MVS/ESA GC28-1565-2
TSO Programming

MVS/System Product:
JES? Version 3
JES3 Version 3




MVS/ESA
TSO Programming

MVS/System Product:
JES2 Version 3
JES3 Version 3

GC28-1565-2



I
|
I

—— Production of This Book

This book was prepared and formatted using the IBM BookMaster document markup language.

Third Edition (May 1991)

This is a major revision of, and obsoletes, GC28-1565-1, and Technical Newsletters GN28-1548 and
GN28-1486. See the Summary of Changes regarding new and changed information made to this
publication. Technical changes and additions to the text and illustrations are indicated by a vertical line to
the left of the change.

This edition applies to Version 3 of MVS/System Product 5685-001 or 5685-002 and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters. Changes are made
periodically to the information herein; before using this publication with the operation of IBM systems,
consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. References to IBM products in this document do not imply
that functionally equivalent products may be used. The security certification of the trusted computing base
that includes the products discussed herein covers certain IBM products. Please contact the manufacturer
of any product you may consider to be functionally equivalent for information on that product’s security
classification. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building 921,
PO Box 950, Poughkeepsie, New York 12602

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 1991. All rights reserved.

All Rights Reserved

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.




—— PROGRAMMING INTERFACES

The information in this book is provided to allow a customer Installation to write programs that use the
services of MVS/System Product Version 3 in a TSO environment. The majority of this book consists of
general-use programming interface Information. However, this book also contains guidance information
for programmers who design and write programs that run under TSO. Such Information should never
be used as programming interface information.

General-Use Programming Interfaces: General-use programming interfaces do not have significant
dependencies on detailed product design or implementation.

General-use programming interface information is identified by brackets before and after the information,
as follows:

l GENERAL-USE PROGRAMMING INTERFACE

Description of the interface.

End of GENERAL-USE PROGRAMMING INTERFACE




iv  MVS/ESA TSO Programming



About This Boo

MVS/ESA TSO Programming describes the services and commands that TSO
provides for use in writing system and application programs. This book also
describes how to write, install, and execute a command processor.

Trademarks
The following are trademarks of International Business Machines Corporation.
¢ MVS/ESA™
¢ MVS/SP™
¢ MVS/XA™
Who This Book Is For

This book is for the following audience:
* Application programmers who design and write programs that run under TSG.
¢ System programmers who must modify TSO to suit the needs of their
installation.

The reader must be familiar with MVS programming conventions, the assembler
language, and the structure of TSO.

How This Book Is Organized
This book is divided into three parts:

¢ Part | describes how to write, install and execute a command processor. It
discusses the TSO services that you can use in a command processor, and
refers you to Part Il of this book for more information, when needed.

¢ Part ll describes the programming services that you can use in system or
application programs.

¢ Part lll describes the syntax and function of the TSO commands, and provides
examples of how to use them.

How to Use This Book

If you have never used this book, read Chapter 1, “Introduction” on page 1 to
become familiar with command processors and the programming services and
commands that TSO provides. Then refer to the individual chapter that discusses a
particular topic.

© Copyright IBM Corp. 1988, 1991 v



Related Information

MVS Publications

You need the following publications for reference:

MVS/ESA Application Development Guide, GC28-1821

MVS/ESA Application Development Macro Reference, GC28-1822
MVS/ESA JCL Reference, GC28-1829

MVS/ESA JCL User’s Guide, GC28-1830

MVS/ESA Message Library: System Codes, GC28-1815

MVS/ESA Message Library: System Messages, Volumes 1 and 2, GC28-1812 and
GC28-1813

MVS/ESA System Programming Library: Application Development — 31-Bit
Addressing, GC28-1820

MVS/ESA System Programming Library: Application Development — Extended
Addressability, GC28-1854

MVS/ESA System Programming Library: Application Development Guide,
GC28-1852

MVS/ESA System Programming Library: Application Development Macro
Reference, GC28-1857

MVS/ESA System Programming Library: Initialization and Tuning, GC28-1828

vi MVS/ESA TSO Programming



Contents

Chapter 1. Introduction . . .. ... ... .. ... .. . . ... ... ... 1
Executing TSO Commands . .. .. ... .. ... .. ... e 1
Identifying Authorized Programs and Commands . . . ... ................ 1
Writing Command Processors . . . .. ... . ... ... ... e 2
Overview of TSO Programming Services . . ... ...................... 3
Invoking TSO Service Routines . . ... . ... ... .. ... . ... ........ 3
Checking the Syntax of Subcommand Names . ... .. ....... ... ... ... 3
Checking the Syntax of Command and Subcommand Operands . ....... .. 3
Processing I/O . . . . . . . 3
ProcessingDataSets ... ... ... ... ... .. ... ... ... .. 4
Analyzing ReturnCodes . . .. ... ... .. . ... ... ... 4
Overview of TSO Commands . . ... ... ... ... .. .. 4
Part I: Writing and Executing a Command Processor ... .. .. ........ ... ......... 5
Chapter 2. What is a Command Processor? . .. .. ... ................. 7
The TSO Environment . . . . . ... ... ... . ... . . .. 7
The Command Processor Parameter List (CPPL) . ... .. .............. 7
Command Syntax . ... ... ... ... . .. 9
What is a Subcommand Processor? . ... ..... ... .. ... ... ... ... ... 9
Chapter 3. What You Need to Do to Write a Command Processor .. ... ... .. 11
Chapter 4. Validating CommandOperands . . .. ... ... ... ............ 13
Using the Parse Service Routine . ... ... . ... ... . ... .. ........... 13
Checking Positional Operands for Logical Errors . . ................. 14

A Sample Command Processor . ... ... ... ... . ... . ... .. ... 15
Chapter 5. Communicating with the User through the Job Stream . ... .. ... 25
Issuing Messages . ... .. ... ... 25
Message Levels . . ... ... ... ... 25
Using the I/0 Service Routines to Handle Messages . . . .. ............ 26
Using the TSO Message Issuer Routine (IKJEFF02) . ................ 26
Using Generalized Routines for IssuingMessages . .. ... ............ 26
Performing I/O . . . . . .. . e 27
Changing Your Command Processor’s Sourceof Input . . . ... ........... 27
Chapter 6. Passing Control to Subcommand Processors . . .. ... ........ 29
Step 1. Issuing a Mode Message and Retrieving an InputLine . .. ......... 29
Step 2. Validating the Subcommand Name . ... ... .................. 30
Step 3. Passing Control to the Subcommand Processor .. ... ... ........ 30
Writing a Subcommand Processor . .. ... .. ... ... ... . 31
Step 4. Releasing the Subcommand Processor . .. ... ................ 31
Chapter 7. Processing Abnormal Terminations . .. ... ... ... .......... 33
Error Handling Routines . . . . .. .. ... ... 33
ESTAE and ESTAlI ExitRoutines . ... ........ ... .. ............. 33
When are Error Handling Routines Needed? . ... ... ................. 34
Guidelines for Writing ESTAE and ESTAI Exit Routines . . ... ............ 36
Chapter 8. Installing a CommandProcessor . ... ... ................. 37

© Copyright IBM Corp. 1988, 1991 vii



Using a Private Step Library . ... ......... . .. . . ... ... ... 37

Placing Your Command Processorin SYS1.CMDLIB ... ................ 37
Creating Your Own Command Library . . . ... ... .. ... ... ... .. ..... 37
Chapter 9. Executinga CommandProcessor . . ..................... 39
Writing JCL for Command Execution . . ... ......... .. ... .......... 39
Handling Error Conditions . . . . ... ... .. ... ... . ... ... 40
Part ll: TSO Programming Services .. ... ... .. ... ... ... ... . . . . ... ... ....... 41
Coding the Macro Instructions . . . . .. ... ... ... ... 42
Chapter 10. Considerations for Using TSO Services . . . . .. ... .......... 45
MVS/ESA Considerations . . .. ... .. .. ... .. . . . . . . . . ... 45
General Interface Considerations . . ... ...... ... ... ............ 45
interface Considerations for the TSO Service Routines . ... ........... 47
Summary of Macro Interfaces . . . .. ... ... ... ... ... .. 48
Interfacing with the TSO Service Routines . . . .. S 50
The Command Processor Parameter List . ... .................... 50
Services that Access Datainthe CPPL . . ... ... ... ... .. .......... 51

Chapter 11. Invoking TSO Service Routines with the CALLTSSR Macro

Instruction . . ... .. .. ... 53
When to Use the CALLTSSR Macro Instruction . ... .................. 53
Syntaxand Operands . ... ... ... ... . ... 54
Example . ... . e 54
Chapter 12. Verifying Subcommand Names with the Command Scan Service

Routine . . . . . . . . ... 55
Functions Performed by the Command Scan Service Routine .. .......... 55
Syntax Requirements for Command and Subcommand Names . . ... .... ... 56
Invoking the Command Scan Service Routine (IKISCAN) . ... ........... 57

The Command Scan Parameter List . ... ........................ 58
Passing Flags to the Command Scan Service Routine . . .. ... ....... .. 59
The Command Scan Output Area . . ... ...... ... ... ... ... ...... 59
Operation of the Command Scan Service Routine . . . ... .............. 60
Output from the Command Scan Service Routine . . . ... ............... 61
Return Codes from the Command Scan Service Routine . . .. ... ......... 61

Chapter 13. Verifying Command and Subcommand Operands with the Parse

Service Routine . . . . . .. ... ... 63
Overview of the Parse Service Routine (IKJPARS) . ... ... ... ... ....... 63
The Parse Macro Instructions . .. ... . ... .. .. ... . ... . ... ...... 63
Character Types Accepted by the Parse Service Routine ... ............ 66
Services Provided by the Parse Service Routine .. ................... 67
Notifying the User about Missing or Required Operands .. ............ 67
Issuing Second Level Messages . . . ... ...... ... . ... ... ..., 67
Passing Control to Validity Checking Routines . . . . ... ... ........... 68
Translationto Uppercase . ... ....... ... . . . .. . . . ... .. 68
Insertion of DefaultValues . . ... ... ... .. . ... ... ... .. ... . ... ... 68
Insertion of Keywords . . .. .. ... . ... . .. ... .. 68
What You Need to do to Use the Parse Service Routine . . ... ............ 68
Defining Command Operand Syntax . .. ... ....... .. ... ............ 69
Positional Operands . . . ... ... ... . . . . . . .. 70
Keyword Operands . .. ... ... ... ... . . 80
Using the Parse Macro Instructions to Define Command Syntax . . ......... 81

vill MVS/ESA TSO Programming



Using IKUPARM to Beginthe PCLandthe PDL . . ... ................ 82

Using IKJPOSIT to Describe a Delimiter-Dependent Positional Operand ... 83
Using IKJTERM to Describe a Delimiter-Dependent Positional Operand . ... 88
Using IKJOPER to Describe a Delimiter-Dependent Positional Operand . ... 93

Using IKURSVWD to Describe a Delimiter-Dependent Positional Parameter . 96
Using IKJIDENT to Describe a Non-Delimiter-Dependent Positional Operand 99

Using IKUKEYWD to Describe a Keyword Operand . ... .............. 104
Using IKUNAME to List Keyword or Reserved Word Operand Names . . . . .. 105
Using IKJSUBF to Describe a Keyword Subfield . ... ................ 107
Using IKJENDP to End the Parameter Control List . ... .............. 108
Using IKJRLSA to Release Virtual Storage Allocated by Parse . .. ....... 108
Examples Using the Parse Macro Instructions . . .. ... .............. 109
Using Validity Checking Routines . . . ... ... ... ... .. .............. 115
Passing Control to Validity Checking Routines . . .. . ... ... ......... 115
Return Codes from Validity Checking Routines . . . . .. ... ... ... ....... 116
Passing Control to the Parse Service Routine . . .. ... ... ............. 117
The Parse Parameter List . .. ... .. ... ... ... ... ... ... ... ... ... 117
Checking Return Codes from the Parse Service Routine . . .. ... ... .. .. .. 119
Examining the PDL Returned by the Parse Service Routine . ........... .. 121
The PDLHeader ... ... ... . . . . . . . . . e 121
PDEs Created for Positional Operands Described by IKJPOSIT . ... ... ... 121
PDEs Created for Positional Operands Described by IKITERM . ... ... ... 128
The PDE Created for Expression Operands Described by IKJOPER . ... ... 132
The PDE Created for Reserved Word Operands Described by IKURSVWD . .. 132
The PDE Created for Positional Operands Described by IKJIDENT .. ... .. 133
How the List and Range Options Affect PDE Formats .. .............. 134
The PDE Created for Keyword Operands Described by IKIKEYWD . ... ... 141
Examples Using the Parse Service Routine . . . .. ... .. .. ............. 142
Chapter 14. Using the TSO I/O Service Routines . . .. ... .. ... ... . ... ... 153
Functions of the I/0 Service Routines . . .. .. ....................... 153
Passing Control to the I/O Service Routines . . . ... .. ... ... .......... 154
Addressing Mode Considerations . ... ... ...................... 154
The Input/Output Parameter List ... ... ... ........ ... .......... 154
Using the I/O Service Routine Macro Instructions . . . . ... .............. 165
Using STACK to Change the Sourceof Input . . . .. ... .............. 156
Using GETLINE to Geta Lineof lnput . . . . ... ... ... ... .. .......... 170
Using PUTLINE to Write a Line to the OQutput DataSet . ............. .. 177
Using PUTGET to Put a Message Out and Obtain a Line of Input in Response 192
Chapter 15. Using the TSO Message Handling Routine (IKJEFF02) .. ... .. .. 201
Functions of the TSO Message Issuer Routine (IKJEFF02) . .. ............ 201
Passing Control to the TSO Message Issuer Routine . .. .............. 201
The Input Parameter List . ... ... ... ... .. .. ... . ... . . ... .. ... 202
Using IKUTSMSG to Describe Message Text and Insert Locations . .. ... .. 204
Return Codes from the TSO Message Issuer Routine . . .. .............. 205
An Example Using IKJTSMSG . . . ... ... ... .. .. . ... . . ... ... ... 205
Chapter 16. Using the Dynamic Allocation Iinterface Routine (DAIR) . . ... . .. 207
Functions of the Dynamic Allocation Interface Routine . .. ... ........... 207
Passing Control to DAIR . . . . . . .. ... 208
The DAIR Parameter List (DAPL) . . ... .. ... . . .. . . ... .. . ... ..... 208
The DAIR Parameter Block (DAPB) ... ......... .. ... .. . ........ 209
Return Codes from DAIR . . . .. .. ... . .. ... ... 229
Return Codes from Dynamic Allocation . ... ... .................. 230

Contents iX



Chapter 17. Using the DAIRFAIL Routine (IKJEFF18) .. ... ............. 231

Functions of DAIRFAIL . . .. .. .. . . ... . . e 231
Passing Control to DAIRFAIL . . . .. .. ... ... . . . . . . . . 231
The Parameter List ... ... ... ... . . . ... . ... ... ... 231
Return Codes from DAIRFAIL . . .. ... .. ... .. .. ... .. ... .. ...... 234
Chapter 18. Analyzing Error Conditions with the GNRLFAIL/VSAMFAIL Routine
(IKJEFF19) . . . . . . . . 235
Functions of GNRLFAIL/VSAMFAIL . ... ... .. ... ... . . ... . . ........ 235
Passing Control to GNRLFAIL/VSAMFAIL . ... ....... . ... ........... 235
The Parameter List ... ... .. ... ... . . ... .. . ... .. ... 235
Return Codes from GNRLFAIL/VSAMFAIL . ... ... ... .. .............. 237
Chapter 19. Using IKJEHCIR to Retrieve System Catalog Information . . ... .. 239
Functions of the Catalog Information Routine . . .. ... ... ... .......... 239
Passing Control to the Catalog Information Routine .. ................. 239
The Catalog Information Routine Parameter List (CIRPARM) .. ... ... ... 240
Output from the Catalog Information Routine . . . ... .................. 241
Return Codes from IKJEHCIR . . . . . ... ... ... . ... ... ... ... ... .... 243
Return Codes from LOCATE . . . .. . . ... .. . . ... . . i 244
Partlil. TSO Commands .. ... ... ... .. . . . ... .. .., 245
Chapter 20. Command FormatandSyntax . ... ..................... 247
UsingaTSO Command . . ... ... ... ... .. ... 247
Positional Operands . . ... ... ... .. . . .. . . ... 247
Keyword Operands . ... .. ... .. . ... . ... 247
TSO Command Syntax . ... ... ... ... . ... 248
Abbreviating Keyword Operands . . . ... ....... .. ... ... ......... 248
Comments . . ... ... e 248
Delimiters . . . . .. .. .. 249
Chapter 21. Command Descriptions . . . . . ... .. ... .. ... ... ... 251
TSO Command Summary . ... ... ... ... .t 251
CALL Command . . ... ... .. 251
Return Codes for the CALL Command .. .. ... ... ................ 253
Examples . . .. ... 253
TIME Command . . . ... ... .. e 254
Return Code forthe TIME Command . .. ... ..................... 254
WHEN/END Command . . . ... ... .. . ... . e 255
Return Codes for the WHEN Command . .. ... .. .................. 255
Example . . . ... 255
Index . ... e 257

X  MVS/ESA TSO Programming



Figures

1. Summary of TSO Services . .. .. ... ... . . .. .. 3
2. Control Block Interface between the TMP and a Command Processor . ... 7
3. The Command Processor Parameter List (CPPL) ... ............... 8
4. Formatofthe CommandBuffer . ... ... ....................... 8
5. A Command Processor Using the Parse Service Routine . ........... 14
6. A Sample Command Processor . ....... . ..... .. ... . 15
7. FormatofthelnputBuffer .. ... ... .. ... ... ... ... .. ... .. ... . 29
8. ABEND, ESTAI, ESTAE Relationship .. ............ ... ........ 35
9. JCL Needed to Process Commands . . ........................ 39
10. Interface Considerations for TSO Service Routines . . ... ... ........ 47
11. Interface Rules for Using Macro Instructions . . . . . ... . ... ........ 49
12. Control Block Interface between the TMP and a Command Processor ... 50
13. The Command Processor Parameter List (CPPL) . ... ............. 51
14. The CALLTSSR Macro Instruction ... ......... ... .. ... ....... 54
15. Format of the Command Buffer . .. ... ... ... ... ... ... ......... 55
16. Character Types Recognized by Command Scan . ................ 57
17. The Parameter List Structure Passed to Command Scan .. ... ....... 58
18. The Command Scan ParameterList ... ... .................... 59
19. The Command ScanOutputArea . .............. .. ... ........ 60
20. Return from Command Scan - CSOA and Command Buffer Settings .. .. 61
21. A Command Processor Using the Parse Service Routine . ........... 65
22. Character Types Recognized by the Parse Service Routine . ......... 66
23. Delimiter-DependentOperands . ............................ 70
24. Example of Indirect Addressing . ... ................ ... ... ... 73
25. An Address Expression with Indirect Addressing . . ............... 74
26. The Parse Macro Instructions . . . ........ ... ... ... ... ... .. .... 81
27. The IKIPARM Macro Instruction . ... ... ... ... .. ... ......... 82
28. The Parameter Control Entry Built by IKIPARM . . . . ... ... ... ..... 83
29. The IKJPOSIT Macro Instruction . ......... .................. 84
30. The Parameter Control Entry Built by IKUIPOSIT . ... ... ........... 87
31. The IKUTERM Macro Instruction . .. . ... ... ... ........ ... . ... 89
32. The Parameter Control Entry Built by IKITERM .. . ... ............ 92
33. The IKJOPER Macro Instruction . .. .. ... ............. .. ...... 93
34. The Parameter Control Entry Built by IKIOPER . . . ... ............ 95
35. The IKUIRSVWD Macro Instruction .. ......................... 97
36. The Parameter Control Entry Built by IKURSVWD . . ... ............ 98
37. The IKJIDENT Macro Instruction . .. ... .. .................... 99
38. The Parameter Control Entry Built by IKJIDENT . . ... ............. 102
39. The IKUKEYWD Macro Instruction .. ......................... 104
40. The Parameter Control Entry Built by IKUIKEYWD . ... ............. 104

41. The IKUINAME Macro Instruction (when used with the IKUIKEYWD Macro
Instruction) . . ... ... 105

42. The IKINAME Macro Instruction (when used with the IKJRSVWD Macro
Instruction) . ... ... e 106
43. The Parameter Control Entry Built by IKINAME . . . . . . ... ... ... ... 106
44. The IKJSUBF Macro Instruction . . ................ ... ........ 107
45. The Parameter Control Entry Built by IKUSUBF . . ... ... ... .. ..... 108
46. The IKJENDP Macro Instruction . ... ......................... 108
47. The Parameter Control Entry Built by IKKJENDP . . . . . ... ... ...... 108
48. The IKJRLSA Macro Instruction . . ............ ... ............. 109

49. Example 1 - Using Parse Macros to Describe Command Operand Syntax 110
50. Example 2 - Using Parse Macros to Describe Command Operand Syntax 111

© Copyright IBM Corp. 1988, 1991 Xi



xii

51.
52.
53.
54,
55.
56.
57.
58.

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94,
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.

Example 3 - Using Parse Macros to Describe Command Operand Syntax
Example 4 - Using Parse Macros to Describe Command Operand Syntax
Example 5 - Using Parse Macros to Describe Command Operand Syntax
Format of the Validity Check Parameter List ....................
Return Codes from a Validity Checking Routine .. ................
The Parse Parameter List ... ... ........... ... ... .. ... .....
Return Codes from the Parse Service Routine . .. ................
Control Flow between Command Processor and the Parse Service
Routine . .. ... e
A PDL Showing PDEs that DescribealList ......................
A PDL Showing PDEs DescribingaRange .....................
A PDL Showing PDEs that Describe LIST and RANGE Options ... ... ..
PDL - LIST and RANGE Acceptable, Single Operand Specified .. ... ...
PDL - LIST and RANGE Acceptable, Single Range Specified ... ......
PDL - LIST and RANGE Acceptable, LIST Specified ...............
PDL - LIST and RANGE Acceptable, List of Ranges Specified ...... ...
Example 1 - Using Parse Macros to Describe Command Operand Syntax
Example 1 - The PRDSECT DSECT Created by Parse . .............
Example 1 - The PRDSECT DSECT andthePDL ... ... ............
Example 2 - Using Parse Macros to Describe Command Operand Syntax
Example 2 - The IKUIPARMD DSECT Created by Parse ... ..........
Example 2 - The IKUIPARMD DSECT andthePDL .. ... ............
Example 3 - Using Parse Macros to Describe Command Operand Syntax
Example 3 - The PARSEAT DSECT Created by Parse . . ... .........
Example 3 - The PARSEAT DSECT andthePDL ... ... ............
Example 4 - Using Parse Macros to Describe Command Operand Syntax
Example 4 - The PARSELSTDSECT . ... .... ... ... ... ......
Example 4 - The PARSELST DSECTandthePDL ... ... ...........
Example 5 - Using Parse Macros to Describe Command Operand Syntax
Example 5 - The PARSEWHN DSECT ... .. ... .................
Example 5 - The PARSEWHN DSECTandPDL . .. ... .. ...........
The TSO I/O Service Routines . . .. ... ... ... ... . .. .. . ........
The Input/Output Parameter List . ... .. ... ... ... ............
The List Form of the STACK Macro Instruction . .. ... .............
The Execute Form of the STACK Macro Instruction . . . ... ..........
The STACK ParameterBlock ... ... ..... ... ... ..............
The List Source Descriptor . . ... ... ... .. .. ... ...
Return Codes from the STACK Service Routine . ... ... ...........
STACK Control Blocks: No In-Storage List ... ..................
STACK Control Blocks: In-Storage List Specified . ... ... ..........
Example of STACK Specifying an In-storage List as the Input Source .
The List Form of the GETLINE Macro Instruction ... ..............
The Execute Form of the GETLINE Macro Instruction .. ............
The GETLINE ParameterBlock . .. ... ... ... ... ... .. .. ......
Format of the GETLINE Input Buffer . ... ......................
Return Codes from the GETLINE Service Routine ... ..............
GETLINE Control Blocks - Input Line Returned . . . ... .............
The List Form of the PUTLINE Macro Instruction . ................
The Execute Form of the PUTLINE Macro Instruction . ... ..........
The PUTLINE ParameterBlock . ... ....... ... ... ... ..........
PUTLINE Single LineDataFormat ...........................
PUTLINE Multiline DataFormat . ... ... ... . ... .. ... .. ......
Example Showing PUTLINE Single Line Data Processing . ..........
Example Showing PUTLINE Multiline Data Processing . ............
The Output Line Descriptor (OLD) .. . ... . ... . ... ... ... ....
Control Block Structures for PUTLINE Messages . . ... ............

MVS/ESA TSO Programming



106.
107.
108.
109.
110.
111,
112.
113.
114,
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.

PUTLINE Functions and Message Types . . .....................
Return Codes from the PUTLINE Service Routine . ................
Example Showing PUTLINE Text Insertion ... ..................
The List Form of the PUTGET Macro Instruction . .. ...............
The Execute Form of the PUTGET Macro Instruction .. .............
The PUTGET ParameterBlock .. ...........................
The Output Line Descriptor (OLD) . . .. ... . ... ... ... .. ........
Control Block Structures for PUTGET Output Messages . ... ........
Format of the PUTGET Input Buffer . .. ... ... ... .. ... ........
Return Codes from the PUTGET Service Routine . ................
Standard Format of Input Parameter List .. ....................
The IKUITSMSG Macro Instruction ... .. ... .. ... ... ... ...
Return Codes from the TSO Message Issuer Routine ... ...........
An Example Using the IKITSMSG Macro Instruction . .. .......... ..
The DAIR Parameter List (DAPL) . . ... ... .. ... . ... .........
DAIR Entry Codes and Their Functions . . . ... ..................
DAIR Parameter Block for Entry Code'00’ .. ....................
DAIR Parameter Block for Entry Code X'04' . . ... ... .............
DAIR Parameter Block for Entry Code X'08’ . .. ..................
DAIR Parameter Block for Entry Code X'0C" .. ..................
DAIR Parameter Block for Entry Code X10° . . . ... ...............
DAIR Parameter Block for Entry Code X14’ . . . .. ... .. .. .........
DAIR Parameter Block for Entry Code X'18' . .. ... ... ............
DAIR Parameter Block for Entry Code X'24' . .. ..................
DAIR Parameter Block for Entry Code X'28’ . ... .................
DAIR Parameter Block for Entry Code X'2C* .. ... ...............
DAIR Parameter Block for Entry Code X‘'30° . ... .................
DAIR Parameter Block for Entry Code X34’ . . ... ... .............
DAIR Attribute Control Block (DAIRACB) .. ... .................
Return Codesfrom DAIR . . ... ... .. ... . . ... ... ... . ..
Return Codes from Dynamic Allocation ... ....................
The Parameter List (DFDSECTDDSECT) ... ........... .. .......
The Parameter List (DFDSECT2DSECT) . ... ... ................
Return Codes from DAIRFAIL . .. .. ... ... . ... . .. ... . . .. . ....
The Parameter List (GFDSECTDDSECT) ... ...................
Return Codes from GNRLFAIL/VSAMFAIL ... .......... ... ......
The Catalog Information Routine Parameter List . ... .............
The Data Returned foreachEntryCode . ... ...................
User Work Areafor CIRPARM . . .. ... . . ... . ... ... ... ... .....
Volume Information Format . ... ... ....... .. ... .. .. ... ... ..
Return Codes from IKJEHCIR . . . ... .. ... ... ... ... ... .......
Return Codes from LOCATE . .. .. ... .. ... . ... .. . ... ... .....
TSO Command Syntax . ... ... .. ... .. . . . ... i,
Allocating and CreatinganinputDataSet .. ..... ... ...........

Figures

xiii



xiv  MVS/ESA TSO Programming



Summary of Changes

Summary of Changes

for GC28-1565-2

MVS/System Product Version 3 Release 1.3
Changed Information:

Service updates.

© Copyright IBM Corp. 1988, 1991

XV



XVi MVS/ESA TSO Programming



Chapter 1. Introduction

Command processors are a specific type of program that you can write to run in the
TSO environment. You can write your own command processors to add to the set of
commands provided by TSO.

TSO provides programming services that support a wide range of functions. You
can use the programming services described in this book in system or application
programs, including command processors.

Executing TSO Commands

To execute TSO commands, you must write JCL statements and submit them to the
operating system. Use the SYSTSIN DD statement in your JCL to control input to
your job and indicate which commands are to be executed. Chapter 9, “Executing a
Command Processor” on page 39 describes the JCL statements you must write to
execute a command.

Identifying Authorized Programs and Commands

To allow TSO users to execute authorized and unauthorized programs within a
single job step, a system programmer must maintain the access lists in CSECTs
IKJEFTE2 and IKJEFTES.

The IBM-supplied lists for APFCTABL (in IKJEFTE2) and APFPTABL (in IKJEFTES)
contain blank entries which inhibit the execution of APF-authorized programs. The
APFCTABL list contains the names of authorized command processors executed by
the TMP, and the APFPTABL list contains the names of authorized programs to be
executed by the CALL command. The modules that are attached for these names
must be link edited with APF authorization. If a name does not appear in these lists,
the program is attached without authorization. If a program is to be executed by
both the TMP and the CALL command, then its name must appear in both lists.

The format of the list is a sequence of eight-character command name entries. This
list is terminated by an entry consisting of eight blanks. Command name entries of

less than eight characters must be left-justified and padded to the right with blanks

to fill the eight-character entry.

The first entry to be examined by the TMP in either IKJEFTE2 or IKJEFTES8 will be
that entry associated with the respective ENTRY name APFCTABL or APFPTABL. If
a command has an abbreviation, it must appear as a separate entry. A null list
consists of just the final eight blanks.

© Copyright IBM Corp. 1988, 1991 ) 1



For example, if commands R1USER with abbreviation R1 and P3SRCH are to be
‘executed with authorization, then the list should look like:

ENTRY APFCTABL
IKJEFTEZ  CSECT

DC CL8'IKJEFTE2'

DC CL8' 76.133' DATE MAY CHANGE
APFCTABL DC CL8'RIUSER '

DC CL8'R1 !

DC CL8'P3SRCH '

DC CL8' !

END

If an installation wishes to allow access to IEBCOPY thrdugh CALL, then the list
should look like:

ENTRY APFPTABL
IKJEFTE8  CSECT

DC CL8'IKJEFTES'

DC CL8' 76,133' DATE MAY CHANGE
APFPTABL DC CL8'IEBCOPY '

DC cL8' !

END

The lists in APFCTABL and APFPTABL must contain only the eight-character strings.
The installation can reserve extra space by additional terminal blank strings.
Nonblank entries following a blank entry are not examined.

You can replace the IBM-supplied modules IKJEFTE2 and IKJEFTES by link editing
installation-supplied modules with these names into TMP load module IKJEFT02 in
SYS1.LPALIB.

Consult the output from stage 1 for correct link edit information. Any program that
depends upon a job step environment such as the TMP should not be placed in the
lists.

Writing Command Processors

You can write command processors to replace or add to the set of commands
provided by TSO. By writing your own command processors, your installation can
add to or modify TSO to better suit the needs of its users.

A command processor is a program written in assembler language that receives
control when a command name is specified in the input data controlled by the
SYSTSIN DD statement in a user’s JCL. It is given control by the terminal monitor
program (TMP), a program that provides an interface between TSO users and
command processors, and has access to many system services.

The main difference between command processors and other programs is that when
a command processor is invoked, it is passed a command processor parameter list
(CPPL) that gives the program access to information about the caller and to system
services.

Command processors must be able to communicate with the user through the job
output data set and obtain input data, as needed. Command processors can
recognize subcommand names specified in the input data and then load and pass
control to the appropriate subcommand processor.

2 MVS/ESA TSO Programming



You can use many of the services documented in this book to write a command
processor. For guidelines on how to write a command processor, what TSO
services to use, and how to install and execute the command processor, refer to

Part I.

Overview of TSO Programming Services

TSO provides services that your programs can use to perform the tasks described
below. Figure 1 summarizes the services provided by TSO.

Figure 1. Summary of TSO Services
Task Service Chapter
Reference

Invoking TSO service routines CALLTSSR macro instruction Chapter 11

Checking the syntax of Command scan service routine Chapter 12

subcommand names

Checking the syntax of command Parse service routine Chapter 13

and subcommand operands

Processing I/0 TSO I/0 service routines Chapter 14
TSO Message Handling Routine Chapter 15

Allocating, concatenating and Dynamic allocation interface Chapter 16

freeing data sets routine

Analyzing return codes DAIRFAIL Chapter 17
GNRLFAIL/VSAMFAIL Chapter 18

Retrieving information from the Catalog information routine Chapter 19

system catalog

Invoking TSO Service Routines

To pass control to certain TSO service routines, use the CALLTSSR macro
instruction. See Chapter 11, “Invoking TSO Service Routines with the CALLTSSR
Macro Instruction” on page 53.

Checking the Syntax of Subcommand Names

Use the command scan service routine in your command processors to validate a
subcommand name. See Chapter 12, “Verifying Subcommand Names with the
Command Scan Service Routine” on page 55.

Checking the Syntax of Command and Subcommand Operands

Use the parse service routine to validate command or subcommand operands. See
Chapter 13, “Verifying Command and Subcommand Operands with the Parse
Service Routine” on page 63.

Processing I/0
TSO offers several services for use in processing I/0 and issuing messages.

* You can use the TSO /O service routines (STACK, GETLINE, PUTLINE and
PUTGET) in a command processor to control the source of input, and write a
line of output or obtain a line of input. The I/0 service routines can be used to
issue messages. See Chapter 14, “Using the TSO I/0 Service Routines” on
page 153.

Chapter 1. Introduction 3




* Your command processors can use the TSO message issuer routine (IKJEFF02)
to issue messages to the output data set. See Chapter 15, “Using the TSO
Message Handling Routine (IKJEFF02)” on page 201.

Processing Data Sets
TSO provides several services that your programs can use to process data sets.

Allocating, Concatenating and Freeing Data Sets
TSO provides the dynamic allocation interface routine (DAIR) to allocate, free,
concatenate and deconcatenate data sets during program execution. However,
because of the reduced function and additional system overhead associated with
DAIR, your programs should access dynamic allocation directly, using SVC 99. For a
complete discussion of dynamic allocation, see SPL: Application Development
Guide. DAIR is discussed in Chapter 16, “Using the Dynamic Allocation Interface
Routine (DAIR)” on page 207.

Retrieving Information from the System Catalog
Use the catalog information routine (IKJEHCIR) to retrieve information from the
system catalog, such as data set name, index name, control volume address or
volume ID. See Chapter 19, “Using IKJEHCIR to Retrieve Systemn Catalog
Information” on page 239.

Analyzing Return Codes

Use the DAIRFAIL routine (IKJEFF18) to analyze return codes from dynamic
allocation (SVC 99) or DAIR and issue appropriate error messages. See
Chapter 17, “Using the DAIRFAIL Routine (IKJEFF18)” on page 231.

Use the GNRLFAIL/VSAMFAIL routine (IKJEFF19) to analyze VSAM macro
instruction failures, subsystem request failures, parse service routine or PUTLINE
failures, and ABEND codes, and issue an appropriate error message. See
Chapter 18, “Analyzing Error Conditions with the GNRLFAIL/VSAMFAIL Routine
(IKJEFF19)” on page 235.

Overview of TSO Commands

The following commands are provided by TSO:

Command Function

CALL Loads and executes a program.

TIME Provides the date and time of day.

WHEN/END Tests return codes from programs invoked from an

immediately preceding CALL command, and takes a
prescribed action if the return code meets a specified
condition.

For information about the TSO commands, refer to Part lil of this book.

4 MVS/ESA TSO Programming



Part I: Writing and Executing a Command Processor

You can write command processors to replace or add to the set of commands
provided by TSO. By writing your own command processors, your installation can
add to or modify TSO to better suit the needs of its users.

A command processor is a program that is given control by the terminal monitor
program (TMP) when you specify the command name as input data to a job that
executes the TMP. The TMP provides an interface between TSO users and
command processors and has access to many system services.

If you choose to write your own command processors, you can use the programming
services provided by TSO to perform many of the functions required by a command
processor. The programming services available in TSO consist of service routines
and macros, and are discussed in “Part ll: TSO Programming Services” on

page 41.

Part | of this book contains several chapters that describe what you must do to write,
install, and execute a command processor. Chapter 2 presents the concepts and
terminology that you must understand before you read the later chapters. Chapter 3
outlines the steps to follow when writing a command processor and refers you to
later chapters for the details of each step. Read all of chapters 2 and 3 and then
selectively read the subsequent chapters.

© Copyright IBM Corp. 1988, 1991 5



6 MVS/ESA TSO Programming



Chapter 2. What is a Command Processor?

A command processor is a program invoked by the terminal monitor program (TMP)
when you specify the command name as input data to a job that executes the TMP.
The TMP is a program that accepts and interprets commands, and causes the
appropriate command processor to be scheduled and executed. The TMP also
communicates with the user through the output data set and responds to abnormal
terminations.

The TSO Environment

The TMP determines whether data in the input stream is a command name. If a
command is specified, the TMP attaches the requested command processor and the
command processor then performs the functions requested by the user. When the
command processor completes and returns control to the TMP, the TMP detaches
the command processor.

The Command Processor Parameter List (CPPL)

The CPPL is a four-word parameter list that is located in subpool 1. The control
block interface between the TMP and an attached command processor is shown in
Figure 2.

Terminal
Monitor
Program

ATTACH I

Register 1

Command
Processor

CPPL

Figure 2. Control Block Interface between the TMP and a Command Processor

© Copyright IBM Corp. 1988, 1991



I GENERAL-USE PROGRAMMING INTERFACE , l

When the terminal monitor program attaches a command processor, register 1
contains a pointer to a command processor parameter list (CPPL) containing
addresses required by the command processor. Figure 3 describes the contents of
the CPPL.

Figure 3. The Command Processor Parameter List (CPPL)

Number Field Contents or Meaning
of Bytes
4 CPPLCBUF | The address of the command buffer for the currently
attached command processor.
4 CPPLUPT The address of the user profile table (UPT). Use the

IKJUPT mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the UPT.

4 CPPLPSCB The address of the protected step control block (PSCB).
Use the IKUPSCB mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the PSCB.

4 CPPLECT The address of the environment control table (ECT). Use
the IKUIECT mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the ECT.

The first word of the CPPL contains the address of the command buffer for the
currently attached command processor. As the TMP receives a line of input from
the input stream, the input is placed into the command buffer. After determining
that the input is a command name, the TMP attaches the appropriate command
processor. Figure 4 shows the format of the command buffer.

Length Offset Text

Length
Figure 4. Format of the Command Buffer
When your command processor receives control, the fields in the command buffer
appear as follows:

¢ The two-byte length field contains the length of the command buffer, including
the four-byte header. B

¢ If the user specified operands, the offset field contains the number of text bytes
preceding the first operand. Otherwise, the offset field contains the length of the
text portion of the buffer.

¢ The text field contains the command name, in uppercase characters, followed
by any operands the user specified.

{______ End of GENERAL-USE PROGRAMMING INTERFACE ________________J

8 MVS/ESA TSO Programming



Command Syntax

A command consists of a command name, optionally followed by one or more
operands. Operands provide the specific information required for the command
processor to perform the requested operation.

There are two types of operands that can follow a command name: Positional
operands and keyword operands. Positional operands immediately follow the
comrhand name and must be in a specific order. Keyword operands are specific
names or symbols that have a particular meaning to the command processor. A
TSO user can enter keyword operands anywhere in the command line as long as
they follow all positional operands. A keyword operand can have a subfield
associated with it. A subfield consists of a parenthesized list of positional or
keyword operands directly following the keyword.

A TSO user can enter comments in the command line anywhere a blank might
appear by enclosing the text within the delimiters /* and */.

What is a Subcommand Processor?

If your command processor must perform a large number of complex functions, you
can divide this work into individual operations. Each operation can be defined and
performed by a subcommand processor. A TSO user requests one of the operations
by first specifying the name of the command, and then specifying a subcommand to
indicate which individual operation should be performed.

Subcommands are similar to commands in many ways, including syntax and the

way they are given control. A subcommand processor is attached by the command
processor and is passed a pointer to the CPPL in register 1.

Chapter 2. What is a Command Processor? 9



10 MVS/ESA TSO Programming



Chapter 3. What You Need to Do to Write a Command
Processor

This chapter describes the steps to follow when writing, installing and executing a
command processor. Further details are contained in subsequent chapters.

1. Write the assembler language program.
¢ Access the command processor parameter list (CPPL).

When a command processor receives control from the TMP, register 1
contains the address of the CPPL. Use the IKICPPL DSECT, provided in
SYS1.MACLIB, to map the fields in the CPPL. Your command processor can
then access the symbolic field names within the IKICPPL DSECT by using
the address contained in register 1 as the starting address for the DSECT.
The use of the DSECT is recommended since it protects the command
processor from any changes to the CPPL.

¢ Validate any operands entered with the command.

Your command processor must verify that the operands the user specified
on the command are valid. Use the parse service routine (IKJPARS) to scan
and verify the operands. See Chapter 4, “Validating Command Operands”
on page 13 for a description of the functions provided by the parse service
routine.

¢ Communicate with the user through the job stream.

Your command processor may need to obtain data from the input stream,
and write messages or data to the output data set. For information on 1/0,
see Chapter 5, “Communicating with the User through the Job Stream” on
page 25.

* Perform the function of the command according to any operands the user
specified.

The operands that the user specified on the command indicate which
functions your command processor should perform. You can use system
services and the services provided by TSO to perform many functions.

¢ Recognize and pass control to any subcommands.

If you have chosen to implement subcommands, your command processor
must be able to recognize a subcommand name specified in the input
stream and pass control to the requested subcommand processor. For a
description of the steps involved, see Chapter 6, “Passing Control to
Subcommand Processors” on page 29.

¢ Intercept and process abnormal terminations.

Your command processor must be able to intercept abnormal terminations
and perform the processing needed to prevent abnormal termination of the
job step. For information on writing error handling routines, see Chapter 7,
“Processing Abnormal Terminations” on page 33.

® Copyright IBM Corp. 1988, 1991 11



l GENERAL-USE PROGRAMMING INTERFACE ]

o Set the return code in register 15 and return control to the TMP.

When returning control to the TMP, your command processor must follow
standard linkage conventions and set a return code in register 15. Your
command processor should set one of the following return codes in register

15:
Return Code Meaning
Dec(Hex)
0(0) The command processor has executed normally.
12(C) An error encountered during execution has caused the command
processor to terminate.

I— End of GENERAL-USE PROGRAMMING INTERFACE ____J

2. Assemble the command processor.

After you code your command processor, you must assemble the source into
object code and place it in an object module.

3. Install the command processor.

For a description of the methods that you can use to add your new command
processor to TSO, see Chapter 8, “Installing a Command Processor” on
page 37.

12 MVS/ESA TSO Programming



Chapter 4. Validating Command Operands

When your command processor receives control, it must verify that operands
entered with the command are valid and that required operands are specified. This
chapter introduces the parse service routine and describes how it can be used to
determine the validity of command operands. For a complete description of the
parse service routine, see Chapter 13, “Verifying Command and Subcommand
Operands with the Parse Service Routine” on page 63.

Using the Parse Service Routine

When you write a command processor to run under TSO, you need a method to
determine whether the command operands specified by the user are syntactically
correct. The parse service routine (IKJPARS) performs this function by searching
the command buffer for valid operands.

Parse recognizes positional and keyword operands. Positional operands occur first,
and must be in a specific order. Keyword operands can be entered in any order, as
long as they follow all of the positional operands.

Although parse recognizes comments present in the command buffer, it processes
them by simply skipping over them. Comments, which are indicated by the
delimiters /* and */, are not removed from the command buffer.

Before invoking the parse service routine, your command processor must use the
parse macro instructions to create a parameter control list (PCL), which describes
the permissible operands. You then invoke the parse service routine to compare
the information supplied by your command processor in the PCL to the operands in
the command buffer. Each acceptable operand must have an entry built for it in the
PCL,; an individual entry is called a parameter control entry (PCE).

Parse returns the results of scanning and checking the operands in the command
buffer to the command processor in a parameter descriptor list (PDL). The entries in
the PDL, called parameter descriptor entries (PDEs), indicate which operands are
present in the command buffer. These operands indicate to your command
processor the functions the user is requesting.

When your command processor invokes the parse service routine, it must pass a
parse parameter list (PPL), which contains pointers to control blocks and data areas
that are needed by parse. Addresses needed to access the PCL, PDL and command
buffer are included in the parse parameter list.

When the parse service routine finishes processing, it passes a return code in
register 15 to your command processor. Your command processor should issue
meaningful error messages for all non-zero return codes. The GNRLFAIL routine,
which is discussed in Chapter 18, “Analyzing Error Conditions with the
GNRLFAIL/VSAMFAIL Routine (IKJEFF19)” on page 235, can be used for this
purpose.

Figure 5 on page 14 shows the interaction between a command processor and the
parse service routine.

© Copyright IBM Corp. 1988, 1991 13



Command Buffer

Length | Offset

Command Name Operand 1 Operand 2 Operand 3

0 2 4

Command Processor

Parse Service Routine

a PCL describing
valid operands
* |abell Macro
* |abel2 Macro
® label3 Macro

These macro
instructions also
create the

IKJPARMD
DSECT

labell

label2

label3

@ The Command

IKJPARMD DSECT
to access the

the PDL.

Issues Parse macro

®
Dissues porse mecre | ©

IKJPARMD DSECT.

Processor uses the

various PDEs within

CALLTSSR/LINK to Parse

Compares PCE's to
operands in the
Command Buffer.

PCL
> PCE
PCE2
PCE3
PDL
PDE | <N (4) Builds the PDL.
PDE
PDE

< —

@ Return to the Command Processor

Figure 5. A Command Processor Using the Parse Service Routine

Checking Positional Operands for Logical Errors

Because the parse service routine checks the command operands only for syntax
errors, you must write validity checking routines when it is also necessary to check
positional operands for logical errors. Each positional operand can have a unique
validity checking routine.

To indicate that a validity checking routine is to receive control, code the entry point
address of the routine on the parse macro instruction that describes the operand.
The validity checking routine you provide for a positional operand receives control
after the parse service routine determines that the operand is specified and is
syntactically valid.

When parse passes control to a validity checking routine, it passes a validity check
parameter list, which contains the address of the PDE parse built to describe the
positional operand. Your validity checking routine can use the information in the
PDE to perform additional checking on the operand.

14 MVS/ESA TSO Programming



When processing is complete, the validity checking routine must pass a return code
in general register 15 to the parse service routine. The return code informs parse of

the results of the validity check and determines the action that parse takes.

A Sample Command Processor

The sample command processor in Figure 6 demonstrates the use of the parse
service routine. A validity checking routine is also provided. The syntax for the

sample command is:

PROCESS  dsname ACTION
NOACTION

where dsname is a positional operand and ACTION/NOACTION are keyword

operands. NOACTION is the default if neither ACTION nor NOACTION are specified.

PROCESS  CSECT ,
PROCESS AMODE 24
PROCESS RMODE 24

*

TITLE - PROCESS

COMMAND OPERANDS.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

PROCESS  CSECT
STM  R14,R12,12(R13)

LR R11,R15
USING PROCESS,R11
LR R2,R1

GETMAIN RU,LV=L_SAVE_AREA
USING SAVEAREA,RI
ST R1,8(R13)

ST R13,B_PTR
LR RI3,R1

USING SAVE_AREA,R13
DROP R1

DESCRIPTION - SAMPLE TSO COMMAND PROCESSOR

FUNCTION - THIS SIMPLE COMMAND PROCESSOR DEMONSTRATES THE USE
OF THE PARSE SERVICE ROUTINE TO SYNTAX CHECK THE

OPERATION - PROCESS IS A REENTRANT COMMAND PROCESSOR THAT PERFORMS
THE FOLLOWING PROCESSING:

1 - ESTABLISHES ADDRESSABILITY AND SAVES THE CALLER'S REGISTERS

2 - ISSUES A GETMAIN FOR DYNAMIC STORAGE

3 - USES THE PARSE SERVICE ROUTINE (IKJPARS) TO DETERMINE THE
VALIDITY OF THE COMMAND OPERANDS

4 - PROVIDES A VALIDITY CHECKING ROUTINE TO PERFORM ADDITIONAL
CHECKING OF THE POSITIONAL OPERAND

5 - ISSUES A FREEMAIN TO RELEASE THE DYNAMIC STORAGE

6 - RESTORES THE CALLER'S REGISTERS BEFORE RETURNING

7 - RETURNS TO THE TMP WITH A RETURN CODE IN REGISTER 15

PROCESS TITLE 'SAMPLE TSO COMMAND PROCESSOR

COMMAND'S ADDRESSING MODE
COMMAND'S RESIDENCY MODE

dhkkkkhkdkhkkdhkkhkhhkkhhkhkhhkkhkhkhhkhkkhkkkkhkhkkkkhhkhkhkhkkkhkkhkhkkikkkkk

¥ O% X % F % ¥ Ok X X X F X ¥ % X F ¥ X * ¥ X

Fe e e e e Fe e o ke o e e oo e g e e e de de ke e K ke de e e de e de e ek de dede K dode e de ke de e de K e de ke g ke e de ek dek gk e ek kode ke kedek

SAVE CALLER'S REGISTERS

ESTABLISH ADDRESSABILITY WITHIN
THIS CSECT

SAVE THE POINTER TO THE CPPL
AROUND THE GETMAIN

OBTAIN A DYNAMIC WORK AREA

AND ESTABLISH ADDRESSABILITY

PUT THE ADDRESS OF PROCESS'S SAVE
AREA INTO THE CALLER'S SAVE AREA
PUT THE ADDRESS OF PROCESS'S SAVE
AREA INTO ITS OWN SAVE AREA

LOAD GETMAINED AREA ADDRESS

POINT TO THE DYNAMIC AREA

DON'T USE R1 ANY MORE

Figure 6 (Part 1 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands

15



*

*

*

GETMAIN RU,LV=L_WORK_AREA

USING WORKA,R1

OBTAIN A DYNAMIC WORK AREA
AND ESTABLISH ADDRESSABILITY TO
THE DYNAMIC WORK AREA

STM  RO,R1,WORK_AREA GM_LENGTH SAVE LENGTH AND ADDR OF

LR R10,R1
USING WORKA,R10
DROP R1

ST R2,CPPL_PTR

* MAINLINE PROCESSING

XC RETCODE,RETCODE

GETMAIN RU,LV=L_PPL

STM  RO,R1,PPL_LENGTH
GETMAIN RU,LV=L_ANSWER
STM  RO,R1,ANSWER_LENGTH

L R2,PPL_PTR
USING PPL,R2

L RL,CPPL_PTR
USING CPPL,R1

MVC  PPLUPT,CPPLUPT
MVC PPLECT,CPPLECT

MVC PPLCBUF,CPPLCBUF

L RI,WORK_AREA GM_PTR

ST  R1,PPLUWA

DROP R1
L R1,ANSWER_PTR

ST  R1,PPLANS
XC  ECB,ECB

LA R1,ECB
ST R1,PPLECB

L R1,PCLADCON
ST R1,PPLPCL

CALLTSSR EP=IKJPARS,MF=(E,PPL)

DROP R2
LTR R15,R15
BZ PROCESS

MVC RETCODE(4),ERROR

B CLEANUP

DYNAMIC AREA
GET READY TO USE R10 AS THE
DATA AREA SEGMENT BASE REGISTER

SAVE THE POINTER TO THE CPPL

dekkkkkkhkdhkdkkkkkhhkdkkkdhkkkkhkhhhkhkkhkkhkhhkhkhhkkkhhhhdrhhkhdhkkhdkhdhkk

*
*
*

dekkkkkkkhkhhkhkkhkhhhhkhhkhhkkhkkhkhhhkhhhkhhhhkhhkrhkkhrhkhkhhkrkhkhkhkkkk

INITIALIZE THE RETURN CODE

OBTAIN A DYNAMIC PPL WORK AREA

SAVE LENGTH AND ADDR OF DYNAMIC PPL
OBTAIN A DYNAMIC PPL ANSWER AREA
SAVE LENGTH AND ADDR OF DYNAMIC PPL
ANSWER AREA :

GET THE ADDRESS OF THE PPL

AND ESTABLISH ADDRESSABILITY

GET ADDRESS OF CPPL

AND ESTABLISH ADDRESSABILITY

PUT IN THE UPT ADDRESS FROM CPPL
PUT IN THE ECT ADDRESS FROM CPPL
PUT IN THE COMMAND BUFFER ADDRESS
FROM THE CPPL

GET THE ADDRESS CF THE COMMAND
PROCESSOR'S DYNAMIC WORK AREA TO

BE PASSED TO THE VALIDITY CHECK
ROUTINE

GET THE ADDRESS OF THE PARSE
ANSWER AREA AND

STORE IT IN THE PPL

CLEAR COMMAND PROCESSOR'S
EVENT CONTROL BLOCK (ECB)

GET THE ADDRESS OF THE COMMAND
PROCESSOR'S ECB AND

PUT IT IN THE PPL

GET THE ADDRESS OF THE PCL AND
PUT IT IN THE PPL FOR PARSE
INVOKE PARSE

IF PARSE RETURN CODE IS ZERO
PERFORM PROCESSING FOR THE COMMAND
SET CP RETURN CODE TO 12

PREPARE TO RETURN TO THE TMP

Figure 6 (Part 2 of 9). A Sample Command Processor

16 MVS/ESA TSO Programming




*

PROCESS DS OH

*

*

*

*

* CODE TO PERFORM THE FUNCTION OF THE COMMAND PROCESSOR GOES HERE.

* AFTER CALLING THE PARSE SERVICE ROUTINE TO VALIDATE THE COMMAND

* OPERANDS, USE THE PDL RETURNED BY PARSE TO DETERMINE WHICH

* QOPERANDS THE USER ENTERED. THEN PERFORM THE FUNCTION REQUESTED

* BY THE USER.

*

*

*

*

*

*
dkkkkhhkhkhkhkkhkhhkdhkhkkkdkhhkhhhhhhhhkdhkhkhhkikkhhdhdhhddhddhkkhdhhkhkhhdhhhid
* *
* CLEANUP AND TERMINATION PROCESSING *
* *

e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ke e e e e e e e ke e e e e e e e e e e e e e e e e e e de e e e e o ek
*

CLEANUP DS  ©H

L R1,PPL_PTR POINT TO PPL IN DYNAMIC WORK AREA
FREEMAIN RU,LV=L_PPL,A=(1) FREE THE STORAGE FOR THE PPL
L R1,ANSWER_PTR POINT TO THE ANSWER PLACE
L R1,0(0,R1) POINT TO THE PDL
IKJRLSA (R1) FREE STORAGE THAT PARSE ALLOCATED
* FOR THE PDL
L R1,ANSWER_PTR POINT TO THE ANSWER PLACE
FREEMAIN RU,LV=L_ANSWER,A=(1) FREE THE STORAGE FOR THE
* ANSWER WORD
L R5,RETCODE SAVE RETURN CODE AROUND FREEMAIN

L R1,WORK_AREA_GM_PTR  POINT TO MODULE WORK AREA
FREEMAIN RU,LV=L_WORK_AREA,A=(1)

* FREE THE MODULE WORKAREA
LR R1,R13 LOAD PROCESS'S SAVE AREA ADDRESS
L R13,B_PTR CHAIN TO PREVIOUS SAVE AREA
DROP R13

FREEMAIN RU,LV=L_SAVE_AREA,A=(1)  FREE THE MODULE SAVEAREA

L R14,12(R13) HERE'S OUR RETURN ADDRESS
LR R15,R5 HERE'S THE RETURN CODE
LM RO,R12,20(R13) RESTORE REGS 0-12
BSM 0,R14 RETURN TO the TMP

Figure 6 (Part 3 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands

17



¥ Ok X N X % X % X *

kkkkkkhkkhkkkhkhkkhhkhhkhhkhhkhhkhhkhhkrhkhhhkhhhhkhhhdhhkdhhhhhkhkkhkhdkhkkdk
* POSITCHK - IKJPOSIT VALIDITY CHECKING ROUTINE
* .
* IF THE DATA SET NAME HAS A PREFIX OF SYS1 THEN THE VALIDITY
* CHZCKING ROUTINE RETURNS A CODE OF 4 TO PARSE. THIS RETURN
* CODE INDICATES TO PARSE THAT IT SHOULD ISSUE A MESSAGE TO THE
* JOB OUTPUT STREAM.
*
* IF THE DATA SET PREFIX IS ANYTHING OTHER THAN SYS1, THEN
* THIS ROUTINE RETURNS A CODE OF 0 TO PARSE.
*
khkhkkdkkkkhdkhkdihhkdhkhhkhkkhkddkkkdkhhkhhkhkhhkkhkkhkkhhrhhkkhkhrkhkhkkkx
DROP R10 WE WILL REUSE REGISTER 10
POSITCHK DS oD
STM  R14,R12,12(R13) SAVE PARSE'S REGISTERS
LR R9,R15
USING POSITCHK,R9 ESTABLISH ADDRESSABILITY
LR R2,R1 SAVE THE VALIDITY CHECK PARAMETER
* LIST PARSE PASSED TO US
GETMAIN RU,LV=L_SAVE_AREA OBTAIN A DYNAMIC SAVE AREA FOR
* THE POSITCHK ROUTINE
USING SAVEAREA,R1 AND ESTABLISH ADDRESSABILITY
ST R1,8(R13) PUT THE ADDRESS OF THIS ROUTINE'S
* SAVE AREA INTO PARSE'S SAVE AREA
ST R13,B_PTR PUT THE ADDRESS OF THIS ROUTINE'S
* SAVE AREA INTO ITS OWN SAVE AREA
* FOR CALLING
LR R13,R1 LOAD ADDRESS OF GETMAINED AREA
USING SAVEAREA,R13 AND ESTABLISH ADDRESSABILITY
L R10,4(R2) POINT TO THE COMMAND PROCESSOR'S
* ORIGINAL DYNAMIC WORK AREA
USING WORKA,R10 DATA AREA SEGMENT BASE REGISTER
ST R2,VALCHK_PARAMETER_LIST_PTR
* SAVE THE ADDRESS OF THE VALIDITY
* CHECK PARAMETER LIST
LM R1,R3,0(R2) GET THE ADDRESS OF THE PDE
STM  R1,R3,VALIDITY_CHECK_PARAMETER_LIST
* SAVE CONTENTS OF PARAMETER LIST
XC POSITCHK_RETCODE,POSITCHK_RETCODE
* MAKE SURE WE START WITH A ZERO
* RETURN CODE

Figure 6 (Part 4 of 9). A Sample Command Processor

18 MVS/ESA TSO Programming




L R2,PDEADR GET THE ADDRESS OF THE PDE

USING DSNAME_PTR,R2 AND ESTABLISH ADDRESSABILITY TO
* OUR MAPPING OF THE PDE
™ DSNAME_FLAGS1,QUOTE IS THE DATA SET NAME IN QUOTES?
BNO  DSNOK NO - DATA SET NAME IS OK
L R4 ,DSNAME_PTR POINT TO THE DSN
CLC  0(L'SYS1,R4),SYS1 IS HIGH LEVEL DESCRIPTOR SYS1?
BNE  DSNOK NO
L R5,FOUR SYS1 IS INVALID. SET RC=4
ST R5,POSITCHK_RETCODE SAVE THE RETURN CODE
DSNOK LR R1,R13 LOAD ROUTINE'S SAVE AREA ADDRESS
L R13,B_PTR CHAIN TO PREVIOUS SAVE AREA

L R5,P0§ITCHK_RETCODE LOAD THE RETURN CODE
FREEMAIN RU,LV=L_SAVE_AREA,A=(1)

* FREE THE MODULE WORKAREA

L R14,12(R13) HERE'S OUR RETURN ADDRESS

LR R15,R5 HERE'S THE RETURN CODE

LM RO,R12,20(R13) RESTORE REGS 0-12

BSM  0,R14 RETURN TO PARSE

DROP R9

DROP R10

DROP R13
*
kkkkkhhkhhkhhkkkhkkhkhhkhhkhkhhrhhhkhkhrkhrkkdhhdhhhhhdhhhhdkhhkhkhhkhkkhkik
* *
* DECLARES FOR CONSTANTS *
* *
dhkkdkkhhkkhkhhkkhhkkkhhkhkhhhhhkkhkkhrhhkhhkhkhkhkrhhrhhhohhdkhrhhhdkkhkhkhhkk
*
PCLADCON DC  A(PCLDEFS) ADDRESS OF PCL
FOUR DC F'4' USED TO SET/TEST RETURN CODE
EIGHT Dc F'g’ USED TO SET/TEST RETURN CODE
TWELVE DC F'12' USED TO SET/TEST RETURN CODE
ERROR DC F'12' USED TO SET/TEST RETURN CODE
sYs1 DC  C'SYS1.' HIGH-LEVEL DESCRIPTOR

Figure 6 (Part 5 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands

19



LR R e L T L e R e s R e e R e s R e e bkttt 2]
* *

* PARSE MACROS USED TO DESCRIBE THE COMMAND OPERANDS *
* , *
R L L R L L 23
*

PCLSTART DS OH

PCLDEFS TIKJPARM DSECT=PRDSECT
DSNPCE  IKJPOSIT DSNAME,
PROMPT="'DATA SET NAME TO BE PROCESSED',
‘ VALIDCK=POSITCHK
ACTPCE  IKJKEYWD DEFAULT='NOACTION'
IKINAME 'ACTION'
IKINAME 'NOACTION'

IKJENDP

LPCL  EQU  *-PCLSTART LENGTH OF THE PCL

*
dekkhkhkhkkhkkhkhkkhkhkhkhikhkkkkkkhkhkkhkhhhhkhkhhkhhkhhkkhhkhhkhhkdhkhik
* *
* DECLARES FOR DYNAMIC VARIABLES *
* *
khkhkkkhkkhkhhkkkhhhkhhhhkhhkhkkkhhhhkhhkkhhhkhkhhkhkkdkkhkkkhkkkhhkihkkkk
*

WORK_AREA DSECT

WORKA DS OF START OF DYNAMIC WORK AREA
WORK_AREA_GM_LENGTH DS F LENGTH OF WORKAREA
WORK_AREA_GM_PTR DS F ADDRESS OF WORKAREA

PPL_LENGTH DS F LENGTH OF PPL

PPL_PTR DS F ADDRESS OF PPL

ANSWER_LENGTH DS F LENGTH OF PPL ANSWER AREA
ANSWER_PTR DS F ADDRESS OF PPL ANSWER AREA
CPPL_PTR DS F ADDRESS OF THE CPPL FROM TMP
RETCODE DS F THE RETURN CODE

PARSE_RETCODE DS F THE RETURN CODE FROM PARSE
POSITCHK_RETCODE DS F THE RETURN CODE FROM THE POSITCHK
* VALIDATION EXIT

ECB DS F CP'S EVENT CONTROL BLOCK
VALCHK_PARAMETER_LIST_PTR DS F POINTER TO THE VALIDITY CHECK

*

PARAMETER LIST

+

Figure 6 (Part 6 of 9). A Sample Command Processor

20 MVS/ESA TSO Programming




dedkekddkhkkhkkhkhhkkkhkhhhkdhhkhhhhhhhhhkhhkhkhhhhkhhrrrhrkhkhdkkkkkrhkkdkhdkhhkhkrkkkd
*

* MAPPING OF THE THREE WORD VALIDITY CHECK PARAMETER LIST.

*

* PARSE PASSES THIS PARAMETER LIST TO THE VALIDITY CHECK-ROUTINE,

* POSITCHK. IT CONTAINS THE FOLLOWING INFORMATION:

* 1) PDEADR - THE ADDRESS OF THE PDE FOR THE DATA SET NAME

* 2) USERWORD - THE ADDRESS OF THE USER WORK AREA THAT THE

* COMMAND PROCESSOR SUPPLIED TO PARSE IN THE PPL.
* 3) VALMSG - THE ADDRESS OF A SECOND LEVEL MESSAGE. PARSE

* INITIALIZES THIS FIELD TO X'00'.

%*

* Od % X ¥ % ¥ ¥ X * *

e d e e e e o vk ok e e e e vk ok e e ke ok e e ke ok e ok e e ok ok e ok ke e ok ke vk o e ke e vk ok o ok e Sk ke 3 ke e e ok e ke ke e ok ok e e ke ke ke ke e e e ke ke
*

VALIDITY_CHECK_PARAMETER_LIST DS OF THE VALIDITY CHECK PARAMETER
* LIST

PDEADR DS F ADDRESS OF THE PDE FROM PARSE
USERWORD DS F ADDRESS OF THE WORK AREA WE GAVE
* TO PARSE

VALMSG DS F ADDRESS OF A SECOND LEVEL MESSAGE
*

WE CAN GIVE BACK TO PARSE
L_WORK_AREA EQU *-WORK_AREA
* LENGTH OF DYNAMIC WORK AREA

*
dekkkdhdkkdekkhhkhkkhhkhhkhkkkhkhkkkhkhhkkdhkkhkhkhkkhkkhkkhkhkhkkkdkhhhkhhkkhkhhkhkhkk

L_SAVE_AREA
*

EQU *-SAVE_AREA
LENGTH OF SAVE AREA

* *
* DECLARES FOR THE SAVE AREA *
* *
dekdedekdededkdedehdhdedhhhhkhkhhhkkhkhkkkkhkhkkdkhhkhhkhkkhhkhkhkhkhhkhkhkhhhkhkkhkhkkkhkhdkkkdkikk
*

SAVE_AREA DSECT

SAVEAREA DS OCL72  STANDARD SAVE AREA

PLI_LINK DS F UNUSED

B_PTR DS F BACKWARD SAVE AREA POINTER

F_PTR DS F FORWARD SAVE AREA POINTER

REG14 DS F CONTENTS OF REGISTER 14

REG15 DS F CONTENTS OF REGISTER 15

REGO DS F CONTENTS OF REGISTER 0

REG1 DS F CONTENTS OF REGISTER 1

REG2 DS F CONTENTS OF REGISTER 2

REG3 DS F CONTENTS OF REGISTER 3

REG4 DS F CONTENTS OF REGISTER 4

REGS DS F CONTENTS OF REGISTER 5

REG6 DS F CONTENTS OF REGISTER 6

REG7 DS F CONTENTS OF REGISTER 7

REG8 DS F CONTENTS OF REGISTER 8

REGY DS F CONTENTS OF REGISTER 9

REG10 DS F CONTENTS OF REGISTER 10

REG11 DS F CONTENTS OF REGISTER 11

REG12 DS F CONTENTS OF REGISTER 12

Figure 6 (Part 7 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands

21




hkkhkkhkkhkkhkhhkhhkhhkhhkhhkhkhkhhkhhkhkhkhhdhhrhhhrdhkhhkhhhhrhhkhhkd
* *

* MAPPING OF THE PDE BUILT BY PARSE TO DESCRIBE A DSNAME OR DSTHING *

*  OPERAND. *
* *
dkkkkkkhkhhhkkhkkhkhhkkdkkhkdhhkkdhkkhhhhkhkhkbkhhkhkhhhhhhhhhhhhrhkhkkhhhhkkhs
*

DSNAME_DSTHING DSECT PDE MAPPING FOR THE FOR DSNAME

* OR DSTHING

DSNAME_PTR DS F POINTER TO THE DSNAME
DSNAME_LENGTH_1 DS H LENGTH OF THE DATA SET NAME

* EXCLUDING QUOTES

DSNAME_FLAGS1 DS CLL  FLAGS BYTE

*

* Buer een THE DATA SET NAME IS NOT PRESENT

* loww oo THE DATA SET NAME IS PRESENT

* .0.. .... THE DATA SET NAME IS NOT CONTAINED WITHIN QUOTES
* .1.. .... THE DATA SET NAME IS CONTAINED WITHIN QUOTES

*

DS CL1 RESERVED
F

DSNAME_MEMBER_PTR DS POINTER TO THE MEMBER NAME
DSNAME_LENGTH_2 DS H LENGTH OF THE MEMBER NAME
* EXCLUDING PARENTHESES
DSNAME_FLAGS2 DS CLL  FLAGS BYTE
*
* Ouee eees THE MEMBER NAME IS NOT PRESENT
* loow oo THE MEMBER NAME IS PRESENT
*

DS CLL  RESERVED
DSNAME_PASSWORD_PTR DS F POINTER TO THE DATA SET PASSWORD
DSNAME_LENGTH_3 DS H LENGTH OF THE PASSWORD
DSNAME_FLAGS3 DS CLL  FLAGS BYTE
*
* 0uer ven. THE DATA SET PASSWORD IS NOT PRESENT
* loe ... THE DATA SET PASSWORD IS PRESENT
*

DS CLL  RESERVED
L_DSNAME_PDE EQU *-DSNAME_PTR
*
dhkkkkkkhkhkhkhkhhhhhhhhhkdhhhhhhhhhhhrhhhhhhrhhhkhkhhhrhkhhhhhhkhkkdkkhkhkkk
* *
* MAPPING OF THE PDE BUILT BY PARSE TO DESCRIBE THE KEYWORD OPERAND *
* *
dkkhkhkhkkhkkhkdkhhhhkhhhhkhhhhhhhhrhhhhrhhrhhhdhhhhhhdhkhhhdrhhrrkkhrrd
*
KEYWD_PDE DSECT
KEYWD_NUM DS H CONTAINS THE NUMBER OF THE IKINAME
* MACRO INSTRUCTION THAT CORRESPONDS
* TO THE OPERAND ENTERED/DEFAULTED
*
L_KEYWD_PDE EQU *-KEYWD_PDE

Figure 6 (Part 8 of 9). A Sample Command Processor

22 MVS/ESA TSO Programming



IKJPPL PARSE PARAMETER LIST
L_PPL EQU  *-PPL
*

IKJCPPL COMMAND PROCESSOR PARAMETER LIST
L_CPPL  EQU *-CPPL
*

ANSWER  DSECT

DS F PARSE ANSWER PLACE. PARSE PLACES A
* POINTER TO THE PDL HERE
L_ANSKER EQU *-ANSWER
*
VT DSECT=YES CVT MAPPING NEEDED FOR CALLTSSR MACRO
*
KAKAKKKKAKKKKERKK A AR A A KRR AR ARRA R A AR AR AT AR A b hhhbhdkhhhhhhhhdhhhhhhhhdd
* *
*  EQUATES *
* *
kkkkkkkkkhkkkhhkhkhkhhhkhhhhkhhkhhhkhhkhhhkhhhkhhhkdhhkdhkhhhhhhkhkkhhhkkhkdhkkhkkkkkx
*
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
RS EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11 BASE REGISTER
R12 EQU 12
R13 EQU 13 DATA REGISTER
R14 EQU 14 RETURN ADDRESS
R15 EQU 15 RETURN CODE
QUOTE  EQU X'40' FULLY-QUALIFIED DATA SET NAME

END  PROCESS

Figure 6 (Part 9 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands

23



24 MVS/ESA TSO Programming



Chapter 5. Communicating with the User through the Job
Stream

Your command processor may need to obtain data from the input stream or write
messages or data to the output data set.

This chapter provides an overview of how to issue messages, perform I/0 and
change the source of input. For additional information on the macros and services
discussed in this chapter, see “Part ll: TSO Programming Services” on page 41.

Issuing Messages
TSO supports three classes of messages:

* Prompting messages
¢ Mode messages
* Informational messages.

Prompting messages begin with “MISSING” and indicate that a required operand is
missing. For example, the parse service routine issues prompting messages when
the user has specified an incorrect operand or when a required operand is missing.

Mode messages are issued to the output data set to indicate whether the TMP or a
command processor is in control. When a mode message is issued, a new
command or subcommand is obtained from the input stream. For example, the
READY message issued by the TMP is a mode message.

If you have chosen to implement subcommands, your command processor should
issue a mode message to indicate that the command is in control, and to obtain a
subcommand from the input stream.

Informational messages are issued to the output data set to notify the user of the
status of the command being executed. For example, informational messages
should be issued if your command processor encounters an error and must
terminate.

Message Levels

Messages that are issued to the output data set should usually have second level
messages associated with them. Second level messages provide additional
explanation of the initial message and follow the initial message in the output data
set.

Prompting messages can have any number of second level messages. However,

informational messages can have only one second level message associated with
them. Mode messages cannot have second level messages.

© Copyright IBM Corp. 1988, 1991 25



Using the I/0 Service Routines to Handle Messages

Your command processor can use the 1/0 service routines provided by TSO to
obtain input and issue messages.

Use the PUTLINE service routine, which writes a line of data to the output data set,
to issue prompting and informational messages. Use the PUTGET service routine,
which writes a line of data to the output data set and obtains a line of input, to issue
mode messages.

When issuing prompting or informational messages, you can also use PUTLINE to
place inserts into message text and chain second level messages.

When PUTGET returns a line of data from the input stream, this data is placed in a
buffer that resides in subpool 1 and is owned by your command processor.
Although the buffers returned by PUTGET are automatically freed when your code
relinquishes control, you can use the FREEMAIN macro instruction to free these
buffers.

Using the TSO Message Issuer Routine (IKJEFF02)

If your command processor issues messages with numerous inserts, you should use
the TSO message issuer service routine (IKJEFF02) instead of PUTLINE and
PUTGET. Using IKJEFFO02 has several advantages:

¢ |t simplifies the issuing of messages with inserts because the same parameter
list can be used to issue any message.

¢ This service makes it convenient to place all messages for a command in a
single CSECT. This is important when you have to modify message texts.

¢ It provides support for second level messages that are associated with
informational messages.

Using Generalized Routines for Issuing Messages

If your command processor invokes TSO services or system services, you should
issue informational messages to notify the user if error conditions occur.

You can use DAIRFAIL to analyze return codes from dynamic allocation (SVC 99)
and the TSO dynamic allocation interface routine (DAIR), and to issue error
messages when appropriate. Use the GNRLFAIL/VSAMFAIL routine to issue error
messages for VSAM macro failures, subsystem request failures, parse service
routine failures, PUTLINE failures, and ABEND codes.

26 MVS/ESA TSO Programming



Performing 1/0

Your command processor may need to write lines of data to the output data set or
obtain data from the input stream. This topic discusses how to perform 1/0 for data
other than messages and subcommand requests.

There are several methods that you can use to perform /0.

e The BSAM or QSAM macro instructions provide /0 support for programs that
run under TSO. For example, you can use the PUT or WRITE macro instructions
to write data to the output data set and you can use the GET or READ macro
instructions to obtain data from the input stream.

The major benefit of using BSAM or QSAM to process 1/0 is that these access
methods are not TSO dependent. Therefore, you can incorporate code from
existing routines that use BSAM or QSAM into your command processor without
having to modify the macro instructions.

* The GETLINE and PUTLINE service routines provide the ability to obtain data
from the input stream and write data to the output data set, respectively. Use
the GETLINE and PUTLINE macro instructions to invoke these 1/0 service
routines.

When GETLINE returns a line of input, this data is placed in a buffer that resides
in subpool 1 and is owned by your command processor. Although the buffers
returned by GETLINE are automatically freed when your code relinquishes
control, you can use the FREEMAIN macro instruction to free these buffers.

Use the PUTLINE macro instruction with the DATA operand to write one or more
lines of data to the output data set.

Changing Your Command Processor’s Source of Input

TSO maintains an internal pushdown list that determines the source of input. This
pushdown list, or stack, is used and maintained by the TSO 1/0O service routines
(STACK, GETLINE, PUTLINE and PUTGET).

The top element of the stack indicates the currently active input source. The TMP
initializes this stack by creating the first element, which indicates that the input
stream is the current source of input. Therefore, when your command processor
receives control, the current source of input is the input stream. When you use the
GETLINE, PUTLINE or PUTGET macro instructions, all input is read from the input
steam and all output is written to the output data set.

You may want to obtain input from a source other than the input stream, such as
another data set containing records to be processed. TSO allows an in-storage list
to be used as the source of input. An in-storage list can be either a command
procedure (list of commands) or a source data set. Use the STACK service routine
in your command processor to change the source of input by either adding or
removing an element from the input stack. However, your command processor
cannot change or delete the first element.

Chapter 5. Communicating with the User through the Job Stream 27



28 MVS/ESA TSO Programming



Chapter 6. Passing Control to Subcommand Processors

If you have chosen to implement subcommands, your command processor must be
able to recognize a subcommand name specified in the input stream and pass
control to the requested subcommand processor. This chapter outlines the steps
you must follow to support subcommands.

Command scan, the PUTGET service routine and the parse service routine are
discussed in this chapter; refer to “Part ll: TSO Programming Services” on page 41
for more information on these services.

To recognize a subcommand name and pass control to the subcommand processor,
follow these steps:

1. Use the PUTGET service routine to issue a mode message and retrieve a line of
input that may contain a subcommand.

2. Use the command scan service routine to determine if the user has entered a
valid subcommand name.

3. Use the ATTACH macro instruction to pass control to the subcommand
processor.

4. Use the DETACH macro instruction to release the subcommand processor when
it has completed.

Step 1. Issuing a Mode Message and Retrieving an Input Line

Use the PUTGET service routine to issue a mode message to indicate which
command is in control, and to return a line of input.

l GENERAL-USE PROGRAMMING INTERFACE I

When PUTGET returns a line of data from the input stream, it places this data in an
input buffer that is owned by your command processor. Figure 7 shows the format
of the input buffer returned by the PUTGET service routine.

Length Offset Text

. -

2 Bytes 2 Bytes

Length

Figure 7. Format of the Input Buffer
The two-byte length field contains the length of the returned input line plus the

length of the four-byte header. The two-byte offset field is always set to zero on
return from the PUTGET service routine.

I—__ End of GENERAL-USE PROGRAMMING INTERFACE ________.._]

© Copyright IBM Corp. 1988, 1991 29



Step 2. Validating the Subcommand Name

Use the command scan service routine to determine whether a syntactically valid
subcommand name is present in the input buffer (command buffer). Command scan
searches the input buffer for a subcommand name, checks the syntax of the name,
and updates the offset field in the input buffer. If a valid subcommand name is
found, command scan resets the offset field in the input buffer to the number of text
bytes preceding the first subcommand operand, if any are present. For example, if
the user enters

SUBCMD OPERAND1 OPERAND2

the offset field would be set to 7, the number of bytes that precede OPERAND1 in the
input buffer.

Although command scan recognizes comments present in the input buffer, it skips
over them without processing them. Comments, which are indicated by the
delimiters /* and */, are not removed from the input buffer.

When your command processor passes control to command scan, it must pass a
parameter list that contains pointers to control blocks and data areas that are
needed by command scan. Addresses needed to access the input buffer and the
output area filled in by command scan are included in this parameter list.

When command scan returns control to your command processor, check the return
code in register 15. If the return code is zero, check the flag field in the output area
to determine whether a syntactically valid subcommand name is present. Use the
pointer to the subcommand name and the length of the name returned in the output
area when you pass control to the appropriate subcommand processor.

Step 3. Passing Control to the Subcommand Processor

After determining that the user has specified a valid subcommand name, use the
ATTACH macro instruction to pass control to the requested subcommand processor.
Depending upon the function and complexity of the command processor and the
subcommand processor, you may need to specify the ESTAI operand on the
ATTACH macro to provide an error handling routine that receives control if the
subcommand processor abnormally terminates. For information on error handling,
see Chapter 7, “Processing Abnormal Terminations” on page 33. For information
on the ATTACH macro instruction, see Application Development Macro Reference.

Subcommand processors are similar to command processors in many ways,
including syntax and the way they receive control. When your command processor
attaches the subcommand processor, pass a pointer to a command processor
parameter list (CPPL) in register 1. The CPPLBUF field in the CPPL must contain
the address of the input buffer containing the subcommand. (The CPPL is described
in Figure 13 on page 51.)

30 MVS/ESA TSO Programming



-Writing a Subcommand Processor

When you write a subcommand processor, follow steps that are similar to the steps
you followed to write your command processor. This procedure is listed below:

1. Access the command processor parameter list (CPPL).

2. Validate any operands specified with the subcommand using the parse service
routine.

3. Communicate with the user through the job stream.

4. Perform the function of the subcommand according to any operands the user
specified.

5. Intercept and process abnormal terminations.

6. Set the return code in register 15 and return to the command processor.

These steps are discussed in more detail in Chapter 3, “What You Need to Do to
Write a Command Processor” on page 11.

Step 4. Releasing the Subcommand Processor

When the subcommand processor has completed processing and returned control to
your command processor, use the DETACH macro instruction to release it. For
information on the DETACH macro instruction, see Application Development Macro
Reference.

Chapter 6. Passing Control to Subcommand Processors 31



32 MVS/ESA TSO Programming



Chapter 7. Processing Abnormal Terminations

Depending upon the function and complexity of your command processor, you may
need to provide error handling routines to process abnormal terminations
(ABENDS). This chapter describes the criteria you should consider to determine
whether special processing is needed for error recovery. It also provides guidelines
for writing error handling routines.

Error Handling Routines

When an abnormal termination occurs, your command processor must be able to
provide sufficient recovery to insure that the error condition does not cause the
abnormal termination of the job step. Error handling routines give your command
processor the ability to intercept an ABEND and allow it to clean up, bypass the
problem, and if possible, attempt to retry execution.

A command processor must be able to recognize and respond to two types of
abnormal terminations:

1. The command processor or a program at the same task level, such as command
scan or the parse service routine, is terminating abnormally.

2. An attached subtask, such as a subcommand processor, is terminating
abnormally.

ESTAE and ESTAI Exit Routines

Two types of error handling routines are used in writing command processors:
ESTAE exits and ESTAI exits. An ESTAE exit is established by issuing the ESTAE
macro instruction. The function of an ESTAE exit is to intercept abnormal
terminations that occur at the current task level. The FESTAE macro instruction can
be used to establish an ESTAE exit for authorized command processors.

An ESTAI exit processes abnormal terminations that occur at the daughter task
level. ESTAI exits are established by using the ATTACH macro with the ESTAI
operand.

See SPL: Application Development Macro Reference for information on the ESTAE
and FESTAE macro instructions. See Application Development Macro Reference for
a discussion of the ESTAI operand of the ATTACH macro instruction and for
information on ESTAE and ESTAI exit routines.

© Copyright IBM Corp. 1988, 1991 33



When are Error Handling Routines Needed?

Not all command processors require special error handling. In many cases, the
error handling routine provided by the TMP is sufficient. However, if your command
processor falls into one of the following categories, you should provide an ESTAE
exit routine to handle abnormal terminations at the command processor’s task level:

¢ Command processors that process subcommands

¢ Command processors that request system resources that are not freed by
ABEND or DETACH

¢ Command processors that process lists. Recovery processing is necessary to
allow processing of other elements in the list if a failure occurs while processing
one element.

¢ Command processors that use the STACK service routine to change the source
of input. The error handling routine should issue the STACK macro instruction
to clear the input stack before returning to the TMP.

In addition, if your command processor attaches subcommands, it should also
provide an ESTAI exit to intercept abnormal terminations at the subcommand
processor’s task level. ESTAE and ESTAI exit routines should be used in such a
way that the command processor gets control if a subcommand abnormally
terminates.

Simple command or subcommand processors should not issue an ESTAE or an
ESTAI if the ESTAI exit provided by the terminal monitor program (TMP) or the
calling command processor, respectively, provides adequate processing.

Figure 8 on page 35 shows the relationship between the command processor,
subcommand processor, and the error handling routines.

34 MVS/ESA TSO Programming



Terminal Monitor Program

ATTACH
Command
Processor ABEND
SVC 13
error >

ESTAE Exit - For ABEND
™ at CP TCB level. \//‘

ESTAI Exit - For ABEND

at daughter TCB level.

AT TACH
(with ESTAI operand)

ESTAE Exit - For ABEND
at this TCB level.

Figure 8. ABEND, ESTAI, ESTAE Relationship

Chapter 7. Processing Abnormal Terminations 35



Guidelines for Writing ESTAE and ESTAI Exit Routines

[ GENERAL-USE PROGRAMMING INTERFACE '

When you write ESTAE and ESTAI exit routines, observe the following guidelines:

1. Issue an ESTAE macro instruction as early in your command processor as

possible.

2. The error handling exit routine should issue a diagnostic error message of the
form:
1st Tevel command-name ENDED DUE TO ERROR+

subcommand-name

2nd Tevel COMPLETION CODE IS xxxx

Obtain the name supplied in the first level message from the environment
control table (ECT). The code supplied in the second level message is the
completion code passed to the ESTAE or ESTAI exit from ABEND. You can use
the GNRLFAIL service routine to issue the diagnostic error message, although it
requires additional storage space (see guideline number 5).

The error handling routine should issue these messages so that the original
cause of abnormal termination is recorded, in case the error handling routine
itself terminates abnormally before diagnosing the error.

When an ABEND is intercepted, the command processor ESTAE exit routine
must determine whether retry is to be attempted. If so, the exit routine must
issue the diagnostic message and return, indicating by a return code that an
ESTAE retry routine is available. If a retry is not to be attempted, the exit
routine must return, and indicate with a return code that no retry is to be
attempted. The TMP, which receives control after the command processor’s
ESTAE exit routine, issues the diagnostic message. For a description of the
return codes from ESTAE exit routines and their meanings, see Application
Development Macro Reference.

3. The ESTAE or ESTAI routine that receives control from ABEND must perform all
necessary steps to provide system cleanup.

4. The error handling exit routine should attempt to retry program execution when
possible. If the command processor can circumvent or correct the condition that
caused the error, the error handling routine should attempt to retry execution.

In other cases, however, RETRY has no function and the command processor
ESTAE exit should not specify the RETRY option.

5. Storage might not be available when the ESTAE or ESTAI routine receives
control. Any storage the routine requires should be acquired before the routine
receives control, and be passed to it.

L Endof GENERAL-USE PROGRAMMING INTERFACE ________|

36 MVS/ESA TSO Programming



Chapter 8. Installing a Command Processor

After you have completed writing your command processor, you must install it in a
way that makes the command available for you, and possibly other users, to
execute. This chapter describes the methods that you can use to add your new
command processor to TSO.

As part of the installation process, use the linkage editor to convert the object
modaules that result from assembling your command processor into a load module
that is suitable for execution. The particular data set that contains the load module
is determined by the method that you choose to install your command processor.
These methods are described in the topics that follow.

Using a Private Step Library

If you are an unauthorized user, you can define a private step library using the
STEPLIB DD statement in the JCL you use to execute the command processor. This
step library is a partitioned data set that contains the command. Use the linkage
editor to enter your command processor as a member of the partitioned data set.

If you are an authorized user and you intend to make your command available to a
large number of TSO users, this method is not recommended because of the TSO
performance degradation that results from the additional search time required for
each command. However, using a STEPLIB is advantageous if you want to make
your command available to only selected TSO users. It is also a useful method to
temporarily install your command processor while you are testing and refining your
code.

Placing Your Command Processor in SYS1.CMDLIB

If you are an authorized user, you can use the linkage editor to enter your command
processor as a member of the partitioned data set SYS1.CMDLIB. Placing your
command processor in SYS1.CMDLIB makes it available to all TSO users.

Creating Your Own Command Library

If you are an authorized user, you can create your own command library and
concatenate it to the SYS1.CMDLIB data set. To do this, create new statements in
the link list (LNKLSTO00 or LNKLSTxx) in SYS1.PARMLIB. Use the linkage editor to
enter your command processor as a member of the command library. This method
makes your command available to all TSO users.

© Copyright IBM Corp. 1988, 1991 37



38 MVS/ESA TSO Programming



Chapter 9. Executing a Command Processor

After you have installed your command processor, you are ready to execute it. This
chapter describes the JCL statements you must submit to the operating system to

execute a command processor. For additional information on writing JCL, refer to
JCL Reference.

Writing JCL for Command Execution

To execute a command processor, write JCL statements that execute the terminal
monitor program (TMP). The TMP provides an interface between the user,
command processors, and the TSO control program. It obtains commands, gives
control to command processors, and monitors their execution. The TMP is attached
as APF-authorized and executes in either supervisor state or problem program
mode.

Figure 9 illustrates the JCL statements needed to execute the TMP.

/*

comments
subcommands
commands

/ data
/ //SYSTSIN
/ //SYSTSPRT
// /EXEC

//J0B

Figure 9. JCL Needed to Process Commands

The JCL required to execute the TMP includes the following:

1. A JOB statement, including a jobname and operands that specify the processing
options.

2. An EXEC statement that specifies IKJEFT01 (the TMP) as the program to be
executed. The format is:

//stepname EXEC PGM=IKJEFTO1,DYNAMNBR=nn,PARM="'command"

© Copyright IBM Corp. 1988, 1991 39



If you are executing commands that dynamically allocate data sets, specify the
DYNAMNBR parameter. This parameter indicates the number of allocations of
data sets or ddnames that can be used at one time per job step. The limit for
the DYNAMNBR parameter is system-dependent. Refer to JCL Reference for
more information.

You may use the PARM parameter to specify the first (or only) command to be
executed. This parameter is used most often when you execute one command
in the step.

3. A SYSTSPRT DD statement that controls output from your job. This DD
statement can refer to a system printer or to a sequential or partitioned data set.
If the data set is partitioned, you must specify the member name on the DD
statement as DSN = pdsname(membername).

Messages issued by programs using the TSO I/O service routines are written to
the data set indicated by the SYSTSPRT DD statement.

4. A SYSTSIN DD statement that controls input to your job. Use this statement to
indicate which commands and subcommands are to be executed.

You can specify the input data directly following the SYSTSIN DD statement, or
you can refer to a sequential or partitioned data set. If the data set is
partitioned, you must specify the member name on the DD statement as

DSN = pdsname(membername). You cannot refer to concatenated data sets on
the SYSTSIN DD statement.

For each command to be executed, specify the name of the command followed
by the operands that are needed for the function you want performed. Each
command or subcommand must begin on a separate input line.

Programs that use the TSO 1/0 service routines to obtain input receive their
input from the data set indicated by the SYSTSIN DD statement.

Handling Error Conditions

The return code from a job step that executes TSO commands is the return code of
the last command executed.

An ABEND code is issued when either the TMP or a command processor terminate
abnormally. In this situation, TSO processing stops and the remainder of the
commands in SYSTSIN are ignored. To obtain a dump, specify a SYSUDUMP or
SYSABEND DD statement in your JCL. For information on specific ABEND codes,
refer to Message Library: System Codes.

40 MVS/ESA TSO Programming



Part II: TSO Programming Services

TSO provides services that perform a wide range of programming functions. You

can

use these services in system or application programs to perform the following

tasks:

© Copyright IBM Corp. 1988, 1991

Invoking TSO Service Routines

To pass control to certain TSO service routines, use the CALLTSSR macro
instruction. See Chapter 11, “Invoking TSO Service Routlnes with the
CALLTSSR Macro Instruction” on page 53.

Checking the Syntax of Subcommand Names

Use the command scan service routine in your command processors to validate
a subcommand name. See Chapter 12, “Verifying Subcommand Names with
the Command Scan Service Routine” on page 55.

Checking the Syntax of Command and Subcommand Operands

Use the parse service routine to validate command or subcommand operands.
See Chapter 13, “Verifying Command and Subcommand Operands with the
Parse Service Routine” on page 63.

Communicating with the User through the Job Stream

TSO provides several services to aid you in processing I/0 and issuing
messages.

— You can use the TSO I/0 service routines (STACK, GETLINE, PUTLINE and
PUTGET) in a command processor to control the source of input, and write a
line of output or obtain a line of input. The I/O service routines can be used
to issue messages to the output data set. See Chapter 14, “Using the TSO
/0 Service Routines” on page 153.

— Your command processors can use the TSO message issuer routine
(IKJEFF02) to issue messages to the output data set. See Chapter 15,
“Using the TSO Message Handling Routine (IKJEFF02)” on page 201.

Processing Data Sets
TSO provides several services that your programs can use to process data sets.

— Allocating, Concatenating and Frercing Data Sets: TSO provides the
dynamic allocation interface routine (DAIR) to allocate, free, concatenate
and deconcatenate data sets during program execution. However, because
of the reduced function and additional system overhead associated with
DAIR, your programs should access dynamic allocation directly, using SVC
99. For a complete discussion of dynamic allocation, see SPL: Application
Development Guide. DAIR is discussed in Chapter 16, “Using the Dynamic
Allocation Interface Routine (DAIR)” on page 207.

— Retrieving Information from the System Catalog: Use the catalog
information routine (IKJEHCIR) to retrieve information from the system
catalog, such as data set name, index name, control volume address or
volume ID. See Chapter 19, “Using IKJEHCIR to Retrieve System Catalog
Information” on page 239.

11



¢ Analyzing Return Codes

Use the DAIRFAIL routine (IKJEFF18) to analyie return codes from dynamic
allocation (SVC 99) or DAIR and issue appropriate error messages. See
Chapter 17, “Using the DAIRFAIL Routine (IKJEFF18)” on page 231.

Use the GNRLFAIL/VSAMFAIL routine (IKJEFF19) to analyze VSAM macro
instruction failures, subsystem request (SSREQ) failures, parse service routine
or PUTLINE failures, and ABEND codes, and issue an appropriate error
message. See Chapter 18, “Analyzing Error Conditions with the
GNRLFAIL/VSAMFAIL Routine (IKJEFF19)” on page 235.

Coding the Macro Instructions

The following paragraphs describe the notation used to define the macro syntax in
Part Il of this publication.

1. The set of symbols listed below are used to define macro instructions, but
should never be written in the actual macro instruction:

hyphen -
underscore _
braces {
brackets [
ellipsis

}
]
The special uses of these symbols are explained in paragraphs 4-8.

2. Uppercase letters and words, numbers, and the set of symbols listed below
should be written in macro instructions exactly as shown in the definition:

apostrophe '/

asterisk *
comma ,
equal sign =
parentheses ()
period

3. Lowercase letters, words, and symbols appearing in a macro instruction
definition represent variables for which specific information shouid be
substituted in the actual macro instruction.

Example: If name appears in a macro instruction definition, a specific value (for
example, ALPHA) should be substituted for the variable in the actual macro
instruction.

4. Hyphens join lowercase letters, words, and symbols to form a single variable.

Example: If member-name appears in a macro instruction definition, a specific
value (for example, BETA) should be substituted for the variable in the actual
macro instruction.

42 MVS/ESA TSO Programming



5. An underscore indicates a default option. If an underscored alternative is
selected, it need not be written in the actual macro instruction.

Example: The representation

A A

B oryB

C C

indicates that either A or B or C should be selected; however, if B is selected, it
need not be written because it is the default option.

6. Braces group related items, such as alternatives.

Example: The representation

A
ALPHA=({ B },D)
C

indicates that a choice should be made among the items enclosed within the
braces. If A is selected, the result is ALPHA=(A,D). If B is selected, the result
can be either ALPHA =(,D) or ALPHA = (B,D).

7. Brackets also group related items; however, everything within the brackets is
optional and may be omitted.

Example: The representation
Al

ALPHA=( BJ,D)

C

indicates that a choice can be made among the items enclosed within the
brackets or that the items within the brackets can be omitted. If B is selected,
the result is: ALPHA=(B,D). If no choice is made, the result is: ALPHA =(,D).

8. An ellipsis indicates that the preceding item or group of items can be repeated
more than once in succession.

Example: The representation
ALPHA[,BETA]...

indicates that ALPHA can appear alone or can be followed by ,BETA any
number of times in succession.

Note: To designate register 0 and register 1 on a macro invocation, use (0) and (1),
respectively. You cannot use a symbolic variable to designate these registers.

Part Il: TSO Programming Services 43



44 MVS/ESA TSO Programming



Chapter 10. Considerations for Using TSO Services

This chapter discusses considerations for using the services documented in this
manual. Topics include:

e Programming considerations for MVS/ESA
* Interfacing with the TSO service routines.

MVS/ESA Considerations

This topic discusses considerations for MVS/ESA that you should be aware of when
writing a command processor or using the services documented in this book. You
must be familiar with the publications that describe comprehensive programming
considerations for MVS/ESA and with the publications that describe the system
routines and macros discussed in this manual.

Interfaces for service routines and macro instructions mentioned in this topic are
covered in more detail in the chapters of this manual describing the individual
service routines and macro instructions.

General Interface Considerations

AR Mode

The interfaces described in this topic reflect what is possible for programs to do on
an MVS/ESA system. When determining the attributes and linkage conventions for a
program, analyze the program’s individual interfaces and its overall interactions
with other programs. This topic provides general guidelines for making these
determinations.

You must consider address space control modes, addressing modes and program
residency when determining linkage conventions. See “Interface Considerations for
the TSO Service Routines” on page 47 for brief descriptions of those considerations
for the service routines and macro instructions described in this manual.

When making linkage decisions, you should consider:

* Who passes control to whom

* Whether return is desired :

¢ Address space control (ASC) mode attributes
¢ AMODE and RMODE attributes

The following discussion provides a general description of ASC mode, AMODE and
RMODE attributes. For a detailed description of ASC mode considerations, refer to
SPL: Application Development — Extended Addressability. For a detailed
discussion of 31-bit addressing, refer to SPL: Application Development — 31-Bit
Addressing.

Access register (AR) mode is the address space control (ASC) mode in which a
general register and the corresponding access register (AR) are used together to
locate an address in an address/data space. Specifically, the general register is
used as a base register for data reference and the corresponding AR contains a
value that identifies the address/data space that contains the data.

© Copyright IBM Corp. 1988, 1991 45



Primary Mode
Primary mode is the address space control (ASC) mode in which only a general
register is used to locate an address in an address space. In primary mode, the
contents of the access registers (ARs) are ignored.

All service routines supplied by TSO execute in primary mode.

AMODE =24, RMODE =24
Programs with these attributes must receive control in 24-bit addressing mode, and
are loaded below 16 megabytes in virtual storage.

If you do not assign AMODE and RMODE attributes to a program, the attributes
default to AMODE =24 and RMODE =24. Most TSO-supplied command processors
have these attributes and are loaded below 16 megabytes in virtual storage.

AMODE = ANY, RMODE =24
AMODE = ANY indicates that a program must receive control in the addressing
mode of the program that invoked it. Although a program with the AMODE = ANY
attribute might have to switch addressing modes for certain processing, the
program must switch back to the addressing mode in which it received control
before returning to its caller.

AMODE = ANY programs must be given the RMODE = 24 attribute.

AMODE = ANY does not indicate whether the program should be passed input that
resides below 16 megabytes in virtual storage; the particular interfaces should be
analyzed to determine where input can reside. However, a program should meet

certain criteria in order to be assigned the AMODE = ANY attribute. Refer to SPL:

Application Development — 31-Bit Addressing for a description of the criteria.

AMODE =31
AMODE =31 indicates that a program must receive control in 31-bit addressing
mode. Such a program can have the RMODE =24 or RMODE = ANY attribute,
depending on its residency requirements. Regardiess of the program’s RMODE
attribute, the residency of its input depends on the program’s requirements. The
program might require that some of its input reside below 16 megabytes in virtual
storage, while other input might reside anywhere.

A program that runs exclusively in 31-bit addressing mode (AMODE =31) can do so
provided it complies with the restrictions for invoking, and-being invoked by,
programs that run in 24-bit addressing mode (AMODE =24 or AMODE = ANY).

Refer to SPL: Application Development — 31-Bit Addressing for more information
on the AMODE =31 attribute.

46 MVS/ESA TSO Programming



GENERAL-USE PROGRAMMING INTERFACE

Interface Considerations for the TSO Service Routines

All TSO service routines documented in this book must receive control in primary
address space control mode. These service routines execute and return control in
primary mode.

User-written command processors can execute in either 24-bit or 31-bit addressing
mode provided they follow the restrictions involved in invoking programs that have
24-bit dependencies.

The command processor parameter list (CPPL), which contains certain addresses
required as input to the TSO service routines, resides below 16 megabytes in virtual
storage. Refer to “Interfacing with the TSO Service Routines” on page 50 for more
information on the CPPL.

Figure 10 shows the interface considerations for the TSO service routines.

Figure 10. Interface Considerations for TSO Service Routines

Service Routine Entry Point Interface Considerations
Name
Catalog information routine IKJEHCIR This routine can be invoked in either 24- or

31-bit addressing mode, but all input passed
to this routine must reside below 16
megabytes in virtual storage.

This routine executes in 24-bit addressing
mode and returns control in the same
addressing mode in which it is invoked.

Dynamic allocation interface routine IKJDAIR This service routine can be invoked in either

24- or 31-bit addressing mode. When invoked
in 31-bit addressing mode, this routine can be
passed input that resides above 16 megabytes
in virtual storage.

This routine executes and returns control in
the same addressing mode in which it is

invoked.

TSO message issuer routine DAIRFAIL IKJEFF02 These service routines must receive control
GNRLFAIL/VSAMFAIL GETLINE service IKJEFF18 in 24-bit addressing mode. All input passed to
routine Parse service routine PUTGET service IKJEFF19 them must reside below 16 megabytes in
routine PUTLINE service routine Command IKJUGETL virtual storage. These routines execute and
scan service routine STACK service routine IKJPARS return control in 24-bit addressing mode.

IKJPTGT

IKJPUTL

IKUSCAN

IKJSTCK

Chapter 10. Considerations for Using TSO Services 47



Invoking the TSO Service Routines
You can use either the LINK, LOAD or CALLTSSR macro instructions to pass control
to the TSO service routines. The CALLTSSR macro is used for certain TSO routines
only. Itis described in Chapter 11, “Invoking TSO Service Routines with the
CALLTSSR Macro Instruction” on page 53.

The LINK macro instruction loads the routine into storage based on the routine’s
RMODE attribute. The LINK macro instruction passes control to the routine in the
addressing mode specified or allowed by its AMODE attribute.

For a program executing in 31-bit addressing mode, use the LINK macro instruction
to invoke those service routine that must receive control in 24-bit addressing mode.
In this case, the LINK macro switches to 24-bit addressing mode on behalf of the
invoking program. A program that resides above 16 megabytes in virtual storage
must use the LINK macro instruction to invoke those service routines that must
receive control in 24-bit addressing mode.

The LOAD macro instruction loads the routine into storage based on the routine’s
RMODE attribute. Because the LOAD macro instruction loads a program but does
not invoke it, you must do branches to the loaded routine. LOAD returns the
address of the loaded program where the high-order bit of this address reflects the
AMODE attribute of the loaded program. if the loaded program should not be
invoked in the current addressing mode, the BASSM or BSM instruction can be used
to set the appropriate addressing mode. If you use BASSM or BSM, you should
ensure that the invoked program can return successfully.

Summary of Macro Interfaces
Figure 11 shows the interface rules for using the macros discussed in this manual.

In Figure 11, a dash (-) indicates that the category does not apply to the macro
because the macro does not generate executable code. The addressing mode of the
program that accesses the data generated by the macro must agree with the
residence of the data.

48 MVS/ESA TSO Programming



(P) May Be Issued by a Program
(X) May Be lIssued In (1) Input May Be

Macro 24-Bit Mode 31-Bit Mode Below 16Mb Above 16Mb
CALLTSSR X X P P
GETLINE X X L,P

IKJENDP - - P P
IKJIDENT - - P P
IKUIKEYWD - - P P
IKINAME - - P P
IKJOPER - - P P
IKIPARM - - P P
IKJPOSIT - - P P
IKJRLSA X X P P
IKURSVWD - - P P
IKJSUBF - - P P
IKUITERM - - P P
IKJITSMSG - - P P
PUTGET X X P

PUTLINE X X P

STACK X X P

Figure 11. Interface Rules for Using Macro Instructions

CALLTSSR
The CALLTSSR macro instruction can be issued in either 24-bit or 31-bit
addressing mode. See Chapter 11, “Invoking TSO Service Routines with the
CALLTSSR Macro Instruction” on page 53 for more information on issuing the
CALLTSSR macro.

GETLINE, PUTGET, PUTLINE, STACK
The GETLINE, PUTGET, PUTLINE, and STACK macros must be issued in 24-bit
addressing mode. Input passed to these routines must reside below 16
megabytes in virtual storage.

IKJTSMSG
The IKJTSMSG macro must be issued by a program loaded below 16 megabytes
in virtual storage. Refer to Chapter 15, “Using the TSO Message Handling
Routine (IKJEFF02)” on page 201 for a description of the of the input parameter
list for IKJEFF02.

Parse Macros (IKJENDP through IKJTERM)
The parameter list passed to the parse service routine must reside below 16
megabytes in virtual storage. As a result, the parse macro instructions that
generate input to parse must be issued by a program loaded below 16
megabytes in virtual storage. See Figure 11 for a list of the parse macros and
their linkage requirements. The IKJRLSA parse macro must be issued in 24-bit
addressing mode mode.

End of GENERAL-USE PROGRAMMING INTERFACE |

Chapter 10. Considerations for Using TSO Services 49



Interfacing with the TSO Service Routines

When you invoke the TSO service routines from a command processor, you must
pass certain addresses contained in the command processor parameter list (CPPL).

[ GENERAL-USE PROGRAMMING INTERFACE I

The Command Processor Parameter List

When the terminal monitor program attaches a command processor, register 1
contains a pointer to a command processor parameter list (CPPL) containing
addresses required by the command processor. The CPPL is a four-word parameter
list that is located in subpool 1.

| End of GENERAL-USE PROGRAMMING INTERFACE

The control block interface between the TMP and an attached command processor
is shown in Figure 12.

Terminal Command
Monitor Processor
Program

ATTACH I

Register 1

CPPL

Figure 12. Control Block Interface between the TMP and a Command Processor

50 MVS/ESA TSO Programming



r GENERAL-USE PROGRAMMING INTERFACE |

You can use the IKJCPPL DSECT, which is provided in SYS1.MACLIB, to map the
fields in the CPPL. Use the address contained in register 1 as the starting address
for the DSECT, and then reference the symbolic field names within the IKICPPL
DSECT to access the fields in the CPPL. The use of the DSECT is recommended
because it protects the command processor from any changes to the CPPL.

Figure 13 describes the contents of the CPPL.

Figure 13. The Command Processor Parameter List (CPPL)

Number Field Contents or Meaning
of Bytes
4 CPPLCBUF The address of the command buffer for the currently
attached command processor.
4 CPPLUPT The address of the user profile table (UPT). Use the

IKJUPT mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the UPT.

4 CPPLPSCB The address of the protected step control block (PSCB).
Use the IKIPSCB mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the PSCB.

4 CPPLECT The address of the environment control table (ECT). The
ECT is built by the TMP during its initialization process; it
is used by the TSO service routines and by some TSO
commands. Use the IKJECT mapping macro, which is
provided in SYS1.MACLIB, to map the fields in the ECT.

L______ End of GENERAL-USE PROGRAMMING INTERFACE _—______J

Services that Access Data in the CPPL

When you invoke any of the following TSO service routines from your program, you
must pass certain addresses contained in the CPPL as input:

IKJDAIR Dynamic allocation interface routine
IKJEFF02 TSO message issuer routine
IKJEFF18 DAIRFAIL

IKJEFF19 GNRLFAIL/VSAMFAIL

IKJGETL GETLINE service routine

IKJPARS Parse service routine

IKIPTGT PUTGET service routine

IKJPUTL PUTLINE service routine

IKJSCAN Command scan service routine
IKJSTCK STACK service routine

Information concerning the input to the TSO service routines is discussed in more
detail in the chapters of this manual describing the individual service routines.

Chapter 10. Considerations for Using TSO Services 51



52 MVS/ESA TSO Programming



Chapter 11. Invoking TSO Service Routines with the
CALLTSSR Macro Instruction

This chapter describes how to use the CALLTSSR macro instruction to pass control
to certain TSO service routines.

GENERAL-USE PROGRAMMING INTERFACE

When to Use the CALLTSSR Macro Instruction

You can use the CALLTSSR macro instruction to generate a branch to certain TSO
service routines residing in the link pack area. If the routine does not reside in the
link pack area, CALLTSSR generates a LINK macro instruction. The CALLTSSR
macro instruction can be issued in either 24- or 31-bit addressing mode.

The CALLTSSR macro instruction can be used to invoke the following TSO service
routines only:

IKJDAIR Dynamic allocation interface routine
IKJEFF02 TSO message issuer routine
IKIEHCIR  Catalog information routine
IKJPARS Parse service routine

IKUSCAN Command scan service routine

Notes:

1. A module that uses the CALLTSSR macro instruction must include the CVT
mapping macro.

2. IKJEFF02, IKJPARS and IKUSCAN must receive control in 24-bit addressing
mode. Therefore, if these routines reside in the link pack area, your program
must invoke the CALLTSSR macro instruction in 24-bit addressing mode.

© Copyright IBM Corp. 1988, 1991 53



Syntax and Operands

Figure 14 shows the execute form of the CALLTSSR macro instruction. There is no
list form. Each operand is explained following the figure.

[symbo1] CALLTSSR EP=entry point name

]

Figure 14. The CALLTSSR Macro Instruction

EP = entry point name
Specifies one of the following names: IKJDAIR, IKJEFF02, IKJEHCIR, IKJPARS,
or IKUSCAN.

MF=E
Indicates that this is the execute form of the macro instruction.

list address or (register) )
Specifies the address, or register that contains the address, of a parameter list
to be passed to the service routine.

I End of GENERAL-USE PROGRAMMING INTERFACE

Example

This example shows how the CALLTSSR macro instruction can be used to invoke
the parse service routine (IKJPARS) and pass the parse parameter list (PPL) as
input.

CALLTSSR EP=IKJPARS,MF=(E,PPL)

54 MVS/ESA TSO Programming



Chapter 12. Verifying Subcommand Names with the
Command Scan Service Routine

This chapter describes how a command processor can use the command scan
service routine to determine the validity of a subcommand.name.

Functions Performed by the Command Scan Service Routine

If you write your own command processors, you need a method of determining
whether subcommand names entered into the system are syntactically correct. The
command scan service routine provides this function by searching the command
buffer for a valid subcommand name. Command scan can be invoked by any
command processor that processes subcommands.

I GENERAL-USE PROGRAMMING INTERFACE l

Figure 15 shows the format of the command buffer.

Length Offset Text

Length

Figure 15. Format of the Command Buffer

When your command processor invokes the command scan service routine, the
two-byte length field contains the length of the command buffer. The two-byte offset
field is set to zero.

L_—_ End of GENERAL-USE PROGRAMMING INTERFACE _-_J

The command scan service routine examines the command buffer and performs the
following functions:

¢ |t translates all lowercase characters in the subcommand name to uppercase.

¢ If a valid operand is present, it resets the offset to the number of text bytes
preceding the first non-blank character in the operand field. If a valid operand
is not present, the offset equals the length of the text portion of the buffer.

¢ |t returns a pointer to the subcommand name, the length of the subcommand
name, and a code explaining the results of its scan to the calling routine.

¢ |t optionally checks the syntax of the subcommand name.

¢ |t handles leading blanks and embedded comments.

© Copyright IBM Corp. 1988, 1991 55



GENERAL-USE PROGRAMMING INTERFACE

Syntax Requirements for Command and Subcommand Names

If you write your own command processor, and you intend to use the command scan
service routine to check for a valid subcommand name, the name you choose must
meet the following syntax requirements:

* The first character must be an alphabetic or a national character.

¢ The remaining characters must be alphameric.

The length of the subcommand name must not exceed eight characters.
* The command delimiter must be a separator character.

It is recommended that the name include one or more numerals. Since no
IBM-supplied command names include numerals, this insures that your
subcommand name will be unique.

Figure 16 shows the various character types recognized by the command scan
service routine. Unless otherwise indicated, alphameric characters are:

Alphabetic (A-Z)
Numeric (0-9)
National ($, #, @)

56 MVS/ESA TSO Programming



Character Type
Command

Character Separator | National | Alphabetic | Numeric | Delimiter Delimiter Special
Comment " X
Horizontal Tab HT X X
Blank b X X
Comma , X X
Dollar Sign $ X
Number Sign # X
At Sign @ X

a-z X

A-Z X

0-9 X
New line NL X X
Period X X
Left parenthesis ( X X
Right parenthesis ) X X
Ampersand & X X
Asterisk " X
Semicolon ; X X
Minus sign, hyphen - X X
Slash / X X
Apostrophe ) X X
Equal sign = X X
Cent sign c X
Less than < X
Greater than > X
Plus sign + X
Logical OR | X
Exclamation point ! X
Logical NOT - X
Percent sign % X
Dash - X
Question mark ? X
Colon : X
Quotation Mark " X

Figure 16. Character Types Recognized by Command Scan

Invoking the Command Scan Service Routine (IKJSCAN)

Your command processor can invoke the command scan service routine by using
either the CALLTSSR or LINK macro instructions, specifying IKISCAN as the entry
point name. However, you must first create the command scan parameter list
(CSPL) and place its address into general register 1.

The command scan service routine must receive control in 24-bit addressing mode.
If your program uses the CALLTSSR macro instruction to invoke IKJSCAN, and
IKJSCAN resides in the link pack area, your program must issue the CALLTSSR
macro instruction in 24-bit addressing mode. However, if IKISCAN does not reside
in the link pack area, your program can issue the CALLTSSR macro instruction in
either 24- or 31- bit addressing mode.

All input passed to IKUSCAN must reside below 16 megabytes in virtual storage.

Chapter 12. Command Scan Service Routine 57



The Command Scan Parameter List

The command scan parameter list (CSPL) is a six-word parameter list containing
addresses required by the command scan service routine. To ensure that your
command processor is reentrant, build the CSPL in subpool 1 in an area that the
command processor obtains by issuing the GETMAIN macro instruction. Figure 17
shows the parameter list structure that your command processor must create as

input to the command scan service routine.

Flag Word

Flags

Reserved

Command Scan Output Area

General
Register 1
[ o=
CSPL
+0
T UPT
+ 4
T ECT
+8
T CP ECB
+12
T Flag Word [ g
+16
T Output Area o]
+20
T Command Buffer [ &

Command Name Pointer

To be set by
Command
Length Flags |Reserved Scan
Command Buffer "
4§
Length Offset Text
APV
0 2 4 A

Figure 17. The Parameter List Structure Passed to Command Scan

58 MVS/ESA TSO Programming




Use the IKJCSPL DSECT, which is provided in SYS1.MACLIB, to map the fields in
the CSPL. Figure 18 shows the format of the command scan parameter list.

Figure 18. The Command Scan Parameter List

Number Field Contents or Meaning
of Bytes
4 CSPLUPT The address of the user profile table. This address is
passed to a command processor by the TMP in the CPPL.
4 CSPLECT The address of the environment control table. This
address is passed to a command processor by the TMP in
the CPPL.
4 CSPLECB The address of the command processor’s event control

block. (Required if command scan is called by a command
processor to scan a subcommand; zeros if command scan
is called by the TMP.)

4 CSPLFLG The address of a fullword, obtained via the GETMAIN
macro instruction by the routine linking to command scan,
and located in subpool 1. The first byte of the word
pointed to contains flags set by the calling routine; the last
three bytes are reserved.

4 CSPLOA The address of an 8-byte command scan output area,
located in subpool 1. The output area is obtained by the
calling routine via a GETMAIN macro instruction. It is
filled in by the command scan service routine before it
returns control to the calling routine. (See Figure 17.)

4 CSPLCBUF The address of the command buffer.

Passing Flags to the Command Scan Service Routine

The fourth word of the CSPL, CSPLFLG, is a flag word that your command processor
must build in subpool 1in an area that the command processor obtains by issuing
the GETMAIN macro instruction. Command scan only uses the first byte of the field,;
the remaining three bytes are reserved.

Your command processor must set the flag byte before invoking the command scan
service routine to indicate whether you want the command to be syntax checked.
The fiag byte has the following meanings:

Value Meaning
X‘00’ Syntax check the command name.
X80’ Do not syntax check the command name.

After your command processor invokes the command scan service routine, it should
free the area obtained for the flag field.

The Command Scan Output Area

The command scan service routine returns the results of its scan to the calling
program by filling in a two-word command scan output area (CSOA). Your
command processor must build the CSOA in subpool 1 in an area that your
command processor obtains by issuing the GETMAIN macro instruction. Your
command processor must then store the address of the CSOA into the fifth word of
the command scan parameter list before invoking IKUJSCAN.

Chapter 12. Command Scan Service Routine 59



You can use the IKJCSOA DSECT, which is provided in SYS1.MACLIB, to map the
fields in the CSOA. Figure 19 shows the format of the command scan output area.

Figure 19. The Command Scan Output Area

Number Field Contents or Meaning
of Bytes
4 CSOACNM The address of the command name if the command name

is present and valid. Zero otherwise.

2 CSOALNM Length of the command name if the command name is
present and valid. Zero otherwise.

1 CSOAFLG A flag field. Command scan sets these fiags to indicate
the results of its scan. See Figure 20.

1 Reserved.

After your command processor invokes the command scan service routine and
processes its output, it should free the area obtained for the CSOA.

I End of GENERAL-USE PROGRAMMING INTERFACE

Operation of the Command Scan Service Routine

If you set the flags field in the flag word to X80’ (to indicate that the command name
is not to be syntax checked) the command scan service routine determines if the
input buffer contains a subcommand. The subcommand name is considered to
begin at the first non-separator character found, and end at the first command
delimiter character found. See Figure 16 on page 57 for a list of the separator
characters and command delimiters.

Command scan translates any lowercase letters in the subcommand name to
uppercase, fills the command scan output area, updates the command buffer offset
field, and returns to the calling program.

If you have requested syntax checking (X'00’ in the flag field of the flag word), the

command name must meet the syntax requirements described in “Syntax
Requirements for Command and Subcommand Names” on page 56.

60 MVS/ESA TSO Programming



GENERAL-USE PROGRAMMING INTERFACE

Output from the Command Scan Service Routine

The command scan service routine scans the command buffer and returns the

results of its scan to the calling routine by filling in the command scan output area,
and by updating the offset field in the command buffer. Figure 20 shows the

possible CSOA settings and command buffer offset settings upon return from the
command scan service routine.

Command Scan Output Area

Command Buffer

Flag Meaning Length Field Offset set to:

X‘80° The command name is valid and the Length of command name The first non-separator following the
remainder of the buffer contains command name.
non-separator characters.

X'40 The command name is valid and Length of command name The end of the buffer.
there are no non-separator characters
remaining.

X110’ The buffer is empty or contains Zero The end of the buffer.
only separators.

X‘08’ The command name is syntactically Zero Unchanged.
invalid.

Figure 20. Return from Command Scan - CSOA and Command Buffer Settings

Return Codes from the Command Scan Service Routine

15 to the program that invoked it:

Code Meaning
0 Command scan completed successfully.
4 Command scan was passed invalid parameters.

End of GENERAL-USE PROGRAMMING INTERFACE

The command scan service routine returns the following codes in general register

Chapter 12. Command Scan Service Routine

61



62 MVS/ESA TSO Programming



Chapter 13. Verifying Command and Subcommand Operands
with the Parse Service Routine

This chapter describes how to use the parse service routine in a command
processor to determine the validity of command and subcommand operands. The
first three sections, “Overview of the Parse Service Routine (IKJPARS),” “Character
Types Accepted by the Parse Service Routine” on page 66 and “Services Provided
by the Parse Service Routine” on page 67, present the terminology and concepts
that are necessary to understand the functions of the parse service routine. The
remainder of this chapter consists of a step-by-step explanation of how to use the
parse service routine, followed by detailed discussions of each of the steps in the
process.

Overview of the Parse Service Routine (IKJPARS)

If you write your own command processors to run under TSO, you need a method of
determining whether command or subcommand operands entered into the system
are syntactically correct. The parse service routine performs this function by
searching the command buffer for valid operands.

There are two types of operands that are recognized by the parse service routine:
positional operands and keyword operands. Positional operands occur first, and
must be in a specific order. Keyword operands can be specified in any order, as
long as they follow all of the positional operands.

Before invoking the parse service routine, your command processor must create a
parameter control list (PCL), which describes the permissible operands. Parse
compares the information supplied by your command processor in the PCL to the
operands in the command buffer. Each acceptable operand must have an entry built
for it in the PCL; an individual entry is called a parameter control entry (PCE).

The parse service routine returns the results of scanning and checking the operands
in the command buffer to the command processor in a parameter descriptor list
(PDL). The entries in the PDL, called parameter descriptor entries (PDEs), contain
indications of specified options, pointers to data set names, or pointers to the
subfields specified with the command operands.

When your command processor invokes the parse service routine, it must pass a
parse parameter list (PPL), which contains pointers to control blocks and data areas
that are needed by parse. Addresses needed to access the PCL and PDL are
included in the parse parameter list.

The Parse Macro Instructions
Use the parse macro instructions in your command processor to

¢ Build a PCL describing the valid command or subcommand operands.

¢ Establish symbolic references for the PDL returned by the parse service routine.
The labels used by your command processor on the various parse macro
instructions allow you to access the fields in the DSECT which maps the PDL.

© Copyright IBM Corp. 1988, 1991 63



The following describes the parse macro instructions and their functions:

IKIPARM

IKJPOSIT

IKJITERM

IKJOPER

IKJRSVWD

IKJIDENT

IKUIKEYWD

IKUINAME

IKJSUBF

IKJENDP
IKJRLSA

64 MVS/ESA TSO Programming

Begins the parameter control list and establishes a symbolic
reference for the parameter descriptor list.

Builds a parameter control entry. This PCE describes a positional
operand that contains delimiters recognized by the parse service
routine, but not including the positional operands described by the
IKJTERM, IKJOPER, IKJIDENT, or IKIRSVWD macro instructions.

Builds a parameter control entry. This PCE describes a positional
operand that can be a constant, statement number, or variable.

Builds a parameter control entry that describes an expression. An
expression consists of three parts; two operands and an operator
in the form: (operandl operator operand2)

Builds a parameter control entry. This PCE can be used with the
IKJTERM macro instruction to describe a reserved word constant,
with the IKJOPER macro instruction to describe the operator of an
expression, or by itself to describe a reserved word operand.

Also builds a parameter control entry; however, this PCE
describes a positional operand that does not depend upon a
particular delimiter.

Builds a parameter control entry that describes a keyword
operand.

Builds a parameter control entry that describes the possible
names that can be specified for a keyword or a reserved word
operand.

Indicates the beginning of a keyword subfield description. A
subfield consists of a parenthesized list of positional or keyword
operands directly following the keyword.

Indicates the end of the PCL.

Releases any virtual storage allocated by the parse service
routine that remains after the parse service routine has returned
control to the command processor.



Figure 21 shows the interaction between a command processor and the parse
service routine. ;

Command Buffer

Length | Offset Command Name Operand 1 Operand 2 Operand 3

0 2 4

Command Processor

Parse Service Routine
(2) CALLTSSR/LINK to Parse

Dt o s iy ) Comrors PCE'
instructions to build operands in the
a PCL describing Command Buffer.
valid operands PCL
* labell Macro

* lobel2 Macro NG  PCE

® |abel3 Macro

PCE2

These macro PCE3
instructions also '

create the PDL
IKJPARMD DSECT.

PDE < (4) Builds the PDL.

PDE

[IKIJPARMD
DSECT

labell PDE

label2

------------ <

@ Return to the Command Processor
@ The Command ‘

Processor uses the
IKJPARMD DSECT

to access the
various PDEs within
the PDL.

Figure 21. A Command Processor Using the Parse Service Routine

Chapter 13. Verify:'ing Operands with the Parse Service Routine 65



GENERAL-USE PROGRAMMING INTERFACE

Character Types Accepted by the Parse Service Routine

Figure 22 shows the various character types that are recognized by the parse
service routine. Throughout this chapter, the alphameric characters are as follows,
unless otherwise indicated.

Alphabetic A-Z
Numeric 0-9
National $,# @

Character Type

Command
Character Separator | National | Alphabetic | Numeric | Delimiter Delimiter Special

Comment "
Horizontal Tab HT
Blank b
Comma s
Dollar Sign $
Number Sign #
At Sign @

X X X X
xX X X

X X X

New line NL
Period

Left parenthesis (
Right parenthesis )
Ampersand &
Asterisk *
Semicolon

Minus sign, hyphen
Siash

Apostrophe

Equal sign

Cent sign

Less than

Greater than

Plus sign

Logical OR
Exclamation point
Logical NOT
Percent sign

Dash

Question mark
Colon :
Quotation Mark "

-~ -
X X X X X X X X X X
X X X >

TTT 4V AC

"\)Ie\oJ

XXX XXX X XXX XX

Figure 22. Character Types Recognized by the Parse Service Routine

End of GENERAL-USE PROGRAMMING INTERFACE

66 MVS/ESA TSO Programming



Services Provided by the Parse Service Routine

The function of the parse service routine is to syntax check command operands
within the command buffer against the PCL, and build a PDL containing the results
of the syntax check. If command operands are incorrect or if required operands are
missing, parse writes an error message to the output data set.

In addition, the parse service routine provides the following services that can be
selected by the calling routine:

* |t appends second level messages, supplied by the calling program, to
prompting messages.

¢ |t passes control to a validity checking routine, supplied by the calling program,
to do additional checking on a positional operand.

¢ |t translates the command operands to uppercase.
¢ |t substitutes default values for missing operands.

¢ Itinserts implied keywords.

Notifying the User about Missing or Required Operands
The parse service routine notifies the TSO user if the command operands found are
incorrect or if required operands are missing. The parse service routine writes
error messages to the output data set in the following situations:

* A dsname was specified with a slash but without a password.
¢ An operand is syntactically invalid.

* A keyword is ambiguous, that is, it is not clear to the parse service routine
which keyword of several similar ones is being specified.

¢ A required positional operand is missing. The requirement for a particular
positional operand and the prompting message to be issued if that operand is
not present, are specified to the parse service routine through the PROMPT
operand of the IKJPOSIT, IKITERM, IKJOPER, IKIRSVWD, and IKJIDENT macro
instructions. The parse service routine issues the prompting message supplied
in the macro instruction.

¢ A validity checking routine indicates that an operand is invalid.

In these cases, the parse service routine issues an error message and returns a
code to the calling routine indicating that the TSO user specified an incorrect
command. Parse appends any second level messages to the error message for the
missing or invalid operand.

Issuing Second Level Messages

Your command processor can supply second level messages to be chained to any
prompt message issued for a positional operand (keyword operands are never
required). Use the HELP operand of the IKJPOSIT, IKJITERM, IKJOPER, IKIRSVWD
or IKJIDENT macro instructions to supply these second level messages to the parse
service routine. You can supply up to 255 second level messages for each
positional operand.

Chapter 13. Verifying Operands with the Parse Service Routine 67



If a user-provided validity checking routine returns the address of a second level
message to the parse service routine, that second level message or chain will be
written to the output data set. The original second level chain, if one was present, is
deleted.

The format of these second level messages is the same as the HELP second level
message portion of the PCE for the macro from which the validity checking routine
received control.

Passing Control to Validity Checking Routines

Your command processor can provide a validity checking routine to do additional
checking on a positional operand. This routine receives control after the parse
service routine has determined that the operand is non-null and syntactically
correct. Each positional operand can have a unique validity checking routine.
“Using Validity Checking Routines” on page 115 describes what you must do to
provide a validity checking routine.

Translation to Uppercase

The parse service routine normally translates positional operands to uppercase
unless the calling routine specifies ASIS in the IKJPOSIT or IKJIDENT macro
instructions. The first character of a value operand, the type-character, is always
translated to uppercase, however. Parse translates the string that follows the type
character to uppercase unless ASIS is coded in the describing macro instructions.

Insertion of Default Values

Positional operands (except delimiter and space) and keyword operands can have
default values. These default values are indicated to the parse service routine
through the DEFAULT = operand of the IKJPOSIT, IKITERM, IKJOPER, IKJRSVWD,
IKJIDENT, and IKIKEYWD macro instructions. When a positional or a keyword
operand is omitted, for which a default value has been specified, the parse service
routine inserts the default value.

Insertion of Keywords
Some keyword operands can imply other keyword operands. You can specify that
other keywords are to be inserted into the parameter string when a certain keyword
is specified. Use the INSERT operand of the IKINAME macro instruction to indicate
that a keyword or a list of keywords is to be inserted following the named keyword.
Parse processes inserted keywords as though they were specified on the command.

What You Need to do to Use the Parse Service Routine

This section gives a step-by-step description of what you must do to use the parse
service routine. The sections that follow provide more detailed information on each
of the major steps.

Follow these steps when using the parse service routine:

1. Define the syntax of the operands of the command or subcommand. This topic
is discussed in “Defining Command Operand Syntax” on page 69.

68 MVS/ESA TSO Programming



2. Use the parse macro instructions to build the parameter control list (PCL) that
describes the command or subcommand operand syntax. The parse macro
instructions are described in “Using the Parse Macro Instructions to Define
Command Syntax” on page 81.

¢ Use the IKUPARM macro instruction to begin the PCL.

¢ Use the appropriate parse macro instructions to build the parameter control
entries (PCEs) that parse will use to check the syntax of the operands.

* Use the IKIENDP macro instruction to indicate the end of the PCL for the
command or subcommand.

3. Write validity checking routines to do additional checking on positional
operands. See “Using Validity Checking Routines” on page 115 for a
discussion of this topic.

4. Pass control to the parse service routine. See “Passing Control to the Parse
Service Routine” on page 117.

5. Check the return code passed by the parse service routine in general register
15. Return codes are listed in “Checking Return Codes from the Parse Service
Routine” on page 119.

6. Examine the results of the scan of the command buffer returned by parse in the
parameter descriptor list (PDL). See “Examining the PDL Returned by the Parse
Service Routine” on page 121 for a description of the PDEs returned by parse.

GENERAL-USE PROGRAMMING INTERFACE I

Defining Command Operand Syntax

If you write your own command processors, and you intend to use the parse service
routine to determine which operands have been specified following the command
name, your command operands must adhere to the syntactical structure described
in this section.

Command operands must be separated from one another by one or more of the
separator characters: blank, tab, comma, or a comment (see Figure 22 on

page 66). The command operands end either at the end of a logical line, or at a
semicolon. If the command operands end with a semicolon, and other characters
are specified after the semicolon but before the end of the logical line, the parse
service routine ignores the portion of the line that follows the semicolon. The parse
service routine does not issue a message to indicate this condition.

The parse service routine recognizes two types of command operands:

Positional operands This type must be specified first in the parameter string, and
they must be entered in a specific order.

Keyword operands This type can be specified anywhere in the command as long
as they follow all positional operands. Discussion of keyword
operands begins on page 80.

Chapter 13. Verifying Operands with the Parse Service Routine 69



Positional Operands

Positional operands must be specified first in the parameter string, and they must
be in a specific order.

In general, the parse service routine considers a positional operand to be missing if
the first character of the operand scanned is not the character expected. For
example, if an operand is supposed to begin with a numeric character and the parse
service routine finds an alphabetic character in that position, the numeric operand is
considered missing. The parse service routine then issues a message if the
operand is required, substitutes a default value if one is available, or ignores the
missing operand if the operand is optional.

For the purpose of syntax checking, positional operands are divided into two
categories:

Delimiter-dependent operands - operands that include delimiters as part of their
definition. Delimiter-dependent operands are discussed below.

Non-delimiter-dependent operands - operands that do not include delimiters as
part of their definition. Non-delimiter-dependent operands are discussed on
page 78.

Delimiter-Dependent Operands
Those operands that include delimiters as part of their definition are called
delimiter-dependent operands. Figure 23 shows the delimiter-dependent syntaxes
that the parse service routine recognizes and the macro instruction that is used to
specify each type.

Figure 23. Delimiter-Dependent Operands

Operand Macro Instruction Used to Describe Operand

DELIMITER
STRING
VALUE
ADDRESS
PSTRING
DSNAME
DSTHING
QSTRING
SPACE
JOBNAME

CONSTANT
VARIABLE IKITERM
STATEMENT NUMBER

EXPRESSION IKJOPER
RESERVED WORD IKURSVWD

HEX
CHAR IKJIDENT
INTEG

IKJPOSIT

DELIMITER
A delimiter can be any character other than an asterisk, left parenthesis, right
parenthesis, semicolon, blank, comma, tab, carrier return, or digit. A
self-defining delimiter character is represented in this discussion by the symbol
#. The delimiter operand is used only in conjunction with the string operand.

70 MVS/ESA TSO Programming



STRING
A string is the group of characters between two alike self-defining delimiter
characters, such as

#string#

or, the group of characters between a self-defining delimiter character and the
end of a logical line, such as

#string

The same self-defining delimiter character can be used to delimit two
contiguous strings, such as

#string#string#
or
#string#string

A null string, which indicates that a positional operand has not been specified,
is defined as two contiguous delimiters or a delimiter and the end of the logical
line. If the missing string is a required operand, the null string must be
specified as two contiguous delimiters. Note that a string received from a
default must not include the delimiters.

VALUE
A value consists of a character followed by a string enclosed in apostrophes,
such as

X‘string’

The character must be an alphabetic or national character. The string can be of
any length and can consist of any combination of enterable characters. If the
ending apostrophe is omitted, the parse service routine assumes that the string
ends at the end of the logical line. If the parse service routine encounters two
successive apostrophes, it assumes they are part of the string and continues to
scan for a single ending apostrophe. The parse service routine always
translates the character preceding the first apostrophe to uppercase. The value
is considered missing if the first character is not an alphabetic or national
character, or if the second character is not an apostrophe.

ADDRESS
There are several forms of the ADDRESS operand. Note that blanks are not
allowed within any form of the ADDRESS operand.

Absolute address
An absolute address consists of from one to six hexadecimal digits followed
by a period, or, in extended mode, from one to eight hexadecimal digits
followed by a period. An extended absolute address must not exceed the
address represented by the hexadecimal value 7FFFFFFF. (For more
information on extended addressing, see the description of the EXTENDED
operand in “Using IKJPOSIT to Describe a Delimiter-Dependent Positional
Operand” on page 83.)

Relative address )
A relative address consists of from one to six hexadecimal digits preceded
by a plus sign, or, in extended mode, from one to eight hexadecimal digits
preceded by a plus sign.

Chapter 13. Verifying Operands with the Parse Service Routine 71



General register address
A general register address consists of a decimal integer in the range 0 to 15
followed by the letter R. R can be specified in either uppercase or
lowercase.

Floating-point register address
A floating-point register address consists of an even decimal integer in the
range 0 to 6 followed by the letter D (for double precision) or E (for single
precision). The letter E or D can be specified in either uppercase or
lowercase.

Symbolic address
A symbolic address consists of any combination, up to 32 characters in
length, of the alphameric characters and the break character. The first
character must be either an alphabetic or a national character.

Qualified address
A qualified address has one of the following formats:

1. modulename.entryname.relative-address
2. modulename.entryname

3. modulename.entryname.symbolic-address
4. .entryname.symbolic-address

5. .entryname.relative-address

6. .entryname

* modulename - any combination of one to eight alphameric characters,
where the first is an alphabetic or national character

* entryname - same syntax as a modulename, and always preceded by a
period

¢ symbolic address - syntax as defined above, and always preceded by a
period

¢ relative address - syntax as defined above, and always preceded by a
period

The user can qualify symbolic or relative addresses to indicate that they
apply to a particular module and CSECT as in formats 1-3. However, if the
address applies to the currently active module, it is not necessary to specify
modulename, as in formats 4-6.

Indirect address
An indirect address is an absolute, relative, symbolic, or general register
address followed by from one to 255 indirection symbols (percent signs),
such as:

+A%

Note: In the following examples, hash marks indicate that the byte is not
used to determine the indirect address.

I End of GENERAL-USE PROGRAMMING INTERFACE

72 MVS/ESA TSO Programming



Figure 24 shows an example of an indirect address that is made up of a relative
address with one level of indirect addressing.

+A%
RELATIVE LOC +A

00 joC |2C

N

LOC Cc2C

DATA

Figure 24. Example of Indirect Addressing

The number of indirection symbols following the address indicates the number
of levels of indirect addressing. In Figure 24, the data is at the location pointed
to by bits 0-24 of relative address +A.

‘ GENERAL-USE PROGRAMMING INTERFACE |

Address expression
An address expression has the following format:

address{t}expression value[%...][{*}expression value [%...]]...

¢ address - can be an absolute, symbolic, indirect, relative, or general
register address. If a general register is specified, it must be followed
by at least one indirection symbol.

e expression value - a plus or minus displacement from an address in
storage, consisting of from one to six decimal or hexadecimal digits

— When you specify the EXTENDED keyword of IKJPOSIT to indicate
extended mode, the user can specify a one to ten digit decimal
number, or a one to eight digit hexadecimal number.

— Decimal displacement is indicated by an “N” or “n” following the
offset. The absence of an “N” or “n” indicates hexadecimal
displacement.

— There is no limit to the number of expression values in an address
expression.

* Each expression value can be followed by from one to 255 percent
signs, one for each level of indirect addressing.

For example, addr? + 124n, an address expression in decimal format,
indicates a location 124 decimal bytes beyond addr7. Another example,
addr2-AC, is an address expression in hexadecimal format and indicates a
location 172 decimal bytes before addr2.

The processing of an address expression, 12R% % +4N%, involving indirect
addressing, is shown in Figure 25. The address in the expression is a
general register address with two levels of indirect addressing. The result
of the processing of this part of the address expression is location 1DO0.

Chapter 13. Verifying Operands with the Parse Service Routine 73



12R%%+4N%

R12

7

00

01

28

The expression value indicates a displacement of four bytes beyond
location 1D0 with one level of indirect addressing. The data, then, is at
location 474.

L Endof GENERAL-USE PROGRAMMING INTERFACE ____ |

LOC 128

.

00|01 | DO

LOC 1D0

+4

N

00|04 | 74

LOC 474
DATA

Figure 25. An Address Expression with Indirect Addressing

GENERAL-USE PROGRAMMING INTERFACE

PSTRING

A parenthesized string is a string of characters enclosed within a set of
parentheses, such as:

(string)

The string can consist of any combination of characters of any length, with one
restriction; if it includes parentheses, they must be balanced. However, the
enclosing right parenthesis of a PSTRING can be omitted if the string ends at the
end of a logical line.

A null PSTRING is defined as a left parenthesis followed by either a right
parenthesis or the end of a logical line.

DSNAME

The data set name operand has three possible formats:

dsname [ (membername)] [/password]
[dsname] (membername) [password]

'dsname [ (membername)] ' [/password]

dsname
May be either a qualified or an unqualified name.

An unqualified name is any combination of alphameric characters up to
eight characters in length, the first character of which must be an alphabetic
or national character.

74 MVS/ESA TSO Programming



A qualified name is made up of several unqualified names, each unqualified
name separated by a period. A qualified name, including the periods, can
be up to 44 characters in length.

membername
One to eight alphameric characters, the first of which must be an alphabetic
or a national character.

The parse service routine considers the entire dsname operand missing if the
first character scanned is not an apostrophe, an aiphabetic character, a national
character, or a left parenthesis. If the VOLSER option is specified, the first
character can be numeric.

If it is numeric, only six characters are accepted for VOLSER. VOLSER is valid
only for DSNAME or DSTHING.

If the slash and the password are not specified, the parse service routine does
not issue a message for a missing password.

DSTHING
A DSTHING is a dsname operand as previously defined except that an asterisk
can be substituted for an unqualified name or for each qualifier of a qualified
name. The parse service routine processes the asterisk as if it were a dsname.
The asterisk is used to indicate that all data sets at that particular level are
considered.

QSTRING
A quoted string is a string of characters enclosed within apostrophes, such as:

‘string’

The string can consist of combination of characters, of any length, with one
restriction: if the user wants to specify apostrophes within the string, two
successive apostrophes must be specified for each single apostrophe desired.
One of the apostrophes is removed by the parse service routine.

The ending apostrophe is not required if the string ends at the end of the logical
line.

A null quoted string is defined as two contiguous apostrophes or an apostrophe
at the end of the logical line.

SPACE
Space is a special purpose operand; it allows a string operand that directly
follows a command name to be specified without a preceding self-defining
delimiter character. The space operand must always be followed by a string
operand. If the delimiter of the command name is a tab, the tab is the first
character of the string. The string always ends at the end of the logical line.

JOBNAME
The jobname can have an optional job identifier. Each job identifier is a
maximum of eight alphameric characters of which the first is alphabetic or
national ($, #, @). There is no separator character between the jobname and
job identifier. The syntax is jobname (jobid).

CONSTANT
There are several forms of the constant operand.

Fixed-point numeric literal - Consists of a string of digits (0 through 9)
preceded optionally by a sign (+ or -), such as:

+1234.43

Chapter 13. Verifying Operands with the Parse Service Routine 75



This literal can contain a decimal point anywhere in the string except as the
rightmost character. The total number of digits cannot exceed 18.
Embedded blanks are not allowed.

Floating-point numeric literal - Takes the following form:
+1234.56E + 10

This literal is a string of digits (0 through 9) preceded optionally by a sign
(+ or -) and must contain a decimal point. This is immediately followed by
the letter E and then a string of digits (0 through 9) preceded optionally by a
sign (+ or -). Embedded blanks are not allowed. The string of digits
preceding the letter E cannot be greater than 16 and the string following E
cannot be greater than 2.

Non-numeric literal - Consists of a string of characters from the EBCDIC
character set, excluding the apostrophe, and enclosed in apostrophes,
specified as:

‘numbers (1234567890) and letters are ok’

The length of the string excluding apostrophes can be from 1 to 120
characters in length.

Figurative constant - Is one of a set of reserved words supplied by the caller
of the parse service routine such as:

test123

A figurative constant consists of a string of characters up to 255 in length.
Embedded blanks are not allowed. All characters of the EBCDIC character
set are allowed except the blank, comma, tab, semicolon, and carrier
return, however, the first operand must be alphabetic.

VARIABLE
The following is the form of the variable operand.

IN
(subscript)

[program-id.]data-name [ OF]quaHfication}

Program-id
Consists of the first eight characters of a program identifier followed by a
period. The first character must be alphabetic (A through Z) and the
remaining characters must be alphabetic or numeric (0 through 9).

Data-name
Consists of a maximum of 30 characters of the following types: alphabetic
(A through Z), numeric (0 through 9), and hyphen (-).

An example is:
mydataset-123

The data-name cannot begin or end with a hyphen and must contain at least
one alphabetic character.

here55.mydataset-123

Qualification
Is applied by placing one or more data-names preceded by the qualifiers IN
or OF, after a data-name. An example is:

mydataset-123 of yourdataset-456

76 MVS/ESA TSO Programming



The number of qualifiers that can be specified for a data-name is limited to
255.

Subscript
Consists of a data-name with subscripts enclosed in parentheses following
the data-name specified as:

yourdataset-456 (mydataset-123)

A separator between the data-name and the subscript is optional.
Subscripts are a list of constants or variables.

The number of subscripts that can be specified for a data-name is limited to
3, specified as:

hereb55 (abc def h15)
A separator character between subscripts is required.

STATEMENT NUMBER
The following is the form of a statement number:

[program id.]1ine number[.verb number]
An example is:

here.23.7
where:

Program id
Consists of the first eight characters of a program identifier followed by a
period. The first character must be alphabetic (A through Z) and the
remaining characters must be alphameric (A through Z or 0 through 9).

Line number
Consists of a string of digits (0 through 9) and cannot exceed a length of 6
digits.

Verb number
Consists of one digit (0 through 9) that is preceded by a period.

Embedded blanks are not allowed in a statement number.

EXPRESSION
An expression takes the form:

(operandl operator operand2)

The operator in the expression shows a relationship between the operands,
such as:

(abc equals 123)

An expression must be enclosed in parentheses. An expression is defined by
the IKJOPER macro. The operands are defined by the IKUTERM macro, and the
operator is defined by the IKURSVWD macro instruction.

RESERVED WORD
Has three uses depending on the presence of operands on the IKIRSVWD
macro instruction. The uses are:

¢ When used with the RSVWD keyword of the IKITERM macro instruction, the
IKJRSVWD macro identifies the beginning of a list of reserved words, any
one of which can be specified as a constant.

Chapter 13. Verifying Operands with the Parse Service Routine 77



¢ When used with the RSVWD keyword of the IKJOPER macro instruction, the
IKJRSVWD macro identifies the beginning of a list of reserved words, any
one of which can be an operator in an expression.

¢ When used by itself, the IKIRSVWD macro instruction defines a positional
reserved word operand.

The IKURSVWD macro instruction is followed by a list of IKUINAME macros that
contain all of the possible reserved words used as figurative constants or
operators.

HEX
A hexadecimal value is any quantity of the form X‘nn’, ‘ABC’ (quoted string), or
any nonquoted character string where a separator or delimiter indicates the
end.

CHAR
A character string is any data in the form of a quoted or nonquoted string.

INTEG
An integer is a numeric quantity in one of the following forms:

¢ (X‘nn’) - where n is a valid hexadecimal digit (A-F, 0-9), and there is a
maximum of 8 digits.

e (B‘'mm’) - where m is a valid binary bit (0-1), and there is a maximum of 32
digits.

¢ dddddd - where d is a decimal digit (0-9), and there is a maximum of 10
digits.

The parse service routine converts an integer operand into its equivalent binary
value. The maximum decimal value for INTEG is 2147843647.

Positional Operands Not Dependent on Delimiters
A positional operand that is not dependent on delimiters is passed as a character
string with restrictions on the beginning character, additional characters, and
length. These restrictions are passed to the parse service routine as operands on
the IKJIDENT macro instruction.

The parse service routine recognizes the following character types as the beginning
character and additional characters of a non-delimiter-dependent positional
operand:

ALPHA
Indicates an alphabetic or national character.

NUMERIC
Indicates a number (0-9).

ALPHANUM
Indicates an alphabetic or national character or a number.

ANY
Indicates that the character to be expected can be any character other than a
blank, comma, tab, semicolon, or carrier return. A right parenthesis must,
however, be balanced by a left parenthesis.

NONATABC
Indicates only an alphabetic character is accepted; national characters ($, #, @)
are not accepted.

78 MVS/ESA TSO Programming



NONATNUM
Indicates numbers and alphabetic characters are accepted; national characters
($, #, @) are not accepted.

An asterisk can be specified in place of any positional operand that is not dependent
on delimiters.

Entering Positional Operands as Lists of Ranges
You might want to have some positional operands of your command specified in the
form of a list, a range, or a list of ranges. The macro instructions that describe
positional operands to the parse service routine, IKIPOSIT, IKJTERM and IKJIDENT,
provide a LIST and a RANGE operand. If coded in the macro instruction, they
indicate that the positional operands expected can be in the form of a list or a range.

LIST
Indicates to the parse service routine that one or more of the same type of
positional operands can be specified enclosed in parentheses as follows:

(positional-operand positional-operand...)

If one or more of the items contained in the list are to be specified enclosed in
parentheses, both the left and the right parenthesis must be included for each of
those items.

The following positional operand types can be used in the form of a list:

VALUE

ADDRESS

DSNAME

DSTHING

JOBNAME
CONSTANT
STATEMENT NUMBER
VARIABLE

HEX

CHAR

INTEG

Any positional operands that are not dependent upon delimiters

RANGE
Indicates to the parse service routine that two positional operands are to be
entered separated by a colon as follows:

positional-operand:positional-operand

The following positional operand types can be used in the form of a range or a
list of ranges:

HEX (form X'’ only)

ADDRESS

VALUE

CONSTANT

STATEMENT NUMBER

VARIABLE

INTEG

Any positional operand that is not dependent upon delimiters

Chapter 13. Verifying Operands with the Parse Service Routine 79



If the user specifies an operand that begins with a left parentheses, and you have
specified in either the IKJPOSIT or IKJIDENT macro instruction that the operand can
be specified as a list or a range, the user must enclose the operand in an extra set
of parentheses to obtain the correct result.

For instance, if you have used the IKJPOSIT macro instruction to specify that the
dsname operand can be specified as a list, and the TSO user wants to specify a
dsname of the form:

(membername) /password

The user must specify it as:

((membername) /password)

Keyword Operands
Keyword operands can be specified anywhere in the command as long as they
follow all positional operands. They can consist of any combination of alphameric
characters up to 31 characters long, the first of which must be an alphabetic
character.

Describe keyword operands to the parse service routine with the IKUIKEYWD,
IKINAME, and IKJSUBF macro instructions.

Subfields Associated with Keyword Operands
A keyword operand can have a subfield of operands associated with it. A subfield
contains positional and/or keyword operands, and must be enclosed in parentheses
directly following its associated keyword operand.

Separators can appear between a keyword operand and the opening parenthesis of
its subfield. In addition, separators can appear after the closing parenthesis of a
subfield and the following keyword operand. In the following example, posni and
kywd2 are operands in the subfield of keyword1:

keywordl(posnl kywd2)

The same syntax rules that apply to commands apply within keyword subfields.
¢ Keyword operands must follow positional operands.

* Enclosing right parenthesis can be eliminated if the subfield ends at the end of a
logical line.

¢ The subfield cannot contain unbalanced right parentheses.

If a user specifies a keyword with a subfield in which there is a required operand,
but does not specify the subfield, the parse service routine issues a message.

If a subfield has a positional operand that can be specified as a list, and if this is the
only operand in the subfield, the list must be enclosed by the same parentheses that
enclose the subfield, su;fph as:

keyword(iteml item2 item3)

%

where item1, item2, and item3 are members of a list.

80 MVS/ESA TSO Programming



If a subfield has as its first operand a positional operand that can be specified as a
list, and there are additional operands in the subfield, a separate set of parentheses
is required to enclose the list, such as:

keyword((iteml item2 item3) param)

where item1, item2, and item3 are members of a list, and param is an operand not
included in the list.

Using the Parse Macro Instructions to Define Command Syntax

A command processor that uses the parse service routine must build a parameter
control list (PCL) to define the syntax of acceptable command or subcommand
operands. Each acceptable operand is described by a parameter control entry
(PCE) within the PCL. The parse service routine compares the operands within the
command buffer against the PCL to determine if valid command or subcommand
operands have been specified.

The command processor builds the PCL and the PCEs within it by using the parse
macro instructions. These macro instructions generate the PCL and establish
symbolic references for the parameter descriptor list (PDL). The PDL is returned to
the command processor by the parse service routine to describe the results of
comparing the operands in the command buffer with the PCL. The PDL is composed
of separate entries (PDEs) for each of the command operands found in the command
buffer.

Figure 26 describes the functions of each of the parse macro instructions.

Figure 26. The Parse Macro Instructions

Macro Function

Instruction

IKUPARM Begins the PCL and establishes a symbolic reference for the PDL.
IKJPOSIT Builds a PCE to describe a positional operand that contains delimiters,

but not including positional operands described by IKITERM, IKJOPER,
IKJIDENT or IKUIRSVWD.

IKJTERM Builds a PCE for a positional operand that can be a constant, statement
number or variable.

IKJOPER Builds a PCE that describes an expression.

IKJRSVWD Builds a PCE to describe a reserved word operand. It can also be used

with IKUTERM to describe a reserved word constant, or with IKJOPER
to describe the operator portion of an expression.

IKJIDENT Builds a PCE that describes a positional operand that does not depend
upon a particular delimiter.

IKIKEYWD Builds a PCE that describes a keyword operand.

IKUINAME Builds a PCE that describes the possible names that can be specified
for a keyword or reserved word operand.

IKJSUBF Builds a PCE that indicates the beginning of a keyword subfield
description.

IKJENDP Indicates the end of the PCL.

IKJRLSA Releases any virtual storage allocated by the parse service routine for

the PDL that remains after parse returns control to its caller.

Chapter 13. Verifying Operands with the Parse Service Routine 81



These macro instructions perform the following additional functions:

e When complete, all of the parse macros, except for IKJRLSA, return to the
user’s CSECT. If a DSECT appears between the CSECT statement and the
parse macro(s), an assembly error occurs. To prevent this error, place the
DSECT after the macro(s).

¢ The IKJPOSIT, IKJITERM, IKJOPER, IKJRSVWD, IKJIDENT, IKIKEYWD,
IKUINAME, and IKJSUBF macro instructions describe the positional and keyword
operands valid for the command processor. The label fields of these macro
instructions are used by your command processor to reference fields within the
DSECT that maps the PDL returned by the parse service routine.

The macros that generate input to parse must be issued by a program that is loaded
below 16 megabytes in virtual storage so that parse can access the PCL. The
IKJRLSA macro instruction must be issued in 24-bit addressing mode.

Using IKUPARM to Begin the PCL and the PDL

Use the IKUPARM macro instruction to begin the parameter control list (PCL) and to
provide a symbolic address for the beginning of the parameter descriptor list (PDL)
returned by the parse service routine. The PCL is constructed in the CSECT named
by the label field of the macro instruction; the PDL is mapped by the DSECT named
in the DSECT operand of the macro instruction.

Figure 27 shows the format of the IKUPARM macro instruction. Each of the
operands is explained following the figure.

label IKJPARM DSECT=|dsect name
IKJPARMD

Figure 27. The IKIPARM Macro Instruction

label
The name you provide is used as the name of the CSECT in which the PCL is
constructed.

DSECT=
Provides a name for the DSECT created to map the parameter descriptor list.
This can be any name; the default is IKIPARMD.

82 MVS/ESA TSO Programming



The Parameter Control Entry Built By IKJPARM
The IKUIPARM macro instruction generates the parameter control entry (PCE) shown
in Figure 28. This PCE begins the parameter control list.

Figure 28. The Parameter Control Entry Built by IKIPARM

Number Field Contents or Meaning
of Bytes
2 Length of the parameter control list. This field contains a
hexadecimal number representing the number of bytes in
this PCL.
2 Length of the parameter descriptor list. This field contains

a hexadecimal number representing the number of bytes
in the parameter descriptor list returned by the parse
service routine.

2 This field contains a hexadecimal number representing the
offset within the PCL to the first IKIKEYWD PCE or to an
end-of-field indicator if there are no keywords. An
end-of-field indicator can be either an IKJSUBF or an
IKJENDP PCE.

Using IKJPOSIT to Describe a Delimiter-Dependent Positional Operand

Use the IKJPOSIT macro instruction to describe the following delimiter-dependent
positional operands:

SPACE
DELIMITER
STRING
VALUE
ADDRESS
PSTRING
DSNAME
DSTHING
QSTRING
JOBNAME

Use the IKJIDENT macro instruction to describe the other delimiter-dependent
positional operands.

The order in which you code the macros for positional operands is the order in

which the parse service routine expects to find the positional operands in the
command string.

Chapter 13. Verifying Operands with the Parse Service Routine 83




Figure 29 shows the format of the IKJPOSIT macro instruction. Each of the
operands is explained following the figure.

label IKJPOSIT

/ SPACE \
DELIMITER
STRING
VALUE
DDRESS [, EXTENDED] - [,L1ST][,RANGE]

{  PSTRING

DSNAME [,VOLSER] [, DDNAM]
DSTHING

QSTRING

. JOBNAME )

[,SQSTRING]

,UPPERCASE ,PROMPT='prompt data'
,ASIS ,DEFAULT="'default value'

[,HELP=('help data','help data',...)]

[,VALIDCK=symbolic-address]

Figure 29. The IKJPOSIT Macro Instruction

label

This name is used as the symbolic address within the PDL DSECT of the
parameter descriptor entry (PDE) for the operand described by this IKJPOSIT

macro instruction.

SPACE through JOBNAME

Specifies the type of delimiter-dependent positional operand. The positional
operand types are described in detail in “Delimiter-Dependent Operands” on

page 70.
Positional Operand Type Where Described
SPACE Page 75
DELIMITER Page 70
STRING Page 71
VALUE Page 71
ADDRESS Page 71
PSTRING Page 74
DSNAME Page 74
DSTHING Page 75
QSTRING Page 75
JOBNAME Page 75

84 MVS/ESA TSO Programming




SQSTRING
The command operand is processed either as a string or as a quoted string. If
the delimiter is an apostrophe, the command operand is processed as a quoted
string. If the delimiter is any of the other acceptable delimiter characters, the
command operand is processed as a string. The SQSTRING option can only be
specified if STRING is specified for the operand type.

For example, if SQSTRING is coded in the IKJPOSIT macro instruction, a TSO
user could specify either:

/string/string...

or

'string' 'string' ...

EXTENDED
Specifies that the user can enter 31-bit addresses. This operand is valid only
with ADDRESS. If you omit the EXTENDED operand, the parse service routine
processes all addresses as 24-bit addresses. For more information, refer to the
description of the address operand on page 71.

LIST
The command operands can be specified by the user as a list:
commandname (operand,operand, ...)

This list option can be used with the following delimiter-dependent positional
operands:

DSNAME, DSTHING, ADDRESS, VALUE, JOBNAME, and PSTRING (within a
subfield only).

RANGE
The command operands can be specified by the user as a range:

commandname operand:operand

The range option can be used with the following delimiter-dependent positional
operands:

ADDRESS
VALUE

VOLSER
Specifies that a data set name is to be a volume serial name. This operand is
valid only with DSNAME or DSTHING. If the first character is numeric, a
maximum of six characters are allowed.

DDNAM
Specifies a data definition name. This option causes an INVALID DDNAME
message if the name is invalid.

The following options (UPPERCASE, ASIS, PROMPT, DEFAULT, HELP, and
VALIDCK) can be used with all delimiter-dependent positional operands except
SPACE and DELIMITER.

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was specified by the user.

Chapter 13. Verifying Operands with the Parse Service Routine 85



PROMPT = ‘prompt data’
The operand described by this IKIPOSIT macro instruction is required; the
prompting data is the message to be issued if the operand is not specified by
the user. If the operand is not specified, the parse service routine supplies a
message ID and adds the word MISSING to the beginning of this message
before writing it to the output data set.

DEFAULT = ‘default value’
The operand described by this IKJPOSIT macro instruction is required, but the
user need not specify it. If the operand is not entered, the value specified as the
default value is used.

Note: [f neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand specified by this
IKJPOSIT macro instruction is not present in the command buffer.

HELP = (‘help data’,’help data’...)
You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are written to the output data
set following the prompting message. Parse adds a message ID and the word
MISSING to the beginning of each message before writing it to the output data
set.

These messages are not issued when the missing operand is a password on a
dshame operand.

VALIDCK = symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional validity checking on this operand. Parse calls this routine
after first determining that the operand is syntactically correct.

86 MVS/ESA TSO Programming



The Parameter Control Entry Built by IKJPOSIT
The IKJPOSIT macro instruction generates the variable length parameter control
entry (PCE) shown in Figure 30.

Figure 30 (Page 1 of 2). The Parameter Control Entry Built by IKJPOSIT

Number of Field Contents or Meaning
Bytes

2 Flags. These flags are set to indicate which options were specified
in the IKJPOSIT macro instruction.

001. ... This is an IKJPOSIT PCE.
T PROMPT
U PO DEFAULT
P This is an extended format PCE. if the VALIDCK parameter was
specified, the length of the field containing the address of the
validity checking routine is four bytes.
T HELP
....... 1 VALIDCK

1. ... LIST
A ASIS
I PR RANGE
U P SQSTRING
...0.. Reserved
I B VOLSER
....... 1 DDNAME

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in this
IKJPOSIT PCE.

2 Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the related parameter descriptor entry built by the
parse service routine.

1 This field contains a hexadecimal number indicating the type of
positional operand described by this PCE. These numbers have
the following meaning:

HEX
1 DELIMITER

2 STRING

3 VALUE

4 ADDRESS

5 PSTRING

6 Not Used

7 DSNAME

8 DSTHING

9 QSTRING

A SPACE

B JOBNAME

C Not Used

D EXTENDED ADDRESS
Eto FF Not Used.

1 Contains the length minus one of the default or prompting
information supplied on the IKJPOSIT macro instruction. This field
and the next are present only if DEFAULT or PROMPT was
specified on the IKUPOSIT macro instruction.

Variable This field contains the prompting or default information supplied on
the IKJPOSIT macro instruction.

Chapter 13. Verifying Operands with the Parse Service Routine 87



Figure 30 (Page 2 of 2). The Parameter Control Entry Built by IKIPOSIT

Number of Field Contents or Meaning
Bytes
2 This field contains a hexadecimal figure representing the length in

bytes of all the PCE fields used for second level messages. The
figure includes the length of this field. The fields are present only if
HELP is specified on the IKIPOSIT macro instruction.

1 This field contains a hexadecimal number representing the number
of second level messages specified by HELP on this IKJPOSIT PCE.

2 This field contains a hexadecimal number representing the length
of this HELP segment. The length figure includes the length of this
field, the message segment offset field, and the length of the
information. These fields are repeated for each second level
message specified by HELP on the IKJPOSIT macro instruction.

2 This field contains the message segment offset. It is set to X‘0000’.

Variable This field contains one second level message supplied on the
IKJPOSIT macro instruction specified by HELP. This field and the
two preceding ones are repeated for each second level message
supplied on the IKJPOSIT macro instruction. These fields do not
appear if second level message data was not supplied.

3or4 This field contains the address of a validity checking routine if
VALIDCK was specified on the IKJPOSIT macro. If the “extended
format PCE” bit is on in the IKJPOSIT PCE, the address is four
bytes long; if the bit is off, the address is three bytes long. This
field is not present if VALIDCK was not specified.

Using IKUTERM to Describe a Delimiter-Dependent Positional Operand

Use the IKUITERM macro instruction to describe a positional operand that is one of
the following:

e Statement number
¢ Constant

* Variable

¢ Constant or variable

The order in which you code the macros for positional operands is the order in
which the parse service routine expects to find the operands in the command string.

88 MVS/ESA TSO Programming



Figure 31 shows the format of the IKUITERM macro instruction. Each of the
operands is explained following the figure.

1abel IKJTERM 'parameter-type' [,LIST] [,RANGE]
,UPPERCASE STMT
,ASIS ,TYPE= J CNST
VAR
ANY

[,SBSCRPT[=1abe1-PCE]][,PROMPT="'prompt data'
| ,DEFAULT="default value'

[,HELP=("help data', ‘help data',...)]

[,VALIDCK=symbolic-address] [ ,RSVWD=1abel-PCE]

Figure 31. The IKUITERM Macro Instruction

label
This name is used to address the PCE built by the IKITERM macro. The
hexadecimal offset to the parameter descriptor entry (PDE) built by the parse
service routine for this operand is contained in the PCE.

Note: The hexadecimal offset to the PDE will contain binary zero when the
IKJTERM macro is used to describe a subscript of a data name.

‘parameter-type’
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and, if supplied, is used only for a required
operand that is not specified. Blanks within the apostrophes are allowed.

LIST
The command operands can be specified by the user as a list, in the form:

commandname (operand,operand,...)
The LIST option can be used with any of the TYPE = positional operands.

RANGE
The command operands can be specified by the user as a range, in the form:

commandname operand:operand
The RANGE option can be used with any of the TYPE = positional operands.

Note: The LIST and RANGE options cannot be used when the IKITERM macro
instruction is used to describe a subscript of a data-name.

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was specified by the user.

Chapter 13. Verifying Operands with the Parse Service Routine 89



TYPE =
Describes the type of the operand as one of the following:

STMT - statement number
CNST - constant

VAR - variable

ANY - constant or variable

See “Delimiter-Dependent Operands” on page 70 for a syntactical definition of
these operands.

SBSCRIPT[ =label-PCE]
Specifies one of two conditions:

1. If you specify SBSCRIPT with a label-PCE, then the data-name described by
the IKUITERM macro can be subscripted. Supply the name of the label of an
IKUITERM macro instruction that describes the subscript. Only TYPE=VAR
or TYPE = ANY operands can be subscripted.

2. If you specify SBSCRPT without a label-PCE, then the IKITERM macro
describes the subscript of a data-name. All TYPE= parameters can be
used on a subscript except TYPE=STMT. The LIST and RANGE options
cannot be used on an IKJTERM macro that describes a subscript.

Note: You must use two IKJTERM macro instructions to describe a subscripted
data-name. The first IKITERM macro describes the data name and specifies the
SBSCRIPT option with the label of the second IKJTERM macro. The second
IKUTERM macro describes the subscript of the data-name and specifies
SBSCRPT without a label-PCE. The second macro instruction must immediately
follow the first.

PROMPT = ‘prompt data’
The operand described by this IKITERM macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
specified by the user.

If the operand is not specified, the parse service routine adds a message ID and
the word MISSING to the beginning of the message before writing it to the output
data set.

DEFAULT = ‘default value’
The operand described by this IKITERM macro instruction is required, but the
user need not specify it. If the operand is not specified, the value specified as
the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP = (‘help data’,’help data’,...)
You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are written to the output data
set following the prompting message.

Parse adds a message ID and the word MISSING to the beginning of each
message before writing it to the output data set.

90 MVS/ESA TSO Programming



VALIDCK = symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional checking on this operand. Parse calls this routine after first
determining that the operand is syntactically correct.

RSVWD = label-PCE
Use this option when TYPE =CNST or TYPE = ANY is specified to indicate that
this operand can be a figurative constant. Supply the address of the PCE (label
on a IKJRSVWD macro instruction) that begins the list of reserved words that
can be specified as a figurative constant.

This list of reserved words is defined by a series of IKINAME macros that
contain all possible names and immediately follow the IKIRSVWD macro.

Note: The IKJRSVWD macro can be coded anywhere in the list of macros that
build the PCL except following an IKUSUBF macro instruction. This permits
other IKITERM macro instructions to refer to the same list.

Chapter 13. Verifying Operands with the Parse Service Routine 91



The Parameter Control Entry Built by IKITERM
The IKUTERM macro instruction generates the variable parameter control entry

(PCE) shown in Figure 32.

Figure 32 (Page 1 of 2). The Parameter Control Entry Built by IKITERM

Number of
Bytes

Field

Contents or Meaning

2

Variable

1

Variable

Flags. These flags are set to indicate options on the IKITERM
macro instruction.

This is an IKITERM PCE.

PROMPT

DEFAULT

This is an extended format PCE. If the VALIDCK parameter was
specified, the length of the field containing the address of the
validity checking routine is four bytes.

HELP

VALIDCK

LIST

ASIS

RANGE -

This term can be SUBSCRIPTED.

A reserved word PCE is chained from this term.
Reserved

The hexadecimal length of this PCE.

Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the parameter descriptor entry built by the parse
routine.

This field indicates the type of positional parameter described by
this PCE.

STATEMENT NUMBER
VARIABLE

CONSTANT

ANY (constant or variable)

This term is a SUBSCRIPT term.
Reserved

Contains the hexadecimal length of the parameter-type field.
Contains the offset of the parameter-type field. It is set to X‘0012’.

Contains the parameter-type field.

Contains the length of the default or prompting information
supplied on the macro instruction.

Contains the default or prompting information supplied on the
macro instruction.

If a subscript is specified on the macro, this field contains the offset
into the parameter control list of the subscript PCE.

If a reserved word PCE is specified on the macro, this field contains
the offset into the parameter control list of the reserved word PCE.

Contains the length (including this field) of all the PCE fields used
for second level messages if HELP is specified on the macro.

The number of second level messages specified on the macro
instruction by the HELP parameter.

92 MVS/ESA TSO Programming




Figure 32 (Page 2 of 2). The Parameter Control Entry Built by IKITERM

Number of Field Contents or Meaning
Bytes
2 Contains the length of this segment including this field, the

message offset field and second level message.

Note: This field and the following two are repeated for each
second level message specified by HELP on the macro.

2 This field contains the message segment offset.

Variable This field contains one second level message specified by HELP on
the macro instruction. This field and the two preceding fields are
repeated for each second level message specified.

3or4a This field contains the address of a validity checking routine if
VALIDCK was specified on the IKITERM macro. If the “extended
format PCE” bit is on in the IKJITERM PCE, the address is four bytes
long; if the bit is off, the address is three bytes long. This field is
not present if VALIDCK was not specified.

Using IKJOPER to Describe a Delimiter-Dependent Positional Operand

Use the IKJOPER macro instruction to provide a parameter control entry (PCE) that
describes an expression. An expression consists of three parts; two operands and
one operator in the form:

(operandl operator operand2)

typically specified as:

(abc eq 123)

The parts of an expression are described by PCEs that are chained to the IKJOPER

PCE. Use the IKUITERM macro instruction to identify the operands, and use the
IKJRSVWD macro instruction to identify the operator.

Figure 33 shows the format of the IKUJOPER macro instruction. Each of the
operands is explained following the figure.

label IKJOPER 'parameter-type' |, PROMPT="'prompt data'
,DEFAULT='default value'

[ HELP=('help data', 'help data‘,...)]
[,VALIDCK=symbolic-address],0PERND1=1abell
,OPERND2=1abe12,RSVYWD=1abel13
[,CHAIN=1abe14]

Figure 33. The IKJOPER Macro Instruction

label
This name is used to address the PCE built by the IKIOPER macro. The
hexadecimal offset to the parameter descriptor entry built by the parse service
routine for this operand is contained in the PCE.

‘parameter-type’
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and if supplied is used only for a required operand
that is not specified by the user. Blanks within the apostrophes are allowed.

Chapter 13. Verifying Operands with the Parse Service Routine 93



Note: Parse uses this field only for error messages for the complete
expression. The IKJTERM and IKIRSVWD PCEs are used when parse issues
error messages for missing operands or a missing operator. If a validity check

routine indicates that the expression is invalid, parse issues a message for the
entire expression.

PROMPT = ‘prompt data’
The operand described by this IKJOPER macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
specified by the user. If the operand is not specified, the parse service routine
supplies a message ID and adds the word MISSING to the beginning of this
message before writing it to the output data set.

DEFAULT = ‘default value’
The operand described by this IKJOPER macro instruction is required, but the
user need not specify it. If the operand is not specified, the parse service
routine uses the value specified as the default value.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP = (‘help data’,’help data’,...)
You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the

messages by single commas. These messages are written to the output data
set following the prompting message.

Parse adds a message ID and the word MISSING to the beginning of each
message before writing it to the output data set.

VALIDCK = symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional checking on this expression. The parse service routine calls
this routine after first determining that the expression is syntactically correct.

OPERND1 = label1
Supply the name of the label field of the IKUITERM macro instruction that is used
to describe the first operand in the expression. This IKUITERM macro instruction

should be coded immediately following the IKJOPER macro instruction that
describes the expression.

OPERND2 = label2
Supply the name of the label field of the IKITERM macro instruction that is used
to describe the second operand in the expression. This IKITERM macro
instruction should be coded immediately following the IKINAME macro

instructions that describe the operator in the expression under the associated
IKJRSVWD macro instruction.

RSVWD =label3
Supply the name of the label field of the IKIRSVWD macro instruction that
begins the list of reserved words that are used to describe the possible
operators to be specified for the expression. The IKIRSVWD and associated
IKUINAME macro instructions should be coded immediately following the
IKUJTERM macro that describes the first operand, and immediately preceding the
IKJTERM macro that describes the second operand.

94 MVS/ESA TSO Programming



CHAIN = label4
Indicates that this operand described by the IKJOPER macro instruction can be
specified as an expression or as a variable. Supply the name of the label field
of an IKUITERM macro instruction that describes the variable term. The LIST and
RANGE options are not permitted on this IKITERM macro instruction. Code this
IKITERM macro instruction immediately following the IKITERM macro that
describes the second operand.

Note: The parse service routine first determines if the operand is specified as
an expression. If the operand is an expression, that is, enclosed in
parentheses, then it is processed as an expression. If it is not an expression,
then it is processed using the chained IKJTERM PCE to control the scan of the
operand.

The Parameter Control Entry Built by IKJOPER
The IKJOPER macro instruction generates the variable parameter control entry
(PCE) shown in Figure 34.

Figure 34 (Page 1 of 2). The Parameter Control Entry Built by IKJOPER

Number of Field
Bytes

Contents or Meaning

2 Flags. These flags are set to indicate options on the IKJOPER
macro instruction.

11 ... This is an IKJOPER PCE.
PO RO PROMPT
T P DEFAULT
A This is an extended format PCE. |f the VALIDCK parameter is
specified, the length of the field containing the address of the
validity checking routine is four bytes.
T HELP
....... 1 VALIDCK

Byte 2
0000 0000 Reserved
2 The hexadecimal length of this PCE.

2 Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the parameter descriptor entry built by the parse
service routine.

Variable

2

Byte 1-2
Byte 3-4

Contains the hexadecimal length of the parameter-type field.
Contains the offset of the parameter-type field (X'0012’).

Contains the parameter-type field.

If a reserved word PCE is specified on the macro, this field contains
the offset into the parameter control list of the reserved word PCE.

Contains the offset into the parameter control list of the OPERND1
PCE.

Contains the offset into the parameter control list of the OPERND2
PCE.

Contains the offset into the parameter control list of the chained
term PCE if present. Zero if not present.

Contains the length of the default or prompting information
supplied on the macre instruction.

Chapter 13. Verifying Operands with the Parse Service Routine

95



Figure 34 (Page 2 of 2). The Parameter Control Entry Built by IKJIOPER

Number of Field Contents or Meaning
Bytes
Variable Contains the default or prompting information supplied on the

macro instruction.

2 Contains the length (including this field) of all the PCE fields used
for second level messages if HELP is specified on the macro.

1 The number of second level messages specified on the macro
instruction by the HELP = parameter.

2 Contains the length of this segment including this field, the
message offset field and second level message.

Note: This field and the following two are repeated for each
second level message specified by HELP on the macro.

2 This field contains the message segment offset.

Variable This field contains one second level message specified by HELP on
the macro instruction. This field and the two preceding fields are
repeated for each second level message specified.

3or4 This field contains the address of a validity checking routine if
VALIDCK was specified on the IKJOPER macro. If the “extended
format PCE” bit is on in the IKJOPER PCE, the address is four bytes
long; if the bit is off, the address is three bytes long. This field is
not present if VALIDCK was not specified.

Using IKJRSVWD to Describe a Delimiter-Dependent Positional Parameter
Use the IKURSVWD macro instruction to do the following:

¢ Define a positional reserved word operand.

In this case, use the IKJRSVWD macro instruction by itself and specify at least
the ‘parameter-type’ operand.

¢ Describe the operator portion of an expression.

In this case, use the RSVWD operand of the IKJOPER macro instruction to define
the beginning of a list of the possible reserved words that can be an operator in
an expression. To identify the possible reserved words that can be operators in
an expression, specify a list of IKINAME macro instructions that immediately
follow the IKURSVWD macro instruction.

You must specify at least the ‘parameter-type’ operand on the IKUIRSVWD macro
instruction.

¢ Describe a reserved word constant.

In this case, use the RSVWD keyword of the IKUTERM macro instruction to
define the beginning of a list of possible reserved words that can be used as a
figurative constant. To define the possible figurative constants, specify a list of
IKUINAME macros that immediately follow the IKURSVWD macro instruction.

When you use the IKIRSVWD macro instruction to define a reserved word
constant, code the macro without any operands as follows:

label IKJRSVWD

The order in which you code the macros for positional operands is the order in
which the parse service routine expects to find the operands in the command string.

96 MVS/ESA TSO Programming



Figure 35 shows the format of the IKJRSVWD macro instruction. Each of the
operands is explained following the figure.

label IKJRSVWD | 'parameter-type’ |,PROMPT='prompt data'
,DEFAULT="'default value'

[,HELP=("help data','help data',...)]

Figure 35. The IKURSVWD Macro Instruction

label
This name is used to address the PCE built by the IKIRSVWD macro. The
hexadecimal offset to the parameter descriptor entry (PDE) built by the parse
service routine for this operand is contained in the PCE.

Code the following operands on the IKJRSVWD macro when you use it either by

itself to describe a positional reserved word operand, or with IKJOPER to describe

the operator portion of an expression.

‘parameter-type’
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the

PROMPT field is not required and if supplied is used only for a required operand

that is not specified by the user. Blanks within the apostrophes are allowed.

PROMPT = ‘prompt data’
The operand described by this IKIRSVWD macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not

specified by the user. If the operand is not specified, the parse service routine

supplies a message ID and adds the word MISSING to the beginning of this
message before writing it to the output data set.

DEFAULT = ‘default value’

The operand described by this IKIRSVWD macro instruction is required, but the
user need not specify it. If the operand is not specified, the value specified as

the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP = (‘help data’,‘help data’,...) ’

You can provide up to 255 second level messages. (Note, however, that the

assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the

messages by single commas. These messages are written to the output data

set following the prompting message.

Parse adds a message ID and the word MISSING to the beginning of each
message before writing it to the output data set.

Chapter 13. Verifying Operands with the Parse Service Routine

97



The Parameter Control Entry Built by IKURSVWD

The IKURSVWD macro instruction generates the variable parameter control entry

(PCE) shown in Figure 36.

Figure 36. The Parameter Control Entry Built by IKIRSVWD

Number of
Bytes

Field

Contents or Meaning

2

Variable

1

Variable

2

Variable

.000 0000

Byte 1-2
Byte 3-4

Flags. These flags are set to indicate options on the IKIRSVWD
macro instruction.

This is an IKURSVWD PCE.
PROMPT

DEFAULT

Reserved

HELP

Reserved

This PCE is used with the IKUITERM macro as a figurative constant.
This PCE is not used with the IKITERM macro as a figurative
constant.

Reserved.

The hexadecimal length of this PCE.

Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the parameter descriptor entry built by the parse
service routine.

Note: The following fields are omitted if this PCE is used with the
IKJITERM macro to describe a figurative constant.

Contains the hexadecimal length of the parameter-type field.
Contains the offset of the parameter-type field (X'0012’).

Contains the parameter-type field.

Contains the length of the default or prompting information
supplied on the macro instruction.

Contains the default or prompting information supplied on the
macro instruction.

Contains the length (including ihis field) of all the PCE fields used
for second level messages if HELP is specified on the macro.

The number of second level messages specified on the macro
instruction by the HELP = parameter.

Contains the length of this segment including this field, the
message offset field and second level message.

Note: This field and the following two are repeated for each
second level message specified by HELP on the macro.

This field contains the message segment offset.

This field contains one second level message specified by HELP on
the macro instruction. This field and the two preceding fields are
repeated for each second level message specified.

98 MVS/ESA TSO Programming




Using IKJIDENT to Describe a Non-Delimiter-Dependent Positional Operand
Use the IKJIDENT macro instruction to describe a positional operand that does not
depend upon a particular delimiter for its syntactical definition. These operands are
discussed in “Positional Operands Not Dependent on Delimiters” on page 78.

These positional operands must be in the form of a character string, with
restrictions on the beginning character, additional characters, and length, decimal
integers, or hexadecimal characters.

The order in which you code the macro instructions for positional operands is the
order in which the parse service routine expects to find the positional operands in
the command string.

Figure 37 shows the format of the IKJIDENT macro instruction. Each of the
operands is explained following the figure.

label IKJIDENT 'parameter-type' [,LIST][,RANGE]
[,ASTERISK] [ ,UPPERCASE | [,MAXLNTH=number]
LASIS

B ALPHA ALPHA

NUMERIC NUMERIC
LFIRST=) ALPHANUM LOTHER= } ALPHANUM

ANY ANY
NONATABC NONATABC

B NONATNUM ) | | NONATNUM

[ ,PROMPT='prompt data'
| sDEFAULT="default value'

,INTEG
| LHEX

[ ,CHAR ]

[,VALIDCK=symbolic-address]

[,HELP=("help data', 'help data',...)]

Figure 37. The IKJIDENT Macro Instruction

label
This name is used within the PDL DSECT as the symbolic address of the
parameter descriptor entry for this positional operand.

‘parameter-type’
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and if supplied is used only for a required operand
that is not specified by the user. Blanks within the apostrophes are allowed.

LIST
This positional operand can be specified by the user as a list, that is, in the
form:

commandname (operand,operand,...)

Chapter 13. Verifying Operands with the Parse Service Routine 99



RANGE
This positional operand can be specified by the user as a range, that is, in the
form:

commandname operand:operand

If you specify RANGE and OTHER = ANY, parse treats any colons it finds as
delimiters. For example, the first colon after RANGE marks the end of the first
part of the range and the start of the next part of the range. To include the colon
in your data, you must use the CHAR operand and enclose the colon in
quotation marks.

ASTERISK
An asterisk can be substituted for this positional operand.

Note: ASTERISK and INTEG are mutually exclusive.

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was entered.

MAXLNTH = number
The maximum number of characters the string can contain. This number must
be a value from 1 to 255. If you do not code the MAXLNTH operand, the parse
service routine accepts a character string of any length.

FIRST =
Specify the character type restriction on the first character of the string.

OTHER =

Specify the character type restriction on the characters of the string other than
the first character.

Specify the restrictions on the characters of the string by coding one of the following
character types after the FIRST= and the OTHER = operands. This is true unless
HEX, INTEG, or CHAR is specified; FIRST= and OTHER = serve no purpose in these
cases.

ALPHA
An alphabetic or national character. ALPHA is the default value for both the
FIRST and the OTHER operands.

NUMERIC
A digit, 0-9.

ALPHANUM
An alphabetic, numeric, or national character.

ANY
Any character other than a blank, comma, tab, or semicolon. Parentheses must
be balanced.

NONATABC
An alphabetic character only. National characters and humerics are excluded.

NONATNUM
An alphabetic or numeric character. National characters are excluded.

100 MVS/ESA TSO Programming



PROMPT = ‘prompt data’
The operand described by this IKJIDENT macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
specified by the user. If the operand is not specified, the parse service routine
supplies a message ID and adds the word MISSING to the beginning of this
message before writing it to the output data set.

DEFAULT =‘default value’
The operand is required, but a default value can be used. If the operand is not
specified by the user, the value specified as the default value is used.

Note: The operand is optional if neither PROMPT nor DEFAULT is specified.
The parse service routine takes no action if the operand specified by this
IKJIDENT macro instruction is not present in the command buffer.

CHAR
Specifies that the parse service routine is to accept a string of characters as
input. This input string can be either quoted or unquoted.

INTEG
Specifies that the parse service routine is to accept a numeric quantity as input.
This quantity can be decimal, hexadecimal, or binary. The number is stored
internally as a fullword binary value, regardless of how INTEG was specified.

Note: A maximum length is automatically implied if the INTEG option is
specified. For binary input, the maximum number of characters is 32. For
hexadecimal input, the maximum length is 8. For decimal input, the maximum
length is 10.

HEX
Specifies that the parse service routine is to accept a hexadecimal value as
input. This string quantity can be hexadecimal or a quoted or non-quoted string.

Note: All input specified in the form X'n...” must be valid hexadecimal digits
(0-9, A-F). All input specified in the form B‘n..." must be valid binary digits (0,1).
All input entered as unquoted decimals must be valid decimal digits (0-9).

VALIDCK = symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional validity checking on this operand. The parse service routine
calls the addressed routine after first determining that the operand is
syntactically correct.

HELP = (‘help data’,‘help data’...)
You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are written to the output data
set following the prompting message. These messages are not issued when the
prompt is for a password on a dsname operand.

Parse adds a message ID and the word MISSING to the beginning of each
message before writing it to the output data set.

Chapter 13. Verifying Operands with the Parse Service Routine 101



The Parameter Control Entry Built by IKJIDENT

The IKJIDENT macro instruction generates the variable length parameter control
entry (PCE) shown in Figure 38.

Figure 38 (Page 1 of 2). The Parameter Control Entry Built by IKJIDENT

Number of
Bytes

Field

Contents or Meaning

2 o

Byte 1
100. ...

Flags. These flags are set to indicate which options were specified
in the IKJIDENT macro instruction.

This is an IKJIDENT PCE.

PROMPT

DEFAULT

This is an extended format PCE. If the VALIDCK parameter is
specified, the length of the field containing the address of the
validity checking routine is four bytes.

HELP

VALIDCK

LIST
ASIS
RANGE
Reserved

Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in this
IKJIDENT PCE.

Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the related parameter descriptor entry built by the
parse service routine.

A flag field indicating the options coded on the IKJIDENT macro
instruction.

ASTERISK
MAXLNTH
Integer
Character
Hexadecimal
Reserved

This field contains a hexadecimal number indicating the character
type restriction on the first character of the character string
described by the IKJIDENT macro instruction.

HEX Acceptable characters:

0 Any (except blank, comma, tab, semicolon)
1 Alphabetic or national

2 Numeric

3 Alphabetic, national, or numeric
4 Alphabetic

5 Alphabetic or numeric

6to FF Not used

102 MVS/ESA TSO Programming




Figure 38 (Page 2 of 2). The Parameter Control Entry Built by IKJIIDENT

Number of Field Contents or Meaning
Bytes

1 This field contains a hexadecimal number indicating the character
type restriction on the other characters of the character string
described by the IKJIDENT macro instruction.

HEX Acceptable characters:

0 Any (except blank, comma, tab, semicolon)
1 Alphabetic or national

2 Numeric

3 Alphabetic, national, or numeric

4 Alphabetic

5 Alphabetic or numeric

6to FF Not used

2 This field contains a hexadecimal number representing the length
of the parameter type segment. This figure includes the length of
this field, the length of the message segment offset field, and the
length of the parameter type field supplied on the IKJIDENT macro
instruction.

2 This field contains the message segment offset. It is set to X‘0012".
Variable This field contains the field supplied as the parameter type operand
of the IKJIDENT macro instruction.

1 This field contains a hexadecimal number representing the
maximum number of characters the string can contain. This field is
present only if the MAXLNTH operand was coded on the IKJIDENT
macro instruction.

1 This field contains the length minus one of the defaults or
prompting information supplied on the IKJIDENT macro instruction.
This field and the next are present only if DEFAULT or PROMPT
were specified on the IKJIDENT macro instruction.

Variable This field contains the prompting or default information supplied on
the IKJIDENT macro instruction.

2 This field contains a hexadecimal figure representing the length in

2

Variable

3or4

bytes of all the PCE fields used for second level messages. The
figure includes the length of this field. The fields are present only if
HELP is specified on the IKJIDENT macro instruction.

This field contains a hexadecimal number representing the number
of second level messages specified by HELP on this IKJIDENT PCE.

This field contains a hexadecimai number representing the length
of this HELP segment. The figure includes the length of this field,
the message segment offset field, and the length of the information.
These fields are repeated for each second level message specified
by HELP on the IKJIDENT macro instruction.

This field contains the message segment offset. It is set to X'0000°.

This field contains one second level message supplied on the
IKJIDENT macro instruction specified by HELP. This field and the
two preceding ones are repeated for each second level message
supplied on the IKJIDENT macro instruction; these fields do not
appear if no second level message data was supplied.

This field contains the address of a validity checking routine if
VALIDCK was specified on the IKJIDENT macro. If the “extended
format PCE” bit is on in the IKJIDENT PCE, the address is four
bytes long; if the bit is off, the address is three bytes long. This
field is not present if VALIDCK was not specified.

Chapter 13. Verifying Operands with the Parse Service Routine

103



Using IKUKEYWD to Describe a Keyword Operand

To describe a keyword operand, use the IKUIKEYWD macro instruction immediately
followed by a series of IKINAME macro instructions that indicate the possible
names for the keyword operand. See “Using IKINAME to List Keyword or Reserved
Word Operand Names” on page 105 for information on the IKINAME macro
instruction.

Keyword operands can appear in any order in the command but must follow all
positional operands. A user is never required to enter a keyword operand,; if he
does not, the default value you supply, if you choose to supply one, is used.
Keywords can consist of any combination of alphameric characters up to 31
characters in length, the first of which must be an alphabetic character.

Figure 39 shows the format of the IKUIKEYWD macro instruction. Each of the
operands is explained following the figure.

label IKIKEYWD | [DEFAULT='default-value']

Figure 39. The IKIKEYWD Macro Instruction

label
This name is used within the PDL DSECT as the symbolic address of the
parameter descriptor entry for this operand.

DEFAULT = ‘default-value’
The default value you specify is the value that is used if this keyword is not
present in the command buffer. Specify the valid keyword names with IKINAME
macro instructions following this IKIKEYWD macro instruction.

The Parameter Control Entry Built by IKIKEYWD
The IKUIKEYWD macro instruction generates the variable length parameter control
entry (PCE) shown in Figure 40.

Figure 40 (Page 1 of 2). The Parameter Control Entry Built by IKIKEYWD

Number of Field Contents or Meaning
Bytes

2 Flags. These flags are set to indicate which options were coded in
the IKUKEYWD macro instruction.

010. ... This is an IKUIKEYWD PCE.
L0 Reserved.
UTU PO DEFAULT
.... .000 Reserved.

Byte 2
0000 0000 Reserved.

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in this
IKUKEYWD PCE.

2 This field contains a hexadecimal offset from the beginning of the
parameter descriptor list to the related parameter descriptor entry
built by the parse service routine.

104 MVS/ESA TSO Programming




Figure 40 (Page 2 of 2). The Parameter Control Entry Built by IKIKEYWD

Number of Field Contents or Meaning
Bytes
1 This field contains the length minus one of the default information

supplied on the IKUKEYWD macro instruction. This field and the
next are present only if DEFAULT was specified on the IKUKEYWD
macro instruction.

Variable This field contains the default value supplied on the IKIKEYWD
macro instruction.

Using IKUNAME to List Keyword or Reserved Word Operand Names

Use the IKUINAME macro instruction to do the following:

¢ Define keyword operand names. In this case, use the IKUINAME macro
instruction with the IKUIKEYWD macro instruction.

¢ Define reserved word operand names. In this case, use the IKINAME macro
instruction with the IKURSVWD macro instruction.

Defining Keyword Operand Names
Use a series of IKINAME macro instructions to indicate the possible names for a
keyword operand. One IKINAME macro instruction is needed for each possible
keyword name. Code the IKINAME macro instructions immediately following the
IKUIKEYWD macro instruction to which they pertain.

Figure 41 shows the format of the IKUINAME macro instruction. Each of the
operands is explained following the figure.

TKJINAME 'keyword-name' [, SUBFLD=subfield-name]
[,INSERT='keyword-string']
L,ALIAS=("'name', 'name',...)]

Figure 41. The IKUINAME Macro Instruction (when used with the IKIKEYWD Macro
Instruction)

keyword-name
One of the valid keyword operands for the IKIKEYWD macro instruction that
precedes this IKUINAME macro instruction.

SUBFLD = subfield-name
This option indicates that this keyword name has other operands associated
with it. Use the subfield-name as the label field of the IKJSUBF macro
instruction that begins the description of the possible operands in the subfield.
See “Using IKJSUBF to Describe a Keyword Subfield” on page 107 for a
description of the IKUISUBF macro instruction.

INSERT = ‘keyword-string’
The use of some keyword operands implies that other keyword operands are
required. The parse service routine inserts the keyword string specified into the
command string just as if it had been specified as part of the original command
string. The command buffer is not altered.

ALIAS = (‘name’,'name’,...)
Specifies up to 32 alias names for a keyword. Each name represents a valid
abbreviation or alternate name and must be enclosed in quotes. All
abbreviations or names must be enclosed in a single set of parentheses.

Chapter 13. Verifying Operands with the Parse Service Routine 105



Defining Reserved Word Operand Names
Use a series of IKUINAME macro instructions to indicate the possible names for
reserved words. One IKINAME macro instruction is needed for each possible
reserved word name. Code the IKUINAME macro instructions immediately following
the IKIRSVWD macro instruction to which they apply.

Figure 42 shows the format of the IKINAME macro instruction. Each of the
operands is explained following the figure.

IKJINAME 'reserved-word name'

Figure 42. The IKINAME Macro Instruction (when used with the IKJRSVWD Macro
Instruction)

reserved-word name
One of the valid reserved word operands for the IKJRSVWD macro instruction
that precedes the IKUNAME macro instructions.

Note: The IKINAME macro instruction has two uses when coded with the
IKIRSVWD macro instruction. The reserved-words identified on the IKINAME
macros can be figurative constants when the IKIRSVWD macro is chained from
an IKUITERM macro, or operators in an expression when the IKJRSVWD macro
is chained from the IKJOPER macro. See “Using IKJRSVWD to Describe a
Delimiter-Dependent Positional Parameter” on page 96 for more information on
using the IKIRSVWD macro instruction.

The Parameter Control Entry Built by IKINAME
The IKINAME macro instruction generates the variable length parameter control
entry (PCE) shown in Figure 43.

Note: Only the first four fields are valid when the IKUINAME macro instruction is
coded with the IKURSVWD macro instruction.

Figure 43 (Page 1 of 2). The Parameter Control Entry Built by IKINAME
Number of Field Contents or Meaning
Bytes
2 Flags. These flags are set to indicate which options were coded in
the IKUINAME macro instruction.
Byte 1
ot1. ... This is an IKUINAME PCE.
...00... Reserved.
.1l SUBFLD
...... 00 Reserved.
Byte 2
000. .... Reserved.
S I INSERT
TS B ALIAS
... 00.0 Reserved.
2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in this
IKINAME PCE.
1 This field contains the length minus one of the keyword or reserved
word names specified on the IKINAME macro instruction.

106 MVS/ESA TSO Programming




Figure 43 (Page 2 of 2). The Parameter Control Entry Built by IKINAME

Number of Field Contents or Meaning
Bytes
Variable This field contains the keyword or reserved word name specified

on the IKUINAME macro instruction.

2 This field contains a hexadecimal offset, plus one, from the
beginning of the parameter control list to the beginning of a
subfield PCE. This field is present only if the SUBFLD operand was
specified in the IKINAME macro instruction.

1 This field contains the length minus one of the keyword string
included as the INSERT operand in the IKINAME macro instruction.
This field and the next are not present if INSERT was not specified.

Variable This field contains the keyword string specified as the INSERT
operand of the IKUINAME macro instruction.

1 The total number of aliases.

1 The length minus one of first alias.
Variable The first alias.

1 The length minus one of second alias.
Variable The second alias.

Using IKJSUBF to Describe a Keyword Subfield

Keyword operands can have subfields associated with them. A subfield consists of
a parenthesized list of operands (either positional or keyword types) which directly
follows the keyword.

Use the IKJSUBF macro instruction to indicate the beginning of a subfield
description. The IKJSUBF macro instruction ends the main part of the parameter
control list or the previous subfield description, and begins a new subfield
description. All subfield descriptions must occur after the main part of the
parameter control list.

The IKJSUBF macro instruction is used only to begin the subfield description; the
subfield is described using the IKJPOSIT, IKJIDENT, and IKIKEYWD macro
instructions, depending upon the type of operands within the subfield.

The label of this macro instruction must be the same name as the SUBFLD operand
of the IKUINAME macro instruction that you coded to describe the keyword name.

Figure 44 shows the format of the IKUSUBF macro instruction.

label TKJSUBF

Figure 44. The IKUSUBF Macro Instruction

label
The name you supply as the label of this macro instruction must be the same
name you have coded as the SUBFLD operand of the IKINAME macro
instruction describing the keyword name that takes this subfield.

Chapter 13. Verifying Operands with the Parse Service Routine 107



The Parameter Control Entry Built by IKISUBF

The IKJSUBF macro instruction generates the parameter control entry (PCE) shown

in Figure 45.
Figure 45. The Parameter Control Entry Built by IKISUBF
Number of Field Contents or Meaning
Bytes
1 Flags. These flags indicate which type of PCE this is.
000. .... This PCE indicates an end-of-field. These end-of-field indicators
are present in IKISUBF and iKJENDP PCEs; they indicate the end of
a previous subfield or of the PCL itself.
...0 0000 Reserved.
2 This field contains a hexadecimal number representing the offset
within the PCL to the first IKUIKEYWD PCE or to the next end-of-field
indicator if there are no keywords in this subfield.

Using IKJENDP to End the Parameter Control List

Use the IKJENDP macro instruction to inform the parse service routine that it has
reached the end of the parameter control list built for this command.

Figure 46 shows the format of the IKJENDP macro instruction.

IKJENDP

Figure 46. The IKIENDP Macro Instruction

The Parameter Control Entry Built by IKJENDP
The IKUENDP macro instruction generates the parameter control entry (PCE) shown
in Figure 47. ltis merely an end-of-field indicator.

Figure 47. The Parameter Control Entry Built by IKKJENDP
Number of Field Contents or Meaning
Bytes
1 Flags. These flags are set to indicate end-of-field.
000. .... End-of-field indicator. Indicates the end of the PCL.
...0 0000 Reserved.

Using IKJRLSA to Release Virtual Storage Ailocated by Parse

Use the IKJRLSA macro instruction to release virtual storage allocated by the parse
service routine and not previously released by the parse service routine. This
storage consists of the parameter descriptor list (PDL) returned by the parse service
routine.

If the return code from the parse service routine is non-zero, parse has freed all

virtual storage that it has allocated. In this case, you do not need to issue this
macro instruction, but it will not cause an error if you do issue it.

108 MVS/ESA TSO Programming




Figure 48 shows the format of the IKJRLSA macro instruction. Each of the operands
is explained following the figure.

label IKJRLSA Address of the answer place
(1-12)

Figure 48. The IKJRLSA Macro Instruction

address of the answer place
The address of the word in which the parse service routine placed a pointer to
the parameter descriptor list (PDL), when control was returned to the command
processor. Your command processor can load this address into one of the
general registers 1 through 12, and right adjust it with the unused high order
bits set to zero. See “Passing Control to the Parse Service Routine” on
page 117 for a description of the parse parameter list.

End of GENERAL-USE PROGRAMMING INTERFACE

Examples Using the Parse Macro Instructions

Example 1

This example shows how the parse macro instructions could be used within a
command processor to describe the syntax of a PROCESS command to the parse
service routine. A sample command processor that includes the parse macros used
in this example is shown in Chapter 4, “Validating Command Operands” on

page 13.

The sample PROCESS command we are describing to the parse service routine has
the following format:

PROCESS dsname ACTION
NOACTION

Figure 49 on page 110 shows the sequence of parse macro instructions that
describe the syntax of this PROCESS command to the parse service routine. The
parse macro instructions used in this example perform the following functions:

¢ The IKIPARM macro instruction indicates the beginning of the parameter
control list and creates the PRDSECT DSECT that you use to map the parameter
descriptor list returned by the parse service routine.

* The IKJPOSIT macro instruction describes the data set name, which is a
positional operand. The address of a validity checking routine, POSITCHK, is
specified.

¢ The IKIKEYWD and IKINAME macro instructions indicate the possible names
for keyword operands.

¢ The IKJENDP macro instruction indicates the end of the parameter control list.

Chapter 13. Verifying Operands with the Parse Service Routine 109



PCLDEFS IKJPARM DSECT=PRDSECT
DSNPCE  IKJPOSIT DSNAME, X
PROMPT="DATA SET NAME TO BE PROCESSED', X
VALIDCK=POSITCHK
ACTPCE  IKJKEYWD DEFAULT='NOACTION'
IKINAME 'ACTION'
IKINAME ~ 'NOACTION'
IKJENDP

Figure 49. Example 1 - Using Parse Macros to Describe Command Operand Syntax

Example 2
This example shows how the parse macro instructions could be used within a
command processor to describe the syntax of an EDIT command to the parse
service routine.

The sample EDIT command we are describing to the parse service routine has the
following format:

EDIT dsname

=

PLI | ( {number|number
CHAR48

2 2

FORT
ASM
TEXT
| DATA

[ SCAN
| NOSCAN

[ NUM
| NONUM

[ BLOCK (number)
| BLKSIZE (number)

LINE (number)

Figure 50 on page 111 shows the sequence of parse macro instructions that
describe the syntax of this EDIT command to the parse service routine. The parse
macro instructions used in this example perform the following functions:

* The IKIPARM macro instruction indicates the beginning of the parameter
control list and creates the DSECT that you use to map the parameter descriptor
list returned by the parse service routine. The name of the DSECT is defaulted
to IKUPARMD in this example.

¢ The IKJPOSIT macro instruction describes the data set name, which is a
positional operand.

¢ The IKIKEYWD and IKINAME macro instructions indicate the possible names
for keyword operands.

110 MVS/ESA TSO Programming



* The IKJSUBF macro instruction indicates the beginning of subfield descriptions
for keyword operands. Within these subfields, IKJIDENT and IKIKEYWD macro
instructions describe the positional and keyword operands.

¢ The IKJENDP macro instruction indicates the end of the parameter control list.

PARMTAB  IKJPARM
DSNAME ~ IKJPOSIT  DSNAME,PROMPT='DATA SET NAME'
TYPE IKJKEYWD
IKJINAME 'PL1',SUBFLD=PL1FLD
IKJINAME "FORT'
IKINAME 'ASM'
TKJINAME 'TEXT'
TKJINAME 'DATA?
SCAN IKJKEYWD  DEFAULT='NOSCAN'
TKJINAME 'SCAN'
TKJNAME 'NOSCAN!
NUM IKJKEYWD  DEFAULT='NUM'
IKJINAME 'NUM'
IKJINAME "NONUM'
BLOCK IKJKEYWD
IKJINAME 'BLOCK' ,SUBFLD=BLOCKSUB,ALIAS="'BLKSIZE'
LINE IKJKEYWD
IKJINAME ‘LINE',SUBFLD=LINESIZE
PLIFLD  IKJSUBF
PL1COL1 IKJIDENT  'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC,DEFAULT='2'
PL1COL2 IKJIDENT  'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC,DEFAULT='72'
PLITYPE IKJKEYWD DEFAULT='CHAR60'
IKJINAME 'CHARGO'
IKJINAME 'CHAR48'
BLOCKSUB IKJSUBF
BLKNUM  IKJIDENT  'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC, X
PROMPT="BLOCKSIZE' ,MAXLNTH=8
LINESIZE IKJSUBF

LINNUM  IKJIDENT  'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC, X
PROMPT="'LINESIZE'
IKJENDP

Figure 50. Example 2 - Using Parse Macros to Describe Command Operand Syntax

Example 3
This example shows how the parse macro instructions could be used to describe the
syntax of a sample AT command that has the following syntax:

COMMAND OPERANDS
stmt

AT (stmt-1,stmt-2,...) } (cmd chain) COUNT (integer)
stmt-3:stmt-4

Figure 51 on page 112 shows the sequence of parse macro instructions that
describe this sample AT command to the parse service routine. The parse macro
instructions used in this example perform the following functions:

* The IKUIPARM macro instruction indicates the beginning of the parameter
control list and creates the PARSEAT DSECT that you use to map the parameter
descriptor list returned by the parse service routine.

Chapter 13. Verifying Operands with the Parse Service Routine 111



e The IKITERM macro instruction indicates that the user can enter the statement
number as a single value or as a list or range of values.

¢ The IKJPOSIT macro instruction indicates that the user must enter the
subcommand-chain as a parenthesized string.

¢ The IKIKEYWD and IKINAME macro instructions indicate the name of the
keyword operand COUNT.

¢ The IKJSUBF macro instruction indicates the beginning of a subfield description
for the keyword operand. Within this subfield, an IKJIDENT macro instruction
describes the positional operand.

¢ The IKJENDP macro instruction indicates the end of the parameter control list.

EXAM2 IKJPARM DSECT=PARSEAT

STMTPCE IKJTERM 'STATEMENT NUMBER',UPPERCASE,LIST,RANGE,TYPE=STMT, X
VALIDCK=CHKSTMT

POSITPCE IKJPOSIT  PSTRING,HELP='CHAIN OF COMMANDS',VALIDCK=CHKCMD

KEYPCE ~ IKJKEYWD

NAMEPCE IKJNAME "COUNT' , SUBFLD=COUNTSUB

COUNTSUB IKJSUBF

IDENTPCE IKJIDENT  'COUNT',FIRST=NUMERIC,OTHER=NUMERIC, X
VALIDCK=CHKCOUNT
TKJENDP

Figure 51. Example 3 - Using Parse Macros to Describe Command Operand Syntax

Example 4
This example shows how the parse macro instructions could be used to describe the
syntax of a sample LIST command that has the following syntax:

COMMAND OPERANDS
LIST symbol PRINT(symbol)

Figure 52 on page 113 shows the sequence of parse macro instructions that
describe this sample LIST command to the parse service routine. The parse macro
instructions used in this example perform the following functions:

¢ The IKIPARM macro instruction indicates the beginning of the parameter
control list and creates the PARSELST DSECT that you use to map the
parameter descriptor list returned by the parse service routine.

¢ The IKJTERM macro instruction describes a subscripted variable, such as,
a of b in c(1)
that the user must specify.

¢ The IKIKEYWD and IKINAME macro instructions indicate the name of the
keyword operand PRINT.

¢ The IKJSUBF macro instruction indicates the beginning of a subfield description
for the keyword operand. Within this subfield, an IKITERM macro instruction
describes the positional operand.

¢ The IKJENDP macro instruction indicates the end of the parameter control list.

112 MVS/ESA TSO Programming



Example 5

EXAM3 IKJPARM DSECT=PARSELST
VARPCE  IKJTERM 'SYMBOL' ,UPPERCASE, PROMPT="'SYMBOL' ,TYPE=VAR,
VALIDCK=CHECK, SBSCRPT=SUBPCE
SUBPCE  IKJTERM "SUBSCRIPT' ,SBSCRPT, TYPE=CNST,PROMPT="'SUBSCRIPT"
KEYPCE ~ IKJKEYWD
NAMEPCE  IKJNAME "PRINT',SUBFLD=PRINTSUB
PRINTSUB IKJSUBF
IKJTERM 'SYMBOL-2',UPPERCASE, PROMPT="SYMBOL-2"',TYPE=VAR
IKJENDP

Figure 52. Example 4 - Using Parse Macros to Describe Command Operand Syntax

This example shows how the parse macro instructions could be used to describe the

syntax of a sample WHEN command that has the following syntax:

COMMAND OPERANDS
WHEN addr (subcommand chain)
expression

Figure 53 on page 114 shows the sequence of parse macro instructions that

describe this sample WHEN command to the parse service routine. The parse

macro instructions used in this example perform the following functions:

L]

The IKJPARM macro instruction indicates the beginning of the parameter
control list and creates the PARSEWHN DSECT that you use to map the
parameter descriptor list returned by the parse service routine.

The IKJOPER macro instruction describes an operand that can be specified as
either an expression or a variable.

The IKJTERM macro instructions that are labeled SYMBOL and SYMBOL2 describe
the operands that are part of the expression.

The IKURSVWD and IKJNAME macro instructions define possible reserved
words that can be operators in the expression.

The IKUITERM macro instruction that is labeled ADDR1 describes the variable that
can be specified as the first positional operand.

The IKJPOSIT macro instruction describes a parenthesized string.

The IKJENDP macro instruction indicates the end of the parameter control list.

Chapter 13. Verifying Operands with the Parse Service Routine 113



EXAM4
OPER

SYMBOL1
OPERATOR

SYMBOL2
ADDR1
LASTONE

IKJPARM DSECT=PARSEWHN

IKJOPER '"EXPRESSION',O0PERND1=SYMBOL1,0PERND2=SYMBOLZ,
RSVWD=0PERATOR, CHAIN=ADDR1,PROMPT="'TERM' ,VALICHK=CHECK

IKJTERM 'SYMBOL1',UPPERCASE, TYPE=VAR,PROMPT="'SYMBOLZ"

IKJRSVWD  'OPERATOR',PROMPT="'OPERATOR'

IKJNAME 'EQ'

TKJINAME 'NEQ'

IKJTERM 'SYMBOL2',TYPE=VAR

IKJTERM 'ADDRESS ', TYPE=VAR,VALIDCK=CHECK1

IKJPOSIT  PSTRING,VALIDCK=CHECK2

IKJENDP

X

Figure 53. Example 5 - Using Parse Macros to Describe Command Operand Syntax

114 MVS/ESA TSO Programming




GENERAL-USE PROGRAMMING INTERFACE

Using Validity Checking Routines

Your command processor can provide a validity checking routine to do additional
checking on a positional operand. Each positional operand can have a unique
validity checking routine. Indicate the presence of a validity checking routine by
coding the entry point address of the routine as the VALIDCK= operand in the
IKJPOSIT, IKITERM, IKJOPER or IKJIDENT macro instructions. This address must
be within the program that invokes the parse service routine.

The parse service routine can call validity checking routines for the following types
of positional parameters:

HEX

VALUE

ADDRESS

QSTRING

DSNAME

DSTHING

CONSTANT

VARIABLE
STATEMENT NUMBER
EXPRESSION
JOBNAME

INTEG

Any non-delimiter-dependent parameters

e © o o o o o o

Parse passes control to the validity checking routine after it has determined that the
operand is non-null and syntactically correct. If a dsname operand is entered with a
password, parse passes control to the validity checking routine after first parsing
both the dsname and the password. If the user specifies a list, the validity checking
routine is called as each element in the list is parsed. If a range is specified, the
parse service routine calls the validity checking routine only after both items of the
range are parsed.

Passing Control to Validity Checking Routines

When the parse service routine passes control to a validity checking routine, parse
uses standard linkage conventions. The validity checking routine must save parse’s
registers and restore them before returning control to the parse service routine.

Chapter 13. Verifying Operands with the Parse Service Routine 115



The Validity Check Parameter List
The parse service routine builds a three-word parameter list and places the address
of this list into register 1 before branching to a validity checking routine. This
three-word parameter list has the format shown in Figure 54.

Figure 54. Format of the Validity Check Parameter List

Field Label Byte Byte Contents or Meaning
Offset Length
PDEADR 0(0) 4 The address of the parameter descriptor

entry (PDE) built by parse for this
syntactically correct operand.

USERWORD 4(4) 4 The address of the user work area. This is
the same address you supplied to the parse
service routine in the PPLUWA field in the
parse parameter list.

VALMSG 8(8) 4 Initialized to X'00000000’ by parse. Your
validity checking routine can place the
address of a second level message in this
field when it sets a return code of 4.

Return Codes from Validity Checking Routines

Your validity checking routines must return a code in general register 15 to the
parse service routine. These codes inform the parse service routine of the results
of the validity check and determine the action that parse should take. Figure 55
shows the return codes, their meaning, and the action taken by the parse service
routine.

Figure 55. Return Codes from a Validity Checking Routine

Return Code Meaning Action Taken by Parse
Dec(Hex)
0(0) The operand is valid. No additional processing is

performed on this operand by
the parse service routine.

4(4) The operand is invalid. The parse service routine
writes an error message to the
output data set.

8(8) The operand is invalid. The validity checking routine
has issued an error message to
the output data set.

12(C) The operand is invalid; syntax The parse service routine stops
checking cannot continue. all further syntax checking, sets
a return code of 20, and returns
to the calling routine.

Prior to issuing a return code of 12, your validity checking routine should issue a
message indicating that it has requested that parse terminate.

116 MVS/ESA TSO Programming



Passing Control to the Parse Service Routine

Your command processor can invoke the parse service routine by using either the
CALLTSSR or LINK macro instructions, specifying IKIPARS as the entry point name.
However, you must first create the parse parameter list (PPL) and place its address
into register 1. The PPL is described in “The Parse Parameter List.”

The parse service routine must receive control in 24-bit addressing mode. If your
program uses the CALLTSSR macro instruction to invoke IKUIPARS, and IKJPARS
resides in the link pack area, your program must issue the CALLTSSR macro
instruction in 24-bit addressing mode. However, if IKIPARS does not reside in the
link pack area, your program can issue the CALLTSSR macro instruction in either
24- or 31- bit addressing mode.

Before you invoke the parse service routine, you must build a parse parameter list
(PPL), and place its address into register 1. This PPL must remain intact untif the
parse service routine returns control to the calling routine.

The Parse Parameter List

The parse parameter list (PPL) is a seven-word parameter list containing addresses
required by the parse service routine.

You can use the IKIPPL DSECT, which is provided in SYS1.MACLIB, to map the
fields in the PPL. Figure 56 shows the format of the parse parameter list.

Chapter 13. Verifying Operands with the Parse Service Routine 117



Figure 56. The Parse Parameter List

Field Label Byte Byte Contents or Meaning
Offset Length
PPLUPT 0(0) 4 The address of the user profile table.
PPLECT 4(4) 4 The address of the environment control
table.
PPLECB 8(8) 4 The address of the command

processor’s event control block. The
ECB is one word of storage, which must
be declared and initialized to zero by
your command processor.

PPLPCL 12(C) 4 The address of the parameter control
list (PCL) created by your command
processor using the parse macro
instructions. Use the label on the
IKUIPARM macro instruction as the
symbolic address of the PCL.

PPLANS 16(10) 4 The address of a fullword of virtual
storage, supplied by the calling routine,
in which the parse service routine
places a pointer to the parameter
descriptor list (PDL). If the parse of the
command buffer is unsuccessful, parse
sets the pointer to the PDL to

X‘FF000000’.
PPLCBUF 20(14) 4 The address of the command buffer.
PPLUWA 24(18) 4 A user supplied work area that parse

passes to validity checking routines.
This field can contain anything that your
command processor needs to pass to a
validity checking routine.

118 MVS/ESA TSO Programming



Checking Return Codes from the Parse Service Routine

When the parse service routine returns control to its caller, general register 15
contains one of the following return codes:

Figure 57. Return Codes from the Parse Service Routine
Return Code Meaning
Dec(Hex)
0(0) Parse completed successfully.
4(4) The command operands were incomplete.
12(C) Parse did not complete; the parse parameter list contains invalid
information.
16(10) Parse did not complete; parse issued a GETMAIN and no space was
available.
20(14) Parse did not complete; a validity checking routine requested
termination by returning to parse with a return code of 12.
24(18) Parse did not complete; conflicting operands were found on the
IKJTERM, IKJOPER, or IKIRSVWD macro instruction.

If the parse service routine returns to your command processor with a return code of
zero, indicating that it has completed successfully, the PPLANS field in the parse
parameter list contains the address of a fullword containing a pointer to the
parameter descriptor list (PDL). See “Examining the PDL Returned by the Parse
Service Routine” on page 121 for information on how to use the PDL to examine the
results from the parse service routine.

If the parse service routine does not complete successfully, your command
processor should issue a message except when the return code from parse is 4 or
20. When the return code is 4, parse has already issued a message. When the
return code is 20, the validity checking routine has issued a rmessage before it
requested that parse terminate.

Your command processor can invoke the GNRLFAIL routine to issue meaningful
error messages for the other parse return codes. See Chapter 18, “Analyzing Error
Conditions with the GNRLFAIL/VSAMFAIL Routine (IKJEFF19)” on page 235.

End of GENERAL-USE PROGRAMMING INTERFACE |

Chapter 13. Verifying Operands with the Parse Service Routine 119



All input passed to IKIPARS must reside below 16 megabytes in virtual storage.
Figure 58 shows this flow of control between a command processor and the parse
service routine.

Command Processor E(;A=UI_;§I§ARRS Parse Service Routine
Reg. 1 Y
[N
PPL
0 4 uPT
4 4 ECT
8 4 CP ECB
+12 T PCL
+16 T Answer Place [ N
+20T Command Buffer o—
+24 User Work Area

Answer Place

Command
Operands

Length Offset | Command Name

Figure 58. Control Flow between Command Processor and the Parse Service Routine

120 MVS/ESA TSO Programming




GENERAL-USE PROGRAMMING INTERFACE

Examining the PDL Returned by the Parse Service Routine

The parse service routine returns the results of the scan of the command buffer to
the command processor in a parameter descriptor list (PDL). The PDL, built by
parse, consists of the parameter descriptor entries (PDE), which contain pointers to
the operands, indicators of the options specified, and pointers to the subfield
operands entered with the command operands.

Use the name that vou specified as the DSECT = operand on the IK.JPARM macro
instruction as the name of the DSECT that maps the PDL. The default name for this
DSECT is IKIPARMD. Base this DSECT on the PDL address returned by the parse
service routine. The PPLANS field of the parse parameter list points to a fullword of
storage that contains the address of the PDL. Then use the labels you used on the
parse macro instructions to access the corresponding PDEs.

The format of the PDE depends upon the type of operand parsed. For a discussion
of operand types, see the topic “Defining Command Operand Syntax” on page 69.
The following description of the possible PDEs shows each of the PDE formats and
the type of operands they describe.

The PDL Header

The PDL begins with a two-word header. The DSECT = operand of the IKIPARM
macro instruction provides a name for the DSECT created to map the PDL. Use this
name as the symbolic address of the beginning of the PDL header.

+0
A pointer to the next block of virtual storage

+4 +6
Subpool number Length

Pointer to the next biock of virtual storage:
The parse service routine gets virtual storage for the PDL. A forward-chain
pointer of X'FFO00000’ in this field indicates that this is the last storage element
obtained.

Subpoo! number:
This field will always indicate subpool 1. Virtual storage allocated by the parse
service routine for the PDL is allocated from subpool 1.

Length:
This field contains a hexadecimal number indicating the length of this block of
real storage (this PDL). The length includes the header.

PDEs Created for Positional Operands Described by IKJPOSIT

The labels you use to name the macro instructions provide access to the
corresponding PDEs. The positional operands described by the IKJPOSIT macro
instruction have the following PDE formats.

Chapter 13. Verifying Operands with the Parse Service Routine. 121

\



SPACE, DELIMITER
The parse service routine does not build a PDE for either a SPACE or a DELIMITER

operand.

STRING, PSTRING, and QSTRING
The parse service routine uses the IKJPOSIT macro to build a two-word PDE to

describe a STRING, PSTRING, or a QSTRING operand; the PDE has the following

format:
+0
A pointer to the character string
+4 +6 +7
Length Flags Reserved
Pointer to the character string:
Contains a pointer to the beginning of the character string, or a zero if the
operand was omitted.
Length:
Contains the length of the string. Any punctuation around the character string is
not included in this length figure. The length is zero if the string is omitted or if
the string is null.
Flags:
Setting Meaning
0... ... The operand is not present.
T o The operand is present.
XXX XXXX Reserved bits.
Note: If the string is null, the pointer is set, the length is zero, and the flag bit is
1.
VALUE
The parse service routine uses the IKJPOSIT macro to build a two-word PDE to
describe a VALUE operand; the PDE has the following format:
+0
A pointer to the character string
+4 +6 +7
Length Flags Type-char.

Pointer to the character string:
Contains a pointer to the beginning of the character string; that is, the first
character after the quote. Contains a zero if the VALUE operand is not present.

Length:
Contains the length of the character string excluding the quotes.

122 MVS/ESA TSO Programming




Flags:

Setting Meaning

0....... The operand is not present.

R The operand is present.

XXX XXXX Reserved bits.
Type-character:

Contains the letter that precedes the quoted string.

DSNAME, DSTHING

The parse service routine uses the IKIPOSIT macro instruction to build a six-word
PDE to describe a DSNAME or a DSTHING operand. The PDE has the following

format:
+0
A pointer to the dsname
+4 +6 +7
Length1 Flags1 Reserved
+8
A pointer to the member name
+12 +14 +15
Length2 Flags2 Reserved
+ 16
A pointer to the password
+20 +22 +23
Length3 Flags3 Reserved

Pointer to the dsname:
Contains a pointer to the first character of the data set name. Contains zero if
the data set name was omitted.

Length1:
Contains the length of the data set name. If the data set name is contained in
quotes, this length figure does not include the quotes.

Flags1:
Setting Meaning
0...... The data set name is not present.
T e The data set name is present.
.0.. ... The data set name is not contained within quotes.
I PO The data set name is contained within quotes.
L XX XXXX Reserved bits.

Pointer to the member name:
Contains a pointer to the beginning of the member name. Contains zero if the
member name was omitted.

Chapter 13. Verifying Operands with the Parse Service Routine 123



Length2:
Contains the length of the member name. This length value does not include
the parentheses around the member name.

Flags2:
Setting Meaning
0... ... The member name is not present.
T o The member name is present.
XXX XXXX Reserved bits.

Pointer to the password:
Contains a pointer to the beginning of the password. Contains zero if the
password was omitted.

Length3:
Contains the length of the password.
Flags3:
Setting Meaning
0... .... The password is not present.
T The password is present.
XXX XXXX Reserved bits.

JOBNAME
The parse service routine uses the IKJPOSIT macro to build a four word PDE to
describe a JOBNAME operand. The PDE has the following format:
+0
A pointer to the jobname
+4 +6 +7
Length1 Flags1 Reserved
+8
A pointer to the jobid name
+12 +14 +15
Length2 Flags2 Reserved

Pointer to the jobname:
Contains a pointer to the beginning of the jobname. Contains zero if the
jobname was omitted.

Length1:
Contains the length of the jobname. The jobname cannot be entered in quotes.

124 MVS/ESA TSO Programming



Flags1:

Setting Meaning
0....... The jobname is not present.
T e The jobname is present.
XXX XXXX Reserved bits.
Pointer to the jobid:
Contains a pointer to the beginning of the jobid. Contains zero if the jobid was
omitted.
Length2:

Contains the length of the jobid. This length figure does not include the

parentheses around the jobid.

Flags2:
Setting Meaning
0....... The jobid is not present.
T The jobid is present.
XXX XXXX Reserved bits.

ADDRESS
The parse service routine uses the IKJPOSIT macro to build a nine word PDE to
describe an ADDRESS operand. The PDE has the following format:
+0
A pointer to the load name
+4 +6 +7
Length1 Flags1
+8
A pointer to the entry name
+12 +14 +15
Length2 Flags2
+16
A pointer to the address string
+20 +22 +23
Length3 Flags3
+24 +25 + 26
Flags4 Sign Indirect count
+28
A pointer to the first expression value PDE
+32
Reserved for use by user validity check routine

Pointer to the load name:

Contains a pointer to the beginning of the load moduie name. Contains zero if
no load module name was specified.

Chapte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>