
--------- - - --- - -- - ---- - - ------ ----- ·-
MVS/ESA
TSO Programming

MVS/System Product:
JES2 Version 3
JES3 Version 3

GC28-1565-2

--------- ----- - -- - ---- -------------·-
MVS/ESA
TSO Programming

MVS/System Product:
JES2 Version 3
JES3 Version 3

GC28-1565-2

Production of This Book ----------------------------~

This book was prepared and formatted using the IBM BookMaster document markup language.

Third Edition (May 1991)

This is a major revision of, and obsoletes, GC28-1565-1, and Technical Newsletters GN28-1548 and
GN28-1486. See the Summary of Changes regarding new and changed information made to this
publication. Technical changes and additions to the text and illustrations are indicated by a vertical line to
the left of the change.

This edition applies to Version 3 of MVS/System Product 5685-001 or 5685-002 and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters. Changes are made
periodically to the information herein; before using this publication with the operation of IBM systems,
consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. References to IBM products in this document do not imply
that functionally equivalent products may be used. The security certification of the trusted computing base
that includes the products discussed herein covers certain IBM products. Please contact the manufacturer
of any product you may consider to be functionally equivalent for information on that product's security
classification. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building 921,
PO Box 950, Poughkeepsie, New York 12602

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

©Copyright International Business Machines Corporation 1988, 1991. All rights reserved.
All Rights Reserved
Note to U.S. Government Users- Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

PROGRAMMING INTERFACES -----------------------

The Information In this book Is provided to allow a customer Installation to write programs that use the
services of MYS/System Product Version 3 In a TSO environment. The maJorlty of this book consists of
general-use programming Interface Information. However, this book also contains guidance Information
for programmers who design and write programs that run under TSO. Such Information should never
be used as programming interface Information.

General-Use Programming Interfaces: General-use programming interfaces do not have significant
dependencies on detailed product design or implementation.

General-use programming interface information is identified by brackets before and after the information,
as follows:

GENERAL-USE PROGRAMMING INTERFACE

Description of the interface.

~-------- End of GENERAL~USE PROGRAMMING INTERFACE ----------'

ill

iv MVS/ESA TSO Programming

About This Book

Trademarks

MVSIESA TSO Programming describes the services and commands that TSO
provides for use in writing system and application programs. This book also
describes how to write, install, and execute a command processor.

The following are trademarks of International Business Machines Corporation.

• MVS/ESA™
• MVS/SP™
• MVS/XA™

Who This Book Is For
This book is for the following audience:

• Application programmers who design and write programs that run under TSO.

• System programmers who must modify TSO to suit the needs of their
installation.

The reader must be familiar with MVS programming conventions, the assembler
language, and the structure of TSO.

How This Book Is Organized
This book is divided into three parts:

• Part I describes how to write, install and execute a command processor. It
discusses the TSO services that you can use in a command processor, and
refers you to Part II of this book for more information, when needed.

• Part II describes the programming services that you can use in system or
application programs.

• Part Ill describes the syntax and function of the TSO commands, and provides
examples of how to use them.

How to Use This Book
If you have never used this book, read Chapter 1, "Introduction" on page 1 to
become familiar with command proces$ors and the programming services and
commands that TSO provides. Then refer to the individual chapter that discusses a
particular topic.

© Copyright IBM Corp. 1988, 1991 v

Related Information

MYS Publlcatlona

You need the following publications for reference:

MVSIESAAppllcation Development Guide, GC28-1821

MVSIESA Application Development Macro Reference, GC28-1822

MVSIESA JCL Reference, GC28-1829

MVS/ESA JCL User's Gulde, GC28·1830

MVSIESA Message Library: System Codes, GC28-1815

MVSIESA Message Library: System Messages, Volumes 1and2, GC28-1812 and
GC28-1813

MVSIESA System Programming Library: Application Development - 31-Bit
Addressing, GC28-1820

MVSIESA System Programming Library: Application Development - Extended
Addressability, GC28-1854

MVSIESA System Programming Library: Application Development Guide,
GC28-1852

MVSIESA System Programming Library: Application Development Macro
Reference, GC28-1857

MVSIESA System Programming Library: Initialization and Tuning, GC28-1828

VI MVS/ESA TSO Programming

Contents

Chapter 1. Introduction . 1
Executing TSO Commands . 1
Identifying Authorized Programs and Commands . 1
Writing Command Processors . 2
Overview of TSO Programming Services 3

Invoking TSO Service Routines . 3
Checking the Syntax of Subcommand Names . 3
Checking the Syntax of Command and Subcommand Operands 3
Processing 110 . 3
Processing Data Sets . 4
Analyzing Return Codes . 4

Overview of TSO Commands . 4

Part I: Writing and Executing a Command Processor . 5

Chapter 2. Whal Is a Command Processor? . 7
The TSO Environment . 7

The Command Processor Parameter List (CPPL) . 7
Command Syntax . 9
What is a Subcommand Processor? . 9

Chapter 3. Whal You Need lo Do lo Write a Command Processor 11

Chapter 4. Validating Command Operands . 13
Using the Parse Service Routine . 13

Checking Positional Operands for Logical Errors 14
A Sample Command Processor _ . . 15

Chapter 5. Communicating with the User through the Job Stream 25
Issuing Messages . 25

Message Levels . 25
Using the 1/0 Service Routines to Handle Messages 26
Using the TSO Message Issuer Routine (IKJEFF02) 26
Using Generalized Routines for Issuing Messages 26

Performing 1/0 . 27
Changing Your Command Processor's Source of Input 27

Chapter 6. Passing Control to Subcommand Processors 29
Step 1. Issuing a Mode Message and Retrieving an Input Line 29
Step 2. Validating the Subcommand Name . 30
Step 3. Passing Control to the Subcommand Processor 30

Writing a Subcommand Processor . 31
Step 4. Releasing the Subcommand Processor . 31

Chapter 7. Processing Abnormal Terminations . 33
Error Handling Routines . 33

ESTAE and ESTA! Exit Routines . 33
When are Error Handling Routines Needed? . 34
Guidelines for Writing ESTAE and ESTAI Exit Routines 36

Chapter 8. lnstalllng a Command Processor . 37

© Copyright IBM Corp. 1988, 1991 vii

Using a Private Step Library . 37
Placing Your Command Processor in SYS1 .CMDLIB 37
Creating Your Own Command Library . 37

Chapter 9. Executing a Command Processor . 39
Writing JCL for Command Execution . 39
Handling Error Conditions . 40

Part II: TSO Programming Services .. 41
· Coding the Macro Instructions . 42

Chapter 1 o. Considerations for Using TSO Services 45
MVS/ESA Considerations . 45

General Interface Considerations . 45
Interface Considerations for the TSO Service Routines 47
Summary of Macro Interfaces . 48

Interfacing with the TSO Service Routines . 50
The Command Processor Parameter List . 50
Services that Access Data in the CPPL . 51

Chapter 11. Invoking TSO Service Routines with the CALL TSSR Macro
Instruction . 53

When to Use the CALLTSSR Macro Instruction . 53
Syntax and Operands . 54
Example .. 54

Chapter 12. Verifying Subcommand Names with the Command Scan Service
Routine . 55

Functions Performed by the Command Scan Service Routine 55
Syntax Requirements for Command and Subcommand Names 56
Invoking the Command Scan Service Routine (IKJSCAN) 57

The Command Scan Parameter List . 58
Passing Flags to the Command Scan Service Routine 59
The Command Scan Output Area . 59

Operation of the Command Scan Service Routine . 60
Output from the Command Scan Service Routine . 61
Return Codes from the Command Scan Service Routine 61

Chapter 13. Verifying Command and Subcommand Operands with the Parse
Service Routine . 63

Overview of the Parse Service Routine (IKJPARS) . 63
The Parse Macro Instructions . 63

Character Types Accepted by the Parse Service Routine 66
Services Provided by the Parse Service Routine . 67

Notifying the User about Missing or Required Operands 67
Issuing Second Level Messages . 67
Passing Control to Validity Checking Routines . 68
Translation to Uppercase . 68
Insertion of Default Values . 68
Insertion of Keywords . 68

What You Need to do to Use the Parse Service Routine 68
Defining Command Operand Syntax . 69

Positional Operands . 70
Keyword Operands . 80

Using the Parse Macro Instructions to Define Command Syntax 81

Viii MVS/ESA TSO Programming

Using IKJPARM to Begin the PCL and the POL . 82
Using IKJPOSIT to Describe a Delimiter-Dependent Positional Operand 83
Using IKJTERM to Describe a Delimiter-Dependent Positional Operand 88
Using IKJOPER to Describe a Delimiter-Dependent Positional Operand 93
Using IKJRSVWD to Describe a Delimiter-Dependent Positional Parameter . 96
Using IKJIDENT to Describe a Non-Delimiter-Dependent Positional Operand 99
Using IKJKEYWD to Describe a Keyword Operand 104
Using IKJNAME to List Keyword or Reserved Word Operand Names 105
Using IKJSUBF to Describe a Keyword Subfield 107
Using IKJENDP to End the Parameter Control List 108
Using IKJRLSA to Release Virtual Storage Allocated by Parse 108
Examples Using the Parse Macro Instructions . 109

Using Validity Checking Routines 115
Passing Control to Validity Checking Routines 115
Return Codes from Validity Checking Routines 116

Passing Control to the Parse Service Routine 117
The Parse Parameter List . 117

Checking Return Codes from the Parse Service Routine 119
Examining the POL Returned by the Parse Service Routine 121

The POL Header . 121
PDEs Created for Positional Operands Described by IKJPOSIT 121
PDEs Created for Positional Operands Described by IKJTERM 128
The PDE Created for Expression Operands Described by IKJOPER 132
The PDE Created for Reserved Word Operands Described by IKJRSVWD ... 132
The PDE Created for Positional Operands Described by IKJIDENT 133
How the List and Range Options Affect PDE Formats 134
The PDE Created for Keyword Operands Described by IKJKEYWD 141

Examples Using the Parse Service Routine 142

Chapter 14. Using the TSO 110 Service Routines 153
Functions of the 1/0 Service Routines 153
Passing Control to the 1/0 Service Routines

Addressing Mode Considerations
The Input/Output Parameter List

Using the 1/0 Service Routine Macro Instructions
Using STACK to Change the Source of Input
Using GETLINE to Get a Line of Input
Using PUTLINE to Write a Line to the Output Data Set
Using PUTGET to Put a Message Out and Obtain a Line of Input in Response

Chapter 15. Using the TSO Message Handling Routine (IKJEFF02)
Functions of the TSO Message Issuer Routine (IKJEFF02)

Passing Control to the TSO Message Issuer Routine
The Input Parameter List
Using IKJTSMSG to Describe Message Text and Insert Locations

Return Codes from the TSO Message Issuer Routine
An Example Using IKJTSMSG

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR)
Functions of the Dynamic Allocation Interface Routine
Passing Control to DAIR

The DAIR Parameter List (DAPL)
The DAIR Parameter Block (DAPB)
Return Codes from DAIR
Return Codes from Dynamic Allocation

Contents

154
154
154
155
156
170
177
192

201
201
201
202
204
205
205

207
207
208
208
209
229
230

ix

Chapter 17. Using the DAIRFAIL Routine (IKJEFF18) 231
Functions of DAIRFAIL 231
Passing Control to DAIRFAIL 231

The Parameter list . 231
Return Codes from DAIRFAIL 234

Chapter 18. Analyzing Error Conditions with the GNRLFAILNSAMFAIL Routine
(IKJEFF19) , . 235

Functions of GNRLFAIL/VSAMFAIL 235
Passing Control to GNRLFAIL/VSAMFAIL 235

The Parameter list . 235
Return Codes from GNRLFAIL/VSAMFAIL 237

Chapter 19. Using IKJEHCIR to Retrieve System Catalog Information
Functions of the Catalog Information Routine
Passing Control to the Catalog Information Routine

The Catalog Information Routine Parameter list (CIRPARM)
Output from the Catalog Information Routine
Return Codes from IKJEHCIR
Return Codes from LOCATE

239
239
239
240
241
243
244

Part Ill. TSO Commands . 245

Chapter 20. Command Format and Syntax . 247
Using a TSO Command 247

Positional Operands . 247
Keyword Operands . 247
TSO Command Syntax . 248
Abbreviating Keyword Operands 248
Comments . 248
Delimiters ... 249

Chapter 21. Command Descriptions 251
TSO Command Summary 251
CALL Command ... 251

Return Codes for the CALL Command 253
Examples . 253

TIME Command ... 254
Return Code for the TIME Command 254

WHEN/END Command 255
Return Codes for the WHEN Command 255
Example . 255

Index 257

X MVS/ESA TSO Programming

Figures

1. Summary of TSO Services . 3
2. Control Block Interface between the TMP and a Command Processor 7
3. The Command Processor Parameter List (CPPL) 8
4. Format of the Command Buffer . 8
5. A Command Processor Using the Parse Service Routine 14
6. A Sample Command Processor . 15
7. Format of the Input Buffer . 29
8. ABEND, ESTAI, ESTAE Relationship . 35
9. JCL Needed to Process Commands . 39

10. Interface Considerations for TSO Service Routines 47
11. Interface Rules for Using Macro Instructions . 49
12. Control Block Interface between the TMP and a Command Processor . . . 50
13. The Command Processor Parameter List (CPPL) 51
14. The CALLTSSR Macro Instruction . 54
15. Format of the Command Buffer . 55
16. Character Types Recognized by Command Scan 57
17. The Parameter List Structure Passed to Command Scan 58
18. The Command Scan Parameter List . 59
19. The Command Scan Output Area . 60
20. Return from Command Scan - CSOA and Command Buffer Settings 61
21. A Command Processor Using the Parse Service Routine 65
22. Character Types Recognized by the Parse Service Routine 66
23. Delimiter-Dependent Operands . 70
24. Example of Indirect Addressing . 73
25. An Address Expression with Indirect Addressing 74
26. The Parse Macro Instructions . 81
27. The IKJPARM Macro Instruction . 82
28. The Parameter Control Entry Built by IKJPARM 83
29. The IKJPOSIT Macro Instruction . 84
30. The Parameter Control Entry Built by IKJPOSIT 87
31. The IKJTERM Macro Instruction . 89
32. The Parameter Control Entry Built by IKJTERM 92
33. The IKJOPER Macro Instruction . 93
34. The Parameter Control Entry Built by IKJOPER 95
35. The IKJRSVWD Macro Instruction . 97
36. The Parameter Control Entry Built by IKJRSVWD 98
37. The IKJIDENT Macro Instruction . 99
38. The Parameter Control Entry Built by IKJIDENT 102
39. The IKJKEYWD Macro Instruction 104
40. The Parameter Control Entry Built by IKJKEYWD 104
41. The IKJNAME Macro Instruction (when used with the IKJKEYWD Macro

Instruction) .. 105
42. The IKJNAME Macro Instruction (when used with the IKJRSVWD Macro

Instruction) .. 106
43. The Parameter Control Entry Built by IKJNAME 106
44. The IKJSUBF Macro Instruction 107
45. The Parameter Control Entry Built by IKJSUBF 108
46. The IKJENDP Macro Instruction . 108
47. The Parameter Control Entry·Built by IKKJENDP 108
48. The IKJRLSA Macro Instruction 109
49. Example 1 - Using Parse Macros to Describe Command Operand Syntax 110
50. Example 2 - Using Parse Macros to Describe Command Operand Syntax 111

© Copyright IBM Corp. 1988, 1991 Xi

51. Example 3 - Using Parse Macros to Describe Command Operand Syntax 112
52. Example 4 - Using Parse Macros to Describe Command Operand Syntax 113
53. Example 5 - Using Parse Macros to Describe Command Operand Syntax 114
54. Format of the Validity Check Parameter List . 116
55. Return Codes from a Validity Checking Routine 116
56. The Parse Parameter List . 118
57. Return Codes from the Parse Service Routine 119
58. Control Flow between Command Processor and the Parse Service

Routine ... 120
59. A POL Showing PDEs that Describe a List 135
60. A POL Showing PDEs Describing a Range 136
61. A POL Showing PDEs that Describe LIST and RANGE Options 137
62. POL - LIST and RANGE Acceptable, Single Operand Specified 138
63. POL - LIST and RANGE Acceptable, Single Range Specified 138
64. POL - LIST and RANGE Acceptable, LIST Specified 139
65. POL - LIST and RANGE Acceptable, List of Ranges Specified 140
66. Example 1 - Using Parse Macros to Describe Command Operand Syntax 142
67. Example 1 -The PRDSECT DSECT Created by Parse 142
68. Example 1 - The PRDSECT DSECT and the POL 143
69. Example 2 - Using Parse Macros to Describe Command Operand Syntax 145
70. Example 2 - The IKJPARMD DSECT Created by Parse 145
71. Example 2 -The IKJPARMD OSECT and the POL 146
72. Example 3 - Using Parse Macros to Describe Command Operand Syntax 147
73. Example 3 - The PARSEAT DSECT Created by Parse 147
74. Example 3 -The PARSEAT DSECT and the POL 148
75. Example 4 - Using Parse Macros to Describe Command Operand Syntax 149
76. Example 4 -The PARSELST OSECT 149
77. Example 4 -The PARSELST DSECT and the POL 150
78. Example 5 - Using Parse Macros to Describe Command Operand Syntax 151
79. Example 5 - The PARSEWHN DSECT 151
80. Example 5 -The PARSEWHN OSECT and POL 152
81. The TSO 1/0 Service Routines 153
82. The Input/Output Parameter List 155
83. The List Form of the STACK Macro Instruction 157
84. The Execute Form of the STACK Macro Instruction 159
85. The STACK Parameter Block 163
86. The List Source Descriptor 164
87. Return Codes from the STACK Service Routine 164
88. STACK Control Blocks: No In-Storage List 165
89. STACK Control Blocks: In-Storage List Specified 166
90. Example of STACK Specifying an In-storage List as the Input Source 168
91. The List Form of the GETLINE Macro Instruction 170
92. The Execute Form of the GETLINE Macro Instruction 172
93. The GETLINE Parameter Block 174
94. Format of the GETLINE Input Buffer 175
95. Return Codes from the GETLINE Service Routine 181
96. GETLINE Control Blocks - Input Line Returned 176
97. The List Form of the PUTLINE Macro Instruction 177
98. The Execute Form of the PUTLINE Macro Instruction 179
99. The PUTLINE Parameter Block 181
100. PUTLINE Single Line Data Format 182
101. PUTLINE Multiline Data Format 183
102. Example Showing PUTLINE Single Line Data Processing 184
103. Example Showing PUTLINE Multiline Data Processing 185
104. The Output Line Descriptor (OLD) 186
105. Control Block Structures for PUTLINE Messages 187

XII MVS/ESA TSO Programming

106. PUTLINE Functions and Message Types 188
107. Return Codes from the PUTLINE Service Routine 190
108. Example Showing PUTLINE Text Insertion 191
109. The List Form of the PUTGET Macro Instruction 193
110. The Execute Form of the PUTGET Macro Instruction 194
111. The PUTGET Parameter Block 196
112. The Output Line Descriptor (OLD) 197
113. Control Block Structures for PUTGET Output Messages 198
114. Format of the PUTGET Input Buffer 199
115. Return Codes from the PUTGET Service Routine 206
116. Standard Format of Input Parameter List 202
117. The IKJTSMSG Macro Instruction 204
118. Return Codes from the TSO Message Issuer Routine 205
119. An Example Using the IKJTSMSG Macro Instruction 206
120. The DAIR Parameter List (DAPL) 208
121. DAIR Entry Codes and Their Functions 209
122. DAIR Parameter Block for Entry Code'OO' 210
123. DAIR Parameter Block for Entry Code X'04' 211
124. DAIR Parameter Block for Entry Code X'08' 213
125. DAIR Parameter Block for Entry Code X'OC' 216
126. DAIR Parameter Block for Entry Code X'10' 216
127. DAIR Parameter Block for Entry Code X'14' 217
128. DAIR Parameter Block for Entry Code X'18' 218
129. DAIR Parameter Block for Entry Code X'24' 219
130. DAIR Parameter Block for Entry Code X'28' 222
131. DAIR Parameter Block for Entry Code X'2C' 223
132. DAIR Parameter Block for Entry Code X'30' 224
133. DAIR Parameter Block for Entry Code X'34' 226
134. DAIR Attribute Control Block (DAIRACB) 227
135. Return Codes from DAIR 229
136. Return Codes from Dynamic Allocation 230
137. The Parameter List (DFDSECTD DSECT) 232
138. The Parameter List (DFDSECT2 DSECT) 233
139. Return Codes from DAIRFAIL 234
140. The Parameter List (GFDSECTD DSECT) 235
141. Return Codes from GNRLFAIL/VSAMFAIL 237
142. The Catalog Information Routine Parameter List 240
143. The Data Returned for each Entry Code 241
144. User Work Area for CIRPARM 242
145. Volume Information Format 242
146. Return Codes from IKJEHCIR 243
147. Return Codes from LOCATE 244
148. TSO Command Syntax 248
149. Allocating and Creating an Input Data Set 252

Figures XIII

XIV MVS/ESA TSO Programming

Summary of Changes

Summary of Changes
for GC28·1565·2
MYS/System Product Version 3 Release 1.3

Changed Information:

Service updates.

© Copyright IBM Corp. 1988, 1991 xv

XVI MVS/ESA TSO Programming

Chapter 1. Introduction

Command processors are a specific type of program that you can write to run in the
TSO environment. You can write your own command processors to add to the set of
commands provided by TSO.

TSO provides programming services that support a wide range of functions. You
can use the programming services described in this book in system or application
programs, including command processors.

Executing TSO Commands
To execute TSO commands, you must write JCL statements and submit them to the
operating system. Use the SYSTSIN DD statement in your JCL to control input to
your job and indicate which commands are to be executed. Chapter 9, "Executing a
Command Processor" on page 39 describes the JCL statements you must write to
execute a command.

Identifying Authorized Programs and Commands
To allow TSO users to execute authorized and unauthorized programs within a
single job step, a system programmer must maintain the access lists in CSECTs
IKJEFTE2 and IKJEFTEB.

The IBM-supplied lists for APFCTABL (in IKJEFTE2) and APFPTABL (in IKJEFTEB)
contain blank entries which inhibit the execution of APF-authorized programs. The
APFCTABL list contains the names of authorized command processors executed by
the TMP, and the APFPTABL list contains the names of authorized programs to be
executed by the CALL command. The modules that are attached for these names
must be link edited with APF authorization. If a name does not appear in these lists,
the program is attached without authorization. If a program is to be executed by
both the TMP and the CALL command, then its name must appear in both lists.

The format of the list is a sequence of eight-character command name entries. This
list is terminated by an entry consisting of eight blanks. Command name entries of
less than eight characters must be left-justified and padded to the right with blanks
to fill the eight-character entry.

The first entry to be examined by the TMP in either IKJEFTE2 or IKJEFTEB will be
that entry associated with the respective ENTRY name APFCTABL or APFPTABL. If
a command has an abbreviation, it must appear as a separate entry. A null list
consists of just the final eight blanks.

© Copyright IBM Corp. 1988, 1991 1

For example, if commands R1USER with abbreviation R1 and P3SRCH are to be
executed with authorization, then the list should look like:

ENTRY APFCTABL
IKJEFTE2 CSECT

DC CL8' IKJEFTE2'
DC CL8' 76.133' DATE MAY CHANGE

APFCTABL DC CL8'R1USER I

DC CL8'Rl
DC CL8'P3SRCH I

DC CL8'
END

If an installation wishes to allow access to IEBCOPY through CALL, then the list
should look like:

ENTRY APFPTABL
IKJEFTE8 CSE CT

DC CL8' IKJEFTE8'
DC CL8' 76,133' DATE MAY CHANGE

APFPTABL DC CL8'1EBCOPY I

DC CL8'
END

The lists in APFCTABL and APFPTABL must contain only the eight-character strings.
The installation can reserve extra space by additional terminal blank strings.
Nonblank entries following a blank entry are not examined.

You can replace the IBM-supplied modules IKJEFTE2 and IKJEFTE8 by link editing
installation-supplied modules with these names into TMP load module IKJEFT02 in
SYS1.LPALIB.

Consult the output from stage 1 for correct link edit information. Any program that
depends upon a job step environment such as the TMP should not be placed in the
lists.

Writing Command Processors
You can write command processors to replace or add to the set of commands
provided by TSO. By writing your own command processors, your installation can
add to or modify TSO to better suit the needs of its users.

A command processor is a program written in assembler language that receives
control when a command name is specified in the input data controlled by the
SYSTSIN DD statement in a user's JCL. It is given control by the terminal monitor
program (TMP), a program that provides an interface between TSO users and
command processors, and has access to many system services.

The main difference between command processors and other programs is that when
a command processor is invoked, it is passed a command processor parameter list
(CPPL) that gives the program access to information about the caller and to system
services.

Command processors must be able to communicate with the user through the job
output data set and obtain input data, as needed. Command processors can
recognize subcommand names specified in the input data and then load and pass
control to the appropriate subcommand processor.

2 MVS/ESA TSO Programming

You can use many of the services documented in this book to write a command
processor. For guidelines on how to write a command processor, what TSO
services to use, and how to install and execute the command processor, refer to
Part I.

Overview of TSO Programming Services
TSO provides services that your programs can use to perform the tasks described
below. Figure 1 summarizes the services provided by TSO.

Figure 1. Summary of TSO Services

Task Service Chapter
Reference

Invoking TSO service routines CALL TSSR macro instruction Chapter 11

Checking the syntax of Command scan service routine Chapter 12
subcommand names

Checking the syntax of command Parse service routine Chapter 13
and subcommand operands

Processing 110 TSO 1/0 service routines Chapter 14
TSO Message Handling Routine Chapter 15

Allocating, concatenating and Dynamic allocation interface Chapter 16
freeing data sets routine

Analyzing return codes DAIRFAIL Chapter 17
GNRLFAIL/VSAMFAIL Chapter 18

Retrieving information from the Catalog information routine Chapter 19
system catalog

Invoking TSO Service Routines
To pass control to certain TSO service routines, use the CALLTSSR macro
instruction. See Chapter 11, "Invoking TSO Service Routines with the CALLTSSR
Macro Instruction" on page 53.

Checking the Syntax of Subcommand Names
Use the command scan service routine in your command processors to validate a
subcommand name. See Chapter 12, "Verifying Subcommand Names with the
Command Scan Service Routine" on page 55.

Checking the Syntax of Command and Subcommand Operands

Processing 1/0

Use the parse service routine to validate command or subcommand operands. See
Chapter 13, "Verifying Command and Subcommand Operands with the Parse
Service Routine" on page 63.

TSO offers several services for use in processing 1/0 and issuing messages.

• You can use the TSO 1/0 service routines (STACK, GETLINE, PUTLINE and
PUTGET) in a command processor to control the source of input, and write a
line of output or obtain a line of input. The 1/0 service routines can be used to
issue messages. See Chapter 14, "Using the TSO 110 Service Routines" on
page 153.

Chapter 1. Introduction 3

• Your command processors can use the TSO message issuer routine (IKJEFF02)
to issue messages to the output data set. See Chapter 15, "Using the TSO
Message Handling Routine (IKJEFF02)" on page 201.

Processing Data Sets
TSO provides several services that your programs can use to process data sets.

Allocating, Concatenating and Freeing Data Sets
TSO provides the dynamic allocation interface routine (DAIR) to allocate, free,
concatenate and deconcatenate data sets during program execution. However,
because of the reduced function and additional system overhead associated with
DAIR, your programs should access dynamic a/location directly, using SVC 99. For a
complete discussion of dynamic allocation, see SPL: Application Development
Guide. DAIR is discussed in Chapter 16, "Using the Dynamic Allocation Interface
Routine (DAIR)" on page 207.

Retrieving Information from the System Catalog
Use the catalog information routine (IKJEHCIR) to retrieve information from the
system catalog, such as data set name, index name, control volume address or
volume ID. See Chapter 19, "Using IKJEHCIR to Retrieve System Catalog
Information" on page 239.

Analyzing Return Codes
Use the DAIRFAIL routine (IKJEFF18) to analyze return codes from dynamic
allocation (SVC 99) or DAIR and issue appropriate error messages. See
Chapter 17, "Using the DAIRFAIL Routine (IKJEFF18)" on page 231.

Use the GNRLFAIL/VSAMFAIL routine (IKJEFF19) to analyze VSAM macro
instruction failures, subsystem request failures, parse service routine or PUTLINE
failures, and ABEND codes, and issue an appropriate error message. See
Chapter 18, "Analyzing Error Conditions with the GNRLFAIL/VSAMFAIL Routine
(IKJEFF19)" on page 235.

Overview of TSO Commands
The following commands are provided by TSO:

Command

CALL

TIME

WHEN/END

Function

Loads and executes a program.

Provides the date and time of day.

Tests return codes from programs invoked from an
immediately preceding CALL command, and takes a
prescribed action if the return code meets a specified
condition.

For information about the TSO commands, refer to Part Ill of this book.

4 MVS/ESA TSO Programming

Part I: Writing and Executing a Command Processor

You can write command processors to replace or add to the set of commands
provided by TSO. By writing your own command processors, your installation can
add to or modify TSO to better suit the needs of its users.

A command processor is a program that is given control by the terminal monitor
program (TMP) when you specify the command name as input data to a job that
executes the TMP. The TMP provides an interface between TSO users and
command processors and has access to many system services.

If you choose to write your own command processors, you can use the programming
services provided by TSO to perform many of the functions required by a command
processor. The programming services available in TSO consist of service routines
and macros, and are discussed in "Part II: TSO Programming Services" on
page 41.

Part I of this book contains several chapters that describe what you must do to write,
install, and execute a command processor. Chapter 2 presents the concepts and
terminology that you must understand before you read the later chapters. Chapter 3
outlines the steps to follow when writing a command processor and refers you to
later chapters for the details of each step. Read all of chapters 2 and 3 and then
selectively read the subsequent chapters.

© Copyright IBM Corp. 1988, 1991 5

6 MVS/ESA TSO Programming

Chapter 2. What is a Command Processor?

A command processor is a program invoked by the terminal monitor program (TMP)
when you specify the command name as input data to a job that executes the TMP.
The TMP is a program that accepts and interprets commands, and causes the
appropriate command processor to be scheduled and executed. The TMP also
communicates with the user through the output data set and responds to abnormal
terminations.

The TSO Environment
The TMP determines whether data in the input stream is a command name. If a
command is specified, the TMP attaches the requested command processor and the
command processor then performs the functions requested by the user. When the
command processor completes and returns control to the TMP, the TMP detaches
the command processor.

The Command Processor Parameter List (CPPL)

Terminal
Monitor
Program

The CPPL is a four-word parameter list that is located in subpool 1. The control
block interface between the TMP and an attached command processor is shown in
Figure 2.

ATTACH

Register 1

Command
Processor

CPPL

Figure 2. Control Block Interface between the TMP and a Command Processor

© Copyright IBM Corp. 1988, 1991 7

GENERAL-USE PROGRAMMING INTERFACE

When the terminal monitor program attaches a command processor, register 1
contains a pointer to a command processor parameter list (CPPL) containing
addresses required by the command processor. Figure 3 describes the contents of
the CPPL.

Figure 3. The Command Processor Parameter List (CPPL)

Number Field Contents or Meaning
of Bytes

4 CPPLCBUF The address of the command buffer for the currently
attached command processor.

4 CPPLUPT The address of the user profile table (UPT). Use the
IKJUPT mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the UPT.

4 CPPLPSCB The address of the protected step control block (PSCB).
Use the IKJPSCB mapping macro, which is provided in
SYS1 .MACLIB, to map the fields in the PSCB.

4 CPPLECT The address of the environment control table (ECT). Use
the IKJECT mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the ECT.

The first word of the CPPL contains the address of the command buffer for the
currently attached command processor. As the TMP receives a line of input from
the input stream, the input is placed into the command buffer. After determining
that the input is a command name, the TMP attaches the appropriate command
processor. Figure 4 shows the format of the command buffer.

'--~-Le_n_g-th~~.1-~-0-f-fs_e_t~--'~~~~~~-~-ex_t~~~~~~~(~
2 Bytes 2 Bytes

Length

Figure 4. Format of the Command Buffer

When your command processor receives control, the fields in the command buffer
appear as follows:

• The two-byte length field contains the length of the command buffer, including
the four-byte header.

• If the user specified operands, the offset field contains the number of text bytes
preceding the first operand. Otherwise, the offset field contains the length of the
text portion of the buffer.

• The text field contains the command name, in uppercase characters, followed
by any operands the user specified .

...__ ____ End of GENERAL-USE PROGRAMMING INTERFACE ----~

8 MVS/ESA TSO Programming

Command Syntax
A command consists of a command name, optionally followed by one or more
operands. Operands provide the specific information required for the command
processor to perform the requested operation.

There are two types of operands that can follow a command name: Positional
operands and keyword operands. Positional operands immediately follow the
command name and must be in a specific order. Keyword operands are specific
names or symbols that have a particular meaning to the command processor. A
TSO user can enter keyword operands anywhere in the command line as long as
they follow all positional operands. A keyword operand can have a subfield
associated with it. A subfield consists of a parenthesized list of positional or
keyword operands directly following the keyword.

A TSO user can enter comments in the command line anywhere a blank might
appear by enclosing the text within the delimiters I* and */.

What is a Subcommand Processor?
If your command processor must perform a large number of complex functions, you
can divide this work into individual operations. Each operation can be defined and
performed by a subcommand processor. A TSO user requests one of the operations
by first specifying the name of the command, and then specifying a subcommand to
indicate which individual operation should be performed.

Subcommands are similar to commands in many ways, including syntax and the
way they are given control. A subcommand processor is attached by the command
processor and is passed a pointer to the CPPL in register 1.

Chapter 2. What is a Command Processor? 9

10 MVS/ESA TSO Programming

Chapter 3. What You Need to Do to Write a Command
Processor

This chapter describes the steps to follow when writing, installing and executing a
command processor. Further details are contained in subsequent chapters.

1. Write the assembler language program.

© Copyright IBM Corp. 1988, 1991

• Access the command processor parameter list (CPPL).

When a command processor receives control from the TMP, register 1
contains the address of the CPPL. Use the IKJCPPL DSECT, provided in
SYS1.MACLIB, to map the fields in the CPPL. Your command processor can
then access the symbolic field names within the IKJCPPL DSECT by using
the address contained in register 1 as the starting address for the DSECT.
The use of the DSECT is recommended since it protects the command
processor from any changes to the CPPL.

• Validate any operands entered with the command.

Your command processor must verity that the operands the user specified
on the command are valid. Use the parse service routine (IKJPARS) to scan
and verify the operands. See Chapter 4, "Validating Command Operands"
on page 13 for a description of the functions provided by the parse service
routine.

• Communicate with the user through the job stream.

Your command processor may need to obtain data from the input stream,
and write messages or data to the output data set. For information on 1/0,
see Chapter 5, "Communicating with the User through the Job Stream" on
page 25.

• Perform the function of the command according to any operands the user
specified.

The operands that the user specified on the command indicate which
functions your command processor should perform. You can use system
services and the services provided by TSO to perform many functions.

• Recognize and pass control to any subcommands.

If you have chosen to implement subcommands, your command processor
must be able to recognize a subcommand name specified in the input
stream and pass control to the requested subcommand processor. For a
description of the steps involved, see Chapter 6, "Passing Control to
Subcommand Processors" on page 29.

• Intercept and process abnormal terminations.

Your command processor must be able to intercept abnormal terminations
and perform the processing needed to prevent abnormal termination of the
job step. For information on writing error handling routines, see Chapter 7,
"Processing Abnormal Terminations" on page 33.

11

GENERAL-USE PROGRAMMING INTERFACE

• Set the return code in register 15 and return control to the TMP.

When returning control to the TMP, your command processor must follow
standard linkage conventions and set a return code in register 15. Your
command processor should set one of the following return codes in register
15:

Return Code Meaning
Dec(Hex)

0(0) The command processor has executed normally.

12(C) An error encountered during execution has caused the command
processor to terminate .

..__ ____ End of GENERAL-USE PROGRAMMING INTERFACE ____ ___,

2. Assemble lhe command processor.

After you code your command processor, you must assemble the source into
object code and place it in an object module.

3. Install the command processor.

For a description of the methods that you can use to add your new command
processor to TSO, see Chapter 8, "Installing a Command Processor" on
page 37.

12 MVS/ESA TSO Programming

Chapter 4. Validating Command Operands

When your command processor receives control, it must verify that operands
entered with the command are valid and that required operands are specified. This
chapter introduces the parse service routine and describes how it can be used to
determine the validity of command operands. For a complete description of the
parse service routine, see Chapter 13, "Verifying Command and Subcommand
Operands with the Parse Service Routine" on page 63.

Using the Parse Service Routine
When you write a command processor to run under TSO, you need a method to
determine whether the command operands specified by the user are syntactically
correct. The parse service routine (IKJPARS) performs this function by searching
the command buffer for valid operands.

Parse recognizes positional and keyword operands. Positional operands occur first,
and must be in a specific order. Keyword operands can be entered in any order, as
long as they follow all of the positional operands.

Although parse recognizes comments present in the command buffer, it processes
them by simply skipping over them. Comments, which are indicated by the
delimiters I* and*/, are not removed from the command buffer.

Before invoking the parse service routine, your command processor must use the
parse macro instructions to create a parameter control list (PCL), which describes
the permissible operands. You then invoke the parse service routine to compare
the information supplied by your command processor in the PCL to the operands in
the command buffer. Each acceptable operand must have an entry built for it in the
PCL; an individual entry is called a parameter control entry (PCE).

Parse returns the results of scanning and checking the operands in the command
buffer to the command processor in a parameter descriptor list (POL). The entries in
the POL, called parameter descriptor entries (POEs), indicate which operands are
present in the command buffer. These operands indicate to your command
processor the functions the user is requesting.

When your command processor invokes the parse service routine, it must pass a
parse parameter list (PPL), which contains pointers to control blocks and data areas
that are needed by parse. Addresses needed to access the PCL, POL and command
buffer are included in the parse parameter list.

When the parse service routine finishes processing, it passes a return code in
register 15 to your command processor. Your command processor should issue
meaningful error messages for all non-zero return codes. The GNRLFAIL routine,
which is discussed in Chapter 18, "Analyzing Error Conditions with the
GNRLFAIL/VSAMFAIL Routine (IKJEFF19)" on page 235, can be used for this
purpose.

Figure 5 on page 14 shows the interaction between a command processor and the
parse service routine.

© Copyright IBM Corp. 1988, 1991 13

Command Buffer

Length Offset Command Name Operand 1 Operand 2 Operand 3

0 2 4

Command Processor Parse Service Routine

(D Issues Parse macro
instructions to build
a PCL describing
valid operands PCL

@ Compares PCE's to
operands in the
Command Buffer.

• label1 Macro
• label2 Macro
• label3 Macro

These macro
instructions also
create the
IKJPARMD DSECT.

IKJPARMD
DSECT
r-----------1
I label1 I
I I 1-----------...
I label2 i
I I
I I r-----------1
! label3 I
l I 1 ___________ .J

PCE1

PCE2

PCE3

POL

PDE f<lllll••·········· ©Builds the POL. >-------<

PDE

PDE

@The Command
Processor uses the
IKJPARMD DSECT

@ Return to the Command Processor

to access the
various PDEs within
the POL.

Figure 5. A Command Processor Using the Parse Service Routine

Checking Positional Operands for Logical Errors
Because the parse service routine checks the command operands only for syntax
errors, you must write validity checking routines when it is also necessary to check
positional operands for logical errors. Each positional operand can have a unique
validity checking routine.

To indicate that a validity checking routine is to receive control, code the entry point
address of the routine on the parse macro instruction that describes the operand.
The validity checking routine you provide for a positional operand receives control
after the parse service routine determines that the operand is specified and is
syntactically valid.

When parse passes control to a validity checking routine, it passes a validity check
parameter list, which contains the address of the PDE parse built to describe the
positional operand. Your validity checking routine can use the information in the
PDE to perform additional checking on the operand.

14 MVS/ESA TSO Programming

When processing is complete, the validity checking routine must pass a return code
in general register 15 to the parse service routine. The return code informs parse of
the results of the validity check and determines the action that parse takes.

A Sample Command Processor
The sample command processor in Figure 6 demonstrates the use of the parse
service routine. A validity checking routine is also provided. The syntax for the
sample command is:

PROCESS dsname [ACTION]
NOACTION

where dsname is a positional operand and ACTION/NOACTION are keyword
operands. NOACTION is the default if neither ACTION nor NOACTION are specified.

PROCESS TITLE 'SAMPLE TSO COMMAND PROCESSOR
PROCESS CSECT ,
PROCESS AMODE 24 COMMAND'S ADDRESSING MODE
PROCESS RMODE 24 COMMAND'S RESIDENCY MODE

* *
* TITLE - PROCESS *
* *
* DESCRIPTION - SAMPLE TSO COMMAND PROCESSOR *
* *
* FUNCTION - THIS SIMPLE COMMAND PROCESSOR DEMONSTRATES THE USE *
* OF THE PARSE SERVICE ROUTINE TO SYNTAX CHECK THE *
* COMMAND OPERANDS. *
* *
* OPERATION - PROCESS IS A REENTRANT COMMAND PROCESSOR THAT PERFORMS *
* THE FOLLOWING PROCESSING: *
*
*
*
*
*
*
*
*
*
*
*

*
1 - ESTABLISHES ADDRESSABILITY AND SAVES THE CALLER'S REGISTERS *
2 - ISSUES A GETMAIN FOR DYNAMIC STORAGE *
3 - USES THE PARSE SERVICE ROUTINE (IKJPARS) TO DETERMINE THE *

VALIDITY OF THE COMMAND OPERANDS *
4 - PROVIDES A VALIDITY CHECKING ROUTINE TO PERFORM ADDITIONAL *

CHECKING OF THE POSITIONAL OPERAND *
5 - ISSUES A FREEMAIN TO RELEASE THE DYNAMIC STORAGE *
6 - RESTORES THE CALLER'S REGISTERS BEFORE RETURNING *
7 - RETURNS TO THE TMP WITH A RETURN CODE IN REGISTER 15 *

*

*
PROCESS

*

*

*

CSE CT
STM Rl4,Rl2,12(Rl3)
LR Rll,R15
USING PROCESS,Rll
LR R2,Rl

GETMAIN RU,LV=L_SAVE_AREA
USING SAVEAREA,Rl
ST Rl,8(R13)

ST Rl3,B_PTR

LR Rl3 ,Rl
USING SAVE_AREA,Rl3
DROP Rl

SAVE CALLER'S REGISTERS
ESTABLISH ADDRESSABILITY WITHIN
THIS CSECT
SAVE THE POINTER TO THE CPPL
AROUND THE GETMAIN
OBTAIN A DYNAMIC WORK AREA
AND ESTABLISH ADDRESSABILITY
PUT THE ADDRESS OF PROCESS'S SAVE
AREA INTO THE CALLER'S SAVE AREA
PUT THE ADDRESS OF PROCESS'S SAVE
AREA INTO ITS OWN SAVE AREA
LOAD GETMAINED AREA ADDRESS
POINT TO THE DYNAMIC AREA
DON'T USE Rl ANY MORE

Figure 6 (Part 1 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands 15

GETMAIN RU,LV=L_WORK_AREA OBTAIN A DYNAMIC WORK AREA
USING WORKA,Rl AND ESTABLISH ADDRESSABILITY TO

* THE DYNAMIC WORK AREA
STM R0,Rl,WORK_AREA_GM_LENGTH SAVE LENGTH AND ADDR OF

* DYNAMIC AREA
LR Rl0,Rl GET READY TO USE R10 AS THE
USING WORKA,Rl0 DATA AREA SEGMENT BASE REGISTER
DROP Rl
ST R2,CPPL_PTR SAVE THE POINTER TO THE CPPL

*
*
*

MAINLINE PROCESSING
*
*
*

*

*

*

*

*

*

*

*

XC RETCODE,RETCODE
GETMAIN RU,LV=L_PPL
STM R0,Rl,PPL_LENGTH
GETMAIN RU,LV=L_ANSWER
STM R0,Rl,ANSWER_LENGTH

L R2,PPL_PTR
USING PPL,R2
L Rl,CPPL_PTR
USING CPPL,Rl
MVC PPLUPT,CPPLUPT
MVC PPLECT,CPPLECT
MVC PPLCBUF,CPPLCBUF

L Rl,WORK_AREA_GM_PTR

ST Rl, PPLUWA

DROP Rl
L Rl,ANSWER_PTR

ST
xc

LA

Rl,PPLANS
ECB,ECB

Rl,ECB

INITIALIZE THE RETURN CODE
OBTAIN A DYNAMIC PPL WORK AREA
SAVE LENGTH AND ADDR OF DYNAMIC PPL
OBTAIN A DYNAMIC PPL ANSWER AREA
SAVE LENGTH AND ADDR OF DYNAMIC PPL
ANSWER AREA
GET THE ADDRESS OF THE PPL
AND ESTABLISH ADDRESSABILITY
GET ADDRESS OF CPPL
AND ESTABLISH ADDRESSABILITY
PUT IN THE UPT ADDRESS FROM CPPL
PUT IN THE ECT ADDRESS FROM CPPL
PUT IN THE COMMAND BUFFER ADDRESS
FROM THE CPPL
GET THE ADDRESS OF THE COMMAND
PROCESSOR'S DYNAMIC WORK AREA TO
BE PASSED TO THE VALIDITY CHECK
ROUTINE

GET THE ADDRESS OF THE PARSE
ANSWER AREA AND
STORE IT IN THE PPL
CLEAR COMMAND PROCESSOR'S
EVENT CONTROL BLOCK (ECB)
GET THE ADDRESS OF THE COMMAND
PROCESSOR'S ECB AND

ST Rl,PPLECB PUT IT IN THE PPL
L Rl,PCLADCON GET THE ADDRESS OF THE PCL AND
ST Rl,PPLPCL PUT IT IN THE PPL FOR PARSE
CALLTSSR EP=IKJPARS,MF=(E,PPL) INVOKE PARSE
DROP R2
LTR Rl5,R15
BZ PROCESS
MVC RETCODE(4),ERROR
B CLEANUP

IF PARSE RETURN CODE IS ZERO
PERFORM PROCESSING FOR THE COMMAND
SET CP RETURN CODE TO 12
PREPARE TO RETURN TO THE TMP

Figure 6 (Part 2 of 9). A Sample Command Processor

16 MVS/ESA TSO Programming

*
PROCESS OS 0H
*
*
*
*
* CODE TO PERFORM THE FUNCTION OF THE COMMAND PROCESSOR GOES HERE.
* AFTER CALLING THE PARSE SERVICE ROUTINE TO VALIDATE THE COMMAND
* OPERANDS, USE THE POL RETURNED BY PARSE TO DETERMINE WHICH
* OPERANDS THE USER ENTERED. THEN PERFORM THE FUNCTION REQUESTED
* BY THE USER.
*
*
*
*
*
*

*
* CLEANUP AND TERMINATION PROCESSING
*

*
*
*

*
CLEANUP OS 0H

*

*

*

L Rl,PPL PTR
FREEMAIN Ru:Lv=L_PPL,A=(l)
L Rl,ANSWER PTR
L Rl,0(0,Rl)
IKJRLSA (Rl)

POINT TO PPL IN DYNAMIC WORK AREA
FREE THE STORAGE FOR THE PPL
POINT TO THE ANSWER PLACE
POINT TO THE POL
FREE STORAGE THAT PARSE ALLOCATED
FOR THE POL

L Rl,ANSWER PTR POINT TO THE ANSWER PLACE
FREEMAIN RU,LV;L ANSWER,A=(l) FREE THE STORAGE FOR THE

- ANSWER WORD
L RS,RETCODE SAVE RETURN CODE AROUND FREEMAIN
L Rl,WORK AREA GM PTR POINT TO MODULE WORK AREA
FREEMAIN RU,LV=L WORK-AREA,A=(l)

- - FREE THE MODULE WORKAREA
LR Rl,R13
L Rl3,B_PTR
DROP Rl3

FREEMAIN RU,LV=L SAVE AREA,A=(l)
L R14:12(Rl3)
LR Rl5,R5
LM R0,R12,20(R13)
BSM 0,R14

LOAD PROCESS'S SAVE AREA ADDRESS
CHAIN TO PREVIOUS SAVE AREA

FREE THE MODULE SAVEAREA
HERE'S OUR RETURN ADDRESS
HERE'S THE RETURN CODE
RESTORE REGS 0-12
RETURN TO the TMP

Figure 6 (Part 3 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands 17

* POSITCHK - IKJPOSIT VALIDITY CHECKING ROUTINE *
* *
* IF THE DATA SET NAME HAS A PREFIX OF SYSl THEN THE VALIDITY *
* CHECKING ROUTINE RETURNS A CODE OF 4 TO PARSE. THIS RETURN *
* CODE INDICATES TO PARSE THAT IT SHOULD ISSUE A MESSAGE TO THE *
* JOB OUTPUT STREAM. *
* *
* IF THE DATA SET PREFIX IS ANYTHING OTHER THAN SYSl, THEN *
* THIS ROUTINE RETURNS A CODE OF 0 TO PARSE. *
* *

DROP Rl0 WE WILL REUSE REGISTER 10
POSITCHK OS 00

*

*

*

*
*

*

*
*

*

*
*

STM Rl4,Rl2,12(Rl3)
LR R9,Rl5
USING POSITCHK,R9
LR R2,Rl

SAVE PARSE'S REGISTERS

ESTABLISH ADDRESSABILITY
SAVE THE VALIDITY CHECK PARAMETER
LIST PARSE PASSED TO US

GETMAIN RU,LV=L_SAVE_AREA OBTAIN A DYNAMIC SAVE AREA FOR

USING SAVEAREA,Rl
ST Rl,8(R13)

ST Rl3,B_PTR

LR R13,Rl
USING SAVEAREA,Rl3
L R10,4(R2)

THE POSITCHK ROUTINE
ANO ESTABLISH ADDRESSABILITY
PUT THE ADDRESS OF THIS ROUTINE'S
SAVE AREA INTO PARSE'S SAVE AREA
PUT THE ADDRESS OF THIS ROUTINE'S
SAVE AREA INTO ITS OWN SAVE AREA
FOR CALLING
LOAD ADDRESS OF GETMAINED AREA
AND ESTABLISH ADDRESSABILITY
POINT TO THE COMMAND PROCESSOR'S
ORIGINAL DYNAMIC WORK AREA

USING WORKA,Rl0 DATA AREA SEGMENT BASE REGISTER
ST R2,VALCHK_PARAMETER_LIST_PTR

SAVE THE ADDRESS OF THE VALIDITY
CHECK PARAMETER LIST

LM Rl,R3,0(R2) GET THE ADDRESS OF THE PDE
STM Rl,R3,VALIDITY_CHECK_PARAMETER_LIST

xc
SAVE CONTENTS OF PARAMETER LIST

POSITCHK_RETCOOE,POSITCHK_RETCODE
MAKE SURE WE START WITH A ZERO
RETURN CODE

Figure 6 (Part 4 of 9). A Sample Command Processor

18 MVS/ESA TSO Programming

L R2,PDEADR GET THE ADDRESS OF THE PDE
USING DSNAME_PTR,R2 AND ESTABLISH ADDRESSABILITY TO

* OUR MAPPING OF THE PDE
TM DSNAME_FLAGSl,QUOTE IS THE DATA SET NAME IN QUOTES?
BNO DSNOK NO - DATA SET NAME IS OK
L R4,DSNAME_PTR POINT TO THE DSN
CLC 0(L'SYS1,R4),SYS1 IS HIGH LEVEL DESCRIPTOR SYSl?
BNE DSNOK NO
L R5,FOUR SYSl IS INVALID. SET RC=4
ST R5,POSITCHK_RETCODE SAVE THE RETURN CODE

DSNOK LR Rl,Rl3 LOAD ROUTINE'S SAVE AREA ADDRESS
L Rl3,B_PTR CHAIN TO PREVIOUS SAVE AREA
L R5,POSITCHK_RETCODE LOAD THE RETURN CODE
FREEMAIN RU,LV=L_SAVE_AREA,A=(l)

* FREE THE MODULE WORKAREA
L Rl4,12(Rl3) HERE'S OUR RETURN ADDRESS
LR Rl5,R5 HERE'S THE RETURN CODE
LM R0,Rl2,20(Rl3) RESTORE REGS 0-12
BSM 0,Rl4 RETURN TO PARSE
DROP R9
DROP R10
DROP R13

*

* *
* DECLARES FOR CONSTANTS *
* *

*
PCLADCON DC A(PCLDEFS) ADDRESS OF PCL
FOUR DC F'4' USED TO SET/TEST RETURN CODE
EIGHT DC F'S' USED TO SET/TEST RETURN CODE
TWELVE DC F'12' USED TO SET/TEST RETURN CODE
ERROR DC F'12' USED TO SET/TEST RETURN CODE
SYSl DC C'SYSl. I HIGH-LEVEL DESCRIPTOR

Figure 6 (Part 5 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands 19

*
* PARSE MACROS-USED TO DESCRIBE THE COMMAND-OPERANDS
*

*
*
*

****~"*************************************·*****************************

*
PCLSTART OS 0H
PCLDEFS IKJPARM DSECT=PRDSECT
DSNPCE IKJPOSIT DSNAME,

PROMPT='DATA SET NAME TO BE PROCESSED',
VALIDCK=POSITCHK

ACTPCE IKJKEYWD DEFAULT='NOACTION'
IKJNAME 'ACTION'
IKJNAME 'NOACTION'
IKJENDP

LPCL EQU *-PCLSTART LENGTH OF THE PCL

*
* DECLARES FOR DYNAMIC VARIABLES
*

*
*
*

*
WORK_AREA
WORKA
WORK_AREA_GM_LENGTH
WORK_AREA_GM_PTR
PPL_LENGTH
PPL_PTR
ANSWER_LENGTH
ANSWER_PTR
CPPL PTR
RETCODE
PARSE_RETCODE
POSITCHK_RETCODE
*

DSECT
DS 0F
OS F
DS F
OS F
DS F
DS F
DS F
OS F
OS F
DS F
DS F

ECB OS F
VALCHK_PARAMETER_LIST_PTR OS F
*

START OF DYNAMIC WORK AREA
LENGTH OF WORKAREA
ADDRESS OF WORKAREA
LENGTH OF PPL
ADDRESS OF PPL
LENGTH OF PPL ANSWER AREA
ADDRESS OF PPL ANSWER AREA
ADDRESS OF THE CPPL FROM TMP
THE RETURN CODE
THE RETURN CODE FROM PARSE
THE RETURN CODE FROM THE POSITCHK
VALIDATION EXIT
CP'S EVENT CONTROL BLOCK
POINTER TO THE VALIDITY CHECK
PARAMETER LIST

Figure 6 (Part 6 of 9). A Sample Command Processor

20 MVS/ESA TSO Programming

+
+

*
* MAPPING OF THE THREE WORD VALIDITY CHECK PARAMETER LIST.
*

*
*
*

* PARSE PASSES THIS PARAMETER LIST TO THE VALIDITY CHECK ROUTINE, *
* POSITCHK. IT CONTAINS THE FOLLOWING INFORMATION: *
* 1) PDEADR - THE ADDRESS OF THE PDE FOR THE DATA SET NAME *
* 2) USERWORD - THE ADDRESS OF THE USER WORK AREA THAT THE *
* COMMAND PROCESSOR SUPPLIED TO PARSE IN THE PPL.*
* 3) VALMSG - THE ADDRESS OF A SECOND LEVEL MESSAGE. PARSE *
* INITIALIZES THIS FIELD TO X' GG'. *
* *

*
VALIDITY_CHECK_PARAMETER_LIST OS OF THE VALIDITY CHECK PARAMETER
* LIST
PDEADR OS F ADDRESS OF THE PDE FROM PARSE
USERWORD OS F ADDRESS OF THE WORK AREA WE GAVE
* TO PARSE
VALMSG OS F ADDRESS OF A SECOND LEVEL MESSAGE
* WE CAN GIVE BACK TO PARSE
L_WORK_AREA EQU *-WORK_AREA
* LENGTH OF DYNAMIC WORK AREA
*

*
* DECLARES FOR THE SAVE AREA
*

*
*
*

*
SAVE_AREA
SAVEAREA
PLI_LINK
B_PTR
F PTR
REG14
REGIS
REGG
REGl
REG2
REG3
REG4
REGS
REG6
REG7
REGS
REG9
REGlO
REGll
REG12
L_SAVE_AREA
*

DSECT
OS GCL72 STANDARD SAVE AREA
OS F UNUSED
OS F BACKWARD SAVE AREA POINTER
OS F FORWARD SAVE AREA POINTER
OS F CONTENTS OF REGISTER 14
OS F CONTENTS OF REGISTER lS
OS F CONTENTS OF REGISTER G
OS F CONTENTS OF REGISTER 1
OS F CONTENTS OF REGISTER 2
OS F CONTENTS OF REGISTER 3
OS F CONTENTS OF REGISTER 4
OS F CONTENTS OF REGISTER S
OS F CONTENTS OF REGISTER 6
OS F CONTENTS OF REGISTER 7
OS F CONTENTS OF REGISTER 8
OS F CONTENTS OF REGISTER 9
OS F CONTENTS OF REGISTER lG
OS F CONTENTS OF REGISTER 11
OS F CONTENTS OF REGISTER 12
EQU *-SAVE_AREA

LENGTH OF SAVE AREA

Figure 6 (Part 7 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands 21

* *
* MAPPING OF THE PDE BUILT BY PARSE TO DESCRIBE A DSNAME OR DSTHING *
* OPERAND. *
* *

*
DSNAME_DSTHING DSECT
*
DSNAME PTR
DSNAM(LENGTH_l
*
DSNAME_FLAGSl
*
* a ...
* 1. ..
* .a ..
* .1..
*

DSNAME_MEMBER_PTR
DSNAME_LENGTH_2
*
DSNAME_FLAGS2
*
*
*
*

a ...
1. ..

DSNAME_PASSWORD_PTR
DSNAME LENGTH 3
DSNAME)LAGS3-
*
*
*
*
L_DSNAME_PDE
*

a ...
1. ..

PDE MAPPING FOR THE FOR DSNAME
OR DSTHING

OS F POINTER TO THE DSNAME
DS H LENGTH OF THE DATA SET NAME

EXCLUDING QUOTES
OS CLl FLAGS BYTE

THE DATA SET NAME IS NOT PRESENT
THE DATA SET NAME IS PRESENT
THE DATA SET NAME IS NOT CONTAINED WITHIN QUOTES
THE DATA SET NAME IS CONTAINED WITHIN QUOTES

DS CLl
OS F
OS H

OS CLl

RESERVED
POINTER TO THE MEMBER NAME
LENGTH OF THE MEMBER NAME
EXCLUDING PARENTHESES
FLAGS BYTE

THE MEMBER NAME IS NOT PRESENT
THE MEMBER NAME IS PRESENT

OS CLl
OS F
OS H
OS CLl

RESERVED
POINTER TO THE DATA SET PASSWORD
LENGTH OF THE PASSWORD
FLAGS BYTE

THE DATA SET PASSWORD IS NOT PRESENT
THE DATA SET PASSWORD IS PRESENT

OS CLl RESERVED
EQU *-DSNAME_PTR

* *
* MAPPING OF THE PDE BUILT BY PARSE TO DESCRIBE THE KEYWORD OPERAND *
* *

*
KEYWD_PDE
KEYWD_NUM
*
*
*
L_KEYWD_PDE

DSECT
OS H CONTAINS THE NUMBER OF THE IKJNAME

MACRO INSTRUCTION THAT CORRESPONDS
TO THE OPERAND ENTERED/DEFAULTED

EQU *-KEYWD_PDE

Figure 6 (Part 8 of 9). A Sample Command Processor

22 MVS/ESA TSO Programming

*
IKJPPL

L_PPL EQU *-PPL
*

IKJCPPL
L_CPPL EQU *-CPPL
*
ANSWER DSECT

DS F
*
L_ANSWER EQU *-ANSWER
*

CVT DSECT=YES
*

PARSE PARAMETER LIST

COMMAND PROCESSOR PARAMETER LIST

PARSE ANSWER PLACE. PARSE PLACES A
POINTER TO THE PDL HERE

CVT MAPPING NEEDED FOR CALLTSSR MACRO

*
*
*

EQUATES
*
*
*

*
RO EQU 0
Rl EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
RS EQU 5
R6 EQU 6
R7 EQU 7
RB EQU 8
R9 EQU 9
RlO EQU 10
Rll EQU 11 BASE REGISTER
R12 EQU 12
R13 EQU 13 DATA REGISTER
R14 EQU 14 RETURN ADDRESS
R15 EQU 15 RETURN CODE
QUOTE EQU X'40' FULLY-QUALIFIED DATA SET NAME

END PROCESS

Figure 6 (Part 9 of 9). A Sample Command Processor

Chapter 4. Validating Command Operands 23

24 MVS/ESA TSO Programming

Chapter 5. Communicating with the User through the Job
Stream

Your command processor may need to obtain data from the input stream or write
messages or data to the output data set.

This chapter provides an overview of how to issue messages, perform 1/0 and
change the source of input. For additional information on the macros and services
discussed in this chapter, see "Part II: TSO Programming Services" on page 41.

Issuing Messages

Message Levels

TSO supports three classes of messages:

• Prompting messages
• Mode messages
• Informational messages.

Prompting messages begin with "MISSING" and indicate that a required operand is
missing. For example, the parse service routine issues prompting messages when
the user has specified an incorrect operand or when a required operand is missing.

Mode messages are issued to the output data set to indicate whether the TMP or a
command processor is in control. When a mode message is issued, a new
command or subcommand is obtained from the input stream. For example, the
READY message issued by the TMP is a mode message.

If you have chosen to implement subcommands, your command processor should
issue a mode message to indicate that the command is in control, and to obtain a
subcommand from the input stream.

Informational messages are issued to the output data set to notify the user of the
status of the command being executed. For example, informational messages
should be issued if your command processor encounters an error and must
terminate.

Messages that are issued to the output data set should usually have second level
messages associated with them. Second level messages provide additional
explanation of the initial message and follow the initial message in the output data
set.

Prompting messages can have any number of second level messages. However,
informational messages can have only one second level message associated with
them. Mode messages cannot have second level messages.

© Copyright IBM Corp. 1988, 1991 25

Using the 1/0 Service Routines to Handle Messages
Your command processor can use the 1/0 service routines provided by TSO to
obtain input and issue messages.

Use the PUTLINE service routine, which writes a line of data to the output data set,
to issue prompting and informational messages. Use the PUTGET service routine,
which writes a line of data to the output data set and obtains a line of input, to issue
mode messages.

When issuing prompting or informational messages, you can also use PUTLINE to
place inserts into message text and chain second level messages.

When PUTGET returns a line of data from the input stream, this data is placed in a
buffer that resides in subpool 1 and is owned by your command processor.
Although the buffers returned by PUTGET are automatically freed when your code
relinquishes control, you can use the FREEMAIN macro instruction to free these
buffers.

Using the TSO Message Issuer Routine (IKJEFF02)
If your command processor issues messages with numerous inserts, you should use
the TSO message issuer service routine (IKJEFF02) instead of PUTLINE and
PUTGET. Using IKJEFF02 has several advantages:

• It simplifies the issuing of messages with inserts because the same parameter
list can be used to issue any message.

• This service makes it convenient to place all messages for a command in a
single CSECT. This is important when you have to modify message texts.

• It provides support for second level messages that are associated with
informational messages.

Using Generalized Routines for Issuing Messages
If your command processor invokes TSO services or system services, you should
issue informational messages to notify the user if error conditions occur.

You can use DAIRFAIL to analyze return codes from dynamic allocation (SVC 99)
and the TSO dynamic allocation interface routine (DAIR), and to issue error
messages when appropriate. Use the GNRLFAIL/VSAMFAIL routine to issue error
messages for VSAM macro failures, subsystem request failures, parse service
routine failures, PUTLINE failures, and ABEND codes.

26 MVS/ESA TSO Programming

Performing 1/0
Your command processor may need to write lines of data to the output data set or
obtain data from the input stream. This topic discusses how to perform 1/0 for data
other than messages and subcommand requests.

There are several methods that you can use to perform 1/0.

• The BSAM or QSAM macro instructions provide 1/0 support for programs that
run under TSO. For example, you can use the PUT or WRITE macro instructions
to write data to the output data set and you can use the GET or READ macro
instructions to obtain data from the input stream.

The major benefit of using BSAM or QSAM to process 1/0 is that these access
methods are not TSO dependent. Therefore, you can incorporate code from
existing routines that use BSAM or QSAM into your command processor without
having to modify the macro instructions.

• The GETLINE and PUTLINE service routines provide the ability to obtain data
from the input stream and write data to the output data set, respectively. Use
the GETLINE and PUTLINE macro instructions to invoke these 1/0 service
routines.

When GETLINE returns a line of input, this data is placed in a buffer that resides
in subpool 1 and is owned by your command processor. Although the buffers
returned by GETLINE are automatically freed when your code relinquishes
control, you can use the FREEMAIN macro instruction to free these buffers.

Use the PUTLINE macro instruction with the DATA operand to write one or more
lines of data to the output data set.

Changing Your Command Processor's Source of Input
TSO maintains an internal pushdown list that determines the source of input. This
pushdown list, or stack, is used and maintained by the TSO 1/0 service routines
(STACK, GETLINE, PUTLINE and PUTGET).

The top element of the stack indicates the currently active input source. The TMP
initializes this stack by creating the first element, which indicates that the input
stream is the current source of input. Therefore, when your command processor
receives control, the current source of input is the input stream. When you use the
GETLINE, PUTLINE or PUTGET macro instructions, all input is read from the input
steam and all output is written to the output data set.

You may want to obtain input from a source other than the input stream, such as
another data set containing records to be processed. TSO allows an in-storage list
to be used as the source of input. An in-storage list can be either a command
procedure (list of commands) or a source data set. Use the STACK service routine
in your command processor to change the source of input by either adding or
removing an element from the input stack. However, your command processor
cannot change or delete the first element.

Chapter 5. Communicating with the User through the Job Stream 27

28 MVS/ESA TSO Programming

Chapter 6. Passing Control to Subcommand Processors

If you have chosen to implement subcommands, your command processor must be
able to recognize a subcommand name specified in the input stream and pass
control to the requested subcommand processor. This chapter outlines the steps
you must follow to support subcommands.

Command scan, the PUTGET service routine and the parse service routine are
discussed in this chapter; refer to "Part II: TSO Programming Services" on page 41
for more information on these services.

To recognize a subcommand name and pass control to the subcommand processor.
follow these steps:

1. Use the PUTGET service routine to issue a mode message and retrieve a line of
input that may contain a subcommand.

2. Use the command scan service routine to determine if the user has entered a
valid subcommand name.

3. Use the ATTACH macro instruction to pass control to the subcommand
processor.

4. Use the DETACH macro instruction to release the subcommand processor when
it has completed.

Step 1. Issuing a Mode Message and Retrieving an Input Line
Use the PUTGET service routine to issue a mode message to indicate which
command is in control, and to return a line of input.

GENERAL-USE PROGRAMMING INTERFACE

When PUTGET returns a line of data from the input stream, it places this data in an
input buffer that is owned by your command processor. Figure 7 shows the format
of the input buffer returned by the PUTGET service routine.

2 Bytes 2 Bytes

Length

Figure 7. Format of the Input Buffer

The two-byte length field contains the length of the returned input line plus the
length of the four-byte header. The two-byte offset field is always set to zero on
return from the PUTGET service routine.

,__ ____ End of GENERAL-USE PROGRAMMING INTERFACE ____ ___,

© Copyright IBM Corp. 1988, 1991 29

Step 2. Validating the Subcommand Name
Use the command scan service routine to determine whether a syntactically valid
subcommand name is present in the input buffer (command buffer). Command scan
searches the input buffer for a subcommand name, checks the syntax of the name,
and updates the offset field in the input buffer. If a valid subcommand name is
found, command scan resets the offset field in the input buffer to the number of text
bytes preceding the first subcommand operand, if any are present. For example, if
the user enters

SUBCMD OPERANDI OPERAND2

the offset field would be set to 7, the number of bytes that precede OPERAND1 in the
input buffer.

Although command scan recognizes comments present in the input buffer, it skips
over them without processing them. Comments, which are indicated by the
delimiters I* and*/, are not removed from the input buffer.

When your command processor passes control to command scan, it must pass a
parameter list that contains pointers to control blocks and data areas that are
needed by command scan. Addresses needed to access the input buffer and the
output area filled in by command scan are included in this parameter list.

When command scan returns control to your command processor, check the return
code in register 15. If the return code is zero, check the flag field in the output area
to determine whether a syntactically valid subcommand name is present. Use the
pointer to the subcommand name and the length of the name returned in the output
area when you pass control to the appropriate subcommand processor.

Step 3. Passing Control to the Subcommand Processor
After determining that the user has specified a valid subcommand name, use the
ATTACH macro instruction to pass control to the requested subcommand processor.
Depending upon the function and complexity of the command processor and the
subcommand processor, you may need to specify the EST Al operand on the
ATTACH macro to provide an error handling routine that receives control if the
subcommand processor abnormally terminates. For information on error handling,
see Chapter 7, "Processing Abnormal Terminations" on page 33. For information
on the ATTACH macro instruction, see Application Development Macro Reference.

Subcommand processors are similar to command processors in many ways,
including syntax and the way they receive control. When your command processor
attaches the subcommand processor, pass a pointer to a command processor
parameter list (CPPL) in register 1. The CPPLBUF field in the CPPL must contain
the address of the input buffer containing the subcommand. (The CPPL is described
in Figure 13 on page 51.)

30 MVS/ESA TSO Programming

. Writing a Subcommand Processor
When you write a subcommand processor, follow steps that are similar to the steps
you followed to write your command processor. This procedure is listed below:

1. Access the command processor parameter list (CPPL).

2. Validate any operands specified with the subcommand using the parse service
routine.

3. Communicate with the user through the job stream.

4. Perform the function of the subcommand according to any operands the user
specified.

5. Intercept and process abnormal terminations.

6. Set the return code in register 15 and return to the command processor.

These steps are discussed in more detail in Chapter 3, "What You Need to Do to
Write a Command Processor" on page 11.

Step 4. Releasing the Subcommand Processor
When the subcommand processor has completed processing and returned control to
your command processor, use the DETACH macro instruction to release it. For
information on the DETACH macro instruction, see Application Development Macro
Reference.

Chapter 6. Passing Control to Subcommand Processors 31

32 MVS/ESA TSO Programming

Chapter 7. Processing Abnormal Terminations

Depending upon the function and complexity of your command processor, you may
need to provide error handling routines to process abnormal terminations
(ABENDS). This chapter describes the criteria you should consider to determine
whether special processing is needed for error recovery. It also provides guidelines
for writing error handling routines.

Error Handling Routines
When an abnormal termination occurs, your command processor must be able to
provide sufficient recovery to insure that the error condition does not cause the
abnormal termination of the job step. Error handling routines give your command
processor the ability to intercept an ABEND and allow it to clean up, bypass the
problem, and if possible, attempt to retry execution.

A command processor must be able to recognize and respond to two types of
abnormal terminations:

1. The command processor or a program at the same task level, such as command
scan or the parse service routine, is terminating abnormally.

2. An attached subtask, such as a subcommand processor, is terminating
abnormally.

ESTAE and EST Al Exit Routines
Two types of error handling routines are used in writing command processors:
ESTAE exits and ESTA/ exits. An ESTAE exit is established by issuing the ESTAE
macro instruction. The function of an ESTAE exit is to intercept abnormal
terminations that occur at the current task level. The FESTAE macro instruction can
be used to establish an ESTAE exit for authorized command processors.

An ESTA/ exit processes abnormal terminations that occur at the daughter task
level. ESTAI exits are established by using the ATTACH macro with the ESTAI
operand.

See SPL: Application Development Macro Reference for information on the ESTAE
and FESTAE macro instructions. See Application Development Macro Reference for
a discussion of the ESTAI operand of the ATTACH macro instruction and for
information on ESTAE and ESTAI exit routines.

© Copyright IBM Corp. 1988, 1991 33

When are Error Handling Routines Needed?
Not all command processors require special error handling. In many cases, the
error handling routine provided by the TMP is sufficient. However, if your command
processor falls into one of the following categories, you should provide an ESTAE
exit routine to handle abnormal terminations at the command processor's task level:

• Command processors that process subcommands

• Command processors that request system resources that are not freed by
ABEND or DETACH

• Command processors that process lists. Recovery processing is necessary to
allow processing of other elements in the list if a failure occurs while processing
one element.

• Command processors that use the STACK service routine to change the source
of input. The error handling routine should issue the STACK macro instruction
to clear the input stack before returning to the TMP.

In addition, if your command processor attaches subcommands, it should also
provide an ESTAI exit to intercept abnormal terminations at the subcommand
processor's task level. ESTAE and ESTAI exit routines should be used in such a
way that the command processor gets control if a subcommand abnormally
terminates.

Simple command or subcommand processors should not issue an ESTAE or an
ESTAI if the ESTAI exit provided by the terminal monitor program (TMP) or the
calling command processor, respectively, provides adequate processing.

Figure 8 on page 35 shows the relationship between the command processor,
subcommand processor, and the error handling routines.

34 MVS/ESA TSO Programming

Terminal Monitor Program

ATTACH

Command , ,
Processor ABEND

SVC 13
error

\
...

t-- ESTAE Exit - For ABEND

~-~
,,,.,,.

at CP TCB level.

ESTA! Exit - For ABEND
at daughter TCB level.

ATTACH
(with ESTA! operand)

~ ~

ESTAE Exit - For ABEND
at this TCB level.

Figure 8. ABEND, ESTA/, ESTAE Relationship

Chapter 7. Processing Abnormal Terminations 35

Guidelines for Writing EST AE and EST Al Exit Routines··
GENERAL-USE PROGRAMMING INTERFACE

When you write ESTAE and ESTAI exit routines, observe the following guidelines:

1. Issue an ESTAE macro instruction as early in your command processor as
possible.

2. The error handling exit routine should issue a diagnostic error message of the
form:

1st level { conmand-name } ENDED DUE TO ERROR+
subconmand-name

2nd level COMPLETION CODE IS xxxx

Obtain the name supplied in the first level message from the environment
control table (ECT). The code supplied in the second level message is the
completion code passed to the ESTAE or ESTAI exit from ABEND. You can use
the GNRLFAIL service routine to issue the diagnostic error message, although it
requires additional storage space (see guideline number 5).

The error handling routine should issue these messages so that the original
cause of abnormal termination is recorded, in case the error handling routine
itself terminates abnormally before diagnosing the error.

When an ABEND is intercepted, the command processor ESTAE exit routine
must determine whether retry is to be attempted. If so, the exit routine must
issue the diagnostic message and return, indicating by a return code that an
ESTAE retry routine is available. If a retry is not to be attempted, the exit
routine must return, and indicate with a return code that no retry is to be
attempted. The TMP, which receives control after the command processor's
ESTAE exit routine, issues the diagnostic message. For a description of the
return codes from ESTAE exit routines and their meanings, see Application
Development Macro Reference.

3. The ESTAE or ESTAI routine that receives control from ABEND must perform all
necessary steps to provide system cleanup.

4. The error handling exit routine should attempt to retry program execution when
possible. If the command processor can circumvent or correct the condition that
caused the error, the error handling routine should attempt to retry execution.
In other cases, however, RETRY has no function and the command processor
ESTAE exit should not specify the RETRY option.

5. Storage might not be available when the ESTAE or ESTAI routine receives
control. Any storage the routine requires should be acquired before the routine
receives control, and be passed to it.

~---- End of GENERAL-USE PROGRAMMING INTERFACE ____ __.

36 MVS/ESA TSO Programming

Chapter 8. Installing a Command Processor

After you have completed writing your command processor, you must install it in a
way that makes the command available for you, and possibly other users, to
execute. This chapter describes the methods that you can use to add your new
command processor to TSO.

As part of the installation process, use the linkage editor to convert the object
modules that result from assembling your command processor into a load module
that is suitable for execution. The particular data set that contains the load module
is determined by the method that you choose to install your command processor.
These methods are described in the topics that follow.

Using a Private Step Library
If you are an unauthorized user, you can define a private step library using the
STEPLIB DD statement in the JCL you use to execute the command processor. This
step library is a partitioned data set that contains the command. Use the linkage
editor to enter your command processor as a member of the partitioned data set.

If you are an authorized user and you intend to make your command available to a
large number of TSO users, this method is not recommended because of the TSO
performance degradation that results from the additional search time required for
each command. However, using a STEPLIB is advantageous if you want to make
your command available to only selected TSO users. It is also a useful method to
temporarily install your command processor while you are testing and refining your
code.

Placing Your Command Processor in SYS1 .CMDLIB
If you are an authorized user, you can use the linkage editor to enter your command
processor as a member of the partitioned data set SYS1.CMDLIB. Placing your
command processor in SYS1.CMDLIB makes it available to all TSO users.

Creating Your Own Command Library
If you are an authorized user, you can create your own command library and
concatenate it to the SYS1 .CMDLIB data set. To do this, create new statements in
the link list (LNKLSTOO or LNKLSTxx) in SYS1 .PARMLIB. Use the linkage editor to
enter your command processor as a member of the command library. This method
makes your command available to all TSO users.

© Copyright IBM Corp. 1988, 1991 37

38 MVS/ESA TSO Programming

Chapter 9. Executing a Command Processor

After you have installed your command processor, you are ready to execute it. This
chapter describes the JCL statements you must submit to the operating system to
execute a command processor. For additional information on writing JCL, refer to
JCL Reference.

Writing JCL for Command Execution
To execute a command processor, write JCL statements that execute the terminal
monitor program (TMP). The TMP provides an interface between the user,
command processors, and the TSO control program. It obtains commands, gives
control to command processors, and monitors their execution. The TMP is attached
as APF-authorized and executes in either supervisor state or problem program
mode.

Figure 9 illustrates the JCL statements needed to execute the TMP.

data

comments
subcommands
commands

Figure 9. JCL Needed to Process Commands

The JCL required to execute the TMP includes the following:

1. A JOB statement, including a jobname and operands that specify the processing
options.

2. An EXEC statement that specifies IKJEFT01 (the TMP) as the program to be
executed. The format is:

//stepname EXEC PGM=IKJEFT01,DYNAMNBR=nn,PARM='conmand'

© Copyright IBM Corp. 1988, 1991 39

If you are executing commands that dynamically allocate data sets, specify the
DYNAMNBR parameter. This parameter indicates the number of allocations of
data sets or ddnames that can be used at one time per job step. The limit for
the DYNAMNBR parameter is system-dependent. Refer to JCL Reference for
more information.

You may use the PARM parameter to specify the first (or only) command to be
executed. This parameter is used most often when you execute one command
in the step.

3. A SYSTSPRT DD statement that controls output from your job. This DD
statement can refer to a system printer or to a sequential or partitioned data set.
If the data set is partitioned, you must specify the member name on the DD
statement as DSN = pdsname(membername).

Messages issued by programs using the TSO 1/0 service routines are written to
the data set indicated by the SYSTSPRT DD statement.

4. A SYSTSIN DD statement that controls input to your job. Use this statement to
indicate which commands and subcommands are to be executed.

You can specify the input data directly following the SYSTSIN DD statement, or
you can refer to a sequential or partitioned data set. If the data set is
partitioned, you must specify the member name on the DD statement as
DSN = pdsname(membername). You cannot refer to concatenated data sets on
the SYSTSIN DD statement.

For each command to be executed, specify the name of the command followed
by the operands that are needed for the function you want performed. Each
command or subcommand must begin on a separate input line.

Programs that use the TSO 110 service routines to obtain input receive their
input from the data set indicated by the SYSTSIN DD statement.

Handling Error Conditions
The return code from a job step that executes TSO commands is the return code of
the last command executed.

An ABEND code is issued when either the TMP or a command processor terminate
abnormally. In this situation, TSO processing stops and the remainder of the
commands in SYSTSIN are ignored. To obtain a dump, specify a SYSUDUMP or
SYSABEND DD statement in your JCL. For information on specific ABEND codes,
refer to Message Library: System Codes.

40 MVS/ESA TSO Programming

Part II: TSO Programming Services

TSO provides services that perform a wide range of programming functions. You
can use these services in system or application programs to perform the following
tasks:

• Invoking TSO Service Routines

To pass control to certain TSO service routines, use the CALLTSSR macro
instruction. See Chapter 11, "Invoking TSO Service Routines with the
CALLTSSR Macro Instruction" on page 53.

• Checking the Syntax of Subcommand Names

Use the command scan service routine in your command processors to validate
a subcommand name. See Chapter 12, "Verifying Subcommand Names with
the Command Scan Service Routine" on page 55.

• Checking the Syntax of Command and Subcommand Operands

Use the parse service routine to validate command or subcommand operands.
See Chapter 13, "Verifying Command and Subcommand Operands with the
Parse Service Routine" on page 63.

• Communicating with the User through the Job Stream

TSO provides several services to aid you in processing 1/0 and issuing
messages.

You can use the TSO 110 service routines (STACK, GETLINE, PUTLINE and
PUTGET) in a command processor to control the source of input, and write a
line of output or obtain a line of input. The 1/0 service routines can be used
to issue messages to the output data set. See Chapter 14, "Using the TSO
1/0 Service Routines" on page 153.

Your command processors can use the TSO message issuer routine
(IKJEFF02) to issue messages to the output data set. See Chapter 15,
"Using the TSO Message Handling Routine (IKJEFF02)" on page 201.

• Processing Data Sets

© Copyright IBM Corp. 1988, 1991

TSO provides several services that your programs can use to process data sets.

Allocating, Concatenating and Freeing Data Sets: TSO provides the
dynamic allocation interface routine (DAIR) to allocate, free, concatenate
and deconcatenate data sets during program execution. However, because
of the reduced function and additional system overhead associated with
DAIR, your programs should access dynamic allocation directly, using SVC
99. For a complete discussion of dynamic allocation, see SPL: Application
Development Guide. DAIR is discussed in Chapter 16, "Using the Dynamic
Allocation Interface Routine (DAIR)" on page 207.

Retrieving Information from the System Catalog: Use the catalog
information routine (IKJEHCIR) to retrieve information from the system
catalog, such as data set name, index name, control volume address or
volume ID. See Chapter 19, "Using IKJEHCIR to Retrieve System Catalog
Information" on page 239.

41

• Analyzing Return Codes

Use the DAIRFAIL routine (IKJEFF18) to analyze return codes from dynamic
allocation (SVC 99) or DAIR and issue appropriate error messages. See
Chapter 17, "Using the DAIRFAIL Routine (IKJEFF18)" on page 231.

Use the GNRLFAIL/VSAMFAIL routine (IKJEFF19) to analyze VSAM macro
instruction failures, subsystem request (SSREQ) failures, parse service routine
or PUTLINE failures, and ABEND codes, and issue an appropriate error
message. See Chapter 18, "Analyzing Error Conditions with the
GNRLFAIL/VSAMFAIL Routine (IKJEFF19)" on page 235.

Coding the Macro Instructions
The following paragraphs describe the notation used to define the macro syntax in
Part II of this publication.

1. The set of symbols listed below are used to define macro instructions, but
should never be written in the actual macro instruction:

hyphen
underscore
braces
brackets
ellipsis

-
{}
[]

The special uses of these symbols are explained in paragraphs 4-8.

2. Uppercase letters and words, numbers, and the set of symbols listed below
should be written in macro instructions exactly as shown in the definition:

apostrophe
asterisk
comma
equal sign
parentheses ()
period

3. Lowercase letters, words, and symbols appearing in a macro instruction
definition represent variables for which specific information should be
substituted in the actual macro instruction.

Example: If name appears in a macro instruction definition, a specific value (for
example, ALPHA) should be substituted for the variable in the actual macro
instruction.

4. Hyphens join lowercase letters, words, and symbols to form a single variable.

Example: If member-name appears in a macro instruction definition, a specific
value (for example, BETA) should be substituted for the variable in the actual
macro instruction.

42 MVS/ESA TSO Programming

5. An underscore indicates a default option. If an underscored alternative is
selected, it need not be written in the actual macro instruction.

Example: The representation

i or Ii]
indicates that either A or B or C should be selected; however, if B is selected, it
need not be written because it is the default option.

6. Braces group related items, such as alternatives.

Example: The representation

ALPHA-(! i].o)
indicates that a choice should be made among the items enclosed within the
braces. If A is selected, the result is ALPHA= (A,D). If B is selected, the result
can be either ALPHA= (,D) or ALPHA= (B,D).

7. Brackets also group related items; however, everything within the brackets is
optional and may be omitted.

Example: The representation

ALPHA•([i J.o)

indicates that a choice can be made among the items enclosed within the
brackets or that the items within the brackets can be omitted. If B is selected,
the result is: ALPHA= (B,D). If no choice is made, the result is: ALPHA= (,D).

8. An ellipsis indicates that the preceding item or group of items can be repeated
more than once in succession.

Example: The representation

ALPHA[,BETA] •••

indicates that ALPHA can appear alone or can be followed by ,BETA any
number of times in succession.

Nole: To designate register 0 and register 1 on a macro invocation, use (0) and (1),
respectively. You cannot use a symbolic variable to designate these registers.

Part II: TSO Programming Services 43

44 MVS/ESA TSO Programming

Chapter 10. Considerations for Using TSO Services

This chapter discusses considerations for using the services documented in this
manual. Topics include:

• Programming considerations for MVS/ESA
• Interfacing with the TSO service routines.

MVS/ESA Considerations
This topic discusses considerations for MVS/ESA that you should be aware of when
writing a command processor or using the services documented in this book. You
must be familiar with the publications that describe comprehensive programming
considerations for MVS/ESA and with the publications that describe the system
routines and macros discussed in this manual.

Interfaces for service routines and macro instructions mentioned in this topic are
covered in more detail in the chapters of this manual describing the individual
service routines and macro instructions.

General Interface Considerations

AR Mode

The interfaces described in this topic reflect what is possible for programs to do on
an MVS/ESA system. When determining the attributes and linkage conventions for a
program, analyze the program's individual interfaces and its overall interactions
with other programs. This topic provides general guidelines for making these
determinations.

You must consider address space control modes, addressing modes and program
residency when determining linkage conventions. See "Interface Considerations for
the TSO Service Routines" on page 47 for brief descriptions of those considerations
for the service routines and macro instructions described in this manual.

When making linkage decisions, you should consider:

• Who passes control to whom
• Whether return is desired
• Address space control (ASC) mode attributes
• AMODE and RMODE attributes

The following discussion provides a general description of ASC mode, AMODE and
RMODE attributes. For a detailed description of ASC mode considerations, refer to
SPL: Application Development - Extended Addressability. For a detailed
discussion of 31-bit addressing, refer to SPL: Application Development- 31-Bit
Addressing.

Access register (AR) mode is the address space control (ASC) mode in which a
general register and the corresponding access register (AR) are used together to
locate an address in an address/data space. Specifically, the general register is
used as a base register for data reference and the corresponding AR contains a
value that identifies the address/data space that contains the data.

© Copyright IBM Corp. 1988, 1991 45

Primary Mode
Primary mode is the address space control (ASC) mode in which only a general
register is used to locate an address in an address space. In primary mode, the
contents of the access registers (ARs) are ignored.

All service routines supplied by TSO execute in primary mode.

AMODE = 24, RMODE = 24
Programs with these attributes must receive control in 24-bit addressing mode, and
are loaded below 16 megabytes in virtual storage.

If you do not assign AMODE and RMODE attributes to a program, the attributes
default to AMODE = 24 and RMODE = 24. Most TSO-supplied command processors
have these attributes and are loaded below 16 megabytes in virtual storage.

AM ODE= ANY, RM ODE= 24

AMODE=31

AMODE=ANY indicates that a program must receive control in the addressing
mode of the program that invoked it. Although a program with the A MODE= ANY
attribute might have to switch addressing modes for certain processing, the
program must switch back to the addressing mode in which it received control
before returning to its caller.

AMODE=ANY programs must be given the RMODE=24 attribute.

AMODE =ANY does not indicate whether the program should be passed input that
resides below 16 megabytes in virtual storage; the particular interfaces should be
analyzed to determine where input can reside. However, a program should meet
certain criteria in order to be assigned the AMODE =ANY attribute. Refer to SPL:
Application Development- 31-Bit Addressing for a description of the criteria.

AMODE=31 indicates that a program must receive control in 31-bit addressing
mode. Such a program can have the RMODE=24 or RMODE=ANY attribute,
depending on its residency requirements. Regardless of the program's RMODE
attribute, the residency of its input depends on the program's requirements. The
program might require that some of its input reside below 16 megabytes in virtual
storage, while other input might reside anywhere.

A program that runs exclusively in 31-bit addressing mode (AMODE = 31) can do so
provided it complies with the restrictions for invoking, and being invoked by,
programs that run in 24-bit addressing mode (AMODE = 24 or AMODE =ANY).

Refer to SPL: Application Development- 31-Bit Addressing for more information
on the AMODE=31 attribute.

46 MVS/ESA TSO Programming

GENERAL-USE PROGRAMMING INTERFACE

Interface Considerations for the TSO Service Routines
All TSO service routines documented in this book must receive control in primary
address space control mode. These service routines execute and return control in
primary mode.

User-written command processors can execute in either 24-bit or 31-bit addressing
mode provided they follow the restrictions involved in invoking programs that have
24-bit dependencies.

The command processor parameter list (CPPL), which contains certain addresses
required as input to the TSO service routines, resides below 16 megabytes in virtual
storage. Refer to "Interfacing with the TSO Service Routines" on page 50 for more
information on the CPPL.

Figure 10 shows the interface considerations for the TSO service routines.

Figure 10. Interface Considerations for TSO Service Routines

Service Routine Entry Point Interface Considerations
Name

Catalog information routine IKJEHCIR This routine can be invoked in either 24- or
31-bit addressing mode, but all input passed
to this routine must reside below 16
megabytes in virtual storage.

This routine executes in 24-bit addressing
mode and returns control in the same
addressing mode in which it is invoked.

Dynamic allocation interface routine IKJDAIR This service routine can be invoked in either
24- or 31-bit addressing mode. When invoked
in 31-bit addressing mode, this routine can be
passed input that resides above 16 megabytes
in virtual storage.

This routine executes and returns control in
the same addressing mode in which it is
invoked.

TSO message issuer routine DAIRFAIL IKJEFF02 These service routines must receive control
GNRLFAIL/VSAMFAIL GETLINE service IKJEFF18 in 24-bit addressing mode. All input passed to
routine Parse service routine PUTGET service IKJEFF19 them must reside below 16 megabytes in
routine PUTLINE service routine Command IKJGETL virtual storage. These routines execute and
scan service routine STACK service routine IKJPARS return control in 24-bit addressing mode.

IKJPTGT
IKJPUTL
IKJSCAN
IKJSTCK

Chapter 10. Considerations for Using TSO Services 47

Invoking the TSO Service Routines
You can use either the LINK, LOAD or CALL TSSR macro instructions to pass control
to the TSO service routines. The CALLTSSR macro is used for certain TSO routines
only. It is described in Chapter 11, "Invoking TSO Service Routines with the
CALLTSSR Macro Instruction" on page 53.

The LINK macro instruction loads the routine into storage based on the routine's
RMODE attribute. The LINK macro instruction passes control to the routine in the
addressing mode specified or allowed by its AMODE attribute.

For a program executing in 31-bit addressing mode, use the LINK macro instruction
to invoke those service routine that must receive control in 24-bit addressing mode.
In this case, the LINK macro switches to 24-bit addressing mode on behalf of the
invoking program. A program that resides above 16 megabytes in virtual storage
must use the LINK macro instruction to invoke those service routines that must
receive control in 24-bit addressing mode.

The LOAD macro instruction loads the routine into storage based on the routine's
RMODE attribute. Because the LOAD macro instruction loads a program but does
not invoke it, you must do branches to the loaded routine. LOAD returns the
address of the loaded program where the high-order bit of this address reflects the
AMODE attribute of the loaded program. If the loaded program should not be
invoked in the current addressing mode, the BASSM or BSM instruction can be used
to set the appropriate addressing mode. If you use BASSM or BSM, you should
ensure that the invoked program can return successfully.

Summary of Macro Interfaces
Figure 11 shows the interface rules for using the macros discussed in this manual.

In Figure 11, a dash (-) indicates that the category does not apply to the macro
because the macro does not generate executable code. The addressing mode of the
program that accesses the data generated by the macro must agree with the
residence of the data.

48 MVS/ESA TSO Programming

(P) May Be lseued by a Program
(X) May Be Issued In (I) Input May Be

Macro 24-Blt Mode 31-Blt Mode Below16Mb Above 16Mb

CALLTSSR x x p p

GETLINE x x l,P

IKJENDP - - p p

IKJIDENT - - p p

IKJKEYWD - - p p

IKJNAME - - p p

IKJOPER - - p p

IKJPARM - - p p

IKJPOSIT - - p p

IKJRLSA x x p p

IKJRSVWD - - p p

IKJSUBF - - p p

IKJTERM - - p p

IKJTSMSG - - p p

PUTGET x x l,P

PUTLINE x x l,P

STACK x x l,P

Figure 11. Interface Rules for Using Macro Instructions

CALLTSSR
The CALL TSSR macro instruction can be issued in either 24-bit or 31-bit
addressing mode. See Chapter 11, "Invoking TSO Service Routines with the
CALLTSSR Macro Instruction" on page 53 for more information on issuing the
CALL TSSR macro.

GETLINE, PUTGET, PUTLINE, STACK
The GETLINE, PUTGET, PUTLINE, and STACK macros must be issued in 24-bit
addressing mode. Input passed to these routines must reside below 16
megabytes in virtual storage.

IKJTSMSG
The IKJTSMSG macro must be issued by a program loaded below 16 megabytes
in virtual storage. Refer to Chapter 15, "Using the TSO Message Handling
Routine (IKJEFF02)" on page 201 for a description of the of the input parameter
list for IKJEFF02.

Parse Macros (IKJENDP through IKJTERM)
The parameter list passed to the parse service routine must reside below 16
megabytes in virtual storage. As a result, the parse macro instructions that
generate input to parse must be issued by a program loaded below 16
megabytes in virtual storage. See Figure 11 for a list of the parse macros and
their linkage requirements. The IKJRLSA parse macro must be issued in 24-bit
addressing mode mode.

~-------- End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

Chapter 10. Conside~ations for Using TSO Services 49

Interfacing with the TSO Service Routines
When you invoke the TSO service routines from a command processor, you must
pass certain addresses contained in the command processor parameter list (CPPL) .

. GENERAL-USE PROGRAMMING INTERFACE

The Command Processor Parameter List
When the terminal monitor program attaches a command processor, register 1
contains a pointer to a command processor parameter list (CPPL) containing
addresses required by the command processor. The CPPL is a four-word parameter
list that is located in subpool 1 .

.__ ________ End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

Terminal
Monitor
Program

The control block interface between the TMP and an attached command processor
is shown in Figure 12.

Register 1

Command
Processor

CPPL

Figure 12. Control Block Interface between the TMP and a Command Processor

50 MVS/ESA TSO Programming

GENERAL-USE PROGRAMMING INTERFACE

You can use the IKJCPPL DSECT, which is provided in SYS1.MACLIB, to map the
fields in the CPPL. Use the address contained in register 1 as the starting address
for the DSECT, and then reference the symbolic field names within the IKJCPPL
DSECT to access the fields in the CPPL. The use of the DSECT is recommended
because it protects the command processor from any changes to the CPPL.
Figure 13 describes the contents of the CPPL.

Figure 13. The Command Processor Parameter List (CPPL)

Number Field Contents or Meaning
of Bytes

4 CPPLCBUF The address of the command buffer for the currently
attached command processor.

4 CPPLUPT The address of the user profile table (UPT). Use the
IKJUPT mapping macro, which is provided in
SYS1 .MACLIB, to map the fields in the UPT.

4 CPPLPSCB The address of the protected step control block (PSCB).
Use the IKJPSCB mapping macro, which is provided in
SYS1 .MACLIB, to map the fields in the PSCB.

4 CPPLECT The address of the environment control table (ECT). The
ECT is built by the TMP during its initialization process; it
is used by the TSO service routines and by some TSO
commands. Use the IKJECT mapping macro, which is
provided in SYS1 .MACLIB, to map the fields in the ECT.

~---- End of GENERAL-USE PROGRAMMING INTERFACE ____ __.

Services that Access Data in the CPPL
When you invoke any of the following TSO service routines from your program, you
must pass certain addresses contained in the CPPL as input:

IKJDAIR
IKJEFF02
IKJEFF18
IKJEFF19
IKJGETL
IKJPARS
IKJPTGT
IKJPUTL
IKJSCAN
IKJSTCK

Dynamic allocation interface routine
TSO message issuer routine
DAIRFAIL
GNRLFAIL/VSAMFAIL
GETLINE service routine
Parse service routine
PUTGET service routine
PUTLINE service routine
Command scan service routine
STACK service routine

Information concerning the input to the TSO service routines is discussed in more
detail in the chapters of this manual describing the individual service routines.

Chapter 10. Considerations for Using TSO Services 51

52 MVS/ESA TSO Programming

Chapter 11. Invoking TSO Service Routines with the
CALL TSSR Macro Instruction

This chapter describes how to use the CALLTSSR macro instruction to pass control
to certain TSO service routines.

GENERAL-USE PROGRAMMING INTERFACE

When to Use the CALL TSSR Macro Instruction
You can use the CALLTSSR macro instruction to generate a branch to certain TSO
service routines residing in the link pack area. If the routine does not reside in the
link pack area, CALLTSSR generates a LINK macro instruction. The CALLTSSR
macro instruction can be issued in either 24- or 31-bit addressing mode.

The CALLTSSR macro instruction can be used to invoke the following TSO service
routines only:

IKJDAIR
IKJEFF02
IKJEHCIR
IKJPARS
IKJSCAN

Notes:

Dynamic allocation interface routine
TSO message issuer routine
Catalog information routine
Parse service routine
Command scan service routine

1. A module that uses the CALLTSSR macro instruction must include the CVT
mapping macro.

2. IKJEFF02, IKJPARS and IKJSCAN must receive control in 24-bit addressing
mode. Therefore, if these routines reside in the link pack area, your program
must invoke the CALLTSSR macro instruction in 24-bit addressing mode.

© Copyright IBM Corp. 1988, 1991 53

Syntax and Operands
Figure 14 shows the execute form of the CALLTSSR macro instruction. There is no
list form. Each operand is explained following the figure.

[symbol] CALLTSSR EP=entry point name

[MF=(E'{ 1 i st. address 1 } J
(register) f

Figure 14. The CALLTSSR Macro Instruction

EP =entry point name
Specifies one of the following names: IKJDAIR, IKJEFF02, IKJEHCIR, IKJPARS,
or IKJSCAN.

MF==E
Indicates that this is the execute form of the macro instruction.

list address or (register) .
Specifies the address, or register that contains the address, of a parameter list
to be passed to the service routine.

,___ ________ End of GENERAL-USE PROGRAMMING INTERFACE ----------'

Example
This example shows how the CALLTSSR macro instruction can be used to invoke
the parse service routine (IKJPARS) and pass the parse parameter list (PPL) as
input.

I CALLTSSR EP=IKJPARS,MF=(E,PPL)

54 MVS/ESA TSO Programming

Chapter 12. Verifying Subcommand Names with the
Command Scan Service Routine

This chapter describes how a command processor can use the command scan
service routine to determine the validity of a subcommand.name.

Functions Performed by the Command Scan Service Routine
If you write your own command processors, you need a method of determining
whether subcommand names entered into the system are syntactically correct. The
command scan service routine provides this function by searching the command
buffer for a valid subcommand name. Command scan can be invoked by any
command processor that processes subcommands.

GENERAL-USE PROGRAMMING INTERFACE

Figure 15 shows the format of the command buffer.

'--~-Le-n-gt-h~--'~~0-f-fs_e_t~--'~~~~~~-Te-x_t~~~~~--'(~
2 Bytes 2 Bytes

Length

Figure 15. Format of the Command Buffer

When your command processor invokes the command scan service routine, the
two-byte length field contains the length of the command buffer. The two-byte offset
field is set to zero .

.__ ____ End of GENERAL-USE PROGRAMMING INTERFACE ----~

The command scan service routine examines the command buffer and performs the
following functions:

• It translates all lowercase characters in the subcommand name to uppercase.

• If a valid operand is present, it resets the offset to the number of text bytes
preceding the first non-blank character in the operand field. If a valid operand
is not present, the offset equals the length of the text portion of the buffer.

• It returns a pointer to the subcommand name, the length of the subcommand
name, and a code explaining the results of its scan to the calling routine.

• It optionally checks the syntax of the subcommand name.

• It handles leading blanks and embedded comments.

© Copyright IBM Corp. 1988, 1991 55

GENERAL-USE PROGRAMMING INTERFACE

Syntax Requirements for Command and Subcommand Names
If you write your own command processor, and you intend to use the command scan
service routine to check for a valid subcommand name, the name you choose must
meet the following syntax requirements:

• The first character must be an alphabetic or a national character.
• The remaining characters must be alphameric.
• The length of the subcommand name must not exceed eight characters.
• The command delimiter must be a separator character.

It is recommended that the name include one or more numerals. Since no
IBM-supplied command names include numerals, this insures that your
subcommand name will be unique.

Figure 16 shows the various character types recognized by the command scan
service routine. Unless otherwise indicated, alphameric characters are:

Alphabetic (A-Z)
Numeric (0-9)
National ($, #, @)

56 MVS/ESA TSO Programming

Character Type

Command
Character Separator National Alphabetic Numeric Delimiter Delimiter Special

Comment I* x
Horizontal Tab HT x x
Blank b x x
Comma x x
Dollar Sign $ x
Number Sign # x
At Sign @ x

a-z x
A-Z x
0-9 x

New line NL x x
Period x x
Left parenthesis (x x
Right parenthesis) x x
Ampersand & x x
Asterisk . x
Semicolon x x
Minus sign, hyphen - x x
Slash I x x
Apostrophe x x
Equal sign = x x
Cent sign c x
Less than < x
Greater than > x
Plus sign + x
Logical OR I x
Exclamation point ! x
Logical NOT ..., x
Percent sign % x
Dash - x
Question mark ? x
Colon : x
Quotation Mark " x

Figure 16. Character Types Recognized by Command Scan

Invoking the Command Scan Service Routine (IKJSCAN)
Your command processor can invoke the command scan service routine by using
either the CALLTSSR or LINK macro instructions, specifying IKJSCAN as the entry
point name. However, you must first create the command scan parameter list
(CSPL) and place its address into general register 1.

The command scan service routine must receive control in 24-bit addressing mode.
If your program uses the CALLTSSR macro instruction to invoke IKJSCAN, and
IKJSCAN resides in the link pack area, your program must issue the CALLTSSR
macro instruction in 24-bit addressing mode. However, if IKJSCAN does not reside
in the link pack area, your program can issue the CALLTSSR macro instruction in
either 24- or 31- bit addressing mode.

All input passed to IKJSCAN must reside below 16 megabytes in virtual storage.

Chapter 12. Command Scan Service Routine 57

The Command Scan Parameter List

General
Register 1

+O

+ 4

+ 8

+12

+16

+20

i
i
i
i
i
i

The command scan parameter list (CSPL) is a six-word parameter list containing
addresses required by the command scan service routine. To ensure that your
command processor is reentrant, build the CSPL in subpool 1 in an area that the
command processor obtains by issuing the GETMAIN macro instruction. Figure 17
shows the parameter list structure that your command processor must create as
input to the command scan service routine.

CSPL

UPT

ECT

CP ECB

Flag Ward

Output Area

Command Buffer

Flag Word

Flags Reserved

Command Scan Output Area

Command Name Pointer To be set by
r-----~~~~~-,-~~-,-~~---1 Command

Length Flags Reserved Scan

Command Buffer

~~Le_n_g_t_h~~~-o_f_f_se_t~~~~T~•~
0 2 4

Figure 17. The Parameter List Structure Passed to Command Scan

58 MVS/ESA TSO Programming

Use the IKJCSPL DSECT, which is provided in SYS1.MACLIB, to map the fields in
the CSPL. Figure 18 shows the format of the command scan parameter list.

Figure 18. The Command Scan Parameter List

Number Fie Id Contents or Meaning
of Bytes

4 CSPLUPT The address of the user profile table. This address is
passed to a command processor by the TMP in the CPPL.

4 CSPLECT The address of the environment control table. This
address is passed to a command processor by the TMP in
the CPPL.

4 CSP LE CB The address of the command processor's event control
block. (Required if command scan is called by a command
processor to scan a subcommand; zeros if command scan
is called by the TMP.)

4 CSPLFLG The address of a fullword, obtained via the GETMAIN
macro instruction by the routine linking to command scan,
and located in subpool 1. The first byte of the word
pointed to contains flags set by the calling routine; the last
three. bytes are reserved.

4 CS PLO A The address of an 8-byte command scan output area,
located in subpool 1. The output area is obtained by the
calling routine via a GETMAIN macro instruction. It is
filled in by the command scan service routine before it
returns control 'to the calling routine. (See Figure 17.)

4 CSPLCBUF The address of the command buffer.

Passing Flags to the Command Scan Service Routine
The fourth word of the CSPL, CSPLFLG, is a flag word that your command processor
must build in subpool 1 in an area that the command processor obtains by issuing
the GETMAIN macro instruction. Command scan only uses the first byte of the field;
the remaining three bytes are reserved.

Your command processor must set the flag byte before invoking the command scan
service routine to indicate whether you want the command to be syntax checked.
The flag byte has the following meanings:

Value Meaning

X'OO' Syntax check the command name.

X'BO' Do not syntax check the command name.

After your command processor invokes the command scan service routine, it should
free the area obtained for the flag field.

The Command Scan Output Area
The command scan service routine returns the results of its scan to the calling
program by filling in a two-word command scan output area (CSOA). Your
command processor must build the CSOA in subpool 1 in an area that your
command processor obtains by issuing the GETMAIN macro instruction. Your
command processor must then store the address of the CSOA into the fifth word of
the command scan parameter list before invoking IKJSCAN.

Chapt~r 12. Command Scan Service Routine 59

You can use the IKJCSOA DSECT, which is provided in SYS1 .MACLIB, to map the
fields in the CSOA. Figure 19 shows the format of the command scan output area.

Figure 19. The Command Scan Output Area

Number Fleld Contents or Meaning
of Bytes

4 CSOACNM The address of the command name if the command name
is present and valid. Zero otherwise.

2 CSOALNM Length of the command name if the command name is
present and valid. Zero otherwise.

1 CSOAFLG A flag field. Command scan sets these flags to indicate
the results of its scan. See Figure 20.

1 Reserved.

After your command processor invokes the command scan service routine and
processes its output, it should free the area obtained for the CSOA .

....__ ________ End of GENERAL-USE PROGRAMMING INTERFACE ----------'

Operation of the Command Scan Service Routine
If you set the flags field in the flag word to X'80' (to indicate that the command name
is not to be syntax checked) the command scan service routine determines if the
input buffer contains a subcommand. The subcommand name is considered to
begin at the first non-separator character found, and end at the first command
delimiter character found. See Figure 16 on page 57 for a list of the separator
characters and command delimiters.

Command scan translates any lowercase letters in the subcommand name to
uppercase, fills the command scan output area, updates the command buffer offset
field, and returns to the calling program.

If you have requested syntax checking (X'OO' in the flag field of the flag word), the
command name must meet the syntax requirements described in "Syntax
Requirements for Command and Subcommand Names" on page 56.

60 MVS/ESA TSO Programming

GENERAL-USE PROGRAMMING INTERFACE

Output from the Command Scan Service Routine

Flag

X'80'

X'40'

X'10'

X'08'

The command scan service routine scans the command buffer and returns the
results of its scan to the calling routine by filling in the command scan output area,
and by updating the offset field in the command buffer. Figure 20 shows the
possible CSOA settings and command buffer offset settings upon return from the
command scan service routine.

Command Scan Output Area Command Buffer

Meaning Length Field Offset set to:

The command name is valid and the Length of command name The first non-separator following the
remainder of the buffer contains command name.
non-separator characters.

The command name is valid and Length of command name The end of the buffer.
there are no non-separator characters
remaining.

The buffer is empty or contains Zero The end of the buffer.
only separators.

The command name is syntactically Zero Unchanged.
invalid.

Figure 20. Return from Command Scan - CSOA and Command Buffer Settings

Return Codes from the Command Scan Service Routine
The command scan service routine returns the following codes in general register
15 to the program that invoked it:

Code Meaning

0 Command scan completed successfully.

4 Command scan was passed invalid parameters.

End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

Chapter 12. Command Scan Service Routine 61

62 MVS/ESA TSO Programming

Chapter 13. Verifying Command and Subcommand Operands
with the Parse Service Routine

This chapter describes how to use the parse service routine in a command
processor to determine the validity of command and subcommand operands. The
first three sections, "Overview of the Parse Service Routine (IKJPARS)," "Character
Types Accepted by the Parse Service Routine" on page 66 and "Services Provided
by the Parse Service Routine" on page 67, present the terminology and concepts
that are necessary to understand the functions of the parse service routine. The
remainder of this chapter consists of a step-by-step explanation of how to use the
parse service routine, followed by detailed discussions of each of the steps in the
process.

Overview of the Parse Service Routine {IKJPARS)
If you write your own command processors to run under TSO, you need a method of
determining whether command or subcommand operands entered into the system
are syntactically correct. The parse service routine performs this function by
searching the command buffer for valid operands.

There are two types of operands that are recognized by the parse service routine:
positional operands and keyword operands. Positional operands occur first, and
must be in a specific order. Keyword operands can be specified in any order, as
long as they follow all of the positional operands.

Before invoking the parse service routine, your command processor must create a
parameter control list (PCL), which describes the permissible operands. Parse
compares the information supplied by your command processor in the PCL to the
operands in the command buffer. Each acceptable operand must have an entry built
for it in the PCL; an individual entry is called a parameter control entry (PCE).

The parse service routine returns the results of scanning and checking the operands
in the command buffer to the command processor in a parameter descriptor list
(POL). The entries in the POL, called parameter descriptor entries (POEs), contain
indications of specified options, pointers to data set names, or pointers to the
subfields specified with the command operands.

When your command processor invokes the parse service routine, it must pass a
parse parameter list (PPL), which contains pointers to control blocks and data areas
that are needed by parse. Addresses needed to access the PCL and POL are
included in the parse parameter list.

The Parse Macro Instructions
Use the parse macro instructions in your command processor to

• Build a PCL describing the valid command or subcommand operands.

• Establish symbolic r~ferences for the POL returned by the parse service routine.

© Copyright IBM Corp. 1988, 1991

The labels used by your command processor on the various parse macro
instructions allow you to access the fields in the OSECT which maps the POL.

63

The following describes the parse macro instructions and their functions:

IKJPARM

IKJPOSIT

IKJTERM

IKJOPER

IKJRSVWD

IKJIDENT

IKJKEYWD

IKJNAME

IKJSUBF

IKJENDP

IKJRLSA

64 MVS/ESA TSO Programming

Begins the parameter control list and establishes a symbolic
reference for the parameter descriptor list.

Builds a parameter control entry. This PCE describes a positional
operand that contains delimiters recognized by the parse service
routine, but not including the positional operands described by the
IKJTERM, IKJOPER, IKJIDENT, or IKJRSVWD macro instructions.

Builds a parameter control entry. This PCE describes a positional
operand that can be a constant, statement number, or variable.

Builds a parameter control entry that describes an expression. An
expression consists of three parts; two operands and an operator
in the form: (operandl operator operand2)

Builds a parameter control entry. This PCE can be used with the
IKJTERM macro instruction to describe a reserved word constant,
with the IKJOPER macro instruction to describe the operator of an
expression, or by itself to describe a reserved word operand.

Also builds a parameter control entry; however, this PCE
describes a positional operand that does not depend upon a
particular delimiter.

Builds a parameter control entry that describes a keyword
operand.

Builds a parameter control entry that describes the possible
names that can be specified for a keyword or a ret?erved word
operand.

Indicates the beginning of a keyword subfield description. A
subfield consists of a parenthesized list of positional or keyword
operands directly following the keyword.

Indicates the end of the PCL.

Releases any virtual storage allocated by the parse service
routine that remains after the parse service routine has returned
control to the command processor.

Figure 21 shows the interaction between a command processor and the parse
service routine.

Commend Buffer

Length Offset Command Nome

0 2 4

Commend Processor

G) Issues Parse macro
instructions to build
a PCL describing
valid operands

• lobel1 Macro
• lobel2 Macro
• lcbel3 Macro

These macro
instructions also
create the
IKJPARMD DSECT.

IKJPARMD
DSECT r-----------1
I lcbel1 I
I I 1------------l
I lcbel2 I
: : r-----------1 I lcbel3 I
I I 1 ___________ ..J

@ The Commend
Processor uses the
IKJPARMD DSECT
to access the
various PDEs within
the PDL.

PDL

PDE

PDE

PDE

Operand 1 Operand 2

PCL

P.CE1

PCE2

PCE3

Operand 3

Parse Service Routine

@ Compares PCE's to
operands in the
Commend Buffer.

©Builds the PDL.

Figure 21. A Command Processor Using the Parse Service Routine

Chapter 13. Verifying Operands with the Parse Service Routine 65

GENERAL-USE PROGRAMMING INTERFACE

Character Types Accepted by the Parse Service Routine

Character

Comment r
Horizontal Tab HT
Blank b
Comma
Dollar Sign $
Number Slgn #
At Sign @

a-z
A-Z
0-9

New line NL
Period
Left parenthesis (
Right parenthesis)
Ampersand &
Asterisk .
Semicolon ;
Minus sign, hyphen -
Slash I
Apostrophe .
Equal sign =
Cent sign c
Less than <
Greater than >
Plus sign +
Logical OR I
Exclamation point I
Logical NOT
Percent sign %
Dash -
Question mark ?
Colon :
Quotation Mark II

Figure 22 shows the various character types that are recognized by the parse
service routine. Throughout this chapter, the alphameric characters are as follows,
unless otherwise indicated.

Alphabetic A - Z
Numeric 0-9
National $, #, @

Character Type

Command
Separator National Alphabetic Numeric Dell miter Dell miter Special

x
x x
x x
x x

x
x
x

x
x

x
x x
x x
x x
x x
x x

x
x x
x x
x x
x x
x x

x
x
x
x
x
x
x
x
x
x
x
x

Figure 22. Character Types Recognized by the Parse Service Routine

~-------- End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

66 MVS/ESA TSO Programming

Services Provided by the Parse Service Routine
The function of the parse service routine is to syntax check command operands
within the command buffer against the PCL, and build a POL containing the results
of the syntax check. If command operands are incorrect or if required operands are
missing, parse writes an error message to the output data set.

In addition, the parse service routine provides the following services that can be
selected by the calling routine:

• It appends second level messages, supplied by the calling program, to
prompting messages.

• It passes control to a validity checking routine, supplied by the calling program,
to do additional checking on a positional operand.

• It translates the command operands to uppercase.

• It substitutes default values for missing operands.

• It inserts implied keywords.

Notifying the User about Missing or Required Operands
The parse service routine notifies the TSO user if the command operands found are
incorrect or if required operands are missing. The parse service routine writes
error messages to the output data set in the following situations:

• A dsname was specified with a slash but without a password.

• An operand is syntactically invalid.

• A keyword is ambiguous, that is, it is not clear to the parse service routine
which keyword of several similar ones is being specified.

• A required positional operand is missing. The requirement for a particular
positional operand and the prompting message to be issued if that operand is
not present, are specified to the parse service routine through the PROMPT
operand of the IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD, and IKJIDENT macro
instructions. The parse service routine issues the prompting message supplied
in the macro instruction.

• A validity checking routine indicates that an operand is invalid.

In these cases, the parse service routine issues an error message and returns a
code to the calling routine indicating that the TSO user specified an incorrect
command. Parse appends any second level messages to the error message for the
missing or invalid operand.

Issuing Second Level Messages
Your command processor can supply second level messages to be chained to any
prompt message issued for a positional operand (keyword operands are never
required). Use the HELP operand of the IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD
or IKJIDENT macro instructions to supply these second level messages to the parse
service routine. You can supply up to 255 second level messages for each
positional operand.

Chapter 13. Verifying Operands with the Parse Service Routine 67

If a user-provided validity checking routine returns the address of a second level
message to the parse service routine, that second level message or chain will be
written to the output data set. The original second level chain, if one was present, is
deleted.

The format of these second level messages is the same as the HELP second level
message portion of the PCE for the macro from which the validity checking routine
received control.

Passing Control to Validity Checking Routines
Your command processor can provide a validity checking routine to do additional
checking on a positional operand. This routine receives control after the parse
service routine has determined that the operand is non-null and syntactically
correct. Each positional operand can have a unique validity checking routine.
"Using Validity Checking Routines" on page 115 describes what you must do to
provide a validity checking routine.

Translation to Uppercase
The parse service routine normally translates positional operands to uppercase
unless the calling routine specifies ASIS in the IKJPOSIT or IKJIDENT macro
instructions. The first character of a value operand, the type-character, is always
translated to uppercase, however. Parse translates the string that follows the type
character to uppercase unless ASIS is coded in the describing macro instructions.

Insertion of Default Values
Positional operands (except delimiter and space) and keyword operands can have
default values. These default values are indicated to the parse service routine
through the DEFAULT= operand of the IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD,
IKJIDENT, and IKJKEYWD macro instructions. When a positional or a keyword
operand is omitted, for which a default value has been specified, the parse service
routine inserts the default value.

Insertion of Keywords
Some keyword operands can imply other keyword operands. You can specify that
other keywords are to be inserted into the parameter string when a certain keyword
is specified. Use the INSERT operand of the IKJNAME macro instruction to indicate
that a keyword or a list of keywords is to be inserted following the named keyword.
Parse processes inserted keywords as though they were specified on the command.

What You Need to do to Use the Parse Service Routine
This section gives a step-by-step description of what you must do to use the parse
service routine. The sections that follow provide more detailed information on each
of the major steps.

Follow these steps when using the parse service routine:

1. Define the syntax of the operands of the command or subcommand. This topic
is discussed in "Defining Command Operand Syntax" on page 69.

68 MVS/ESA TSO Programming

2. Use the parse macro instructions to build the parameter control list (PCL) that
describes the command or subcommand operand syntax. The parse macro
instructions are described in "Using the Parse Macro Instructions to Define
Command Syntax" on page 81.

• Use the IKJPARM macro instruction to begin the PCL.

• Use the appropriate parse macro instructions to build the parameter control
entries (PCEs) that parse will use to check the syntax of the operands.

• Use the IKJENDP macro instruction to indicate the end of the PCL for the
command or subcommand.

3. Write validity checking routines to do additional checking on positional
operands. See "Using Validity Checking Routines" on page 115 for a
discussion of this topic.

4. Pass control to the parse service routine. See "Passing Control to the Parse
Service Routine" on page 117.

5. Check the return code passed by the parse service routine in general register
15. Return codes are listed in "Checking Return Codes from the Parse Service
Routine" on page 119.

6. Examine the results of the scan of the command buffer returned by parse in the
parameter descriptor list (POL). See "Examining the POL Returned by the Parse
Service Routine" on page 121 for a description of the PDEs returned by parse.

GENERAL-USE PROGRAMMING INTERFACE

Defining Command Operand Syntax
If you write your own command processors, and you intend to use the parse service
routine to determine which operands have been specified following the command
name, your command operands must adhere to the syntactical structure described
in this section.

Command operands must be separated from one another by one or more of the
separator characters: blank, tab, comma, or a comment (see Figure 22 on
page 66). The command operands end either at the end of a logical line, or at a
semicolon. If the command operands end with a semicolon, and other characters
are specified after the semicolon but before the end of the logical line, the parse
service routine ignores the portion of the line that follows the semicolon. The parse
service routine does not issue a message to indicate this condition.

The parse service routine recognizes two types of command operands:

Posltlonal operands This type must be specified first in the parameter string, and
they must be entered in a specific order.

Keyword operands This type can be specified anywhere in the command as long
as they follow all positional operands. Discussion of keyword
operani:is begins on page 80.

Chapter 13. Verifying Operands with the Parse Service Routine 69

Positional Operands
Positional operands must be specified first in the parameter string, and they must
be in a specific order.

In general, the parse service routine considers a positional operand to be missing if
the first character of the operand scanned is not the character expected. For
example, if an operand is supposed to begin with a numeric character and the parse
service routine finds an alphabetic character in that position, the numeric operand is
considered missing. The parse service routine then issues a message if the
operand is required, substitutes a default value if one is available, or ignores the
missing operand if the operand is optional.

For the purpose of syntax checking, positional operands are divided into two
categories:

Dellmlter-dependent operands - operands that include delimiters as part of their
definition. Delimiter-dependent operands are discussed below.

Non-dellmlter-dependent operands - operands that do not include delimiters as
part of their definition. Non-delimiter-dependent operands are discussed on
page 78.

Delimiter-Dependent Operands
Those operands that include delimiters as part of their definition are called
delimiter-dependent operands. Figure 23 shows the delimiter-dependent syntaxes
that the parse service routine recognizes and the macro instruction that is used to
specify each type.

Figure 23. Delimiter-Dependent Operands

Operand Macro Instruction Used to Describe Operand

DELIMITER
STRING
VALUE
ADDRESS
PSTRING

IKJPOSIT
DSNAME
DSTHING
QSTRING
SPACE
JOBNAME

CONSTANT
VARIABLE IKJTERM
STATEMENT NUMBER

EXPRESSION IKJOPER

RESERVED WORD IKJRSVWD

HEX
CHAR IKJIDENT
INTEG

DELIMITER
A delimiter can be any character other than an asterisk, left parenthesis, right
parenthesis, semicolon, blank, comma, tab, carrier return, or digit. A
self-defining delimiter character is represented in this discussion by the symbol
#. The delimiter operand is used only in conjunction with the string operand.

70 MVS/ESA TSO Programming

STRING
A string is the group of characters between two alike self-defining delimiter
characters, such as

#string#

or, the group of characters between a self-defining delimiter character and the
end of a logical line, such as

#string

The same self-defining delimiter character can be used to delimit two
contiguous strings, such as

#stri ng#stri ng#

or

#string#string

A null string, which indicates that a positional operand has not been specified,
is defined as two contiguous delimiters or a delimiter and the end of the logical
line. If the missing string is a required operand, the null string must be
specified as two contiguous delimiters. Note that a string received from a
default must not include the delimiters.

VALUE
A value consists of a character followed by a string enclosed in apostrophes,
such as

X'string'

The character must be an alphabetic or national character. The string can be of
any length and can consist of any combination of enterable characters. If the
ending apostrophe is omitted, the parse service routine assumes that the string
ends at the end of the logical line. If the parse service routine encounters two
successive apostrophes, it assumes they are part of the string and continues to
scan for a single ending apostrophe. The parse service routine always
translates the character preceding the first apostrophe to uppercase. The value
is considered missing if the first character is not an alphabetic or national
character, or if the second character is not an apostrophe.

ADDRESS
There are several forms of the ADDRESS operand. Note that blanks are not
allowed within any form of the ADDRESS operand.

Absolute address
An absolute address consists of from one to six hexadecimal digits followed
by a period, or, in extended mode, from one to eight hexadecimal digits
followed by a period. An extended absolute address must not exceed the
address represented by the hexadecimal value 7FFFFFFF. (For more
information on extended addressing, see the description of the EXTENDED
operand in "Using IKJPOSIT to Describe a Delimiter-Dependent Positional
Operand" on page 83.)

Relatlve address
A relative address consists of from one to six hexadecimal digits preceded
by a plus sign, or, in extended mode, from one to eight hexadecimal digits
preceded by a plus sign.

Chapter 13. Verifying Operands with the Parse Service Routine 71

General register address
A general register address consists of a decimal integer in the range Oto 15
followed by the letter R. R can be specified in either uppercase or
lowercase.

Floating-point register address
A floating-point register address consists of an even decimal integer in the
range 0 to 6 followed by the letter D (for double precision) or E (for single
precision). The letter E or D can be specified in either uppercase or
lowercase.

Symbolic address
A symbolic address consists of any combination, up to 32 characters in
length, of the alphameric characters and the break character. The first
character must be either an alphabetic or a national character.

Qualified address
A qualified address has one of the following formats:

1. modulename.entryname.relative-address
2. modulename.entryname
3. modulename.entryname.symbolic-address
4 •• entryname.symbolic-address
5 •• entryname.relative-address
6. • entryname

• modulename - any combination of one to eight alP.hameric characters,
where the first is an alphabetic or national character

• entryname - same syntax as a modulename, and always preceded by a
period

• symbolic address - syntax as defined above, and always preceded by a
period

• relative address - syntax as defined above, and always preceded by a
period

The user can qualify symbolic or relative addresses to indicate that they
apply to a particular module and CSECT as in formats 1-3. However, if the
address applies to the currently active module, it is not necessary to specify
modu/ename, as in formats 4-6.

Indirect address
An indirect address is an absolute, relative, symbolic, or general register
address followed by from one to 255 indirection symbols (percent signs),
such as:

+A%

Note: In the following examples, hash marks indicate that the byte is not
used to determine the indirect address .

.__ ________ End of GENERAL-USE PROGRAMMING INTERFACE --------~

72 MVS/ESA TSO Programming

+A%

Figure 24 shows an example of an indirect address that is made up of a relative
address with one level of indirect addressing.

RELATIVE LOC +A

00 QC 2C

LOC C2C

DATA

Figure 24. Example of Indirect Addressing

The number of indirection symbols following the address indicates the number
of levels of indirect addressing. In Figure 24, the data is at the location pointed
to by bits 0-24 of relative address +A.

GENERAL-USE PROGRAMMING INTERFACE

Address expression
An address expression has the following format:

address{±}expression value[% ••.][{±}expression value [% •••]] •••

• address - can be an absolute, symbolic, indirect, relative, or general
register address. If a general register is specified, it must be followed
by at least one indirection symbol.

• expression value - a plus or minus displacement from an address in
storage, consisting of from one to six decimal or hexadecimal digits

When you specify the EXTENDED keyword of IKJPOSIT to indicate
extended mode, the user can specify a one to ten digit decimal
number, or a one to eight digit hexadecimal number.

Decimal displacement is indicated by an "N" or "n" following the
offset. The absence of an "N" or "n" indicates hexadecimal
displacement.

There is no limit to the number of expression values in an address
expression.

• Each expression value can be followed by from one to 255 percent
signs, one for each level of indirect addressing.

For example, addr1+124n, an address expression in decimal format,
indicates a location 124 decimal bytes beyond addr1. Another example,
addr2-AC, is an address expression in hexadecimal format and indicates a
location 172 decimal bytes before addr2.

The processing of an address expression, 12R%%+4N%, involving indirect
addressing, is shown in Figure 25. The address in the expression is a
general register address with two levels of indirect addressing. The result
of the processing of this part of the address expression is location 100.

Chapter 13. Verifying Operands with the Parse Service Routine 73

12R%%+4N%

R12

00 01 28

The expression value indicates a displacement of four bytes beyond
location 100 with one level of indirect addressing. The data, then, is at
location 474.

~---- End of GENERAL-USE PROGRAMMING INTERFACE ____ ___.

LOC 128

~ 00 01 DO

LOC 1DO

00 04 74

LOC 474

DATA

Figure 25. An Address Expression with Indirect Addressing

GENERAL-USE PROGRAMMING INTERFACE

PSTRING
A parenthesized string is a string of characters enclosed within a set of
parentheses, such as:

(string)

The string can consist of any combination of characters of any length, with one
restriction; if it includes parentheses, they must be balanced. However, the
enclosing right parenthesis of a PSTRING can be omitted if the string ends at the
end of a logical line.

A null PSTRING is defined as a left parenthesis followed by either a right
parenthesis or the end of a logical line.

DSNAME
The data set name operand has three possible formats:

dsname [(membername)] [/password]
[dsname] (membername) [password]
'dsname [(membername)] ' [/password]

dsname
May be either a qualified or an unqualified name.

An unqualified name is any combination of alphameric characters up to
eight characters in length, the first character of which must be an alphabetic
or national character.

74 MVS/ESA TSO Programming

A qualified name is made up of several unqualified names, each unqualified
name separated by a period. A qualified name, including the periods, can
be up to 44 characters in length.

membername
One to eight alphameric characters, the first of which must be an alphabetic
or a national character.

The parse service routine considers the entire dsname operand missing if the
first character scanned is not an apostrophe, an alphabetic character, a national
character, or a left parenthesis. If the VOLSER option is specified, the first
character can be numeric.

If it is numeric, only six characters are accepted for VOLSER. VOLSER is valid
only for DSNAME or DSTHING.

If the slash and the password are not specified, the parse service routine does
not issue a message for a missing password.

DSTHING
A DSTHING is a dsname operand as previously defined except that an asterisk
can be substituted for an unqualified name or for each qualifier of a qualified
name. The parse service routine processes the asterisk as if it were a dsname.
The asterisk is used to indicate that all data sets at that particular level are
considered.

QSTRING
A quoted string is a string of characters enclosed within apostrophes, such as:

'string'

The string can consist of combination of characters, of any length, with one
restriction: if the user wants to specify apostrophes within the string, two
successive apostrophes must be specified for each single apostrophe desired.
One of the apostrophes is removed by the parse service routine.

The ending apostrophe is not required if the string ends at the end of the logical
line.

A null quoted string is defined as two contiguous apostrophes or an apostrophe
at the end of the logical line.

SPACE
Space is a special purpose operand; it allows a string operand that directly
follows a command name to be specified without a preceding self-defining
delimiter character. The space operand must always be followed by a string
operand. If the delimiter of the command name is a tab, the tab is the first
character of the string. The string always ends at the end of the logical line.

JOBNAME
The jobname can have an optional job identifier. Each job identifier is a
maximum of eight alphameric characters of which the first is alphabetic or
national ($, #. @). There is no separator character between the jobname and
job identifier. The syntax is jobname (jobid).

CONSTANT
There are several forms of the constant operand.

Fixed-point numeric literal - Consists of a string of digits (0 through 9)
preceded optionally by a sign (+ or-), such as:

+1234.43

Chapter 13. Verifying Operands with the Parse Service Routine 75

This literal can contain a decimal point anywhere in the string except as the
rightmost character. The total number of digits cannot exceed 18.
Embedded blanks are not allowed.

Floallng-polnt numeric llleral - Takes the following form:

+ 1234.56E + 10

This literal is a string of digits (0 through 9) preceded optionally by a sign
(+ or-) and must contain a decimal point. This is immediately followed by
the letter E and then a string of digits (O through 9) preceded optionally by a
sign (+ or-). Embedded blanks are not allowed. The string of digits
preceding the letter E cannot be greater than 16 and the string following E
cannot be greater than 2.

Non-numeric literal - Consists of a string of characters from the EBCDIC
character set, excluding the apostrophe, and enclosed in apostrophes,
specified as:

'numbers (1234567890) and letters are ok'

The length of the string excluding apostrophes can be from 1 to 120
characters in length.

Figurative constant - Is one of a set of reserved words supplied by the caller
of the parse service routine such as:

test123

A figurative constant consists of a string of characters up to 255 in length.
Embedded blanks are not allowed. All characters of the EBCDIC character
set are allowed except the blank, comma, tab, semicolon, and carrier
return, however, the first operand must be alphabetic.

VARIABLE
The following is the form of the variable operand.

[program-id .]data-name [l~~} qua l i fi ca ti on]

(subscript)

Program-Id
Consists of the first eight characters of a program identifier followed by a
period. The first character must be alphabetic (A through Z) and the
remaining characters must be alphabetic or numeric (0 through 9).

Data-name
Consists of a maximum of 30 characters of the following types: alphabetic
(A through Z), numeric (0 through 9), and hyphen (-).

An example is:

mydataset-123

The data-name cannot begin or end with a hyphen and must contain at least
one alphabetic character.

here55. mydataset-123

Quallflcalion
Is applied by placing one or more data-names preceded by the qualifiers IN
or OF, after a data-name. An example is:

mydataset-123 of yourdataset-456

76 MVS/ESA TSO Programming

The number of qualifiers that can be specified for a data-name is limited to
255.

Subscript
Consists of a data-name with subscripts enclosed in parentheses following
the data-name specified as:

yourdataset-456 (mydataset-123)

A separator between the data-name and the subscript is optional.
Subscripts are a list of constants or variables.

The number of subscripts that can be specified for a data-name is limited to
3, specified as:

here55 (abc def h15)

A separator character between subscripts is required.

STATEMENT NUMBER
The following is the form of a statement number:

[program id.]line number[.verb number]

An example is:

here.23.7

where:

Program id
Consists of the first eight characters of a program identifier followed by a
period. The first character must be alphabetic (A through Z) and the
remaining characters must be alphameric (A through Z or 0 through 9).

Line number
Consists of a string of digits (0 through 9) and cannot exceed a length of 6
digits.

Verb number
Consists of one digit (0 through 9) that is preceded by a period.

Embedded blanks are not allowed in a statement number.

EXPRESSION
An expression takes the form:

(operandl operator operand2)

The operator in the expression shows a relationship between the operands,
such as:

(abc equals 123)

An expression must be enclosed in parentheses. An expression is defined by
the IKJOPER macro. The operands are defined by the IKJTERM macro, and the
operator is defined by the IKJRSVWD macro instruction.

RESERVED WORD
Has three uses depending on the presence of operands on the IKJRSVWD
macro instruction. The uses are:

• When used with the RSVWD keyword of the IKJTERM macro instruction, the
IKJRSVWD macro identifies the beginning of a list of reserved words, any
one of which can be specified as a constant.

Chapter 13. Verifying Operands with the Parse Service Routine 77

• When used with the RSVWD keyword of the IKJOPER macro instruction, the
IKJRSVWD macro identifies the beginning of a list of reserved words, any
one of which can be an operator in an expression.

• When used by itself, the IKJRSVWD macro instruction defines a positional
reserved word operand.

The IKJRSVWD macro instruction is followed by a list of IKJNAME macros that
contain all of the possible reserved words used as figurative constants or
operators.

HEX
A hexadecimal value is any quantity of the form X'nn', 'ABC' (quoted string), or
any nonquoted character string where a separator or delimiter indicates the
end.

CHAR
A character string is any data in the form of a quoted or nonquoted string.

INTEG
An integer is a numeric quantity in one of the following forms:

• (X'nn') - where n is a valid hexadecimal digit (A-F, 0-9), and there is a
maximum of 8 digits.

• (B'mm') - where mis a valid binary bit (0-1), and there is a maximum of 32
digits.

• dddddd - where d is a decimal digit (0-9), and there is a maximum of 10
digits.

The parse service routine converts an integer operand into its equivalent binary
value. The maximum decimal value for INTEG is 2147843647.

Positional Operands Not Dependent on Delimiters
A positional operand that is not dependent on delimiters is passed as a character
string with restrictions on the beginning character, additional characters, and
length. These restrictions are passed to the parse service routine as operands on
the IKJIDENT macro instruction.

The parse service routine recognizes the following character types as the beginning
character and additional characters of a non-delimiter-dependent positional
operand:

ALPHA
Indicates an alphabetic or national character.

NUMERIC
Indicates a number (0-9).

ALPHANUM
Indicates an alphabetic or national character or a number.

ANY
Indicates that the character to be expected can be any character other than a
blank, comma, tab, semicolon, or carrier return. A right parenthesis must,
however, be balanced by a left parenthesis.

NONATABC
Indicates only an alphabetic character is accepted; national characters ($, #, @)
are not accepted.

78 MVS/ESA TSO Programming

NONATNUM
Indicates numbers and alphabetic characters are accepted; national characters
($, #, @) are not accepted.

An asterisk can be specified in place of any positional operand that is not dependent
on delimiters.

Entering Positional Operands as Lists of Ranges
You might want to have some positional operands of your command specified in the
form of a list, a range, or a list of ranges. The macro instructions that describe
positional operands to the parse service routine, IKJPOSIT, IKJTERM and IKJIDENT,
provide a LIST and a RANGE operand. If coded in the macro instruction, they
indicate that the positional operands expected can be in the form of a list or a range.

LIST
Indicates to the parse service routine that one or more of the same type of
positional operands can be specified enclosed in parentheses as follows:

(positional-operand positional-operand •••)

If one or more of the items contained in the list are to be specified enclosed in
parentheses, both the left and the right parenthesis must be included for each of
those items.

The following positional operand types can be used in the form of a list:

RANGE

VALUE
ADDRESS
DSNAME
DSTHING
JOB NAME
CONSTANT
STATEMENT NUMBER
VARIABLE
HEX
CHAR
INTEG
Any positional operands that are not dependent upon delimiters

Indicates to the parse service routine that two positional operands are to be
entered separated by a colon as follows:

positional-operand:positional-operand

The following positional operand types can be used in the form of a range or a
I ist of ranges:

HEX (form X' ' only)
ADDRESS
VALUE
CONSTANT
STATEMENT NUMBER
VARIABLE
INTEG
Any positional operand that is not dependent upon delimiters

Chapter 13. Verifying Operands with the Parse Service Routine 79

If the user specifies an operand that begins with a left parentheses, and you have
specified in either the IKJPOSIT or IKJIDENT macro instruction that the operand can
be specified as a list or a range, the user must enclose the operand in an extra set
of parentheses to obtain the correct result.

For instance, if you have used the IKJPOSIT macro instruction to specify that the
dsname operand can be specified as a list, and the TSO user wants to specify a
dsname of the form:

(membername}/password

The user must specify it as:

((membername}/password)

Keyword Operands
Keyword operands can be specified anywhere in the command as long as they
follow all positional operands. They can consist of any combination of alphameric
characters up to 31 characters long, the first of which must be an alphabetic
character.

Describe keyword operands to the parse service routine with the IKJKEYWD,
IKJNAME, and IKJSUBF macro instructions.

Subfields Associated with Keyword Operands
A keyword operand can.have a subfield of operands associated with it. A subfield
contains positional and/or keyword operands, and must be enclosed in parentheses
directly following its associated keyword operand.

Separators can appear between a keyword operand and the opening parenthesis of
its subfield. In addition, separators can appear after the closing parenthesis of a
subfield and the following keyword operand. In the following example, posn1 and
kywd2 are operands In the subfield of keyword1:

keywordl(posnl kywd2)

The same syntax rules that apply to commands apply within keyword subfields.

• Keyword operands must follow positional operands.

• Enclosing right parenthesis can be eliminated if the subfield ends at the end of a
logical line.

• The subfield cannot.contain unbalanced right parentheses.

If a user specifies a keyword with a subfield in which there is a required operand,
but does not specify the subfield, the parse service routine issues a message.

If a subfield has a poslUonal operand that can be specified as a list, and if this is the
only operand in the sub,ield, the list must be enclosed by the same parentheses that
enclose the subfield, suph as:

keyword(iteml item2 item3)
• t

where item1, item2, an~ item3 are members of a list.
i

80 MVS/ESA TSO Programming

If a subfield has as its first operand a positional operand that can be specified as a
list, and there are additional operands in the subfield, a separate set of parentheses
is required to enclose the list, such as:

keyword((iteml item2 item3) param)

where item1, item2, and item3 are members of a list, and param is an operand not
included in the list.

Using the Parse Macro Instructions to Define Command Syntax
A command processor that uses the parse service routine must build a parameter
control list (PCL) to define the syntax of acceptable command or subcommand
operands. Each acceptable operand is described by a parameter control entry
(PCE) within the PCL. The parse service routine compares the operands within the
command buffer against the PCL to determine if valid command or subcommand
operands have been specified.

The command processor builds the PCL and the PCEs within it by using the parse
macro instructions. These macro instructions generate the PCL and establish
symbolic references for the parameter descriptor list (POL). The POL is returned to
the command processor by the parse service routine to describe the results of
comparing the operands in the command buffer with the PCL. The POL is composed
of separate entries (POEs) for each of the command operands found in the command
buffer.

Figure 26 describes the functions of each of the parse macro instructions.

Figure 26. The Parse Macro Instructions

Macro Function
Instruction

IKJPARM Begins the PCL and establishes a symbolic reference for the POL.

IKJPOSIT Builds a PCE to describe a positional operand that contains delimiters,
but not including positional operands described by IKJTERM, IKJOPER,
IKJIOENT or IKJRSVWO.

IKJTERM Builds a PCE for a positional operand that can be a constant, statement
number or variable.

IKJOPER Builds a PCE that describes an expression.

IKJRSVWD Builds a PCE to describe a reserved word operand. It can also be used
with IKJTERM to describe a reserved word constant, or with IKJOPER
to describe the operator portion of an expression.

IKJIOENT Builds a PCE that describes a positional operand that does not depend
upon a particular delimiter.

IKJKEYWD Builds a PCE that describes a keyword operand.

IKJNAME Builds a PCE that describes the possible names that can be specified
for a keyword or reserved word operand.

IKJSUBF Builds a PCE that indicates the beginning of a keyword subfield
description.

IKJENDP Indicates the end of the PCL.

IKJRLSA Releases any virtual storage allocated by the parse service routine for
the POL that remains after parse returns control to its caller.

Chapter 13. Verifying Operands with the Parse Service Routine 81

These macro instructions pertorm the following additional functions:

• When complete; ali of the parse macros, except for IKJRLSA, return to the
user's CSECT. If a OSECT appears between the CSECT statement and the
parse macro(s), an assembly error occurs. To prevent this error, place the
O~ECT after the macro(s).

• The IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWO, IKJIDENT, IKJKEYWO,
IKJNAME, and IKJSUBF macro instructions describe the positional and keyword
operands valid for the command processor. The label fields of these macro
instructions are used by your command processor to reference fields within the
OSECT that maps the POL returned by the parse service routine.

The macros that generate input to parse must be issued by a program that is loaded
below 16 megabytes in virtual storage so that parse can access the PCL. The
IKJRLSA macro instruction must be issued in 24-bit addressing mode.

Using IKJPARM to Begin the PCL and the PDL
Use the IKJPARM macro instruction to begin the parameter control list (PCL) and to
provide a symbolic address tor the beginning of the parameter descriptor list (POL)
returned by the parse service routine. The PCL is constructed in the CSECT named
by the label field of the macro instruction; the POL is mapped by the OSECT named
in the OSECT operand of the macro instruction.

Figure 27 shows the format of the IKJPARM macro instruction. Each of the
operands is explained following the figure.

label IKJPARM DSECT={dsect name
IKJPARMD

Figure 27. The IKJPARM Macro Instruction

label
The name you provide is used as the name of the CSECT in which the PCL is
constructed.

DSECT=
Provides a name tor the OSECT created to map the parameter descriptor list.
This can be any name; the default is IKJPARMO.

82 MVS/ESA TSO Programming

The Parameter Control Entry Built By IKJPARM
The IKJPARM macro instruction generates the parameter control entry (PCE) shown
in Figure 28. This PCE begins the parameter control list.

Figure 28. The Parameter Control Entry Built by IKJPARM

Number Field Contents or Meaning
of Bytes

2 Length of the parameter control list. This field contains a
hexadecimal number representing the number of bytes In
this PCL.

2 Length of the parameter descriptor list. This field contains
a hexadecimal number representing the number of bytes
in the parameter descriptor list returned by the parse
service routine.

2 This field contains a hexadecimal number representing the
offset within the PCL to the first IKJKEYWD PCE or to an
end-of-field indicator if there are no keywords. An
end-of-field indicator can be either an IKJSUBF or an
IKJENDP PCE.

Using IKJPOSIT to Describe a Delimiter-Dependent Positional Operand
Use the IKJPOSIT macro instruction to describe the following delimiter-dependent
positional operands:

SPACE
DELIMITER
STRING
VALUE
ADDRESS
PSTRING
DSNAME
DSTHING
QSTRING
JOBNAME

Use the IKJIDENT macro instruction to describe the other delimiter-dependent
positional operands.

The order in which you code the macros for positional operands is the order in
which the parse service routine expects to find the positional operands in the
command string.

Chapter 13. Verifying Operands with the Parse Service Routine 83

Figure 29 shows the format of the IKJPOSIT macro instruction. Each of the
operands is explained following the figure.

label IKJPOSIT I SPACE ' DELIMITER
STRING
VALUE
ADDRESS [,EXTENDED] [,LI ST] [,RANGE]
PSTRING
DSNAME [,VOLSER][,DDNAM]
DSTHING
QSTRING

, JOBNAME I

[, SQSTRI NG]

[,UPPERCASE ,PROMPT='prompt data'
,ASIS ,DEFAULT='default value']
[,HELP=('help data','help data', •••)]

[,VALIDCK=symbolic-address]

Figure 29. The IKJPOS/T Macro Instruction

label
This name is used as the symbolic address within the POL DSECT of the
parameter descriptor entry (PDE) for the operand described by this IKJPOSIT
macro instruction.

SPACE through JOBNAME
Specifies the type of delimiter-dependent positional operand. The positional
operand types are described in detail in "Delimiter-Dependent Operands" on
page 70.

Positional Operand Type Where Described

SPACE Page 75

DELIMITER Page 70

STRING Page 71

VALUE Page 71

ADDRESS Page 71

PSTRING Page 74

DSNAME Page 74

DSTHING Page 75

QSTRING Page 75

JOBNAME Page 75

84 MVS/ESA TSO Programming

SQSTRING
The command operand is processed either as a string or as a quoted string. If
the delimiter is an apostrophe, the command operand is processed as a quoted
string. If the delimiter is any of the other acceptable delimiter characters, the
command operand is processed as a string. The SQSTRING option can only be
specified if STRING is specified for the operand type.

For example, if SQSTRING is coded in the IKJPOSIT macro instruction, a TSO
user could specify either:

/string/string ...

or

'string' 'string' ...

EXTENDED
Specifies that the user can enter 31-bit addresses. This operand is valid only
with ADDRESS. If you omit the EXTENDED operand, the parse service routine
processes all addresses as 24-bit addresses. For more information, refer to the
description of the address operand on page 71.

LIST
The command operands can be specified by the user as a list:

commandname (operand,operand, ...)

This list option can be used with the following delimiter-dependent positional
operands:

DSNAME, DSTHING, ADDRESS, VALUE, JOBNAME, and PSTRING (within a
subfield only).

RANGE
The command operands can be specified by the user as a range:

commandname operand:operand

The range option can be used with the following delimiter-dependent positional
operands:

ADDRESS
VALUE

VOLSER
Specifies that a data set name is to be a volume serial name. This operand is
valid only with DSNAME or DSTHING. If the first character is numeric, a
maximum of six characters are allowed.

DDNAM
Specifies a data definition name. This option causes an INVALID DDNAME
message if the name is invalid.

The following options (UPPERCASE, ASIS, PROMPT, DEFAULT, HELP, and
VALIDCK) can be used with all delimiter-dependent positional operands except
SPACE and DELIMITER.

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was specified by the user.

Chapter 13. Verifying Operands with the Parse Service Routine 85

PROMPT= 'prompt data'
The operand described by this IKJPOSIT macro instruction is required; the
prompting data is the message to be issued if the operand is not specified by
the user. If the operand is not specified, the parse service routine supplies a
message ID and adds the word MISSING to the beginning of this message
before writing it to the output data set.

DEFAULT== 'default value'
The operand described by this IKJPOSIT macro instruction is required, but the
user need not specify it. If the operand is not entered, the value specified as the
default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand specified by this
IKJPOSIT macro instruction is not present in the command buffer.

HELP =('help data', 'help data' ...)
You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are written to the output data
set following the prompting message. Parse adds a message ID and the word
MISSING to the beginning of each message before writing it to the output data
set.

These messages are not issued when the missing operand is a password on a
dsname operand.

VALIDCK == symbollc-address
Supply the symbolic address of a validity checking routine if you want to
perform additional validity checking on this operand. Parse calls this routine
after first determining that the operand is syntactically correct.

86 MVS/ESA TSO Programming

The Parameter Control Entry Built by IKJPOSIT
The IKJPOSIT macro instruction generates the variable length parameter control
entry (PCE) shown in Figure 30.

Figure 30 (Page 1 of 2). The Parameter Control Entry Built by /KJPOSIT

Number of Field Contents or Meaning
Bytes

2 Flags. These flags are set to indicate which options were specified
in the IKJPOSIT macro instruction.

Byte 1
001 This is an IKJPOSIT PCE .
... 1 PROMPT
.... 1 ... DEFAULT
.... . 1 .. This is an extended format PCE. If the VALIDCK parameter was

specified, the length of the field containing the address of the
validity checking routine is four bytes.

...... 1. HELP

....... 1 VALIDCK

Byte 2
1 LIST
.1 ASIS
.. 1 RANGE
.... 1 ... SQSTRING
..... 0 .. Reserved
...... 1. VOLSER
....... 1 DDNAME

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in this
IKJPOSIT PCE.

2 Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the related parameter descriptor entry built by the
parse service routine.

1 This field contains a hexadecimal number indicating the type of
positional operand described by this PCE. These numbers have
the following meaning:

HEX
1 DELIMITER
2 STRING
3 VALUE
4 ADDRESS
5 PSTRING
6 Not Used
7 DSNAME
8 DSTHING
9 QSTRING
A SPACE
B JOBNAME
c Not Used
D EXTENDED ADDRESS
Eto FF Not Used.

1 Contains the length minus one of the default or prompting
information supplied on the IKJPOSIT macro instruction. This field
and the next are present only if DEFAULT or PROMPT was
specified on the IKJPOSIT macro instruction.

Variable This field contains the prompting or default information supplied on
the IKJPOSIT macro instruction.

Chapter 13. Verifying Operands with the Parse Service Routine 87

Figure 30 (Page 2 of 2). The Parameter Control Entry Built by IKJPOSIT

Number of Field Contents or Meaning
Bytes

2 This field contains a hexadecimal figure representing the length In
bytes of all the PCE fields used for second level messages. The
figure includes the length of this field. The fields are present only if
HELP Is specified on the IKJPOSIT macro instruction.

1 This field contains a hexadecimal number representing the number
of second level messages specified by HELP on this IKJPOSIT PCE.

2 This field contains a hexadecimal number representing the length
of this HELP segment. The length figure includes the length of this
field, the message segment offset field, and the length of the
information. These fields are repeated for each second level
message specified by HELP on the IKJPOSIT macro instruction.

2 This field contains the message segment offset. It is set to X'OOOO'.

Variable This field contains one second level message supplied on the
IKJPOSIT macro instruction specified by HELP. This field and the
two preceding ones are repeated for each second level message
supplied on the IKJPOSIT macro instruction. These fields do not
appear if second level message data was not supplied.

3 or 4 This field contains the address of a validity checking routine if
VALIDCK was specified on the IKJPOSIT macro. If the "extended
format PCE" bit is on in the IKJPOSIT PCE, the address is four
bytes long; if the bit is off, the address is three bytes long. This
field is not present if VALIDCK was not specified.

Using IKJTERM to Describe a Delimiter-Dependent Positional Operand
Use the IKJTERM macro instruction to describe a positional operand that is one of
the following:

• Statement number
• Constant
• Variable
• Constant or variable

The order in which you code the macros for positional operands is the order in
which the parse service routine expects to find the operands in the command string.

88 MVS/ESA TSO Programming

Figure 31 shows the format of the IKJTERM macro instruction. Each of the
operands is explained following the figure.

label IKJTERM 'parameter-type'[,LIST][,RANGE]

[,UPPER~SE l [rT } l ,ASIS ,TYPE= CNST
VAR
ANY

[,SBSCRPT[=label-PCE]][,PROMPT='prompt data']
,DEFAULT='default value'

[,HELP=('help data','help data', •••)]

[,VALIDCK=symbolic-address][,RSVWD=label-PCE]

Figure 31. The IKJTERM Macro Instruction

label
This name is used to address the PCE built by the IKJTERM macro. The
hexadecimal offset to the parameter descriptor entry (PDE) built by the parse
service routine for this operand is contained in the PCE.

Note: The hexadecimal offset to the PDE will contain binary zero when the
IKJTERM macro is used to describe a subscript of a data name.

'parameter-type'
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and, if supplied, is used only for a required
operand that is not specified. Blanks within the apostrophes are allowed.

LIST
The command operands can be specified by the user as a list, in the form:

commandname (operand,operand, •••)

The LIST option can be used with any of the TYPE= positional operands.

RANGE
The command operands can be specified by the user as a range, in the form:

commandname operand:operand

The RANGE option can be used with any of the TYPE= positional operands.

Note: The LIST and RANGE options cannot be used when the IKJTERM macro
instruction is used to describe a subscript of a data-name.

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was specified by the user.

Chapter 13. Verifying Operands with the Parse Service Routine 89

TYPE=
Describes the type of the operand as one of the following:

• STMT - statement number
• CNST - constant
• VAR - variable
• ANY - constant or variable

See "Delimiter-Dependent Operands" on page 70 for a syntactical definition of
these operands.

SBSCRIPT[= label-PCE]
Specifies one of two conditions:

1. If you specify SBSCRIPT with a label-PCE, then the data-name described by
the IKJTERM macro can be subscripted. Supply the name of the label of an
IKJTERM macro instruction that describes the subscript. Only TYPE=VAR
or TYPE= ANY operands can be subscripted.

2. If you specify SBSCRPT without a label-PCE, then the IKJTERM macro
describes the subscript of a data-name. All TYPE= parameters can be
used on a subscript except TYPE= STMT. The LIST and RANGE options
cannot be used on an IKJTERM macro that describes a subscript.

Note: You must use two IKJTERM macro instructions to describe a subscripted
data-name. The first IKJTERM macro describes the data name and specifies the
SBSCRIPT option with the label of the second IKJTERM macro. The second
IKJTERM macro describes the subscript of the data-name and specifies
SBSCRPT without a label-PCE. The second macro instruction must immediately
follow the first.

PROMPT= 'prompt data'
The operand described by this IKJTERM macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
specified by the user.

If the operand is not specified, the parse service routine adds a message ID and
the word MISSING to the beginning of the message before writing it to the output
data set.

DEFAULT= 'default value'
The operand described by this IKJTERM macro instruction is required, but the
user need not specify it. If the operand is not specified, the value specified as
the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP= ('help data', 'help data', ...)
You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are written to the output data
set following the prompting message.

Parse adds a message ID and the word MISSING to the beginning of each
message before writing it to the output data set.

90 MVS/ESA TSO Programming

VALIDCK =symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional checking on this operand. Parse calls this routine after first
determining that the operand is syntactically correct.

RSVWD = label-PCE
Use this option when TYPE= CNST or TYPE= ANY is specified to indicate that
this operand can be a figurative constant. Supply the address of the PCE (label
on a IKJRSVWD macro instruction) that begins the list of reserved words that
can be specified as a figurative constant.

This list of reserved words is defined by a series of IKJNAME macros that
contain all possible names and immediately follow the IKJRSVWD macro.

Note: The IKJRSVWD macro can be coded anywhere in the list of macros that
build the PCL except following an IKJSUBF macro instruction. This permits
other IKJTERM macro instructions to refer to the same list.

Chapter 13. Verifying Operands with the Parse Service Routine 91

The Parameter Control Entry Built by IKJTERM
The IKJTERM macro instruction generates the variable parameter control entry
(PCE) shown in Figure 32.

Figure 32 (Page 1 of 2). The Parameter Control Entry Built by IKJTERM

Number of Field Contents or Meaning
Bytes

2 Flags. These flags are set to indicate options on the IKJTERM
macro instruction.

Byte 1
110 This is an IKJTERM PCE.
.... 1 PROMPT
.... 1 ... DEFAULT
..... 1 .. This is an extended format PCE. If the VALIDCK parameter was

specified, the length of the field containing the address of the
validity checking routine is four bytes.

...... 1. HELP

....... 1 VALIDCK

Byte 2
1 LIST
. 1 ASIS
.. 1 RANGE
... 1 This term can be SUBSCRIPTED .
.... 1 ... A reserved word PCE is chained from this term .
.... . 000 Reserved

2 The hexadecimal length of this PCE.

2 Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the parameter descriptor entry built by the parse
routine.

1 This field indicates the type of positional parameter described by
this PCE.

1 STATEMENT NUMBER
.1 VARIABLE
.. 1 CONSTANT
... 1 ANY (constant or variable)
.... 1 ... This term is a SUBSCRIPT term .
..... 000 Reserved

4 Byte 1-2 Contains the hexadecimal length of the parameter-type field.
Byte 3-4 Contains the offset of the parameter-type field. It is set to X'0012'.

Variable Contains the parameter-type field.

1 Contains the length of the default or prompting information
supplied on the macro instruction.

Variable Contains the default or prompting information supplied on the
macro instruction.

2 If a subscript is specified on the macro, this field contains the offset
into the parameter control list of the subscript PCE.

2 If a reserved word PCE is specified on the macro, this field contains
the offset into the parameter control list of the reserved word PCE.

2 Contains the length (including this field) of all the PCE fields used
for second level messages if HELP is specified on the macro.

1 The number of second level messages specified on the macro
instruction by t.he HELP parameter.

92 MVS/ESA TSO Programming

Figure 32 (Page 2 of 2). The Parameter Control Entry Built by IKJTERM

Number of Field Contents or Meaning
Bytes

2 Contains the length of this segment including this field, the
message offset field and second level message.

Note: This field and the following two are repeated for each
second level message spe-::ified by HELP on the macro.

2 This field contains the message segment offset.

Variable This field contains one second level message specified by HELP on
the macro instruction. This field and the two preceding fields are
repeated for each second level message specified.

3 or 4 This field contains the address of a validity checking routine if
VALIDCK was specified on the IKJTERM macro. If the "extended
format PCE" bit is on in the IKJTERM PCE, the address is four bytes
long; if the bit is off, the address is three bytes long. This field is
not present if VALIDCK was not specified.

Using IKJOPER to Describe a Delimiter-Dependent Positional Operand
Use the IKJOPER macro instruction to provide a parameter control entry (PCE) that
describes an expression. An expression consists of three parts; two operands and
one operator in the form:

(operand! operator operand2)

typically specified as:

(abc eq 123)

The parts of an expression are described by PCEs that are chained to the IKJOPER
PCE. Use the IKJTERM macro instruction to identify the operands, and use the
IKJRSVWD macro instruction to identify the operator.

Figure 33 shows the format of the IKJOPER macro instruction. Each of the
operands is explained following the figure.

1 abel IKJOPER 'parameter-type''[,PROMPT='prompt data'] ,DEFAULT='default value'

[,HELP=('help data', 'help data', •.•)]
[,VALIDCK=symbolic-address],OPERNDl=labell
,OPERND2=labe12,RSVWD=labe13
[, CHAIN=l abel 4]

Figure 33. The IKJOPER Macro Instruction

label
This name is used to address the PCE built by the IKJOPER macro. The
hexadecimal offset to the parameter descriptor entry built by the parse service
routine for this operand is contained in the PCE.

'parameter-type'
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and if supplied is used only for a required operand
that is not specified by the user. Blanks within the apostrophes are allowed.

Chapter 13. Verifying Operands with the Parse Service Routine 93

Note: Parse uses this field only for error messages for the complete
expression. The IKJTERM and IKJRSVWD PCEs are used when parse issues
error messages for missing operands or a missing operator. If a validity check
routine indicates that the expression is invalid, parse issues a message for the
entire expression.

PROMPT== 'prompt data'
The operand described by this IKJOPER macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
specified by the user. If the operand is not specified, the parse service routine
supplies a message ID and adds the word MISSING to the beginning of this
message before writing it to the output data set.

DEFAULT= 'default value'
The operand described by this IKJOPER macro Instruction is required, but the
user need not specify it. If the operand is not specified, the parse service
routine uses the value specified as the default value.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP= ('help data', 'help data', ...)
You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are written to the output data
set following the prompting message.

Parse adds a message ID and the word MISSING to the beginning of each
message before writing it to the output data set.

VALIDCK =symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional checking on this expression. The parse service routine calls
this routine after first determining that the expression is syntactically correct.

OPERND1 = label1
Supply the name of the label field of the IKJTERM macro instruction that is used
to describe the first operand in the expression. This IKJTERM macro instruction
should be coded immediately following the IKJOPER macro instruction that
describes the expression.

OPERND2 = label2
Supply the name of the label field of the IKJTERM macro instruction that is used
to describe the second operand in the expression. This IKJTERM macro
instruction should be coded immediately following the IKJNAME macro
instructions that describe the operator in the expression under the associated
IKJRSVWD macro instruction.

RSVWD = label3
Supply the name of the label field of the IKJRSVWD macro instruction that
begins the list of reserved words that are used to describe the possible
operators to be specified for the expression. The IKJRSVWD and associated
IKJNAME macro instructions should be coded immediately following the
IKJTERM macro that describes the first operand, and immediately preceding the
IKJTERM macro that describes the second operand.

94 MVS/ESA TSO Programming

CHAIN= label4
Indicates that this operand described by the IKJOPER macro instruction can be
specified as an expression or as a variable. Supply the name of the label field
of an IKJTERM macro instruction that describes the variable term. The LIST and
RANGE options are not permitted on this IKJTERM macro instruction. Code this
IKJTERM macro instruction immediately following the IKJTERM macro that
describes the second operand.

Note: The parse service routine first determines if the operand is specified as
an expression. If the operand is an expression, that is, enclosed in
parentheses, then it is processed as an expression. If it is not an expression,
then it is processed using the chained IKJTERM PCE to control the scan of the
operand.

The Parameter Control Entry Built by IKJOPER
The IKJOPER macro instruction generates the variable parameter control entry
(PCE) shown in Figure 34.

Figure 34 (Page 1 of 2). The Parameter Control Entry Built by IKJOPER

Number of Field Contents or Meaning
Bytes

2 Flags. These flags are set to indicate options on the IKJOPER
macro instruction.

Byte 1
111 This is an IKJOPER PCE.
... 1 PROMPT
.... 1 ... DEFAULT
..... 1 .. This is an extended format PCE. If the VALIDCK parameter is

specified, the length of the field containing the address of the
validity checking routine is four bytes.

...... 1. HELP

....... 1 VALIDCK

Byte 2
0000 0000 Reserved

2 The hexadecimal length of this PCE.

2 Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the parameter descriptor entry built by the parse
service routine.

4 Byte 1-2 Contains the hexadecimal length of the parameter-type field.
Byte 3-4 Contains the offset of the parameter-type field (X'0012').

Variable Contains the parameter-type field.

2 If a reserved word PCE is specified on the macro, this field contains
the offset into the parameter control list of the reserved word PCE.

2 Contains the offset into the parameter control list of the OPERND1
PCE.

2 Contains the offset into the parameter control list of the OPERND2
PCE.

2 Contains the offset into the parameter control list of the chained
term PCE if present. Zero if not present.

1 Contains the length of the default or prompting information
supplied on the macro instruction.

Chapter 13. Verifying Operands with the Parse Service Routine 95

Figure 34 (Page 2 of 2). The Parameter Control Entry Built by IKJOPER

Number of
Bytes

Variable

2

2

2

Variable

3 or 4

Fie Id Contents or Meaning

Contains the default or prompting information supplied on the
macro instruction.

Contains the length (including this field) of all the PCE fields used
for second level messages if HELP is specified on the macro.

The number of second level messages specified on the macro
instruction by the HELP= parameter.

Contains the length of this segment including this field, the
message offset field and second level message.

Note: This field and the following two are repeated for each
second level message specified by HELP on the macro.

This field contains the message segment offset.

This field contains one second level message specified by HELP on
the macro instruction. This field and the two preceding fields are
repeated for each second level message specified.

This field contains the address of a validity checking routine if
VALIDCK was specified on the IKJOPER macro. If the "extended
format PCE" bit is on in the IKJOPER PCE, the address is four bytes
long; if the bit is off, the address is three bytes long. This field is
not present if VALIDCK was not specified.

Using IKJRSVWD to Describe a Delimiter-Dependent Positional Parameter
Use the IKJRSVWD macro instruction to do the following:

• Define a positional reserved word operand.

In this case, use the IKJRSVWD macro instruction by itself and specify at least
the 'parameter-type' operand.

• Describe the operator portion of an expression.

In this case, use the RSVWD operand of the IKJOPER macro instruction to define
the beginning of a list of the possible reserved words that can be an operator in
an expression. To identify the possible reserved words that can be operators in
an expression, specify a list of IKJNAME macro instructions that immediately
follow the IKJRSVWD macro instruction.

You must specify at least the 'parameter-type' operand on the IKJRSVWD macro
instruction.

• Describe a reserved word constant.

In this case, use the RSVWD keyword of the IKJTERM macro instruction to
define the beginning of a list of possible reserved words that can be used as a
figurative constant. To define the possible figurative constants, specify a list of
IKJNAME macros that immediately follow the IKJRSVWD macro instruction.

When you use the IKJRSVWD macro instruction to define a reserved word
constant, code the macro without any operands as follows:

label IKJRSVWD

The order in which you code the macros for positional operands is the order in
which the parse service routine expects to find the operands in the command string.

96 MVS/ESA TSO Programming

Figure 35 shows the format of the IKJRSVWD macro instruction. Each of the
operands is explained following the figure.

label IKJRSVWD 'parameter-type' [·PROMPT=' prompt data']
,DEFAULT='default value'

[,HELP=('help data','help data', •••)]

Figure 35. The IKJRSVWD Macro Instruction

label
This name is used to address the PCE built by the IKJRSVWD macro. The
hexadecimal offset to the parameter descriptor entry (PDE) built by the parse
service routine for this operand is contained in the PCE.

Code the following operands on the IKJRSVWD macro when you use it either by
itself to describe a positional reserved word operand, or with IKJOPER to describe
the operator portion of an expression.

'parameter-type'
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and if supplied is used only for a required operand
that is not specified by the user. Blanks within the apostrophes are allowed:

PROMPT= 'prompt data'
The operand described by this IKJRSVWD macro instruction is required. The
prompting data that you specify is issued as a message.if the operand is not
specified by the user. If the operand is not specified, the parse service routine
supplies a message ID and adds the word MISSING to the beginning of this
message before writing it to the output data set.

DEFAULT= 'default value'
The operand described by this IKJRSVWD macro instruction is required, but the
user need not specify it. If the operand is not specified, the value specified as
the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP= ('help data', 'help data', ...)
,

You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are written to the output data
set following the prompting message.

Parse adds a message ID and the word MISSING to the beginning of each
message before writing it to the output data set.

Chapter 13. Verifying Operands with the Parse Service Routine 97

The Parameter Control Entry Built by IKJRSVWD
The IKJRSVWD macro instruction generates the variable parameter control entry
(PCE) shown in Figure 36.

Figure 36. The Parameter Control Entry Built by IKJRSVWD

Number of Field Contents or Meaning
Bytes

2 Flags. These flags are set to indicate options on the IKJRSVWD
macro instruction.

Byte 1
101 This is an IKJRSVWD PCE .
... 1 PROMPT
.... 1 ... DEFAULT
.... . 0 .. Reserved
...... 1. HELP
....... 0 Reserved

Byte 2
1 This PCE is used with the IKJTERM macro as a figurative constant.
0 This PCE is not used with the IKJTERM macro as a figurative

constant.
.000 0000 Reserved.

2 The hexadecimal length of this PCE.

2 Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the parameter descriptor entry built by the parse
service routine.

Note: The following fields are omitted if this PCE is used with the
IKJTERM macro to describe a figurative constant.

4 Byte 1-2 Contains the hexadecimal length of the parameter-type field.
Byte 3-4 Contains the offset of the parameter-type field (X'0012').

Variable Contains the parameter-type field.

1 Contains the length of the default or prompting information
supplied on the macro instruction.

Variable Contains the default or prompting information supplied on the
macro instruction.

2 Contains the length (including this field) of all the PCE fields used
for second level messages if HELP is specified on the macro.

1 The number of second level messages specified on the macro
instruction by the HELP= parameter.

2 Contains the length of this segment including this field, the
message offset field and second level message.

Note: This field and the following two are repeated for each
second level message specified by HELP on the macro.

2 This field contains the message segment offset.

Variable This field contains one second level message specified by HELP on
the macro instruction. This field and the two preceding fields are
repeated for each second level message specified.

98 MVS/ESA TSO Programming

Using IKJIDENT to Describe a Non-Delimiter-Dependent Positional Operand
Use the IKJIDENT macro instruction to describe a positional operand that does not
depend upon a particular delimiter for its syntactical definition. These operands are
discussed in "Positional Operands Not Dependent on Delimiters" on page 78.

These positional operands must be in the form of a character string, with
restrictions on the beginning character, additional characters, and length, decimal
integers, or hexadecimal characters.

The order in which you code the macro instructions for positional operands is the
order in which the parse service routine expects to find the positional operands in
the command string.

Figure 37 shows the format of the IKJIDENT macro instruction. Each of the
operands is explained following the figure.

label IKJIDENT 'parameter-type' [,LIST][,RANGE]

[,ASTERISK] [,UPPERCASE] [,MAXLNTH=number]
,ASIS

.-
ALPHA
NUMERIC NUMERIC

' -
- , 'ALPHA

,FIRST= AL PHAN UM ,OTHER= ALPHANUM >
ANY ANY
NONATABC NONATABC

, NONATNUM - L NONATNUM
'- ·-

[,PROMPT='prompt data']
,DEFAULT='default value'

[
,CHAR l
,INTEG
,HEX

[,VALIDCK=symbolic-address]

[,HELP=('help data', 'help data', ...)]

Figure 37. The IKJIDENT Macro Instruction

label
This name is used within the POL DSECT as the symbolic address of the
parameter descriptor entry for this positional operand.

'parameter-type'
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and if supplied is used only for a required operand
that is not specified by the user. Blanks within the apostrophes are allowed.

LIST
This positional operand can be specified by the user as a list, that is, in the
form:

commandname (operand,operand, •••)

Chapter 13. Verifying Operands with the Parse Service Routine 99

RANGE
This positional operand can be specified by the user as a range, that is, in the
form:

commandname operand:operand

If you specify RANGE and OTHER= ANY, parse treats any colons it finds as
delimiters. For example, the first colon after RANGE marks the end of the first
part of the range and the start of the next part of the range. To include the colon
in your data, you must use the CHAR operand and enclose the colon in
quotation marks.

ASTERISK
An asterisk can be substituted for this positional operand.

Note: ASTERISK and INTEG are mutually exclusive.

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was entered.

MAXLNTH =number
The maximum number of characters the string can contain. This number must
be a value from 1 to 255. If you do not code the MAXLNTH operand, the parse
service routine accepts a character string of any length.

FIRST=
Specify the character type restriction on the first character of the string.

OTHER=
Specify the character type restriction on the characters of the string other than
the first character.

Specify the restrictions on the characters of the string by coding one of the following
character types after the FIRST= and the OTHER= operands. This is true unless
HEX, INTEG, or CHAR is specified; FIRST= and OTHER= serve no purpose in these
cases.

ALPHA
An alphabetic or national character. ALPHA is the default value for both the
FIRST and the OTHER operands.

NUMERIC
A digit, 0-9.

ALPHANUM
An alphabetic, numeric, or national character.

ANY
Any character other than a blank, comma, tab, or semicolon. Parentheses must
be balanced.

NONATABC
An alphabetic character only. National characters and numerics are excluded.

NONATNUM
An alphabetic or numeric character. National characters are excluded.

100 MVS/ESA TSO Programming

PROMPT= 'prompt data'
The operand described by this IKJIDENT macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
specified by the user. If the operand is not specified, the parse service routine
supplies a message ID and adds the word MISSING to the beginning of this
message before writing it to the output data set.

DEFAULT= 'default value'
The operand is required, but a default value can be used. If the operand is not
specified by the user, the value specified as the default value is used.

Note: The operand is optional if neither PROMPT nor DEFAULT is specified.
The parse service routine takes no action if the operand specified by this
IKJIDENT macro instruction is not present in the command buffer.

CHAR
Specifies that the parse service routine is to accept a string of characters as
input. This input string can be either quoted or unquoted.

INTEG
Specifies that the parse service routine is to accept a numeric quantity as input.
This quantity can be decimal, hexadecimal, or binary. The number is stored
internally as a fullword binary value, regardless of how INTEG was specified.

Note: A maximum length is automatically implied if the INTEG option is
specified. For binary input, the maximum number of characters is 32. For
hexadecimal input, the maximum length is 8. For decimal input, the maximum
length is 10.

HEX
Specifies that the parse service routine is to accept a hexadecimal value as
input. This string quantity can be hexadecimal or a quoted or non-quoted string.

Note: All input specified in the form X'n .. .' must be valid hexadecimal digits
(0-9, A-F). All input specified in the form B'n .. .' must be valid binary digits (0,1).
All input entered as unquoted decimals must be valid decimal digits (0-9).

VALIDCK =symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional validity checking on this operand. The parse service routine
calls the addressed routine after first determining that the operand is
syntactically correct.

HELP= ('help data', 'help data' ...)
You can provide up to 255 second level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are written to the output data
set following the prompting message. These messages are not issued when the
prompt is for a password on a dsname operand.

Parse adds a message ID and the word MISSING to the beginning of each
message before writing it to the output data set.

Chapter 13. Verifying Operands with the Parse Service Routine 101

The Parameter Control Entry Built by IKJIDENT
The IKJIDENT macro instruction generates the variable length parameter control
entry (PCE) shown in Figure 38.

Figure 38 (Page 1 of 2). The Parameter Control Entry Built by IKJIDENT

Number of
Bytes

2 •

2

2

102 MVS/ESA TSO Programming

Field

Byte 1
100
... 1
.... 1...
..... 1 ..

.... .. 1.

....... 1

Byte 2
1
.1
.. 1
... 0 0000

1...
.1
... 1
.... 1 ...
..... 1..
.. 0 ... 00

Contents or Meaning

Flags. These flags are set to indicate which options were specified
in the IKJIDENT macro instruction.

This is an IKJIDENT PCE.
PROMPT
DEFAULT
This is an extended format PCE. If the VALIDCK parameter is
specified, the length of the field containing the address of the
validity checking routine is four bytes .
HELP
VALIDCK

LIST
ASIS
RANGE
Reserved

Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in this
IKJIDENT PCE.

Contains a hexadecimal offset from the beginning of the parameter
descriptor list to the related parameter descriptor entry built by the
parse service routine.

A flag field indicating the options coded on the IKJIDENT macro
instruction.

ASTERISK
MAXLNTH
Integer
Character
Hexadecimal
Reserved

This field contains a hexadecimal number indicating the character
type restriction on the first character of the character string
described by the IKJIDENT macro instruction.

HEX Acceptable characters:
O Any (except blank, comma, tab, semicolon)
1 Alphabetic or national
2 Numeric
3 Alphabetic, national, or numeric
4 Alphabetic
5 Alphabetic or numeric
6 to FF Not used

Figure 38 (Page 2 of 2). The Parameter Control Entry Built by IKJIDENT

Number of
Bytes

2

2

Variable

Variable

2

2

2

Variable

3 or 4

Field Contents or Meaning

This field contains a hexadecimal number indicating the character
type restriction on the other characters of the character string
described by the IKJIDENT macro instruction.

HEX Acceptable characters:
0 Any (except blank, comma, tab, semicolon)
1 Alphabetic or national
2 Numeric
3 Alphabetic, national, or numeric
4 Alphabetic
5 Alphabetic or numeric
6 to FF Not used

This field contains a hexadecimal number representing the length
of the parameter type segment. This figure includes the length of
this field, the length of the message segment offset field, and the
length of the parameter type field supplied on the IKJIDENT macro
instruction.

This field contains the message segment offset. It is set to X'0012'.

This field contains the field supplied as the parameter type operand
of the IKJIDENT macro instruction.

This field contains a hexadecimal number representing the
maximum number of characters the string can contain. This field is
present only if the MAXLNTH operand was coded on the IKJIDENT
macro instruction.

This field contains the length minus one of the defaults or
prompting information supplied on the IKJIDENT macro instruction.
This field and the next are present only if DEFAULT or PROMPT
were specified on the IKJIDENT macro instruction.

This field contains the prompting or default information supplied on
the IKJIDENT macro instruction.

This field contains a hexadecimal figure representing the length in
bytes of all the PCE fields used for second level messages. The
figure includes the length of this field. The fields are present only if
HELP is specified on the IKJIDENT macro instruction.

This field contains a hexadecimal number representing the number
of second level messages specified by HELP on this IKJIDENT PCE.

This field contains a hexadecimal number representing the length
of this HELP segment. The figure includes the length of this field,
the message segment offset field, and the length of the information.
These fields are repeated for each second level message specified
by HELP on the IKJIDENT macro instruction.

This field contains the message segment offset. It is set to X'OOOO'.

This field contains one second level message supplied on the
IKJIDENT macro instruction specified by HELP. This field and the
two preceding ones are repeated for each second level message
supplied on the IKJIDENT macro instruction; these fields do not
appear if no second level message data was supplied.

This field contains the address of a validity checking routine if
VALIDCK was specified on the IKJIDENT macro. If the "extended
format PCE" bit is on in the IKJIDENT PCE, the address is four
bytes long; if the bit is off, the address is three bytes long. This
field is not present if VALIDCK was not specified.

Chapter 13. Verifying Operands with the Parse Service Routine 103

Using IKJKEYWD to Describe a Keyword Operand
To describe a keyword operand, use the IKJKEYWD macro instruction immediately
followed by a series of IKJNAME macro instructions that indicate the possible
names for the keyword operand. See "Using IKJNAME to List Keyword or Reserved
Word Operand Names" on page 105 for information on the IKJNAME macro
instruction.

Keyword operands can appear in any order in the command but must follow all
positional operands. A user is never required to enter a keyword operand; if he
does not, the default value you supply, if you choose to supply one, is used.
Keywords can consist of any combination of alphameric characters up to 31
characters in length, the first of which must be an alphabetic character.

Figure 39 shows the format of the IKJKEYWD macro instruction. Each of the
operands is explained following the figure.

[label I IKJKEYWD [DEFAULT='default-value']

Figure 39. The IKJKEYWD Macro Instruction

label
This name is used within the POL DSECT as the symbolic address of the
parameter descriptor entry for this operand.

DEFAULT= 'default-value'
The default value you specify is the value that is used if this keyword is not
present in the command buffer. Specify the valid keyword names with IKJNAME
macro instructions following this IKJKEYWD macro instruction.

The Parameter Control Entry Built by IKJKEYWD
The IKJKEYWD macro instruction generates the variable length parameter control
entry (PCE) shown in Figure 40.

Figure 40 (Page 1 of 2). The Parameter Control Entry Built by IKJKEYWD

Number of Field Contents or Meaning
Bytes

2 Flags. These flags are set to indicate which options were coded in
the IKJKEYWD macro instruction.

Byte 1
010 This is an IKJKEYWD PCE.
... 0 Reserved.
.... 1 ... DEFAULT
.... . 000 Reserved.

Byte 2
0000 0000 Reserved.

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in this
IKJKEYWD PCE.

2 This field contains a hexadecimal offset from the beginning of the
parameter descriptor list to the related parameter descriptor entry
built by the parse service routine.

104 MVS/ESA TSO Programming

Figure 40 (Page 2 of 2). The Parameter Control Entry Built by IKJKEYWD

Number of Field Contents or Meaning
Bytes

1 This field contains the length minus one of the default information
supplied on the IKJKEYWD macro instruction. This field and the
next are present only if DEFAULT was specified on the IKJKEYWD
macro instruction.

Variable This field contains the default value supplied on the IKJKEYWD
macro instruction.

Using IKJNAME to List Keyword or Reserved Word Operand Names
Use the IKJNAME macro instruction to do the following:

• Define keyword operand names. In this case, use the IKJNAME macro
instruction with the IKJKEYWD macro instruction.

• Define reserved word operand names. In this case, use the IKJNAME macro
instruction with the IKJRSVWD macro instruction.

Defining Keyword Operand Names
Use a series of IKJNAME macro instructions to indicate the possible names for a
keyword operand. One IKJNAME macro instruction is needed for each possible
keyword name. Code the IKJNAME macro instructions immediately following the
IKJKEYWD macro instruction to which they pertain.

Figure 41 shows the format of the IKJNAME macro instruction. Each of the
operands is explained following the figure.

IKJNAME 'keyword-name'[,SUBFLD=subfield-name]
[,INSERT=' keyword-string']
[,ALIAS=('name','name', •.•)]

Figure 41. The IKJNAME Macro Instruction (when used with the IKJKEYWD Macro
Instruction)

keyword-name
One of the valid keyword operands for the IKJKEYWD macro instruction that
precedes this IKJNAME macro instruction.

SUBFLD =subfield-name
This option indicates that this keyword name has other operands associated
with it. Use the subfield-name as the label field of the IKJSUBF macro
instruction that begins the description of the possible operands in the subfield.
See "Using IKJSUBF to Describe a Keyword Subfield" on page 107 for a
description of the IKJSUBF macro instruction.

INSERT= 'keyword-string'
The use of some keyword operands implies that other keyword operands are
required. The parse service routine inserts the keyword string specified into the
command string just as if it had been specified as part of the original command
string. The command buffer is not altered.

ALIAS= ('name', 'name', ...)
Specifies up to 32 alias names for a keyword. Each name represents a valid
abbreviation or alternate name and must be enclosed in quotes. All
abbreviations or names must be enclosed in a single set of parentheses.

Chapter 13. Verifying Operands with the Parse Service Routine 105

Defining Reserved Word Operand Names
Use a series of IKJNAME macro instructions to indicate the possible names for
reserved words. One IKJNAME macro instruction is needed for each possible
reserved word name. Code the IKJNAME macro instructions immediately following
the IKJRSVWD macro instruction to which they apply.

Figure 42 shows the format of the IKJNAME macro instruction. Each of the
operands is explained following the figure.

I IKJNAME 'reserved-word name'

Figure 42. The IKJNAME Macro Instruction (when used with the IKJRSVWD Macro
Instruction)

reserved-word name
One of the valid reserved word operands for the IKJRSVWD macro instruction
that precedes the IKJNAME macro instructions.

Note: The IKJNAME macro instruction has two uses when coded with the
IKJRSVWD macro instruction. The reserved-words identified on the IKJNAME
macros can be figurative constants when the IKJRSVWD macro is chained from
an IKJTERM macro, or operators in an expression when the IKJRSVWD macro
is chained from the IKJOPER macro. See "Using IKJRSVWD to Describe a
Delimiter-Dependent Positional Parameter" on page 96 for more information on
using the IKJRSVWD macro instruction.

The Parameter Control Entry Built by IKJNAME
The IKJNAME macro instruction generates the variable length parameter control
entry (PCE) shown in Figure 43.

Note: Only the first four fields are valid when the IKJNAME macro instruction is
coded with the IKJRSVWD macro instruction.

Figure 43 (Page 1 of 2). The Parameter Control Entry Built by IKJNAME

Number of Field Contents or Meaning
Bytes

2 Flags. These flags are set to indicate which options were coded in
the IKJNAME macro instruction.

Byte 1
011 This is an IKJNAME PCE.
... 00 ... Reserved.
..... 1 .. SUBFLD
.... .. 00 Reserved .

Byte 2
000 Reserved.
... 1 INSERT
...... 1 . ALIAS
.... 00.0 Reserved.

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in this
IKJNAME PCE.

1 This field contains the length minus one of the keyword or reserved
word names specified on the IKJNAME macro instruction.

106 MVS/ESA TSO Programming

Figure 43 (Page 2 of 2). The Parameter Control Entry Built by IKJNAME

Number of Field Contents or Meaning
Bytes

Variable This field contains the keyword or reserved word name specified
on the IKJNAME macro instruction.

2 This field contains a hexadecimal offset, plus one, from the
beginning of the parameter control list to the beginning of a
subfield PCE. This field is present only if the SUBFLD operand was
specified in the IKJNAME macro instruction.

1 This field contains the length minus one of the keyword string
included as the INSERT operand in the IKJNAME macro instruction.
This field and the next are not present if INSERT was not specified.

Variable This field contains the keyword string specified as the INSERT
operand of the IKJNAME macro instruction.

1 The total number of aliases.

1 The length minus one of first alias.

Variable The first alias.
1 The length minus one of second alias.

Variable The second alias.

Using IKJSUBF to Describe a Keyword Subfield
Keyword operands can have subfields associated with them. A subfield consists of
a parenthesized list of operands (either positional or keyword types) which directly
follows the keyword.

Use the IKJSUBF macro instruction to indicate the beginning of a subfield
description. The IKJSUBF macro instruction ends the main part of the parameter
control list or the previous subfield description, and begins a new subfield
description. All subfield descriptions must occur after the main part of the
parameter control list.

The IKJSUBF macro instruction is used only to begin the subfield description; the
subfield is described using the IKJPOSIT, IKJIDENT, and IKJKEYWD macro
instructions, depending upon the type of operands within the subfield.

The label of this macro instruction must be the same name as the SUBFLD operand
of the IKJNAME macro instruction that you coded to describe the keyword name.

Figure 44 shows the format of the IKJSUBF macro instruction.

I label IKJSUBF

Figure 44. The IKJSUBF Macro Instruction

label
The name you supply as the label of this macro instruction must be the same
name you have coded as the SUBFLD operand of the IKJNAME macro
instruction describing the keyword name that takes this subfield.

Chapter 13. Verifying Operands with the Parse Service Routine 107

The Parameter Control Entry Built by IKJSUBF
The IKJSUBF macro instruction generates the parameter control entry (PCE) shown
in Figure 45.

Figure 45. The Parameter Control Entry Built by IKJSUBF

Number of Fie Id Contents or Meaning
Bytes

1 Flags. These flags indicate which type of PCE this is.

000 This PCE indicates an end-of-field. These end-of-field indicators
are present in IKJSUBF and IKJENDP PCEs; they indicate the end of
a previous subfield or of the PCL itself .

... 0 0000 Reserved.

2 This field contains a hexadecimal number representing the offset
within the PCL to the first IKJKEYWD PCE or to the next end-of-field
indicator if there are no keywords in this subfield.

Using IKJENDP to End the Parameter Control List
Use the IKJENDP macro instruction to inform the parse service routine that it has
reached the end of the parameter control list built for this command.

Figure 46 shows the format of the IKJENDP macro instruction.

I IKJENDP

Figure 46. The IKJENDP Macro Instruction

The Parameter Control Entry Built by IKJENDP
The IKJENDP macro instruction generates the parameter control entry (PCE) shown
in Figure 47. It is merely an end-of-field indicator.

Figure 47. The Parameter Control Entry Built by IKKJENDP

Number of Fie Id Contents or Meaning
Bytes

1 Flags. These flags are set to indicate end-of-field.

000 End-of-field indicator. Indicates the end of the PCL.
... 0 0000 Reserved.

Using IKJRLSA to Release Virtual Storage Allocated by Parse
Use the IKJRLSA macro instruction to release virtual storage allocated by the parse
service routine and not previously released by the parse service routine. This
storage consists of the parameter descriptor list (POL) returned by the parse service
routine.

If the return code from the parse service routine is non-zero, parse has freed all
virtual storage that it has allocated. In this case, you do not need to issue this
macro instruction, but it will not cause an error if you do issue it.

108 MVS/ESA TSO Programming

Figure 48 shows the format of the IKJRLSA macro instruction. Each of the operands
is explained following the figure.

label IKJRLSA Address of the answer place
(1-12)

Figure 48. The IKJRLSA Macro Instruction

address of the answer place
The address of the word in which the parse service routine placed a pointer to
the parameter descriptor list (POL), when control was returned to the command
processor. Your command processor can load this address into one of the
general registers 1 through 12, and right adjust it with the unused high order
bits set to zero. See "Passing Control to the Parse Service Routine" on
page 117 for a description of the parse parameter list.

...___ ________ End of GENERAL-USE PROGRAMMING INTERFACE ________ ___,

Examples Using the Parse Macro Instructions

Example 1
This example shows how the parse macro instructions could be used within a
command processor to describe the syntax of a PROCESS command to the parse
service routine. A sample command processor that includes the parse macros used
in this example is shown in Chapter 4, "Validating Command Operands" on
page 13.

The sample PROCESS command we are describing to the parse service routine has
the following format:

I PROCESS I dsname [ACTION]
NOACTION

Figure 49 on page 110 shows the sequence of parse macro instructions that
describe the syntax of this PROCESS command to the parse service routine. The
parse macro instructions used in this example perform the following functions:

• The IKJPARM macro instruction indicates the beginning of the parameter
control list and creates the PRDSECT DSECT that you use to map the parameter
descriptor list returned by the parse service routine.

• The IKJPOSIT macro instruction describes the data set name, which is a
positional operand. The address of a validity checking routine, POSITCHK, is
specified.

• The IKJKEYWD and IKJNAME macro instructions indicate the possible names
for keyword operands.

• The IKJENDP macro instruction indicates the end of the parameter control list.

Chapter 13. Verifying Operands with the Parse Service Routine 109

Example 2

PCLDEFS
DSNPCE

ACTPCE

IKJPARM DSECT=PRDSECT
IKJPOSIT DSNAME,

PROMPT='DATA SET NAME TO BE PROCESSED',
VALIDCK=POSITCHK

IKJKEYWD DEFAULT='NOACTION'
IKJNAME 'ACTION'
IKJNAME 'NOACTION'
IKJENDP

Figure 49. Example 1 - Using Parse Macros to Describe Command Operand Syntax

This example shows how the parse macro instructions could be used within a
command processor to describe the syntax of an EDIT command to the parse
service routine.

x
x

The sample EDIT command we are describing to the parse service routine has the
following format:

EDIT dsname
' -

PU [([number[number]][CHAR60) J]
~ 72 CHAR48

FORT
ASM
TEXT
DATA
~ -

[SCAN l
NOSCAN •

[NUM J
NON UM

[BLOCK(number)
BLKSIZE(number)

LINE (number)

Figure 50 on page 111 shows the sequence of parse macro instructions that
describe the syntax of this EDIT command to the parse service routine. The parse
macro instructions used in this example perform the following functions:

• The IKJPARM macro instruction indicates the beginning of the parameter
control list and creates the DSECT that you use to map the parameter descriptor
list returned by the parse service routine. The name of the DSECT is defaulted
to IKJPARMD in this example.

• The IKJPOSIT macro instruction describes the data set name, which is a
positional operand.

• The IKJKEYWD and IKJNAME macro instructions indicate the possible names
for keyword operands.

110 MVS/ESA TSO Programming

Example 3

• The IKJSUBF macro instruction indicates the beginning of subfield descriptions
for keyword operands. Within these subfields, IKJIDENT and IKJKEYWD macro
instructions describe the positional and keyword operands.

• The IKJENDP macro instruction indicates the end of the parameter control list.

PARMTAB IKJPARM
DSNAME IKJPOSIT DSNAME,PROMPT='DATA SET NAME'
TYPE IKJKEYWD

IKJNAME 'Pll' ,SUBFLD=PLlFLD
IKJNAME 'FORT'
IKJNAME 'ASM'
IKJNAME 'TEXT'
IKJNAME 'DATA'

SCAN IKJKEYWD DEFAULT='NOSCAN'
IKJNAME 'SCAN'
IKJNAME 'NOSCAN'

NUM IKJKEYWD DEFAULT='NUM'
IKJNAME 'NUM'
IKJNAME 'NONUM'

BLOCK IKJKEYWD
IKJNAME 'BLOCK',SUBFLD=BLOCKSUB,ALIAS='BLKSIZE'

LINE IKJKEYWD
IKJNAME 'LINE' ,SUBFLD=LINESIZE

PLlFLD IKJSUBF
PLlCOLl IKJIDENT 'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC,DEFAULT='2'
PL1COL2 IKJIDENT 'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC,DEFAULT='72'
PLlTYPE IKJKEYWD DEFAULT='CHAR60'

IKJNAME 'CHAR60'
IKJNAME 'CHAR48'

BLOCKSUB IKJSUBF
BLKNUM IKJIDENT 'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC, X

PROMPT='BLOCKSIZE',MAXLNTH=8
LINESIZE IKJSUBF
LINNUM IKJIDENT 'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC, X

PROMPT='LINESIZE'
IKJENDP

Figure 50. Example 2 - Using Parse Macros to Describe Command Operand Syntax

This example shows how the parse macro instructions could be used to describe the
syntax of a sample AT command that has the following syntax:

COMMAND OPERANDS

(stmt I AT (stmt-l,stmt-2, ...) (cmd chain) COUNT(integer)
stmt-3:stmt-4

Figure 51 on page 112 shows the sequence of parse macro instructions that
describe this sample AT command to the parse service routine. The parse macro
instructions used in this example perform the following functions:

• The IKJPARM macro instruction indicates the beginning of the parameter
control list and creates the PARSEAT DSECT that you use to map the parameter
descriptor list returned by the parse service routine.

Chapter 13. Verifying Operands with the Parse Service Routine 111

Example 4

• The IKJTERM macro instruction indicates that the user can enter the statement
number as a single value or as a list or range of values.

• The IKJPOSIT macro instruction indicates that the user must enter the
subcommand-chain as a parenthesized string.

• The IKJKEYWD and IKJNAME macro instructions indicate the name of the
keyword operand COUNT.

• The IKJSUBF macro instruction indicates the beginning of a subfield description
for the keyword operand. Within this subfield, an IKJIDENT macro instruction
describes the positional operand.

• The IKJENDP macro instruction indicates the end of the parameter control list.

EXAM2 IKJPARM DSECT=PARSEAT
STMTPCE IKJTERM 'STATEMENT NUMBER',UPPERCASE,LIST,RANGE,TYPE=STMT, X

VALIDCK=CHKSTMT
POSITPCE IKJPOSIT PSTRING,HELP='CHAIN OF COMMANDS',VALIDCK=CHKCMD
KEYPCE IKJKEYWD
NAMEPCE IKJNAME 'COUNT',SUBFLD=COUNTSUB
COUNTSUB IKJSUBF
IDENTPCE IKJIDENT 'COUNT',FIRST=NUMERIC,OTHER=NUMERIC, X

VALIDCK=CHKCOUNT
IKJENDP

Figure 51. Example 3 - Using Parse Macros to Describe Command Operand Syntax

This example shows how the parse macro instructions could be used to describe the
syntax of a sample LIST command that has the following syntax:

COMMAND OPERANDS

LIST symbol PRINT(symbol)

Figure 52 on page 113 shows the sequence of parse macro instructions that
describe this sample LIST command to the parse service routine. The parse macro
instructions used in this example perform the following functions:

• The IKJPARM macro instruction indicates the beginning of the parameter
control list and creates the PARSELST DSECT that you use to map the
parameter descriptor list returned by the parse service routine.

• The IKJTERM macro instruction describes a subscripted variable, such as,

a of b in c(l)

that the user must specify.

• The IKJKEYWD and IKJNAME macro instructions indicate the name of the
keyword operand PRINT.

• The IKJSUBF macro instruction indicates the beginning of a subfield description
for the keyword operand. Within this subfield, an IKJTERM macro instruction
describes the positional operand.

• The IKJENDP macro instruction indicates the end of the parameter control list.

112 MVS/ESA TSO Programming

Example 5

EXAM3 IKJPARM DSECT=PARSELST
VARPCE IKJTERM 'SYMBOL',UPPERCASE,PROMPT='SYMBOL',TYPE=VAR, X

VALIDCK=CHECK,SBSCRPT=SUBPCE
SUBPCE IKJTERM 'SUBSCRIPT' ,SBSCRPT,TYPE=CNST,PROMPT='SUBSCRIPT'
KEYPCE IKJKEYWD
NAMEPCE IKJNAME 'PRINT',SUBFLD=PRINTSUB
PRINTSUB IKJSUBF

IKJTERM 'SYMBOL-2',UPPERCASE,PROMPT='SYMBOL-2',TYPE=VAR
IKJENDP

Figure 52. Example 4 - Using Parse Macros to Describe Command Operand Syntax

This example shows how the parse macro instructions could be used to describe the
syntax of a sample WHEN command that has the following syntax:

COMMAND OPERANDS

WHEN { addr) (subcommand chain)
expression

Figure 53 on page 114 shows the sequence of parse macro instructions that
describe this sample WHEN command to the parse service routine. The parse
macro instructions used in this example perform the following functions:

• The IKJPARM macro instruction indicates the beginning of the parameter
control list and creates the PARSEWHN DSECT that you use to map the
parameter descriptor list returned by the parse service routine.

• The IKJOPER macro instruction describes an operand that can be specified as
either an expression or a variable.

• The IKJTERM macro instructions that are labeled SYMBOL and SYMBOL2 describe
the operands that are part of the expression.

• The IKJRSVWD and IKJNAME macro instructions define possible reserved
words that can be operators in the expression.

• The IKJTERM macro instruction that is labeled ADDRl describes the variable that
can be specified as the first positional operand.

• The IKJPOSIT macro instruction describes a parenthesized string.

• The IKJENDP macro instruction indicates the end of the parameter control list.

Chapter 13. Verifying Operands with the Parse Service Routine 113

EXAM4 IKJPARM DSECT~PARSEWHN
OPER IKJOPER 'EXPRESSION',OPERND1=SYMBOL1,0PERND2=SYMBOL2, X

RSVWD=OPERATOR,CHAIN=ADDRl,PROMPT='TERM',VALICHK=CHECK
SYMBOLl IKJTERM 'SYMBOL1',UPPERCASE,TYPE=VAR,PROMPT='SYMBOL2'
OPERATOR IKJRSVWD 'OPERATOR',PROMPT='OPERATOR'

IKJNAME 'EQ'
IKJNAME 'NEQ'

SYMBOL2 IKJTERM 'SYMBOL2',TYPE=VAR
ADDRl IKJTERM 'ADDRESS',TYPE=VAR,VALIDCK=CHECKl
LASTONE IKJPOSIT PSTRING,VALIDCK=CHECK2

IKJENDP

Figure 53. Example 5 - Using Parse Macros to Describe Command Operand Syntax

114 MVS/ESA TSO Programming

GENERAL-USE PROGRAMMING INTERFACE

Using Validity Checking Routines
Your command processor can provide a validity checking routine to do additional
checking on a positional operand. Each positional operand can have a unique
validity checking routine. Indicate the presence of a validity checking routine by
coding the entry point address of the routine as the VALIDCK= operand in the
IKJPOSIT, IKJTERM, IKJOPER or IKJIDENT macro instructions. This address must
be within the program that invokes the parse service routine.

The parse service routine can call validity checking routines for the following types
of positional parameters:

• HEX
• VALUE
• ADDRESS
• QSTRING
• DSNAME
• DSTHING
• CONSTANT
• VARIABLE
• STATEMENT NUMBER
• EXPRESSION
• JOBNAME
• INTEG
• Any non-delimiter-dependent parameters

Parse passes control to the validity checking routine after it has determined that the
operand is non-null and syntactically correct. If a dsname operand is entered with a
password, parse passes control to the validity checking routine after first parsing
both the dsname and the password. If the user specifies a list, the validity checking
routine is called as each element in the list is parsed. If a range is specified, the
parse service routine calls the validity checking routine only after both items of the
range are parsed.

Passing Control to Validity Checking Routines
When the parse service routine passes control to a validity checking routine, parse
uses standard linkage conventions. The validity checking routine must save parse's
registers and restore them before returning control to the parse service routine.

Chapter 13. Verifying Operands with the Parse Service Routine 115

The Validity Check Parameter List
The parse service routine builds a three-word parameter list and places the address
of this list into register 1 before branching to a validity checking routine. This
three-word parameter list has the format shown in Figure 54.

Figure 54. Format of the Validity Check Parameter List

Field Label Byte Byte Contents or Meaning
Offset Length

PDEADR 0(0) 4 The address of the parameter descriptor
entry (PDE) built by parse for this
syntactically correct operand.

USERWORD 4(4) 4 The address of the user work area. This is
the same address you supplied to the parse
service routine in the PPLUWA field in the
parse parameter list.

VALMSG 8(8) 4 Initialized to X'OOOOOOOO' by parse. Your
validity checking routine can place the
address of a second level message in this
field when it sets a return code of 4.

Return Codes from Validity Checking Routines
Your validity checking routines must return a code in general register 15 to the
parse service routine. These codes inform the parse service routine of the results
of the validity check and determine the action that parse should take. Figure 55
shows the return codes, their meaning, and the action taken by the parse service
routine.

Figure 55. Return Codes from a Validity Checking Routine

Return Code Meaning Action Taken by Parse
Dec(Hex)

0(0) The operand is valid. No additional processing is
performed on this operand by
the parse service routine.

4(4) The operand is invalid. The parse service routine
writes an error message to the
output data set.

8(8) The operand is invalid. The validity checking routine
has issued an error message to
the output data set.

12(C) The operand is invalid; syntax The parse service routine stops
checking cannot continue. all further syntax checking, sets

a return code of 20, and returns
to the calling routine.

Prior to issuing a return code of 12, your validity checking routine should issue a
message indicating that it has requested that parse terminate.

116 MVS/ESA TSO Programming

Passing Control to the Parse Service Routine
Your command processor can invoke the parse service routine by using either the
CALL TSSR or LINK macro instructions, specifying IKJPARS as the entry point name.
However, you must first create the parse parameter list (PPL) and place its address
into register 1. The PPL is described in "The Parse Parameter List."

The parse service routine must receive control in 24-bit addressing mode. If your
program uses the CALLTSSR macro instruction to invoke IKJPARS, and IKJPARS
resides in the link pack area, your program must issue the CALL TSSR macro
instruction in 24-bit addressing mode. However, if IKJPARS does not reside in the
link pack area, your program can issue the CALLTSSR macro instruction in either
24- or 31- bit addressing mode.

Before you invoke the parse service routine, you must build a parse parameter list
(PPL), and place its address into register 1. This PPL must remain intact until the
parse service routine returns control to the calling routine.

The Parse Parameter List
The parse parameter list (PPL) is a seven-word parameter list containing addresses
required by the parse service routine.

You can use the IKJPPL DSECT, which is provided in SYS1.MACLIB, to map the
fields in the PPL. Figure 56 shows the format of the parse parameter list.

Chapter 13. Verifying Operands with the Parse Service Routine 117

Figure 56. The Parse Parameter List

Field Label Byte Byte Contents or Meaning
Offset Length

PPLUPT 0(0) 4 The address of the user profile table.

PP LE CT 4(4) 4 The address of the environment control
table.

PPLECB 8(8) 4 The address of the command
processor's event control block. The
ECB is one word of storage, which must
be declared and initialized to zero by
your command processor.

PPLPCL 12(C) 4 The address of the parameter control
list (PCL) created by your command
processor using the parse macro
instructions. Use the label on the
IKJPARM macro instruction as the
symbolic address of the PCL.

PPLANS 16(10) 4 The address of a fullword of virtual
storage, supplied by the calling routine,
in which the parse service routine
places a pointer to the parameter
descriptor list (POL). If the parse of the
command buffer is unsuccessful, parse
sets the pointer to the POL to
X'FFOOOOOO'.

PPLCBUF 20(14) 4 The address of the command buffer.

PPLUWA 24(18) 4 A user supplied work area that parse
passes to validity checking routines.
This field can contain anything that your
command processor needs to pass to a
validity checking routine.

118 MVS/ESA TSO Programming

Checking Return Codes from the Parse Service Routine
When the parse service routine returns control to its caller, general register 15
contains one of the following return codes:

Figure 57. Return Codes from the Parse Service Routine

Return Code Meaning
Dec(Hex)

0(0) Parse completed successfully.

4(4) The command operands were incomplete.

12(C) Parse did not complete; the parse parameter list contains invalid
information.

16(10) Parse did not complete; parse issued a GETMAIN and no space was
available.

20(14) Parse did not complete; a validity checking routine requested
termination by returning to parse with a return code of 12.

24(18) Parse did not complete; conflicting operands were found on the
IKJTERM, IKJOPER, or IKJRSVWD macro instruction.

I

If the parse service routine returns to your command processor with a return code of
zero, indicating that it has completed successfully, the PPLANS field in the parse
parameter list contains the address of a fullword containing a pointer to the
parameter descriptor list (PDL). See "Examining the PDL Returned by the Parse
Service Routine" on page 121 for information on how to use the PDL to examine the
results from the parse service routine.

If the parse service routine does not complete successfully, your command
processor should issue a message except when the return code from parse is 4 or
20. When the return code is 4, parse has already issued a message. When the
return code is 20, the validity checking routine has issued a message before it
requested that parse terminate.

Your command processor can invoke the GNRLFAIL routine to issue meaningful
error messages for the other parse return codes. See Chapter 18, "Analyzing Error
Conditions with the GNRLFAIL/VSAMFAIL Routine (IKJEFF19)" on page 235.

~-------- End of GENERAL-USE PROGRAMMING INTERFACE --------~

Chapter 13. Verifying Operands with the Parse Service Routine 119

All input passed to IKJPARS must reside below 16 megabytes in virtual storage.
Figure 58 shows this flow of control between a command processor and the parse
service routine.

Command Processor
CALLTSSR

EP = IK~PAR:C>
I
I
I
I

Reg. 1 y

Parse Service Routine

PPL

+O
t

+4
t

+8
t

+12 t

+16 t

+20t

+24

UPT

ECT

GP ECB

PCL

Answer Place

Command Buffer

User Work Area

Answer Place

Offset Command Name Command
Operands

Figure 58. Control Flow between Command Processor and the Parse Service Routine

120 MVS/ESA TSO Programming

GENERAL-USE PROGRAMMING INTERFACE

Examining the POL Returned by the Parse Service Routine
The parse service routine returns the results of the scan of the command buffer to
the command processor in a parameter descriptor list (POL). The POL, built by
parse, consists of the parameter descriptor entries (PDE), which contain pointers to
the operands, indicators of the options specified, and pointers to the subfield
operands entered with the command operands.

Use the !"!amE- that yo1_1 specified as the DSECT= openmd ori the !KJPARM macro
instruction as the name of the DSECT that maps the POL. The default name for this
DSECT is IKJPARMD. Base this DSECT on the PDL address returned by the parse
service routine. The PPLANS field of the parse parameter list points to a fullword of
storage that contains the address of the POL. Then use the labels you used on the
parse macro instructions to access the corresponding PDEs.

The format of the PDE depends upon the type of operand parsed. For a discussion
of operand types, see the topic "Defining Command Operand Syntax" on page 69.
The following description of the possible PDEs shows each of the PDE formats and
the type of operands they describe.

The POL Header

+o

+4

The POL begins with a two-word header. The DSECT= operand of the IKJPARM
macro instruction provides a name for the DSECT created to map the POL. Use this
name as the symbolic address of the beginning of the POL header.

A pointer to the next block of virtual storage

Subpool number Length

Pointer to the next block of virtual storage:
The parse service routine gets virtual storage for the POL. A forward-chain
pointer of X'FFOOOOOO' in this field indicates that this is the last storage element
obtained.

Subpool number:
This field will always indicate subpool 1. Virtual storage allocated by the parse
service routine for the POL is allocated from subpool 1.

Length:
This field contains a hexadecimal number indicating the length of this block of
real storage (this PDL). The length includes the header.

PDEs Created for Positional Operands Described by IKJPOSIT
The labels you use to name the macro instructions provide access to the
corresponding PDEs. The positional operands described by the IKJPOSIT macro
instruction have the following PDE formats.

Chapter 13. Verifying Operands with the Parse Service Routine. 121

SPACE, DELIMITER
The parse service routine does not build a PDE for either a SPACE or a DELIMITER
operand.

STRING, PSTRING, and QSTRING

+o

+4
Length

VALUE

+o

+4
Length

The parse service routine uses the IKJPOSIT macro to build a two-word PDE to
describe a STRING, PSTRING, or a QSTRING operand; the PDE has the following
format:

A pointer to the character string

Flags Reserved

Pointer to the character siring:
Contains a pointer to the beginning of the character string, or a zero if the
operand was omitted.

Length:
Contains the length of the string. Any punctuation around the character string is
not included in this length figure. The length is zero if the string is omitted or if
the string is null.

Flags:

Setting Meaning

0 The operand is not present.

1 The operand is present.

. xxx xxxx Reserved bits .

Note: If the string is null, the pointer is set, the length is zero, and the flag bit is
1.

The parse service routine uses the IKJPOSIT macro to build a two-word PDE to
describe a VALUE operand; the PDE has the following format:

A pointer to the character string

Flags Type-char.

Pointer to the character siring:
Contains a pointer to the beginning of the character string; that is, the first
character after the quote. Contains a zero if the VALUE operand is not present.

Length:
Contains the length of the character string excluding the quotes.

122 MVS/ESA TSO Programming

Flags:

Setting Meaning

0 The operand is not present.

1 The operand is present.

. xxx xxxx Reserved bits .

Type-character:
Contains the letter that precedes the quoted string.

DSNAME, DSTHING

+o

+4
Length1

+8

+12
Length2

+16

+20
Length3

The parse service routine uses the IKJPOSIT macro instruction to build a six-word
PDE to describe a DSNAME or a DSTHING operand. The PDE has the following
format:

A pointer to the dsname

J +6
Flags1

l +7
Reserved

A pointer to the member name

1 +14
Flags2

1 +15
Reserved

A pointer to the password

1 +22
Flags3

1 +23
Reserved

Pointer to the dsname:
Contains a pointer to the first character of the data set name. Contains zero if
the data set name was omitted.

Length1:
Contains the length of the data set name. If the data set name is contained in
quotes, this length figure does not include the quotes.

Flags1:

Setting Meaning

0 The data set name is not present.

1 The data set name is present.

. 0 The data set name is not contained within quotes .

. 1 The data set name is contained within quotes .

.. xx xxxx Reserved bits .

Pointer to the member name:
Contains a pointer to the beginning of the member name. Contains zero if the
member name was omitted.

Chapter 13. Verifying Operands with the Parse Service Routine 123

JOBNAME

+o

+4
Length1

+8

+12
Length2

Length2:
Contains the length of the member name. This length value does not include
the parentheses around the member name.

Flags2:

Setting Meaning

0 The member name is not present.

1 The member name is present.

. xxx xxxx Reserved bits .

Pointer to the password:
Contains a pointer to the beginning of the password. Contains zero if the
password was omitted.

Length3:
Contains the length of the password.

Flags3:

Setting Meaning

0 The password is not present.

1 The password is present.

. xxx xxxx Reserved bits .

The parse service routine uses the IKJPOSIT macro to build a four word PDE to
describe a JOBNAME operand. The PDE has the following format:

A pointer to the jobname

l +6
Flags1

l +7
Reserved

A pointer to the jobid name

l +14
Flags2

l +15
Reserved

Pointer to the Jobname:
Contains a pointer to the beginning of the jobname. Contains zero if the
jobname was omitted.

Length1:
Contains the length of the jobname. The jobname cannot be entered in quotes.

124 MVS/ESA TSO Programming

ADDRESS

+o

+4
Length1

+8

+12
Length2

+16

+20
Length3

+24
Flags4

+28

+32

Flags1:

Setting Meaning

0 The jobname is not present.

1 The jobname is present.

. xxx xxxx Reserved bits .

Pointer to the jobid:
Contains a pointer to the beginning of the jobid. Contains zero if the jobid was
omitted.

Length2:
Contains the length of the jobid. This length figure does not include the
parentheses around the jobid.

Flags2:

Setting Meaning

0 The jobid is not present.

1 The jobid is present.

. xxx xxxx Reserved bits .

The parse service routine uses the IKJPOSIT macro to build a nine word PDE to
describe an ADDRESS operand. The PDE has the following format:

A pointer to the load name

+6 l +7
Flags1 Reserved

A pointer to the entry name

+14 l +15
Flags2 Reserved

A pointer to the address string

+22 l +23
Flags3 Reserved I +25 +26

Sign Indirect count

A pointer to the first expression value PDE

Reserved for use by user validity check routine

Pointer to the load name:
Contains a pointer to the beginning of the load module name. Contains zero if
no load module name was specified.

Chapter 13. Verifying Operands with the Parse Service Routine 125

Length1:
Contains the length of the load module name, excluding the period.

Flags1:

Setting Meaning

0 The load module name is not present.

1 The load module name is present.

. xxx xxxx Reserved bits .

Pointer to the entry name:
Contains a pointer to the name of the CSECT; zero if the CSECT name is not
specified.

Length2:
Contains the length of the entry name, excluding the period.

Flags2:

Setting Meaning

0 The entry name is not present.

1 The entry name is present.

. xxx xxxx Reserved bits .

Pointer to the address string:
Contains a pointer to the address string portion of a qualified address. Contains
a zero if the address string was not specified.

Length3:
Contains the length of the address string portion of a qualified address. This
length count excludes the following characters for the following address types:

Type Data Excluded

Relative address The plus sign.

Register address Letters.

Absolute address The period.

Flags3:
The bits set in this one-byte flag field indicate whether the address string is
present.

Setting Meaning

0 The address string is not present.

1 The address string is present.

. xxx xxxx Reserved bits .

126 MVS/ESA TSO Programming

+o

+4
Length3

+8
Flags5

+12

Offsel 23:
This byte is reserved for use by a validity checking routine.

Flags4:
The bits set in this one-byte flag field indicate the type of address found by the
parse service routine.

Bit Setting Hex Meaning

0000 0000 00 Absolute address.

1000 0000 80 Symbolic address.

0100 0000 40 Relative address.

0010 0000 20 General register.

0001 0000 10 Double precision floating-point register.

0000 1000 08 Single precision floating-point register.

0000 0100 04 Non-qualified entry name (optionally preceded by a load
name).

Sign:
Contains the arithmetic sign character used before the expression value defined
by the first expression value PDE. If there are no address expression PDEs,
then this field is zero.

Indirect counl:
Contains a number representing the number of levels of indirect addressing.

Pointer lo lhe firsl expression value PDE:
This is a pointer to the first expression value PDE. Contains X'FFOOOOOO' if there
are no expression value PDEs.

User word for validity checking routine:
A word provided for use by a validity checking routine.

Expression Value: If the parse service routine finds an ADDRESS operand to be in
the form of an address expression, parse builds an expression value PDE for each
expression value in the address expression.

These expression value PDEs are chained together, beginning at the eighth word of
the address PDE built by the parse service routine to describe the address operand.
The last expression value PDE is indicated by X'FFOOOOOO' in its fourth word, the
forward chaining field.

The parse service routine uses the IKJPOSIT macro to build a four-word PDE to
describe an expression value; it has the following format:

A pointer to the address string

+6 l +7
Reserved Reserved

I +9
+10

Sign Indirect count

A pointer to the next expression value PDE

Chapter 13. Verifying Operands with the Parse Service Routine 127

Pointer to the address string:
Contains a pointer to the expression value address string.

Length3:
Contains the length of the expression value address string. The N is not
included in this length value.

Flags5:
The parse service routine sets these flags to indicate the type of expression
value. X'OO' indicates that this PDE was not created for an expression value.

Bit Setting Hex Meaning

0000 0100 04 This is a decimal expression value.

0000 0010 02 This is a hexadecimal expression value.

Sign:
Contains the arithmetic sign character used before the expression value defined
by the next expression value PDE. If there are no more PDEs, then this field is
zero.

Indirect count:
Contains a value representing the number of levels of indirect addressing within
this particular address expression.

Pointer to the next expression value PDE:
Contains a pointer to the next expression value PDE if one is present; contains
X'FFOOOOOO' if this is the last expression value PDE.

PDEs Created for Positional Operands Described by IKJTERM

CONSTANT

+o
Length1

+4

The parse service routine uses the IKJTERM macro to build a five-word PDE to
describe a CONSTANT operand. The PDE has the following format:

l +1
+2

Length2 Reserved

+6
Reserved Word Number Flags

+8

+12

+16

A pointer to the string of digits

A pointer to the exponent

A pointer to the decimal point

Length1:
Contains the length of the term entered, depending on the type of operand
specified as follows:

• For a fixed-point numeric literal, the length includes the digits but not the
sign or decimal point.

• For a floating-point numeric literal, the length includes the mantissa (string
of digits preceding the letter E) but not the sign or decimal point.

128 MVS/ESA TSO Programming

• For a non-numeric literal, the length includes the string of characters but not
the apostrophes.

Length2:
For a floating-point numeric literal, length2 contains the length of the string of
digits following the letter E but not the sign.

Reserved Word Number:
The reserved word number contains the number of the IKJNAME macro that
corresponds to the specified name.

Note: The possible names of reserved words are given by coding a list of
IKJNAME macros following an IKJRSVWD macro. One IKJNAME macro is
needed for each possible name. If the name specified does not correspond to
one of the names in the IKJNAME macro list then parse sets this field to zero.

Flags:
Byte 1:

Setting Meaning

0 The operand is missing.

1 The operand is present.
-

.1.. Constant.

.. 1 Variable .

... 1 Statement number .

.... 1 ... Fixed-point numeric literal.

..... 1.. Non-numeric literal.

...... 1. Figurative constant.

....... 1 Floating-point numeric literal.

Byte 2:

Setting Meaning

0 Sign on constant is either plus or omitted.

1.. Sign on constant is minus.

.0 Sign on exponent of floating-point numeric literal is either plus or
omitted.

. 1 Sign on exponent of floating-point numeric literal is minus .

.. 1 Decimal point is present.

... x xxxx Reserved bits .

Pointer to the string of digits:
Contains a pointer to the string of digits, not including the sign if entered.
Contains zero if a constant type of operand is not entered.

Pointer to the exponent:
Contains a pointer to the string of digits in a floating-point numeric literal
following the letter E, not including the sign if entered.

I

Chapter 13. Verifying Operands with the Parse Service Routine 129

Pointer to the decimal point:
Contains a pointer to the decimal point in a fixed-point or floating-point numeric
literal. If a decimal point is not entered, this field is zero.

STATEMENT NUMBER

+O
Length1

+4
Reserved

+8

+12

+16

The parse service routine uses the IKJTERM macro to build a five-word PDE to
describe a STATEMENT NUMBER operand. The PDE has the following format:

l +1
+2 l +3

Length2 Length3 Reserved

+6
Flags

A pointer to the program-id

A pointer to the line number

A pointer to the verb number

Length1:
Contains the length of the program-id specified but does not include the
following period. Contains zero if the program-id is not present.

Length2:
Contains the length of the line number entered but does not include the
delimiting periods. Contains zero if the line number is not present.

Length3:
Contains the length of the verb number entered but does not include the
preceding period. Contains zero if the verb number is not present.

Flags:
Byte 1:

Setting Meaning

0 The operand is missing.

1 The operand is present.

.1 Constant.

.. 1 Variable .

... 1 Statement number .

.... xxxx Reserved .

Byte 2:

Reserved.

Pointer to the program-Id:
Contains a pointer to the program-id, if specified. Contains zero if not present.

Pointer to the line number:
Contains a pointer to the line number, if specified. Contains zero if not present.

Pointer to the verb number:
Contains a pointer to the verb number, if specified. Contains zero if not present.

130 MVS/ESA TSO Programming

VARIABLE

+o

+4
Length1

+8

+ 12

+ 16
I P.n!Jth?

The parse service routine builds a five-word PDE (when using the IKJTERM macro)
to describe a VARIABLE operand. The PDE has the following format:

A pointer to the data-name

+5 +6 +7
Reserved Flags Reserved

A pointer to the PDE for the first qualifier

A pointer to the program-id name

+ 17 + 18 +19
Number of Number of Reserved
Qualifiers Subscripts

Pointer to the data-name:
Contains a pointer to the data-name. If a program-id qualifier precedes the
data-name, this pointer points to the first character after the period of the
program-id qualifier.

Length1:
Contains the length of the data-name.

Flags:
Byte 1:

Setting Meaning

0 The operand is missing.

1 The operand is present.

.1.. Constant.

.. 1 Variable.

... 1 Statement number.

.... xxxx Reserved .

Pointer to the PDE for the first qualifier:
Contains a pointer to the PDE describing the first qualifier of the data-name, if
any. This field contains X'FFOOOOOO' if no.qualifiers are specified.

Note: The format of the PDE for a data-name qualifier follows this description.

Pointer to the program-id name:
Contains a pointer to the program-id name, if specified. This field contains zero
if the optional program-id name is not present.

Length2:
Contains the length of the program-id name, if specified. Contains zero if the
optional program-id name is not present.

Number of Qualifiers:
Contains the number of qualifiers entered for this data-name. (For example, if
data-name A of B is entered, this field would contain 1.)

Chapter 13. Verifying Operands with the Parse Service Routine 131

+o

+4
Length

+8

Number of Subscripts:
Contains the number of subscripts entered for this data-name. (For example, if
data-name A(1,2) is entered, this field would contain 2.)

The format of a data-name qualifier is:

A pointer to the data-name qualifier

I +5
Reserved

I +6
Reserved

I +7
Reserved

A pointer to the PDE for the next qualifier

Pointer to the data-name qualifier:
Contains a pointer to the data-name qualifier.

Length:
Contains the length of the data-name qualifier.

Pointer to the PDE for the next qualifier:
Contains a pointer to the PDE describing the next qualifier, if any. This field
contains X'FFOOOOOO' for the last qualifier.

The PDE Created for Expression Operands Described by IKJOPER

+O
Reserved

+4
Reserved

The parse service routine uses the IKJOPER macro to build a two-word PDE to
describe an EXPRESSION operand. The PDE has the following format:

Flags Reserved

Flags:

Setting Meaning

0 The entire operand (expression) is missing.

1 The entire operand (expression) is present.

. xxx xxxx Reserved .

The PDE Created for Reserved Word Operands Described by IKJRSVWD

+o

+4
Reserved

The parse service routine uses the IKJRSVWD macro instruction to build a two-word
PDE to describe a RESERVED WORD operand. The PDE has the following format:

+2
Reserved Reserved-word number

+6 1 +7
Flags Reserved

132 MVS/ESA TSO Programming

Note: This PDE is not used when the IKJRSVWD macro instruction is chained from
an IKJTERM macro instruction. In this case, the reserved-word number is returned
in the CONSTANT parameter PDE built by the IKJTERM macro instruction.

Reserved-word number:
The reserved-word number contains the number of the IKJNAME macro
instruction that corresponds to the entered name.

Note: You indicate the possible names of reserved words by coding a list of
IKJNAME macros following an IKJRSVWD macro. One IKJNAME macro is
needed for each possible name. If the name entered does not correspond to
one of the names in the IKJNAME macro list, parse sets this field to zero.

Flags:
Byte1:

Setting Meaning

0 The operand is missing.

1 The operand is present.

. xxx xxxx Reserved .

The PDE Created for Positional Operands Described by IKJIDENT

+O

+4
Length

The parse service routine uses the IKJIDENT macro instruction to build a two-word
PDE to describe a non-delimiter-dependent positional operand; it has the following
format:

A pointer to the positional operand

Flags Reserved

Pointer to the positional operand:
Contains a pointer to the beginning of the positional operand. If INTEG was
specified on the IKJIDENT macro instruction, this will contain a pointer to a
fullword binary value.

Contains zero if the positional operand is omitted.

Length:
Contains the length of the positional operand.

Flags:

Selling Meaning

0 The operand is not present.

1 The operand is present.

. xxx xxxx Reserved bits .

Chapter 13. Verifying Operands with the Parse Service Routine 133

How the List and Range Options Affect PDE Formats

LIST

Several factors affect the formats of the IKJPARMD mapping DSECT and the PDEs
built by the parse service routine:

• The options you specify in the parse macro instructions
• The type of operand that the user enters.

If you specify the LIST or the RANGE options in the parse macro instructions
describing positional operands, the IKJPARMD DSECT and the PDEs returned by the
parse service routine are modified to reflect these options.

The LIST option can be used with the following positional operand types:

• DSNAME
• DSTHING
• ADDRESS
• VALUE
• CONSTANT
• VARIABLE
• STATEMENT NUMBER
• HEX
• INTEG
• CHAR
• Any non-delimiter-dependent positional operand

If you specify the LIST option in the parse macro instructions describing the
positional operand types listed above, the parse service routine allocates an
additional word for the PDE created to describe the positional operand. This word is
allocated even though the user cannot actually specify a list. If a list is not
specified, this word is set to X'FFOOOOOO'. If a list is specified, the additional word is
used to chain the PDEs created for each element found in the list.

Each additional PDE has a format Identical to the one described for that operand
type within the IKJPARMD DSECT. Since the number of elements in a list is
variable, the number of PDEs created by the parse service routine is also variable.
The chain word of the PDE created for the last element of the list is set to
X'FFOOOOOO'.

134 MVS/ESA TSO Programming

Figure 59 shows the POL returned by the parse service routine after two positional
operands have been specified. In this case, the first operand, a STRING operand,
had been defined as not accepting lists. The second operand, a VALUE operand,
had the LIST option coded in the IKJPOSIT macro instruction that defined the
operand syntax. The VALUE operand was specified as a two-element list.

PDL - Mapped by lKJPARMD DSECT

I I ! PDL Header

I

J
STRING PDE

I I

~ } l l VALUE PDE
(First element of a two element listl

Chain Word

0 I I VALUE PDE

I I
(Last element of a two
element list)

F 0 0 0 0 0

L

Figure 59. A POL Showing PDEs that Describe a List

RANGE
The RANGE option can be used with the following positional operand types:

• HEX (X' ' only)
• ADDRESS
• VALUE
• CONSTANT
• VARIABLE
• STATEMENT NUMBER
• INTEG
• Any non-delimiter-dependent positional operand

If you specify the RANGE option in the parse macro instructions describing the
positional operand types listed above, the parse service routine builds two identical,
sequential PDEs within the POL returned to the calling routine. Parse allocates
space for the second PDE even though the user cannot actually specify a range. If a
range is not supplied, the second PDE is set to zero. The flag bit which is normally
set for a missing parameter will also be zero in the second PDE.

Chapter 13. Verifying Operands with the Parse Service Routine 135

Figure 60 shows the POL returned by the parse service routine after two positional
operands have been specified. In this case, the first operand is a STRING operand
and the second operand is a VALUE operand that had the RANGE option coded in
the IKJPOSIT macro instruction that defined the operand syntax. For this example,
the VALUE operand was not specified as a range, and, consequently, parse sets the
second PDE to zero.

POL - Mapped by IKJPARMO OSECT

POL Header

l
STRING PDE

l l
VALUE PDE

I I (May be entered as a Range)

0 -------------------------- 0 l VALUE PDE built ta receive second element of Range.
(Parameter was not entered as a Range)

o --------- o I o o J o o

Figure 60. A POL Showing PDEs Describing a Range

How Combining the LIST and RANGE Options Affects PDE Formats
If you specify both the LIST and RANGE options in a parse macro instruction
describing a positional operand, the parse service routine builds two identical PDEs
within the PDL returned to the calling routine. Both of these PDEs are formatted
according to the type of positional operand described. These two PDEs describe the
RANGE. Parse appends an additional word to the second PDE to chain any
additional PDEs built to describe the LIST.

136 MVS/ESA TSO Programming

Figure 61 shows this general format.

POL - Mapped by IKJPARMD DSECT

Chain Ward

I PDL Heodoc

I
I
}

PDE

Identical PDE

(Parameter may be entered as a listl

r-----------------------------------1
I I
I I 1-----------------1--------,--------:
I I I l
1-----------------J _________ l _________ 1

I ' I I
I I 1-----------------,--------1--------1
I I I I , _________________ J _________ 1 _________ !
I Chain Word .. , I
L----------------------------------~~~',,1

\

Figure 61. A POL Showing PDEs that Describe LIST and RANGE Options

PDE

Identical PDE

,,,..

If you have specified both the LIST and the RANGE options in the parse macro
instruction describing a positional operand, the TSO user has the option of
supplying a single operand, a single range, a list of operands, or a list of ranges.
The construction of the PDL returned by the parse service routine can reflect each of
these conditions.

Chapter 13. Verifying Operands with the Parse Service Routine 137

Figure 62 shows the PDL returned by the parse service routine if the user specifies
a single operand.

PDL - Mopped by IKJPARMD DSECT

I

I I o ,._ _________________________ _.a

0 +---------->O l 0-+ • 0 l O+ ->O

F F 0 0 0 0 0 0

l POL Hoodo'

l PDE - Fillod io

l Idootiool PDE - Zomod

} Chain Word

Figure 62. POL - LIST and RANGE Acceptable, Single Operand Specified

As Figure 62 shows, the parse service routine sets both the second PDE and the
chain word to zero when the LIST and RANGE options were coded in the macro
instruction describing the operand, but the user specified a single operand.

Figure 63 shows the PDL returned by the parse service routine if the user specifies
a single range of the form:

operand:operand

PDL - Mopped by IKJPARMD DSECT

l

I I

l I
F F 0 0 0 0 0 0

l POL Hood"

l PDE - Fillod io

l Id<etiool PDE - Fillod io

} Chain Word

Figure 63. POL - LIST and RANGE Acceptable, Single Range Specified

As Figure 63 shows, the parse service routine fills in both PDEs to describe the
single RANGE operand specified by the user. The chain word is set to X'FFOOOOOO'
to indicate that there are no elements chained to this one. (That is, the operand was
not specified in the form of a list).

138 MVS/ESA TSO Programming·.

Figure 64 shows the format of the POL returned by the parse service routine if the
user enters a list of operands in the form:

(operand,operand, •••)

PDL - Mopped by IKJPARMD DSECT

>--------~-------! I POL"""'"

>--------~--~--__, I PDE - FHl•dio

r--0---------------------....,----------------.,..-_--_-_ _o-1 I Identical PDE - Zeroed

0 +---------+O 0-+ • 0 O+ .,.0

Chain Word

I PDE - flil•d ;,

,__0 _-_-_--_-_--_-_-_--_-~----------------~------_..,._0 _, I Identical PDE - Zeroed

0 ---------.. 0 0-+ ,. 0 0+ .. o

Chain Word

----------------------------------~
I

!-----------------------------------!
I I I I
I I I I 1-----------------J ________ .J _________ I
I I
1-----------------1--------1 --------1
I I I I
I I I I 1-----------------J _________ L ________ I
I I

: •, I
l----------------------------------4-'

I

4/

Figure 64. PDL - LIST and RANGE Acceptable, LIST Specified

As Figure 64 shows, the parse service routine fills in each of the first PDEs and the
chain word pointers to describe the list of operands entered by the user. The
second, identical PDEs are set to zero to indicate that the operand was not specified
in the form of a range.

The last set of PDEs on the chain contain X'FFOOOOOO' in the chain word to indicate
that there are no more PDEs on that particular chain.

Chapter 13. Verifying Operands with the Parse Service Routine 139

The POL created by the parse service routine to describe an operand entered as a
list of ranges is similar to the one created to describe a list. The difference is that
the parse service routine fills in the second, identical POEs to describe the ranges
specified.

Figure 65 shows the format of the POL returned by the parse service routine if the
user specifies a list of ranges in the form:

{operand:operand, operand:operand, •.•)

PDL - Mapped by IKJPARMD DSECT

I I PDL Header

I I I PDE - Filled in

1 l I Identical PDE - Filled in

Chain Word

)
r

l l I PDE - Filled in

l I I Identical PDE - Filled in

Chain Word

~ ' -----------------------------1
I I
I I

1-----------------------------------1
l I I I \ _________________ J _________ l_ ________ I
I I
I I
I I

!-----------------,-----------------!
I ; I I j _________________ J _________ l_ ________ j
I I

I •, I
l----------------------------------~-'

}

4/

Figure 65. POL - LIST and RANGE Acceptable, List of Ranges Specified

140 MVS/ESA TSO Programming

As Figure 65 shows, the parse service routine fills in each of the second, identical
PDEs to describe the ranges entered. The chain words are also filled in to point
down through the list of parameters entered.

The last set of PDEs on the chain contain X'FFOOOOOO' in the chain word to indicate
that there are no more PDEs on that particular chain.

The PDE Created for Keyword Operands Described by IKJKEYWD
Parse builds a halfword (2-byte) PDE to describe a keyword operand; it has the
following format:

+o

I Number I
. +2

Number:
You describe the possible names for a keyword operand to the parse service
routine by coding a list of IKJNAME macro instructions directly following the
IKJKEYWD macro instruction. One IKJNAME macro instruction must be
executed for each possible name.

The parse service routine places into the PDE the number of the IKJNAME
macro instruction that corresponds to the keyword name specified.

If the keyword is not entered, and you did not specify a default in the IKJKEYWD
macro instruction, the parse service routine places a zero into the PDE.

~-------- End of GENERAL-USE PROGRAMMING INTERFACE ________ ___,

Chapter 13. Verifying Operands with the Parse Service Routine 141

Examples Using the Parse Service Routine

Example 1
This example expands upon "Example 1" on page 109. This example shows how
the parse macro instructions could be used within a command processor to describe
the syntax of a PROCESS command to the parse service routine. A sample
command processor that includes the parse macros used in this example is shown
in Chapter 4, "Validating Command Operands" on page 13.

The sample PROCESS command we are describing to the parse service routine has
the following format:

I PROCESS I dsname [ACTION]
NOACTION

Figure 66 shows the sequence of parse macro instructions that describe the syntax
of this PROCESS command to the parse service routine. The parse macro
instructions used in this example build the parameter control list (PCL) describing
the syntax of the PROCESS command operands. The macro instructions also create
the DSECT that you use to map the parameter descriptor list returned by the parse
service routine. In this example, the name of the DSECT is PRDSECT.

PCLDEFS IKJPARM DSECT=PRDSECT
OSNPCE IKJPOSIT OSNAME,

PROMPT='OATA SET NAME TO BE PROCESSED',
VALi OCK=POS ITCHK

ACTPCE IKJKEYWO OEFAULT='NOACTION'
IKJNAME 'ACTION'
IKJNAME 'NOACTION'
IKJENOP

Figure 66. Example 1 - Using Parse Macros to Describe Command Operand Syntax

Figure 67 shows the IKJPARMD DSECT created by the expansion of the parse
macro instructions.

PROSECT OSECT
OS 2A

DSNPCE OS 6A
ACTPCE OS H

Figure 67. Example 1 - The PRDSECT DSECT Created by Parse

x
x

If a TSO user specified the PROCESS command described in this example in the
form:

PROCESS MYIO.OATA NOACTION

the parse service routine would scan the command parameters, build a parameter
descriptor list (PDL), place the address of the PDL into the fullword pointed to by the
fifth word of the parse parameter list, and return to the calling program.

The calling routine uses the address of the PDL as a base address for the PRDSECT
DSECT.

142 MVS/ESA TSO Programming

PRDSECT
DSECT

PRDSECT

DSNPCE

ACTPCE

Figure 68 on page 143 shows the PDL returned by the parse service routine. The
symbolic addresses within the PRDSECT DSECT are shown to the left of the PDL at
the points within the PDL to which they apply, and the meanings of the fields within
the PDL are explained to the right of the PDL.

PDL

Pointer to MYID.DATA

9 1_[D_l

0

0 oj
0

0 oj
2

Unused

Unused

Unused

Unused

Description of
Field Contents

PDL Header. Used only by
IKJRLSA

Data Set Name

No member name

No Password

NOACTION

Figure 68. Example 1 - The PRDSECT DSECT and the POL

Example 2
This example expands upon "Example 2" on page 110. This example shows how
the parse macro instructions could be used within a command processor to describe
the syntax of an EDIT command to the parse service routine.

Chapter 13. Verifying Operands with the Parse Service Routine 143

The sample EDIT command we are describing to the parse service routine has the
following format:

EDIT dsname
' -1

PLI [([number[numberj J [CHAR60) J l
g_ 72 CHAR48 j

FORT
ASM
TEXT

LDATA

I SCAN
L NOSCAN

[NUM]
NON UM

I BLOCK (number)
l BLKSIZE(number)

LINE (number)

Figure 69 on page 145 shows the sequence of parse macro instructions that
describe the syntax of this EDIT command to the parse service routine. The parse
macro instructions used in this example build the parameter control list (PCL)
describing the syntax of the EDIT command operands. The macro instructions also
create the DSECT that you use to map the parameter descriptor list returned by the
parse service routine. In this example, the name of the DSECT defaults to
IKJPARMD.

144 MVS/ESA TSO Programming

PARMTAB IKJPARM
OSNAME IKJPOSIT OSNAME,PROMPT='OATA SET NAME'
TYPE IKJKEYWO

IKJNAME 'PLl',SUBFLO=PLlFLO
IKJNAME 'FORT'
IKJNAME 'ASM'
IKJNAME 'TEXT'
IKJNAME 'DATA'

SCAN IKJKEYWO OEFAULT='NOSCAN'
IKJNAME 'SCAN'
IKJNAME 'NOSCAN'

NUM IKJKEYWO OEFAULT='NUM'
IKJNAME 'NUM'
IKJNAME 'NONUM'

BLOCK IKJKEYWO
IKJNAME 'BLOCK',SUBFLO=BLOCKSUB,ALIAS='BLKSIZE'

LINE IKJKEYWO
IKJNAME 'LINE',SUBFLO=LINESIZE

PLlFLO IKJSUBF
PLlCOLl IKJIOENT 'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC,OEFAULT='2'
PL1COL2 IKJIOENT 'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC,OEFAULT='72'
PLlTYPE IKJKEYWO OEFAULT='CHAR60'

IKJNAME 'CHAR60'
IKJNAME 'CHAR48'

BLOCKSUB IKJSUBF
BLKNUM IKJIOENT 'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC, X

PROMPT='BLOCKSIZE',MAXLNTH=8
LINESIZE IKJSUBF
LINNUM IKJIOENT 'NUMBER',FIRST=NUMERIC,OTHER=NUMERIC, X

PROMPT='LINESIZE'
IKJENOP

Figure 69. Example 2 - Using Parse Macros to Describe Command Operand Syntax

Figure 70 shows the IKJPARMD DSECT created by the expansion of the parse
macro instructions.

IKJPARMO DSECT

OS NAM
TYPE
SCAN
NUM
BLOCK
BLKSIZE
LINE
PLlCOLl
PL1COL2
PLlTYPE
BLKNUM
LINNUM

DS 2A
DS 6A
DS H
DS H
DS H
DS H
DS 0H
DS H
DS 2A
DS 2A
DS H
DS 2A
DS 2A

Figure 70. Example 2 - The IKJPARMD DSECT Created by Parse

If a user specified the EDIT command described in this example in the form:

EDIT SYSFILE/X PL1(3) NONUM BLOCK(160)

Chapter 13. Verifying Operands with the Parse Service Routine 145

IKJPARMD
DSECT

IKJPARMD

DSNAM

TYPE, SCAN

NUM, BLOCK

LINE

PL1COL1

PL1COL2

PL1TYPE

BLKNUM

LINNUM

the parse service routine would scan the command parameters, build a parameter
descriptor list (POL), place the address of the POL into the fullword pointed to by the
fifth word of the parse parameter list, and return to the calling program.

The calling routine uses the .address of the POL as a base address for the
IKJPARMO OSECT.

Figure 71 shows the POL returned by the parse service routine. The symbolic
addresses within the IKJPARMD OSECT are shown to the left of the POL at the
points within the POL to which they apply, and the meanings of the fields within the
POL are explained to the right of the POL.

POL

Pointer to SYSFILE

7 1oJ
0

0 ol
Pointer to X

1 1J

1

2

0

Pointer to 3

1 1J

Pointer to 72

2 1J

1

Pointer to 160

3 ,I
0

0 oj

2

1

Unused

Unused

Description of
Field Contents

I POL Heoder. Used only by
IKJRLSA

Data Set Name

No member name

Password

PL1, NOSCAN

NONUM, BLOCK

LINE not specified

3 was specified

72 is the default

CHAR60 is the default

160 was prompted far

LINNUM not specified

Figure 71. Example 2 - The /KJPARMD DSECT and the PDL

146 MVS/ESA TSO Programming

Example 3
This example expands upon "Example 3" on page 111. This example shows how
the parse macro instructions could be used to describe the syntax of a sample AT
command that has the following syntax:

COMMAND OPERANDS

!""' l AT (stmt-l,stmt-2, .••) (cmd chain) COUNT (integer)
stmt-3:stmt-4

Figure 72 shows the sequence of parse macro instructions that describe this sample
AT command to the parse service routine. The parse macro instructions used in
this example build the parameter control list (PCL) describing the syntax of the AT
command operands. The macro instructions also create the OSECT that you use to
map the parameter descriptor list returned by the parse service routine. In this
example, the name of the OSECT is PARSEAT.

EXAM2 IKJPARM DSECT=PARSEAT
STMTPCE IKJTERM 'STATEMENT NUMBER',UPPERCASE,LIST,RANGE,TYPE=STMT, X

VALIDCK=CHKSTMT
POSITPCE IKJPOSIT PSTRING,HELP='CHAIN OF COMMANDS',VALIDCK=CHKCMD
KEYPCE IKJKEYWD
NAMEPCE IKJNAME 'COUNT',SUBFLD=COUNTSUB
COUNTSUB IKJSUBF
IDENTPCE IKJIDENT 'COUNT',FIRST=NUMERIC,OTHER=NUMERIC, X

VALIDCK=CHKCOUNT
IKJENDP

Figure 72. Example 3- Using Parse Macros to Describe Command Operand Syntax

Figure 73 shows the PARSEAT OSECT created by the expansion of the parse macro
instructions.

PARSEAT DSECT
OS 2A

STMTPCE OS llA
POSITPCE OS 2A
KEYPCE OS H
IDENTPCE OS 2A

Figure 73. Example 3 - The PARSEAT DSECT Created by Parse

In this example, if the user specified the AT command as:

AT 200.3 (LIST ALL) COUNT(3)

the parse service routine would build a parameter descriptor list (POL) and place
the address of the POL into the fullword pointed to by the fifth word of the parse
parameter list.

The parse service routine then returns to the caller and the caller uses the address
of the POL as a base address for the PARSEAT OSECT.

Chapter 13. Verifying Operands with the Parse Service Routine 147

PARS EAT
DSECT

PARSE AT

STMTPCE

POSITPCE

KEYPCE

IDENTPCE

0

2

4

Figure 74 shows the POL returned by the parse routine. The symbolic addresses of
the PARSEAT OSECT are shown to the left of the POL at the points within the POL to
which they apply. A description of the fields within the POL is shown on the right.

PDL

PDE Offset

0 I 3 1

- X'90'

0

Pointer to 200

Pointer to 3

0 I 0 0

- x·oo·

0

0

0

X'FFOOOOOO'

Pointer to UST in string

8 I - X'BO'

1

Pointer to 3

1 X'BO'

-

-

0

-

-

-

-

Description of
Field Contents

I PDL Header. Used only by
IKJRLSA

Lengths (program - id, line number
and verb number)

Parameter is present

No program - id

Line number

Verb number

Double PDE for RANGE option,
but not entered

LIST option not entered

First character after (

Length, parameter is present

First keyword

Subfield

Length, parameter is present

Figure 74. Example 3 - The PARSEAT DSECT and the PDL

Example 4
This example expands upon "Example 4" on page 112. This example shows how
the parse macro instructions could be used to describe the syntax of a sample LIST
command that has the following syntax:

COMMAND OPERANDS

LIST symbol PRINT(symbol)

148 MVS/ESA TSO Programming

Figure 75 on page 149 shows the sequence of parse macro instructions that
describe this sample LIST command to the parse service routine. The parse macro
instructions used in this example build the parameter control list (PCL) describing
the syntax of the LIST command operands. The macro instructions also create the
OSECT that you use to map the parameter descriptor list returned by the parse
service routine. In this example, the name of the OSECT is PARSELST.

EXAM3 IKJPARM OSECT=PARSELST
VARPCE IKJTERM 'SYMBOL',UPPERCASE,PROMPT='SYMBOL',TYPE=VAR, X

VALIOCK=CHECK,SBSCRPT=SUBPCE
SUBPCE IKJTERM 'SUBSCRIPT',SBSCRPT,TYPE=CNST,PROMPT='SUBSCRIPT'
KEYPCE IKJKEYWO
NAMEPCE IKJNAME 'PRINT',SUBFLO=PRINTSUB
PRINTSUB IKJSUBF

IKJTERM 'SYMBOL-2',UPPERCASE,PROMPT='SYMBOL-2',TYPE=VAR
IKJENOP

Figure 75. Example 4 - Using Parse Macros to Describe Command Operand Syntax

Figure 76 shows the PARSELST OSECT created by the expansion of the parse
macro instructions.

PARSELST OSECT
OS 2A

VARPCE OS 5A
SUBPCE OS 15A
KEYPCE OS H
PRINTSUB OS llA

Figure 76. Example 4 - The PARSELST DSECT

In this example, if the user specified the LIST command as:

list a of b in c(l) print(d)

the parse service routine would build a parameter descriptor list (POL) and place
the address of the POL into the fullword pointed to by the fifth word of the parse
parameter list.

The parse service routine then returns to the caller and the caller uses the address
of the POL as a base address for the PARSELST OSECT.

Figure 77 shows the POL returned by the parse service routine. The symbolic
addresses of the PARSELST OSECT are shown to the left of the POL at the points
within the POL to which they apply. A description of the fields within the POL is
shown on the right.

Chapter 13. Verifying Operands with the Parse Service Routine 149

PARSELST
DSECT

PARSE2

VARPCE

SUBPCE

KEYPCE

PRINTSUB

(First
Qualifier) I . --->

•-+

(Next
Qualifier) I

1 I
0

0 1 1

0

0

0

0 J
0

0

0

0

0 l
0

0

0

0

1

1 I
0

0

0 l
1 l

1 I

PDL

Pointer to a

- X'AO' I
Pointer to first qualifier

2 1 1 0 -

X'CBOO'

Pointer to 1

0 0 l
X'OOOO'

0 0 l
x·oooo·

-
Pointer to d

- X'AO' I

0 0 l
Pointer to b

- X'OO' l
Pointer to next qualifier

Pointer to c

- X'OO' I
X'FFOOOOOO'

•Note: May not be contiguous in storage at this point.

Figure 77. Example 4 - The PARSELST DSECT and the PDL

150 MVS/ESA TSO Programming

-

-
-

-

-

-

-

-

-

Description of
Field Contents

PDL Header. Used only by
JK,JRLSA

Data-name

Length, parameter is present

Qualifier

No program-id

Length, qualifier, subscript

Length

Flags, CNST

Subscript

No exponent

No decimal point

2nd element in subscript -
(Not entered)

3rd element in subscript -
(Not entered)

First keyword

Data-name

Length, parameter, variable

No qualifiers

No program-id

No length, qualifier, or subscript

First qualifier

Length, parameter, variable

Next qualifier

Second qualifier

Length, parameter, variable

End of qualifiers

Example 5
This example expands upon "Example 5" on page 113. This example shows how
the parse macro instructions could be used to describe the syntax of a sample
WHEN command that has the following syntax:

COMMAND OPERANDS

WHEN {addr } (subco11111and chain)
expression

Figure 78 shows the sequence of parse macro instructions that describe this sample
WHEN command to the parse service routine. The parse macro instructions used in
this example build the parameter control list (PCL) describing the syntax of the
WHEN command operands. The macro instructions also create the OSECT that you
use to map the parameter descriptor list returned by the parse service routine. In
this example, the name of the OSECT is PARSEWHN.

EXAM4 IKJPARM DSECT=PARSEWHN
OPER IKJOPER 'EXPRESSION',OPERND1=SYMBOL1,0PERND2=SYMBOL2, X

RSVWD=OPERATOR,CHAIN=ADDRl,PROMPT='TERM',VALICHK=CHECK
SYMBOL! IKJTERM 'SYMBOL1',UPPERCASE,TYPE=VAR,PROMPT='SYMBOL2'
OPERATOR IKJRSVWD 'OPERATOR',PROMPT='OPERATOR'

IKJNAME 'EQ'
IKJNAME 'NEQ'

SYMBOL2 IKJTERM 'SYMBOL2',TYPE=VAR
ADDRl IKJTERM 'ADDRESS',TYPE=VAR,VALIDCK=CHECKl
LASTONE IKJPOSIT PSTRING,VALIDCK=CHECK2

IKJENDP

Figure 78. Example 5 - Using Parse Macros to Describe Command Operand Syntax

Figure 79 shows the PARSELST OSECT created by the expansion of the parse
macro instructions.

PARSEWHN DSECT
DS 2A

OPER DS 2A
SYMBOL! DS 5A
OPERATOR DS 2A
SYMBOL2 DS 5A
ADDRl DS 5A
LASTONE DS 2A

Figure 79. Example 5 - The PARSEWHN DSECT

In this example, if the user specified the WHEN command as:

WHEN (A EQ B) (LIST B)

the parse service routine would build a parameter descriptor list (POL) and place
the address of the POL into the fullword pointed to by the fifth word of the parse
parameter list.

The parse service routine then returns to the caller and the caller uses the address
of the POL as a base address for the PARSEWHN OSECT.

Chapter 13. Verifying Operands with the Parse Service Routine 151

PARSEWHN
DSECT

PARSE3

OPER

SYMBOL1

OPERATOR

SYMBOL2

ADDR1

LASTONE

Figure 80 shows the POL returned by the parse service routine. The symbolic
addresses of the PARSEWHN OSECT are shown to the left of the POL at the points
within the POL to which they apply. A description of the fields within the POL is
shown on the right.

POL

-

- X'BO'

Pointer to o

1 l - X'AO'

X'FFOOOOOO'

0

0 I 0 0

-

- X'BO'

Pointer to b

1 J - X'AO'

X'FFOOOOOO'

0

0 l 0 0

0

0 1 - x·oo·

0

0

0 I 0 0

Pointer to LIST

6 X'BO'

I
I -

l -

I -

1

I -

1 -

l -

I -

l -

l -

Description of
Field Contents

POL Header. Used only by
IKJRLSA

Parameter is present

First operand

Length, parameter is present

No qualifiers

No program-id

No lengths for program-id,
subscripts, or qualifiers

First keyword entered

Parameter is present

Second operand

Length, parameter, variable

No qualifiers

No program-id

No lengths for program-id,
subscripts or qualifiers

(Address-Not entered)

Subcommand

Length, parameter is present

Figure 80. Example 5 - The PARSEWHN DSECT and PDL

152 MVS/ESA TSO Programming

Chapter 14. Using the TSO 1/0 Service Routines

This chapter describes how to use the TSO 110 service routines, STACK, GETLINE,
PUTLINE, and PUTGET, to process 110.

Functions of the 110 Service Routines
If you write your own command processors, use the the 110 service routines to
process 1/0. Figure 81 describes the function of each of the 110 service routines.

Figure 81. The TSO 110 Service Routines

Service Function
Routine

STACK Establishes and changes the source of input.

GETLINE Obtains a line of input, other than commands and subcommands.

PUTLINE Writes a line to the output data set.

PUT GET Writes a message to the output data set and obtains a line of input in
response.

The 1/0 service routines, STACK, GETLINE, PUTLINE, and PUTGET, offer the
following features:

• They allow your command processor to direct requests for input to an in-storage
list or data set.

• They provide a message formatting facility that allows you to insert text
segments into a basic message format.

• They analyze processing conditions to determine if 110 requests should be
disregarded or honored.

© Copyright IBM Corp. 1988, 1991 153

GENERAL-USE PROGRAMMING INTERFACE

Passing Control to the 110 Service Routines
Your command processor can pass control to the 1/0 service routines by using the
list and execute forms of the 1/0 service routine macro instructions. These macro
instructions allow you to pass control to the 1/0 service routines and indicate the
functions you want performed by coding the operands you require.

Each of the 1/0 service routine macro instructions, STACK, GETLINE, PUTLINE, and
PUTGET, has a list and an execute form. The list form of each service routine
macro instruction initializes the parameter blocks according to the operands you
code on the macro instruction. The execute form is used to modify the parameter
blocks and to provide linkage to the service routines, and can be used to set up the
input/output parameter list. The input/output parameter list contains addresses
required by the 110 service routines.

You can use the DELETE macro instruction to release the storage area occupied by
the load module when you have finished with your 110. The 110 service routines are
contained in the IKJPTGTR load module.

Addressing Mode Considerations
Your command processor must invoke the 110 service routines in 24-bit addressing
mode. These routines execute in 24-bit addressing mode, and are loaded below 16
megabytes in virtual storage. All input to the 1/0 service routines must reside below
16 megabytes in virtual storage.

The Input/Output Parameter List
The 110 service routines use two of the pointers contained in the command
processor parameter list (CPPL), which is described in "Interfacing with the TSO
Service Routines" on page 50. These pointers are the pointer to the user profile
table and the pointer to the environment control table. Your command processor
must pass these addresses to the service routines in another parameter list, the
input/output parameter list (IOPL).

Before executing any of the TSO 110 macro instructions, GETLINE, PUTLINE,
PUTGET, or STACK, you must provide an IOPL and pass its address to the 110
service routine. There are two ways you can construct an IOPL:

• You can build and initialize the IOPL within your code and place a pointer to it in
the execute form of the 110 macro instruction.

• You can provide space for an IOPL (4 fullwords), pass a pointer to it, together
with the addresses required to fill it, to the execute form of the 110 macro
instruction, and let the 110 macro instruction build the IOPL for you.

154 MVS/ESA TSO Programming

You can use the IKJIOPL DSECT, which is provided in SYS1.MACLIB to map the
fields in the IOPL. Figure 82 describes the format of the IOPL.

Figure 82. The Input/Output Parameter List

Number Fie Id Contents or Meaning
of Bytes

4 IOPLUPT The address of the user profile table from the CPPLUPT
field of the command processor parameter list.

4 IOPLECT The address of the environment control table from the
CPPLECT field of the CPPL.

4 IOPLECB The address of the command processor's event control
block (ECB). The ECB is one word of storage, declared
and initialized to zero by the command processor.

4 IOPLIOPB The address of the parameter block created by the list
form of the 110 macro instruction. There are four types of
parameter blocks, one for each of the 110 service routines:

• ST ACK parameter block (STPB)
• GETLINE parameter block (GTPB)
• PUTLINE parameter block (PTPB)
• PUTGET parameter block (PGPB)

The parameter block pointed to by the fourth word of the 110 parameter list
(IOPLIOPB) is created and initialized by the list form of the 1/0 macro instruction,
and is modified by the execute form. Therefore, you can use the same parameter
block to perform different functions. All you need to do is code different parameters
in the execute forms of the macro instructions; these parameters provide those
options not specified in the list form, and override those which were specified.

The STACK, GETLINE, PUTLINE, and PUTGET parameter blocks are described in
the separate sections on each of the 1/0 macro instructions.

Using the 1/0 Service Routine Macro Instructions
You can use the 1/0 service routine macro instructions to pass control to the STACK,
GETLINE, PUTLINE, and PUTGET service routines.

Each of the 1/0 macro instructions has a list and an execute form. The list form sets
up the parameter block required by that 1/0 service routine; the execute form can be
used to set up the input/output parameter list, and to modify the parameter block
created by the list form of the macro instruction.

The parameter block required by each of the 1/0 service routines is different, and
each one can be referenced through a DSECT which is provided in SYS1 .MACLIB.
The parameter blocks and the DSECTS used to reference them are:

Service DSECT Parameter Block
Routine Name

STACK IKJSTPB The ST ACK parameter block

GETLINE IKJGTPB The GETLINE parameter block

PUTLINE IKJPTPB The PUTLINE parameter block

PUT GET IKJPGPB The PUTGET parameter block

Chapter 14. Using the TSO 110 Service Routines 155

Each of these blocks is explained in the section describing the 1/0 macro instruction
that builds it.

Using STACK to Change the Source of Input
Use the STACK macro instruction to establish and to change the source of input.
The currently active input source is described by the top element of the input stack,
an internal pushdown list maintained by the 1/0 service routines. The first element
of the input stack is initialized by the terminal monitor program (TMP), and
afterward, cannot be changed or deleted. The IBM-supplied TMP initializes this first
element to indicate that the input stream, controlled by the SYSTSIN DD statement
in the TSO user's JCL, is the current input source. The STACK service routine adds
an element to the input stack or deletes one or more elements from it, and therefore
changes the source of input for the other 1/0 service routines.

Your command processor can build an alternate input stack by using the STACK
macro instruction. To build an alternate input stack, do the following:

1. Preserve the current input stack by saving the original value of the ECTIOWA
field. The ECTIOWA field is contained in the event control table (ECT).

2. To build an alternate input stack and add an element, set the ECTIOWA pointer
to zero and invoke the STACK service routine. The STACK service routine sets
the ECTIOWA field to indicate that it has created an alternate input stack and
added the element to the stack.

3. When processing using the alternate input stack is complete, restore the
original value of the ECTIOWA field.

Note that programs cannot build input stacks directly; they must invoke the STACK
service routine to create a valid input stack.

In the sections that follow, the following topics are discussed:

• The list and execute forms of the STACK macro instruction
• The sources of input
• The STACK parameter block
• The list source descriptor
• Return codes from STACK

The List Form of the STACK Macro Instruction
The list form of the STACK macro instruction builds and initializes a STACK
parameter block (STPB), according to the operands you specify in the macro. The
STACK parameter block indicates to the STACK service routine which functions you
want performed. The DATASET, STORAGE, and DELETE operands set bits in the
STACK parameter block. These bit settings indicate to the STACK service routine
which options you want performed.

In the list form of the macro instruction, only

I STACK MF=L

is required. When only ST ACK MF= L is specified, the STPB is zeroed. The other
operands and their sublists are optional because they can be supplied by the
execute form of the macro instruction.

156 MVS/ESA TSO Programming

Figure 83 shows the list form of the STACK macro instruction; each of the operands
is explained following the figure.

[symbol] STACK
rOP I !DELETE= PROC ---..,

ALL I PROCN
STORAGE=(element address, PROCL } ,MF=L

SOURCE

*
OATASET= {INDDoaddl,LIST)

MEMBER=addr3
OUTDD=addr2,CNTL,SEQ J '--
CLOSE

Figure 83. The List Form of the STACK Macro Instruction

DELETE=
Deletes an element or elements from the input stack. TOP, PROC. or ALL
further defines the element to be deleted.

TOP
Deletes the topmost element (the element most recently added to the input
stack).

PROC
Deletes the current procedure element from the input stack. If the top element
is not a PROC element, deletes all elements down to, and including, the first
PROC element.

ALL
Deletes all elements, except the bottom or first element, from the input stack.

STORAGE= element address
Adds an in-storage element to the input stack. The element address is the
address of the list source descriptor (LSD). The LSD is a control block, pointed
to by the STACK parameter block, which describes the in-storage list. The LSD
must reside below 16 megabytes in virtual storage. See "Building the List
Source Descriptor (LSD)" on page 163 for a description of the LSD.

The in-storage element must be further defined as a SOURCE, PROCN, or
PROCL list. SOURCE is the default.

PROCN
The element to be added to the input stack is a command procedure and the
NOLIST option has been specified.

PROCL
The element to be added to the input stack is a command procedure and the
LIST option has been specified. Each line read from the command procedure is
written to the output data set.

SOURCE
The element to be added to the input stack is an in-storage source data set.

Chapter 14. Using the TSO 110 Service Routines 157

MF=L
Indicates that this is the list form of the macro instruction. This operand is
required.

DATASET

*

Supports dataset 110 for TSO commands to include reading from a SYSIN data
set and writing to a SYSOUT dataset. To use the dataset function, the input and
output files passed to the STACK service routine must be preallocated, either by
a command processor that invokes dynamic allocation or a user-supplied DD
statement.

Specifies that STACK use the bottom element in the input stack for 1/0
operations.

INDD=addr1
Specifies the input file name.

LIST
Lists the input from the input stream.

MEMBER= addr3
Specifies an a-character member name for a partitioned data set which was
specified as the input file with the INDD operand.

OUTDO= addr2
Specifies the output file name.

CNTL
The output line has its own control character.

CLOSE
Closes the data control blocks (DCBs) of the input stack.

SEQ
Indicates to dataset 110 that sequence numbers should not be removed.

The Execute Form of the STACK Macro Instruction
Use the execute form of the STACK macro instruction to perform the following
functions:

• To set up the input/output parameter list (IOPL).

• To initialize those fields of the STACK parameter block (STPB) that are not
initialized by the list form of the macro instruction, or to modify those fields
already initialized.

• To pass control to the STACK service routine, which modifies the input stack.

The operands you specify in the execute form of the STACK macro instruction are
used to set up control information used by the STACK service routine. You can use
the PARM, UPT, ECT, and ECB operands of the STACK macro instruction to
complete, build, or alter an IOPL. The DATASET, STORAGE, and DELETE operands
set bits in the STACK parameter block. These bit settings indicate to the STACK
service routine which options you want.

In the execute form of the STACK macro instruction only the following operands are
required:

STACK

158 MVS/ESA TSO Programming

MF=(E,{list address})
(1)

The PARM, UPT, ECT, and ECB operands are not required if you have built an IOPL
in your own code.

The other operands and their sublists are optional because they can be supplied by
the list form of the macro instruction.

You are not required to specify the ENTRY operand on the macro instruction. If you
do not specify it, a LINK macro instruction will be generated to invoke the STACK
1/0 service routine.

Figure 84 shows the execute form of the STACK macro instruction; each of the
operands is explained following the figure.

[symbol] STACK [PARM=parm addr.][,UPT=upt addr.]

[,ECT=ect addr.][,ECB=ecb addr.]

I TOP l !DELETE= PROC -

ALL

rOCN l STORAGE=(element addr., PROCL)
SOURCE

*
(INDD=addl,LIST)

DATASET= MEMBER=addr3
OUTDD=addr2,CNTL,SEQ
CLOSE

'----- -
[,ENTRY= {entry addr.}],MF=(E,!list addr. p

(15) (1)

Figure 84. The Execute Form of the STACK Macro Instruction

PARM= parm addr
Specifies the address of the 5-word STACK parameter block (STPB). It can be
the address of the list form of the STACK macro instruction. The address is any
address valid in an RX instruction, or the number of one of the general registers
2-12 enclosed in parentheses. This address will be placed in the input/output
parameter list (IOPL). Use the list form of STACK to create the STPB. If no list
options are specified, the STPB is zeroed by the list form of the STACK macro
instruction.

The STPB and IOPL (STPL) can be modified by STACK, so they should be in
reentrant storage if used in a reentrant program.

UPT = upt addr
Specifies the address of the user profile table (UPT). This address can be
obtained from the command processor parameter list (CPPL) pointed to by
register one when the command processor is attached by the terminal monitor
program. The address can be any address valid in an RX instruction or the
number of one of the general registers 2-12 enclosed in parentheses. This
address will be placed in the input/output parameter list (IOPL).

Chapter 14. Using the TSO 1/0 Service Routines 159

ECT =eel addr
Specifies the address of the environment control table (ECT). This address can
be obtained from the command processor parameter list (CPPL) pointed to by
register 1 when the command processor is attached by the terminal monitor
program. The address can be any address valid in an RX instruction or the
number of one of the general registers 2-12 enclosed in parentheses. This
address will be placed in the IOPL.

ECB = ecb addr
Specifies the address of an event control block (ECB). This address will be
placed into the IOPL. You must provide a one-word event control block and
pass its address to the STACK service routine by placing it into the IOPL. The
address can be any address valid in an RX instruction or the number of one of
the general registers 2-12 enclosed in parentheses.

DELETE
Deletes one or more elements from the input stack. TOP, PROC, or ALL
specifies which element(s).

TOP
Deletes the topmost element (the element most recently added to the input
stack).

PROC

ALL

Deletes the current procedure element from the input stack. If the top element
is not a procedure element, deletes all elements down to and including the first
procedure element.

Deletes all elements, except the bottom or first element, from the input stack.

STORAGE =element address
Adds an in-storage element to the input stack. The element address is the
address of the list source descriptor (LSD). The LSD is a control block, pointed
to by the stack parameter block, which describes the in-storage list. See
"Building the List Source Descriptor (LSD)" on page 163 for a description of the
LSD. The in-storage list must be further defined as a SOURCE, PROCN, or
PROCL list. SOURCE is the default.

SOURCE
The element to be added to the input stack is an in-storage source data set.

PROCN
The element to be added to the input stack is a command procedure and the
NOLIST option has been specified.

PROCL
The element to be added to the input stack is a command procedure and the
LIST option has been specified. Each line read from the command procedure is
written to the output data set.

DATASET

*

Supports dataset 110 for TSO commands to include reading from a SYSIN
dataset and writing to a SYSOUT dataset. To use the dataset function, the input
and output files passed to the STACK service routine must be preallocated,
either by a command processor that invokes dynamic allocation or a
user-supplied DD statement.

Specifies that STACK use the bottom element on the input stack for 1/0
operations.

160 MVS/ESA TSO Programming

Sources of Input

INDD=addr1
Specifies the input file name.

LIST
Lists the input from the input stream.

MEMBER= addr3
Specifies the 8-character member name for the input file.

OUTDO= addr2
Specifies the output file name.

CNTL
The output line has its own control character.

SEQ
Indicates to dataset 1/0 that sequence numbers should not be removed.

CLOSE
Closes the data control blocks (DCBs) of the bottom element of the input stack.

ENTRY= entry address or (15)
Specifies the entry point of the STACK service routine. The address can be any
address valid in an RX instruction or (15) if the entry point address has been
loaded into general register 15. If ENTRY is omitted, a LINK macro instruction
will be generated to invoke the STACK service routine.

MF=E
Indicates that this is the execute form of the macro instruction.

listaddr
(1) The address of the four-word input/output parameter list (IOPL). This can be a

completed IOPL that you have built, or it can be 4 words of declared storage that
will be filled from the PARM, UPT, ECT, and ECB operands of this execute form
of the STACK macro instruction. The address is any address valid in an RX
instruction or (1) if the parameter list address has been loaded into general
register 1.

There are two types of input sources, a data set and an in-storage list.

Data Set: The terminal monitor program (TMP) initializes the first element of the
input stack as a data set element. This element indicates that the input stream,
which is controlled by the SYSTSIN DD statement in the TSO user's JCL, is the
source of input. All input and output requests through GETLINE, PUTLINE, and
PUTGET are read from the input stream and written to the output data set. The
output data set is controlled by the SYSTSPRT DD statement in the TSO user's JCL.

In-Storage List: An in-storage list can be either a list of commands or a source data
set. It can contain variable-length records (with a length header) or fixed-length
records (no header and all records the same length). In either case, no one record
on an in-storage list can exceed 256 characters.

Specify an in-storage list and its processing by setting the STORAGE operand type
to PROCN, PROGL, or SOURCE.

• PROCN or PROGL - Indicates that the in-storage list is a command procedure,
which is a list of commands to be executed in the order specified.

Chapter 14. Using the TSO 1/0 Service Routines 161

If you specify PROCN, requests through GETLINE are read from the in-storage
list. MODE messages, which are normally sent to the output data set by a
command or subcommand, are not sent; instead, a command is obtained from
the in-storage list.

If the PROCL option is specified, the command is written to the output data set
as it is read from the list.

• SOURCE - Indicates that the in-storage list is a source data set. Requests
through GETLINE are read from the in-storage list. MODE messages are
handled the same way as with PROCN or PROCL. No LIST facility is provided
with SOURCE records.

If your command processor uses the STACK service routine to specify an in-storage
list as the input source, you should create the in-storage list in subpool 78. The
IBM-supplied terminal monitor program (TMP) shares subpool 78 with command
processors. However, if your command processor uses the STACK service routine
to place either a data set or an in-storage list that is not in shared subpool 78 on the
input stack, the command processor must remove the stack element before
termination. To remove the stack element, your command processor should either:

• Issue the STACK macro instruction with the DELETE =TOP operand specified.

• Use the GETLINE or PUTGET service routine to process input until end-of-input
is reached.

For an example showing how to use the STACK service routine to specify an
in-storage list as the input source, see Figure 90 on page 168.

Building the STACK Parameter Block (STPB)
When the list form of the STACK macro instruction expands, it builds a five word
STACK parameter block (STPB). The list form of the macro instruction initializes
this STPB according to the operands you have coded. This initialized block, which
you can later modify with the execute form of the macro instruction, indicates to the
110 service routine the functions you want performed.

By using the list form of the macro instruction to initialize the block, and the execute
form to modify it, you can use the same STPB to perform different STACK functions.
Keep in mind, however, that if you specify an operand in the execute form of the
macro instruction, and that operand has a sublist as a value, the default values of
the sublist will be coded into the STPB for any of the sublist values not coded. If you
do not want the default values, you must code each of the values you require, each
time you change any one of them.

For example, if you coded the list form of the STACK macro instruction as follows:

I STACK STORAGE=(element address,PROCN),MF=L

and then overrode it with the execute form of the macro instruction as follows:

STACK STORAGE=(new element address),
MF=(E,list address)

The element code in the STACK parameter block would default to SOURCE, the
default value. If the new in-storage list was another PROCN list, you would have to
respecify PROCN in the execute form of the macro instruction.

162 MVS/ESA TSO Programming

The STACK parameter block is defined by the IKJSTPB DSECT, which is provided in
SYS1.MACLIB. Figure 85 describes the contents of the STPB.

Figure 85. The ST ACK Parameter Block

Number of Field Contents or Meaning
Bytes

1 none Operation code: A flag byte which describes the operation to be
performed.

1... One element is to be added to the top of the input stack.
. 1 The top element is to be deleted from the input stack .
.. 1 The current procedure is to be deleted from the input stack. If the

top element is not a PROC element. all elements down to and
including the first PROC element encountered are deleted, except
the bottom element.

... 1 All elements except the bottom one (the first element) are to be
deleted.

.... xxxx Reserved bits .

1 none Element code: A flag byte describing the element to be added to
the input stack.

x Reserved.
. 1 An in-storage element.
.. 1 Input DD name present.
... 1 Output DD name present.
.... xx .. Reserved .
...... 0. The in-storage element is a source element.
...... 1. The in-storage element is a procedure element.
.... ... 1 The list option (PROCL) has been specified .

1 Reserved

1 none DATASET operation.

xxxx x ... Reserved.
.... . 1 .. Do not remove sequence numbers.
...... 1. User-specified CNTL.
.... ... 1 Close option .

4 STPBALSD The address of the list source descriptor (LSD). An LSD describes
an in-storage list. If DELETE has been specified, this field will
contain zeros.

4 STPBINDD Pointer to input DD name.

4 STPBODDN Pointer to output DD name.

4 STPBMBRN Pointer to membername.

Building the List Source Descriptor (LSD)
A list source descriptor (LSD) is a four-word control block that describes the
in-storage list pointed to by the new element you are adding to the input stack. The
LSD must reside below 16 megabytes in virtual storage.

If you specify STORAGE as the input source in the STACK macro instruction, your
code must build an LSD, and place a pointer to it as a sublist of the STORAGE
operand.

The LSD must begin on a doubleword boundary, and must be created in the shared
subpool designated by the terminal monitor program; the IBM-supplied TMP shares
subpool 78 with the command processors. Your command processor cannot modify
the LSD after it is passed to the STACK service routine.

Chapter 14. Using the TSO 1/0 Service Routines 163

The LSD is defined by the IKJLSD DSECT, which is provided in SYS1.MACLIB.
Figure 86 describes the contents of the LSD.

Figure 86. The List Source Descriptor

Number of Fie Id Contents or Meaning
Bytes

4 LSDADATA The address of the in-storage list.

2 LSDRCLEN The record length if the in-storage list contains fixed-length
records. Zero if the record lengths are variable.

2 LSDTOTLN The total length of the in-storage list; the sum of the lengths of all
records in the list.

4 LSD AN EXT Pointer to the next record to be processed. Initialize this field to
the address of the first record in the list. The field is updated by the
GETLINE and PUTGET service routines.

4 LSDRSVRD Reserved.

Return Codes from STACK
When it returns to the program which invoked it, the STACK service routine will
provide one of the following return codes in general register 15:

Figure 87. Return Codes from the STACK Service Routine

Return Code Meaning
Dec(Hex)

0(0) STACK has completed successfully.

4(4) One or more of the parameters passed to STACK were invalid.

8(8) INDD was specified and the file could not be opened.

12(C) OUTDO was specified and the file could not be opened.

16(10) MEMBER was specified but was not in the partitioned data set
specified by INDD.

20(14) GETMAIN failure (only possible if MEMBER is specified).

~-------- End of GENERAL-USE PROGRAMMING INTERFACE

164 MVS/ESA TSO Programming

I

Terminal
Monitor
Program

I

If the DATASET or DELETE operands have been coded in the STACK macro
instruction, the second word of the stack parameter block, the STPBALSD field, will
contain zeroes and the control block structure will end with the STPB. Figure 88
describes this condition.

Command STACK
Processor Service

ATTACH LINK Routine __.. _ ...
I ,,..

I

I,,..
I

I
I

I I
I I

Reg. 1 Reg. 1

CPPL IOPL

STPB

00000000

0

0

Figure 88. STACK Control Blocks: No In-Storage List

To add an in-stor'age list element to the input stack, you must describe the
in-storage list and pass a pointer to it to the STACK 110 service routine. You do this
by building a list source descriptor (LSD).

Chapter 14. Using the TSO 1/0 Service Routines 165

Terminal
Monitor

If you have provided an LSD, and specified the STORAGE operand in the STACK
macro instruction, the second word of the stack parameter block will contain the
address of the LSD, and the STACK control block structure will be as shown in
Figure 89.

Command STACK
Processor Service

Program ATTAiH LINK Routine
! I,...
I I
I I
I I

Reg. I

CPPL IOPL

STPB

LSD

Figure 89. STACK Control Blocks: In-Storage List Specified

166 MVS/ESA TSO Programming

Example Using STACK
Figure 90 is an example of the code required to use the STACK macro instruction to
place a pointer to an in-storage list on the input stack.

In the example, the GETMAIN macro instruction is used to obtain storage in subpool
78 for the list source descriptor and the in-storage list itself. The execute form of the
STACK macro instruction initializes the input/output parameter list required by the
STACK service routine. The list form of the STACK macro instruction expands into a
STACK parameter block, and its address is passed to the STACK service routine via
the PARM operand in the execute form of the STACK macro instruction.

Chapter 14. Using the TSO 110 Service Routines 167

* THIS CODE ASSUMES ENTRY FROM THE TMP - REGISTER ONE CONTAINS THE
*ADDRESS OF THE COMMAND PROCESSOR PARAMETER LIST.
*
* SET UP ADDRESSABILITY
* PERFORM SAVE AREA CHAINING
*
*
*
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL
USING CPPL,2 SET UP ADDRESSABILITY FOR THE

* CPPL
L 3,CPPLUPT PLACE THE ECT ADDRESS INTO A

* REGISTER
L 4,CPPLECT PLACE THE ECB ADDRESS INTO A

* REGISTER
* ISSUE A GETMAIN FOR SUBPOOL 78. THE LIST SOURCE DESCRIPTOR AND THE
* IN-STORAGE LIST ITSELF MUST BE LOCATED IN SUBPOOL 78.
*

GETMAIN LU,LA=REQUEST,A=ANSWER,SP=78,LOC=BELOW
*
* OBTAIN THE ADDRESS IN SUBPOOL 78 FOR THE LIST SOURCE DESCRIPTOR
* AND MOVE THE LSD INTO THAT AREA.
*

L 5,ANSWER
MVC 0(16,5),ANLSD

*
* OBTAIN THE ADDRESS IN SUBPOOL 78 FOR THE IN-STORAGE LIST AND MOVE
* THE IN-STORAGE LIST INTO THAT AREA
*

L 6,ANSWER+4
ST 6,0(5) STORE THE ADDRESS OF THE IN-
ST 6,8(5) STORAGE LIST INTO TWO FIELDS

* IN THE LIST SOURCE DESCRIPTOR
MVC 0(100,6), INLIST

*
* ISSUE AN EXECUTE FORM OF THE STACK MACRO INSTRUCTION TO PUT A
* POINTER TO THE IN-STORAGE LIST ON THE INPUT STACK.
*

*

STACK PARM=STCKLST,UPT=(3),ECT=(4),ECB=ECBADS,
STORAGE=((5),PROCN),MF=(E,IOPLADS)

* TEST THE RETURN CODE FOR SUCCESSFUL COMPLETION OF THE STACK
* SERVICE ROUTINE.
*

LTR 15,15
BNZ ERRTN

x

Figure 90 (Part 1 of 2). Example of STACK Specifying an In-storage List as the Input
Source

168 MVS/ESA TSO Programming

*
*
ERRTN
*
*
*
* STORAGE DECLARATIONS
*
AN LSD DS

DC
DC
DS
DC

INLIST DC

A
x·0000•
X'8864'
A
F'8'

X'88148888'
C'CMDl OPA OPB OPC'
X'88188888'
C'CMD2 OPTA OPTB OPTC I

X'88248888'

THE TOTAL LENGTH OF THE LIST
SOURCE DESCRIPTOR, ANLSD, IS
16 BYTES (DECIMAL).

DC
DC
DC
DC
DC
DC
DC

C'COMMAND NOMSGID NOPROMPT'
x•00rn0000·
C'CMD3 MYPROG LIST'

*
*THE TOTAL LENGTH OF THE IN-STORAGE LIST, INLIST, IS 188 DECIMAL
* BYTES.
*
* SET UP THE LIST OF STORAGE AMOUNTS REQUIRED. THE ADDRESS OF THIS
* LIST IS CODED AS THE LA= OPERAND ON THE GETMAIN MACRO INSTRUCTION.
*
REQUEST DC

DC
DC

*
*
*
*

F' 16'
X'88'
AL3(184)

SIXTEEN BYTES FOR THE LSD.
END OF LIST INDICATOR
188 BYTES FOR THE IN-STORAGE LIST
SINCE THE GETMAIN MACRO REQUIRES
THAT THE REQUEST BE DIVISIBLE BY
8, WE REQUEST 184 BYTES.

* SET ASIDE 2 FULLWORDS TO RECEIVE THE ADDRESS RETURNED BY THE·GETMAIN
* MACRO INSTRUCTION.
*
ANSWER DC 2F'8'
*
STCKLST STACK MF=L
*
*
*
ECBADS DC F'8'
IOPLADS DC 4F'8'

IKJCPPL
*

END

THIS LIST FORM OF THE STACK
MACRO INSTRUCTION PROVIDES SPACE
FOR THE STACK PARAMETER BLOCK

EVENT CONTROL BLOCK
INPUT/OUTPUT PARAMETER LIST
DSECT FOR THE COMMAND PROCESSOR
PARAMETER LIST

Figure 90 (Part 2 of 2). Example of STACK Specifying an In-storage List as the Input
Source

Chapter 14. Using the TSO 110 Service Routines 169

GENERAL-USE PROGRAMMING INTERFACE

Using GETLINE to Get a Line of Input
Use the GETLINE macro instruction to obtain all input lines other than commands
and subcommands. Commands and subcommands should be obtained with the
PUTGET macro instruction.

When a GETLINE macro instruction is executed, a line is obtained from the current
source of input, which is either a data set or an in-storage list. The processing of
the input line varies according to several factors. Included in these factors are the
source of input, and the options you specify for logical or physical processing of the
input line. The GETLINE service routine determines the type of processing to be
performed from the operands coded on the GETLINE macro instruction, and returns
a line of input.

The sections that follow describe the following topics:

• The list and execute forms of the GETLINE macro instruction
• The sources of input
• The GETLINE parameter block
• The input line format
• Return codes from GETLINE

The List Form of the GETLINE Macro Instruction
The list form of the GETLINE macro instruction builds and initializes a GETLINE
parameter block (GTPB), according to the operands you specify in the GETLINE
macro. The GETLINE parameter block indicates to the GETLINE service routine
which functions you want performed.

In the list form of the macro instruction, only

I GETLINE I MF=L

is required. The other operands and their sublists are optional because they can be
supplied by the execute form of the macro instruction, or automatically supplied if
you want the default values.

The operands you specify in the list form of the GETLINE macro instruction set up
control information used by the GETLINE service routine. The INPUT operand sets
bits in the GETLINE parameter block to indicate to the GETLINE service routine
which options you want performed.

Figure 91 shows the list form of the GETLINE macro instruction; each of the
operands is explained following the figure.

l [symbol] GET LINE [INPUT=(!STACK {,LOGICAL })] ,MF=L
,PHYSICAL

Figure 91. The List Form of the GETLINE Macro Instruction

170 MVS/ESA TSO Programming

INPUT=
Indicates that an input line is to be obtained. This input line is further described
by the INPUT sublist operands !STACK, LOGICAL and PHYSICAL. !STACK and
LOGICAL are the default values.

ISTACK
Obtain an input line from the currently active input source indicated by the input
stack.

LOGICAL
The input line to be obtained is a logical line; the GETLINE service routine is to
perform logical line processing.

PHYSICAL
The input line to be obtained is a physical line. The GETLINE service routine
need not inspect the input line.

Note: If the input line you are requesting is a logical line coming from the input
source indicated by the input stack, you need not code the INPUT operand or its
sub-list operands. The input line description defaults to !STACK, LOGICAL.

MF=L
Indicates that this is the list form of the macro instruction.

The Execute Form of the GETLINE Macro Instruction
Use the execute form of the GETLINE macro instruction to perform the following
functions:

• To set up the input/output parameter list (IOPL).

• To initialize those fields of the GETLINE parameter block (GTPB) that are not
initialized by the list form of the macro instruction, or to modify those fields
already initialized.

• To pass control to the GETLINE service routine, which gets the line of input.

In the execute form of the GETLINE macro instruction only the following is required:

I GETLINE I MF=(E, 11 i(i) address}'

The PARM, UPT, ECT, and ECB operands are not required if you have built your
IOPL in your own code. The other operands and their sublists are optional because
you can supply them in the list form of the macro instruction or in a previous
execution of GETLINE, or because you are using the default values.

The operands you specify in the execute form of the GETLINE macro instruction are
used to set up control information used by the GETLINE service routine. You can
use the PARM, UPT, ECT, and ECB operands of the GETLINE macro instruction to
build, complete, or modify an IOPL. The INPUT operand sets bits in the GETLINE
parameter block. These bit settings indicate to the GETLINE service routine which
options you want performed.

Chapter 14. Using the TSO 1/0 Service Routines 171

Figure 92 shows the execute form of the GETLINE macro instruction; each of the
operands is explained following the figure.

[symbol] GETLINE [PARM=parameter address][,UPT=upt address)

[,ECT=ect address][,ECB=ecb address)

r ,INPUT=(ISTACK {,LOGICAL } >]
l ,PHYSICAL

[, ENTRY={ entry address}] ,MF=(E, {list address p
(15) (1)

Figure 92. The Execute Form of the GETLINE Macro Instruction

PARM= parameter address
Specifies the address of the 2-word GETLINE parameter block (GTPB). It can be
the address of a list form GETLINE macro instruction. The address is any
address valid in an RX instruction, or the number of one of the general registers
2-12 enclosed in parentheses. This address will be placed in the input/output
parameter list (IOPL).

UPT = upt address
Specifies the address of the user profile table (UPT). You can obtain this
address from the command processor parameter list pointed to by register 1
when the command processor is attached by the terminal monitor program. The
address can be any address valid in an RX instruction or the number of one of
the general registers 2-12 enclosed in parentheses. This address will be placed
in the IOPL.

ECT = ect address
Specifies the address of the environment control table (ECT). You can obtain
this address from the CPPL pointed to by register 1 when the command
processor is attached by the terminal monitor program. The address can be any
address valid in an RX instruction or the number of one of the general registers
2-12 enclosed in parentheses. This address will be placed into the IOPL.

ECB = ecb address
Specifies the address of an event control block (ECB). You must provide a
one-word event control block and pass its address to the GETLINE service
routine by placing it into the IOPL. The address can be any address valid in an
RX instruction or the number of one of the general registers 2-12 enclosed in
parentheses. This address will be placed into the IOPL.

INPUT=
Indicates that an input line is to be obtained. This input line is further described
by the INPUT sublist operands !STACK, LOGICAL, and PHYSICAL. !STACK and
LOGICAL are the default values.

ISTACK
Obtains an input line from the currently active input source indicated by the
input stack.

LOGICAL
The input line to be obtained is a logical line; the GETLINE service routine is to
perform logical line processing. A logical line is a line that has additional
processing performed by the GETLINE service routine before it is returned to
the requesting program.

172 MVS/ESA TSO Programming

Sources of Input

PHYSICAL
The input line to be obtained is a physical line. A physical line is a line that is
returned to the requesting program exactly as it is received from the input
source.

Note: If the input line you are requesting is a logical line coming from the input
source indicated by the input stack, you do not need to code the INPUT operand
or its sublist operands. The input line description defaults to ISTACK, LOGICAL.

ENTRY=entry address or (15}
Specifies the entry point of the GETLINE service routine. The address can be
any address valid in an RX instruction or (15) if the entry point address has been
loaded into general register 15. The ENTRY operand need not be coded in the
macro instruction. If it is not, a LINK macro instruction will be generated to
invoke the 1/0 service routine.

MF=E
Indicates that this is the execute form of the macro instruction.

listaddr
(1) The address of the four-word input/output parameter list (IOPL). This can be a

completed IOPL that you have built, or it can be 4 words of declared storage that
will be filled from the PARM, UPT, ECB, and ECT operands of this execute form
of the GETLINE macro instruction. The address is any address valid in an RX
instruction or (1) if the parameter list address has been loaded into general
register 1.

There are two sources of input provided; they are a data set, and an in-storage list.

Data Set: Input comes from a data set if you have specified the current element of
the input stack by including the ISTACK operand in the GETLINE macro instruction,
and the current element is a data set element.

If you specify a data set as the input source, you have the option of requesting the
GETLINE service routine to process the input as a logical or physical line by
including the LOGICAL or the PHYSICAL operand in the macro instruction.
LOGICAL is the default value.

Physical Line Processing: A physical line is a line that is returned to the requesting
program exactly as it is received from the input source. The contents of the line are
not inspected by the GETLINE service routine.

Logical Line Processing: A logical line is a line that has undergone additional
processing by the GETLINE service routine before it is returned to the requesting
program. If logical line processing is requested, each line returned to the routine
that issued the GETLINE is inspected to see if the last character of the line is a
continuation mark (a dash '-' or a plus '+ '). A continuation mark signals GETLINE
to get another line from the input data set and to concatenate that line with the line
previously obtained. The continuation mark is overlaid with the first character of the
new line.

In-Storage List: If the top element of the input stack is an in-storage list, the line
will be obtained from the in-storage list. The in-storage list is a resident data set
that has been previously made available to the 1/0 service routines with the STACK
service routine.

Chapter 14. Using the TSO 1/0 Service Routines 173

No logical line processing is performed on the lines because it is assumed that each
line in the in-storage list is a logical line. It is also assumed that no single record
has a length greater than 256 bytes.

End of Data Processing
If you issue a GETLINE macro against an in-storage list from which all the records
have already been read, GETLINE senses an end of data (EOD) condition. GETLINE
deletes the top element from the input stack and passes a return code of 16 in
register 15. Return code 16 indicates that no line of input has been retl.lrned by the
GETLINE service routine. You can use this EOD code (16) as an indication that all
input from a particular source has been exhausted and no more GETLINE macro
instructions should be issued against this input source.

If you reissue a GETLINE macro instruction against the input stack after a return
code of 16, a record will be returned from the next input source indicated by the
input stack. See "Return Codes from GETLINE" on page 175 for a list of the return
codes.

Building the GETLINE Parameter Block
When the list form of the GETLINE macro instruction expands, it builds a two word
GETLINE parameter block (GTPB). The list form of the macro instruction initializes
this GTPB according to the operands you have coded in the macro instruction. This
initialized block, which you can later modify with the execute form of the macro
instruction, indicates to the GETLINE service routine the function you want
performed.

You must supply the address of the GTPB to the execute form of the GETLINE macro
instruction. For non-reentrant programs you can do this simply by placing a
symbolic name in the symbol field of the list form of the macro instruction, and
passing this symbolic name to the execute form of the macro instruction as the
PARM value. The GETLINE parameter block is defined by the IKJGTPB DSECT,
which is provided in SYS1.MACLIB. Figure 93 describes the contents of the GTPB.

Figure 93. The GETLINE Parameter Block

Number of Field Contents or Meaning
Bytes

2 Control flags. These bits describe the requested input line to the
GETLINE service routine.

Byte 1
.. 0 The input line is a logical line .
.. 1 The input line is a physical line .
... 0 The input line is to be obtained from the current input source

indicated by the input stack.
xx .. xxxx Reserved bits.

Byte 2
xxxxxxxx Reserved.

2 Reserved.

4 GTPBIBUF The address of the input buffer. The GETLINE service routine fills
this field with the address of the input buffer in which the input line
has been placed.

174 MVS/ESA TSO Programming

Input Line Format - The Input Buffer
The second word of the GETLINE parameter block contains zeros until the GETLINE
service routine returns a line of input. The service routine places the requested
input line into an input buffer beginning on a doubleword boundary located in
subpool 1. It then places the address of this input buffer into the second word of the
GTPB. The input buffer belongs to the command processor that issued the GETLINE
macro instruction. The buffers returned by GETLINE are automatically freed when
your command processor relinquishes control. You can free the input buffer with
the FREEMAIN macro instruction after you have processed or copied the input line.

Regardless of the source of input, the input line returned to the command processor
by the GETLINE service routine is in a standard format All input lines are in a
variable length record format with a fullword header followed by the text returned by
GETLINE. Figure 94 shows the format of the input buffer returned by the GETLINE
service routine.

~~-Le_n_g-th~~~~-0-f-fs_e_t~~~~~~~~-T-ex_t~~~~~~~[~
2 Bytes 2 Bytes

Length

Figure 94. Format of the GETLINE Input Buffer

The two-byte length field contains the length of the input line including the header
length (4 bytes). You can use the length field to determine the length of the input
line to be processed, and later, to free the input buffer with the A-form of the
FREEMAIN macro instruction.

The two-byte offset field is always set to zero on return from the GETLINE service
routine.

Return Codes from GETLINE
When it returns to the program that invoked it, the GETLINE service routine returns
one of the following codes in general register 15:

Return Code Meaning
Dec(Hex)

4(4) GETLINE has completed successfully. The line was returned from an
in-storage list.

16(10) An EOD condition occurred. An attempt was made to get a line from
an in-storage list but the list had been exhausted.

20(14) Invalid parameters were passed to the GETLINE service routine.

24(18) A conditional GETMAIN was issued by GETLINE for input buffers and
there was not sufficient space to satisfy the request.

Figure 95. Return Codes from the GETL/NE Service Routine

~-------- End of GENERAL-USE PROGRAMMING INTERFACE --------~

Chapter 14. Using the TSO 110 Service Routines 175

Figure 96 shows the GETLINE control block structure after the GETLINE service
routine has returned an input line.

I
Terminal Command GETLINE
Monitor Processor Service
Program ATTACH LINK Routine _.. _..

I...,.. I...,..
I I
I I
I I

Reg. l Reg. l

CPPL IOPL

GTPB

t Input Buffer
Data

Figure 96. GETLINE Control Blocks - Input Line Returned

176 MVS/ESA TSO Programming

GENERAL-USE PROGRAMMING INTERFACE

Using PUTLINE to Write a Line to the Output Data Set
Use the PUTLINE macro instruction to prepare a line and write it to the output data
set. Use PUTLINE to put out data lines and informational message lines; use
PUTGET to put out lines and obtain a line of input.

The PUTLINE service routine prepares a line for output according to the operands
you code into the list and execute forms of the PUTLINE macro instruction. The
operands of the macro instruction indicate to the PUTLINE service routine the type
of line being put out (data line or informational message line) and the type of
processing to be performed on the line (format only, second level informational
message chaining, text insertion).

This topic describes:

• The list and execute forms of the PUTLINE macro instruction
• The PUTLINE parameter block
• The types and formats of output lines
• PUTLINE message processing
• Return codes from PUTLINE

The List Form of the PUTLINE Macro Instruction

[symbol]

The list form of the PUTLINE macro instruction builds and initializes a PUTLINE
parameter block (PTPB), according to the operands you specify in the macro
instruction. The PUTLINE parameter block indicates to the PUTLINE service routine
which functions you want performed.

In the list form of the macro instruction, only

I PUTLINE I MF=L

is required. The output line address is required for each issuance of the PUTLINE
macro instruction, but it can be supplied in the execute form of the macro
instruction.

The other operands and sublists are optional because you can supply them in the
execute form of the macro instruction, or they will be supplied by the macro
expansion if you want the default values. Figure 97 shows the list form of the
PUTLINE macro instruction; each of the operands is explained following the figure.

!,SINGLE l PUTLINE [OUTPUT=(output address {,TERM } ,MULTLVL {,INFORP]
,FORMAT ,MULTLIN ,DATA

,MF=L

Figure 97. The List Form of the PUTLINE Macro Instruction

OUTPUT= output address
Indicates that an output line is to be written to the output data set. The type of
line provided and the processing to be performed on that line by the PUTLINE
service routine are described by the OUTPUT sublist operands TERM, FORMAT,

Chapter 14. Using the TSO 110 Service Routines 177

SINGLE, MULTLVL, MULTLIN, INFOR and DATA. The default values are TERM,
SINGLE, and INFOR.

The output address differs depending upon whether the output line is an
informational message or a data line. For DATA requests, it is the address of
the beginning (the fullword header) of a data record to be written to the output
data set. For informational message requests (INFOR), it is the address of the
output line descriptor. The output line descriptor (OLD) describes the message
to be put out, and contains the address of the beginning (the fullword header) of
the message or messages to be written to the output data set by the PUTLINE
service routine.

TERM
Write the line out to the output data set.

FORMAT
The output request is only to format a single message and not to put the
message out to the output data set. The PUTLINE service routine returns the
address of the formatted line by placing it in the third word of the PUTLINE
parameter block.

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be specified.

MULTLIN
The output data consists of multiple lines. DATA must be specified.

INFOR
The output line is an informational message.

DATA
The output line is a data line.

MF=L
Indicates that this is the list form of the macro instruction.

The Execute Form of the PUTLINE Macro Instruction
Use the execute form of the PUTLINE macro instruction to write a line or lines to the
output data set, to chain second level messages, and to format a line and return the
address of the formatted line to the code that issued the PUTLINE macro
instruction. Use the execute form of the PUTLINE macro instruction to perform the
following functions:

• To set up the input/output parameter list (IOPL).

• To initialize those fields of the PUTLINE parameter block (PTPB) not initialized
by the list form of the macro instruction, or to modify those fields already
initialized.

• To pass control to the PUTLINE service routine.

The operands you specify in the execute form of the PUTLINE macro instruction set
up control information used by the PUTLINE service routine. You can use the
PARM, UPT, ECT, and ECB operands of the PUTLINE macro instruction to build,
complete or modify an IOPL. The OUTPUT operand and its sublist operands
initialize the PUTLINE parameter block. The PUTLINE parameter block is
referenced by the PUTLINE service routine to determine which functions you want

178 MVS/ESA TSO Programming

[symbol]

PUTLINE to per1orm. The PUTLINE service routine makes use of the IOPL and the
PTPB to determine which of the PUTLINE functions you want performed.

In the execute form of the PUTLINE macro instruction only the following is required:

I PUTLINE I MF=(E, {l is\~~dress })

The PARM, UPT, ECT, and ECB operands are not required if you have built your
IOPL in your own code.

The output line address is required for each issuance of the PUTLINE macro
instruction, but you can supply it in the list form of the macro instruction.

The other operand and sublists are optional because you can supply them in the list
form of the macro instruction or in a previous execute form, or because you might
want to use the default values which are automatically supplied by the macro
expansion itself.

Figure 98 shows the execute form of the PUTLINE macro instruction; each of the
operands is explained following the figure.

PUTLINE [PARM=parameter address][,UPT=upt address)

[,ECT=ect address][,ECB=ecb address]

[,OUTPUT=(output address [,TERM) ,,SINGLE I [,INFOR J> l
,FORMAT ,MULTLVL ,DATA

,MULTLIN

[,ENTRY={entry address}]•MF=(E {,list address})
(15) (1)

Figure 98. The Execute Form of the PUTLINE Macro Instruction

PARM= parameter address
Specifies the address of the 3-word PUTLINE parameter block (PTPB). It can be
the address of a list form of the PUTLINE macro instruction. The address can be
any any address valid in an RX instruction, or the number of one of the general
registers 2-12 enclosed in parentheses. This address will be placed into the
IOPL.

UPT = upt address
Specifies the address of the user profile table (UPT). You can obtain this
address from the command processor parameter list (CPPL) pointed to by
register 1 when a command processor is attached by the terminal monitor
program. The address can be any address valid in an RX instruction or it can
be placed in one of the general registers 2-12 and the register number enclosed
in parentheses. This address will be placed into the IOPL.

ECT = ect address
Specifies the address of the environment control table (ECT). You can obtain
this address from the CPPL pointed to by register 1 when a command processor
is attached by the terminal monitor program. The address can be any address
valid in an RX instruction or it can be placed in one of the general registers 2-12
and the register number enclosed in parentheses. This address will be placed
into the IOPL.

Chapter 14. Using the TSO 110 Service Routines 179

ECB = ecb address
Specifies the address of the event control block (ECB). You must provide a
one-word event control block and pass its address to the PUTLINE service
routine. This address will be placed into the IOPL. The address can be any
address valid in an RX instruction or it can be placed in one of the general
registers 2-12 and the register number enclosed in parentheses.

OUTPUT= output address
Indicates that an output line is provided. The type of line provided and the
processing to be performed on that line by the PUTLINE service routine are
described by the OUTPUT sublist operands TERM, FORMAT, SINGLE MULTLVL,
MULTLIN, INFOR and DATA. The default values are TERM, SINGLE, and INFOR.

The output address differs depending upon whether the output line is an
informational message or a data line. For DATA requests, it is the address of
the beginning (the fullword header) of a data record to be written to the output
data set. For informational message requests (INFOR), it is the address of the
output line descriptor. The output line descriptor (OLD) describes the message
to be put out, and contains the address of the beginning (the fullword header) of
the message or messages to be written to the output data set by the PUTLINE
service routine.

TERM
Write the line out to the output data set.

FORMAT
The output request is only to format a single message and not to put the
messages out to the output data set. The PUTLINE service routine returns the
address of the formatted line by placing it in the third word of the PUTLINE
parameter block.

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be specified.

MULTLIN
The output data consists of multiple lines. DATA must be specified.

INFOR
The output line is an informational message.

DATA
The output line is a data line.

ENTRY=entry address or (15)
Specifies the entry point of the PUTLINE service routine. If ENTRY is omitted,
the PUTLINE macro expansion will generate a LINK macro instruction to invoke
the PUTLINE service routine. The address can be any address valid in an RX
instruction or (15) if the entry point address has been loaded into general
register 15.

MF=E
Indicates that this is the execute form of the PUTLINE macro instruction.

llst address
(1) The address of the four-word input/output parameter list (IOPL). This can be a

completed IOPL that you have built, or 4 words of declared storage to be filled
from the PARM, UPT, ECT, and ECB operands of this execute form of the
PUTLINE macro instruction. The address is any address valid in an RX

180 MVS/ESA TSO Programming

instruction or (1) if the parameter list address has been loaded into general
register 1.

Building the PUTLINE Parameter Block
When the list form of the PUTLINE macro instruction expands, it builds a three-word
PUTLINE parameter block (PTPB). The list form of the macro instruction initializes
the PTPB according to the operands you have coded in the macro instruction. The
initialized block, which you can later modify with the execute form of the PUTLINE
macro instruction, indicates to the PUTLINE service routine the function you want
performed. You must supply the address of the PTPB to the execute form of the
PUTLINE macro instruction. Since the list form of the macro instruction expands
into a PTPB, all you need do is pass the address of the list form of the macro
instruction to the execute form as the PARM value.

The PUTLINE parameter block is defined by the IKJPTPB DSECT, which is provided
in SYS1.MACLIB. Figure 99 describes the contents of the PTPB.

Figure 99. The PUTLINE Parameter Block

Number of Field Contents or Meaning
Bytes

2 Control flags. These bits describe the output line to the PUTLINE
service routine.

Byte 1
.. 0 The output line is a message.
.. 1 The output line is a data line .
... 1 The output line is a single level or a single line .
.... 1 ... The output is multiline .
..... 1 .. The output is multilevel.
.... .. 1. The output line is an informational message .
xx x Reserved bits.

Byte 2
.. 1 The format only function was requested .
xx.x xxxx Reserved bits.

2 Reserved.

4 PTPBOPUT The address of the output line descriptor (OLD) if the output line is
a message. The address of the fullword header preceding the data
if the output line is a single data line. The address of a
forward-chain pointer preceding the fullword data header, if the
output is multiline data.

4 PTPBFLN Address of the format only line. The PUTLINE service routine
places the address of the formatted line into this field.

Types and Formats of Output Lines
There are two types of output lines processed by the PUTLINE service routine: data
lines and message lines.

Use the OUTPUT sublist operands in the PUTLINE macro instruction to indicate to
the PUTLINE service routine which type of line you want processed (DATA, INFOR),
whether the output consists of one line, several lines, or several levels of messages
(SINGLE, MULTLIN, MULTLVL), and whether the line is to be written to the output
data set (TERM), or formatted only (FORMAT).

Chapter 14. Using the TSO 1/0 Service Routines 181

Data Lines: A data line is the simplest type of output processed by the PUTLINE
service routine. It is simply a line of text to be written to the output data set.
PUTLINE does not format the line or process it in any way; it merely writes the line,
as it appears, to the output data set. Use the DATA operand on the PUTLINE macro
instruction to indicate that the output line is a data line.

There are two kinds of data lines, single line data and multiline data; each is
handled differently by the PUTLINE service routine.

• Single Line Data: Single line data is one contiguous character string that
PUTLINE writes to the output data set as one logical line. PUTLINE accepts
single line data in the format shown in Figure 100.

PUTLINE OUTPUT = (output address, ~ , SINGLE, DATA) ~

2 bytes 2 bytes

Length Offset Data
) D

Length

Figure 100. PUTLINE Single Line Data Format

You must precede your line of data with a 4-byte header field. The first two
bytes contain the length of the output line, including the header; the second two
bytes are reserved for offsets and are set to zero for data lines.

Pass the address of the output line to the PUTLINE service routine by coding the
beginning address of the four-byte header as the OUTPUT operand address in
either the list or the execute form of the macro instruction. When the macro
instruction expands, it places this data line address into the second word of the
PUTLINE parameter block.

Figure 102 on page 184 is an example of the code that could be used to write a
single line of data to the output data set using the PUTLINE macro instruction.
Note that the execute form of the PUTLINE macro instruction is used in this
example to construct the input/output parameter list.

• Multlllne Data: Multi line data is a chain of single lines. Each line of data is
processed by the PUTLINE service routine exactly as if it were single line data.
Each element of the chain, however, begins a new line to the output data set.
By specifying multi line data (MULTLIN) in the PUTLINE macro instruction, you
can put out several variable length, non-contiguous lines with one execution of
the macro instruction. PUTLINE accepts multiline data in a format similar to that
of single line data except that each line is prefaced with a fullword forward
chain pointer. Figure 101 shows the format of PUTLINE multiline data.

182 MVS/ESA TSO Programming

PUTLINE OUTPUT= (output address,~, MULTLIN, DATA)_.,..__..__,._.,..._...__,._.,..._...__,.

Pointer to next element Offset Data

Length

Length Offset Data

Length Offset Data

Figure 101. PUTLINE Multiline Data Format

Each of the forward-chain pointers points to the next data line to be written to
the output data set. The forward-chain pointer in the last data line contains
zeros. In the case of multiline data, you pass the address of the output line to
the PUTLINE service routine by coding the beginning address of the first
forward-chain pointer as the OUTPUT operand address in either the list or the
execute form of the macro instruction. When the macro instruction expands, it
will place this multiline data address into the second word of the PUTLINE
parameter block.

Figure 103 on page 185 is an example of the code required to write multiple lines of
data to the output data set using the PUTLINE macro instruction.

Note that the programmer has built his own IOPL rather than build it with the
execute form of the PUTLINE macro instruction. Note also the use of the IOPL and
CPPL DSECTs (generated by the IKJIOPL and IKJCPPL macro instructions). These
provide an easy method of accessing the fields within the IOPL and the CPPL, and
they protect your code from changes made to the control blocks.

Message Lines: If you code INFOR in the PUTLINE macro instruction, the PUTLINE
service routine writes the information you supply as an informational message and
provides additional functions not applicable to data lines. An informational
message is a line of output from the program in control to the output data set. It is
used solely to pass output to the TSO user; no input from the input stream is
required after an informational message.

Chapter 14. Using the TSO 1/0 Service Routines 183

There are two types of informational messages processed by the PUTLINE service
routine: single level messages and multilevel messages.

• Single Level Messages: A single level message is composed of one or more
message segments to be formatted and written to the output data set with one
execution of the PUTLINE macro instruction. Use the SINGLE operand on the
PUTLINE macro instruction to indicate that the output line is a single level
message.

• Multilevel Messages: Multilevel messages are composed of one or more
message segments to be formatted and written to the output data set, and one
or more message segments to be formatted and placed on an internal chain in
shared subpool 78. This internal chain is written to the output data set. Use the
MULTLVL operand on the PUTLINE macro instruction to indicate that a
multilevel message is to be written to the output data set.

~-------- End of GENERAL-USE PROGRAMMING INTERFACE ---------

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
*PROCESSOR PARAMETER LIST (CPPL).
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1
USING CPPL,2
L 3,CPPLUPT

*

SAVE THE ADDRESS OF THE CPPL.
ADDRESSABILITY FOR THE CPPL
PLACE THE ADDRESS IF THE UPT
INTO A REGISTER

L 4,CPPLECT PLACE THE ADDRESS OF THE ECT
* INTO A REGISTER
* ISSUE THE EXECUTE FORM OF THE PUTLINE MACRO INSTRUCTION. USE IT
* TO WRITE A SINGLE LINE OF DATA AND TO BUILD THE IOPL.
*

PUTLINE PARM=PUTBLOK,UPT=(3),ECT=(4),ECB=ECBADS, X
OUTPUT=(TEXTADS,TERM,SINGLE,DATA),MF=(E,IOPLADS)

*
* PROCESSING
* STORAGE DECLARATIONS
*
ECBADS DS F'0'
PUTBLOK PUTLINE MF=L
*
*
TEXTADS DC

DC
DC

IOPLADS DC
*

H'20'
H'0'
CL16' SINGLELINE DATA'
4F'0'

IKJCPPL
END

SPACE FOR THE EVENT CONTROL BLOCK
LIST FORM OF THE PUTLINE MACRO
INSTRUCTION. THIS EXPANDS INTO A
PUTLINE PARAMETER BLOCK.
LENGTH OF THE OUTPUT LINE
RESERVED

SPACE FOR THE INPUT/OUTPUT
PARAMETER LIST
DSECT FOR THE CPPL

Figure 102. Example Showing PUTLINE Single Line Data Processing

184 MVS/ESA TSO Programming

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
*PROCESSOR PARAMETER LIST (CPPL).
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1
USING CPPL,2
L 3,CPPLUPT

*
L 4,CPPLECT

*

SAVE THE ADDRESS OF THE CPPL.
ADDRESSABILITY FOR THE CPPL
PLACE THE ADDRESS IF THE UPT
INTO A REGISTER
PLACE THE ADDRESS OF THE ECT
INTO A REGISTER

LA 5,ECBADS PLACE THE ADDRESS OF THE ECB
* INTO A REGISTER
*SET UP ADDRESSABILITY FOR THE INPUT/OUTPUT PARAMETER LIST DSECT.
*

LA 7, IOPLADS
USING IOPL,7

* FILL IN THE IOPL EXECPT FOR THE PTPB ADDRESS
ST 3, IOPLUPT
ST 4, IOPLECT
ST 5, IOPLECB

*
* ISSUE THE EXECUTE FORM OF THE PUTLINE MACRO INSTRUCTION
*

PUTLINE PARM=PUTBLOK,OUTPUT=(TEXTADS,MULTLIN,DATA), X
MF=(E, IOPLADS)

*
* PROCESSING
* STORAGE DECLARATIONS
*
ECBADS DS
IOPLADS DS
TEXTADS DC

DC
DC
DC

F
4F'0'
A(TEXT2) FORWARD POINTER TO THE NEXT LINE.
H'20' LENGTH OF THE FIRST LINE.
H'0' RESERVED.
CL16'MULTILINE DATA 1'

PUTBLOK PUTLINE MF=L LIST FORM OF THE PUTLINE MACRO
INSTRUCT! ON. *

*
TEXT2 DC A(0) END OF CHAIN INDICATOR.

*

*
*

*
*

DC
DC
DC

H'20' LENGTH OF THE SECOND LINE.
H'0' RESERVED.
CL16'MULTILINE DATA 2'

IKJCPPL DSECT FOR THE COMMAND PROCESSOR
PARAMETER LIST. THIS EXPANDS
WITH THE SYMBOLIC NAME CPPL.

IKJIOPL DSECT FOR THE INPUT/OUTPUT
PARAMETER LIST. THIS EXPANDS
WITH THE SYMBOLIC NAME IOPL.

END

Figure 103. Example Showing PUTL/NE Multifine Data Processing

Chapter 14. Using the TSO 1/0 Service Routines 185

GENERAL-USE PROGRAMMING INTERFACE

Passing the Message Lines to PUTLINE
You must build each of the message segments to be processed by the PUTLINE
service routine as if it were a line of single line data. The segment must be
preceded by a four-byte header field, where the first two bytes contain the length of
the segment, including the header, and the second two bytes contain zeros or an
offset value if you use the text insertion facility. See "Using the PUTLINE Text
Insertion Function" on page 188 for a discussion of offset values. This message line
format is required whether the message is a single level message or a multilevel
message.

Because of the additional operations performed on message lines, however, you
must provide the PUTLINE service routine with a description of the line or lines that
are to be processed. This is done with an output line descriptor (OLD).

There are two types of output line descriptors, depending on whether the messages
are single level or multilevel.

The OLD required for a single level message is a variable-length control block
which begins with a fullword value representing the number of segments in the
message, followed by fullword pointers to each of the segments.

The format of the OLD for multilevel messages varies from that required for single
level messages in only one respect. You must preface the OLD with a fullword
forward-chain pointer. This chain pointer points to another output line descriptor or
contains zero to indicate that it is the last OLD on the chain. Figure 104 shows the
format of the output line descriptor.

Figure 104. The Output Line Descriptor (OLD)

Number of Field Contents or Meaning
Bytes

4 none The address of the next OLD, or zero if this is the last one on the
chain. This field is present only if the message pointed to is a
multilevel message.

4 none The number of message segments pointed to by this OLD.

4 none The address of the first message segment.

4 none The address of the next message segment.

You must build the output line descriptor and pass its address to the PUTLINE
service routine as the OUTPUT operand address in either the list or the execute
form of the macro instruction. When the macro instruction expands, it places the
address of the output line descriptor into the second word of the PUTLINE parameter
block .

....._ ________ End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

186 MVS/ESA TSO Programming

Terminal
Monitor
Program ATTAi_H

I,...
I
I
I
I

Reg. 1

Single-Level Messages

Multi-Level Messages

Command
Processor

LINK_.. ,
I
I
I
I
I

PUTLINE
Service
Routine

Reg. 1 I

CPPL

I ;s
IOPL

OLD
Number

t Segment 1

t Segment 2

PTPB

Text

t Segment n ~~--~-----------~

FromPTPB

Segment 1

t Segment 2 Len th Offset Text
I
I

1 Segment n

~
00000000
Number

t Segment 1

t Segment 2

I
I

t Segment n

~
Figure 105. Control Block Structures for PUTLINE Messages

Chapter 14. Using the TSO 1/0 Service Routines 187

GENERAL-USE PROGRAMMING INTERFACE

PUTLINE Message Line Processing
The PUTLINE service routine allows you to specify message identifiers that precede
the text of the message. A message identifier must be a variable-length character
string, containing no leading or embedded blanks, must not exceed a maximum
length of 255 characters, and must be terminated by a blank.

Messages without message identifiers must begin with a blank. If the message
segment does not contain at least one blank, PUTLINE will return a code of 12,
which indicates invalid parameters, in register 15.

In addition to writing a message out to the output data set, the PUTLINE service
routine provides the following additional functions for message line processing
when the INFOR operand is specified:

• Text insertion
• Formatting only
• Second level informational chaining

Figure 106 shows the output message types for which these PUTLINE service
routine functions can be used.

Message Types
Functions Slngle Level Multllevel

Text Insertion x x

Formatting Only x

Second Level Informational Chaining x

Figure 106. PUTLINE Functions and Message Types

Using the PUTLINE Text Insertion Function: The text insertion function of the
PUTLINE service routine allows you to build or modify messages at the time you
write them to the output data set. With text insertion you can respond to different
output message requirements with one basic message (the primary segment). You
can insert text into this primary segment or add text to it, and thereby build an
output message to meet the current processing situation.

To use text insertion, pass your messages to the PUTLINE service routine as a
variable number of text segments; from 1 to 255 segments are permissible. Each
segment can contain from 0 to 255 characters, as long as the total number of
characters in all the segments does not exceed 256. You must precede each of
these text segments with a four-byte header in which the first two bytes contain the
length of the message, including the header, and the second two bytes contain an
offset value. The offset value in the primary segment must be zero. The offset in
any secondary segments can be from zero to the length of the primary segment's
text field. An offset of zero in a secondary segment implies that the segment is to
be placed before the primary segment. An offset that is equal to the length of the
primary segment's text field implies that the secondary segment is to be placed
after the primary segment. An offset of n, where n represents a value greater than
zero but less than the total length of the primary segment, implies that the segment
is to be inserted after the nth byte of the primary segment. PUTLINE places the
secondary segment after that character, completes the message, and writes it out.

188 MVS/ESA TSO Programming

If you specify an offset in a secondary segment, greater than the length of the
primary segment, PUTLINE cannot handle the request and returns an error code of
12, which indicates invalid parameters, in register 15. In addition, if the secondary
segments do not appear in the OLD with their offsets in ascending order, PUTLINE
returns an error code of 12 in register 15.

If you provide more than one secondary segment to be inserted into a primary
segment, the offset fields on each of the secondary segments must indicate the
position within the original primary segment at which you want them to appear.
PUTLINE determines the points of insertion by counting the characters of the
original primary segment only. As an example, if you provided one primary and two
secondary segments as shown:

2 bytes 2 bytes 28 bytes

32 o I PLEASE ENTER TO PROCESSING

s I 14 TEXT

13 I 17 CONTINUE

PUTLINE would place the first insert, TEXT, after the 13th character, and the second
insert, CONTINUE, after the 17th character of the text field of the primary segment.
After PUTLINE inserts the two text segments, the message would read:

PLEASE ENTER TEXT TO CONTINUE PROCESSING

The leading and trailing blanks are automatically stripped off before the message is
written to the output data set.

Figure 108 is an example of the code required to make use of the text insertion
feature of the PUTLINE service routine; it uses the text segments shown above.

Note that the operand INFOR, which indicates to the PUTLINE service routine that
the text segments are to be processed as informational messages, requires an
output line descriptor to point to the message segments. Only one output line
descriptor (ONEOLD) is required to point to the 3 message segments because the 3
segments are to be combined into one single level message.

Using the Format Only Function: You can also use the PUTLINE service routine to
format a message but not write it to the output data set. To do this, code the
FORMAT operand in the PUTLINE macro instruction and pass PUTLINE the same
message segment structure required for the text insertion function. The PUTLINE
service routine performs text insertion if requested and places the finished message
in subpool 1, which is not shared. It then places the address of the formatted line
into the third word of the PUTLINE parameter block. The storage occupied by the
formatted message belongs to your program and, if space is a consideration, must
be freed by it. The returned formatted line is in the variable-length record format;
that is, it is preceded by a four-byte header. You can use the first two bytes of this
header to determine the length of the returned message, and later, to free the real
storage occupied by the message with the R form of the FREE MAIN macro
instruction.

Chapter 14. Using the TSO 110 Service Routines 189

One difference between format only processing and text insertion processing is that
format only processing can be used only on single level messages. You cannot use
the format only feature to format multilevel messages. You can however, use the
second level informational chaining function of PUTLINE to format second level
messages and place them on an internal chain.

Building a Second Level Informational Chain: PUTLINE can accept two levels of
informational messages at each execution of the service routine. It formats the first
level message and writes it to the output data set. The second level message is
formatted and a copy of it is placed on an internal chain in shared subpool 78. This
internal chain, the second level informational chain, is maintained by the 110 service
routines for the duration of one command or subcommand processor. You can use
the PUTLINE service routine to purge this chain or to write it to the output data set in
its entirety.

To purge the chain without putting it out to the output data set, you must turn on the
high order bit in the first byte (ECTMSGF) of the third word of the environment
control table (ECT). The ECT is pointed to by the second word of the input/output
parameter list, and can be mapped by the IKJECT DSECT. The next time any
chaining or unchaining is requested with PUTLINE or PUTGET, the second level
informational chain will be eliminated.

To write the entire chain, use the PUTLINE macro instruction and place a zero
address where the output line address is normally required. This will cause the
PUTLINE service routine to write the chain to the output data set and eliminate the
internal chain.

The offset value for the primary message segment must always be zero, and when
placing second level messages on an internal chain, the offset value for the second
level message must also be zero. Also, do not place a message identifier on a
second level message.

Return Codes from PUTLINE
When the PUTLINE service routine returns control to the program that invoked it, it
provides one of the following return codes in general register 15:

Figure 107. Return Codes from the PUTLINE Service Routine

Return Code Meaning
Dec(Hex)

0(0) PUTLINE completed normally.

12(C) Invalid parameters were supplied to the PUTLINE service routine.

16(10) A conditional GETMAIN was issued by PUTLINE for output buffers
and there was not sufficient real storage to satisfy the request.

Note: See Chapter 18, "Analyzing Error Conditions with the GNRLFAIL/VSAMFAIL
Routine (IKJEFF19)" on page 235 for information on how to issue meaningful error
messages for PUTLINE error codes .

.__ ________ End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

190 MVS/ESA TSO Programming

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
*PROCESSOR PARAMETER LIST (CPPL).
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL.
USING CPPL,2 ADDRESSABILITY FOR THE CPPL.
L 3,CPPLUPT PLACE THE ADDRESS OF THE UPT

* INTO A REGISTER.
L 4,CPPLECT PLACE THE ADDRESS OF THE ECT

* INTO A REGISTER.
* ISSUE THE EXECUTE FORM OF THE PUTLINE MACRO INSTRUCTION. LET IT
* INITIALIZE THE IOPL.

*
*
*
*
EC BADS
IOPLADS
*
PUTBLK
*
*
ONEOLD

*

*

*

PUTLINE PARM=PUTBLK,UPT=(3),ECT=(4),ECB=ECBADS, X
OUTPUT=(ONEOLD,TERM,SINGLE,INFOR),MF=(E,IOPLADS)

PROCESSING
STORAGE DECLARATIONS

DC F'0'
DC 4F'0'

PUT LINE MF=L

DC F'3'
DC A (FIRSTSEG)

DC A(SECSEG)

DC A(THIRDSEG)

SPACE FOR THE EVENT CONTROL BLOCK
SPACE FOR THE INPUT/OUTPUT
PARAMETER LIST.
THE LIST FORM OF THE PUTLINE
MACRO INSTRUCTION. IT EXPANDS
INTO SPACE FOR A PTPB.
INDICATE THREE TEXT SEGMENTS.
ADDRESS OF THE FIRST TEXT
SEGMENT.
ADDRESS OF THE SECOND TEXT
SEGMENT.
ADDRESS OF THE THIRD TEXT
SEGMENT.

FIRSTSEG DC H'32' LENGTH OF THE FIRST SEGMENT
INCLUDING THE HEADER. *

DC
*

DC
*
SECSEG DC
*

DC
*
*

DC

H'0' OFFSET OF PRIME SEGMENT IS
ALWAYS ZERO.

CL28' PLEASE ENTER TO PROCESSING '
PRIMARY SEGMENT.

H'9' LENGTH OF SECOND SEGMENT
INCLUDING THE HEADER.

H'14' OFFSET INTO FIRST SEGMENT AFTER
WHICH SECOND SEGMENT IS TO BE
INSERTED.

CL5'TEXT ' TEXT OF THE SECOND SEGMENT
THIRDSEG DC H'13' LENGTH OF THIRD SEGMENT

INCLUDING THE HEADER. *

*
*

DC H'17' OFFSET INTO FIRST SEGMENT AFTER
WHICH THIRD SEGMENT IS TO BE
INSERTED.

DC CL9'CONTINUE ' TEXT OF THE THIRD SEGMENT
IKJCPPL CPPL DSECT - THIS EXPANDS WITH

* THE SYMBOLIC ADDRESS CPPL.
END

Figure 108. Example Showing PUTLINE Text Insertion

Chapter 14. Using the TSO 1/0 Service Routines 191

GENERAL-USE PROGRAMMING INTERFACE

Using PUTGET to Put a Message Out and Obtain a Line of Input in Response
Use the PUTGET macro instruction to write MODE messages to the output data set
and to obtain input data from the input stream. MODE messages indicate the
processing mode that TSO is in. An example of a mode message is the READY
message, which is written to the output data set by the terminal monitor program to
indicate that it expects to retrieve a command name from the input stream.

The input line returned by the PUTGET service routine can come from the data set
indicated by the SYSTSIN DD statement in the TSO user's JCL, or from an in-storage
list; PUTGET determines the source of input from the top element of the input stack.

PUTGET, like PUTLINE and GETLINE, has many parameters. The parameters are
passed to the PUTGET service routine according to the operands you code in the list
and the execute forms of the PUTGET macro instruction.

This topic describes:

• The list and execute forms of the PUTGET macro instruction
• Building the PUTGET parameter block
• Passing the message lines to PUTGET
• PUTGET processing
• Input line format - the input buffer
• Return codes from PUTGET

The List Form of the PUTGET Macro Instruction
The list form of the PUTGET macro instruction builds and initializes a PUTGET
parameter block (PGPB), according to the operands you specify in the PUTGET
macro instruction. The PUTGET parameter block indicates to the PUTGET service
routine which of the PUTGET functions you want performed.

In the list form of the PUTGET macro instruction, only the following is required:

I PUTGET MF=L

The output line address is not specifically required in the list form of the PUTGET
macro instruction, but must be coded in either the list or the execute form.

The other operand and its sublist are optional because you can supply them in the
execute form of the macro instruction, or if you want the default values, they are
supplied automatically by the expansion of the macro instruction.

The operands you specify in the list form of the PUTGET macro instruction set up
control information used by the PUTGET service routine. This control information is
passed to the PUTGET service routine in the PUTGET parameter block, a four-word
parameter block built and initialized by the list form of the PUTGET macro
instruction.

192 MVS/ESA TSO Programming

Figure 109 shows the list form of the PUTGET macro instruction; each of the
operands is explained following the figure.

[symbol] PUT GET [OUTPUT=(output address, SINGLE, MODE)]

,MF=L

Figure 109. The List Form of the PUTGET Macro Instruction

OUTPUT= output address
Specify the address of the output line descriptor or a zero. The output line
descriptor (OLD) describes the message to be put out, and contains the address
of the beginning (the one-word header) of the message or messages to be
written to the output data set. You have the option under MODE processing to
provide or not provide an output message. If you do not provide an output line,
code OUTPUT=O, and only the GET functions will take place.

SINGLE
The output message is a single level message.

MODE
The output line is a mode message.

MF=L
Indicates that this is the list form of the macro instruction.

The Execute Form of the PUTGET Macro Instruction
Use the execute form of the PUTGET macro instruction to do the following:

• Prepare a mode message for output.

• Return a line of input from the source indicated by the top element of the input
stack to the program that issued the PUTGET macro instruction.

You can use the execute form of the PUTGET macro instruction to build and
initialize the input/output parameter list required by the PUTGET service routine,
and to request PUTGET functions not already requested by the list form of the macro
instruction, or to change those functions previously requested in either a list form or
a previous execute form of the PUTGET macro instruction.

In the execute form of the PUTGET macro instruction, only the following is required:

I PUTGET MF=(E,{list address})
(1)

The PARM, UPT, ECT, and ECB operands are not required if you have built your
IOPL in your own code.

The output line address is not specifically required in the execute form of the
PUTGET macro instruction, but must be coded in either the list or the execute form.

The other operand and sublists are optional because you can supply them in the list
form of the macro instruction or in a previous execute form.

The operands you specify in the execute form of the PUTGET macro instruction set
up control information used by the PUTGET service routine. You can use the PARM,
UPT, ECT, and ECB operands of the PUTGET macro instruction to build, complete,

Chapter 14. Using the TSO 110 Service Routines 193

[symbol]

or modify an IOPL. The OUTPUT operand and its sublist operands initialize the
PUTGET parameter block. The PUTGET parameter block is referenced by the
PUTGET service routine to determine which functions you want PUTGET to perform.

Figure 110 shows the execute form of the PUTGET macro instruction; each of the
operands is explained following the figure.

PUT GET [PARM=parameter address][,UPT=upt address)

[,ECT=ect address][,ECB=ecb address]

[,OUTPUT=(output address, SINGLE, MODE)]

[,ENTRY= {entry address}]·MF=(E{list address})
(15) (1)

Figure 110. The Execute Form of the PUTGET Macro Instruction

PARM= parameter address
Specifies the address of the four-word PUTGET parameter block (PGPB). This
address is placed into the input/output parameter list (IOPL). It can be the
address of a list form of the PUTGET macro instruction. The address is any
address valid in an RX instruction, or you can put it in one of the general
registers 2-12, and use that register number, enclosed in parentheses, as the
parameter address.

UPT = upt address
Specifies the address of the user profile table (UPT). This address is placed into
the IOPL when the execute form of the PUTGET macro instruction expands. You
can obtain this address from the command processor parameter list (CPPL)
pointed to by register 1 when the command processor is attached by the
terminal monitor program. The address can be used as received in the CPPL or
you can put it in one of the general registers 2-12, and use that register number,
enclosed in parentheses, as the UPT address.

ECT = ect address
Specifies the address of the environment control table (ECT). This address is
placed into the IOPL when the execute form of the PUTGET macro instruction
expands. You can obtain this address from the command processor parameter
list (CPPL) pointed to by register 1 when the command processor is attached by
the terminal monitor program. The address can be used as received in the
CPPL or you can put it in one of the general registers 2-12, and use that register
number, enclosed in parentheses, as the ECT address.

ECB = ecb address
Specifies the address of the command processor event control block (ECB).
This address is placed into the IOPL by the execute form of the PUTGET macro
instruction when it expands.

You must provide a one-word event control block and pass its address to the
PUTGET service routine by placing the address into the IOPL. If you code the
address of the ECB in the execute form of the PUTGET macro instruction, the
macro instruction places the address into the IOPL for you. The address can be
any address valid in an RX instruction, or you can put it in one of the general
registers 2-12, and use that register number, enclosed in parentheses, as the
ECB address.

194 MVS/ESA TSO Programming

OUTPUT= output address
Specifies the address of the output line descriptor or a zero. The output line
descriptor (OLD) describes the message to be issued, and contains the address
of the beginning (the one-word header) of the message or messages to be
written. You have the option under MODE processing to provide or not provide
an output message. If you do not provide an output line, code OUTPUT=O, and
only the GET function will take place.

SINGLE
The output message is a single level message.

MODE
The output line is a mode message.

ENTRY= entry point address
(15)

Specifies the entry point of the PUTGET service routine. If ENTRY is omitted,
the PUTGET macro expansion generates a LINK macro instruction to invoke the
PUTGET service routine. The address can be any address valid in an RX
instruction or (15) if you load the entry point address into general register 15.

MF=E
Indicates that this is the execute form of the PUTGET macro instruction.

llstaddr
(1) The address of the four-word input/output parameter list (IOPL). This can be a

completed IOPL that you have built, or it can be 4 words of declared storage that
will be filled from the PARM, UPT, ECT, and ECB operands of this execute form
of the PUTGET macro instruction. The address must be any address valid in an
RX instruction or (1) if you have loaded the parameter list address into general
register 1.

Building the PUTGET Parameter Block (PGPB)
When the list form of the PUTGET macro instruction expands, it builds a four-word
PUTGET parameter block (PGPB). This PGPB combines the functions of the
PUTLINE and the GETLINE parameter blocks and contains information used by the
PUT and the GET functions of the PUTGET service routine. The list form of the
PUTGET macro instruction initializes this PGPB according to the operands you have
coded in the macro instruction. This initialized block, which you can later modify
with the execute form of the PUTGET macro instruction, indicates to the PUTGET
service routine the functions you want performed. It also contains a pointer to the
output line descriptor that describes the output message, and it provides a field into
which the PUTGET service routine places the address of the input line returned from
the input source.

You must pass the address of the PGPB to the execute form of the PUTGET macro
instruction. Since the list form of the macro instruction expands into a PGPB, all you
need do is pass the address of the list form of the macro instruction to the execute
form as the PARM value.

Chapter 14. Using the TSO 110 Service Routines 195

The PUTGET parameter block is defined by the IKJPGPB DSECT, which is provided
in SYS1 .MACLIB. Figure 111 describes the contents of the PUTGET parameter
block.

Figure 111. The PUTGET Parameter Block

Number of Fie Id Contents or Meaning
Bytes

2 PUT control flags. These bits describe the output line to the
PUTGET service routine.

Byte 1
.. 0 Always zero for PUTGET.
... 1 The output line is a single level message .
.... 0 ... Must be zero for PUTGET .
xx ... xxx Reserved.

Byte 2
1 The output line is a MODE message.
. xxxxxxx Reserved .

2 Reserved.

4 The address of the output line descriptor.

2 GET control flags.

Byte 1
. 00 Always zero for PUTGET .
x .. xxxxx Reserved bits.

Byte 2
xxxx xxxx Reserved.

2 Reserved.

4 PGPBIBUF The address of the input buffer. The PUTGET service routine fills
this field with the address of the input buffer in which the input line
has been placed.

Passing the Message Lines to PUTGET
You must build each of the message segments to be processed by the PUTGET
service routine as if it were a line of single line data. The segment must be
preceded by a four-byte header field, where the first two bytes contain the length of
the segment including the header, and the second two bytes contain zeros or an
offset value if you use the text insertion facility provided by PUTGET.

You must provide the PUTGET service routine with a description of the line or lines
that are to be processed. This is done with an output line descriptor (OLD).

196 IVIVS/ESA TSO Programming

The OLD required for a single level message is a variable length control block
which begins with a fullword value representing the number of segments in the
message, followed by fullword pointers to each of the segments. Figure 112 shows
the format of the output line descriptor.

Figure 112. The Output Line Descriptor (OLD)

Number of Field Contents or Meaning
Byles

4 This field must contain a value of zero.

4 The number of message segments pointed to by this OLD.

4 The address of the first message segment.

4 The address of the next message segment.

4 The address of the nth message segment.

You must build the output line descriptor and pass its address to the PUTLINE
service routine as the OUTPUT operand address in either the list or the execute
form of the macro instruction. When the macro instruction expands, it places this
OLD address into the second word of the PUTLINE parameter block.

Figure 113 shows the control block structures possible when passing an output
message to the PUTGET service routine.

Message segments for PUTGET must follow the same rules as those for PUTLINE
informational processing. (See "PUTLINE Message Line Processing" on page 188.)
Note that if a PUTGET message segment does not contain at least one blank,
PUTGET sets a return code of 24, indicating invalid parameters, in register 15.

~-------- End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

Chapter 14. Using the TSO 110 Service Routines 197

LINK..llo..

l ...
I
I
I
I

~
~

PUTGET
Service
Routine

PGPB

OLD

Number
t Segment l

t Segment 2

Single-Level Messages

Length Offset Message Segment

00000000

Figure 113. Control Block Structures for PUTGET Output Messages

PUTGET Processing
Text insertion is available to all output messages processed by the PUTGET service
routine. For a detailed description of these functions see "PUTLINE Message Line
Processing" on page 188.

Mode Message Processing: A mode message is a message written to the output
data set when a command or a subcommand is anticipated.

You are not required to provide an output line to the PUTGET service routine. If you
provide an output line address then PUT processing will take place. However, if you
do not provide an output line (OUTPUT=O) then only the GET function of the
PUTGET service routine takes place.

198 MVS/ESA TSO Programming

GENERAL-USE PROGRAMMING INTERFACE

Input Line Format - The Input Buffer
The fourth word of the PUTGET parameter block contains zeros until the PUTGET
service routine returns a line of input. The service routine places the requested
input line into an input buffer beginning on a doubleword boundary located in
subpool 1. It then places the address of this input buffer into the fourth word of the
PGPB. The input buffer belongs to the program that issued the PUTGET macro
instruction. The buffer or buffers returned by PUTGET are automatically freed when
your code relinquishes control. You can free the input buffer with the FREEMAIN
macro instruction after you have processed or copied the input line.

Regardless of the source of input, the input line returned by t'1e PUTGET service
routine is in a standard format. All input lines are in the variable length record
format with a fullword header followed by the text returned by PUTGET. Figure 114
shows the format of the input buffer returned by the PUTGET service routine.

~~L-e-ng_t_h~~~~O-f-fs_e_t~~~~~~~~T-e-xt~~~~~----'(~
2 Bytes 2 Bytes

Length

Figure 114. Format of the PUTGET Input Buffer

The two-byte length field contains the length of the returned input line including the
header (4 bytes). You can use this length field to determine the length of the input
line to be processed, and later, to free the input buffer with the R form of the
FREE MAIN macro instruction. The two-byte offset field is always set to zero on
return from the PUTGET service routine.

Return Codes from PUTGET
When the PUTGET service routine returns control to the program that invoked it, it
provides one of the following return codes in general register 15.

Return Code Meaning
Dec(Hex)

4(4) PUTGET completed normally.

12(C) A line could not be obtained after a MODE request.

24(18) Invalid parameters were supplied to the PUTGET service routine.

28(1C) A conditional GETMAIN was issued by PUTGET for output buffers and
there was not sufficient space to satisfy the request.

Figure 115. Return Codes from the PUTGET Service Routine

,__ ________ End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

Chapter 14. Using the TSO 110 Service Routines 199

200 MVS/ESA TSO Programming

Chapter 15. Using the TSO Message Handling Routine
(IKJEFF02)

This chapter describes how to use the TSO message handling routine (IKJEFF02) in
a command processor to issue messages.

GENERAL-USE PROGRAMMING INTERFACE

Functions of the TSO Message Issuer Routine {IKJEFF02)
The TSO message issuer routine issues a message using PUTLINE, PUTGET,
write-to-operator (WTO), or write-to-programmer (WTP). You can indicate to
IKJEFF02 which of these services should be used to issue the message, or you can
allow the default, PUTGET, to be used. For mode messages, you should indicate to
IKJEFF02 that PUTGET should be used to issue the message; for prompting and
informational messages, PUTLINE should be used.

You can invoke IKJEFF02 just to issue the message, both to issue the message and
return the requested message to the caller in the caller's buffers, or just to return
the message to the caller. This process of returning the message is referred to as
extracting the message.

The TSO message issuer routine simplifies the issuing of messages with inserts
because hexadecimal inserts can be converted to printable characters and the same
parameter list can be used to issue any message. It also makes it more convenient
to place all messages for a command in a single CSECT or assembly module, which
is important when message texts must be modified. Adding or updating a message
is simpler when IKJEFF02 is used, rather than PUTLINE or PUTGET.

Passing Control to the TSO Message Issuer Routine
Your command processor can invoke the TSO message issuer routine by using
either the CALLTSSR or LINK macro instructions, specifying IKJEFF02 as the entry
point name. However, you must first create the input parameter list and place its
address into register 1. The input parameter list is described in "The Input
Parameter List" on page 202.

IKJEFF02 must receive control in 24-bit addressing mode. If your program uses the
CALLTSSR macro instruction to invoke IKJEFF02, and IKJEFF02 resides in the link
pack area, your program must issue the CALL TSSR macro instruction in 24-bit
addressing mode. However, if IKJEFF02 does not reside in the link pack area, your
program can issue the CALLTSSR macro instruction in either 24- or 31- bit
addressing mode.

All input passed to IKJEFF02 must reside below 16 megabytes in virtual storage.

©Copyright IBM Corp. 1988, 1991 201

The Input Parameter List
Use the IKJEFFMT macro to map the input parameter list for IKJEFF02. This
parameter list identifies the message which is to be issued, describes inserts, if any,
for the message, and indicates to IKJEFF02 whether to issue the message using
PUTLINE, PUTGET, WTO or WTP. It also contains the address of a CSECT that
contains the text of the message.

The IKJEFFMT macro is provided in SYS1.MACLIB. Use the MTDSECT=YES option
to map the MTDSECTD DSECT, instead of obtaining storage. MTDSECT=NO is the
default.

The Input Parameter List for IKJEFF02
The IKJEFFMT macro generates the input parameter list described below.

Figure 116 (Page 1 of 3). Standard Format of Input Parameter List

Offset Field Name Contents
Dec{Hex)

0(0) MTPLPTR Address of message description section of this
parameter list. {The message description section
begins with the MTCSECTP entry.)

4(4) MTCPPLP Address of TMP's CPPL control block (required for
PUTLINE or PUTGET).

8(8) MTECBP Address of optional communications ECB for PUTLINE
or PUTGET.

12(C) MTRESV1 Reserved.

12(C) MTHIGH High-order bit of reserved field turned on for standard
linkage.

16(10) MTCSECTP Address of an assembly module or a CSECT containing
IKJTSMSG macros that build message identifications
and associated texts.

20(14) MTSW1 One byte field of switches.

MTNOIDSW 1 Message is printed; no messageid is
needed.

MTPUTLSW .1 Message issued as PUTLINE. (Message
inserts for a second level message must be
listed before inserts for a first level
message.) If this bit is zero, message
issued as a PUTGET, with second level
message required and inserts for second
level messages necessarily following
inserts for first level messages.

MTWTOSW .. 1 Message issued as a WTO. Default is
PUTGET.

MTHEXSW ... 1 Number translations to printable
hexadecimal rather than default of
printable decimal.

MTKEY1SW ... 1 ... Modeset from key 1 to key 0 before issuing
a PUTLINE or PUTGET message. Default is
no modeset.

202 MVS/ESA TSO Programming

Figure 116 (Page 2 of 3). Standard Format of Input Parameter List

Offset Field Name Contents
Dec(Hex)

MTJOBISW 1 .. Blanks are compressed from inserts in tl:le
format of JOBNAME (JOBID). The
blanks between (1) the JOBNAME and
opening parenthesis and (2) the JOBID and
closing parenthesis are removed. The
maximum value for the message and insert
lengths is 252 characters. Inserts and
messages greater than 252 characters are
truncated.

MTWTPSW 1. Message issued as WTO with
write-to-programmer routing code. Inserts
are handled the same as for PUTLINE.
Default is PUTGET.

MTNHEXSW 1 Number translations to printable decimal,
even if larger than X'FFFF'. Default is
printable hex above X'FFFF'.

21(15) MTREPLYP Address of reply from PUTGET. The reply text is
preceded by a two-byte field containing length of text
plus header field.

24(18) MTSW2 One byte field of switches.

MT20LDSW 1 Field MTOLDPTR points to second level
message already in PUTLINE/PUTGET
(Output Line Descriptor) format. Default is
IKJTSMSG format.

MTDOMSW .1 Delete WTP or WTO messages from the
display console, using the delete operator
message macro.

MTNOXQSW .. 1 Override default of X" around inserts
converted to printable hex.

MTNPLMSW ... 1 Override default of error message if
PUTLINE fails.

MTPGMSW 1 ... Request an error message if PUTGET fails .

MTEXTRCN 1 .. Request an extract and a message .

25(19) MTRESV2 Reserved.

28(1C) MTOLDPTR Pointer to OLD for second level message, required if
MT20LDSW bit is on.

32(20) MTEXTRLN Length of extract buffer.

33(21) MTEXTRBF Pointer to extract buffer supplied by caller.

36(24) MTEXTRL2 Length of extract buffer for second level message.

37(25) MTEXTRB2 Pointer to extract buffer supplied by caller for second
level message.

40(28) MTMSGID Message's identifier in message CSECT, padded with
blanks on the right.

44(2C) MTINSRTS Insert information for message. The following two
fields are supplied for each insert.

44(2C) MTLEN Length of an insert for the message.

Chapter 15. Using the TSO Message Handling Routine (IKJEFF02) 203

Figure 116 (Page 3 of 3). Standard Format of Input Parameter List

Offset Field Name Contents
Dec{ Hex)

44(2C) MTHIGHL High-order bit is on if necessary to translate the first
1-4 bytes of the insert from hexadecimal to character
(printable hexadecimal or decimal depending on
whether MTHEXSW is set to ON or OFF).

44(2C) MTINSRT Refers to an insert entry.

45(20) MTADDR Address of an insert for the message.

Using IKJTSMSG to Describe Message Text and Insert Locations
Use the IKJTSMSG macro to generate assembler language DC instructions
describing the text and locations of inserts for a message which is to be issued by
the TSO message issuer routine (IKJEFF02). All of the messages which a command
processor issues should be grouped into an assembly module consisting entirely of
IKJTSMSG macros preceded by a CSECT statement and followed by an END
statement. The last IKJTSMSG macro in the CSECT must be a dummy entry with no
operands.

To issue the IKJTSMSG macro instruction, your program must reside below 16
megabytes in virtual storage.

Figure 117 shows the syntax of the IKJTSMSG macro instruction; each of the
operands is explained following the figure.

I [symbol] I IKJTSMSG ('msgid msgtext'),idl[,id2]

Figure 117. The IKJTSMSG Macro Instruction

msgld
The identifier which will be used when the message is issued.

msgtext

id1

The text of the message. If an insert is necessary within the text of a message
or at the end of a message, use the following rules:

• Indicate the location of an insert in the middle of a message by a',,'.

• If the insert is to be located at the end of a message, indicate it by a ',
following the message text.

The internal identifier of the message. It can be from one to four characters and
cannot contain a blank, comma, parentheses, or an apostrophe. Pass this id to
IKJEFF02 in the MTMSGID field of the parameter list. For a PUTGET message
with more than one level, pass the id1 field of the first level message. For a
PUTLINE, WTO or write-to-programmer message with two levels, pass the id1
field of the second level message.

204 MVS/ESA TSO Programming

id2
The internal identifier of a message to be chained to this message. For a
PUTGET message, the first level message would have an id2 field identifying the
second level, and the second level message could have an id2 field to identify
another second level, and so on. For a PUTLINE, WTO, or write-to-programmer
message, the second level message would have an id2 field identifying the first
level.

Return Codes from the TSO Message Issuer Routine
When the TSO message issuer routine returns control to its caller, register 15
contains one of the following return codes:

Figure 118. Return Codes from the TSO Message Issuer Routine

Return Code Meaning
Dec{ Hex)

0(0) The message was issued successfully.

76(4C) There was an error in the parameter list. A diagnostic message is
also issued.

Other This is either a PUTLINE or PUTGET return code. See "Return Codes
from PUTLINE" on page 190 or "Return Codes from PUTGET" on
page 199 .

.__ ________ End of GENERAL-USE PROGRAMMING INTERFACE --------~

An Example Using IKJTSMSG
Figure 119 on page 206 is an example that shows how a message module can be
created for a SUBMIT command. The IKJTSMSG macro is used to describe the
following:

• Message IKJ562501 is a single level PUTLINE message with one insert.

• Message IKJ562511 is a PUTLINE message with two levels.

• Message IKJ56252A is a PUTGET message with two levels.

• Message IKJ562531 is a PUTLINE message with an insert at the end of the text.

• The IKJTSMSG macro with no operands indicates the end of the message
CSE CT.

Chapter 15. Using the TSO Message Handling Routine (IKJEFF02) 205

*
* COMMENTS CAN PRECEDE OR FOLLOW THE MACROS TO LIST MODULES ISSUING
* THE MESSAGES AND GIVE THE MESSAGE DESCRIPTIONS.
*
IKJEFF03 CSECT

*
IKJTSMSG ('IKJ56250I JOB',,'SUBMITTED'),00

IKJTSMSG ('IKJ56251I ',,'COMMAND NOT AUTHORIZED+'),R01
IKJTSMSG ('IKJ56251I YOUR INSTALLATION MUST AUTHORIZE USE OF TX

HIS COMMAND'),01,R01
* ** SECOND LEVEL POINTS TO FIRST LEVEL FOR PUTLINE **
*

IKJTSMSG ('IKJ56252A ENTER JOBNAME CHARACTER+ -'),02,S02
IKJTSMSG ('IKJ56252A JOBNAME IS CREATED FROM USERID PLUS', X

' ONE ALPHANUMERIC OR NATIONAL CHARACTER'),S02
* ** FIRST LEVEL POINTS TO SECOND LEVEL FOR PUTGET **

IKJTSMSG ('IKJ56253I INVALID CHARACTER -',),03
* ** THE COMMA AFTER THE APOSTROPHE INDICATES A TRAILING INSERT
*

IKJTSMSG
END IKJEFF03

Figure 119. An Example Using the IKJTSMSG Macro Instruction

206 MVS/ESA TSO Programming

Chapter 16. Using the Dynamic Allocation Interface Routine
{DAIR)

This chapter describes how to use the dynamic allocation interface routine (DAIR) in
a command processor to allocate, free, concatenate and deconcatenate data sets
during program execution.

Functions of the Dynamic Allocation Interface Routine
Dynamic allocation routines allocate, free, concatenate, and deconcatenate data
sets dynamically, that is, during problem program execution. In the TSO
environment, dynamic allocation permits the terminal monitor program, command
processors, and other problem programs to allocate and free data sets during
execution of the job step.

Programs that execute in the TSO environment can access dynamic allocation
directly, using SVC 99, or through the dynamic allocation interface routine (DAIR).
Though its use is not recommended because of reduced functions and additional
system overhead, DAIR is documented in this book to provide compatibility for
existing programs that use it. DAIR can be used to obtain information about a data
set and, if necessary, invoke dynamic a/location routines to perform the requested
function.

You can use DAIR to perform the following functions:

• Obtain the current status of a data set
• Allocate a data set
• Free a data set
• Concatenate data sets
• Deconcatenate data sets
• Build a list of attributes (DCB parameters) to be assigned to data sets
• Delete a list of attributes.

For a complete discussion of dynamic allocation, see SPL: Application
Development Guide.

© Copyright IBM Corp. 1988, 1991 207

GENERAL-USE PROGRAMMING INTERFACE

Passing Control to DAIR
Your program can invoke DAIR by using the CALL TSSR macro instruction,
specifying IKJDAIR as the entry point name. However, you must first create the
DAIR parameter list (DAPL) and place its address into register 1. The DAPL is
described in "The DAIR Parameter List (DAPL)."

The DAIR service routine can be invoked in either 24- or 31-bit addressing mode.
When invoked in 31-bit addressing mode, DAIR can be passed input above 16
megabytes in virtual storage.

The DAIR Parameter List (DAPL)
At entry to DAIR, register 1 must point to a DAIR parameter list that you have built.
The addresses of the user profile table, environment control table, and protected
step control block can be obtained from the command processor parameter list
(CPPL) that the TMP passes to your command processor. Additional information on
the address and creation of the user profile table, environment control table, and
protected step control block is shown in Figure 13 on page 51.

You can use the IKJDAPL DSECT, which is provided in SYS1.MACLIB to map the
fields in the DAPL. Figure 120 shows the format of the DAPL.

Figure 120. The DAIR Parameter List (DAPL)

Field Label Byte Byte Contents or Meaning
Offset Length

DAPLUPT 0(0) 4 The address of the user profile table.

DAPLECT 4(4) 4 The address of the environment control
table.

DAPLECB 8(8) 4 The address of the calling program's
event control block. The ECB is one
word of real storage declared and
initialized to zero by the calling routine.

DAPLPSCB 12(C) 4 The address of the protected step control
block.

DAPLDAPB 16(10) 4 The address of the DAIR parameter
block, created by the calling routine.

208 MVS/ESA TSO Programming

The DAIR Parameter Block (DAPB)
The fifth word of the DAIR parameter list must contain a pointer to a DAIR parameter
block built by the calling routine.

It is a variable-size parameter block that contains, in the first two bytes, an entry
code that defines the operation requested by the calling routine. The remaining
bytes contain other information required by DAIR to perform the requested function.
You must initialize the DAIR parameter block before calling DAIR. Unused fields
should be set to zeros, or to blanks for character items. Figure 121 lists the DAIR
entry codes and the functions requested by those codes.

Figure 121. DAIR Entry Codes and Their Functions

Entry Code Function Performed by DAIR

X'OO' Test if a given DSNAME or DDNAME is currently allocated to the caller.

X'04' Test if a given DSNAME is currently allocated to the caller, or is in
system catalog.

X'08' Allocate a data set by DSNAME.

X'OC' Concatenate data sets by DDNAME.

X'10' Deconcatenate data sets by DDNAME.

X'14' Search the system catalog for all qualifiers for a DSNAME. (The
DSNAME alone represents an unqualified index entry.)

X'18' Free a data set.

X'24' Allocate a data set by DDNAME or DSNAME.

X'28' Perform a list of operations.

X'2C' Mark data sets as not in use.

X'30' Allocate a SYSOUT data set.

X'34' Associate DCB parameter with a specified name for use with
subsequent allocations.

The DAIR parameter blocks have the formats shown in the following tables. The
formats of the blocks depend upon the function requested by the calling routine.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 209

Determining if DDNAME or DSNAME is Allocated (Entry Code X'OO')
Build the DAIR parameter block shown in Figure 122 to request that DAIR determine
whether or not the specified DSNAME or DDNAME is allocated. Use the IKJDAPOO
mapping macro, which is provided in SYS1 .MACLIB, to map this DAIR parameter
block.

Figure 122. DAIR Parameter Block for Entry Code'OO'

Number of Fie Id Contents or Meaning
Bytes

2 DAOOCD Entry code X'OOOO'

2 DAOOFLG A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

Byte 1
0000 Reserved. Set to zero .
.... 1 ... DSNAME or DDNAME is permanently allocated.
.... . 1 .. DDNAME is a DYNAM .
.... .. 1. The DSNAME is currently allocated .
.... ... 1 The DDNAME is currently allocated .

Byte2
0000 0000 Reserved. Set to zero.

4 DAOOPDSN Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46 byte field with the following format:
The first two bytes contain the length, in bytes of the DSNAME; the
next 44 bytes contain the DSNAME, left justified, and padded to the
right with blanks.

8 DAOODDN Contains the DDNAME for the requested data set. If a DSNAME is
present, the DAIR service routine ignores the contents of this field.

1 DAOOCTL
0000 0000 Reserved. Set to zero.

2 Reserved bytes; set these bytes to zero.

1 DAOODSO A flag field. These flags describe the organization of the data.
They are returned to the calling routine by the DAIR service
routine.

1 Indexed sequential organization
.1 Physical sequential organization
.. 1 Direct organization
... 1 BTAM or QTAM line group
.... 1 ... QTAM direct access message queue
..... 1 .. QTAM problem program message queue
...... 1. Partitioned organization
....... 1 Unmovable

After DAIR searches the data set entry for the fully qualified data set name, register
15 contains one of the following DAIR return codes:

0, 4, or 52

See "Return Codes from DAIR" on page 229 for return code meanings.

210 MVS/ESA TSO Programming

Determining if DSNAME is Allocated or is in the System Catalog (Entry Code X'04')
Build the DAIR parameter block shown in Figure 123 to request that DAIR determine
whether or not the specified DSNAME is allocated. DAIR also searches the system
catalog to find an entry for the DSNAME. Use the IKJDAP04 mapping macro, which
is provided in SYS1 .MACLIB, to map this DAIR parameter block.

Figure 123. DAIR Parameter Block for Entry Code X'04'

Number of Field Contents or Meaning
Bytes

2 DA04CD Entry code X'0004'

2 DA04FLG A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

Byte 1
0000 0 .. 0 Reserved bits. Set to zero.
.... . 1 .. DAIR found the DSNAME in the catalog .
.... .. 1. The DSNAME is currently allocated .

Byte 2
0000 0000 Reserved. Set to zero.

2 Reserved. Set to zero.

2 DA04CTRC These two bytes will contain an error code from the catalog
management routines if an error was encountered by catalog
management.

4 DA04PDSN Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46-byte field with the following format:
The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified, and padded to the
right with blanks.

1 DA04CTL
0000 0000 Reserved. Set to zero.

2 Reserved bytes; set these bytes to zero.

1 DA04DSO A flag field. These flags are set by the DAIR service routine; they
describe the organization of the data set to the calling routine.
These flags are returned only if the data set is currently allocated.

1 Indexed sequential organization
.1 Physical sequential organization
.. 1 Direct organization
.... 1 BTAM or QTAM line group
.... 1 ... QT AM direct access message queue
..... 1 .. QTAM problem program message queue
...... 1. Partitioned organization
....... 1 Unmovable

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0, 4, 8, or 52

See "Return Codes from DAIR" on page 229 for return code meanings.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 211

I

Allocating a Data Set by DSNAME (Entry Code X'08')
Build the DAIR parameter block shown in Figure 124 to request that DAIR allocate a
data set. Use the IKJDAP08 mapping macro, which is provided in SYS1.MACLIB, to
map this DAIR parameter block. The exact action taken by DAIR depends upon the
presence of the optional fields and the setting of bits in the control byte.

If the data set is new and you specify DSNAME, (NEW, CATLG) the data set is
cataloged upon successful allocation. This is the only time a data set will be
cataloged at allocation time. If the catalog attempt is unsuccessful, the data set is
freed. If the proper indices are not present, the indices are built.

To allocate a utility data set use DAIR code X'08' and use a DSNAME of the form
&name. If the &name is already allocated, that data set is used. If the &name is not
found, a new data set is allocated.

To supply DCB information, provide the name of an attribute list that has been
defined previously by a X'34' entry into DAIR.

When setting disposition in a parameter list, only one bit should be on.

For partitioned data sets, specifying the data set name and the member name for
DAIR entry code X'08' causes the data set to be allocated, but no check is done to
see if the member exists. To verify that the member really exists:

1. Allocate the data set with the member name using DAIR entry code X'08'.

2. Open the data set with DSORG =PO, MACRF = R.

3. Issue BLDL for the member. (The BLDL return code will indicate whether the
member is there or not.)

4. Close the data set.

5. If BLDL indicates that the member does not exist, unallocate the data set using
ddname and DAIR entry code X'18'.

212 MVS/ESA TSO Programming

The DAIR parameter block required for entry code X'08' has the format shown in
Figure 124.

Figure 124 (Page 1 of 3). DAIR Parameter Block for Entry Code X'OB'

Number of
Bytes

2

2

2

2

4

8

8

8

Field

DAOBCD

DAOBFLG

Byte 1
L

. 000 0000

Byte 2

DAOBDARC

DAOBCTRC

DAOBPDSN

DAOBDDN

DAOBUNIT

DAOBSER

Contents or Meaning

Entry code X'0008'

A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

The data set is allocated but a secondary error occurred. Register
15 contains an error code .
Reserved bits. Set to zero.

Reserved. Set to zero.

This field contains the error code, if any, returned from the dynamic
allocation routines. (See "Return Codes from Dynamic Allocation"
on page 230.)

This field contains the error code, if any, returned from catalog
management routines. (See "Return Codes from DAIR" on
page 229.)

Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46 byte field with the following format:
The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified and padded to the
right with blanks. If this field (DAOBPDSN) is zero, the system
generates a data set name unless bit 5 in DAOBCTL is on, in which
case a DUMMY data set is allocated. The system also generates a
name if the DAOSPDSN field points to a DSNAME buffer which has a
length of 44, is initialized to blanks, and bit 5 in DAOBCTL is off.

This field contains the DDNAME for the data set. If a specific
DDNAME is not required, fill this field with eight blanks; DAIR will
place in this field the DDNAME to which the data set is allocated.

This is an eight-byte field containing an esoteric group name, a
generic group name, or a specific device address (in EBCDIC). If
the unit information is less than eight characters, it must be padded
lo the right with blanks. If no information is to be provided, the field
must be blank. In this case, DAIR will obtain information from the
protected step control block. If there is no unit information in the
PSCB, then a default of all direct access devices is used. The
specified unit information will be ignored if volume information is
obtained from the catalog, unless the unit specification is a subset
of that obtained from the catalog. In this case the specified unit
information will override the returned information.

Serial number desired. Only the first six bytes are significant. If
the serial number is less than six bytes, it must be padded to the
right with blanks. If the serial number is omitted, the entire field
must contain blanks. In this case the following is done: if the data
set is a new data set, the system determines the volume to be used
for the data set based on the unit information. If the data set
already exists, volume and unit information are obtained from the
catalog. If the information is not found in the catalog, the allocation
request is denied.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 213

Figure 124 (Page 2 of 3). DAIR Parameter Block for Entry Code X'OB'

Number of
Bytes

4

4

4

4

8

8

214 MVS/ESA TSO Programming

Field

DA08BLK

DA08PQTY

DA08SQTY

DA08DQTY

DA08MNM

DA08PSWD

DA08DSP1

0000
.... 1 .. .
..... 1 ..
...... 1.
....... 1

DA08DPS2

0000
.... 1 .. .
.... . 1 ..
...... 1.
....... 1

DA08DPS3

0000
.... 1 .. .
..... 1 ..
...... 1.
....... 1

Contents or Meaning

This is a four-byte field used as follows: if the data set is a new
data set and bit O in DA08CTL is off and bit 1 in DA08CTL is on, this
field is used with DA08PQTY to determine the amount of direct
access space to be allocated for the data set. If bit 6 of DA08CTL is
off, the field is also used as DCB blocksize specification. The value
for blocksize must be placed in the low-order two bytes, and the
high-order bytes must be zero.

Primary space quantity desired. The high-order byte must be set to
zero and the low-order three bytes should contain the space
quantity required. If the quantity is omitted, the entire field must be
set to zero. In the case of new direct access data sets, primary and
secondary space and type of space are defaulted. Directory
quantity is used if specified in DA08DQTY.

Secondary space quantity desired. The high-order byte must be
set to zero; the low-order three bytes should contain the secondary
space quantity required. If the quantity is omitted, the entire field
must be set to zero.

Directory quantity required. The high-order byte must be set to
zero; the low-order three bytes contain the number of directory
blocks desired. If the quantity is omitted, the entire field must be
set to zero.

Contains a member name of a partitioned data set. If the name has
less than eight characters, pad it to the right with blanks. If the
name is omitted, the entire field must contain blanks.

Contains the password for the data set. If the password has less
than eight characters, pad it to the right with blanks. If the
password is omitted, the entire field must contain blanks.

Flag byte. Set the following bits to indicate the status of the data
set:

Reserved. Set these bits to zero.
SHR
NEW
MOD
OLD
If this byte is zero, OLD is assumed. NEW or MOD is required if
DSNAME is omitted.

Flag byte. Set the following bits to indicate the normal disposition
of the data set:

Reserved bits. Set them to zero.
KEEP
DELETE
CATLG
UNCATLG
If this byte is zero, it is defaulted as follows: if DA08DSP1 is NEW,
DELETE is used; otherwise, KEEP is used.

Flag byte. Set the following bits to indicate the abnormal
disposition of the data set:

Reserved bits. Set them to zero.
KEEP
DELETE
CATLG
UNCATLG
If this byte is zero, DA08DPS2 will be used.

Figure 124 (Page 3 of 3). DAIR Parameter Block for Entry Code X'OB'

Number of Field Contents or Meaning
Bytes

1 DA08CTL Flag byte. These flags indicate to the DAIR service routine what
operations are to be performed:

xx Indicate the type of units desired for the space parameters, as
follows:

01.. Units are in average block length.
10 .. """" Units are in tracks (TRKS).
11 Units are in cylinders (CYLS).
.. 0 Reserved bit; set to zero .
... 1 RLSE is desired .
.... 1 ... The data set is to be permanently allocated; it is not to be freed

until specifically requested.
.... . 1 .. A DUMMY data set is desired .
.... .. 1. Attribute list name supplied .
.... ... 0 Reserved bit; set to zero .

3 Reserved bytes; set them to zero.

1 DA08DSO A flag field. These flags are set by the DAIR service routine; they
describe the organization of the data set to the calling routine.

1 Indexed sequential organization
.1 Physical sequential organization
.. 1 Direct organization
... 1 BTAM or QTAM line group
.... 1 ... QTAM direct access message queue
..... 1 .. QTAM problem program message queue
...... 1. Partitioned organization
....... 1 Unmovable

8 DA08ALN Attribute list name, or a DD name from which DCB attributes should
be copied (as in a JCL DCB reference). If the name is less than 8
characters, it should be padded to the right with blanks.

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0,4, 8, 12, 16, 20,28, 32,44, or52

See "Return Codes from DAIR" on page 229 for return code meanings.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 215

Concatenating the Specified DDNAMES (Entry Code X'OC')
Build the DAIR parameter block shown in Figure 125 to request that DAIR
concatenate data sets. Use the IKJDAPOC mapping macro, which is provided in
SYS1.MACLIB, to map this DAIR parameter block.

The DDNAMES listed in the DAIR parameter block are concatenated in the order in
which they appear. All data sets listed by DDNAME in the DAIR parameter block
must be currently allocated.

Figure 125. DAIR Parameter Block for Entry Code X'OC'

Number of Fie Id Contents or Meaning
Bytes

2 DAOCCD Entry code X'OOOC'

2 DAOCFLG Reserved. Set this field to zero.

2 DAOCDARC This field contains the error code, if any, returned from the dynamic
allocation routines. (See "Return Codes from Dynamic Allocation"
on page 230.)

2 Reserved field. Set this field to zero.

2 DAOCNUMB Place in this field the number of data sets to be concatenated.

2 Reserved. Set this field to zero.

8 DAOCDDN Place in this field the DDNAME of the first data set to be
concatenated. This field is repeated for each DDNAME to be
concatenated.

After attempting the requested function, DAIR returns one of the following codes in
register 15.

0, 4, 12, or 52

See "Return Codes from DAIR" on page 229 for return code meanings.

Deconcatenating the Indicated DDNAME (Entry Code X'1 O')
Build the DAIR parameter block shown in Figure 126 to request that DAIR
deconcatenate a data set. The DDNAME specified within the DAIR parameter block
must be concatenated previously, and is now to be deconcatenated.

Use the IKJDAP10 mapping macro, which is provided in SYS1.MACLIB, to map this
DAIR parameter block.

Figure 126. DAIR Parameter Block for Entry Code X'10'

Number of Field Contents or Meaning
Bytes

2 DA10CD Entry code X'0010'

2 DA10FLG Reserved. Set this field to zero.

2 DA10DARC This field contains the error code, if any, returned from the dynamic
allocation routines. (See "Return Codes from Dynamic Allocation"
on page 230.)

2 Reserved field. Set this field to zero.

8 DA10DDN Place in this field the DDNAME of the data set to be
deconcatenated.

216 MVS/ESA TSO Programming

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0, 4, 12, or 52

See "Return Codes from DAIR" on page 229 for return code meanings.

Returning Qualifiers for the Specified DSNAME (Entry Code X'14')
Build the DAIR parameter block shown in Figure 127 to request that DAIR return all
qualifiers for the DSNAME specified. Use the IKJDAP14 mapping macro, which is
provided in SYS1.MACLIB, to map this DAIR parameter block.

You must also provide the return area pointed to by the DA14PRET field in the DAIR
parameter block. If the area you provide is larger than what is needed for all
returned information, the remaining bytes in the area are set to zero by DAIR. If the
area is smaller than the required size, it is filled to its limit, and the return code
indicates this condition.

Figure 127. DAIR Parameter Block for Entry Code X'14'

Number of Field Contents or Meaning
Bytes

2 DA14CD Entry code X'0014'

2 DA14FLG Reserved. Set this field to zero.

4 DA14PDSN Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46 byte field with the following format:
The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified and padded to the
right with blanks. DSNAME alone represents an unqualified index
entry.

4 DA14PRET Place in this field the address of the return area in which DAIR is to
place the qualifiers found for the DSNAME. Place the length of the
return area in the first two bytes of the return area. Set the next
two bytes in the return area to zero. DAIR returns each of the
qualifiers it finds in two fullwords of storage beginning at the first
word (offset 0) within the return area.

1 DA14CTL A flag field.

Byte 1
0000 0000 Reserved. Set to zero.

3 Reserved bytes. Set this field to zero.

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0, 4, 36, or 40

See "Return Codes from DAIR" on page 229 for return code meanings.

Freeing the Specified Data Set (Entry Code X'18')
Build the DAIR parameter block shown in Figure 128 to request that DAIR free a
data set. Use the IKJDAP18 mapping macro, which is provided in SYS1 .MACLIB, to
map this DAIR parameter block.

The data set name represented by DSNAME is to be freed. If no DSNAME is given,
the data set associated with the DDNAME is freed. If both DDNAME and DSNAME
are given, DAIR ignores the DDNAME.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 217

If the specified DSNAME is allocated several times to the user, all such allocations
are freed.

When setting disposition in a parameter list, only one bit should be on.

Figure 128. DAIR Parameter Block for Entry Code X'18'

Number of
Bytes

2

2

2

2

4

8

8

2

8

218 MVS/ESA TSO Programming

Field

DA18CD

DA18FLG

Byte 1
1

. 000 0000

Byte 2

DA18DARC

DA18CTRC

DA18PDSN

DA18DDN

DA18MNM

DA18SCLS

DA18DPS2

0000 .. .
.... 1 .. .
.... . 1 ..
...... 1.
....... 1

DA18CTL

000.0000
... 1

Contents or Meaning

Entry code X'0018'

A flag field set by DAIR before returning to the calling routine. The
flags have the following meanings:

The data set is freed but a secondary error occurred. Register 15
contains zero and the error information is in DA18DARC .
Reserved bits. Set to zero.

Reserved. Set to zero.

This field contains the error code, if any, returned from the dynamic
allocation routines. (See "Return Codes from Dynamic Allocation"
on page 230.)

This field contains the error code, if any, returned from catalog
management routines. (See "Return Codes from DAIR" on
page 229.)

Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46-byte field with the following format:
The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified and padded to the
right with blanks. This field is zero if the DSNAME is not specified.

Place in this field the DDNAME of the data set to be freed, or
blanks. If DSNAME is specified, this field is ignored.

Contains the member name of a partitioned data set. If the name
has less than eight characters, pad it to the right with blanks. If the
name is omitted, the entire field must contain blanks.

SYSOUT class. The output class can be A-Z or 0-9 in the first byte.
The second byte in the field is ignored. If SYSOUT is not specified,
the first byte of this field must contain zeros or blanks .

. Flag byte. Set the following bits to override the normal disposition
of the data set:

Reserved bits. Set them to zero.
KEEP
DELETE
CATLG
UNCATLG
If the disposition specified at allocation is to be used, this field must
contain zero.

Flag byte. These flags indicate to the DAIR service routine what
operations are to be performed:

Reserved bits; set them to zero.
If this bit is on, permanently allocated data sets are unallocated. If
the bit is off, the data set will be marked "not in use," if it is
permanently allocated.

Reserved bytes; set this field to hexadecimal zeros.

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0,4, 12,24,28,or52

See "Return Codes from DAIR" on page 229 for return code meanings.

Allocating a Data Set by DDNAME (Entry Code X'24')
Build the DAIR parameter block shown in Figure 129 to request that DAIR allocate a
data set by DDNAME. Use the IKJDAP24 mapping macro, which is provided in
SYS1.MACLIB, to map this DAIR parameter block.

If DAIR locates the DDNAME you specify and a DSNAME is currently associated with
it, the associated DSNAME is allocated overriding the DSNAME pointed to by the
third word of your DAIR parameter block. The DDNAME might be found associated
with a DUMMY, and if so an indicator is returned but no allocation takes place.

If DAIR cannot allocate by DDNAME, it will perform processing for code X'08' to
allocate by DSNAME and generate a new DDNAME.

When setting disposition in a parameter list, only one bit should be on.

Figure 129 (Page 1 of 3). DAIR Parameter Block for Entry Code X'24'

Number of Field Contents or Meaning
Bytes

2 DA24CD Entry code X'0024'

2 DA24FLG A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

Byte 1
1 The data set is allocated but a secondary error occurred. Register

15 contains an error code.
.... 1... DDNAME requested is allocated as DUMMY .
. 000 .000 Reserved bits. Set to zero .

Byte2 Reserved. Set to zero.

2 DA24DARC This field contains the error code, if any, returned from the dynamic
allocation routines. (See "Return Codes from Dynamic Allocation"
on page 230.)

2 DA24CTRC This field contains the error code, if any, returned from catalog
management routines. (See "Return Codes from DAIR" on
page 229.)

4 DA24PDSN Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46-byte field with the following format:
The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified and padded to the
right with blanks. If the specified DDNAME is used, this field
(DA24PDSN) is ignored.

8 DA24DDN Place here the DDNAME for the data set to be allocated. This
DDNAME is required. If the specified DDNAME is not allocated,
then a generated DDNAME will be used with the DSNAME and the
generated DDNAME will be returned in this field.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 219

Figure 129 (Page 2 of 3). DAIR Parameter Block for Entry Code X'24'

Numberol
Bytes

8

8

4

4

4

4

8

8

220 MVS/ESA TSO Programming

Field

DA24UNIT

DA24SER

DA24BLK

DA24PQTY

DA24SQTY

DA24DQTY

DA24MNM

DA24PSWD

DA24DSP1

0000
.... 1 .. .
.... . 1 ..
...... 1 .
.... ... 1

Contents or Meaning

This is an eight-byte field containing an esoteric group name, a
generic group name, or a specific device address (in EBCDIC). If
the unit information is less than eight characters, it must be padded
to the right with blanks. If no information is to be provided, the field
must be blank. In this case, DAIR will obtain information from the
protected step control block. If there is no unit information in the
PSCB, then a default of all direct access devices is used. The
specified unit information will be ignored if volume information is
obtained from the catalog, unless the unit specification is a subset
of that obtained from the catalog. In this case the specified unit
information will override the returned information.

Serial number desired. Only the first six bytes are significant. If
the serial number is less than six bytes, it must be padded to the
right with blanks. If the serial number is omitted, the entire field
must contain blanks. In this case, the following is done:
If the data set is a new data set, the system determines the volume
to be used for the data set based on the unit information. If the
data set already exists, volume and unit information are obtained
from the catalog. If the information is not found in the catalog, the
allocation request is denied.

This is a four-byte field used as follows: If the data set is a new
data set and CONTROL bit 0 is off and bit 1 is on (see below), this
field is used with PRIMARY SPACE QUANTITY to determine the
amount of direct access space to be allocated for the data set. If
CONTROL bit 6 is off, the field is also used as a DCB blocksize
specification. The value for BLOCKSIZE must be placed in the
low-order two bytes. The high-order byte must be zero.

Primary space quantity desired. The high-order byte must be set to
zero; the low-order three bytes should contain the space quantity
required. If the quantity is omitted, the entire field must be set to
zero. In this case for new direct access data sets primary and
secondary space, and type of space will be defaulted. Directory
quantity will be used if specified in DA24DQTY.

Secondary space quantity desired. The high order byte must be set
to zero; the low order three bytes should contain the secondary
space quantity required. If the quantity is omitted, the entire field
must be set to zero.

Directory quantity required. The high order byte must be set to
zero; the low order three bytes contain the number of directory
blocks desired. If the quantity is omitted, the entire field must be
set to zero.

Contains a member name of a partitioned data set. If the name has
less than eight characters, pad it to the right with blanks. If the
name Is omitted, the entire field must contain blanks.

Contains the password for the data set. If the password has less
than eight characters, pad it to the right with blanks. If the
password is omitted, the entire field must contain blanks.

Flag byte. Set the following bits to indicate the status of the data
set:

Reserved. Set these bits to zero.
SHR
NEW
MOD
OLD
If this byte is zero, OLD is assumed.

Figure 129 (Page 3 of 3). DAIR Parameter Block for Entry Code X'24'

Number of
Bytes

3

8

Fleld

DA24DPS2

0000
.... 1 .. .
..... 1 ..
...... 1.
....... 1

DA24DPS3

0000
.... 1 .. .
..... 1 ..
...... 1.
....... 1

DA24CTL

xx

01
10
11
.. 0
... 1
... 1

.... . 1 ..

.... ... 0

.... ... 0

DA24DSO

1
. 1
.. 1
... 1
.... 1 .. .
.... . 1 ..
.... .. 1.
.... ... 1

DA24ALN

Contents or Meaning

Flag byte. Set the following bits to indicate the normal disposition
of the data set:

Reserved bits. Set them to zero.
KEEP
DELETE
CATLG
UNCATLG
If this byte is zero, it is defaulted as follows: if DA24DSP1 is new,
DELETE is used; otherwise KEEP is used.

Flag byte. Set the following bits to indicate the abnormal
disposition of the data set:

Reserved bits. Set them to zero.
KEEP
DELETE
CATLG
UNCATLG
If this byte is omitted (set to zero), DA24DPS2 will be used.

Flag byte. These flags indicate to the DAIR service routine what
operations are to be performed:

Indicate the type of units desired for the space parameters, as
follows:
Units are in average block length.
Units are in tracks (TRKS).
Units are in cylinders (CYLS).
Reserved; set this bit to zero .
RLSE is desired .
The data set is to be permanently allocated; it is not be freed until
specifically requested.
A DUMMY data set is desired .
Attribute list name supplied .
Reserved bit; set to zero .

Reserved bytes; set them to zero.

A flag field. These flags are set by the DAIR service routine; they
describe the organization of the data set to the calling routine.

Indexed sequential organization.
Physical sequential organization .
Direct organization .
BTAM or QTAM line group .
QTAM direct access message queue .
QTAM problem program message queue .
Partitioned organization .
Unmovable .

Attribute list name, or a DD name from which DCB attributes should
be copied (as in a JCL DCB reference). If the name is less than
eight characters, it should be padded to the right with blanks.

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0,4,8, 12, 16, 20,or52

See "Return Codes from DAIR" on page 229 for return code meanings.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 221

Performing a List of DAIR Operations (Entry Code X'28')
Build the DAIR parameter block shown in Figure 130 to request that DAIR perform a
list of operations. Use the IKJDAP28 mapping macro, which is provided in
SYS1.MACLIB, to map this DAIR parameter block. This DAIR parameter block
points to other DAPBs which request the operations to be performed.

All valid DAIR functions are acceptable; however, code X'14' or another code X'28'
are ignored.

DAIR processes the requested operations in the order they are requested. DAIR
processing stops with the first operation that fails.

Figure 130. DAIR Parameter Block for Entry Code X'28'

Number of Fie Id Contents or Meaning
Bytes

2 DA28CD Entry code X'0028'

2 DA28NOP Place in this field the number of operations to be performed.

4 DA28PFOP DAIR fills this field with the address of the DAIR parameter block for
the first operation that failed. If all operations are successful, this
field will contain zero upon return from the DAIR service routine. If
this field contains an address, register fifteen contains a return
code.

4 DA280PTR Place in this field the address of the DAIR parameter block for the
first operation you want performed. Repeat this field, filling it with
the addresses of the DAPBs, for each of the operations to be
performed.

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0,4,8, 12, 16, 20, 24,28, 32, 44, or52

For return code meanings see "Return Codes from DAIR" on page 229.

222 MVS/ESA TSO Programming

Marking Data Sets as Not in Use (Entry Code X'2C')
Build the DAIR parameter block shown in Figure 131 to request that DAIR mark data
sets associated with a task control block as not in use. This allows data set entries
to be reused.

This code should be issued by any command processor that attaches another
command processor and detaches that command processor directly.

Use the IKJDAP2C mapping macro, which is provided in SYS1.MACLIB, to map this
DAIR parameter block.

Figure 131. DAIR Parameter Block for Entry Code X'2C'

Number of Field Contents or Meaning
Bytes

2 DA2CCD Entry code X'002C'

2 DA2CFLG A flag field. Set the bits to indicate to the DAIR service routine
which data sets you want marked 'not in use'.

Hex
Setting Meaning
0000 Mark all data sets of the indicated TCB 'not in use'.
0001 Mark the specified DDNAME 'not in use'.
0002 Mark all data sets associated with lower tasks 'not in

use'.

4 DA2CTCB Place in this field the address of the TCB for the task whose data
sets are to be marked 'not in use'. DA2CFLG must be set to hex
0000.

8 DA2CDDN Place in this field the DDNAME to be marked 'not in use'. DA2CFLG
must be set to hex 0001.

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0, 4, or 52

For return code meanings see "Return Codes from DAIR" on page 229.

Allocating a SYSOUT Data Set to the Message Class (Entry Code X'30')
Build the DAIR parameter block shown in Figure 132 to request that DAIR allocate a
SYSOUT data set to the message class. Use the IKJDAP30 mapping macro, which is
provided in SYS1.MACLIB, to map this DAIR parameter block.

The action taken by DAIR is dependent upon the presence of the optional fields and
the setting of bits in the control byte. To supply DCB information, provide the name
of an attribute list that has been defined previously by a X'34' entry into DAIR, or the
DDNAME of a currently allocated data set from which DCB attributes can be copied
(as in a JCL DCB reference).

To place a SYSOUT data set in a class other than the message class, use DAIR entry
code X'30' and when the output has been written, specify the desired class by using
DAIR entry code X'18'.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 223

When setting disposition in a parameter list, only one bit should be on.

Figure 132 (Page 1 of 2). DAIR Parameter Block for Entry Code X'30'

Number of Fie Id
Bytes

2 DA30CD

2 DA30FLG

Byte 1
1

. 000 0000

Byte 2

2 DA30DARC

2

4 DA30PDSN

8 DA30DDN

8 DA30UNIT

8 DA30SER

4 DA30BLK

4 DA30PQTY

4 DA30SQTY

224 MVS/ESA TSO Programming

Contents or Meaning

Entry code X'0030'

A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

The data set is allocated but a secondary error occurred. Register
15 contains an error code .
Reserved bits. Set to zero.

Reserved. Set to zero.

This field contains the error code, if any, returned from the dynamic
allocation routines. (See "Return Codes from Dynamic Allocation"
on page 230.)

Reserved. Set this field to zero.

Place in this field the address of the DSNAME buffer or zeros. The
DSNAME buffer is a 46-byte field which must appear as follows:
The first two bytes must contain 44 (X'2C'); the next 44 bytes contain
blanks.

This field contains the DDNAME for the data set. If a specific
DDNAME is not required, fill this field with eight blanks; DAIR will
place in this field the DDNAME to which the data set is allocated.

This is an eight-byte field containing an esoteric group name, a
generic group name, or a specific device address (in EBCDIC). If
the unit information is less than eight characters, it must be padded
to the right with blanks. If no information is to be provided, the field
must be blank. In this case, DAIR will obtain unit information from
the protected step control block. If there is no unit information in
the PSCB, then a default of all direct access devices is used. The
specified unit information will be ignored if volume information is
obtained from the catalog, unless the unit specification is a subset
of that obtained from the catalog. In this case the specified unit
information will override the returned information.

Serial number desired. Only the first six bytes are significant. If
the serial number is less than six bytes, it must be padded to the
right with blanks. If no volume serial number is specified, the field
must be blank. In this case, the following is done: If the data set is
a new data set, the system determines the volume to be used for
the data set based on the unit information. If the data set already
exists, volume and unit information are obtained from the catalog.
If the information is not found in the catalog, the allocation request
is denied.

Block size requested. This figure represents the average record
length desired.

Primary space quantity desired. The high-order byte must be set to
zero; the low-order three bytes should contain the space quantity
required. If the quantity is omitted, the entire field must be set to
zero. In this case for new direct access data sets primary and
secondary space, and type of space will be defaulted.

Secondary space quantity desired. The high-order byte must be
set to zero; the low-order three bytes should contain the secondary
space quantity required. If the quantity is omitted, the entire field
must be set to zero.

Figure 132 (Page 2 of 2). DAIR Parameter Block for Entry Code X'30'

Number of Field Contents or Meaning
Bytes

8 DA30PGNM Place in this field the member name of a special user program to
handle SYSOUT operations. Fill this field with blanks if you do not
provide a program name.

4 DA30FORM Form number. This form number indicates that the output should
be printed or punched on a specific output form. It is a four
character number. This field must be filled with blanks if this
parameter is omitted.

2 DA300CLS SYSOUT class. The data set will be allocated to the message class,
regardless of the class you specify here. To place a SYSOUT data
set in a class other than the message class, use DAIR entry code
X"30' and when the output has been written, specify the desired
class by using DAIR entry code X'18'.

1 Reserved. Set this field to zero.

1 DA30CTL Flag byte. These flags indicate to the DAIR service routine what
operations are to be performed.

xx Indicate the type of units desired for the space parameters, as
follows:

01.. Units are in average block length.
10 Units are in tracks (TRKS).
11.. Units are in cylinders (CYLS).
.. 0 Reserved; set this bit to zero .
... 1 RLSE is desired .
.... 1 ... The data set is to be permanently allocated; it is not to be freed

until specifically requested.
.... . 1.. A DUMMY data set is desired .
.... .. 1. Attribute list name specified .
.... ... 0 Reserved bit; set to zero .

8 DA30ALN Attribute list name, or a ddname from which DCB attributes should
be copied (as in a JCL DCB reference). If the name is less than
eight characters, it should be padded to the right with blanks.

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0,4, 12, 16, 20,28, or52

See "Return Codes from DAIR" on page 229 for return code meanings.

Associating DCB Parameters with a Specified Name (Entry Code X'34')
Build the DAIR parameter block shown in Figure 133 to request that DCB
parameters to be used with subsequent allocations are associated with a specified
attribute name. Use the IKJDAP34 mapping macro, which is provided in
SYS1.MACLIB, to map this DAIR parameter block.

The following functions related to attribute names are available using code X'34':

• Associate a set of DCB parameters to be used in subsequent allocations.
• Search on the attribute name.
• Delete the attribute name.

Note: When you request that DAIR associate DCB parameters with a specified
name, you must also build a DAIR attribute control block (DAIRACB).

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 225

Figure 133. DAIR Parameter Block for Entry Code X'34'

Number of Flekl Contents or Meaning
Bytes

2 DA34CD Entry code X'0034'

2 DA34FLG A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

Byte 1
DA34FIND
1 An attribute list name was found.
0 An attribute list name was not found .
. 000 0000 Reserved bits. Set to zero.

Byte 2 Reserved. Set to zero.

2 DA34DARC This field contains the code returned from the dynamic allocation
routines. (See "Return Codes from Dynamic Allocation" on
page 230.)

1 DA34CTRL Flag byte. These flags indicate to DAIR what operations are to be
performed.

DA34SRCH
1 Search for the attribute list name specified in field DA34NAME.

DA34CHN
.1 Build and chain an attribute list.

DA34UNCH
.. 1 Delete an attribute list name .
... 00000 Reserved bits. Set to zero.

1 Reserved. Set to zero.

8 DA34NAME This field contains the name for the list of attributes.

4 DA34ADDR This field contains the address of the DAIR attribute control block
(DAIRACB). This field need only be specified if bit 1 of DA34CTRL
is on.

After attempting the requested function, DAIR returns one of the following codes in
register 15:

0, 4, 12, or 52

See "Return Codes from DAIR" on page 229 for return code meanings.

The DAIR Attribute Control Block (DAIRACB)
Build the DAIRACB shown in Figure 134 when you request that DAIR construct an
attribute list. Place the address of the DAIRACB into the DA34ADDR field of the
code X'34' DAIR parameter block shown in Figure 133. Use the IKJDACB mapping
macro, which is provided in SYS1.MACLIB, to map the DAIRACB.

226 MVS/ESA TSO Programming

Figure 134 (Page 1 of 2). DAIR Attribute Control Block (DAIRACB)

Number of Fie Id Contents or Meaning
Bytff

8 Reserved.

8 DAI MASK First 6 bytes and eighth byte are reserved.

DAILABEL Seventh-byte flags. These flags indicate the INOUT/OUTIN options
of the OPEN macro.

DAllNOUT
1 Use the INOUT option.

DAIOUTIN
. 1 Use the OUTIN option .
.. 00 0000 Reserved bits. Should be set to zero .

3 Reserved. Should be set to zero.

3 DAIEXPDT This field contains a data set expiration date specified in binary.

DAIYEAR The first byte contains the expiration year.

DAIDAY The next 2 bytes contain the expiration day, left justified. For
example, the date 99352 is specified '630160'8.

2 Reserved. Should be set to zero.

1 DAIBUFNO This field contains the number of buffers required.

1 DAIBFTEK This field contains the buffer type and alignment.

. 1 Simple buffering (S) .

. 11 Automatic record area construction (A) .

.. 1 Record buffering (R) .

... 1 Exchange buffering (E) .

.... .. 1. Doubleword boundary (0) .

.... ... 1 Fullword boundary (F) .
0 ... 00 .. Reserved bits. Should be set to zero.

2 DAIBUFL This field contains the buffer iength.

1 DAIEROPT This field indicates the error options:

1 Accept error record.
. 1 Skip error record .
.. 1 Abnormal EOT .
... 00000 Reserved bits. Should be set to zero .

1 OAIEKYLE This field contains the key length.

6 Reserved. Should be set to zero.

1 DAIRECFM This field indicates the record format:

1 Fixed (F)
. 1 Variable (V) .
11 Undefined (U).
.. 1 Track overflow (T) .
... 1 Blocked (B) .
.... 1 ... Standard blocks (S). ;row .
.... . 1 .. ASCII printer characters (A) .
.... .. 1. Machine control characters (M) .
.... ... 0 Reserved bit. Should be set to zero .

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 227

Figure 134 (Page 2 of 2). DAIR Attribute Control Block (DAIRACB)

Number of Fleld Contents or Meaning
Bytes

1 DAIOPTCD This field contains the error option codes:

1 Write validity check (W).
.. 1 Chained scheduling (C) .
.... 1 ... ASCII translate (Q) .
.... .. 1. User totaling (T) .
. 0.0 .0.0 Reserved bits. Should be set to zero .

2 DAIBLKSI This field contains the maximum block size.

2 DAILRECL This field contains the logical record length.

1 DAINCP This field contains the maximum number of READ or WRITE
channel programs before check.

4 Reserved. Should be set to zero.

The fields that you do not use must be initialized to zero.

228 MVS/ESA TSO Programming

Return Codes from DAIR
DAIR returns a code in general register 15 to the calling routine. In addition, further
return code information is in the DAxxCTRC field in the DAIR parameter block if the
return code is 8, or in the DAxxDARC field if the return code is 12.

The DAIR return codes have the following meaning:

Figure 135. Return Codes from DAIR

Return Code Meaning
Dec(Hex)

0(0) DAIR completed successfully.

4(4) The parameter list passed to DAIR was invalid.

8(8) An error occurred in a catalog management routine; the catalog
management error code is stored in the CTRC field of the DAIR
parameter block.

12(C) An error occurred in dynamic allocation; the dynamic allocation
error code is stored in the DARC field of the DAIR parameter block.

16(10) No TIOT entries were available for use.

20(14) The ddname requested is unavailable.

24(18) The dsname requested is a member of a concatenated group.

28(1C) The ddname or dsname specified is not currently allocated, or the
attribute list name specified was not found.

32(20) The requested data set was previously permanently allocated, or
was allocated with a disposition of new, and was not deleted.
DISP =NEW cannot now be specified.

36(24) An error occurred in a catalog information routine (IKJEHCIR).

40(28) The return area you provided for qualifiers was exhausted and more
index blocks exist. If you require more qualifiers, provide a larger
return area.

44(2C) The previous allocation specified a disposition of DELETE for this
non-permanently allocated data set. Request specified OLD, MOD,
or SHA with no volume serial number.

48(30) Reserved.

52(34) Request denied by installation exit.

The return codes from catalog management, which are found in the DAxxCTRC field
if the register 15 return code is 8, are documented in SPL: Application Development
Guide.

Chapter 16. Using the Dynamic Allocation Interface Routine (DAIR) 229

Return Codes from Dynamic Allocation
The codes returned in the DAxxDARC field of the DAIR parameter block, when a
DAIR return code of 12 is returned, are the dynamic allocation error reason codes.
(See SPL: Application Development Guide.) In addition to those codes, which are
converted from dynamic allocation codes back to the same codes which were used
in previous releases, the following reason codes can also be returned:

Figure 136. Return Codes from Dynamic A/location

Reason Code Meaning
(Hexadecimal)

0304 The ddname was not specified by the calling routine.

0308 The ddname specified by the calling routine was not found.

0314 Restoring ddnames, as per this request, would have resulted in
duplicate ddnames. Duplicate ddnames are not permitted.

0318 Invalid characters are present in the ddname provided by the
caller.

031C Invalid characters are present in the membername provided by
the caller.

0320 Invalid characters are present in the dsname provided by the
caller.

0324 Invalid characters are present in the SYSOUT program name
provided by the caller.

0328 Invalid characters are present in the SYSOUT form number
provided by the caller.

032C An invalid SYSOUT class was specified by the caller.

0330 A membername was specified but the data set is not a partitioned
data set.

0334 The supplied data set name exceeded 44 characters in length.

0338 The data set disposition specified by the caller is invalid.

0348 Reserved.
through
034C

,___ ________ End of GENERAL-USE PROGRAMMING INTERFACE ---------

230 MVS/ESA TSO Programming

Chapter 17. Using the DAIRFAIL Routine (IKJEFF18)

This chapter describes how to use the DAIRFAIL routine to analyze return codes
from dynamic allocation (SVC 99) or the dynamic allocation interface routine (DAIR).

Functions of DAIRFAIL
The DAIRFAIL routine analyzes return codes from SVC 99 or DAIR, and performs
one of the following functions, as requested:

• Issues an error message when appropriate.
• Returns the error message to the caller.
• Issues an error message and returns the message to the caller.

This process of returning the message(s) to the caller is referred to as extracting the
message.

DAIRFAIL issues a message using write-to-programmer (WTP) or PUTLINE. You can
indicate to DAIRFAIL what service is to be used to issue the message, or you can
allow the default, PUTLINE, to be used. Issuing a write-to-programmer message is
especially useful for analyzing errors in a batch invocation of SVC 99.

GENERAL-USE PROGRAMMING INTERFACE

Passing Control to DAIRFAIL
Your program can invoke the DAIRFAIL routine by using the LINK macro instruction,
specifying IKJEFF18 as the entry point name. However, you must first create the
parameter list and place its address into register 1.

DAIRFAIL must receive control in 24-bit addressing mode, and be passed input that
resides below 16 megabytes in virtual storage. If your program executes in 31-bit
addressing mode, you can use the LINK macro instruction to invoke DAIRFAIL
without switching addressing modes. The LINK macro instruction ensures that
DAIRFAIL receives control in 24-bit addressing mode.

The Parameter List
Use the IKJEFFDF macro to map the parameter list for IKJEFF18. This mapping
macro, which is provided in SYS1 .MACLIB, has the following syntax:

IKJEFFDF [DFDSECT= l~~S }]

[,DFDSEC2=1~~S }]

DFDSECT =YES or NO
Use the DFDSECT=YES option to map the DFDSECTD DSECT, instead of
obtaining storage. DFDSECT= NO is the default.

DFDSEC2 =YES or NO

© Copyright IBM Corp. 1988, 1991

Use the DFDSEC2 =YES option to map the DFDSECT2 DSECT, instead of
obtaining storage. DFDSEC2=NO is the default.

231

The IKJEFFDF macro generates the following six-word parameter list:

Figure 137. The Parameter List (DFDSECTD DSECT)

Offset Field Contents
Dec(Hex) Name

0(0) DFS99RBP Address of the failing SVC 99 request block or address of
or the failing DAIR parameter list.
DFDAPLP

4(4) DFRCP Address of a fullword containing either the SVC 99 or DAIR
return code.

8(8) DFJEFF02 Address of a fullword containing either the entry point
address of IKJEFF02 (message writer routine) or zeros, if
that address is unknown. This field (DFJEFF02) must
always contain an address.

12(C) DFIDP Address of a two-byte area containing:

Byte 1 Switches

Bit 0: 0 - PUTLINE issued

Bit 0: 1 - WTP issued

Bit 1: 1 - Caller wants message extracted only.

Bit 2: 1 - Caller wants message extracted as well as
issued using PUTLINE or write-to-programmer
(WTO).

Byte 2 Caller identification number

X'01' - DAIR
X'32' - SVC 99

16(10) DFCPPLP Address of the CPPL. This is needed only when IKJEFF18
is called with an SVC 99 error and the user is not
requesting a write-to-programmer message.

20(14) DFBUFP Address of DFBUFS buffer if bit 2 (DFBUFSW) or bit 3
(DFBUFS2) of DFIDP is on. This is required when the
message is to be extracted and returned to the caller. If
the DFBUFSW is on, the message(s) will only be extracted.
If DFBUFS2 is on, the message(s) will be issued as well as
extracted and returned to the caller. It will be possible to
extract the first level and one second level message.

232 MVS/ESA TSO Programming

DFDSECT2, which is described in Figure 138, defines a storage area supplied by the
caller. DAIRFAIL will return the requested informational message(s) in the
associated buffers. It is not necessary to initialize these buffers. On return from
DAIRFAIL, the buffers will contain the extracted message(s).

Figure 138. The Parameter List (DFDSECT2 DSECT)

Offset Field Contents
Dec(Hex) Name

0(0) DFBUFS A 2 byte field that will contain the total length of the first
or level message, plus 4 bytes for length and offset fields.
DFBUFL1

2(2) I DFBUF01 A 2 byte field containing the offset field. It will be set to
zero when a message is extracted.

4(4) DFBUFT1 A 251 byte buffer that will contain the text of the first level
message extracted. If the message is greater than 251
bytes, the message will be truncated.

256(100) DFBUFL2 A 2 byte field containing the total length of the first second
level message plus four bytes. If there is no second level
message, this field will contain HEX zeros.

258(102) DFBUF02 A 2 byte field containing the offset. It will be set to zero
when a message is extracted.

260(104) DFBUFT2 A 251 byte field that will contain the text of the first second
level message extracted. If the message is greater than
251 bytes, the message will be truncated.

If the high-order bit of the caller identification area (pointed to by DFIDP) is on, a
write-to-programmer message will be issued instead of a PUTLINE. When the
write-to-programmer feature is used, the address of the CPPL (DFCPPLP) need not
be specified.

Chapter 17. Using the DAIRFAIL Routine (IKJEFF18) 233

Return Codes from DAIRFAIL
When DAIRFAIL returns to its caller, register 15 contains one of the following return
codes:

Figure 139. Return Codes from DAIRFAIL

Return Code Meaning
Dec(Hex)

0(0) A message was issued successfully.

4(4) An invalid caller identification number was passed to DAIRFAIL.

8(8) The message writer detected an error while attempting to issue a
message.

12(C) The extracted message buffer parameter list is in error.

~-------- End of GENERAL-USE PROGRAMMING INTERFACE -----------'

234 MVS/ESA TSO Programming

Chapter 18. Analyzing Error Conditions with the
GNRLFAIL/VSAMFAIL Routine (IKJEFF19)

This chapter describes how to use the GNRLFAIL/VSAMFAIL routine to analyze
error conditions and issue appropriate error messages.

Functions of GNRLFAIL/VSAMFAIL
The GNRLFAIL/VSAMFAIL routine analyzes VSAM macro instruction failures,
subsystem request (SSREQ) failures, parse service routine or PUTLINE failures, and
ABEND codes, and issues an appropriate error message. It inserts the meaning of
return codes from the VSAM/job entry subsystem interface. Other VSAM codes are
explained in VSAM Administration: Macro Instruction Reference.

GENERAL-USE PROGRAMMING INTERFACE

Passing Control to GNRLFAIL/VSAMFAIL
Your program can invoke the GNRLFAIL/VSAMFAIL routine by using the LINK macro
instruction, specifying IKJEFF19 as the entry point name. However, you must first
create the parameter list and place its address into register 1.

GNRLFAIL/VSAMFAIL must receive control in 24-bit addressing mode, and be
passed input that resides below 16 megabytes in virtual storage. If your program
executes in 31-bit addressing mode, you can use the LINK macro instruction to
invoke GNRLFAIL/VSAMFAIL without switching addressing modes. The LINK macro
instruction ensures that GNRLFAIL/VSAMFAIL receives control in 24-bit addressing
mode.

The Parameter List
Use the IKJEFFGF macro, which is provided in SYS1.MACLIB, to map the parameter
list for IKJEFF19. Specify the GFDSECT=YES option to map the GFDSECTD DSECT
instead of obtaining storage; GFDSECT= NO is the default.

The IKJEFFGF macro generates the following parameter list:

Figure 140 (Page 1 of 2). The Parameter List (GFDSECTD DSECT)

Offset Field Contents
Dec(Hex) Name

0(0) GFCBPTR Pointer to VSAM ACB if GFOPEN or GFCLOSE callerid.
Pointer to VSAM RPL for other VSAM macro failures.
Pointer to SSOB if GFSSREQ caller id.

4(4) GFRCODE Error return code from register 15 or ABEND code if
GFCALLID is GFABEND.

8(8) GF02PTR Zero, or address of TSO message issuer routine
(IKJEFF02) if already loaded.

© Copyright IBM Corp. 1988, 1991 235

Figure 140 (Page 2 of 2). The Parameter List (GFDSECTD DSECT)

Offset Fie Id Contents
Dec(Hex) Name

12(C) GFCALLID ID for caller's failing VSAM macro, or other failure. This
field can have the following values:

Value Meaning
GFCHECK (XI 01 ') VSAM CHECK macro error
GFCLOSE (XI 02 I) VSAM CLOSE macro error
GFENDREQ (X'03') VSAM ENDREQ macro error
GFERASE (XI 04 I) VSAM ERASE macro error
GFGET (X'05') VSAM GET macro error
GFOPEN (XI 06 I) VSAM OPEN macro error
GFPOINT (X'07') VSAM POINT macro error
GFPUT (X'08') VSAM PUT macro error
GFPARSE (X'15') Parse service routine error, other than

a return code of 4 or 20.
GFPUTL (X'16') PUTLINE service routine error
GFABEND (X' 1F') Issue ABEND message
GFSSREQ (XI 20 I) Subsystem interface request error

14(E) GFBITS Special processing switches. This field can have the
following values:

Value Meaning

GFKEYN08 (X' 80') Caller not in key O or 8.

GFSUBSYS (X' 40') Caller used VS2 VSAM/job entry
subsystem interface.

GFWTPSW (X' 20') Issue error message as
write-to-programmer instead of
PUTLINE.

15(F) GFRESV1 Reserved.

16(10) GFCPPLP Pointer to TMP's CPPL control block (needed if PUTLINE is
issued, or to have command name inserted in the failure
message).

20(14) GFECBP Pointer to ECB for PUTLINE (optional).

24(18) GFDSNLEN Length of data set name.

26(1A) GFPGMNL Length of program name.

28(1C) GFDSNP Pointer to data set name to insert in VSAMFAIL error
messages (optional; default is ddname).

32(20) GFPGMNP Pointer to program name for insertion in all error
messages (optional; default is ddname).

36(24) GFRESV2 Reserved.

40(28) GFRESV3 Reserved.

236 MVS/ESA TSO Programming

Return Codes from GNRLFAIL/VSAMFAIL
When GNRLFAIL/VSAMFAIL returns to its caller, register 15 contains one of the
following return codes:

Figure 141. Return Codes from GNRLFAILIVSAMFAIL

Return Code Meaning
Dec{Hex)

0(0) The message was issued successfully.

80(50) The input parameter list for IKJEFF19 is invalid. A message is also
issued.

Other This error return code is from either PUTLINE, PUTGET or the
message issuer routine (IKJEFF02).

~-------- End of GENERAL-USE PROGRAMMING INTERFACE ------------'

Chapter 18. Analyzing Error Conditions Using GNRLFAIL/VSAMFAIL 237

/.-

238 MVS/ESA TSO Programming

Chapter 19. Using IKJEHCIR to Retrieve System Catalog
Information

This chapter describes how to use the catalog information routine (IKJEHCIR) to
retrieve information from the system catalog.

Functions of the Catalog Information Routine
Use the catalog information routine to retrieve information from the system catalog.
This information can include data set name, index name, control volume address, or
volume ID. The information can be requested from a specific user catalog, or, if no
catalog is specified, the system default catalog search is used. The following kinds
of information can be requested:

• The next level qualifiers for a name

• All names having the same name as the high-level qualifier and the data set
type associated with each name

• The volume serial numbers and device types associated with a name

You can also ask for combinations of the information above.

GENERAL-USE PROGRAMMING INTERFACE

Passing Control to the Catalog Information Routine
Your program can invoke the catalog information routine by using either the
CALL TSSR or LINK macro instructions, specifying IKJEHCIR as the entry point
name. However, you must first create the catalog information routine parameter list
(CIRPARM) and place its address into register 1.

The catalog information routine resides in SYS1 .LPALIB and executes with the
protection key of the caller. IKJEHCIR can be invoked in either 24- or 31-bit
addressing mode. However, all input passed to IKJEHCIR must reside below 16
megabytes in virtual storage. IKJEHCIR executes in 24-bit addressing mode and
returns control in the same addressing mode in which it is invoked.

© Copyright IBM Corp. 1988, 1991 239

The Catalog Information Routine Parameter List (CIRPARM)
The catalog information routine parameter list (CIRPARM) is shown in Figure 142.

Figure 142. The Catalog Information Routine Parameter List

Offset Number Fie Id Contents or Meaning
Dec(Hex) of Bytes Name

0(0) 1 CIR OPT Entry code indicating the option requested.
For a description of the entry codes, see
Figure 143 on page 241.

1 (1) 2 Reserved.

3(3) 1 CIRLOCRC LOCATE return code.

4(4) 4 CIRSRCH Address of the search argument.

For entry codes X '01 ' and X' 02' , the
search argument is either a high-level
qualifier or a name of the form
high-level-qualifier.user-supp/led-name. In
this case, the search argument is not a
fully-qualified data set name.

For entry code X' 04', the search argument
is a high-level qualifier and a data set
name which are names of catalog index
levels.

For entry codes X' 05' and X' 06' , the
search argument is a high-level qualifier
followed by a period.

8(8) 4 CIRCVOL Address of the volume ID of CVOL. If not
given, SYSRES is assumed.

12(C) 4 CIRWA Address of the user work area. See
Figure 144 on page 242 for a description of
the user work area.

16(10) 4 CIRSAVE Address of a 72-byte save area.

20(14) 4 CIRPSWD Address of an 8-byte data set or catalog
password (or zero).

240 MVS/ESA TSO Programming

Output from the Catalog Information Routine
The catalog information routine returns the requested information to the caller in a
user work area that is based on CIRWA. The data that is returned for each entry
code value is described in Figure 143.

Figure 143. The Data Returned for each Entry Code

Entry Meaning Data Returned
Code

X'01' Retrieve the data set names having 8-byte qualifiers are moved into the
one more level of qualifier above user work area.
what the caller specified.

---·-!--·-------- ---·--·-- ----!-·---·---··----··-··-··-·-··
X'02' Retrieve all data set names. 45-byte data set names are moved

into the user work area.

X'04' Retrieve the volume information Volume information is moved into
associated with a given data set the user work area. See Figure 145
name. on page 242 for volume information

format.

X'05' Retrieve the next level data set 45-byte data set name and volume
name and volume information. information is moved to the user

work area.

X'06' Retrieve all data set names and 45-byte data set name followed by
volume information. volume information is moved to the

user work area for all levels.

Note: For codes X' 02' , X' 05' , and X '06' , a one-byte field precedes a 44-byte name
field. The type field has one of the following values:

• V for volume
• C for cluster
• G for alternate index
• R for path
• F for FREE
• Y for upgrade
• B for GDG base
• X for alias name
• P for page space
• M for master catalog
• U for user catalog
• A for non-VSAM data set

Chapter 19. Using IKJEHCIR to Retrieve System Catalog Information 241

The user work area that is based on CIRWA is shown in Figure 144.

Figure 144. User Work Area for CIRPARM

Number Fleld Name Contents or Meaning
of Bytes

2 AREALN Length of work area (an unsigned, 16-bit number).

2 DATALIN Length of data returned + 4 (an unsigned, 16-bit
number).

Variable DATA An array of entries where data is stored. Each entry
consists of a 1-byte type field followed by a 44-byte
name field. The array has an end indicator of X'FF'.

When you specify a data set name, a volume list is built in your work area. A
volume list consists of an entry for each volume on which part of the data set
resides; it is preceded by a 2-byte field that contains a count of the number of
volumes in the list. The count field is followed by a variable number of 12-byte
entries. Each 12-byte entry consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte sequence number. As many as 20 of these 12-byte entries can
be built in your work area. The volume list has an end indicator of X'FF'.
Figure 145 shows the format of the volume list.

Figure 145. Volume Information Format

Number Fleld Name Contents or Meaning
of Byles

1 Number of volumes on which part of the data set
resides.

4 DEVTYP Device type.

6 VOLS ER Volume serial number.

2 FILESEQ File sequence number. (This field is provided for
compatibility with the OS/VS catalog, and is used for
non-VSAM data sets that reside on tape volumes.)

1 Reserved. (Contains X'FF'.)

242 MVS/ESA TSO Programming

Return Codes from IKJEHCIR
When IKJEHCIR returns to its caller, register 15 contains one of the following return
codes:

Figure 146. Return Codes from IKJEHCIR

Return Code Meaning
Dec(Hex)

0(0) Successful completion of the request.

4(4) The LOCATE macro instruction has failed. The LOCATE return code
is stored in CIRLOCRC.

12(C) Volumes were returned by LOCATE, indicating that a fully qualified
data set name was passed in the parameter list, but options other
than volumes were requested. The list of the volumes returned by
LOCATE is in the work area.

Chapter 19. Using IKJEHCIR to Retrieve System Catalog Information 243

Return Codes from LOCATE
The LOCATE return codes have the following meaning:

Figure 147. Return Codes from LOCATE

Return Code Meaning
Dec(Hex)

0(0) Successful completion of the request.

4(4) The required catalog does not exist, it cannot be opened, or there is
a closed chain of OS CVOL pointers.

8(8) One of the following occurred:

• The entry was not found. If in an OS CVOL, register 0 contains
the number of valid index levels. If in an ICF or a VSAM catalog,
register 0 contains the catalog return code.

• The user is not authorized to perform this operation. Register O
contains hexadecimal 38.

• A generation data group (GOG) alias was found. Register O
contains the number of valid index levels. The alias name was
replaced by the true name.

12(C) One of the following occurred:

• An index or generation data group base entry was found when
the list of qualified names was exhausted. Register 0 contains
the number of valid index levels. The work area contains the
first block of the specified index.

• An alias entry was found. The alias name was replaced in the
user parameter list by the true name.

• An invalid low-level GOG name was found .

16(10) A data set exists at other than the lowest index level specified.
Register 0 contains the number of the index level where the data set
was encountered.

20(14) A syntax error exists in the name.

24(18) One of the following occurred:

• Permanent 1/0 error occurred. Register 0 contains the VSAM or
ICF return code, or 0 if in an OS CVOL.

• Nonzero EST AE return code .

• Error in parameter list.

28(1C) The relative track address supplied to the LOCATE routine is outside
of the SYSCTLG data set extents.

32(20) Reserved.

For additional LOCATE return codes, see the description of message IDC30091 in
Message Library: System Messages .

.___ ________ End of GENERAL-USE PROGRAMMING INTERFACE ________ __,

244 MVS/ESA TSO Programming

Part Ill. TSO Commands

This part describes the functions and syntax of TSO commands. It includes:

• The general format and syntax rules for the commands

• A description of each command including return code information and
examples. The commands are described in alphabetical order.

© Copyright IBM Corp. 1988, 1991 245

246 MVS/ESA TSO Programming

Chapter 20. Command Format and Syntax

This chapter discusses the general format and syntax rules for the TSO commands.

Using a TSO Command
A command consists of a command name usually followed by one or more
operands. Operands provide the specific information required to perform the
requested operation.

You can use two types of operands with the commands: positional and keyword.

Positional Operands
Positional operands follow the command name in a certain order. In the command
descriptions in Chapter 21, "Command Descriptions" on page 251, the positional
operands are shown in lowercase characters.

When you specify a positional operand that is a list of several names or values, you
must enclose the list within parentheses.

Keyword Operands
Keyword operands (keywords) are specific names or symbols that have a particular
meaning to the system. You can include keywords in any order following the
positional operands. In the command descriptions in Chapter 21, "Command
Descriptions" on page 251, keywords are shown in uppercase characters.

You can specify values with some keywords. Enclose the value with parentheses
following the keyword.

If you specify conflicting, mutually exclusive keywords, the last keyword you specify
overrides the previous ones.

Figure 148 on page 248 describes the syntax notation for the TSO commands.

©Copyright IBM Corp. 1988, 1991 247

TSO Command Syntax
The following figure summarizes the notation for the TSO commands.

Figure 148. TSO Command Syntax

Notation Meaning

Delimiters Separates operands or characters from a command or an
(blank or comma) operand.

Brackets [] Indicates that the operands within the brackets are optional and
you can omit them. Do not type the brackets when specifying the
command.

Braces {} Indicates that you must specify one of the items. You cannot
specify more than one. Do not type the braces when specifying
the command.

Hyphen - Joins lowercase words to form a single variable. Do not type the
hyphen when specifying the command.

lowercase Represents variables for which you are to substitute specific
information. You can specify the information in uppercase or
lowercase.

Parentheses () Enter the parentheses as shown. You do not have to type the
closing parentheses if it is last character in the command.

Quotes' Separates text strings. You must specify a single quote in the
character string as two adjacent quotes.

Underscore - Indicates the keyword or value is the default for the operand.

Uppercase Spell the operand as shown (or its abbreviation). You can
specify the operand in either upper or lowercase.

Ellipsis Indicates that you can repeat the operand or the value. Do not
(...) specify the ellipsis.

Special Use them as shown in the syntax diagram.
characters
such as
* =.? %

Abbreviating Keyword Operands

Comments

You can specify keywords spelled exactly as they are shown or you can use an
acceptable abbreviation. You can abbreviate any keyword by specifying only the
significant characters; that is, you must type as much of the keyword as is
necessary to distinguish it from the other keywords of the command or
subcommand.

You can include comments in a TSO command anywhere a blank might appear. To
include a comment, start with delimiter/*. If you want to continue the command
after the comment, close the comment with delimiter*/.

CALL data-set-name /* MY PROGRAM

or

CALL /* MY PROGRAM */ data-set-name

248 MVS/ESA TSO Programming

Line Continuation

Delimiters

You do not need to end a comment with*/ if the comment is the last thing on the
line. Ending a comment with */is a convention, not a requirement in this case.

When it is necessary to continue to the next input line, use a minus sign as the last
character of the line you wish to continue. You can also use a plus sign, but be
aware that if you do, leading delimiters will be removed from the continuation line.

CALL data-set-name /* THIS COMMAND IS USED -
TO INVOKE MY PROGRAM */

To continue a line that contains a comment, use a continuation character after the
comment

When you type a command, you must separate the command name from the first
operand by one or more blanks. You must separate operands by one or more
blanks or a comma. Do not use a semicolon as a delimiter because any character
you specify after a semicolon is ignored. For example, if you use a blank or a
comma as a delimiter, you can type the WHEN command as follows:

WHEN SYSRC(=0) CALL 'SYSl.LINKLIB(LNKED)'
WHEN SYSRC(=0),CALL 'SYSl.LINKLIB(LNKED)'
WHEN SYSRC(=0) CALL 'SYSl.LINKLIB(LNKED)'

Chapter 20. Command Format and Syntax 249

250 MVS/ESA TSO Programming

Chapter 21. Command Descriptions

This chapter describes the functions and syntax of the TSO commands. The
commands are presented in alphabetical order.

TSO Command Summary
TSO provides the following commands:

Command

CALL

TIME

WHEN/END

CALL Command

Function

Loads and executes a program.

Provides the date and time of day.

Tests return codes from programs invoked from an
immediately preceding CALL command, and takes a
prescribed action if the return code meets a specified
condition.

Use the CALL command to load and execute a program that exists in executable
(load module) form. The program can be user-written, or it can be a system module
such as a compiler, sort, or utility program.

You must specify the name of the program (load module) to be processed. It must
be a member of a partitioned data set.

You can specify a list of parameters to be passed to the specified program. The
system formats this data so that when the program receives control, register one
contains the address of a fullword. The three low order bytes of this fullword
contain the address of a halfword field. This halfword field is the count of the
number of bytes of information contained in the parameter list. The parameters
immediately follow the halfword field. When you pass parameters to a PL/I
program, precede them with a slash (/). PL/I assumes that any value prior to the
slash is a run-time option.

Service aids, utilities, and other programs obtaining their input from an allocated
file such as SYSIN must have the input in a data set. Once the data set is created,
you can use the CALL command to execute the program that accesses the SYSIN
data.

© Copyright IBM Corp. 1988, 1991 251

Figure 149 iHustrates the allocation and creation of an input data set.

//jobname JOB
//EXAMPl EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *

CALL 'SYSl.LINKLIB(PROGl)'
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

input to progl
/*

Figure 149. Allocating and Creating an Input Data Set

CALL {dsname }
dsname(membername)

['parameter-string']

dsname
specifies the name of a partitioned data set to be executed. If you do not specify
a data set name, the default is TEMPNAME. A type of load is assumed.

dsname(membername)
specifies the name of a partitioned data set and the member name (program
name) to be executed. You must enclose the member name in parentheses.

Note: A temporary tasklib is established when programs are invoked by the
CALL command. The tasklib is effective for.the execution of the CALL command
and the tasklib data set is the same as the data set name specified on the
invocation of the CALL command.

Enclose in apostrophes (single quotes), the name of the data set to be executed
in the following manner:

'SYSl.LINKLIB(IEUASM)'

parameter string
specifies up to 100 characters of information that you want to pass to the
program as a parameter list. When passing parameters to a program, you
should use the standard linkage convention.

252 MVS/ESA TSO Programming

Return Codes for the CALL Command

Examples

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Other Return code is from the called program.

Example 1

Operation: Execute a load module.

Known:

The name of the load module: JUDAL.PEARL.LOAD(TEMPNAME)

Parameters: 10, 18,23

CALL 'JUDAL.PEARL.LOAD' '10,18,23'

Example 2

Operation: Execute a load module.

Known:

The name of the load module: JUDAL.MYLIB.LOAD(COS1)

CALL 'JUDAL.MYLIB.LOAD(COSl)'

Example 3

Operation: Execute a PL/I load module passing a parameter.

Known:

The name of the load module: D58ABC.PCP.LOAD(MOD1)
The parameter to be passed: The character string ABC

CALL 'D58ABC.PCP.LOAD(MOD1) I I /ABC'

Chapter 21. Command Descriptions 253

TIME Command
Use the TIME command to obtain the following information:

• Cumulative CPU time (from the start of the session)

• Cumulative session time (from the start of the session)

• Service units used, which can be:

CPU service units - The task execution time, divided by an SRM constant, that is
CPU model-dependent.

110 service units - The sum of individual SMF data set activity EXCP counts for
all data sets associated with the address space.

Storage service units - The number of real page frames multiplied by CPU
service units, multiplied by .02. The decimal .02 is a scaling factor designed to
bring the storage service component in line with the CPU component.

• Local time of day

Refers to the time of execution for this command. It is displayed as follows:

local time of day in hours(HH),
minutes(MM), and seconds(SS),
(am or pm is also displayed)

• Today's date.

TIME

Return Code for the TIME Command
The return code is always zero.

254 MVS/ESA TSO Programming

WHEN/END Command
Use the WHEN command to test return codes from programs invoked by an
immediately preceding CALL command, and to take a prescribed action if the return
code meets a certain specified condition.

WHEN SYSRC(operator integer}

[END]
conmand-name

SYS RC
specifies that the return code from the previous function is to be tested
according to the values specified for operator and integer.

operator
specifies one of the following operators:

EQ or = means equal to
NE or ~= means not equal to
GT or > means greater than
LT or < means less than
GE or >= means greater than or equal to
NG or ~> means not greater than
LE or <= means less than or equal to
NL or ~< means not less than

integer
specifies the numeric constant that the return code is to be compared to.

END
specifies that processing is to be terminated if the comparison is true. This is
the default if you do not specify a command.

command-name
specifies any valid TSO command name and appropriate operands. The
command will be processed if the comparison is true.

You can use successive WHEN commands to determine an exact return code and
then perform some action based on that return code.

Return Codes for the WHEN Command
The return code is from the command that executed last.

Example
Operation: Using successive WHEN commands to determine an exact return code.

CALL compiler
WHEN SYSRC(= 0} CALL 'SYSl.LINKLIB(LNKED}'
WHEN SYSRC(= 4} CALL 'SYSl.LINKLIB(LNKED}'
WHEN SYSRC(= 8} END

Chapter 21. Command Descriptions 255

256 MVS/ESA TSO Programming

Index

A
abbreviating keyword operands 248
ABEND

completion code 36
ESTAE/ESTAI relationships 34

absolute address operand
definition 71

address operand
absolute 71
definitions 71
expression 73
floating-point register 72
forms of the address operand 71
general register 72
indirect 72
qualified 72
relative 71
symbolic 72

address space control (ASC) mode considerations 45
addressing mode

setting via BASSM or BSM 48
24-bit 46, 49
31-bit 49

allocate
data set by DDNAME 219
data set by DSNAME 212
SYSOUT data set 223
utility data set 212

allocating
dynamically (during program execution) 207

AMODE=ANY, RMODE=24 46
AM ODE= 24, RMODE = 24 46
AMODE=31 46
AR mode 45
ASC mode considerations 45
asterisk in place of positional operand 79
attribute control block for DAIR 226

B
balanced parentheses (PSTRING) 74
buffer

GETLINE input 175
PUTGET input 199

building
a second level informational chain 190
GETLINE parameter block (GTPB) 174
list source descriptor (LSD) 163
PUTGET parameter block (PGPB) 195
PUTLINE parameter block (PTPB) 181
STACK parameter block (STPB) 162

© Copyright IBM Corp. 1988, 1991

c
CALL command 251
CALL TSSR macro instruction 53, 54
catalog information routine (IKJEHCIR) 237

parameter list (CIRPARM) 240
chaining second level messages 190
changing

addressing mode
via BASSM or BSM 48

changing the source of input 27
STACK service routine 27

characters
separator 57, 66
string definition 71
types recognized by command scan 57
types recognized by parse service routine 66

checking
syntax of command operands 63
validity of command operands 68, 115

checking syntax
of command operands 13
of subcommand operands 30

CIRPARM (parameter list) 240
coding examples

parse macro 113, 151
PUTLINE macro 183
STACK specifying an in-storage list as the input

source 167
text insertion 189

combining the LIST and RANGE options 137
command buffer 8

format of 8
input to command scan service routine

(IKJSCAN) 30
input to parse service routine (IKJPARS) 13
returned by PUTGET 29

command library
adding a new member 37
concatenating a new data set 37

command name syntax
checking a command's syntax 56
requirements 56
user-written commands 56

command operand
checking syntax of 63
default values 68
delimiter-dependent operands 70
positional operands 70
syntax 69
validity checking 68, 115

command operands 9
checking syntax of 13
definition 247

257

command operands (continued)
determining validity of 13, 63
keyword operands 9
positional operands 9
subfields of keyword operands 9
syntax validity 63

command processor parameter list {CPPL) 7, 50
accessing 11
mapping macro 11

command processors 5
adding to private step library 37
adding to SYS1.CMDLIB 37
allocating and freeing data sets 207
changing the source of input 27
communicating with the user 25
completion code 36
definition of 5
determining validity of operands 13
example 15
executing 39
functions that rely on error routine support 34
installing 37
message handling 25
parameter list {CPPL) 7, 50
passing control to subcommand processors 29
processing abnormal terminations {ABENDS) 33
return codes 12
steps for writing 11

command scan output area and command buffer
settings 61

command scan output area {CSOA) 59
command scan parameter list (CSPL) 58
command scan service routine (IKJSCAN) 30, 55

character types recognized 57
operation of 60
output area 59
parameter list 58
passing flags to 59
results of 61
return codes 61

command syntax defining 81
commands

CALL 251
summary 251
TIME 254
WHEN/END 255

comments 248
communicating with the user 25
concatenating

data sets 216
DDNAMES 216

CONSTANT operand type 75
control blocks

required by dynamic allocation interface routine
(DAIR) 208

required by PUTGET service routine 198, 199
control flags in the GETLINE parameter block 174

258 MVS/ESA TSO Programming

CPPL (command processor parameter list) 7, 50
accessing 11
mapping macro 11

current source of input 156
CVT mapping macro 53

D
DAIR attribute control block {DAIRACB) 226
DAIR parameter block (DAPB) 209

code X'OC' 216
code X'OO' 210
code X'04' 211
code X'08' 212
code X'10' 216
code X'14' 217
code X'18' 217
code X'2C' 223
code X'24' 219
code X'28' 222
code X'30' 223
code X'34' 223
description of 209

DAIR parameter list (DAPL) 208
DAIR (dynamic allocation interface routine) 208

control blocks 208
definition 207
entry codes 209
entry point 208
functions provided by 209
IKJDAIR entry point 208
IKJDAIR load module 208
indicating requested function to 209
return codes 229

DAIRFAIL routine (IKJEFF18) 26, 231
data lines

definition 182
data name 76
data name qualifier 76
data output

multiline 182
single line 182

data set
allocation 207
allocation by DDNAME 219
allocation by DSNAME 212
concatenating 216
deconcatenating 216
freeing 217
marking allocatable 223
marking not in use 223
name

finding 209
qualifiers 217
SYSOUT

allocation of 223
used during TSO processing 223

data set name
searching for 209

DDNAME
allocation by 219

deconcatenating data sets 216
defining command syntax 81
delete

elements from the input stack 157, 160
procedure element from the input stack 160

delimiter 249
definition 70
dependentoperands 70

determining the validity of commands 13, 63
determining the validity of subcommands 55
diagnostic error message 36
DSECT= 82
OS NAME

allocation by 212
definition 74
formats 74
operand missing 75

OS THING
definition 75

dynamic allocation of data sets
functions 207
return codes 230

E
ECT (environment control table) 7, 50
element

input stack
adding 157, 160
coding 162
deleting 156, 160

end-of-data (EOD) processing (GETLINE) 174
entry codes to DAIR 209
entry points

IKJDAIR 54
IKJEFF02 54
IKJEHCIR 54
IKJPARS 54
IKJSCAN 54

entry name
syntax of 72

environment control table (ECT) 7, 50
error messages 36
ESTAE and ESTAI exit routine guidelines 36
ESTAE retry routines 36
examples

address expression
indirect addressing 74

IKJPARMD DSECT 82
indirect addressing 73
parse service routine 109, 142
PDE formats affected by LIST and RANGE

options 137
POL returned by parse service routine 152

expression 77
address 73

expression value
definition 73

extended address
absolute 71

extended format PCE
bit indication of

IKJIDENT 102
IKJOPER 95
IKJPOSIT 87
IKJTERM 92

extended mode 71
EXTENDED operand of IKJPOSIT

effect on
absolute address 71
relative address 71

extraction, of messages 201

F
figurative constant 76
finding data set name 209
finding data set qualifiers 217
fixed-point numeric literal 75
floating-point numeric literal 76
floating-point register address

syntax of 72
format

PCE built by
IKJENDP 108
IKJIDENT 102
IKJKEYWD 104
IKJNAME 106
IKJOPER 95
IKJPARM 83
IKJPOSIT 87
IKJRSVWD 98
IKJSUBF 108
IKJTERM 92

PUTGET input buffer 199
format only function

difference between text insertion processing 190
formatting

output line 188
forward chain pointers 183
freeing

a data set 217
GETLINE input buffer 175
PUTLINE buffer 199

function

G

format only (PUTLINE) 189
text insertion {PUTLINE) 188

general registers 72

Index 259

GETLINE macro
end-of-data (EOD) processing 174
execute form 171
input buffer 175
list form 171
logical line processing 173
macro instruction description 171
operands 171
parameter block 174
return codes 175
returned record

identifying source of 173
sources of input 173

GETLINE parameter block (GTPB) 174
initializing 170

GETLINE, getting a line of input 170
GNRLFAIL/VSAMFAIL routine (IKJEFF19) 26, 235
GTPB, GETLINE parameter block 155
guidelines

for making general linkage decisions 45
guidelines for ESTAE and ESTAI exit routines 36

identifying the source of a record returned by
GETLINE 173

IKJCSPL 58
IKJDAIR

entry point to 208
IKJEFFMT 202
IKJEFF02 (TSO message issuer routine) 26, 201
IKJEFF18 (DAIRFAIL routine) 26, 231
IKJEFF19 (GNRLFAIL/VSAMFAIL routine) 26, 235
IKJEFTE2 2
IKJEFTE8 2
IKJEHCIR (catalog information routine) 237
IKJENDP 108
IKJIDENT 99
IKJKEYWD 104
IKJNAME 105
IKJOPER 93
IKJPARM 82
IKJPARMD 82
IKJPARS 13, 63
IKJPOSIT 84
IKJPPL 117
IKJPTGT 154
IKJRSVWD 96
IKJSCAN 30
IKJSUBF 107
IKJTERM 88, 89
IKJTSMSG macro

description 204
IKJTSMSG macros

example of CSECT containing 205
in-storage list

adding an element 157, 160
as input source 161

260 MVS/ESA TSO Programming

in-storage list (continued)
coding example 167 ·

indirect address operand 72
indirection symbol (%) 72
informational

chain 190
eliminating 190

multilevel message 184
second level message 183

informational messages, issuing 26
initializing

GETLINE parameter block 170
input/output parameter block 154
PUTGET parameter block 195
PUTLINE parameter block 178
STACK.parameter block 162, 163

input buffer 29
GETLINE 175
PUTGET 199

input line format 175, 199
input output parameter list (IOPL) 154
input parameter list for IKJEFF02

extended format 202
standard format 202

input sourc!'l
changing 156
GETLINE 173
STACK 156

inserting keywords into a parameter string 68
insertion of default values . 68
interfaces

considerations
general for 31-bit addressing 45

issuing second level messages 67
1/0 macro

uses of 155
using to invoke 110 service routines 155

1/0 parameter blocks
modifying 154

1/0 parameter list 154
1/0 service routine macro instructions

GETLINE 170
PUTGET 192
PUTLINE 177
STACK 154

1/0 service routines 26, 153
execute forms of macro instructions

definitions 154
list forms of macro instructions

definitions 154
load module 154
macro instructions 154
macros used to invoke 155
parameter block

address of 155
passing control to 154
processing 1/0 153
using 153

110, performing 27
BSAM 27
GETLINE 27
PUTLINE 27
QSAM 27

J
JCL for executing TSO commands 39
jobname operand 75

K
keyword

insertion 68
operands for parse 80, 141
parameter descriptor entry (PDE) 141
subfields 80, 107

keyword operand 247, 248
keyword operands 9

L
levels of indirect addressing 73
levels of messages 25, 183

multiple 184
single 184

line continuation 249
line format

input 175, 199
line number

statement number operand 77
list element

in-storage
adding to input stack 156, 161

LIST option of parse 79
list source descriptor (LSD) 163
listing the keyword operand names 80
load modules

IKJDAIR 208
IKJPTGT 154

locating data set name 209
logical line processing 171, 173
LSD (list source descriptor)

describing in-storage list for STACK 157

M
macro instructions

CALLTSSR 53
GETLINE 27, 170, 171
IKJENDP 108
IKJIDENT 99
IKJKEYWD 104
IKJNAME 105
IKJOPER 93
IKJPARM 82
IKJPOSIT 84
IKJRLSA 109

macro instructions (continued)
IKJRSVWD 96
IKJSUBF 107
1/0

definition 154
LINK 48
LOAD 48
parse 13
PUTGET 192
PUTLINE 27, 177
STACK 27, 156

macro interfaces 48
CALLTSSR 53
GETLINE 154
IKJEFFMT 202
IKJTSMSG 204
LINK 48
LOAD 48
parse macros 82
PUTGET 154
PUTLINE 154
STACK 154

macro notation 42
marking data sets not in use 223
member name

syntax of 75
message extraction 201
message handling 25

DAIRFAIL routine (IKJEFF18) 26
. GNRLFAIL/VSAMFAIL routine (IKJEFF19) 26

110 service routines 26
message levels 25
TSO message issuer routine (IKJEFF02i 26

message issuer routine (IKJEFF02) 201
message lines output 183 .
messages

building PUTLINE text insertion 188
chaining 190.
classes

definition 25
error 36
formatting 153, 189
identifier

definition 188
informational (issuing) 26
levels 25
line processing 183

additional for PUTLINE 188
lines 183
mode (definition) 25, 192
mode (issuing) 26, 29
multilevel

definition 184
writing 182

passing to PUTGET 196
passing to PUTLINE 186
prompting (definition) 25
prompting (issuing) 26

Index 261

messages (continued)
second-level 67
single level 184
without message identifiers 188

methods of constructing an IOPL 154
missing DSNAME 75
missing operands 67
missing positional operands 70
mode messages

definition 25, 198
issuing 26, 29

modulename
syntax of 72

multilevel messages
definition 184

multiline data output 182
MVS/ESA

addressing mode
24-bit 46

AMODE=31 46
receive control

in 31-bit addressing mode 46
residency

requirements 46
restrictions

on executing exclusively in 31-bit mode 46
RMODE=ANY

AMODE=31 46
RMODE=24

AMODE=31 46
MVS/ESA. considerations

addressing mode 45
24-bit 46, 49
31-bit 49

AMODE=ANY, RMODE=24 46
AM ODE= 24, RM ODE= 24 46
AR mode 45
ASC mode 45
control program interfaces

user-written command processors 47
guidelines

for making general linkage decisions 45
input residency

below 16 megabytes 46, 47
interface considerations 45
macro interfaces

CALLTSSR 49
GETLINE 49
IKJTSMSG 49
parse macros 49
PUTGET 49
PUTLINE 49
quick reference table 49
STACK 49

primary mode 46
program residency

below 16 megabytes 46
residency

program 45

262 MVS/ESA TSO Programming

MVS/ESA considerations (continued)
restrictions

N

on invoking programs with 24-bit
dependencies 47

RMODE=24
AMODE =ANY 46
AMODE=24 46

service routine interfaces
catalog information routine (IKJEHCIR) 47
command scan service routine (IKJSCAN) 47
DAIRFAIL (IKJEFF18) 47
dynamic allocation interface routine

(IKJDAIR) 47
GETLINE service routine (IKJGETL) 47
GNRLFAIL/VSAMFAIL (IKJEFF19) 47
parse service routine (IKJPARS) 47
PUTGET service routine (IKJPTGT) 47
PUTLINE service routine (IKJPUTL) 47
STACK service routine (IKJSTCK) 47
TSO message issuer routine (IKJEFF02) 47

specific interfaces and functions 47
31-bit addressing

general interface considerations 45

name
qualified (definition) 75
unqualified (definition) 74

naming the POL (DSECT=) 82, 121
no message identifiers on second level

messages 188, 190
non-delimiter dependent positional operands 78
non-numeric literal 76
notation for defining macro instructions 42
null PSTRING

definition 74
null quoted string (QSTRING) definition 75
null string

definition 71

0
OLD (output line descriptor) 178, 186
operand

in an expression 77
missing 67

operands
address

forms of 71
operation of command scan service routine 60
operator

expression operand 77
operator operand of WHEN command 255
output

multi line data 184
output line descriptor (OLD) 178, 186

PUTLINE 186

output message
building 188
response obtained 190
with the PUTLINE macro instruction 177

OUTPUT= 0 keyword (for GET function of PUT GET
only) 193

p
parameter block

GETLINE (GTPB) 174
PUTGET(PGPB) 195
PUTLINE (PTPB) 178
STACK(STPB) 162

parameter control entry (PCE) 81
beginning the 81
built by

IKJENDP 108
IKJIDENT 102
IKJKEYWD 104
IKJNAME 106
IKJOPER 95
IKJPARM 83
IKJPOSIT 87
IKJRSVWD 98
IKJSUBF 108
IKJTERM 92

releasing storage allocated by parse 108
parameter control list (PCL) 81
parameter descriptor entries (PDE) 81, 121

combining list and range options 137
description 121
keyword operands 141
list option 134
positional operands 121
range option 136

parameter descriptor list (POL) 121
beginning the 81

parameter list
catalog information routine parameter list

(CIRPARM) 240
command processor parameter list (CPPL) 7, 50
command scan parameter list {CSPL) 58
DAIR parameter list (DAPL) 208
input/output parameter list {IOPL) 154
parameter description list (POL) 121
parse parameter list {PPL) 117

parameter string
inserting keywords into 68

parameter syntax
command 69

parenthesized string (PSTRING) format of 74
parse macro instructions 63, 81

coding examples 113, 151
combining LIST and RANGE options 136
description 81
IKJENDP 108
IKJIDENT 99

parse macro instructions (continued)
IKJKEYWD 104
IKJNAME 105
IKJOPER 93
IKJPARM 82
IKJPOSIT 84
IKJRLSA 109
IKJRSVWD 96
IKJSUBF 107
IKJTERM 89
LIST option 134
order of coding for positional operands 83
RANGE option 135

parse parameter I ist (PPL) 117
parse service routine

character types recognized 66
parse service routine {IKJPARS) 13, 63

character types recognized 66
examples of use 109, 142
insertion of default values 68
insertion of keywords 68
issuing second level messages 67
macro instruction description 81
parse parameter list {PPL) 117
passing control to 117
passing control to a validity checking routine 68,

115
positional operands 70
validity checking routines 14

passing control
to 1/0 service routines 154
to parse service routine 117
to the TSO service routines 50
to validity checking routine 68, 115

passing flags to command scan 59
passing message lines

to PUTGET 196
to PUTLINE 186

PDE (parameter descriptor entry)
combining LIST and RANGE options 136
effect of LIST and RANGE options on format 134
format (general) 121
types

ADDRESS parameter 125
CONST ANT 128
DSNAME or DSTHING operand 123
EXPRESSION 132
expression value operand 127
IKJIDENT parameter 133
JOBNAME operand 124
KEYWORD operand 141
non-delimiter dependent operand 133
positional operand 121
RESERVED word 132
STATEMENT NUMBER 130
STRING, PSTRING, or a QSTRING operand 122
VALUE opera.nd 122
VARIABLE 131

Index 263

POL
header 121

POL (parameter descriptor list)
naming (DSECT=) 121

perform a list of DAIR operations 222
PGPB, PUTGET parameter block 155
physical line processing 173
pointer

forward chain 183
to the formatted line (PUTLINE) 189
to the 110 service routine parameter block 154

positional operands 9, 247
checking for logical errors 14
description 70
missing 70
not dependent upon delimiters 78
order of coding parse macros 83
specified as lists or ranges 79, 134

primary mode 46
primary text segment

offset of 188
processing

modes 190
physical line 173

program residency
below 16 megabytes 46

program-id
statement number operand 77
variable operand 76

programs
command processors 5

prompt message
second level 67

prompting
scanning the input buffer 55

prompting messages
definition 25
issuing 26

protected step control block (PSCB) 7, 50
provided by TSO 247
PSCB (protected step control block) 7, 50
PSTRING

syntax of 74
PTPB, PUTLINE parameter block 155
purging the second level message chain 190
PUTGET buffer

freeing 199
PUTGET macro instruction

format 192, 194
OUTPUT=O 198

PUTGET parameter block 195
initializing 195

PUTGET processing 198
PUTGET service routine 26, 190

control blocks 198, 199
description 190
input buffer format 199
input line format 199

264 MVS/ESA TSO Programming

PUTGET service routine (continued)
macro instruction

execute form 193
list form 192

mode message processing 198
no output line 198
operands 193, 194
output line descriptor (OLD) 196
parameter block (PGPB) 195
passing message lines to 196
return codes 199
sources of input 192
text insertion 196

PUTLINE functions for message lines 183
PUTLINE macro instruction

coding example 182
format of 177

PUTLINE parameter block 181
initializing 178

PUTLINE service routine 26, 177
building a second-level informational chain 190
coding examples of 189
control blocks 187
control flags 181
description 177
format only function 189
macro instruction

execute form 178
list form 177

message line processing 188
message processing control blocks 187
operands 177, 178
output line descriptor (OLD)

for multilevel message 186
for single level message 186

output lines
format 181

parameter block 181
passing message lines to 186
processing of second level messages 183
PUTLINE parameter block (PTPB) 181
return codes 190
text insertion function 188
types and formats of output lines 181

PUTLINE, writing a line to the output data set 177

Q
QSTRING definition 75
qua I ificatlon

variable operand 76
qualified address operand 72

formats 72
qualifier

data name 76
quoted string (QSTRING)

syntax of 75

R
range

use of (general) 79
range option

how to use 135
register

floating-point 72
general 72

relationship between primary and secondary segments
(PUTLINE) 189

relative address operand 71
residency

program 45
restrictions

non-delimiter dependent operands 78
results of command scan 61
return codes

from CALL command 253
from command scan 61
from DAIR 229
from dynamic allocation 230
from GETLINE 175
from IKJEHCIR 243
from LOCATE 244
from parse service routine 119
from PUTGET 199
from PUTLINE 190
from ST ACK 164
from TIME command 254
from WHEN command 255
validity checking 116

return codes from command processors 12
RMODE=ANY

AMODE=31 46
RMODE=24

s

AMODE =ANY 46
AMODE=24 46
AMODE=31 46

second level messages
definition 25
informational messages 190
message chain 190
messages handled by parse 67
no message identifiers 190

secondary text segment
offset of 188

separator characters 57, 66, 69
service routine interfaces

catalog information routine (IKJEHCIR) 47, 239
DAIR 208
DAIRFAIL (IKJEFF18) 47, 231
dynamic allocation interface routine (IKJDAIR) 47
GETLINE service routine (IKJGETL) 47, 155
GNRLFAIL/VSAMFAIL (IKJEFF19) 47, 235

service routine interfaces (continued)
parse service routine (IKJPARS) 47
PUTGET service routine (IKJPTGT) 47, 155
PUTLINE service routine (IKJPUTL) 47, 155
STACK service routine (IKJSTCK) 47, 155
TSO message issuer routine (IKJEFF02) 47, 201

setting
addressing modes

via BASSM or BSM 48
single level messages 184
single line data 182
source data set

in storage 161
adding an element to the input stack 157, 160

sources of input 161
changing 156
current 156

space operand
definition 75

specifying positional operands
as a list 79

STACK macro instruction 156
execute form 158
list form 156

stack parameter block (STPB) 163
STACK service routine 156

coding example of macro 162
control block structures

in-storage list 166
description 156
element code 162
input source 161
list source descriptor (LSD) 163
macro instruction

execute form 158
I ist form 156

parameter block 162
return codes 164

STPB, STACK parameter block 155
string

definition 71
subcommand name

determining validity of 55
syntax validity 55

subcommand name syntax
checking a subcommand's syntax 55

subcommand names
checking syntax of 30
determining validity of 30

subcommand operands
syntactically valid 63

subcommand processors 9, 29
definition of 9
passing control to 30
releasing 31
steps for writing 31

subcommands 29
invoking 9

Index 265

subcommands (continued)
recognizing 29

subfield descriptions 107
subfields associated with keyword operands 107
subfields of keyword operands 9
subscript

statement number operand 77
variable operand 77

symbolic address
syntax of 72

syntax
notation for defining macro instructions 42

SYSOUT data set
allocation of 223

SYSRC operand of WHEN command 255
system catalog

searching for data set name 209
SYSTSIN DD statement 40, 156

input to 1/0 service routines 161
SYSTSPRT DD statement 40

T
terminal monitor program (TMP)

basic functions 7
description 7
executing 39
functions of 7

text insertion function of PUTLINE 188
TIME command 254
TMP (terminal monitor program) 7

basic functions 7
translation to upper case 68
TSO 1/0 service routines 153
TSO message issuer routine (IKJEFF02) 26, 201
TSO service routines

u

their uses and interfaces
IKJCSOA 59
IKJCSPL 58
IKJDAIR 208
IKJENDP 108
IKJGTPB 174
IKJIDENT 99
IKJIOPL 154
IKJKEYWD 104
IKJNAME 105
IKJOPER 93
IKJPARM 82
IKJPOSIT 83
IKJRLSA 108
IKJRSVWD 96
IKJSUBF 107
passing control to 50

UPT (user profile table) 7, 50

266 MVS/ESA TSO Programming

user profile table (UPT) 7, 50
user, communicating with 25
using

DAIR 208
parse macro instructions 81
parse service routine (IKJPARS) 63
PUTLINE format only function 189
PUTLINE text insertion function 188
TSO 1/0 service routines 153

utility data set allocation 212

v
validity check parameter list 116
validity checking routines 14
value operand definition 71
variable operand 76
verb number

statement number operand 77
VSAMFAIL routine 235

w
WHEN/END command 255

Numerics
31-bit addressing

general interface considerations 45

Reader's Comments

MVS/ESA
TSO Programming

MYS/System Product:
JES2 Version 3
JES3 Version 3

Publication No. GC28-1565-2

Use this form to tell us what you think about this manual. If you have found errors in
it, or if you want to express your opinion about it (such as organization, subject
matter, appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer. This form is provided for comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

!
Reader's Comments -;--:-:. ~ i Cut o·

GC28·1565-2 ~ ::-:.:§~5:
®

Fold and Tape Please do not staple Fold and Tape -- -- -- --- -- -- ---- --- -- -- -- ------------- -- - --- --- --- -------------------- -- --- --- -------------------------------- ------- ---- ·::~=:~:::·----------1.:

NECESSARY

GC28-1565-2

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO BOX 950
POUGHKEEPSIE NY 12602-9935

IF MAILED IN THE
UNITED STATES

; Cu

I .,,

--------- - - --- - -- - ---- - - ----------- ·-
®

Printed in U.S.A.

Program Number
5685-001
5685-002

GC28-1565- 2

File Number
8370-39

