is 1 to 8 alphanumeric characters and must identify a module defined in the remote JES3
node that is to execute the job.

FORMS = {STANDARD I form-name}
Specifies the forms on which the output data set is to be punched.

STANDARD
!

Indicates the standard form. JES3 uses the standard form specified at JES3
initialization.

form-name
Specifies the punch forms. form-name is 1 to 8 alphanumeric characters.

INT = {YESINO}
Specifies whether or not the output is to be interpreted. If an INT parameter is not
coded, the default is NO.

YES
Requests that JES3 try to punch the output data set on a 3525 Card Punch
(PUN3525I) with a Multiline Card Print feature.

Note: If the DEST parameter does not send output to a 35251, JES3 ignores
INT = YES, if specified.

Chapter 17. Coding JES3 Control Statements 17 -21

JES3: Il*F,ORMAT PU

NO
Requests that the cards not be interpreted.

Relationship to Sysout DD .. and OUTPUT JC;L Statements

• JES3 ignores the processing options specified on a default //*FORMAT statement when a
sysout DD statement explicitly or implicitly references an OUTPUT JCL statement.

• JES3 ignores the processing options specified on a default OUTPUT JCL statement when a
/ /*FORMAT statement explicitly references a sysout DD statement.

• When a sysout DD statement explicitly references an OUTPUT JCL statement and a
/ /*FORMAT statement explicitly references the same DD statement, the processing options
from both the OUTPUT JCL and //*FORMAT statements apply. Two separate sets of
output are created from the data set defined by the sysout DD statement; one according to
the processing options on the OUTPUT JCL statement, and the other according to the
processing options on the / /*FORMAT statement.

Relationship to //*PROCESS Statement

JES3 accumulates / /*FORMAT PU statements within a job and applies them to any JES3
/ /*PROCESS statement that is normally affected by a / /*FORMAT PU statement.

Example of the //*FORMAT PU Statement

//*FORMAT PU,DDNAME=PUNCHOUT,DEST=PUl,FORMS=RED-STRP

This statement requests that one copy of the data set defined by DD statement PUNCHOUT
be punched on device PUl. Before processing, the operator is requested to insert RED-STRP
cards into the punch.

17-22 MVS JCL

·JES3: //*MAIN

//*MAIN Statement

Purpose: Use the //*MAIN statement to define the processor requirements for the current job.
Many of the parameters are used to override parameters on the JES3 STANDARDS
initialization statement.

Note: If any parameter is misspelled or contains an invalid value, JES3 writes the following to
the JESMSG data set: the //*MAIN statement, the relative error position on the statement,
and an error message. Then JES3 abnormally terminates the job.

Syntax:

//*MAIN parameter[,parameter] ...

The parameters are:

ACMAIN=processor-id

BYTES= ([nnnnnn] [[, WARNING I , W]])
([[, CANCEL I , C]])
([[, DUMP I , D]])

CARDS= ([nnn] [[, WARNING I , W]])
([[, CANCEL I , C]])
([[, DUMP I , D]])

CLASS=class-name

DEADLINE=(time,type[,date])
([,rel,cycle])

EXPDTCHK={YESINO}
FAILURE={RESTARTlcANCELIHOLDIPRINT}
FETCH={ALLINONE I SETUP I [I] (ddname[,ddname] ...)}
HOLD={YESINO}
IORATE={MEDI HIGHI LOW}
JOURNAL={YESINO}

LINES= ([nnn] [[, WARNING I , W]])
([[, CANCEL I , C]])
([[, DUMP I , D]])

LREGION=nnnnK
MSS={JOBIHWS}
ORG={group-namelnodename[.remote]}

PAGES=([nnnnnnnn] [[,WARNINGI ,W]])
([[, CANCEL I , C]])
([[, DUMP I , D]])

PROC={STlxx}
RINGCHK={YESINO}
SETUP={JOBIHWSITHWSI [I] (ddname[,ddname] •..)}
SPART=partition-name
SYSTEM={ANYIJGLOBALIJLOCALI [I] (main-name},main-name] ...)}
TRKGRPS=(primary-quantity,secondary-quantity)
TYPE={ANYIVS2}
UPDATE=(dsn[,dsn] ...)
USER=userid

Chapter 17. Coding JES3 Control Statements 1 7-23

I
I

. I

JES3: //*MAIN

Parameter Definition

ACMAIN = processor-id
Identifies the job with the specified processor, even though the job was not submitted
from or executed on that processor. This parameter has no effect if it specifies the
processor that the job is running on. ACMAIN allows:

• Sysout data sets to be sent to the specified processor. See the USER parameter.
When used for sysout data sets, the ACMAIN parameter applies to all sysout output
for the job.

• A job termination message to be sent to the specified processor if the JOB statement
contains a NOTIFY parameter.

processor-id
Identifies a processor in the complex.

BYTES = «(nnnnnnlll,WARNING/,WIII,CANCEL/,CIII,DUMP/,D)))
Specifies the maximum number of bytes of data to be spooled for this job, and the action
to be taken if the maximum is exceeded.

If BYTES is not specified, the installation default for this job class applies.

nnnnnn
Specifies the number of bytes in thousands. nnnnnn is 6 decimal numbers from 1
through 999999.

WARNINGIW
If the maximum is exceeded, requests that JES3 issue an operator warning message
and continue processing.

Any messages about this parameter following the warning message will reflect the
number specified on the STANDARD initialization statement or the system default,
not the specified maximum.

CANCELIC
If the maximum is exceeded, requests that JES3 cancel the job.

DUMPID
If the maximum is exceeded, requests that JES3 cancel the job and ask for a storage
dump.

CARDS = ([nnnlll, WARNING I, WII[,CANCELI,CIII,DUMPI,DII)

17-24 MVS JCL

Specifies the maximum number of cards to be punched for this job, and the action to be
taken if the maximum is exceeded.

If you specify CARDS = 0 the zero applies only to the quantity of punched output; it
does not cancel the action to be taken if the maximum is exceeded. If a record is then
sent to a punch, JES3 will warn, cancel, or dump, depending on the second parameter.

Note: When punching dump output, JES3 ignores CARDS =0.

If CARDS is not specified, the installation default for this job class is used.

nnn

JES3: //*MAIN

Specifies the number of cards in hundreds. nnn is 3 decimal numbers from I
through 999.

WARNINGIW
If the maximum is exceeded, requests that JES3 issue an operator warning message
and continue processing. .

Any subsequent messages about this parameter will reflect the number specified on
the STANDARD initialization statement or the system default, not the maximum
specified in the CARDS parameter.

CANCELIC
If the maximum is exceeded, requests that JES3 cancel the job.

DUMPID
If the maximum is exceeded, requests that JES3 cancel the job and ask for a storage
dump.

CLASS = class-name
Specifies the job class for this job. class-name can be I to 8 characters.

This CLASS parameter overrides the JOB statement CLASS parameter; if you omit this
CLASS parameter, JES3 uses the job class specified in the JOB statement CLASS
parameter. If the class-name is a single-character, you may instead use the JOB statement
CLASS parameter.

If neither CLASS nor LREGION is specified, JES3 determines the logical region size
based on initialization parameters.

DEADLINE = (time,type(,dateI ,rel,cycle))
Specifies when the job is required.

If you specify the current date but submit the job after the specified time, JES3 changes
the priorities to make the job the same priority level it would have been had it been
submitted before the deadline but not completed.

Potentially, deadline scheduling can interfere with dumping a portion of the job queue.
For example, if JOB A is waiting to be scheduled, has a priority of 7, and,in one minute,
is due to have its priority increased to 9, JOB A could be missed by dump job processing,
if the dump job facility is dumping the entire job queue and currently dumping priority 8
jobs. The dump job facility processes the jobs with the highest priority first. If the dump
job facility does not finish processing priority 8 jobs before JOB A becomes priority 9,
JOB A will not be dumped.

Deadline scheduling information is not sent with a job when the job is transferred via
NJE to another node; the destination node may use different deadline scheduling
algorithms, if any.

Chapter 17. Coding JES3 Control Statements 17-25

JES3: //*MAIN

17-26 MVS JCL

time

type

date

rei

cycle

Specifies the deadline time, expressed as one of the following:

nM

nH

hhhh

The job is to be scheduled within n minutes. n is 1 to 4 numbers from 0
through 1440.

The job is to be scheduled within n hours. n is 1 or 2 numbers from 0
through 24.

The job is to be scheduled by the time of day, hhhh, in 24-hour clock time
(0800 is 8:00 a.m.). hhhh is 4 numbers from 0000 to 2400.

Identifies the type of deadline. The type is defined by the installation and is one
character: A through Z or 0 through 9. If the type is not defined, JES3 abnormally
terminates the job.

Specifies the date when the time parameter takes effect. date, in the format
mmddyy, is given as the month (01-12), day (01-31), and year (00-99).

If both date and rel,cycle are omitted, JES3 assumes (1) the current date, if the
deadline time is later in the day, or (2) the next day's date, if the deadline time has
already past today.

Specifies on which day within the cycle the deadline falls. reI is 1 to 3 numbers
from 1 through 366. The value of reI depends on the specified cycle, as follows:

• Values coded with WEEKLY default to 7 if greater than 7. Sunday is day 1;
Saturday is day 7.

• Values coded with MONTHLY default to 31 if greater than 31. The values 29,
30, and 31 are treated as the last day of the month.

• Values coded with YEARLY default to 365, for all non-leap years, if greater
than 365. Leap year defaults to 366.

Specifies periodic runs. cycle is coded as WEEKLY, MONTHLY, or YEARLY.

For example, DEADLINE = (1200,B,I,WEEKLY) indicates that the job reaches its
deadline at 12 noon every Sunday.

JES3: //*MAIN

EXPDTCHK = {YESINO}
Specifies whether or not lES3 is to perform expiration date checking for scratch IBM
standard label (SL) output tape volumes.

YES

NO

Requests expiration date checking. Tape volumes premounted for SL scratch
requests must have expired dates.

Requests that expiration dates not be checked.

FAILURE = {RESTARTICANCELIHOLDIPRINT}
Specifies the job recovery option to be used if the system fails.

RESTART
Requests that lES3 restart the job when the failing processor is restarted. Do not
specify RESTART for jobs that use the DEQ at DEMOUNT facility for tape
volumes.

CANCEL
Requests that lES3 cancel the job for printing.

HOLD
Requests that lES3 hold the job for restart.

PRINT
Requests that lES3 print the job and then hold the job for restart.

FETCH = {ALL INONE I SETUP Il/)(ddname(,ddname) ...)}
Determines the fetch messages that will be issued to the operator for disk and tape
volumes for this job.

If FETCH is not specified, the installation default for this job class applies.

ALL
Requests that lES3 issue fetch messages to the operator for all removable volumes
specified in DD statements that request lES3-setup devices. This subparameter does
not apply to permanently resident volumes.

NONE
Requests that lES3 not issue fetch messages.

SETUP
Requests that lES3 issue fetch messages to the operator for the volumes specified in
all DD statements identified in the //*MAIN SETUP parameter. If you code
FETCH = SETUP without also coding the / /*MAIN SETUP parameter, lES3 will
issue fetch message as though you had specified FETCH = ALL.

ddname
Requests that lES3 issue fetch messages for only the volumes specified in DD
statement ddname.

If you code a list of ddnames and the list cannot be contained on a single statement,
FETCH = must be repeated on the continuation statement.

Chapter 17. Coding JES3 Control Statements 17-27

JES3: //*MAIN

I
Coding jddname requests that JES3 not issue fetch messages for any volumes
specified in DD statement ddname.

HOLD = {YESINO}

YES

NO

Indicates that the job is to enter the system in operator-hold status and be withheld
from processing until the operator requests its release. However, if an error occurs
during input service processing, the job is not held for operator intervention but is
scheduled for converter-interpreter processing.

This parameter has the same function as TYPRUN = HOLD on the JOB statement.

Indicates that the job is to enter the system normally. Processing does not require
operator intervention.

IORATE = {MEDIHIGHILOW}
Indicates the IjO-to-processor ratio for a job. Use this parameter to balance the mixture
of jobs selected for execution on the processor.

If IORATE is not specified, the installation default for this job class applies.

JOURNAL = {YESINO}
Indicates whether or not JES3 is to create a job journal for the job.

If JOURNAL is not specified, JES3 uses an installation default specified at initialization.

YES
Indicates that the job is to have a job journal.

NO
Indicates that the job is not to have a job journal.

LINES = ((nnnJ[(,WARNING I ,WI II,CANCELI,CJI (,DUMP I,DII)

17~28 MVS JCL

Indicates the maximum number of lines of data to be printed for this job, and the action
to be taken if the maximum is exceeded.

If you specify LINES = 0 the zero applies only to the number of lines; it does not cancel
the action to be taken if the maximum is exceeded. If a record is sent to be printed, JES3
will warn, cancel, or dump, depending on the second parameter.

Note: JES3 ignores any line count specification when printing the output for a
SYSABEND or SYSUDUMP sysout data set.

If LINES is not specified, the installation default for this job class applies.

nnn
Specifies the number of lines, in thousands. nnn is 3 decimal numbers from 1
through 999.

JES3: //*MAIN

WARNINGIW
If the maximum is exceeded, requests that JES3 issue an operator warning and
continue processing.

Any messages about this parameter following the warning message will reflect the
number specified on the STANDARD initialization statement or the system default,
not the maximum specified in the LINES parameter.

CANCELIC
If the maximum is exceeded, requests that JES3 cancel the job.

DUMPID
If the maximum is exceeded, requests that JES3 cancel the job and ask for a storage
dump.

LREGION = nnnnK
Specifies the approximate size of the largest step's working set in real storage during
execution. LREGION (logical region) is used by JES3 to improve scheduling on the
processor.

If neither CLASS nor LREGION is coded, JES3 determines the logical region size based
on initialization parameters.

Consult your system programmer when specifying an LREGION parameter. If the values
selected for LREGION are too small, the job may take longer to run.

MSS= {JOBIHWS}
Requests mass storage system (MSS) support and indicates how the MSS devices should
be allocated. This parameter overrides the installation default defined at JES3
initialization.

JOB

HWS

Specifies that each request for 3330V Disk Storage is to be assigned to a separate
device.

Specifies that 3330V devices are to be reused in subsequent job steps in order to
minimize the number of devices needed for the job.

Note: The JOB and HWS options are independent across device types. For example,
HWS can be specified in the SETUP parameter for non-MSS devices while JOB is
specified in the MSS parameter for MSS devices, or vice versa.

ORG = {group-namelnodename(.remote)}
Indicates that the job's output is to be directed to the specified origin group or
networking node.

Normally, output from a job is directed to the group of devices or node from which it
originated. This parameter is used to override the origin group name or nodename of the
device actually used to enter the job into the JES3 system.

Chapter 17. Coding JES3 Control Statements 17 -29

•

JES3: //*MAIN

group-name
Specifies an origin group.

nodename
Specifies a network node. nodename is 1 to 8 characters .

. remote
Specifies a remote work station or VM userid. remote is 1 to 8 characters and must
be separated from the nodename by a period.

Overriding an ORG Parameter: If you do not want a particular data set in the job to go
to the destination on the ORG parameter, change its destination in one of the following
ways:

• If the data set is not scheduled to a held class, override the destination on the ORG
parameter by directly referencing the DD statement that defines the output data set in
a j j*FORMAT statement. Specify the desired destination in the j j*FORMAT
statement DEST parameter.

• If the data set is a sysout data set, including one scheduled to a held class, override
the ORG parameter by explicitly or implicitly referencing an OUTPUT JCL
statement on the sysout DD statement. Specify the desired destination in the
OUTPUT JCL statement DEST parameter.

PAGES = «nnnnnnnnJ[[,WARNINGI,W]I[,CANCELI,C] I [,DUMP I ,DJ])
Indicates the maximum number of pages to be printed for this job, and the action to be
taken if the maximum is exceeded.

If PAGES is not specified, the installation default for this job class applies.

nnnnnnnn
Specifies the number of pages. nnnnnnnn is 8 decimal numbers from 1 through
16777215.

WARNINGIW
If the maximum is exceeded, requests that JES3 issue an operator warning message
and continue processing.

Any messages about this parameter following the warning message will reflect the
number specified on the STANDARD initialization statement or the system default
value, not the maximum specified in the PAGES parameter.

CANCELIC
If the maximum is exceeded, requests that JES3 cancel the job.

DUMPID
If the maximum is exceeded, requests that JES3 cancel the job and ask for a storage
dump.

PROC= {STlxx}

17-30 MVSJCL

Names the procedure library that the system is to search for cataloged procedures
specified in EXEC statements in the job. If a procedure cannot be found in the named
library, JES3 abnormally terminates the job.

JES3: //*MAIN

If this parameter is omitted, the default depends on the source of the job. If the job is
submitted as a batch job, the default is ST. If the job is submitted from an internal
reader, the default may be another procedure library, as specified by the installation.

ST

xx

Indicates the standard default procedure library.

Identifies the last 2 characters of the ddname of a procedure library. xx is defined
by the installation. If this parameter is coded, only the specified library is searched;
the standard procedure library is not searched.

RINGCHK = {YESINO}
Indicates whether or not JES3 is to check the status of the tape reel ring for tape devices
set up by JES3.

YES
Indicates that a validation check is to be made.

NO
Indicates that ring checking is to be by-passed. for this job.

SETUP = {JOBIHWSITHWSIl/I(ddname(,ddname) ...)}
Modifies the standard setup algorithm used in assigning devices to a job before its
execution.

If SETUP is omitted, the device requirements for mountable tape and disk volumes are
based on an installation default defined at initialization.

JOB
Requests job setup, which is allocation of all JES3-managed devices required in the
job before the job executes. JES3 mounts the initial volumes necessary to run all
steps before the job executes. JOB overrides the SETUP parameter on the JES3
STANDARDS initialization statement.

HWS
Requests high watermark setup, which is allocation of the minimum number of
devices required to run the job. The minimum number is equal to the greatest
number of devices of each type needed for anyone job step. High watermark setup
does not cause premounting of all mountable volumes.

THWS
Requests high watermark setup for tapes but job setup for disks.

DHWS
Requests high watermark setup for disks but job setUp for tapes.

ddname
Specifies explicit setup, which is allocation of the volumes needed for DD statement
ddname before the job executes. JES3 premounts the indicated volumes. When
requesting explicit setup, specify enough devices so that JES3 can allocate all the
required devices at anyone time. If too few devices are specified, JES3 cancels the
job.

Chapter 17. Coding JES3 Control Statements 17-31

•

JES3: //*MAIN

I

You must qualify this ddname to identify the job step and, if appropriate, the
procedure step, that contains the DD statement. Qualification is in the form
stepname.procstepname.ddname. The ddname must match exactly the ddname on
the DD statement. (See the example for the jj*DATASET statement.)

If you code a list of ddnames and the list cannot be contained on a single statement,
SETUP = must be repeated on the continuation statement.

Coding jddname specifies that JES3 is not to set up explicitly any volumes specified
in DD statement ddname.

SP ART = partition-name
Indicates the spool partition in which JES3 is to allocate spool space to this job.

partition-name
Specifies the name of the spool partition. partition-name is I to 8 characters and
must match the partition name specified in the NAME parameter of a JES3 SPART
initialization statement. If the name does not match, JES3 ignores the SPART
parameter and uses the installation default.

The SPART parameter overrides all other spool partition definitions forthis job, except
the SPART parameter on the JES3 SYSOUT initialization statement for output data sets.
If SPART is not specified, JES3 allocates spool data sets to a specific spool partition
according to the following priorities, in override order:

1. The spool partition associated with the job's output class and defined by a JES3
SYSOUT initialization statement.

2. The spool partition associated with the job's class and defined by a JES3 CLASS
initialization statement.

3. The spool partition associated with the executing processor and defined by a JES3
MAINPROC initialization statement.

4. The default spool partition.

SYSTEM = {ANY IJGLOBAL IJLOCAL 1I/)(main-name(,main-name) •••)}

17 .. :32 MVS JCL

Indicates the processor that is to execute this job. If a specific processor is named, the
processor name must also be specified on the CLASS initialization statement for the job
class.

ANY
Indicates any global or local system that satisfies the job's requirements.

JGLOBAL
Indicates that the job is to run on the global processor only.

JLOCAL
Indicates that the job is to run on a local processor only.

main-name
Indicates that the job is to run on one of the specific processors named.

I

JES3: //*MAIN

Coding /main-name specifies that the job is not to run on the specific processor
named.

If you omit a SYSTEM parameter, the job runs on the processor used for the job's class.
Therefore, a SYSTEM parameter is usually unneeded. Check with your system
programmer.

The control program specified in the TYPE parameter must be running on the processor
specified in the SYSTEM parameter, or JES3 abnormally terminates the job.

If you are using different levels of MVS in your complex, code the SYSTEM parameter to
request a system that can interpret and execute the level of JCL you are using. For
information on how to do this, see SP L: JES3 Initialization and Tuning.

The SYSTEM parameter must be consistent with any JES3 / /*PROCESS statements.

TRKGRPS = (primary-quantity,secondary-quantity)
Specifies the number of track groups to be assigned to the job. A track group is a
number of spool space allocation units. The size of the track group is defined in the
GRPSZ parameter on the JES3 BUFFER or SPART initialization statement.

primary-quantity
Specifies the number of track groups to be initially allocated. This quantity is one
decimal number from I to 9.

secondary-quantity
Specifies the number of track groups to be allocated when the currently allocated
groups are filled and more space is needed. This quantity is one decimal number
from I to 9.

The //*MAIN TRKGRPS parameter overrides a TRKGRPS parameter on the CLASS or
MAINPROC initialization statement. However, when a sysout DD statement specifies an
output class, the TRKGRPS parameter for that output class overrides the //*MAIN
TRKGRPS parameter.

TYPE = {ANYIVS2}
Indicates the control program that is to execute this job. If you omit a TYPE parameter,
the job runs under the control program used for the job's class.

ANY

VS2

Indicates that JES3 is to use any control program that satisfies' the job's
requirements. In present systems, JES3 schedules the jot? on MVS.

Indicates that JES3 is to schedule the job on MVS.

UPDATE = (dsn(,dsn) •••)
Identifies the procedure library data set(s) this job is to update. This parameter causes all
jobs using this data set and any concatenated data sets to be held until the update is
complete.

Chapter 17. Coding JES3 Control Statements 17 -33

•

JES3: //*MAIN

dsn
Specifies the data set name.

USER = userid
Identifies the job with the specified TSO user, even though the job was not submitted via
TSO by that user. USER allows:

• Sysout data sets to be sent to a processor for use by the TSO user. See the ACMAIN
parameter.

• The TSO user interacting with a global or local processor to issue the TSO OUTPUT
command to access sysout data sets.

• The TSO user interacting with any processor to inquire about the status of the job or
to cancel the job.

• The TSO user to control a job submitted via an input source other than the internal
reader, provided the installation does not force job naming conventions.

userid
Identifies a TSO userid. userid is 1 to 7 alphanumeric or national characters.
Enclose the userid in apostrophes when it contains special characters or begins with
a number.

Location in the JCL

When you specify ORG on a /j*MAIN statement, the //*MAIN statement should precede all
//*FORMAT statements that do not contain a DEST parameter. If it does not, lES3 uses the
default destination for the / /*FORMAT statements; their output is sent to the node where the
job entered the system.

When specifying ORG on a / j*MAIN statement that is part of a remote job, place the
/ /*MAIN statement immediately after the second. lOB statement.

Example of the //*MAIN Statement

//*MAIN SYSTEM=SYl,LINES=(S,C) ,SETUP=HWS,
//*FAILURE=RESTART,DEADLINE=(0800,A,3,WEEKLY)

The job executes on processor SYI. It is estimated to produce not more than 5000 lines of
printed output; if the output exceeds 5000 lines, lES3 is to cancel the job. HWS specifies high
watermark setup, so lES3 is to allocate the minimum number of devices required for this job.
If the system fails, lES3 is to restart the job on the processor SYI. lES3 is to complete this job
by 8 a.m. every Tuesday (Tuesday is day number 3) by adjusting the job's scheduling priority
using the installation-defined A-type deadline scheduling parameters.

//*MAIN ACMAIN=2,USER='S8BIRD'

If this statement appears in a job entered from any TSO id on any processor in the complex,
then the job's sysout data sets would go to TSO id 58BIRD on processor 2.

17-34 MVS JCL

JES3: //*NET

//*NET Statement

Purpose: Use the / /*NET statement to define the dependencies between jobs in a dependent
job control (DJC) network. JES3 sets up a net of dependent jobs and executes them in a
specific order.

References: For more information, see "Dependent Job Control for JES3: The Job Net" on
page 3-27.

Syntax:

//*NET {NETIDIID}=name[,parameter] ...

The parameters are:

{ABCMPIAC}={NOKPIKEEP}
{ABNORMALIAB}={DIFIR}
{NORMAL INC} = CQ I FIR}
DEVPOOL=({ANYINET} [,dev-name,n] ... [,SDGxx] ...)
DEVRELSE={YESINO}
{NETRELINR}=(netid,jobnarne)
{NHOLDIHC}=n
{NRCMPIPC}={HOLDINOHOIFLSH}
{OPHOLDIOH}={NOIYES}
{RELEASEIRL}=(jobnarne[,jobname] ...)
{RELSCHCTIRS}=n

• Only one / /*NET statement can be coded for each job in a DJC network.
• The / /*NET statement must precede any JES3 / /*PROCESS statements.

Parameter Definition

NETID=name
Specifies the name of the DJC network for this job. name is 1 to 8 characters; the first
character must be alphabetic.

All jobs put into the system with the same NETID name form a DJC network. To add a
job to an existing DJC network, specify the NETID name for that job.

ABCMP = {NOKPIKEEP}
Indicates what action JES3 is to take if the job abnormally terminates.

KEEP
Indicates that the net is to be kept in the system until (1) the job is resubmitted and
completes normally or (2) the operator forces the net from the system. Use KEEP
to make sure that the net is not purged until the operator takes proper action.

NOKP
Indicates that JES3 is to purge the net if the job that abnormally terminated has not
been resubmitted by the time the other jobs in the net have completed. JES3 purges
the net unless successors or subnets are missing.

Chapter 17. Coding JES3 Control Statements 17 -35

JES3: //*NET

Note: If a job abnormally terminates, you can resubmit it to the net, and the net will be
retained until the job completes.

ABNORMAL = {DIFIBJ
NORMAL = {DIFIR}

Indicates the action JES3 is to take for this job when any predecessor job completes
execution normally or abnormally.

D

F

R

Requests that JES3 decrease this job's NHOLD count, which indicates the number
of predecessors for this job. When the NHOLD count goes to zero, JES3 can
schedule this job.

Requests that JES3 flush this job and its successors from the system; JES3 cancels
the job, prints any output, and cancels all successors presently in the system,
regardless of their normal or abnormal specifications. However, JES3 enters into
the system all successor jobs that enter after the net has been flushed. To flush
these jobs, the operator must cancel the jobs or the net.

Requests that JES3 retain this job in the system and not decrease the NHOLD
count. R suspends the job and its successors from scheduling until either the
predecessor job is resubmitted or the operator decreases the NHOLD count.

DEVPOOL = ({ANYINET}(,dev-name,n) ••• (,SDGxx) •.•) .

17-36 MVS JCL

Specifies devices to be dedicated to this DJC net.

The DEVPOOL parameter is recognized only in the first job of a DJe network to enter
the system.

ANY

NET

Indicates that jobs in the net can use any dedicated or undedicated device. JES3
tries to allocate from the dedicated pool before allocating any undedicated devices.

Indicates that jobs can use only devices dedicated to the net.

dev-name,n
Specifies the name and number of a dedicated device. Y oucan specify as many
device-names with numbers as will fit on one statement.

dey-name

n

specifies (1) a device name defined to JES3 by the in~tallation during
initialization or (2) a device-type as specified in the UNIT parameter of an
IODEVICE system generation macro instruction. See SPL: System
Generation Reference for a list of IBM device types.

Specifies the number of named devices. n is a number from 1 through 32767.

JES3: //*NET

SDGxx
Specifies the mass storage system (MSS) staging drive group(s) to be pooled (fenced)
for the DJC network. xx is the staging drive group number.

DEVRELSE = {YESINO}
Indicates when devices dedicated to the net are to be released.

The DEVRELSE parameter can be coded in several jobs in the network. The first
completing job that specified DEVRELSE = YES causes the devices dedicated to the
network to be released.

YES
Requests that JES3 release all devices at the end of this job.

NO
Requests that JES3 release all devices only when the last job in the net ends.

NETREL = (netid,jobname)
Indicates that this job must be executed before the named job in another DJC network
can be executed.

The NETREL parameter can be specified only once for each job of a DJC network.

netid
Identifies the NETID for the successor job.

jobname
Identifies the name on the JOB statement for the successor job.

NHOLD=n
Indicates the number of immediate predecessor job completions required before this job
can be released for scheduling. n is a number from 0 through 32767.

If you specify NHOLD = 0 or omit the NHOLD parameter, this job has no predecessor
jobs. JES3 can schedule it for immediate execution.

If the NHOLD count is incorrect, the following can occur:

• If n is greater than the actual number of predecessor jobs, JES3 does not release this
job for execution when all of its predecessor jobs complete execution .

• If n is less than the actual number of predecessor jobs, JES3 prematurely releases the
job for execution.

NRCMP = {HOLDINOHOIFLSH}
Indicates that a network job that completed normally is being resubmitted and that JES3
must erase all references to the job before the job reenters the network.

Chapter 17. Coding JES3 Control Statements 17 -37

•

JES3: //*NET

HOLD
Indicates that JES3 is to put the job in operator hold status.

NOHO
Indicates that JES3 is to allow the job to be scheduled as system resources become
available.

FLSH
Indicates that JES3 is to flush the job.

OPHOLD = {NOIYES}

NO

YES

Indicates that the job is to be processed normally without operator intervention.

Indicates that the job is placed in DJC operator hold. This subparameter prevents
JES3 from scheduling this job until the operator explicitly releases it from DJC
operator hold.

RELEASE = (jobname[,jobnameJ .•.)
Indicates that this job must be executed before the named the job(s) in this DJC network
can be executed.

jobname
Identifies the name on the JOB statement for a successor job. You can specify from
1 to 50 successor jobnames.

RELEASE is the only parameter on the //*NET statement that can be split and continued
on the next statement.

RELSCHCT=n

17-38 MVS JCL

Controls early set up of a dependent job's resources. Set up begins when the NHOLD
count becomes less than or equal to n. n is a number from 1 through 32767.

If you specify RELSCHCT = 0 or omit the RELSCHCT parameter, JES3 does not set up
dependent jobs early.

Do not specify the RELSCHCT parameter:

• For a job that may have catalog dependencies in dependent job control.

• For nonstandard DJC jobs. Nonstandard jobs contain one or more //*PROCESS
statements.

JES3: //*NET

Examples of the //*NET Statement

//*NET NETID=NET01,NHOLD=O,DEVPOOL=(,3330,2)

This statement defines a DJC network named NETOl. The net contains no predecessor jobs.
The DEVPOOL parameter, which must be coded in the first job in the network, requests that
JES3 establish a device pool of two 3330s for network NETOl.

//*NET NETID=Nl,RL=B,NR=(N2,B2) ,DEVPOOL=(NET,3330,1)

This statement defines a DJC network named Nl. This job must be executed before job B,
which is in Nl, and before job B2, which is in the DJC network named N2. The DEVPOOL
parameter specifies that one 3330 is to be dedicated to network Nl; jobs in the network must
wait for this device if it is in use.

Chapter 17. Coding JES3 Control Statements 17 -3 9

•

JES3: //*NETACCT

//*NETACCT Statement

Purpose: Use the /j*NETACCT statement to specify accounting information that JES3 is to
transmit with a job to another node in the network.

Syntax:

//*NETACCT parameter[,parameter] ...

The parameters are:

PNAME=programmer's-name
ACCT=nnnnnnnn
BLDG=nnnnnnnn
DEPT=nnnnnnnn
ROOM=nnnnnnnn
USERID=nnnnnnnn

• You must code at least one parameter on the / /*NET ACCT statement.

• The / j*NET ACCT statement must immediately follow the first JOB statement and
precede any //*ROUTE XEQ statements.

• You cannot continue a / j*NET ACCT statement. If the parameters occupy too much
space, code several / j*NET ACCT statements.

• Enclose any character string that contains embedded blanks or special characters in
apostrophes.

Parameter Definition

PNAME = programmer's-name
Specifies the programmer's name. The name is 1 to 20 characters.

ACCT = nnnnnnnn
Specifies the network account number. nnnnnnnn is 1 to 8 characters.

BLDG = nnnnnnnn
Specifies the building number in the network. nnnnnnnn is 1 to 8 characters.

DEPT = nnnnnnnn
Specifies the department number in the network. nnnnnnnn is 1 to 8 characters.

ROOM = nnnnnnnn
Specifies the room number in the network. nnnnnnnn is 1 to 8 characters.

USERID = nnnnnnnn
Specifies the user in the network. nnnnnnnn is 1 to 8 characters.

1 T·40 MVS JCL

Defaults

JES3: //*NET ACCT

If no / /*NET ACCT parameter is specified, JES3 uses installation defaults specified at JES3
initializa tion.

Example of the //*NETACCT Statement

//*NETACCT PNAME=COLLINS,ACCT=D588706,USERID=NXT

Chapter 17. Coding JES3 Control Statements 17-41

JES3: II*OPERATOR

//*OPERATOR Statement

Purpose: Use the / /*OPERATOR statement to issue a message to the operator. Columns 1
through 80 are written on the operator console and in the job's hard-copy log when the job
enters the JES3 queue.

Syntax:

I II'OPERATOR text

Example of the //*OPERATOR Statement

//*OPERATOR CALL EXT. 641 WHEN THIS JOB STARTS

17-42 MVS JCL

JES3: l/*P AUSE

//*PAUSE Statement

Purpose: Use the jj*PAUSE statement to halt an input reader temporarily. When you enter a
j j*PAUSE statement through an input reader, JES3 issues a message and waits for the operator
to reply. The system operator must issue a *START command to start the job or a remote
work station with console level 15 must send a start message.

The j j*PAUSE statement is recognized only when it appears before the first JOB statement in
an input stream.

The j j*PAUSE statement is intended primarily for system checkout and test. It should be
issued only by remote work stations.

Syntax:

//*PAUSE comments

At least two blanks must follow the word PAUSE before comments.

Example of the //*PAUSE Statement

//*PAUSE THIS IS A TEST.

Chapter 17. Coding JES3 Control Statements 17-43

•

JES3: //*PROCESS

//*PROCESS Statement

Purpose: Use the jj*PROCESS statement to c~ntrol how JES3 processes a job. A job that
contains j j*PROCESS statements receives only the JES3 processing specified on the
j j*PROCESS statements plus certain required processing.

The jj*PROCESS statement is useful in testing JCL and programs. For instance, a
jj*PROCESS statement can make JES3 bypass program execution so that the job's JCL can be
checked. Another j j*PROCESS statement can make JES3 bypass output processing; then the
operator can check by inquiry command whether the job reached execution.

Specifically, the jj*PROCESS statement calls a dynamic support program (DSP) in the DSP
dictionary. JES3 must be capable of processing the specified DSP.

Syntax:

//*PROCESS dsp
[parameter [,parameter] ...]

If the specified DSP requires parameters, they must be listed on the next statement, starting
in column I, ending in column 72, and separated by commas. Parameters must not extend
into columns 73 through 80, because these columns are used for sequence numbers in jobs
submitted through TSO.

Parameter Definition

dsp

17-44 MVS JCL

Specifies the name of the DSP that JES3 is to process. Figure 17~1 lists the valid DSP
names and whether parameters can follow.

Note: For nonstandard dependent job control (DJC) jobs, a j j*PROCESS DJC
statement is required only when a jj*PROCESS MAIN statement is not included in the
job stream.

JES3: //*PROCESS

DSP DSP Function Parameters

Standard processing:

CI JES3 Converter/Interpreter Service, which Yes (note 1)
interprets the JCL and creates control blocks.

MAIN Main Service, which processes No
the program.

OUTSERV Output Service, which processes the No
job's output.

PURGE Purge service, which purges the job. No
This is the last function in any job.
JES3 automatically creates this DSP.

Other functions:

CBPRNT Control Block Print Yes (note 1)

DISPDJC Display Dependent Job Control Yes (note 1)

DISPLAY Display Job Queues Yes (note 1)

DJC Invoke Dependent Job Control No
Updating

DR Disk Reader Yes (note 2)

ISDRVR Input Service Driver (JES3 Control Yes (Qualified ddname
Statement Processing) of input file)

JESNEWS Use JESNEWS Facility Yes (note 2)

xxx User-written DSP (note 3)

Notes:

1. See JES3 Diagnosis

2. See JES3 Commands

3. See JES3 User Modifications and Macros

Figure 17-1. Table of Allowable DSPs for PROCESS Statements

Location in the JCL

• The / /*PROCESS statements must immediately follow the JOB statement.

• Place all the / /*PROCESS statements immediately following each other, separated only by •
parameter statements.

• JES3 processes the / /*PROCESS statements in the order in which they appear in the input
stream.

• If a / /*NET statement is specified for the job, the / /*NET statement must precede all
/ /*PROCESS statements.

• / /*PROCESS statements must precede their associated EXEC statements.

• Input service error messages that indicate a job is to be scheduled for interpreter processing
before being purged are scheduled for an interpreter nsp only if the interpreter nsp is
specified on the first / /*PROCESS statement.

Chapter 17. Coding JES3 Control Statements 17-45

JES3: //*PROCESS

Examples of the //*PROCESS Statement

IIEXAM1 JOB
II*PROCESS CI
II*PROCESS MAIN
II*PROCESS OUTSERV
IIS1 EXEC PGM=ANY

JCL statements

This example shows how to submit a simple job via jj*PROCESS statements. It executes in the
same way as a standard job without JES3 control statements. The four standard scheduler
elements are created for the job: CI, MAIN, OUTSERV, and PURGE.

IIEXAM2 JOB
II*PROCESS CI
II*PROCESS MAIN
II*PROCESS OUTSERV
II*PROCESS PLOT
II*ENDPROCESS
IIS1 EXEC PGM=ANY
IIDD1 DD UNIT=34209,DISP=(NEW,KEEP)

JCL statements

This example shows how to use a user-written DSP. PLOT is a user-written DSP and is to be
executed after output service has completed. Note that PURGE is not specified; JES3
automatically creates this DSP.

IIEXAM3 JOB
II*PROCESS OUTSERV
II*FORMAT PR,DDNAME=DS1,COPIES=5
II*DATASET DDNAME=DS1

data

II*ENDDATASET

This example uses JES3 output service and the j j*DATASET statement. Five copies of data set
DSI are printed on any local printer.

17 -46 MVS JCL

JES3: //*ROUTE XEQ

//*ROUTE XEQ Statement

Purpose: Use the jj*ROUTE XEQ statement to identify the network node where the job is to
execute.

Syntax:

//*ROUTE XEQ nodename[.vrnguestid]

Do not imbed blanks in the nodename or vmguestid parameters.

Parameter Definition

nodename
Indicates the node. The nodename identifies an MVS JES2 system, an MVS JES3
(global) system, a VSE POWER node, or a VM system.

Nodename should not specify the local node; if it does, the job executes locally .

. vmguestid
Identifies a guest system running in a virtual machine (VM), for example, an MVS system
running under VM.

Note: Do not specify a work station or terminal in this parameter.

Location in the J CL

• Place the j j*ROUTE XEQ statement after a valid JOB statement for the submitting
location.

• Place the j j*ROUTE XEQ statement after any j j*NET ACCT statements.

• Place the jj*ROUTE XEQ statement immediately before a valid JOB statement for the
executing location.

Note: TSO users must code NJB in place of JOB on the second JOB statement, which is
the JOB statement for the executing location.

Chapter 17. Coding JES3 Control Statements 17 -4 7

•

JES3: //*ROUTE XEQ

Example of the //*ROUTE XEQ Statement

//JOBNl
//*ROUTE
//JOBN2
//STEPl
//DDl
//DD2
//DD3
//DDIN

/*

JOB
XEQ
JOB
EXEC
DD
DD
DD
DD

data

options ...
2
options ...
PGM=REPORTER
SYSOUT=A,DEST=NIR33
SYSOUT=A,DEST=N2R33
SYSOUT=B,DEST=R33
*

In this example, JOB statement JOBNl is entered through the JES3 system at node 1. The
/ /*ROUTE XEQ statement tells JES3 to send the incoming job stream to node 2 until the /*
delimiter statement. JOB statement JOBN2 and all following statements until the delimiter are
read and executed by the system at node 2.

The system output data sets are sent to two work stations:

• Sysout data set DD 1 is produced at work station 33 attached to node 1, the submitting
node.

• Sysout data set DD2 is produced at work station 33 attached to node 2, the executing node.

• Sysout data set DD3 is produced at work station 33, which is also attached to node 2.
Because no node is specified, the executing node is assumed.

Node 1
~

Node 2

Work Work
Station 33 Station 33

17 -48 MVS JCL

JES3: I*SIGNOFF

I*SIGNOFF Statement

Purpose: Use the /*SIGNOFF statement to tell JES3 to terminate a remote job stream
processing session. At the completion of the current print and/or punch input streams, JES3
disconnects the remote work station from the system. If JES3 is reading jobs from the station
when the output completes, JES3 disconnects the station when the input is completed.

Both systems network architecture (SNA) and binary synchronous communication (BSC)
remote work stations use the /*SIGNOFF statement.

References: For more information on the /*SIGNOFF command, see SPL: JES3 Initialization
and Tuning.

Syntax:

/*SIGNOFF

Note that, unlike other JES3 statements, this statement starts with only one slash.

Example of the I*SIGNOFF Statement

/*SIGNOFF

This statement requests that JES3 terminate a remote job stream processing session .

Chapter 17. Coding JES3 Control Statements 17-49

•

JES3: I*SIGNON

I*SIGNON Statement

Purpose: Use the j*SIGNON statement to tell JES3 to begin a remote job stream processing
session. The j*SIGNON statement can override the remote identification number normally
assigned to the remote work station. This statement is optional for all work stations except
non-multi-Ieaving remote stations on a switched line.

Systems network architecture (SNA) remote work stations must use the LOGON command
instead of the /*SIGNON statement to notify JES3 of a connection request.

Syntax:

/*SIGNON work-station-name {AI (blank)} {RI (blank)} passwdl passwd;

• Note that, unlike other JES3 statements, this statement starts with only one slash.

• All the fields in this statement must appear in fixed locations, as follows:

Column
16-20
22
23
25-32
35-42

Contents
Work-station-name, beginning in 16
A or a blank
R or a blank
Passwordl, beginning in 25
Password2, beginning in 35

Parameter Definition

work-station-name

A

R

Specifies the name of the remote work station. The work-station-name is 1 to 5
characters and must have been defined on a JES3 RJPTERM initialization statement.

Indicates an automatic reader. A can be coded only when the work station is a
programmable terminal. Leave this column blank if you do not want to specify an
automatic reader.

Indicates that print or punch output can be suspended if the needed device is not ready.
R can be coded only when the work station is a nonprogrammable terminals. Leave this
column blank if you do not want to specify the R option.

passwordl
Specifies the password for the remote job processing (RJP) line. passwordl is 1 to 8
characters and must have been defined on a JES3 RJPLINE initialization statement.

password2

17-50 MVS JCL

Specifies the password for the work station. password2 is 1 to 8 characters and must have
been defined on a JES3 RJPTERM initialization statement.

JES3: I*SIGNON

Example of the I*SIGNON Statement

/*SIGNON QUIN A PSWDl PSWD2

This statement requests that remote work station QUIN begin a remote job stream processing
session. The value A in column 22 specifies an automatic reader for the programmable
terminal. PSWDl, beginning in column 25, is the password assigned to a dial line. PSWD2,
beginning in column 35, is the password assigned to the remote work station:

Chapter 17. Coding JES3 Control statements 17-51

17-52 MVS JCL

TABLES

Chapter 18. Reference Tables

The first table summarizes the DD statement parameters required to perform the following
functions:

• Create
A data set on a unit record device (card punch or printer)
A data set on a system output device
A data set on magnetic tape
A data set on a direct access device
A data set on a Mass Storage System
A subsystem data set

• Retrieve
A data set from a unit record device (card punch or printer)
A data set from the input stream
A passed data set (magnetic tape or direct access)
A cataloged data set (magnetic tape or direct access)
A kept data set (magnetic tape or direct access)

• Extend
A passed data set (magnetic tape or direct access)
A cataloged data set (magnetic tape or direct access)
A kept data set (magnetic tape or direct access)

Also included are tables for:

• Retrieving or extending an indexed sequential data set
• Area arrangement of indexed sequential data sets
• Mutually exclusive DD parameters
• Disposition processing
• Direct access capacities
• Track capacities
• The JOB statement
• The EXEC statement
• The DD statement
• The OUTPUT statement

Chapter 18. Reference Tables 18-1

DD Parameters for Creating Data Set

Device Parameter Type Parameter Comments

Unit Location of the Data Set UNIT Required

Record Data Attributes DCB Optional

Devices Special Processing Options UCS Optional (for a printer with the universal character
set feature)

FCB Optional (for a 3211 or 3800 Printing Subsystem if forms control
information is to be specified)

FREE Optional

DUMMY Optional

COPIES Optional

CHARS Optional (for the 3800 Printing Subsystem)

BURST Optional (for the 3800 Printing Subsystem)

FLASH Optional (for the 3800 Printing Subsystem)

MODIFY Optional (for the 3800 Printing Subsystem)

System Location of the Data Set SYSOUT Required. Specifies the output class
'.

Output Data Attributes DCB Optional

Devices Special Processing Options OUTUM Optional

FREE Optional

DEST Optional

DSID Required for output to a 3540 diskette

HOLD Optional

UCS Optional (for a printer with the universal character set feature)

FCB Optional (for a 3211 or 3800 Printing Subsystem if forms control
information is to be specified)

COPIES Optional

CHARS
r·.

Optional (for the 3800 Printing Subsystem)

'.
BURST Optional (for the 3800 Printing Subsystem)

FLASH Optional (for the 3800 Printing Subsystem)

MODIFY Optional (for the 3800 Printing Subsystem)

Magnetic Data Set Information DSNAME Required if the data set is to be cataloged or used by
Tape (or DSN) a later job

DISP Required if the data set is to be cataloged, used by a later
step in this job, or used by another job

Location of the Data Set UNIT Required unless you request (with the
VOLUME parameter) the same volume used for an earlier data set
in your job

VOLUME Required if you want a specific volume. If you do not use this
(or VOL) parameter you will get a scratch tape

LABEL Required if you do not want to use IBM standard labels for the
data set

Data Attributes DCB Optional

Special Processing Options DUMMY Optional

CHKPT Optional

FREE Optional

PROTECT Optional

Figure 18-1 (Part 1 of 2). DD Parameters for Creating a Data Set

18-2 MVSJCL

DD Parameters fOf,Creating Data Set

Device Parameter Type Parameter Comments

Direct Data Set Information DSNAME Required if the data set is to be cataloged or used by a later job
Access (or DSN)

Devices DISP Required if the data set is to be cataloged, used by
a later step in this job, or used by another job

Location of the Data Set UNIT Required unless you request (with
the VOLUME parameter) the same volume used for an earlier data
set in your job

VOLUME Required if you want a specific volume or multiple volumes. If you do
(or VOL) not use this parameter your data set will be allocated on any

suitable volume

LABEL Required if you want the data set to have both IBM standard
and user labels

Data Attributes DCB Optional

Size of the Data Set SPACE SPACE must be used for ISAM data sets

Special Processing Options DUMMY Optional

DYNAM Optional

FREE Optional

PROTECT Optional

Mass Data Set Information DSNAME Required if the data set is to be cataloged or used by another job
Storage (or DSN)

System DISP Required if the data set is to be cataloged, used by a later step in the
(MSS) job, or used by another job

Location of the Data Set UNIT Required unless you request (with the
VOLUME parameter) the same volume used for an earlier data set
in your job

VOLUME Required for specific volume requests. Use MSVGP instead of
(or VOL) VOL = SER if a nonspecific volume in a specific MSS volume

group is desired. If neither is coded, the system will select an
already mounted 3330V volume (storage or public) unless PRIVATE
is coded

LABEL Required if you want the data set to have both IBM
standard and user labels

MSVGP Required if a nonspecific volume in a specific MSS volume
group is required

Data Attributes DCB Optional

Size of the Data Set SPACE Required unless MSVGP is coded

Special Processing Options DUMMY Optional

DYNAM Optional

FREE Optional

PROTECT Optional

Subsystem Location of the Data Set SUBSYS Required. Specifies the subsystem and the subsystem-defined
Data Set parameters

Data Attributes DCB Optional

Special Processing Options DUMMY Optional

FREE Optional

Figure 18-1 (Part 2 of 2). DD Parameters for Creating a Data Set ..

Chapter 18. Reference Tables 18-3

DD:'p.rarttetersfor Retrieving Data Set

,

Data Set Parameter Type Parameter Comments

Unit Location of the DataSet UNIT Required

Record' Data Attributes DCB Optional

Special Processing Options DUMMY Optional

FREE Optional

, , Input Location of the Data Set * You must specify one of these parameters

Stream DATA

Data Attributes DCB Optional

Special Processing Options DLM Optional

FREE Optional

Ass()ciated Location of the Data Set * You must specify one of these parameters

Da~ Set DATA

Data Attributes DCB Optional

Data Set Information OSlO Required for 3540 associated data sets

VOL=SER Optional for 3540 associated data sets
Passed . Data Set Information DSNAME Required

Data Set DISP Required

Location of the Data Set UNIT Required only if you want more units

LABEL Required only if the data set does not have IBM
standard labels

Data Attributes DCB Optional

Special Processing ~ptions FREE Optional

CHKPT Optional

DUMMY Optional

Cataloged Data Set Information DSNAME Required

DataSet DISP Required

Location of the Data Set UNIT Optional

VOLUME May be required if you want to begin processing with
a volume after the first

LABEL Required only if the data set does not have IBM
standard labels

Data Attributes DCB Optional

Special Processing Options DUMMY Optional

DYNAM Optional

FREE Optional

CHKPT Optional

Kept Data Set Information DSNAME Required

Data Set DISP Required

Location of the Data Set UNIT Required

VOLUME Required

LABEL Required only if the data set does not have IBM
standard labels

::, Data Attributes DCB Optional

Special Processing Options DUMMY Optional

DYNAM Optional

FREE Optional

CHKPT Optional

Figure 18-2. DD Parameters for Retrieving a Data Set

18-4 'tdVS leL

DD Parameters for Extending Data. Set

Data Set Parameter Type Parameter Comments

Passed Data Set Information DSNAME Required

Data Set DISP Required

Location of the Data Set UNIT Required only if you want more units

VOLUME Required only if you need more volumes

LABEL Required only if the data set does not have IBM
standard labels

Size of the Data Set SPACE Required only if you want to override
the secondary quantity

Data Attributes DCB May be required if data set does not
have IBM standard labels

Special Processing Options FREE Optional

CHKPT Optional

DUMMY Optional

Cataloged Data Set Information DSNAME Required

Data Set DISP Required

Location of the Data Set UNIT Optional

VOLUME Required only if you need more volumes

LABEL Required only if the data set does not have IBM
standard labels

Size of the Data Set SPACE Required only if you want to override
the secondary quantity

Data Attributes DCB Required only if the data set does not have
IBM standard labels

Special Processing Options DUMMY Optional

FREE Optional

CHKPT Optional

Kept Data Set Information DSNAME Required

Data Set DISP Required

Location of the Data Set UNIT Required

VOLUME Required

LABEL Required only if data set does not have IBM standard labels

Size of the Data Set SPACE Required only if you want to override
the secondary quantity

Data Attributes DCB Required only if the data set does not have
IBM standard labels

Special Processing Options DUMMY Optional

DYNAM Optional

FREE Optional

CHKPT Optional

Figure 18-3. DD Parameters for Extending a Data Set

Chapter 18. Reference Tal>l~s'. 18 .. 5

DDParameters for ISAM

Area Parameter Type Parameter Comments

Index (used only if Data Set Information DSNAME Required. You must code the same value
index area not on same as in second DD statement.

device type as prime DISP Required. You must code the same value
area) as in second DD statement.

(First DD statement) Location of the data UNIT Required
set

VOLUME Required

Data Attributes DeB Required

Prime and 'Overflow; Data Set Information DSNAME Required

or Index, Prime, and DISP Required. Specifies whether you are
Overflow; or Index retrieving the data set.
and Prime (required)

Location of the data UNIT Required unless it is a passed data
(Second DD set set with all three areas on one volume.

statement)
VOLUME Same requirement as UNIT. If used,

code volumes in order they were defined.

Data Attributes DeB Required

Overflow (used only Data Set Information DSNAME Required. You must code the same
if overflow area not value as in second DD statement.

on same device type
as prime area) DISP Required. You must code the same

value as in the second DD statement.

(Third DD Statement) Location of the data UNIT Required
set

VOLUME Required

Data Attributes DeB Required

Figure 18-4. DD Parameters for Retrieving or Extending an Indexed Sequential Data Set

18-6 MVS JCL

Area Arrangement of ISAM

CRITERIA

1. Number of DO 2. Area defined on a 3. Index size RESTRICTIONS ON DEVICE RESULTING
statements OD statement coded? TYPES AND NUMBER OF ARRANGEMENT OF

DEVICES REQUESTED AREAS

3 INDEX - NONE Separate index, prime,
PRIME and overflow areas.
OVFLOW

2 INDEX - None Separate index and
PRIME prime area. 1

2 PRIME No None Separate prime and
OVFLOW overflow areas. An

index area is at the end
of the overflow area.

2 PRIME Yes The statement defining Separate prime and
OVFLOW the prime area cannot overflow areas. An

request more than one index area is embedded
device. in the prime area.

I PRIME No None Prime area with index
area at its end.2

I PRIME Yes Cannot request more Prime area with
than one device. embedded index area.2

1 If both areas are on volumes that correspond to the same device type, an overflow area is established if one of the cylinders allocated
for the index area is only partially used. The overflow area is established in the unused portion of that cylinder.

2 If the index area is at least one cylinder and the unused portion of the index area is less than one cylinder, the unused portion is used
as an overflow area. For a one-cylinder data set, the index is not assigned a whole cylinder; therefore, no overflow area is provided.

Figure 18-5. Area Arrangement of Indexed Sequential Data Sets

..

Chapter 18. Reference Tables 18-7

Mutually Exclusive· DD Parameters

Legend: This table shows which OD parameters cannot be coded together.
At the intersection of the horizontal and vertical columns, the square will
be shaded if the parameters are mutually exclusive and white if they can be
coded together on the same DO statement.

For example, to see if DISP and SYSOUT are mutually exclusive, look
down the column marked OISP and across the column marked SYSOUT.
In this case, they are mutually exclusive.

As indicated by the table, each DD parameter is mutually exclusive with
itself; that is, it cannot appear twice on the same DO statement.

Figure 18-6. Table of Mutually Exclusive DD Parameters

18-8 MVS JCL

n
=r"
.§
......
(1)
""I

.......
00

~
(Dl
""I
(1)

g
(1)

g
0'
'"
~

00
I

\0

~

I-l
QC

~

t:'
.i'
Q

~.
S·
=
~ a
~
rI}
rI}

Sf
(JCl

~ = cr ;-

~rorUli n.""IU"lil"O LlllipUlil HUll ,"UIIUIIIUIiU 1 LlllOpulOlllUIi or l'IormOI

End of Step
1

none none deleted

KEEP none kept

DELETE none deleted

CATLG none cataloged

NEWor MOD
2

PASS none passed

PASS any passed

any except PASS KEEP requested disposition

any except PASS DELETE requested disposition

any except PASS CATLG requested disposition

none none kept

KEEP none kept

DELETE none deleted

CATLG none cataloged 3

UNCATLG none uncataloged
OLD or MOD

PASS passed
or SHR

none

PASS any passed

any except PASS KEEP requested di sposi tion

any except PASS DELETE requested disposition

any except PASS CATLG requested disposition

any except PASS UNCATLG requested disposition

Footnotes:

1 See list of exceptions in right-hand column.
2 If volume information is not available to the system, a MOD data set is considered

to be a new data set.

3 If votumes were added to a data set for which unit and volume information was
retrieved from the catalog, the data set is actually recataloged.

4 If the step was attempting to receive a passed data set which was new when
initially passed, the data set is deleted.

5 If any job steps reached abnormal termination, the conditional disposition will
be processed. Otherwise, the data set is deleted.

6 If any job steps reached abnormal termination, the conditional disposition will
be processed. Otherwise, the data set is kept if it was old when initially passed
in the job, or deleted if it was new when originally passed in the job.

-

Program canceled or Subsequent data set allocation End of Job

abnormally terminated for same step fai led

deleted deleted

kept deleted

deleted deleted

cataloged deleted

passed passed deleted

passed passed deleted 5

kept deleted

deleted deleted

cataloged deleted

kept kept

kept kept

deleted kept

cataloged 3 kept

uncata loged kept

passed passed kept

passed passed kept 6

kept kept 4

deleted kept4

cataloged 3 kept 4

uncataloged kept4

List of Exceptions:

• When a non temporary data set is passed and the receiving step does not assign it a
disposition, the system will, upon termination of this step, do one of two things.
If the data set was new when it was initially passed, it will be deleted. If the
data set was old when initially passed, it will be kept. Temporary data sets are
deleted.

• If automatic step restart is to occur, all data sets in the restart step with a status
of OLD are kept • A II data sets in the restart step wi th a status of NEW are de I eted .

• If automatic checkpoint restart is to occur, all data sets currently in use by the
job are kept.

• If a data set is assigned a temporary name or no name, a conditional disposition
other than DELETE is invalid. The system assumes DELETE.

• If the data set is not allocated, then no action is taken.

!

!

o
-~ r:I'l

"'=' o
r:I'l _.
~ -. o =
~ .. o
()
(D
r:I'l
r:I'l -. = ~

Direct Access Capacities

Bytes
Storage Tracks Bytes Bytes Per Device

Device Medium Cylinders Per Cylinder Per Track Per Cylinder (in millions)

2314/2319 Disk 200 20 7,294 145,880 29.17
(each volume)

2305 Disk 48 8 14,136 113,088 5.4
Modell

2305 Disk 96 8 14,660 117,280 11.3
Model 2

3330 Disk 404 19 13,030 247,570 100

3330 Mod II Disk 808 19 13,030 247,570 200

3340/3344 Disk 696 (70-megabytes) 12 8,368 100,416 69.8 (70-megabytes)
348 (35-megabytes) 34.9 (35-megabytes)

3350 Disk 555 30 19,069 572,070 317.5

3375 Disk 959 12 35,616 427,392 409.8

3380 Disk 885 15 47,476 712,140 630.2

Note: 3344 pertains only to the 70-megabyte 3340

Figure 18-8. Direct Access Capacities

18-10 MVS JCL

Track Capacities

Maximum Bytes per Record Formatted without Keys

Physical
33802 Records 2314/ 2305-1 2305-2 3330/ 3340/ 3350 3375

per Track 2319 3330 Mod II 3344

1 7294 14136 14660 13030 8368 19069 356161 474761

2 3520 6852 7231 6447 4100 9442 17600 23476
3 2298 4424 4754 4253 2678 6233 11616 15476
4 1693 3210 3516 3156 1966 4628 8608 11476
5 1332 2480 2773 2498 1540 3665 6816 9076

6 1092 1996 2278 2059 1255 3024 5600 7476
7 921 1648 1924 1745 1052 2565 4736 6356
8 793 1388 1659 1510 899 2221 4096 5492
9 694 1186 1452 1327 781 1954 3616 4820
10 615 1024 1287 1181 686 1740 3200 4276

11 550 892 1152 1061 608 1565 2880 3860
12 496 782 1040 962 544 1419 2592 3476
13 450 688 944 877 489 1296 2368 3188
14 411 608 863 805 442 1190 2176 2932
15 377 538 792 742 402 1098 2016 2676

16 347 478 730 687 366 1018 1856 2484
17 321 424 676 639 335 947 1728 2324
18 298 376 627 596 307 884 1600 2164
19 276 334 584 557 282 828 1504 2004
20 258 296 544 523 259 777 1408 1876

21 241 260 509 491 239 731 1312 1780
22 226 230 477 463 220 690 1248 1684
23 211 200 448 437 204 652 1152 1588
24 199 174 421 413 188 617 1088 1492
25 187 150 396 391 174 585 1056 1396

26 176 128 373 371 161 555 992 1332
27 166 106 352 352 149 528 928 1268
28 157 88 332 335 137 502 896 1204
29 148 70 314 318 127 478 832 1140
30 139 52 297 303 117 456 800 1076

1 Standard access methods support records up to 32K data length; only EXCP supports records
greater than 32K data length.

2 For the 3380, the value is the data length. To obtain the
value, the length is rounded up to a multiple of 32, then
12 bytes are subtracted.

Figure 18-9 (Part 1 of 2). Track Capacities

Chapter 18. Reference Tables 18-11

Track Capacities

Maximum Bytes per Record Formatted with Keys

Physical
33752 33802 Records 2314/ 2305-1 2305-2 3330/ 3340/ 3350

per Track 2319 3330 Mod II 3344

1 7249 13934 14569 12974 8293 18987 354561 472401

2 3476 6650 7140 6391 4025 9360 17440 23240
3 2254 4222 4663 4197 2603 6151 11456 15240
4 1649 3008 3425 3100 1891 4546 8448 11240
5 1288 2278 2682 2442 1465 3583 6656 8840

6 1049 1794 2187 2003 1180 2942 5440 724C
7 877 1446 1833 1689 977 2483 4576 6120
8 750 1186 1568 1454 824 2139 3936 5256
9 650 984 1361 1271 706 1872 3456 4584
10 571 822 1196 1125 611 1658 3040 4040

11 506 690 1061 1005 533 1483 2720 3624
12 452 580 949 906 469 1337 2432 3240
13 407 486 853 821 414 1214 2208 2952
14 368 406 772 749 367 1108 2016 2696
15 333 336 701 686 327 1016 1856 2440

16 304 276 639 631 291 936 1696 2248
17 277 222 585 583 260 865 1568 2088
18 254 174 536 540 232 802 1440 1928
19 233 132 493 501 202 746 1344 1768
20 215 94 453 467 184 695 1248 1640

21 198 58 418 435 164 649 1152 1544
22 183 386 407 145 608 1088 1448
23 168 357 381 129 570 992 1352
24 156 330 357 113 535 928 1256
25 144 305 335 99 503 896 1160

26 133 282 315 86 473 832 1096
27 123 261 296 74 446 768 1032
28 114 241 279 62 420 736 968
29 105 223 262 52 396 672 904
30 96 206 247 42 374 640 804

1 Standard access methods support records up to 32K data length;
only EXCP supports records greater than 32K data length.

2 For the 3380, the value is the key length plus a data
length. To obtain the value, both lengths are rounded up to
multiples of 32, then 24 bytes are subtracted.

Figure 18-9 (Put 2 of 2). Track Capacities

18-12 MVS JCL

JOB Statement

The JOB Statement
//Name Operation Operand P/K Comments

//jobname JOB (laccount-numberJ[,accounting-information) ...) P Specifies accounting information.
Installation can make this mandatory.

ADDRSPC = { VIRT }
REAL

K Requests virtual or real storage.

CLASS = jobclass K Assigns the job to a class.

COND = ((code,operator)[,(code,operator)) ...) K Specifies test for a return code.

GROUP = group-name K Specifies a group associated with a
RACF-defined user.

MSGCLASS = class-name K Assigns the job log to an output class.

MSGLEVEL = ([statementsJ[,messages)) K Controls the contents of the job log.

NOTIFY = use rid K Requests the system send a message
at job completion to a TSO userid.

PASSWORD = (password[.new password)) K Specifies a password for a
RACF-defined user.

PERFORM=n K Specifies the performance group
for the job.

programmer's name P Identifies programmer. Installation
can make this mandatory.

PRTY = priority K Specifies a job's priority.

RD={~d K Specifies how a job is to be
restarted.

REGION = valueK K Specifies amount of space the job
requires.

RESTART = (Ftepname } [.checkid)) K Specifies restart of the job.
stepname. procstepname

TIME = {([minutesJ[,secOndS))} K Specifies a processor time limit
1440 for the job.

rlD } K Holds a job in job queue, scans

TYPRUN = JCLHOLD JCL for syntax errors, or copies
SCAN the input deck to SYSOUT.
COpy NOTE: JCLHOLD and COpy are

supported only by JES2.

USER = use rid K Identifies a RACF-defined user.

Legend:

P Positional parameter. (Positional parameters must precede keyword parameters)
K Keyword parameter.
{ } Choose one.
I] Optional; if more than one line is enclosed, choose one or none.

Figure 18-10. The JOB Statement

Chapter 18. Reference Tables 18-13

EXEC Statement

The EXEC Statement

//Name Operation Operand P/K Comments

//[stepname) EXEC ACCT[.procstepname) = (accounting-information) K Specifies accounting
information for step.

tVIRT t K Requests virtual or real
ADDRSPC [.procstepname) = REAL

storage.

COND [.procstepname) = ((code,operatorLstepname)[.procstepname)) K Specifies test for a
L(code,operatorLstepname)[.procstepname))) ... return code.

LEVEN)) Note: COND is supported
LONLY)) only by JES2.

DPRTY [.procstepname) = ([value1)Lvalue2)) K Assigns a dispatching
priority to the address
space for the step.

DYNAMNBR [.procstepname) = n K T ells the system to hold
resources in anticipation
of reuse.

PARM [.procstepname) = information K Passes variable informa-
tion to a program at
execution time.

PERFORM [.procstepname) = n K Specifies the
performance group for
the job step.

{program-name }
PGM = * .stepname.ddname P Identifies program to be

* .stepname.procstepname.ddname executed.

[PROC= 1 procedure name P Identifies a cataloged
or in-stream procedure to
be called and executed.

r } RNC K Specifies how a job step
RD [.procstepname) = ~~ is to be restarted.

REGION [.procstepname) = valueK K Specifies amount of
space the step requires.

TIME [t)- {([minutes)LsecOndS)l K Specifies a processor
.procs epname - 1440 time limit for the job.

Legend:

P Positional parameter. (Positional parameters must precede keyword parameters)
K Keyword parameter.
{ } Choose one.
[) Optional; if more than one line is enclosed, choose one or none.

Figure 18-11. The EXEC Statement

18-14 MVS JCL

DD Statement

The DD Statement

//Name
Oper-

Operand P/K Comments
ation

"~dname J DD * P Begins an in-stream data set.
procstepname.

ddname ACCODE = access-code K Specifies or changes an
accessibility code.

AMORG K Completes the access method
BUFND = number control block (ACB) for VSAM
BUFNI = number data sets.
BUFSP = bytes

CROPS~ j"CK\
NCK
NRE
NRC

AMP='~ OPTCD=HJ

RECFM~ Ik\
STRNO = number
SYNAD = modulename
TRACE

BURST = {[YESIY)} K Specifies whether or not
[NOIN) output is to go to the Burster-

Trimmer-Stacker of the 3800.

CHARS = {(table-nameL table-name] .. .)} K Specifies character-
([DUMP)[,table-name) ...) arrangement table(s) for a

3800.
Note: DUMP is supported only
by JES3.

CHKPT=EOV K Requests checkpoint at end of
volume.

r·label } K References CNTL/ENDCNTL
CNTL= * .stepname.label group.

* .stepname.procstepname.label

COPIES = (nnn[,(group-value[,group-value) ...)I) K Requests multiple copies (and
grouping, for the 3800 only) of
the output data set.

DATA P Begins an in-stream data set.

rCB ~ (subpa,amete,(,subpa,amete,l ... I

I.subp,mmete,l ... 1]

K Completes the data control

rnam. ! block (used for all data sets
DCB = (* .ddname except VSAM).

* .stepname.ddname
* .stepname.procstepname.ddname

DDNAME = ddname K Postpones defining a data set.

JES2 JES3 K Specifies a destination for a
LOCAL ANYLOCAL system output data set.
name device-name
Nnn device-address

DEST=
NnnRmmm group-name
Rnnnn node name
RMnnnn (node,userid)
RMTnnn .. Unnn
(node,userid)

Figure 18-12 (Part 1 of 3). The DD Statement

Chapter 18. Reference Tables 18-15

DD Statement

The DO Statement (con't)
//Name

Oper-
Operand P/K Comments ation

~DELETE J K Assigns a status, normc
NEW ,KEEP . [DELETE] termination disposition, DISP~{bLD J ,PASS ,KEEP) a.bnormal termination
SHR ,CATLG ,CATLG disposition to the data ~
MOD ,UNCATLG ,UNCATLG

I

DLM = delimiter K ,Assigns delimiter other
/* .

OSlO = (id[, V)) K ,Identifies an input or ou
data set for diskette.

,
dsname K Assigns a name to a ne
dsname(member-name) set or identifies an exis1
dsname(generation-number) ,data .set.
dsname(area-name)

{DSNAMEl = &&dsname
DSN &&dsname(member-name)

&&dsname(area-name)
* .ddname
* .stepname.ddname
* .stepname.procstepname.ddname
NULLFILE . ,

DUMMY P Bypasses I/O operatiom
data set (BSAM and as

DYNAM P Specifies that the syste
hold a resource in antici
of reuse.

[ALIGN J K, Specifies the forms con
FCB = (fcb-name ,VERIFY) buffer, carriage control

data-protection image.

FLASH = {(OVerlay name[,countl1 K Identifies the forms ove
NONE be used on the 3800.

tEND l K Specifies deallocation a
FREE= CLOSE step or at data set clOSE

HOLD=fYESIYl K Tel,ls the system to hole
[NOINl system output data set

released by operator.

"7.§!. - K Supplies label informatic
,SUL tape data set.
,AL
,AUL [PASSWORD] [N ~ [EXPDT~YYdddJ

LABEL = ([data-set-seq-#l ,NSL :NOPWREAD ,OUT ,RETPD = nnnn)
,NL
,BLP
,LTM

~ -
MODIFY = (module name[,trc)) 'K Specifies a copy modifil

module to be used on tl
3800 and which CHAR:
name is to be used.

Figure 18-12 (Part 2 of 3). The fiD Statement

18-16 MVS JCL

\lame
Oper
ation

MSVGP = t(idl,ddname1ll
SYSGROUP r

OUTUM = number

The DD Statement (con't)

Operand

{

(* .name[, * .name) ...) }
OUTPUT= (* .stepname.name[, * .stepname.name) ...)

(* .stepname.procstepname.name[, * .stepname.procstepname.name) ...)

PROTECT = YES

QNAME = procnamel. tcamname)

SPACE =({6~~ } ,(primary-quantity r.secondary-quantit~ [~irectoryl)
blocklength L J ,Index J

r,RLSEl [,~~~ciIG] l J ,ALX

SPACE = .(ABSTR,(primary-quantity ,address ['~irectoryl ~
\ ,Index J)

SUBSYS = (subsystem-name[,subsystem-subparameter) ...)

SYSOUT = (class-name r. writer-nam~ r form-.name1) l J lcode-nameJ

TERM=TS

ucs ~ Icha'acte'-set-code [FOLD] I. VERIFYII

I

U.NIT = (r~:~:~:::~:;es~[,~nit-countl [,DEFER))1
L~roup-name J, J

UNIT = AFF = ddname.

[,ROUND))

t~g~UME} = IIPRIVATE] [RETAlj[vOlume-seq-numbe}VOlume-countl

[

SER = (serial-number[,serial-numberJ ...)]
REF=dsname

[,) REF = * .ddname)
REF = * .stepname.ddname
REF = * .stepname.procstepname.ddname

{} Choose one .

,

J

DD Statement

P/K Comments

K Requests a mass storage
group for a mass storage
system (MSS) device.

K Limits the number of logical
records in the system output
data set.

K Identifies OUTPUT JCL state-
mentIs) to use in processing
this data set.

K Requests RACF protection for
tape volumes or for direct
access data sets.

K Specifies the name of a
TPROCESS macro that
defines a destination queue
for messages received via
TCAM.

K Assigns space on a direct
access volume for a new data
set.

K Assigns specific tracks on a
direct access volume for a
new data set.

K Specifies the subsystem to
process the data set.

K Indicates a system output
data set and assigns it to an
output class.

K Indicates that the data set is
coming from or going to a
terminal for a TSO user.

K Requests a special character
set.

K Asks the system to place the
data set on a device.

K Identifies the volume(s) on
which a data set resides or
will reside.

• itional parameter. (Positional parameters must precede
.word parameters)
{word parameter.

I) Enclosing subparameter, indicates that subparameter is optional;
if more than one line is enclosed, choose one or more.

18-12 (Part 3 of 3). The DD Statement

Chapter 18. Reference Tables 18-17

..

OUTPUT JCL Statement

The OUTPUT Statement
//Name Operation Operand P/K Comments

//name OUTPUT BURST= {[YESIY]} K Specifies whether or not output is to go
[NOIN] to the Burster-Trimmer-Stacker of the

3800.

rtable-nameLtable-name] ... } K Specifies a character-arrangement
CHARS= STD table(s) for a 3800.

(DUMP[,table-name] ...) Note: STD and DUMP are supported
only by JES3.

CKPTLlNE=nnnnn K Specifies the maximum number of lines
in a logical page.

CKPTPAGE=nnnnn K Specifies the number of logical pages to
be printed or transmitted before a
checkpoint.

CKPTSEC=nnnnn K Specifies the number of seconds that
may elapse between checkpoints.

CLASS = {:Iass-name} K Assigns the system output data set to
an output class.

COMPACT = compaction-table-name K Specifies a compaction table for sending
this system output data set to an SNA
remote terminal.

rOGRAM} K Specifies forms control.

CONTROL = SINGLE
DOUBLE
TRIPLE

COPIES = (nnn[,group-value[group-value] ...)]) K Specifies the number of copies to be
printed.

DEFAULT = fYESIY]} K Specifies that this OUTPUT statement
[NOIN] can or cannot be implicitly referenced

by a sysout DD statement.

JES2 JES3 K Specifies a destination for the data set. ,
LOCAL device-name
name group-name
Nnnnn LOCAL
NnnRmmmm nodename

DEST=
NnnnRmmm nodename.remote
NnnnnRmm (type)
nodename.userid
Rnnnn
RMnnnn
RMTnnnn
Unnn

FCB = fcb-name K Specifies the forms control buffer,
carriage control tape, or data-Protection
image.

Legend:

P Positional parameter. (Positional parameters must precede { } Choose one.
keyword parameters) [] Enclosing subparameter, indicates that subparameter is optional

K Keyword parameter. if more than one line is enclosed, choose one or more.

Figure 18-13 (Part 1 of 2). The OUTPUT JCL Statement

18-18 MVSJCL

OUTPUT JCL Statement

The OUTPUT Statement (con't)

IIName Operation Operand P/K Comments

{([overlay-name H, count))} K Identifies the forms overlay to be used
FLASH= NONE on the 3800.

STD Note: STD is supported only by JES3.

FORMDEF = membername K Identifies a library member to be used
by PSF for printing on a 3800.

FORMS = form-name} K Identifies the forms for printing or
STD punching.

GROUPID = output-group K Specifies that the system output data
set belongs to an output group.

INDEX=nn K Sets the left margin for output on a
3211 printer with the indexing feature.

rL} K Specifies the processing options for the

JESDS= JCL job's system data sets.
LOG
MSG

LlNDEX=nn K Sets the right margin for output on a
3211 printer with the indexing feature.

LlNECT=nnn K Specifies the maximum number of lines
to be printed on each output page.
Note: LlNECT is supported only by
JES2.

MODIFY = ([module-nameH, trc)) K Specifies a copy-modification module to
be used on the 3800 and which CHARS
table-name is to be used.

PAGEDEF = membername K Identifies a library member to be used
by PSF for printing on a 3800.

PIMSG = {[YESIYl} K Indicates that messages from a
[NOINl functional subsystem should or should

not be printed.

{LINE }
K Identifies the process mode required to

PRMODE = PAGE print this system output data set.
process-mode Note: Process-mode is supported only

by JES2.

PRTY=nnn K Specifies the priority at which the
system output data set enters the
output queue.

THRESHLD = limit K Specifies the maximum output to be
printed as one unit of work.

TRC = t [YESI Yl} K Specifies whether the system output

lliQJNl data set contains TRC codes or not.

UCS = character-set-code K Requests a special character set.

WRITER = name K Names an external writer to process
the 'output data set.

Legend:

I.-P Positional parameter. (Positional parameters must precede { } Choose one.
keyword parameters) [l Enclosing subparameter, indicates that subparameter is optional

K Keyword parameter. if more than one line is enclosed, choose one or more.

Figure 18-13 (Part 2 of 2). The OUTPUT JCL Statement

Chapter 18. Reference Tables 18-19

18-20 MVS JCL

Index

... , use 2-3

.. , use 2-3, 2-18
+ + (in-stream procedure) 9-14
+ + * (in-stream procedure) 9-14
+ / (in-stream procedure) 9-14
I use 2-2
& use 2-11
&& identifying a temporary data set 7-4
&&dsname

for indexed sequential data sets 12-70
for partitioned data sets 12-70
in DSNAME parameter 12-70

{} braces, use 2-2
$A operator command (JES2) 16-2
$B operator command (JES2) 16-2
$C operator command (JES2) 16-2
$D operator command (JES2) 16-2
$E operator command (JES2) 16-2
$F operator command (JES2) 16-2
$G operator command (JES2) 16-2
$H operator command (JES2) 16-2
$1 operator command (JES2) 16-2
$L operator command (JES2) 16-2
$M operator command (JES2) 16-2
$N operator command (JES2) 16-2
$0 operator command (JES2) 16-2
$P operator command (JES2) 16-2
$R operator command (JES2) 16-2
$S operator command (JES2) 16-2
$T operator command (JES2) 16-2
$TR operator command (JES2) 16-2
$VS operator command (JES2) 16-2
$Z operator command (JES2) 16-2

*
DD statement parameter 12-6
in /*JOBPARM statement 16-6
in /*OUTPUT statement 16-14
in PGM parameter 11-21
in RESTART parameter 10-34
restriction for cataloged and in-stream

procedures 9-1
* DD parameter

data in input stream 12-6
description 12-6
examples 12-7
relationship to other parameters 12-6
syntax 12-6
unread records 12-7
use of 8-13

*.ddname
in DCB parameter 12-31
in DSNAME parameter 12-71
in VOLUME parameter 12-139

*.label
in CNTL parameter 12-23

*.name

in OUTPUT parameter 12-104
* .stepname.ddname

in DCB parameter 12-32
in DSNAME parameter 12-71
in PGM parameter 11-21
in VOLUME parameter 12-139

* .stepname.label 12-23
in CNTL parameter 12-23

*.stepname.name 12-104
in OUTPUT parameter 12-104

* .stepname.procstepname.ddname 12-104
in DCB parameter 12-31
in DSNAME parameter 12-71
in OUTPUT parameter 12-104
in PGM parameter 11-21
in VOLUME parameter 12-139

* .stepname. procstepname.labe1 12-23
in CNTL parameter 12-23

*** on output listing 9-13
o brackets, use 2-2
/*

for delimiter statement 15-7
for internal reader 7-52

/*DEL 7-53
/*EOF 7-52
/*JOBPARM Statement

description 16-4
example 16-8
introduction 1-3
overrides 16-7
parameter definition 16-4
syntax 16-4

/*MESSAGE Statement
description 16-9
example 16-9

/*NET ACCT Statement
description 16-10
example 16-10
introduction 1-3
parameter definition 16-10
use of 3-4

/*NOTIFY Statement
description 16-11
examples 16-12
introduction 1-3
overrides 16-11
parameter definition 16-11
syntax 16-11
use of 3-18

/*OUTPUT Statement
description 16-13
example 16-21

Index

example of job and step-level statements 14-1
parameter definition 16-14
syntax 16-14
use of 7 -44-7 -62

Index X-I

•

Index

/*PRIORITY statement
description 16-22
example 16-23
introduction 1-3
job selection 5-1
parameter definition 16-22
use of 5-20
using 5-1

/*PURGE 7-53
/*ROUTE statement

description 16-24
examples 16-26
introduction 1-4
parameter definition 16-24
restriction for RMT 16-25
routing output 3-8
syntax 16-24

/*SCAN 7-53
/*SETUP statement

description 16-28
example 16-28
parameter definition 16-28
use of 3-24

/*SIGNOFF statement
for JES2 16-29

description 16-29
example 16-29

for JES3 17-49
description 17-49
use of 3-23

use of 3-21
j*SIGNON statement

for JES2 16-30
description 16-30
examples 16-31

for JES3 17-50
description 17-50
example 17-51
parameter definition 17-50
syntax 17 -50
use of 3-22

use of 3-21
/*XEQ statement

description 16-32
example 16-32
introduction 1-4
parameter definition 16-32

/*XMIT statement
description 16-33
introduction 1-4
parameter definition 16-33

/ /*DAT ASET statement
description 17-5
examples 17-6
for binary input 3-26
introduction 1-5
parameter definition 17-5
syntax 17-5

//*ENDDATASET statement
description 17-7

X-2 MVS JCL

example 17 -7
introduction 1-5

/ /*ENDPROCESS statement
description 17-8
example 17-8

ABCMP parameter on JES3 //*NET statement 17-35
ABEND dumps

See abnormal termination dump
ABNORMAL parameter on JES3 //*NET

statement 17-36
use of 3-28

abnormal termination dump
See also dump, abnormal termination
See also SYSABEND, SYSUDUMP, and

SYSMDUMP DD statements
requesting 8-6

absolute track technique for indexed sequential data sets
(ISAM) 8-21

ABSTR subparameter of SPACE parameter 12-115
See also SPACE parameter
use of to assign specific tracks 7-42
use with ISAM data sets 8-21

accessing TCAM messages 12-111
ACCODE parameter on DD statement

default 12-9
definition 12-9
description 12-9
examples 12-10
syntax 12-9

accounting information for a network 3-4
See also NET ACCT statement for JES2 or JES3

accounting information for JES2· 3-4
accounting information on JOB statement 3-2

See also Accounting Information Parameter
Accounting Information Parameter

JES2 format 10-4
example 10-6
subparameter definition 10-4-10-5
syntax 10-4

on JOB statement 10-3
examples 10-5
subparameter definitions 10-4
syntax 10-3

use of 3-2, 3-4
ACCT parameter on EXEC statement

coding special characters 4-11
examples 11-5
subparameter definition 11-5
syntax 11-4
using 4-11

ACCT parameter on JES3 / /*NET ACCT
statement 17-40

ACMAIN parameter on JES3 / /*MAIN
statement 17-24

adding DD statements to a procedure 9-8
adding members to a private library 8-2
adding OUTPUT JCL statements to a procedure 9-10
address subparameter of SPACE parameter

assigning specific tracks 7-42
description 12-115

address, unit
on UNIT parameter 12-130
specifying unit information 7-28

ADDRSPC Parameter
See also REGION Parameter
on EXEC statement 11-6

examples 11-7
override 11-6
relationship to REGION parameter 11-6
subparameter definition 11-6
syntax 11-6
use of 5-24
use of with cataloged procedures 5-24

on JOB statement 10-7
examples 10-8
subparameter definition 10-7
syntax 10-7
use of 5-24

requesting storage 5-23
AFF subparameter of UNIT parameter

description 12-132
requesting unit affinity 7-32

affinity between units and volumes 7-32
See also unit and volume affinity

AL subparameter of LABEL parameter
ISO/ANSI Version 1 labels 12-90
ISO/ANSI/FIPS Version 3 labels 12-90

ALIGN subparameter of FCB parameter 12-78
alignment of forms 12-78
ALL subparameter on JES3 //*MAIN statement 17-27

See also FETCH parameter on JES3 / /*MAIN
statement

allocating data sets dynamically 4-12, 6-3
See also DYNAMNBR parameter

allocation
absolute track 8-21
devices eligible 7-24
devices, for JES3

See also SETUP parameter on JES3 //*MAIN
statement

See also types of JES3 setup
for existing data sets 6-4
for new nonspecific data sets 6-4

dynamic 4-12, 6-3
See also DYNAM parameter on DD statement
See also DYNAMNBR parameter

nonspecific 8-21
See also SPACE parameter

allocation messages
JES3 3-17
MVS 3-14

allocation/termina tion messages
See allocation messages

allowing for changes in cataloged and in-stream
procedures 9-3

alphanumeric character sets 2-10, 12-128, 14-54
ALX subparameter of SPACE parameter 12-115

See also SPACE parameter

Index

AMORG subparameter of AMP parameter 12-12
AMP parameter on DD statement

description 12-11
examples 12-15
invalid DD names 12-15
relationship to other parameters 12-14
subparameter definition 12-12-12-14
syntax 12-11
use of VSAM data sets 8-14

ampersand
as special character 2-1
identifying a symbolic parameter 2-6
identifying temporary data set 2-10, 7-5

AN character set
for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

ANY subparameter (JES2)
See SYSAFF parameter on /* JOBPARM statement

ANYLOCAL subparameter
of DEST parameter

on DD statement 12-54
ANYLOCAL subparameter of DEST parameter

on JES3 //*FORMAT PR statement 17-13
on JES3 //*FORMAT PU statement 17-20

APG
See assigning a dispatching priority

apostrophes
use of with special characters 2-11
use of with the DSNAME parameter 7-7

area arrangement of an indexed sequential data
set 8-22

areas of a temporary indexed sequential data set
See temporary data set

areas of indexed sequential data set 8-18
See also indexed sequential data set

ASCII magnetic tape
See DCB parameter on DD statement
See LABEL parameter on DD statement

ASCII, requesting translation 7-9
assigning a dispatching priority

See also DPRTY parameter on EXEC statement
to job steps 5-21

assigning a job to a job class
in JES2 5-19
in JES3 5-19

assigning a priority to a job
in JES2 5-20
in JES3 5-20

assigning a value to a symbolic parameter 2-17
assigning default values to symbolic parameters '2-16
assigning specific tracks 7-42
assigning system output data sets to output

classes 7 -51
assigning values to and nullifying symbolic

parameters 2-16
associated data sets 7-6

See also DSID parameter on DD statement
attributes, DCB

See DCB parameter on DD statement

Index X-3

•

Index

AUL subparameter of LABEL parameter (ISO/ANSI
Version 1 or ISO/ANSI/FIPS Version 3 labels and user
labels) 12-91

automatic priority group
See assigning a dispatching priority

automatic restart
See also RD Parameter
for J2S2 5-27
for JES3 5-27

automatic step restart
See automatic restart

average block length space request
See blocklength subparameter of SPACE parameter

All character set (3211) 12-128, 14-54

B parameter (JES2)
See BURST parameter on /*JOBPARM statement
See BURST parameter on /*OUTPUT statement

b use
See blank, use in control statements

backward references
copying a data set name 7-6
DCB parameter 12-31
DDNAME parameter 12-49
DSNAME parameter 12-68
DUMMY parameter 12-73
introduction 2-13
PGM parameter 11-21
to VIO data sets 8-11
VOLUME parameter 12-135

basic direct access method
See BDAM subparameters of DCB parameter

basic indexed sequential access method
See BISAM subparameters of DCB parameter

basic partitioned access method
See BP AM subparameters of DCB parameter

basic sequential access method
See BSAM subparameters of DCB parameter

basic telecommunications access method
See BT AM subparameters of DCB parameter

BDAM subparameters of DCB parameter 12-36-12-48
BFALN subparameter on DCB parameter 12-36
BFTEK subparameter on DCB parameter 12-36
binary input

See reading column binary input
BISAM subparameters of DCB parameter 12-36-12-48
blank, use in control statements 2-10
BLDG parameter on JES3 / /*NET ACCT

statement 17-40
BLKSIZE subparameter on DCB parameter 12-36

coded with * parameter 12-6
coded with DATA parameter 12-29
using with DDNAME parameter 12-49
with QNAME parameter 12-111

blocklength subparameter of SPACE parameter
. See also SPACE parameter

description 12-113
use of 7-41

blocks, directory

X-4 MVS JCL

See directory space
blocksize

See BLKSIZE subparameter on DCB parameter
BLP subparameter of LABEL parameter 12-91
BPAM subparameters of DCB parameter 12-36-12-48
braces in control statements 2-2
brackets in control statements 2-2
BSAM subparameters of DCB parameter 12-36-12-48
BSC communications link

See point-to-point communications link
BSC RJE for JES2 3-20
BTAM subparameters of DCB parameter 12-36-12-48
buffers

boundary
See BF ALN subparameter on DCB parameter

for all lines
See BUFSIZE subparameter on DCB parameter

for one line
See BUFMAX subparameter on DCB parameter

for receiving operation
See BUFIN subparameter on DCB parameter

for sending operation
See BUFOUT subparameter on DCB parameter

length of
See BUFL subparameter on DCB parameter

number of
See BUFNO subparameter on DCB parameter

offset
See BUFOFF subparameter on DCB parameter

type
See BFTEK subparameter on DCB parameter

BUFIN subparameter on DCB parameter 12-36
BUFL subparameter on DCB parameter 12-36

with QNAME parameter 12-111
BUFMAX subparameter on DCB parameter 12-36
BUFND subparameter of AMP parameter 12-12
BUFNI subparameter of AMP parameter 12-12
BUFNO subparameter on DCB parameter 12-37

coded with * parameter 12-6
coded with DATA parameter 12-29
using with DDNAME parameter 12-49

BUFOFF subparameter on DCB parameter 12-37
BUFOUT subparameter on DCB parameter 12-37
BUFSIZE subparameter on DCB parameter 12-37
BUFSP subparameter of AMP parameter 12-12
BURST parameter

on /*JOBPARM Statement 16-4
on /*OUTPUT statement 16-14
on DD statement 12-16

default 12-16
example 12-17
relationship to JES 12-17
relationship to other parameters 12-17
subparameter definition 12-16
syntax 12-16

on OUTPUT JCL statement 14-6
BURST Parameter on OUTPUT JCL statement
bursting of output 7-62
bypassing data set allocation

See defining a dummy data set

bypassing disposition processing 7-19
bypassing 1/0 operations

See DUMMY parameter on DD statement
bypassing job initiation 3-25
bypassing job steps

See COND Parameter
bypassing label processing

See BLP subparameter of LABEL parameter
bytes

per cylinder 18-10
per device 18-10
per record with keys 18-12
per record without keys 18-11
per track 18-10

BYTES parameter
on I*JOBPARM statement 16-5

BYTES parameter on JES3 II*MAIN statement
description 17-24

C operator command (JES3)
See CANCEL operator command

C parameter (JES2)
See CARDS parameter on /*JOBPARM statement
See FCB parameter on /*OUTPUT statement

C subparameter of MODE parameter 17-5
C subparameter of STACKER parameter (JES3) 17-16
C subparameter on JES3 I/*MAIN statement

See CANCEL subparameter 011 JES3 II*MAIN
statement

calculating dispatching priority 5-21
CALL operator command (JES3) 17-3
CANCEL operator command

for JCL 15-2
for JES3 17-3

CANCEL subparameter on JES3 II*MAIN
statement 17-25, 17-27, 17-29

See also CARDS parameter
See also FAILURE parameter on JES3 / /*MAIN

statement
capacities of direct access devices 18-10
card forms (JES3)

See FORMS parameter on //*FORMAT PU
statement (JES3)

CARDS parameter
on I*JOBPARM statement 16-5
on JES3 I/*MAIN statement 17 -24

CARRIAGE parameter on JES3 II*FORMAT PR
statement 17-10

carriage-tape-name subparameter on JES3 II*FORMAT
PR statement 17-10

cataloged and in-stream procedures
See also JOBLIB DD statement
calling 9-1, 9-3
changes, allowing for 9-3
DD statement parameters, modifying 9-6
DD statements, adding 9-8
definition 9-1
EXEC statement parameters, modifying 9-4
identifying (in-stream procedure) 9-2

identifying on an output listing 9-13
introduction 1-7
modifying 9-4
OUTPUT JCL statement parameters,

modifying 9-9
OUTPUT JCL statements, adding 9-10
passing information 4-8
placing in a procedure library 9-2
restrictions on contents of 9-1
selecting a cataloged procedure 4-4
symbolic parameters with 9-2
symbolic parameters, example 2-15, 2-21
symbolic parameters, use 2-15-2-21
using 9-3
writing 9-1

cataloged procedure library, selecting 4-7

Index

See also PROC parameter, on EXEC statement
cataloging a data set 7-16
CATLG subparameter of DISP parameter

description 12-59
use of 7-14

caution concerning leading and trailing commas 2-19
cautions, for concatenated data sets 2-9
cccc subparameter (JES2)

See SYSAFF parameter on /*JOBPARM statement
changing a user's RACF password 10-21
channel program, active

requesting real storage 5-23
CHAR Parameter on OUTPUT JCL statement
character arrangement tables 12-95

See also CHARS parameter
See also MODIFY parameter

character arrangements, 3800 printing subsystem,
requesting 7-60

character control, requesting 7-58
character set codes 12-128, 14-54
character sets 2-10
character sets, requesting 7-59

See also CHARS parameter
character-set-code subparameter of UCS

parameter 12-127
CHARS parameter

on /*OUTPUT statement 16-14
on DD statement 12-18

description 12-18
examples 12-20
high-density dumps on OUTPUT JCL

statement 14-8
relationship to JES 12-20
relationship to other parameters 12-19
relationships 12-79
subparameter definition 12-18
syntax 12-18

on JES3 /I*FORMAT PR statement 17-11
on OUTPUT JCL statement 14-7
use of 7-60

checkid subparameter of RESTART parameter
checkpoint data set 5-26

See also SYSCHK DD statement
See also SYSCKEOV DD statement

10-34 •

Index X-5

Index

checkpoint restart 5-26
See also RD Parameter
See also SYSCHK DD statement
See also SYSCKEOV DD statement
for generation data sets 5-28

checkpoint/restart facility 5-26
See also RD Parameter
See also RESTART Parameter on JOB statement
See also SYSCHK DD statement
See also SYSCKEOV DD statement

CHKPT macro instruction 5-26
See also CHKPT parameter on DD statement
use of 5-26
with RD parameter 10-28

CHKPT parameter on DD statement
See also CHKPT macro instruction
description 12-21
overrides 12-21
relationship to other parameters 12-21
subparameter definition 12-21
syntax 12-21

CHNGDUMP operator command (JCL) 15-2
CHNSIZE parameter

on JES3 //*FORMAT PR statement 17-11
on JES3 //*FORMAT PU statement 17-19

CKPTLINE Parameter on OUTPUT JCL statement
CKPTLNS parameter

on /*OUTPUT statement 16-14
CKPTPAGE Parameter on OUTPUT JCL statement
CKPTPGS parameter

on /*OUTPUT statement 16-15
CKPTSEC Parameter on OUTPUT JCL statement
class

See CLASS Parameter
CLASS initialization statement (JES3) 5-4
CLASS Parameter

on JES3 //*DATASET statement 17-6
on JES3 //*MAIN statement 17-25

use of 5-19
on JOB statement 10-9

defaults 10-9
example 10-9
override 10-9
subparameter definition 10-9
syntax 10-9

on OUTPUT JCL statement 14-13
use of 5-1

CLASS Parameter on OUTPUT JCL statement
class-name subparameter

in SYSOUT parameter 12-121
on JES3 //*MAIN statement 17-25

See also CLASS Parameter
class-name subparameter of MSGCLASS parameter

description 10-14
use of 3-14

CLOSE macro instruction
LEAVE option 12-85
REREAD option 12-85
with SPACE parameter 12-114

CLOSE subparameter of FREE parameter

X-6 MVSJCL

description 12-84
use with dynamic allocation 4-12, 6-3

CNTL parameter
examples 12-23
subparameter definition 12-23
syntax 12-23

CNTL Statement
description 15-5
example 15-6
syntax 15-5

code field in /*OUTPUT statement 16-14
CODE subparameter on DCB parameter 12-37
code-name subparameter

in SYSO UT parameter 12-121
coding

consecutive periods in control statements 2-3, 2-18
in DLM parameter 12 .. 64
in DSN AME parameter 12-68
JES2 statements 2-8
JES3 statements 2-8
special characters 2-10
symbolic parameters 2-6

coding conventions
considerations for network jobs 3-6
for JCL statements 2-1
for JES2 control statements 2-8
for JES3 control statements 2-8
guide to using job and step control statements 2-23
the DUMMY parameter 8-8

Coding JES2 Control Statements
/*JOBPARM Statement 16-4
/*MESSAGE Statement 16-9
/*NETACCT Statement 16-10
/*NOTIFY Statement 16-11
/*OUTPUT Statement 16-13
/*PRIORITY statement 16 .. 22
/*ROUTE statement 16-24
/*SETUP statement 16-28
/*SIGNOFF statement 16-29
/*SIGNON statement 16-30
/*XEQ statement 16-32
/*XMIT statement 16-33
coding conventions 2-8
Command statement 16-2
general rules for coding 16-1
introduction 1-3

Coding JES3 Control Statements
/*SIGNOFF statement 17~49

/*SIGNON statement 17-50
//*DATASET statement 17 .. 5
//*ENDDATASETstatement 17-7
//*ENDPROCESS statement 17-8
//*FORMAT PR statement 17-9
//*FORMAT PU statement 17-18
//*MAIN statement 17-23
/ /*NET statement 17-35
//*NETACCT statement 17-40
/ /*OPERATOR statement 17-42
//*PAUSE statement 17-43
/ /*PROCESS statement 17 -44

coding conventions 2-8
Command statement 17-3
general rules for coding 17-1
introduction 1-5
XEQ statement 17-47

coding special D D statements
description 13-1
general syntax 13-1

coding the DD statement
description 12-1
examples of ddnames 12-5
general syntax 12-1
input stream data 8-13
introduction 1-2
maximum per job 12-1
OUTPUT parameter 12-103
parameters, keyword 12-3

ACCODE parameter 12-9
AMP parameter 12-11
BURST parameter 12-16
CHARS parameter 12-18
CNTL parameter 12-23
COPIES parameter 12-25
DCB parameter 12-31
DDNAME parameter 12-49
DEST parameter 12-53
D LM parameter 12-64
DSID parameter 12-66
DSNAME parameter 12-68
FCB parameter 12-77
FLASH parameter 12-81
FREE parameter ·12-84
HOLD parameter 12-87
LABEL parameter 12-89
MODIFY parameter 12-95
MSVGP parameter 12-98
o UTLIM parameter 12-101
PROTECT parameter 12-109
QNAME parameter 12-111
SPACE parameter 12-112
SUBSYS parameter 12-117
SYSOUT parameter 12~120

TERM parameter 12-125
UCS parameter 12-127
UNIT parameter 12-130
VOLUME parameter 12-135

parameters, positional 12-3
* parameter 12-6
DATA parameter 12-28
DUMMY parameter 12-73
DYNAM parameter 12-76

use of 6-9
coding the EXEC statement

cataloged procedure, use with 9-1
description 11-1, 18-14
examples 11-3
introduction 1-2
modifying parameters on 9~4
name field 11-1
parameters, keyword 11-2

ACCT parameter 11-4
ADDRSPC parameter 11-6
COND parameter 11-8
DPRTY parameter 11-13
DYNAMNBR parameter 11-15
P ARM parameter 11-17
PERFORM parameter- 11-19
RD parameter 11-26
REGION parameter 11-30
TIME parameter 11-32

parameters, positional 11-2
PGM parameter 11-21
PROC parameter 11-24
Procedure name parameter 11-24

Index

restriction on changing PGM parameter 9-4
using, example of 4-1

Coding the JOB statement
description 10-1
examples of 10-2
parameters, keyword 10-2

ADDRSPC Parameter 10-7
CLASS Parameter 10-9
COND Parameter 10-10
GROUP Parameter 10-12
MSGCLASS Parameter 10-14
MSGLEVEL Parameter 10-16
NOTIFY Parameter 10-18
PASSWORD Parameter 10-20
PERFORM Parameter 10-22
PRTY Parameter 10-26
RD Parameter 10-28
REGION Parameter 10-31
RESTART Parameter 10-33
TIME Parameter 10-36
TYPRUN Parameter 10-39
USER Parameter 10-41

parameters,positional 10-2
accounting information parameter 10-3
Programmer's Name Parameter 10-24

coding the OUTPUT JCL statement
description 14-1
introduction 1-2
overrides 14-4
relationship to //*FORMAT 14-5
relationship to the SYSOUT parameter 14-4
syntax 14-2

column binary input, reading' 3-26
comma

continuing control statements 2-6
how to code 2-1, 2-2
leading and trailing commas, caution 2-19
use with symbolic parameters 2-19'

COMMAND Statement
for JCL 15-2

description 15-2
example 15-3
syntax 15-2

for JES2 16-2
description 16-2
examples 16-3

Index X-7

•

Index

parameter definition 16-2
for JES3 17-3

commands, list of 17-3
description 17-3
examples 17-4
syntax 17-3

COMMENT JCL Control Statement
description 15-4
example 15-4
introduction 1-1
relationship to MSGLEVEL parameter 15-4

comments field in control statements 2-3
comments field, continuing 2-7
communications link, BSC

See point-to-point communications link
COMPACT parameter

on /*OUTPUT statement 16-15
on JES3 //*FORMAT PR statement 17-12
on JES3 //*FORMAT PU statement 17-20
on OUTPUT JCL statement 14-15

COMPACT Parameter on OUTPUT JCL statement
compaction-table-name subparameter 17 -12

on JES3 //*FORMAT PR statement 17-12
on JES3 / /*FORMAT PU statement 17-20

completion codes
See COND Parameter

concatenating data sets
cautions 2-9

with DUMMY parameter 2-9
with RDJFCB macro 2-9

introduction 2-9
concatenating private libraries 8-4
concatenation cautions 2-9
concurrent use, data set 7-19
COND Parameter

on EXEC statement 11-8
Cautions when using 11-10
examples 5-9, 5-13, 11-12
override . 11-10
Subparameter definition 11-9
syntax 11-8
use of 5-7
use of with cataloged procedures 5-13
use of, to force step execution 5-15

on JOB statement 10-10
examples 5-9, 10-11
subparameter definition 10-10
syntax 10-10
use of 5-5

conditional disposition of data sets 7-13
See also DISP parameter on DD statement

conditionally executing job steps 5-5
See also COND Parameter
JES3 setup, for 5-5
testing return codes 5-5

CONTIG subparameter of SPACE parameter
See also contiguous space
See also SPACE parameter
description 12-114
use of 8-21

X-8 MVS JCL

contiguous space
See also CONTIG subparameter of SPACE

parameter
See also SPACE parameter
for indexed sequential data sets 8-21
requesting 7-39

continuing comments 2-7
continuing control statements 2-6
continuing parameters 2-7
continuing the comments field 2-7
continuing the parameter field 2-7
control of nontemporary data set

exclusive control 7 -19
shared control 7-19

CONTROL parameter on JES3 //*FORMAT PR
statement 17-12

CONTROL Parameter on OUTPUT JCL statement
control printing

bursting of output 7 -62
copy modification 7-58
delaying 7-55
forms control 7 -60
forms overflow processing (JES3) 7-56
forms overlay 7-62
limiting output records (JES2) 7-55
limiting output records (JES3) 7-56
multiple copies (JES2) 7-57
multiple copies (JES3) 7-58
page overflow processing (JES2) 7-56
printer form and character control 7-58
printer spacing (JES3) 7-56
special character sets 7-59
suppressing 7-55

control program (JES3) 5-4
See also TYPE parameter on JES3 / /*MAIN

statement
control statement fields

comments field 2-4
identifier field 2-3
name field 2-4
operation field 2-4
parameter field 2-4

control statements
See specific control statement

controlling job execution node using JES3
networking 3-11

controlling output destination (JES2)
See controlling output destination in a JES2 network

controlling output destination in a JES2 network 3-7
controlling output destination using JES3 3-12
COPIES parameter

on /*JOBPARM statement 16-5
on /*OUTPUT statement 16-15
on JES3 //*FORMAT PR statement 17-i2
on JES3 //*FORMAT PUstatement 17-20
on SYSOUT DD statement 12-25

default 12-26
description 12-25
examples 12-27
relationship to JES 12-27

relationship to other parameters 12-26
restriction with UNIT parameter 12-27
subparameter definition 12-25
syntax 12-25

requesting multiple copies (JES2) 7-57
requesting multiple copies (JES3) 7-58

COPIES Parameter on OUTPUT JCL statement
copy input deck and bypass job initiation 3-25
copy modification module 7-58

See also MODIFY parameter
copy modification, requesting 7-58

See also MODIFY parameter
COPY subparameter of TYPRUN parameter 10-40
COPYG parameter

on /*OUTPUT statement 16-16
copying JCL input without execution in JES2 3-25
copying the data set name from an earlier DD

statement 7-6
count subparameter of FLASH parameter

on /*OUTPUT statement 16-18
on DD statement 12-81
on JES3 //*FORMAT PR statement 17-14

CPRI subparameter on DCB parameter 12-37
with OUTLIM parameter 12-101

CPU time limit
See TIME Parameter

creating
a generation data set 8-26
a nontemporary data set 7-3
a private library 8-2
a temporary data set

See temporary data set
a temporary partitioned data set

See temporary data set
an indexed sequential data set 8-18
and retrieving indexed sequential data sets ·8-18
and using private and temporary libraries 8-1
areas of a temporary indexed sequential data set

See temporary data set
or retrieving a nontemporary data set 7-3

creating a model data set label 8-26
Creating and Using a Subsystem Data Set 8-32
CROPS subparameter of AMP parameter 12-12
CYL subparameter of SPACE parameter

See also SPACE parameter
description 12-113
requesting space 7-39

cy tinder index
See NTM subparameter on DCB parameter

cylinders
See CYL subparameter of SPACE parameter

cylinders, number per device 18-10
CYLOFL subparameter on DCB parameter 12-38

using with FCB parameter 12-78
with UCS parameter 12-129

D operator command (JES3)
See DELAY operator command (JES3)

D parameter (JES2)

Index

See DEST parameter on /*OUTPUT statement
D subparameter on JES3 / /*MAIN statement

See DUMP subparameter on MAIN statement
data

identifying 6-9-7 -43
modifying 7-58

data control block'
See DCB parameter on DD statement

data definition (DD) statement
See coding the DD statement

data link, synchronous
See synchronous data link

DAT A parameter on DD statement
See also * DD parameter
See also D LM parameter
creating a data set 18-2-18-3
data in input stream 8-13
description 12-28
examples 12-29
relationship to other parameters 12-28
restrictions 12-28
retrieving a data set 18-4
separating groups of data 12-29
syntax 12-28
use of 8-13

data set
areas of a temporary indexed sequential

See temporary data set
backward references to VIO 8-11
cataloging 7-16
creating 18-2-18-3
defining a dummy 8-8
4efining a temporary VIO 8-10
delaying writing of 7-55
deleting 7 -15
disposition processing 7 -13-7 -19
disposition, specifying 7-14
dummy, requests to read or write 8-9
exclusive control of 7-20
extending 18-5
for mass storage volumes 7 -39
identifying to system 6-9
indexed sequential, creating and retrieving 8-18
indexed sequential, requesting index space 7 -42
information, specifying 7-1
integrity processing, how the system performs 7-20
integrity, insuring 7-19
keeping 7 -16
members of a temporary partitioned

See temporary data set
multivolume 7-28
name, copying 7-6
nontemporary, creating 7-3
nontemporary, retrieving 7-3
output, assigning to output classes 7-51
output, delaying the writing of 7-55
output, processing for the job 7 -44
output, suppressing the writing of 7-55
partitioned, requesting directory space 7 -42
passed unreceived

Index X-9

•

Index

See passed un received data sets
passing 7 -17
processing options, specifying 7 -43
requesting space for non-VSAM 7-39
retrieving 18-4
shared control of 7-20
special 8-1
specifying for MSS 7-37
status 12-57
status, specifying 7-14
suppressing the writing of 7-55
temporary

See temporary data set
temporary, creating 7-4
temporary, retrieving 7-4
temporary, using VIO for 8-10
temporary, using VIO to pass among job

steps 8-12
uncataloging 7-17
VSAM 8-14
writing output 7-44

data set label
completing the data control block 12-33
copying attributes from 12-34
model 8-26

data set name
See also DSNAME parameter on DD statement
copying 7-6
in apostrophes 7-7
special characters, rules of 7-7

data set organization
See DSORG subparameter on DCB parameter

data set status
See also DISP parameter on DD statement
use of 7-14

data-set-sequence-number subparameter of LABEL
parameter

description 12-89
use of 7-8

DCB macro instruction
coding the DCB parameter 12-31
requesting exclusive control of part of a data

set 7-20
DCB macro instruction program written in assembler

language 12-33
DCB parameter on DD statement

BDAM subparameters 12-36-12-48
BISAM subparameters 12-36-12-48
BPAM subparameters 12-36-12-48
BSAM'subparameters 12-36-12-48
BTAM subparameters 12-36-12-48
completing the data control block 12-33
copying DCB information 12-34

from a data set label 12-34
from an earlier DD statement 12-34

description 12-31
examples 12-35
EXCP subparameters 12-36-12-48
for dummy data set 8-8
for private libraries 8-3

X-IO MVS JCL

GAM subparameters 12-36-12-48
modifying iIi cataloged or in-stream procedures 9-4
QISAM subparameters 12-36-12-48
QSAMsubparameters 12-36-12-48
relationship to other parameters 12-33
subparameter definition 12-32
supplying DCB subparameters 12-33
syntax 12-31
TCAM subparameters 12 .. J6-12-48
use of with indexed sequential data sets 8-20
use with generation data sets 8-27, 8-30

DDNAME parameter 7-1
on DD statement 12-49

coding backward references 12-51
examples 12-51
relationship to other parameters 12-49
subparameter definition 12-49
syntax 12-49

on FORMAT PR statement (JES3) 17-10
on JES3 //*DATASET statement 17-5
on JES3 //*FORMAT PU statement 17-19
specifying 7-1
use of 7-1

ddname subparameter
on JES3 //*FORMAT PRstatement 17-10
on JES3 //*FORMAT PU statement 17-19
on UNIT parameter 12-132

DEADLINE parameter on JES3 //*MAIN
statement 17-25

deadline scheduling for JES3 3-27
See also DEADLINE parameter on JES3 //*MAIN

statement
deallocating data sets dynamically 4-12, 6.,3

See also FREE parameter onDD statement
deallocation, dynamic

See dynamically allocating and de allocating data sets
See FREE parameter on DD statement

dedicated devices
See also DEVPOOL parameter on JES3 / /*NET

statementdevrl
dependent job control 3-29

default disposition processing 7-19
default OUTPUT JCL statement, defined 14-3
DEFAULT Parameter on OUTPUT JCL

statement 14-20
DEFER subparameter of UNIT parameter

description 12-132
use of 7-30

deferred mounting of volumes, requesting 7-30, 12-132
See also DEFER subparameter of UNIT parameter

deferred restart 5-27
defining a dummy data set 8-8
defining a VIO temporary data set 8-10
defining symbolic parameters when writing a

procedure 2-15
DELAY operator command (JES3) 17-3
delaying initiation of other jobs (JES3) 3-24

See. also UPDATE parameter on JES3 //*MAIN
statement

delaying initiation of your job in JES2 3-23

See also /*SETUP statement
See also TYPRUN Parameter, on JOB statement

delaying job initiation (JES3) 3-24
delaying the writing of an output data set 7-55
DELETE subparameter of DISP parameter

description 12-59
use of 7-15

deleting a data set
See DELETE subparameter of DISP parameter

deleting records
exclusive control 7-20

deleting unused space
See RLSE subparameter of SPACE parameter

delimiter other than /*
See D LM parameter

Delimiter Statement
See also * DD parameter
See also DATA parameter on DD statement
See also DLM parameter
description 15-7
example 15-7
input stream data 8-13
introduction 1-1
relationship to DLM parameter 15-7

demounting a tape volume
See VOLUME parameter

DEN subparameter on DCB parameter 12-38
dependent job control for JES3: The Job Net

See also JES3 / /*NET statement
defining a dependent job net 3-28
establishing dependencies between nets 3-29
examples 3-30-3-33
how to code 3-29
specifying dedicated devices 3-29
specifying early setup of resources 3-29
use of 3-27

DEPT parameter on JES3 //*NETACCT
statement 17-40

DEST parameter
See also /*ROUTE statement
See also /*XMIT statement
See also controlling job execution node using JES3

networking
See also controlling output destination in a JES2

network
See also JES3 / /*ROUTE XEQ statement
on /*OUTPUT statement 16-16
on DD statement 12-53

defaults 12-55·
description 12-53
example 12-56
relationship to other parameters 12-55
subparameter definition for JES2 12-53
subparameter definition for JES3 12-54
syntax 12-53

on JES3 //*FORMAT PR statement 17-13
on JES3 //*FORMAT PU statement 17-20
on OUTPUTJCL statement 14~23

DEST Parameter on OUTPUT JCL statement
destination (JES2)

See DEST parameter
destination (JES3)

See DEST parameter
destination (TSO)

See DEST parameter
destination (VM)

See D EST parameter
device setup in JES3

See types of JES3 setup
device-address subparameter

of DEST parameter
on DD statement 12-55

Index

device-address subparameter of DEST parameter
on JES3 //*FORMAT PR statement 17-13
on JES3 //*FORMAT PU statement 17-21

device-address subparameter of UNIT parameter
description 12-130
use of 7-28

device-name subparameter
of DEST parameter

on DD statement 12-54
on OUTPUT JCL statement 14-24

device-name subparameter of DEST parameter
on JES3 / /*FORMAT PR statement 17-13
on JES3 //*FORMAT PU statement 17-20

device-type subparameter of UNIT parameter
description 12-130
use of 7-28

devices
capacities 18-10
direct access 7-24
for dependent job control 3-27
JES3 setup 6-5
magnetic tape 7-24
specifying 7-52
valid for VSAM 8-15

DEVPOOL parameter on JES3 //*NET statementdevrl
description 17-36
use of 3-29

DEVRELSE parameter on JES3 / /*NET statement
description 17-37
use of 3-29

DHWS subparameter
of SETUP parameter on JES3 / /*MAIN

statement 17 -31
DIAGNS subparameter on DCB parameter

description 12-38
using with DDNAME parameter 12-49

direct access data sets
disposition processing 7-14
insuring integrity of 7-19

direct access device 7 -24
direct access devices, capacities of 18-10
direct access volumes

for partitioned data sets 7-42
for passed data sets 7-17

directory space
See also SPACE parameter
requesting for a partitioned data set 7-42

directory subparameter of SPACE parameter 12-114

Index X-II

•

Index

See also SPACE parameter
DISABLE operator command (JES3) 17-3
diskette reader writer 7-6, 12-66

See also associated data sets
See also DSID parameter on DD statement

DISP parameter on DD statement
See also disposition processing
description 12-57
DISP = MOD for multivolume data set 12-61
examples 12-62
extending a multivolume data set 12-62
for private library 8-2
on STEPLIB DD statement 13-8
on SYSABEND DD statement 13-11
on SYSCHK DD statement 13-15
on SYSCKEOV DD statement 13-18
on SYSMDUMP DD statement 13-11
on SYSUDUMP DD statement 13-11
relationship to other parameters 12-60
subparameter definition 12-57
syntax 12-57
use of 7-13
use of with indexed sequential data sets 8-20
use with generation data sets 8-27, 8-29

dispatching priority, assigning
See assigning a dispatching priority

DISPLAY operator command (JCL) 15-2
disposition processing

See also DISP parameter on DD statement
bypassing 7 -19
conditional 7-13
default 7-19
examples of 7-23
of non-VSAM data sets 7-13
of passed unreceived data sets 7-18

DJC
See dependent job control for JES3: The Job Net

DLM parameter
See also * DD parameter
See also DATA parameter on DD statement
See also Delimiter Statement
input stream data 8-13
on DD statement 12-64

default 12-65
description 12-64
example 12-65
relationship to other parameters 12-65
subparameter definition 12-64
syntax 12-64

on ?CMIT statement (JES2) 16-34
use of 8-13

DOUBLE subparameter on JES3 //*FORMAT PR
. statement 17-12
DOUBLE subparameter on OUTPUT JCL

statement 14-16
DPRTY parameter on EXEC statement

calculating dispatching priority 5-21
default 11-14
examples 11-14
subparameter definition 11-13

X-12 MVS JCL

syntax 11-13
use of 5-21

DS subparameter of CHNSIZE parameter
on JES3 //*FORMAT PR statement 17-11
on JES3 //*FORMAT PU statement 17-20

DSID parameter on DD statement
See also associated data sets
description 12-66
example 12-67
relationship to other parameters 12-67
subparameter definition 12-66
syntax 12-66

DSN parameter on DD statement
See DSNAME parameter on DD statement

DSNAME parameter 7-2, 7-7
DSNAME parameter on DD statement

copying 7-6
description 12-68
examples 12-71
for private library 8-2
for temporary data set 7-4
on STEPLIB DD statement 13-8
on SYSABEND DD statement 13-11
on SYSCHK DD statement 13-15
on SYSCKEOV DD statement 13-19
on SYSMDUMP DD statement 13-11
on SYSUDUMP DD statement 13-11
relationship to other parameters 12-71
specifying 7-2
specifying in apostrophes 7 -7
subparameter definition 12-69
syntax 12-68
use for members of a partitioned data set 7-4
use for nontemporary data sets 7-3
use of 7-2
use of apostrophes 7-7
use of with indexed sequential data sets 8-19, 8-22,

8-23
use when creating private libraries 8-2
use when requesting dumps 8-6
use with generation data sets 7-4, 8-26, 8-28
use with indexed sequential data sets 8-22

dsname subparameter of VOLUME parameter 12-138
DSNAME = NULLFILE 8-9
DSORG subparameter on DCB parameter

description 12-38
for indexed sequential data set 7-42

DSP (JES3)
allowable on PROCESS statement 17-45
use 17-44

dsp parameter on JES3 / /*PA USE statement
examples 17 -46

dummy data set
bypassing disposition processing 7-19
bypassing I/O operations 7-55
defining 8-8
DSNAME = NULLFILE 8-9
requests to read 8-9
requests to write 8-9
suppressing output 7-55

DUMMY parameter on DD statement
backward references 12-74
concatenated data sets 12-74
creating a dummy data set 8-8
description 12-73
examples 8-8, 12-74
parameters on DD DUMMY Statements 12-73
relationship to access methods 12-74
relationship to other parameters 12-74
suppressing output 7-SS
syntax 12-73
use of 8-8

dump requests
See abnormal termination dump

DUMP subparameter on MAIN statement 17-2S,
17-29

DUMP value on CHARS parameter 14-8
dump, abnormal termination

high-density 12-20, 12-79, 14-9, 14-27
high-density on OUTPUT JCL statement 14-8
printing 13-12
requesting 8-6
storing 13-11
to write more than one dump 13-12
when using IPCS 8-7

DYNAM parameter on DD statement
See also dynamically allocating and de allocating

data sets
description 12-76
dynamic allocation 4-12, 6-3
example 12-76
relationship to other parameters 12-76
syntax 12-76

dynamic support program
See DSP (JES3)

dynamically allocating and deallocating data sets 4-12,
6-3

dynamically allocating data sets 4-12, 6-3
See also DYNAM parameter on DD statement
See also DYNAMNBR parameter

dynamically deallocating data sets 4-12, 6-3
See also FREE parameter on DD statement

DYNAMNBR parameter
See also dynamically allocating and deallocating

data sets
default II-IS
description II-IS
example 11-16
subparameter definition II-IS
syntax 11-15
use of (dynamic allocation) 4-12, 6-3

E operator command (JES3)
See ERASE operator command (JES3)

E parameter (JES2)
See CKPTLNS parameter on j*OUTPUT statement
See RESTART parameter on JOBPARM statement

E subparameter of MODE parameter 17-S
ellipsis in control statements 2-3

ENABLE operator command (JES3) 17-3
end program control

for JCL IS-8
END subparameter of FREE parameter 12-84

Index

See also dynamically allocating and de allocating
data sets

ENDCNTL Statement
description IS-8
example IS-8
syntax IS-8

enqueuing on a data set 7-19
entering data through the input stream 8-13
ERASE operator command (JES3) 17-3
EROPT subparameter on DCB parameter 12-39
error option

See EROPT subparameter on DCB parameter
esoteric name

See group-name subparameter of UNIT parameter
establishing dependencies between different nets 3-29
establishing job processing balance in JES3 S-19
EVEN subparameter of COND parameter on EXEC

statement
use of S-8

example of
an in-stream procedure containing symbolic

parameters 2-21
coding the TIME parameter on JOB and EXEC

statements S-18
creating and retrieving an indexed sequential data

set 8-24
dependent job control 3-30
disposition processing of non-VSAM data sets 7-23
dynamically deallocating data sets 4-13, 6-4 .
identifying data sets to the system 7-13
obtaining output (JES2) 3-9
obtaining output (JES3) 3-13
requesting space 7-43
requesting storage S-26
requesting units and volumes 7-31
routing a job through a JES3 network 3-11
spool partitioning (JES3) 3-34
unit and volume affinities 7-3S
unit and volume affinity 7-33
using the COND parameter in a job S-9
using the internal reader 7 -S3

Example of using the internal reader 7-S3
exclude particular processors (JES3) S-3
exclusive control of a data set 7-20
exclusive OR 2-2
EXCP (execute channel program) subparameters of

DCB parameter 12-36-12-48
execute channel program

See EXCP (execute channel program) subparameters
of DCB parameter

execute statement
See coding the EXEC statement

Executing your job 1-7
execution of job steps, conditional S-S

See also conditionally executing job steps
existing data sets

Index X-I3

•

Index

default disposition processing 7-19
volume request 7-24

EXPDT subparameter of LABEL parameter
description 12-93
use of 7-12
when DELETE is coded 7 -15
when KEEP is coded 7 -16

EXPDTCHK parameter on JES3 / /*MAIN
statement 17-27

expiration date
See EXPDT subparameter of LABEL parameter

expiration date checking (JES3)
See EXPDTCHK parameter on JES3 / /*MAIN

statement
explicit setup

See types of JES3 setup
explicit unit affinity 7 -33
extending a data set

additional space 7-41
more than one unit 7-29
parameters for 18-5

external page storage
See virtual storage

external writer 7-54
See also EXTWTR parameter

EXTWTR parameter
on JES3 //*FORMAT PR statement 17-14
on JES3 //*FORMAT PU statement 17-21

F operator command (JES3)
See MODIFY operator command

F parameter (JES2)
See FORMS parameter on /*JOBPARM statement
See FORMS parameter on /*OUTPUT statement

(JES2)
FAIL operator command (JES3) 17-3
FAILURE parameter on JES3 //*MAIN statement

description 17-27
introduction 5-29

. FCB parameter
forms control, requesting 7-60
on /*OUTPUT statement 16-17
on DD statement 12-77

defaults 12-78
description 12-77
relationship to other parameters 12-78
subparameter definition 12-77
syntax 12-77

on JES3 //*FORMAT PR statement 17-14
on OUTPUT JCL statement 14-26

FCB Parameter on OUTPUT JCL statement
fcb-name subparameter of FCB parameter 12-77,

14-26
FETCH parameter on JES3 / /*MAIN statement

description 17-27
use of 3-14

fetching messages
See FETCH parameter on JES3 / /*MAIN statement

fields in control statements 2-3

X-14 MVS JCL

fixed length record
See RECFM subparameter, on DCB parameter

FLASH parameter
forms overlay, requesting 7 -62
on /*OUTPUT statement 16-18
on DD statement 12-81

defaults 12-81
description 12-81
example 12-83
relationship to other parameters 12-82
subparameter definition 12-81
syntax 12-81

on JES3 //*FORMAT PR statement 17-14
FLASH Parameter on OUTPUT JCL statement
FLASHC parameter

on j*OUTPUT statement 16-18
FOLD subparameter of UCS parameter 12-127
forcing step execution with the COND parameter 5-15
form and character control, requesting 7-58
form-name subparameter

in SYSOUT parameter 12-121
of FORMS parameter

on JES3 //*FORMAT PR statement 17-15
on JES3 //*FORMAT PU statement 17-21

output form, requesting 7-59
FORMDEF Parameter on OUTPUT JCL statement
forms

See form-name subparameter
See FORMS parameter

forms control
See FCB parameter
See FORMS parameter

forms control buffer feature
See FCB parameter

forms control, requesting 7-60
forms overflow

See OVFL parameter on JES3 //*FORMAT PR
statement

forms overflow processing, specifying in JES3 7-56
forms overlay

See FLASH parameter
forms overlay, requesting 7-62
FORMS parameter

on /*JOBPARM statement 16-5
on /*OUTPUT statement 16-19
on JES3 //*FORMAT PR statement 17-15
on JES3 //*FORMAT PU statement 17-21
on OUTPUT JCL statement 14-33
printer form and character control, requesting 7-58

FORMS Parameter on OUTPUT JCL statement
FREE operator command (JES3) 17-3
FREE parameter on DD statement

description 12-84
subparameter definition 12-84
syntax 12-84
use of (dynamic de allocation) 4-12, 6-3
using 4-12, 6-3

FRID subparameter on DCB parameter
description 12-39
using with FCB parameter 12-78

FUNC subparameter on DCB parameter
description 12-39
for interpretation of punched output 7-57
with LABEL parameter 12-93
3525 7-57

G parameter (JES2)
See COPYG parameter on I*OUTPUT statement
See PAGES parameter on /*JOBPARM statement

GAM subparameters of DCB parameter 12-36-12-48
GDG (generation data groups)

building a base entry 8-25
creating 8-26
creating a model data set label 8-26
definition 8-25
deleting 8-30
example 8-31
generations of 7-4
parameters for creating 8-26-8-27

DCB parameter 8-27
DISP parameter 8-27
DSNAME parameter 8-26
LABEL parameter I 8-27
SP ACE parameter 8-27
UNIT parameter 8-27
VOLUME parameter 8-27

parameters for retrieving 8-28-8-30
DCB parameter 8-30
DISP parameter 8-29
DSNAME parameter 8-28
LABEL parameter 8-30
UNIT parameter 8-29
VOLUME parameter 8-29

restarting 8-30
retrieving 8-28
retrieving a single generation data set 8-28
retrieving all generations of a GDG 8-28
uncataloging 8-30

generation data group
See GDG (generation data groups)

generation data groups residing on DASD volumes,
retrieving 7-39

generation data set
See GDG (generation data groups)

generations of a generation data group
See GDG (generation data groups)

generic name
See device-type subparameter of UNIT parameter

GETMAIN
See ADDRSPC Parameter
See REGION Parameter

global processor
See processor selection
See SYSTEM parameter on JES3 / /*MAIN

statement
GNCP subparameter on DCB parameter 12-39
graphic device 7-24
graphics access method

See GAM subparameters of DCB parameter

Index

group name
See group-name subparameter of UNIT parameter

GROUP Parameter, on JOB statement
See also PASSWORD and USER parameters
example 10-13
subparameter definition 10-12
syntax 10-12
use of 6-2

group-name subparameter
of DEST parameter 17-13

on DD statement 12-55
on JES3 //*FORMAT PR statement L~13

on JES3 //*FORMAT PU statement J 7-21
on OUTPUT JCL statement 14-24

of GROUP parameter on JOB statement w,n
of ORG parameter on JES3 //*MAIN

statement 17-30
See also JES3 / /*MAIN statement

group-name subparameter of UNIT parame~~r
description 12-131
use of 7-28

group-value subparameter of COPIES paramt'l:er
on /*OUTPUT statement 16-15
on DD statement 12-25
on JES3 I/*FORMAT PR statement 17-13
on OUTPUT JCL statement 14-17
use of 7-58

GROUPID Parameter on OUTPUT .leI., s!:[,;,tement
guide to cataloged procedure

See cataloged and in-stream proced1::res
guide to data allocation contrc'l. 6·,1
guide to job and step control
guide to job control 3-1
guide to special data sets

associated 4ata sets 7-6
dummy 8-8
generation data groups (GDG) 8-25-8-31
in the input stream 8-13
introduction 8-1
ISAM 8-18-8-24
private and temporary libraries 8-1-8-5
subsystem data set 8-32
virtual input/output (VIO) 8-10
VSAM 8-14-8-17

Guide to Specifying Data Set Information 7-1
guide to step control 4-1
guide to using data set control statements 6-9
G 11 character set (3211) 12-128, 14-54

H operator command (JES3)
See DISABLE operator command (JES3)

high watermark setup
See types of JES3 setup

high-density dumps
See also CHARS parameter
See also FCB parameter
requesting 8-6

HN character set
for 1403 12-128, 14-54

Index X-I5

•

Index

for 3203 Model 5 12-128, 14-54
HOLD operator command (JCL) 15-2
hold output

See HOLD parameter
HOLD parameter

delaying the writing of an output data set 7-55
on DD statement 12-87

description 12-87
example 12-88
relationship to other parameters 12-88
subparameter definition 12-87
syntax 12-87

on JES3 //*MAIN statement 17-28
relationship to NOTIFY

JES2 control statement 12-88
parameter on JOB statement 12-88

HOLD subparameter of TYPRUN parameter 10-39
HOLD subparameter on JES3 / /*MAIN

statement 17-27
See also FAILURE parameter on JES3 //*MAIN

statement
how the system handles the DDNAME parameter 7-1
how the system performs data set integrity

processing 7-20
how the system satisfies specific volume requests 7-25
how the system satisfies your primary and secondary

request 7-40
how to call cataloged and in-stream procedures 9-3
how to code NET statements 3-29
HWS subparameter

of SETUP parameter on JES3 / /*MAIN
statement 17-31

Hl1 character set (3211) 12-128, 14-54

I operator command (JES3)
See INQUIRY operator command (JES3)

I parameter (JES2)
See INDEX parameter on /*OUTPUT statement

I subparameter of AMP parameter 12-13
IBM standard labels 7-8, 12-90

See also LABEL parameter on DD statement
use of 7-9, 7-10

identifier field in control statements 2-3
identifying an in-stream procedure 9-2
identifying comments on an output listing 2-7
identifying data sets to the system, example of 7-13
identifying procedure statements on an output

listing 9-13
identifying the program to be executed 4-4
IEBIMAGE program

See, also MODIFY parameter
for character arrangement tables 7-60
for copy modification modules 7-58

IEFBR14 program
description 4-7
example of use 5-15

IL subparameter of AMP parameter 12-13
image for printing a data set, requesting 7-60
image identifier

X-16 MVS JCL

See FCB parameter
image-name subparameter of FCB parameter

on JES3 //*FORMAT PR statement 17-14
implied unit affinity 7-33
IN subparameter of LABEL parameter

description 12-92
use of 7-11

in-stream procedure
See also PEND Statement
See also PROC Statement
calling 9-1, 9-3
changes, allowing for 9-3
DD statement parameters, modifying 9-6
DD statements, adding 9-8
definition 1-7
description 2-21, 9-1
EXEC statement parameters, modifying 9-4
identifying 9-2
identifying on an output listing 9-13
introduction 1-7
maximum per job 1-7
modifying 9-4
OUTPUT JCL statement parameters,

modifying 9-9
OUTPUT JCL statements, adding 9-10
restrictions on contents of 9-1
symbolic parameters with 9-2
symbolic parameters, example 2-15, 2-21
symbolic parameters, use 2-15-2-21
using 9-3
writing 9-1

incremental quantity
See secondary request for space

IND subparameter (JES2)
See SYSAFF parameter on /* JOBPARM statement

independent mode affinity (JES2) 5-3
See also SYSAFF parameter on /*JOBPARM

statement
index area of indexed sequential data set 8-18
INDEX parameter

on /*OUTPUT statement 16-19
on OUTPUT JCL statement 14-36

INDEX Parameter on OUTPUT JCL statement
index print position

See INDEX parameter
index space, requesting for an indexed sequential data

set 7-42
index subparameter of SPACE parameter 12-114

See also SPACE parameter
indexed sequential data set

absolute track technique 8-21
area arrangement of 8-22
areas of 7-4, 8-18
creating 8-18
creating and retrieving 8-18
examples of creating and retrieving 8-24
insufficient storage for allocation 7-40, 8-20
nonspecific allocation technique 8-21
requesting index space 7 -42
retrieving 8-22

specific tracks, assigning 7 -43
temporary 7-6
use of with indexed sequential data sets 8-23

initiation of jobs, delaying (JES2) 3-23
initiation of jobs, delaying (JES3) 3-24
INOUT specification for BSAM, overriding 7-11

See also OPEN macro options, overriding
input stream

See also * D D parameter
See also DATA parameter on DD statement
data in input stream 9-2
definition 1-7
entering commands 15-2
entering data 8-13

input/output operations, bypassing
See DUMMY parameter on DD statement

INQUIRY operator command (JES3) 17-3
installation management information 3-2
installation management information: the ACCT

parameter 4-10
installation-written writer routine 7-54
insuring data set integrity 7-19
INT parameter on JES3 / /*FORMAT PU statement

See also JES3
description 17-21
use of 7-57

integrity, data set
exclusive control 7-20
how system performs 7-20
insuring 7 -19
shared control 7-20
table summarizing 7-22

Interactive Problem Control System
printing a dump 13-12
requesting an abnormal termination dump 8-7

Interpretation of Punched Output 7-57
INTRDR 12-121, 14-56

on D D SYSO UT parameter 12-121
on OUTPUT JCL WRITER parameter 14-56

. use of 7-52
INTVL subparameter on DCB parameter

description 12-39
using with FCB parameter 12-78

IORATE parameter on JES3 / /*MAIN statement
description 17-28
use of 5-19

IPCS
See Interactive Problem Control System

ISAM data set
See indexed sequential data set

ISO/ANSI printer control characters in RECFM
subparameter 12-45

ISO / ANSI Version 1 labels 12-90
ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3

labels and user labels 12-91
ISO / ANSI/FIPS tape labels 12-110
ISO/ANSI/FIPS Version 3 labels 12-90

J parameter (JES2)

Index

See NOLOG parameter on /*JOBPARM statement
J parameter on JES3 //*DATASET statement 17-5
JCL Statements

CNTL Statement 15-5
description 15-5

coding conventions 2-1
COMMAND Statement 15-2

description 15-2
COMMENT Statement 15-4

description 15-4
continuing 2-6
DD Statement 12-1

description 12-1
DELIMITER Statement 15-7

description 15-7
ENDCNTL Statement 15-8

description 15-8
EXEC Statement 11-1

description 11-1
fields of 2-3-2-6
introduction 1-1
JOB Statement 10-1

description 10-1
introduction 1-2

NULL Statement 15-9
description 15-9

OUTPUT statement 14-1
description 14-1

PEND Statement 15-10
description 15-10

PROC Statement 15-11
description 15-11

requesting listings of 3-14
JCLHOLD subparameter of TYPRUN

parameter 10-39
JCLTEST (JES3) 3-25
JESDS parameter 7-49
JESDS Parameter on OUTPUT JCL statement
JESJCL subparameter on JES3 //*FORMAT PR

statement . 17-10
JESMSG subparameter on JES3 //*FORMAT PR

statement 17-10
JES2

accounting information, introduction 3-4
assigning a job priority 5-20
hard-copy log 3-16
job initiation, delaying 3-23
job scheduling 5-1
NETACCT control statement, use of 3-4
NOTIFY control statement, use of 3-19
operator commands 16-2
output class processing. 7-54
output limiting 7 -56
remote job processing 3-20
SETUP statement, use of 3-26
SIGNOFF control statement, use of 3-21
SIGNON control statement, use of 3-21
support of the 3211 indexing feature 7-57

JES2 control statements
JES3

Index X-I7

•

Index

assigning a job priority 5-20
forms overflow processing and printer spacing,

specifying 7-56
handling of unit and volume references 7-31
job initiation, delaying 3-24
job processing balance, establishing 5-19
job scheduling 5-2
main device scheduler messages 3-17
NET statement, use of 3-28
NET ACCT control statement, use of 3-5
operator commands 17-3
output class processing 7-54
output limiting 7-56
priority aging 5-21
punch output interpretation on a 3525 7-57
remote job processing 3-12, 3-22
resource allocation 6-4

See also allocation
setup 6-5

See also types of JES3 setup
SETUP parameter, use of 3-26
SIGNOFF control statement, use of 3-23
SIGNON statement, use, of 3-22
spool partitioning 3-33, 6-1
system messages 3-18

JES3 / /*FORMAT PR statement
description 17-9
examples 17-17
introduction 1-5
mutually exclusive parameters 17 -11, 17-14
parameter definition 17-10
printer form and character control, requesting 7-58
syntax 17-9

JES3 //*FORMAT PU statement
description 17 -18
example 17-22
introduction 1-5
parameter definition 17 -19
punched output, requesting interpretation of 7 -57

JES3 / /*MAIN statement
deadline scheduling 3-27
description 17-23
example 17-34
introduction 1-5
job processing balance 5-23
job setup 6-4
output 3-12
parameter definition 17-24
syntax 17-23
updating a procedure library 9-3

JES3 / /*NET statement
dependent job control 3-27-3-33
description 17-35
establishing dependencies between nets 3-29
examples 3-30, 17-39
how to code 3-29
introduction 1-5
parameter definition 17-35
placing a job on hold 3-28
specifying dedicated devices 3-29

X-I8 MVSJCL

specifying early setup 3-29
syntax 17-35
termination of a job 3-28
use of 3-28

JES3 / /*NET ACCT statement
defaults 17-41
description 17-40
example 17-41
introduction 1-5
parameter definition 17-40
syntax 17 -40
use of 3-5

JES3 / /*OPERATOR statement
description 17 -42
introduction 1-5

JES3 / /*PA USE statement
description 17-43
introduction 1-5

JES3 / /*PROCESS statement
description 17 -44
examples 17-46
introduction 1-5
nonstandard job processing 1-6
parameter definition 17-44

JES3 / /*ROUTE XEQ statement
description 17-47
example 17 -48
introduction 1-6
parameter definition 17-47
routing in a network 3-10
rules for coding 17-47

JES3 control statements
job

assigning a priority (JES2) 5-20
assigning a priority (JES3) 5-20
class

See CLASS Parameter
failure, JES recovery 5-26

See also restarting a job
in input stream 1-8
initiation, delaying (JES2) 3-23
initiation, delaying (JES3) 3-24
introduction 1-1
journal

See JOURNAL parameter on JES3 //*MAIN
statement

library
See JOBLIB DD statement
See private library

log (JES2) 3-16
See also NOLOG parameter on /*JOBPARM

statement
management information on JOB statement 3-2.
name, use of 3-1
performance 5-22

See also PERFORM Parameter
priority 5-1

See also /*PRIORITY statement
See also PR TY Parameter

processing balance, establishing in JES3 5-19

processing, remote in JES3 3-12
related output 3-14

See also job log
See also MSGCLASS Parameter on JOB

statement
See also MSGLEVEL parameter on JOB

statement
scheduling

deadline (JES3) 3-27
for JES2 5-1
for JES3 5-2
improving 5-1

selection 5-1
setup

See SETUP parameter on JES3 j j*MAIN
statement

Job Accounting Information Parameter
job control language statements

. See JCL Statements
job entry subsystem (2)

See JES2
job entry subsystem (3)

See JES3
job log 3-14
job step

dispatching priority, assigning 5-21
in input stream 1-9
introduction 1-2
maximum number permitted 1-7
naming 4-3
performance 5-22

JOB subparameter
of SETUP parameter on JES3 j j*MAIN

statement 17-31
JOBCAT DD statement

catalogs, system search order 8-5
description 13-2
examples 13-3
location in the JCL 13-2
master catalog 8-5
private catalog 8-5
relationship to STEPCAT 13-2
syntax 13-2
VSAM data sets 8-14

jobclass subparameter of CLASS parameter 10-9
JOBLIB DD statement

adding members to a private library 8-2
concatenating private libraries 8-4
creating a private library 8-2
description 13-4
examples 8-3, 8-4, 13-6
location in the JCL 13-5
relationship to COND 13-5
relationship to STEPLIB 13-5
retrieving a private library 8-3
rules for coding parameters 13-4

when the library is cataloged 13-4
when the library is not cataloged 13-4

syntax 13-4
jobname

introduction 3-1
JOURNAL parameter on JES3 jj*MAIN

statement 17-28
JSTTEST (JES3) 3-25

K parameter (JES2)

Index

See LINECT parameter on j*JOBPARM statement
See LINECT parameter on j*OUTPUT statement

KEEP subparameter of DISP parameter
description 12-59
use of 7-16

keeping a data set 7-16
See also DISP parameter on DD statement

KEY LEN subparameter on DCB parameter
description 12-40
with SPACE parameter 12-115

keylength
See KEYLEN subparameter on DCB parameter

keyword parameters
definition 2-5
list of 10-2

on DD statement 12-3
on EXEC statement 11-2
on JOB statement 10-2

L parameter (JES2)
See LINDEX parameter on j*OUTPUT statement
See LINES parameter on j*JOBPARM statement

L subparameter of AMP parameter 12-13
label

See LABEL parameter on DD statement
LABEL parameter on DD statement

defaults 12-93
description 12-89
examples 12-94
expiration date, use of 7-12
relationship to other parameters 12-93
retention period, use of 7-12
subparameter definition 12-89
use of 7-7
use of with indexed sequential data sets 8-20
use of with nonspecific volume requests 7-10
use with generation data sets 8-27, 8-30

label type on LABEL parameter
description 7-8, 12-90
use of 7-8

length restriction for symbolic parameters 2-17
lengthening a data set

See also MOD subparameter of DISP parameter
additional space 7-40-7-42
exclusive control 7-19
multivolume dataset 7-28

libraries, temporary 8-5
library

See also JOBLIB DD statement
See also STEPLIB DD statement
placing a cataloged procedure in 9-2
private 8-1-8-4

Index X-19

•

Index

temporary 8-1-8-5
LIMCT subparameter on DCB parameter 12-40
limiting execution time

for a job 5-16
See also TIME Parameter, on JOB statement

for a job step 5-16
See also TIME Parameter, on EXEC statement

limiting job and job step execution time 5-16
limiting output records 7-55
LINDEX parameter

on /*OUTPUT statement 16-19
on OUTPUT JCL statement 14-39

LINDEX Parameter on OUTPUT JCL statement
LINECT parameter

on /*JOBPARM statement 16-5
on /*OUTPUT statement 16-19
on OUTPUT JCL statement 14-40

LINECT Parameter on OUTPUT JCL statement
LINES parameter

on I*JOBPARM statement 16-6
on JES3 //*MAIN statement 17-28

listings of JCL statements and system messages 3-14
See also MSGCLASS Parameter on JOB statement
See also MSGLEVEL parameter on JOB statement

LOCAL subparameter
of DEST parameter

on /*OUTPUT statement 16-16
on DD statement 12-53
on JES3//*FORMAT PR statement 17-13
on JES3//*FORMAT PU statement 17-21
on OUTPUT JCL statement 14-23

of PRINT, PUNCH, and XEQ parameters
on ROUTE statement (JES2) 16-25

LOG operator command (JCL) 15-2
log, hard-copy (JES2) 3-16
log, job 3-14
logical record length

See LRECL subparameter on DCB parameter
LRECL subparameter on DCB parameter

coded with * parameter 12-6
description 12-40
with QNAME parameter 12-111

LREGION parameter on JES3 //*MAIN statement
description 17 -29
use of 5-25

L TM subparameter of LABEL parameter 12-91

M parameter (JES2)
See BYTES parameter on /*JOBPARM statement
See MODTRC parameter on /*OUTPUT statement

MACRF DCB macro operand
when coding DUMMY 12-74

main device scheduler messages (JES3) 3-17
MAS

See multi-access spool (JES2)
mass storage group

See MSVGP parameter on DD statement
mass storage system

See MSVGP parameter on DD statement

X-20 MVS JCL

mass storage volume groups 7-37
ensuring prop€;r multivolume extensions 7-38
specifying SPACE parameter 7-39
specifying VOLUME parameter 7-38'
volume requests 7 -38

mass storage volumes, requesting space for non-VSAM
data sets on 7 -39 .~

MDS messages (JES3). 3-17
members of a partitioned data set

See partitioned data set, members
members of a temporary partitioned data set

See temporary data set
memory

See ADDRSPC Parameter
message class parameter

See MSGCLASS Parameter on JOB statement
message level parameter

See MSGLEVEL parameter on JOB statement
MESSAGE operator command (JES3) 17-3
message queue records

See THRESHOLD parameter
messages, MDS (JES3) 3-17
messages, system (JES3) 3-18
minimum region size 5-24

See also REGION Parameter
MOD subparameter of DISP parameter 12-58

use of 7-14
mode for card reader/punch

See MODE subparameter on DCB parameter
MODE parameter

on JES3 //*DATASET statement 17-5
MODE subparameter on DCB parameter

description 12-41
for binary input 3-26

MODIFY operator command
for JCL 15-2
for JES3 17-3

MODIFY parameter
copy modification, requesting 7-58
on /*OUTPUT statement 16-20
on DD statement 12-95

defaults 12-96
description 12-95
example 12-97
relationship to other parameters 12-96
subparamet~r definition 12-95
syntax 12.95

on JES3//*FORMAT PR statement 17-15
on OUTPUT JCL statement 14-41

MODIFY Parameter on OUTPUT JCL statement
modifying cataloged and in-stream procedures 9-4
modifying parameters on a DO statement 9-6
modifying parameters on an EXEC statement 9-4
modifying parameters on ~n OUTPUT JCL

statement 9-9
modifying parameters on DD statements that define

concatenated data sets 9-8
MODTRC parameter

on /*OUTPUT statement 16-20
module-name subparameter of MODIFY parameter

on /*OUTPUT statement 16-20
on DD statement 12-95
on JES3 //*FORMAT PR statement 17-15
on OUTPUT JCL statement 14-41

MONITOR operator command (JCL) 15-2
MOUNT operator command (JCL) 15-2
MSGCLASS Parameter on JOB statement

examples 10-15
relationship to SYSOUT 10-14
subparameter definition 10-14
syntax lO-14
use of 3-16

MSGCLASS subparameter of CLASS parameter
(JES3) 17-6

See also / /*DAT ASET statement
MSGLEVEL parameter on JOB statement

examples 10-17
subparameter definition 10-16
syntax lO-16
use of 3-14
using with COMMENT statement 15-4

MSS
See MSVGP parameter on DD statement

MSS parameter on JES3 / /*MAIN statement 17-29
MSVGP parameter on DD statement

defining mass storage volumes 7-37
description 12-98
examples 12-100
relationship to other parameters 12-99
subparameter definition 12-98
syntax 12-98

multi-access spool (JE82) 5-2, 5-3
multiple copies of an output data set, requesting using

JES2 7-57
multiple copies of an output data set, requesting using

JES3 7-58
mUltiple units 7-29
mutivolume data sets 7-28
mutually exclusive parameters

table of 18-8
used to override a parameter in a procedure 9-6

MXIG subparameter of SPACE parameter 12-114
See also SPACE parameter

N operator command (JES3)
See ENABLE operator command (JES3)

N parameter (JES2)
See also COPIES, parameter on /*JOBPARM

statement
See also COPIES parameter on /*OUTPUT

statement (JES2)
on ROUTE statement (JES2) 16-25
on XEQ statement (JES2) 16-32

N subparameter of BURST parameter
on /*JOBPARM statement '16-4
on /*OUTPUT statement 16-14
on DD statement 12-16
on OUTPUT JCL statement 14-6

N subparameter of RESTART ~parameter '

on /*JOBPARM statement 16-6
name field in control statements 2-3
name of a data set, specifying 7-2

Index

See also DSNAME parameter on DD statement
name subparameter

of DEST parameter
on /*OUTPUT statement 16-16
on DD statement 12-53
on OUTPUT JCL statement 14-23

of PRINT, PUNCH, and XEQ parameters
on ROUTE statement (JES2) 16-25

naming a job step 4-3
naming the job 3-1
NC subparameter of RD parameter

on JOB statement 10-29
NCK subparameter of AMP parameter 12-13
NCP subparameter on DCB parameter 12-41
NETID parameter on JES3 / /*NET statement

dependent job control 3-27-3-33
description 17-35

NETREL parameter on JES3 //*NET statement 17-37
dependent job control 3-27-3-33

network accounting information 3-4
See also NETACCT statement for JES2 or JES3

network-account-number
on NETACCT Statement (JES2) 16-10

networking
considerations 3-6
controlling job execution node (JES3) 3-11
controlling output (JES2) 3-7
introduction 3-6
routing (JES3) 3-10
routing in (JES2) 3-7
transmitting data (JES2) 3-7

networking (JES3) 3-lO
new data sets

disposition processing 7-14
requesting space on direct access devices 7-39
specifying status of 7-14
unit and volume requests 7-24

NEW subparameter of DISP parameter 12-57
exclusive control 7-19
use of 7-19-7-23

new-password subparameter of PASSWORD parameter
on JOB statement 10-21

NHOLD parameter on JES3 //*NET statement
description 17-37
use of 3-28

NL subparameter of LABEL parameter 12-91
Nnnnn parameter

on XEQ statement (JES2) 16-32
on XMIT statement (JES2) 16-33

Nnnnn subparameter of DEST parameter
of PRINT, PUNCH, and XEQ parameters

on ROUTE statement (JES2) 16-25
on /*OUTPUT statement 16-16
on DD statement 12-54
on OUTPUT JCL statement 14-23

NnnRmmm subparameter
of DEST parameter

Index X-21

•

Index

on DD statement 12-54
NnnRmmmm subparameter

of DEST parameter
on /*OUTPUT statement 16-16
on OUTPUT lCL statement 14-24

of PRINT, PUNCH, and XEQ parameters
on ROUTE statement (lES2) 16-25

no password to read
See NOPWREAD subparameter of LABEL

parameter
NO subparameter 12-87

of CLASS parameter on lES3 / /*DAT ASET
statement 17-6

of EXPDTCHK parameter on lES3 MAIN
statement 17-27

of HOLD parameter on DD statement 12-87
of HOLD parameter on lES3 MAIN

statement 17-28
of INT parameter on JES3 //*FORMAT PU

statement 17-22
of 1 parameter on JES3 / /*DATASET

statement 17-5
node, transmitting data to (JES2) 3-7
node name parameter

on XEQ statement (JES2) 16-32
on XMIT statement (JES2) 16-33

nodename subparameter
of DEST parameter

on DD statement 12-55
on JES3 //*FORMATPR statement 17-13
on JES3 //*FORMAT PU statement 17-21
on OUTPUT lCL statement 14-25

of ORG parameter
on JES3 / /*MAIN statement 17 -30

nodename.remote subparameter
of DEST parameter

on OUTPUT JCL statement 14-25
nodename.userid parameter

on /*NOTIFY Statement 16-11
nodename. userid subparameter

of DEST parameter
on /*OUTPUT statement 16-16
on OUTPUT JCL statement 14-24
on ROUTE statement (JES2) 16-25

of PRINT, PUNCH, and XEQ parameters
on ROUTE statement (JES2) 16-25

NOLOG parameter on 1* 10BPARM statement
description 16-6
use of 3-14

non-VSAM data sets on mass storage volumes,
requesting space for 7-39

NONE subparameter on JES3 / /*MAIN
statement 17-27

See also FETCH parameter on lES3 / /*MAIN
statement

nonpageable dynamic area 5-24
See also ADDRSPC Parameter
See also REGION Parameter

nonspecific allocation technique for indexed sequential
data sets 8-21

X-22 MVSICL

nonspecific volume requests 7-26
for mass storage volumes 7-38
space requests for 7-26
types of 7 -26

nonstandard job (lES3), definition 1-6
nonstandard job processing~(JES3) 1-6

See also JES3 / /*PROCESS statement
nonstandard labels 7-8

See also LABEL parameter on DD statement
non temporary data set

areas of an indexed sequential data set 7-4
creating 7-3
generations of a generation data group 7-4
members of partitioned data set 7-4
retrieving 7-3

NOPWREAD subparameter of LABEL parameter
description 12-92
use of 7-10

normal disposition of data sets 7-13
NORMAL parameter on lES3 //*NET

statement 17-36
Notation used to show syntax 2-1
NOTIFY parameter on lOB statement

example 10-19
receiving notification 10-18

for JES2 10-18
for JES3 10-18

relationship to system affinity (JES2) 5-4
subparameter definition 10-18
syntax 10-18
use of 3-18

NR subparameter of RD parameter
on lob statement 10-30

NRC subparameter of AMP parameter 12-13
NRCMP parameter on JES3 //*NET statement 17-37
NRE subparameter of AMP parameter 12-13
NSL subparameter of LABEL parameter 12-91
NTM subparameter on DCB parameter 12-41
NULL Statement

description 15-9
example 15-9
introduction 1-1

NULLFILE, assign to DSNAME parameter 8-9
See also DUMMY parameter on DD statement,

examples
nullifying parameters in a· procedure

DCB parameter 9-7
DUMMY parameter 9-7
on DD statements 9-6
on EXEC statements 9-4
on OUTPUT lCL statements 9~9

symbolic parameters 2-18

o parameter (JES2)
See FLASH parameter on /*OUTPUT statement

obtaining output
example for JES2 3-9
example for lES3 3-13

OFF subparameter of OVFL parameter (JES3) 17-15

old data sets
See OLD subparameter of DISP parameter

OLD subparameter of DISP parameter
description 12-57
use of 7-14

on JOB LIB DD statement l3-4
ON subparameter of OVFL parameter (JES3) 17-15
ONLY subparameter of COND parameter on EXEC

statement,
use of 5-8

OPEN macro options, overriding 7-11
See also IN subparameter of LABEL parameter
See also OUT subparameter of LABEL parameter

OPEN/CLOSE/EOV trace option
See DIAGNS subparameter on DCB parameter

operation field in control statements 2-3
operator commands

for JCL 15-2
for JES2 16-2
for JES3 17-3

operator subparameter of COND parameter
on EXEC statement 11-9
on JOB statement 10-10

OPHOLD parameter on JES3 / /*NET statement
description 17-38
use of 3-28

OPTCD subparameter
for ASCII tape data sets 7-9
of AMP parameter 12-l3
on DCB parameter 12-42
with QNAME parameter 12-111

optional services
See OPTCD subparameter

ORG parameter on JES3 //*MAIN statement
description 17-29
nodename subparameter 17-30

OUT subparameter of LABEL parameter
description 12-92
use of 7-11

OUTIN specification for BSAM, overriding 7-11
See also OPEN macro options, overriding

OUTLIM parameter on DD statement
default 12-101
description 12-101
example 12-102
limiting output records 7-55
relationship to other parameters 12-10l
subparameter definition 12-101
syntax 12-101

output class
assigning data sets to 7-51
assigning messages to 3-14
processing (JES2) 7-54
processing (JES3) 7-54

output data sets
allocating space for

See SPACE parameter
assigning to output classes 7-51
conditional disposition

See COND Parameter

Index

See DISP parameter on DD statement
delaying the writing of 7-55
disposition

See DISP parameter on DD statement
parameters for creating, table of 18-2-18-3
parameters for extending, table of 18-5
processing for the job 7-44
routing of

See SYSOUT parameter
stackers for

See BURST parameter
See STACKER parameter on JES3

/ /*FORMA T PR statement
status

See DISP parameter on DD statement
suppressing the writing of 7-55
unit information

See UNIT parameter on DD statement
volume information

See VOLUME parameter
with UCS feature

See UCS parameter
output destination, controlling using JES3 3-12
output form, special, requesting 7-59
OUTPUT JCL statement

See coding the OUTPUT JCL statement
output limiting

See also OUTLIM parameter on DD statement
JES2 7-56
JES3 7-56

output listing
dumps 8-6
identifying cataloged and in-stream

procedures 9-13
JCL statements 3-14
suppressing of 7-55
system messages 3-14

OUTPUT parameter 12-103
defaults 12-104
description 12-103
examples 12-105
overrides 12-104
subparameter definition 12-104
syntax 12-103

output records, limiting 7-55
overflow area of indexed sequential data set 8-18
overflow processing, page, specifying in JES2 7-56
overlay-name subparameter of FLASH parameter

on /*OUTPUT statement 16-18
on DD statement 12-81
on JES3 //*FORMAT PR statement 17-14
on OUTPUT JCL statement 14-28

override
of cataloged procedures 1-7, 9-3-9-8
of original secondary quantity request for

space 7-41
of symbolic parameters 2-15-2-19
parameters in a procedure 9-6

on a DD statement 9.-6-9-8
on an EXEC statement 9-4-9-6

Index X-23

•

Index

on an OUTPUT JCL statement 9-9
overriding OPEN macro options

See OPEN macro options, overriding
OVFL parameter on JES3 / /*FORMAT PR statement

description 17-15
use of 7-56

P parameter (JES2)
See CKPTPGS parameter on /*OUTPUT statement
See PROCLIB parameter on /*JOBPARM

statement
P subparameter of UNIT parameter

See also parallel mounting of devices
description 12-132
use of 7-29

page
See REGION Parameter

page overflow processing, specifying in JES2 7-56
PAGEADD operator command (JCL) 15-2
PAGEDEF Parameter on OUTPUT JCL statement
PAGES parameter

on /*JOBPARM statement 16-6
PAGES parameter on JES3 / /*MAIN statement

description 17-30
parallel mounting of devices 12-132

See also UNIT parameter on DD statement
parameter definition 14-3

for BURST 14-6
for CHARS 14-7
for CKPTLINE 14-10
for CKPTPAGE 14-11
for CKPTSEC 14-12
for CLASS 14-13
for COMPACT 14-15
for CONTROL 14-16
for COPIES 14-17
for DEFAULT 14-20
for DEST 14-23
for FCB 14-26
for FLASH 14-28
for FORMDEF 14-31
for FORMS 14-33
for GROUPID 14-34
for INDEX 14-36
for JESDS 14-37
for LINDEX 14-39
for LINECT 14-40
for MODIFY 14-41
for PAGEDEF 14-43
for PIMSG 14-45
for PRMODE 14-46
for PRTY 14-48
for THRESHLD 14-49
for TRC 14-51
for UCS 14-53
for WRITER 14-56

Parameter field 2-5
parameter field in control statements 2-3
parameter field, coding 2-5

X-24 MVS JCL

parameters
adding, nullifying, overriding 2-21, 9-4
in cataloged or in-stream procedure 9-4-9-8
modifying on a DD statement 9-6-9-8
modifying on an EXEC statement 9-4-9-6
modifying on an OUTPUT JCL statement 9-9
notation for defining 2-1
symbolic 2-15-2-21

the parameter field
parenthesis

inclusion in variables 2-17-2-21
notation for coding 2-1

PARM parameter ON EXEC statement
coding special characters 4-9
description 11-17-11-18
examples 11-18
modifying in a procedure 9-4-9-6
passing information 4-8
special characters 11-17
subparameter definition 11-17
syntax 11-17
using 4-8

partition-name subparameter (JES3)
See SPAR T parameter on JES3 / /*MAIN statement

partitioned data set
partitioned data set, members 7-4

absolute track allocation 7-42
adding member 7-5
concatenated 9-8
creating 7 -3-7 -4, 18-2
directory space, requesting 7-42
extending 18-5
member . name 7-5
nontemporary name 7-3-7-4
retrieving a member of 7-3-7-4, 18-4
temporary name 7-5

PASS subparameter of DISP parameter
description 12-59
use of 7-14, 7-17-7-19

passed data sets, considerations 7-17
passed unreceived data sets 7-18
passing a data set 7-17
passing a private library 8-1, 8-2

See also JOBLIB DD statement
See also STEPLIB DD statement

passing information to the program in execution 4-8
passing temporary data sets among job 'steps using

VIO 8-12
PASSWORD Parameter on JOB statement

See also GROUP and USER parameters
examples 10-21
subparameter definition 10-21
syntax 10-20
use of 6-2

password protection
See NOPWREAD subparameter of LABEL

parameter
See PASSWORD subparameter of LABEL

parameter
password subparameter

of /*SIGNON statement (JES2) 16-31
of PASSWORD parameter on JOB

statement 10-21
of SIGNON statement (JES3) 17-50

PASSWORD subparameter of LABEL parameter
description 12-92
use of 7-10

PCAN character set 12-128, 14-54
for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

PCHN character set 12-128, 14-54
for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

PCI subparameter on DCB parameter 12-44
PEND Statement

description 15-10
examples 15-10
introduction 1-1
use of 9-2

PERFORM Parameter
example 10-23
on EXEC statement 11-19

default 11-19
examples 11-20
subparameter definition 11-19
syntax 11-19
use of, in JES2 5-22
use of, in JES3 5-23

on JOB statement 10-22
subparameter definition 10-22
syntax 10-22
use of, in JES2 5-22
use of, in JES3 5-23

using 5-2
performance of jobs and job steps 5-22

See also PERFORM Parameter
in JES2 5-22
in JES3 5-23

PGM parameter on EXEC statement
description 11-21-11-23
examples 11-22
JCLTEST 3-25
JSTTEST 3-25
restriction, cataloged procedures 9-4
subparameter definition 11-21
syntax 11-21
using 4-4
using with a private library 4-6
using with a temporary library 4-5

physical records per track 18-11, 18-12
PIMSG Parameter on OUTPUT JCL statement
placing a cataloged procedure in a procedure

library 9-2
placing a job in a net on hold 3-28
PN character set

for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

PNAME parameter on JES3 //*NETACCT
statement 17 -40

point-to-point communications link 3-20

positional parameters
definition 2-5
in parameters field 2-5
on DD statement 12-3
on EXEC statement 11-2
on JOB statement 10-2

positioning the unit affinity request 7-34

Index

PR parameter on JES3 //*FORMAT statement 17-10
predecessor job

See dependent job control for JES3: The lob Net
primary and secondary space request, how the system

satisfies 7-40
primary quantity subparameter of SPACE

parameter 12-113
See also SPACE parameter

prime area of indexed sequential data set 8-18
print output (JES3)

See JES3 //*FORMAT PR statement
PRINT parameter on /*ROUTE statement 16-24
Print Services Facility 14-46
Print Services Facility (PSF) 14-8

font list override by CHARS 14-8
font list override by UCS 12-128, 14-54

PRINT subparameter on JES3 / /*MAIN
statement 17-27

See also FAILURE parameter on JES3 / /* MAIN
statement

printer
See 1403, 3203 Model 5, 3211, or 3800 printer

printer form, requesting 7-58
printer spacing, specifying in JES3 7-56
printer train 7-59
priority

aging (JES3) 5-21
assigning to a job 5-20
automatic priority group (APG) 5-21
dispatching 5-21

See also DPRTY parameter on EXEC statement
output

See PRTY parameter on //*FORMAT PR
statement (JES3)

selection of jobs
See /*PRIORITY statement
See PRTY parameter on lOB statement (JES2)

or (JES3)
private catalogs, using 8-5

See also 10BCAT DD statement
See also STEPCAT DD statement

private library 4-6
See also JOBLIB DD statement
See also STEPLIB DD statement
See also UPDATE parameter on JES3 //*MAIN

statement
adding members 8-2
concatenating 8-4
creating 8-2
creating a private library 8-2
creating and using 8-1
defining JES3 catalog procedure 4-8
retrieving 8-3

Index X-25

•

Index

with PGM parameter 4-4-4-6
PRIVATE subparameter of VOLUME parameter

description 12-136
use of 7-27

private volumes, using 7-27
See also PRIVATE subparameter of VOLUME

parameter
PRMODE 14-46
PRMODE Parameter on OUTPUT JCL statement
PROC parameter

on EXEC statement 11-24
examples 11-25
subparameter definition 11-24
syntax 11-24
using 4-7

PROC parameter on JES3 //*MAIN statement
description 17-30
using 4-8

PROC Statement
description 15-11
examples 15-12
introduction 1-1
use of 9-1-9-3

procedure end
See PEND Statement

procedure library (SYS I.PROCLIB)
cataloged procedure 1-7, 2-21, 9-1
definition 1-7

Procedure name parameter
See PROC parameter

procedure statement
See PROC Statement

procedure step 9-1
process-mode subparameter of PRMODE

parameter 14-46
processing options, specifying data set 7-43
processing output data sets for the job 7-44
processing program information 4-4
Processing your job 1-7
processor selection 5-3

for JES2 5-3
for JES3 5-4

processor time limit
See TIME Parameter

processor-id subparameter of MAIN parameter 17-24
PROCLIB parameter on /*JOBPARM statement

description 16-6
using 4-8

procname subparameter of QNAME parameter 12-111
program control

for JCL 15-5
PROGRAM subparameter on JES3//*FORMAT PR

statement 17-12
PROGRAM subparameter on OUTPUT JCL

statement 14-16
program-name subparameter of PGM parameter 11-21
program, calling 4-4
programmer information on JOB st;:ttement 3-5
programmer information: the programmer-name

parameter 3-5

X-26 MVS JCL

programmer's name parameter on JOB statement
examples 10-25
syntax 10-24
use of 3-5

PROTECT parameter on DD statement
description 12-109
examples 12-110
relationship to other parameters 12-109
subparameter definition 12-109
syntax 12-109

PRTSP subparameter on DCB parameter 12-45
with SYSOUT parameter 12-122

PRTY Parameter
on JES3 //*FORMAT PR statement 17-15
on JOB statement

example 10-27
subparameter definition 10-26
syntax 10-26

on OUTPUT JCL statement 14-48
use of with JES2 5-20
use of with JES3 5-20

PRTY Parameter on OUTPUT JCL statement
PSF 14-46
PU parameter on JES3 //*FORMAT statement 17-19
public volume, requesting 7-26

See also VOLUME parameter
punch output interpretation on a 3525, JES3 7-57
PUNCH parameter on /*ROUTE statement 16-24
punched output, interpretation of 7-57
punching a data set

See /*OUTPUT Statement
See JES3 //*FORMAT PU statement

P11 character set (3211) 12-128, 14-54

Q parameter (JES2)
See FLASHC parameter on /*OUTPUT statement

QISAM subparameters of DCB parameter 12-36,
12-48

See also indexed sequential data set
QN character set

for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

QNAME parameter on DD statement
description 12-111
example 12-111
relationship to other parameters 12-111
subparameter definition 12-111
syntax 12-111

QNC character set
for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

QSAM subparameters of DCB parameter 12-36-12-48
qualified data set name 7-5
queued indexed sequential access method

See QISAM subparameters of DCB parameter
queued sequential access method

See QSAM subparameters of DCB parameter
queuing options 5-18

R operator command (JES3)
See RESTART operator command (JES3)

R parameter (JES2)
See ROOM parameter on /*JOBPARM statement

R subparameter of RD parameter
on JOB statement 10-29

RACF
See GROUP Parameter, on JOB statement
See PASSWORD Parameter on JOB statement
See PROTECT parameter on DD statement
See USER parameter on JOB statement

racf-protected data sets 6-2
RCK subparameter of AMP parameter 12-12
RD Parameter 5-28

See also RESTART Parameter on JOB statement
on EXEC statement 11-26

examples 11-29
overrides 11-28
subparameter definition 11-27
syntax 11-26
use of 5-28

on JOB statement 10-28
default 10-30
examples 10-30
overrides 10-30
subparameter definition 10-29-10-30
syntax 10-28
use of 5-27

RDJFCB macro 2-9
READ macro instruction 7-20
READ/WRITE macros before a CHECK macro

See NCP subparameter on DCB parameter
reading a data set

dummy 8-9
multivolume 7-28
shared control 7-20

reading column binary input 3-26
real storage 5-23

See also requesting
real storage requirements 5-24
REAL subparameter of ADDRSPC parameter

on EXEC statement 11-6
on JOB statement 10-7
requesting storage 5-23

RECFM subparameter
coded with DISP = MOD 12-61
of AMP parameter 12-13
on DCB parameter 12-45
with QNAME parameter 12-111

record format
See RECFM subparameter, on DCB parameter

record key position
See RKP subparameter on DCB parameter

record length
See LRECL subparameter on DCB parameter

REF subparameter of VOLUME parameter
description 12-138
specific volume request 7-24
volume affinity 7-27

referback

See backward references
references, backward

See backward references
region

See REGION Parameter
REGION Parameter

See also ADDRSPC Parameter
on EXEC statement 11-30

examples 11-31
override 11-31
subparameter definition 11-30
syntax 11-30

on JOB statement 10-31
default 10-31
examples 10-32
override 10-32
subparameter definition 10-31
syntax 10-31

use of 5-25
region request, example 5-26
region size, default 10-31, 11-31
relational operators on the COND parameter

on EXEC statement 11-9
on JOB statement 10-10
use of 5-5-5-16

Index

relationship of the UNIT parameter to a volume
reference 7-30

relative generation numbers
assigning 7-4
obtaining from the catalog (JES2) 8-25
obtaining from the catalog (JES3) 8-25
relative generation numbers 8-25

obtaining from the catalog (JES2) 8-25
obtaining from the catalog (JES3) 8-25

relative track number
See address subparameter of SPACE parameter

RELEASE operator command (JCL) 15-2
RELEASE parameter on JES3 / /*NET statement

description 17-38
use of 3-28

releasing space
deleting a data set

See DELETE subparameter of DISP parameter
unused space

See RLSE subparameter of SPACE parameter
RELEX macro instruction 7-20
RELSCHCT parameter on JES3 / /*NET statement

description 17-38
use of 3-29

remote job entry (JES2) 3-20
remote job entry stations 3-21
remote job processing 3-20

in JES2 3-20
in JES3 3-12, 3-22

remote subparameter
of DEST parameter

on /*OUTPUT statement 16-17
on DD statement 12-54
on JES3 //*FORMAT PR statement 17-13
on JES3 //*FORMAT PU statement 17-21

Index X-27

•

Index

on OUTPUT JCL statement 14-24
of ORG parameter

See JES3 //*MAIN statement
remote terminal, use of 3-20
remote work station, use of 3-20
remote work stations (JES3) 3-22
REMOTEnnn parameter

on /*SIGNON statement (JES2) 16-30
removable volume

See VOLUME parameter
replacing variable data

See MODIFY parameter
REPLY operator command (JCL) 15-2
requesting

character arrangements with a 3800 printer 7-60
copy modification 7-58
directory space for a partitioned data set 7-42
forms control 7-60
forms overlay 7-62
index space for an indexed sequential data set 7-42
more than one unit 7-29
multiple copies of an outpnt data set 7-57

using JES2 7-57
using JES3 7-58

mUltiple units 7-29
printer form and character control 7-58
space for non-VSAM data sets 7-39
space for non-VSAM data sets on mass storage

volumes 7-39
special character set using the UCS feature 7-59
special output form 7-59
storage 5-23

See also ADD RSPC Parameter
when to request 5-23

storage for execution 5-23
unit affinity 12-l32

See also AFF subparameter of UNIT parameter
units and volumes 7-24

requests to read or write a dummy data set 8-9
RESERVE subparameter on DCB parameter 12-47
reserved volumes

when requesting mUltiple units 7-29
RESET operator command (JCL) 15-2
resources

dynamic allocation of 4-12, 6-3
requesting 7-24-7-27

restart facility
See checkpoint/restart facility

RESTART operator command (JES3) 17-3
using the RESTART parameter 5-28, 5-29
RESTART parameter on /*JOBPARM statement 16-6
RESTART Parameter on JOB statement

See also RD Parameter
See also SYSCHK DD statement
cautions when using 10-34

general 10-34
examples 10-35
subparameter definition 10-34
syntax 10-33
use of 5-28

X-28 MVS JCL

use of with generation data sets 5-28
RESTART subparameter on JES3 //*MAIN

statement 17-27
See also FAILURE parameter on JES3 //*MAIN

statement
restarting a job

See also RD Parameter
See also RESTART Parameter on JOB statement
See also SYSCHK DD statement
See also SYSCKEOV DD statement
automatic restart 5-26
checkpoint restart 5-26
deferred restart 5-27
step restart 5-26

RETAIN subparameter of VOLUME parameter
description 12-l36
use of 7-27

retaining tape volumes
See RETAIN subparameter of VOLUME parameter

retention period
See RETPD subparameter of LABEL parameter

RETPD subparameter of LABEL parameter
description 12-92
use of 7-12

retrieving a nontemporary data set 7-3
retrieving a temporary data set

See temporary data set
retrieving an existing private library 8-3
retrieving an indexed sequential data set 8-22
retrieving generation data groups residing on DASD

volumes 7-39
return code test, specifying on EXEC statement

See Specifying Return Code Tests
return code test, specifying on JOB statement

See Specifying Return Code Tests
rewinding tapes

for DELETE 7-15
for KEEP 7-16

RINGCHK parameter on JES3 //*MAIN
statement 17-31

RKP subparameter on DCB parameter
description 12-47
using with FCB parameter 12-78
using with UCS parameter 12-129

RLSE subparameter of SPACE parameter 12-114
See also SPACE parameter

RMnnnn parameter
on /*SIGNON statement (JES2) 16~31

RMnnnn subparameter
of DEST parameter

on /*OUTPUT statement 16-17
on DD statement 12-54
on OUTPUT JCL statement 14-24

of PRINT, PUNCH, and XEQ parameters
on /*ROUTE statement 16-25

RMTnnnn parameter
on /*SIGNON statement (JES2) 16-31

RMTnnnn subparameter
of DEST parameter

on /*OUTPUT statement 16-17

on DD statement 12-54
on OUTPUT JCL statement 14-24

of PRINT, PUNCH, and XEQ parameters
on /*ROUTE statement 16-25

RN character set
for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

RNC subparameter of RD parameter
on Job statement 10-29

Rnnnn
of DEST parameter

on DD statement 12-54
on OUTPUT JCL statement 14-24

Rnnnn subparameter
of DEST parameter

on /*OUTPUT statement 16-17
of PRINT, PUNCH, and XEQ parameters

(JES2) 16-25
on /*ROUTE statement 16-25

ROOM parameter on /*JOBPARM statement 16-6
ROOM parameter on JES3 / /*NET ACCT
statement 17-40

ROUND subparameter of SPACE parameter
See also SPACE parameter
description 12-115
requesting space 7 -40

routing a job in a network (JES2) 3-7
routing a job in a network (JES3 networking) 3-10
routing a job in a network, example of (JES3) 3-11
routing output data sets (JES2) 3-7
routing output data sets (JES3) 3-12
routing system messages 3-14

with JES2 3-14
with JES3 3-14

S operator command (JES3)
See START operator command

S parameter (JES2)
See SYSAFF parameter on /*JOBPARM statement

S subparameter of STACKER parameter (JES3) 17-16
SCAN subparameter of TYPRUN parameter 10-40
scanning JCL for syntax errors 10-39
scanning JCL without job execution 3-25
scheduling a job 5-1
scheduling, deadline for JES3 3-27
SDG subparameter on JES3 //*NET statement 17-36
SDLC

See synchronous data link
secondary quantity subparameter of SPACE parameter

See also SPACE parameter
description 12-113
requesting space 7 -41

secondary request for space 7-41
See also secondary quantity subparameter of SPACE

parameter
selecting a cataloged procedure library 4-7

See also PROC parameter, on EXEC statement
in a JES2 system 4-8
in a JES3 system 4-8

selecting a processing program (See also PGM
Parameter) 4-4

selecting a processor 5-3
See also processor selection

selecting jobs
for JES2 5-1
for JES3 5-2

SEND operator command
for JCL 15-2
for JES3 17-3

separating groups of data 12-6, 12-28
SEQUENCE macro

Index

See RESERVE subparameter on DCB parameter
sequence number subparameter of LABEL parameter

See data-set-sequence-number subparameter of
LABEL parameter

sequence of DD statements
See concatenating data sets

SER subparameter of VOLUME parameter
description 12-137
specific volume request 7-24

SET operator command (JCL) 15-2
SETDMN operator command (JCL) 15-2
SETUP parameter on JES3 //*MAIN statement 17-31

See also FETCH parameter on JES3 //*MAIN
statement

description 17-27
use of 3-17

seven track tape
See TR TCH subparameter on DCB parameter

shared control of a data set 7-20
sharing a library 8-3
sharing a unit between data sets on different

volumes 7-32
See also unit and volume affinity

sharing volumes between data sets 7-27
See also unit and volume affinity

SHR subparameter of DISP parameter
data set status 7-13
description 12-58
maintaining integrity 7-19

SINGLE subparameter on JES3 / /*FORMAT PR
statement 17-12

SINGLE subparameter on OUTPUT JCL
statement 14-16

SL subparameter of LABEL parameter
description 12-90
for direct access data sets 12-90
for tape volume data sets 12-90
on a SYSCKEOV DD statement 13-18
system action 12-93
system action with OPTCD 12-43
use of 7-9
with EXPDTCHK parameter (JES3) 17 -27
with the PROTECT parameter 12-110
with VSAM 8-17

SLIP operator command (JCL) 15-2
SN character set

for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

Index X-29

•

Index

SNA remote work stations (JES3) 3-22
SNA RJE for JES2 3-20
space

example of requesting 7-43
for directory 7-42
for index 7-42
for non-V SAM data sets 7-43
for non-VSAM data sets on mass storage

volumes 7-39
for partitioned data set 7-42
index, requesting for an indexed sequential data

set 7-42
primary requests 7 -40
request for non-VSAM data sets on mass storage
volumes 7-39

requesting 7-39
requesting for a partitioned data set directory 7-42
requesting space 7-43
secondary request for 7-41
secondary requests 7 -41
space requests 7 -43
specific tracks 7-42
value converted to space request 7-39

space on a printer
See PR TSP subparameter on DCB parameter

SPACE parameter
creating a private library 8-2
description 12-112
examples 12-116
for mass storage volumes 7-37
for non-VSAM data sets 7-39
index subparameters 7-42
relationship to other parameters 12-115
requesting space 7-39
storing a dump 13-11
subparameter definition 12-113
syntax 12-112
use of with indexed sequential data sets 8-21
use with generation data sets 8-27

SPART parameter on JES3 //*MAIN statement
See also spool partitioning (JES3)
description 17-32
use of 3-33, 6-1

special character set, requesting using the UCS
feature 7-59

special data sets
special job processing 3-23
special output form, requesting 7 -59
specific image

See FCB parameter
specific .tracks

assigning 7 -42
cautions with ISAM data sets 7-43
for partitioned data set 7-42
how to request 7 -42

specific volume request
for mass storage volumes 7-38
how to make 7-24
restriction using multi-device type VSAM data

set 8-15

X-30 MVS JCL

system action 7-24
with space request 7-40

Specific Volume Requests 7-24
specifying

device for an output data set (JES2) 7-54
device for an output data set (JES3) 7-54
label type in the LABEL parameter 7-8

Specifying a Disposition for the Dafa Set 7-14
Specifying Data Set Processing Options 7-43
Specifying Data Set Status 7-14
Specifying Data Sets for Mass Storage Systems

(MSS) 7-37
Specifying Devices Dedicated to a Net 3-29
Specifying Early Setup of Resources for a Job in a

Net 3-29
Specifying JES2 page overflow processing 7 -56
Specifying JES3 Forms Overflow Processing and Printer

Spacing 7-56
Specifying Return Code Tests 5-5

on JOB statement 5-5, 5-7
See also COND Parameter, on EXEC statement

on the EXEC statement 5-7
relationship to the EXEC statement 5 .. 6

specifying storage requirements 5-24
See also REGION Parameter

Specifying Storage Requirements with the REGION
Parameter 5-24

Specifying System Action for Termination of a Job in a
Net 3-28

Specifying the DDNAME Parameter 7-1
Specifying the Device 7-52
Specifying the DSNAME Parameter 7-2
Specifying the DSNAME Parameter in

Apostrophes 7-7
Specifying the Internal Reader 7-52

allocating 7-52
control statements 7-52

/*DEL 7-53
/*EOF 7-52
/*PURGE 7-53
/*SCAN 7-53

example 7-53
use of 7-52

Specifying the LABEL Parameter 7 -7
Specifying the Label Type 7-8
Specifying the TIME parameter on the JES2
JOBPARM Statement 5 .. 18

Specifying Unit Information 7-28
Specifying Volume Affinity When Using Multivolume

Data Sets 7-35
Specifying Volume Information 7-24

See also volume information
spool partitioning (JES3)

See SPART parameter on JES3 //*MAIN statement
STACK subparameter on DCB parameter 12-47
stacker bin

See STACK subparameter on· DCB parameter
STACKER parameter on JES3 //*FORMAT PR

statement
description 17 -16

stackers for printed output
See BURST parameter
See STACKER parameter on JES3 //*FORMAT

PR statement
standard job (JES3), definition 1-6
standard labels

See SL subparameter of LABEL parameter
STANDARD subparameter

of CHARS parameter 17 -11
of FLASH parameter (JES3) 17-14
of FORMS parameter (JES3) 17-15,17-21
of STACKER parameter (JES3) 17-16
of TRAIN parameter (JES3) 17-16

START operator command
for JCL 15-2
for JES3 17-3

status, data set 7-14
STD

on /*JOBPARM statement 16-5
on /*OUTPUT statement 16-19

STDWTR on OUTPUT JCL WRITER
parameter 14-56

STDWTR on sysout DD statement 12-121
STD 1, standard FCB image 7 -61
STD2, standard FCB image 7 -61
STD3, standard FCB image 7-61
step restart

See also RD Parameter
See also RESTART Parameter on JOB statement
for generation data groups 8-30
use of 5-26

step setup in JES3
See types of JES3 setup, high watermark setup

STEPCAT DD statement
description 13-7
example 13-7
master catalog 8-5
overrides 13-7
private catalog 8-5
syntax 13-7
user catalog 8-5
VSAM 8-14-8-17

STEPLIB DD statement 8-4
concatenating private libraries 8-4
creating and retrieving a private library 8-1
description 13-8
effect with JOBLIB DD statement 8-1
examples 13-10
location in the JCL 13-9
relationship to JOBLIB 13-9
syntax 13-8

stepname subparameter
in RESTART parameter 10-34

stepname.procstepname subparameter
in RESTART parameter 10-34

stepname, assigning 11-1
STOP operator command (JCL) 15-2
STOPMN operator command (JCL) 15-2
storage requirements, real 5-24
storage requirements, virtual 5-24

storage, example of requesting 5-26
storage, requesting

See requesting
storage, specifying requirements

See specifying storage requirements

Index

STRNO subparameter of AMP parameter 12-14
Submitting your job 1-7
SUBSYS parameter on DD statement

description 12-117
effect on DD statement parameters 8-32
examples 12-118
relationship to other parameters 12-118
subparameter definition 12-117
syntax 12-117

subsystem data set, creating and using 8-32
subsystem data sets, creating and using 8-32
subsystem-name subparameter

on SUBSYS parameter 12-117
successor job

dependent job control 3-27-3-33
early setup of 3-27

SUL subparameter of LABEL parameter 12-90
suppressing the writing of an output data set 7-55
SWITCH operator command (JES3) 17-3
symbolic parameters

assigning default values 2-16
assigning values 2-15, 2-16, 2-17
defining when writing a procedure 2-15
example 2-15, 2-21
length restriction 2-17
nullifying 2-16, 2-18
use of commas 2-19
using 2-15

SYNAD subparameter of AMP parameter 12-14
synchronous data link 3-20
syntax checking 3-25

for JES3 3-25
SYSABEND DD statement

description 13-11
examples 13-13
location in the JCL 13-11

storing a dump 13-11
to print a dump 13-12

overriding dump requests 13-13
requesting abnormal termination dumps 8-6
syntax 13-11
system action 13-13
use of 8-6

SYSAFF parameter on /*JOBPARM statement
description 16-6
relationship to NOTIFY parameter 5-4
using 5-3

SYSALLDA devices 12-132
SYSCHK DD statement

See also RESTART Parameter on JOB statement
description 13-15
examples 13-17
location in the JCL 13-17

when the checkpoint data set is cataloged 13-15

Index X-31

Index

when the checkpoint data set is not
cataloged 13-15

syntax 13-15
use of 5-27

SYSCKEOV DD statement
description 13-18
example 13-19
parameters 13-18
syntax 13-18

SYSMDUMP DD statement
description 13-11
examples 13-13
location in the JCL 13-11

storing a dump 13-11
to print a dump 13-12

overriding dump requests 13-13
requesting abnormal termination dumps 8-6
syntax 13-11
system action 13-13
use of 8-6

SYSMSG subparameter on JES3 / /*FORMAT PR
statement 17-10

SYSOUT parameter
description 12-120
examples 12-123
print a dump 8-6
relationship to other parameters 12-122
relationships 12-123, 14-13

to a JES2 held class 12-123, 14-13
to MSGCLASS parameter 12-123, 14-14

requesting multiple copies (JES2) 7-57
requesting multiple copies (JES3) 7-58
subparameter definition 12-121
syntax 12-120

system affinity, use of (JES2) 5-3
See also SYSAFF parameter on /*JOBPARM

statement
system messages 3-14

See also MSGLEVEL parameter on JOB statement
system messages (JES3) 3-18
SYSTEM parameter on JES3 / /*MAIN

statement 17-32
using 5-4

SYSUDUMP DD statement
description 13-11
examples 13-13
location in the JCL 13-11

storing a dump 13-11
to print a dump 13-12

overriding dump requests 13-13
requesting abnormal termination dumps 8-6
syntax 13-11
system action 13-13
use of 8-6

T operator command (JES3)
See SEND operator command

T parameter (JES2)
See TIME parameter on /*JOBPARM statement

X-32 MVS JCL

See UCS parameter on /*OUTPUT statement
table-name subparameter of CHARS parameter

on DD statement 12-18
on JES3 //*FORMAT PR statement 17-11

tape density
See DEN subparameter on DCB parameter

tape device, eligible for allocation 7-26
tapemark 7-8
TCAM

NOTIFY parameter on JOB statement 10-18
QNAME parameter on DD statement 12-111
TCAM subparameters of DCB

parameter 12-36-12-48
TERM parameter on DD statement 12-125

tcamname subparameter of QNAME
parameter 12-111

telecommunications access method
See TCAM

teleprocessing device 7 -24
temporary data set

areas of an indexed sequential data set 7-6
creating 7-4
defining a VIO 8-10
definition 7-5
deletion, conditions of 7-5
DSNAME, copying 7-6
DSNAME, specifying in apostrophes 7-7
members of a partitioned data set 7-5
retrieving 7-4
specifying disposition

See DISP parameter on DD statement
using VIO for 8-10
using VIO to pass among job steps 8-12

temporary library
creating and using 8-1
definition 4-5
use of 8-5

TERM parameter
description 12-125
examples 12-126
relationship to other parameters 12-125
syntax 12-125

testing JCL without execution 3-25
See also TYPRUN Parameter, on JOB statement

the basic space request: unit of measurement and
primary quantity 7-40

the RD parameter on the JOB statement 5-27
the RESTART parameter on the JOB statement 5-28
THRESH subparameter on DCB parameter 12-47

with OUT LIM parameter 12-101
THRESHLD Parameter on OUTPUT JCL statement
THRESHOLD parameter

on JES3 //*FORMAT PR statement 17-16
THWS subparameter

of SETUP parameter on JES3 / /*MAIN
statement 17-31

time limit for processor
on EXEC statement 11-32
on JOB statement 10-36

TIME Parameter

on /*JOBPARM statement 16-7
on EXEC statement 11-32

defaults 11-33
examples 5-18, 11-33
subparameter definition 11-32
syntax 11-32
system conversion 11-33
use of with cataloged procedures 5-17

on JOB statement 10-36
examples 5-18
examples on JOB and EXEC statements 10-38
examples on JOB statement 10-37
subparameter definition 10-36
syntax 10-36
system conversion 10-37

time-dependent program, requesting real storage 5-23
TN character set 12-128, 14-54

for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

TPROCESS macro 12-111
TRACE subparameter of AMP parameter 12-14
tracks

assigning specific 7 -42
capacities 18-11, 18-12
cylinder index

See NTM subparameter on DCB parameter
description 12-113
number per cylinder 18-10
overflow

See CYLO FL subparameter on DCB parameter
physical records 18-11, 18-12
searching

See LIMCT subparameter on DCB parameter
space requests 7-39

TRAIN parameter on JES3 //*FORMAT PR
statement 17-16

train-name subparameter of TRAIN parameter
(JES3) 17-16

translation of ASCII tape data sets, requesting 7-9
transmitting data in a network (JES2) 3-7
TRC Parameter on OUTPUT JCL statement
trc subparameter of MODIFY parameter

on /*OUTPUT statement 16-20
on DD statement 12-95
on JES3 //*FORMAT PR statement 17-15
on OUTPUT JCL statement 14-42

trc subparameter of MODTRC parameter 16-20
TRIPLE subparameter on JES3 //*FORMAT PR

statement 17-12
TRIPLE subparameter on OUTPUT JCL

statement 14-16
TRK subparameter of SPACE parameter

See also SPACE parameter
description 12-113
space requests 7-39

TR TCH subparameter on DCB parameter 12-48
TSO, introduction 3-18
TYPE parameter on JES3 / /*MAIN statement

description 17-33
selecting a processor 5-3

Index

type subparameter
of DEST parameter

on OUTPUT JCL statement 14-25
type subparameter of DEST parameter

on JES3 //*FORMAT PR statement 17-13
on JES3 //*FORMAT PU statement 17-21

types of JES3 setup
See also SETUP parameter on JES3 / /*MAIN

statement
high watermark setup 6-6
job setup 6-5

TYPRUN Parameter, on JOB statement
bypassing job initiation 3-25
copying JCL without execution 3-25
delaying job initiation (JES2) 3-23
examples 10-40
subparameter definition 10-39
syntax 10-39
syntax checking 3-25
use of 3-24

TIl character set (3211) 12-128, 14-54

UCS feature, using to request a special character
set 7-59

UCS parameter
on j*OUTPUT statement 16-20
on DD statement 12-127

default 12-128
description 12-127
examples 12-129
relationship to other parameters 12-129
subparameter definition 12-127
syntax 12-127

on OUTPUT JCL statement 14-53
use of 7-59

UCS Parameter on OUTPUT JCL statement
uncataloging a data set 7-17
UNCATLG subparameter of DISP parameter

description 12-59
use of 7-17

underline, use of in control statements 2-3
unit and volume affinity

examples 7-33, 7-35
positioning the request 7-34
requests 7-32

unit and volume references, JES3 handling 7-31
unit information

JES3 handling 7-31
relationship to a volume reference 7-30
relationship to volume reference 7-30
requesting deferred mounting of volumes 7-30
requesting more than one 7-29
sharing a unit between data sets 7-32
specifying 7 -28

unit of measurement, cylinders, blocks, and tracks 7 -40
UNIT parameter on DD statement

creating a private library 8-1
description 12-130
examples 12-134

Index X ... 33

Index

generation data groups 8-27, 8-29
indexed sequential data sets 8-19, 8-22
JES3 handling 7 -31
multiple units 7-28
overrides 12-133
relationship to other parameters 12-133
requesting 7-24
storing a dump 8-6
subparameter definition 12-130
syntax 12-130
unit affinity 7-32
use of 7-28
use of with indexed sequential data sets 8-19
use with generation data sets 8-27, 8-29
using mass storage volumes 7-37
write output data set 7-52

unit record device 7-24
unit-count subparameter of UNIT parameter 12-131
unit, definition 7-24
unit, specifying output device 7-44
unit, types you can specify 7-28

See also UNIT parameter on DD statement
units and volumes, example of requesting 7-31
units and volumes, requesting

See requesting, units and volumes
units, requesting multiple 7-29
universal character set

See UCS parameter
UNLOAD operator command (JCL) 15-2
Unnn subparameter

of DEST parameter
on j*OUTPUT statement 16-17
on DD statement 12-54
on OUTPUT JCL statement 14-24

of PRINT, PUNCH, and XEQ parameters
on ROUTE statement (JES2) 16-26

UPDATE parameter on JES3 j j*MAIN statement
description 17-33
using 4-8

The USER parameter on the JES3 MAIN control
statement 3-19

USER parameter on JES3 j j*MAIN statement
description 17-34
use of 3-18

USER parameter on JOB statement
See also PASSWORD and GROUP parameters
example 10-42
subparameter definition 10-41
syntax 10-41
use of 6-2

userid parameter
on j*NOTIFY Statement 16-11

USERID parameter on JES3 / j*NETACCT
statement 17 -40

use rid subparameter
of NOTIFY parameter on JOB statement 10-18
of USER parameter on JOB statement 10-41

using
private catalogs 8-5
private volumes 7-27

X-34 MVS JCL

the COND parameter to force step execution 5-15
the COND parameter with cataloged

procedures 5-13
the COND subparameters EVEN and ONLY 5-8
the JES3 LREGION parameter to define logical

storage 5-25
the REST ART parameter with generation data

sets 5-28
the TIME parameter for cataloged procedures 5-17
VIO to pass temporary data sets among job

steps 8-12
virtual inputjouput (VIO) for temporary data

sets 8-10
using cataloged and in-stream procedures 9-3

V format
See RECFM subparameter

VARY operator command
for JCL 15-2
for JES3 17-3

VERIFY subparameter of FCB parameter 12-78
VERIFY subparameter of UCS parameter 12-127
vertical bar 2-2
VIO data sets, backward references to 8-11
VIO, defining a temporary data set 8-10
VIO, using for temporary data sets 8-10
VIR T subparameter of ADDRSPC parameter

on EXEC statement 11-6
on JOB statement 10-7
requesting storage 5-23

virtual inputjouput (VIO) for temporary data sets,
using 8-10

virtual storage 5-23
See also requesting

virtual storage access method (VSAM) 8-14-8-17
virtual storage requirements 5-24
virtual volumes, mass storage system 7-37, 7-39

See also MSVGP parameter on DD statement
volume

See also VOLUME parameter
deferred mounting 7-30
maximum volume request 7 -28
multivolume requests 7-28

volume affinity
examples 7-33
when using multivolume data sets 7-35

volume and unit references, JES3 handling 7 -31
volume attributes 7-36
volume information

multivolume data sets 7 -28
nonspecific requests 7-26
private requests 7-27
sharing volumes 7-27
specific requests 7-24
specifying 7 -24

VOLUME parameter
creating a private library 8-1
description 12-135
examples 12-140

for multivolume data sets . 7-28
for volume affinity 7-27
nonspecific requests 7-26
overrides 12-139
relationship to other parameters 12-l39
specific requests 7-24
subparameter definition 12-l36
syntax 12-l36
use of 7-24
use of with indexed sequential data sets 8-19
use with generation data sets 8-27, 8-29

volume requests, for mass storage 7-37
volume requests, nonspecific 7-26
volume requests, nonspecific for mass storage

volumes 7-38
volume requests, specific 7-24
volume requests, specific for mass storage

volumes 7-38
volume serial number

See also SER subparameter of VOLUME parameter
parameter on I*SETUP statement (JES2) 16-28
subparameter of VOLUME parameter 12-l37

volume-count subparameter of VOLUME parameter
description 12-l37
maximum number of volumes you can

request 12-l37
volume-sequence-number subparameter of VOLUME

parameter
description 12-l36
use of 7-25

volumes and units, requesting
See requesting, units and volumes

volumes, private, using 7-27
volumes, sharing between data sets 7-27
VSAM data sets

for private catalogs 8-5
introduction 8-14
processing VSAM data sets 8-14-8-17

W subparameter on JES3 II*MAIN statement
See WARNING subparameter on JES3 II*MAIN

statement
wait-state time limit

See TIME Parameter, on EXEC statement
See TIME Parameter, on JOB statement

WARNING subparameter on JES3 II*MAIN
statement 17-25, 17-28

See also CARDS parameter
when to request real storage 5-23
when you code the DDNAME parameter 7-1
work station, controlling output to

for JES2 3-7
for JES3 3-12

WRITE macro instruction 7-20
WRITELOG operator command (JCL) 15-2
WRITER Parameter on OUTPUT JCL statement
writer-name subparameter

in SYSOUT parameter 12-121
writing a dummy data set 8-9

writing cataloged and in-stream procedures 9-1
writing output data sets 7-44

X operator command (JES3)
See CALL operator command (JES3)

X parameter (JES2)

Index

See CHARS parameter on I*OUTPUT statement
XI (cataloged procedure) 9-l3
XEQ parameter on I*ROUTE statement 16-24
XN character set

for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

XX (cataloged procedure) 9-l3
XX* (cataloged procedure) 9-13

Y parameter (JES2)
See MODIFY parameter on I*OUTPUT statement

Y subparameter of BURST parameter
on I*JOBPARM statement 16-4
on I*OUTPUT statement 16-14
on DD statement 12-16
on OUTPUT JCL statement 14-6

Y subparameter of REST ART parameter
on I*JOBPARM statement 16-6

YES subparameter 12-87
of EXPDTCHK parameter (JES3) 17-27
of HOLD parameter 12-87
of HOLD parameter (JES3) 17-28
of INT parameter (JES3) 17-21
of J parameter (JES3) 17-5

YN character set
for 1403 12-128, 14-54
for 3203 Model 5 12-128, 14-54

Z operator command (JES3)
See MESSAGE ~perator command (JES3)

1403
requesting a special character set 7 -60
requesting specific forms control 7-60

1440 subparameter of TIME parameter
on EXEC statement 11-32
on JOB statement 10-36

3203 Model 5
how JES2 handles 7-59
requesting a special character set 7 -60
requesting specific forms control 7-60

3211
indexing feature, JES2 support of 7-57
requesting a special character set 7-60
requesting specific forms control 7-60

3330 Model 11
coding 12-131

3330V virtual volume 7-36, 12-98
See also MSVGP parameter on DD statement

3340 fixed head feature 7-29

Index X-35

•

Index

3348 model 70F data module 7-29
3525 punch interpretation 7-57
3540 Diskette 7-6

See also DSID parameter on DD statement
3800 printer

bursting output 7 -62
See also BURST parameter
See also STACKER parameter on JES3

//*FORMAT PR statement
forms control 7 -61
obtaining output for JES2 7-43

See also /*OUTPUT Statement
obtaining output for JES3 7-43

See also JES3 //*FORMAT PR statement
printing a dump with more data per page 8-6
requesting character arrangements 7 -60

X-36 MVS JCL

See also CHARS parameter
requesting copy modification 7-58

See also MODIFY parameter
requesting forms overlay 7-62

See also FLASH parameter
requesting multiple copies 7-57

See also COPIES parameter
using JES2 7-57
using JES3 7 -58

stacking the paper output 7-43
See also BURST parameter

3850 Mass Storage System 7-24
See also MSVGP parameter on DD statement

6, FCB image 7 -61
8, FCB image 7 -61

MVS JCL

GC28-1300-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a ref~rence source for system analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the -understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation? __________________________ _

How do you use this publication? _______________________ _

Number of latest Newsletter associated with this publication: _____________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address in
the Edition Notice on the back of the title page.)

GC28-1300-2

Reader's Comment Form

Fold and tape

Fold and tape

------.- --------- -- ---- ~ ---- - - _ -----_ .. ----,,-®

Please Do Not Staple

IIIIII

BUSINESS REPLY MAIL

FIRST CLASS PERMIT 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department 058, Building 920-2
PO Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and ti!lpe

