
MVS / ESA

Application Development Guide:
Assembler Language Programs

MVS / ESA System Product:
JES2 Version 4
JES3 Version 4

GC28-1644-1

--------- -------- - ---- -- ----------_.- MVS/ ESA

Application Development Guide:
Assembler Language Programs

MVS / ESA System Product:
JES2 Version 4
JES3 Version 4

GC28-1644-1

Nme! --~

Before using this information and the product it supports, be sure to read the general information under
"Notices" on page xii.

Production of This Book ----------------------------~

This book was prepared and formatted using the IBM BookMaster document markup language.

Second Edition (March, 1991)

This is a major revision of, and obsoletes, GC28-1644-0 and Technical Newsletter GN28-1149. See the
Summary of Changes for the changes made to this manual. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

This edition applies to Version 4 of MVS/ESA System Product 5695-047 or 5695-048 and to all subsequent
releases and modifications until otherwise indicated in new editions or Technical Newsletters. Make sure
you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, Department D58
PO Box 950
Poughkeepsie, N.Y. 12602
United States of America

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

@Copyrlghllnlernallonal Business Machines Corporation 1988, 1991. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures ix
Notices xii

Programming Interfaces xii
Trademarks xii

About This Book xiii
Who Should Use This Book xiii
How To Use This Book xiv
Where to Find More Information xv

Summary of Changes xix

Chapter 1. Introduction 1-1

Chapter 2. Linkage Conventions 2-1
Saving the Calling Program's Registers 2-2

Caller-Provided Save Area 2-2
System-Provided Linkage Stack 2-2

Using the Linkage Stack 2-2
Example of Using the Linkage Stack 2-3

Using a Caller-Provided Save Area 2-3
Example of Using the Caller-Provided Save Area 2-4

Establishing a Base Register 2-5
Linkage Procedures for Primary Mode Programs 2-5

Primary Mode Programs Receiving Control 2-5
Primary Mode Programs Returning Control 2-6
Primary Mode Programs Calling Another Program 2-7

Linkage Procedures for AR Mode Programs 2-7
AR Mode Programs Receiving Control 2-7
AR Mode Programs Returning Control 2-7
AR Mode Programs Calling Another Program 2-8

Conventions for Passing Information Through a Parameter List 2-8
Program in Primary Mode 2-8
Programs in AR Mode 2-9

Chapter 3. Subtask Creation and Control 3-1
Creating the Task 3-1
Priorities 3-2
Task and Subtask Communications 3-4

Chapter 4. Program Management 4-1
Residency and Addressing Mode of Programs 4-1

Residency Mode Definitions 4-2
Addressing Mode Definitions 4-2

Li nkage Considerations 4-2
Passing Control Between Programs with the Same AMODE 4-3
Passing Control Between Programs with Different AMODEs 4-3

Load Module Structure Types 4-4
Load Module Execution 4-5
Passing Control in a Simple Structure 4-5

Passing Control without Return 4-6
Passi ng Control with Return 4-8

© Copyright IBM Corp. 1988, 1991 iii

Passing Control in a Dynamic Structure 4-14
Bringing the Load Module into Virtual Storage 4-14
Passing Control with Return 4-20
Passing Control without Return 4-24

Additional Entry Points 4-26
Entry Point and Calling Sequence Identifiers as Debugging Aids 4-26

Chapter 5. Understanding 31·81t Addressing 5-1
Vi rtual Storage 5-1
Addressing Mode and Residency Mode 5-1
Requirements for Execution in 31-8it Addressing Mode 5-3
Rules and Conventions for 31-Bit Addressing 5-4
Mode Sensitive Instructions 5-4
Branching Instructions 5-5
Use of 31-8it Addressing 5-5

Planning for 31-Bit Addressing 5-6
Converting Existing Programs 5-6
Writing New Programs That Use 31-8it Addressing 5-9

Addressing Mode and Residency Mode 5-12
Addressing Mode - AMODE 5-12
Residency Mode - RMODE 5-13
AMODE and RMODE Combinations 5-13
AMODE and RMODE Combinations at Execution Time 5-13
Determining the AMODE and RMODE of a Load Module 5-14
Assembler H Support of AMODE and RMODE 5-14
DFP Linkage Editor Support of AMODE and RMODE 5-16
DFP Loader Support for AMODE and RMODE 5-19
MVS Support of AMODE and RMODE 5-20
How to Change Addressing Mode 5-22

Establishing Linkage 5-24
Using the BASSM and BSM Instructions 5-25
Using Pointer-Defined Linkage 5-28
Using Supervisor-Assisted Linkage 5-30
Linkage Assist Routines 5-32
Using Capping - Linkage Using a Prologue and Epilogue 5-37

Performing 110 in 31-Bit Addressing Mode 5-38
Understanding the Use of Central Storage 5-50

Central Storage Considerations for User Programs 5-50

Chapter 6. Resource Control 6-1
Synchronizing Tasks (WAIT, POST, and EVENTS Macros) 6-1
Serializing Access to Resources (ENQ and DEQ Macros) 6-3

Naming the Resource 6-4
Defining the Scope of a Resource 6-4
Requesting Exclusive or Shared Control 6-5
Limiting Concurrent Requests for Resources 6-6
Processing the Requests 6-6

Chapter 7. Program Interruption Services 7 -1
Specifyi ng User Exit Routi nes 7 -1

Usi ng the SPI E Macro 7-2
Using the ESPIE Macro 7-4
Environment Upon Entry to User's Exit Routine 7-5
Functions Performed in User Exit Routines 7-6

Chapter 8. Program Termination and Dumping Services 8-1

iv Assembler Programming Guide

Recovery/Termination Services 8-1
Recovery Routine Processing 8-2
Using SETRP to Change the Completion and Reason Codes 8-2
Changing the Completion and Reason Codes Directly 8-3
Handling Abnormal Conditions 8-3
Summary of Recovery Routine Characteristics 8-12

Dumping Services 8-13
ABEND Dumps 8-13
Obtaining a Symptom Dump 8-13
SNAP Dumps 8-13
Obtaining a Summary Dump 8-14

Reporting Symptom Records 8-14
Writing Symptom Records to SYS1.LOGREC 8-15
The Format of the Symptom Record 8-15
Symptom Strings - SDB Format 8-16
Programming Notes for SYMREC Applications 8-16

Chapter 9. Virtual Storage Management 9-1
Explicit Requests for Virtual Storage 9-1

Obtaining Storage Through the GETMAIN Macro 9-2
Obtaining Storage Through the STORAGE Macro 9-4
Using the CPOOL Macro 9-5
Subpool Handling 9-6

Implicit Requests for Virtual Storage 9-9

Chapter 10. Callable Cell Pool Services 10-1
Comparison of CPOOL Macro and Callable Cell Pool Services 10-1
Storage Considerations 10-2
Link-editing Callable Cell Pool Services 10-4

Using Callable Cell Pool Services 10-4
Handling Return Codes 10-6
Callable Cell Pool Services Coding Example 10-7

Chapter 11. Data-ill-Virtual 11-1
When to Use Data-in-Virtual 11-2
Using the Services Of Data-in-Virtual 11-4
The IDENTIFY Service 11-6
The ACCESS Service 11-7
The MAP Service 11-10
The SAVE Service 11-15
The RESET Service 11-17
The UN MAP Service 11-18
The UNACCESS and UNIDENTIFY Services 11-19
Sharing Data in an Object 11-20
Miscellaneous Restrictions for Using Data-in-Virtual 11-20
DIV Macro Programming Examples 11-20

General Program Description 11-21
Data-in-Virtual Sample Program Code 11-22
Executing the Program 11-27

Chapter 12. Using Access Registers 12-1
Access Lists 12-3

Types of Access Lists 12-3
Writing Programs in AR Mode 12-6
Rules for Coding Instructions in AR Mode 12-7
Manipulating the Contents of ARs 12-8

Contents Y

loadi ng an AlET into an AR 12-8
loading the Value of Zero into an AR 12-8

The AlESERV Macro 12-9
Adding an Entry to an Access List 12-9
Deleting an Entry from an Access List 12-10

Issuing MVS Macros in AR Mode 12-11
Formatting and Displaying AR Information 12-12

Chapter 13. Data Spaces and Hlperspaces 13-1
What are Data Spaces and Hiperspaces? 13-1
What Can a Program Do With a Data Space or a Hiperspace? '13-2
Differences Between Data Spaces and Hiperspaces 13-4

Comparing Data Space and Hiperspace Use of Physical Storage 13-5
Which One Should Your Program Use? 13-6

An Example of Using a Data Space 13-6
An Example of Using a Hiperspace 13-6

Creating and Using Data Spaces 13-7
Manipulating Data in a Data Space 13-7
Rules for Creating, Deleting, and Managing Data Spaces 13-7
Creating a Data Space 13-8
Establishing Addressability to a Data Space 13-12
Examples of Moving Data into and out of a Data Space 13-13
Extending the Current Size of a Data Space 13-16
Releasing Data Space Storage 13-17
Pagi ng Data Space Storage Areas into and out of Central Storage 13-17
Deleting a Data Space 13-18
Using Callable Cell Pool Services to Manage Data Space Areas 13-18
Sharing Data Spaces among Problem State Programs with PSW Keys 8 -

F 13-20
Sharing Data Spaces through the PASN-AL 13-21
Example of Mapping a Data-in-Virtual Object to a Data Space 13-22
Using Data Spaces Efficiently 13-23
Example of Creating, Using, and Deleting a Data Space 13-24
Dumping Storage in a Data Space 13-25

Creating and Using Hiperspaces 13-26
Standard Hiperspaces 13-27
Creating a Hiperspace 13-28
Transferring Data To and From Hiperspaces 13-29
Extending the Current Size of a Hiperspace 13-34
Releasing Hiperspace Storage 13-34
Deleting a Hiperspace 13-34
Example of Creating a Standard Hiperspace and Using It 13-35
USing Data-in-Virtual with Hiperspaces 13-37

Chapter 14. Window Services 14-1
Structure of a Data Object 14-1
What Does Window Services Provide? 14-2
The Ways That Window Services Can Map an Object 14-3
Access to Permanent Data Objects 14-6
Access to Temporary Data Objects 14-7

Using Window Services 14-8
Obtaining Access to a Data Object 14-9
Defining a View of a Data Object 14-10
Defining the Expected Reference Pattern 14-12
Defining Multiple Views of an Object 14-14
Saving Interim Changes to a Permanent Data Object 14-14

vi Assembler Programming Guide

Updating a Temporary Data Object 14·15
Refreshing Changed Data 14-15
Updating a Permanent Object on DASD . 14-16
Changing a View in a Window 14-17
Terminating Access to a Data Object 14-18
Link-editing Callable Window Services 14-18

Window Services Coding Example 14-19

Chapter 15. Processor Storage Management 15-1
Freeing Virtual Storage 15-2
Releasing Storage 15-2
Loading/Paging Out Virtual Storage Areas 15-3
Virtual Subarea List (VSL) 15-4
Page Service List (PSL) 15-5
Defining the Reference Pattern (REFPAT) 15-5

How Does the System Handle the Data in an Array? 15-6
Using the REFPAT Macro 15-9
Examples of Using REFPAT to Define a Reference Pattern 15-13
Removing the Definition of the Reference Pattern 15-14

Chapter 16. Timing and Communication 16-1
Obtaining Date and Time of Day 16-1
Interval Timing 16-1
Obtaining Accumulated Processor Time 16-3
Writing and Deleting Messages (WTO, WTOR, DOM, and WTL) 16-3

Routi ng the Message 1-6-5
Writing a Multiple-Line Message 16-8
Embedding Label Lines in a Multiple-Line Message 16-8

Communicating in a Sysplex Environment 16-8
Writing to the Programmer 16.;.8
Writing to the System Log 16-9

Deleting Messages Already Written 16-9
Identifying Messages to be Deleted 16 .. 10

Retrieving Console Information (CONVCON macro) 16-10
Determining the Name or 10 of a Console 16-10
Validating a Console Name or 10 and Checking if a Console Is Active 16-11
Validating a Console Area 10 16-12
Coding Example 16-13

Chapter 17. Translating Messages 17-1
Allocating Data Sets for an Application 17-2
Creating Install Message Files 17-2

Creating a Version Record 17-2
Creating Message Skeletons 17-3
Message Skeleton Format 17 .. 3
Message Text in a Skeleton 17-4

Validating Message Skeletons 17-5
Compiling Message Files 17-7
Checking the Message Compiler Return Codes 17-9

Updating the System Run-Time Message File 17-9
Using MMS Translation Services in an Application 17-9

Determining which Languages are Available (QRYLANG) 17-10
Retrieving Translated Messages (TRANMSG) 17-10

Using Message Parameter Blocks for New Messages (BLDMPB and
UPDTMPB) 17-11

Support for Additional Languages 17-12

. Contents vii

Example of an Application that Uses MMS Translation Services 17-13

Chapter 18. Using Data Compression and Expansion Services 18-1
Services Provided 18-1
Running under an MVS/ESA System 18-2

Using the MVS/ESA Version of the Services 18-2
Using the MVS/XA Version of the Services 18-3

Running under an MVS/XA System 18-4

Chapter 19. Accessing Unit Control Blocks (UCBs) 19-1
Detecting I/O Configuration Changes 19-1
Scanning UCBs 19-2
Obtaining Eligible Device Table Information 19-4

Index X-1

viii Assembler Programming Guide

Figures

1-1. Application Development Books for Assembler Language Programs xiv
1-2. Application Development Books for High-Level Language Programs xv
1-3. Application Development Books for Both Assembler and High-Level

Language Programs xv
2-1. Format of the Save Area 2-3
2-2. Primary Mode Parameter List 2-9
2-3. AR Mode Parameter List 2-9
3-1. Levels of Tasks in a Job Step 3-4
4-1. Assembler Definition of AMODE/RMODE 4-1
4-2. Example of Addressing Mode Switch 4-4
4-3. Characteristics of Load Modules 4-5
4-4. Passing Control in a Simple Structure 4-7
4-5. Passing Control With a Parameter List 4-7
4-6. Passi ng Control With Retu rn 4-9
4-7. Passing Control With CALL 4-9
4-8. Test for Normal Return 4-10
4-9. Return Code Test Using Branching Table 4-11

4-10. Establishing a Return Code 4-12
4-11. Using the RETURN Macro 4-13
4-12. RETURN Macro with Flag 4-13
4-13. Search for Module, EP or EPLOC Parameter With DCB=O or DCB

Parameter Omitted 4-16
4-14. Search for Module, EP or EPLOC Parameters With DCB Parameter

Specifying Private Library 4-17
4-15. Search for Module Using DE Parameter 4-18
4-16. Use of the LINK Macro with the Job or Link Library 4-21
4-17. Use of the LINK Macro with a Private Library 4-21
4-18. Use of the BLDL Macro 4-21
4-19. The LINK Macro with a DE Parameter 4-22
4-20. Misusing Control Program Facilities Causes Unpredictable Results 4-25

5-1. Two Gigabyte Virtual Storage Map 5-2
5-2. Maintaining Correct Interfaces to Modules that Change to AMODE 31 5-7
5-3. Establishing Correct Interfaces to Modules That Move Above 16

Megabytes 5-8
5-4. AMODE and RMODE Combinations 5-14
5-5. AMODE and RMODE Processing by the Linkage Editor 5-17
5-6. AMODE and RMODE Processing by the Loader 5-20
5-7. Mode Switching to Retrieve Data from Above 16 Megabytes 5-23
5-8. Linkage Between Modules with Different AMODEs and RMODEs 5-25
5-9. BRANCH and SAVE and Set Mode Description 5-26

5-10. Branch and Set Mode Description 5-26
5-11. Using BASSM and BSM 5-27
5-12. Example of Pointer-Defined Linkage 5-29
5-13. Example of Supervisor-Assisted Linkage 5-31
5-14. Example of a Linkage Assist Routine 5-33
5-15. Cap for an AMODE 24 Module 5-37
5-16. Performing I/O While Residing Above 16 Megabytes 5-40
6-1. Event Control Block (ECB) 6-2
6-2. Using LINKAGE = SYSTEM on the WAIT and POST Macros 6-3
6-3. ENQ Macro Processing 6-7
6-4. Interlock Condition 6-11
6-5. Two Requests For Two Resources 6-11

© Copyright IBM Corp. 1988, 1991 ix

6";6.
7-1-.
7-2.
7-3.
8-1.
8-2.
9-1.
9-2.
9-3.

10-1.
11-1.
11-2.
11-3.
12-1.
12-2.
12-3.
12-4.
12-5.
13-1.
13-2.
13-3.

13-4.
13-5.
13-6.
13-7.
13-8.
13-9.

13-10.
13-11.
13-12.
13-13.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
15-1.
15-2.
15-3.
15-4.
15-5.
15-6.
16-1.
16-2.
16-3.
16-4.
16-5.
17-1.
17-2.
17-3.
17-4.
17-5.
17-6.
17-7.

One Request For Two Resources 6-11
Program Interruption Control Area 7-2
Using the SPIE Macro 7-3
Program Interruption Element 7-3
Detecting an Abnormal Condition 8-4
Summary of the Environments of Recovery Routines 8-12
Example of Using the GETMAIN Macro 9-3
Virtual Storage Control 9-7
Using the list and the Execute Forms of the DEQ Macro 9-11
Cell Pool Storage 10-3
Mapping from an Address Space 11-11
Mapping from a Data Space or Hiperspace 11-11
Multiple Mapping 11-12
Using an ALET to Identify an an Address Space or a Data Space 12-2
An Illustration of a DU-AL 12-4
Characteristics of DU-ALs and PASN-ALs 12-5
Using Instructions in AR Mode 12-6
Base and Index Register Addressing in AR Mode 12-7
Accessing Data in a Data Space 13-4
Accessing Data in a Hiperspace 13-5
Rules for How Problem State Programs with Key 8-F Can Use Data
Spaces 13-8
Example of Specifying the Size of a Data Space 13-11
Example of Extending the Current Size of a Data Space 13-17
Example of Using Callable Cell Pool Services for Data Spaces 13-19
Two Problem Programs Sharing a SCOPE = SINGLE Data Space 13-21
Example of Scrolling through a Standard Hiperspace 13-27
Facts about a Non-shared Standard Hi perspace 13-28
Illustration of the HSPSERV Write and Read Operations 13-30
Example of Creating a Standard Hiperspace and Transferring Data 13-35
Example of Mapping a Data-in-Virtual Object to a Hiperspace 13-38
A Standard Hiperspace as a Data-in-Virtual Object 13-40
Structure of a Data Object 14-2
Mapping a Permanent Object That Has No Scroll Area 14-3
Mapping a Permanent Object That Has A Scroll Area 14-4
Mapping a Temporary Object 14-4
Mapping an Object To Multiple Windows 14-5
Mapping Multiple Objects 14-6
Releasing Virtual Storage 15-2
Example of using REFPAT with a Large Array 15-6
Illustration of a Reference Pattern with a Gap 15-8
Illustration of Forward Direction in a Reference Pattern 15-10
Illustration of Backward Direction in a Reference Pattern 15-10
Two Typical Reference Patterns 15-11
Interval Processing 16-2
Characters Printed or Displayed on an MCS Console 16-4
Descriptor Code Indicators 16-5
Writing to the Operator 16-6
Writing to the Operator With a Reply 16-7
Format of Version Record Fields 17-2
Version Record Example 17-2
Message Skeleton Fields 17-3
Sample job to invoke IDCAMS 17-6
Using JCL to Invoke the Compiler 17-7
Using CLIST to Invoke the Compiler 17-7
Using REXX to Invoke the Compiler 17-8

X AsSembler Programming Guide

17-8.
18-1.
18-2.

Languages available to MVS message service 17-12
Summary of Data Compression and Expansion Services
Testing the Level of the MVS System at Execution Time

18-2
18-3

Figures xi

NOllces

Notices
References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication
is not intended to state or imply that only IBM's program or other product may be
used. Any functionally equivalent program which does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

Programming Interfaces

Trademarks

This book is intended to help customers to code macros that are available to al\
assembler language programs. It contains guidance information needed to use
the macros. This book documents general-use programming interfaces and
associated guidance information provided by MVS/ESA System Product Version
4.

General-use programming interfaces allow the customer to write programs that
request or receive the services of MVS/ESA System Product Version 4.

The following terms, DENOTED BY AN ASTERISK (*), used in this publication, are
trademarks of. the IBM Corporation in the United States and/or other countries:

• BookMaster
• ESA/370
• Hiperspace
• IBM
• IPM
• MVS
• MVS/DFP
• MVS/ESA
• MVS/SP
• MVS/XA
• PSL
• System/370
• System/390

• VM
• VSE

xli Assembler Programming Guide

About This Book

This book describes the operating system services that an unauthorized program
can use. An unauthorized program is one that does not run in supervisor state, or
have PSW key 0-7, or reside on an APF-authorized library. To use a service, the
program issues a macro. A companion book, MVSIESA Application Development
Reference: Services for Assembler Language Programs, provides the detailed
information for coding the macros.

Some of the topics discussed in this book are also discussed in MVSIESA
Application Development Guide: Authorized Assembler Language Programs and
MVSIESA Application Development Reference: Services for Authorized Assembler
Language Programs. However, the services and macros in those books are for
authorized programs.

Who Should Use This Book
This book is for the programmer who is coding in assembler language, and who
needs to become familia,r with the operating system and the services that programs
running under it can invoke.

The book assumes that the reader understands system concepts and writes
programs in assembler language. Assembler language programming is discussed
in the fof/owing books:

• Assembler H Version 2 Application Programming Guide, SC26-4036
• Assembler H Version 2 Application Programming: Language Reference,

GC26-4037

Callable Services for High-Level Languages, GC28-1639 contains information about
operating system services for high-level language programmers.

© Copyright IBM Corp. 1988, 1991 xiii

How To Use This Book
This book is one of the set of application development books for MVS. This set
describes how to develop applications in assembler language or high-level
languages, such as C, FORTRAN, and COBOL. The following figures show how this
book fits in with the others in the set:

Figure 1-1. Application Development Books for Assembler Language Programs

Book

Assembler Programming Guide,
GC28-1644

Assembler Programming
Reference, GC28-1642

Authorized Assembler
Programming Guide, GC28-1645

Authorized Assembler
Programming Reference,
GC28-1647 to 1650

Extended Addressability Guide,
GC28-1652

Hiperbatch* Guide, GC28-1673

Batch LSR Guide, GC28-1672

• Hiperbatch is a trademark of the IBM Corporation.

xiv Assembler Programming Guide

Use this book to:

Find out how to use system services provided by
macros available to all assembler language
programs. If you are relatively new to assembler
language programming, this book is a good place to
start.

Learn how to code macros that are available to all
assembler language programs. This book is for all
assembler language programmers.

Find out how to use system services provided by
macros that are available to programs running in
supervisor state or with PSW key 0-7 or that are
APF-authorized programs. This book is for
experienced assembler language programmers; it
assumes, for example, that you are familiar with the
information in Assembler Programming Guide.

Learn how to code macros that are available to
programs running in supervisor state or with PSW
key 0-7 or that are APF-authorized programs. This
book is for experienced assembler language
programmers.

Find out how to extend the storage available to
programs through the use of access registers, cross
memory services, data spaces, and hiperspaces.
This book is for experienced assembler language
programmers.

Find out whether your installation's batch
applications can benefit from Hiperbatch and how to
use Hiperbatch. Using this book does not require a
knowledge of assembler language programming.

Find out whether your installation's batch
applications can benefit from batch LSR subsystem
and how to use batch LSR subsystem. Using this
book does not require a knowledge of assembler
language programming.

Figure 1-2. Application Development Books for High-Level Language Programs

Book

Callable Services for High-Level
Languages, GC28-1639

Use'thls book to:

Find out how to use and code program CALLs for
specific MVS services. This book is for
programmers who code programs in high-level
languages.

Figure 1-3. Application Development Sooks for Both Assembler and High-Level Language
Programs

Book Use this book to:

Authorized Callable Services,
GC28-1112

Writing Transaction Programs for
APPC/MVS, GC28-1121

Find out how to use and code program CALLs for
APPC/MVS system services that are intended for
transaction schedulers written in assembler or
high-level languages. This book is for programmers
who write transaction schedulers other than the one
APPC/MVS provides.

Find out how to use and code program CALLs for
APPC/MVS communication services. This book is for
programmers who code APPC/MVS transaction
programs in assembler or high-level languages.

Where to Find More Information
Where necessary, this book references information in other books, using shortened
versions of the book title. The following table shows the full titles and the order
numbers:

Short Title Used in This Book Title Order Number

Assembler H Version 2 Application Assembler H Version 2 Application Programming: GC26-4037
Programming: Language Language Reference
Reference

Assembler Programming Guide MVSIESA Application Development Guide: Assembler GC28-1644
Language Programs 1""1+'$ (1oolC...

Assembler Programming MVSIESA Application Development Reference: GC28-1642
Reference· Services for Assembler Language Programs

Authorized Assembler MVSIESA Application Development Guide: Authorized GC28-1645
Programming Guide Assembler Language Programs

Authorized Assembler MVSIESA Application Development Reference: GC28-1647
Programming Reference Services for Authorized Assembler Language GC28-1648

Programs, Volumes 1 - 4 GC28-1649
GC28-1650

DFP GIM MVSIDFP Version 3 Release 3 General Information GC26-4552

Diagnosis: Data Areas MVSIESA Diagnosis: Data Areas LY28-1821
thru

LY28-1825

Diagnosis: USing Dumps and MVSIESA Diagnosis: Using Dumps and Traces LY28-1813
Traces

Extended Addressability Guide MVSIESA Application Development Guide: Extended GC28-1652
Addressability for Authorized Programs

Hiperbatch Guide MVSIESA Application Development Guide: Hiperbatch GC28-1673

About This Book XV

Short Title Used in This Book Title Order Number

Batch LSR Guide MVS/ESA Application Development Guide: Batch GC28-1672
Local Shared Resources Subsystem

IBM System/370 Vector Operations IBM System/370 Vector Operations SA22-7125

IPCS Command Reference MVS/ESA Interactive Problem Control System (JpeS) GC28-1632
Command Reference

IPCS User's Guide MVSIESA Interactive Problem Control System (JPCS) GC28-1631
User's Guide

JCL Reference MVSIESA JCL Reference GC28-1654

JCL User's Guide MVS/ESA JCL User's Guide GC28-1653

JES3 Commands MVS/ESA Operations: JES3 Commands GC23-0074

MVS Conversion Notebook for MVS/ESA Conversion Notebook for MVSIESA System GC28-1608
Version 4 Product Version 4

MVS Initialization and Tuning MVSIESA Initialization and Tuning Guide GC28-1634
Guide

MVS Initialization and Tuning MVS/ESA Initialization and Tuning Reference GC28-1635
Reference

Installation Exits MVS/ESA Installation Exits GC28-1637

NLS Reference Manual NLS Reference Manual SE09-8002

Planning: Operations MVS/ESA Planning: Operations GC28-1625

Planning: Problem Determination MVS/ESA Planning: Problem Determination and GC28-1629
and Recovery Recovery

Planning: Global Resource MVS/ESA Planning: Global Resource Serialization GC28-1621
Serialization

Principles of Operation1 ESA/370· Principles of Operation SA22-7200
ESA1390· Principles of Operation SA22-7201

Problem Determination Guide MVS/ESA Problem Determination Guide GC28-1667

Routing and Descriptor Codes MVS/ESA Routing and Descriptor Codes GC28-1666

Se.~yip.f! l.i~§ ',,'., '. MVS/ESA Service Aids GC28-1669

System Commands MVS/ESA System Commands GC28-1626

System Messages MVSIESA System Messages, Volumes 1 -:3 GC28-1656
GC28-1657
GC28-1658

System Modifications MVS/ESA System Modifications GC28-1636

TSOIE Version 2 Programming TSO Extensions Version 2 Programming Services SC28-1875
Services

1 Use the appropriate Principles of Operation book for the hardware you have installed,

• ESA/370 is a trademark of the IBM Corporation,

• ESA/390 is a trademark of the IBM Corporation,

xvi Assembler Programming Guide

Notes:

1. All references to Assembler H in this publication indicate the program product
Assembler H Version 2 (5668-962).

2. All references to RMF in this publication indicate the program product Resource
Measurement Facility (5685-029).

About This Book xvii

xviii Assembler Programming Guide

Summary of Changes

Summary of Changes
for GC28-1644-1
MVS/ESA' System Product Version 4 Release 2

This major revision consists of changes to support MVS/ESA System Product
Version 4 Release 2.

New Information

• CSREVW allows your program to view an object and access it sequentially.

• REFPAT allows your program to identify a large data area and tell the system
how the program will be referencing that area.

• The 10CINFO macro obtains the MVS I/O configuration token.

• The UCBSCAN macro scans UCBs and obtains UCB copies.

• The EDTINFO macro obtains information from the eligible device table (EDT).

Changed Information

• PFCOUNT parameter on the DIV macro allows you to request that the system
preload up to 255 pages of vi rtual storage at a page fault.

• MVS now allows a problem state program with PSW key 8 - F to add a
SCOPE = SINGLE data space to the PASN-AL, and to assign- data space
ownership to its job step task.

Summary of Changes
for GC28-1644-0
as updated by Technical Newsletter GN28-1149

Changed Information: This technical newsletter contains services updates.

Summary of Changes
for GC28-1644-0
MVS/ESA System Product Version 4 Release 1

This book contains information previously presented in MVSIESA Application
Development Guide, GC28-1821-2, which supports MVS/SP Version 3 Release 1.3.

This revision also includes minor maintenance and editorial changes.

Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

The following summarizes the changes to that information.

• MVS/ESA is a trademark of the IBM Corporation.

© Copyright IBM Corp. 1988, 1991 xix

New Information

• The CONVCON macro enables you to convert console IDs to names, and
console names to IDs.

• A new resource name list (RNL) parameter on the OEO and ENO macros
specifies whether RNL processing is to occur for a resource or resources.

• The LINKAGE = SYSTEM option on the TIME macro allows an application to use
the DATETYPE parameter to specify the format for the returned date.

• The STCKCONV macro converts a TOO clock value to time of day and date in
various formats.

• The STCKSYNC macro obtains the TOO clock contents and determines if the
clock is synchronized with an external time reference (ETR).

• The SYMRBLD macro generates code to build a symptom record and logs it on
the SYS1.LOGREC data set. IBM recommends using this macro instead of
SYMREC.

• The SYMREC macro updates a symptom record with system environment
information and logs the symptom record in the SYS1.LOGREC data set.

• The chapter on translating messages explains how to use the MVS message
service to obtain translated versions of system or application messages.

• The WTO and WTOR macros have been enhanced to provide new methods for
you to specify message text, and to provide increased flexibility for message
queuing.

• A new chapter was added on 31-bit addressing. This information was
previously presented in MVSIESA System Programming Library: Application
Development 31-Bit Addressing, GC28-1820-0.

Changed Information: The DIV macro section on restrictions for the SAVE and
RESET services has been updated.

Moved Information: The reference information from the Callable Services section
was moved to the Assembler Programming Reference book.

Deleted Information: None.

Terminology

External time reference (ETR) is the MVS generic name for the IBM Sysplex
Timer (9037).

XX Assembler Programming Guide

Chapter 1. Introduction

The system controls the flow of work through the computer so that all programs
obtain a fair share of the processing. To make efficient use of the system, you must
understand the services that the system provides and observe the programming
conventions for their use.

Linkage Conventions - A program must follow register and save area conventions
when it is called by another program or when it calls another program. These
conventions ensure that the programs can successfully pass control to each other
while preserving the register contents and the parameter data required for
successful execution.

Subtask Creation and Control- Because the system can handle small programs
easier than large ones, a large program might execute faster if you divide it into
parts, called tasks. By following the appropriate conventions, you can break your
programs into tasks that compete more efficiently for the resources of the system.

Program Management - Program residence and addressing modes are discussed
in this chapter, as well as the linkage between programs. Save areas,
addressability, and conventions for passing control from one program to another are
also discussed.

Understanding 31 .. blt Addressing - 31-bit addressing terms are defined in this
chapter. Read this chapter before writing new programs or modifying existing
programs to use 31-bit addresses.

Resource Control- Anything necessary for program execution, such as a table, a
storage device, or another program, can be considered a resource. If a program
depends on an event that occurs in another program, it might need to defer part of
its execution until the event, which is considered a resource, is completed. Because
many programs might need the same resource, and because some resources can
only be used by one program at a time, synchronization is often necessary.
Resource control helps to regulate access to the resources that your programs
depend on for successful execution.

Program Int.rruptlon and Termination - When your program comes to a successful
end of execution, the ending is called a normal termination. When the system stops
your program because you made an error, the ending is called an abnormal
termination. Before your program terminates, it might be interrupted. You can
write routines that get control when your program terminates normally or
abnormally, or that get control when your program is interrupted, and you can
specify the conditions under which these routines are to be executed.

Dumping Services -If your program makes serious errors, the system terminates
it. If you request it, the system generates a dump to accompany the termination,
and the resulting dump is called called an abend dump. You can also request
another type of dump, called a snap dump. Programs can request a snap dump at
any time, and they can specify the source, the format, and the destination of the
information in the dump.

Virtual Storage Management - The system combines central storage and auxiliary
storage to make the addressable memory appear larger than it really is. The
apparent memory capacity is called virtual storage. By managing storage in this

© Copyright IBM Corp. 1988, 1991 1-1

way, the system relaxes the size limit on programs and data. The storage that the
system gives to each related group of programs is cal/ed an address space. As a
program executes, its storage requirements might vary. Conventions described in
this chapter allow a program to obtain any extra storage it might require, and to
return storage that is no longer required.

Callable Cell Pool Services - Callable cell pool services manage user-obtained
areas of virtual storage efficiently, provide high performance service, and allow you
to use storage in both address spaces and data spaces. This chapter describes
cal/able cell pool services and helps you make the decision between using the
CPOOL macro or callable cell pool services.

Data-In-Virtual- By using a simple technique that lets you create, read, or update
external storage data without the traditional GET and PUT macros, you can write
programs that use very large amounts of this type of data. The data, which is not
broken up into individual records, appears in your virtual storage all at once. This
technique also provides better performance than the traditional access methods for
many applications.

Using Access Registers -If you need to access data in a data space, you need to
use the set of registers called "access registers" and be in the address space
control (ASC) mode called" AR mode". This chapter helps you access data in data
spaces and use the system services while you are in AR mode.

Data Spaces and Hlperspaces -If you need more virtual storage than a single
address space allows, and if you want to prevent other users from accessing this
storage, you can use data spaces and hiperspaces.

Window Services - Window services enable assembler language programs to
access or create permanent or temporary data objects. By invoking the service
programs provided by window services, a program can:

• Read or update an existing data-in-virtual object
• Create and save a new permanent data-in-virtual object
• Create and use a temporary data-in-virtual object

Processor Storage Management - The system administers the use of processor
storage (that is, central and expanded storage) and directs the movement of virtual
pages between auxiliary storage and central storage in page-size blocks. You can
r(':ease virtual storage contents, load virtual storage areas into central storage, and
page out virtual storage areas from central storage. Reference pattern services
allow programs to define a reference pattern for a specified area that the program is
about to reference.

Timing and Communication - The system has an internal clock. Your program can
use it to obtain the date and time, or use it as an interval timer. You can set a time
interval, test how much time is left in an interval, or cancel it. Communication
services let you send a message to the system operator, to a TSO terminal, or to the
system log.

MVS Message Service - The MVS message service (MMS) enables you to display
MVS or MVS-based application messages that have been translated from U.S.
English into a foreign language. The service also allows application programs to
store messages in and retrieve them from the MMS run-time message file.

1-2 Assembler Programming Guide

Data Compression - Data compression and expansion services allow you to
compress certain types of data so that the data occupies less space while you are
not using it. You can then restore the data to its original state when you need it.

Accessing Unit Control Blocks - Each device in a configuration is represented by a
unit control block (UC8). This chapter contains information about scanning UC8s
and detecting I/O configuration changes.

IMPORTANT •••••••• READ THIS ----------------,

As you read the book, keep in mind how the book uses the following terms:

• The term registers means general purpose registers. In sections where
general purpose registers might be confused with other kinds of registers
(such as access registers), the book uses the longer term general purpose
registers.

• Unless otherwise specified, the address space control (ASC) mode of a
program is primary mode.

Chapter 1. Introduction 1-3

'1-4 Assembler Programming Guide

Chapter 2. Linkage Conventions

Linkage conventions are the register and save area conventions a program must
follow when it receives control from another program or when it calls another
program. It is important that all programs follow the linkage conventions described
here to ensure that the programs can successfully pass control from one to the other
while preserving register contents and parameter data that they need to run
successfully.

One program can invoke another program through anyone of the following branch
instructions or macros:

• BALR, BASR, or BASSM instructions
• LINK, LlNKX, XCTL, XCTLX, and CALL macros

The program that issues the branch instruction or the macro is the calling program.
The program that receives control is the target program. A program should follow
these conventions when it:

• Receives control from a calling program
• Returns control to the calling program
• Calls another program

The PC instruction provides another means of program linkage. linkage
conventions for the PC instruction are described in MVSIESA Application
Development Guide: Extended Addressability.

In this chapter, programs are classified by their address space control (ASC) mode
as follows:

• A primary mode program is one that executes all its instructions in primary ASC
mode and does not change the contents of ARs 2 through 13.

• An AR mode program is one that executes one or more instructions in AR mode
or it changes the contents of ARs 2 through 13. A program that switches from
one mode to another is considered to be an AR mode program. A program that
runs in AR mode can access data that is outside its primary address space.

The ASe mode at the time a program issues the call determines whether addresses
passed by the program must be qualified by access list entry tokens (ALETs). An
ALET identifies the address space or data space that contains the passed
addresses. An ALET-qualified address is an address for which the calling program
has provided an ALET. The ASe mode at the time of the call also determines
whether the program can call a primary mode program or an AR mode program.

• A calling program that is in primary mode at the time of the call can call either
another primary mode program or an AR mode program. Addresses passed by
the calling program are not ALET-qualified.

• A calling program that is in AR mode at the time of the call can call only another
AR mode program. Addresses passed by the calling program are
ALET-qualified.

An AR mode program can call a primary mode program, but the calling program
must first switch to primary mode and then follow the linkage conventions for a
primary mode caller. Addresses passed by the calling program cannot be
ALET-qualified.

© Copyright IBM Corp. 1988, 1991 2-1

When one program calls another, the target program receives' control in the caller's
ASC mode at the time the call was made. If the calling program is in AR mode at
the time of the call, the target program receives control in AR mode. If the calling
program is in primary mode at the time of the call, the target program receives
control in primary mode. After a target program receives control, it can switch its
ASC mode by issuing the Set Address Control (SAC)instruction. For more
information on ASC mode, see Chapter 12, "Using Access Registers" on page 12-1.

Saving the Caning Program's Registers
At entry, all target programs save the caller's registers; at exit, they restore those
registers. The two places where a program can save registers are in a
caller-provided save area or in a system-provided linkage stack. The ASC mode of
the target program determines how the target program saves the registers. A
primary mode program can use the linkage stack or the save area its calling
program provides. An AR mode program must use the linkage stack.

Caller-Provided Save Area
A primary mode calling program must provide its target program an 18-word
register save area. Likewise, an AR mode program that switches to primary mode
and then makes a call must provide a register save area. In both cases, the calling
program obtains storage for the save area from its primary address space. The
save area must begin on a word boundary. Before invoking the target program, the
calling program loads the address of the save area into general purpose register 13.

System-Provided Linkage Stack
The system provides the linkage stack where a target program can save the calling
program's access registers and general purpose registers (AR/GPRs). Use of the
linkage stack has the following advantages:

• The linkage stack saves both ARs and GPRs; the caller-provided save area
saves only GPRs.

• The system provides the linkage stack for use by all programs. The stack
eliminates the need for the AR mode calling program to obtain storage for a
save area and then pass the address to its target program.

• The save areas are located in one place, rather than chained throughout the
user's address space.

• User programs cannot accidentally make changes to the linkage stack.

Using the Linkage Stack
To add an entry to the linkage stack, the target program issues the BAKR
instruction. The BAKR instruction stores all GPRs and ARs on the linkage stack.
The target program must then indicate that it used the linkage stack, which is useful
information for anyone who later needs to trace the program linkages. The
procedure for indicating use of the linkage stack is described in:

• "Primary Mode Programs Receiving Control" on page 2-5
• "AR Mode Programs Receiving Control" on page 2-7

When the target program is ~eady to return to the calling program, it issues the PR
instruction. The PR instruction restores the calling program's AR/GPRs 2 - 14,
removes the entry from the linkage stack, and returns control to the calling program.

2-2 Assembler Programming Guide

Example of Using the Linkage Stack
In this example, an AR mode target program receives control from another program,
either in primary mode or AR mode. The calling program can make the call through
the following two instructions:

L 15,=V(PGM)
BALR 14,15

The target program uses the linkage stack to save the calling program~s registers.
It uses the STORAGE macro to obtain storage for its own save area. The code is in
31-bit addressing mode and is reentrant.

PGM
PGM
PGM

*

*

CSECT
AMODE 31
RMODE ANY
BAKR 14,0

SAC 512
LAE 12,0(15,0)

USING PGM,12

SAVE CALLER'S ARS AND GPRS
ON LINKAGE STACK
SWITCH TO AR ADDRESSING MODE
SET UP PROGRAM BASE REGISTER
AND ADDRESSING REGISTER

STORAGE OBTAIN,LENGTH=72 GET MY REENTRANT SAVEAREA
LAE 13,0(0,1) PUT MY SAVEAREA ADDRESS IN AR/GPRI3
MVC 4(4,13),=C ' FISA ' PUT ACRONYM INTO MY SAVEAREA BACKWARD

* POINTER INDICATING REGS SAVED ON STACK
* END OF ENTRY CODE, BEGIN PROGRAM CODE HERE

* BEGIN EXIT CODE
LAE 1,0(0,13) COpy MY SAVEAREA ADDRESS
STORAGE RELEASE,ADDR=(I),LENGTH=72 FREE MY REENTRANT SAVEAREA
SLR 15,15 SET RETURN CODE OF ZERO
PR RESTORE CALLER'S ARs AND

* GPRS 2-14 AND RETURN TO CALLER
END

Using a Caller-Provided Save Area
When it receives control, the target program saves the GPRs in the 18-word
caller-provided save area pOinted to by GPR 13. The format of this area is shown in
Figure 2-1. As indicated by this figure, the contents of each GPR, except GPR 13,
must be saved in a specific location within the save area. GPR 13 is not saved; it
holds the address of the save area.

Word Contents

o Used by language products
1 Address of previous save area (stored by calling program)
2 Address of next save area (stored by target program)
3 GPR 14 (return address)
4 GPR 15 (entry address)
5 - 17 GPRs 0 - 12

Figure 2-1. Format of the Save Area

Chapter 2. Linkage Conventions 2-3

You can save GPRs either with a store-multiple (STM) instruction or with the SAVE
macro. Use the following STM instruction to place the contents of all GPRs except
GPR 13 in the proper words of the save area:

STM 14,12~12(13)

The SAVE macro stores GPRs in the save area. Code the GPRs to be saved in the
same order as in an STM instruction. The following example of the SAVE macro
places the contents of all GPRs except GPR 13 in the proper words of the save area.

PROGNAME SAVE (14,12)

Later, the program can use the RETURN macro to restore GPRs and return to the
caller.

Whether or not the target program obtains its own save area for another program, it
must save the address of the calling program's save area (which it used). If the
target program is creating a save area for another program, it:

1. Stores the address of the calling program's save area (the address passed in
register 13) in the second word of its own save area.

2. Stores the address of its own save area (the address the target program will
pass to another program in register 13) in the third word of the calling
program's save area.

These two steps enable the target program to find the save area when it needs it to
restore the registers, and they enable a trace from save area to save area should
one be necessary while examining a dump.

If the target program is not providing a save area for another program, it can keep
the address of the calling program's save area in GPR 13 or store it in a location in
vi rtual storage.

Example of Using the Caller-Provided Save Area
In this example, a primary mode target program receives control in primary mode
from either a primary mode or AR mode calling program. The calling program
provided an 18-word save area pointed to by GPR 13. The calling program can
make the call through the following two instructions:

L 15,=V(PGM)
BALR 14,15

The target program saves its calling program's registers in the save area that the
calling program provides. It uses the GETMAIN macro to obtain storage for its own
save area. The code is in 31-bit addressing mode and is reentrant.

2·4 Assembler Programming Guide

PGM
PGM
PGM

CSECT
AMODE 31
RMODE ANY

*

*

*

*

*

STM 14,12,12(13}

LR 12,15
USING PGM,12
GETMAIN RU,LV=72
ST 13,4(,1)

ST 1,8(' 13)

SAVE CALLER1S REGISTERS IN CALLER
PROVIDED R13 SAVE AREA
SET UP PROGRAM BASE REGISTER

GET MY REENTRANT SAVEAREA
SAVE CALLER1S SAVEAREA ADDRESS IN MY
SAVEAREA (BACKWARD CHAIN)
SAVE MY SAVEAREA ADDRESS IN CALLER1S
SAVEAREA (FORWARD CHAIN)

LR 13,1 PUT MY SAVEAREA ADDRESS IN R13
END OF ENTRY CODE, BEGIN PROGRAM CODE HERE

BEGIN EXIT CODE
LR 1,13
L 13 ,4(,13)
FREEMAIN RU,A=(1),LV=72
SLR 15,15
L 14,12(,13)
LM 2,12,28(13)
BR 14
END

COpy MY SAVEAREA ADDRESS
RESTORE CALLER1S SAVEAREA ADDRESS
FREE MY REENTRANT SAVEAREA
SET RETURN CODE OF ZERO
RESTORE CALLER1S R14
RESTORE CALLER1S R2-R12
RETURN TO CALLER

Establishing a Base Register
Each program must establish a base register immediately after it saves the calling
program's registers. When selecting a base register, keep in mind that:

• Some instructions alter register contents (for example, TRT alters register 2). A
complete list of instructions and their processing is available in Principles of
Operation.

• Registers 13 through 1 are used during program linkage.

Register 12 is generally a good choice for base register.

Linkage Procedures for Primary Mode Programs
A primary mode program can call primary mode programs or AR mode programs.
A primary mode program can be called by other primary mode programs or by an
AR mode program that has switched to primary mode. The following sections
summarize the linkage procedures a primary mode program follows when it
receives control, when it returns control to a caller, and when it calls another
program.

Primary Mode Programs Receiving Control
When a primary mode program receives control after being called, it can save the
calling program's registers on the linkage stack or in the caller-provided save area.

A primary mode program that uses the linkage stack must:

• Issue a BAKR instruction to save the caller's GPRs and ARs on the linkage
stack.

• Establish a GPR as a base register.
• Set GPR 13 to indicate that the caller's registers are saved on the linkage stack:

If the program intends to call another program, obtain an 18-word save area
on a word boundary in the primary address space. Set the second word of

Chapter 2. Linkage Conventions 2-5

the save area to the character string 'F1SA' and load GPR 1~ with the save
area address.
If the program does not intend to call another program, do one of following:

- Obtain an 1S-word save area on a word boundary in the primary
address space. Set the second word of the save area to the character
string 'F1SA' and load the save area address into GPR 13.

- Load 0 into GPR 13.
- Set the second word of a two-word area in the primary address space to

the character string 'F1SA'. Load the address of the two-word area into
GPR 13.

A primary mode program that uses the caller-provided save area must:

• Save GPRs 0 - 12, 14, and 15 in the caller-provided save area pointed to by GPR
13.

• Establish a base register.
• Obtain an 1S-word save area on a word boundary in the primary address space.
• Store the address of the caller's save area and the forward and back chains of

its own save area, as the comments in "Example of Using the Caller-Provided
Save Area" on page 2-4 indicate.

Note that the linkage conventions assume that a primary mode program does not
use ARs. By leaving the contents of the ARs untouched, the program preserves the
ARs across program linkages.

Primary Mode Programs Returning Control
The method that a primary mode progra~ uses to return control to a caller depends
on whether the primary mode program used the linkage stack or the caller-provided
save area.

A primary mode program that uses the linkage stack must:

• Place parameter information to return to the caller, if any, into GPR 0, 1, or both.
For information about passing information through a parameter list, see
"Conventions for Passing Information Through a Parameter List" on page 2-S.

• Load the return code, if any, into GPR 15.
• Issue the PR instruction. The PR instruction restores the caller's AR/GPRs 2 -

14 from the linkage stack, removes the entry from the linkage stack, and returns
control to the caller.

A primary mode program that uses the caller-provided save area must:

• Place parameter information to return to the caller, if any, into GPR 0, 1 ,or both.
For information about passing information through a parameter list, see
"Conventions for Passing Information Through a Parameter List" on page 2-8.

• Load GPR 13 with the address of the save area that the program passed when it
made the call.

• Load the return code, if any, intoGPR 15. Otherwise, restore GPR 15 to the
value it had when the program was called.

• Restore GPRs 2 - 12 and 14.
• Return to the calling program.

2-6 Assembler Programming Guide

Primary Mode Programs Calling Another Program
When a primary mode program calls another program, the calling program must:

• Place the address of its 18-word save area into GPR 13.
• Load parameter information, if any, into GR 0, GR 1, or both.
• Place the entry point address of the target program into GPR 15.
• Call the target program

Linkage Procedures for AR Mode Programs
An AR mode program can be called by other AR mode programs or by primary
mode programs. The following sections summarize the linkage procedures an AR
mode program must follow when it receives control, when it returns control to a
caller, and when it calls another program.

AR Mode Programs Receiving Control
When an AR mode program receives control, it must:

• Issue a BAKR instruction to save the caller's GPRs and ARs on the linkage
stack. (Although a primary mode caller provides a save area, an AR mode
target program does not use the area.

• Establish a GPR as a base register and load an ALET of 0 into the
corresponding AR. An ALET of 0 causes the system to reference an address
within the primary address space.

• Set GPR 13 to indicate that the caller's registers are saved on the linkage stack:
If the program intends to switch to primary mode and call another program,
obtain an 18-word save area on a word boundary in the primary address
space. Set the second word of the save area to the character string 'F1SA'
and load GPR 13 with the save area address. Set AR 13 to zero to indicate
that the storage resides in the primary address space.
If the program does not intend to switch to primary mode and call a
program, do one of following:

- Obtain an 18-word save area on a word boundary in the primary
address space. Set the second word of the save area to the character
string 'F1SA' and load the save area address into GPR 13.

- Load 0 into GPR 13.
- Set the second word of a two word area in the primary address space to

the character string 'F1SA'. Load the address of the two word area into
GPR 13.

AR Mode Programs Returning Control
To return control to the calling program, an AR mode program must:

• Place parameter information to return to the caller, if any, into AR/GPR 0,
AR/GPR 1, or both. For information about passing information through a
parameter list, see "Conventions for Passing Information Through a Parameter
List" on page 2-8.

• Load the return code, if any, into GPR 15.
• Issue the PR instruction. The PR instruction restores the caller's AR/GPRs 2 -

14 from the linkage stack, removes the entry from the linkage stack, and returns
control to the caller.

Chapter 2. Linkage Conventions 2-7

AR Mode Programs Calling Another Program
The definition of an AR mode program, as stated in the beginning of this chapter,
includes the factthat such a program might switch from one ASe mode to another.
Procedures for an AR mode program calling another program differ depending on
whether the AR mode program is in primary mode or AR mode at the time of the
call.

To make the call while It Is in AR mode, an AR mode program must:

• Load parameter information, if any, into AR/GPR 0, AR/GPR 1, or both. For
information about passing information through a parameter list, see
"Conventions for Passing Information Through a Parameter List."

• Place the entry point address of the target program into GPR 15. There is no
need to load an ALET into AR 15.

• Call the target program

To make the call while It is In primary mode, an AR mode program must follow the
linkage conventions described in "Primary Mode Programs Calling Another
Program" on page 2-7.

Conventions for Passing Information Through a Parameter List
The ASC mode of a calling program at the time it makes a call determines whether
addresses that the program passes are ALET-qualified. The following two sections
describe how programs in primary mode and AR mode pass parameters through a
parameter list.

Program in Primary Mode
If the calling program is in primary mode, the parameter list must be in the primary
address space. All addresses passed by the programs must be contained in the
primary address space and must not be ALET-qualified. The program that passes
parameter data can use GPRs 0 and 1, or both. To pass the address of a parameter
list, the program should use GPR 1.

For a good example of how your primary mode programs can pass parameters,
consider the way the system uses a register to pass information in the PARM field of
an EXEC statement to your program. When your program receives control from the
system, register 1 contains the address of a fullword on a fullword boundary in your
program's address space (see Figure 2-2). The high-order bit (bit 0) of this word is
set to 1. The system uses this convention to indicate the last word in a
variable-length parameter list. Bits 1-31 of the fullword contain the address of a
two-byte length field on a halfword boundary. The length field contains a binary
count of the number of bytes in the PARM field, which immediately follows the
length field. If the PARM field was omitted in the EXEC statement, the count is set to
zero. To prevent possible errors, always use the count as a length attribute in
acquiring the information in the PARMfield.

2-8 Assembler Programming Guide

GPRl

@

4 Bytes

1 : Q, I ,~

Full-Word
Boundary

o to 100 Bytes 2 Bytes

~("----_./",--",,,,----,

I Length Field I P ARM Field ~ { I
t

Half-Word
Boundary

Figure 2-2. Primary Mode Parameter List

Programs in AR Mode
If the calling program is in AR mode, all addresses that it passes, whether they are
in a GPR or in a parameter list, must be ALET-qualified. A parameter list can be in
an address space other than the calling program's primary address space or in a
data space, but it cannot be in the calling program's secondary address space.

Figure 2-3 shows one way to format addresses and ALETs in a parameter list. The
addresses passed to the called program are at the beginning of the list and their
associated ALETs follow the addresses. Notice that the third address has the high
order bit set on to indicate the size of the list.

GPRI
ARl

(
~-A-@-LE-T--------~~I

Figure 2-3. AR Mode Parameter List

0

0

1

@A

@B

@C

ALETA

ALETB

ALETC

All addresses that an AR mode target program returns to an AR mode caller,
whether the address is in GPR 0 or 1 or in a parameter list, must be ALET-qualified.

Chapter 2. Linkage Conventions 2·9

2-10 Assembler Programming Guide

Chapter 3. Subtask Creation and Control

The control program creates one task in the address space as a result of initiating
execution of the job step (the job step task). You can create additional tasks in your
program. However, if you do not, the job step task is the only task in the address
space being executed. The benefits of a multiprogramming environment are still
available even with only one task in the job step; work is still being performed for
other address spaces when your task is waiting for an event, such as an input
operation, to occur.

The advantage in creating additional tasks within the job step is that more tasks are
competing for control. When a wait condition occurs in one of your tasks, it is not
necessarily a task from some other address space that gets control; it may be one of
your tasks, a portion of your job.

The general rule is that you should choose parallel execution of a job step (that is,
more 'than one task in an address space) only when a significant amount of overlap
between two or more tasks can be achieved. You must take into account the
amount of time taken by the control program in establishing and controlling
additional tasks, and your increased effort to coordinate the tasks and provide for
communications between them.

Creating the Task
A new task is created by issuing an ATTACH, or, if your program runs in access
register ASC mode, an ATTACHX macro. The task that is active when the ATTACH
or ATTACHX is issued is the originating task; the newly created task is the subtask
of the originating task. The subtask competes for control in the same manner as
any other task in the system, on the basis of priority (both address space priority
and task priority within the address space) and the current ability to use a
processor. The address of the task control block for the subtask is returned in
register 1.

If the ATTACH or ATTACHX executes successfully, control returns to the user with a
return code of 0 in register 15.

The entry point in the load module to be given control when the subtask becomes
active is specified as it is in a LINK or LlNKX macro, that is, through the use of the
EP, EPLOC, and DE parameters. The use of these parameters is discussed in
Chapter 4, "Program Management." You can pass parameters to the subtask using
the PARAM and VL parameters, also described under the LINK macro. Additional
parameters deal with the priority of the subtask, provide for communication between
tasks, specify libraries to be used for program linkages, and establish an error
recovery environment for the new subtask.

© Copyright IBM Corp. 1988, 1991 3-1

Priorities
This section considers three priorities: address space priorities, task priorities, and
subtask priorities.

Address· Space Priority

Task Priority

When a job is initiated, the control program creates an address space. All
successive steps in the job execute in the same address space. The address space
has a dispatching priority, which is normally determined by the control program.
The control program will select, and alter, the priority in order to achieve the best
load balance in the system, that is, in order to make the most efficient use of
processor time and other system resources.

You might want some jobs to execute at a different address space priority than the
default priority assigned by the system. To assign a priority, code
DPRTY = (value1, value2) on the EXEC statement. The address space priority is then
determined as follows:

address space dispatching priority = (value1 x 16) + value2

Once the address space dispatching priority is set, only the control program can
change it. (Thus, there is no limit priority associated with an address space.)
However, you can set a new address space priority for succeeding job steps by
specifying different values in the DPRTY parameter on the EXEC statement.

The IEAIPSxx and IEAICSxx members of SYS1.PARMLIB can override the
dispatching priority specified by the DPRTY parameter. The control program
assigns the priority obtained from IEAIPSxx to jobsteps that request a dispatching
priority falling within specific installation defined limits. IEAICSxx directs jobs into
specific performance groups thereby affecting their priority. See MVS· Initialization
and Tuning Guide for additional information.

Each task in an address space has a limit priority and a dispatching priority
associated with it. The control program sets these priorities when a job step is
initiated. When you use the ATTACH or ATTACHX macro to create other tasks in the
address space, you can use the LPMOD and DPMOD parameters to give them
different limit and dispatching priorities.

The dispatching priorities of the tasks in an address space do not affect the order in
which the control program selects jobs for execution because that order is selected
on the basis of address space dispatching priority. Once the control program
selects an address space for dispatching, it selects from within the address space
the highest priority task awaiting execution. Thus, task priorities may affect
processing within an address space. Note, however, that in a multiprocessing
system, task priorities cannot guarantee the order in which the tasks will execute
because more than one task may be executing simultaneously in the same address
space on different processors. Page faults may alter the order in which the tasks
execute.

• MVS is a trademark of the IBM Corporation

3-2 Assembler Programming Guide

Subtask Priority
When a subtask is created, the limit and dispatching priorities of the subtask are the
same as the current limit and dispatching priorities of the originating task except
when the subtask priorities are modified by the LPMOD and DPMOD parameters of
the ATIACH and ATIACHX macro. The LPMOD parameter specifies the signed
number to be subtracted from the current limit priority of the originating task. The
result of the subtraction is assigned as the limit priority of the subtask. If the result
is zero or negative, zero is assigned as the limit priority. The DPMOD parameter
specifies the signed number to be added to the current dispatching priority of the
originating task. The result of the addition is assigned as the dispatching priority of
the subtask, unless the number is greater than the limit priority or less than zero. In
that case, the limit priority or 0, respectively, is used as the dispatching priority.

Assigning and Changing Priority
Assign tasks with a large number of I/O operations a higher priority than tasks with
little 110, because the tasks with much 110 will be in a wait condition for a greater
amount of time. The lower priority tasks will be executed when the higher priority
tasks are in a wait condition. As the 1/0 operations are completed, the higher
priority tasks get control, so that more I/O can be started.

You can change the priorities of subtasks by using the CHAP macro. The CHAP
macro changes the dispatching priority of the active task or one of its subtasks by
adding a positive or negative value. The dispatching priority of an active task can
be made less than the dispatching priority of another task. If this occurs and the
other task is dispatchable, it would be given control after execution of the CHAP
macro.

You can also use the CHAP macro to increase the limit priority of any of an active
task's subtasks. An active task cannot change its own limit priority. The
dispatching priority of a subtask can be raised above its own limit priority, but not
above the limit of the originating task. When the dispatching priority of a subtask is
raised above its own limit priority, the subtask's limit priority is automatically raised
to equal its new dispatching priority.

Chapter 3. Subtask Creation and Control 3-3

Task and Subtask Communications
The task management information in this section is required only for establishing
communications among tasks in the same job step. The relationship of tasks in a
job step is shown in Figure 3-1. The horizontal lines in Figure 3-1 separate
originating tasks and subtasks; they have no bearing on task priority. Tasks A, A1,
A2, A2a, 8, 81 and 8'1 a are all subtasks of the job-step task; tasks A1, A2, and A2a

\

are subtasks of task A. Tasks A2a and 81a are the lowest level tasks in the job step.
Although task 81 is at the same level as tasks A 1 and A2, it is not considered a
subtask of task A.

Task A is the originating task for both tasks A 1 and A2, and task A2 is the originating
task for task A2a. A hierarchy of tasks exists within the job step. Therefore the job
step task, task A, and task A2 are predecessors of task A2a, while task 8 has no
direct relationship to task A2a.

Figure 3-1. Levels of Tasks in a Job Step

3-4 Assembler Programming Guide

Job
Step
Task

I rOSk'~O I

,
........

t:J
I
I
I
I
I

I
I
I
I
I
I

I

EJ
I
I
I
I

I
I
I
I

I
I
I

I rOSk'B10 I

All of the tasks in the job step compete independently for processor time; if no
constraints are provided, the tasks are performed and are terminated
asynchronously. However, since each task is performing a portion of the same job
step, some communication and constraints between tasks are required, such as
notifying each other when a subtask completes. If a predecessor task task attempts
to terminate before all of its subtasks are complete, those subtasks and the
predecessor task are abnormally terminated.

Two parameters, the ECB and ETXR parameters, are provided in the ATTACH or
ATIACHX macro to assist in communication between a subtask and the origJnating
task. These parameters are used to indicate the normal or abnormal termination of
a subtask to the originating task. If you coded the ECB or ETXR parameter, or both,
in the ATIACH or ATTACHX macro, the task control block of the subtask is not
removed from the system when the subtask is terminated. The originating task must
remove the task control block from the system after termination of the subtask by
issuing a DETACH. If you specified the ECB parameter in the ATIACH or ATIACHX
macro, the ECB must be in storage addressable by the attaching task and control
program so that the issuer of ATTACH can wait on it (using the WAIT macro) and the
control program can post it on behalf of the terminating task. The task control
blocks for all subtasks must be removed before the originating task can terminate
normally.

The ETXR parameter specifies the address of an end-of-task exit routine in the
originating task, which is to be given control when the subtask being created is
terminates. The end-of-task routine is given control asynchronously after the
subtask has terminated and must therefore be in virtual storage when it is required.
After the control program terminates the subtask, the end-of-task routine specified is
scheduled to be executed. It competes for CPU time using the priority of the
originating task and of its address space and can receive control even though the
originating task is in the wait condition. Although the DETACH does not have to be
issued in the end-of-task routine, this is a good place for it.

The ECB parameter specifies the address of an event control block (discussed
under "Task Synchronization"), which is posted by the control program when the
subtask is terminated. After posting occurs, the event control block contains the
completion code specified for the subtask.

If you specified neither the ECB nor the ETXR parameter in the ATIACH or
A TT ACHX macro, the task control block for the subtask is removed from the system
when the subtask terminates. Its originating task does not have to issue a DETACH.
A reference to the task control block in a CHAP or a DETACH macro in this case is
as risky as task termination. Since the originating task is not notified of subtask
termination, you may refer to a task control block that has been removed from the
system, which would cause the active task to be abnormally terminated.

Note: The originating task is abended if it attempts to normally terminate when it
has active subtasks.

Chapter 3. Subtask Creation and Control 3-5

3-6 Assembler Programming Guide

Chapter 4. Program Management

This chapter discusses facilities that will help you to design your programs. It
includes descriptions of the residency mode and addressing mode of programs,
linkage considerations, load module structures, facilities for passing control
between programs, and the use of the associated macro.

Residency and Addressing Mode of Programs
The control program ensures that each load module is loaded above or below 16
megabytes virtual as appropriate and that it is invoked in the correct addressing
mode (24-bit or 31-bit). The placement of the module above or below 16 megabytes
depends on the residency mode (RMODE) that you define for the module. Whether a
module executes in 24-bit or 31-bit addressing mode depends on the addressing
mode (AMODE) that you define for the module.

When a program is executing in 24-bit addressing mode, the system treats both
instruction and data addresses as 24-bit addresses. This allows programs
executing in 24-bit addressing mode to address 16 megabytes (16,777,216 bytes) of
storage. Similarly, when a program is executing in 31-bit addressing mode, the
system treats both instruction and data addresses as 31-bit addresses. This allows
a program executing in 31-bit addressing mode to address 2 gigabytes
(2,147,483,648 bytes or 128 x 16 megabytes) of storage.

You can define the residency mode and the addressing mode of a program in the
source code. Figure 4-1 shows an example of the definition of the AMODE and
RMODE attributes in the source code. This example defines the addressing mode of
the load module as 31-bit and the residency mode of the load module as 24-bit.
Therefore, the program will receive control in 31-bit addressing mode and will
reside below 16 megabytes.

SAMPLE CSECT
SAMPLE AMODE 31
SAMPLE RMODE 24

Figure 4-1. Assembler Definition of AMODEIRMODE

Version 2 of Assembler H places the AM ODE and RMODE in the external symbol
dictionary (ESD) of the output object module for use by the linkage editor. The
linkage editor passes this information on to the control program through the
directory entry for the partitioned data set (PDS) that contains the load module and
the composite external symbol dictionary (CESD) record in the load module. You
can also specify the AMODE/RMODE attributes of a load module by using linkage
editor control cards. Chapter 5, "Understanding 31-8it Addressing" on page 5-1
contains additional information about residency and addressing mode; Linkage
Editor and Loader contains information about the linkage editor control cards.

© Copyright IBM Corp. 1988, 1991 4-1

Residency Mode Definitions
The control program uses the RMODE attribute from the PDS directory entry for the
module to load the program above or below 16 megabytes. The RMODE attribute
can have one of the following values:

24 specifies that the program must reside in 24-bit addressable virtual
storage.

ANY specifies that the program can reside anywhere in virtual storage
because the ~ode has no virtual storage residency restrictions.

Note: The default value for RMODE is 24.

Addressing Mode Definitions
The AMODE attribute, located in the PDS directory entry for the module, specifies
the addressing mode that the module expects at entry. Bit 32 of the program status
word (PSW) indicates the addressing mode of the program that is executing. The
system supports programs that execute in either 24-bit or 31-bit addressing mode.
The AMODE attribute can have one of the following values:

24 specifies that the program is to receive control in 24-bit addressing mode.

31 specifies that the program is to receive control in 31-bit addressing mode.

ANY specifies that the program is to receive control in either 24-bit or 31-bit
addressing mode.

Nole: The default value for AMODE is 24.

Linkage Considerations
The system supports programs that execute in either 24-bit or 31-bit addressing
mode. The following branch instructions take addressing mode into consideration:

Branch and link (BAL)
Branch and'iink, register form (BALR)
Branch and save (BAS)
Branch and save, register form (BASR)
Branch and set mode (BSM)
Branch and save and set mode (BASSM)
Branch and stack (BAKR)

See Principles of Operation for a complete description of how these instructions
function. The following paragraphs provide a general description of these branch
instructions.

The BAL and BALR instructions are unconditional br~nch instructions (to the
address in operand 2). BAL and BALR function differently depending on the
addressing mode in which you are executing. The difference is in the linkage
information passed in the link register when these instructions execute. In 31-bit
addressing mode, the link register contains the AMODE indicator (bit 0) and the
address of the next sequential instruction (bits 1-31); in 24-bit addressing mode, the
link register contains the instruction length code, condition code, program mask,
and the address of the next sequential instruction.

BAS and BASR perform the same function that BAL and BALR perform when BAL
and BALR execute in 31-bit addressing mode.

4-2 Assembler Programming Guide

The BSM instruction provides problem programs with a way to change the AMODE
bit in the PSW. BSM is an unconditional branch instruction (to the address in
operand 2) that saves the current AMODE in the high-order bit of the link register
(operand 1), and sets the AMODE indicator in the PSW to agree with the AMODE of
the address to which you are transferring control (that is, the high order bit of
operand 2).

The BASSM instruction functions in a manner similar to the BSM instruction. In
addition to saving the current AMODE in the link register, setting the PSW AMODE
bit, and transferring control, BASSM also saves the address of the next sequential
instruction in the link register thereby providing a return address.

BASSM and BSM are used for entry and return linkage in a manner similar to BALR
and BR. The major difference from BALR and BR is that BASSM and BSM can save
and change addressing mode.

The BAKR instruction is an unconditional branch to the address in operand 2. In
addition to the branching action, it adds an entry to the linkage stack.

Passing Control Between Programs with the Same AMODE
If you are passing control between programs that execute in the same addressing
mode, there are several combinations of instructions that you can use. Some of
these combinations are:

Transfer Return

BALIBALR BR
BAS/BASR BR

Passing Control Between Programs with Different AMODEs
If you are passing control between programs executing in different addressing
modes, you must change the AMODE indicator in the PSW. The BASSM and BSM
instructions perform this function for you. You can transfer to a program in another
AMODE using a BASSM instruction and then return by means of a BSM instruction.
This sequence of instructions ensures that both programs execute in the correct
AMODE.

Figure 4-2 shows an example of passing control between programs with different
addressing modes. In the example, TEST executes in 24-bit AMODE and EP1
executes in 31-bit AMODE. Before transferring control to EP1, the TEST program
loads register 15 with EPA, the pointer defined entry point address (that is, the
address of EP1 with the high order bit set to 1 to indicate 31-bit AMODE). This is
followed by a BASSM 14,15 instruction, which performs the following functions:

• Sets the high-order bit of the link register (register 14) to 0 (because TEST is
currently executing in 24-bit AMODE) and puts the address of the next
sequential instruction into bits 1-31.

• Sets the PSW AMODE bit to 1 to agree with bit 0 of register 15.

• Transfers to EP1 (the address in bits 1-31 of register 15).

Chapter 4. Program Management 4-3

The EP1 program executes in 31-bit AMODE. Upon completion, EP1 sets a return
code in register 15 and executes a BSMO, 14 instruction, which performs the
following functions:

• Sets the PSW AMODE bit to 0 to correspond to the high-order bit of register 14.
• Transfers control to the address following the BASSM instruction in the TEST

program.

TEST CSECT
TEST AMODE 24
TEST RMODE 24

L 15,EPA OBTAIN TRANSFER ADDRESS
BASSM 14,15 SWITCH AMODE AND TRANSFER

EXTRN EPI
EPA DC A(X'SOOOOOOO'+EPI) POINTER DEFINED ENTRY POINT ADDRESS

EPI
EPI
EPI

END
CSECT
AMODE
RMODE

SLR
8SM
END

31
ANY

15,15
0,14

SET RETURN CODE °
RETURN TO CALLER'S AMODE AND TRANSFER

Figure 4-2. Example of Addressing Mode Switch

Load Module Structure Types
Each load module used during a job step can be designed in one of three load
module structures: simple, planned overlay, or dynamic. A simple structure does
not pass control to any other load modules during its execution, and comes into into
virtual storage all at one time. A planned overlay structure may, if necessary, pass
control to other load modules during its execution, and it does not come into virtual
storage all at one time. Instead, segments of the load module reuse the same area
of virtual storage. A dynamic structure comes into virtual storage all at one time,
and passes control to other load modules during its execution. Each of the load
modules to which control is passed can be one of the three structure types.
Characteristics of the load module structure types are summarized in Figure 4-3.

Because the large capacity of virtual storage eliminates the need for complex
overlay structures, planned overlays will not be discussed further.

4-4 Assembler Programming Guide

Simple Structure

Dynamic Structure

Structure Type

Simple
Planned Overlay
Dynamic

Loaded All at One Time

Yes
No
Yes

Figure 4-3. Characteristics of Load Modules

Passes Control to Other
Load Modules

No
Optional
Yes

A simple structure consists of a single load module produced by the linkage editor.
The single load module contains all of the instructions required and is paged into
central storage by the control program as it is executed. The simple structure can
be the most efficient of the two structure types because the instructions It uses to
pass control do not require control-program assistance. However, you should
design your program to make most efficient use of paging.

A dynamic structure requires more than one load module during execution. Each
required load module can operate as either a simple structure or another dynamic
structure. The advantages of a dynamic structure over a simple structure increase
as the program becomes more complex, particularly when the logical path of the
program depends on the data being processed. The load modules required in a
dynamic structure are paged into central storage when required, and can be deleted
from vi rtual storage when thei r use is completed.

Load Module Execution
Depending on the configuration of the operating system and the macros used to
pass control, execution of the load modules is serial or in parallel. Execution is
serial in the operating system unless you use an ATTACH or ATTACHX macro to
create a new task. The new task competes for processor time independently with all
other tasks in the system. The load module named in the ATTACH or ATTACHX
macro is executed in parallel with the load module containing the ATTACH or
ATTACHX macro. The execution of the load modules is serial within each task.

The following paragraphs discuss passing control for serial execution of a load
module. For information on creating and managing new tasks, see "Creating the
Task" on page 3-1.

Passing Control in a Simple Structure
There are certain procedures to follow when passing control to an entry point in the
same load module. The established conventions to use when passing control are
also discussed. These procedures and conventions are the framework for all
program interfaces. Knowledge of the information about addressing contained in
the Assembler Language publication is required.

Chapter 4. Program Management 4-5

Passing Control without Return
Some. control sections pass control to another control section of the load module
and do not receive control back. An example of this type of control section is a
housekeeping routine at the beginning ofa program that establishes values,
initializes switches, and acquires buffers for the other control sections in the
program. Use the following procedures when passing control without return.

Preparing to Pass Control

Passing Control

• Restore the contents of register 14.

Because control will not be returned to this control section, you must restore the
contents of register 14. Register 14 originally contained the address of the
location in the calling program (for example, the control program) to which
control is to be passed when your program is finished. Since the current control
section does not make the return to the calling program, the return address
must be passed on to the control section that does make the return.

• Restore the contents of registers 2-12.

In addition, the contents of registers 2-12 must be unchanged when your
program eventually returns control, so you must also restore these registers.

If control were being passed to the next entry point from the control program,
register 15 would contain the entry address. You should use register 15 in the
same way, so that the called routine remains independent of the program that
passed control to it.

• Use register 1 to pass parameters.

Establish a parameter list and place the addressof the list in register 1. The
parameter list should consist of consecutive fullwords starting on a fullword
boundary, each fullword containing an address to be passed to the called
control section. When executing in 24-bit AMODE, each address is located in
the three low-order bytes of the word. When executing in 31-bit AM ODE, each
address is located in bits 1-31 the word. In both addressing modes, set the
high-order bit of the last word to 1 to indicate that it is the last word of the list.
The system convention is that the list contain addresses only. You may, of
course, deviate from this convention; however, when you deviate from any
system convention, you restrict the use of your programs to those programmers
who know about your special conventions.

• Pass the address of the save area in register 13 just as it was passed to you.

Si nce you have reloaded all the necessary registers, the save area that you
received on entry is now available, and should be reused by the called control
section. By passing the address of the old save area, you save the 72 bytes of
virtual storage for a second, unnecessary, save area.

Note: If you pass a new save area instead of the one received on entry, errors
could occur.

• Load register 15 with a V-type address constant for the name of the external
entry point, then branch to the address in register 15.

This is the common way to pass control between one control section and an
entry point in the same load module. The external entry point must have been
identified using an ENTRY instruction in the called control section if the entry
point is not the same as the control section's CSECT name.

4-6 Assembler Programming Guide

Figure 4-4 shows an example of loading registers and passing control. In this
example, no new save area is used, so register 13 still contains the address of the
old save area. It is also assumed for this example that the control section wi" pass
the same parameters it received to the next entry point. First, register 14 is
reloaded with the return address. Next, register 15 is loaded with the address of the
external entry point NEXT, using the V-type address constant at the location
NEXTADDR. Registers 0-12 are reloaded, and control is passed by a branch
instruction using register 15. The control section to which control is passed contains
an ENTRY instruction identifying the entry point NEXT.

L 14,12(13)
L 15,NEXTADDR
LM O,12,20(13)
BR 15

NEXTADDR DC V(NEXT)

LOAD CALLER'S RETURN ADDRESS
ENTRY NEXT
RETURN CALLER's REGISTERS
NEXT SAVE (14,12)

Figure 4-4. Passing Control in a Simple Structure

Figure 4-5 shows an example of passing a parameter list to an entry point with the
same addressing mode. Early in the routine the contents of register 1 (that is, the
address of the ful\word containing the PARM field address) were stored at the
fullword PARMADDR. Register 13 is loaded with the address of the old save area,
which had been saved in word 2 of the new save area. The contents 01 register 14
are restored, and register 15 is loaded with the entry address.

USING *,12
EARLY ST I,PARMADDR

L
L
L
L
LA
01
LM
BR

PARMLIST OS
DCBADDRS DC

DC
PARMADDR DC

.NEXTADDR DC

13,4(13)
0,20(13)
14,12 (13)
15,NEXTADDR
I,PARMLIST
PARMADDR,X '8B '
2,12,28(13)
15

OA
A(INDCB)
A(OUTDCB)
A(O)
V (NEXT)

Establish addressability
Save parameter address

Reload address of old save area

Load return address
Load address of next entry point
Load address of parameter list
Turn on last parameter indicator
Reload remaining registers
Pass control

Figure 4-5. Passing Control With a Parameter List

The address 01 the list of parameters is loaded into register 1. These parameters
include the addresses of two data control blocks (DCBs) and the original register 1
contents. The high-order bit in the last address parameter (PARMADDR) is set to 1

Chapter 4. Program Management 4-7

using an OR-immediate instruction. The contents of registers 2-12 are restored.
(Since one of these registers was the base register, restoring the registers earlier
would have made the parameter list unaddressable.) A branch register instruction
using register 15 passes control to entry point NEXT.

Passing Control with Return
The control program passed control to your program, and your program will return
control when it is through processing. Similarly, control sections within your
program will pass control to other control sections, and expect to receive control
back. An example of this type of control section is a monitoring routine; the monitor
determines the order of execution of other control sections based on the type of
input data. Use the following procedures when passing control with return.

Preparing to Pass Control

Passing Control

• Use registers 15 and 1 in the same manner they are used to pass control without
return.

Register 15 contains the entry address in the new control section and register 1
is used to pass a parameter list.

• Ensure that register 14 contains the address of the location to which control is to
be returned when the called control section completes execution.

The address can be the instruction following the instruction which causes
control to pass, or it can be another location within the current control section
designed to handle all returns.

Registers 2-12 are not involved in the passing of control; the called control
section should not depend on the contents of these registers in any way.

• Provide a new save area for use by the called control section as previously
described, and pass the address of that save area in register 13.

Note that the same save area can be reused after control is returned by the
called control section. One new save area is ordinarily all you will require
regardless of the number of control sections called.

You may use two standard methods for passing control to another control section
and providing for return of control. One is an extension of the method used to pass
control without a return, and requires a V-type address constant and a branch, a
branch and link, or a branch and save instruction provided both programs execute
in the same addressing mode. If the addressing mode changes, use a branch and
save and set mode instruction. The other method uses the CALL macro to provide a
parameter list and establish the entry and return addresses. With either method,
you must identify the entry point by an ENTRY instruction in the called control
section if the entry name is not the same as the control section CSECT name.
Figure 4-6 and Figure 4-7 illustrate the two methods of passing control; in each
example, assume that register 13 already contains the address of a new save area.

Figure 4-6 also shows the use of an inline parameter list and an answer area. The
address of the external entry point is loaded into register 15 in the usual manner. A
branch and link instruction is then used to branch around the parameter list and to
load register 1 with the address of the parameter list. An inline parameter list, such
as the one shown in Figure 4-6, is convenient when you are debugging because the
parameters involved are located in the listing (or the dump) at the point they are
used, instead of at the end of the listing or dump. Note that the high-order bit of the
last address parameter (ANSWERAD) is set to 1 to indicate the end of the list. The

4-8 Assembler Programming Guide

area pOinted to by the address in the ANSWERAD parameter is an area to be used
by the called control section to pass parameters back to the calling control section.
This is a possible method to use when a called control section must pass
parameters back to the calling control section. Parameters are passed back in this
manner so that no additional registers are involved. The area used in this example
is twelve words. The size of the area for any specific application depends on the
requirements of the two control sections involved.

L 15,NEXTADDR Entry address in register 15
CNOP 0,4
BAL 1,GOOUT Parameter list address in register 1

PARMLIST DS 0A Start of parameter list
DCBADDRS DC A(INDCB) Input DCB address

DC A(OUTDCB) Output DCB address
ANSWERAD DC A(AREA+X 'S0e000e0 1

) Answer area address with
high-order bit on

NEXTADDR DC V (NEXT) Address of entry point
GOOUT BALR 14,15 Pass control; register 14 contains

return address and current AMODE
RETURNPT
AREA DC 12F'0' Answer area from NEXT

Note: This example assumes that you are passing control to a program that executes in the same
addressing mode as your program. See "Linkage Considerations" on page 4-2 for information on how to
handle branches between programs that execute in different addressing modes.

Figure 4-6. Passing Control With Return

CALL NEXT,(INDCB,OUTDCB,AREA),VL
RETURNPT
AREA DC 12F'0 1

Note: You cannot use the CALL macro to pass control to a program that executes in a different
addressing mode.

Figure 4-7. Passing Control With CALL

The CALL macro in Figure 4-7 provides the same functions as the instructions in
Figure 4-6. When the CALL macro is expanded, the parameters cause the following
results:

NEXT - A V-type address constant is created for NEXT, and the address is
loaded into register 15.

(INDCB,OUTDCB,AREA) - A-type address constants are created for the three
parameters coded within parentheses, and the address of the first A-type
address constant is placed in register 1.

VL - The high-order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The address of the
instruction following the CALL macro is loaded into register 14 before control is
passed.

Chapter 4. Program Management 4-9

In addition to the results described above, the V-type address constant generated by
the CALL macro requires the load module with the entry point NEXT to be link edited
into the same load module as the control section containing the CALL macro. The
Linkage Editor and Loader publication tells more about this service.

The parameter list constructed from the CALL macro in Figure 4-7, contains only
A-type address constants. A variation on this type of parameter list results from the
following coding:

CALL NEXT,(INDCB,(6),(7»,VL

In the above CALL macro, two of the parameters to be passed are coded as
registers rather than symbolic addresses. The expansion of this macro again
results in a three-word parameter list; in this example, however, the expansion also
contains instructions that store the contents of registers 6 and 7 in the second and
third words, respectively, of the parameter list. The high-order bit in the third word
is set to 1 after register 7 is stored. You can specify as many address parameters
as you need, and you can use symbolic addresses or register contents as you see
fit.

Analyzing the Return
When the control program returns control to a caller after it invokes a system
service, the contents of registers 2-13 are unchanged. When control is returned to
your control section from the called control section, registers 2-14 contain the same
information they contained when control was passed, as long as system conventions
are followed. The called control section has no obligation to restore registers 0 and
1; so the contents of these registers mayor may not have been changed.

When control is returned, register 15 can contain a return code indicating the results
of the processing done by the called control section. If used, the return code should
be a multiple of four, so a branching table can be used easily, and a return code of
zero should be used to indicate a normal return. The control program frequently
uses this method to indicate the results of the requests you make using system
macros; an example of the type of return codes the control program provides is
shown in the description of the IDENTIFY macro.

The meaning of each of the codes to be returned must be agreed upon in advance.
In some cases, either a "good" or "bad" indication (zero or nonzero) will be
sufficient for you to decide your next action. If tbis is true, the coding in Figure 4-8
could be used to analyze the results. Many times, however, the results and the
alternatives are more complicated, and a branching table, such as shown in
Figure 4-9 could be used to pass control to the proper routine.

Note: Explicit tests are requi red to ensure that the return code value does not
exceed the branch table size.

RETURNPT LTR
BNZ

15,15 Test return code for zero
ERRORTN Branch if not zero to error routine

Figure 4-8. Test for Normal Return

4-10 Assembler Programming Guide

RETURNPT B RETTAB(15) Branch to table using return code
RETTAB B NORMAL Branch to normal routine

B CONDI Branch to routine for condition 1
B COND2 Branch to routine for condition 2
B GIVEUP Branch to routine to handle impossible situations.

Figure 4-9. Return Code Test Using Branching Table

How Control is Returned
In the discussion of the return under "Analyzing the Return" on page 4-10, it was
indicated that the control section returning control must restore the contents of
registers 2-14. Because these are the same registers reloaded when control is
passed without a return, refer to the discussion under "Passing Control without
Return" for detailed information and examples. The contents of registers ° and 1 do
not have to be restored.

Register 15 can contain a return code when control is returned. As indicated
previously, a return code should be a multiple of four with a return code of zero
indicating a normal return. The return codes other than zero that you use can have
any meaning, as long as the control section receiving the return codes is aware of
that meaning.

The return address is the address originally passed in register 14; you should
always return control to that address. If an addressing mode switch is not involved,
you can either use a branch instruction such as BR 14, or you can use the RETURN
macro. An example of each of these methods of returning control is discussed in
the following paragraphs. If an addressing mode switch is involved, you can use a
BSM 0,14 instruction to return control. See Figure 4-2 for an example that uses the
BSM instruction to return control.

Chapter 4. Program Management 4-11

Figure 4-10 shows a portion of a control section used to analyze input data cards
and to check for an out-at-tolerance condition. Each time an out-of-tolerance
condition is found, in addition to some corrective action, one is added to the
one-byte value at the address STATUSBY. After the last data card is analyzed, this
control section returns to the calling control section, which bases its next action on
the number ot out-of-tolerance conditions encountered. The coding shown in
Figure 4-10 loads register 14 with the return address. The contents of register 15
are set to zero, and the value at the address STATUS8Y (the number of errors) is
placed in the low-order eight bits of the register. The contents of register 15 are
shifted to the left two places to make the value a multiple of four. Registers 2-12 are
reloaded, and control is returned to the address in register 14.

L 13,4(13)
L 14,12(13)
SR 15,15
IC 15,STATUSBY
SLA 15,2
LM 2,12,28(13)
BR 14

STATUSBY DC X'00 1

Load address of previous save area
Load return address
Set register 15 to zero
Load number of errors
Set return code to multiple of 4
Reload registers 2-12
Return

Note: This example assumes that you are returning to a program with the same AMODE. If not, use the
8SM instruction to transfer control.

Figure 4-10. Establishing a Return Code

The RETURN macro saves coding time. The expansion of the RETURN macro
provides instructions that restore a designated range of registers, load a return
code in register 15, and branch to the address in register 14. If T is specified, the
RETURN macro flags the save area used by the returning control section (that is, the
save area supplied by the calling routine). It does this by setting the low-order bit of
word four of the save area to one after the registers have been restored. The flag
indicates that the control section that used the save area has returned to the calling
control section. The flag is useful when traCing the flow of your program in a dump.
For a complete record of program flow,a separate save area must be provided by
each control section each time control is passed.

You must restore the contents of register 13 before issuing the RETURN macro.
Code the registers to be reloaded in the same order as they would have been
designated for a load-multiple (LM) instruction. You can load register 15 with the
return code before you write the RETURN macro, you can specify the return code in
the RETURN macro, or you can reload register 15 from the save area.

The coding shown in Figure 4-11 provides the same result as the coding shown in
Figure 4-10. Registers 13 and 14 are reloaded, and the return code is loaded in
register 15. The RETURN macro reloads registers 2-12 and passes control to the
address in register 14. The save area used is not flagged. The RC = (15) parameter
indicates that register 15 already contains the return code, and the contents of
register 15 are not to be altered.

4-12 Assembler Programming Guide

L
L
SR
IC
SLA
RETURN

13,4(13)
14,12(13)
15,15
15,STATUSBY
15,2
(2,12),RC=(15)

STATUS BY DC X'00'

Restore save area address
Return address in register 14
Zero register 15
Load number of errors
Set return code to multiple of 4
Reload registers and return

Note: You cannot use the RETURN macro to pass control to a program that executes In a different
addressing mode.

Figure 4-11. Using the RETURN Macro

Figure 4~12 illustrates another use of the RETURN macro. The correct save area
address is again established, and then the RETURN macro is issued. In this
example, registers 14 and 0-12 are reloaded, a return code of 8 is placed in register
15, the save area is flagged, and control is returned. Specifying a return code
overrides the request to restore register 15 even though register 15 is within the
designated range of registers.

L
RETURN

13,4(13)
(14,12), T , RC=8

Figure 4-12. RETURN Macro with Flag

Return to the Control Program
The discussion in the preceding paragraphs has covered passing control within one
load module, and has been based on the assumption that the load module was
brought into virtual storage because of the program name specified in the EXEC
statement The control program established only one task to be performed for the
job step. When the logical end of the program is reached, control passes to the
return address passed (in register 14) to the first control section in the control
program. When the control program receives control at this point, it terminates the
task it created for the job step, compares the return code in register 15 with any
COND values specified on the JOB and EXEC statements, and determines whether
or not subsequent job steps, if any are present, should be executed.

When your program returns to the control program, your program should use a
return code between 0 and 4095 (X"FFF"). A return code of more than 4095 might
make return code testing, message processing, and report generation inaccurate.

Chapter 4. Program Management 4-13

Passing Control in a Dynamic Structure
The discussion of passing control in a simple structure provides the background for
the discussion of passing control in a dynamic structure. Within each load module,
control should be passed as in a simple structure. If you can determine which
control sections will make up a load module before you code the control sections,
you should pass control within the load module without involving the control
program. The macros discussed in this section provide increased linkage
capability, but they require control program assistance and possibly increased
execution time.

Bringing the Load Module into Virtual Storage
The control program automatically brings the load module containing the entry
name you specified on the EXEC statement into virtual storage. The control
program places the load module above or below 16 megabytes according to its
RMODE attribute. Any other load modules you require during your job step are
brought into virtual storage by the control program when requested. Make these
requests by using the LOAD, LINK, L1NKX, ATTACH, ATTACHX, XCTL, and XCTLX
macros. The LOAD macro sets the high-order bit of the entry point address to
indicate the addressing mode of the load module. The ATTACH, ATTACHX, LINK,
UNKX, XCTL, and XCTLX macros use this information to set the addressing mode
for the module that gets control. If the AMODE is ANY, the module will get control in
the same addressing mode as the program that issued the ATTACH, ATIACHX,
UNK, LlNKX, XCTL, or XCTLX macro. If a copy of the load module must be brought
into storage, the control program places the load module above or below 16
megabytes according to its RMODE attribute. The following paragraphs discuss the
,proper use of these macro.

Location of the Load Module
Initially, each load module that you can obtain dynamically is located in a library
(partitioned data set). This library is the link library, the job or step library, the task
library, or a private library.

• The link library (defined by the LNKLSTxx member of SYS1.PARMLlB) is always
present and is available to all job steps of all jobs. The control program
provides the data control block for the library and logically connects the library
to your program, making the members of the library available to your program.
For more information, see MVS Initialization and Tuning Guide.

• The job and step libraries are explicitly established by including IIJOBUB and
IISTEPLIB DD statements in the input stream. The IIJOBUB DD statement is
placed immediately after the JOB statement, while the IISTEPUB DO statement
is placed among the DD statements for a particular job step. The job library is
available to all steps of your job, except those that have step libraries. A step
library is available to a single job step; if there is a job library, the step library
replaces the job library for the step. For either the job library or the step
library, the control program provides the data control block and issues the
OPEN macro to logically connect the library to your program.

Authorization: If an authorized program (supervisor state, APF-authorized, PSW
key 0 - 7, or PKM 0 - 7) invokes an unauthorized program, the unauthorized
program must reside in an APF-authorized library. APF (authorized program
facility) prevents authorized programs from accessing any load module that is
not in an APF-authorized library. If an authorized program tries to access a
module.in an APF-authorized library, the system searches for a copy of the
module in those libraries. If it finds one, it continues processing with that copy.

4-14 Assembler Programming Guide

If it does not find one, it abends with code 306, even though you might have
included a IISTEPLIB DD statement for the program. For information about
APF-authorization, see the application development books that are available to
the programmers that use authorized macros.

• Unique task libraries can be established by using the TASKUB parameter of the
A IT ACH or A IT ACHX macro. The issuer of the A IT ACH or A IT ACHX macro is
responsible for providing the DD statement and opening the data set or sets. If
the TASKLIB parameter is omitted, the task library of the attaching task is
propagated to the attached task. In the following example, task A's job library is
LlB1. Task A attaches task B, specifying TASKLIB= LlB2 in the ATTACH or
AITACHX macro. Task B's task library is therefore UB2.
When task B attaches task C, LlB2 is searched for task C before LlB1 or the link
library. Because task B did not specify a unique task library for task C, its own
task library (UB2) is propagated to task C and is the first library searched when
task C requests that a module be brought into virtual storage.

Task A
Task B

ATTACH EP=B,TASKLIB=LIB2
ATTACH EP=C

• Including a DD statement in the input stream defines a private library that is
available only to the job step in which it is defined. You must provide the data
control block and issue the OPEN macro for each data set. You may use more
than one private library by including more than one DO statement and an
associated data control block.

A library can be a single partitioned data set, or a collection of such data sets.
When it is a collection, you define each data set by a separate DD statement, but
you assign a name only to the statement that defines the first data set. Thus, a job
library consisting of three partitioned data sets would be defined as follows:

IIJOBLIB
II
II

DD DSNAME=PDSl, •..
DD DSNAME=PDS2, .. .
DD DSNAME=PDS3 .. .

The three data sets (PDS1, PDS2, PDS3) are processed as one, and are said to be
concatenated. Concatenation and the use of partitioned data sets is discussed in
more detail in Managing Non-VSAM Data Sets.

Some of the load modules from the link library may already be in virtual storage in
an area called the link pack area. The contents of these areas are determined
during the nucleus initialization process and will vary depending on the
requirements of your installation. The link pack area contains all reenterable load
modules from the LPA library, along with installation selected modules from the
SVC and link libraries. These load modules can be used by any job step in any job.

With the exception of those load modules contained in this area, copies of all of the
reenterable load modules you request are brought into your area of virtual storage
and are available to any task in your job step. The portion of your area containing
the copies of the load modules is called the job pack area.

The Search for the Load Module
In response to your request for a copy of a load module, the control program
searches the job pack area, the task's load list, and the link pack area. If a copy of
the load module is found in one of the pack areas, the control program determines
whether that copy can be used (see "Using an Existing Copy"). If an existing copy
can be used, the search stops. If it cannot be used, the search continues until the

Chapter 4. Program Management 4-15

module is located in a library. The load module is then brought into the job pack
area or the load list area.

The order in which the control program searches the libraries and pack areas
depends on the parameters used in the macro (LINK, L1NKX, LOAD, XCTL, XCTLX,
ATTACH or ATTACHX) requesting the load module. The parameters that define the
order of the search are EP, EPLOC, DE, DCB, and TASKLIB.

Use the TASKLIB parameter only for ATTACH or ATTACHX. You should choose the
parameters for the macro that provide the shortest search time. The search of a
library actually involves the search of a directory, followed by copying the directory
entry into virtual storage, followed by loading the load module into virtual storage.
If you know the location of the load module, you should use parameters that
eliminate as many of these searches as possible, as indicated in Figure 4-13,
Figure 4-14, and Figure 4-15.

The EP, EPLOC, or DE parameter specifies the name of the entry point in the load
module. Code one of the three every time you use a LINK, L1NKX, LOAD, XCTL,
XCTLX, ATTACH, or A TT ACHX macro. The optional DCB parameter indicates the
address of the data control block for the library containing the load module.
Omitting the DCB parameter or using the DCB parameter with an address of zero
specifies the data control block for the task libraries, the job or step library, or the
link library. If you specified TASKLIB and if the DCB parameter contains the
address of the data control block for the link library, the control program searches
no other library.

To avoid using "system copies" of modules resident in LPA and L1NKLlB, you can
specifically limit the search for the load module to the job pack area and the first
library on the normal search sequence by specifying the LSEARCH parameter on
the LINK, LOAD, or XCTL macro with the DCB for the library to be used.

The following paragraphs discuss the order of the search when the entry name used
is a mem ber name.

The EP and EPLOC parameters require the least effort on your part; you provide
only the entry name, and the control program searches for a load module having
that entry name. Figure 4-13 shows the order of the search when EP or EPLOC is
coded, and the DCB parameter is omitted or DCB = 0 is coded.

The control program searches:

The job pack area for an available copy.
The requesting task's task library and all the unique task libraries of its preceding tasks.

(Note: For the A IT ACH or A IT ACHX macro, the attached task's library and
all the unique task libraries of its preceding tasks are searched.)

The step library; if there is no step library, the job library (if any).
The link pack area.
The link library.

Figure 4-13. Search for Module, EP or EPLOC Parameter With DCB = 0 or DCB Parameter
Omitted

When used without the DCB parameter, the EP and EPLOC parameters provide the
easiest method of requesting a load module from the link, job, or step library. The
control program searches the task libraries before the job or step library, beginning
with the task library of the task that issued the request and continuing through the

4-16 Assembler Programming Guide

task libraries of all its antecedent tasks. It then searches the job or step library,
followed by the link library.

A job, step, or link library or a data set in one of these libraries can be used to hold
one version of a load module, while another can be used to hold another version
with the same entry name. If one version is in the link library, you can ensure that
the other will be found first by including it in the job or step library. However, if both
versions are in the job or step library, you must define the data set that contains the
version you want to use before the data set that contains the other version. For
example, if the wanted version is in PDS1 and the unwanted version is in PDS2, a
step library consisting of these data sets should be defined as follows:

IISTEPLIB
II

DO DSNAME=PDSl, ...
DO DSNAME=PDS2, •..

If, however, the first version of a nonreusable module in the job or step library has
been previously loaded and the version in the link library or the second version in
the job library is desired, you must code the DeB parameter in the macro.

Use extreme caution when specifying module names in unique task libraries,
because duplicate names may cause the wrong module to be brought into virtual
storage when a task requests it. Once a module has been loaded from a task
library, the module name is known to all tasks in the address space and a copy of
that module is given to all tasks requesting that that module name be loaded,
regardless of the requester's task library.

If you know that the load module you are requesting is a member of one of the
private libraries, you can still use the EP or EPLOC parameter, this time in
conjunction with the DCB parameter. Specify the address of the data control block
for the private library in the DCB parameter. The order of the search for EP or
EPLOC with the DCB parameter is shown in Figure 4-14.

The control program searches:

The job pack area for an available copy.
The specified library.
The link pack area.
The link library.

Figure 4-14. Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying
Private Library

Searching a job or step library slows the retrieval of load modules from the link
library; to speed this retrieval, you should limit the size of the job and step libraries.
You can best do this by eliminating the job library altogether and providing step
libraries where required. You can limit each step library to the data sets required
by a single step. Some steps (such as compilation) do not require a step library and
therefore do not require searching and retrieving modules from the link library. For
maximum efficiency, you should define a job library only when a step library would
be required for every step, and every step library would be the same.

The DE parameter requires more work than the EP and EPLOC parameters, but it
can reduce the amount of time spent searching for a load module. Before you can
use this parameter, you must use the BLDL macro to obtain the directory entry for
the module. The directory entry is part of the library that contains the module.

Chapter 4. Program Management 4-17

To save time, the BLDL macro must obtain directory entries for more than one entry
name. Specify the names of the load modules and the address of the data control
block for the library when using the BLDL macro; the control program places a copy
of the directory entry for each entry name requested in a designated location in
virtualstorag~. If you specify the link library and the job or step library, the
directory information indicates from which library the directory entry was taken.
The directory entry always indicates the relative track and block location of the load
module in the library. If the load module is not located on the library you indicate, a
return code is given. You can then issue another BLDL macro specifying a different
library.

To use the DE parameter, provide the address of the directory entry and code or
omit the DCB parameter to indicate the same library specified in the BLDL macro.
The task using the DE parameter should be the same as the one which issued the
BLDL or one which has the same job, step, and task library structure as the task
issuing the BLDL. The order of the search when the DE· parameter is used is shown
in Figure 4-15 for the link, job, step, and private libraries.

The preceding discussion of the search is based on the premise that the entry name
you specified is the member name. The control program checks for an alias entry
point name when the load module is found in a library. If the name is an alias, the
control program obtains the corresponding member name from the library directory,
and then searches to determine if a usable copy of the load module exists in the job
pack area. If a usable copy does not exist in a pack area, a new copy is brought into
the job pack area. Otherwise, the existing copy is used, conserving virtual storage
and eliminating the loading time.

Directory Entry Indicates Link Library and DCB = 0 or DCB Parameter Omitted.
The job pack area is searched for an available copy.
The link pack area is searched.
The module is obtained from the link library.

Directory Entry Indicates Job, Step, or Task Library and DCB=O or DCB Parameter Omitted.
The job pack area is searched for an available copy.
The module is obtained from the task library designated by the 'Z' byte of the DE operand.

DCB Parameter Indicates Private Library
The job pack area is searched for an available copy.
The module is obtained from the specified private library.

Figure 4-15. Search for Module Using DE Parameter

As the discussion of the search indicates, you should choose the parameters for the
macro that provide the shortest search time. The search of a library actually
involves a search of the directory, followed by copying the directory entry into
virtual storage, followed by loading the load module into virtual storage. If you
know the location of the load module, you should use the parameters that eliminate
as many of these unnecessary searches as possible, as indicated in Figure 4-13,
Figure 4-14, and Figure 4-15. Examples of the use of these figures are shown in the
followi ng discussion of passi ng control.

Using. an Existing Copy
The control program uses a copy of the load module already in the job pack area if
the copy can be used. Whether the copy can be used or not depends on the
reusability and current status of the load module, that is, the load module attributes,
as designated using linkage editor control statements, and whether the load module
has already been used or is in use. The status information is available to the
control program only when you specify the load module entry name on an EXEC

4-18 Assembler Programming Guide

statement, or when you use ATTACH, ATTACHX, LINK, L1NKX, XCTL, or XCTLX
macros to transfer control to the load module. The control program protects you
from obtaining an unusable copy of a load module if you always "formally" request
a copy using these macros (or the EXEC statement). If you pass control in any other
manner (for instance, a branch or a CALL macro), the control program, because it is
not informed, cannot protect your copy. If your program is in AR mode, and the
SYSST ATE ASCENV = AR macro has been issued, use the A TT ACHX, LlNKX, and
XCTLX macros instead of ATTACH, LINK, and XCTL. The macros whose names end
with "X" generate code and addresses that are appropriate for AR mode.

All reenterable modules (modules designated as reenterable using the linkage
editor) from any library are completely reusable. Only one copy is ever placed in
the link pack area or brought into your job pack area, and you get immediate control
of the load module. If the module is serially reusable, only one copy is ever placed
in the job pack area; this copy is always used for a LOAD macro. If the copy is in
use, however, and the request is made using a LINK, L1NKX, ATTACH, ATTACHX,
XCTL, or XCTLX macro, the task requiring the load modu~e is placed in a wait
condition until the copy is available. You should not issue a LINK or UNKX macro
for a serially reusable load module currently in use for the same task; the task will
be abnormally terminated. (This could occur if an exit routine issued a LINK or
L1NKX macro for a load module in use by the main program.)

If the load module is not reusable, a LOAD macro will always bring in a new copy of
the load module; an existing copy is used only if you issued a LINK, LlNKX,
ATTACH, ATTACHX XCTL orXCTLX macro and the copy has not been used
previously. Remember, the control program can determine if a load module has
been used or is in use only if all of your requests are made using LINK, LlNKX,
ATTACH, ATTACHX, XCTL or XCTLX macros.

Using the LOAD Macro
If a copy of the specified load module is not already in the link pack area, use the
LOAD macro to place a copy in the address space. When you issue a LOAD macro,
the control program searches for the load module as discussed previously and
brings a copy of the load module into the address space if required. When the
control program returns control, register 0 contains the addressing mode and the
virtual storage address of the entry point specified for the requested load module,
and register 1 contains the length of the loaded module (in doublewords) and the
authorization code in the high byte. Normally, you should use the LOAD macro only
for a reenterable or serially reusable load module, because the load module is
retai ned even though it is not in use.

The control program places the copy of the load module in subpool 251, unless the
following three conditions are true:

• The module is reentrant
• The library is authorized
• You are not running under TSO test.

In this case, the control program places the module in subpool 252. Subpool251 is
fetch protected and has a storage key equal to your PSW key. Subpool 252 is not
fetch protected and has storage key O.

The responsibility count for the copy is lowered by one when you issue a DELETE
macro during the task which was active when the LOAD macro was issued. When a
task is terminated, the count is lowered by the number of LOAD macros issued for
the copy when the task was active minus the number of deletions. When the use

Chapter 4. Program Management 4-19

count for a copy in a job pack area reaches zero, the virtual storage area containing
the copy is made available.

Passing Control with Return
Use the LINK or LlNKX macro to pass control between load modules and to provide
for return of control. You can also pass control using branch, branch and link,
branch and save, or branch and save and set mode instructions or the CALL macro.
However, when you pass control in this manner, you must protect against multiple
uses of nonreusable or serially reusable modules. You must also be careful to
enter the routine in the proper addressing mode. The following paragraphs discuss
the requirements for passing control with return in each case.

Using the LINK or LINKX Macro
When you use the LINK or LlNKX macro, you are requesting the system to assist you
in passing control to another load module. There is some similarity between
passing control using a LINK or L1NKX macro and passing control using a CALL
macro in a simple structure. These similarities are discussed first.

The convention regarding registers 2~12 still applies; the control program does not
change the contents of these registers, and the called load module should restore
them before control is returned. Unless you are an AR mode program calling an AR
mode program that uses the linkage stack, you must provide the address in register
13 of the save area for use by the called load module; the system does not use this
save area. You can pass address parameters in a parameter list to the load module
using register 1. The LINK or L1NKX macro provides the same facility for
constructing this list as the CALL macro. Register 0 is used by the·control program
and the contents may be modified. In certain cases,the contents of register 1 may
be altered by the LINK or L1NKX macro.

There is also some difference between passing control using a LINK or L1NKX
macro and passing control using a CALL macro. When you pass control in a simple
structure, register 15 contains the entry address and register 14 contains the return
address. When the called load module gets control, that is still what registers 14
and 15 contain, but when you use the LINK or L1NKX macro, it is the control program
that establishes these addresses. When you code the LINK or LlNKX macro, you
provide the entry name and possibly some library information using the EP, EPLOC,
or DE, and DCB parameters, but you have to get this entry name and library
information to the control program. The expansion of the LINK or L1NKX macro
does this by creating a control program parameter list (the information required by
the control program) ·and passing its address to the control program. After the
control program finds the entry name, it places the address in register 15.

The return address in your control section is always the instruction following the
LINK or L1NKX; that is not, however, the address that the called load module
receives in register 14. The control program saves the address of the location in
your program in its own save area, and places in register 14 the address of a
routine within the control program that will receive control. Because control was
passed using the control program, return must also be made using the control
program. The control program also handles all switching of addressing mode when
processing the LINK or L1NKX macro.

The control program establishes a use count for a load module when control is
passed using the LINK or L1NKX macro. This is a separate use count from the count
established for LOAD macros, but it is used in the same manner. The count is
increased by one when a LINK or L1NKX macro is issued and decreased by one

4-20 Assembler Programming Guide

when return is made to the control program or when the called load module issues
an XCTL or XCTLX macro.

Figure 4-16 and Figure 4-17 show the coding of a LINK or L1NKX macro used to
pass control to an entry point in a load module. In Figure 4-16, the load module is
from the link, job, or step library; in Figure 4-17, the module is from a private
library. Except for the method used to pass control, this example is similar to
Figures 10 and 11. A problem program parameter list containing the addresses
INOCB, OUTOCB, and AREA is passed to the called load module; the return pOint is
the instruction following the LINK or L1NKX macro. A V-type address constant is not
generated, because the load module containing the entry point NEXT is not to be
edited into the calling load module. Note that the EP parameter is chosen, since the
search begins with the job pack area and the appropriate library as shown in
Figure 4-13.

LINK EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=1
RETURNPT
AREA DC 12F ' 01

Figure 4-16. Use of the LINK Macro with the Job or Link Library

OPEN (PVTLIB)

LINK EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=l

PVTLIB DCB DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R)

Figure 4-17. Use of the LINK Macro with a Private Library

Figure 4-18 and Figure 4-19 show the use of the BLOL and LINK macros to pass
contro\. Assuming that control is to be passed to an entry point in a load module
from the link library, a BLOL macro is issued to bring the directory entry for the
member into virtual storage. (Remember, however, that time is saved only if more
than one directory entry is requested in a BLOL macro. Only one is requested here
for simplicity.)

BLDL 0,LISTADDR

OS
LISTADDR DC

DC
NAMEADDR DC

OS

0H
W01 '
H' 60 1

CL8 I NEXT '
26H

List description field:
Number of list entries
Length of each entry

Member name
Area required for directory information

Figure 4-18. Use of the BLDL Macro

The first parameter of the BLOL macro is a zero, which indicates that the directory
entry is on the link, job, step, or task library. The second parameter is the address
in virtual storage of the list description field for the directory entry. The second two
bytes at L1STAODR indicate the length of each entry. A character constant is

Chapter 4. Program Management 4-21

established to contain the directory information to be placed there by the control
program as a result of the BLDL macro. The LINK macro in Figure 4-19 can now be
written. Note that the DE parameter refers to the name field, not the list description
field, of the directory entry.

LINK DE=NAMEADDR,DCB=0,PARAM=(INDCB,OUTDCB,AREA),VL=1

Figure 4-19. The LINK Macro with a DE Parameter

Using CALL or Branch and Link
You can save time by passing control to a load module without using the control
program. Pass control without using the control program as follows.

• Issue a LOAD macro to obtain a copy of the load module, preceded by a BLDL
macro if you can shorten the search time by using it.

The control program returns the address of the entry pOint and the addressing
mode in register 0 and the length in doublewords in register 1.

• Load this address into register 15.

The linkage requirements are the same when passing control between load
modules as when passing control between control sections in the same load
module: register 13 must contain a save area address, register 14 must contain
the return address, and register 1 is used to pass parameters in a parameter
list. A branch instruction, a branch and link instruction, a branch and save
instruction, a branch and save and set mode instruction (BASSM), or a CALL
macro can be used to pass control, using register 15. Use BASSM only if there
is to be an addressing mode switch. The return will be made directly to your
program.

Notes:

1. You must use a branch and save and set mode instruction if passing control to a
module in a different addressing mode.

2. When control is passed to a load module without using the control program, you
must check the load module attributes and current status of the copy yourself,
and you must check the status in all succeeding uses of that load module during
the job step, even when the control program is used to pass control.

The reason you have to keep track of the usability of the load module has been
discussed previously; you are not allowing the control program to determine
whether you can use a particular copy of the load module. The following
paragraphs discuss your responsibilities when using load modules with various
attributes. You must always know what the reusability attribute of the load module
is. If you do not know, you should not attempt to pass control yourself.

If the load module is reenterable, one copy of the load module is all that is ever
required for a job step. You do not have to determine the status of the copy; it can
always be used. You can pass control by using a CALL macro, a branch, a branch
and link instruction, a branch and save instruction, or a branch and save and set
mode instruction (BASSM). Use BASSM only if there is to be an addressing mode
switch.

If the load module is serially reusable, one use of the copy must be completed
before the next use begins. If your job step consists of only one task, make sure that

4-22 Assembler Programming Guide

the logic of your program does not require a second use of the same load module
before completion of the first use. This prevents simultaneous use of the same
copy. An exit routine must not require the use of a serially reusable load module
also required in the main program.

Preventing simultaneous use of the same copy when you have more than one task
in the job step requires more effort on your part. You must still be sure that the
logic of the program for each task does not requi re a second use of the same load
module before completion of the first use. You must also be sure that no more than
one task requires the use of the same copy of the load module at one time. You can
use the ENQ macro for this purpose. Properly used, the ENQ macro prevents the
use of a serially reusable resource, in this case a load module, by more than one
task at a time. For information on the ENQ macro, see Chapter 6, "Resource
Control" on page 6-1. You can also use a conditional ENQ macro to check for
simultaneous use of a serially reusable resource within one task.

If the load module is nonreusable, each copy can only be used once; you must be
sure that you use a new copy each time you require the load module. You can
ensure that you always get a new copy by using a LINK macro or by doing the
following:

1. Issue a LOAD macro before you pass control.

2. Pass control using a branch, branch and link, branch and save, branch and save
and set mode instruction, or a CALL macro.

3. Issue a DELETE macro as soon as you are through with the copy.

How Control is Returned
The return of control between load modules is the same as return of control
between two control sections in the same load module. The program in the load
module returning control is responsible for restoring registers 2-14, possibly loading
a return code in register 15, passing control using the address in register 14 and
possibly setting the correct addressing mode. The program in the load module to
which control is returned can expect registers 2-13 to be unchanged, register 14 to
contain the return address, and optionally, register 15 to contain a return code.
Control can be returned using a branch instruction, a branch and set mode
instruction or the RETURN macro. If control was passed without using the control
program, control returns directly to the calling program. However, if control was
originally passed using the control program, control returns first to the control
program, then to the calling program.

The action taken by the control program is as follows. The control program returns
in the caller's addressing mode. When control was passed using a LINK, LlNKX,
ATTACH, or ATTACH X macro, the responsibility count was increased by one for the
copy of the load module to which control was passed to ensure that the copy would
be in virtual storage as long as it was required. The return of control indicates to
the control program that this use of the copy is completed, and so the responsibility
count is decreased by one. The virtual storage area containing the copy is made
available when the responsibility count reaches zero.

Chapter 4. Program Management 4-23

Passing Control without Return
Use the XCTLor XCTLX macro to pass control between load modules when no
return of control is required. You can also pass control using a branch instruction.
However, when you pass control in this manner, you must protect against multiple
uses of nonreusable or serially reusable modules. The following paragraphs
discuss the requirements for passing control without return in each case.

Passing Control Using a Branch Instruction
The same requirements and procedures for protecting against reuse of a
nonreusable copy of a load module apply when passing control without return as
were stated under "Passing Control With Return." The procedures for passing
control are as follows.

Issue a LOAD macro to obtain a copy of the load module. The entry address and
addressing mode returned in register 0 are loaded into register 15. The linkage
requirements are the same when passing control between load modules as when
paSSing control between control sections in the same load module; register 13 must
be reloaded with the old save area address, then registers 14 and 2-12 restored
from that old save area. Register 1 is used to pass parameters in a parameter list.
If the addressing mode does not change, a branch instruction is issued to pass
control to the address in register 15; if the addressing mode does change, a branch
and save and set mode macro is used.

Note: Mixing branch instructions and XCTL or XCTLX macros is hazardous. The
next topic explains why.

USing the XCTL or XCTLX Macro
The XCTL or XCTLX macro, in addition to being used to pass control, is used to
indicate to the control program that this use of the load module containing the XCTL
or XCTLX macro is completed. Because control is not to be returned, the address of
the old save area must be reloaded into register 13. The return address must be
loaded into register 14 from the old save area, as must the contents of registers
2-12. The XCTL or XCTLX macro can be written to request the loading of registers
2-12, or you can do it yourself. If you restore all registers yourself, do not use the
EP parameter. This creates an inline parameter list that can only be addressed
using your base register, and your base register is no longer valid. If EP is used,
you must have XCTL or XCTLX restore the base register for you.

When using the XCTL or XCTLX macro, pass parameters in a parameter list. In this
case, however, the parameter list (or the parameter data) must be established in a
portion of virtual storage outside the current load module containing the XCTL or
XCTLX macro. This is because the copy of the current load module may be deleted
before the called load module can use the parameters, as explained in more detail
below.

The XCTL or XCTLX macro is similar to the LINK macro in the method used to pass
control: control is passed by way of the control program using a control program
parameter list. The control program loads a copy of the load module, if necessary,
loads the entry address in register 15, saves the address passed in register 14, and
passes control to the address in register 15. The control program adds one to the
responsibility count for the copy of the load module to which control is to be passed
and subtracts one from the responsibility count for the current load module. The
current load module in this case is the load module last given control using the
control program in the performance of the active task. If you have been passing
control between load modules without using the control program, chances are the
responsibility count will be lowered for the wrong load module copy. And

4-24 Assembler Programming Guide

remember, when the responsibility count of a copy reaches zero, that copy may be
deleted, causing unpredictable results if you try to return control to it.

Figure 4-20 shows how this could happen. Control is given to load module A, which
passes control to the load module 8 (step 1) using a LOAD macro and a branch and
link instruction. Register 14 at this time contains the address of the instruction
following the branch and link. Load module 8 then is executed, independently of
how control was passed, and issues an XCTL or XCTLX macro when it is finished
(step 2) to pass control to load module C. The control program knowing only of load
module A, lowers the responsibility count of A by one, resulting in its deletion. Load
module C is executed and returns to the address which used to follow the branch
and link instruction. Step 3 of Figure 4-20 indicates the result.

Two methods are available for ensuring that the proper responsibility count is
lowered. One way is to always use the control program to pass control with or
without return. The other method is to use only LOAD and DELETE macros to
determine whether or not a copy of a load module should remain in virtual storage.

Control Program

~
A ~
LOAD B
BALR B

Control
Program
-------------~ A I

I
I ,

BALR

B I
I
I
I
I ,

XCTL C

..... 8 -

-------------------J-

XCTL C

----------1

RETURN

,------J~~ Control
Program

C

Program Control l
To routine which
last issued a BALR
instruction.

Step 1

step 2

Step 3

Figure 4-20. Misusing Control Program Facilities Causes Unpredictable Results

Chapter 4. Program Management 4-25

Additional Entry Points
Through the use of linkage editor facilities you can specify as many as 17 different
names (a member name and 16 aliases) and associated entry points within a load
module. It is only through the use of the member name or the aliases that a copy of
the load module can be brought into virtual storage. Once a copy has been brought
into virtual storage, however, additional entry pOints can be provided for the load
module, subject to one restriction. The load module copy to which the entry point is
to be added must be one of the following:

• A copy that satisfied the requirements of a LOAD macro issued during the same
task

• The copy of the load module most recently given control through the control
program in performance of the same task.

Add the entry point by using the IDENTIFY macro, which can be issued only by a
program running under a program request block (PRB). The IDENTIFY macro
cannot be issued by supervisor call routines or asynchronous exit routines
established using other supervisor macros.

When you use the IDENTIFY macro, you specify the name to be used to identify the
entry point, and the virtual storage address of the entry point in the copy of the load
module. The address must be within a copy of a load module that meets the
requirements listed above; if it is not, the entry point will not be added, and you will
be given a return code of OC (hexadecimal). The name can be any valid symbol of
up to eight characters, and does not have to correspond to a name or symbol within
the load module. The name must not be the same as any other name used to
identify any load module available to the control program; duplicate names cause
errors. The control program checks the names of all load modules in the link pack
area, and the job pack area when you issue an IDENTIFY macro, and provides a
return code of 8 if a duplicate is found. You are responsible for not duplicating a
member name or an alias in any of the libraries.

IDENTIFY services sets the addressing mode of the alias entry point equal to the
addressing mode of the major entry point.

If you create an alias for a module in the pageable link pack area, IDENTIFY
services places an entry for the alias on the active link pack area queue.

Entry Point and Calling Sequence Identifiers as Debugging Aids
An entry point identifier is a character string of up to 70 characters that can be
specified in a SAVE macro. The character string is created as part of the SAVE
macro expansion.

A calling sequence identifier isa 16-bit binary number that can be specified in a
CALL, LINK, or LlNKX macro. When coded in a CALL, LINK" or LlNKX macro, the
calling sequence identifier is located in the two low-order bytes of the fullword at the
return address. The high-order two bytes of the fullword form a NOP instruction.

4-26 Assembler Programming Guide

Chapter 5. Understanding 31-Bit Addressing

Virtual Storage

Enterprise Systems Architecture', like 370/Extended Architecture, supports 31-bit
real and virtual addresses, which provide a maximum real and virtual address of
two gigabytes (231

) minus one. For compatibility with existing programs, MVS/ESA*
and MVS/XA' also support 24-bit real and virtual addresses. The basic changes in
the system that provide for both 31-bit addresses and the continued use of 24-bit
addresses are:

• A virtual storage map of two gigabytes with MVS services to support programs
executing or residing anywhere in virtual storage.

• Two program attributes that specify expected address length on entry and
intended location in virtual storage.

• Bimodal operation, a capability of the processor that permits the execution of
programs with 24-bit addresses as well as programs with 31-bit addresses.

• Instructions that are sensitive to addressing mode.

In the MVS virtual storage map:

• Each address space has its own two gigabytes of virtual storage.

• Each private area has a portion below 16 megabytes and an extended portion
above 16 megabytes but, logically, these areas can be thought of as one area.

Figure 5-1 shows the virtual storage map.

Addressing Mode and Residency Mode
In MVS/ESA and MVS/XA, the processor can treat addresses as having either 24 or
31 bits. Addressing mode (AMODE) describes whether the processor is using 24-bit
or 31-bit addresses. In MVS/ESA and MVS/XA, programs can reside in 24-bit
addressable areas or beyond the 24-bit addressable area (above 16 megabytes).
Residency mode (RMODE) specifies whether the program must reside in the 24-bit
addressable area or can reside anywhere in 31-bit addressable storage.

Addressing mode (AMODE) and residency mode (RMODE) are program attributes
specified (or defaulted) for each CSECT, load module, and load module alias. These
attributes are the programmer's specification of the addressing mode in which the
program is expected to get control and where the program is expected to reside in
vi rtual storage.

AMODE defines the addressing mode (24, 31, or ANY) in which a program expects to
receive control. Addressing mode refers to the address length that a program is
prepared to handle on entry: 24-bit addresses, 31-bit addresses, or both (ANY).
Programs with an addressing mode of ANY have been designed to receive control in
either 24- or 31-bit addressing mode.

• Enterprise Systems Architecture is a trademark of the IBM Corporation.

• MVS/ESA is a trademark of the IBM Corporation.

• MVS/XA is a trademark of the IBM Corporation.

© Copyright IBM Corp. 1988, 1991 5-1

Extended 1M
Private

Extended

Common

Common

Private

Common

ELSQA/ESWA 229/230

ECSA

EPLPA/EFLPA/EMLPA

ESQA

Extended Nucleus

Nucleus

SQA

PLPA/FLPA/MLPA/BLDL

CSA

LSQA/SWA/229/230

PSA

Figure 5-1. Two Gigabyte Virtual Storage Map

o

2 gigabytes

24-Bit
Addressing
Range

3 I-Bit
Addressing
Range

A 370-XA or 370-ESA processor can operate with either 24-bit addresses (16
megabytes of addressability) or 31-bit addresses (2 gigabytes of addressability).
This ability of the processor to permit the execution of programs in 24-bit addressing
mode as well as programs in 31-bit addressing mode is called bimodal operation. A
program's AMODE attribute determines whether the program is to receive control
with 24-bit or 31-bit addresses. Once a program gets control, the program can
change the AMODE if necessary.

In 24-bit addressing mode, the processor treats all virtual addresses as 24-bit
values. This makes it Impossible for a program in 24-bit addressing mode to
address virtual storage with an address greater than 16,777,215 (16 megabytes)
because that is the largest number that a 24-bit binary field can contain.

In 31-bit addressing mode, the processor treats all virtual addresses as 31-bit
values.

5-2 Assembler Programming Guide

The processor supports bimodal operation so that both new programs and most old
programs can execute correctly. Bimodal operation is necessary because certain
coding practices in existing programs depend on 24-bit addresses. For example: >

• Some programs use a 4-byte field for a 24-bit address and place flags in the
high-order byte.

• Some programs use the LA instruction to clear the high-order byte of a register.
(In 24-bit addressing mode, LA clears the high-order byte; in 31-bit addressing
mode, it clears only the high-order bit.)

• Some programs depend on BAL and BALR to return the ILC (instruction length
code), the CC (condition code), and the program mask. (BAL and BALR return
this information in 24-bit addressing mode. In 31-bit addressing mode they do
not.)

Each load module and each alias entry has an AMODE attribute.

A CSECT can have only one AMODE, which applies to all its entry points. Different
CSECTs in a load module can have different AMODEs.

RMODE specifies where a program is expected to reside in virtual storage. The
RMODE attribute is not related to central storage requirements. (RMODE 24
indicates that a program is coded to reside in virtual storage below 16 megabytes.
RMODE ANY indicates that a program is coded to reside anywhere in virtual
storage.)

Each load module and each alias entry has an RMODE attribute. The alias entry is
assigned the same RMODE as the main entry.

The following kinds of programs must reside in the range of addresses below 16
megabytes (addressable by 24-bit callers):

• Programs that have the AMODE 24 attribute
• Programs that have the AMODE ANY attribute
• Programs that use system services that require their callers to be AMODE 24
• Programs that use system services that require their callers to be RMODE 24
• Programs that must be addressable by 24-bit addressing mode callers

Programs without these characteristics can reside anywhere in virtual storage.

"Addressing Mode and Residency Mode" on page 5-12
describes AMODE and RMODE processing and 31-bit addressing support of
AMODE and RMODE in detail.

Requirements for Execution in 31-8il Addressing Mode
In general, to execute in 31-bit addressing mode a program must:

• Be assembled using Assembler H Version 2 and the MVS/XA or MVS/ESA
macro library.

• Be link edited using the linkage editor supplied with Data Facility Product (DFP)
or be loaded using the loader supplied with DFP.

• Execute on an MVS/XA or MVS/ESA system.

Chapter 5. Understanding 31-Bit Addressing 5-3

Rules and Conventions for 31-Bit Addressing
It is important to distinguish the rules from the conventions when describing 31-bit
addressing. There are only two rules, and they are associated with hardware:

1. The length of address fields is controlled by the A-mode bit (bit 32) in the PSW.
When bit 32 = 1, addresses are treated as 31-bit values. When bit 32 = 0,
addresses are treated as 24-bit val ues.

Any data passed from a 31-bit addressing mode program to a 24-bit addressing
mode program must reside in virtual storage below 16 megabytes. (A 24-bit
addressing mode program cannot reference-data above 16 megabytes without
changing addressing mode.)

2. The A-mode bit affects the way some instructions work.

The conventions, on the other hand, are more extensive. Programs using system
services must follow these conventions.

• A program must return control in the same addressing mode in which it
received control.

• A program expects 24-bit addresses from 24-bit addressing mode programs and
31-bit addresses from 31-bit addressing mode programs.

• A program should validate the high-order byte of any address passed by a 24-bit
addressing mode program before using it as an address in 31-bit addressing
mode.

Mode Sensitive Instructions

SAL and BALR

The processor is sensitive to the addressing mode that is in effect (the setting of the
PSW A-mode bit). The current PSW controls instruction sequencing. The instruction
address field in the current PSW contains either a 24-bit address or a 31-bit address
depending on the current setting of the PSW A-mode bit. For those instructions that
develop or use addresses, the addressing mode in effect in the current PSW
determines whether the addresses are 24 or 31 bits long.

Principles of Operation contains a complete description of the 370-XA and 370-ESA
instructions. The following topics provide an overview of the mode sensitive
instructions.

SAL and SALR are addressing-mode sensitive. In 24-bit addressing mode, SAL and
SALR work the same way as they do when executed on a processor running in 370
mode. BAL and BALR put link information into the high-order byte of the first
operand register and put the return address into the remaining three bytes before
branching.

First operand register (24-bit addressing mode)

ILC CC PGM next sequential instruction address
Mask

o 2 4 8

ILC - instruction length code
CC - condition code
PGM Mask - program mask

31

5-4 Assembler Programming Guide

In 31-bit addressing mode, SAL and BALR put the return address into bits 1 through
31 of the first operand register and save the current addressing mode in the
high-order bit. Because the addressing mode is 31-bit, the high-order bit is always
a 1.

First operand register (31-bit addressing mode)

next sequential instruction address

31

When executing in 31-bit addressing mode, BAL and BALR do not save the
instruction length code, the condition code, or the program mask. IPM" (insert
program mask) can be used to save the program mask and the condition code.

LA: The LA (load address) instruction, when executed in 31-bit addressing mode,
loads a 31-bit value and clears the high-order bit. When executed in 24-bit
addressing mode, it loads a 24-bit value and clears the high-order byte (as in
MVS/370 mode).

LRA: The LRA (load real address) instr~ction always results in a 31-bit real
address regardless of the issuing program's AMODE. The virtual address specified
is treated as a 24-bit or 31-bit address based on the value of the PSW A-mode bit at
the time the LRA instruction is executed.

Branching Instructions
BASSM (branch and save and set mode) and BSM (branch and set mode) are
branching instructions that manipulate the PSW A-mode bit (bit 32). Programs can
use BASSM when branching to modules that might have different addressing
modes. Programs invoked through a BASSM instruction can use a BSM instruction
to return in the caller's addressing mode. BASSM and BSM are described in more
detail in "Establishing Linkage" on page 5-24.

BAS (branch and save) and BASR:

• Save the return address and the current addressing mode in the first operand.
• Rep/ace the PSW instruction address with the branch address.

The high-order bit of the return address indicates the addressing mode. BAS and
BASR perform the same function that BAL and BALR perform in 31-bit addressing
mode. In 24-bit mode, BAS and BASR put zeroes into the high-order byte of the
return address register.

Use of 31-Bit Addressing
In addition to providing support for the use of 31-bit addresses by user programs,
MVS includes many system services that use 31-bit addresses.

Some system services are independent of the addressing mode of their callers.
These services accept callers in either 24-bit or 31-bit addressing mode and use
31-bit parameter address fields. They assume 24-bit addresses from 24-bit
addressing mode callers and 31-bit addresses from 31-bit addressing mode callers.
Most supervisor macros are in this category.

" IPM is a trademark of the IBM Corporation.

Chapter 5 .. Understanding 31-Bit Addressing 5-5

Other services have restrictions with respect to address parameter values. Some of
these services accept SVC callers and allow them to be in either 24~bit or 31-bit
addressing mode. However, the same services might require branch entry callers
to be in 24-bit addressing mode or might require one or more parameter addresses
to be less than 16 megabytes.

Some services do not support 31-bit addressing at all. To determine a service's
addressing mode requirements, see the documentation that explains how to invoke
the service. (VSAM accepts entry by a program that executes in either 24-bit or
31-bit addressing mode.) The MVS Conversion Notebook for Version 2, gives
examples of the system services in each of these categories.

MVS provides instructions that support 31-bit addressing mode and bimodal
operation. These instructions are supported only by Assembler H Version 2
installed with the ADV or UNIV instruction set specified. The linkage editor functions
that support MVS are provided in Data Facility Product (DFP).

Planning for 31-Bit Addressing
Most programs that run on MVS/370 will run on MVS/XA or MVS/ESA in 24-bit
addressing mode without change. Some programs need to be modified to execute
in 31-bit addressing mode to provide the same function. Still other programs need
to be modified to run in 24-bit addressing mode. The MVS Conversion Notebook for
Version 3 helps you identify programs that need to be changed. This section helps
you determine what changes to make to a module you are converting to 31~bit
addressing and indicates what 31~bit address-related things to consider when
writing new code.

Some reasons for converting to 31-bit addressing mode are:

• The program can use more virtual storage for tables, arrays, or additional logic.

• The program needs to reference control blocks that have been moved above 16
megabytes.

• The program is invoked by other 31~bit addressing mode programs.

• The program must run in 31~bit addressing mode because it is a user exit
routine that the system invokes in 31-bit mode.

• The program needs to invoke services that expect to get control in 31-bit
addressing mode.

Converting Existing Programs
Keeping in mind that 31-bit addressing mode programs can reside either below or
above 16 megabytes, you can convert existing programs as follows:

1. Converting the program 10 use 31-bit addresses - a change in addressing mode
only.

• You can change the entire module to use 31-bit addressing.

• You can change only that portion that requires 31-bit addressing mode
execution.

Be sure to consider whether or not the code has any dependencies on 24-bit
addresses. Such code does not produce the same results in 31~bit mode as it
did in 24-bit mode. See" Mode Sensitive Instructions" on page 5~4 for an
overview of instructions that function differently depending on addressing mode.

5-6 Assembler Programming Guide

Calling Module

AMODE24
RMODE24

Parameters are passed

AMODE24
RMODE24

Figure 5-2 summarizes the things that you need to do to maintain the proper
interface with a program that you plan to change to 31-bit addressing mode.

Invoked Module

AMODE 24 (intends to switch to AMODE 31)
RMODE24

Requires indicated changes:

Minor recoding at the source
level to switch addressing
modes and to zero bits 1-7 of

CALL or BALR the high-order bytes of
l_t_o_a_n_ot_h_er_C_S_E_C_T ____ ~. addresses used by AMODE 31

LINKX, XCTLX, ATTACHX,
LINK, XCTL, or ATTACH ... -

module that point to locations
below 16 megabytes.

AMODE 31
RMODE24

Minor recoding at the source
level to zero bits 1-7 of the
high-order bytes of addresses
used by AMODE 31 module
that point to locations below
16 megabytes.

Figure 5-2. Maintaining Correct Interfaces to Modules that Change to AMODE 31

2. Moving the program above 16 megabytes - a change in both addressing mode
and residency mode

In general, you move an existing program above 16 megabytes because there is not
enough room for it below 16 megabytes. For example:

• An existing program or application is growing so large that soon it will not fit
below 16 megabytes.

• An existing application that now runs as a series of separate programs, or that
executes in an overlay structure, would be easier to manage as one large
program.

• Code is in the system area, and moving it would provide more room for the
private area below 16 megabytes.

The techniques used to establish proper interfaces to modules that move above 16
megabytes depend on the number of callers and the ways they invoke the module.
Figure 5-3 summarizes the techniques for passing control. The programs involved
must ensure that any addresses passed as parameters are treated correctly.
(High-order bytes of addresses to be used by a 31-bit addressing mode program
must be validated or zeroed.)

Chapter 5. Understanding 31-Bit Addressing 5-7

Means of Entry to Moved Module Few AMODE 24,RMODE 24 Many AMODE 24,RMODE 24
(AMODE 31,RMODE ANY) Callers Callers

LOAD macro and BALR · Have caller use LINK OR L1NKX Create a linkage assist routine (described in

or
"Establishing linkage" on pag.e 5-24). Give
the linkage assist routine the name of the

· Have caller use LOAD macro and moved module.
BASSM (invoked program returns via
BSM)

or

· Change caller to AMODE 31,RMODE 24
before BALR

BALR using an address in a common control · Have caller switch to AMODE 31 when Create a linkage assist routine (described in
block I invoking "Establishing linkage" on page 5-24).

or

· Change the address in the control block
to a pointer-defined value (described in
"Establishing linkage" on page 5-24)
and use BASSM. (The moved module
will use 8SM to return.)

ATTACH, ATTACHX,lINK, L1NKX, XCTl, or No changes required. No changes required.
XCTLX

SYNCH or SYNCHX in AMODE 24 · Have caller use SYNCH or SYNCHX with Create a linkage assist routine (described in
AMODE = 31 parameter "Establishing linkage" on page 5-24).

or

· Have caller switch to AMODE 31 before
issuing SYNCH or SYNCHX.

· Change address in the control block to a
pointer-defined value and use SYNCH or
SYNCHX with AMODE = DEFINED.

Figure 5-3. Establishing Correct Interfaces to Modules That Move Above 16 Megabytes

In deciding whether or not to modify a program to execute in 31-bit addressing mode
either below or above 16 megabytes, there are several considerations:

1. How and by what is the module entered?

2. What system and user services does the module use that do not support 31-bit
callers or parameters?

3. What kinds of coding practices does the module use that do not produce the
same results in 31-bit mode as in 24-bit mode?

4. How are parameters passed? Can they reside above 16 megabytes?

Among the specific practices to check for are:

1. Does the module depend on the instruction length code, condition code, or
program mask placed in the high order byte of the return address register by a
24-bit mode SAL or SALR instruction? One way to determine some of the
dependencies is by checking all uses of the SPM (set program mask)
instruction. SPM might indicate places where SAL or SALR were used to save
the old program mask, which SPM might then have reset. The IPM (insert
program mask) instruction can be used to save the condition code and the
program mask.

2. Does the module use an LA instruction to clear the high-order byte of a register?
This practice wi" not clear the high,:,order byte in 31-bit addressing mode.

3. Are any address fields that are less than 4 bytes still appropriate? Make sure
that a load instruction does not pick up a 4-byte field containing a 3-byte address
with extraneous data in thehigh-order byte. Make sure that bits 1-7 are zero.

5-8 Assembler Programming Guide

4. Does the program use the ICM (insert characters under mask) instruction? The
use of this instruction is sometimes a problem because it can put data into the
high-order byte of a register containing an address, or it can put a 3-byte
address into a register without first zeroing the register. If the register is then
used as a base, index, or branch address register in 31-bit addressing mode, it
might not indicate the proper address.

5. Does the program invoke 24-bit addressing mode programs? If so, shared data
must be below 16 megabytes.

6. Is the program invoked by 24-bit or 31-bit addressing mode programs? Is the
data in an area addressable by the programs that need to use it? (The data
must be below 16 megabytes if used by a 24-bit addressing mode program.)

Writing New Programs That Use 31-Bit Addressing
You can write programs that execute in either 24-bit or 31-bit addressing mode.
However, to maintain an interface with existing programs and with some system
services, your 31-bit addressing mode programs need subroutines or portions of
code that execute in 24-bit addressing mode. If your program resides below 16
megabytes, it can change to 24-bit addressing mode when necessary.

If your program resides above 16 megabytes, it needs a separate load module to
perform the linkage to an unchanged 24-bit addressing mode program or service.
Such load modules are called linkage assist routines and are described in
"Establishing Linkage" on page 5-24.

When writing new programs, there are some things you can do to simplify the
passing of parameters between programs that might be in different addressing
modes. In addition, there are functions that you should consider and that you might
need to accomplish your program's objectives. Following is a list of suggestions for
coding programs to run on MVS/XA or MVS/ESA:

• Use fullword fields for addresses even if the addresses are only 24 bits in
length.

• When obtaining addresses from 3-bytefields in existing areas, use SR (subtract
register) to zero the register followed by ICM (insert characters under mask) in
place of the load instruction to clear the high-order byte. For example:

Rather than: L 1,A

use: SR 1,1
IeM 1,7,A+l

The 7 specifies a 4-bit mask of 0111. The ICM instruction shown inserts bytes
beginning at location A + 1 into register 1 under control of the mask. The bytes
to be filled correspond to the 1 bits in the mask. Because the high-order byte in
register 1 corresponds to the 0 bit in the mask, it is not filled.

• If the program needs storage above 16 megabytes, obtain the storage using the
STORAGE macro (SP Version 3 only) or the VRU, VRG, RU, and RC forms of
GETMAIN and FREEMAIN, or the corresponding functions on STORAGE. These
are the only forms that allow you to obtain and free storage above 16
megabytes. Do not use storage areas above 16 megabytes for save areas and
parameters passed to other programs.

• Do not use the STAE macro; use ESTAE or ESTAEX. STAE has 24-bit
addressing mode dependencies.

• Do not use SPIE; use ESPIE. SPIE has 24-bit addressing mode dependencies.

Chapter 5. Understanding 31-Bit Addressing 5-9

• Do not use previous paging services macros; use PGSER.

• To make debugging easier, switch addressing modes only when necessary.

• Identify the intended AMODE and RMODE for the program in a prologue.

• 31-bit addressing mode programs should use ESTAE, ESTAEX or the ESTAI
parameter on the ATIACH, or ATIACHX macro rather than STAE or STAI. STAI
has 24-bitaddressing mode dependencies. When recovery routines refer to the
PSW field in the SDWA, they should refer to SDWAEC1, which is the EC mode
PSW at the time of error.

User-written STAE and STAI routines need to be aware of the restricted support
of theBC mode PSW fields in the SDWA. The instruction length and address
fields contain zeroes in the following situations:

SDWACTL 1 (BC mode PSW at time of error) contains zeroes in the
designated fields when the error occurred while the program (or a service
routine executing on behalf of the program) was executing in 31·blt
addressing mode.

SDWACTL2 (BC mode PSW from the last program request block (PRB) on
the request block (RB) chain) contains zeroes when the last PRB on the RS
chain refers to a program that was executing in 31-bit addressing mode.

When writing new programs, you need to decide whether to use 24-bit addressing
mode or 31-bit addressing mode.

The following are examples of kinds of programs that you should write in 24-bit
addressing mode:

• Programs that must execute on MVS/370 as well as MVS/XA or MVS/ESA and
do not requi re any new MVS functions.

• Service routines, even those in the common area, that use system services
requiring entry in 24-bit addressing mode or thatmust accept control directly
from unchanged 24-bit addressing mode programs.

When you use 31-bit addressing mode, you must decide whether the new program
should reside above or below 16 megabytes (unless it is so large that it will not fit
below). Your decision depends on what programs and system services the new
program invokes and what programs invoke it.

New Programs Below 16 Megabytes: The main reason for writing new 31-bit
addressing mode programs that reside below 16 megabytes is to be able to address
areas above 16 megabytes or to invoke 31-bit addressing mode programs while, at
the same time, simplifying communication with existing 24-bit addressing mode
programs or system services, particularly data management. For example, VSAM
macros accept callers in 24-bit or 31-bit addressing mode.

Even though your program resides below 16 megabytes, you must be concerned
about dealing with programs that require entry in 24-bit addressing mode or that
require parameters to be below 16 megabytes. Figure 5-8 in "Establishing
Linkage" on page 5-24 contains more information about parameter requirements.

5-10 Assembler Programming Guide

New Programs Above 16 Megabytes: When you write new programs that reside
above 16 megabytes, your main concerns are:

• Dealing with programs that require entry in 24-bit addressing mode or that
require parameters to be below 16 megabytes. Note that these are concerns of
any 31-bit addressing mode program no matter where it resides.

• How routines that remain below 16 megabytes invoke the new program.

Writing Programs for MVS/370 and MVS Systems with 31-Bil Addressing
You can write new programs that will run on both MVS/370 and MVS systems that
use 31-bit addressing. If these programs do not need to use any new MVS functions,
the best way to avoid errors is to assemble the programs on MVS/370 with macro
libraries from a 31-bit addressing system (MVS/XA or MVS/ESA). You can also
assemble these programs on 31-bit addressing systems with macro libraries from
MVS/370, but you must generate MVS/370-compatible macro expansions by
specifying the SPLEVEL macro at the beginning of the programs.

If the program needs to use new MVS functions, your programming task Is more
difficult because most new MVS/XA functions are not supported on MVS/370. You
need to use dual paths in your program so that on each system your program uses
the services or macros that are supported on that system.

Programs designed to execute on either 24 or 31-bit addressing systems must use
fullword addresses where possible and use no new functions on macros except the
LOC parameter on GETMAIN. These programs must also be aware of downward
incompatible macros and use SPLEVEL as needed.

SPLEVEL Macro: Some macros are downward Incompatible. The level of the
macro expansion generated during assembly depends on the value of an assembler
language global SET symbol. When the SET symbol value is 1, the system
generates MVS/370 expansions. When the SET symbol value is 2 or greater, the
system generates MVS/XA expansions.

The SPLEVEL macro allows programmers to change the value of the SET symbol.
The SPLEVEL macro shipped with MVS/SP Version 3 sets a default value of 3 for the
SET symbol. Therefore, unless a program or installation specifically changes the
default value, the macros generated are MVS/ESA macro expansions.

You can, within a program, issue the SPLEVEL SET = 1 macro to obtain MVS/370
fMVS/System Product Version 1 Release 3.0) expansions, or SPLEVEL SET = 2 to
obtain MVS/XA expansions. The SPLEVEL macro sets the SET symbol value for that
program's assembly only and affects only the expansions within the program being
assembled. A single program can include multiple SPlEVEl macros to generate
different macro expansions. The following example shows how to obtain different
macro expansions within the same program by assembling both expansions and
making a test at execution time to determine which expansion to execute.

Chapter 5. Understanding 31-Bit Addressing 5-11

* DETERMINE WHICH SYSTEM IS EXECUTING
TM CVTDCB,CVTMVSE (CVTMVSE is bit 0 in the
BO SP2 CVTDCB field. If bit 0=1,

it indicates that MVS/XA
is executing.)

* INVOKE THE MVS/370 VERSION OF THE WTOR MACRO
SPLEVEL SET=1
WTOR
B CONTINUE

SP2 EQU *
* INVOKE THE MVS/XA VERSION OF THE WTOR MACRO

SPLEVEL SET=2
WTOR

CONTI NUE EQU *

Authorized Assembler Programming Guide and Authorized Assembler
Programming Reference, along with Assembler Programming Guide and Assembler
Programming Reference describe the SPLEVEL macro.

Certain macros produce a "map" of control blocks or parameter lists. These
mapping macros do not support the SPLEVEL macro. Mapping macros for different
levels of MVS systems are available only in the macro libraries for each system.
When programs use mapping macros, a different version of the program may be
needed for each system.

Dual Programs: Sometimes two programs may be required, one for each system.
In this case, use one of the following approaches:

• Keep each in a separate library
• Keep both in the same library but under different names

Addressing Mode and Residency Mode
Every program that executes in MVS/XA or MVS/ESA is assigned two program
attributes: an addressing mode (AMODE) and a residency mode (RMODE).
Programmers can specify these attributes for new programs. Programmers can
also specify these attributes for old programs through reassembly, linkage editor
PARM values, linkage editor MODE control statements, or loader PARM values.
MVSassigns default attributes to any program that does not have AMODE and
RMODE specified.

Addressing Mode - AMODE
AMODE is a program attribute that can be specified (or defaulted) for each CSECT,
load module, and load module alias. AMODE states the addressing mode that is
expected to be in effect when the program is entered. AMODE can have one of the
following values:

• AMODE 24 - The program is designed to receive control in 24-bit addressing
mode.

• AMODE 31 - The program is designed to receive control in 31-bit addressing
mode.

• AMODE ANY - The program is designed to receive control in either 24-bit or
31-bit addressing mode.

5-12 Assembler Programming Guide

Residency Mode - RMODE
RMODE is a program attribute that can be specified (or defaulted) for each CSECT,
load module, and load module alias. RMODE states the virtual storage location
(either above 16 megabytes or anywhere in virtual storage) where the program
should reside. RMODE can have the following values:

• RMODE 24 - The program is designed to reside below 16 megabytes in virtual
storage. MVS places the program below 16 megabytes.

• RMODE ANY - The program is designed to reside at any virtual storage location,
either above or below 16 megabytes. MVS places the program above 16
megabytes unless there is no suitable virtual storage above 16 megabytes.

AMODE and RMODE Combinations
Figure 5-4 shows all possible AMODE and RMODE combinations and indicates
which are valid.

AMODE and RMODE Combinations at Execution Time
At executlon time, there are only three valid AMODE/RMODE combinations:

1. AMODE 24, RMODE 24, which is the default
2. AMODE 31, RMODE 24
3. AMODE 31, RMODE ANY

The ATTACH, ATTACHX, LINK, LlNKX, XCTL, and XCTLX macros give the invoked
module control in the AMODE previously specified. However, specifying a
particular AMODE does not guarantee that a module that gets control by other
means will receive control in that AMODE. For example, an AMODE 24 module can
issue a BALR to an AMODE 31, RMODE 24 module. The AMODE 31 module will get
control in 24-bit addressing mode.

Chapter 5. Understanding 31-Bit Addressing 5-13

RMODE 24 RMODE ANY

AMODE 24 Valid Invalid 1

AMODE 31 Valid Valid

AMODE ANY Val id 2 It Depends 3

1. This combination is invalid because an AMODE 24 module cannot reside above 16 megabytes.

2. This is a valid combination in that the assembler, linkage editor, and loader accept it from all
sources. However, the combination is not used at execution time. Specifying ANY is a way of
deferring a decision about the actual AMODE until the last possible moment before execution.
At execution time, however, the module must execute in either 24-bit or 31-bit addressing mode.

3. The attributes AMODE ANY/RMODE ANY take on a special meaning when used together. (This
meaning might seem to disagree with the meaning of either taken alone.) A module with the
AMODE ANY/RMODE ANY attributes will execute on either an MVS/370 or a system that uses
31-bit addressing (MVS/XA or MVS/ESA) if the module is designed to:

• Use no facilities that are unique to MVS/XA or MVS/ESA.

• Execute entirely in 31-bit addressing mode on a system that uses 31-bit addressing and
return control to its caller in 31-bit addressing mode. (The AMODE could be different from
invocation to invocation.)

• Execute entirely in 24-bit addressing mode on an MVS/370 system.

The linkage editor and loader accept this combination from the object module or load module
but not from the PARM field of the linkage editor EXEC statement or the linkage editor MODE
control statement. The linkage editor converts AMODE ANY/RMODE ANY to AMODE 31/RMODE
ANY.

Figure 5-4. AMODE and RMODE Combinations

Determining the AMODE and RMODE of a Load Module
Use the AMBLIST service aid to find out the AMODE and RMODE of a load module.
The module summary produced by the LlSTLOAD control statement contains the
AMODE of the main entry point and the AMODE of each alias, as well as theRMODE

,specified for the load module. Refer to Service Aids for information about AMBLIST.

You can look at the source code to determine the AMODE and RMODE that the
programmer intended for the program. However, the linkage editor or the loader
can override these specifications.

Assembler H Support of AMODE and RMODE
Assembler H Version 2 supports AMODE and RMODE assembler instructions. Using
AMODE and RMODE assembler instructions, you can specify an AMODE and an
RMODE to be associated with a control section, an unnamed control section, or a
named common control section.

5-14 Assembler Programming Guide

AMODE and RMODE in the Object Module
The assembler checks to determine if the specified AMODE/RMODE combination is
valid. The only combination that is not valid is AM ODE 241 RMODE ANY.

The assembler also checks for the following error conditions:

• Multiple AMODE/RMODE statements for a single control section

• An AMODE/RMODE statement with an incorrect or missing value

• An AMODE/RMODE statement whose name field is not that of a valid control
section in the assembly.

AMODE and RMODE Assembler Instructions
The AMODE instruction specifies the addressing mode to be associated with a
CSECT in an object module. The format of the AMODE instruction is:

Name Operation Operand

Any symbol or blank AMODE 24/31/ANY

The name field associates the addressing mode with a control section. If there is a
symbol in the name field of an AMODE statement, that symbol must also appear in
the name field of a START, CSECT, or COM statement in the assembly. If the name
field is blank, there must be an unnamed control section in the assembly.

Similarly, the name field associates the residency mode with a control section. The
RMODE statement specifies the residency mode to be associated with a control
section. The format of the RMODE instruction is:

Name Operation Operand

Any symbol or blank RMODE 24/ANY

Both the RMODE and AMODE instructions can appear anywhere in the assembly.
Their appearance does not initiate an unnamed CSECT. There can be more than
one RMODE (or AM ODE) instruction per assembly, but they must have different
name fields.

The defaults when AMODE, RMODE, or both are not specified are:

Specified
Neither
AMODE 24
AMODE 31
AMODE ANY
RMODE 24
RMODE ANY

Defaulted
AMODE 24 RMODE 24
RMODE 24
RMODE 24
RMODE 24
AMODE 24
AMODE 31

Chapter 5. Understanding 31-Bit Addressing 5-15

DFP Linkage Editor Support of AMODE and RMODE
The linkage editor accepts AMODE and RMODE specifications from any or all of the
following:

• Object modules.

• Load modules.

• PARM field of the linkage editor EXEC statement. For example:

//LKED EXEC PGM=name,PARM='AMODE=31,RMODE=ANY, .•••• '

PARM field input overrides object module and load module input.

• Linkage editor MODE control statements in the SYSLIN data set. For example:

MODE AMODE(31),RMODE(24)

MODE control statement input overrides object module, load module and PARM
input.

Linkage editor processing results in two sets of AMODE and RMODE indicators
located in:

• The load module

• The PDS entry for the member name and any PDS entries for alternate names
or alternate entry points that were constructed using the linkage editor ALIAS
control statement.

These two sets of indicators might differ because they can be created from different
input. The linkage editor creates indicators in the load module based on input from
the input object module and load module. The linkage editor creates indicators in
the PDS directory based not only on input from the object module and load module
but also on the PARM field of the linkage editor EXEC statement, and the MODE
control statements in the SYSLIN data set. The last two sources of input override
indicators from the object module and load module. Figure 5-5 shows linkage
editor processing of AMODE and RMODE.

5-16 Assembler Programming Guide

Assemble Input Linkage Editor Input

For each CSECT, Optional AMODEI
AMODE/RMODE RMODEPARM
specified by values from JCL
assembler statements EXEC statement
or defaulted to and/or MODE
24/24 control statement.

"
Assembler H
Version 2

Linkage Editor Processing

...
~~

,. Processes AMODE/RMODE
Object module - values from object module
contains AMODEI and load module. Puts
RMODE. AMODE/RMODE into output

load module. (The linkage
editor does not use
AMODE/RMODE values from
the PDS.)

i --
Processes optional PARM values
and/or MODE control statements'
that override object module and
load module values. Puts
AMODE/RMODE in the PDS.

l
Load Module:

• Contains AMODE/RMODE of each
executable control section and
named common control second
(derived from object module and
load module input values.)

• PDS contains AMODE/RMODE
value from object module or
load module or from overriding
PARM values or MODE control
statements.

~
System obtains AMODE and RMODE
from PDS.

Figure 5-5. AMODE and RMODE Processing by the Linkage Editor

Chapter 5. Understanding 31-Bit Addressing 5-17

The linkage editor uses default values of AMODE 24/RMODE 24 for:

• Object modules produced by ass.emblers other than Assembler H Version 2

• Object modules produced by Assembler H Version 2 where source statements
did not specify AMODE or RMODE

• Load modules produced by linkage editors other than the DFP linkage editor

• Load modules produced by the DFP linkage editor that did not have AMODE or
RMODE specified from any input source

• Load modules in overlay structure.

MVS/XA and MVS/ESA treat programs in overlay structure as AMODE 24, RMODE
24 programs. Putting a program into overlay structure destroys any AMODE and
RMODE specifications contained in the load module.

The linkage editor recognizes as valid the following combinations of AMODE. and
RMODE:

AMODE 24· RMODE 24

AMODE 31 RMODE 24

AMODE 31 RMODE ANY

AMODE ANY RMODE 24

AM ODE ANY RMODE ANY

The linkage editor accepts the ANY/ANY combination from the object module or
load module and places AM ODE 31, RMODE ANY into the PDS (unless overridden
by PARM values or MODE control statements). The linkage editor does not accept
ANY/ANY from the PARM value or MODE control statement.

Any AMODE value specified alone in the PARM field or MODE control statement
implies an RMODE of 24. Likewise, an RMODE of ANY specified alone implies an
AMODE of 31. However, for RMODE 24 specified alone, the linkage editor does not
assume an AMODE value. Instead, it uses the AMODE value specified in the CSECT
in generating the entry or entries in the PDS.

When the linkage editor creates an overlay structure, it assigns AMODE 24, RMODE
24 to the resulting program.

Linkage Editor RMODE Processing
In constructing a load module, the linkage editor frequently is requested to combine
multiple CSECTs, or it may process an existing load module as input, combining it
with additional CSECTs or performing a CSECT replacement.

The linkage editor determines the RMODE of each CSECT. If the RMODEs are all
the same, the linkage editor assigns that RMODE to the load module. If the
RMODEs are not the same (ignoring the RMODE specification on common sections),
the more restrictive value, RMODE 24, is chosen as the load module's RMODE.

5-18 Assembler Programming Guide

The RMODE chosen can be overridden by the RMODE specified in the PARM field of
the linkage editor EXEC statement. Likewise, the PARM field RMODE can be
overridden by the RMODE value specified on the linkage editor MODE control
statement.

The linkage editor does not alter the RMODE values obtained from the object
module or load module when constructing the new load module. Any choice that
the linkage editor makes or any override processing that it performs affects only the
PDS.

DFP Loader Support for AMODE and RMODE
The loader's processing of AMODE and RMODE is similar to the linkage editor's.
The loader accepts AMODE and RMODE specifications from:

Object modules
Load modules
PARM field of the JCL EXEC statement

Unlike the linkage edltor,the loader does not accept MODE control statements from
the SYSLIN data set, but it does base its loading sequence on the sequence of items
in SYSLIN.

The loader passes the AMODE value to MVS. The loader processes the RMODE
value as follows. If the user specifies an RMODE value in the PARM field, that value
overrides any previous RMODE value. Using the value of the first RMODE it finds in
the first object module or load module it encounters that is not for a common
section, the loader obtains virtual storage for its output. As the loading process
continues, the loader may encounter a more restrictive RMODE value. If, for
example, the loader begins loading based on an RMODE ANY indicator and later
finds an RMODE 24 indicator in a section other than a common section, it issues a
message and starts over based on the more restrictive RMODE value. Figure 5-6
shows loader processing of AMODE and RMODE.

Chapter 5. Understanding 31-8it Addressing 5·19

Assembler Input

For each CSECT,
AMODE/RMODE
specified by
assembler statements
or defaulted to
24/24.

Assembler H
Version 2

Object module -
contains AM ODE/
RMODE.

Load Module:

• Contains AMODE/RMODE
of each CSECT (derived
from object module or load
module input values.)

Loader Processing

Processes object module and
load module AMODE/RMODE
values.

Processes optionalAMODE/
RMODE PARM values that
override object module
and load module values.

Loader Input

Optional AM ODE/
RMODEPARM
values from JCL
EXEC statement.

• PDS information is not
used.

Loader constructs program in virtual
storage with AMODE/RMODE from object
module, load module, or overriding
PARM values.

Figure 5-6. AMODE and RMODE Processing by the Loader

MVS Support of AMODE and RMODE
The following are examples of MVS support of AMODE and RMODE:

• MVS obtains storage for the module as indicated by RMODE.

• ATTACH, ATTACHX, LINK, LlNKX, XCTL, and XCTLX give the invoked module
control in the addressing mode specified by its AMODE.

• LOAD brings a module into storage based on its RMODE and sets bit 0 in
register 0 to indicate its AMODE.

• CALL passes control in the AMODE of the caller.

• SYNCH or SYNCHX has an AMODE parameter that you can use to specify the
AMODE of the invoked module.

• For SVC's, the system saves and sets the addressing mode.

• SRBs are dispatched in the addressing mode indicated by the SRB specified to
the SCHEDULE macro.

5-20 Assembler Programming Guide

• The cross memory instructions PC and PT establish the addressing mode for the
target program.

• DFP access methods, except VSAM macros and OPEN and CLOSE macros,
support AMODE 24 RMODE 24 callers only. VSAM macros and OPEN and
CLOSE macros support all'addressing and residency mode callers.

• Dumping is based on the AMODE specified in the error-related PSW.

Program Fetch
The system uses RMODE information from the PDS to determine whether to
obtain storage above or below 16 megabytes.

ATTACH, ATTACHX, LINK, LlNKX, XCTL, and XCTLX
Issuing an ATTACH or ATTACHX macro causes the control program to create a
new task and indicates the entry point to be given control when the new task
becomes active. If, the entry point is a member name or an alias in the PDS.
ATTACH or ATTACHX gives it control in the addressing mode specified in the
PDS or in the mode specified by the loader. If the invoked program has the
AMODE ANY attribute, it gets control in the AMODE of its caller.

The LINK, L1NKX, XCTL, and XCTLX macros also give the invoked program
control in the addressing mode indicated by its PDS for programs brought in by
fetch or in the AMODE specified by the'loader. The entry point specified must
be a member name or an alias in the PDS passed by the loader, or specified in
an IDENTIFY macro. If the entry pOint is an entry name sRecified in an IDENTIFY
macro, IDENTIFY sets the addressing mode of the entry name equal to the
addressing mode of the main entry point.

LOAD
Issuing the LOAD macro causes MVS to bring the load module containing the
specified entry pOint name into virtual storage (if a usable copy is not already
there). LOAD sets the high-order bit of the entry point address in register 0 to
indicate the module's AMODE (0 for 24,1 for 31), which LOAD obtains from the
module's PDS entry. If the module's AMODE is ANY, LOAD sets the high-order
bit in register 0 to correspond to the caller's AMODE.

LOAD places the module in virtual storage either above or below 16 megabytes
as indicated by the module's RMODE, which is specified in the PDS for the
module.

Specifying the ADDR parameter indicates that you want the module loaded at a
particular location. If you specify an address above 16 megabytes, be sure that
the module being loaded has the RMODE ANY attribute. If you do not know the
AMODE and RMODE attributes of the module, specify an address below 16
megabytes or omit the ADDR parameter.

CALL
The CALL macro passes control to an entry point via BALR. Thus control is
transferred in the AMODE of the caller. CALL does not change AMODE.

SYNCH or SYNCHX
Using the AMODE parameter on the SYNCH or SYNCHX macro, you can specify
the addressing mode in which the invoked module is to get control. Oth,erwise,
SYNCH or SYNCHX passes control in the caller's addressing mode.

SVC
For SVCs (supervisor calls), MVS saves and restores the issuer's addressing
mode and makessurethat the invoked service gets control in the specified
addressing mode.

Chapter 5. Understanding 31-Bit Addressing 5-21

SRB
When an SRB (service request block) is dispatched, MVS sets the addressing
mode based on the high-order bit of the SRBEP field. This bit, set by the issuer
of the SCHEDULE macro, indicates the addressing mode of the routine
operating under the dispatched SRB.

PC and PT
For a program call (PC), the entry table indicates the target program's
addressing mode. The address field in the entry table must be initialized by
setting the high-order bit to 0 for 24-bit addressing mode or to 1 for 31-bit
addressing mode.

The PC instruction sets up register 14 with the return address and AMODE for
use with the PT (program transfer) instruction. If PT is not preceded by a PC
instruction, the PT issuer must set the high-order bit of the second operand
register to indicate the AMODE of the program being entered (0 for 24-bit
addressing mode or 1 for 31-bit addressing mode).

Data Management Access Methods
User programs must be in AMODE 24, RMODE 24 when invoking DFP access
methods other than VSAM. All non-VSAM access methods require parameter
lists, control blocks, buffers, and user exit routines to reside in virtual storage
below 16 megabytes.

VSAM request macros accept callers in AMODE 31, RMODE ANY. VSAM allows
parameter lists and control blocks to reside above 16 megabytes; for details on
addressing and residence requirements for VSAM parameter lists, control
blocks, buffers, and exit routines, see Managing VSAM Data Sets.

AMODE's Effect on Dumps
The only time AMODE has an effect on dumps is when data on either side of the
address in each register is dumped. If the addresses in registers are treated as
24-bit addresses, the data dumped may come from a different storage location
than when the addresses are treated as 31-bit addresses. If a dump occurs
shortly after an addressing mode switch, some registers may contain 31-bit
addresses and some may contain 24 bit addresses, but dumping services does
not distinguish among them. Dumping services uses the AMODE from the
error-related PSW. For example, in dumping the area related to the registers
saved in the SDWA, dumping services uses the AMODE from the error PSW
stored in the SDWA.

How to Change Addressing Mode
To change addressing mode you must change the value of the PSW A-mode bit. The
following list includes all the ways to change addressing mode.

• The mode setting instructions BASSM and 8SM.

• Macros (ATTACH, ATTACHX, LINK, LlNKX, XCTL, or XCTLX). The system
makes sure that routines get control in the specified addressing mode. Users
need only ensure that parameter requirements are met. MVS restores the
invoker's mode on return from LINK or LlNKX.

• SVCs. The supervisor saves and restores the issuer's addressing mode and
ensures that the service routine receives control in the addressing mode
specified in its SVC table entry.

• SYNCH or SYNCHX with the AMODE parameter to specify the addressing mode
in which the invoked routine is to get control.

5-22 Assembler Programming Guide

• An SRB. When the SRB is dispatched, the system sets the PSW A-mode bit with
the high-order bit of the SRBEP field.

• The CIRB macro and the stage 2 exit effector. The CIRB macro is described in
Authorized Assembler Programming Guide and Authorized Assembler
Programming Reference.

• A PC, PT, or PR instruction. These three instructions establish the specified
addressing mode.

• An LPSW instruction (not recommended).

The example in Figure 5-7 illustrates how a change in addressing mode in a 24-bit
addressing mode program enables the program to retrieve data from the ACTLB
control block, which might reside above 16 megabytes. The example works
correctly whether or not the control block is actually above 16 megabytes. The
example uses the BSM instruction to change addressing mode. In the example, the
instruction L 2,4(,15) must be executed in 31-bit addressing mode. Mode setting
code (BSM) before the instruction establishes 31-bit addressing mode and code
following the instruction establishes 24-bit addressing mode.

USER
USER
USER

LABEll
LABEL2

LABEL3

CSECT
RMODE 24
AMODE 24
L 15,ACTLB
L 1, LABEll SET HIGH-ORDER BIT OF REGISTER 1 TO 1

AND PUT ADDRESS INTO BITS 1-31
BSM 0,1 SET AMODE 31 (DOES NOT PRESERVE AMODE)
DC A(LABEL2 + X1 80000000 1

)

DS 0H
L 2,4(,15)
LA 1,LABEL3

BSM 0,1
DS 0H

OBTAIN DATA FROM ABOVE 16 MEGABYTES
SET HIGH-ORDER BIT OF REGISTER 1 TO 0
AND PUT ADDRESS INTO BITS 1-31
SET AMODE 24 (DOES NOT PRESERVE AMODE)

Figure 5-7. Mode Switching to Retrieve Data from Above 16 Megabytes

Chapter 5. Understanding 31-Bit Addressing 5-23

Establishing Linkage
This section describes the mechanics of correct linkage in 31-bit addressing mode.
Keep in mind that there are considerations other than linkage, such as locations of
areas that both the calling module and the invoked module need to address.

Linkage in MVS systems that use 31-bit addressing (MVS/XA and MVS/ESA) is the
same as in MVS/370 for modules whose addressing modes are the same. As shown
in Figure 5-8, it is the linkage between modules whose addressing modes are
different that is an area of concern. The areas of concern that appear in Figure 5-8
fall into two basic categories:

• Addresses passed as parameters from one routine to another must be
addresses that both routines can use.

High-order bytes of addresses must contain zeroes or data that the
receiving routine is programmed to expect.

Addresses must be less than 16 megabytes if they could be passed to a
24-bit addressing mode program.

• On transfers of control between programs with different AMODEs, the receiving
routine must get control in the AMODE it needs and return control to the calling
routine in the AMODE the calling routine needs.

There are a number of ways of dealing with the areas of concern that appear in
Figure 5-8:

• Use the branching instructions (BASSM and BSM)
• Use pointer-defined linkage
• Use supervisor-assisted linkage (ATTACH, ATTACHX, LINK, L1NKX, XCTL, and

XCTLX)
• Use linkage assist routines
• Use "capping."

5-24 Assembler Programming Guide

1~ ______ A_M __ O~D_E __ 31 ______ ~I~~r-----------Ok----------------.~I~ ______ A __ M_O_D_E __ 3_1 ______ ~1
"

16 megabytes ok

"

1
AMODE31 I~

I

I

AMODE 31

Possible
CD of

,

Area
Concern

AMODE24

ok CV

I I

1 1

·1

AMODE31

Definite
CD of

Area
Concern

AMODE24

Grssible ! Area
3 of Concern

AMODE 31

I

1

1

1 ~ _____ A_M __ O_D_E_2_4 ______ ~~Ok~l~ ______ A_M_O_D_E __ 24 ______ ~1
1. When an AMODE 31 module that resides above 16 megabytes invokes an AMODE 24 module, the concerns are:

• The AMODE 24 program needs to receive control24~bit mode.

• The location of shared data (including control blocks, register save areas, and parameters).
Can the AMODE 24 module address the data?

• The AMODE 24 module cannot return control unless an addressing mode change occurs.

2. An AMODE 24 module cannot invoke an AMODE 31 module that resides above the line unless the AMODE 24 module
changes its addressing mode either directly or using supervisor~assisted linkage.

3. When both modules are below 16 megabytes the concerns are:

• Which module cleans out bits 1-7 of the high-order bytes of 24-bit values used as addresses?

• Can both modules address shared data?

4. While there are no restrictions on the mechanics of linkage between two AMODE 31 modules, there might be restrictions on
parameter values.

Figure 5-8. Linkage Between Modules with Different AMODEs and RMODEs

USing the BASSM and 8SM Instructions
The BASSM (branch and save and set mode) and the BSM (branch and set mode)
instructions are branching instructions that set the addressing mode. They are
designed to complement each other. (BASSM is used to call and 8SM is used to
return, but they are not limited to such use.)

Chapter 5. Understanding 31-Bit Addressing 5-25

The description of BASSM appears in Figure 5-9. (See Principles of Operation for
more information.)

BASSM R 1 ,R 2 [RR]

I 'OC' I R 1 I R 2 I
o 8 12 15

Bits 32-63 of the current PSW, including the updated instruction address, are saved as link
information in the general register designated by R1. Subsequently, the addressing mode and
instruction address in the current PSW are replaced from the second operand. The action associated
with the second operand is not performed if the R2 field is zero,

The contents of the general register designated by the R2 field specify the new addressing mode and
branch address; however when the R2 field is zero, the operation is performed without branching
and without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch address
is generated from the contents of the register under the control of the new addressing mode. The
new value for the PSW is computed before the register designated by R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: Trace (R2 field is not zero).

Figure 5-9. BRANCH and SAVE and Set Mode Description

The description of 8SM appears in Figure 5-10. (See Principles of Operation for
more information.)

BSM R
1
,R

2
[RR]

'OB' I R 1 I R 2 I
o 8 12 15

Bit 32 of the current PSW, the addressing mode, is inserted into the first operand. Subsequently the
addressing mode and instruction address in the current PSW are replaced from the second operand.
The action associated with an operand is not performed if the associated R field is zero.

The value of bit 32 of the PSW is placed in bit position 0 of the general register designated by R1' and
bits 1-31 of the register remain unchanged; however, when the R1 field is zero, the bit is not inserted,
and the contents of general register 0 are not changed.

The contents of the general register designated by the R2 field specify the new addressing mode and
branch address; however, when the R2 field is zero, the operation is performed without branching
and without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch address
is generated from the contents of the register under the control of the new addressing mode. The
new value for the PSW is computed before the register designated by R1 is changed.

Condlllon Code: The code remains unchanged.

Program Exceptions: None.

Figure 5-10. Branch and Set Mode Description

5-26 Assembler Programming Guide

Calling and Returning with BASSM· and BSM

16 megabytes

In the following example, a module named BELOW has the attributes AMODE 24,
RMODE 24. BELOW uses a LOAD macro to obtain the address of module ABOVE.
The LOAD macro returns the address in register 0 with the addressing mode
indicated in bit 0 (a pointer-defined value). BELOW stores this address in location
EPABOVE. When BELOW is ready to branch to ABOVE, BELOW loads ABOVE's
entry point address from EPABOVE into register 15 and branches using BASSM
14,15. BASSM places the address of the next instruction into register 14 and sets bit
o in register 14 to 0 to correspond to BELOW's addressing mode. BASSM replaces
the PSW A-mode bit with bit 0 of register 15 (a 1 in this example) and replaces the
PSW instruction address with the branch address (bits 1-31 of register 15) causing
the branch.

ABOVE uses a BSM 0,14 to return. BSM 0,14 does not save ABOVE's addressing
mode because 0 is specified as the first operand register. It replaces the PSW
A-mode bit with bit 0 of register 14 (BELOW's addressing mode set by BASSM) and
branches.

(ABOVE CSECT
ABOVE AMODE 31
ABOVE RMODE ANY

BSMO,l~

\
\

I

BELOWCSECT
BELOW AMODE 24
BELOW RMODE 24

LOAD EP = ABOVE
ST O,EPABOVE

V
/ L 15,EPABOVE

BASSM 14,15

Figure 5-11. Using BASSM and 8SM

Chapter 5. Understanding 31-Bit Addressing 5-27

Using Pointer-Defined Linkage
Pointer-defined linkage is a convention whereby programs can transfer control back
and forth without having to know each other's AMODEs. Pointer-defined linkage is
simple and efficient. You should use it in new or modified modules where there
might be mode switching between modules.

Pointer-defined linkage uses a pointer-defined value, which is a 4-byte area that
contains both an AMODE indicator and an address. The high-order bit contains the
AMODE; the remainder of the word contains the address. To use pointer-defined
linkage, you must:

• Use a pointer-defined value to indicate the entry point address and the entry
point's AMODE. (The LOAD macro provides a pointer-defined value.)

• Use the 8ASSM instruction specifying a register that contains the
pointer-defined value. 8ASSM saves the caller's AMODE and next the address
of the next sequential instruction, sets the AMODE of the target routine, and
branches to the specified location.

• Have the target routine save the full contents of the return register and use it in
the 8SM instruction to return to the caller.

Using an ADCON to Obtain a Pointer-Defined Value: The following method is useful
when you need to construct pointer-defined values to use in pointer-defined linkages
between control sections or modules that will be link edited into a single load
module. You can also use this method when the executable program is prepared in
storage using the loader.

The method requires the use of an externally-defined address constant in the
routine to be invoked that identifies its entry mode and address. The address
constant must contain a pointer-defined value. The calling program loads the
pOinter-defined value and uses it in a BASSM instruction. The invoked routine
returns using a 8SM instruction.

In Figure 5-12, RTN1 obtains pointer-defined values from RTN2 and RTN3. RTN1,
the invoking routine does not have to know the addressing modes of RTN2 and
RTN3. Later, RTN2 or RTN3 could be changed to use different addressing modes,
and at that time their address constants would be changed to correspond to their
new addressing mode. RTN1, however, would not have to change the sequence of
code it uses to invoke RTN2 and RTN3.

You can use the techniques that the previous example illustrates to handle routines
that have multiple entry points (possibly with different AMODE attributes). You need
to construct a table of address constants, one for each entry point to be handled.

5-28 Assembler Programming Guide

RTNI CSECT
EXTRN RTN2AD
EXTRN RTN3AD

L 15,=A(RTN2AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
L 15,O(,15) LOAD POINTER-DEFINED VALUE
BASSM 14,15 GO TO RTN2 VIA BASSM

L 15,=A(RTN3AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
L 15,O(,15) LOAD POINTER DEFINED-VALUE
BASSM 14,15 GO TO RTN3 VIA BASSM

RTN2 CSECT
RTN2 AMODE 24

ENTRY RTN2AD

BSM
RTN2AD DC

RTN3 CSECT

O,14
A(RTN2)

RETURN TO CALLER IN CALLER'S MODE
WHEN USED AS A POINTER-DEFINED VALUE,
INDICATES AMODE 24 BECAUSE BIT ° IS °

RTN3 AMODE 31
ENTRY RTN3AD

BSM
RTN3AD DC

O,14 RETURN TO CALLER IN CALLER'S MODE
A(X '80000000 1+RTN3) WHEN USED AS A POINTER-DEFINED VALUE

INDICATES AMODE 31 BECAUSE BIT 0 IS 1

Figure 5-12. Example of Pointer-Defined Linkage

As with all forms of linkage, there are considerations over and above the linkage
mechanism. These include:

• Both routines must have addressability to any parameters passed.

• Both routines must agree which of them will clean up any 24-bit addresses that
might have extraneous information bits 1-7 of the high-order byte. (This is a
consideration only for AMODE 31 programs.)

When a 24-bit addressing mode program invokes a module that is to execute in
31-bit addressing mode, the calling program must ensure that register 13 contains a
valid 31-bit address of the register save area with no extraneous data in bits 1-7 of
the high-order byte. In addition, when any program invokes a 24-bit addressing
mode program, register 13 must point to a register save area located below 16
megabytes.

Using the LOAD Macro to Obtain a Pointer-Defined Value: LOAD returns a
pointer-defined value in register O. You can preserve this pointer-defined value and
use it with a BASSM instruction to pass control without having to know the target
routine's AMODE.

Chapter 5. Understanding 31-Bit Addressing 5-29

Using Supervisor-Assisted Linkage
Figure 5-13 shows a "before" and "after" situation involving two modules, MOD1
and MOD2. In the BEFORE part of the figure' both modules execute in 24-bit
addressing mode. MOD1 invokes MOD2 using the LINK or LlNKX macro. The
AFTER part of the figure shows MOD2 moving above 16 megabytes and outlines the
steps that were necessary to make sure both modules continue to perform their
previous function.

5-30 AssemblerProgramming Guide

BEFORE MODI links to MOD2. Both MODI and MOD2 reside below 16 megabytes and have the attributes AMODE 24,
RMODE 24 by default.

MODI CSECT

V
MOD2 CSECT

LINK EP=MOD2~~
-----------'

AFTER MOD2 moves above 16 megabytes.

When MOD2 moves above 16 megabytes, you must make sure it will execute correctly.
Specifically, you must:

1. Review any mode-sensitive instructions to be sure they perform as intended
in AMODE 31, RMODE ANY.

2. Review system services used to be sure they can be invoked in AMODE 31,
RMODE ANY and make any necessary changes. (For example, change SPIE
to ESPIE.) Review the Conversion Notebook chapters on incompatibilities,
coexistence considerations, and programming considerations. Move any
services that do not permit callers to be in 31-bit mode to modules
residing below 16 megabytes.

3. Make sure all parameters and control blocks needed by MODI reside below 16 megabytes.

4. Make sure all addresses passed by MODI have high-order bytes that are free of
extraneous data or code MOD2 to clean up to the high-order bytes of any
address shared with MODI.

~ MOD2 CSECT

MOD2 AMODE 3]

MOD2RMODEANY

5. Make sure that all fields containing addresses of areas above 16 megabytes are fullword fields.

16 megabytes

line

MODI CSECT

LINK EP=MOD2

AMODE24 }
by default

RMODE24

LINK or LINKX handles the mode switching between MODI and
MOD2 as follows:

1. LINK or LINKX obtains MOD2's AMODE from the PDS directory entry.
2. LINK or LINKX ensures that MOD2 is entered in the specified AMODE.
3. On completion, LINK or LINKX restores MODI's AMODE by default and returns

control.

Figure 5-13. Example of Supervisor-Assisted Linkage

Chapter 5. Understanding 31-Bit Addressing 5-31

Linkage Assist Routines
A linkage assist routine, sometimes called an addressing mode interface routine, is
a module that performs linkage for modules executing in different addressing or
residency modes. Using a linkage assist routine, a 24-bit addressing mode module
can invoke a 31-bit addressing mode rnodule without having to make any changes.
The invocation results in an entry to a linkage assist routine that resides below 16
megabytes and invokes the 31-bit addressing mode module' in the specified
addressing mode.

Conversely, a 31-bit addressing mode module, such as a new user module, can use
a linkage assist routine to communicate with other user modules that execute in
24-bit addressing mode. The caller appears to be making a direct branch to the
target module, but branches instead to a linkage assist routine that changes modes
and performs the branch to the target routine.

The main advantage of using a linkage assist routine is to insulate a module from
addressing mode changes that are occurring around it.

The main disadvantage of using a linkage assist routine is that it adds overhead to
the interface. In addition, it takes time to develop and test the linkage assist routine.
Some alternatives to using linkage assist routines are:

• Changing the modules to use pointer-defined linkage (described in "Using
Pointer-Defined Linkage" on page 5:"28).

• Adding a prologue and epilogue to a module to handle entry and exit mode
switching, as described later in this chapter under "Capping."

Example of Using a Linkage Assist Routine
Figure 5-14 shows a "before" and "after" situation involving modules USER1 and
USER2. USER1 invokes USER2 by using a LOAD and BALR sequence. The
"before" part of the figure shows USER1 and USER2 residing below 16 megabytes
and lists the changes necessary if USER2 moves above 16 megabytes. USER1 does
not change.

The "after" part of the figure shows how things look after USER2 moves above 16
megabytes. Note that USER2 is now called USER3 and the newly created linkage
assist routine has taken the name USER2.

The figure continues with a coding example that shows all three routines after the
move.

5-32 Assembler Programming Guide

BEFORE

Existing Application - USERl invokes USER2 repeatedly

USER 1 USER2

BALR ~-----+-----------I RETURN I
Chan e

• Change name of USER2 to USER3.

• Write a linkage assist routine called USER2.

• Change USER3 (formerly USER2) as follows:

- Make sure all control blocks and parameters needed by
USERI and USER2 are located below the 16 megabytes
line.

- Check mode-sensitive instructions to be sure they
perform the intended function in AMODE 31,
RMODEANY.

- Check system services used to be sure they can be
invoked in AMODE 31, RMODE ANY and make any
necessary changes. (For example, change SPIE to
ESPIE.) Review the Conversion Notebook
chapters on incompatibilities, coexistence considerations,
and programming considerations.

- Make sure that all fields containing addresses of areas
above 16 megabytes are fullword fields.

AFTER

Changed Application

USERI

USERI CSECT
LOAD EP = USER2

BALR

USER2(NEW)

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24
LOADUSER3

BASSM
BSMTO
NEXT
SEQUENTIAL
INSTRUCTION

RETURN

Figure 5-14 (Part 1 of 4). Example of a Linkage Assist Routine

Reason

• USERl does not have to change the LOAD USER2
macro.

• USERl remains unchanged; new USER2 switches
AMODEs and branches to USER3 (the former USER).

- USER1 and USER2 are AMODE 24; they cannot
access parameters or data above 16 megabytes.

- USER3 was moved above 16 megabytes and has the
attributes AM ODE 31, RMODE ANY.

- USER3 has the attributes AMODE 31, RMODE
ANY. SPIE and some other system services will
not work in AMODE 31.

USER3 (formerly USER2)

USER3 CSECT
USER3 AMODE 31
USER3 RMODE ANY

RETURN

Chapter 5. Understanding 31-Bit Addressing 5-33

USERl (This module will not change)

* USER MODULE USER1 CALLS MODULE USER2
USERl CSECT
BEGIN SAVE (14,12),,* (SAVE REGISTER CONTENT, ETC.)
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL
* ENTRY CODING)

* ISSUE LOAD FOR MODULE USERZ
LOAD EP=USER2 ISSUE LOAD FOR MODULE "USER2"

* In the MVS/XA environment, the LOAD macro returns a
* pointer-defined value. However, because module USER1
* has not been changed and executes in AMODE 24, the
* the pointer-defined value has no effect on the BALR
* instruction used to branch to module USERZ.

ST a, EPUSER2 PRESERVE ENTRY POINT

* MAIN PROCESS BEGINS
PROCESS OS aH

* PR£PARE TO GO TO MODULE USER2
L 15,EPUSERZ LOAD ENTRY POINT
BALR 14,15

TM
BC PROCESS

DELETE EP=USER2
L 13,4(13)

TEST FOR END
CONTINUE IN LOOP

RETURN (14,12),T,Rc=a MODULE USERl COMPLETED
EPUSER2 DC Fla l ADDRESS OF ENTRY POINT TO USERZ

END BEGIN

USER2 (Original application module)

* USER MODULE USER2 (INVOKED FREQUENTLY FROM USERl)
USER2 CSECT

SAVE (14,12) •• * SAVE REGISTER CONTENT, ETC.
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL
* ENTRY CODING)

L 13.4(13)
RETURN (14.lZ),T,RC-a MODULE USER2 COMPLETED
END

aaeaalaa
eeeaezaa
eaeee3ee
eeeee4ee
eeaaa5ae

eaaaa7aa
eaaaasae

eaoaa9ae

aee(uaoe
aaeallea

aaoezaee
eeaaZleo
ee0022ee

oeoe30ea
eea03100

eeoe5eea
ae007aoa
oeaanoa

aeaa010a
eeeeezee
eeee03ae
aeaaa4ea

eaaeSl00
aaaeszee

Figure 5-14 (Part 2 of 4). Example of a Linkage Assist Routine

5';'34 Assembler Programming Guide

(New linkage assist routine)

* THIS IS A NEW LINKAGE ASSIST ROUTINE
* (IT WAS NAMED USER2 SO THAT MODULE USER1 WOULD NOT
* HAVE TO BE CHANGED)
USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24

SAVE (14.12) •• * (SAVE REGISTER CONTENT. ETC.)
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL
* ENTRY CODING)

* FIRST TIME LOGIC. PERFORMED ON INITIAL ENTRY ONLY.
* (AFTER INITIAL ENTRY. BRANCH TO PROCESS (SHOWN BELOW»

GETMAIN NEW REGISTER SAVE AREA

LOAD EP=USER3
* USER2 LOADS USER3 BUT DOES NOT DELETE IT. USER2 CANNOT
* DELETE USER3 BECAUSE USER2 DOES NOT KNOW WHICH OF ITS USES
* OF USER3 IS THE LAST ONE.

ST 0,EPUSER3 PRESERVE POINTER DEFINED VALUE

* PROCESS (PREPARE FOR ENTRY TO PROCESSING MODULE)

(FOR EXAMPLE, VALIDITY CHECK REGISTER CONTENTS)

* PRESERVE AMODE FOR USE DURING RETURN SEQUENCE
LA l,XRETURN SET RETURN ADDRESS
BSM 1.0 PRESERVE CURRENT AMODE
ST 1.XSAVE PRESERVE ADDRESS
L 15,EPUSER3 LOAD POINTER DEFINED VALUE

* GO TO MODULE USER3
BASSM 14,15 TO PROCESSING MODULE

* RESTORE AMODE THAT WAS IN EFFECT
L 1,XSAVE LOAD POINTER DEFINED VALUE
BSM 0,1 SET ADDRESSING MODE

XRETURN OS 0H
L 13,4(13)

RETURN (14,12),T,RC=0
EPUSER3 DC F10'
XSAVE DC F'O'

END

MODULE USER2 HAS COMPLETED
POINTER DEFINED VALUE
ORIGINAL AMODE AT ENTRY

0000100
0000200
0000300
0000400
0000S00
0000600
0000700
0000800

0002000
0002100

0003000

0004000

0004100

0005000

0007000
0008000
000S100
000S200
0009000
0009100
0009200
0009300
0009400
0009500
0009600

0010000
0010100
001(:)200
0010500

• Statements SOOO through 8200: These instructions preserve the AMODE in effect at the time of entry into module USER2.

• Statement 9200: This use of the BASSM instruction:

- Causes the USER3 module to be entered in the specified AMODE (AM ODE 31 in this example). This occurs because the LOAD
macro returns a pointer-defined value that contains the entry point of the loaded routine. and the specified AMODE of the
module.

- Puts a pointer-defined value for use as the return address into Register 14.

• Statement 9400: Module USER3 returns to this paint.

• Statement 9500: Module USER2 re-establishes the AMODE that was in effect at the time the BASSM instruction was issued
(STATEMENT 9200).

Figure 5-14 (Part 3 of 4). Example of a Linkage Assist Routine

Chapter 5. Understanding 31-Bit Addressing 5·35

(New Application Module)

* MODULE USER3 (PERFORMS FUNCTIONS OF OLD MODULE USER2)
USER3 CSECT
USER3 AMODE 31
USER3 RMODE ANY

SAVE (14.12) .. * (SAVE REGISTER CONTENT. ETC.)
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA

* RESTORE REGISTERS AND RETURN

RETURN (14.12).T.RC=0
END

00a0CU00
aaa0a20a
0000a30a
00000400
0a000500
00000600

a0008000

00e0810e
000082(;)0

• Statements 300 and 400 establish the AMODE and RMODE values for this module. Unless they are over-ridden by linkage editor
PARM values or MODE control statements, these are the values that will be placed in the PDS for this module.

• Statement 8100 returns to the invoking module.

Figure 5-14 (Part 4 of 4). Example of a Linkage Assist Routine

5-36 Assembler Programming Guide

Using Capping • Linkage Using a Prologue and Epilogue

MYPROG
MYPROG
MYPROG

MYMODE

RESETM

SAVE

An alternative to linkage assist routines is a technique called capping. You can add
a "cap" (prologue and epilogue) to a module to handle entry and exit addressing
mode switching. The cap accepts control in either 24-bit or 31-bit addressing mode,
saves the caller's registers, and switches to the addressing mode in which the
module is designed to run. After the module has completed its function, the
epilogue portion of the cap restores the caller's registers and addressing mode
before returning control.

For example, when capping is used, a module in 24-bit addressing mode can be
invoked by modules whose addressing mode is either 24-bit or 31-bit; it can perform
its function in 24-bit addressing mode and can return to its caller in the caller's
addressing mode. Capped modules must be able to accept callers in either
addressing mode. Modules that reside above 16 megabytes cannot be invoked in
24-bit addressing mode. Capping, therefore, can be done only for programs that
reside below 16 megabytes.

Figure 5-15 shows a cap for a 24-bit addressing mode module.

CSECT
AMODE ANY
RMODE 24
USING *,15
STM 14,12,12(13) SAVE CALLER'S REGISTERS BEFORE SETTING AMODE
LA 10,SAVE SET FORWARD ADDRESS POINTER IN CALLER'S
ST 10,8(13) SAVE AREA
LA 12,MYMODE SET AMODE BIT TO 0 AND ESTABLISH BASE
LA 11,RESETM GET ADDRESS OF EXIT CODE
BSM 11,12 SAVE CALLER'S AMODE AND SET IT TO AMODE 24
USING *,12
OS 0H
DROP 15
ST 13,SAVE+4 SAVE CALLER'S SAVE AREA
LR 13,10 ESTABLISH OWN SAVE AREA

This is the functional part of the original module.
This example assumes that register 11 retains its
original contents throughout this portion of the program.

L 13,4(13) GET ADDRESS OF CALLER'S SAVE AREA
BSM 0,11 RESET CALLER'S AMODE
OS 0H
LM 14,12,12(13) RESTORE CALLER'S REGISTERS IN CALLER'S AMODE
BR 14 RETURN
OS 0F
DC 18F'0'

Figure 5-15. Cap for an AMODE 24 Module

Chapter 5. Understanding 31-Bit Addressing 5-37

Performing 1/0 in 31-Bit Addressing Mode
Programs in 31-bit addressing mode usually need to use 24-bit addressing mode
programs to perform an 110 operation because all 110 control blocks, IOAWs
(indirect data address words), and CCWs must reside below 16 megabytes and all
1/0 requests must be made by programs executing in 24-bit addressing mode
(except for VSAM). Generally, data buffers must be below 16 megabytes as well.

A 31-bit addressing mode program can perform an 110 operation by:

• Using VSAM services that accept callers in either 24-bit or 31-bit addressing
mode. (Managing VSAM Data Sets describes VSAM services.)

• Using the EXCP macro. All parameter lists, control blocks, CCWs, virtual
IDAWs, and EXCP appendage routines must reside in virtual storage below 16
megabytes. See "Using the EXCP Macro" for a description of using EXCP to
perform 110.

• Using the EXCPVR macro. All parameter lists, control blocks, CCWs, IOAls
(indirect data address lists), and appendage routines must reside in virtual
storage below 16 megabytes. See "Using EXCPVR" on page 5-39 for a
description of using EXCPVR to perform I/O.

• Invoking a routine that executes in 24-bit addressing mode as an interface to
non-VSAM access methods, which accept callers executing in 24-bit addressing
mode only. See "Establishing Linkage" on page 5-24 for more information
about this method.

• Using the method shown in Figure 5-16 on page 5-40.

To perform 110 to buffers located in virtual storage above 16 megabytes, programs
must use either:

• The EXCP macro and virtuallDAWs
• The EXCPVR macro
• The VSAM access method.

Using the EXCP Macro
EXCP macro users can perform 110 to vi rtual storage areas above 16 megabytes.
By using virtuallDAW support, CCWsin the EXCP channel program can, using a
24-bit address, point to a virtuallDAW that contains the 31-bit virtual address of an
I/O buffer. The CCWs and IDAWs themselves must reside in virtual storage below
16 megabytes. The EXCP service routine supports only format 0 CCWs, the CCW
format used in MVS/370.

CCW (Format 0)

Address of
anlDAW

~~ID_A_W ________________ ~
Virtual address of
an I/O buffer

Any CCWthat causes data to be transferred can point to a virtuallDAW. Virtual
IDAW support is limited to non-VIO data sets.

5-38 Assembler Programming Guide

Using EXCPVR

Although the 1/0 buffer can be in virtual storage above 16 megabytes, the virtual
IDAW that contains the pointer to the I/O buffer and all the other areas related to the
1/0 operation (CCWs, lOBs, DEBs, and appendages) must reside in virtual storage
below 16 megabytes.

The EXCPVR interface supports only format 0 CCWs. Format 0 CCWs support only
24-bit addresses. All CCWs and IDAWs used with EXCPVR must reside in virtual or
central storage below 16 megabytes. The largest virtual or central storage address
you can specify directly in your channel program is 16 megabytes minus one.
However, using IDAWs (indirect data address words) you can specify any central
storage address and therefore you can perform I/O to any location in real or virtual
storage. EXCPVR channel programs must use IDAWs to specify buffer addresses
above 16 megabytes in central storage.

The format 0 CCW may contain the address of an IDAL (indirect address list), which
is a list of IDAWs (indirect data address words).

CCW (Format 0)

Address of
IDAL

o 8 63

IDAW I/O buffer
address

IDAW

IDAW

You must assume that buffers obtained by data management access methods have
real storage addresses above 16 megabytes.

Chapter 5. Understanding 31-Bit Addressing 5-39

Example of Performing 110 While Residing Above 16 Megabytes

BEFORE

USERI

Figure 5-16 shows a "before" and "after" situation that involves two functions,
USER1 andUSER2. In the BEFORE part of the example, USER1contains both
functions and resides below 16 megabytes. In the AFTER part of the example
USER1 has moved above 16 megabytes. The portion of USER1 that requests data
management services has been removed and remains below 16 megabytes.

The figure includes a detailed coding example that shows both USER1 and USER2.

Data Management
Services

USERI is an application program that occasionally requests data management services to perform data base I/O. USERI and
data management services reside below 16 megabytes.

AFTER

USERI CSECT
USERI AMODE 31
USERI RMODE ANY

16 megabytes

USER2CSECT
USER2 AMODE 24
USER2 RMODE 24

Data Management Services

(AMODE 24, RMODE 24
by default)

USERI moves above 16 megabytes and moves its interface to data management into a new module, USER2. USER2
remains below 16 megabytes because data management services must be invoked in 24-bit addressing mode (except for VSAM). The
following coding example shows USERI and USER2 after USERI has moved.

Figure 5-16 (Part 1 of 13). Performing 110 While Residing Above 16 Megabytes

5-40 Assembler Programming Guide

USER1 Application Module

*Module USERI receives control in 31-bit addressing mode, resides in
*storage above 16 megabytes, and calls module USER2 to perform data
*rnanagement services.
*In this example, note that no linkage assist routine is needed.
USERI CSECT
USERI AMODE 31
USERI RMODE ANY
*
*
*

Save the caller's registers in save area provided

#lElEl SAVE (14,12)
BASR 12,El
USING *.12

Save registers
Establish base
Addressability

Storage will be obtained via GETMAIN tor USER2's work area (which will also contain the save area that module
USER2 will store Into as well as parameter areas In which Information will be passed.) Since module USER2 must
acce •• data In the work area, the work area must be obtained below 18
megabyte ••

LA 0.WORKLNTH
*
#200 GETMAIN RU.LV=(0).LOC=BELOW

Length of the work area
required for USER2
Obtain work area storage
Save address of obtained
storage to be used for *

*
*

LR 6.1

USING WORKAREA.6

a work area for module
USER2
Work area addressability

The SAVE operation at statement #100 may save registers into a save area that exists in storage either below or above 16 megabytes.
If the save area supplied by the caller of module USER1 is in storage below 16 megabytes, it is assumed that the high-order byte of
register 13 is zero.

The GETMAIN at statement #200 must request storage below 16 megabytes for the following reasons:

1. The area obtained via GETMAIN will contain the register save area in which module USER2 will save registers. Because module
USER2 runs in 24-bit addressing mode, it must be able to access the save area.

2. Because module USER2 will extract data from the work area to determine what function to perform, the area must be below 16
megabytes, otherwise, USER2 would be unable to access the parameter area.

Figure 5-16 (Part 2 of 13). Performing 110 While Residing Above 16 Megabytes

Chapter 5. Understanding 31-Bit Addressing 5-41

LA 0,GMLNTH Get dynamic storage for
* module USER1 (USER1 resides
* above 16 megabytes)
#300 GETMAIN RU.LV=(0).LOC=RES Get storage above 16
* megabytes

lR 8.1 Copy address of storage
* obtained via GETMAIN

USING DYNAREA.8 Base register for dynamic
* work area
1400 ST 13.SAVEBKWD Save address of caller's
* save· area

LR 9.13 Save caller's save area
* address

LA 13.SAVEAREA USER1's save area address
* Note - save area is below
* 16 megabytes

ST 13.8(9) Have caller's save area
* point to my save area

LOAD EP=IOSERV Load address of data
* management service
* Entry point address
* returned will be pointer-defined

ST 0.EPA Save address of loaded
* routine.

The GETMAIN at statement #300 requests that the storage to be obtained match the current residency mode of module USER1.
Because the module resides above 16 megabytes, the storage obtained will be above 16 megabytes.

At statement #400, the address of the caller's save area is saved in storage below 16 megabytes.

Figure 5-16 (Part 3 of 13). Performing 110 While Residing Above 16 Megabytes

Prepare to open Input and output data base flies

*

*
*
#500
*
*
1600
*
#650
*

*
*
nee
*
*

*

MVC FUNCTION.OPEN1 Indicate open file 1

LA 1.COMMAREA

L 15.EPA

BASSM 14.15

MVC FUNCTI ON. OPEN2

LA I.COMMAREA

L 15.EPA

BASSM 14.15

for input
Set up register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: AMODE will change
Indicate open file 2
for output
Setup register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: AMODE will change

The entry pOint address loaded at statements #500 and #700 is pointer-defined, as returned by the LOAD service routine. That is, the
low-order three bytes of the symbolic field EPA will contain the virtual address of the loaded routine while the high order bit (bit 0) will
be zero to indicate the loaded module is to receive control in 24-bit addressing mode. The remaining bits (1-7) will also be zero in the
symbolic field EPA.

The BASSM at statement #600 does the following:

• Places into bit positions 1-31 of register 14 the address of statement #650.
• Sets the high-order bit of register 14 to one to indicate the current addressing mode.
• Replaces bit positions 32-63 of the current PSW with the contents of register 15 (explained above)

The 8SM instruction used by the called service routine USER2 to return to USER1 will reestablish 31-bit addressing mode.

Figure 5-16 (Part 4 of 13). Performing 110 While Residing Above 16 Megabytes

5-42 Assembler Programming Guide

Prepare to read a record from data base file 1.

REAORTN OS 0H
MVC FUNCTI ON. READ 1 Indicate read to file 1
XC BUFFER, BUFFER Clear input buffer
LA 1,COMMAREA Set up register 1 to

* point to the parameter
* area

L 15.EPA Get pointer-defined address
* of the I/O service
* routine

BASSM 14,15 Call the service routine
* Note: The BASSM will change
* the AMOOE to 24-bit. The
* BSM issued in the service
* routine will reestablish
* 31-bit addressing mode.
190e CLC STATUS,ENOFILE End of file encountered
* by module USER2 ?

BE EOORTN Close files and exit
MVC BUFFR31A.BUFFER Move record returned to

* storage above 16
* megabytes

At statement #900, a check Is made to determine if called module USER2 encountered the end of file. The end of file condition In this
example can only be intercepted by USER2 because the EOD exit address specified on the DeB macro must reside below 16
megabytes. The end of file condition must then be communicated to module USER1.

Figure 5-16 (Part 5 of 13). Performing /10 While Residing Above 16 Megabytes

Can a record analys's routine that exists above 18 megabytes.

LA 1, BUFFR31A Get address of first buffer
ST 1, BUFPTR+0 Store into parameter list
LA 1,UPDATBFR Get address of output

* buffer
ST I,BUFPTR+4 Store into parameter list
LA 1,BUFPTR Set up pointers to work

* buffers for the analysis
* routine

L 15,ANALYZE Address of analysis routine
#1000 BASR 14,15 Call analysis routine

MVC BUFFER,UPOATBFR Move updated record to
* storage below 16 megabytes
* so that the
* updated record can
* be written back to the
* data base

At statement #1000 a BASR instruction is used to call the analysis routine since no AMODE switching is required. A BAlR could also
have been used. A BALR executed while in 31-bit addressing mode performs the same function as a BASR instruction. The topiC
"Mode Sensitive Instructions" describes the instruction differences.

Figure 5-16 (Part 6 of 13). Performing 110 While Residing Above 16 Megabytes

Chapter 5. Understanding 31-Bit Addressing 5-43

*
*

*
*

*
*
*
*
*

*

MVC FUNCTION,WRITE1
LA 1,COMMAREA

L 1S,EPA

BASSM 14,15

B REAORTN

Indi~ate write to file 1
Set up register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: The BASSM wi 11 set
the AMODE to 24-bit. The
BSM issued in the service
routine will reestablish
31-bit addressing mode
Get next record to
process

Prepare to close Input and output data base files

EOORTN OS GH
MVC FUNCTI ON, CLOSEl
LA 1.COMMAREA

*
*

L 1S,EPA
*
*

BASSM 14,15
*
*
*
*
*

MVC FUNCTION,CLOSE2
LA 1,COMMAREA

*
*

L 15,EPA
*
*

BASSM 14,15
*
*
*
*
*

End of data routine
Indicate close file 1
Set up register 1 to
pOint to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: The BASSM sets
the AMOOE to 24-bit. The
8SM issued in the service
routine will reestablish
31-bit addressing mode
Indicate close file 2
Set up register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: The BASSM sets
the AMOOE to 24-bit. The
BSM issued in the service
routine will reestablish
31-bit addressing mode

Figure 5-16 (Part 7 of 13). Performing 110 While Residing Above 16 Megabytes

5-44 Assembler Programming Guide

Prepare to return to the caller

*
*

*
*

*

L l3,SAVEBKWD

LA El,WORKLNTH

FREEMAIN RC,LV=(0),A=(6)
DROP 6
LA 0,GMLNTH

FREEMAIN RC,lV=(El).A=(8)
DROP 8
XR 15.15
RETURN (14.12).RC=(l5)

Restore save area address
of the caller of module
USERl
Length of work area and
parameter area used by
module USER2
Free storage

length of work area used
by USERI
Free storage

Set return code zero

Define DSECTs and constants for module to module communication Define constants used to communicate the function module USER2
is to perform.

OS ElF
READl DC C'Rl' Read from file 1 opcode
WRITEl DC C'W1' Write to file 1 opcode
OPENl DC C'Ol' Open file I opcode
OPEN2 DC C'02' Open file 2 opcode
ClOSE1 DC C'CI' Close file 1 opcode
ClOSE2 DC C'C2' Close file 2 opcode
ANALYZE DC V(ANAlYSIS) Address of record
* analysis routine
ENDFIlE DC C'EF' End of file indicator
WORKAREA DSECT
SAVEREGS OS 0F This storage exists
* below 16 megabytes
SAVEAREA EQU SAVEREGS
SAVERSVD OS F Reserved
SAVEBKWD OS F
SAVEFRWO OS F
SAVE1412 OS 15F Save area for registers 14-12
COMMAREA OS ElF Parameter area used to
* communicate with module
* USER2
FUNCTION OS Cl2 Function to be performed
* by USER2
STATUS OS Cl2 Status of read operation
BUFFER OS Cl8El Input/output buffer
WORKLNTH EQU *-WORKAREA Length of this DSECT

Figure 5-16 (Part 8 of 13). Performing 110 While Residing Above 16 Megabytes

Define DSECT work area for module USER1

OYNAREA DSECT This storage exists
* above 16 megabytes
EPA OS F Address of loaded routine
BUFFR31A OS Cl80 Buffer - above 16
* megabytes
BUFPTR DS ElF

OS A Address of input buffer
OS A Address of updated buffer

UPDATBFR OS ClS0 Updated buffer returned
* by the analysis routine
GMlNTH EQU *-DYNAREA length of dynamic area

END

Figure 5-16 (Part 9 of 13). Performing 110 While Residing Above 16 Megabytes

Chapter 5. Understanding 31-Bit Addressing 5 .. 45

USER2 Service Routine

*Module USER2 receives control in 24-bit addressing mode, resides below
*16 megabytes, and is called by module USER1 to perform data
*management services.

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24
*
*
*

Save the caller's registers in save area provided

*

*

SAVE (14,12)
BASR 12,0
USING *,12
LR 10.1

USING COMMAREA.10

Save registers
Establish base
Addressability
Save parameter area pOinter
around GETMAINs
Establish parameter area
addressability

Storage will be obtained via GETMAIN for a save area that module USER2 can pass to external routines It calls.

*

*
*

*
*
*

*
*

LA 0,WORKLNTH Length of the work area

GETMAIN RU,LV=(0),LOC=RES

LR 6,1

USING SAVEREGS.6
LA 0,GMLNTH

required
Obtain save area storage,
which must be below
16 megabytes
Save address of obtained
storage to be used for
a save area for module
USER2
Save area addressability
Get dynamic storage for
module USER2 below
16 megabytes.

Note:This GETMAIN will only be done on the Initial call to this module.

#2000 GETMAIN RU, LV=(0). LOC=RES Obtai n storage below
*

LR 8,1
*

USING DYNAREA.8
*

ST 13,SAVEBKWD
*

LR 9,13
*

LA 13.SAVEAREA
*
*

16 megabytes
Copy address of storage
obtained via GETMAIN
Base register for the
dynamic work area
Save address of caller's
save area
Save caller's save area
address
USER1's save area address
Note - save area is
below 16 megabytes

The GETMAIN at statement #2000 requests that storage be obtained to match the current residency mode of module USER2. Because
the module resides below 16 megabytes, storage obtained will be below 16 megabytes.

Figure 5-16 (Part 10 of 13). Performing 110 While Residing Above 16 Megabytes

5-46 Assembler Programming Guide

Note: The following store operation is successful because module USER1 obtained save area storage below 16 megabytes.

ST 13,8(9)
*

* Process input requests

READ1 DS 0H

L 13,SAVEBKWD
LM 14,12,12(13)
BSM 0,14

*
WRITEl DS 0H

L 13,SAVEBKWD
LM 14,12,12(13)
BSM 0,14

*
OPEN 1 DS 0H

L 13,SAVEBKWD
LM 14,12,12(13}
BSM 0,14

*
CLOSEl DS 0H

L 13,SAVEBKWD
LM 14,12,12(13)
8SM 0,14

*
OPEN2 DS 0H

L 13,SAVEBKWD
LM 14,12,12(13)
8SM 0,14

*
CLOSE2 DS 0H

L 13.SAVEBKWD
LM 14,12,12(13)
8SM 0,14

*

Have caller's save area
point to my save area

Read a record routine

Reload USER1's registers
Return to caller - this
instruction sets AMODE 31
Write a record routine

Reload USER1's registers
Return to caller - this
instruction sets AMODE 31
Open file 1 for input

Restore caller's registers
Return to caller - this
instruction sets AMODE 31
Close file 1 for input

Restore caller's registers
Return to caller - this
instruction sets AMODE 31
Open file 2 for input

Restore caller's registers
Return to caller - this
instruction sets AMODE 31
Close file 2 for input

Restore caller's registers
Return to caller - this
instruction sets AMODE 31

Figure 5-16 (Part 11 of 13). Performing I/O While Residing Above 16 Megabytes

Chapter 5. Understanding 31-Bit Addressing 5-47

Note:This FREE MAIN will only be done on the final call to this module.

LA 0.GMLNTH Length of work area used
* by USER2

FREEMAIN RC.LV=(0).A=(8) Free storage

DeB END OF FILE and ERROR ANALYSIS ROUTINES

ENDFILE OS 0H End of file encountered

MVC STATUS.ENOFILE Indicate end of file to
* module USER1

L 13.SAVWBKWO
LM 14.12.12(13) Reload USER1's registers
8SM 0.14 Return to USER1

* indicating end of file
* has been encountered

ERREXITl OS OH SYNAD error exit one

MVC STATUS. IOERROR Indicate I/O error to
* module 'USER1'

L 13. SAVWBKWD
LM 14.12,12(13) Reload USER1's registers
BSM 0,14 Return to USER 1

* indicating an I/O error
* has been encountered

ERREXIT2 OS 0H SYNAO error exit two

MVC STATUS, IOERROR Indicate I/O error to
* module 'USER1'

L 13.SAVWBKWD
LM 14,12.12(13) Reload USER1's registers
BSM 0,14 Return to USER1

* indicating an I/O error
* has been encountered

Figure 5-16 (Part 12 of 13). Performing 110 While Residing Above 16 Megabytes

5-48 Assembler Programming Guide

Note:Define the required DCBs that module USER2 will process. The DCBs exist in storage below 16 megabytes.
The END OF DATA and SYNAD exit routines also exist in storage below 16 megabytes.

INDCB DCB DDNAME=INPUT1.DSORG=PS.MACRF=(Gl),EODAD=ENDFIlE, x
SYNAD=ERREXITl

OUTDCB DCB DDNAME=OUTPUT1.DSORG=PS,MACRF=(PL),SYNAD=ERREXIT2
* Work areas and constants for module USER2
IOERROR DC C'IO' Constant used to indicate
* an I/O error
ENDFILE DC C'EF' Constant used to indicate
* end of file encountered
SAVEREGS OSECT This storage exists
* below 16 megabytes
SAVEAREA EQU
SAVERSVD OS
SAVEBKWD OS
SAVEFRWD DS
SAVE1412 DS
WORKlNTH EQU

COMMAREA OSECT
*
*
FUNCTION OS
*
STATUS OS
BUFFER OS

OYNAREA DSECT
*

SAVEREGS
F
F
F
15F
*-SAVEREGS

Cl2

Cl2
Cl80

GMlNTH EQU *-DYNAREA

END

Reserved

Save area for registers 14-12
length of dynamic area

Parameter area used to
communicate with module
USERI
Function to be performed
by USER2
Status of read operation
Input/output buffer

This storage exists
below 16 megabytes

length of dynamic area

Figure 5-16 (Part 13 of 13). Performing 110 While Residing Above 16 Megabytes

Chapter 5. Understanding 31-Bit Addressing 5-49

Understanding the Use of Central Storage
MVS programs and data reside in virtual storage that, when necessary, is backed by
central storage. Most programs and data do not depend on their real addresses.
Some MVS programs, however, do depend on real addresses and some require
these real addresses to be less than 16 megabytes. MVS reserves as much central
storage below 16 megabytes as it can for such programs and, for the most part,
handles their central storage dependencies without requiring them to make any
changes.

The system uses the area of central storage above 16 megabytes to back virtual
storage with real frames whenever it can. All virtual areas above 16 megabytes can
be backed with real frames above 16 megabytes. In addition, the following virtual
areas below 16 megabytes can also be backed with real frames above 16
megabytes:

• SQA
• LSQA
• Nucleus
• Pageable private areas
• Pageable CSA
• PLPA
• MLPA
• Resident BLDL

The following virtual areas are always backed with real frames below 16
megabytes:

• V = R regions
• FLPA
• Subpool 226
• Subpools 227 and 228 (unless specified otherwise by the GETMAIN macro with

the LOC parameter)

When satisfying page-fix requests, MVS backs pageable virtual pages that reside
below 16 megabytes with central storage below 16 megabytes, unless the GETMAIN
macro specifies LOC = (BELOW,ANY) or the PGSERmacro specifies the ANYWHER
parameter. If the GErMAIN or STORAGE macro specifies or implies a real location
of ANY, MVS/XA backs pageable virtual pages with real frames above 16 megabytes
even when the area is page fixed.

Central Storage Considerations for User Programs
Among the things to think about when de~ling with central storage in 31-bit
addressing mode are the use of the load real address (LRA) instruction, the use of
the LOC parameter on the GETMAIN macro, the location of the OAT-off portion of the
nucleus, and using EXCPVR to perform I/O. (EXCPVR was described in the section
Performing I/O in 31-Bit Addressing Mode.)

5-50 Assembler Programming Guide

Load Real Address (LRA) Instruction

GETMAIN Macro

DAT-Off Routines

The LRA instruction always results in a 31-bit real address regardless of the issuing
program's addressing mode. All programs that issue an LRA instruction must be
prepared to handle a 31-bit result if the virtual storage address specified could have
been backed with central storage above 16 megabytes. Issue LRA only against
areas that are fixed.

The LOC parameter on the RU, RC, VRU, and VRC forms of the GETMAIN macro
specifies not only the virtual storage location of the area to be obtained, but also the
central storage location when the storage is page fixed.

LOC = BELOW indicates that the virtual storage is to be located below 16
megabytes. When the area is page fixed, it is to be backed with central storage
below 16 megabytes.

LOC = (BELOW,ANY) indicates that virtual storage is to be located below 16
megabytes but that central storage can be located either above or below 16
megabytes.

LOC = ANY and LOC = (ANY, ANY) indicate that both virtual and central storage
can be located either above or below 16 megabytes.

LOC = RES indicates that the location of virtual and central storage depends on
the location (RMODE) of the GETMAIN issuer. If the issuer has an RMODE of 24,
LOC = RES indicates the same thing as LOC = BELOW; if the issuer has an
RMODE of ANY, LOC=RES indicates the same thing as LOC=ANY.

LOC = (RES,ANY) indicates that the location of vi rtual storage depends on the
location of the issuer but that central storage can be located anywhere.

LOC is optional except in the following case: A program that resides above 16
megabytes and uses the RU, RC, VRU, and VRC forms of GETMAIN must specify
either LOC = BELOW or LOC = (BELOW,ANY) on GETMAIN requests for storage that
will be used by programs running in 24-bit addressing mode. Otherwise, virtual
storage would be assigned above 16 megabytes and 24-bit addressing mode
programs could not use it.

The location of virtual storage can also be specified on the PGSER (page services)
macro. The ANYWHER parameter on PGSER specifies that a particular virtual
storage area can be placed either above or below 16 megabytes on future page-ins.
This parameter applies to virtual storage areas where LOC = (BELOW,ANY) or
LOC = (ANY,ANY) was not specified on GETMAIN.

The MVS/370 nucleus is mapped so that its virtual storage addresses are equal to
its central storage addresses. MVS/370 has a V= R (virtual = real) nucleus. In
contrast, the MVS/XA and MVS/ESA nucleus is mapped and fixed in central storage
without attempting to make its virtual storage addresses equal to its real addresses.
MVS systems that use 31-bit addressing (MVS/XA and MVS/ESA) have a V=F
(virtual =fixed) nucleus.

Because the MVS/370 is V= R, nucleus code can turn OAT off, and the next
instruction executed is the same as it would be if OAT was still on. Because the
MVS/XA and MVS/ESA nucleus is not V = R, MVS/XA and MVS/ESA nucleus code
cannot turn OAT-off and expect the next instruction executed to be the same as if
OAT was on.

Chapter 5. Understanding 31-Bit Addressing 5-51

To allow for the execution of OAT-off nucleus code, the MVS/XA nucleus consists of
two load modules, one that runs with OAT on and one that runs with OAT off.
Nucleus code that needs to run with OAT off must reside in the OAT-off portion of the
nucleus.

When the system is initialized, the OAT-off portion of the nucleus is loaded into the
highest contiguous central storage. Therefore, you must modify any user modules
in the nucleus that run with OAT off so that they operate correctly above 16
megabytes. Among the things you may have to consider are:

• All modules in the OAT-off portion of the nucleus have the attributes AMODE 31,
RMODE ANY. They may reside above 16 megabytes.

• These modules must return control via a 8SM 0,14.

• Register 0 must not be destroyed on return.

To support modules in the OAT-off nucleus:

• Move the OAT-off code to a separate module with AMODE 31, RMODE ANY
attributes. Use as its entry point, IEAVEURn where n is a number from 1 to 4.
(MVS/XA reserves four entry pOints in the OAT-off nucleus for users.) Use 8SM
0,14 as the return instruction. Do not destroy register O.

• Code a DATOFF macro to invoke the OAT-off module:

DATOFF INDEX=INDUSRn

The value of n in INDUSRn must be the same as the value of n in IEAVEURn, the
OAT-off module's entry point.

• Link edit the OAT-off module (lEAVEURn) into the IEAVEDAT member of
SYS1.NUCLEUS (the OAT-off nucleus).

Refer to Authorized Assembler Programming Guide and Authorized Assembler
Programming Reference for more information about modifying the OAT-off portion of
the nucleus and the DATOFF macro.

5-52 Assembler Programming Guide

Chapter 6. Resource Control

When your program executes, other programs are executing concurrently in the
MVS multiprogramming environment. Each group of programs, including yours, is a
competitor for resources available at execution time. A resource is anything that a
program needs as it executes - such as processor time, a data set, another
program, a table, or a hardware device, etc. The competitor for resources is
actually the task that represents the program.

If you subdivide a program into separate logical parts, and code it as several small
programs instead of one large program, you can make the parts execute as
separate tasks and with greater efficiency. However, you must ensure that each
part executes in correct order relative to the others.

This chapter describes how your program can run in an environment in which it
must share resources with other programs.

• The WAIT, POST, and EVENTS macros introduce a strategic delay in the running
of a program. This delay forces a program to wait for a particular event to
occur. When the event occurs, the program can run once again. The event can
be the availability of a necessary resource.

• The ENQ and DEQ macros allow many programs to serialize use of resources,
such as data sets. The sharing of resources often requires that a program, or
many programs, enter a wait state until a requested resource becomes
available.

The macros described in this chapter are available only to programs that are
running in task mode; programs represented by service request blocks (SRBs) must
use other methods of controlling the use of resources.

Synchronizing Tasks (WAIT, POST, and EVENTS Macros)
Some planning on your part is required to determine what portions of one task are
dependent on the completion of portions of all other tasks. The POST macro is used
to signal completion of an event; the WAIT and EVENTS macros are used to indicate
that a task cannot proceed until one or more events have occurred. An event
control block (ECB) is used with the WAIT, EVENTS or POST macros; it is a fullword
on a fullword boundary, as shown in Figure 6-1.

An ECB is also used when the ECB parameter is coded in an ATTACH or ATTACHX
macro. In this case, the control program issues the POST macro for the event
(subtask termination). Either the 24-bit (bits 8 to 31) return code in register 15 (if the
task completed normally) or the completion code specified in the ABEND macro (if
the task was abnormally terminated) is placed in the ECB as shown in Figure 6-1.
The originating task can issue a WAIT macro or EVENTS macro with WAIT=YES
parameter specifying the ECB; the task will not regain control until after the event
has taken place and the ECB is posted (except if an asynchronous event occurs, for
example, timer expiration).

© Copyright IBM Corp. 1988, 1991 6-1

e 1 2 31

I w I p I completion code

Figure 6-1. Event Control Block (ECB)

When an ECB is originally created, bits 0 (wait bit) and 1 (post bit) must be set to
zero. If an ECB is reused, bits 0 and 1 must be set to zero before a WAIT, EVENTS
ECB = or POST macro can be specified. If, however, the bits are set to zero before
the ECB has been posted, any task waiting for that ECa to be posted will remain in
the wait state. When a WAIT macro is issued, bit 0 of the associated ECB is set to 1.
When a POST macro is issued, bit 1 of the associated ECB is set to 1 and bit 0 is set
to O. For an EVENTS type ECB, POST also puts the completed ECB address in the
EVENTS table.

A WAIT macro can specify more than one event by specifying more than one ECB.
(Only one WAIT macro can refer to an ECB at a time, however.) If more than one
ECB is specified in a WAIT macro, the WAIT macro can also specify that all or only
some of the events must occur before the task is taken out of the wait condition.
When a sufficient number of events have taken place (ECBs have been posted) to
satisfy the number of events indicated in the WAIT macro, the task is taken out of the
wait condition.

An optional parameter, LONG = YES or NO, allows you to indicate whether the task
is entering a long wait or a regular wait. A long wait should never be' considered for
I/O activity. However, you might want to use a long wait when waiting for an
operator response to a WTOR macro.

Through the LINKAGE parameter, POST and WAIT allow you to specify how the
macro passes control to the control program. You can specify that control is to be
passed by an SVC or a PC instruction.

When you issue the WAIT or POST macro and specify LINKAGE = SVC (or use the
default), your program must not be in cross memory mode. The primary,
secondary, and home address spaces must be the same, your program must be in
primary ASC mode, and it must not have an enabled unlocked task (EUT) functional
recovery routine (FRR) established. You may use WAIT and POST when the primary
and the home address spaces are different by specifying LINKAGE = SYSTEM. This
option generates a PC interface to the WAIT or POST service and requires that the
program be enabled, unlocked, in primary ASC mode and, for WAIT only, in task
mode. For POST, the control program assumes that the ECB is in the primary
address space. For WAIT, it assumes that the ECB is in the home address space.

Figure 6-2 on page 6-3 shows an example of using LINKAGE = SYSTEM. The
program that runs under TCB1 in ASN1 PCs to a program in ASN2. Now the primary
address space is ASN2 and home address space is ASN1. When the PC routine
POSTs ECB2, it uses LINKAGE = SYSTEM because home and primary are different.
The PC routine WAITs on ECB1 using LINKAGE = SYSTEM because home and
primary are still different. Note that ECB1 is in the home address space.

6-2 Assembler Programming Guide

ASNI ASN2

home address space

~
PC --------------~----.

POST ECB2,LINKAGE = SYSTEM

WAIT ECBl,LINKAGE=SYSTEM

PR

Figure 6-2. Using LINKAGE = SYSTEM on the WAIT and POST Macros

Serializing Access to Resources (ENQ and DEQ Macros)
When one or more programs using a serially reusable resource modify the
resource, they must not use the resource simultaneously with other programs.
Consider a data area in virtual storage that is being used by programs associated
with several tasks of a job step. Some of the programs are only reading records in
the data area; because they are not updating the records, they can access the data
area simultaneously. Other programs using the data area, however, are reading,
updating, and replacing records in the data area. Each of these programs must
serially acquire, update, and replace records by locking out other programs. In
addition, none of the programs that are only reading the records want to use a
record that another program is updating until after the record has been replaced.

If your program uses a serially reusable resource, you must prevent incorrect use of
the resource. You must ensure that the logic of your program does not require the
second use of the resource before completion of the first use. Be especially careful
when using a serially reusable resource in an exit routine; because exit routines get
control asynchronously with respect to your program logic, the exit routine could
obtain a resource already in use by the main program. When more than one task is
involved, using the ENQ and DEQ macros correctly can prevent simultaneous use of
a serially reusable resource.

The ENQ macro assigns control of a resource to the current task. The control
program determines the status of the resource and does one of the following:

• If the resource is available, the control program grants the request by returning
control to the active task.

• If the resource has been assigned to another task, the control program delays
assignment of control by placing the active task in a wait condition until the
resource becomes available.

• Passes back to the caller on conditional requests a return code indicating the
status of the resource.

• Abends the caller on unconditional requests that would otherwise cause a
non-zero return code.

Chapter 6. Resource Control 6-3

When the status of the resource changes so that the waiting task can get control, the
task is taken out of the wait condition and placed in the ready condition.

The ENQ and DEQ macros work together to protect serially reusable resources. The
rules for proper use of ENQ/DEQ are as follows:

• Everyone must use ENQ/DEQ.
• Everyone must use the same names and scope values for the same resources.
• Everyone must use consistent ENQ/DEQ protocol.

Naming the Resource
TheENQ and DEQ macros identify the resource by two names known as the qname
and the rname, and by a scope value. The qname and rname need not have any
relation to any actual name of the resource. The control program does not
associate a name with an actual resource; it merely processes requests having the
same qname, rname, and scope on a fi rst-i n, fi rst-out basis. It is up to you to
associate the names with the resource by ensuring that all users of the resource use
the same qname, rname, and scope value to represent the same resource. The
control program treats requests having different qname, rname, and scope
combinations as requests for different resources. Because the control program
cannot determine the actual name of the resource from the qname, rname, and
scope, a task could use the resource by specifying a different qname, rname, and
scope combination or by accessing the resource without using ENQ. In this case,
the control program cannot provide any protection.

Choose qnames and rnames carefully. Because the control program uses SYSZ for
its qnames, the task abends if you use SYSZ as the fi rst four characters of a qname.
Avoid using SYSA through SYSY because the control program sometimes uses
these characters for its qnames as well. Either check with your system programmer
to see which of the SYSA through SYSY combinations you can use or avoid using
SYSx (where x is alphabetic) to begin qnames.

Defining the Scope· of a Resource
You can request a scope of STEP,SYSTEM, or SYSTEMS on the ENQ and DEQ
macros.

• Use a scope of STEP if the resource is used only in your address space. The
control program uses the address space identifier to make your resource unique
in case someone else in another address space uses the same qname and
rname and a scope of STEP.

• Use a scope of SYSTEM if the resource is available to more than one address
space in the same system. All programs on that system that serialize on the
resource must use the same qname and rname and a scope of SYSTEM. For
example, to prevent two jobs from using a named resource simultaneously, use
SYSTEM.

• Use a scope of SYSTEMS if the resource is available to more than one system.
All programs that serialize on the resource must use the same qname and
rname and a scope of SYSTEMS. For example, to prevent two processors from
using a named resource simultaneously, use SYSTEMS. Note that the control
program considers a resource with a SYSTEMS scope to be different from a
resource represented by the same qname and rname but with a scope of STEP
or SYSTEM.

6-4 Assembler Programming Guide

Local and Global Resources
The ENQ and DEQ macros recognize two types of resources: local resources and
global resources.

A local resource is a resource identified on ENQ or DEQ by a scope of STEP or
SYSTEM. A local resource is recognized and serialized only within the requesting
operating system. The local resource queues are updated to reflect each request
for a local resource. If a system is not operating under global resource serialization
(that is, the system is not part of a global resource serialization complex), all
resources requested are treated as local resources.

If a system is part of a global resource serialization complex, a global resource is
identified on the ENQ or DEQ macro by a scope of SYSTEMS. A global resource is
recognized and serialized by all systems in the global resource serialization
complex.

If your system is part of a global resource serialization complex, global resource
serialization might change the scope value during its resource name list (RNL)
processing. If the resource appears in the SYSTEM inclusion RNL, a resource with
a scope of SYSTEM can have its scope converted to SYSTEMS. If the resource
appears in the SYSTEMS exclusion RNL, a scope of SYSTEMS can have its scope
changed to SYSTEM. This important procedure is described in Planning: Global
Resource Serialization.

Through the RNL parameter on ENQ and DEQ, you can request that global resource
serialization not perform RNL processing and, therefore, not change the scope value
of a resource. It is recommended that you use RNL = YES, the default, which tells
global resource serialization to perform RNL processing. Use RNL= NO only when
you are sure that you never want the scope value to change. An example of the use
of RNL = NO is in a cross-system coupling facility (XCF) complex, where you can be
certain that certain data sets always need a scope value of SYSTEMS and other data
sets always need a scope value of SYSTEM. In a sense, RNL = NO overrides
decisions your system programmer makes when that programmer places resource
names in the RNLs.

Because the RNL parameter affects the scope value of a resource, be consistent in
specifying the RNL parameter on both ENQ and DEQ. If you use the default value on
ENQ, use the default value also on DEQ.

Requesting Exclusive or Shared Control
On ENQ and DEQ, you specify either exclusive or shared control of a resource.

To request exclusive control of the resource, code E on ENQ. When your program
has exclusive control of a resource, it is the only one that can use that resource; all
other programs that issue ENQs for the resource (either for exclusive or shared
control) must wait until your program issues DEQ to release the resource. If your
program will change the resource, it must request exclusive control.

To request shared control of the resource, code S on the ENQ macro. At the same
time your program has access to the resource, other programs can have concurrent
use of the resource. If another program requests exclusive control over the
resource during the time your program has shared use of the resource, that
program will have to wait until all the current users have issued DEQ to release the
resource. If your program will not change the resource, it should request shared
control.

Chapter 6. Resource Control 6·5

For an example of how the control program processes requests for exclusive and
shared control of a resource, see "Processing the Requests" on page 6-6.

Limiting Concurrent Requests for Resources
To prevent anyone job, started task, or TSO user from generating too many
concurrent requests for resources, the control program counts and limits the
number of ENOs in each address space. When a user issues an ENO, the control
program increases the count of outstanding requests for that address space by one
and decreases the count by one when the user issues a DEO.

When the computed count reaches the threshold value or limit, the control program
processes subsequent requests as follows:

• Unconditional requests (ENOs that use the RET = NONE option) are abended
with a system code of X I 538 I •

• Conditional requests (ENOs that specify the RET = HAVE or RET= USE option)
are rejected and the user receives a return code of X'18 1

•

The RESERVE and GOSCAN macros, available only to authorized pr()grams, also
increase the count of outstanding requests.

Processing the Requests
The control program constructs a unique list for each qname, rname, and scope
combination it receives. When a task makes a request, the control program
searches the existing lists for a matching qname, rname, and scope. If it finds a
match, the control program adds the task's request to the end of the existing list; the
list is not ordered by the priority of the tasks on it. If the control program does not
find a match, it creates a new list,andadds the task's request as the first (and only)
element. The task gets control of the resource based on the following:

• The position of the task's request on the list
• Whether or not the request was for exclusive or shared control

The best way to describe how the control program processes the list of requests for
a resource is through an example. Figure 6-3 shows the status of a list built for a
qname, rname, and scope combination. The S or E next to the entry indicates that
the request was for either shared or excl usive control. The task represented by the
first entry on the list always gets control of the resource, so the task represented by
ENTRY1 (Figure 6-3, Step 1) is assigned the resource~ The request that established
ENTRY2 was for exclusive control, so the corresponding task is placed in the wait
condition, along with the tasks represented by all the other entries in the list.

6·6 Ass~mbler Programming Guide

ENTRYl (S)

ENTRY2 (E) ENTRY2 (E)

ENTRY3 (S) ENTRY3 (S) ENTRY3 (S)

ENTRY4 (S) ENTRY4 (5) ENTRY4 (5)

ENTRY5 (E) ENTRY5 (E) ENTRY5 (E)

ENTRY6 (S) ENTRY6 (5) ENTRY6 (5)
Step 1 Step 2 Step 3

Figure 6-3. ENQ Macro Processing

Eventually, the task represented by ENTRY1 uses DEO to release control of the
resource, and the ENTRY1 is removed from the list. As shown in Figure 6-3, Step 2,
ENTRY2 is now first on the list, and the corresponding task is assigned control of the
resource. Because the request that established ENTRY2 was for exclusive control,
the tasks represented by all the other entries in the list remain in the wait condition.

Figure 6-3, Step 3, shows the status of the list after the task represented by ENTRY2
releases the resource. Because ENTRY3 is now a.t the top of the list, the task
represented by ENTRY3 gets control of the resource. ENTRY3 indicates that the
resource can be shared, and, because ENTRY4 also indicates that the resource can
be shared, ENTRY4 also gets control of the resource. In this case, the task
represented by ENTRY5 does not get control of the resource until both the tasks
represented by ENTRY3 and ENTRY4 release control because ENTRY5 indicates
exclusive use.

The control program uses the following general rules in manipulating the lists:

• The task represented by the first entry in the list always gets control of the
resource.

• If the request is for exclusive control, the task is not given control of the
resource until its request is the first entry in the list.

• If the request is for shared control, the task is given control either when its
request is first in the list or when all the entries before it in the list also indicate
a shared request.

• If the request is for several resources, the task is given control when all of the
entries requesting exclusive control are first in their respective lists and all the
entries requesting shared control are either first in their respective lists or are
preceded only by entries requesting shared control.

Duplicate Requests for a Resource
A duplicate request occurs when a task issues an ENO macro to request a resource
that the task already controls. For example, if a task that has control of a resource
issues an unconditional ENO macro to request the same resource, the task abends.
With the second request, the control program recognizes the contradiction and
returns control to the task with a non-zero return code or abnormally terminates the
task. You should design your program to ensure that a second request for a
resource made by the same task is never issued until control of the resource is
released for the first use. Be especially careful when using an ENQ macro in an exit

Chapter 6. Resource Control 6-7

routine. Two specific reasons why the use of ENQ in an exit routine must be
carefully planned are:

• The exit may be entered more than once for the same task.

• An exit routine may request resources already obtained by some other process
associated with the task.

For more information on this topic, see "Conditional and Unconditional Requests."

Releasing the Resource
Use the DEQ macro to release a serially reusable resource that you obtained by
using an ENQ macro. If a task tries to release a resource which it does not control,
the control program either returns a non-zero return code or abends the task. The
control program might place many tasks in a wait condition while it assigns control
of the resource to one task. Having many tasks in the wait state might reduce the
amount of work being done by the system, therefore, you should issue a DEQ macro
as soon as possible to release the resource, so that other tasks can use it. If a task
terminates without releasing a resource, the control program releases the resource
automatically.

Conditional and Unconditional Requests
up to this point, only unconditional requests have been considered. You can,
however, use the ENQ and DEQ macros to make conditional requests by using the
RET parameter. One reason for making a conditional request is to avoid the
abnormal termination that occurs if you issue two ENQ macros for the same
resource within the same task or when a DEQ macro is issued for a resource for
which you do not have control.

The RET parameter of ENQ provides the following options:

RET = TEST indicates the availability of the resource is to be tested, but control
of the resource is not requested.

RET= USE indicates control of the resource is to be assigned to the active task
only if the resource is immediately available. If any of the
resources are not available, the active task is not placed in a wait
condition.

RET=CHNG indicates the status of the resource specified is changed from
shared to excl usive control.

RET = HAVE indicates that control of the resource is requested conditionally; that
is, control is requested only if a request has not been made
previously for the same task.

For the following descriptions, the term "active task" means the task issuing the
ENQ macro. No reference is intended to different tasks which might be active in
other processors of a multiprocessor.

Use RET = TEST to test the status of the corresponding qname, rname, and scope
combination, without changing the list in any way or waiting for the resource.

• A return code of 0 indicates that the active task does not now have control of the
resource, but could have been given immediate control if it had been requested,
because no other task has control of the resource.

• A return code of 4 indicates that another task has control of the resource, and
the active task would have been placed in a wait condition if it had made an
unconditional request.

6-8 Assembler Programming Guide

• A return code of 8 indicates that the active task already has control of the
resource.

• A return code of 14 indicates that the active task does not yet have control of the
resource, but is in the list to be given control at a later time when other task(s)
release the resource.

Note: For return code 14 to occur, the restricted use of the ECB parameter of
the ENO must have been used to make an entry on the list without placing the
task in a wait condition.

RET=TEST is most useful for determining if the task already has control of the
resource. It is I·ess useful for determining the status of the list and taking action
based on that status. In the interval between the time the control program checks
the status and the time your program checks the return code and issues another
ENO macro, another task could have been made active, and the status of the list
could have changed.

Use RET= USE if you want your task to receive control of the resource only if the
resource is immediately available. If the resource is not immediately available, no
entry will be made on the list and the task will not be made to wait. RET= USE is
most useful when there is other processing that can be done without using the
resource. For example, by issuing a preliminary ENO with RET=USE in an
i.nteractive task, you can attempt to gain control of a needed resource without
locking your terminal session. If the resource is not available, you can do other
work rather than enter a long wait for the resource.

• A return code of 0 indicates that the active task did not have control of the
resource prior to issuing the ENO, but now has been given control and the
corresponding entry has been put in the list.

• A return code of 4 indicates that the active task has not been given control of the
resource, and an entry has not been made in the list, because another task
already has control of the resource.

• A return code of 8 indicates that the active task already has control of the
resource.

• A return code of 14 indicates that the active task does not yet have control of the
resource, but is in the list to be given control at a later time when other task(s)
release the resource.

• A return code of 18 indicates that the limit for the number of concurrent
resource requests has been reached. The task does not have control of the
resource unless some previous ENO/RESERVE request caused the task to
obtain control of the resource.

Use RET = CHNG to change a previous request from shared to excl usive control.

• A return code of 0 indicates that the active task now has exclusive control of the
resource. Either exclusive control was already held, or shared control was
converted to exclusive control as requested.

• A return code of 4 indicates that the requested change in attribute cannot be
honored, because the active task is currently sharing the resource with another
task.

• A return code of 8 indicates that the active task does not have an entry on the
list for the specified resource. There is nothing to change.

Chapter 6. Resource Control 6-9

Avoiding Interlock

• A return code of 14 indicates that the active task does have an entry on the list
for the resource, but is not yet in control of the resource. No change is made.

Use RET = HAVE to specify a conditional request for control of a resource when you
do not know whether you have al ready requested control of that resource. If the
resource is owned by another task, you will be put in a wait condition until the
resource becomes available.

• A return code of 0 indicates that the active task did not previously have an entry
on the list or control of the resource, but has now been given control.

• A return code of 8 indicates that the active task already has control of the
resource and already has an entry on the list. (Without RET=HAVE, this
situation would cause abnormal termination. With RET= HAVE, it is effectively a
no-operation.)

• A return code of 14 indicates that the active task has entry on the list for the
resource, but is not yet in control of the resource. No change is made.

The RET = HAVE parameter on DEQ allows you to release control and prevents the
control program from abending the active task if a DEQ attempts to release a
resource not held. For DEQ, the control program returns the following codes:

• A return code of 0 indicates that the DEQ routine found an entry for the active
task on the list for the specified resource, and has removed the entry. If the
active task held control of the resource, this action relinquishes control. If the
active task did not hold control of the resource (because the restricted ECB
parameter had been used with ENQ, and control has not meanwhile become
available), the DEQ routine simply removes the entry from the list without
affecting control of the resource.

• A return code of 4 indicates the resource has been requested for the task, but
the task has not been assigned control. The task is not removed from the wait
condition. (This return code could result if DEQ is issued within an exit routine
which was given control because of an interruption).

• A return code of 8 indicates that the active task did not have an entry on the list
for the specified resource. There was no entry to dequeue.

If ENQ and DEQ are used in an asynchronous exit routine, code RET=HAVE to
avoid possible abnormal termination.

An interlock condition happens when two tasks are waiting for each other's
completion, but neither task can get the resource it needs to complete. Figure 6-4
shows an example of an interlock. Task A has exclusive access to resource M, and
task B has exclusive access to resource N. When task B requests exclusive access
to resource M, B is placed in a wait state because task A has exclusive control of
resource M.

The interlock becomes complete when task A requests exclusive control of resource
N. The same interlock would have occurred if task B issued a single request for
multiple resources M and N prior to task A's second request. The interlock would
not have occurred if both tasks had issued single requests for multiple resources.
Other tasks requiring either of the resources are also in a wait condition because of
the interlock, although in this case they did not contribute to the conditions that
caused the interlock.

6-10 Assembler Programming Guide

Task A
ENQ (M,A,E,8,SYSTEM)

ENQ (N,B,E,8,SYSTEM)

Task B

ENQ (N,B,E,8,SYSTEM)
ENQ (M,A,E,8,SYSTEM)

Figure 6-4. Interlock Condition

The above example involving two tasks and two resources is a simple example of
an interlock. The example could be expanded to cover many tasks and many
resources. It is imperative that you avoid interlock. The following procedures
indicate some ways of preventing interlocks.

• Do not request resources that you do not need immediately. If you can use the
serially reusable resources one at a time, request them one at a time and
release one before requesting the next.

• Share resources as much as possible. If the requests in the lists shown in
Figure 6-4 had been for shared control, there would have been no interlock.
This does not mean you should share a resource that you will modify. It does
mean that you should analyze your requirements for the resources carefully,
and not request exclusive control when shared control is enough.

• Use the ENQ macro to request control of more than one resource at a time. The
requesting program is placed in a wait condition until all of the requested
resources are available. Those resources not being used by any other program
immediately become exclusively available to the waiting program. For
example, instead of coding the two ENQ macros shown in Figure 6-5, you could
code the one ENQ macro shown in Figure 6-6. If all requests were made in this
manner, the interlock shown in Figure 6-4 could not occur. All of the requests
from one task would be processed before any of the requests from the second
task. The DEQ macro can release a resource as soon as it is no longer needed;
resources requested in a multiple ENQ can be individually released through
separate DEQ instructions.

ENQ (NAMEIADD,NAME2ADD,E,8,SYSTEM)
ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM)

Figure 6-5. Two Requests For Two Resources

ENQ (NAMEIADD,NAME2ADD,E,8,SYSTEM,NAME3ADD,NAME4ADD,E,10,SYSTEM)

Figure 6-6. One Request For Two Resources

• If the 'use of one resource always depends on the use of a second resource, then
you can define the pair of resources as one resource. On the ENQ and DEQ
macros, define the pair with a single rname and qname. You can use this
procedure for any number of resources that are always used in combination.
However, the control program cannot then protect these resources if they are
also requested independently. Any requests must always be for the set of
resources.

• If there are many users of a group of resources and some of the users require
control of a second resource while retaining control of the first resource, it is

Chapter 6. Resource Control 6-11

still possible to avoid interlocks. In this case, each user should request control
of the resources in the same order. For instance, if resources A, B, and Care
required by many tasks, the requests should always be made in the order of A,
B, and then C. An interlock situation will not develop, since requests for
resource A will always precede requests for resource B.

6-12 Assembler Programming Guide

Chapter 7. Program Interruption Services

The supervisor offers many services to detect and process abnormal conditions
during system execution. The hardware detects certain types of abnormal
conditions (such as an attempt to execute an instruction with an invalid operation
code) and causes program interruptions to occur. The software detects other
abnormal conditions (such as an attempt to open a data set that is not defined to the
system, which causes the OPEN routine to request abnormal termination by issuing
an ABEND macro).

Some conditions encountered in a program cause a program interruption. These
conditions include incorrect parameters and parameter specifications, as well as
exceptional results, and are known generally as program exceptions. You can
disable the interruptions for certain exceptions (fixed point and decimal overflow,
exponent underflow, and significance) by setting the corresponding bits in the
program status word (PSW) to zero by means of the SPM instruction.

When a task becomes active for the first time, all program interruptions that can be
disabled are disabled, and the task uses a standard system exit routine, included
when the system was generated. This exit routine gets control when certain
program interruptions occur; it issues an ABEND macro specifying task abnormal
termination and requesting a dump.

Specifying User Exit Routines
By issuing the SPIE or ESPIE macro, you can specify your own exit routine to be
given control for one or more types of program exceptions. If you issue an ESPIE
macro, you can also pass the address of a parameter list to the exit routine. When
one of the specified program exceptions occurs in a problem state program being
executed in the performance of a task, the exit routine receives control in the key of
the active task and in the addressing mode in effect when the SPIE or ESPIE was
issued. (If a SPIE macro was issued, this is 24-bit addressing mode.) For other
program interruptions, part of the system, the recovery termination manager (RTM),
gets control. If the SPIE or ESPIE macro specifies an exception for which the
interruption has been disabled, the system enables the interruption when the macro
is issued.

If a program interruption occurs, the exit routine receives control on interrupt codes
o through F. The interrupted program must be in primary mode, where the primary,
home, and secondary address space is the same.

The environment established by an ESPIE macro exists for the entire task, until the
environment is changed by another SPIE/ESPJE macro, or until the program creating
the ESPIE returns. Each succeeding SPIE or ESPIE macro completely overrides
specifications in the previous SPIE or ESPIE macro. You can intermix SPIE and
ESPIE macros in one program. Only one SPIE or ESPIE environment is active at a
time. If an exit routine issues an ESPIE macro, the new ESPIE environment does not
take effect until the exit routine completes.

The system automatically deletes the SPIE/ESPIE exit routine when the request
block (RB) that established the exit terminates. If a caller attempts to delete a
specific SPIE/ESPIE environment established under a previous RB, the caller is
abended with a system completion code of X 1460 1. A caller can delete all previous

© Copyright IBM Corp. 1988, 1991 7-1

SPIE and ESPIE environments (regardless of the RB under which they were
established) by specifying a token of zero with the RESET option of the ESPIE macro
or an exit address of zero with the SPIE macro.

A program, executing in either 24-bit or 31-bit addressing mode in the performance
of a task, can issue the ESPIE macro. If your program is executing in 31-bit
addressing mode, you cannot issue the SPIE macro. The SPIE madro is restricted in
use to callers executing in 24-bit addressing mode in the performance of a task. The
following topics describe how to use the SPIE and ESPIE macros.

Using the SPIE Macro
The PICA and the program interruption element (PIE) contain the information that
enables the system to intercept user-specified program Interruptions established
using the SPIE macro. You can modify the contents of the active PICA In order to
change the active SPIE environment. The PICA and the PIE are described In the
following topics.

Program Interruption Control Area

Displacement
Bytes e

The expansion of each standard or list form of the SPIE macro contains a system
parameter list called the program Interruption control area (PICA). The PICA, as
shown in Figure 7-1, contains the new program mask for the Interruption types that
can be disabled In the PSW, the address of the ex.it routine to be given control when
one of the specified interruptions occurs, and a code for Interruption types
(exceptions) specified In the SPIE macro.

2 3 4 5

eeea Program Exit Routine Address Interruption Type
Mask

Figure 7-1. Program Interruption Control Area

The system maintains a pointer (in the PIE) to the PICA referred to by the last SPIE
macro executed. This PICA might have been created by the last SPIE or might have
been created previously and referred to by the last SPIE. Before returning control to
the calling program or passing control to another program via an XCTL or XCTLX
macro, each program that Issues a SPIE macro must cause the system to adjust the
SPIE environment to the condition that existed previously or to eliminate the SPIE
environment if one did not exist on entry to the program. When you Issue the
standard or execute form of the SPIE macro to establish a new SPIE environment,
the system returns the address of the previous PICA in register 1. If no SPIE/ESPIE
environment existed when the program was entered, the system returns zeroes in
register 1.

You can cancel the effect of the last SPIE macro by issuing a SPIE macro with no
parameters. This action does not reestablish the effect of the previous SPIE~ it does
create a new PICA that contains zeroes, thus indicating that you do not want an exit
routine to process interruptions. You can reestablish any previous SPIE
environment, regardless of the number or type of subsequent SPIE macros issued,
by using the execute form of the SPIE specifying the PICA address that the system
returned in register 1. The PICA whose address you specify must still be valid (not
overlaid). If you specify zeroes as the PICA address, the SPIE environment is
eliminated.

Figure 7-2 shows how to restore a previous PICA. The first SPIE macro designates
an exit routine called FIXUP that is to be given control if fixed-point overflow occurs.

7 -2 Assembler Programming Guide

The address returned in register 1 is stored in the fullword called HOLD. At the end
of the program, the execute form of the SPIE macro is used to restore the previous
PICA.

HOLD

SPIE
ST

L
SPIE

DC

FIXUP, (8)
1,HOLD

5,HOLD
MF=(E,(5»

Fle l

Provide exit routine for fixed-point overflow
Save address returned in register 1

Reload returned address
Use execute form and old PICA address

Figure 7-2. Using the SPIE Macro

Program Interruption Element

Hexadecimal
Displacement
(Bytes)

e

4

C

Ie

14

18

Ie

20

Decimal

The first time you Issue a SPIE macro during the performance of a task, the system
creates a 32-byte program Interruption element (PIE) in the virtual storage area
assigned to your job step. Because the PIE Is freed the first time you eliminate the
SPIE environment (by specifying a PICA address of zero in the.execute form of the
SPIE macro or by specifying a SPIE with no parameters), the system also creates a
PIE whenever you issue a SPIE macro and no PIE exists. The format of the PIE is
shown in Figure 7-3.

Displacement
(Bytes) 2 3

e Reserved I PICA Address

4 I (Interruption Codes)

12 Old Program Status Word in BC mode

16 Register 14

20 Register 15

24 Register e

28 Register 1

32 Register 2

Figure 7-3. Pr~gram Interruption Element

The PICA address in the PIE is the address of the program interruption control area
used in the last execution of the SPIE macro for the task. When control is passed to
the routine indicated in the PICA, the BC mode old program status word contains the
interruption code in bits 16-31 (the first byte is the exception extension code and the
second is the exception code); you can test these bits to determine the cause of the
program interruption. See ESAI390 Principles of Operation for an explanation of the
format of the old program status word. The system stores the contents of registers
14,15,0,1, and 2 at the time of the interruption as indicated.

Chapter 7. Program Interruption Services 7-3

Using the ESPIE Macro
The ESPIE macro extends the functions of the SPIE macro to callers in 31-bit
addressing mode. The options that you can specify using the ESPIE macro are:

• SET to establish an ESPIE environment (that is, specify the interruptions for
which the user-exit routine will receive control)

• RESET to delete the current ESPIE environment and restore the SPIE/ESPIE
environment specified

• TEST to determine the active SPIE/ESPIE environment

If you specify ESPIE SET, you pass the following information to the service routine:

• A list of the program interruptions to be handled by the exit routine
• The location of the exit routine
• The location of a user-defined parameter list

The service routine returns a token representing the previously active SPIE or
ESPIE environment, or zero if there was none.

If you code ESPIE RESET, you pass the token, which was returned when the ESPIE
environment was established, back to the ESPIE service routine. The SPIE or ESPIE
environment corresponding to the token is restored. If you pass a token of zero with
RESET, all SPIE and ESPIE envi ronments are deleted.

If you specify ESPIE TEST, you will be able to determine the active SPIE or ESPIE
environment. An active SPIE environment is represented by a pointer to the PICA,
which resides in user storage. (The PICA is described earlier in this section.) The
active ESPIE environment is represented by protected control blocks belonging to
the ESPIE service. To change an active ESPIE environment, you must issue the
ESPIE macro with the SETor RESET option.

If an ESPIE environment is active and you issue a SPIE macro to specify
interruptions for which a SPIE exit routine is to receive control, the service routine
returns the address of a system-generated PICA in register 1. Do not modify the
contents of the system-generated PICA; use them to restore the previous SPIE or
ESPIE environment.

The Extended Program Interruption Element (EPIE)
The system creates an EPIE the first time you issue an ESPIE macro during the
performance of a task or whenever you issue an ESPIE macro and no EPIE exists.
The EPIEis freed when you eliminate the ESPIE environment.

The EPIE contains the information that the ESPIE service routine passes to the
ESPIE exit routine when it receives control. When the exit routine receives control,
register 1 contains the address of the EPIE. (See the topic "Register Contents Upon
Entry to User's Exit Routine" for the contents of the other registers.) The format of
the EPIE is shown in Diagnosis: Data Areas.

7-4 Assembler Programming Guide

Environment Upon Entry to User's Exit Routine
When control is passed to your routine, the register contents are as follows:

Register 0:

Register 1:

Registers 2-12:

Register 13:

Register 14:

Register 15:

Internal control program information.

Address of the PIE or EPIE for the task that caused the
interruption.

Same as when the program interruption occurred.

Address of the save area for the main program. The exit routine
cannot use this area.

Return address (to the system).

Address of the exit routine. The exit routine must be in virtual
storage when it is required, and must return control to the system
using the address passed in register 14. For an ESPIE macro, the
system restores all 16 registers from the EPIE. For a SPIE
macro, the system restores registers 14, 15, 0, 1, and 2 from the
program interruption element after control is returned, but does
not restore the contents of registers 3-13. If a program
interruption occurs when the program interruption exit routine is
in control, the system exit routine gets control.

The access registers and linkage stack pointer have the values that were current at
the time of the program interruption.

Chapter 7. Program Interruption Services 7-5

Functions Performed in User Exit Routines
Your exit recovery routine must determine the type of interruption that occurred
before taking corrective action. Determining the type of interruption depends on
whether the exit is associated with an ESPIE or a SPIE macro.

• For an ESPIE, your exit recovery routine can check the two-byte interruption
code (the first byte is the exception extension code and the second is the
exception code) at offset X 1521 in the EPIE.

• For a SPIE, your exit recovery routine can test bits 16 through 31 (the first byte is
the exception extension code and the second is the exception code) of the old
program status word (OPSW in BC mode) in the PIE.

Note: For both ESPIE and SPIE - If you are using vector instructions and an
exception of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the
exception extension code (the first byte of the two-byte interruption code in the EPIE
or PIE) to determine whether the exception was a vector or scalar type of exception.

For more information about the exception extension code, see IBM Systeml370
Vector Operations.

Your recovery routine can alter the contents of the registers when control is
returned to the interrupted program. The procedure for altering the registers also
depends on whether the exit is associated with an ESPIE or a SPIE.

• For an ESPIE exit, the recovery routine can alter the contents of registers 0
through 15 in the save area in the EPIE because the system reloads these
registers from this area when it returns control to the interrupted program.

• For a SPIE exit, the recovery routine can alter registers 14 through 2 in the
register save area in the PIE .because the system reloads these registers from
this area when it returns control to the interrupted program. To change
registers 3 through 13, the recovery routine must alter the contents of the
registers.

The recovery routine can also alter the last four bytes of the OPSW in the PIE or
EPIE. For an ESPIE, the recovery routine alters the CC and program mask starting
at the third byte in the OPSW. By changing the OPSW, the routine can select any
return point in the interrupted program. In addition, for ESPIE exits, the routine
must set the AMODE bit of this four-byte address to indicate the addressing mode of
the interrupted program.

7 -6 Assembler Programming Guide

Chapter 8. Program Termination and Dumping Services

The recovery termination manager (RTM) monitors the flow of control of software
recovery processing and supplies the services of normal and abnormal task
termination. RTM selects the appropriate recovery or termination process
according to the status of the system.

You can write exit routines, called recovery routines, to handle certain types of
interruptions and abnormal conditions. The supervisor initiates the
recovery/termination process for your program either when you request it (for
example, by issuing an ABEND macro) or when the system detects a condition that
will degrade the system or destroy data.

One of the major purposes of a recovery routine is to find out what caused the
program to terminate. Storage dumps that your recovery routines request through
ABEND, SNAP, and SNAPX macros can provide you with information about the
abending task.

Recovery/Termination Services
RTM gets control in response to events such as the following:

• Unanticipated program checks (except those protected by SPIE or ESPIE
routines)

• Machine checks
• I/O error on page-in request
• Being in AR mode and issuing an SVC that is not supported in AR mode.
• Request by an authorized caller to terminate a task
• ABEND macros

RTM invokes any recovery routine that has been established to recover or clean up
for the process in control. The recovery routine could be one of yours or it could be
a system routine. If this recovery routine cannot recover from the incident (it
requests termination or itself fails), RTM invokes the previously-established
recovery routine. This passing of control from one recovery routine to another is
called percolation. If none of the recovery routines can recover (request a retry),
the system terminates the process in control.

The recovery routines you can establish are called ESTAE-Iype routines. You can
establish an ESTAE-type routine in any of the following ways:

• ESTAE macro
• ESTAEX macro
• STAI parameter of the ATTACH macro
• ESTAI parameter of the ATTACH or ATTACHX macros

The ESTAEX macro and the ESTAE macro establish ESTAE-type recovery for your
program. ESTAEX provides the same function as ESTAE, but also supports cross
memory mode and access register ASC mode, and positions your code for future
enhancements. IBM recommends that you issue ESTAEX rather than ESTAE.

The ESTAI parameter on the ATTACH or A IT ACHX macros, and the STAI parameter
on the ATTACH macro, establish recovery for a task and its subtasks. The STAI
parameter is the pre-MVS/XA version of the ESTAI parameter.

© Copyright IBM Corp. 1988, 1991 8-1

You can also establish associated recovery routines (ARBs). ARRs are associated
with PC routines. However, only authorized programs can create the cross memory
environment required to use these routines. For information on coding ARRs, see
the application development books that are available to the programmers in your
installation that use authorized macros.

Recovery Routine Processing
When a recovery routine gets control, it determines why it has been entered and
decides either to percolate or to retry. To tell RTM what it wants done, the recovery
routine issues the SETRP macro,which manipulates fields in the system diagnostic
work area (SDWA). When the recovery routine returns to RTM, RTM honors the
request, if possible.

To allow communication between the main routine and the recovery routine, there is
a parameter area. For a recovery routi ne established by an ESTAE macro, you can
supply a parameter area by coding the PARAM parameter on the macro. When you
establish a recovery routine, RTM saves a pointer to the parameter area and makes
the pOinter available to your recovery routine when it is entered. Usually, the main
routine uses the parameter area to leave a footprint, that is, it sets indicators as part
of normal processing; if an error occurs, these indicators let the recovery routine
know where in the main process the failure occurred. The recovery routine can
examine the footprint to determine what action to take.

If the recovery routine decides that a retry might be successful, it asks RTM to
continue execution of the main routine at some appropriate point. Note that retry is
not always allowed. If a recovery routine requests a retry when retry is not allowed,
RTM ignores the request and continues with the termination process (percolates).

Any recovery routine that requests a retry must always include logic designed to
avoid recursion, to prevent the creation of a tight loop between the recovery routine
and the retry portion of the main routine. For example, if the recovery routine
supplies a bad retry address to RTM, and the execution of the first instruction at the
given address causes a program check, the first recovery routine to get control is
the one that just requested the retry. If the recovery routine requests another retry
at the same address, the loop is formed.

Using SETRP to.Change the Completion and Reason Codes
You can specify both completion and reason code values on the ABEND macro.
RTM passes these values to recovery exit routines to identify abnormal
terminations. You can change the values of the completion code and the reason
code by using the SETRP macro. The COMPCOD keyword allows you to specify a
new completion code; the REASON keyword allows you to specify a new reason
code.

The reason code has no meaning by itself, but must be used in conjunction with a
completion code. In order to maintain meaningful completion and reason codes,
RTM propagates changes to these values according to the following rules:

• If a user changes both the completion code and the reason code, RTM accepts
both new values.

• If a user changes the reason code but not the completion code, RTM accepts the
new reason code and uses the unchanged completion code.

• If a user changes the completion code but not the reason code, RTM accepts the
new completion code and uses a zero for the reason code.

• If a user does not change either value, RTM uses the unchanged values.

8-2 Assembler Programming Guide

Changing the Completion and Reason Codes Directly
Using the SETRP macro is the preferred way for changing the completion and
reason codes. If you change these values directly in a recovery exit routine you
should emulate SETRP processing as follows:

• When you change the completion code, store the new completion code in
SDWACMPC, a three-byte field in the system diagnostic word area (SDWA), and
set the one-bit flag, SDWACCF, to indicate the change.

• When you change the reason code, store the new reason code in SDWACRC, a
four-byte field in the SDWA, and set the one-bit flag, SDWAREAF, to indicate the
change.

Before passing control to a recovery exit routine, RTM saves the current completion
and reason codes. After the recovery routine returns control to RTM, RTM
examines the contents of the SDWACCF and SDWAREAF flags to determine whether
changes have been made to the completion and reason codes and then determines
which values to pass to the next recovery exit routine. RTM makes this decision as
shown in the following table:

SDWACCF
Completion code
trag

ON
OFF

ON

SDWAREAF
Reason code
flag

OFF
ON

ON

Values passed to the
next recovery exit routine

The abend completion code and a reason code of zero
The unchanged completion code and the altered reason
code
The altered completion code and the altered reason code

If both flags are off, RTM passes the values in the user's SDWA to the next recovery
exit routine.

Handling Abnormal Conditions
The system does a great deal of checking for abnormal conditions. It uses hardware
to detect errors such as protection violations or addressing errors. The data
management and supervisor routines provide some error checking facilities to
ensure that, based on the information you have provided, only valid data is being
processed, and that you have not made any conflicting requests. For abnormal
conditions that can possibly be corrected, the system returns to your program with a
return code indicating the probable source of the error. For conditions that indicate
that further processing would result in degradation of the system or destruction of
data, the system gives control to RTM.

There will, of course, be abnormal conditions unique to your program that the
system cannot detect. Figure 8-1 is an example of one of these. The routine shown
in Figure 8-1 checks a control field in an input parameter list to determine which
function the program is to perform. Only characters 1 through 4 are valid in the
control field. The presence of any other character is invalid, but the routine must be
prepared to detect and handle these characters. One way to handle an invalid
character is to return to the calling program with an error return code. The calling
program can then try to interpret the return code and recover from the error. If it
cannot do so, the calling program can detach its incomplete subtasks, execute its
usual termination procedures, and return control to its calling program, again with
an error return code. This procedure might result in termination of all the tasks of a
job step; if it does, you can use the COND parameters of the JOB and EXEC
statements to indicate whether subsequent job steps should be executed.

Chapter 8. Program Termination and Dumping Services 8-3

Another way to handle this unexpected condition is to issue an ABEND macro to
give RTM control.

The position within the job step hierarchy of the task for which the ABEND macro is
issued determines the exact function of the abnormal termination routine. Ifan
ABEND macro is issued when the job step task (the highest level or only task) is
active,. or if the STEP parameter is coded in an ABEND macro issued during the
performance of any task in the job step, all the tasks in the job step are terminated.
For example, if the STEP parameter is coded in an ABEND macro under TSO, the
TSO job will be terminated. An ABEND macro (without a STEP parameter) that is
issued in performance of any task in the job step task usually causes only that task
and its subtasks to be abnormally terminated. However, if the abnormal termination
cannot be fulfilled as requested, it might be necessary for RTM to abnormally
terminate the job step task.

RTN1
Yes

RTN2
Yes

RTN3
Yes D >----1

RTN4
Yes

Figure 8-1. Detecting an Abnormal Condition

If you have created a recovery routine for your program, RTM passes control to your
routine. If you have not set up a recovery routine, RTM handles the problem. The
action RTM takes depends on whether or not the job step is going to be terminated.

8-4 Assembler Programming Guide

If the job step is not going to be terminated, RTM:

• Releases the resources owned by the terminating task and all of its subtasks
starting with the lowest level task.

• Places the system or user completion code specified in the ABEND macro in the
task control block of the active task (the task for which the ABEND macro was
issued).

• Posts the ECB with the completion code specified in the ABEND macro if the
ECB parameter was coded in the ATTACH or ATTACHX macro issued to create
the active task.

• Schedules the end-of-task exit routine to be given control when the originating
task becomes active if the ETXR parameter was coded in the ATTACH or
A TT ACHX macro issued to create the active task.

• If neither the ECB nor ETXR parameter were specified by the ATTACH or
ATTACHX macro, RTM calls a routine to FREE MAIN the terminating TCB.

If the job step is to be terminated, RTM:

• Releases the resources owned by each task, starting with the lowest level task,
for all tasks in the job step. No end-of-task exit routine is given control.

• Writes the system or user completion code specified in the ABEND macro on the
system output device.

The remaining steps in the job are skipped unless you can establish your own
recovery routine to perform similar functions and any other functions that your
program requires. Use either the ESTAE macro or the ATTACH or ATTACHX macro
with the ESTAI option to set up a recovery routine that gets control whenever your
program issues an ABEND macro. If your program is running in AR address space
control (ASC) mode, use the ESTAEX or ATTACHX macro. The recovery routine that
gets control will have the ASe mode of the caller.

Your recovery routine also gets control if the system issues an ABEND on your
behalf. Your routine can determine its actions with regard to the abnormal
condition. With this approach, you can put less error handling code in your mainline
routines. For example, there is no need to check return codes after a subroutine if
the subroutine issues an ABEND. The error handling functions can be part of the
ESTAE or ESTAI routines that execute only when there is an error.

Whether you use ESTAE or ESTAEX to establish an ESTAE-type recovery routine
depends on the ASC mode of your program and whether it is in cross memory
mode. To issue an ESTAE macro, your program must be in primary mode, where
primary and home address spaces are the same. (In other words, your program
cannot be in cross memory mode.) The ESTAE service routine is entered through
an SVC. To issue the ESTAEX macro, your program can be in either primary or AR
mode and can also be in cross memory mode.

How to Use an ESTAE-type Recovery Routine
Within an ESTAE recovery routine, you can perform pre-termination functions and
diagnose the error. You can also determine whether abnormal termination should
continue for the task, or whether normal processing can continue at some point in
the mainline routine.

Chapter 8. Program Termination and Dumping Services 8-5

When the abnormal termination is issued, the ESTAE recovery routine must be
resident. It can either be part of the program issuing the ESTAE or be brought into
virtual storage with the LOAD macro before the ESTAE-type routine is established.

A single program can create more than one recovery routine by issuing the ESTAE
macro with the CT parameter. (The program can also overlay or delete recovery
routines by issuing ESTAE macros with the OV parameter or with an address of
zero, respectively.) All ESTAE requests issued by programs running under the
same task are queued so that the routine established by the most recent ESTAE
request is the first to get control. If this routine fails or requests that abnormal
termination continue (percolation), RTM deletes the routine, and the exit established
by the previous ESTAE request gets contro/.

If you want to use the same recovery routine for several tasks at the same time, the
routine must be reenterable. For convenience, you should make all your ESTAE exit
routines reenterable.

You must delete aI/ the ESTAE routines you have created before returning control to
your caller. If you try to delete an ESTAE routine not associated with your request
block (RB), you get a return code that indicates your request is invalid.

Your ESTAE-type recovery routine might provide information that dump analysis
and elimination (DAE) can use to construct unique symptom strings needed to
describe software failures. DAE uses these symptom strings to analyze dumps and
suppress duplicates as requested. Each symptom string contains specific pieces of
information called symptoms that DAE obtains from fields in the system diagnostic
work area (SDWA), SOWA extensions, ABDUMP symptom area, and SOWA variable
recording area (SDWAVRA).

When using DAE, you must select symptoms carefully. If the data you supply is too
precise, no other failure will have the same symptoms; if the data is too general,
many failures will have the same symptoms. For information on OAE, see Planning:
Problem Determination and Recovery.

Interface to an EST AE-type Recovery Routine
Before your first ESTAE-type routine receives control, RTM can handle outstanding
I/Os at the time of the failure. You request this through the macro that established
the routine (that is, through the PURGE parameter on ESTAE or ATTACH). RTM
performs the requested I/O processing only for the first ESTAE-type routine.
Subsequent routines receive an indication of the I/O processing previously done, but
no additional processing is performed. For ARRs, you do not have a choice; I/O
processing continues normally.

During processing of the first and all subsequent recovery routines, RTM allows or
disallows asynchronous processing depending on how you specify the ASYNCH
parameter when you establish the routine (that is, through the ASYNCH parameter
on ESTAE and ATTACH.)

The recovery routine is enabled and has the same protection key and PSW key
mask (PKM) as the routine that established the recovery routine as long as the
establishing routine was under a problem program protection key (keys 8-15). A
routine created by a program running under key 0-7 gets control in key O.

8-6 Assembler Programming Guide

Before each ESTAE-type recovery routine receives control, RTM tries to get storage
for and to initialize a work area to contain information about the error. This work
area is called the system diagnostic work area (SDWA). To access the SDWA, you
must include the SDWA mapping macro -IHASDWA - as a DSECT in your routine.
The the SDWA fields are as follows:

Field Name
SDWAPARM

SDWACMPC

SDWAGRSV

SDWAARER

SDWACRC

SDWAEC1

SDWAEC2

SDWASRSV

SDWAARSV

SDWASPID

SDWALNTH

SDWACOMU

SDWAVRAL

Use
For ESTAE-type routines, this four-byte field, contains the pointer to the user
parameter list that you supply for an ESTAE-type recovery routine.

For routines established through ESTAEX, this field contains the pOinter to an
eight-byte area. The eight-byte area points to the user parameter list that you
supply for a recovery routine; the first four bytes contain the address of the
parameter list and the second four bytes contain the ALET that identifies the
address space or data space.

This three-byte field contains the ABEND completion code that existed when RTM
gave control to the recovery routine. The recovery routine can change the
ABEND code by changing this field. The system code appears in the first twelve
bits and the user code appears in the second twelve bits.

This field shows the contents of general registers 0-15 as they were at the time of
the error.

This field contains access registers 0-15 as they were at the time of the error.

This four-byte field contains the reason code that existed when RTM entered the
recovery routine. The recovery routine can change the reason code by changing
this field.

This field contains the PSW that existed at the time of the error.

The contents of this field vary according to the type of recovery routine:

• For an ESTAE-type routine, the field contains the extended control PSW of the
RB that created the recovery routine at the time the RB last incurred an
interruption.

• For an ESTAI routine, this field contains zeroes.

The contents of this field vary according to the type of recovery routine.

• For an ESTAE-type routine, this field contains the general registers 0-15 as
they were when the RB that established the recovery routine incurred an
interruption, or a BAKR or PC instruction placed an entry on the linkage
stack.

• For an EST AI routine, this field contains zeroes.

If the recovery routine requests a retry, RTM uses the contents of this field to load
the registers for the retry routine. To change the contents of the registers for the
retry routine, you must make the changes to this field and request a register
update (RETREGS = YES) on the SETRP macro.

The contents of this field vary according to the type of recovery routine:

• For an ESTAE-type routine, this field contains the access registers 0 - 15 as
they were when the RB that established the recovery routine incurred an
interruption, or a BAKR or PC instruction placed an entry on the linkage
stack.

• For an ESTAI routine, this field contains zeroes.

If the recovery routine requests a retry, RTM uses the contents of this field to load
the access registers for the retry routine. To change the contents of the registers
for the retry routine, you must make the changes in this field, then request a
register update (RETREGS=YES) on the SETRP macro.

This field contains the subpoollD of the SDWA.

This field contains the length, in bytes, of the SDWA.

The recovery routines use this 8-byte field to communicate with each other when
percolation occurs. RTM copies this field from one SDWA to the next on aI/
percolations. If the field contains zeroes, either there was no information passed
or RTM was not able to pass it.

This field contains the length of the variable recording area (VRA) for this SDWA.

Chapter 8. Program Termination and Dumping Services 8-7

Field Name
SDWAHEX

SDWAEBC

SDWAURAL

SDWACCF

SDWAREAF

SDWAFAIN

SDWADAET

SDWAOCUR

SDWATRAN

SDWATEAR

Use
This is a one bit field set by the recovery routine to indicate that EREP is to print
the data in the VRA in hexadecimal form.

This is a one-bit field set by the recovery routine to indicate that EREP is to print
the data in the VRA in EBCDIC form.

This is a one-byte field set by the recovery routine to indicate the length of the
VRA used. The field initially contains zeroes. Whenever the recovery routine
uses any part of the VRA, it must set this field.

The recovery routine sets this one-bit field when it changes the completion code.

The recovery routine sets this one-bit field when it changes the reason code.

This 12-byte field contains the six bytes of the instruction stream that both
precede and follow the failing instruction pOinted to by the PSW. The SDWAFAIN
field contains zeroes if RTM cannot access the failing instruction stream pointed
to by the time-of-error PSW. For example, if the time-of-error PSW is not valid,
the SDWAFAIN field contains zeroes.

This eight-byte field contains DAE status and error flags for this dump.

This two-byte field contains the number of previous occurrences of these
symptoms in other SDWAs.

This field contains the translation exception address, if a translation exception
occurred.

For callers in AR mode, this field identifies the access register that the program
was using when the translation exception occurred.

The register contents on entry to the ESTAE-type routine depends on whether or not
RTM obtained an SDWA. If RTM obtained an SDWA, the registers on entry to the
recovery routine are as follows:

Register 0

Register 1
Register 13
Register 14
Register 15

A code indicating the type of 1/0 processing performed:

o - Active 1/0 has been quiesced and is restorable.
4 - Active 1/0 has been halted and is not restorable.
8 - No 1/0 was active when the ABEND occurred.
16 - No 1/0 processing was performed.

Address of the SDWA.
Address of a 72-byte register save area.
Return address.
Entry point address.

All other registers are used as work areas by the system.

The SDWA resides in the primary address space and the access registers are set to
zeroes.

When the ESTAE-type routine has completed its analysis of the error, it can use the
SETRP macro to inform RTM what it wants done. The SETRP macro initializes the
SDWA with the desired options. You can return from the ESTAE exit routine by
using the SETRP REGS parameter or by using a BR 14 instruction.

8-8 Assembler Programming Guide

If RTM could not obtain an SDWA, the general purpose register contents on entry to
the recovery routine are as follows:

Register 0
Register 1
Register 2

Register 14
Register 15

12 (decimal). RTM could not obtain an SDWA.
ABEND completion code.
Address of the user-supplied parameter list if you issued the
ESTAE macro or the ESTAEX macro. Otherwise, O. For callers in
AR mode, AR 2 contains an ALET that qualifies the address in
GPR 2 if you issued the ESTAEX macro; otherwise, AR 2 contains
O.
Return address.
Entry point address.

All other registers are used as work areas by the system.

If RTM could not provide an SDWA, it does not provide a register save area either.
In this case, your ESTAE-type routine must save the address in register 14 and use
it as the return address to RTM. You must place a return code. in register 15 before
returning to RTM. The return code indicates whether ABEND processing is to be
continued for the task or whether a retry address can be given control. The return
codes are:

Return
Code Meaning

o Continue with termination. Any ESTAE-type routines that were established
prior to this routine will get control.

4 Give control to the retry address. (You must place the retry addres~ in
register 0.)

How to Use an EST AI Routine
You can provide an exit in your program to intercept abnormal termination of a
subtask by using the ESTAI parameter on the ATTACH or ATTACHX macro you
issue to create the subtask. Once you establish an ESTAI routine for one subtask,
that routine will be used for all of the subtask's subtasks. For example, suppose
task A attaches task B and uses the ESTAI parameter on ATTACH or ATTACHX.
When task B attaches task C, the ESTAI routine created by task A is active for Cas
well as B.

The ESTAI routine receives control under the failing task's TCB.

Because more then one subtask can abnormally terminate at the same time, the
ESTAI routine might be used by more than one subtask concurrently. Your ESTAI
exit routines must therefore be reenterable.

Interface to an EST AI Routine
ESTAI routines are entered after all ESTAE routines that exist for a given task have
received control and have either failed or percolated. The interface to ESTAI
routines is the same as for ESTAE exits, however, one additional option is available
for ESTAI. When you return to RTM, you can specify return code 16 either on the
SETRP macro if an SDWA exists, or in register 15 if an SDWA is not available. The
return code indicates to RTM that termination should continue and that no other
ESTAI routines should receive control for that task.

Chapter 8. Program Termination and Dumping Services 8-9

EST AE-type Retry Routines
If an ESTAE-type routine requests percolation, RTM gives control to the next oldest
ESTAE or ESTAI routine that exists for the task. However, if a given ESTAE or
ESTAI exit routine requests retry, the system takes a dump if requested and
transfers control to the retry routine without processing any further ESTAE-type
routines.

An ESTAE or ESTAI routine can request retry whenever the SDWACLUP bit in the
SDWA is set to zero. To request retry, the exit routine must supply a retry address.
The retry address is the point in the mainline routine that is to get control in order to
continue its processing. In response to a valid retry request, RTM gives control to
the retry address supplied. A retry routine requested by anESTAE-type routine
operates as an extension of the mainline code; it operates under the same RB and
in the same addressing mode as the caller that established the ESTAE-type routine~
The system purges all RBs in the chaining order created after the retry RB before it
gives control to the retry routine.

RTM purges the RB queue to cancel the effects of partially executed programs that
are at a lower level in the program hierarchy than the program for which the retry
occurs. Certain effects, however, cannot be canceled. Among these are:

• Subtasks created by an RB to be purged
• Resources allocated by the ENQ macro
• DCBs that exist in dynamically-acquired virtual storage

If there are quiesced restorable 1/0 operations, the retry routine can restore them.
RTM supplies a pOinter to the purged 110 restore list in register 2. You can use the
RESTORE macro to have the system restore all 1/0 requests on the list. The retry
routine should free the storage occupied by the SDWA (if there was an SDWA) when
that storage is no longer needed unless the exit routine specified FRESDWA=YES
on the SETRP macro. The subpool number and length to use on the FREEMAIN
macro are in the SDWA.

Interface to a Retry Routine
There are two different interfaces to a retry routi ne:

• If RTM was able to obtain an SDWA, you can set the register contents in the
SDWA to whatever you wish and request that they be passed to the retry routine
by coding RETREGS=YES in the SETRP macro. This method is used most often
in mainline processing.

• If RTM could not obtain an SDWA or if RETREGS = NO was specified on the
SETRP macro, only parameter registers are passed to the retry routine. This
method is used most often if a special retry routine is to get control.

If RTM could not obtain an SDWA, the contents of the relevant registers are as
follows:

Register 0
Register 1

Register 2

Register 14
Register 15

8-10 Assembler Programming Guide

12 (decimal)
Address of the user parameter list if established through the
ESTAE, ATTACH, or ATTACHX macro; address of a doubleword
containing address and ALET of parameter list if established
throu'gh ESTAEX macro
Address of the purged 110 restore list if 110 was quiesced and is
restorable; otherwise, 0
R etu rn add ress
Entry point address of the retry routine

If RTMobtained an SDWA and the retry routine specified RETREGS = NO and
FRESDWA = NO, the contents of the relevant registers are as follows:

Register 0
Register 1
Register 2

Register 14
Register 15

o
Address of the SDWA
Address of the purged 1/0 restore list if I/O was quiesced and is
restorable; otherwise, 0
Return address
Entry point address of the retry routine

If RTM obtained an SDWA and the retry routine specified RETREGS = NO and
FRESDWA=YES, the contents of the relevant registers are as follows:

Register 0
Register 1

Register 2

Register 14
Register 15

20 (decimal)
Address of the user parameter list if established through the
ESTAE, A IT ACH, or A TT ACHX macro; address of a doubleword
containing address and ALET of parameter list if established
through ESTAEX macro
Address of the purged I/O restore list if I/O was quiesced and is
restorable; otherwise, 0
Return address
Entry point address of the retry routine

If the retry routine requested register update (RETREGS =YES) before passing
control to the retry routine, RTM restores the general purpose registers from
SDWASRSV and the access registers from SDWAARSV. In this case, the recovery
routine provides the contents of the registers for the retry routine by updating any or
all of the register slots in the SDWASRSV before returning control to RTM with the
retry request. If the recovery routine does not also request that the SDWA be freed,
it must keep a pointer to the SDWA; this pointer enables the retry routine to
reference and subsequently free the SDWA. Note that register 15 does not contain
the entry point address of the retry routine unless the recovery routine sets it up that
way.

In all cases, the routine runs enabled and the protection key is the same key as the
routine that established the ESTAE-type recovery routine.

Chapter 8. Program Termination and Dumping Services 8-11

Summary of Recovery Routine Characteristics

Macro
Service

STAE or
ESTAE

ESTAEX

ESTAI
(through
ATTACH or
ATTACHX)

ST AI (through
ATTACH or
ATTACHX)

Figure 8-2 summarizes the environment of the caller for ESTAE-type routines at
three different times:

• At the time of issuing the macro
• At the time of the entry to the recovery routine
• At the time of entry to the retry routine

Note a condition under which the last two columns might not be correct. If a caller
of ESTAE issues a stacking PC or BAKR instruction in the recovery routine and
percolation occurs, the current stack entry at time of entry to the percolated-to
ESTAE will be more recent than the entry at the time of the original error.

Environment

When macro was Issued At entry to recovery routine At entry to retry routine

ASC mode = primary ASC mode = primary ASC mode = primary
PASN = SASN = HASN PASN = SASN = HASN PASN = SASN = HASN

Linkage stack at time macro was Linkage stack at time macro was
issued issued

ASC mode = primary or AR ASC mode at time macro was ASC mode at time macro was
issued issued

PASN and SASN at time macro PASN and SASN at time macro
was issued was issued

Linkage stack at time of error Linkage stack at time macro
was issued

ASC mode = primary or AR ASC mode at time macro was ASC mode at time macro was
issued issued

PASN = SASN = HASN PASN = SASN = HASN PASN = SASN = HASN

Linkage stack at time of error Linkage stack at time subtask
was created

ASC mode = primary ASC mode = primary ASC mode = primary
PASN = SASN = HASN PASN = SASN = HASN PASN = SASN = HASN

Linkage stack at time of error Linkage stack at time subtask
was created

There is no restriction on AMODE at time of invocation for any of the above services. At time of entry to the recovery routine, the
AMODE will be the same as the time of invocation, except for routines established through the ESTAEX macro. These routines
always receive control in AMODE 31. The AMODE at the retry point will be the same as the AMODE on entry to the recovery
routine.

Figure 8-2. Summary of the Environments of Recovery Routines

8·12 Assembler Programming Guide

Dumping Services

ABEND Dumps

A problem program can request two types of storage dumps:

• An ABEND dump obtained through use of the DUMP parameter in the ABEND
macro or the DUMP = YES parameter on the SETRP macro in a recovery exit.

• A snap dump obtained through use of the SNAP macro.

An ABEND macro initiates error processing for a task. The DUMP option of ABEND
requests a dump of storage and the DUMPOPT or DUMPOPX option may be used to
specify the areas to be displayed. These dump options may be expanded by an
ESTAE or ESTAI routine. The system usually requests a dump for you when it
issues an ABEND macro. However, the system can provide an ABEND dump only if
you include a DD statement (SYSABEND, SYSMDUMP, or SYSUDUMP) in the job
step. The DO statement determines the type of dump provided and the system
dump options that are used. When the dump is taken, the dump options that you
requested (specified in the ABEND macro or by recovery routines) are added to the
installation-selected options.

When writing an ESTAE-type recovery routine, note that the system accumulates the
SYSABEND/SYSUDUMP/SYSMDUMP dump options specified by means of the
SETRP macro and places them in the SDWA. During percolation, these options are
merged with any dump options specified on an ABEND or CALLRTM macro or by
other recovery routines. Also, the CHNGOUMP operator command can add to or
override the options. The system takes one dump as specified by the accumulated
options. If the recovery routine requests a retry, the system processes the dump
before the retry. If the recovery routine does not request a retry, the system
percolates through all recovery routines before processing the dump.

Obtaining a Symptom Dump

SNAP Dumps

With all ABEND dumps, you will automatically receive a short symptom dump of
approximately ten lines. This symptom dump provides a summary of error
information, which will help you to identify duplicate problems.

You will receive this dump even without a DO statement unless your installation
changes the default via the CHNGDUMP operator command or the dump parmlib
member for SYSUDUMP.

A program can request a SNAP dump at any time during its processing by issuing a
SNAP macro. For a SNAP dump, the DO statement can have any name except
SYSABEND, SYSMDUMP, and SYSUDUMP.

If your program is in AR ASC mode, use the SNAPX macro instead of SNAP. Make
sure that the SYSSTATE ASCENV = AR macro has been issued to tell the macro to
generate code and addresses appropriate for callers in AR mode.

Chapter 8. Program Termination and Dumping Services 8-13

Like the ABEND dump, the data set containing the dump can reside on any device
that is supported by BSAM. The dump is placed in the data set described by the DD
statement you provide. If you select a printer, the dump is printed immediately.
However, if you select a direct access or tape device, you must schedule a separate
job to obtain a listing of the dump, and to release the space on the device.

To obtain a dump using the SNAP macro, you must provide a data control block and
issue an OPEN macro for the data set before issuing any SNAP macros. If the
standard dump format is requested, 120 characters per line are printed. The data
control block must contain the following parameters: DSORG = PS, RECFM = VBA,
MACRF = W, BLKSIZE = 882 or 1632, and LRECL = 125. (The data control block is
described in Managing Non-VSAM Data Sets, and Macro Instructions for Non-VSAM
Data Sets). If a high-density dump is to be printed on a 3800 Printing Subsystem,
204 characters per line are printed. To obtain a high-density dump, code
CHARS=DUMP on the DD statement describing the dump data set. The BLKSIZE=
must be either 1470 or 2724, and the LRECL= must be 209. CHARS=DUMP can
also be coded on the DO statement describing a dump data set that will not be
printed immediately. If CHARS = DUMP is specified and the output device is not a
3800, print lines are truncated and print data is lost. If your program is to be
processed by the loader, you should also issue a CLOSE macro for the SNAP data
control block.

Finding Information in a SNAP Dump
You will obtain a dump index with each SNAP dump. The index will help you find
information in the dump more quickly. Included in the information in the dump index
is an alphabetical list of the active load modules in the dump along with the page
number in the dump where each starts.

Obtaining a Summary Dump
You can request a summary dump for an abending task by coding the SUM option of
the SNAP macro. You can also obtain a summary dump by coding the DUMPOPT
option on the ABEND or SETRP macro and specifying a list form of SNAP that
contains the SUM option. Use the DUMPOPX parameter on ABEND or SETRP to
obtain an ABEND dump that contains data space storage. When you use DUMPOPX,
specify a list form of SNAPX that contains the SUM option.

If SUM is the only option that you specify, the dump will contain a dump header,
control blocks, and certain other areas. The contents of the summary dump are
described in Planning: Problem Determination and Recovery.

Reporting Symptom Records
An installation's programmers can write authorized or unauthorized applications
that detect and collect information about errors in their processing. Through the
SYMRBLD or SYMREC macro, the applications can write a symptom record for each
error out to SYS1.LOGREC, the online repository where MVS collects error
information. Programmers can analyze the records in SYS1.LOGRECto diagnose
and debug problems in the installation's applications.

The unit of information stored in SYS1.LOGREC is called a symptom record. The
data in the symptom record is a description of some programming failure combined
with a description of the environment where the failure occurred. Some of the
information in the symptom record is in a special format called the SOB (structured
data base) format.

8-14 Assembler Programming Guide

In summary, an installation's programmers can:

• Build the symptom records using the SYMRBLD macro.
• Record the symptom records on SYS1.LOGREC using SYMRBLD or SYMREC.
• Format the symptom records into various kinds of reports using EREP and IPCS.

Writing Symptom Records to SYS1.LOGREC
Your application can build and write symptom records to SYS1.LOGREC one of two
ways:

• Through invoking the SYMRBLD macro services
• By filling in fields of the ADSR mapping macro, then invoking SYMREC.

SYMRBLD services use both the ADSR mapping macro and SYMREC, thus
decreasing the amount of code your application requires to write symptom records.
IBM recommends that you use SYMRBLD rather than coding your application to
directly use ADSR and SYMREC.

By invoking the SYMRBLD macro multiple times, you can generate code to build the
symptom record. After storing all symptoms into the symptom record by using the
SYMRBLD macro, invoke the SYMRBLD macro with the INVOKE=YES parameter
one last time to write the data from the symptom record to SYS1.LOGREC.

The Format of the Symptom Record
The symptom record consists of six sections that are structured according to the
format of the ADSR DSECT. These sections are numbered 1 through 5, including an
additional section that is numbered 2.1. Because sections 2.1, 3, 4, and 5 of the
symptom record are non-fixed, they do not need to be sequentially ordered within
the record. In section 2, the application supplies the offset and the length of the
non-fixed sections. The ADSR format is described in the Diagnosis: Data Areas, and
the purpose of each section is as follows:

Section 1 (Environmental data): Section 1 contains the record header with basic
environmental data. The environmental data provides a system context within
which the software errors can be viewed. The SYMREC caller initializes this area to
zero and stores the characters "SR" into the record header. The environmental
data of section 1 is filled in automatically when you invoke the SYMREC macro.
Section 1 includes items such as:

• CPU model and serial number
• Date and time, with a time zone conversion factor
• Customer assigned system name
• Product 10 of the control program

Section 2 (Control data): Section 2 contains control information with the lengths
and offsets of the sections that follow. The application must initialize the control
information before invoking SYMREC for the first time. You can initialize the control
information by using SYMRBLD with the INITIAL parameter. Section 2 immediately
follows section 1 in the symptom record structure.

Section 2.1 (Component data): Section 2.1 contains the name of the component in
which the error occurred, as well as other specific component-related data. The
application must also initialize section 2.1 before invoking SYMREC. You can
initialize the control information by using SYMRBLD with the INITIAL parameter.

Chaoter 8. Proaram Termination and Dumoing Services 8-15

Section 3 (Primary SDS symptoms): Section 3 contains the primary string of
problem symptoms, which may be used to perform tasks such as duplicate problem
recognition. When an application detects an error, it must store a string of
symptoms in section 3, and this string becomes the primary symptom for the error.
This string should be a unique and complete description of the error. All incidences
of that error should produce the same string in section 3. When problems are
analyzed, problems that have identical strings in section 3 represent the same
error. Note that an application does not store any primary symptom string or invoke
SYMREC unless it detects an error in its own processing. You can invoke SYMRBLD
with the PRIMARY parameter to store symptoms into section 3.

Section 4 (Secondary SDS symptoms): Section 4 contains an optional secondary
symptom string. The purpose of the secondary string is to provide additional
symptoms that might supplement the symptoms in section 3.

Section 5 (Free-format data): Section 5 contains logical segments of optional
problem-related data to aid in problem diagnosis. However, the data in section 5 is
not in the SDB format, which is found in only sections 3 and 4. Each logical segment
in section 5 is structured in a key-length-data format.

Symptom Strings - SOB Format
The symptom strings placed in sections 3 and 4 of the symptom record must be in
the SDB (structured data base) format. In this format, the individual symptoms in
sections 3 and 4 consist of a prefix and its associated data. For more information on
the prefixes that SYMRBLD or SYMREC recognize, see Problem Determination
Guide. Examples of typical prefixes are:

Prefix
PIDS!
RIDS!
AB!
PRCS/

Data
a component name
a routine name
an abend code
a return code

For a full explanation of symptom strings and how to format and print the four basic
symptom record reports, see Problem Determination Guide and Diagnosis: Using
Dumps and Traces.

Programming Notes for SYMREC Applications
This section contains programming notes on how the various fields of the ADSR
data area (symptom record) are set. Some fields of the ADSR data area (symptom
record) must be set by the caller of the SYMREC macro, and other fields are set by
the system when the application invokes the SYMREC service. The fields that the
SYMREC caller must always set are indicated by an RC code in the following
sections. The fields that are set by SYMREC are indicated by an RS code.

The RA code designates certain flag fields that need to be set only when certain
kinds of alterations and substitutions are made in the symptom record after the
incident occurs. These alterations and substitutions must be obvious to the user
who interprets the data. Setting these flag fields is the responsibility of the program
that alters or substitutes the data. If a program changes a symptom record that is
already written on the repository, it should set the appropriate RA-designated
flag-bit fields as an indication of how the record has been altered.

The remaining fields, those not marked by RC, RS, or RA, are optionally set by the
caller of the SYMREC macro. When SYMREC is invoked, it checks that all the

8-16 Assembler Programming Guide

required input fields in the symptom record are set by the caller. If the required
input fields are not set, SYMREC issues appropriate return and reason codes.

Programming Notes for Section 1
Notes in this section pertain to the following fields, which are in section 1 of the
ADSR data area.

ADSR1D Record header (RC)
ADSRGMT Local Time Conversion Factor
ADSRTIME Time stamp (RS)
ADSRTOD Time stamp (HHMMSSTH)
ADSRDATE Date (YYMMDD)
ADSRSID Customer Assigned System/Node Name (RS)
ADSRSYS Product 1D of Base System (BCP) (RS)
ADSRCML Feature and level of Symrec Service (RS)
ADSRTRNC Truncated flag (RS)
ADSRPMOD Section 3 modified flag (RA)
ADSRSGEN Surrogate record flag (RA)
ADSRSMOD Section 4 modified flag
ADSRNOTD ADSRTOD & ADSRDATE not computed flag (RS)
ADSRASYN Asynchronous event flag (RA)
ADSRDTP Name of dump

Notes:

1. SYMREC stores the TOD clock value into ADSRTIME when the incident occurs.
However, it does not compute ADSRTOD and ADSRDATE when the incident
occurs, but afterwards, when it formats the output. When the incident occurs,
SYMREC also sets ADSRNOTD to 1 as an indication that ADSRTOD and
ADSRDATE have not been computed.

2. SYMREC stores the customer-assigned system node name into ADSRSID.

3. SYMREC stores the first four digits of the base control program component id
into ADSRSYS. The digits are 5752,5759 and 5745 respectively for MVS, VM*,
and DOS/VSE*

4. The ADSRDTP field is not currently used by the system.

5. If some application creates the record asynchronously, that application should
set ADSRASYN to 1. 1 means that the data is derived from sources outside the
normal execution environment, such as human analysis or some type of
machine post-processing.

6. If SYMREC truncates the symptom record, it sets ADSRTRNC to 1. This can
happen when the size of the symptom record provided by the invoking
application exceeds SYMREC's limit.

7. ADSRSGEN indicates that the symptom record was not provided as 'first time
data capture' by the invoking application. Another program created the
symptom record. For instance, the system might have abended the program,
and created a symptom record for it because the failing program never regained
control. Setting the field to 1 means that another program surrogate created the
record. The identification of the surrogate might be included with other optional
information, for example, in section 5.

* VM is a trademark of the IBM Corporation.

* VSE is a trademark of the IBM Corporation.

Chapter 8. Program Termination and Dumping Services 8-17

8. The application invoking SYMREC must provide the space for the entire
symptom record, and initialize that space to hex zeroes. The application must
also store the value I SR I into ADSRID.

9. The fields ADSRCPM through ADSRFL2, which appear in the record that is
written to SYS1.LOGREC, are also written back into the input symptom record as
part of the execution of SYMREC.

Programming Notes for Section 2
Notes in this section pertain to the following fields, which are in section 2 of the
ADSR data area.

ADSRARID
ADSRL
ADSRCSL
ADSRCSO
ADSRDBL
ADSRDBO
ADSRROSL
ADSRROSA
ADSRRONL
ADSRRONA
ADSRRISL
ADSRRISA
ADSRSRES

Notes:

Architectural level designation
Length of section 2
Length of section 2.1
Offset of section 2.1
Length of section 3
Offset of section 3
Length of section 4
Offset of section 4
Length of section 5
Offset of section 5
Length of section 6
Offset of section 6
Reserved for system use

(RS)
(Re)
(Re)
(Re)
(Re)
(Re)

1. The invoking application must ensure that the actual lengths of supplied data
agree with the lengths indicated in the ADSR data area. The application should
not assume that the SYMREC service validates these lengths and offsets.

2. The lengths and offsets in section 2 are intended to make the indicated portions
of the record indirectly addressable. Invoking applications should not program
to a computed absolute offset, which may be observed from the byte
assignments in the data area.

3. The value of the ADSRARID field is the architectural level at which the SYMREC
service is operating. This field is supplied by the SYMREC service.

4. Section 2 has a fixed length of 48 bytes. Optional fields (not marked with RC,RS,
or RA) will contain zeroes when the invoking application provides no values for
them.

Programming Notes for Section 2.1
Notes in this section pertain to the following fields, which are in section 2.1 of the
ADSR data area.

8-18 Assembler Programming Guide

AOSRC C' SR21 1 Section 2.1 Identifier (RC)
AOSRCRL Architectural Level of Record (RC)
AOSRCIO Component identifier
AOSRFLC Component Status Flags
AOSRFLC1 Non-IBM program flag (RC)
AOSRLVL Component Release Level (RC)
AOSRPTF Service Level
AOSRPIO PIO number (RC)
AOSRPIDL PIO release level (RC)
AOSRCOSC Text description
AOSRRET Return Code (RS)
AOSRREA Reason Code (RS)
AOSRPRID Problem Identifier
AOSRIO Subsystem identifier

Notes:

1. This section has a fixed length of 100 bytes, and cannot be truncated. Optional
fields (not marked with RC, RS, or RA) will appear as zero if no values are
provided.

2. AOSRCIO is the component 10 of the application that incurred the error.

Under some circumstances, there can be more than one component 10 involved.
For AOSRCIO, select the component ID that is most indicative of the source of
the error. The default is the component 10 of the detecting program. In no case
should the component 10 represent a program that only administratively
handles the symptom record. Additional and clarifying data (such as, other
component 10 involved) is optional, and may be placed in optional entries such
as AOSRCOSC of section 2.1, section 4, or section 5.

For example: if component A receives a program check; control is taken by
component B, which is the program check handler. Component C provides a
service to various programs by issuing SYMREC for them. In this case, the
component 10 of A should be given. Component B is an error handler that is
unrelated to the source of the error. Component C is only an administrator. Note
that, in this example, it was possible for 8 to know A was the program in control
and the source of the program check. This precise definition is not always
possible. B is the detector, and the true source of the symptom record. If the
identity of A was unknown, then B would supply, as a default, its own
component 10.

AOSRCIO is not a required field in this section, although it is required in section
3 after the PIOS/ prefix of the symptom string. Repeating this value in section
2.1 is desirable but not required. Where the component 10 is not given in
section 2.1, this field must contain zeroes.

AOSRPID is the program identification number assigned to the program that
incurred the error. AOSRPID must be provided only by IBM programs that do
not have an assigned component 10. Therefore, AOSRCIO contains hex zeroes
if AOSRPID is provided.

3. AOSRLVL is the release level of the component indicated in ADSRCIO.

4. AOSRPIOL is the release level of the program designated by AOSRPIO, and it
should be formatted using the characters, V, R, and M as separators, where V,
R, and M represent the version, release, and modification level respectively. For
example, V1 R21 bbbbb is Version 1 Release 2.1 without any modification. No
punctuation can appear in this field, and AOSRPIOL must be provided only when
AOSRPIO is provided.

Chapter 8. Program Termination and Dumping Services 8-19

5. ADSRPTF is the service level. It may differ from ADSRLVL because the program
may be at a higher level than the release. ADSRPTF can contain any number
indicative of the service level. For example, a PTF, FMID, APAR number, or user
modification number. This field is not required, but it should be provided if
possible.

6. ADSRCDSC is a 32-byte area that contains text, and it is only provided at the
discretion of the reporting component. It provides clarifying information.

7. ADSRREA is the reason code, and ADSRRET is the return code from the
execution of SYMREC. SYMREC places these values in registers 0 and 15 and in
these two fields as part of its execution. The fields are right justified, and
identical to the contents of registers 0 and 15.

8. ADSRCRL Is the architectural level of the record. Note that ADSRARID (section
2) is the architectural level of the SYMREC service.

9. ADSRPRID Is a value that can be used to associate the symptom record with
other symptom records. This value must be in EBCDIC, but it is not otherwise
restricted.

10. ADSRNIBM is a flag indicating that a non-IBM program originated the symptom
record.

11. ADSRSSID is the name of a subsystem. The primary purpose of this field is to
allow subsystems to intercept the symptom record from programs that run on
the subsystem. They may then add their own identification in this field as well
as additional data in sections 4 and 5. The subsystem can then pass the
symptom record to the system via SYMREC. A zero value is interpreted as no
name.

Programming Notes for Section 3
Section 3 of the symptom record contains the primary symptoms associated with the
error, and is provided by the application that incurred the error, or some program
that acts on its behalf. The internal format of the data in section 3 is the SOB format,
with a blank separating each entry. Once this data has been passed to SYMREC by
the invoker, it may not be added to or modified without setting ADSRPMOD to '1'.
The data in this section is EBCDIC, and no hex zeros may appear. The symptoms
are in the form KID where K is a keyword of 1 to 8 characters and D is at least 1
character. D can only be an alphanumeric or @, $, and #.

Notes:

1. The symptom KID can have no imbedded blanks, but the '#' can be used to
substitute for desired blanks. Each symptom (KID) must be separated by at least
one blank. The first symptom may start at ADSRRSCS with no blank, but the
final symptom must have at least one trailing blank. The total length of each
symptom (KID combination) can not exceed 15 characters.

2. This section is provided by the component that reports the failure to the system.
Once a SYMREC macro is issued, the reported information will not be added to
or modified, even if the information is wrong. It is the basis for automated
searches, and even poorly chosen information will compare correctly in such
processing because the component consistently produces the same symptoms
regardless of what information was chosen.

3. The PIOSI entry is required, with the component 10 following the slash. It is
required from all programs that originate a symptom record and have
component a 10 assigned. Further, it must be identical to the value in ADSRCID
(section 2.1) if that is provided. (ADSRCID is not a required field).

8-20 Assembler Programming Guide

Programming Notes for Section 4
Section 4 of the symptom record contains the secondary symptoms associated with
the error incident, and it is provided by the application that incurred the error, or
some program that acts in its behalf. The internal format of the data in section 4 is
the SDS format, with a single blank separating each entry. Once this data has been
passed to SYMREC by the invoker, it may not be added to or modified without
setting ADSRSMOD to 1.

Programming Notes for Section 5
Section 5 of the symptom record contains logical segments of data that are provided
by the component or some program that acts in its behalf. The component stores
data in section 5 before SYMREC is invoked.

Notes:

1. The first segment must be stored at symbolic location ADSR5ST. In each
segment, the first two characters are a hex key value, and the second two
characters are the length of the data string, which must immediately follow the
two-byte length field. Adjacent segments must be packed together. The length of
section 5 is in the ADSRRONL field in section 2, and this field should be
correctly updated as a result of all additions or deletions to section 5.

2. There are 64K key values grouped in thirteen ranges representing thirteen
potential SYMREC user categories. The data type (that is, hexadecimal,
EBCDIC, etc.) of section 5 is indicated by the category of the key value. Thus,
the key value indicates both the user category and the data type that are
associated with the information in section 5. Because the component 10 is a
higher order qualifier of the key, it is only necessary to control the assignment
of keys within each component 10 or, if a component ID not assigned, within
each PID number.

Key Value
0001-00FF
0100-0FFF
1000-18FF
1900-1FFF
2000-BFFF
COOO-CFFF
DOOO-DFFF
EOOO-EFFF
FOOO
F001-FOFF
F100-FEFF
FFOO
FF01-FFFF

User Category and Data Type
Reserved
MVS system programs

, VM system programs
DOS/VSE system programs
Reserved
Product programs and non-printable hex data
Product programs and printable EBCDIC data
Reserved
Any program and printable EBCDIC data
Not assignable
Reserved
Any program and non-printable hex data
Not assignable

Chapter 8. Program Termination and Dumping Services 8-21

8-22 Assembler Programming Guide

Chapter 9. Virtual Storage Management

You use the virtual storage area assigned to your job step by making implicit and
explicit requests for virtual storage. (In addition to the virtual storage requests that
you make, the system also can request virtual storage to contain the control blocks
required to manage your tasks.)

Some macros represent implicit requests for storage. For example, when you
invoke LINK to pass control to another load module, the system allocates storage
before bringing the load module into your job pack area.

A GETMAIN or STORAGE macro is an explicit request for virtual storage. When you
make an explicit storage request, the system allocates to your task the number of
virtual storage bytes that you request. The macros also allow you to specify where
the central storage that backs the virtual storage resides; either above or below 16
megabytes.

The CPOOL macro and callable cell pool services are also explicit requests for
storage. The macro and the services provide an area called a cell pool from which
you can obtain cells of storage. "Using the CPOOL Macro" on page 9-5 and
Chapter 10, "Callable Cell Pool Services" describe how you can create and manage
cell pools.

The DSPSERV macro is an explicit request for virtual storage that is not part of your
address space. It is available for storing data, but not executing code. The two
kinds of data-only spaces are data spaces and hiperspaces. For information on how
to obtain and manage these virtual storage areas, see Chapter 13, "Data Spaces
and Hiperspaces."

Note: If your job step is to be executed as a nonpageable (V = R) task, the REGION
parameter value specified on the JOB or EXEC statement determines the amount of
virtual (real) storage reserved for the job step. If you run out of storage, increase
the REGION parameter size.

This chapter describes techniques you can use to obtain and release virtual storage
and make efficient use of the virtual storage area reserved for your job step.

Explicit Requests for Virtual Storage
To explicitly request virtual storage, issue a GETMAIN or a STORAGE macro. When
you make an explicit request, the system satisfies the request by allocating a part of
the vi rtual storage area reserved for the job step. The vi rtual storage area is
usually not set to zero when allocated. (The system sets storage to zero only when
it initially assigns a frame to a virtual storage page.)

You explicitly release virtual storage by issuing a FREE MAIN macro or a STORAGE
macro. For information about using these macros, see "Releasing Storage Through
the FREEMAIN and STORAGE Macros" on page 9-5.

© Copyright IBM Corp. 1988, 1991 9-1

Specifying the Size of the Area
Virtual storage areas are always allocated to the task in multiples of eight bytes and
may begin on either a doubleword or page boundary. You request virtual storage in
bytes; if the number you specify is not a multiple of eight, the system rounds it up to
the next higher multiple of eight. You can make repeated requests for a small
number of bytes as you need the area, or you can make one large request to
completely satisfy the requirements of the task. There are two reasons for making
one large request. First, it is the only way you can be sure to get contiguous virtual
storage and avoid fragmenting your address space. Second, you make only one
request, and thus minimize the amount of system overhead.

Obtaining Storage Through the GETMAIN Macro
There are several methods of explicitly requesting virtual storage using a GETMAIN
macro. Each method, which you select by coding a parameter, has certain
advantages.

You can specify the actual location (above or below 16 megabytes) of the virtual
area allocated by using the LOC parameter. (LOC is valid only with the RU, RC,
VRU, and VRC parameters.) If you code LOC = ANY and indicate a subpool that is
supported above 16 megabytes, GETMAIN tries to allocate the virtual storage area
above 16 megabytes. If it cannot, or if the subpool is not supported above 16
megabytes, GETMAIN allocates the area from virtual storage below 16 megabytes.

The last three methods do not produce reenterable coding unless coded in the list
and execute forms. (See "Implicit Requests for Virtual Storage" on page 9-9 for
additional information.) When you use the last three types, you can allocate storage
below 16 megabytes only.

The methods and the characters associated with them follow:

1. Register Type: There are seVeral kinds of register requests. In each case the
address of the area is returned in register 1. All of the register requests
produce reenterable code because the parameters are passed to the system in
registers, not in a parameter list. The register requests are as follows:

R

RU or RC

VRU or VRC

specifies a request for a single area of virtual storage ofa
specified length, located below 16 megabytes.
specifies a request for a single area of virtual storage of a
specified length, located above or below 16 megabytes according
to the LOC parameter.
specifies a request for a single area of virtual storage with length
between two values that you specify, located above or below 16
megabytes according to the LOC parameter. GETMAIN attempts to
allocate the maximum length you specify. If not enough storage is
available to allocate the maximum length, GETMAIN allocates the
largest area with a length between the two values that you
specified. GETMAIN returns the length in register O.

2. Element Type: EC or EU specifies a request for a single area of virtual storage,
below 16 megabytes, of a specified length. GETMAIN places the address of the
allocated area in a fullword that you supply.

3. Variable Type: VC or VU specifies a request for a single area of virtual storage
below 16 megabytes with a length between two values you specify. GETMAIN
attempts to allocate the maximum length you specify; if not enough storage is
available to allocate the maximum length, the largest area with a length

9-2 Assembler Programming Guide

between the two values is allocated. GETMAIN places the address of the area
and the length allocated in two consecutive fullwords that you supply.

4. List Type: LC or LU specifies a request for one or more areas of vi rtual storage,
below 16 megabytes, of specified lengths.

The LOC parameter also allows you to indicate whether the real frames that back
the virtual storage are above or below 16 megabytes. For more information, see the
description of the GETMAIN macro in Assembler Programming Reference.

In combination with these methods of requesting virtual storage, you can designate
the request as conditional or unconditional. If the request is unconditional and
sufficient virtual storage is not available to fill the request, the active task is
abnormally terminated. If the request is conditional, however, and insufficient
virtual storage is available, a return code of 4 is provided in register 15; a return
code of 0 is provided if the request was satisfied.

Figure 9-1 shows an example of using the GETMAIN macro. The example assumes
a program that operates most efficiently with a work area of 16,000 bytes, with a fair
degree of efficiency with 8,000 bytes or more, inefficiently with less than 8,000 bytes.
The program uses a reentrant load module having an entry name of REENTMOD,
and will use it again later in the program; to save time, the load module was brought
into the job pack area using a LOAD macro so that it will be available when it is
required.

PROCEED2
PROCEED1
MIN
SIZES

ANSWADD

GETMAIN EC,LV=16000,A=ANSWADD

LTR 15,15
BZ PROCEED!
DELETE EP=REENTMOD
GETMAIN VU,LA=SIZES,A=ANSWADD
L 4,ANSWADD+4
CH 4,MIN
BNL PROCEED1

....
DC
DC
DC
DC
DC

W8000 1

F'4000 1

F'16000 1

F' 0
1

F'0
1

Conditional request for 16,OOO
bytes in central storage
Test return code
If 16,000 bytes allocated, proceed
If not, delete module and try
to get less virtual storage
Load and test allocated length
If 8,000 or more, use procedure 1
If less than 8,000 use procedure 2

Min. size for procedure 1
Min. size for procedure 2
Size of area for maximum efficiency
Address of allocated area
Size of allocated area

Figure 9-1. Example of Using the GETMAIN Macro

The code shown in Figure 9-1 makes a conditional request for a single element of
storage with a length of 16,000 bytes. The return code in register 15 is tested to
determine if the storage is available; if the return code is 0 (the 16,000 bytes were
allocated), control is passed to the processing routine. If sufficient storage is not
available, an attempt to obtain more virtual storage is made by issuing a DELETE
macro to free the area occupied by the load module REENTMOD. A second
GETMAIN macro is issued, this time an unconditional request for an area between
4,000 and 16,000 bytes in length. If the minimum size is not available, the task is
abnormally terminated. If at least 4,000 bytes are available, the task can continue.

Chapter 9. Virtual Storage Management 9-3

The size of the area actually allocated is determined, and one of the two procedures
(efficient or inefficient) is given control.

Obtaining Storage Through the STORAGE Macro
There are several ways of explicitly requesting virtual storage through the
STORAGE macro with the OBTAIN parameter. In the most simple request, you
issue the macro giving the length of storage you want and accepting the defaults for
the optional parameters. This request is as follows:

STORAGE OBTAIN,LENGTH=length

When you issue this macro, the system uses certain defaults. The following list
summarizes the defaults for optional parameters and identifies the parameters that
ov.erride the system defaults.

• After STORAGE executes, you will find the address of the storage in register 1
(ADDR parameter).

• The storage is located in subpool 0 (SP parameter).

• The storage is aligned on a doubleword boundary (BNDRY parameter).

• After the macro executes, you will find the return code in register 15 (RTCD
parameter).

• Whether the storage is located above or below 16 megabytes depends on the
location of the caller (LOC parameter). For example, if the caller is above 16
megabytes, the vi rtual storage and the real frames that back the vi rtual storage
will also be above 16 megabytes.

• The request for storage is unconditional (COND parameter). If the request is
unconditional and sufficient virtual storage is not available to fill the request, the
system abends the active task.

The SP, BNDRY, and COND parameters on STORAGE OBTAIN provide the same
function as the SP, BNDRY arJ~ COND parameters on GETMAIN.

To make a variable length request for storage, use the LENGTH = (maximum length,
minimum length) parameter. The maximum, which is limited by the REGION
parameter on the JOB or EXEC JCL statement, is the storage amount ,you would
prefer. The minimum is the smallest amount you can tolerate.

To specify where the virtual and central storage comes from, use the LOC
parameter. You can specify that the storage be above or below 16 megabytes or in
the same location as the caller. You can specify where the central storage that
backs the virtual storage comes from. The LOC parameter on STORAGE is similar
to the LOC parameter on GETMAIN with the RU and RC parameters that are
described in "Obtaining Storage Through the GETMAIN Macro" on page 9-2. On
LOC, you specify the location of the storage (both the virtual storage and the central
storage that backs the virtual).

To request storage conditionally, use COND = YES. If the request is conditional and
insufficient virtual storage is available, the system returns a code of 4 in register 15
or the location you specify on the RTCD parameter. If the system is able to satisfy
the request, it returns a code of O.

The system returns the address of the storage in the location specified by the ADDR
parameter or, by default, to register 1.

9-4 Assembler Programming Guide

The STORAGE macro is described in Assembler Programming Reference. The
macro description includes several examples of how to use the STORAGE macro.

Releasing Storage Through the FREE MAIN and STORAGE Macros
You release virtual storage by issuing a FREEMAIN macro or a STORAGE macro
with the RELEASE parameter. Neither request releases the area from control of the
job step but does make the area available to satisfy the requirements of additional
requests for any task in the job step. The virtual storage assigned to a task is also
released when the task terminates, except as indicated under "Subpool. Handling"
on page 9-6. Implicit releasing of virtual storage is described under "Freeing of
Virtual Storage" on page 9-12.

To release storage with the STORAGE macro, specify the amount, the address, and
the subpool (SP parameter). If you are releasing all of the storage in a subpool, you
can issue the SP parameter without specifying the length and the address.
Releasing all of the storage in a subpool is called a subpool release.

Using the CPOOL Macro
The cell pool macro (CPOOL) provides programs with another way of obtaining
virtual storage. This macro provides centralized, high-performance cell
management services.

What is a cell pool? A cell pool is a block of virtual storage that is divided into
smaller, fixed-size blocks of storage, called cells. You specify the size of the cells.
You then can request cells of storage from this cell pool as you need them. If the
request for cells exceeds the storage available in the cell pool, you can increase the
size of the cell pool.

The CPOOL macro allows you to:

• Create a cell pool (BUILD), where all cells have the size you specify
• Obtain a cell from a cell pool if storage is available (GET,COND)
• Obtain a cell from a cell pool and extend the cell pool if storage is not available

(GET,UNCOND)
• Return a cell to the cell pool (FREE)
• Free all storage for a cell pool (DELETE)
• Place the starting and ending addresses of the cell pool extents in a buffer

(LIST)

You can also create and manage cell pools by using callable cell pool services.
These services offer advantages over using CPOOL in some cases. Chapter 10,
"Callable Cell Pool Services" describes these services. "Comparison of CPOOL
Macro and Callable Cell Pool Services" on page 10-1 can help you decide whether
to use the callable cell pool services or the CPOOL macro.

Chapter 9. Virtual Storage Management 9-5

SubpoolHandling
The system provides subpools of virtual storage to help you manage virtual. storage
and communicate between tasks in the same job step. Because the use of subpools
requires some knowledge of how the system manages virtual storage, a discussion
of vi rtual storage control is presented here.

Virtual Storage Control: When the job step is given a region of virtual storage in the
private area of an address space, all of the storage area available for your use
within that region is unassigned. Subpools are created only when a GETMAIN,
STORAGE, or CPOOL macro is issued designating a subpool number (other than 0)
not previously specified. If no subpool number is designated, the virtual storage is
allocated from subpool 0, which is created for the job step by the system when the
job-step task is initiated.

For purposes of control and virtual storage protection, the system considers all
virtual storage within the region in terms of 4096-byte blocks. These blocks are
assigned to a subpool, and space within the blocks is allocated to a task by toe
system when requests for virtual storage are made. When there is sufficient
unallocated virtual storage within any block assigned to the designated subpool to
fill a request, the virtual storage is allocated to the active task from that block. If
there is insufficient unallocated virtual storage within any block assigned to the
subpool, a new block (or blocks, depending on the size of the request) is assigned to
the subpool, and the storage is allocated to the active task. The blocks assigned to
a subpool are not necessarily contiguous unless they are assigned as a result of
one request. Only blocks within the region reserved for the associated job step can
be assigned to a subpool.

Figure 9-2 is a simplified view of a virtual storage region· containing four 4096-byte
blocks of storage. All the requests are for virtual storage from subpool O. The first
request from some task in the job step is for 1008 bytes; the request is satisfied from
the block shown as Block A in the figure. The second request, for 4000 bytes, is too
large to be satisfied from the unused portion of Block A, so the system assigns the
next available block, Block B, to subpool 0, and allocates 4000 bytes from Block B to
the active task. A third request is then received, this time for 2000 bytes. There is
enough area in Block A (blocks are checked in the order first in, first out), soan
additional 2000 bytes are allocated to the task from Block A. All blocks are
searched for the closest fitting free area which will then be assigned. If the request
had been for 96 bytes or less, it would have been allocated from Block B. Because
all tasks may share subpool 0, Request 1 and Request 3 do not have to be made
from the same task, even though the areas are contiguous and from the same 4096
byte block. Request 4, for 6000 bytes, requires that the system allocate the area
from 2 contiguous blocks which were previously unassigned, Block 0 and Block C.
These blocks are assigned to subpool O.

9 .. 6 Assembler Programming Guide

Request 1
1008 bytes

Request 3
2000 bytes

Request 2 14000 bytes

~

Request 4
,6000 bytes

_____ ~~----~ ___ ~~_---- _____ ~_--__ A---~~-----J

Block A Block B Block C Block D

Figure 9-2. Virtual Storage Control

As indicated in the preceding example, it is possible for one 4096-byte block in
subpool 0 to contain many small areas allocated to many different tasks in the job
step, and it is possible that numerous blocks could be split up in this manner. Areas
acquired by a task other than the job step task are not released automatically on
task termination. Even if FREEMAIN or STORAGE RELEASE macros were issued
for each of the small areas before a task terminated, the probable result would be
that many small unused areas would exist within each block while the control
program would be continually assigning new blocks to satisfy new requests. To
avoid this situation, you can define subpools for exclusive use by individual tasks.

Any subpool can be used exclusively by a single task or shared by several tasks.
Each time that you create a task, you can specify which subpools are to be shared.
Unlike other subpools, subpool 0 is shared by a task and its subtask, unless you
specify otherwise. When subpool 0 is not shared, the system creates a new subpool
o for use by the subtask. As a result, both the task and its subtask can request
storage from subpool 0 but both will not receive storage from the same 4096-byte
block. When the subtask terminates, its virtual storage areas in subpool 0 are
released; since no other tasks share this subpool, complete 4096-byte blocks are
made available for reallocation.

Note: If the storage is shared, it is not released until the owning task terminates.

When there is a need to share subpool 0, you can define other subpools for
exclusive use by individual tasks. When you first request storage from a subpool
other than subpool 0, the system assigns new 4096-byte blocks to that subpool, and
allocates storage from that block. The task that is then active is assigned ownership
of the subpool and, therefore, of the block. When additional requests are made by
the same task for the same subpool, the requests are satisfied by allocating areas
from thatblock and as many additional blocks as are required. If another task is
active when a request is made with the same subpool number, the system assigns a
new block to a new subpool, allocates storage from the new block, and assigns
ownership of the new subpool to the second task.

A task can specify subpools numbered from 0 to 127. FREEMAIN or STORAGE
RELEASE macros can be issued to release any complete subpool except subpool 0,
thus releasing complete 4096-byte blocks. When a task terminates, its unshared
subpools are released automatically.

Chapter 9. Virtual Storage Management 9-7

Owning and Sharing: A subpool is initially owned by the task that was active when
the subpool was created. The subpool can be shared with other tasks, and
ownership of the subpool can be assigned to other tasks. The macrosoused to
handle subpools are STORAGE, GETMAIN, ATTACH and ATTACHX. In the
GETMAIN macro, the SP parameter can be written to request storage from subpools
o to 127; if you omit this parameter, the system assumes subpool O. The parameters
that deal with subpools in the ATTACH and ATTACHX macros are:

• GSPV and GSPL, which give ownership of one or more subpools (other than
subpool 0) to the task being created.

• SHSPV and SHSPL, which share ownership of one or more subpools (other than
subpool 0) with the new subtask.

• SZERO, which determines whether subpool 0 is shared with the subtask.

All of these parameters are optional. If they are omitted, no subpools are given to
the subtask, and only subpool 0 is shared.

Creating a Subpool: If the subpool specified does not exist for the active task, a
new subpool is created whenever SHSPV or SHSPL is coded on ATTACH or
ATTACHX, or when a GETMAIN or STORAGE macro is issued. A new subpool zero
is created for the subtask if SZERO = NO is specified on ATTACH or A TT ACHX. If
one of the ATTACH or ATTACHX parameters that specifies shared ownership of a
subpool causes the subpool to be created, the subpool number is entered in the list
of subpools owned by the task, but no blocks are assigned and no storage is
actually allocated. If a GETMAIN or STORAGE macro results in the creation of a
subpool, the subpool number is assigned to one or more 4096-byte blocks, and the
requested storage is allocated to the active task. In either case, ownership of the
subpool belongs to the active task; if the subpool is created because of an ATTACH
or ATTACHX macro, ownership is transferred or retained depending on the
parameter used.

Transferring Ownership: An owning task gives ownership of a subpool to a direct
subtask by using the GSPV or GSPL parameters on ATTACH or ATTACHX issued
when that subtask is created. Ownership of a subpool can be given to any subtask
of any task, regardless of the control level of the two tasks involved and regardless
of how ownership was obtained. A subpool cannot be shared with one or more
subtasks and then transferred to another subtask, however; an attempt to do this
results in abnormal termination of the active task. Ownership of a subpool can only
be transferred if the active task has sole ownership; if the active task is sharing a
subpool and an attempt is made to transfer it to a subtask, the subtask receives
shared control and the originating task relinquishes the subpool. Once ownership is
transferred to a subtask or relinquished, any subsequent use of that subpool number
by the originating task results in the creation of a new subpool. When a task that
has ownership of one or more subpools terminates, all of the virtual storage areas
in those subpools are released. Therefore, the task with ownership of a subpool
should not terminate until all tasks or subtasks sharing the subpool have completed
thei r use of the subpool.

If GSPV or GSPL specifies a subpool that does not exist for the active task, no action
is taken.

Sharing a Subpool: A task can share ownershi p of a subpool with a subtask that it
attaches. Subtasks cannot shareownership of a subpool with the task that caused
the attach. A program shares ownership by specifying the SHSPV or SHSPL
parameters on the ATTACH or A TT ACHX macro issued when the subtask is created.

9-8 Assembler Programming Guide

Any task with ownership or shared control of the subpool can add to or reduce the
size of the subpool through the use of the GETMAIN, FREEMAIN, or STORAGE
macros. When a task that has shared control of the subpool terminates, the subpool
is not affected.

Subpoo/s in Task Communication: The advantage of subpools in virtual storage
management is that, by assigning separate subpools to separate subtasks, the
breakdown of virtual storage into small fragments is reduced. An additional benefit
from the use of subpools can be realized in task communication. A subpool can be
created for an originating task and all parameters to be passed to the subtask
placed in the subpool. When the subtask is created, the ownership of the subpool
can be passed to the subtask. After all parameters have been acqui red by the
subtask, a FREEMAIN or STORAGE RELEASE macro can be issued, under control of
the subtask, to release the subpool virtual storage areas. In a similar manner, a
second subpool can be created for the originating task, to be used as an answer
area in the performance of the subtask. When the subtask is created, the subpool
ownership would be shared with the subtask. Before the subtask is terminated, all
parameters to be passed to the originating task are placed in the subpool area;
when the subtask is terminated, the subpool is not released, and the originating task
can acquire the parameters. After all parameters have been acquired for the
originating task, a FREEMAIN or STORAGE RELEASE macro again makes the area
avai lable for reuse.

Implicit Requests for Virtual Storage
You make an implicit request for virtual storage every time you issue LINK, LlNKX,
LOAD, AITACH, AITACHX, XCTL or XCTLX. In addition, you make an implicit
request for vi rtual storage when you issue an OPEN macro for a data set. This
section discusses some of the techniques you can use to cut down on the amount of
central storage required by a job step, and the assistance given you by the system.

Reenterable Load Modules
A reenterable load module does not modify itself. Only one copy of the load module
is loaded to satisfy the requirements of any number of tasks in a job step. This
means that even though there are several tasks in the job step and each task
concurrently uses the load module, the only central storage needed is an area large
enough to hold one copy of the load module (plus a few bytes for control blocks).
The same amount of central storage would be needed if the load module were
serially reusable; however, the load module could not be used by more than one
task at a time.

Note: If your module is reenterable or serially reusable, the load module must be
link edited, with the desired attribute, into a library. The default linkage editor
attributes are nonreenterable and nonreusable.

Reenterable Macros
All of the macros described in this manual can be written in reenterable form.
These macros are classified as one of two types: macro that pass parameters in
registers 0 and 1, and macros that pass parameters in a list. The macros that pass
parameters in registers present no problem in a reenterable program; when the
macro is coded, the required parameter values should be contained in registers.
For example, the POST macro requires that the ECB address be coded as follows:

POST ecb address

Chapter 9. Virtual Storage Management 9-9

One method of coding this in a reenterable program would be to require this
address to refer to a portion of storage that has been allocated to the active task
through the use of a GETMAIN macro. The address would change for each use of
the load module. Therefore, you would load one of the general registers 2-12 with
the address, and designate that register when you code the macro. If register 4
contains the ECB address, the POST macro is written as follows:

POST (4)

The macros that pass parameters in a list require the use of special forms of the
macro when used in a reenterable program. The macros that pass parameters in a
list are identified within their descriptions in Assembler Programming Reference.
The expansion of the standard form of these macros results in an in-line parameter
list and executable instructions to branch around the list, to save parameter values
in the list, to load the address of the list, and to pass control to the required system
routine. The expansions of the list and execute forms of the macro simply divide the
functions provided in the standard form expansion: the list form provides only the
parameter list, and the execute form provides executable instructions to modify the
list and pass control. You provide the instructions to load the address of the list into
a register.

The list and execute forms of a macro are used in conjunction to provide the same
services available from the standard form of the macro. The advantages of using
list and execute forms are as follows:

• Any parameters that remain constant in every use of the macro can be coded in
the list form. These parameters can then be omitted in each of the execute
forms of the macro which use the list. This can save appreciable coding time
when you use a macro many times. (Any exceptions to this rule are listed in the
description of the execute form of the applicable macro.)

• The execute form of the macro can modify any of the parameters previously
designated. (Again, there are exceptions to this rule.)

• The list used by the execute form of the macro can be located in a portion of
virtual storage assigned to the task through the use of the GETMAIN macro.
This ensures that the program remains reenterable.

Figure 9-3 shows the use of the list and execute forms of a DEQ macro in a
reenterable program. The length of the list constructed by the list form of the macro
is obtained by subtracting two symbolic addresses; virtual storage is allocated and
the list is moved into the allocated area. The execute form of the DEQ macro does
not modify any of the parameters in the list form. The list had to be moved to
allocated storage because the system can store a return code in the list when
RET= HAVE is coded. Note that the coding in a routine labeled MOVERTN is valid
for lengths up to 256 bytes only. Some macros do produce lists greater than 256
bytes when many parameters are coded (for example, OPEN and CLOSE with many
data control blocks, or ENQ and DEQ with many resources), so in actual practice a
length check should be made. The move long instruction (MVCL) should be
considered for moving large data lists.

9-10 Assembler Programming Guide

LA
LA
SR
BAL
DEQ

3,MACNAME
5,NSIADDR
5,3
14,MOVERTN
,MF=(E,(l»

Load address of list form
Load address of end of list
Length to be moved in register 5
Go to routine to move list
Release allocated resource

* The MOVERTN allocates storage from subpool 0 and moves up to 256
* bytes into the allocated area. Register 3 is from address,
* register 5 is length. Area address returned in register 1.
MOVERTN GETMAIN R,LV=(5)

LR 4,1
BCTR 5,0
EX 5,MOVEINST
BR 14

MOVEINST MVC 0(0,4),0(3)

Address of area in register 4
Subtract 1 from area length
Move list to allocated area
Return

MAC NAME
NSIADDR
NAMEl
NAME2

DEQ (NAME1,NAME2,8,SYSTEM),RET=HAVE,MF=L

DC
DC

CL8'MAJOR'
CL8'MINOR'

Figure 9-3. Using the List and the Execute Forms of the DEQ Macro

Nonreenterable Load Modules
The use of reenterable load modules does not automatically conserve virtual
storage; in many applications it will actually prove wasteful. If a load module is not
used in many jobs and if it is not employed by more than one task in a job step,
there is no reason to make the load module reenterable. The allocation of virtual
storage for the purpose of moving coding from the load module to the allocated area
is a waste of both time and virtual storage when only one task requires the use of
the load module.

You do not need to make a load module reenterable or serially reusable if
reusability is not really important to the logic of your program. Of course, if
reusability is important, you can issue a LOAD macro to load a reusable module,
and later issue a DELETE macro to release its area.

Notes:

1. If your module is reenterable or serially reusable, the load module must be link
edited, with the desired attribute, into a library. The default linkage editor
attributes are nonreenterable and nonreusable.

2. A module that does not modify itself (a refreshable module) reduces paging
activity because it does not need to be paged out.

Chapter 9. Virtual Storage Management 9-11

Freeing of Virtual Storage
The system establishes two responsibility counts for every load module brought into
virtual storage in response to your requests for that load module. The responsibility
counts are lowered as follows:

• If the load module was requested in a LOAD macro, that responsibility count is
lowered when using a DELETE macro.

• If the load module was requested on LINK, LlNKX, ATTACH, ATTACHX, XCTL, or
XCTLX, that responsibility count is lowered when using XCTL orXCTLX or by
returning control to the system.

• When a task is terminated, the responsibility counts are lowered by the number
of requests for the load module made by LINK, LlNKX, LOAD, ATTACH,
ATIACHX, XCTL, or XCTLX during the performance of that task, minus the
number of deletions indicated above.

The vi rtual storage area occupied by a load module is released when the
responsibility counts reach zero. When you plan your program, you can design the
load modules to give you the best trade-off between execution time and efficient
paging. If you use a load module many times in the course of a job step, issue a
LOAD macro to bring it into virtual storage; do not issue a DELETE macro until the
load module is no longer needed. Conversely, if a load module is used only once
during the job step, or if its uses are widely separated, issue LINK or LlNKX to
obtain the module and issue an XCTL or XCTLX from the module (or return control
to the system) after it has been executed.

There is a minor problem involved in the deletion of load modules containing data
control blocks (DCBs). An OPEN macro instruction must be issued before the DCB
is used, and a CLOSE macro issued when it is no longer needed. If you do not issue
a CLOSE macro for the DCB, the system issues one for you when the task is
terminated. However, if the load module containing the DCB has been removed
from virtual storage, the attempt to issue the CLOSE macro causes abnormal
termination of the task. You must either issue the CLOSE macro yourself before
deleting the load module, or ensure that the data control block is still in virtual
storage when the task is terminated (possibly by issuing a GETMAIN and creating
the DCB in the area that had been allocated by the GETMAIN).

9-12 Assembler Programming Guide

Chapter 10. Callable Cell Pool Services

Callable cell pool services manage areas of virtual storage in the primary address
space, in data spaces and in address spaces other than the primary address space.
A cell pool is an area of virtual storage that is subdivided into fixed-sized areas of
storage called cells, where the cells are the size you specify. A cell pool contains:

• An anchor
• At least one extent
• Any number of cells, all having the same size.

The anchor is the starting point or foundation on which you build a cell pool. Each
cell pool has only one anchor. An extent contains information that helps callable
cell pool services manage cells and provides informaUon you might request about
the cell pool. A cell pool can have up to 65,536 extents, each responsible for its own
cell storage. Your program determines the size of the cells and the cell storage.
Figure 10-1 on page 10-3 illustrates the three parts of a cell poo/.

Through callable cef/pool services, you build the cell pool. You can then obtain
cells from the pool. When there are no more cells available in a pool, you can use
callable cell pool services to enlarge the pool.

To use callable cell pool services, your program issues the CALL macro to invoke
one of the following services:

• Build a cell pool and initialize an anchor (CSRPBLD service)
• Expand a cell pool by adding an extent (CSRPEXP service)
• Connect cell storage to an extent (CSRPCON service)
• Activate previously connected storage (CSRPACT service)
• Deactivate an extent (CSRPDAC service)
• Disconnect the cell storage for an extent (CSRPDIS service)
• Allocate a cell from a cell pool (CSRPGET and CSRPRGT services)
• Return a cell to the cell pool (CSRPFRE and CSRPRFR services)
• Query the cell pool (CSRPQPL service)
• Query a cell pool extent (CSRPQEX service)
• Query a cell (CSRPQCL service).

Comparison of CPOOL Macro and Callable Cell Pool Services
Callable cell pool services are similar to the CPOOL macro, but with some
additional capabilities. A program executing in any state or mode (disabled, locked,
AR mode, SRB mode, etc.) can use the services to manage storage in data spaces
as well as address spaces. The services allow you to define cell boundaries and to
expand and contract cell pools. Another difference is in how CPOOL and the
callable cell pool services handle the requests to free cells. CPOOL corrupts
storage if you try to free a cell that has not been obtained (through CPOOL GET), or
if you try to free a cell for a second time. Callable cell pool services accept the
request, but do no processing except to return a code to your program.

© Copyright IBM Corp. 1988, 1991 10-1

If your program:

Is in AR mode

The following table describes other differences; it can help you decide between the
two ways to manage cell pools.

Use:

Cell pool services. (CPOOl has mode restrictions.)

Needs to reduce the size of a cell pool Cell pool services. (CPOOl supports expansion but
not contraction.)

Needs data space storage Cell pool services. (CPOOl supports only the primary
address space.)

Needs storage in an address space other than the Cell pool services. (CPOOl supports only primary
primary address space storage.)

Must define cell boundaries Cell pool services. (CPOOl supports only a-byte
boundaries.)

Requires high performance on GETs and FREEs CPOOl.

In some ways, callable cell pool services require more work from the caller than
CPOOL does. For example, the services require the following actions that the
CPOOL macro does not require:

• Use the GETMAIN, STORAGE OBTAIN,or DSPSERV macro to obtain the storage
area for the cell pool.

• Provide the beginning addresses of the anchor, the extents, and cell storage
areas.

• Provide the size of each extent and the cell storage that the extent is
responsible for.

Storage Considerations
The virtual storage for the cell pool must reside in an address space or a data
space, and not in a hiperspace.

• The anchor and extents must reside within the same address space or data
space.

• The celfs must reside within one address space or data space; that space can
be different from the one that contains the anchor and extents.

10-2 Assembler Programming Guide

The following diagram illustrates the anchor and extents in Data/Address Space A
and the cell storage in Data/Address Space B.

Figure 10-1. Cell Pool Storage

Datal Address
Space A

Datal Address
Space B

Before you can obtain the first cell from a cell pool, you must plan the location of the
anchor, the extents, and the cell storage. You must obtain the storage for the
following areas and pass the following addresses to the services:

• The anchor, which requires 64 bytes of storage

• The extent, which requires 128 bytes plus one byte for every eight cells of cell
storage

• The cell storage.

Chapter 10. Callable Cell Pool Services 10-3

When you plan the size of the cell storage, consider the total requirements of your
application for this storage and some performance factors. Although a single extent
may contain any number of cells (up to 224 bytes, or 16,777,216), you might wish to
have multiple extents for performance purposes. Avoid having a large number of
extents, where each extent is responsible for a small number of cells. In general, a
greater requirement for cells should mean a proportionately smaller number of
extents. The following two examples illustrate this point.

If you have 10,000 cells in the pool, a good extent size is 2,500 cells per extent.

If you have 100,000 cells in the pool, a good extent size is. 10,000 cells per
extent.

"Using Callable Cell Pool Services to Manage Data Space Areas" on page 13-18
contains an example of using callable cell pool services with data spaces. It also
describes some storage considerations.

Link-editing Callable Cell Pool Services
Any program that invokes callable cell pool services must be link-edited with an
IBM-provided linkage-assist routine. The linkage-assist routine provides the logic
needed to locate and invoke the callable services. The linkage-assist routine
resides in SYS1.CSSLIB. The following example shows the JCl needed to link-edit
a program with the linkage-assist routine.

IILlNKJOB
II
IILlNKSTPl
II
IISYSPRINT
IISYSlMOD
IISYSUTI
IISYSLIN

INCLUDE
INCLUDE
NAME

IIOBJOOI
IIOBJOD2

JOB 'accountinfo','name',ClASS=x,
MSGClASS=x,NOTIFY=userid,MSGlEVEL=(1,1),REGION=4096K

EXEC PGM=HEWlH096,PARM='LIST,lET,XREF,REFR,RENT,NCAL,
SIZE=(180eK,128K)I

DO SYSOUT=x
DO DSNAME=userid.lOADlIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(TRK,(5,2))
DO *
OBJDDl(userpgm)
OBJDD2 (CSRCPOOL)
userpgm(R)
DO DSN=userid.OBJlIB,DISP=SHR
DO DSN=SYSl.CSSlIB,DISP=SHR

The example JCl assumes that the program you are link-editing is reentrant.

USing Callable Cell Pool Services
The following topics describe how you can use callable cell pool services to control
storage and request information about the cell pools. The discussion of creating a
cell pool and adding an extent assumes that you have already obtained the storage
for these areas.

To create a cell pool, call the CSRPBLD service. This service initializes the anchor
for the cell pool, assigns the name of the pool, and establishes the size of the cells.

To add an extent and connecl 1110 Ihe cell slorage, call the CSRPEXP service. You
need at least one extent in a cell pool. Each extent is responsible for one cell
storage area. You can add an extent to increase the numbers of cells; the maximum
number of extents in a cell pool is 65,536. The CSRPEXP service initializes an
extent for the cell pool, connects the cell storage area to the extent, and activates
the cell storage for the extent.

10-4 Assembler Programming Guide

Having activated the cell storage for an extent, you can now process GET requests
from the cells that the extent represents.

To contract a cell pool. deactivate Its extents. and disconnect its storage, use the
CSRPDAC and CSRPDIS services. CSRPDAC deactivates an extent and prevents
the processing of any further GET requests from the storage that the extent
represents. Cell FREE requests are unaffected. (You can use the CSRPACT service
to reactivate an inactive extent; reactivating undoes the effect of using CSRPDAC.)

CSRPDIS disconnects the cell storage from an extent and makes cell storage
unavailable. After you disconnect an extent, you can free the cell storage
associated with the extent. Do not free the extent itself until you have finished using
the enti re pool.

To reuse a deactivated. disconnected extent, call the CSRPCON and CSRPACT
services, not CSRPEXP. This is generally the only time you will need to use these
two services. CSRPCON reconnects an extent to cell pool storage that you have not
explicitly freed or that connects the extent to cells in newly-obtained storage. If you
reconnect the extent to new cell storage, be sure that the extent is large enough to
support the size of the cell storage. (CSRPCON undoes the effects of using
CSRPDIS.) CSRPACT activates the cell storage for the extent. You can now issue
GET requests for the cells.

To allocate (that is. obtain) cells and deal/ocate (that Is. free) previously allocated
cells, you have a choice of two forms of the same services. One service form
supports the standard CALL interface. The other supports a register interface and is
appropriate for programs that cannot obtain storage for a parameter list. The two
service functions are identical; however, the calling interface is different.

The CSRPGET (standard CALL interface) and CSRPRGT (register interface) services
allocate a cell from the cell pool. You can allocate cells only from extents that have
not been deactivated. Such an extent is called an active extent. The services return
to the caller the address of the allocated cell.

The CSRPFRE (standard CALL interface) and CSRPRFR (register interface) services
return a previously allocated cell to a cell pool. They return a code to the caller if
they cannot find the cell associated with an extent. If you free the last allocated cell
in an inactive extent, you will receive a unique code. You may use this information
to initiate cell pool contraction.

To obtain status about a cell pool, use one of three services. These services do not
prevent the cell pool from changing during a status query. They return status as it is
at the time you issue the CALL.

The CSRPQPL service returns information about the entire cell pool. It returns the
following:

• Pool name
• Cell size
• Total number of cells in active extents
• Total number of available cells associated with active extents
• Number of extents in the cell pool.

Chapter 10. Callable Cell Pool Services 10-5

The CSRPQEX service returns information about a specific extent. It returns the
following:

• Address and length of the extent
• Address and length of the cell storage area
• Total number of cells associated with the extent
• Number of available cells associated with the extent.

The CSRPQCl service returns information about a cell. It returns the following:

• Number of the extent that represents the cell
• Cell allocation status.

Handling Return Codes
Each time you call a service, you receive a return code. The return code indicates
whether the service completed successfully, encountered an unusual condition, or
was unable to complete successfully.

Standard CALL interface services pass return codes in both the parameter list and
register 15.

When you receive a return code that indicates a problem or an unusual condition,
your program can either attempt to correct the problem, or can terminate its
processing.

10-6 Assembler Programming Guide

Callable Cell Pool Services Coding Example
The code in this example invokes callable cell pool services. The anchor, the one
extent, and the cell storage are all in a data space. The caller obtains a cell from
the cell storage area and requests information about the pool, the extent, and the
cell. Use the example to supplement and reinforce information that is presented
elsewhere in this chapter.

CSRCPASM
SAC 512

INVOKE CELL POOL SERVICES ASSEMBLER DECLARES
SET AR ASC MODE

SYSSTATE ASCENV=AR
*
* Establish addressability to code.
*

*

lAE AR12,0
BASR R12,0
USING *,R12

* Get data space for the cell pool.
*
GETDSP DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN,

BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
*
* Add the data space to caller's access list.
*
GETALET ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT

L 2,DSPCORG ORIGIN OF SPACE IN GR2
ST 2,DSPCMARK DSPCMARK IS MARK FOR DATA SPACE

*
* Copy ALET to ANCHALET for calls to cell pool services.
*

MVC ANCHALET(4),DSPCALET
*
* Set address and size of the anchor
*

*

L R4,DSPCMARK
ST R4,ANCHADDR
A R4,ANCHSIZE
ST R4,DSPCMARK

* Call the build service.
*

*

*

*

*

*

CALL CSRPBLD,(ANCHALET,ANCHADDR,USERNAME,CELLSIZE,RTNCODE)
*
* Set address and size of the extent and connect extent to cells *
*

L R4,DSPCMARK RESERVES
ST R4,XTNTADDR
A R4,XTNTSIZE SETS SIZE OF EXTENT
ST R4,CELLSTAD
A R4,CELLSTLN SETS SIZE OF CELL STORAGE
ST R4,DSPCMARK DATA

x

CALL CSRPEXP,(ANCHALET,ANCHADDR,XTNTADDR,XTNTSIZE, X
CELLSTAD,CELLSTLN,EXTENT,RTNCODE)

*
* Get a cell. CELLADDR receives the address of the cell. *
*

CALL CSRPGET,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*

Chapter 10. Callable Cell Pool Services 10-7

* The program uses the cells.
*
* Query the pool, the extent, and the cell.
*

*

CAll CSRPQPl,(ANCHAlET,ANCHADDR,QNAME,QCEllSZ,QTOT CEllS, X
QAVAIl CEllS,QNUMEXT,QRTNCODE) . -

CALL CSRPQEX~(ANCHALET,ANCHADDR,EXTENT,QEXSTAT,QXTNT_ADDR, X
QXTNT LEN,QCELL ADDR,QCELL LEN,QTOT CELLS, X
QAVAIl CELLS,QRTNCODE) - -

CALL CSRPQCL~(ANCHALET,ANCHADDR,CELLADDR,QCLAVL,QCLEXT, X
QRTNCODE)

*
* Free the cell. *
*

CALL CSRPFRE,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*
* Deactivate the extent. *
*

CALL CSRPDAC,(ANCHALET,ANCHADDR,EXTENT,RTNCODE)
*
* Disconnect the extent. *
*

CALL CSRPDIS,(ANCHALET,ANCHADDR,EXTENT,QCELl ADDR,QCELLLEN, X
QRTNCODE) --

*
* Remove the data space from the access list.
*

ALESERV DELETE,ALET=DSPCALET
*
* Delete the data space.
*

DSPSERV DElETE,STOKEN=DSPCSTKN
*
* Return to caller.
*

BR 14

* Constants and data areas used by cell pool services *

*
CELLS_PER_EXTENT EQU
EXTENT~_PER_POOL EQU
CELLSIZE_EQU EQU
CELLS_PER_POOl EQU
XTNTSIZE_EQU EQU
STORSIZE_EQU EQU
CELLS_IN_POOL DC

10-8 Assembler Programming Guide

512
10
256
CELLS PER EXTENT*EXTENTS PER POOL
128+ «(CElLS_PER_EXTENT+63)/64) *8)
CELLS PER EXTENT*CELLSIZE EQU
A (CELlS_PER_POOL) -

*

*

ANCHALET DS F
ANCHADDR DS F
CELLSIZE DC A(CELLSIZE_EQU)
USERNAME DC CL8'MYCELLPL'
ANCHSIZE DC F'64'
XTNTSIZE DC A(XTNTSIZE_EQU)
XTNTADDR DS F
CELLSTAD DS F
CELLSTLN DC A(STORSIZE_EQU)
CELLADDR DS F
EXTENT DS F
STATUS OS F
RTNCODE DS F
*

* Constant data and areas for data space *

*

DS
DSPCSTKN DS
DSPCORG DS
DSPCSIZE EQU
DSPBLCKS DC
DSPCALET DS
DSPCMARK DS
DSPCNAME DC

eD
CL8 DATA SPACE STOKEN
F DATA SPACE ORIGIN RETURNED
STORSIZE EQA*EXTENTS PER POOL 1.28MEG DATA SPACE
A«DSPCSIZE+4095)/4e96) -BLOCKS FOR 10K DATA SPACE
F
F
CL8'DATASPCl'

HIGH WATER MARK FOR DATA SPACE
DATA SPACE NAME

*

* Values returned by queries *

*
QNAME OS CL8
QCELLSZ OS F
QNUMEXT OS F
QEXTNUM OS F
QEXSTAT OS F
QXTNT_ADOR OS F
QXTNT_LEN OS F
QCELL_ADDR OS F
QCELL_LEN OS F
QTOT_CELLS OS F
QAVAIL_CELLS OS F
QRTNCODE OS F
RC OS F
QCLAOOR OS F
QCLEXT OS F
QCLAVL OS F

Chapter 10. Callable Cell Pool Services 10-9

10-10 Assembler Programming Guide

Chapter 11. Data-in-Virtual

Data-in-virtual simplifies the writing of applications that use large amounts of data
from permanent storage. Applications can create, read, and update data without the
1/0 buffer, blocksize, and record considerations that the traditional GET and PUT
types of access methods require.

By using the services of data-in-virtual, certain applications that access large
amounts of data can potentially improve their performance and their use of system
resources. Such applications have an accessing pattern that is non-sequential and
unpredictable. This kind of pattern is a function of conditions and values that are
revealed only in the course of the processing. In these applications, the sequential
record subdivisions of conventional access methods are meaningless to the central
processing algorithm., It is difficult to adapt this class of applications to conventional
record management programming techniques, which require all permanent storage
access to be fundamentally record-oriented. Through the DIV macro, data-in-virtual
provides a way for these applications to manipulate the data without the constraints
of record-oriented processing.

An application written for data-in-virtual views its permanent storage data as a
seamless body of data without internal record boundaries. By using the
data-in-virtual MAP service, the application can make any portion of the object
appear in virtual storage in an area called a virtual storage window. The window
can exist in an address space, a data space, or a shared or non-shared standard
hiperspace. (See "Example of Mapping a Data-in-Virtual Object to a Data Space" on
page 13-22 and "Using Data-in-Virtual with Hiperspaces" on page 13-37 for more
information.) When the window is in a data space, the application can reference
and update the data in the window by using assembler instructions. When the
window is in a hiperspace, the application uses the HSPSERV macro to reference
and update the data. To copy the updates to the object, the application uses the
data-in-virtual SAVE service.

The data-in-virtual services process the application data in 4096-byte (4K-byte) units
on 4K-byte boundaries called blocks. The application data resides in what is called
a data-In-virtual object, a dala object, or simply an object. The data-in-virtual
object is a continuous string of uninterrupted data. The data object can be either a
VSAM linear data set or a non-shared standard hiperspace. Choosing a linear data
set as an object or a non-shared standard hiperspace as an object depends on your
application. If your application requires the object to retain data, choose a linear
data set, which provides permanent storage on DASD. A hiperspace object
provides temporary storage.

© Copyright IBM Corp. 1988. 1991 11-1

When to Use Data-in-Virtual
When an application reads more input and writes more output data than necessary,
the unnecessary reads and writes impact performance. You can expect improved
performance from data-in-virtual because it reduces the amount of unnecessary I/O.

As an example of unnecessary 1/0, consider the I/O performed by an interactive
application that requires immediate access to several large data sets. The program
knows that some of the data, although not all of it, will be accessed. However, the
program does not know ahead of time which data will be accessed. A possible
strategy for gaining immediate access to all the data is to read all the data ahead of
time, reading each data set in its entirety insofar as this is possible. Once read into
processor storage, the data can be accessed quickly. However, if only a small
percentage of the data is likely to be accessed during any given period, the 1/0
performed on the unaccessed data is unnecessary.

Furthermore, if the application changes some data in main storage, it might not
keep track of the changes. Therefore, to guarantee that all the changes are
captured, the application must then write entire data sets back onto permanent
storage even though only relatively few bytes are changed in the data sets.

Whenever such an application starts up, terminates, or accesses differentdata sets
in an alternating manner, time is spent reading data that is not likely to be
accessed. This time is essentially wasted, and the amount of it is proportional to the
amount of unchanged data for which I/O is performed. Such applications are
suitable candidates for a data-in-virtual implementation.

Factors Affecting Performance
When you write applications using the techniques of data,,:,in-virtual, the I/O takes
place only for the data referenced and saved. If you run an application using
conventional access methods, and then run it a second time using data-in-virtual
techniques, you will notice a difference in performance. This difference depends on
two factors: the size of the data set and its access pattern (or reference pattern).
Size refers to the magnitude of the data sets that the application must process. The
access pattern refers to how the application references the data.

In order to improve performance by using the data-in-virtual application, your data
sets must be large and the pattern must be scattered throughout the data set.

Engineering and scientific applications often use data access patterns that are
suitable for data-in-virtual. Among the applications that can be considered for a
data-in-virtual implementation are:

• Applications that process large arrays
• VSAM relative record applications
• BDAM fixed length record appl ications

11-2 Assembler Programming Guide

Commercial applications sometimes use data access patterns that are not suitable
because they are predictable and sequential. If the access pattern of a proposed
application is fundamentally sequential or if the data set is small, a conventional
VSAM (or other sequential access method) implementation may perform better than
a data-in-virtual implementation. However, this does not rule out commercial
applications as data-in-virtual candidates. If the performance factors are favorable,
any type of application, commercial or scientific, is suitable for a data-in-virtual
implementation.

Before you can use the DIV macro to process a linear data set object or a
hiperspace object, you must create either the data set or the hiperspace.
Chapter 13, "Data Spaces and Hiperspaces" on page 13-1 explains how to create a
hiperspace. The following section explains how to create a linear data set.

Creating a Linear Data Set
To create the data set, you need to specify the DEFINE CLUSTER function of
IDCAMS with the LINEAR parameter. When you code the SHAREOPTIONS
parameter for DEFINE CLUSTER, the cross-system value must be 3; that is, you may
code SHAREOPTIONS as (1,3), (2,3), (3,3), or (4,3). Normally, you should use
SHAREOPTIONS (1,3). However, you can use the LOCVIEW parameter of the DIV
macro in conjunction with the other SHAREOPTIONS. LOCVIEW is described on
page 11-8. For a complete explanation of SHAREOPTIONS, see the VSAM
Administration Guide or Managing VSAM Data Sets.

The following is a sample job that invokes Access Method Services (IDCAMS) to
create the linear data set named DIV.SAMPLE on the volume called DIVPAK. When
IDCAMS creates the data set, it creates it as an empty data set. Note that there is
no RECORDS parameter; linear data sets do not have records.

IIJNAME
II
1/*
1/*
1/*

JOB 'ALLOCATE LINEAR',MSGLEVEL=(l,l),
CLASS=R,MSGCLASS=D,USER=JOHNDOE

ALLOCATE A VSAM LINEAR DATASET

//CLUSTPG EXEC PGM=IDCAMS,REGION=4096K
I/SYSPRINT DD SYSOUT=*
//DIVPAK DD UNIT=3380,VOL=SER=DIVPAK,DISP=OLD
//SYSIN DD *

/*

DEFINE CLUSTER (NAME(DIV.SAMPLE) -
VOLUMES(DIVPAK) -
TRACKS(l,l) -
SHAREOPTIONS(1,3) -
LINEAR)

For further information on creating linear VSAM data sets and altering
entry-sequenced VSAM data sets, see Integrated Catalog Administration: Access
Method Services Reference or Summary of Access Method Services for the
Integrated Catalog Facility.

Chapter 11. Data-in-Virtual 11-3

Using the Services Of Oata-in-Virtual

Identify

Access

Each invocation of the DIV macro requests anyone of eight distinct services
provided by data-in-virtual:

• IDENTIFY
• ACCESS
• MAP
• SAVE
• RESET
• UNMAP
• UNACCESS
• UNIDENTIFY

An application must use IDENTIFY to tell the system which data-in-virtual object it
wants to process. IDENTIFY generates a unique 10, or token, that uniquely
represents an application's request to use the given data object. The system
returns this 10 to the application. When the application requests other kinds of
services with the DIV macro, the application supplies this 10 to the system as an
input parameter. Specify DDNAME for a linear data set object and STOKEN for a
hiperspace object.

To gain the right to view or update the object, an application must use the ACCESS
service. You normally invoke ACCESS after you invoke IDENTIFY and before you
invoke MAP. ACCESS is similar to the OPEN macro of VSAM. It has a mode
parameter of READ or UPDATE, and it gives your application the right to read or
update the object.

If the object is a data set and if the SHAREOPTIONS parameter used to allocate the
linear data set implies serialization, the system automatically serializes your access
to the object. If access is not automatically serialized, you can serialize access to
the object by using the ENQ, DEQ, and the RESERVE macros. If you do not serialize
access to the object, you should consider using the LOCVIEW parameter to protect
your window data against the unexpected changes that can occur when access to
the object is not serialized. LOCVIEW is described on page 11-8.

If the object is a hiperspace, DIV ensures that only one program can write to the
object and that multiple users can only read the object. Only the task that owns the
corresponding 10 can issue ACCESS.

11-4 Assembler Programming Guide

Map
The data object is stored in units of 4096-byte blocks. An application uses the MAP
service to specify the part of the object that is to be processed in virtual storage. It
can specify the entire object (all of the blocks), or a part of the object (any
continuous range of blocks). Because parts of the same object can be viewed
simultaneously through several different windows, the application can set up
separate windows on the same object. However, a specific page of virtual storage
cannot be in more than one window at a time.

After ACCESS, the application obtains a virtual storage area large enough to
contain the window. The size of the object, which ACCESS optionally returns, can
determine how much virtual storage you need to request. After requesting virtual
storage, the application invokes MAP. MAP establishes a one to one
correspondence between blocks in the object and pages in virtual storage. A
continuous range of pages corresponds to a continuous range of blocks. This
correspondence is called a virtual storage window, or a window.

After MAP, the application can look into the virtual storage area that the window
contains. When it looks into this virtual storage area, it sees the same data that is in
the object. When the application references this virtual storage area, it is
referencing the data from the object. To reference the area in the window, the
application simply uses any conventional processor instructions that access
storage.

Although the object data becomes available in the window when the application
invokes MAP, no actual movement of data from the object into the window occurs at
that time. Actual movement of data from the object to the window occurs only when
the application refers to data in the window. When the application references a
page in the window for the first time, a page fault occurs. When the page fault
occurs, the system reads the permanent storage block into central storage.

When the system brings data into central storage, the data movement involves only
the precise block that the application references. The system updates the contents
of the corresponding page in the window with the contents of the linear data set
object. Thus, the system brings in only the blocks that an application references
into central storage. The sole exception to the system bringing in only the
referenced blocks occurs when the application specifies LOCVIEW= MAP with the
ACCESS service for a data set object.

Notes:

1. If the application specifies LOCVIEW= MAP with ACCESS, the entire window is
immediately filled with object data when the application invokes MAP.

2. If, when an application invokes MAP, it would rather keep in the window the
data that existed before the window was established (instead of having the
object data appear in the window), it can specify RETAIN=YES. Specifying
RETAIN=YES is useful when creating an object or overlaying the contents of an
object.

3. An important concept for data-in-virtual is the concept of freshly obtained
storage. When virtual storage has been obtained and not subsequently
modified, the storage is considered to be freshly-obtained. The storage is also
in this state when it has been obtained as a data space by using a DSPSERV
CREATE and not subsequently modified. After a DSPSERV RELEASE, the
storage is still considered freshly obtained until it has been modified. When
referring to this storage or any of its included pages, this book uses "freshly

Chapter 11. Data-i n-Vi rtuaJ 11-5

Save and Reset

Unmap

Unaccess

Unidentify

obtained storage"and "freshly obtained pages". If a program stores into a
freshly obtained page, only that page loses its freshly obtained-status, while
other pages still retain it.

After the MAP service, the application can access the data inside the window
directly through normal programming techniques. When the application changes
some data in the window, however, the data on the object does not consequently
change. If the application wants the data changes in the window to appear in the
object, it must use the SAVE service. SAVE writes all changed blocks within the
range to range to be saved inside the window to the object. It does not write '
unchanged blocks. When SAVE completes, the object contains any changes that the
application made inside the virtual storage window. If a SAVE is preceded by
another SAVE, the second SAVE will pick up only the changes that occurred since
the previous SAVE.

If the application changes some data in a virtual storage window but then decides
not to keep those changes, it can use the RESET service to reload the window with
data from the object. RESET reloads only the blocks that have been changed unless
you specify or have specified RELEASE = YES.

When the application is finished processing the part of the object that is in the
window, it eliminates the window by using UN MAP. To process a different part of
the object, one not already mapped, the application can use the MAP service again.
The SAVE, RESET, MAP, and UN MAP services can be invoked repeatedly as
required by the processing requirements of the application.

If you issued multiple MAPs to different STOKENs, use STOKEN with UNMAP to
identify the data space or hiperspace you want to unmap.

If the application has temporarily finished processing the object but still has other
processing to perform, it uses UNACCESS to relinquish access to the object. Then
other programs can access the object. If the application needs to access the same
object again, it can regain access to the object by using the ACCESS service again
without having to use the IDENTIFY service again.

UNIDENTIFY ends the use of a data-in-virtual object under a previously assigned 10
that the IDENTIFY service returned.

The IDENTIFY Service
Your program uses IDENTIFY to select the data-in-virtual object that you want to
process. IDENTIFY has four parameters: 10, TYPE, DDNAME, and STOKEN.

The following examples show two ways to code the IDENTIFY service.

Hiperspace object:

DIV IDENTIFY,ID=DIVOBJID,TYPE=HS,STOKEN=HSSTOK

Data set object:

DIV IDENTIFY,ID=DIVOBJID,TYPE=DA,DDNAME=DDAREA

11-6 Assembler Programming Guide

ID: The 10 parameter specifies the address where the IDENTIFY service returns a
unique eight-byte name that connects a particular user with a particular object. This
name is an output value from IDENTIFY, and it is also a required input value to all
other services.

Simultaneous requests for different processing activities against the same
data-in-virtual object can originate from different tasks or from different routines
within the same task or the same routine. Each task or routine requesting
processing activity against the object must first invoke the identify service. To
correlate the various DIV macro invocations and processing activities, the eight-byte
IDs generated by IDENTIFY are sufficiently unique to reflect the individuality of the
IDENTIFY request, yet they all reflect the same data-in-virtual object.

TYPE: The TYPE parameter indicates the type of data-in-virtual object, either a
linear data set (TYPE = DA) or a hiperspace (TYPE = HS).

DDNAME: When you specify TYPE = DA for a data set object, you must specify
DDNAME to identify your data-in-virtual object. If you specify TYPE= HS with
IDENTIFY, do not specify DDNAME. (Specify STOKEN instead.)

STOKEN: When you specify TYPE = HS for a hiperspace object, you must specify
STOKEN to identify that hiperspace. The STOKEN must be addressable in your
primary address space. The hiperspace must be a non-shared standard hiperspace
and must be owned by the task issuing the IDENTIFY. The system does not verify
the STOKEN until your application uses the associated 10 to access the object.

The ACCESS Service
Your program uses the ACCESS service to request permission to read or update the
object. ACCESS has four parameters: 10, MODE, SIZE, and LOCVIEW.

The following example shows one way to code the ACCESS service.

DIV ACCESS,ID=DIVOBJID,MODE=UPDATE,SIZE=OBJSIZE

ID: When you issue a DIV macro that requests the ACCESS service, you must also
specify, on the 10 parameter, the identifier that the IDENTIFY service returned. The
10 parameter tells the system what object you want access to. When you request
permission to access the object under a specified 10, the system checks the
following conditions before it grants the access:

• You previously established the 10 specified with your ACCESS request by
invoking IDENTIFY.

• You have not already accessed the object under the same unique eight-byte 10.
Before you can reaccess an already-accessed object under the same 10, you
must first invoke UNACCESS for that 10.

• If your installation uses RACF and the object is a linear data set, you must have
the proper RACF authorization to access the object.

• If you are requesting read access, the object must not be empty. Use the MODE
parameter to request read or update access.

Chapter 11. Data-i n-Vi rtual 11-7

• If the data object is a hiperspace, the system rejects the request if the
hiperspace:

Has ever been the target of an ALESERV ADD
Has one or more readers and one updater. (That is, the hiperspacecan
have readers and it can have one updater, but it can't have both.)

MODE: The MODE parameter specifies how your program will access the object.
You can specify a mode parameter of READ or UPDATE. They are described as
follows:

• READ lets you read the object, but prevents you from using SAVE, to change the
object.

• UPDATE, like READ, lets you read the object, but it also allows you update the
object with SAVE.

Whether you specify READ or UPDATE, you can still make changes in the window,
because the object does not change when you change the data in the window.

SIZE: The SIZE parameter specifies the address of the field where the system
stores the size of the object. The system returns the size in this field whenever you
specify SAVE or ACCESS with SIZE. If you omit SIZE or specify SIZE = *, the system
does not return the size.

If you specified TYPE = DA with IDENTIFY for a data set object, SIZE specifies the
address of a four-byte field. When control is returned to your program after the
ACCESS service executes, the four-byte field contains the current size of the object.
The size is the number of blocks that the application must map to ensure the
mapping of the entire object.

If you specified TYPE = HS with IDENTIFY for a hiperspace object, ACCESS returns
two sizes. The first is the current size of the hiperspace (in blocks). The second is
the maximum size of the hiperspace (also in blocks). When specifying SIZE with an
10 associated with a hiperspace object, you must provide an eight-byte fiQld in
which the system can return the sizes (4 bytes each).

LOC VIE W: The LOCVIEW parameter allows you to specify whetherthe system is to
create a local copy of the data-in-virtual object.

If your object is a hiperspace, you cannot specify LOCVIEW= MAP.

If your object is a data set, you can code the LOCVIEW parameter two ways:

• LOCVIEW = MAP
• LOCVIEW = NONE (the default if you do not specify LOCVIEW)

If another program maps the same block of a data-in-virtual object as your program
has mapped, a change in the object due to a SAVE by the other program can
sometimes appear in the virtual storage window of your program. The change can
appear when you allocate the data set object with a SHAREOPTIONS(2,3),
SHAREOPTIONS(3,3), or SHAREOPTIONS(4,3) parameterl and when the other
program is updating the object while your program is accessing it.

11-8 Assembler Programming Guide

If the change appears when your program is processing the data in the window,
processing results might be erroneous because the window data at the beginning of
your processing is inconsistent with the window data at the end of your processing.
For an explanation of SHAREOPTIONS, see VSAM Administration Guide or
Managing VSAM Data Sets. The relationship between SHAREOPTIONS and
LOCVIEW is as follows:

• When you allocate the data set object by SHAREOPTIONS(2,3),
SHAREOPTIONS(3,3), or SHAREOPTIONS(4,3), the system does not serialize the
accesses that programs make to the object. Under these options, if the
programs do not observe any serialization protocol, the data in your virtual
storage window can change when other programs invoke SAVE. To ensure that
your program has a consistent view of the object, and protect your window from
changes that other programs make on the object, use LOCVIEW = MAP. If you
do not use LOCVIEW= MAP when you invoke ACCESS, the system provides a
return code of 4 and a reason code of hexadecimal 37 as a reminder that no
serialization is in effect even though the access was successful.

• When you allocate the object by SHAREOPTIONS(1 ,3), object changes made by
the other program cannot appear in your window because the system performs
automatic serialization of access. Thus, when any program has update access
to the object, the system automatically prevents all other access. Use
LOCVIEW = NONE when you allocate the data set by SHAREOPTIONS(1,3).

Note: The usual method of programming data-in-virtual is to use
LOCVIEW = NONE and SHAREOPTIONS(1,3). LOCVIEW = MAP is provided for
programs that must access a data object simultaneously. Those programs
would not use SHAREOPTIONS(1 ,3).

LOCVIEW= MAP requires extra processing that degrades performance. Use
LOCVIEW= NONE whenever possible although you can use LOCVIEW= MAP for
small data objects without significant performance loss. When you write a program
that uses LOCVIEW= MAP, be careful about making changes in the object size.
Consider the following:

• When a group of programs, all using LOCVIEW= MAP, have simultaneous
access to the same object, no program should invoke any SAVE or MAP that
extends or truncates the object unless it informs the other programs by some
coding protocol of a change in object size. When the other programs are
informed, they can adjust their processing based on the new size.

• All the programs must create their maps before any program changes the object
size. Subsequently, if any program wants to reset the map or create a new
map. it must not do so without observing the protocol of a size check. If the size
changed, the program should invoke UNACCESS, followed by ACCESS to get
the new size. Then the program can reset the map or create the new map.

Chapter 11. Oata-in-Virtual 11-9

The MAP Service
The MAP service makes an association between part or all of an object, the portion
being specified by the OFFSET and SPAN parameters, and your program's virtual
storage. This association, which is called a virtual storage window, takes the form
of a one-to-one correspondence between specified blocks on the object and
specified pages in virtual storage. After the MAP is complete, your program can
then process the data in the window. The RETAIN parameter specifies whether data
that is in the window when you issue MAP is to remain or be replaced by the data
from the associated object.

Note: You cannot map virtual storage pages that are page-fixed into a virtual
storage window. Once the window exists, you can page-fix data inside the window

. so long as it is not fixed when you issue SAVE, UN MAP, or RESET.

11-10 Assembler Programming Guide

If your window is in an address space, you can map either a linear data set or a
hiperspace object. See Figure 11-1.

Address Space

OR

Address Space

Figure 11-1. Mapping from an Address Space

Permanent Object

Temporary Object

Hiperspace

If your window is in a data space or a hiperspace, you can map only a linear data
set. See Figure 11-2.

Data Space
or Hiperspace

I window I

Permanent Object

Figure 11-2. Mapping from a Data Space or Hiperspace

If your window is in a data space or hiperspace, you can issue multiple MAPs under
the same 10 to different data spaces or hiperspaces. You cannot mix data space

Chapter 11. Data-in-VirtuaJ 11-11

maps or hiperspace maps with address space maps under the same 10 at anyone
time. However, you can mix data space maps and hiperspace maps. See
Figure 11-3 on page 11-12.

Data Space
or Hiperspace

Data Space
or Hiperspace

Data Space
or Hiperspace

Figure 11-3. Multiple Mapping

The MAP service has seven parameters: 10, OFFSET, SPAN, AREA, RETAIN,
STOKEN, and PFCOUNT.

The following examples show two ways to code the MAP service.

Hiperspace or data set object:

DIV MAP,ID=DIVOBJID,AREA=MAPPTRl,SPAN=SPANVAL,OFFSET=*,PFCOUNT=7

Data set object:

DIV MAP,ID=DIVOBJID,AREA=MAPPTRl,SPAN=SPANVAL,OFFSET=*,STOKEN=DSSTOK,PFCOUNT=7

11-12 Assembler Programming Guide

ID: The 10 parameter specifies the storage location containing the unique
eight-byte value that was returned by IDENTIFY. The map service uses this value to
determine which object is being mapped under which request.

If you specify the same 10 on multiple invocations of the MAP service, you can
create simultaneous windows corresponding to different parts of the object.
However, an object block that is mapped into one window cannot be mapped into
any other window created under the same 10. If you use different IDs, however, an
object block can be included simultaneously in several windows.

OFFSET and SPAN: The OFFSET and SPAN parameters indicate a range of blocks
on the object. Blocks in this range appear in the window. OFFSET indicates the first
object block in the range, while SPAN indicates how many contiguous blocks make
up the range. An offset of zero indicates the beginning of the object. For example,
an offset of zero and a span of ten causes the block at the beginning of the object to
appear in the window, together with the next nine object blocks. The window would
then be ten pages long.

Specifying OFFSET= * or omitting OFFSET causes the system to use a default
OFFSET of zero. Specifying SPAN=O, SPAN=*, or omitting SPAN results in a
default SPAN of the number of blocks needed to MAP the entire object, starting from
the block indicated by OFFSET. Specifying both OFFSET= * and SPAN = * or
omitting both causes the entire object to appear in the window.

You may use the OFFSET and SPAN parameters to specify a range spanning any
portion of the object, the entire object, or extending beyond the object. Specifying a
range beyond the object enables a program to add data to the object, increasing the
size of the object. If data in a mapped range beyond the object is saved (using the
SAVE service), the size of the object is updated to reflect the new size.

To use the OFFSET parameter, specify the storage location containing the block
offset of the first block to be mapped. The offset of the first block in the data object
is zero. To use the SPAN parameter, specify the storage location containing the
number of blocks in the mapped range.

AREA: When you specify MAP, you must also specify an AREA parameter. AREA
indicates the beginning of a virtual storage space large enough to contain the entire
window. Before invoking MAP, you must ensure that your task owns this virtual
storage space. The storage must belong to a single, pageable private area subpool.
It must begin on a 4096-byte boundary (that is, a page boundary) and have a length
that is a multiple of 4096 bytes.

Note that any virtual storage space assigned to one window cannot be
simultaneously assigned to another window. If your MAP request specifies a virtual
storage location, via the AREA parameter, that is part of another window, the
system rejects the request.

You cannot free virtual storage that is mapped into a window as long as the map
exists. Attempts to do this will make the virtual space unusable and cause your
program to abend. Subsequent attempts to reference the mapped virtual space will
also cause an ABEND.

Chapter 11. Data-i n-Vi rtua/ 11-13

RETAIN: The RETAIN parameter determines what data you can view in the window.
It can be either the contents of the virtual storage area (that corresponds to the
window) the way it was before you invoked MAP, or it can be the contents of the
object. The following table shows how using the RETAIN parameter with MAP
affects the contents of the wi ndow.

RETAIN = Window view

NO (default) Contents of mapped object

YES Contents of virtual storage

If you specify RETAIN = NO, or do not specify the RETAIN parameter at all (which
defaults to RETAIN = NO), the contents of the object replace the contents of the
virtual storage whenever your program references a page in the window. Virtual
storage that corresponds to a range beyond the end of the object appears as binary
zeroes when referenced. You can use RETAIN = NO to change some data and save
it back to the object.

If you specify RETAIN=YES, the window retains the contents of virtual storage. The
contents of the window are not replaced by data from the object. If you issue a
subsequent SAVE, the data in the window rep/aces the data on the object. If the
window extends beyond the object and your program has not referenced the pages
in the extending part of the window, the system does not save the extending pages.
However, if your program has referenced the extending pages, the system does
save them on the object, extending the object so it can hold the additional data.

You can also use RETAIN=YES to reduce the size of (truncate) the object. If the
part you want to truncate is mapped with RETAIN = YES and the wi ndow consists of
freshly obtained storage, the data object size is reduced at SAVE time.

If you want to have zeroes written at the end of the object, the corresponding virtual
storage must be explicitly set to zero prior to the SAVE.

BTOKEN: To reference an entire linear data set through a single window, a
program might require a considerable amount of virtual storage. In this case, the
program can use a data space or hiperspace to contain the window. If you want the
virtual storage wil1dow to be in a data space or hiperspace, specify STOKEN when
you invoke MAP. When you specifySTOKEN, you provide an eight-byte input
parameter that identifies the data space or hiperspace, and that was returned from
DSPSERV CREATE.

However, do not place the window in a data space or hiperspace under the following
circumstances:

• If the data space is a disabled reference (DREF) data space.

• If the object is accessed with LOCVIEW = MAP.

• If the data space or hiperspace belongs to another task. However, if your
program is in supervisor state or has a system storage key, it can use a data
space or hiperspace that belongs to another task provided that the other task is
in the same primary address space as your program.

PFCOUNT: PFCOUNT is useful for referencing sequential data. Because you get a
page fault the first time you reference each page, preloading successive pages
decreases the number of page faults.

11-14 Assembler Programming Guide

The PFCOUNT parameter (nnn) is an unsigned decimal number up to 255. When an
application references a mapped object, PFCOUNT tells the system that the program
will be referencing this object in a sequential manner. PFCOUNT might improve
performance because it asks the system to preload nnn pages, if possible. The
system reads in nnn successive pages only to the end of the virtual range of the
mapped area containing the originally referenced page, and only as resources are
available.

You can use REFPAT INSTALL to define a reference pattern for the mapped area. In
response to REFPAT, the system brings multiple pages into central storage when
referenced. In this case, the PFCOUNT value you specify on DIV is not in effect as
long as the reference pattern is in effect. When REFPAT REMOVE removes the
definition of the reference pattern, the PFCOUNT you specify on DIV is again in
effect. For information on the REFPAT macro, see "Defining the Reference Pattern
(REFPAT)" on page 15-5.

The SAVE Service
The SAVE service writes changed pages from the window to the object if the
changed pages are within the range to be saved. When you invoke SAVE, you
specify a single and continuous range of blocks in the data-in-virtual object. Any
virtual storage windows inside this range are eligible to participate in the SAVE.

For a SAVE request to be valid, the object must currently be accessed with
MODE=UPDATE, under the same 10 as the one specified on this SAVE request.
Because you can map an object beyond its current end, the object might be
extended when the SAVE completes if there are changed pages beyond the current
end at the time of the ACCESS. On the other hand, the SAVE truncates the object if
freshly obtained pages are being saved that are mapped in a range that extends to
or beyond the end of the object and additional non-freshly obtained pages beyond
the object area are not also being saved. In either case, the new object size is
returned to your program if you specify the SIZE parameter.

When the system writes the pages from the window to the object, it clears (sets to
zeroes) blocks in the object that are mapped to freshly obtained pages in the
window if either one of the following conditions is true:

• There are subsequent pages in the range being saved that are not freshly
obtained

• The blocks mapped to the freshly obtained pages are not at the end of the
object. That is, they are imbedded in the object somewhere before the last
block of the object. If the blocks mapped to freshly obtained pages do extend to
the end of the object and no subsequent non-freshly obtained pages are being
saved, then the object is truncated by that number of blocks.

If you specified RETAIN=YES with MAP, SAVE treats pages in the window that you
have not previously saved as changed pages and will write them to the object.

Chapter 11. Data-i n-Vi rtual 11-15

Notes:

1. Do not specify SAVE for a storage range that contains OREF or page fixed
storage.

2. If data to be saved has not changed since the last SAVE, no 1/0 will be
performed. The performance advantages of using data-in-virtual are primarily
because of the automatic elimination of unnecessary read and write 1/0
operations.

3. The range specified with SAVE can extend beyond the end of the object.

4. The system does not save pages of an object that is not mapped to any window.

5. The system does not save pages in a window that lies outside the specified
range.

The following example shows how to code the SAVE service for a hiperspace or
data set object.

DIV SAVE,ID=DIVOBJID,SPAN=SPAVAL,OFFSET=*,SIZE=OBJSIZE

ID: The 10 parameter tells the SAVE service which data object the system is writing
to under which request. Use 10 to specify the storage location containing the unique
eight-byte name that was returned by IDENTIFY. You must have previously
accessed the object with MODE = UPDATE under the same 10 as the one specified
for SAVE.

OFFSET and SPAN: Use the OFFSET and SPAN parameters to select a continuous
range of object blocks within which the SAVE servic~ can operate. OFFSET
indicates the first block and SPAN indicates the number of blocks in the range. As
in the MAP service, the offset and span parameters refer to object blocks; they do
not refer to pages in the window.

Specifying OFFSET = * or omitting OFFSET causes the system to use the default
offset (zero). The zero offset does not omit or skip over any of the object blocks, and
it causes the range to start right at the beginning of the object. S.pecifying SPAN = 0,
SPAN=*, or omitting SPAN gives you the default span. The default span includes
the first object block after the part skipped by the offset, and it includes the entire
succession of object blocks up to and including the object block that corresponds to
the last page of the last window.

When SAVE executes, it examines each virtual storage window established for the
object. In each window, it detects every page that corresponds to an object block in
the selected range. Then, if the page has changed since the last SAVE, the system
writes the page on the object. (If the page has not changed since the last SAVE, it is
already identical to the corresponding object block and there is no need for to save
it.) Although SAVE discriminates between blocks on the basis of whether they have
changed, it has the effect of saving all window pages that lie in the selected range.
Specifying both OFFSET = * and SPAN = * or omitting both causes the system to save
all changed pages in the window without exceptions.

To use the OFFSET parameter, specify the storage location containing the block
offset of the first block to be saved. The offset of the first block in the object is zero.
To use the SPAN parameter, specify the storage location containing the number of
blocks in the range to be saved.

11 .. 16 Assembler Programming Guide

SIZE: When you specify SIZE after the SAVE completes, the system returns the size
of the data object in the virtual storage location specified by the SIZE parameter. If
you omit SIZE or specify SIZE = *, the system does not return the size value. If
TYPE = DA, invoking SAVE can change the size of the object. If TYPE = HS, invoking
SAVE has no effect on the size of the object.

The RESET Service
At times during program processing, your program might have made changes to
pages in the virtual storage window, and might no longer want to keep those
changes. RESET, which is the opposite of SAVE, replaces data in the virtual storage
window with data from the object. As with SAVE and MAP, the range to be reset
refers to the object rather than the virtual storage. RESET resets only windows that
are within the specified range, and it resets all the windows in the range that your
program changed.

Do not specify RESET for a storage range that contains DREF storage.

Effect of RETAIN mode on RESET
You actually specify RETAIN on MAP, not on RESET, but the RETAIN mode of each
individual window affects how the system resets the window. The following table
shows the effect that issuing RETAIN with MAP has on RESET.

RETAIN RESET results

NO (default) The data in the window matches the object data as of the last
SAVE.

YES Unless saved, the data in the window become freshly obtained.
Any pages previously saved re-appear in their corresponding
window. All other pages appear freshly obtained.

The system resets the window as follows:

• If you specified RETAIN=NO with MAP, after the RESET, the data in the window
matches the object data as of the last SAVE. This applies to all the pages in the
window.

• If you specified RETAIN=YES with MAP, the pages in the window acquire a
freshly obtained status after the RESET unless you have been dOing SAVE
operations on this window. Individual object blocks changed by those SAVE
operations re-appear after the RESET in their corresponding window pages,
together with the other pages. However, the other pages appear freshly
obtained.

Note: Regardless of the RETAIN mode of the window, any window page that
corresponds to a block beyond the end of the object appears as a freshly obtained
page.

The following example shows how to code the RESET service for a hiperspace or
data set object:

DIV RESET,ID=DIVOBJID,SPAN=SPANVAL,OFFSET=*,RELEASE=YES

Chapter 11. Oata-in-Vlrtual 11·17

ID: The 10 parameter tells the RESET service what data object is being written to.
Use 10 to specify the storage location containing the unique eight-byte name that
was returned by 10ENTIFY and used with previous MAP requests. You must have
previously accessed the object (with either MODE = READ or MOOE = UPDATE)
under the same 10 as the one currently specified for RESET.

OFFSET and SPAN: The OFFSET and SPAN parameters indicate the RESET range,
the part of the object that is to supply the data for the RESET. As with MAP and
SAVE, OFFSET indicates the first object block in the range, while SPAN indicates
how many contiguous blocks make up the range, starting from the block indicated
by OFFSET. The fi rst block of the object has an offset of zero.

To use OFFSET, specify the storage location containing the block offset of the first
block to be reset. To use SPAN, specify the storage location containing the number
of blocks in the range to be RESET. Specifying OFFSET= * or omitting OFFSET
causes the system to use a default OFFSET of zero. Specifying SPAN = * or omitting
SPAN sets the default to the number of blocks needed to reset all the virtual storage
windows that are mapped under the specified 10 starting only with the block number
indicated by OFFSET. Specifying both OFFSET= * and SPAN = * or omitting both
resets all windows that are currently mapped under the specified 10.

RELEASE: RELEASE = YES tells the system to release all pages in the reset range.
RELEASE=NO does not replace unchanged pages in the window with a new copy of
pages from the object. It replaces only changed pages. Another 10 might have
changed the object itself while you viewed data in the window. Specify
RELEASE = YES to reset all pages. Any subsequent reference to these pages
causes the system to load a new copy of the data page from the object.

The UNMAP Service
Your program uses the UNMAP service to remove the association between a
window in virtual storage and the object. Each UNMAP request must correspond to
a previous MAP request. Note that UNMAP has no effect on the object. If you made
changes in virtual storage but have not yet saved them, the system does not save
them on the object when you issue UNMAP. UNMAP has four parameters: 10,
AREA, RETAIN, and STOKEN.

The following examples show two ways to code the UN MAP service.

Hiperspace or data set object:

DIV UNMAP,ID=DIVOBJID,AREA=MAPPTRI

Data set object:

DIV UNMAP,ID=DIVOBJID,AREA=MAPPTRl,STOKEN=DSSTOK

ID: The 10 parameter you specify is the address of an eight-byte field in storage.
That field contains the identifier associated with the object. The identifier is the
same value that the IDENTIFY service returned, which is also the same value you
specified when you issued the corresponding MAP request.

AREA: The AREA parameter specifies the address of a four-byte field in storage
that contains a pointer to the start of the virtual storage to be unmapped. This
address must point to the beginning of a window. It is the same address that you
provided when you issued the corresponding MAP request.

11-18 Assembler Programming Guide

RETAIN: RETAIN specifies the state that virtual storage is to be left in after it is
unmapped, that is, after you remove the correspondence between vi rtual storage
and the object.

Specifying RETAIN = NO with UNMAP indicates that the data in the unmapped
window is to be freshly obtained.

If your object is a hiperspace, you cannot specify RETAIN=YES. If your object is a
data set, you can specify RETAIN.=.~¥ES.

Specifying RETAIN=YES on the corresponding UNMAP transfers the data of the
object into the unchanged pages in the window. In this case, RETAIN=YES with
UNMAP specifies that the virtual storage area corresponding to the unmapped
window is to contain the last view of the object. After UNMAP, your program can
still reference and change the data in this virtual storage but can no longer save it
on the object unless the virtual area is mapped again.

Notes:

1. If you issue UNMAP with RETAIN = NO, and there are unsaved changes in the
virtual storage window, those changes are lost.

2. If you issue UNMAP with RETAIN =YES, and there are unsaved changes in the
window, they remain in the virtual storage.

3. Unmapping with RETAIN = YES has certain performance implications. It causes
the system to read unreferenced pages, and maybe some unchanged ones, from
the object. You must not unmap with RETAIN = YES if your object is a
hiperspace.

4. If the window is in a deleted data space, UNMAP works differently depending on
whether you specify RETAIN = YES or RETAIN = NO. If you specify
RETAIN = YES, the unmap fails and the program abends. Otherwise, the unmap
is successful.

srOKEN: If you issued multiple maps under the same 10 with different STOKENs,
use STOKEN with UN MAP. If you do not specify'SJOKEN in this case, the system
will scan the mapped ranges and unmap the first range that matches the specified
virtual area regardless of the data space it is in. Issuing UNACCESS or UNIDENTIFY
automatically unmaps all mapped ranges.

The UNACCESS and UNIDENTIFY Services
Use UNACCESS to terminate your access to the object for the specified 10.
UNACCESS automatically includes an implied UNMAP. If you issue an UNACCESS
with outstanding virtual storage windows, any windows that exist for the specified 10
are unmapped with RETAIN = NO. The 10 parameter is the sole parameter of the
UNACCESS service, and it designates the same 10 that you specified in the
corresponding ACCESS. As in the other services, use 10 to specify the storage
location containing the unique eight-byte name that was returned by IDENTIFY.

Use UNIDENTIFY to notify the system that your use of an object under the specified
10 has ended. If the object is still accessed as an object under this 10, UNIDENTIFY
automatically includes an implied UNACCESS. TheUNACCESS, in turn, issues any
necessary UNMAPs using RETAIN = NO. The 10 parameter is the only parameter for
UNIDENTIFY, and it must designate the same 10 as the one specified in the

Chapter 11. Oata-i n-Vi rtual 11-19

corresponding ACCESS. As in the other services, use 10 to specify the storage
location containing the unique eight-byte name that was returned by IDENTIFY.

The following example shows how to code the UNACCESS and UNIDENTIFY
services for a hiperspace or data set object:

Sharing Data in an Object

DIV UNACCESS,ID=DIVOBJID
DIV UNIDENTIFY,ID=DIVOBJID

When a user issues IDENTIFY, the system returns an 10 and establishes an
association between the 10 and the user's task. All data-in-virtual services for a
specific 10 must be requested by the task that issued the IDENTIFY and obtained the
10.

Any task can reference or change the data in a mapped virtual storage window,
even if the wi ndow was mapped by another task, and even if the object was
identified and accessed by another task. Any task that has addressability to the
window can reference or change the included data. However, only the task that
issued the IDENTIFY can issue the SAVE to change the object.

When more than one user has the ability to change the data in a storage area, take
the steps necessary to serialize the use of the shared area.

Miscellaneous Restrictions for Using Data-in-Virtual
• W~en you attach a new task, you cannot pass ownership of a mapped virtual

storage window to the new task. That is, you cannot use the GSPV and GSPL
parameters on ATTACH and ATTACHX to pass the mapped virtual storage.

• You cannot invoke data-in-virtual services in cross memory mode. There are no
restrictions, however, against referencing and updating a mapped virtual
storage window in cross memory mode.

• You cannot specify a non-shared standard hiperspace as a DIV object (DIV
ACCESS) if you have issued ALESERV ADD for that hiperspace. You cannot
issue ALESERV ADD for a non-shared standard hiperspace while it is a DIV
object.

DIV Macro Programming Examples
The programming examples in this section illustrate how to code and execute a
program that processes a data-in-virtual object. You can find additional examples,
including illustrations, in:

• "Example of Mapping a Data-in-Virtual Object to a Data Space" on page 13-22
• "Using Data-in-Virtual with Hiperspaces" on page 13-37

11-20 Assembler Programming Guide

General Program Description
This is a description of the program shown in "Data-in-Virtual Sample Program
Code" on page 11-22.

Step 1. The program issues a DIV IDENTIFY and DIV ACCESS for the
data-in-virtual object. The ACCESS returns the current size of the object in
units of 4K bytes.

Step 2. If the object contains any data (the size returned by ACCESS is non-zero),
the program issues a DIV MAP to associate the object with storage the
program acquires using GETMAIN. The size of the MAP (and the acquired
storage area) is the same as the size ot the object.

Step 3. The program now processes the input statements from SYSIN. The
processing depends upon the function requests (5, 0, or E). If the program
encounters an end-ot-file, it treats it as if an "E" function was requested.

S function - Set a character In the object

Step 4. If the byte to change is past the end of the mapped area, the user asked to
increase the size of the object. Therefore:

Step a. If any changes have been made in the mapped virtual storage
area but not saved to the object, the program issues a
DIV SAVE. This save writes the changed 4K pages in the
mapped storage to the object.

Step b. The program issues a DIV UNMAP for the storage area acquired
with GETMAIN, and then releases that area using FREEMAIN.
The program skips this is step if the current object size is O.

Step c. The program acquires storage using GETMAIN to hold the
increased size of the object, and issues a DIV MAP for this
storage.

Step 5. The program changes the associated byte in the mapped storage. Note
that this does not change the object. The program actually writes the
changes to the object when you issue a DIV SAVE.

D function - Display a character in the object

Step 6. If the requested location is within the MAP size, the program references
the specified offset into the storage area. If the data is not already in
storage, a page fault occurs. Data-in-virtual processing brings the
required 4K block from the object into storage. Then the storage
reference is re-executed. The contents of the virtual storage area (i.e. the
contents of the object) are displayed.

Step 7. E function - End the program

Step 8. If the program has made any changes in the mapped virtual storage area
but has not saved them to the object, the program issues a DIV SAVE.

Step 9. The program issues a DIV UNIDENTIFY to terminate usage of the object.
Note that data-in-virtual processing internally generates a DIV UNMAP
and DIV UNACCESS.

Step 10. The program terminates.

Chapter 11. Oata-in-Virtual 11-21

Data-in-Virtual Sample Program Code
The first part of DIVSAMPL identifies the linear data set and accesses the object. If
the object is not empty, the program obtains the virtual storage required to view
(MAP) the entire object. Then it opens the input and message sequential data sets.

DIV
DIVSAMP
DIVSAMP
DIVSAMP

TITLE 'Data-in-Virtual Sample Program'
CSECT ,
AMODE 31 Program runs in 31-bit mode
RMODE 24 Program resides in 24-bit storage
SAVE (14,12),,'DIVSAMP -- Sample Program'
LR R11,R15 Establish base register
USING DIVSAMP,R11 *
LA R2,VSVEAREA Chain save areas together
ST R13,4(,R2) *
ST R2,S(,R13) *
LR R13,R2 *

* IDENTIFY and ACCESS the object pOinted to by DO 'DIVDD'.
* Save the object's token in VTOKEN, and its size in VSIZEP.

DIV IDENTIFY,TYPE=DA,ID=VTOKEN,DDNAME=CDIVDD Specify DDNAME
LA R2, 1 Error code
LTR R15,R15 IDENTIFY work ok ?
BNZ LERROR * No -- quit
DIV ACCESS,ID=VTOKEN,MODE=UPDATE,SIZE=VSIZEP Open the object
LA R2, 2 Error code
LTR R15,R15 ACCESS work ok ?
BNZ LERROR * No -- quit

* If object not empty (VSIZEP > 0), get workarea to hold the object,
* and issue a MAP to it. The area must start on page boundary.
* Referencing byte "n" of this workarea gets byte "n" of the object.

L R2,VSIZEP Current size (in 4K blocks)
SLA R2,12 Current size (in bytes)
5T R2,VSIZEB VSIZEB = object size in bytes
BZ LEMPTY If object not empty, get MAP area =
GETMAIN RU,LV=(R2),LOC=(ANY,ANY),BNDRY=PAGE object size
ST Rl,VAREAPTR Save MAP area
DIV MAP,ID=VTOKEN,AREA=VAREAPTR,SPAN=VSIZEP
LA R2,3 Error code
LTR R15,R15 MAP work ok ?
BNZ LERROR * No -- quit

LEMPTY EQU * Mapped, unless empty
* OPEN the SYSIN input data set, and SY5PRINT listing data set.
* Must be in 24-bit mode for this. Then return to 31-bit mode.

LA R4,L31B01 Return to L31B01 in 31-bit mode
LA Rl,L24B01 Go to l24B01 in 24-bit mode
BSM R4,R1 R4 = A(X 'S0000000'+l31B01)

L24B01 OPEN (VSYSIN,(INPUT),VSYSPRT,(OUTPUT» OPEN SYSIN/SYSPRINT
BSM 0,R4 Return to 31-bit mode at next instr

L31B01 LA R2,4 Error code from SYSIN OPEN
LTR R15,R15 OPEN ok ?
BNZ LERROR * No -- quit

11-22 Assembler Programming Guide

Data-in-Virtual Sample Program Code (continued)
The program reads statements from SYSIN until it reaches end-of-file, or encounters
a statement with an "E" in column 1. The program validates the location in the
object to set or display, and branches to the appropriate routine to process the
request.

*
* Loop reading from SYSIN. Process the statements.
* Treat EOF as if the user specified liE" as the function to perform.
*
LREAD

l24B02
lEOF

L31B02
*

EQU
MVI
lA
LA
BSM
GET
EQU
BSM
EQU

*
VCARDF,C'E'
R4,L31B02
Rl,L24B02
R4,Rl
VSYSIN,VCARD
*
0,R4
*

Read first/next card
EOF will appear as "E" function
Return to L31B02 in 31-bit mode
Go to l24B02 in 24-bit mode
R4 = A(X 'S0000000 I +l31B02)
Get the next input request.
End-of-file branches here
Return to 31-bit mode at next instr
Get here in 31-bit mode

* Process request:
* E - End processing
* S aaaaaaaa v
* 0 aaaaaaaa

- Set location XI aaaaaaaa I to v
- Display location Xlaaaaaaaa l

*
ClI VCARDF,C'E' EOF function or EOF on data set?
BE LClOSE * Yes -- go cleanup and terminate
TRT VCARDA,CTABTRT Ensure A-F, 0-9
BNZ LINVADDV * If not, is error
MVC VTEMPS,VCARDA Save address
TR VTEMPS,CTABTR Convert to X'0A'-X '0F', X'00 1 -X '09 1

PACK VCHGADDR(5),VTEMPS(9) Make address
l Rl,VCHGADDR Address
LA Rl,0(,Rl) Clear hi-bit
ST Rl,VCHGADDR Save address to change/display
ClI VCARDF,C'D' Display requested?
BE LDISP * Yes -- go process
ClI VCARDF,C'S ' Set requested?
BNE LINVFUNC * No -- is invalid statement

Chapter 11. Oata-in-Virtual 11-23

Data-in-Virtual Sample Program Code (continued)
For a set request, the program determines whether the location to change does not
extend past the maximum object size allowed; If the location is past the end of the
current window, the program saves any existing changes to the object, and creates
a window containing the page to be changed. It then changes the data in storage
(but not in the Ii near data set).

For a display request, the program ensures the location to display is in the linear
object (that is, within the mapped area).

* SET: See if the location to change is within the range of the current
* MAP. If not, save any changes, get a larger area and issue a new MAP.

C Rl,VSIZEB Area to change within current MAP?
BL LGUPDCHR * Yes -- continue
C Rl,CSIZEMX Area to change within max allowed?
BNL LINVADDR * No-- is error
CLI VSWUPDT,0 Any updates to current MAP?
BE LNOSVEI * Yes -- then
DIV SAVE,ID=VTOKEN Save any changes
LA R2,5 Error code from SAVE
LTR R15,R15 SAVE ok ?
BNZ LERROR * No -- quit
MVI VSWUPDT,0 Clear update flag

LNOSVEI L R3,VSIZEB Eliminate old map and storage
LTR R3,R3 Any to free?
BZ LNOFREE * Yes -- then
DIV UNMAP,ID=VTOKEN,AREA=VAREAPTR Release the MAP
LA R2,6 Error code from UNMAP
LTR R15,R15 UNMAP ok ?
BNZ LERROR * No -- quit
L Rl,VAREAPTR Rl -> acquired storage
FREEMAIN RU,A=(1),LV=(R3) Free the storage

LNOFREE L R2,VCHGADDR Address of byte to change
SRL R2,12 R2 = page number - 1
LA R2,1(,R2) R2 = page number to use
ST R2,VSIZEP VSIZEP = MAP area in 4K units
SLL R2,12 R2 = size in bytes
ST R2,VSIZEB VSIZEB = MAP area in bytes
GETMAIN RU,LV=(R2),LOC=(ANY,ANY),BNDRY=PAGE get MAP area
ST Rl,VAREAPTR Save MAP area
DIV MAP,ID=VTOKEN,AREA=VAREAPTR,SPAN=VSIZEP
LA R2,3 Error code
LTR R15,R15 MAP work ok ?
BNZ LERROR * No -- quit

LGUPDCHR L Rl,VCHGADDR Rl = byte to change
A Rl,VAREAPTR Rl -> byte to change
MVC 0(1,Rl),VCARDV Change the byte
MV] VSWUPDT,X'FF ' Show change made
B LGOODINP Go print accept message

LDISP EQU * Display location contents
L Rl,VCHGADDR Rl = location to display
C Rl,VSIZEB Ensure within current MAP
BNL LINVADDR * If not, is error
A Rl,VAREAPTR Rl -> location to display
MVC VCARDV,0(Rl) Put into the card

11-24 Assembler Programming Guide

Data-In-Virtual Sample Program Code (continued)
For both the set and display requests, the program displays the character at the
specified location. For an invalid request, the program displays an error message.
For all requests, the program then goes to process another statement.

When requested to terminate, the program saves any changes in the linear data set,
terminates its use of the object (using UNIDENTIFY), and returns to the operating
system.

LGOODINP EQU *
MVC MIA,VCARDA Address changed/displayed
MVC MIB,VCARDV Storage value
CLI MIB,X '00 1 If X' 00 1 (untouched),
BNE LGOODINI * change to "?".
MVI MIB,C'?' *

LGOODINI LA R2,Ml R2 -> message to print
B LTELL Go tell user status

LINVFUNC LA R2,M2 Unknown function
B LTELL Go tell user status

LINVADDV LA R2,M3 Invalid address
B LTELL Go tell user status

LINVADDR LA R2,M4 Address out of range
LTELL EQU * R2 -> message to print

LA R4,L31B03 Return to L31B03 in 31-bit mode
LA Rl,L24B03 Go to L24B03 in 24-bit mode
BSM R4,Rl R4 = A(X 'S0000000 1 +L31B03)

L24B03 PUT VSYSPRT, (R2) Print the message
BSM 0,R4 Return to 31-bit mode at next instr

L31B03 B LREAD Continue
* End-of-file on SYSIN, or "E" function requested.
* Save any changes (DIV SAVE). Then issue UNIDENTIFY, which internally
* issues UNMAP and UNIDENTIFY.
LClOSE EQU *

CLI VSWUPDT,0 Any updates outstanding?
BE LCLOSEI * No -- skip SAVE
DIV SAVE,ID=VTOKEN Save any changes
LA R2,5 Error code from SAVE
LTR R15,R15 SAVE ok ?
BNZ LERROR * No -- quit

LCLOSEI DIV UNIDENTIFY,ID=VTOKEN All done with object
LA R2,6 Error code from UNIDENTIFY
LTR R15,R15 UNIDENTIFY ok ?
BNZ lERROR * No -- quit
L R13,4(,R13) Unchain save areas and return
LM R14,R12,12(R13) *
SR R15,R15 *
BR R14 *

LERROR ABEND (R2),DUMP Take a dump

Chapter 11. Data-in-Virtual 11-25

Data-in-Virtual Sample Program Code (continued)
These are the program's variables.

* Variables and constants for the program
VSVEAREA DC l8A(e) Save area
VTOKEN DC XL8'ee' Object token
VAREAPTR DC A(*-*) -> MAP area
VSIZEP DC F'e' Size of MAP area, in pages (4K)
VSIZEB DC F'e' Size of MAP area, in bytes
VSWUPDT DC x1ee' X'FF' -> map area updated
VCHGADDR DC A(*-*),C' I Address of byte to change/display
VTEMP8 DC CL8' ',C' , Temp area with buffer
VCARD DC CL8e' I Input card
VCARDF EQU VCARD+0,1 + Function (E/S/D)
VCARDA EQU VCARD+2,8 + Address to change/display
VCARDV EQU VCARD+ll,l + Character to change
CDIVDD DC X'5',C ' DIVDD' Linear Data Set DD pointer
* CTABTRT to verify string only has A thru F and 0 thru 9 (hex chars)
CTABTRT DC (C'A')X'FF',6X'00',(C'0'-C'F'-l)X'FF',10X'00',6X'FF'
* CTABTR & next line convert chars A:F,0:9 -> X'0A0B .•• eF000102 .•. 09'
CTABTR EQU *-C'A'

CSIZEMX
Ml
MIA
MIB
MIE
M2
M2E
M3
M3E
M4
M4E
VSYSIN

VSYSPRT
Re
Rl
R2
R3
R4
RS
R6
R7
R8
R9
R10
Rll
R12
R13
R14
R15

DC X'0A0B0C0DeE0F',(C'0'-C'F')X'00',X'010203040S06070809'
DC A(4096*1000) Max size allowed for the DIV object
DC Y(MIE-*,0),C' Location'
DC CL8' ',C' contains: I

DC C"
EQU *
DC Y(M2E-*,0),C' Unknown function (not E/S/D),
EQU *
DC Y(M3E-*,0),C' Address not 8 hex characters'
EQU *
DC Y(M4E-*,0),C' Address too big to set or display'
EQU *
DCB MACRF=GM,DSORG=PS,RECFM=FB,LRECL=80,DDNAME=SYSIN,

DCB
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

EODAD=LEOF
MACRF=PM,DSORG=PS,RECFM=VA,LRECL=133,DDNAME=SYSPRINT
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS

Registers

1.1-26 Assembler Programming Guide

*

Executing the Program
The following JCL executes the program called DIVSAMPL. The function of
DIVSAMPL is to change and display bytes (characters) in the data~in-virtual object,
DIV.SAMPLE, that was allocated in "Creating a linear Data Set" on page 11-3.

//DIV JOB .••••
//DIV EXEC PGM=DIVSAMPL
//STEPLIB DD DISP=SHR,DSN=DIV.LOAD
//DIVDD DD DISP=OLD,DSN=DIV.SAMPLE
//SYSABEND DD SYSQUT=*
//SYSPRINT DD SYSQUT=*

Changes byte X'1000' to nAil
//SYSIN DD *
S 00001000 A
D 00000F00
S 00000F00 B
S 00010000 C
D 00001000

Displays "111 since byte X'F00' contains X'0a'
Changes byte X'F00' to liB"
Saves previous changes, gets new map, changes byte X'la000'
Displays "A" which was set by first statement

o 00000F00 Displays liB" which was set by third statement
E Saves changes since last save (stmt 4), and terminates pgm
/*

DIVSAMPL reads statements from SYSIN that tell the program what to do. The
format of each statement is f aaaaaaaa Y, where:

Function to perform:
S Set a character in the object.
o Display a character in the object.
E End the program.

aaaaaaaa The hexadecimal address of the storage to set or display. Leading Os
are required. The value must be less than X'003E8000'.

Y For Set, the character to put into the object.

Note: The program actually saves the change requested by the S function when
either the user asks to change a byte past the current size of the object, or the user
asks to terminate the program (E function).

Chapter 11. Data-in-VirtuaJ 11-27

11-28 Assembler Programming Guide

Chapter 12. Using Access Registers

For storing data, MVS offers a program the use of a virtual storage area called a
data space. assembler instructions (such as Load, Store, Add, and Move Character)
manipulate the data in a data space. When you use instructions to manipulate data
in a data space, your program must use the set of general purpose registers (GPRs)
plus another set of registers called access registers. This chapter describes how to
use access registers to manipulate data in data spaces.

Through access registers, your program can use assembler instructions to perform
basic data manipulation, such as:

• Moving data into and out of a data space, and within a data space
• Performing arithmetic operations with values that are located in data spaces

To fully understand how to use the macros and instructions that control data spaces
and access registers, you must first understand some concepts.

What is an access register CARl? An AR is a hardware register that a program uses
to identify an address space or a data space. Each processor has 16 ARs,
numbered 0 through 15, and they are paired one-to-one with the 16 GPRs. When
your program uses ARs, it must be in the address space control mode called access
register (AR) mode.

Access
Registers 0 Identify address spaces or data spaces 14 15

General
Purpose 0 Identify locations within an address or data space 14 15

Registers

ARs are used when fetching and storing data, but they are not used when doing
branches.

What is address space control CASC) mode? The ASC mode controls where the
system looks for the data that the program is manipulating. Two ASC modes are
available for your use: primary mode and access register (AR) mode.

• In primary mode, your program can access data that resides in the program's
primary address space. When it resolves the addresses in data-referencing
instructions, the system does not use the contents of the ARs.

• In AR mode, your program can access data that resides in the address space or
data space that the ARs indicate. For data-referencing instructions, the system
uses the AR and the GPR together to locate an address in an address space or
data space.

How does your program switch ASC mode? Use the SAC instruction to change ASe
modes:

• SAC 512 sets the ASC mode to AR mode.
• SAC 0 sets the ASC mode to primary mode.

What does an AR contain? An AR contains a token, an access list entry token
(ALET). An ALET is an index to an entry on the access list. An access list is a table

© Copyright IBM Corp. 1988, 1991 12-1

of entries, each one of which points to an address space, data space, or hiperspace
to which a program has access.

Figure 12-1 shows an ALET in the AR and the access list entry that points to an
address space or a data space. It also shows the address in the GPR that points to
the data within the address/data space.

Address/Data Space

Access List

GPR
1 @ I ..

--I Data 1

Figure 12-1. Using an ALET to Identify an an Address Space or a Data Space

For programs in AR mode, when the GPR is used as a base register in an
instruction, the corresponding AR must contain an ALET. Conversely, when the
GPR is not used as a base register, the corresponding AR is ignored.

By placing an entry on an access list and obtaining an ALET for the entry, a program
builds the connection between the program and an address space, data space, or
hiperspace. The process of building this connection is called establishing
addressability to an address space, data space, or hiperspace. To add the entry to
the access list, your program uses the ALESERV macro, which is described in "The
ALESERV Macro" on page 12-9.

A program adds an entry to an access list so that it can:

• Gain access to a data space or an address space through assembler
instructions.

• Obtain the ALET for a hiperspace. With that ALET, the program can use the
HSPALET parameter on HSPSERV to:

Gain additional performance from the transfer of data to and from expanded
storage. Information on when and how you use an access list entry for
hiperspaces is described in "Obtaining Additional HSPSERV Performance"
on page 13-31.

Improve its ability to share hiperspaces with other programs. The subject of
sharing hiperspaces is described in "Shared and Non-shared Standard
Hiperspaces" on page 13-28.

For the rest of this chapter. assume that entries in access lists pOint to data spaces.
not hiperspaces or address spaces.

12-2 Assembler Programming Guide

Access Lists

• The subject of inter-address space communication, appropriate only for
programs in supervisor state or with PSW key 0 - 7, is described in Extended
Addressability Guide.

• Because a program cannot use ARs to directly manipulate data in a hiperspace,
the subject of how a program uses ARs and access lists to access hiperspaces
differs from the discussion in the rest of this chapter.

When the system creates an address space, it gives that address space an access
list (PASN-AL) that is empty. Programs add entries to the DU-AL and the PASN-AL.
The entries represent the data spaces and hiperspaces that the programs want to
access.

Types of Access Lists
An access list can be one of two types:

• A dispatchable unit access list (DU-AL), the access list that is associated with
the TCB

• A primary address space access list (PASN-AL), the access list that is
associated with the primary address space

Figure 12-2 on page 12-4 shows PGM1 that runs in AS1 under TCB A. The figure
shows TCB A's DU-AL. It is available to PGM1 (and to other programs that TCB A
might represent). The DU-AL has an entry for Data Space X, and PGM1 has the
ALET for Data Space X. Therefore, PGM1 has access to Data Space X. PGM1
received an ALET for Space Y from another program. The PASN-AL has the entry
for Space Y. Therefore, PGM1 also has access to Data Space Y. Because it does
not have the ALET for Space Z, PGM1 cannot access data in Space Z.

Chapter 12. Using Access Registers 12-3

PASN-AL
Space Z

Space Z

Space Y

Data Space X

~
CBA______ D

PGM1 ~L

ALETXDCF :=::::==:
ALETY DC F

Figure 12-2. An Illustration of a DU-AL

12-4 Assembler Programming Guide

The differences between a PASN-AL and a DU-AL are significant. The following
table summarizes the characteristics of PASN-ALs and DU-ALs so you can
understand how they differ.

Figure 12-3. Characteristics of DU-ALs and PASN-ALs

DU-AL PASN-AL

Each work unit has its own unique DU-AL. Every address space has tts own unique PASN-AL.
All programs running in the primary address space
can access address spaces, data spaces, and
hiperspaces through the PASN·AL.

All programs that the work unit represents can add Authorized programs (those in supervisor state
and delete entries on the work unit's DU-AL. programs or with PSW key 0 - 7) can add and delete

entries on the PASN-AL. By passing an ALET to your
program, these programs allow you to share the data
in the spaces those ALETs represent.

A program cannot pass its task's DU-AL to a program All programs running with this address space as the
running under another task. Tasks can never share a primary address space can access address or data
DU-AL. The one exception Is that a program can pass spaces through the PASN-AL.
a copy of its DU-AL to an attached task. This allows
the new subtask to start with an identical copy of the
attaching task's DU-AL.

The two DU-ALs do not necessari Iy stay identical.
After the ATTACH, the attaching task and the subtask
are free to add and delete entries on their own
DU-ALs.

If the attaching task deletes the data space and the
DU-AL entry for that data space, the subtask will still
have an entry in its own DU-AL for that data space, but
no program will be able to access this data space
from the subtask.

A DU-AL can have up to 253 entries. A PASN-AL can have up to 254 entries, some of which
are reserved for the type of space called
SCOPE = COMMON.

Your program can add entries to the DU-AL for the Your problem state program with PSW key 8 - F can
data spaces it created or owns. add entries for the data spaces it owns or created to

the PASN-AL if an entry for the data space is not
already on the PASN-AL. The data space entry may
already be on the PASN-AL if another problem state
program with PSW key 8 - F issued ALESERV ADD.

Chapter 12. Using Access Registers 12-5

Writing Programs in AR Mode
After your program has an entry on an access list and the ALET that indexes the
entry, it must place a value in an AR before it can use the data space. To
understand how the system resolves addresses in instructions for programs in AR
mode, see Figure 12-4. This figure shows how an MVC instruction in AR mode
moves data from location B in one data space to location A in another data space:

AR ALET ALET
X Y

GPR

GPR 1 is used as a base register to
locate the destination of the MVC and
AR 1 is used to identify Space X.

GPR 2 is used to locate the data to
be moved and AR 2 identifies Space Y
that contains the data.

Access List

l l

Figure .12-4. Using Instructions in AR Mode

Address S ace

MVC A(LEN,n,B(2)

B

D

GPR 1 is used as a base register to locate the destination of the data, and AR 1 is
used to identify space X. GPR 2 is used to locate the source of the data, and AR 2
identifies Space Y. In AR mode, a program can use a single MVC instruction to
move data from one address/data space to another. Note that the address space
that contains the MVC instruction does not have to be either Space X or Space Y.

In similar ways, you can use instructions that compare, test-under-mask, copy,
move, and perform arithmetic operations.

When the instructions reference data in the primary address space, the ALET in the
AR must indicate that the data is in that address space. For this purpose, the
system provides a special ALET with a value of zero. Other than using this value to
identify the primary address space, a program should never depen~ on the value of
an ALET.

An ALET of zero designates the primary address space.

"Loading the Value of Zero into an AR" on page 12-8 shows several examples of
loading a value of zero in an AR.

12-6 Assembler Programming Guide

Rules for Coding Instructions in AR Mode
As you write your AR mode programs, use the advice and warnings in this section.

• For an instruction that references data, the system uses the contents of an AR to
identify the address/data space that contains the data that the associated GPR
points to.

• Use ARs only for data reference; do not u~e them with branching instructions.
• Just as you do not use GPR 0 as a base register, do not use AR/GPR 0 for

addressing.
• An AR should contain only ALETs; do not store any other kinds of data in an AR.

Because ARs that are associated with index registers are ignored, when you code
assembler Instructions In AR mode, place the commas very carefully. In those
instructions that use both a base register and an index register, the comma that
separates the two values is very important. Figure 12-5 shows four examples of
how a misplaced comma can change how the processor resolves addresses on the
load instruction.

Figure 12-5. Base and Index Register Addressing in AR Mode

Instruction

L 5,4{,3) or
L 5,4(0,3)

L 5,4(3) or
L 5,4(3,0)

L 5,4(6,8)

L 5,4(8,6)

Address Resolution

There is no index register. GPR 3 is the base register. AR 3 indicates the
address/data space.

GPR 3 is the index register. Because there is no base register, data is fetched
from the primary address space.

GPR 6 is the index register. GPR 8 is the base register. AR 8 indicates the
address/data space.

GPR 8 is the index register. GPR 6 is the base register. AR 6 indicates the
address/data space.

For the first two entries in Figure 12-5:

In primary mode, the examples of the load instruction give the same result.

In AR mode, the data is fetched using different ARs. In the first entry, data is
fetched from the address/data space represented by the ALET in AR 3. In the
second entry, data is fetched from the primary address space (because AR/GPR
o is not used as a base register).

For the last two entries in Figure 12-5:

In primary mode, the examples of the load instruction give the same result.

In AR mode, the first results in a fetch from the address/data space represented
by AR 8, while the second results in a fetch from the address/data space
represented by AR 6.

Chapter 12. Using Access Registers 12 .. 7

Manipulating the Contents of ARs
Whether the ASC mode of a program is primary or AR, it can use assembler
instructions to save, restore, and modify the contents of the 16 ARs. The set of
instructions that manipulate ARs include:

• . CPYA - Copy the contents of an AR into another AR.
• EAR - Copy the contents of an AR into a GPR.
• LAE - Load a specified ALET and address into an AR/GPR pair.
• SAR - Place the contents of a GPR into an AR.
• LAM - Load the contents of one or more ARs from a specified storage location.
• STAM - Store the contents of one or more ARs to a specified storage location.

For their syntax and help with how to use these instruction, see Principles of
Operation.

Loading anALET into an AR
An action that is very important when a program is in AR mode, is the loading of an
ALET into an AR. The following example shows how the LAM instruction loads an
ALET into AR 2:

LAM 2,2,DSALET LOAD ALET OF DATA SPACE INTO AR2
*
DSALET OS F DATA SPACE ALET

Loading the Value of Zero into an AR
When the code you are writing is in AR mode, you must be very conscious of the
contents of the ARs. For instructions that reference data, the ARs must always
contain the ALET that identifies the data space that contains the data. When the
data is in the primary address space, the AR that accompanies the GPR that has the
address of the data must contain the value zero.

The following examples show several ways of placing the value zero in an AR.

Example 1: Set AR 5 to value of zero, when GPR 5 can be changed.

SLR 5,5
SAR 5,5

SET GPR 5 TO ZERO
LOAD GPR 5 INTO AR 5

Example 2: Set AR 5 to value of zero, without changing value in GPR 5.

LAM 5,5,=F 'e ' LOAD AR 5 WITH A VALUE OF ZERO

Another way of doing this is the following:

LAM 5,5,ZERO
ZERO DC F'e '

Example 3: Set AR 5 to value of zero, when AR 12 is already zero.

CPYA 5,12 COPY AR 12 INTO AR 5

12-8 Assembler Programming Guide

Example 4: Set AR 12 to zero and set GPR 12 to the address contained in GPR 15.
This sequence is useful to establish a program's base register GPR and AR from an
entry point address contained in register 15.

PGMA CSECT

LAE 12,O(15,O)
USING PGMA,12

ENTRY POINT

ESTABLISH PROGRAM'S BASE REGISTER

Another way to establish AR/GPR module addressability through register 12 is as
follows:

LAE 12,O
BASR 12,O
USING *,12

Example 5: Set AR 5 and GPR 5 to zero.

LAE 5,O(O,O) Set GPR and AR 5 to zero

The ALESERV Macro
Use the ALESERV macro to add an entry to an access list and delete that entry. The
following sections describe the parameters on the ALESERV macro and give
examples of its use.

Adding an Entry to an Access List
The ALESERV ADD macro adds an entry to the access list. Two parameters are
required: STOKEN, an input parameter, and ALET, an output parameter.

• STOKEN - the eight-byte STOKEN of the address/data space represented by
the entry. You might have received the STOKEN from DSPSERV or from another
program.

• ALET - index to the entry that ALESERV added to the access list. The system
returns this value at the address you specify on the ALET parameter.

Chapter 12. Usi ng Access Registers 12-9

The best way to describe how you add an entry to an access list is through an
example. The following code adds an entry to a DU-AL. Assume that the DSPSERV
macro has created the data space and has returned the STOKEN of the data space
in DSPCSTKN and the origin of the data space in DSPCORG. ALESERV ADD returns
the ALET in DSPCALET. The program then establishes addressability to the data
space by loading the ALET into AR 2 and the origin of the data space into GPR 2.

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET

LAM 2,2,DSPCALET
L 2,DSPCORG
USING DSPCMAP,2

L 5,DSPWRDl

DSPCSTKN OS CL8
DSPCALET OS F
DSPCORG OS F
DSPCMAP DSECT
DSPWRDl OS F
DSPWRD2 OS F
DSPWRD3 OS F

LOAD ALET OF SPACE INTO AR2
LOAD ORIGIN OF SPACE INTO GR2
INFORM ASSEMBLER

GET FIRST WORD FROM DATA SPACE
USES AR/GPR 2 TO MAKE THE REFERENCE

DATA SPACE STOKEN
DATA SPACE ALET
DATA SPACE ORIGIN RETURNED
DATA SPACE STORAGE MAPPING
WORD 1
WORD 2
WORD 3

Using the DSECT that the program established, the program can easily manipulate
data in the data space.

It is possible to use ALESERV ADD to obtain an entry for a hiperspace. For
information on how hiperspaces use ALETs, see "Obtaining Additional HSPSERV
Performance" on page 13-31. Do not use ALESERV ADD for hiperspaces unless the
move-page facility feature is installed on the processor.

Deleting an Entry from an Access List
Use ALESERV DELETE to delete an entry on an access list. The ALET parameter
identifies the specific entry. It is a good programming practice to delete entries
from an access list when the entries are no longer needed.

The following example deletes the entry that was added in the previous example.

ALESERV DELETE,ALET=DSPCALET REMOVE OS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE OS

DSPCSTKN OS CL8
DSPCALET OS F

DATA SPACE STOKEN
DATA SPACE ALET

If the program does not delete an entry, the entry remains on the access list until the
work unit terminates. At that time, the system frees the access list entry.

12 .. 10 Assembler Programming Guide

Issuing MVS Macros in AR Mode
Many MVS macro services support callers in both primary and AR modes. When
the caller is in AR mode, the macro service must generate larger parameter lists at
assembly time. The increased size of the list reflects the addition of ALET-qualified
addresses. At assembly time, a macro service that needs to know whether a caller
is in AR mode checks the global bit that SYSSTATE ASCENV=AR sets. Therefore, it
is good programming practice to issue SYSSTATE ASCENV=AR when a program
changes to AR mode and issues macros while in that mode. Then, when the
program returns to primary mode, issue SYSSTATE ASCENV = P to reset the global
bit.

When your program is in AR mode, keep in mind these two facts:

• Before you use a macro in AR mode, check the description of the macro in
Assembler Programming Reference. If the description of the macro does not
specifically state that the macro supports callers in AR mode, use the SAC
instruction to change the ASC mode and use the macro in primary mode.

• ARs 14 through 1 are volatile across a/l macro calls, whether the caller is in AR
mode or primary mode. Don't count on the contents of these ARs being the
same after the call as they were before.

Example of Using SYSSTATE

Using X-Macros

Consider that a program changes ASC mode from primary to AR mode and, while in
AR mode, issues the L1NKX and STORAGE macros. When it changes ASC mode, it
should issue the followi ng:

SAC 512
SYSSTATE ASCENV=AR

The L1NKX macro generates different code and addresses, depending on the ASC
mode of the caller. During the assembly of L1NKX, the L1NKX macro service checks
the setting of the global bit. Because the global bit indicates that the caller is in AR
mode, L1NKX generates code and addresses that are appropriate for callers in AR
mode.

The STORAGE macro generates the same code and addresses whether the caller is
in AR mode or primary mode. Therefore, the STORAGE macro service does not
check the global bit.

When the program changes back to primary mode, it should issue the following:

SAC e
SYSSTATE ASCENV=P

Some macro services, such as LINK and LlNKX, offer two macros, one for callers in
primary mode and one for callers in either primary or AR mode. The names of the
two macros are the same, except the macro that supports both primary and AR
mode caller ends with an "X." This book refers to these macros as "X-macros."
The rules for using all X-macros, except ESTAEX, are:

• Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non X-macros are not valid for callers in AR
mode. Check the macro descriptions in Assembler Programming Reference for
these exceptions.

Chapter 12. Using Access Registers 12-11

• Callers in AR mode should issue the X-macro after issuing the SYSSTATE
ASCENV = AR macro.

If a caller in AR mode issues the non X-macro, the system substitutes the
X-macro and issues a messagedurinQassembly that informs you of the
substitution.

Use ESTAEX if your program is inAR mode. Otherwise, you can use either ESTAE
or ESTAEX.

If your program issues macros while it is in AR mode, make sure the macros
support AR mode callers and that SYSSTATE ASCENV=AR is coded.

If you rewrite programs and use the X-macro instead of the non X-macro, you must
change both the I ist and execute forms of the macro. If you change only the execute
form of the macro, the system will not generate the longer parameter list that the
X-macro requi res.

Note that an X-macro generates a larger parameter list than the corresponding non
X-macro. A program using the X-macros must provide a larger parameter list than
if it used the non X-macro.

Formatting and Displaying AR Information
The interactive problem control system (IPCS) can format and display AR data. Use
the ARCHECK subcommand to:

• Display the contents of an AR
• Display the contents of an access list entry

See IPCS Command Reference for more information about the ARCHECK
subcommand.

12·12 Assembler Programming Guide

Chapter 13. Data Spaces and Hiperspaces

For storing data, MVS offers a program a choice of two kinds of virtual storage areas
for data only: data spaces and hiperspaces. In making the decision whether to use
a hiperspace or data space, you might have the following questions:

• Does my program need virtual storage outside the address space?
• Which kind of virtual storage is appropriate for my program?

The first part of the chapter helps you make these decisions. Then, if you decide
that one of these virtual storage areas would benefit your program, turn to one of
the following sections for the information you need to create, use, and delete the
area:

• "Creating and Using Data Spaces" on page 13-7
• "Creating and Using Hiperspaces" on page 13-26

What are Data Spaces and Hiperspaces?
Data spaces and hiperspaces are similar in that both are areas of virtual storage
that the program can ask the system to create. The size of this space can range
from four kilobytes to two gigabytes, according to the user's request. Unlike an
address space, a data space or hiperspace contains only user data or user
programs stored as data. Program code cannot run ina data space or a
hiperspace.

The following diagram shows, at an overview level, the difference between an
address space and a data space or hiperspace.

Address Space

User programs
and data

System programs
and data

User programs
and data

.j
2 gigabytes

1

Data Space
or

Hiperspace

User data

The major difference between a data space and a hiperspace Is the way your
program accesses data in the two areas. This difference is described later in this
chapter. But before you can understand the differences, you need to understand
what your program can do with these virtual storage areas.

© Copyright IBM Corp. 1988, 1991 13·1

What Can a Program Do With a Data Space or a Hiperspace?
Programs can use data spaces and hiperspaces to:

• Obtain more virtual storage than a single address space gives a user.

• Isolate data from other tasks in the address space.

Data in an address space is accessible to all programs executing in that
address space. You might want to move some data to a data space or
hiperspace for security or integrity reasons. Use this space as a way to
separate your data logically by its own particular use.

• Provide an area in which to map a data-in-virtual object.

You can place all types of data in a data space or hiperspace, rather than in an
address space or on DASD. Examples of such data include:

• Tables, arrays, or matrixes
• Data base buffers
• Temporary work files
• Copies of permanent data sets

Because data spaces and hiperspaces do not include system areas, the cost of
creating and deleting them is less than that of an address space.

To help you decide whether you need this additional storage area, some important
questions are answered in the following sections. These same topics are addressed
in greater detail later in the chapter.

How Does a Program Obtain a Data Space and a Hiperspace?
Data spaces and hiperspaces are created through the same system service: the
DSPSERV macro. On this macro, you request either a data space or a hiperspace.
You also specify some characteristics of the space, such as its size and its name.

The DSPSERV macro service gives you contiguous 31-bit addressable virtual
storage of the size you specify and initializes the storage to binary zeroes.

Assembler Programming Reference contains the syntax and parameter descriptions
for the macros that are mentioned in this chapter.

How Does a Program Move Data into a Data Space or Hiperspace?
One way to move data into a data space or a hiperspace is through buffers in the
program's address space. Another way avoids using address space virtual storage
as an intermediate buffer area: through data-in-virtual services, a program can
move data into a data space or hiperspace directly. This second way reduces the
amount of 1/0.

Who Owns a Data Space or Hiperspace? ,
Although programs create data spaces and hiperspaces, they do not own them.
When a program creates the space, the system assigns ownership to the TCB that
represents the program, or to the TCB of the job step task of the program, if you
choose. You can assign ownership of the data space to the job step TCB by
specifying the TIOKEN option on the DSPSERV CREATE macro. All storage within a
data space or hiperspace is available to programs that run under that TCB and, in
some cases, the storage is available to other users. When the TCB termi nates, the
system deletes any data spaces or hiperspaces the TCB owns. If you want the data
space to exist after the creating TCB terminates, assign the space to the job step

13-2 Assembler Programming Guide

TCB. The job step will continue to be active beyond the termination of the creating
TCB.

Because data spaces and hiperspaces belong to TCBs, keep in mind the
relationship between the program and the TCB under which it runs. For simplicity,
however, this chapter describes hiperspaces and data spaces as if they belong to
programs. For example, "a program's data space" means "the data space that
belongs to the TCB under which a program is running."

Can an Installation Limit the Use of Data Spaces and Hiperspaces?
The use of data spaces and hiperspacesconsumes system resources such as
expanded and auxiliary storage. Programmers responsible for tuning and
maintaining MVS can set limits on the amount of virtual storage that programs in
each address space can use for data spaces and hiperspaces. They can limit:

• The size of a single hiperspace or data space. (The default is 956K bytes, or 239
blocks.)

• The amount of storage available per address space for all hiperspaces and data
spaces with a storage key of 8 - F. (The default is 224 - 1 megabytes, or
16777215 megabytes.)

• The combined number of hiperspaces and data spaces with storage key 8 - F
that can exist per address space at one time. (The default is 50 data spaces and
hiperspaces.)

You should know the limits your installation establishes and the return codes that
you can check to learn why the DSPSERV macro might not create the data space or
hiperspace you requested.

How Does a Program Manage the Storage in a Data Space or Hiperspace?
Managing storage in data spaces or hiperspaces differs from managing storage in
address spaces. Keep the following advisory notes in mind when you handle your
data space storage:

• When you create a data space or hiperspace, use the DSPSERV macro to
request a large enough size to handle your application.

The amount of storage you specify when you create a data space or a
hiperspace is the maximum amount the system will allow you to use in that
space.

• You are responsible for keeping track of the allocating and freeing of data space
and hiperspace storage. You cannot use the services of virtual storage
management (VSM), such as the STORAGE, GETMAIN, or FREEMAIN macros, to
manage this area. You can, however, use callable cell pool services to define a
cell pool within a data space. You can then obtain the cells, as well as expand
and contract the cell pool. "Using Callable Cell Pool Services to Manage Data
Space Areas" on page 13-18 describes the use of callable cell pool services for
data spaces. Information on how to code the services is in Chapter 10,
"Callable Cell Pool Services."

• If you are not going to use an area of a data space or hiperspace again, release
that area.

• When you are finished using a data space or hiperspace, delete it.

Chapter 13. Data Spaces and Hiperspaces 13-3

Differences Between Data Spaces and Hiperspaces
Up to this point, the chapter has focused on similarities between data spaces and
hiperspaces. By now, you should know whether your program needs the kind of
virtual storage that a data space or hiperspace offers. Only by understanding the
differences between the two types of spaces, can you decide which one most
appropriately meets your program's needs, or whether the program can use them
both.

The main difference between data spaces and hiperspaces is the way a program
references data. A program references data in a data space directly, in much the
same way it references data in an address space. It addresses the data by the byte,
manipulating, comparing, and performing arithmetic operations. The program uses
the same instructions (such as load, compare, add, and move character) that it
would use to access data in its own address space. To reference the data in a data
space, the program must be in the ASC mode called access register (AR) mode.
Pointers that associate the data space with the program must be in place and the
contents of ARs that the instructions use must identify the specific data space.

Figure 13-1 shows a program in AR ASC mode using the data space. The CLC
instruction compares data at two locations in the data space; the MVC instruction
moves the data at location D in the data space to location C in the address space.

Address Space

Program

CLCA,B
MVCC,D

Cc=J
CLC and MVC access data
while data is in data space.

Figure 13-1. Accessing Data in a Data Space

Data Space

In contrast, a program does not directly access data in a hiperspace. MVS provides
a system service, the HSPSERV macro, to transfer the data between an address
space and a hiperspace in 4K byte blocks. The HSPSERV macro read operation
transfers the blocks of data from a hiperspace into an address space buffer where
the program can manipulate the data. The HSPSERV write operation transfers the
data from the address space buffer area to a hiperspace for storage. You can think
of hiperspace storage as a high-speed buffer area where your program can store 4K
byte blocks of data.

13-4 Assembler Programming Guide

Figure 13-2 shows a program in an address space using the data in a hiperspace.
The program uses the HSPSERV macro to transfer an area in the hiperspace to the
address space, compares the values at locations A and B, and uses the MVe
instruction to move data at location D to location e. After it finishes using the data
in those blocks, the program transfers the area back to the hiperspace. The
program could be in either primary or AR ASe mode.

Address Space

Program

HSPSERV ...

CLCA,B
MVCC,D

HSPSERV ...

Cc=J
CLC and MVC access data
only after data has been
transferred from hiperspace
to address space.

Figure 13-2. Accessing Data in a Hiperspace

Hiperspace

On one HSPSERV macro, the program can transfer the data in more than one area
between the hiperspace and the address space.

Comparing Data Space and Hiperspace Use of Physical Storage
To compare the performance of manipulating data in data spaces with the
manipulating of data in hiperspaces, you should understand how the system
"backs" these two virtual storage areas. (That is, what kind of physical storage the
system uses to maintain the data in virtual storage.) The system uses the same
resources to back data space virtual storage as it uses to back address space virtual
storage: a combination of central and expanded storage (if available) frames, and
auxiliary storage slots. The system can release low-use pages of data space
storage to auxiliary storage and bring them in again when your program references
those pages. The paging activity for a data space includes I/O between auxiliary
storage pagi ng devices and central storage.

The system backs hiperspace virtual storage with expanded storage, and auxiliary
storage when expanded storage is not available. When you create a hiperspace,
the system knows that the space will not be the target of assembler instructions and
therefore will not need the backing of real frames. Therefore, data movement
through HSPSERV does not include I/O activity between DASD and the expanded
storage that backs the hiperspace pages. For this reason, hiperspaces are very
efficient.

Chapter 13. Data Spaces and Hiperspaces 13-5

Which One Should Your Program Use?
If your program needs to manipulate or access data often by the byte, data spaces
might be the answer. Use a data space if the program frequently addresses data at
a byte level, such as you would in a workfile.

If your program can easily handle the data in 4K byte blocks, a hiperspace might
give you the best performance. Use a hiperspace if the program needs a place to
store data, but not to manipulate data. A hiperspace has other advantages:

\
• The program can stay in primary mode and ignore the access registers.
• The program can benefit from the high-speed access.
• The system can use the unused processor storage for other needs.

An Example of Using a Data Space
Suppose an existing program updates several rate tables that reside on DASD.
Updates are random throughout the tables. The tables are too large and too many
for your program to keep in contiguous storage in its address space. When the
program updates a table, it reads that part of the table into a buffer area in the
address space, updates ,the table, and writes the changes back to DASD. Each time
it makes an update, it issues instructions that cause 1/0 operations.

If the tables were to reside in data spaces, one table to each data space, the tables
would then be accessible to the program through assembler instructions. The
program could move the tables to the data spaces (through buffers in the address
space) once at the beginning of the update operations and then move them back
(through buffers in the address space) at the end of the update operations.

If the tables are VSAM.linear data sets, data-in-virtual can map the tables and move
the data into the data space where a program can access the data. Data-in-virtual
can then move the data from the data space to DASD. With data-in-virtual, the
program does not have to move the data into the data space through address space
buffers, nor does it have to move the data to DASD through address space buffers.

An Example of Using a Hiperspace
Suppose an existing program uses a data base that resides on DASD. The data
base contains many records, each one containing personnel information about one
employee. Access to the data base is random and programs reference but do not
update the records. Each time the program wants to reference a record, it reads the
record in from DASD.

If the data base were to exist in a hiperspace, the program would still bring one
record into its address space at a time. Instead of reading from DASD, however, the
program would bring in the records from the hiperspace on expanded storage (or
auxiliary storage, when expanded storage is not available.) In effect, this technique
can eliminate many 1/0 operations and reduce execution time.

13-6 Assembler Programming Guide

Creating and Using Data Spaces
A data space is an area of virtual storage that a program can ask the system to
create. Its size can range from 4K bytes to 2 gigabytes, according to the program's
request. Unlike an address space, a data space contains only user data. Program
code cannot run ina data space.

The DSPSERV macro manages data spaces. The TYPE = BASIC parameter (the
default) tells the system that it is to manage a data space rather than a hiperspace.
Use DSPSERV to:

• Create a data space
• Release an area in a data space
• Delete a data space
• Expand the amount of storage in a data space currently available to a program.
• Load an area of a data space into central storage
• Page an area of a data space out of central storage

Before it describes how your program can perform these actions, this chapter
describes how your program will reference data in the data space it creates.

Manipulating Data in a Data Space
assembler instructions (such as load, store, add, and move character) manipulate
the data in a data space. When you use instructions to manipulate data in a data
space, your program must use the set of general purpose registers (GPRs) plus
another set of registers called access registers. Chapter 12, "Using Access
Registers" on page 12-1 describes how to use access registers to manipulate data
in data spaces.

Rules for Creating, Deleting, and Managing Data Spaces
The SCOPE parameter determines what kind of data space a program creates. The
three kinds of data spaces are SCOPE = SINGLE, SCOPE = ALL, and
SCOPE=COMMON:

• SCOPE = SINGLE data spaces

All programs can create, use, and delete SCOPE = SINGLE data spaces. Your
program would use data spaces in much the same way as it uses private
storage in an address space.

• SCOPE = ALL and SCOPE = COMMON data spaces

Supervisor state or PSW key 0 - 7 programs can create, use, and delete data
spaces that they can share with other programs. These data spaces have uses
similar to MVS common storage.

To protect data in data spaces, the system places certain restrictions on problem
state programs with PSW key 8 - F. The problem state programs with PSW key 8 - F
can use SCOPE = ALL and SCOPE = COMMON data spaces, but they cannot create
or delete them. They use them only under the control of supervisor state or PSW
key 0 - 7 programs. This chapter assumes that the data spaces your program
creates, uses, and deletes are SCOPE = SINGLE data spaces.

Chapter 13. Data Spaces and Hiperspaces 13-7

The following figure summarizes the rules for problem state programs with PSW key
8 - F:

Figure 13-3. Rules for How Problem State Programs with Key 8-F Can Use Data Spaces

Function

CREATE

DELETE

RELEASE

EXTEND

Add entries to the
DU-AL

Add entries to the
PASN-AL

Access a data space
through a DU-AL or
PASN-AL

LOAD

OUT

Rules

Can create SCOPE = SINGLE data spaces.

Can delete the data spaces it creates or owns, provided the PSW key
of the program matches the storage key of the data space.

Can release storage in the data spaces it creates or owns, provided
the PSW key of the program matches the storage key of the data
space.

Can extend the current size of the data spaces it owns.

Can add entries to its DU-AL for the data spaces it created or owns.

Can add entries to the PASN-AL for the data spaces it created or
owns, providing an entry is not already on the PASN-AL as a result of
an ALESERV ADD by a problem state program with PSW key 8 - F. If
the ALET is already on the PASN-AL, the system does not create a
duplicate entry, but the program can still access the data space using
the ALET that already exists.

Can access a data space through its DU-AL and PASN-AL. The entry
for a SCOPE = ALL or SCOPE = COMMON data space accessed
through the PASN-AL must have been added to the PASN-AL by a
program in supervisor state or PSW key 0 - 7. This program would
have passed an ALET to the problem state PSW key 8 - F program.

Can load an area of a data space it owns into central storage.

Can page an area of a data space it owns out from central storage.

There are other things that programs can do with data spaces. To do them,
however, your program must be supervisor state or have a PSW key 0 - 7. For
information on how these programs can use data spaces, see Extended
Addressability Guide.

Creating a Data Space
To create a data space, issue the DSPSERV CREATE macro. MVS gives you
contiguous 31-bit virtual storage of the size you specify and initializes the storage to
hexadecimal zeroes.

On the DSPSERV macro, you are requi red to specify:

• The name of the data space (NAME parameter)

To ask DSPSERV to generate a data space name unique to the address space,
use the GENNAME parameter. DSPSERV will return the name it generates at
the location you specify on the OUTNAME parameter. See "Choosing the Name
of a Data Space" on page 13-9.

• A location where DSPSERV can return the STOKEN of the data space (STOKEN
parameter)

DSPSERV CREATE returns a STOKEN that you can use to identify the data
space to other DSPSERV services and to the ALESERV and DIV macros.

13·8 Assembler Programming Guide

Other information you might specify on the DSPSERV macro is:

• The maximum siz~ of the data space and its initial size (BLOCKS parameter). If
you do not code BLOCKS, the data space size is determined by defaults set by
your installation. In this case, use the NUMBLKS parameter to tell the system
where to return the size of the data space. See "Specifying the Size of a Data
Space" on page 13-10.

• A location where DSPSERV can return the address (either 0 or 4096) of the first
available block of the data space (ORIGIN parameter). See "Identifying the
Origin of a Data Space" on page 13-11.

• The TIOKEN of the caller's job step task. If you want the data space to exist
after your task terminates, or to be made concurrently available to any existing
task in the job step as well as the creating task, assign ownership of the data
space to the job step task. "Sharing Data Spaces among Problem State
Programs with PSW Keys 8 - F" on page 13-20 describes a program that
requests the TIOKEN of the job step task and then assigns ownership of a data
space to the job step task. To request the TIOKEJ<.J of the job step task, issue
the TCBTOKEN macro using the TYPE = JOBSTEP option.

Choosing the Name of a Data Space
The names of data spaces and hiperspaces must be unique within an address
space. You have a choice of choosing the name yourself or asking the system to
generate a unique name. To keep you from choosing names that it uses, MVS has
some specific rules for you to follow. These rules are listed in the DSPSERV
description under the NAME parameter in Assembler Programming Reference.

Use the GENNAME parameter to ask the system to generate a unique name.
GENNAME = YES generates a unique name that has, as its last one to three
characters, the first one to three characters of the name you specify on the NAME
parameter.

Example 1: If PAYbbbbb is the name you supply on the NAME parameter and you
code GENNAME = YES, the system generates the following name:

nccccPAY

where the system generates the digit n and the characters cccc, and appends the
characters PAY that you supplied.

Example 2: If Jbbbbbbb is the name you supply on the NAME parameter and you
code GENNAME = YES, the system generates the following name:

nccccJ

GENNAME = COND checks the name you supply on the NAME parameter. If it is
already used for a data space or a hiperspace, DSPSERV supplies a name with the
format descri bed for the GENNAME = YES parameter.

To learn the unique name that the system generates for the data space or
hiperspace you are creating, use the OUTNAME parameter.

Chapter 13. Data Spaces and Hiperspaces 13-9

Specifying the Size of a Data Space
When you create a data space or hiperspace, you tell the system on the BLOCKS
parameter how large to make that space, the largest size being 524,288 blocks.
(The product of 524288 times 4K byte~ is 2 gigabytes.) The addressing range forthe
data space or hiperspace depends on the processor. If your processor does not
support an origin of zero, the limit is actually 4096 bytes less than 2 gigabytes.
Before you code BLOCKS, you should know two facts about how an installation
controls the use of vi rtual storage for data spaces and hi perspaces.

• An installation can set limits on the amount of storage available for each
address space for all data spaces and hiperspaces with a storage key of 8
through F. If your request for this kind of space (either on the DSPSERV
CREATE or DSPSERV EXTEND) would cause the installation limit to be
exceeded, the system rejects the request with a nonzero return code and a
reason code.

• An installation sets a default size for data spaces and hiperspaces; you should
know this size. If you do not use the BLOCKS parameter, the system creates a
data space with the default size. (The IBM default size is 239 blocks.)

The data spaces and hiperspaces your programs create have a storage key greater
than 7. The system adds the initial size of these spaces to the cumulative total of all
data spaces and hiperspaces for the address space and checks this total against the
installation limit. For information on the IBM defaults, see "Can an Installation Limit
the Use of Data Spaces and Hiperspaces?" on page 13-3.

The BLOCKS parameter allows you to specify a maximum size and initial size
value.

• The maximum size identifies the largest amount of storage you will need in the
data space.

• An initial size identifies the amount of the storage you will immediately use.

As you need more space in the data space or hiperspace, you can use the DSPSERV
EXTEND macro to increase the available storage. The amount of available storage
is called the current size. (At the creation of a data space or hiperspace, the initial
size is the same as the current size.) When it calculates the cumulative total of data
space and hiperspace storage, the system uses the current size.

If you know the default size and want a data space or hiperspace smaller than or
equal to that size, use the BLOCKS = maximum size or omit the BLOCKS parameter.

If you know what size data space or hiperspace you need and are not concerned
about exceeding the installation limit, set the maximum size and the initial size the
same. BLOCKS = 0, the default, establishes a maximum size and initial size both
set to the default size.

If you do not know how large a data space or hiperspace you will eventually need or
you are concerned with exceeding the installation limit, set the maximum size to the
largest size you might possibly use and the initial size to a smaller amount, the
amount you currently need.

Use the NUMBLKS parameter to request that the system return the size of the space
it creates for you. You would use NUMBLKS, for example, if you did not specify
BLOCKS and do not know the default size.

13-10 Assembler Programming Guide

Figure 13-4 on page 13-11 shows an example of using the BLOCKS parameter to
request a data space with a maximum size of 100,000 bytes of space and a current
size (or initial size) of 20,000 bytes. You would code the BLOCKS parameter on
DSPSERV as follows:

DSPSERV CREATE, ... ,BLOCKS=(DSPMAX,DSPINIT)

DSPMAX DC A«lOOOOO+4095)/4096)
DSPINIT DC A«20000+4095)/4096)

Data Space

At"""
"""

"""

DATA SPACE MAXIMUM SIZE
DATA SPACE INITIAL SIZE

Not available for immediate
,,/" use by the program

,," 1
Maximum size 100,or bytes

Current size ~ __
20,000 bytes ------____ . Available for immediate

use by the program

Figure 13-4. Example of Specifying the Size of a Data Space

As your program uses more of the data space storage, it can use DSPSERV EXTEND
to extend the current size. "Extending the Current Size of a Data Space" on
page 13-16 describes extending the current size and includes an example of how to
extend the current size of the data space in Figure 13-4.

Identifying the Origin of a Data Space
Some processors do not allow the data space or hiperspace to start at zero; these
spaces start at address 4096 bytes. When you use DSPSERV CREATE, you can
count on the origin of the data space or hiperspace staying the same within the
same IPL. To learn the starting address, either:

• Create a data space 1 block larger than you need and then assume that the
space starts at address 4096, or

• Use the ORIGIN parameter.

If you use ORIGIN, the system returns the beginning address of the data space or
hiperspace at the location you specify.

Unless you specify a size of 2 gigabytes and the processor does not support an
origin of zero, the system gives you the size you request, regardless of the location
of the origin.

An example of the problem you want to avoid in addressing data space storage is as
follows:

Suppose a program creates a data space of 1 megabyte and assumes the data
space starts at address 0 when it really begins at the address 4096. Then, if the
program uses an address lower than 4096 in the data space, the system abends
the program.

Chapter 13. Data Spaces and Hiperspaces 13-11

Example of Creating a Data Space
In the following example, a program creates a data space named TEMP. The
system returns the origin of the data space (either 0 or 4096) at location DSPCORG.

DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
BLOCKS=DSPBLCKS,ORIGIN=DSPCORG

DSPCNAME DC
DSPCSTKN OS
DSPCORG OS
DSPCSIZE EQU
DSPBLCKS DC
*

CL8 1 TEMP
CL8
F
10000000
A((DSPCSIZE+4095)/4096)

Establishing Addressability to a Data Space

DATA SPACE NAME
DATA SPACESTOKEN
DATA SPACE ORIGIN RETURNED
10 MILLION BYTES OF SPACE
NUMBER OF BLOCKS NEEDED FOR
A 10 MILLION BYTE DATA SPACE

Creating a data space does not give you access to the data space. You must use
the ALESERV macro and issue certain assembler instructions before you can use
the data space. The ALESERV macro adds an entry to an access list, either the
DU-AL or the PASN-AL. The STOKEN parameter identifies the data space and the
ALET parameter tells ALESERV where to return the access list entry token (that is,
the ALET).

Your program can add entries for the data spaces it created or owns to either the
DU-AL or the PASN-AL. Programs that the work unit represents can use the DU-AL.
All programs running in the primary address space can use the PASN-AL for that
address space. If you want all programs in the address space to have access to the
data space entries, your program should put the entries on the PASN-AL. If you
want to restrict the use of the entries, your program should put the entries on the
DU-AL. When you add an entry to the PASN-AL, however, the system checks to see
if an entry for that data space already exists on the PASN-AL. If the ALET is already
on the PASN-Al, the system does not create a duplicate entry, but the program can
sti II access the data space.

When your program wants to manipulate data in the data space, it places the ALET
in an AR and changes its ASC mode to AR mode. For examples of how to establish
addressabiJity to data spaces and manipulate data in those data spaces, see
Chapter 12, "Using Access Registers." "The ALESERV Macro" on page 12-9
describes how to add access list entries and gives an example.

13-12 AssemblerProgramming Guide

Examples of Moving Data into and out of a Data Space
When using data spaces, you sometimes have large amounts of data to transfer
between the address space and the data space. This section contains examples of
two subroutines, both named COPYDATA, that show you how to use the Move (MVC)
and Move Long (MVCL) instructions to move a variable number of bytes into and out
of a data space. (You can also use the examples to help you move data within an
address space.) The two examples perform exactly the same function; both are
included here to show you the relative coding effort required to use each instruction.

The use of registers for the two examples is as follows:

Input: AR/GR 2
AR/GR 3
GR 4

Target area location
Source area location
Signed 32-bit length of area
(Note: A negative length is treated as zero.)

GR 14 Return address
Output: AR/GR 2-14 Restored

GR 15 Return code of zero

The routines can be called in either primary or AR mode; however, during the time
they manipulate data in a data space, they must be in AR mode. The source and
target locations are assumed to be the same length (that is, the target location is not
filled with a padding character).

Chapter 13. Data Spaces and Hiperspaces 13-13

Example 1: Using the MVC Instruction: The first COPYDATA example uses the MVC
instruction to move the specified data in groups of 256 bytes:

COPYDATA DS 8D

*

BAKR 14,8
LAE 12,8{8,8)
BALR 12,8
USING *,12

LTR 4,4
BNP COPYDONE

S 4,=F '256'
BNP COPY LAST

COPYLOOP DS 8H
MVC 8{256,2) ,8(3)
LA 2,256(,2)
LA 3,256(,3)
S 4,=F'256'
BP COPYLOOP

*

COPY LAST DS 8H
LA 4,255{,4)
EX 4,COPYINST

*
B COPYDONE

COPYINST MVC 8(8,2),8{3)
COPYDONE DS 8H

* EXIT CODE
LA 15,8
PR

13-14 Assembler Programming Guide

SAVE CALLER'S STATUS
BASE REG AR
BASE REG GR
ADDRESSABI LITY

IS LENGTH NEGATIVE OR ZERO?
YES, RETURN TO CALLER

SUBTRACT 256 FROM LENGTH
IF LENGTH NOW NEGATIVE OR ZERO
THEN GO COPY LAST PART

COPY 256 BYTES
ADD 256 TO TARGET ADDRESS
ADD 256 TO SOURCE ADDRESS
SUBTRACT 256 FROM LENGTH
IF LENGTH STILL GREATER THAN
ZERO, THEN LOOP BACK

ADD 255 TO LENGTH
EXECUTE A MVC TO COPY THE
LAST PART OF THE DATA
BRANCH TO EXIT CODE

EXECUTED INSTRUCTION

SET RETURN CODE OF 8
RETURN TO CALLER

Example 2: Using the MVCL Instruction: The second COPYDATA example uses the
MVCl instruction to move the specified data in groups of 1048576 bytes:

COPYDATA os 00
BAKR 14,0
lAE 12,0(0,0)
BAlR 12,0
USING *,12

lA
lA
lTR
BNP

lAE
l
SR
BNP

*

COPYlOOP OS
lR
lR
MVCl
AlR
AlR
lR
lR
SR
BP

*

COPYLAST OS
AR
LR
lR
MVCl
B

COPYLEN DC
COPYDONE OS

* EXIT CODE
lA
PR

6,0(,2)
7,0(,3)
8,4
COPYDONE

4,0(0,3)
9,COPYlEN
8,9
COPY lAST

0H
3,9
5,9
2,4
6,9
7,9
2,6
4,7
8,9
COPY LOOP

0H
8,9
3,8
5,8
2,4
COPYDONE
F'1048576'
0H

15,0

Programming Notes for Example 2:

SAVE CAllER'S STATUS
BASE REG AR
BASE REG GR
ADDRESSABIlITY

COPY TARGET ADDRESS
COPY SOURCE ADDRESS
COPY AND TEST lENGTH
EXIT IF lENGTH NEGATIVE OR ZERO

COPY SOURCE AR/GR
GET lENGTH FOR MVCl
SUBTRACT lENGTH OF COpy
IF lENGTH NOW NEGATIVE OR ZERO
THEN GO COpy lAST PART

GET TARGET lENGTH FOR MVCl
GET SOURCE lENGTH FOR MVCl
COpy DATA
ADD COpy lEN TO TARGET ADDRESS
ADD COpy lEN TO SOURCE ADDRESS
COPY NEW TARGET ADDRESS
COPY NEW SOURCE ADDRESS
SUBTRACT COPY lEN FROM lENGTH
IF lENGTH STIll GREATER THAN
ZERO, THEN lOOP BACK

ADD COPY lEN
COpy TARGET lENGTH FOR MVel
COPY SOURCE lENGTH FOR MVCl
COpy lAST PART OF THE DATA
BRANCH TO EXIT CODE
AMOUNT TO MOVE ON EACH MVCl

SET RETURN CODE OF 0
RETURN TO CAllER

• The MVCl instruction uses GPRs 2, 3, 4, and 5.
• The AlR instruction uses GPRs 6,7,8, and 9.
• The maximum amount of data that one execution of the MVel instruction can

move is 224_1 bytes (16777215 bytes).

Chapter 13. Data Spaces and Hiperspaces 18",,15

Extending the Current Size of a Data Space
When you create a data space and specify a maximum size larger than the initial
size, you can use DSPSERV EXTEND to increase the current size as your program
uses more storage in the data space. The BLOCKS parameter specifies the amount
of storage you want to add to the current size of the data space.

The system increases the data space by the amount you specify, unless that amount
would cause the system to exceed one of the following:

• The data space maximum size, as specified by the BLOCKS parameter on
DSPSERV CREATE when the data space was created

• The installation limit for the combined total of data space and hiperspace
storage with storage key 8 -F per address space. These limits are either the
system default or are set in the installation exit IEFUSI.

If one of those limits would be exceeded, the VAR parameter tells the system how to
satisfy the EXTEND request.

• VAR = YES (the variable request) tells the system to extend the data space as
much as possible, without exceeding the limits set' by the data space maximum
size or the installation limits. In other words, the system extends the data space
to one of the following sizes, depending on which is smaller:

The maximum size specified on the BLOCKS parameter

The largest size that would still keep the combined total of data space and
hiperspace storage within the installation limit.

• VAR = NO (the default) tells the system to:

Abend the caller, if the extended size would exceed the maximum size
specified at the creation of the data space

Reject the request, if the data space has storage key 8 - F and the request
would exceed the installation limits.

If you use VAR = YES when you issue the EXTEND request, use the NUMBLKS
parameter to find out the size by which the system extended the data space.

Figure 13-4 on page 13-11 is an example of using the EXTEND request, where the
current (and initial) size is 20,000 bytes and the maximum size is 100,000 bytes. If
you want to increase the current size to 50,000 bytes, adding 30,000 blocksto the
current size, you could code the following:

DSPSERV EXTEND,STOKEN=DSSTOK,BLOCKS=DSPDELTA

DSPDELTA DC A((30000+4095)/4096)
DSSTOK OS CL8

13-16 Assembler Programming Guide

DATA SPACE ADDITIONAL SIZE
DATA SPACE STOKEN

The program can now use 50,000 bytes in the 100,000-byte data space, as shown in
Figure 13-5:

Data Space

Current size
50,000 bytes

Mexit size
lOO'or byte.

Figure 13-5. Example of Extending the Current Size of a Data Space

Because the example did not include the VAR parameter, the system uses the
default, VAR = NO.

Releasing Data Space Storage
Your program needs to release storage when it used a data space for one purpose
and wants to reuse it for another purpose, or when your program is finished using
the area. To release the virtual storage of a data space, use the DSPSERV
RELEASE macro. (Data space release is similar to PGSER RELEASE for an address
space.) Specify the STOKEN to identify the data space and the START and BLOCKS
parameters to identify the beginning and the length of the area you need to release.

Releasing storage in a data space requires that a problem state program with PSW
key 8 - F be the owner or creator of the data space and have the PSW key that
matches the storage key of the data space.

Use DSPSERV RELEASE instead of the MVCL instruction to clear large areas of data
space storage because:

• DSPSERV RELEASE is faster than MVCL for very large areas.
• Pages released through DSPSERV RELEASE do not occupy space in real,

expanded, or auxiliary storage.

Paging Data Space Storage Areas into and out of Central Storage
If you expect to be processing through one or more 4K blocks of data space storage,
you can use DSPSERV LOAD to load these pages into central storage. By loading
an area of a data space into central storage, you reduce the number of page faults
that occur while you sequentially process through that area. DSPSERV LOAD
requires that you specify the STOKEN of the data space (on the STOKEN
parameter), the beginning address of the area (on the START parameter), and the
size of the area (on the BLOCKS parameter). The beginning address has to be on a
4K-byte boundary, and the size has to be an increment of 4K blocks. (Note that
DSPSERV LOAD performs the same action for a data spaces as the PGSER macro
with the LOAD parameter does for an address space.)

Chapter 13. Data Spaces and Hiperspaces 13-17

Issuing DSPSERV LOAD does not guarantee that the pages will be in central
storage; the system honors your request according to the availability of central
storage. Also, after the pages are loaded, page faults might occur elsewhere in the
system and cause the system to move those pages out of central storage.

If you finish processing through one or more 4Kblocks of data space storage, you
can use DSPSERV OUT to page the area out of central storage. The system will
make these real storage frames available for reuse. DSPSERV OUT requires that
you specify the STOKEN, the beginning address of the area, and the size of the
area. (Note that DSPSERV OUT corresponds to the PGSER macro with the OUT
parameter.)

When your program has no further need for the data in a certain area of a data
space, it can use DSPSERV RELEASE to free that storage.

Deleting a Data Space
When a program doesn't need the data space any more, it should free the vi rtual
storage and remove the entry from the access list. The required parameter on the
DSPSERV DELETE macro specifies the STOKEN of the data space to be deleted. A
problem state program with PSW key 8 - F must be the owner or creator of the data
space and have a PSW key that matches the storage key of the data space.

IBM recommends that you explicitly delete a data space before the owning task
terminates. However, if you don't, the system does it for you.

Using Callable Cell Pool Services to Manage Data Space Areas
You can use the callable cell pool services to manage the virtual area in a data
space. Callable cell pool services allow you to divide data space storage into areas
(cells) of the size you choose. Specifically, you can:

• Create cell pools within a data space
• Expand a cell pool, or make it smaller
• Make the cells available for use by your program or by other programs.

A cell pool consists of one anchor, up to 65,536 extents, and areas of cells, all of
which are the same size. The anchor and the extents allow callable cell pool
services to keep track of the cell pool.

This section gives an example of one way a program would use the callable cell
pool services. This example has only one cell pool with one extent. In the example,
you will see that the program has to reserve storage for the anchor and the extent
and get their addresses. For more information on how to use the services and an
example that includes assembler instructions, see Chapter 10, "Callable Cell Pool
Services."

Example of Using Callable Cell Pool Services with a Data Space: Assume that you
have an application that requires up to 4,000 records 512 bytes in length. You have
decided that a data space is the best place to hold this data. Callable cell poor'
services can help you build a cell pool, each cell having a size of 512 bytes. The
steps are as follows:

1. Create a data space (DSPSERV CREATE macro)

Specify a size large enough to hold 2,048,000 bytes of data (4000 times 512) plus
the data structures that the callable cell pool services need.

13-18 Assembler Programming Guide

2. Add the data space to an access list (ALESERV macro)

The choice of DU-AL or PASN-AL depends on how you plan to share the data
space.

3. Reserve storage for the anchor and obtain its address

The anchor (of 64 bytes) can be in the address space or the data space. For
purposes of this example, the anchor is in the data space.

4. Initialize the anchor (CSRPBLD service) for the cell pool

Input to CSRPBLD includes the ALET of the data space, the address of the
anchor, the name you assign to the pool, and the size of each cell (in this case,
512 bytes). Because the anchor is in the data space, the caller must be in AR
mode.

5. Reserve storage for the extent and obtain the address of the extent

The size of the extent is 128 bytes plus 1 byte for every eight cells. 128 bytes
plus 500 (4000 + 8) bytes equals 628 bytes. Callable cell pool services rounds
this number to the next doubleword - 632 bytes.

6. Obtain the address of the beginning of the cell storage

Add the size of the anchor (64 bytes) and the size of the extent (628 bytes) to get
the location where the cell storage can start. You might want to make this
starting address on a given boundary, such as a doubleword or page.

7. Add an extent for the cell pool and establish a connection between the extent
and the cells (CSRPEXP service)

Input to CSRPEXP includes the ALET for the data space, the address of the
anchor, the address of the extent, the size of the extent (in this case, 632 bytes),
and the starting address of the cell storage. Because the extent is in the data
space, the caller must be in AR mode.

At this point, the cell pool structures are in place and users can begin to request
cells. Figure 13-6 describes the areas you have defined in the data space.

Address/Data Space

Access List

GPR

QCJ ..
--I Data 1

Figure 13-6. Example of Using Callable Cell Pool Services for Data Spaces

A program that has addressability to the data space can then obtain a cell (or cells)
through the CSRPGET service. Input to CSRPGET includes the ALET of the space
and the address of the anchor. CSRPGET returns the address of the cell (or cells) it
allocates.

Chapter 13. Data Spaces and Hiperspaces 13-19

Programming Notes for the Example:

• The origin of the data space might not be zero for the processor the program is
running on. To allow the program to run on more than one processor, use an
origin of 4K bytes or use the ORIGIN parameter on DSPSERV to obtain the
address of the origin.

• If you need more than one extent, you might have a field that contains the
ending address of the last cell pool storage. A program then could use that
address to set up another extent and more cells.

• To use callable cell pool services, the caller must be executing in a state or
mode or key in which it can write to the storage containing the anchor and the
extent data areas.

• The anchor and the extents must be in the same address space or data space.
The cells can be in another space.

Sharing Data Spaces among Problem State Programs with PSW Keys 8 - F
Problem state programs with PSW key 8 - F can share data spaces with other
programs in several ways:

• A problem state program with PSW key 8 - F can create a data space and place
an entry for the data space on its DU-AL. Then the program can attach a
subtask and pass a copy of its DU-AL to this subtask, and pass the ALET.
However, no existing task in the job step can use this new ALET value.

• A problem state program with PSW key 8 - F can create a data space, add an.
entry to the PASN-AL, and pass the ALET to other problem state programs
running under any task in the job step.

• A problem state program with PSW key 8 - F can create a data space and pass
the STOKEN to a program in supervisor state. The supervisor state program
can add the entry to either of its access lists.

By attaching a subtask and passing a copy of the DU-AL, a program can share its
existing data spaces with a program that runs under the subtask. In this way, the
two programs can share the SCOPE = SINGLE data spaces that were represented on
the DU-AL at the time of the attach. The ALCOPY=YES parameter on the ATTACH
or ATTACHX macro allows a problem state program to pass a copy of its DU-AL to
the subtask the problem state program is attaching. Passing only a part of the
DU-AL is not possible.

13-20 Assembler Programming Guide

For example, as shown in Figure 13-7, assume that program PGM1 (running under
TCBA) has created a SCOPE = SINGLE data space DS1 and established
addressability to it. PGM1's DU-Al has several entries on it, including one for OS1.
PGM1 uses the ATTACHX macro with the ALCOPY=YES parameter to attach
subtask TCBB and pass a copy of its DU-AL to TCBB. It can also pass ALETs in a
parameter list to PGM2. Upon return from ATTACHX, PGM1 and PGM2 have access
to the same data spaces.

The figure shows the two programs, PGM1 and PGM2, sharing the same data space.

Address Space

DU-AL

..... ······1
~

I~ DS1

ATTACHX •. ALCOPY=YES I
ALETDS1 DS F

DU-AL

DS1

SCOPE=S INGLE

Figure 13-7. Two Problem Programs Sharing a SCOPE = SINGLE Data Space

An example of the code that attaches TCBB and passes a copy of the DU-AL is as
follows.

DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,
ORIGIN=DSORG

ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET
ATTACH X EP=PGM2,ALCOPY=YES

DSNAME
DSSTOK
DSALET
DSORG
DSSIZE

DC CL8 1 TEMP
OS CL8
OS F
OS F
DC F'2560 1

DATA SPACE NAME
DATA SPACE STOKEN
DATA SPACE ALET
ORIGIN RETURNED
DATA SPACE 10 MEGABYTES IN SIZE

*

The DU-ALs do not necessarily stay identical. After the attach, PGM1 and PGM2 can
add and delete entries on their own OU-ALs; these changes are not made to the
other DU-AL.

If TCBA terminates, the system deletes the data space that belonged to TCBA and
terminates PGM2.

Sharing Data Spaces through the PASN-AL
One way many problem state programs with PSW key 8 - F can share the data in a
data space is by placing the entry for the data space on the PASN-AL and obtaining
the ALET. In this way, the programs can pass the ALET to other problem state
programs in the address space, allowing them to share the data in the data space.

Chapter 13. Data Spaces and Hiperspaces 13-21

I The following example describes a problem state program with PSW key 8 - F
creating a data space and sharing the data in that space with other programs in the
address space. Additionally, the program assigns ownership of the data space to its
job step task. This assignment allows the data space to be used by other programs
even after the creating program's task terminates. In the example, PGM1 creates a
10-megabyte data space named SPACE1. It uses the TIOKEN parameter on
DSPSERV to assign ownership to its job step task. Before it issued the DSPSERV
CREATE, however, it had to find out the TIOKEN of its job step task. To do this, it
issued the TCBTOKEN macro.

TCBTOKEN TTOKEN=JSTTTOK,TYPE=JOBSTEP

DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG,
TTOKEN=JSTTTOK

ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=PASN

DSNAME DC CL8'SPACE1 , DATA SPACE NAME
DSSTOK OS CL8 DATA SPACE STOKEN
DSALET OS F DATA SPACE ALET
DSORG OS F ORIGIN RETURNED
DSSIZE DC F'2560' DATA SPACE 10 MEGABYTES IN SIZE
JSTTTOK OS CL8 TTOKEN OF JOB STEP TASK

Unless PGM1 or a program running under the job step TCB explicitly deletes the
data space, the system deletes the data space when the job step task terminates.

Note that when PGM1 issues the ALESERV ADD to add the entry for DS1 to the
PASN-AL, the system checks to see if an entry for DS1 already exists on the
PASN-AL. If an entry already exists, and a problem state program with PSW key 8-
F added the entry, the system rejects the ALESERV ADD request. However, PGM1
can still access the data space. The system will simply not create a duplicate entry.

Example of Mapping a Data-in-Virtual Object to a Data Space
Through data-in-virtual, your program can map a VSAM linear data set to a data
space. Use DIV macros to set up the relationship between the object and the data
space. Setting up this relationship is called "mapping." In this case, the virtual
storage area through which you view th'e object (called the "window") is in the data
space. The STOKEN parameter on the DIV MAP macro identifies the data space.

The task that issues the DIV IDENTIFY owns the pointers and structures associated
with the 10 that DIV returns. Any program can use DIV IDENTIFY; however, the
system checks the authority of programs that try to use' subsequent DIV services for
the same 10.

For problem state programs with PSW key 8 - F, data-in-virtual allows only the
issuer of the DIV IDENTIFY to use other DIV services for the 10. That means, for
example, that if a problem state program with PSW key 8 issues the DIV IDENTIFY,
another problem state program with PSW key 8 cannot issue DIV MAP for the same
10. The issuer of DIV IDENTIFY can use DIV MAP to map a VSAM linear data set to
a data space window, providing the program owns or created the data space.

Your program can map one data-in-virtual object into more than one data space.
Or, it can map several data-in-virtual objects within a single data space. In this way,
data spaces can provide large reference areas available to your program.

13-22 Assembler Programming Guide

Mapping a Data-in-Virtual Object to a Data Space
The following example maps a data-in-virtual object in a data space. The size of the
data space is 10 megabytes, or 2560 blocks. (A block is 4K bytes.)

* CREATE A DATA SPACE, ADD AN ACCESS LIST ENTRY FOR IT
* AND MAP A DATA-IN-VIRTUAL OBJECT INTO DATA SPACE STORAGE

DSPSERV CREATE,NAME=DSNAME,STOKEN=DSSTOK,BLOCKS=DSSIZE,ORIGIN=DSORG
ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=WORKUNIT,ACCESS=PUBLIC

* EQUATE DATA SPACE STORAGE TO OBJAREA

L 4,DSORG
LAM 4,4,DSALET
USING OBJAREA,4

* MAP THE OBJECT

DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
DIV ACCESS,ID=OBJID,MODE=UPDATE
DIV MAP,ID=OBJID,AREA=OBJAREA,STOKEN=DSSTOK

* USE THE ALET IN DSALET TO REFERENCE THE
* DATA SPACE STORAGE MAPPING THE OBJECT.

* SAVE ANY CHANGES TO THE OBJECT WITH DIV SAVE

DIV SAVE,ID=OBJID
DIV UNMAP,ID=OBJID,AREA=DSORG
DIV UNACCESS,ID=OBJID
DIV UNIDENTIFY,ID=OBJID

* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE

ALESERV DELETE,ALET=DSALET
DSPSERV DELETE,STOKEN=DSSTOK

DSNAME DC CL8'MYSPACE'
DSSTOK OS CL8
DSALET OS F
DSORG OS F
DSSIZE DC F'2560'
OBJID DS CL8
OBJDD DC ALl(7),CL7'MYDD
OBJAREA DSECT
OBJWORDI DS
OBJWORD2 DS

F
F

USing Data Spaces Efficiently

DATA SPACE NAME
DATA SPACE STOKEN
DATA SPACE ALET
DATA SPACE ORIGIN
DATA SPACE 10 MEGABYTES IN SIZE
DIV OBJECT ID

, DIV OBJECT DDNAME
WINDOW IN DATA SPACE

Although a task can own many data spaces, it is important that it reference these
data spaces carefully. It is much more efficient for the system to reference the
same data space ten times than it is to reference each of ten data spaces one time.
For example, an application might have a master application region that has many
users, each one having a data space. If each program completes its work with one
data space before it starts work with another data space, p~rformance is optimized.

Chapter 13. Data Spaces and Hiperspaces 13-23'

Example of Creating, Using, and Deleting a Data Space
This section contains an example of a problem state program creating, establishing
addressability to, using, and deleting the data space named TEMP. The first lines of
code create the data space and establish addressability to the data space. To keep
the example simple, the code does not include the checking of the return code from
the DSPSERV macro or the ALESERV macro. You should, however, always check
return codes.

The lines of code in the middle of the example illustrate how, with the code in AR
mode, the familiar assembler instructions store, load, and move a simple character
string into the data space and move it within the data space. The example ends with
the program deleting the data space entry from the access list, deleting the data
space, and returning control to the caller.

DSPEXMPL CSECT
DSPEXMPL AMODE 31
DSPEXMPL RMODE ANY

BAKR 14,0
SAC 512
SYSSTATE ASCENV=AR

LAE 12,0
BASR 12,0
USING *,12

SAVE CALLER'S STATUS ON STACK
SWITCH INTO AR MODE
ENSURE PROPER CODE GENERATION

SET BASE REGISTER AR
SET BASE REGISTER GPR

DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
BLOCKS=DSPBLCKS,ORIGIN=DSPCORG

ALESERV ADD,STO~EN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE

LAM 2,2,DSPCALET
L 2,DSPCORG
USING DSPCMAP,2

* MANIPULATE DATA IN THE DATA SPACE

L 3,DATAIN
ST 3,DSPWRD1

MVC DSPWRD2,DATAIN
*

MVC DSPWRD3,DSPWRD2
*

MVC DATAOUT,DSPWRD3
*

LOAD ALET OF SPACE INTO AR2
LOAD ORIGIN OF SPACE INTO GPR2
INFORM ASSEMBLER

STORE INTO DATA SPACE WRD1

COpy DATA FROM PRIMARY SPACE
INTO THE DATA SPACE
COPY DATA FROM ONE LOCATION
IN THE DATA SPACE TO ANOTHER
COpy DATA FROM DATA SPACE
INTO THE PRIMARY SPACE

* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE

ALESERV DELETE,ALET=DSPCALET REMOVE OS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE OS

PR RETURN TO CALLER

13-24 Assembler Programming Guide

00
CL8 I TEMP
CL8
F
F

DATA SPACE NAME
DATA SPACE STOKEN
DATA SPACE ALET

OS
DSPCNAME DC
DSPCSTKN OS
DSPCALET OS
DSPCORG OS
DSPCSIZE EQU
DSPBLCKS DC

10000000
A((DSPCSIZE+4095)/4096)

DATA SPACE ORIGIN RETURNED
10 MILLION BYTES OF SPACE
NUMBER OF BLOCKS NEEDED FOR
A 10 MILLION BYTE DATA SPACE *

DATAIN DC CL4 I ABCD '
OATAOUT OS CL4

DSPCMAP DSECT
OSPWRDI OS F
DSPWRD2 OS F
OSPWR03 OS F

END

MAPPING OF DATA SPACE STORAGE
WORD 1
WORD 2
WORD 3

Note that you cannot code ACCESS = PRIVATE on the ALESERV macro when you
request an ALET for a data space; all data space entries are public.

Dumping Storage in a Data Space
MVS provides ways to dump areas of data space storage. You can use the SNAPX
macro. You oan also ask the operator to use the SLIP and DUMP commands. After
the system enters a wait state or hangs or enters a loop, the operator can request a
stand-alone dump.

On the SNAPX macro,

• Use the DSPSTOR parameter on the SNAPX macro to dump storage from any
addressable data space that the caller can access.

For the syntax of SNAPX, see Assembler Programming Reference.

On the SLIP command,

• The DSPNAME parameter includes data space storage in a dump.

On the DUMP command,

• An operator can use the DSPNAME parameter on the DUMP command to dump
all of the storage in a number of data spaces.

For the syntax of the SLIP and DUMP commands, see System Commands.

To request a stand-alone dump:

• An operator can request that the stand-alone program, AMDSADMP, dump the
storage in a data space. Use the DATASPACES keyword on the SADMP DUMP
command.

For more information about the DATASPACES keyword, see Service Aids.

Chapter 13. Data Spaces and Hiperspaces 13-25

Creating and Using Hiperspaces
A hiperspace is a range of up to two gigabytes of contiguous vi rtual storage
addresses that a program can use as a buffer. Like a data space, a hiperspace
holds only data, not common areas or system data; code does not execute in a
hiperspace. Unlike data in a data space, data in a hiperspace is not directly
addressable.

The DSPSERV macro manages hiperspaces. The TYPE = HIPERSPACE parameter
tells the system that it is to manage a hiperspace rather than a data space. Use
DSPSERV to:

• Create a hiperspace
• Release an area in a hiperspace
• Delete a hiperspace
• Expand the amount of storage in a hiperspace currently available to a program.

To manipulate data in a hiperspace, your program brings the data, in blocks of 4K
bytes, into a buffer area in the address space. The program can use the data only
while it is in the address space. You can think of this buffer area as a "view" into
the hiperspace. The HSPSERV macro read operation manages the transfer of the
data to the address space buffer area. If you make updates to the data, you can
write it back to the hiperspace through the HSPSERV write operation.

Address Space Hiperspace

HSPSERV .. .

HSPSERV .. .
data area

buffer area

The data in the hiperspace and the buffer area in the address space must both start
on a 4K byte boundary.

Use this section to help you cre~te, use, and delete hiperspaces. It describes some
of the characteristics of hiperspaces, how to move data in and out of a hiperspace;
and how data-in-virtual can help you control data in hiperspaces. In addition,
Assembler Programming Reference contains the syntax and parameter descriptions
for the macros that are mentioned in this section.

13'-26 Assembler Programming Guide

Standard Hiperspaces
Your program can create a standard hiperspace, one that is backed with expanded
storage and auxiliary storage, if necessary. Through the buffer area in the address
space, your program can view or "scroll" through the hiperspace. SQrolling allows
you to make interim changes to data without changing the data on DASD.
HSTYPE = SCROLL on DSPSERV creates a standard hiperspace. HSPSERV SWRITE
and HSPSERV SREAD transfer data to and from a standard hiperspace.

The data in a standard hiperspace is predictable; that is, your program can write
data to a standard hiperspace and count on retrieving it.

The best way to describe how your program can scroll through a standard
hiperspace is through an example. Figure 13-8 shows a hiperspace that has four
scroll areas, A, B, C, and D. After the program issues an HSPSERV SREAD for
hiperspace area A, it can make changes to the data in the buffer area in its address
space. HSPSERV SWRITE then saves those changes. In a similar manner, the
program can read, make changes, and save the data in areas B, C, and D. When
the program reads area A again. it finds the same data that it wrote to the area in
the previous HSPSERV SWRITE to that area.

Address Space Hiperspace

I I area A

HSPSERV SREAD ...
HSPSERV SWRITE ... area B

HSPSERV SREAD ...
area C

HSPSERV SWRITE ...

areaD

buffer area

Figure 13-8. Example of Scrolling through a Standard Hiperspace

A standard hiperspace gives your program an area where it can:

• Store data, either generated by your program or moved (through the address
space buffers) from DASD

• Scroll through large amounts of data

After you finish using the hiperspace, you can:

• Move the changed data (through address space buffers) to DASD, making the
hiperspace data permanent

• Delete the hiperspace data with the deletion of the hiperspace or the
termination of the owner of the hiperspace, treating the hiperspace data as
temporary.

If your application wants to save a permanent copy of the data in the hiperspace,
consider using the services of data-in-virtual. See "Using Data-in-Virtual with
Hiperspaces" on page 13-37.

Chapter 13. Data Spaces and Hiperspaces 13-27

A second type of hiperspace, the expanded storage only (ESO) hiperspace is backed
with expanded storage only and is available to supervisor state programs or
programs with PSW key 0 - 7. These hiperspaces are described in the books that
are available to writers of authorized programs.

Shared and Non-shared Standard Hiperspaces
Standard hiperspaces are either non-shared or shared. Your program can create
and delete non-shared standard hiperspaces; it can use HSPSERV to access the
non-shared standard hiperspaces that it owns. With help from a supervisor state
program or a program with PSW key 0 - 7, your program can also access a
non-shared standard hiperspaces that it does not own. Shared standard
hiperspaces can be shared among programs in many address spaces. Although
your programs can use the shared standard hiperspaces, they cannot create and
delete them. Therefore, the sharing of hiperspaces must be done under the control
of supervisor state programs or programs with PSW key 0 - 7. Shared standard
hiperspaces and the subject of sharing hiperspaces are described in the application
development books that are available to writers of authorized programs. The
chapter in this book describes how you create and delete the non-shared standard
hiperspaces and use these hiperspaces for your own program.

Figure 13-9 shows some important facts about non-shared standard hiperspaces:

Figure 13-9. Facts about a Non-shared Standard Hiperspace

Can it map a VSAM linear data set? Yes

Can It be a data-In-virtual object? Yes, if the hiperspace has not been the
target of ALESERV ADD.

How do you write data to the hiperspace? By using HSPSERV SWRITE

How do you read data from the hlperspace? By using HSPSERV SREAD

What happens to the data in the hiperspace when the system The system preserves the data.
swaps the owning address space out?

Creating a Hiperspace
To create a non-shared standard hiperspace, issue the DSPSERV CREATE macro
with the TYPE = HIPERSPACE and HSTYPE = SCROLL parameters. The HSTYPE
parameter tells the system you want a standard hiperspace. HSTYPE=SCROLL is
the default. MVS allocates contiguous 31-bit virtual storage of the size you specify
and initializes the storage to hexadecimal zeroes. The entire hiperspace has the
storage key 8. Because many of the same rules that apply to creating data spaces
also apply to creating hiperspaces, this section sometimes refers you to sections
earlier in "Creating a Data Space."

On the DSPSERV macro, you are required to specify:

• The name of the hiperspace (NAME parameter)

To ask DSPSERV to generate a hiperspace name unique to the address space,
use the GENNAME parameter. DSPSERV will return the name it generates at
the location you specify on the OUTNAME parameter. Specifying a name for a
hiperspace follows the same rules as specifying a name for a data space. See
"Choosing the Name of a Data Space" on page 13-9.

13-28 Assembler Programming Guide

• A location where DSPSERV is to return the STOKEN of the hiperspace (STOKEN
parameter)

DSPSERV CREATE returns a STOKEN that you can use to identify the
hiperspace to other DSPSERV services and to the HSPSERV and DIV macros.

Other information you might specify on the DSPSERV macro is:

• The maximum size of the hiperspace and its initial size (BLOCKS parameter). If
you do not code BLOCKS, the hiperspace size is determined by defaults set by
your installation. In this case, use the NUMBLKS parameter to tell the system
where to return the size of the hiperspace. Specifying the size of a hiperspace
follows the same rules as specifying the size of a data space. See "Specifying
the Size of a Data Space" on page 13-10.

• A location where DSPSERV can return the address (either 0 or 4096) of the first
available block of the hiperspace (ORIGIN parameter). Locating the origin of a
hiperspace is the same as locating the origin of a data space. See "Identifying
the Origin of a Data Space" on page 13-11.

Example of Creating a Standard Hiperspace
The following example creates a non-shared standard hiperspace, 20 blocks in size,
named SCROLLHS.

*
DSPSERV CREATE,NAME=HSNAME,TVPE=HIPERSPACE,HSTVPE=SCROLL, X

BLOCKS=20,STOKEN=HSSTOKEN
*
HSNAME DC CL8 I SCROLLHS '
HSSTOKEN OS CL8

* NAME FOR THE HIPERSPACE
* STOKEN OF THE HIPERSPACE

Transferring Data To and From Hiperspaces
Before it can reference data or manipulate data in a hiperspace, the program must
bring the data into the address space. The HSPSERV macro performs the transfer of
data between the address space and the hiperspace.

On the HSPSERV macro, the write operation transfers data from the address space
to the hiperspace. The read operation transfers the data from the hiperspace to the
address space. HSPSERV allows multiple reads and writes to occur at one time.
This means that one HSPSERV request can read more than one data area in a
hiperspace to an equal number of data areas in an address space. Likewise, one
HSPSERV request can write data from more than one buffer area in an address
space to an equal number of areas in a hiperspace.

Figure 13-10 shows three virtual storage areas that you identify on the HSPSERV
macro when you request a data transfer:

• The hiperspace

• The buffer area in the address space that is the source of the write operation
and the target of the read operation

• The data area in the hiperspace that is the target of the write operation and the
source of the read operation

Chapter 13. Data Spaces and Hiperspaces 13-29

Address Space

HSPSERV .. .

HSPSERV .. .

buffer area

After a write operation,
the data is unpredictable.
The buffer area is
available for reuse.

Hiperspace

data area

After a read operation,
the data is preserved
unless you specify
RELEASE = YES.

Figure 13-10. Illustration of the HSPSERV Write andRead Operations

On the HSPSERV macro, you identify the hiperspace and the areas in the address
space and the hiperspace:

• STOKEN specifies the STOKEN of the hiperspace.
• NUMRANGE specifies the number of data areas the system is to read or write.
• RANGLIST specifies a list of ranges that indicate the boundaries of the buffer

areas in the address space and the data area in the hiperspace.

HSPSERV has certain restrictions on these areas. Two restrictions are that the data
areas must start on a 4K byte boundary and their size must be in multiples of 4K
bytes. Other requirements are listed in the description of HSPSERV in Assembler
Programming Reference. Read the requirements carefully before you issue the
macro.

The system does not always preserve the data in the areas tha.t are the source for
the read and write operations. Figure 13-10 tells you what the system does with the
areas after it completes the transfer.

Read and Write Operations for Standard Hiperspaces
After the write operation for standard hiperspaces, the system does not preserve the
data in the address space. It assumes that you have another use for that buffer
area, such as using it as the target of another HSPSERV SREAD operation.

After the read operation for standard hiperspaces, the system gives you a choice of
saving the source data in the hiperspace. If you will use the data in the hiperspace
again, ask the system to preserve the data; specify RELEASE = NO on HSPSERV

'SREAD. Unless a subsequent SWRITE request changes the data in the source area,
that same data' will be available for subsequent SREAOfequests. RELEASE = NO
provides your program with a backup copy of the data in the hiperspace.

If you specify RELEASE = YES on HSPSERV SREAD, the system releases the
hiperspace pages after the read operation and returns the expanded storage (or
auxiliary storage) that backs the source area in the hiperspace. RELEASE = YES
tells the system that your program does not plan to use the source area in the
hiperspace as a copy of the data after the read operation.

13 .. 30 Assembler Programming Guide

See "Example of Creating a Standard Hiperspace and Using It" on page 13-35 for
an example of the HSPSERV SREAD and HSPSERV SWRITE macros.

Obtaining Additional HSPSERV Performance
If your processor has the move-page facility installed, you can use HSPSERV to
improve the performance of data transfer between central and expanded storage.
Specify the ALET of the hiperspace on the HSPALET parameter on HSPSERV. If the
data is in expanded storage, HSPSERV takes advantage of the move-page facility. If
the data is in auxiliary storage, the data transfer still occurs, but without the benefit
of the move-page facility.

To obtain the ALET, issue the following:

ALESERV ADD,ALET= •.• ,STOKEN= •••

STOKEN is the eight-byte identifier of the hiperspace, and ALET is the four-byte
index into the DU-AL, the access list that is associated with the task. The STOKEN
is input to ALESERV ADD; the ALET is output.

Before you issue the HSPSERV macro with the HSPALET parameter, obtain a
144-byte workarea for the HSPSERV macro service and place the address of this
area in GPR 13 and a zero in AR 13

Do not specify RELEASE=YES with the HSPALET parameter.

Programming Notes for Obtaining ALETs for Hiperspaces

• To use ALESERV ADD to obtain an ALET for a hiperspace without having the
move-page facility installed causes the program to abend.

• A program never uses an ALET to directly access data in a hiperspace as it
would use the ALET to access the data in a data space.

• To use hiperspaces, you do not need to switch into AR mode.

• When you are finished using the hiperspace, use ALESERV DELETE to delete
the entry on the DU-AL.

• The system places certain restrictions on the combined use of hiperspaces and
data-in-virtual. These restrictions are listed in "Using Data-in-Virtual with
Hiperspaces" on page 13-37.

• By obtaining an ALET, you can share a hiperspace with a subtaskin the same
way you share a data space. Use the ALCOPY parameter on the A TT ACHX
macro to pass a copy of your DU-AL to the subtask. Follow the procedure
suggested in "Sharing Data Spaces among Problem State Programs with PSW
Keys 8 - F" on page 13-20.

Example of a HSPSERV with the HSPALET Parameter: The following example
creates a non-shared hiperspace. To get additional performance from HSPSERV,
the program obtains an ALET from the ALESERV macro and uses that ALET as input
to HSPSERV. The example assumes the ASC mode is primary.

Chapter 13. Data Spaces and Hiperspaces 13-31

* DSPSERV CREATES A NON-SHARED STANDARD HIPERSPACE OF 20 4096-BYTE BLOCKS
*

DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,BLOCKS=20, X
STOKEN=HSSTOKEN,ORIGIN=HSORIGI

*
* ALESERV RETURNS AN ALET ON THE DU-AL FOR THE HIPERSPACE
*

ALESERV ADD,STOKEN=HSSTOKEN,ALET=HSALET,AL=WORKUNIT
*
* THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE,
* THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
* - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
* - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
* COpy INTO FIRST AND SECOND PAGES THE DATA TO BE WRITTEN TO HIPERSPACE

STORAGE OBTAIN,LENGTH=4096*4,BNDRY=PAGE
ST I,ASPTR * SAVE ADDR SPACE STORAGE ADDRESS
MVC 0(20,1),SRCTEXTl * INIT FIRST ADDR SPACE PAGE
A 1,ONEBLK * COMPUTE PAGE TWO ADDRESS
MVC 0(20,I),SRCTEXT2 * IN IT SECOND ADDR SPACE PAGE

* SET UP THE SWRITE RANGE LIST TO WRITE FROM THE FIRST AND SECOND
* ADDRESS SPACE PAGES INTO THE HIPERSPACE

L I,ASPTR
ST I,ASPTRI

* GET FIRST ADDR PAGE ADDRESS
* PUT ADDRESS INTO RANGE LIST

* SAVE CONTENTS OF AR/GPR 13 BEFORE RESETTING THEM FOR HSPSERV

ST 13,SAVERI3
EAR 13,13
ST 13,SAVEARI3

* SAVE THE CONTENTS OF GPR 13
* LOAD GPR 13 FROM AR 13
* SAVE THE CONTENTS OF AR 13

* ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES
* AND WRITE TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE

SLR 13,13 * SET GPR 13 TO 0
SAR 13,13 * SET AR 13 TO 0
LA 13,WORKAREA * SET UP AR/GPR 13 TO WORKAREA ADDR
HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1,HSPALET=HSALET

* AFTER THE SWRITE, THE FIRST TWO ADDRESS SPACE PAGES MIGHT BE OVERLAID

* RESTORE ORIGINAL CONTENTS OF AR/GPR 13

L 13,SAVEARI3
SAR 13,13
L 13,SAVERI3

* SET GPR 13 TO SAVED AR 13
* RESET AR 13
* RESET GPR 13

* SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
* ADDRESS SPACE PAGES WHAT WAS PREVIOUSLY WRITTEN TO THE HIPERSPACE

MVC HSORIG2,HSORIGI
L I,ASPTR
A I,TWOBLKS
ST I,ASPTR2

13-32 Assembler Programming Guide

* COpy ORIGIN OF HIPERSPACE TO HSORIG2
* GET FIRST ADDR PAGE ADDRESS
* COMPUTE THIRD PAGE ADDRESS
* PUT ADDRESS INTO RANGE LIST

* SAVE CONTENTS OF ARjGPR 13

ST 13,SAVERI3
EAR 13,13
ST 13,SAVEARI3

* SAVE THE CONTENTS OF GPR 13
* LOAD GPR 13 FROM AR 13
* SAVE THE CONTENTS OF AR 13

* ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES,
* AND READ TWO BLOCKS OF DATA FROM THE HIPERSPACE INTO THE
* THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE USING HSPALET

SLR 13,13 * SET GPR 13 TO S
SAR 13,13 * SET AR 13 TO S
LA 13,WORKAREA * SET UP ARjGPR 13 TO WORKAREA ADDR
HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2,HSPALET=HSALET

.
* RESTORE ORIGINAL CONTENTS OF ARjGPR 13

L 13,SAVEARI3
SAR 13,13
L 13,SAVERI3

* SET GPR 13 TO SAVED AR 13
* RESET AR 13
* RESET GPR 13

* FREE THE ALET, FREE ADDRESS SPACE STORAGE, AND DELETE THE HIPERSPACE

* DATA AREAS AND CONSTANTS

HSNAME DC
HSSTOKEN OS
HSALET OS
ASPTR OS
SAVER13 OS
SAVEAR13 OS
WORKAREA OS
ONEBLK DC
TWOBLKS DC
SRCTEXTI DC
SRCTEXT2 DC

OS
RANGPTRI DC
RANGPTR2 DC

OS
SWRITLST OS
ASPTRI OS
HSORIGI OS
NUMBLKSI DC

OS
SREADLST OS
ASPTR2 OS
HSORIG2 OS
NUMBLKS2 DC

OS

CLS ' SCROLLHS I

CLS
CL4
IF
IF
IF
CL144
F' 4S96'
F'SS92'

* NAME FOR THE HIPERSPACE
* STOKEN FOR THE HIPERSPACE
* ALET FOR THE HIPERSPACE
* LOCATION OF ADDR SPACE STORAGE
* LOCATION TO SAVE GPR 13
* LOCATION TO SAVE AR 13
* WORK AREA FOR HSPSERV
* LENGTH OF ONE BLOCK OF STORAGE
* LENGTH OF TWO BLOCKS OF STORAGE

CL2S ' INVENTORY ITEMS
CL2S ' INVENTORY SURPLUSES I

SF
A (SWRITLST)
A(SREADLST)
SF
SCL12
F
F
F'21
SF
SCL12
F
F
F'21
SF

* ADDRESS OF SWRITE RANGE LIST
* ADDRESS OF SREAD RANGE LIST

* SWRITE RANGE LIST
* START OF ADDRESS SPACE SOURCE
* TARGET LOCATION IN HIPERSPACE
* NUMBER OF 4K BLOCKS IN SWRITE

* SREAD RANGE LIST
* TARGET LOCATION IN ADDR SPACE
* START OF HIPERSPACE SOURCE
* NUMBER OF 4K BLOCKS IN SREAD

Chapter 13. Data Spaces and Hiperspaces13-33

Extending the Current Size of a Hiperspace
When you create a hiperspace and specify a maximum size larger than the initial
size, you can use DSPSERV EXTEND to increase the current size as your program
uses more storage in the hiperspace. The BLOCKS parameter specifies the amount
of storage you want to add to the current size of the hiperspace. The VAR
parameter tells the system whether the request is variable. For information about a
variable request and help in using DSPSERV EXTEND, see "Extending the Current
Size of a Data, Space" on page 13-16.

Releasing Hiperspace Storage
Your program needs to release storage when it used a hiperspace for one purpose
and wants to reuse it for another purpose, or when your program is finished using
the area. To release the virtual storage of a hiperspace, use the DSPSERV
RELEASE macro. (Hiperspace release is similar to a PGSER RELEASE for an
address space.) Specify the STOKEN to identify the hiperspace and the START and
BLOCKS parameters to identify the beginning and the length of the area you need to
release.

f

Releasing storage in a ~iperspace requires that a program have the following
authority:

• The program must be the owner of the hiperspace.

• The program's PSW key must equal the storage key of the hiperspace the
system is to release. Otherwise, the system abends the caller.

After the release, a ~eleased page does not occupy expanded (or auxiliary) storage
until your program r~ferences it again. When you again reference a page you have
released, the page ~ontains hexadecimal zeroes.

f

Use DSPSERV RELEASE instead of the MVCL instruction to clear 4K byte blocks of
storage to zeroes because:

• DSPSERV RELEASE is faster than MVCL for very large areas.

• Pages released through DSPSERV RELEASE do not occupy space in expanded
or auxiliary storage.

Deleting a Hiperspace
When a program doesn't need the hiperspace any more, it can delete it. Your
program can delete only the hiperspaces it owns, providing the program's PSW key
matches the storage key of the hiperspace.

Example of Deleting a Hiperspace: The following example shows you how to delete
a hi perspace:

DSPSERV DELETE,STOKEN=HSSTKN

HSSTKN OS CL8

DELETE THE HS

HIPERSPACE STOKEN

IBM recommends that you explicitly delete a hiperspace before the owning task
terminates. However, if you don't, the system automatically does it for you.

13-34 Assembler Programming Guide

Example of Creating a Standard Hiperspace and Using It
The following example creates a standard hiperspace named SCROLLHS. The size
of the hiperspace is 20 blocks. The program:

• Creates a standard hiperspace 20 blocks in size

• Obtains four pages of address space storage aligned on a 4K byte address

• Sets up the SWRITE range list parameter area to identify the first two pages of
the address space storage

• Initializes the first two pages of address space storage that will be written to the
hiperspace

• Issues the HSPSERV SWRITE macro to write the first two pages to locations
4096 through 12287 in the hiperspace

Later on, the program:

• Sets up the SREAD range list parameter area to identify the last two pages of
the four-page address space storage

• Issues the HSPSERV SREAD macro to read the blocks at locations 4096 through
12287 in the hiperspace to the last two pages in the address space storage

Figure 13-11 shows the four-page area in the address space and the two block area
in the hiperspace. Note that the first two pages of the address space virtual storage
are unpredictable after the SWRITE operation.

Address Space

PROG1

DSPSERV •••

HSPSERV SWRITE •••

HSPSERV SREAD •••

SWRITE range list

SREAD range list

Standard
Hiperspace

Figure 13-11. Example of Creating a Standard Hiperspace and Transferring Data

Chapter 13. Data Spaces and Hiperspaces 13-35

* DSPSERV CREATES A STANDARD TYPE HIPERSPACE OF 20 4096-BYTE BLOCKS

DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
BLOCKS=20,STOKEN=HSSTOKEN

* THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE.
* THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
* - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
* - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET

STORAGE OBTAIN,LENGTH=4096*4,BNDRY=PAGE
ST 1,ASPTRl * SAVES THE SWRITE SOURCE ADDRESS
MVC 0(20,1),SRCTEXTl * INITIALIZES SOURCE PAGE ONE
A 1,ONEBLOCK * COMPUTES SOURCE PAGE TWO ADDRESS
MVC 0(20,1),SRCTEXT2 * INITIALIZES SOURCE PAGE TWO

* HSPSERV WRITES TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE

HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTRI

* AFTER THE SWRITE, THE FIRST TWO ADDRESS SPACE PAGES MIGHT BE OVERLAID

* SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
* ADDRESS SPACE PAGES

L 2,ASPTRl * OBTAINS THE ADDRESS OF PAGE 1
A 2,ONEBLOCK * COMPUTES THE SREAD TARGET ADDRESS

* COMPUTES THE SREAD TARGET ADDRESS
* SAVES IN SREAD RANGE LIST

A 2,ONEBLOCK
ST 2,ASPTR2

* HSPSERV READS TWO BLOCKS OF DATA FROM THE HIPERSPACE TO THE
THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE

HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2

* DATA AREAS AND CONSTANTS
*
HSNAME DC
HSSTOKEN OS
ONEBLOCK DC
SRCTEXTl DC
SRCTEXT2 DC

OS
RANGPTRl DC
RANGPTR2 DC

OS
SWRITLST OS
ASPTRI OS
HSPTRI DC
NUMBLKSI DC

OS
SREADLST OS
ASPTR2 OS
HSPTR2 DC
NUMBLKS2 DC

13-36 Assembler Programming Guide

CL8 I SCROLLHS ' * NAME FOR THE HIPERSPACE
CL8 * STOKEN FOR THE HIPERSPACE
F' 4096' * LENGTH OF ONE BLOCK OF STORAGE
CL20' INVENTORY ITEMS
CL20' INVENTORY SURPLUSES I

OF
A(SWRITLST) * ADDRESS OF THE SWRITE RANGE LIST
A(SREADLST) * ADDRESS OF THE SREAD RANGE LIST

OF
OCL12
F
F'4096 1

F'21
OF
OCL12
F
F'4096 1

F'21

* SWRITE RANGE LIST
* START OF ADDRESS SPACE SOURCE
* TARGET LOCATION IN HIPERSPACE
* NUMBER OF 4K BLOCKS IN SWRITE

* SREAO RANGE LIST
* TARGET LOCATION IN ADDRESS SPACE
* START OF HIPERSPACE SOURCE
* NUMBER OF 4K PAGES IN SREAD

Using Data-in-Virtual with Hiperspaces
Data-in-virtual allows you to map a large amount of data into a virtual storage area
and then deal with the portion of the data that you need. The virtual storage
provides a "window" through which you can "view" the object and make changes, if
you want. The DIV macro manages the data object, the window, and the movement
of data between the window and the object.

You can use standard hiperspaces with data-in-virtual in two ways:

1. You can map a VSAM linear data set to hiperspace virtual storage.

2. You can map a non-shared hiperspace to address space virtual storage.

The task that issues the DIV IDENTIFY owns the pointers and structures associated
with the ID that DIV returns. Any program can use DIV IDENTIFY. However, the
system checks the authority of programs that try to use the other DIV services for
the same ID. For problem state programs with PSW key 8 - F, data-in-virtual allows
only the issuer of the DIV IDENTIFY to use subsequent DIV services for the same 10.
That means, for example, that if a problem state program with PSW key 8 issues the
DIV IDENTIFY, another problem state program with PSW key 8 cannot issue DIV
MAP for the same ID.

Problem state programs with PSW key 8 - F can use DIV MAP to:

• Map a VSAM linear data set to a window in a hiperspace, providing the program
owns the hiperspace.

• Map a non-shared hiperspace object to an address space window, providing:

The program owns the hiperspace,
The program or its attachin"rtask obtained the storage for the window, and
No program has ever issued ALESERV ADD for the hiperspace

The rules for using data-in-virtual and HSPSERV with the HSPALET parameter (for
additional performance) are as follows:

• Your program can use HSPSERV with the HSPALET parameter with non-shared
hiperspaces when a data-in-virtual object is mapped to a hiperspace, providing
a DIV SAVE is not in effect.

• Once any program issues ALESERV ADD for a hiperspace, that hiperspace
cannot be a data-in-virtual object.

• If a program issues ALESERV ADD for a hiperspace that is currently a data
object, the system rejects the request.

For information on the use of ALETs with hiperspaces, see "Obtaining Additional
HSPSERV Performance" on page 13-31.

The following two sections describe how your program can use the data-in-virtual
services with hiperspaces.

Mapping a Data-in-Virtual Object to a Hiperspace
Through data-in-virtual, a program can map a VSAM linear data set residing on
DASD to a hiperspace. The program uses the read and write operations of the
HSPSERV macro to transfer data between the address space buffer area and the
hiperspace window.

Chapter 13. Data Spaces and Hiperspaces 13-37

Address Space

Program

DSPSERV ...

When a program maps a data-in-virtual object to a standard hiperspace, the system
does not bring the data physically into the hiperspace; it reads the data into the
address space buffer when the program uses HSPSERV SREAD for that area that
contains the data.

Your program can map a single data-in-virtual object to several hiperspaces. Or, it
can map several data-in-virtual objects to one hiperspace.

An Example of Mapping a Data-in-Virtual Object toa Hiperspace: The following
example shows how you would create a standard hiperspace with a maximum size
of one gigabyte and an initial size of 4K bytes. Figure 13-12 shows the hiperspace
with a window that begins at the origin of the hiperspace.

Standard

DIV IDENTIFY ...
. DIV ACCESS ... Permanent Object

DIVMAP ...

HSPSERV SWRITE ...

HSPSERV SREAD .. ~

HSPSERV

HSPSERV SWRITE

window

Figure 13-12. Example of Mapping a Oata-in-Virtua/ Object to a Hiperspace

Initially, the window in the hiperspace and the buffer area in the address space are
both 4K bytes. (That is, the window takes up the entire initial size of the
hiperspace.) The data-in-virtual object is a VSAM linear data set on DASD.

* CREATE A STANDARD HIPERSPACE

DSPSERV CREATE,TVPE=HIPERSPACE,HSTVPE=SCROLL,NAME=HSINAME,
STOKEN=HS1STOK,BLOCKS=(ONEGIG,FOURK),ORIGIN=HSIORG

13"!38 Assembler Programmlng Guide

x

* MAP THE HIPERSPACE TO THE OBJECT

DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
DIV ACCESS,ID=OBJID,MODE=UPDATE
DIV MAP,ID=OBJID,AREA=HS10RG,STOKEN=HS1STOK

* OBTAIN A 4K BUFFER AREA IN ADDRESS SPACE TO BE
* USED TO UPDATE THE DATA IN THE HIPERSPACE WINDOW

* DECLARATION STATEMENTS

HS1NAME DC CL8 I MYHSNAME ' HIPERSPACE NAME
HS1STOK DS CL8 HIPERSPACE STOKEN
HS10RG DS F HIPERSPACE ORIGIN
ONEGIG DC F'262144 1 MAXIMUM SIZE OF 1G IN BLOCKS
FOURK DC Fill INITIAL SIZE OF 4K IN BLOCKS
OBJID DS CL8 DIV OBJECT ID
OBJDD DC ALI (7) ,CL7 I MYDD I DIV OBJECT DDNAME

The program can read the data in the hiperspace window to a buffer area in the
address space through the HSPSERV SREAD macro. It can update the data and
write changes back to the hiperspace through the HSPSERV SWRITE macro. For an
example of these operations, see "Example of Creating a Standard Hiperspace and
Using It" on page 13-35.

Continuing the example, the following code saves the data in the hiperspace
window on DASD and terminates the mapping.

* SAVE THE DATA IN THE HIPERSPACE WINDOW ON DASD AND END THE MAPPING

DIV SAVE,ID=OBJID
DIV UNMAP,ID=OBJID,AREA=HS10RG
DIV UNACCESS,ID=OBJID
DIV UNIDENTIFY,ID=OBJID

* PROGRAM FINISHES USING THE DATA IN THE HIPERSPACE

* DELETE THE HIPERSPACE

DSPSERV DELETE,STOKEN=HSISTOK

Chapter 13. Data Spaces and Hiperspaces 13-39

Using a Hiperspace as a Data-in-Virtual Object
Your program can identify a non-shared standard hiperspace as a temporary
data-in-virtual object, providing the hiperspace has never been the target of an
ALESERV ADD. In this case, the window must be in an address space. Use the
hiperspace for temporary storage of data, such as intermediate results of a
computation. The movement of data between the window in the address space and
the hiperspace object is through the DIV MAP and DIV SAVE macros. The data in
the hiperspace is temporary.

Figure 13-13 shows an example of a hiperspace as a data-in-virtual object.

Address Space

Program

DSPSERV ...

DIVMAP .. .

DIV SAVE .. .

window

Non-shared
Standard Hiperspace

temporary
object

Figure 13-13. A Standard Hiperspace as a Data-in-Virtua/ Object

When the hiperspace is a data-in-virtual object, data-in-virtual services transfer data
between the hiperspace object and the address space window. In this case, your
program does not need to use, and must not use, HSPSERV SREAD and HSPSERV
SWRITE.

13 .. 40 Assembler Programming Guide

An Example of a Hiperspace as a Oata-in-Virtual Object: The program in this
section creates a hiperspace for temporary storage of a table of 4K bytes that the
program generates and uses. The program cannot save this table permanently.

The following code creates a standard hiperspace and identifies it as a
data-in-virtual object.

* CREATE A HIPERSPACE

DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL,
NAME=HS2NAME,STOKEN=HS2STOK,BLOCKS=ONEBLOCK

* IDENTIFY THE HIPERSPACE AS A DATA-IN-VIRTUAL OBJECT

DIV IDENTIFY,ID=OBJID,TYPE=HS,STOKEN=HS2STOK
DIV ACCESS,ID=OBJID,MODE=UPDATE
DIV MAP,ID=OBJID,AREA=OBJAREA

HS2NAME DC CL8 1 MHSNAME I

HS2STOK OS CL8
ONEBLOCK DC Fill
OBJID OS CL8
OBJAREA OS CL8

HIPERSPACE NAME
HIPERSPACE STOKEN
HIPERSPACE SIZE OF 1 BLOCK
DIV OBJECT 10
WINDOW IN ADDRESS SPACE

x

When the hiperspace is a data-in-virtual object, your program does not need to
know the origin of the hiperspace. All addresses refer to offsets within the
hiperspace. Note that the example does not include the ORIGIN parameter on
DSPSERV.

After you finish making changes to the data in the address space window, you can
save the changes back to the hi perspace as follows:

* SAVE CHANGES TO THE OBJECT

DIV SAVE,ID=OBJID

The following macro refreshes the address space window. This means that if you
make changes in the window and want a fresh copy of the object (that is, the copy
that was saved last with the DIV SAVE macro), you would issue the following:

DIV RESET,ID=OBJID

When you finish using the hiperspace, use the DSPSERV macro to delete the
hi perspace.

* DELETE THE HIPERSPACE

DSPSERV DELETE,STOKEN=HS2STOK

Chapter 13. Data Spaces and Hiperspaces 13-41

13-42 Assembler Programming Guide

Chapter 14. Window Services

Callable window services enables assembler language programs to use the CALL
macro to access data objects. By calling the appropriate window services program,
an assembler language program can:

• Read or update an existing permanent data object
• Create and save a new permanent data object
• Create and use a temporary data object

Window services enable your program to access data objects without your program
performing any input or output (1/0) operations. All your program needs to do is
issue a CALL to the appropriate service program. The service performs any 110
operations that are required to make the data object available to your program.
When you want to update or save a data object, window services again performs
any required 1/0 operations.

Permanent Data Objects
A permanent data object is a virtual storage access method (VSAM) linear data set
that resides on DASD. (This type of data set is also called a data-in-virtual object.)
You can read data from an existing permanent object and also update the content of
the object. You can create a new permanent object and when you are finished, save
it on DASD. Because you can save this type of object on DASD, window services
calls it a permanent object. Window services can handle very large permanent
objects that contain as many as four gigabytes (4294967296 bytes).

Note: Installations whose high level language programs, such as FORTRAN, used
data-in-virtual objects prior to MVS/SP 3.1.0 had to write an Assembler language
interface program to allow the FORTRAN program to invoke the data-in-virtual
program. Window services eliminates the need for this interface program.

Temporary Data Objects
A temporary data object is an area of expanded storage that window services
provides for your program. You can use this storage to hold temporary data, such
as intermediate results of a computation, instead of using a DASD workfile. Or you
might use the storage area as a temporary buffer for data that your program
generates or obtains from some other source. When you finish using the storage
area, window services deletes it. Because you cannot save the storage area,
window services calls it a temporary object. Window services can handle very large
temporary objects that contain as many as 16 terabytes (17592186044416 bytes).

Structure of a Data Object
Think of a data object as a contiguous string of bytes organized into blocks, each
4096 bytes long. The first block contains bytes 0 to 4095 of the object, the second
block contains bytes 4096 to 8191, and so forth.

Your program references data in the object by identifying the block or blocks that
contain the desired data. Window services makes the blocks available to your
program by mapping a window in your program storage to the blocks. A window is
a storage area that your program provides and makes known to window services.
Mapping the window to the blocks means that window services makes the data from
those blocks available in the window when you reference the data. You can map a
window to all or part of a data object depending on the size of the object and the
size of the window. You can examine or 'change data that is in the window by using

© Copyright IBM Corp. 1988, 1991 14-1

the same instructions that you use to examine or change any other data in your
program storage.

The following figure shows the structure of a data object and shows a window
mapped to two of the object's blocks.

window

your address
space data object

/',"",.,. lst block
, r--------

t---------jI"lll.-ILr .. ",,/' 2nd block

{

1st block /',." .. -r--~~~~--
r--;:;b~~-- ,/",/ r--;~blocl:--
1-------foII~If-.'.' r--------

/ /

4096 bytes

4096 bytes

4096 bytes

4096 bytes

r--~~-~;;;;--1 4096 bytes

Figure 14-1. Structure of a Data Object

What Does Window Services Provide?
Window services allows you to view and manipulate data objects in a number of
ways. You can have access to one or more data objects at the same time. You can
also define multiple windows for a given data object. You can then view a different
part of the object through each window. Before you can access any data object, you
must request access from window services.

When you request access to a permanent data object, you must indicate whether
you want a scroll area. A scroll area is an area of expanded storage that window
services obtains and maps to the permanent data object. You can think of the
permanent object as being available in the scroll area. When you request a view of
the object, window services maps the window to the scroll area. If you do not
request a scroll area, window services maps the window directly to the object on
DASD.

A scroll area enables you to save interim changes to a permanent object without
changing the object on DASD. Also, when your program accesses a permanent
object through a scroll area, your program might attain better performance than it
would if the object were accessed directly on DASD.

When you request a temporary object, window services provides an area of
expanded storage. This area of expanded storage is the temporary data object.
When you request a view of the object, window services maps the window to the
temporary object. Window services initializes a temporary object to binary zeroes.

14-2 Assembler Programming Guide

Notes:

1. Window services does not transfer data from the object on DASD, from the scroll
area, or from the temporary object until your program references the data.
Then window services transfers the blocks that contain the data your program
requests.

2. The expanded storage that window services uses for a scroll area or for a
temporary object is called a hiperspace. A hiperspace is a range of contiguous
virtual storage addresses that a program can use like a buffer. Window
services uses as many hiperspaces as needed to contain the data object.

The Ways That Window Services Can Map an Object
Window services can map a data object a number of ways. The following examples
show how window services can:

• Map a permanent object that has no scroll area
• Map a permanent object that has a scroll area
• Map a temporary object
• Map an object to multiple windows
• Map multiple objects

Example 1 - Mapping a Permanent Object that has no Scroll Area
If a permanent object has no scroll area, window services maps the object from
DASD directly to your window. In this example, your window provides a view of the
first and second blocks of an object.

window

your address
space

1st block
f-------

2nd block

~

,,"'..,..----_ ...

"

permanent object
on DASD

Figure 14-2. Mapping a Permanent Object That Has No Scroll Area

Chapter 14. Window Services 14-3

Example 2 - Mapping a Permanent Object that"hasa ScroU Area"
If the object has a scroll area, window services. maps the object from DASD to the
scroll area. Window services then maps th.eblocks that you wish to view from the
scroll area to your window.· In this 'example, your window provides a view of the
third and fourth blocks of an object.

your address
space scroll area

permanent object
onDASD

1st block ~---.....•.... _ .. _. ________ h ___ -.....~
1---------

2nd block 1-------lttL.r-.-••••• -----.--•• --

{

3rd block"' -····-r-3rdhlocl:--
window r------- 1-______ _

, 4th block ..L •••••.••• --------------_._r_~h~~~ __
"'

Figure 14-3. Mapping a Permanent Object That Has A Scroll Area

Example 3 - Mapping a Temporary Object

DIV
object

Window services uses a hiperspace as a temporary object. In this example, your
window provides a view of the first and second blocks of a temporary object.

window

your address
space temporary object

.,,
// - 1st block

-------.'
I--___ --+..L._--•.••••• - 2nd block

{
__ I~~I:~ __ - ,./ .. ······--I---;db~clc--
_. -- " 1--------

2nd block ,/ 4th block --- r-------1--------foII_if'"

/

/ . /

r---l~~;~~~~~--]

Figure 14-4. Mapping a Temporary Object

14 .. 4 Assembler Programming, Guide

Example 4 - Mapping Multiple Windows to an Object
Window services can map multiple windows to the same object. In this example,
one window provides a view of the second and third blocks of an object, and a
second window provides a view of the last block.

your address
space temporary object

1st block

~. ----_ ,,-, .. -_. __ . ~-------2nd block

{ 2nd block ~-------
fIrst 3rd block
window -------- ~-------

3rd block
~ .. -.",.,"

"
4th block

.... ~-------

second { -----,
last block \

window
...

/ / -- ",. --'-,
'\ ""'" / /

\, -.. ~-------
\

", last block
" -, -. '.

Figure 14-5. Mapping an Object To Multiple Windows

Chapter 14. Window Services 14-5

Example 5 - Mapping Multiple Objects
Window services can map multiple objects to windows in the same address space.
The objects can be temporary objects, permanent objects, ora combination of
temporary and permanent objects. In this example, one window provides a view of
the second block of a temporary object, and a second window provides a view of the
fourth and fifth blocks of a permanent object.

temporary object

1st block
r--.------

// 2nd block
/ ,r--------

/ / 3rd block
, 11--____ --

your address
space

"
/ ""/ 4th block r--------

,,/ i
i

"
/ /

:
...+------1 •.... ,_ .. ,' ,/

first { /
window 2nd block •........ _._,/

/ /

/ /

r--~~~;~~~~~--J

scroll area Permanent object
on DASD

1st block
'--"" ~ ~ ----

Figure 14-6. Mapping Multiple Objects

Access to Permanent Data Objects
When you have access to a permanent data object, you can:

DIV
object

• View the object through one or more windows - Depending on the object size
and the window size, a single window can view all or part of a permanent
object. If you define multiple windows, each window can view a different part of
the object. For example, one window might view the first block of the permanent
object and another window might view the second block. You can also have
several windows view the same part of the object or have views in multiple
windows overlap. For example, one window might view the first and second
blocks of a data object while another window views the second and third blocks.

• Change data that appears in a window - You can examine or change data that
is in a window by using the same instructions you use to examine or change any

14-6 Assembler Programming Guide

other data in your program's storage. These changes do not alter the object on
DASD or in the scroll area.

• Save interim changes In a scroll area - After changing data in a window, you
can have window services save the changed blocks in a scroll area, if you have
requested one. Window services replaces blocks in the scroll area with
corresponding changed blocks from the window. Saving changes in the scroll
area does not alter the object on DASD or alter data in the window.

• Refresh a window or the scroll area - After you change data in a window or
save changes in the scroll area, you may discover that you no longer need
those changes. In that case, you can have window services refresh the changed
data. To refresh the window or the scroll area, window services replaces
changed data with data from the object as it appears on DASD.

• Replace the view In a window - After you finish using data that's in a window,
you can have window services replace the view in the window with a different
view of the object. For example, if you are viewing the third, fourth, and fifth
blocks of an object and are finished with those blocks, you might have window
services replace that view with a view of the sixth, seventh, and eighth blocks.

• Update the object on DASD - If you have changes available in a window or in
the scroll area, you can save the changes on DASD. Window services replaces
blocks on DASD with corresponding changed blocks from the window and the
scroll area. Updating an object on DASD does not alter data in the window or in
the scroll area.

Access to Temporary Data Objects
When you have access to a temporary data object, you can:

• View the object through one or more windows - Depending on the object size
and the window size, a single window can view a/l or part of a temporary object.
If you define multiple windows, each window can view a different part of the
object. For example, one window might view the first block of the temporary
object and another window might view the second block. Unlike a permanent
object, however, you cannot define multiple windows that have overlapping
views of a temporary object.

• Change data that appears in a window - This function is the same for a
temporary object as it is for a permanent object: you can examine or change
data that is in a window by using the same instructions you use to examine or
change any other data in your address space. These changes do not alter the
object on DASD or in the scroll area.

• Update the temporary object - After you have changed data in a window, you
can have window services update the object with those changes. Window
services replaces blocks in the object with corresponding changed blocks from
the window. The data in the window remains as it was.

• Refresh a window or the object - After you change data in a window or save
changes in the object, you may discover that you no longer need those changes.
In that case, you can have window services refresh the changed data. To
refresh the window or the object, window services replaces changed data with
bi nary zeroes.

• Change the view in a wi~dow - After you finish using data that's in a window,
you can have window se'rvices replace the view in the window with a different
view of the object. For example, if you are viewing the third, fourth, and fifth

Chapter 14. Window Services 14-7

blocks of an object and are finished with those blocks, you might have window
services replace that view with a view of the sixth, seventh, and eighth blocks.

Using Window Services
To use, create, or update a data object, you call a series of programs that window
services provides. These programs enable you to:

• Access an existing object, create and save a new permanent object, or create a
temporary object

• Obtain a scroll area where you can make interim changes to a permanent object
• Define windows and establish views of an object in those windows
• Change or terminate the view in a window
• Update a scroll area or a temporary object with changes you have made in a

window
• Refresh changes that you no longer need in a window or a scroll area
• Update a permanent object on DASD with changes that are in a window or a

scroll area
• Terminate access to an object

The window services programs that you call and the sequence in which you call
them depends on your use of the data object. For descriptions of the window
services, see Assembler Programming Reference. For an example of invoking
window services from an assembler language program, see "Window Services
Coding Example" on page 15-15.

The first step in using any data object is to gain access to the object. To gain
access, you call CSRIDAC. The object can be an existing permanent object, or a
new permanent or temporary object you want to create. For a permanent object,
you can request an optional scroll area. A scroll area enables you to make interim
changes to an object's data without affecting the data on DASD. When CSRIDAC
grants access, it provides an object identifier that identifies the object. You use that
identifier to identify the object when you request other services from window service
programs.

After obtaining access to an object, you must define one or more windows and
establish views of the object in those windows. To establish a view of an object, you
tell window services which blocks you want to view and in which windows. You can
view multiple objects and multiple parts of each object at the same time. To define
windows and establish views, you call CSRVIEW or CSREVW. After establishing a
view, you can examine or change data that is in the window using the same
instructions you use to examine or change other data in your program's storage.

After making changes to the part of an object that is in a window, you will.probably
want to save those changes. How you save changes depends on whether the object
is permanent, is tempbrary, or has a scroll area.

If the object is permanent and has a scroll area, you can save changes in the scroll
area without affecting the object on DASD. Later, you can update the object on
DASD with changes saved in the scroll area. If the object is permanent and has no
scroll area, you can update it on DASD with changes that are in a window. If the
object is temporary, you can update it with changes that are in a window. To update
an object on DASD, you call CSRSAVE. To update a temporary object or a scroll
area, you call CSRSCOT.

14-8 Assembler Programming Guide

After making changes in a window and possibly saving them in ascro/l area or
using them to update a temporary object, you might decide that you no longer need
those changes. In this case, you can refresh the changed blocks. After refreshing a
block of a permanent object or a scroll area to which a window is mapped, the
refreshed block contains the same data that the corresponding block contains on
DASD. After refreshing a block of a temporary object to which a window is mapped,
the block contains binary zeroes. To refresh a changed block, you call CSRREFR.

After finishing with a view in a window, you can use the same window to view a
different part of the object or to view a different object. Before changing the view in
a window, you must terminate the current view. If you plan to view a different part
of the same object, you terminate the current view by calling CSRVIEW. If you plan
to view a different object or will not reuse the window, you can terminate the view
by calling CSRIDAC.

When you finishing using a data object, you must terminate access to the object by
calling CSRIDAC.

Obtaining Access to a Data Object
To obtain access to a permanent or temporary data object, call CSRIDAC. Indicate
that you want to access an object, by specifying BEGIN as the value for op_type.

Identifying the Object
You must identify the data object you wish to access. How you identify the object
depends on whether the object is permanent or temporary.

Permanent Object: For a permanent object, object_name and object_type work
together. For object_name you have a choice: specify either the data set name of
the object or the DDNAME to which the object is allocated. The object_type
parameter must then indicate whether object_name is a DDNAME or a data set
name:

• If object_name is a DDNAME, specify DDNAME as the value for object_type.
• If objecCname is a data set name, specify DSNAME as the value for object_type.

If you specify DSNAME for object_type, indicate whether the object already exists or
whether window services is to create it:

• If the object already exists, specify OLD as the value for object_state.
• If window services is to create the object, specify NEW as the value for

object_state.

Requirement for NEW objects ------------------,

If you specify NEW as the value for objecCstate, your system must incJude
MVS/Data Facility Product (DFP) 3.1.0 and SMS must be active.

Temporary Object: To identify a temporary object, specify TEMPSPACE as the
value for object_type. Window services assumes that a temporary object is new and
must be created. Therefore, window services ignores the value assigned to
object_state.

Chapter 1~. Window Services 14-9

Specifying the Object's Size
If the object is permanent and new or is temporary, you must tell window services
the size of the object. You specify object size through the object_size parameter.
The size specified becomes the maximum size that window services will allow for
that object. You express the size as the number of 4096-byte blocks needed to
contain the object. If the number of blocks needed to contain the object is not an
exact multiple of 4096, round object_size to the next whole number. For example:

• If the object size is to be less than 4097 bytes, specify 1.
• If the object size is 5000 bytes, specify 2.
• If the object size is 410,000 bytes, specify 101.

Specifying the Type of Access
For an existing (OLD) permanent object you must specify how you intend to access
the object. You specify your intentions through the access_mode parameter:

• If you intend to only read the object, specify READ for access_mode.
• If you intend to update the object, specify UPDATE for access_mode.

For a new permanent object and for a temporary object, window services assumes
you will update the object. In these cases, window services ignores the value
assigned to access_mode.

Obtaining a Scroll Area
A scroll area is storage that window services provides for your use. This storage is
outside your program's storage area and is accessible only through window
services.

For a permanent object, a scroll area is optional. A scroll area allows you to make
interim changes to a permanent object without altering the object on DASD. Later, if
you want, you can update the object on DASD with the interim changes. A scroll
area might also improve performance when your program accesses a permanent
object.

For a temporary object, the scroll area is the object. Therefore, for a temporary
object, a scroll area is required.

To indicate whether you want a scroll area, provide the appropriate value for
scroll_area:

• To request a scroll area, supply a value of YES. YES is required for a temporary
object.

• To indicate you do not want a scroll area, supply a value of NO.

Defining a View of a Data Object
To view all or part of a data object, you must provide window services with
information about the object and how you want to view it. You must provide window
services with the following information:

• The object identifier
• Where the window is in your address space
• Window disposition - that is, whether window services is to initialize the

window the first time you reference data in the window
• Whether you intend to reference blocks of data sequentially or randomly
• The blocks of data that you want to view
• Whether you want to extend the size of the object

14-10 Assembler Programming Guide

To define a view of a data object, call CSRVIEW or CSREVW. To determine which
service you should use, see "Defining the Expected Reference Pattern" on
page 14-12. Specify BEGIN as the value for operation_type.

Identifying the Data Object
To identify the object you want to view, specify the object identifier as the value for
object_id. Use the same value CSRIDAC returned in object_id when you requested
access to the object.

Identifying a Window
You must identify the window through which you will view the object. The window is
a virtual storage area in your address space. You are responsible for obtaining the
storage, which must meet the following requirements:

• The storage must not be page fixed.
• Pages in the window must not be page loaded (must not be loaded by the

PGLOAD macro).
• The storage must start on a 4096 byte boundary and must be a multiple of 4096

bytes in length.

To identify the window, use the window _name parameter. The value supplied for
window_name must be the symbolic name you assigned to the window storage area
in your program.

Defining a window in this way provides one window through which you can view the
object. To define multiple windows that provide simultaneous views of different
parts of the object, see "Defining Multiple Views of an Object" on page 14-14.

Defining the Disposition of a Window's Contents
You must specify whether window services it is to replace or retain the window
contents. You do this by selecting either the replace or retain option. This option
determines how window services handles the data that is in the window the first
time you reference the data. You select the option by supplying a value of
REPLACE or RETAIN for disposition.

Replace Option: If you specify the replace option, the first time you reference a
block to which a window is mapped, window services replaces the data in the
window with corresponding data from the object. For example, assume you have
requested a view of the first block of a permanent object and hav~ specified the
replace option. The first time you reference the window, window services replaces
the data in the window with the first 4096 bytes (the first block) from the object.

If you've selected the replace option and then call CSRSAVE to update a permanent
object, or call CSRSCOT to update a scroll area, or call CSRSCOT to update a
temporary object, window services updates only the specified blocks that have
changed and to which a window is mapped.

Select the replace option when you want to examine, use, or change data that's
currently in an object.

Retain Option: If you select the retain option, window services retains data that is
in the window. When you reference a block in the window the first time, the block
contains the same data it contained before the reference.

When you select the retain option, window services considers all of the data in the
window as changed. Therefore, if you call CSRSCOT to update a scroll area or a

Chapter 14. Window Services 14-11

temporary object, or call CSRSAVE to update a permanent object, window services
updates all of the specified blocks to which a window or scroll area are mapped.

Select the retain option when you want to replace data inan object without regard
for the data that it currently contains. You also use the retain option when you want
to initialize a new object.

Defining the Expected Reference Pattern
You must tell window services whether you intend to reference the blocks of an
object sequentially or randomly. An intention to access randomly tells window
services to transfer one block (4096 bytes) of data into the window at a time. An
intention to access sequentially tells window services to transfer more than one
block into your window at one time. The performance gain is in having blocks of
data already in central storage at the time the program needs to reference them.
You specify the intent on either CSRVIEW or CSREVW, two services that differ on
how to specify sequential access.

• CSRVIEW allows you a choice between random or sequential access.

If you specify RANDOM, when you reference data that is not in your window,
window services brings in one block - the one that contains the data your
program references.

If you specify SEQ for sequential, when you reference data that is not in your
window, window services brings in up to 16 blocks - the one that contains the
data your program requests, plus the next 15 consecutive blocks. The number
of consecutive blocks varies, depending on the size of the window and
availability of central storage. Use CSRVIEW if you are going to do one of the
following:

Access randomly
- Access sequentially, and you are satisfied with a maximum of 16 blocks

coming into the window at a time.

• CSREVW is for sequential access only. It allows you to specify the maximum
number of consecutive blocks that window services brings into the window at
one time. The number ranges from one block through 256 blocks. Use CSREVW
if you want fewer than 16 blocks or more than 16 blocks at one time. Programs
that benefit from having more than 16 blocks come into a window at one time
reference arrays that are greater than one megabyte. Often these programs
perform significant amounts of numerically intensive computations.

To specify the reference pattern on CSRVIEW, supply a value of SEQ or RANDOM
for usage.

To specify the reference pattern on CSREVW, supply a number from 0 through 255
for pfcount. pfcount represents the number of blocks window services will bring into
the window, in addition to the one that it always brings in.

Note that window services brings in multiple pages differently depending on
whether your object is permanent or temporary and whether the system has moved
pages of your data from central storage to make those pages of central available for
other programs. The rule is that SEQ on CSRVIEW and pfcount on CSREVW apply
to:

• A permanent object when movement is from the object on DASD to central
storage

14-12 Assembler Programming Guide

• A temporary object when your program has scrolled the data out and references
it again.

SEQ and pfcount do not apply after the system has moved data (either changed or
unchanged) to auxiliary or expanded storage, and your program again references it,
requiring the the system to bring the data back to central storage.

End the view whether established with CSRVIEW or CSREVW, with CSRVIEW END.

Identifying the Blocks You Want to View
To identify the blocks of data you want to view, use offset and span. The values you
assign to offset and span, together, define a contiguous string of blocks that you
want to view:

• The value assigned to offset specifies the relative block at which to start the
view. An offset of 0 means the first block; an offset of 1 means the second block;
an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to view. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it means the view is to start at the specified offset and extend
until the currently defined end of the object.

The following table shows examples of several offset and span combinations and
the resulting view in the window.

Offset Span Resulting view In the window

0 0 view the entire object
0 1 view the first block only
1 0 view the second block through the last block
1 1 view the second block only
2 2 view the third and fourth blocks only

Extending the Size of a Data Object
You can use offset and span to extend the size of an object up to the previously
defined maximum size for the object. You can extend the size of either permanent
objects or temporary objects. For objects created through CSRIDAC, the value
assigned to object_size defines the maximum allowable size. When you call
CSRIDAC to gain access to an object, CSRIDAC returns a value in high_offset that
defines the current size of the object.

For example, assume you have access to a permanent object whose maximum
allowable size is four 4096-byte blocks. The object is currently two blocks long. If
you define a window and specify an offset of 1 and a span of 2, the window contains
a view of the second block and a view of a third block which does not yet exist in the
permanent object. When you reference the window, the content of the second block,
as seen in the window, depends on the disposition you selected, replace or retain.
The third block, as seen in the window, initially contains binary zeroes. If you later
call CSRSAVE to update the permanent object with changes from the window,
window services extends the size of the permanent object to three blocks by
appending the new block of data to the object.

Chapter 14. Window Services 14-13

Defining Multiple Views of an Object
You might need to view different parts of an object at the same time. For a
permanent object, you can define windows that have non-overlapping views as well
as windows that have overlapping views. For a temporary object, you can define
windows that have only non-overlapping views.

• A non-overlapping view means that no two windows view the same block of the
object. For example, a view is non-overlapping when one window views the
first and second blocks of an object and another window views the ninth and
tenth blocks of the same object. Neither window views a common block.

• An overlapping view means that two or more windows view the same block of
the object. For example, the view overlaps when the second window in the
previous example views the second and third blocks. Both windows view a
common block, the second block.

Non-Overlapping Views

Overlapping Views

To define multiple windows that have a non-overlapping view, call CSRIDAC once
to obtain the object identifier. Then call CSRVIEW or CSREVW once to define each
window. On each call, specify BEGIN to define the type of operation, and specify the
same object identifier for object_id, and a different value for window _name. Define
each window's view by specifying values for offset and span that create windows
with non-overlapping views.

To define multiple windows that have an overlapping view of a permanent object,
define each window as though it were viewing a different object. That is, define
each window under a different object identifier. To obtain the object identifiers, call
CSRIDAC once for each identifier you need. Only one of the calls to CSRIDAC can
specify an access mode of UPDATE. Other calls to CSRIDAC must specify an
access mode of READ.

After calling CSRIDAC, call CSRVIEW or CSREVW once to define each window. On
each call, specify BEGIN to define the operation, and specify a different object
identifier for object_id, and a different value for window_name. Define each
window's view by specifying values for offset and span that create windows with the
required overlapping views.

To define multiple windows that have an overlapping view, define each window as
though it were viewing a different object. That is, define each window under a
different object identifier. To obtain the object identifiers, call CSRIDAC once for
each identifier you need. Then call CSRVIEW or CSREVW once to define each
window. On each call, specify the value BEGIN for the operation type, and specify a
different object identifier for object_id, and a different value for window_name.
Define each window's view by specifying values for offset and span that create
windows with the required overlapping views.

Saving Interim Changes to a Permanent Data Object
Window services allows you to save interim changes you make to a permanent
object. You must have previously requested a scroll area for the object, however.
You request a scroll area when you call CSRIDAC to gain access to the object.
Window services saves changes by replacing blocks in the scroll area with
corresponding changed blocks from a window. Saving changes in the scroll area
does not alter the object on DASD.

14-14 Assembler Programming Guide

After you have a view of the object and have made changes in the window, you can
save those changes in the scroll area. To save changes in the scroll area, call
CSRSCOT. To identify the object, you must supply an object identifier for objecCid.
The value supplied for objecCid must be the same value CSRIDAC returned in
object_id when you requested access to the object.

To identify the blocks in the object that you want to update, use offset and span. The
values assigned to offset and span, together, define a contiguous string of blocks in
the object:

• The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services save all changed blocks to
which a wi ndow is mapped.

Window services replaces each block within the range specified by offset and span
providing the block has changed and a window is mapped to the block.

Updating a Temporary Data Object
After making changes in a window to a temporary object, you can update the object
with those changes. You must identify the object and must specify the range of
blocks that you want to update. To be updated, a block must be mapped to a
window and must contain changes in the window. Window services replaces each
block within the specified range with the corresponding changed block from a
window.

To update a temporary object, call CSRSCOT. To identify the object, you must
supply an object identifier for object_id. The value you supply for objecCid must be
the same value CSRIDAC returned in object_id when you requested access to the
object.

To identify the blocks in the object that you want to update, use offset and span. The
values assigned to offset and span, together, define a contiguous string of blocks in
the object:

• The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; a offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services update all changed blocks to
which a window is mapped.

Window services replaces each block within the range specified by offset and span
providing the block has ch~nged and a window is mapped to the block.

Refreshing Changed Data
You can refresh blocks that are mapped to either a temporary object or to a
permanent object. You must identify the object and specify the range of blocks you
want to refresh. When you refresh blocks mapped to a temporary object, window
services replaces, with binary zeros, all ~~anged blocks that are mapped to the
window. When you refresh blocks mapped to a permanent object, window services

Chapter 14. Window Services 14-15

replaces specified changed blocks in a window or in the scroll area with
corresponding blocks from the object on DASD.

To refresh an object, call CSRREFR. To identify the object, you must supply an
object identifier for object_id. The value supplied for object_id must be the same
value CSRIDAC returned in object_id when you requested access to the object.

To identify the blocks of the object that you want to refresh, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services refresh all changed blocks to
which a window is mapped, or refresh all changed blocks that have been saved
ina scroll area.

Window services refreshes each block within the range specified by offset and span
providing the block has changed and a window or a scroll area is mapped to the
block. At the completion of the refresh operation, blocks from a permanent object
that have been refreshed appear the same as the corresponding blocks on DASD.
Refreshed blocks from a temporary object contain binary zeroes.

Updating a Permanent Object on DASD
You can update a permanent object on DASD with changes that appear in a window
or in the object's scroll area. You must identify the object and specify the range of
blocks that you want to update.

To update an object, call CSRSAVE. To identify the object, you must supply an
object identifier for object_id. The value you provide for object_id must be the same
value CSRIDAC returned when you requested access to the object.

To identify the blocks of the object that you want to update, use offset and span. The
values assigned to offset and span, together, define a contiguous string of blocks in
the object:

• The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services update all changed blocks to
which a window is mapped, or update all changed blocks that have been saved
in the scroll area.

When There is a Scroll Area
When the object has a scroll area, window services first updates blocks in the scroll
area with corresponding blocks from windows. To be updated, a scroll area block
must be within the specified range, a window must be mapped to the block, and the
window must contain changes. Window services next updates blocks on DASD with
corresponding blocks from the scroll area. To be updated, a DASD block must be
within the specified range and have changes in the scroll area. Blocks in the
window remain unchanged.

14-16 Assembler Programming Guide

When There is No Scroll Area
When there is no scroll area, window services updates blocks of the object on DASD
with corresponding blocks from a window. To be updated, a DASD block must be
within the specified range, mapped to a window, and have changes in the window.
Blocks in the window remain unchanged.

Changing a View in a Window
To change the view in a window so you can view a different part of the same object
or view a different object, you must first terminate the current view. To terminate
the view, whether the view was established by CSRVIEW or CSREVW, call CSRVIEW
and supply a value of END for operation_type. You must also identify the object,
identify the window, identify the blocks you are currently viewing, and specify a
disposition for the data that is in the window.

To identify the object, supply an object identifier for object_id. The value supplied
for object_id must be the value you supplied when you established the view.

To identify the window, supply the window name for window_name. The value
supplied for window_name must be the same value you supplied when you
established the view.

To identify the blocks you are currently viewing, supply values for offset and span.
The values you supply must be the same values you supplied for offset and span
when you established the view.

To specify a disposition for the data you are currently viewing, supply a value for
disposition. The value determines what data will be in the window after the CALL to
CSRVIEW completes.

• For a permanent object that has no scroll area:

To retain the data that's currently in the window, supply a value of RETAIN
for disposition.

To discard the data that's currently in the window, supply a value of
REPLACE for disposition. After the operation completes, the window
contents are unpredictable.

For example, assume that a window is mapped to one block of a permanent
object that has no scroll area. The window contains the character string
AAA A and the block to which the window is mapped contains BB8 B. If
you specify a value of RETAIN, upon completion of the CALL, the window still
contains AAA A, and the mapped block contains BBB 8. If you specify a
value of REPLACE, upon completion of the CALL, the window contents are
unpredictable and the mapped block still contains BBB B.

• For a permanent object that has a scroll area or for a temporary object:

To retain the data that's currently in the window, supply a value of RETAIN
for disposition. CSRVIEW or CSREVW also updates the mapped blocks of
the scroll area or temporary object so that they contain the same data as
the window.

To discard the data that's currently in the window, supply a value of
REPLACE for disposition. Upon completion of the operation, the window
contents are unpredictable.

For example, assume that a window is mapped to one block of a temporary
object. The window contains the character string AAA A and the block to

Chapter 14. Window Services 14-17

which the window is mapped contains BBB B. If you specify a value of
RETAIN, upon completion of the CALL, the window still contains AAA A and
the mapped block of the object also contains AAA A. If you specify a value of
REPLACE, upon completion of the CALL, the window contents are unpredictable
and the mapped block still contains BBB B.

CSRVIEW ignores the values you assign to the other parameters.

When you terminate the view of an object, the type of object that is mapped and the
value you specify for disposition determine whether CSRVIEW updates the mapped
blocks. CSRVIEW updates the mapped blocks of a temporary object or a permanent
object's scroll area if you specify a disposition of RETAIN. In all other cases, to
update the mapped blocks, call the appropriate service before terminating the view:

• To update a temporary object, or to update the scroll area of a permanent
object, call CSRSCOT.

• To update an object on DASD, call CSRSAVE.

Upon successful completion of the CSRVIEW operation, the content of the window
depends on the value specified for disposition. The window is no longer mapped to
a scroll area or to an object, however. The storage used for the window is available
for other use, perhaps to use as a window for a different part of the same object or
to use as a window for a different object.

Terminating Access to a Data Object
When you finish using a data object, you must terminate access to the object. When
you terminate access, window services returns to the system any virtual storage it
obtained for the object: storage for a temporary objector storage for a scroll area.
If the object is temporary, window services deletes the object. If the object is
permanent and window services dynamically allocated the data set when you
requested access to the object, window services dynamically unallocates the data
set. Your window is no longer mapped to the object or to a scroll area.

When you terminate access to a permanent object, window services does not update
the object on DASD with changes that are in a window or the scroll area. To update
the object, call CSRSAVE before terminating access to the object.

To terminate access to an object, call CSRIDAC and supply a value of END for
operation_type. To identify the object, supply an object identifier for object_id. The
value you supply for object_id must be the same value CSRIDAC returned when you
obtai ned access to the obj ect.

Upon successful completion of the call, the storage used for the window is available
for other use, perhaps as a window for viewing a different part of the same object or
to use as a window for viewing a different object.

Link-editing Callable Window Services
Any program that invokes window services must be link-edited with an
IBM-provided linkage-assist routine. The linkage-assist routine provides the logic
needed to locate and invoke the callable services. The linkage-assist routine
resides in SYS1.CSSLIB. The following example shows the JCL needed to link-edit
a program with the linkage-assist routine.

14-18 Assembler Programming Guide

IILINKJOB
II
IILINKSTPl

JOB 'accountinfo' ,'name',CLASS=x,
MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K

EXEC PGM=HEWLH096,PARM='LIST,LET,XREF,REFR,RENT,NCAL,
II
IISYSPRINT
IISYSLMOD
IISYSUTl
IISYSLIN
. INCLUDE

INCLUDE
NAME

IIOBJDDl
IIOBJDD2

SIZE=(1800K,128K),
DD SYSOUT=x
DD DSNAME=userid.LOADLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(TRK,(5,2»
DD *
OBJOD1(userpgm)
OBJDD2(CSRCPOOL)
userpgm(R)
DD DSN=userid.OBJLIB,DISP=SHR
DO OSN=SYSl.CSSLIB,DISP=SHR

The example JCL assumes that the program you are link-editing is reentrant.

Window Services Coding Example
This example shows the code needed to invoke window services from an assembler
language program. Use this example to supplement and reinforce information that
is presented elsewhere in this chapter.

EXAMPLEI CSECT

*

*
*
*

STM 14,12,12(13)

LR 12,15
USING EXAMPlEl,12

Save caller's registers in caller's
save area
Set up R12 as the base register

**
* Set up save area *
**

LA 15,SAVEAREA Load address of save area into R15
ST 13,4(15) Save address of caller's save area

* into this program's save area
ST 15,8(13) Save address of this program's save

* area into caller's save area
LR 13,15 Load address of save area into R13

*
* Program continues
*
**
* Call CSRIDAC to identify and access an old data object, request *
* a scroll area, and get update access. *
**

CALL CSRIDAC, (OPBEGIN,DDNAME,OBJNAME,YES,OLD,ACCMODE, *

*
*
*

OBJSIZE,OBJIDl,LSIZE,RC,RSN)

Program continues

**
* GETMAIN 50 pages of virtual storage to use as a window *
**

*

*

GETMAIN RU,LV=GSIZE,BNDRY=PAGE,A=WINDWPTR Getmain a
window of 50 pages

L R3,WINDWPTR Move the address of the window into
register 3

USING WINDOW,R3 Sets up WINDOW as based off of reg 3
**
* Call CSRVIEW to set up a map of 50 blocks between the getmained *
* virtual storage and the data object. *
**

*

LA R4,ZERO
ST R4,OFFSETl

LOAD A ZERO INTO REGISTER 4
Initialize offset to 0 to indicate
the beginning of the data object

CALL CSRVIEW,(OPBEGIN,OBJIDl,OFFSETl,SPANl,WINDOW,ACCSEQ, *

Chapter 14. Window Services 14-19

REPLACE,RC,RSN)
*
*
*

Program continues .•.•
write data in the window

*
**
* Call CSRSAVE to write data in the window to the first 50 blocks *
* of the data object *
**

*
*
*

CALL CSRSAVE,(OBJID1,OFFSET1,SPAN1,LSIZE,RC,RSN)

Program continues •...
change data in the window

*
**
* Call CSRSCOT to write new data in the window to the first 50
* blocks of the scroll area

*
*

**

*
*
*

CALL CSRSCOT,(OBJID1,OFFSET1.SPAN1.RC,RSN)

Program continues
change data in the window

*
**
* Call CSRREFR to refresh the window. that is, get back the last *
* SAVEd data in the data obj ect *
**

*
*
*

CALL CSRREFR,(OBJID1,OFFSET1,SPAN1,RC,RSN)

Program continues •...

**
* Call CSRIDAC to unidentify and unaccess the data object *
**

CALL CSRIDAC.(OPEND,DDNAME,OBJNAME,YES,OLD,ACCMODE,
OBJSIZE,OBJID1,LSIZE.RC.RSN)

*
*
*
ZERO
GSIZE

BR 14
EQU 0
EQU 204800
DS 00

OPBEGIN DC CL5'BEGIN'
OPEND DC CL4'END '
DDNAME DC CL7'DDNAME '
OBJNAME DC CL8'MYDDNAME'
YES DC CL3'YES'
OLD DC CL3'OLD'
ACCSEQ DC CL4'SEQ '
ACCMODE DC CL6 'UPDATE ,
REPLACE DC CL7'REPLACE'
OBJSIZE DC F'524288'
SPAN1 DC F'50'
OBJID1 OS CL8
LSIZE OS F
OFFSETl OS F
RC OS F
RSN OS F
SAVEAREA OS 18F
WINOWPTR OS F
WINDOW OSECT

OS CL204800
END

14·20 Assembler Programming Guide

Program continues •.•.

End of EXAMPLE1
Constant zero
Getmain a window of 50 pages (blocks)

Operation type BEGIN
Operation type END
Object type DDNAME
DDNAME of data object
Yes for a scroll area
Data object already exists
Sequential access
Update mode
Replace data in window on a map
Size of data object is 2 gig
Set up a span of 50 blocks
Object identifier
Logical size of data object
Offset into data object
Return code from service
Reason code from service
This program's save area
Address of getmained window
Mapping of window to view the
object data

*

Chapter 15. Processor Storage Management

The system administers the use of processor storage (that is, central and expanded
storage) and it directs the movement of virtual pages between auxiliary, expanded,
and central storage in page size (4096-byte or 4K-byte) blocks. It makes all
addressable virtual storage in each address space and data space or hiperspace
appear as central storage. Virtual pages necessary for program execution are kept
in processor storage as long as:

• The program references the pages frequently enough
• Other programs do not need that same central storage.

The system performs the paging I/O necessary to transfer pages in and out of
central storage and also provides DASD allocation and management for paging 110
space on auxiliary storage.

The system assigns real frames upon request from a pool of available real frames,
thereby associating virtual addresses with real addresses. Frames are repossessed
upon termination of use, when freed by a user, when a user is swapped-out, or
when needed to replenish the available pool. While a virtual page occupies a real
frame, the page is considered pageable unless specified otherwise as a system
page that must be resident in central storage. The system also allocates virtual
equals central (V = R) regions upon request by those programs that cannot tolerate
dynamic relocation. Such a region is allocated contiguously from a predefined area
of central storage and is non-pageable. Programs in this region do run in dynamic
address translation (OAT) mode, although real and virtual addresses are equivalent.

This chapter describes how you can:

• Free the virtual storage in your address space and the virtual storage in any
data space that you might have access to

FREE MAIN and STORAGE RELEASE frees specific portions of virtual
storage in address spaces.
DSPSERV DELETE frees all of the virtual storage in a data space or
hiperspace.

• Release the central and expanded storage that actually holds the data that your
program has in virtual storage.

PGRLSE or PGSER RELEASE releases specified portions of virtual storage
contents of an add ress space.
DSPSERV RELEASE releases specified portions of virtual storage contents
of a data space or hiperspace.

• Request that the system pre-load or page out central storage

© Copyright IBM Corp. 1988. 1991

PGLOAD or PGSER LOAD loads specified virtual storage areas of an
address space into central storage.
PGOUT or PGSER OUT pages out specified vi rtual storage areas of an
address space from central storage.
DSPSERV LOAD loads specified virtual storage areas of a data space into
central storage.
DSPSERV OUT pages out specified virtual storage areas of a data space
from central storage.

15-1

• Request that the system preload multiple pages on a page fault.

REFPAT causes the system to preload pages according to a program's
reference pattern. REFPAT is intended for numerically intensive programs.

Freeing Virtual Storage
All storage obtained for your program by GETMAIN, STORAGE OBTAIN, or
DSPSERV CREATE is automatically freed by the system when the job step
terminates. Freeing storage in this manner requires no action on your part.

FREEMAIN or STORAGE RELEASE perform the equivalent of a page release for any
resulting free page and the page is no longer available to the issuer. DSPSERV
DELETE performs the same action for a data space that FREE MAIN and STORAGE
RELEASE do for address space virtual storage except that for a data space or
hiperspace, all of the storage is released.

Releasing Storage

address 1
(low)

When your program is finished using an area of virtual storage, it can release the
storage to make the central, expanded, or auxiliary storage that actually holds the
data available for other uses. The decision to release the storage depends on the
size of the storage and when the storage will be used again:

• For large areas (over 100 pages, for example) that will not be used for five or
more seconds of processor time, consider releasing the storage. If you do not
release those pages after you are finished using them:

Your program might be using central storage that could better be used for
other purposes.

Your program might have delays later when the system moves your pages
from central storage to expanded or auxiliary storage.

• Generally, for smaller amounts of storage that will be used again in five
seconds or less, do not release the storage.

Note that releasing storage does not free the vi rtual storage.

When releasing storage for an address space, use PGRLSE or PGSER with the
RELEASE parameter. As shown in Figure 15-1, if the specified addresses are not
on page boundaries, the low address is rounded up and the high address is rounded
down; then, the pages contained between the addresses are released.

1 page

Released virtual storage

address 2
(high)

Figure 15-1. Releasing Virtual Storage

15·2 Assembler Programming Guide

When releasing storage for a data space or hiperspace, use the DSPSERV RELEASE
macro to release the central, expanded or auxiliary storage that actually holds the
data. The starting address must be on a 4K-byte boundary and you can release data
space storage only in increments of 4K bytes.

For both address spaces and data spaces, the virtual space remains, but its
contents are discarded. When the using program can discard the contents of a large
virtual area (one or more complete pages) and reuse the virtual space without the
necessity of paging operations, the page release function may improve operating
efficiency.

Loading/Paging Out Virtual Storage Areas
The PGLOAD, PGSER LOAD, and DSPSERV LOAD essentially provide a page-ahead
function. By loading specified address space and data space areas into central
storage, you can attempt to ensure that certain pages will be in central storage
when needed. Page faults can still occur, however, because these pages may be
paged out if not referenced soon enough.

Loading and paging for address spaces: With the page load function, you have the
option of specifying that the contents of the virtual area is to remain intact or be
released. If you specify RELEASE = Y with PGLOAD or PGSER LOAD, the current
contents of entire virtual 4K pages to be brought in may be discarded and new real
frames assigned without page-in operations; if you specify RELEASE = N, the
contents are to remain intact and be used later. If you specify RELEASE = Y, the
page release function will be performed before the page load function. That is, no
page-in is needed for areas defining entire virtual pages since the contents of those
pages are expendable.

Loading and paging for data spaces: DSPSERV LOAD requests the starting address
of the data space area to be loaded and the number of pages that the system is to
load. It does not offer a RELEASE = Y or a RELEASE = N function.

PGOUT, PGSER OUT, and DSPSERV OUT initiate page-out operations for specified
virtual areas that are in central storage. For address spaces, the real frames will be
made available for reuse upon completion of the page-out operation unless you
specify the KEEPREL parameter in the macro. An area that does not encompass
one or more complete pages will be copied to auxiliary storage, but the real frames
will not be freed. DSPSERV LOAD does not have the KEEPREL function.

The proper use of the page load and page out functions tend to decrease system
overhead by helping the system keep pages currently in use, or soon to be in use, in
central storage. Improper use of the page load and page out functions can lead to
excessive system overhead. An example of the misuse of the page load function is
to load ten pages and then use only two.

For more information on DSPSERV LOAD and DSPSERV OUT, see "Paging Data
Space Storage Areas into and out of Central Storage" on page 13-17.

Chapter 15. Processor Storage Management 15-3

Virtual Subarea List (VSL)
The virtual subarea list provides the basic input to the page service functions that
use a 24-bit interface: PGLOAD, PGRLSE, and PGOUT. The list consists of one or
more doubleword entries, each entry describing an area of virtual storage. The list
must be nonpageable and contained in the address space of the subarea to be
processed.

Each parameter list entry has the following format:

Byte

Byte 0 Flags:

o
FLAGS

Bit 0 (1)

Bit 1 (.1..)
Bit 2 (.. 1)
Bit 3 (... 1)
Bit 4 (.... 1...)
BitS (..... 1 ..)
Bit 6 (...... 1.)
Bit 7 (....... 1)

Start Address:

1 2
START ADDRESS

3 4
FLAGS

S 6 7
END ADDRESS + 1

This bit indicates that bytes 1-3 are a chain pOinter to the next VSL entry
to be processed; bytes 4-7 are ignored. This feature allows several
parameter lists to be chained as a single logical parameter list.
Reserved.
Reserved.
PGLOAD is to be performed; reserved, set by macro.
PGRLSE is to be performed; reserved, set by macro.
Reserved.
Reserved.
Reserved.

The virtual address of the origin of the virtual area to be processed.

Byte 4 Flags:

Bit 0 (1..)

Bit 1 (.1..)
Bit 2 (.. 1)
Bit 3 (... 1)

Bit4 (.... 1 ...)
BitS (..... 1..)
Bit 6 (...... 1.)
Bit 7 (....... 1)

End Address + 1:

This flag indicates the last entry of the list. It is set in the last doubleword
entry in the list.
When this flag is set, the entry in which it is set is ignored.
Reserved.
This flag indicates that a return code of 4 was issued from a page service
function other than PGRLSE.
Reserved.
PGOUT is to be performed; reserved, set by macro.
KEEPREL option of PGOUT is to be performed; reserved, set by macro.
Reserved.

The virtual address of the byte immediately following the end of the virtual area.

15-4 Assembler Programming Guide

Page Service List (PSL)
The page services list provides the basic input to the page service function for the
PGSER macro. Specify 31-bit addresses in the PSL entries. Each PSL entry
specifies the range of addresses for which a service is to be performed or points to
the first PSL entry in a new list of concatenated PSL entries that are to be
processed. Within a PSL entry, you can also nullify a service on a range of
addresses by indicating that you do not want to perform the service for that range.

Each 12-byte PSL entry has the following form:

Bytes

0-3

Meaning

Bit 0 of byte 0 must be o. The remainder of these bytes contains the
31-bit starting address for which the page service is to be performed or
a poi nter to the next PSL.

4-7 Bit 0 of byte 4 must be o. If bytes 0-3 contain the starting address,
these bytes contain the address of the last byte for which the page
service is to be performed. If bytes 0-3 contain a pointer to the next
PSL, these bytes are reserved.

8 Flags set by the caller as follows:

Bit Meaning

o Set to 1 to indicate that this is the last PSL entry in a
concatenation of PSL entries.

1 Set to 1 to indicate that no services are to be performed for the
range of addresses specified.

2 Set to 1 to indicate that bytes 0-3 contain a pointer to the next PSL.

9-11 Set by the PGSER service routine.

Defining the Reference Pattern (REFPAT)
The REFPAT macro allows a program to define a reference pattern for a specified
area that the program is about to reference. Additionally, the program specifies
how much data it wants the system to attempt to bring into central storage on a
page fault. The system honors the request according to the availability of central
storage. By bringing in more data at a time, the system takes fewer page faults;
fewer page faults means possible improvement in performance.

Programs that benefit from REFPAT are those that reference amounts of data that
are greater than one megabyte. The program should reference the data in a
sequential manner, either forward or backward. In addition, if the program "skips
over" certain areas, and these areas are of uniform size and are repeated at regular
intervals, REFPAT might provide additional performance improvement. Although
REFPAT affects movement of pages from auxiliary and expanded storage, the
greatest gain is for movement of pages from auxiliary storage.

There are two REFPAT services:

• REFPAT INSTALL identifies the data area and the reference pattern, and
specifies the number of bytes that the system is to try to bring into central
storage at one time. These activities are called "defining the reference
pattern. "

Chapter 15. Processor Storage Management 15-5

• REFPAT REMOVE removes the definition; it tells the system that the program
has stopped using the reference pattern for the specified data area.

A program might have a number of different ways of referencing a particular area.
In this case, the program can issue multiple pairs of REFPAT INSTALL and REFPAT
REMOVE macros for that area.

Each pattern, as defined on REFPAT INSTALL, is associated with the task that
represents the caller. A task can have up to 100 reference patterns defined for
multiple data areas at one time, but cannot have more than one pattern defined for
the same area. Other tasks can specify a different reference pattern for the same
data area. REFPAT REMOVE removes the association between the pattern and the
task.

The data area can be in the primary address space or in a data space owned by a
task that was dispatched in the primary address space. If the data area is in a data
space, identify the data space through its STOKEN. You received the STOKEN
either from DSPSERV or from another program.

Although REFPAT can be used for data structures other than arrays, for simplicity,
examples in this chapter use REFPAT for an array or part of an array.

Reference pattern services for high-level language (HLL) and assembler language
programs provide function similar to what REFPAT offers. For information about
these services, see Callable Services for High-Level Languages.

How Does the System Handle the Data in an Array?
To evaluate the performance advantage REFPAT offers, you need to understand
how the system handles a range of data that a program references. Consider the
two-dimensional array in Figure 15-2 that is shown in row-major order and in order
of increasing addresses. This array has 1024 columns and 1024 rows and each
element is eight bytes in size. Each number in Figure 15-2 represents one element.
The size of the array is 1048576 elements for a total of 8388608 bytes. For simplicity,
assume the array is aligned on a page boundary. Assume, also, that the array is
not already in central storage. The program references each element in the array in
a forward direction (that is, in order of increasing addresses) starting with the first
element in the array.

~---(~--~

2 3 4

1025 1026 1027 1028

2049 2050 2051

3073

5 6 7 8 9 10 1024

2048

3072

~,--I __________ «1048576 T
Figure 15-2. Example of using REFPAT with a Large Array

15-6 Assembler Programming Guide

First, consider how the system brings data into central storage without using the
information REFPAT provides. At the first reference of the array, the system takes a
page fault and brings into central storage the page (of 4096 bytes) that contains the
first element. After the program finishes processing the 512th element (4096+8) in
the array, the system takes another page fault and brings in a second page. To
provide the data for this program, the system takes two page faults for each row.
The following linear representation shows the elements in the array and the page
faults the system takes as the program processes through the array.

1st row 2nd row 3rd row 4th row last row

~~
0 512th 1024th 104B576th

element element element

t t t t t t t t t t t t t
1 page fault each 512 elements (1 page)

By bringing in one page at a time, the system takes 2048 page faults
(8388608+4096), each page fault adding to the elapsed time of the program.

Suppose, through REFPAT, the system knew in advance that a program would be
using the array in a consistently forward direction. The system could then assume
that the program's use of the pages of the array would be sequential. To decrease
the number of page faults, each time the program requested data that was not in
central storage, the system could bring in more than one page ata time. Suppose
the system brought the next 20 consecutive pages (81920 bytes) of the array into
central storage on each page fault. In this case, the system takes not 2048 page
faults, but 103 (8388608+81920 = 102.4). Page faults occur in the array as follows:

rows 1-10 rows 11-20 rows 21-30 rows 31-40 rows 1021-1024

t t t t t t t
1 page fault each 10240 elements

The system brings in successive pages only to the end of the array.

Consider another way of referencing this same array. The program references the
first twenty elements in each row, then skips over the last 1004 elements, and so
forth through the array. REFPAT allows you to tell the system to bring in only the
pages that contain the data in the first 20 columns of the array, and not the pages
that contain only data in columns 21 through 1024. In this case, the reference
pattern includes a repeating gap of 8032 bytes (1004x8) every 8192 bytes (1024x8).
The pattern looks like this:

skip skip skip skip

• . .. • .. •

~~ ~~ « ~H'"
1 21 1025 1045 2049 2069 3073 3093

elements ...

Chapter 15. Processor Storage Management 15-7

The grouping of consecutive bytes that the program references is called a reference
unit. The grouping of consecutive bytes that the program skips over is called a gap.
Reference units and gaps alternate throughout the data area. The reference pattern
is as follows:

• The reference unit is 20 elements in size - 160 consecutive bytes that the
program references.

• The gap is 1004 elements in size - 8032 consecutive bytes that the program
skips over.

Figure 15-3 illustrates this reference pattern and shows the pages that the system
does not bring into central storage.

What Pages Does the System Bring in When a Gap Exists?
When no gap exists, the system brings into central storage a" the pages that contain
the data in the range you specify on REFPAT. When there is a gap, the answer
depends on the size of the gap, the size of the reference unit, and the alignment of
reference units and gaps on page boundaries. The following examples illustrate
those factors.

Example 1: The following illustration shows the 1024-by-1024 array of eight-byte
elements, where the program references the first 20 elements in each row and skips
over the next 1004 elements. The reference pattern, therefore, includes a reference
unit of 160 bytes and a gap of 8032 bytes. The reference units begin on every other
page boundary.

refe re n ce units

~ t ~ ~ ~
~1st 2nd ~3rd 4th ~5th 6th t'l7th I ~~ t'I 12048th I

page page page page page page page page

t t t t
some pages not brought into central storage

Figure 15-3. Illustration of a Reference Pattern with a Gap

Every other page of the data does not come into central storage; those pages
contain only the "skipped over" data.

Example 2: The reference pattern includes a reference unit of 4800 bytes and a gap
of 3392 bytes. The example assumes that the area to be referenced starts on a page
boundary.

reference units

~ ~
r-:*'f2nd r'3rd-r 4th

page page page page page page

all pages brought into central storage

15-8 Assembler Programming Guide

Because each page contains data fhatthe program references, the system brings in
all pages.

Example 3: The area to be referenced does not begin on a page boundary. The
reference pattern includes a reference unit of 2000 bytes and a gap of 5000 bytes.
Because the reference pattern includes a gap, the first byte of the reference pattern
must begin a reference unit, asthe following illustration shows:

Start of
reference
pattern

+

most pages brought into central storage

Because the gap is larger than 4095 bytes, some pages do not come into central
storage. Notice that the system does not bring in the fifth page.

Summary of how the size of the gap affects the pages the system brings into central
storage:

• If the gap is less than 4096 bytes, the system has to bring into central storage all
pages of the array. (See Example 2.)

• If the gap is greater than 4095 bytes and less than 8192, the system might not
have to bring in certain pages. Pages that contain only data in the gap are not
brought in. (See Examples 1 and 3.)

• If the gap is greater than 8191 bytes, the system definitely does not have to
bring in certain pages that contain the gap.

Using the REFPAT Macro
On the REFPAT macro, you tell the system:

• The starting and ending addresses of the data area to be referenced
• The reference pattern
• The number of reference units the system is to bring into central storage on a

page fault.

Specify the reference pattern carefully on REFPAT. If you identify a pattern and do
not adhere to it, the system will have to work harder than if you had not issued the
macro. "Defining the Reference Pattern" on page 15-11 can help you define the
reference pattern.

The system will not process the REFPAT macro unless the values you specify can
result in a performance gain for your program. To make sure the system processes
the macro, ask the system to bring in more than three pages (that is, 12288 bytes) on
each page fault. "ChOOSing the Number of Bytes on a Page Fault" on page 15-12
can hel p you meet that requi rement.

Chapter 15. Processor Storage Management 15-9

Identifying the Data Area and Direction of Reference
On the PSTART and PEND parameters, you specify the starting and ending
addresses of the area to be referenced. If the reference is in a backward direction,
the ending address will be smaller than the starting address.

PSTART identifies the first byte of the data area that the program references with
the defined pattern; PEND identifies the last byte.

When a gap exists, define PSTART and PEND according to the following rules:

• If direction is forward, PSTART must be the first byte (low-address end) of a
reference unit; PEND can be any part of a reference unit or a gap.

• If direction is backward, PSTART must be the last byte (high-address end) of a
reference unit; PEND can be any part of a reference unit or a gap.

Figure 15-4 illustrates a reference pattern that includes a reference unit of 2000
bytes and a gap of 5000 bytes. When direction is forward, PSTART must be the
beginning of a reference unit. PEND can be any part of a gap or reference unit.

forward direction ~

PSTART

t
~ I 2nd ~rd

page page page

t low address of range

4~ 5th
page page page

PEND
i
I

Y

I

Figure 15-4. Illustration of Forward Direction in a Reference Pattern

Figure 15-5 illustrates the same reference pattern and the same area; however, the
direction is backward. Therefore, PSTART must be the last byte of a reference unit
and PEND can be any part of a gap or reference unit.

PEND

i ,
I ~ I 2nd ~rd 4:-; 5th

page page page page page
6th

page

backward direction

PSTART

t
7th "'~~ I-page

high address of range ~
Figure 15-5. Illustration of Backward Direction in a Reference Pattern

If the data area is in a data space, use the STOKEN parameter to identify the data
space. You received the STOKEN of the data space from another program or from
the DSPSERV macro when you created the data space. STOKEN = 0, the default,
tells the system that the data is in the primary address space.

15-10 Assembler Programming Guide

Defining the Reference Pattern
This section assumes that your program's reference pattern meets the basic
requirement of consistent direction. Figure 15-6 identifies two reference patterns
that characterize most of the reference patterns that REFPAT applies to. The marks
on the line indicate referenced elements.

Pattern #1: No uniform gap

rMMM)(MM)(M)()()()(MMMr)(M)()(MMM)(MM)()()()()(,MMMM)()(M)()()()()()(MM)(r)()()()(MMMMl()(~()()(IE)(f)()EH)()()E)E)E)()()ElE)EH)I)(1

o 4096 8192 12288 16384 20480

Pattern #2:

I)(1()O()(I
0 20

bytes

Characteristics of pattern:
- No uniform gap
- Reference in regular intervals (such as every element) or in irregular intervals

Uniform gap

« I xxxxx I « IIOO(MM I

5020 5040 10040
bytes bytes bytes

Characteristics of pattern:
- Gaps of uniform size

10060
bytes

« I)()()()()(I
15060 15080
bytes bytes

- Reference units, uniform in size, that occur in a repeating pattern

« I ...
20080
bytes

Figure 15-6. Two Typical Reference Patterns

How you define the reference pattern depends on whether your program's reference
pattern is like Pattern #1 or Pattern #2.

• With Pattern #1 where no uniform gap exists, the program uses every element,
every other element, or at least most elements on each page of array data. No
definable gap exists. Do not use REFPAT if the reference pattern is irregular
and includes skipping over many areas larger than a page.

The UNITSIZE parameter alone identifies the reference pattern. (Either omit
the GAP parameter or take the default, GAP = 0.) UNITSIZE indicates the
number of bytes you want the system to use as a reference unit. Look at
logical groupings of bytes, such as one row, a number of rows, or one
element, if the elements are large in size. Or, you might choose to divide
up the total area, bringing in all the data on a certain number of page faults.

The UNITS parameter tells the system how many reference units to try to
bring in on a page fault. For a reference pattern that begins on a page
boundary and has no gap, the total number of bytes the system tries to bring
into central storage at a time is the value on UNITSIZE times the number on
UNITS, rounded up to the nearest multiple of 4096. See "Choosing the
Number of Bytes on a Page Fault" on page 15-12 for more information on
how to choose the total number of bytes.

Chapter 15. Processor Storage Management 15-11

• With Pattern #2 where a uniform gap exists, you tell the system the sizes of
reference units and gaps.

UNITSIZE and GAP parameters identify the reference pattern. Pattern #2 in
Figure 15-6 on page 15-11 includes a reference unit of 20 bytes and a gap
of 5000 bytes. Because the gap is greater than 4095, some pages of the
array might not come into central storage.

The UNITS parameter tells the system how many reference units to try to
bring into central storage at a time. "What Pages Does the System Bring in
When a Gap Exists?" on page 15-8 can help you understand how many
bytes come into central storage at one time.

Although the system brings in pages 4096 bytes at a time, you do not have to specify
GAP, UNITS, and UNITSIZE values in increments of 4096.

Choosing the Number of Bytes on a Page Fault
An important consideration in using REFPAT is how many bytes to ask the system to
bring in on a page fault. To determine this, you need to understand some factors
that affect the performance of your program.

Pages do not stay in central storage if they are not referenced frequently enough
and other programs need that central storage. The longer it takes for a program to
begin referencing a page in central storage, the greater the chance that the page
has been moved out to auxiliary storage before being referenced. When you tell the
system how many bytes it should try to bring into central at one time, you have to
consider the following:

1. Contention for central storage
Your program contends for central storage along with all other submitted jobs.
The greater the size of central storage, the more bytes you can ask the system
to bring in on a page fault. The system responds to REFPAT with as much of the
data you request as possible, given the availability of central storage.

2. Contention for processor time
Your program contends for the processor's attention along with all other
submitted jobs. The more competition, the less the processor can do for your
program and the smaller the number of bytes you should request.

3. The elapsed time of processing one page of your data
How long it takes a program to process a page depends on the number of
references per page and the elapsed time per reference. If your program uses
only a small percentage of elements on a page and references them only once
or twice, the program completes its use of pages quickly. If the processing of
each referenced element includes·processor-intensive operations or a
time-intensive operation, such as 110, the time the program takes to process a
page gets longer.

Conditions might vary between the peak activity of the daytime period and the low
activity of other periods. For example, you might be able to request a greater
number in the middle of the night than during the day.

WhaUf you specify too many bytes? What if you ask the system to bring in so many
pages that, by the time your program needs to use some of those pages, they have
left central storage? The answer is that the system will have to bring them in again.
This action causes an extra page fault and extra system overhead and reduces the
benefit of reference pattern services.

15-12 Assembler Programming Guide

For example, suppose you ask the system to bring in 204800 bytes, or 50 pages, at a
time. But, by the time your program begins referencing the data on the 30th page,
the system has moved that page and the ones after it out of central storage. (It
moved them out because the program did ndt use them soon enough.) In this case,
your program has lost the benefit of moving the last 21 pages in. Your program
would get more benefit by requesting fewer than 30 pages.

What if you specify too few bytes? If you specify too small a number, the system will
take more page faults than it needs to and you are not taki ng full advantage of
reference pattern services.

For example, suppose you ask the system to bring in 40960 bytes (10 pages) at a
time. Your program's use of each page is not time-intensive, meaning that the
program finishes using the pages quickly. The program can request a number
greater than 10 without causing additional page faults.

IBM recommends that you use one of the following approaches, depending on
whether you want to involve your system programmer in the decision.

• The first approach is the easier one. Choose a conservative number of bytes,
around 81920 (20 pages), and run the program. Look for an improvement in the
elapsed time. If you like the results, you might increase the number of bytes. If
you continue to increase the number, at some point you will notice a
diminishing improvement or even an increase in elapsed time. Do not ask for
so much that your program or other programs suffer from degraded
performance.

• A second approach is for the program that needs very significant performance
improvements - those programs that require amounts in excess of 50 pages. If
you have such a program, you and your system programmer must examine the
program's elapsed time, paging speeds, and processor execution times. In fact,
the system programmer can tune the system with your program in mind and
provide needed paging resources. Initialization and Tuning can provide
information on tuning the system.

REFPAT affects movement of pages from auxiliary and expanded storage to
central storage. To gain insight into the effectiveness of your reference
patterns, you and your system programmer will need the kind of information that
the SMF Type 30 record provides. A Type 30 record reports counts of pages
moved (between expanded and central and between auxiliary and central) in
anticipation of your program's use of those pages. It also provides elapsed time
values. Use this information to calculate rates of movement in determining
whether to specify a very large number of bytes - for example, an amount
greater than 204800 bytes (50 pages).

Examples of Using REFPAT to Define a Reference Pattern
To clarify the relationships between the UNITSIZE, UNITS, and GAP parameters, this
section contains three examples of defining a reference pattern. So that you can
compare the three examples with what the system does without information from
REFPAT, the following REFPAT invocation approximates the system's normal
paging operation:

REFPAT INSTALL,PSTART= .•• ,PEND= ••. ,UNITSIZE=4896,GAP=8,UNITS=1

Each time the system takes a page fault, it brings in 4096 bytes, the system's
reference unit. It brings in one reference unit at a time.

Chapter 15. Processor Storage Management 15-13

Example 1: The program processes an array in a consistently forward direction
from one reference unit to the next. The processing of each element is fairly simple.
The program runs during the peak hours and many programs compete for processor
time and central storage. A reasonable value to choose for the number of bytes to
be brought into central storage on a page fault might be 80000 bytes (around 20
pages). A logical grouping of bytes (the UNITSIZE parameter) is 4000 bytes. The
following REFPAT macro communicates this pattern to the system:

REFPAT INSTAll,PSTART=FIRSTB,PEND=lASTB,UNITSIZE=4000,GAP=0,UNITS=20

Example 2: The program performs the same process as in the first example, except
the program references few elements on each page. The program runs during the
night hours when contention for the processor and for central storage is light. In
this case, a reasonable value to choose for the number of bytes to come into central
storage on a page fault might be 200000 bytes (around 50 pages). UNITSIZE can be
4000 bytes and UNITS can be 500. The following REFPAT macro communicates this
pattern:

REFPAT INSTALL, PSTART=FIRSTB, PEND=lASTB,UNITSIZE=4000,GAP=0,U NITS=500

Example 3: The program references in a consistently forward direction through the
same large array as in the second example. The pattern of reference includes a
gap. The program references 8192 bytes, then skips the next 4096 bytes, references
the next 8192 bytes, skips the next 4096 bytes, and so forth throughout the array.
The program chooses to bring in data eight pages at a time. Because of the size of
the gap and the placement of reference units and gaps on page boundaries, the
system does not bring in the data in the gaps. The following illustration shows this
reference pattern:

FIRSTB

o 8192 12288 20480 24576 32768 36864
bytes bytes bytes bytes bytes bytes bytes

The following REFPAT macro reflects this reference pattern:

LASTB

+ ,-;

REFPAT INSTALL, PSTART=FIRSTB, PEND=LASTB,UNITSIZE=8192,GAP=409 6,UNITS=4

where the system is to bring into central storage 32768 (4x8192) bytes on a page
fault.

Removing the Definition of the Reference Pattern
When a program is finished referencing the data area in the way you specified on
the REFPAT INSTALL macro, use REFPAT REMOVE to tell the system to return to
normal paging. On the PSTART and PEND parameters, you specify the same values
that you specified on the PSTART and PEND par~meters that defined the reference
pattern for the area. If you used the STOKEN parameter on REFPAT INSTALL, use it
on REFPAT REMOVE.

The following REFPAT invocation removes the reference pattern that was defined in
Example 3 in "Examples of Using REFPAT to Define a Reference Pattern":

REFPAT REMOVE,PSTART=FIRSTB,PEND=LASTB

15-14 Assembler Programming Guide

Chapter 16. Timing and Communication

This chapter describes timing services and communication services. Use timing
services to obtain the present date and time or for interval timing. Interval timing
lets you set a time interval, test how much time is left in the interval, or cancel the
interval. Use communication services to send messages to the system operator, to
TSO terminals, and to the system log.

Obtaining Date and Time of Day
The operator is responsible for initially supplying the correct date and the time of
day in terms of a 24-hour clock. You request the date and time of day using the
TIME macro. The control program returns the date in register 1 and the time of day
in register 0 or in a doubleword that you supply if you specify the MIC or STCK
parameter.

All references to time of day use the time-of-day (TOO) clock, a 64-bit binary
counter. The TOO clock runs continuously while the power is on, and the clock is
not affected by the system-stop conditions. The operator normally sets the clock
only after an interruption of CPU power has caused the clock to stop, and restoration
of power has restarted it. The operator sets the clock during system initialization in
response to a system message. (For more information about the TOO clock, see
Principles of Operation.)

Interval Timing
Time intervals can be established for any task in the job step through the use of the
STIMER or STIMERM SET macros. The time remaining in an interval established
via the STIMER macro can be tested or cancelled through the use of TTIMER macro.
The time remaining in an interval established via the STIMERM SET macro can be
cancelled or tested through the use of the STIMERM CANCEL or STIMERM TEST
macros.

The value of the CPU timer can be obtained by using the CPUTIMER macro. The
CPU timer is used to track task-related time intervals.

The TASK, REAL, or WAIT parameters of the STIMER macro and the WAIT=YESINO
parameter of the STIMERM SET macro specify the manner in which the time interval
is to be decreased. REAL and WAIT indicate the interval is to be decreased
continuously, whether the associated task is active or not. TASK indicates the
interval is to be decreased only when the associated task is active. STIMERM SET
can establish real time intervals only.

If REAL or TASK is specified on STIMER or WAIT = NO is specified on STIMERM
SET, the task continues to compete with the other ready tasks for control; if WAIT is
specified on STIMER, or WAIT=YES is specified on STIMERM SET, the task is
placed in a WAIT condition until the interval expires, at which time the task is placed
in the ready condition.

When TASK or REAL is specified on STIMER or WAIT=NO is specified on STIMERM
SET, the address of an asynchronous timer completion exit routine can also be
specified. This routine is given control sometime after the time interval completes.
The delay is dependent on the system's work load and the relative dispatching

© Copyright IBM Corp. 1988, 1991 16-1

priority of the associated task. If an exit routine is not specified, there is no
notification of the completion of the time interval. The exit routine must be in virtual
storage when specified, must save and restore registers as well as return control to
the address in register 14.

Timing services does not serialize the use of asynchronous timer completion
routines.

Figure 16-1 shows the use of a time interval when testing a new loop in a program.
The STIMER macro sets a time interval of 5.12 seconds, which is to be decreased
only when the task is active, and provides the address of a routine called FIXUP to
be given control when the time interval expires. The loop is controlled by a BXLE .
instruction.

lOOP

NG

FIXUP

STIMER TASK,FIXUP,BINTVl=TIME Set time interval

TM TIMEXP,X'01' Test if FIXUP routine entered
BC 1,NG Go out of loop if time interval expired
BXlE 12,6,lOOP If processing not complete, repeat loop
TTIMER CANCEL If loop completes, cancel remaining time

USING
SAVE
01

FIXUP,15
(14,12)
TIMEXP,X' 01 '

RETURN (14,12)

Provide addressability
Save registers
Time interval expired, set switch in loop

Restore registers

TIME DC
TIMEXP DC

X '00000200' Timer is 5.12 seconds
X'00' Timer switch

Figure 16-1. Interval Processing

The loop continues as long as the value in register 12 is less than or equal to the
value in register 6. If the loop stops, the TTIMER macro causes any time remaining
in the interval to be canceled; the exit routine is not given control. If, however, the
loop is still in effect when the time interval expires, control is given to the exit
routine FIXUP. The exit routine saves registers and turns on the switch tested in the
loop. The FIXUP routine could also print out a m.essage indicating that the loop did
not go to completion. Registers are restored and control is returned to the control
program. The control program returns control to the main program and execution
continues. When the switch is tested this time, the branch is taken out of the loop.
Caution should be used to prevent a timer exit routine from issuing an STIMER
specifying the same exit routine. An infinite loop may occur.

The priorities of other tasks in the system may also affect the accuracy of the time
interval measurement. If you code REAL or WAIT, the interval is decreased
continuously and may expire when the task is not active. (This is certain to happen
when WAIT is coded.) After the time interval expires, assuming the task is not in the

16-2 Assembler Programming Guide

wait condition for any other reason, the task is placed in the ready condition and
then competes for CPU time with the other tasks in the system that are also in the
ready condition. The additional time required before the task becomes active will
then depend on the relative dispatching priority of the task.

The STIMER macro should not be issued while a BTAM OPEN or LINE OPEN
operation is in progress, since the BTAM OPEN LINE routines also use STIMER.
STIMER should not be issued before invoking dynamic allocation because dynamic
allocation can also issue STIMER.

Obtaining Accumulated Processor Time
The TIMEUSED macro enables you to record execution times and to measure
performance. TIMEUSED returns the amount of processor or vector time a task
(TCB) has used since being created (attached).

TIMEUSED is available to unlocked programs running without FRRs.

Example of measuring performance with TIME USED macro:

Use TIMEUSED to measure the efficiency of a routine or other piece of code. If you
need to sort data, you may now code several different sorting algorithms, and then
test each one. The logic for a test of one algorithm might look like this:

1. Issue TIMEUSED
2. Save old time
3. Run sort algorithm
4. Issue TIMEUSED
5. Save new time
6. Calculate time used (new time - old time)
7. Issue a WTO with the time used and the algorithm used.

After running this test scenario for all of the algorithms available, you can determine
which algorithm has the best performance.

Note: The processor time provided by TIMEUSED does not include any activity for
execution in SRB mode (such as 1/0 interrupt processing).

Writing and Deleting Messages (WTO, WTOR, DOM, and WTl)
The WTO and the WTOR macros allow you to write messages to the operator. The
WTOR macro also allows you to request a reply from the operator. The DOM macro
allows you to delete a message that is already written to the operator. Only
standard, printable EBCDIC characters, shown in Figure 16-2, appear on the MCS
console. All other characters are replaced by blanks. If the terminal does not have
dual-case capability, it prints lowercase characters as uppercase characters.

Chapter 16. Timing and Communication 16-3

Hex EBCDIC Hex EBCDIC Hex EBCDIC Hex EBCDIC
Code Character Code Character Code Character Code Character

40 (space) 78 # 99 r 05 N
4A ¢ 7C @ A2 s 06 0
48 70 A3 t 07 P
4C < 7E A4 u 08 Q

40 7F A5 v 09 R
4E + 81 a A6 w E2 S
4F I 82 b A7 x E3 T
50 & 83 c A8 y E4 U
5A I 84 d A9 z E5 V
58 $ 85 e C1 A E6 W
5C 86 f C2 8 E7 X
50 87 9 C3 C E8 Y
5E 88 h C4 0 E9 Z
5F '"'" 89 C5 E FO 0
60 91 j C6 F F1 1
61 92 k C7 G F2 2
68 93 I C8 H F3 3
6C % 94 m C9 I F4 4
60 95 n 01 J F5 5
6E > 96 0 02 K F6 6
6F ? 97 P 03 L F7 7
7A 98 q 04 M F8 8

Figure 16-2. Characters Printed or Displayed on an MCSConsole

Notes:

1. If the display device or printer is managed by JES3, the following characters are
also translated to blanks:

I ! ; ..., : II

2. The system recognizes the following hexadecimal representations of the U.S.
national characters: @ as X 17C I; $ as X 158 I; and # as X 178 I . In countries other
than the U.S., the U.S. national characters represented on terminal keyboards
might generate a different hexadecimal representation and cause an error. For
example, in some countries the $ character generates a X' 4A I •

There are two basic forms of the WTO macro: the single-line form, and the
multiple-line form.

The following should be considered when issuing multiple-line WTO messages
(MlWTO).

• 8y default, only the first line of a multiple-line WTO message is passed to the
installation-written WTO exit routine. The user exit can request to see all
subsequent lines of a multi-line message.

• When a console switch takes place, unended multiple-line WTO messages and
mUltiple-line WTO messages in the process of being written to the original
console are not moved to the new console.

• When a hardcopy switch takes place from the system log to an active operator's
console, MlWTO messages in the process of being written to the system log are
not moved to the new hard copy device.

• If register 0 contains a value other than 0, the value is a console 10, if you
specified MCSFlAG = REGO without specifying CONSNAME or CONSID.

• When the system hard copy log is an active operator's console, only the hard
copy versions of multiple-line messages are written to the console.

16-4 Assembler Programming Guide

See the macrqs section for an explanation of the parameters in the single-line and
multiple-line forms of the WTO macro.

Routing the Message
The ROUTCDE parameter allows you to specify the routing code or codes for a WTO
and WTOR message. The routing codes determine which console or consoles
receive the message. Each code represents a predetermined subset of the
consoles that are attached to the system, and that are capable of displaying the
message. It is up to the user to define the consoles that belong to each routing
code. WTO and WTOR allow routing codes from 1 to 128.

During system initialization, each operator's console in the system is assigned
routing codes that correspond to the functions that the installation wants that
console to perform. When any of the routing codes assigned to a message match
any of the routing codes assigned to a console, the message is sent to that console.

Disposition of the message is indicated through the descriptor codes specified in the
WTO macro. Descriptor codes classify WTO messages so that they can be properly
presented on, and deleted from, display devices. Each WTO macro should contain
at least one descriptor code. The descriptor code is not printed or displayed as part
of the message text.

If the user supplies a descriptor code in the WTO macro, an indicator is inserted at
the start of the message. The indicators are: a blank, an at sign (@), an asterisk (*),
or a blank followed by a plus sign (+). The indicator inserted in the message
depends on the descriptor code that the user supplies and whether the user is a
privileged or APF-authorized program or a non-authorized problem program.
Figure 16-3 shows the indicator that is used for each descriptor code.

Descriptor
Code

1
2
3-10
11
12-16

Privileged or
APF·Authorized Program

blank

blank

Figure 16-3. Descriptor Code Indicators

Non-Authorized
Problem Program

@
@
blank+
@
blank+

The indicator @ or * informs operators that they must take some immediate or
critical eventual action. A critical eventual action is an action that the operator must
perform, as soon as possible, in response to a critical situation during the operation
of the system. For example, if the dump data set is full, the operator is notified to
mount a new tape on a specific unit. This is considered a critical action because no
dumps can be taken until the tape is mounted; it is eventual rather than immediate
because the system continues to run and processes jobs that do not require dumps.

Action messages to the operator, which are identified by the @ or * indicator, can be
individually suppressed by the installation. When a program invokes WTO or WTOR
to send a message, the system determines if the message is to be suppressed. If
the message is to be suppressed, the system writes the message to the hardcopy
log and the operator does not receive it on the screen. For more information on
suppressing messages, see Planning: Operations.

Chapter 16. Timing and Communication 16·5

If a problem program issues a message with descriptor code of 1 or 2, the message
is deleted at address space or task termination. For more information concerning
routing and descriptor codes, see Routing and Descriptor Codes.

If an application that uses WTO needs to alter a message each time the message is
issued, the list form of the WTO macro may be useful. You can alter the message
area, which is referenced by the WTO parameter list, before you issue the WTO.
The message length, which appears in the WTO parameter list, does not need to be
altered if you pad out the message area with blanks.

A sample WTO macro is shown in Figure 16-4.

Single-line WTO
format

Multiple- WTO
1 i ne format
(list form)

'BREAKOFF POINT REACHED. TRACKING COMPLETED.',
ROUTCDE=14,DESC=7

('SUBROUTINES CALLED',C),
('ROUTINE TIMES CALLED',L),('SUBQUER',D),
('ENQUER',D),('WRITER',D),
(' DQUER' ,DE),
ROUTCDE=(2,14),DESC=(7,8),MF=L

Figure 16-4. Writing to the Operator

The MCSFLAG = BUSYEXIT parameter determines what happens if no message
buffers are available. If you specify BUSYEXIT and no console buffers for either
MCS orJES3 are available, or if you specify BUSYEXIT and there is a JES3 staging
area excess, the WTO is terminated. Control is returned to the issuer with a return
code of X' 20 I and a reason code in register O. The reason code is equal to the
number of active WTO buffers for the issuer's address space. If you do not specify
BUSYEXIT, WTO processing may place the WTO invocation in a wait state until WTO
buffers are again available.

Another alternative for routing a message is to use the CONSIO or CONSNAME
parameter. These mutually exclusive parameters let you specify a field or register
that contains the four-byte 10 or pointer to an eight-byte console name of the
console that is to receive the message. This is the preferred alternative to the
MCSFLAG option of placing the console 10 in register zero. When you issue a WTO
or WTOR macro that uses both the CONSIO or CONSNAME parameters and the
ROUTCOE parameters, the message or messages will go to all of the consoles
specified by both parameters.

Note: By using the various parameters of WTO or WTOR, you can route messages
by routing code and console 10. See the description of the WTO or WTOR macro in
Assembler Programming Reference for additional information.

Altering Message Text
If an application that uses WTO needs to alter the same message or numerous
messages repetitively, using the TEXT parameter on the WTO macro may be useful.
You can alter the message or messages in one of two ways:

• If you issue 3 different messages, all with identical parameters other than TEXT,
you can create a list form of the macro, move the text into the list form, then
execute the macro. Using the TEXT parameter you can use the standard form of
the macro, and specify the address of the message text. By reducing the
number of list and execute forms of the WTO macro in your code, you reduce
the storage requirements for your program.

16-6 Assembler Programming Guide

• If you need to modify a parameter in message text, using the TEXT parameter
enables you to modify the parameter in the storage that you define in your
program to contain the message text, rather than modify the WTO parameter
list.

Using the TEXT parameter on WTO can reduce your program's storage
requirements because of fewer lines of code or fewer list forms of the WTO macro.

To use the WTOR macro, code the message exactly as designated in the single-line
WTO macro. (The WTOR macro cannot be used to pass multiple-line messages.)
When the message is written, the control program adds a message identifier before
the message to associate the reply with the message. The control program also
inserts an indicator as the first character of all WTOR messages, thereby informing
the operator that immediate action is required. You must, however, indicate the
response desired. In addition, you must supply the address of the area in which the
control program is to place the reply, and you must indicate the maximum length of
the expected reply. The length of the reply may not be zero. You also supply the
address of an event control block which the control program posts after the reply
has been placed, left-adjusted, in your designated area.

You can also supply a command and response token, or CART, with any message.
You may have received a CART as input in cases where you issued a message in
response to a command. In these cases, you should specify this CART on any
messages you issue. Usi ng the CART guarantees that these messages are
associated with the command.

A sample WTOR macro is shown in Figure 16-5. The reply is not necessarily
available at the address you specified until the specified ECB has been posted.

ECBAD
REPLY

XC ECBAD,ECBAD Clear ECB
WTOR 'STANDARD OPERATING CONDITIONS? REPLY YES OR NO',

REPLY,3,ECBAD,ROUTCDE=(1,15)
WAIT ECB=ECBAD

DC
DC

F'e'
C'bbb'

Event control block
Answer area

Figure 16-5. Writing to the Operator With a Reply

When a WTOR macro is issued, any console receiving the message has the
authority to reply. The fi rst reply received by the control program is returned to the
issuer of the WTOR, providing the syntax of the reply is correct. If the syntax of the
reply is not correct, another reply is accepted. The WTOR is satisfied when the
control program moves the reply into the issuer's reply area and posts the event
control block. Each console that received the original WTOR will also receive the
accepted reply unless it's a security message. No console receives the accepted
reply to a security message. A console with master authority may answer any
WTOR, even if it did not receive the original message.

Chapter 16. Timing and Communication 16-7

Writing a Multiple-Line Message
Issue messages consisting of multiple lines by using the WTO multiple-line
capability to assure that all lines of a multiple-line message appear together and
are not broken up by other single-line messages.

Embedding Label Lines in a Multiple-Line Message
Label lines provide column headings in tabular displays. You can change the
column headings used to describe different sections of a tabular display by
embedding label lines in the existing multiple-line WTO message for a tabular
display.

Note: You cannot use the WTO macro to embed label lines. The WTO macro
handles label lines at the beginning of the message only.

Communicating in a Sysplex Environment
The WTO macro allows applications to send messages to consoles within a sysplex,
without having to be aware that more than one system is up and running. Each
system is aware of all the consoles in the sysplex, of their system attachment, and
of their routing codes. This data includes the status of the console (active or
inactive), the system where it is currently active, and the console's name, 10,
routing codes, message level, and message type.

You can direct a WTO to a specific console by specifying the console 10 or name
when the issuing the message. For example, you can use the CO~SID, CONSNAME,
or MC8FLAG = REGO parameter on the WTO macro to direct the WTO to consoles
defined by those parameters. If the console is not active anywhere within the
sysplex, WTO will write the message to the system log unless it is an important
information message, an action message or WTOR. Action messages, messages
with descriptor code 12, and WTORs are written to the system log and then directed
to consoles having the UD (undelivered) attribute for display.

You can also broadcast WTOs to all active consoles using MCSFLAG = BRDCST on
the WTO macro. Unsolicited messages are directed by routing code, message level,
and message type to the appropriate consoles anywhere within the sysplex. There
may be some unsolicited messages that will not be queued to any console at a
receiving system. In this case, all of the messages are written to the system log, and
action messages are sent to the consoles with the UD attribute.

Writing to the Programmer
The WTO and the WTOR macros allow you to write messages to a programmer who
is logged onto a T80 terminal, as well as to the operator. However, only the
operator can reply to a WTOR message.

To write a message to the programmer, you must specify ROUTCDE = 11 in the WTO
or the WTOR macro.

16-8 Assembler Programming Guide

Writing to the System Log
The system log consists of one SYSOUT data set on which the communication
between the operator and the system is recorded. You can use the system log by
coding the information that you wish to log in the "text" parameter of the WTL
macro.

When the WTL macro is executed, the control program places your text in one of the
buffers and, when the buffer is full, writes the buffer onto the system log data set.
The control program writes the text of your WTl macro on the master co"sole
instead of on the system log if the system log is not active.

Although when using the WTL macro you code the message within apostrophes, the
written message does not contain the apostrophes. The message can include any
character that is valid for the WTO macro and is assembled and written the same
way as the WTO macro. MCS routing codes and descriptor codes are not assigned,
since they are not needed by the WTl macro.

Note: The exact format of the output of the WTL macro varies depending on the job
entry system (JES2 or JES3) that is being used, the output class that is assigned to
the log at system initialization, and whether DLOG is in effect for JES3. In JES3,
system log entries are preceded by a prefix that includes a time stamp and routing
information. If the combined prefix and message exceeds 126 characters, the log
entry is split at the first blank or comma encountered when scanning backward from
the 126th character of the combined prefix and message. See JESS Commands for
information about the format of the log entry when using JES3.

The WTO macro with the MCSFLAG = HRDCPY parameter also writes messages to
the system log. Because WTO supplies more data than WTL, IBM recommends that
you use it instead of WTL.

Deleting Messages Already Written
The DOM macro deletes the messages that were created using the WTO or WTOR
macros. Depending on the timing of a DOM macro relative to the WTO or WTOR, the
message mayor may not have already appeared on the operator's console.

• When a message al ready exists on the operator screen, it has a format that
indicates to the operator whether the message still requires that some action be
taken. When the operator responds to a message, the message format changes
to remind the operator that a response was already given. When DOM deletes a
message, it does not actually erase the message. It only changes its format,
displaying it like a non-action message.

• If the message is not yet on the screen, DOM deletes the message before it
appears. The DOM processing does not affect the logging action. That is, if the
message is supposed to be logged, it will be, regardless of when or if a DOM is
issued. The message is logged in the format of a message that is waiting for
operator action.

The program that generates an action message is responsible for deleting that
message.

Note: Specifying the REPLY = parameter of the DOM macro causes an MNOTE
warning message to be issued at assembly time. The MNOTE warns you that you
are coding the REPLY = parameter, which is a function no longer supported in the
system. If you code the REPLY= parameter and receive the MNOTE warning,
remove the REPLY = parameter from your program and reassemble it. Programs

Chapter 16. Timing and Communication 16-9

containing the REPLY= parameter that are already assembled do not need to be
reassembled.

Identifying Messages to be Deleted
To identify the message or messages that you want to delete, you normally use the
MSG, MSGLlST, or TOKEN parameters. When you issue a WTO or WTOR macro to
write a given message to the operator, the system generates a message 10, which it
returns in general register 1. To delete the message, you can issue theOOM macro
with a MSG or MSGLlST parameter specifying the same system-generated message
10 that WTO or WTOR returned in general register 1. If you specify MSGLlST
(message list), then several message IDs can be associated with the delete request.
The number of message IDs in the message list is defined by the COUNT parameter
or it is defined by an 1 in the high order bit position of the last message 10 in the list.
The COUNT parameter cannot exceed 60.

On the other hand, the TOKEN parameter allows the message 10 to be generated by
the user rather than the system. When you issue WTO or WTOR with a TOKEN
parameter, the system associates your TOKEN parameter with the message or all
the messages that are written by this particular WTO or WTOR. Then you can issue
DOM with the same TOKEN parameter to delete the message or all the messages
associated with the token.

Retrieving Console Information (CONVCON macro)
Applications that either process commands or issue messages might need
information about MCS or extended MCS consoles. CONVCON obtains information
about these consoles.

Use the CONVCON macro to:

• Determine the name of a console when you supply the 10.
• Determine the 10 of a console when you specify the name.
• Validate a console name or console 10.
• Validate a console area 10.
• Check if a console is active.

You must set up a parameter list, called CONY, before invoking the CONVCON
macro. Depending upon the information you want, you must initialize certain fields
in the CONVCON parameter list. CONVCON returns information in other fields of the
parameter list. See Diagnosis: Data Areas for more information on the CONY
parameter list, which is mapped by IEZVG200.

The following topics describe possible uses for the CONVCON tasks, and tell you
how to fill in the parameter list for each task.

Determining the Name or 10 of a Console
Installation operators and programmers previously referred to MVS consoles only
by console IDs, which are defined in the CONSOLxx member of SYS1.PARMLIB.
IBM strongly recommends that you use names when referring to MCS consoles.
Using names can help operators and programmers:

• Remember which console they want to reference in commands or programs.
For example, if your installation establishes one console to receive information
about tapes, and uses the console name TAPE, operators and programmers can
more easily remember TAPE than a console 10 such as 03.

16-10 Assembler Programming Guide

• Connect information in messages and the hardcopy log to the correct console.
If your installation uses console lOs, operators and programmers might have
difficulty identifying the console to which messages and hardcopy log
information applies, because the system uses console names in messages and
the hardcopy log.

Using console names rather than lOs can also avoid confusion when a console 10
might change. If your installation has set up a sysplex environment, and uses
console lOs to identify consoles, those lOs can change from one IPL to the next, or
when systems are added or removed from the sysplex. A console 10 is not
guaranteed to be associated with one console for the life of a sysplex.

To determine the name of a console when you supply the 10, do the following:

1. Clear the CONVCON parameter list by setting it to zeros.

2. Initialize the following fields in the parameter list:

• The version 10 (CONVVRSN)
• The acronym (CONVACRO)
• The console 10 (CONVIO)
• The flag indicating that you are supplying the console 10 (flag CONVPIO in

CONVFLGS)

3. Issue the CONVCON macro.

When CONVCON completes, the console name is in the parameter list field
CONVNAME, and register 15 contains a return code.

To determine the 10 of a console when you supply the name, do the following:

1. Clear the CONVCON parameter list by setting it to zeros.

2. Initialize the following fields in the parameter list:

• The version 10 (CONVVRSN)
• The acronym (CONVACRO)
• The console name (CONVFLO)
• The flag bit indicating that you are supplying the console name (flag

CONVPFLO in CONVFLGS)

The installation defines console names at initialization time in the CONSOLxx
member of SYS1.PARMLIB. You can use the OISPLAY command to receive a
list of defined names.

3. Issue the CONVCON macro.

When CONVCON completes, the console 10 will be in the parameter field CONVIO.

Validating a Console Name or ID and Checking if a Console Is Active
Before issuing a message to a specific console, you may want to determine whether
that console exists by using CONVCON to validate the console name or 10.

You can use CONVCON to check if the console to which you are sending a command
response is active. An application processing a command could use CONVCON to
perform this check.

To check if a console is active, or to validate a console name or 10, do the following:

1. Clear the CONVCON parameter list by setting it to zeros.

Chapter 16. Timing and Communication 16-11

2. Initialize the following fields in the parameter list:

• The version 10 (CONVVRSN)
• The acronym (CONVACRO)
• Either the console name (CONVFLO) or the console 10 (CONVIO) depending

on what information you currently have. The installation defines console
names at initialization time in the CONSOLxx member of SYS1.PARMLIB.
You can use the DISPLAY command to receive a list of defined names.

• The appropriate flag in CONVFLGS indicating whether you are specifying
the console name (CONVPFLO) or the 10 (CONVPIO) as input.

3. Issue the CONVCON macro.

When CONVCON completes, register 15 contains a return code. If you receive the
following return codes, check the reason code in register 0 for an explanation.

• If the return code is 0, the console name or 10 is valid and the console is active.
• If the return code is 4, the name or 10 is valid, but the console is not active.

If the return code is 8, the console name or 10 is incorrect. Check the reason code
in parameter list field CONVRSN for additional information.

Validating a Console Area ID
An area 10 defines an out-of-line display area. An out-of-line display area is a
predefined number of lines on a screen to which you can direct command
responses, such as a response to a DISPLAY command. The area is for static
displays, rather than in-line displays that roll on the screen.

If you want to issue a mUlti-line WTO to a specific out-of-line area on a console, and
you want to know if the console and that area are available, you can use CONVCON
to validate the console area 10. CONVCON validates that this area is available for
use and that it does not already have a message in it.

To validate a console area 10, do the following:

1. Clear the CONVCON parameter list by setting it to zeros.

2. Initialize the following fields: .

• The version 10 (CONVVRSN)
• The CONVCON acronym (CONVACRO)
• One of the following:

the console name with the area 10 (CONVFLO-a)

the console 10 and the area 10 (CONVIO and CONVAREA)

the console name and the area 10 (CONVFLO and CONVAREA)

The area 10 can be one alphabetiC character from A through J or Z.
• The appropriate flag (CONVPIO or CONVPFLO in CONVFLGS)

3. Issue the CONVCON macro.

When CONVCON completes, register 15 contains a return code. If the return code is
o or 4, the reason code in the CONVRSN field of the parameter list indicates the
validity of the area 10.

16-12 Assembler Programming Guide

Coding Example
The following example will help you understand how to use CONVCON.

An operator or application has previously started a program by using"the START"
command. A program may need to send a message to the console which issued the
START command. However, that console may not currently be online or available.

The application can use the parameters in the input buffer control block (CI8) to
determine the status of the console.

The application retrieves the console 10 associated with the console which entered
the START command. It retrieves the console 10 from field CIBXCNID in the
extension of the command input buffer control block, IEZCIB. CONVCON does the
following:

• Determines whether the console is currently active

• Retrieves the name of the console associated with the 10

• Places the console name in an error message if the console is not currently
active.

This example assumes:

• You have obtained storage for the CONV parameter list.

• You have mapped and referenced the command input buffer control block and
its extenSion, to obtain the 4-byte console 10 for input.

• You have placed the 10 of the console to which CONVCON will send an error
message in register 2.

Chapter 16. Timing and Communication 16·13

SAMPLE
WORK4
R2
REG12
REG15

CSECT
EQU 4
EQU 2
EQU 12
EQU 15
LR REG12,REG15
BALR REG12,0
USING *,REG12 MODULE ADDRESSABILITY

CALLCONV EQU *
LA WORK4,CONV
USING CONV,WORK4

ADDRESSABILITY - CONY

XC 0(CONVPLEN,WORK4),0(WORK4) CLEAR PARAMETER LIST
MVC CONVACRO,ACNMCONV ACRONYM - CONY
MVI CONVVRSN,CONVRID CURRENT VERSION LEVEL
01 CONVFLGS,CONVPID SET CONSOLE ID FLAG
MVC CONVID,CIBXCNID SET 4 BYTE CONSOLE ID
CONVCON (WOQK4) ISSUE CONVCON
C REG15','£IGHT RETURN CODE> 81
BH ERROR YES, ERROR DURING CONVCON
B CONTABLE(REG15) TAKE ACTION BY RETURN CODE

CONTABLE EQU * ACTION TABLE

*
*
ISSUWTO

*

ERROR8
CONOK
EXIT

B CONOK CONSOLE ACTIVE. CONTINUE
B ISSUWTO INACTIVE. ISSUE WTO
B ERROR8 UNDEFINED CONSOLE OR

EQU
MVC

WTO
B
EQU
EQU
EQU

*
UMSGCON,CONVNAME

SYNTAX ERROR. BRANCH
ELSEWHERE TO HANDLE

MOVE CONSOLE NAME INTO
FIELD IN TEXT

TEXT=UMSGl,MCSFLAG=RESP,CONSID=(R2),DESC=5
EXIT EXIT ROUTINE
* BAD ID ON INPUT
* SUBSEQUENT FUNCTION
* EXIT LABEL

--
* CONSTANTS USED *
--
EIGHT DC F'8'
--
* MESSAGE TEXT FOR INACTIVE CONSOLE MESSAGE *
--
UMSGI EQU *
UMSGLENG DC XL2'56'
UMSG DC CL9'UMSG001I'
UMSGTXTI DC C'REQUESTED CONSOLE'
UMSGCON DS CL8" .
UMSGTXT2 DC C' NOT CURRENTLY ACTIVE'
UMSGTXTE EQU *
UMSGTXTL EQU UMSGTXTE-UMSG
ACNMCONV DC C'CONV'
AREA DC C'A'
ZERO EQU °

I EZVG200
IEZCIB
END

16-14 Assembler Programming Guide

LENGTH OF UMSGI
ERROR MESSAGE ID
TEXT SEGMENT 1
CONSOLE NAME
TEXT SEGMENT 2
END OF MESSAGE TEXT
MESSAGE TEXT LENGTH
ACRONYN FOR CONVCON PARMLIST
OUT-Of-LINE AREA "A"
NUMERIC ZERO
CONVCON PARMLIST
CMDX PARMLIST

Chapter 17. Translating Messages

The MVS message service (MMS) enables you to translate U.S. English messages
into foreign languages. In addition, MVS-based applications can invoke MMS for
one of two purposes:

• Rather than putting message text within application code or within a message
CSECT, an application can have message text reside in the MMS run-time
message files. The application can retrieve that message text by issuing the
TRANMSG macro.

• An application can obtain and display foreign language message text by issuing
the TRANMSG macro.

If you are routing system messages to a TSO/E extended MCS console, TSO/E will
display translated messages in the primary language associated with the TSO/E
session. If MMS is active, users of extended MCS consoles on TSO/E can select
available languages for message translation and the system can display translated
messages on the user's screen. TSO/E terminal users can also receive on their
terminals translated TSO/E messages and the translated messages of any
application that directs its messages to TSO/E and uses MMS services directly or
through TSO/E services. To receive translated messages on TSO/E terminals, you
must have TSO/E Version 2.2 installed on your system. Applications running on
TSO/E can translate their messages through new PUTLINE support. For more
information on PUTLINE see TSOIE Version 2 Programming Services.

The MVS message service can handle multi-line and multiple format messages.
Multi-line messages are messages displayed over a number of lines on an output
device. Multiple format messages are messages that have the same message 10,
but have differing text content depending on the circumstances under which they are
issued.

To prepare an application's messages for translation, perform the following tasks:

1. Create a partitioned data set (POS) for the English version, and a POS for the
translated version of the application's messages. These data sets are the
application's install message files.

2. Validate the application's install message files by running each POS through the
message compiler.

3. After a clean compile, incorporate your data sets into the system's install
message files.

4. Update the system run-time message files by running the system's install
message files through the message compiler.

5. Modify the application to exploit the translation service that MMS provides:

• Use QRYLANG to determine which languages are available at your
installation.

• Use TRANMSG to obtain from MMS the translated version of an
application's message or messages.

The installation can translate application messages into more than one language.
See "Support for Additional Languages" on page 17-12.

© Copyright IBM Corp. 1988. 1991 17-1

Allocating Data Sets for an Application
For an application whose messages will be translated, you must allocate a
partitioned data set (PDS) for each language in which the messages might appear.
For example, if you want the messages to be available in both English and
Japanese, you must allocate two data sets: one to contain the English message
skeletons, and one to contain the Japanese.

See JCL User's Guide and JCL Reference for information about allocating data sets.

Creating Install Message Files
Each install message file must contain a version record and one or more message
skeletons, and may contain any number of comment records throughout. The
message compiler treats any record with the characters". *" in columns 1 and 2 as a
comment line and ignores it.

Creating a Version Record
The version record must be the first non-comment record in each install message
file, and have the format shown in Figure 17-1.

Figure 17-1. Format of Version Record Fields

Columns Contents and Description

1&2 ".V" Identifies this record as a version record.

3-5 Three-character language code of the messages.

6-10 Reserved

11 Character field containing a Y or N, indicating whether this language contains
double-byte characters (OBCS).

12-19 FMIO (field maintenance identifier) applicable to the messages within the
member, padded on the right with blanks.

20-27 Product identifier applicable to the messages within the member, padded on
the right with blanks.

28-43 Service level applicable to the member, padded on the right with blanks.

The following is an example of a version record.

VENU00037NJBB44Nl 5685-067005

Figure 17-2 illustrates the fields of the version record in the previous example.

Figure 17-2. Version Record Example

Columns Example Description

1&2 .V Version record

3-5 ENU Three-character language code

6-10 Reserved

11 N OBCS indicator

12-19 JBB44N1b FMID

20-27 5685-067 Product identifier

28-43 005 Service level information

17-2 Assembler Programming Guide

Creating Message Skeletons
The rest of each install message file consists of message skeletons.

Each message requires one or more message skeletons. A message skeleton
consists of a message key and message text, which can include substitution tokens.
A message key consists of a message identifier, format number, and line number.
A substitution token is a "place marker," identifying substitution data to MMS. MMS
does not translate substitution tokens in the target language skeleton, but rather
replaces them with actual substitution data.

Both &DSN1 and &FILE in the following examples are substitution tokens.

IACT0012W
IACT0012W

001
002

DATASET &DSN1. NOT FOUND
COULD NOT FIND DATASET &FILE.

Note: If the message skeleton you are creating contains a TIME, DATE, or DAY
substitution token, the format must be defined in the system configuration member,
CNLcccxx, for the language. See MVS Initialization and Tuning Reference for more
information on these substitution tokens.

Message Skeleton Format
Each message skeleton must follow the column-oriented format shown in
Figure 17-3.

Figure 17-3 (Page 1 of 2). Message Skeleton Fields

Columns

1-10

11 & 12

Contents and Description

Message identifier (msgid). A message identifier can be 1 to 10 characters long, padded with EBCDIC
blanks, if necessary, so that it totals ten characters. The first character must be alphabetic. A message
identifier cannot contain double-byte characters and cannot contain embedded blanks.

Ensure that the message identifiers for your application program messages do not conflict with existing
MVS message identifiers. To avoid conflict, do not begin a message identifier with the letters A through I.

See System Messages, Volume 1 for more information on MVS message identifiers.

Examples of message identifiers are:

• IKJ523011
• IEF12345W
• HASPOOO
• IEF1231
• OLDMSGID

Note that MMS will remove the first character of any message identifier in the form xmsgid before
processing, and will replace it after processing. "x" is any character that is not uppercase alphabetic, such
as$or1.

Line number (1/). If the message is a single-line message, leave columns 11 and 12 blank. For a multi-line
message, assign line numbers sequentially within the message. Line numbers do not have to be
contiguous. Valid numbers are 01 to 99.

Ensure that message line numbers for a translated skeleton match the line numbers of the corresponding
U.S. English message skeleton.

Note: Ensure that corresponding skeletons (same message identifier and line number) of multi-line
messages contain the same substitution tokens. For example, if substitution tokens &1. and &2= date. are
on line 01 of a two-line U.S. English message skeleton, these tokens must appear on line 01 of a translated
skeleton.

You can translate multi-line messages that contain continuation lines, that is, only the first line contains a
message identifier in the skeleton. The following is an example of a multi-line message:

MSGID01 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

Chapter 17. Translating Messages 17-3

Figure 17-3 (Page 2 of 2). Message Skeleton Fields

Columns

13-15

16

17 & 18

19

20 +

Contents and' Description

Format number (fff). If only one format is defined for a particular message identifier, leave columns 13-15
blank.

Use format numbers to maintain compatibility with existing messages. Using format numbers for new
messages is not recommended.

Format numbers distinguish among message skeletons that have one messag~ identifier but have seve raJ
different text strings or substitution tokens. The message identifier alone cannot identify the message as
unique in these cases. The format number, togethet'withttle message identifier, identifies the message.

If more than one format is defined for a particular message identifier; assign a unique format number to
each skeleton for that message identifier. Valid numbers are 001 to 999. You do not have to assign the
numbers sequentially. Ensure that the format number in the translated skeleton matches the format number
in the U.S. English message skeleton.

Each message 10 might have several format numbers if that message has variable text.

Blank (b). Column 15 must contain an EBCDIC blank.

Translated line number (mm). If you are creating U.S. English skeletons, leave this field blank.

If one line of a U.S. English message translates into more than one line of text in another language, you
must provide additional lines for the translated version. Create one or more skeletons in the other language
and assign a translated line number to each translated line. Valid translated line numbers are 01 to 99.

Example:

IEFP0001 MAXIMUM PASSWORD ATTEMPTS BY SPECIAL USER &1. AT TERMINAL &2.

IEFP0001 01 LE USER SPECIALE &1. A TERMINAL &2.
02 ONT ENTRER PASSWORD TROP DE TEMPS

If a line of a U.S. English message translates to only one line, leave the translated line number blank.

Reserved.

Message text. See "Message Text in a Skeleton" on page 17-4

The following are examples of message skeletons.

msgid llffftmm text

HAS POOl

IACT0012W 001
IACTOel2W Oe2

HASP999I 01
HASP999I e2

IEFAe03F eel
IEFAee3F 002

ACCESS TO DATASET &DSN. DENIED

DATASET &DSN1. NOT FOUND
COULD NOT FIND DATASET &FILE.

ACCESS TO DATASET &1. DENIED:
USER INFORMED AT &2=DATEe2. ON TERMINAL &3.

USER &USERID. VIOLATED ACCESS RIGHTS TO DATASET &2. AT &3=TIME.
&l=TIME.: USER &2. VIOLATED ACCESS RIGHTS TO DATASET &3.

Message Text in a Skeleton
Message text in a message skeleton must conform to certain format standards. The
standards are as follows:

• Message text can be up to 256 bytes long including" the message identifier, line
number, and other fields.

• Message text can be upper-, lower-, or mixed case.

• Message text can be all single-byte character set (SaCS), all double-byte
character set (DBCS), or a combination of both. Message text can contain
substitution tokens.

17 ~4 Assembler Programming Guide

Substitution tokens indicate substitution, or variable, data, such as a data set name
or a date in the message text. Substitution tokens must start with a token start
trigger character, an ampersand (&), and end with a token end trigger character, a
period (.). These characters are part of the token and are not included in the
message text display. You may include an ampersand (&) in the text as long as it
does not have a period following it in the format of a substitution token. Substitution
tokens must be SBCS characters and follow the form &name[= format] where:

name

format

is the name of the substitution token. This name is an alphanumeric
SBCS string. The name must not contain imbedded blanks or OBCS
characters.

is an optional format descriptor for the substitution token. Format
descriptors are:

• TEXT for tokens other than dates and times (default format)
• OATExxxxxx for dates
• TIMExxxxxx for times
• DAY for the day of the week

If you use these format descriptors, you must also define them in the
CNLcccxx parmlib member for the language. See MVS Initialization
and Tuning Reference for more information on format descriptors.

The total length of name and = format must not be greater than 16 bytes.

If you do not include a format descriptor for a particular substitution token, the MVS
message service treats the token as TEXT.

The date and time tokens are formatted according to the language. There are no
defaults. You must supply your own formats in the CNLcccxx member.

Examples of substitution tokens are:

&1.
&USERID.
&l=DATEl.
&5=TIMESHORT.

Validating Message Skeletons
After creating message skeletons for both the U.S. English and translated version of
each message, validate the skeletons. To validate the skeletons, run each of the
application's install message files through the message compiler for syntax
checking. Otherwise you might be adding incorrect skeletons to the files that MMS
uses, and your messages might be either incorrectly translated or untranslatable.
You should also validate skeletons when you add or change skeletons in an existing
install message file. '

To make sure your message skeletons are valid, complete the following process for
each install message file:

1. Allocate storage for a run-time message file, which the compiler produces as
output.

2. Compile the install message file by invoking the compiler.

3. Check the return code from the message compiler.

Chapter 17. Translating Messages 17-5

If the return code does not indicate a clean compile, use the compiler error
messages to correct any errors in the skeletons. The compiler writes its error
messages to the SYSPRINT data set. Then compile the install message file again.

The return code and error messages. from the compiler are the only output you need
to determine whether the message skeletons are correct. However, compiling an
application's install message file also produces a formatted run-time message file.
Before invoking the compiler, you must allocate storage for this run-time file, but
you cannot use it as input forMMS. To make your application's messages available
for translation, you must add your PDS to the system's install message files, and run
those files through the compiler again.

Allocating Storage for a Validation Run-Time Message File
The data set you create for the run-time message file must be a linear VSAM data
set that can be used as a data-in-virtual object. You must create one run-time file
for each install message file for your application.

The amount of storage you will need to allocate for a validation run-time message
file cannot be determined exactly. The amount of storage depends on the number of
skeletons, the size of the skeletons, the number of substitution tokens within the
skeletons, and the types of messages represented by the skeletons (single-line,
multi-line, or multi-format). IBM recommends that, for a validation run-time
message file, you allocate twice the amount of storage required for the install
message file you are compiling. In most cases, this storage should be adequate.

To create the data set for the run-time message file, you need to specify the DEFINE
CLUSTEi=\ function of IDCAMS with the LINEAR parameter. When you code the
SHAREOPTIONS parameter for DEFINE CLUSTER, the cross-system value must be
4; that is, you may code SHAREOPTIONS as (1,3), (2,3), (3,3), or (4,3). Normally, use
SHAREOPTIONS (1,3). For a complete explanation of SHARE OPTIONS, see the
Managing VSAM Data Sets.

The following is a sample job that invokes access method services (lDCAMS) to
create the linear data set named SYS1.ENURMF on the volume called MMSPK1.
When IDCAMS creates the data set, it is empty. Note that there is no RECORDS
parameter; linear data sets do not have records.

//DEFCLUS JOB MSGLEVEL=(2,O),USER=IBMUSER
//*
//* DEFINE DIV CLUSTER
//*
//DCLUST EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DO SYSOUT=*
//MMSPKI DO UNIT=3380,VOL=SER=MMSPKl,DISP=OLD
//SYSIN DO *

/*

DELETE (SYS1.ENURMF) CL PURGE
DEFINE CLUSTER (NAME (SYSl. ENURMF) -

VOLUMES (MMSPKl) -
CYL(l 1) -
SHAREOPTIONS(l 3) -
LINEAR) -

DATA (NAME(SYSl.ENURMF.DATA»

Figure 17-4. Sample job to invoke IDCAMS

17·6 Assembler Programming Guide

Compiling Message Files
The message compiler creates a run-time message file from an install message file.
You need to run the message compiler once for each language you install and each
time you update the application's install message files. The compiler expects a PDS
as input. If the compiler cannot process a message skeleton, it issues an error
message. It also sets a return code. See "Checking the Message Compiler Return
Codes" on page 17-9 for a description of compiler return codes.

Invoking the Message Compiler
The message compiler is an executable program. You can use a batch job, a TSO/E
CLlST, or a REXX EXEC to invoke the message compiler. The syntax for each type
of invocation follows. The meaning of the variables (shown in lowercase in the
examples) follows the examples.

PGM=CNLCCPLR, //COMPILE EXEC
//
//SYSUTI DO
//SYSUT2 DO
//SYSPRINT DO

PARM=(lang,dbcs)
DSN=msg_pds,DISP=SHR
DSN=msg_div_obj,DISP=(OLD,KEEP,KEEP)
SYSOUT=*

Figure 17-5. Using JeL to Invoke the Compiler

PROC 0
FREE DD(SYSUTl,SYSUT2,SYSPRINT)
ALLOC DD(SYSUTl) DSN('msg_pds') SHR
ALLOC DD(SYSUT2) DSN(' msg div obj') OLD
ALLOC DD(SYSPRINT) DSN(*)- -
CALL 1 SYSl. LINKLIB(CNLCCPLR) 1 (I' ang ,dbcs I)

/* FREE DD'S
/* ALLOC INPUT FILE
/* ALLOC OUTPUT FILE
/* ALLOC SYSPRINT

*/
*/
*/
*/

/* CALL MESSAGE COMPILER */
SET &RCODE = &LASTCC
FREE DD(SYSUT1,SYSUT2,SYSPRINT)
EXIT CODE(&RCODE)

Figure 17-6. Using CLiST to Invoke the Compiler

/* SET RETURN CODE */
/* FREE FILES */
/* EXIT */

Chapter 17. Translating Messages 17-7

/* MESSAGE COMPILER INVOCATION EXEC */

MSGCMPLR:

"FREE DD(SYSUTl,SYSUT2,SYSPRINT)"

"ALLOC DD(SYSUT1) DSN(I "msg_pds" I) SHR"
"ALLOC DD(SYSUT2) DSN('"msg div obj"') OLD"
"ALLOC DD(SYSPRINT) DSN(*)"- -

"CALL 'SYS1.LINKLIB(CNLCCPLR)I ('"lang,dbcs" ')"

compiler_rc=rc

"FREE DD(MSGIN,MSGOUT,SYSPRINT)"

return(compiler_rc)

Figure 17-7. Using REXX to Invoke the Compiler

The lowercase variables used in the preceding examples are defined as follows:

msgyds
is the name of the install message file containing all the application's message
skeletons for a specific language. msgyds must be a partitioned data set.

msg_div _obj
specifies the name of the run-time message file that is to contain the compiled
message skeletons for the language. msg_div _obj must be a linear VSAM data
set suitable for use as a data-in-virtual object.

lang,dbcs
specifies two parameters. lang is the 3-character language code of the
messages contained in the install message file. dbcs indicates whether this
language contains double-byte characters. The values for dbcs are y for yes
and n for no.

After creating the run-time message file by compiling the install message file,
determine the amount of storage the run-time message file used. This calculation is
necessary when compiling these messages in the system's run-time message file.
The following JCL example shows you how to run a report showing the storage
used.

/ /LISTCAT
//MCAT
/ /SYSPRINT
//SYSIN

LISTCAT
/*

JOB MSGLEVEL=(l,l)
EXEC PGM=IDCAMS,REGION=4096K
DD SYSOUT=*
DO *
LEVEL(ms9_div_obj) ALL

17-8 Assembler Programming Guide

Checking the Message Compiler Return Codes
The message compiler generates a return code contained in register 15. The return
codes are as follows:

Code Meaning

0 Successful completion.

4 Processing complete. Run-time message file is complete but the compiler
generated warnings.

8 Processing complete. The run-time message file is usable but incomplete.

12 Processing ended prematurely. The run-time message file is unusable.

You should correct all errors and recompile if you receive any return code other
than O.

Updating the System Run-Time Message File
After validating your application install message files, you can update the system
run-time message file. You need to do the following:

• Add the application's install message files to the system's install message file,
or add a DO statement to the JCL used to compile the system's install message
files.

• Allocate a data set for the system run-time message file if it is not allocated yet.
Use the storage requirements you received from running the IDCAMS report.

• Compile the system's install message files into the system run-time message
files using the message compiler for each install message file. See "Compiling
Message Files" on page 17-7.

You are using the same invocations to update the system run-time message file as
you do to verify message skeletons. The difference is that the resulting system
run-time message file is what MMS can use to translate messages for the system
and applications.

Using MMS Translation Services in an Application
After you have compiled the translated messages and updated the system run-time
message files, your program can use MMS services to retrieve translated message
text. You need to do the following:

• Determine the language in which you want the application's messages
translated, and use QRYLANG to check its availability.

• Use TRANMSG to retrieve translated messages.

You must also determine the action the application will take if the requested
function does not complete, or if an output device cannot support the language.

Chapter 17. Translating Messages 17-9

Determining which Languages are Available (QRYLANG)
You need to determine if the language in which you want to issue messages is
available to MMS. The message query function (QRYLANG) allows you to verify that
the language you want is active, and also to receive a list of all available languages.

QRYLANG returns the information you request in the language query block (LQB),
mapped by CNLMLQB. This block contains the following:

• The standard 3-character code for the language
• The name of the language
• A flag indicating whether the language contains double-byte characters

If you ask for a list of all available languages, QRYLANG returns an LOB with one
language entry for each language.

You need to define storage for an LOB before issuing ORYLANG. To determine how
much storage you need for the LOB if you want a I ist of all active languages:

• Calculate the length of the header section in mapping macro CNLLOB.

• Determine the total number of languages by looking in the MCAALCNT (active
language count) field of the MCA, mapped by CNLMMCA.

• Multiply the total number of languages you intend to query by the LOBEBL (the
length of one entry). This will give you the length of the LOB substitution data
area.

• Add the length of the LOB substitution data area to the length of the header.

To determine how much storage you need for the LOB if you want to query one
language:

• Calculate the length of the header section in mapping macro CNLLOB.

• Add the length of the LQB substitution data area to the length of the header.

Retrieving Translated Messages (TRANMSG)
In your application, call TRANMSG before the code that issues the message.
TRANMSG obtains a message in the specified language and returns the message in
a message text block (MTB). TRANMSG can obtain one message or several
messages at a time. The application can then display the translated text. If the
requested language is not available, TRANMSG returns the message unchanged.
To check the availability of specific languages, use the ORYLANG macro described
in "Determining which Languages are Available (QRYLANG)."

A message input/output block (MIO) serves as both input and output for TRANMSG.
You can either build the MIO yourself or have TRANMSG do it for you. If you do not
supply a formatted MIO, TRANMSG constructs one. See Diagnosis: Data Areas for
information on the MIO. When you issue TRANMSG, the MIO must contain the
following:

• The code of the language into which you want the message translated
• The addresses of the messages you want translated
• The address of an output buffer in the calling program's address space where

TRANMSG is to return the translated message or messages

17-10 Assembler Programming Guide

The application's messages can be in one of the following forms:

• Message text blocks (MTBs, mapped by CNLMMTB)
• Message parameter blocks (MPBs, mapped by CNLMMPB)
• Self-defined text (a 2-byte length field followed by message text)
• A combination of any of the three.

When TRANMSG completes, the MIO, mapped by CNLMMIO, contains the address
of the translated message in the output buffer. The translated message is in the
form of an MTB.

You can translate multi-line messages that contain continuation lines, that is, only
the first line contains a message identifier in the skeleton. The following is an
example of a multi-line message:

MSGID01 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

Translating a mUlti-line message is a little different from translating a single-line
message. You can take one of the following additional steps in preparing the
message for translation:

• Add the message identifier to the beginning of the message text for each line
subsequent to the first. For the example above, the modified message would
appear as follows:

MSGID01 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
MSGID01 THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
MSGID01 THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

When you invoke TRANMSG, MMS will process this message as three separate
lines of text.

• Set the MIOCONT flag on the MIO message entry structure for lines subsequent
to the first (lines two and three in the example). The MIOCONT flag tells MMS
that a specific line of text is associated with the previous line of text. MMS
associates the message identifier of the first line with the message text of the
subsequent lines. Assembler Programming Reference provides a coding
example that translates a multi-line message.

, Using Message Parameter Blocks for New Messages (BLO'MPB and
UPDTMPB)

If you are writing a new application or adding new messages to an existing
application, you can place the message text in the install message files rather than
in the application code. To translate message text that exists only in the install
message files, your program uses a message parameter block (MPB) containing a
message identifier, format number, line number, and any substitution data. Using
MPBs and install message files in this way provides the convenience of having to
modify only the install message file if any of your message text requires a change.
It also allows you to have a single repository for message text.

To build a message parameter block (MPB), allocate storage for the MPB, and issue
BLDMPB and UPDTMPB. BLDMPB initializes the MPB and adds the fixed message
data (called the message header), and UPDTMPB adds one substitution token to the
MPB for each invocation.

Chapter 17. Translating Messages 17-11

Issue BLDMPB once for each MPB you will build and before you issue UPDTMPB.
Issue UPDTMPB once for each substitution token in the message. You can also use
UPDTMPB to replace or change the value of a particular substitution token in an
existing MBP. However, you must ensure that the new value is not longer than the
original value to maintain the integrity of the MPB. You might use UPDTMPB if you
want to invoke TRANMSG several times with one MPB. For example, if you have an
MPB associated with a message that you will translate in several languages, you
can change only the language code in the Mia, and issue TRANMSG.

Once you have built an MPB for a message, you can issue TRANMSG to return the
text of the message in a message text block (MTB). If the requested language is not
available, TRANMSG returns the message number and its substitution data as a text
stri ng in the output area.

Support for Additional Languages
You can also translate messages into languages not currently available through
IBM. You can do this in the following way:

• Select the language code in Figure 17-8 that matches the language into which
you plan to translate messages. You will need that language code.

• If the messages you want to translate are MVS system messages, there may
already be U.S. English skeletons for them, so all you need to supply are the
translated skeletons. If the messages are from an application you have written,
you need to supply both the English and translated skeletons. Follow the
procedures described in "Creating Install Message Files" on page 17-2,
"Validating Message Skeletons" on page 17-5, and "Updating the System
Run-Time Message File" on page 17-9.

• Ask the installation's system programmer to:

Modify the parmlib member, MMSLSTxx, adding the language code.

Create a new config member, CNLcccxx, for the new language.

Restart MMS using the SET MMS command.

See MVS Initialization and Tuning Reference for more information on setting up
config members, and parmlib members.

Figure 17-8 (Page 1 of 2). Languages available to MVS message service. These
languages may not necessarily be available to your
installation.

Code Language Name Principal Country

CHT Traditional Chinese R.O.C.

CHS Simplified Chinese P.R.C.

DAN Danish Denmark

DEU German Germany

DES Swiss German Switzerland

ELL Greek Greece

ENG UK English United Kingdom

ENU US English United States

ESP Spanish Spain

17-12 Assembler Programming Guide

Figure 17-8 (Page 2 of 2). Languages available to MVS message service. These
languages may not necessarily be available to your
installation.

Code Language Name Principal Country

FIN Finnish Finland

FRA French France

FRB Belgian French Belgium

FRC Canadian French Canada

FRS Swiss French Switzerland

ISL Icelandic Iceland

ITA Italian Italy

ITS Swiss Italian Switzerland

JPN Japanese Japan

KOR Korean Korea

NLD Dutch Netherlands

NLB Belgian Dutch Belgium

NOR Norwegian Norway

PTG Portuguese Portugal

PTB Brazil Portuguese Brazil

RMS Rhaeto-Romanic Switzerland

RUS Russian USSR

SVE Swedish Sweden

THA Thai Thailand

TRK Turkish Turkey

For more information on translation, see NLS Reference Manual.

Example of an Application that Uses MMS Translation Services
The following example builds and updates and MPB, then invokes the MMS
translate function to obtain the translated message. There are more examples for
each MMS macro in the Assembler Programming Reference.

TRANSMPB CSECT
TRANSMPB AMODE
TRANSMPB RMODE

STM
BALR
USING
ST
LA
ST
LR

31
ANY
14,12,12(13)
12,0
*,12
13,SAVE+4
15,SAVE
15,8(13)
13,15

*

* OBTAIN WORKING STORAGE AREA *
~****

GETMAIN RU,LV=STORLEN,SP=SP230

--

Chapter 17. Translating Messages 17-13

LR R4,Rl
*

* CREATE MPB HEADER SECTION *

*

BLDMPB MPBPTR=(R4),MPBLEN=MPBL,MSGID=MSGID,
MSGIDLEN=MIDLEN

C

*

* ADD SUBSTITUTION DATA TO MPB FOR DAY 3, TUESDAY *

*

*

*

LR R2,R4
A R2,MPBL
USING VARS,R2

UPDTMPB MPBPTR=(R4),MPBLEN=MPBL,SUBOOFST=VARS,
TOKEN=TOKN,TOKLEN=TOKL,TOKTYPE=TOKT,
SUBSDATA=SDATA,SUBSLEN=SDATAL

USING MIO,R3
LA R3,VARSLEN
AR R3,R2
LA R5,MLEN
AR R5,R3
ST R4,VARSINBF

OBTAIN LENGTH OF VARS AREA
CALCULATE ADDRESS MIO
GET LENGTH OF MIO
CALCULATE ADDRESS OF OUTPUT BUFFER
CREATE ADDRESS LIST

*

*
*

ISSUE TRANSLATE TO OBTAIN MESSAGE TEXT REPRESENTED BY THE
CREATED MPB

*
*

*

TRANMSG MIO=MIO,MIOL=MIOLEN,INBUF=(VARSINBF,ONE),
OUTBUF=(R5),OUTBUFL=OUTAREAL,LANGCODE=LC

*

* FREE STORAGE AREA *

*

FREEMAIN RU,LV=STORLEN,SP=SP230,A=(4)
*

L 13,SAVE+4
LM 14,12,12(13)
BR 14
DROP

C
C

C

MPBL DC
MSGID DC
MIDLEN DC
TOKN DC
TOKL DC
TOKT DC
SDATA DC
SDATAL DC
MIOLEN DC
OUTAREAL DC
ONE DC
LC DC
SAVE DC

1'7 .. 14 Assembler Programming Guide

A(MPBLEN)
CLl0 I MSGID2'
A(MIDL)
CL3'DAY'
F'3 1

CLl '3'
CLl'3'
A(SDL)
A(MLEN)
A(STORLEN-(MPBLEN+VARSLEN+MLEN»
Fill
CL3'JPN '
18F '01

SP230 EQU
STORLEN EQU
SOL EQU

230
512
6

MIDL EQU
MPBLEN EQU
MLEN EQU

6
(MPBVOAT-MPB)+(MPBMIO-MPBMSG)+(MPBSUB-MPBSB)+MIOL+SDL
(MIOVOAT-MIO)+MIOMSGL

Rl EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5

OSECT
CVT OSECT=YES
CNLMMPB
IHASCVT
CNLMMCA
CNLMMIO

VARS OSECT
VARSINBF OS F
VARSAREA OS CL24
VARSLEN EQU *-VARS

END TRANSMPB

Chapter 17. Translating Messages 17-15

17-16 Assembler Programming Guide

Chapter 18. Using Data Compression and Expansion Services

Data compression and expansion services allow you to compress certain types of
data so that the data occupies less space while you are not using it. You can then
restore the data to its original state when you need it.

Data that contains many repeat characters can exploit these services most
effectively. Examples include:

• Data sets with fixed field lengths that might contain many blanks
• SO-byte source code images of assembler language programs.

Using these services with other types of data might not result in appreciable data
volume reduction. In some cases, data volume might even be increased.

Services Provided
Data compression and expansion services, which your program invokes through the
CSRCESRV macro, are described as follows:

• Data Compression Service

This service compresses a block of data that you identify, and stores that data in
compressed form in an output area. The service usesan algorithm called run
length encoding1 to compress the data. In some cases, thes'ervice uses an
interim work area. Only programs running under MVS/ESA can use the data
compression service.

• Data Expansion Service

This service expands a block of data that you identify; the data must have been
compressed by the data compression service. The data expansion service
reverses the algorithm that the data compression service used, and stores the
data in its original form in an output area. In some cases, the service uses an
i nteri m work area.

The data expansion service is available in an MVS/ESA version and an MVS/XA
version. Programs running under MVS/ESA can use either version. Programs
running under MVS/XA can use only the MVS/XA version, and there are certain
restrictions. See "Running under an MVS/XA System" on page 1S-4 for further
details.

• Query Service

This service queries the system to determine the following:

Whether data compression is supported by the system currently installed
- The size of the work area required by the compression or expansion

service.

To use the data compression and data expansion services, you need the
information that the query service provides. Invoke the query service before
invoking either the data compression or data expansion services.

1 Run length encoding is a compression technique that compresses repeating characters, such as blanks.

© Copyright IBM Corp. 1988, 1991 18-1

The query service is available in an MVS/ESA version and an MVS/XA version.
Programs running under MVS/ESA can use either version. Programs running
under MVS/XA can use only the MVS/XA version, and there are certain
restrictions. See "Running under an MVS/XA System" on page 18-4 for further
details.

Figure 18-1 summarizes the services available, and the systems under which these
services can run.

SYSTEM MVS/ESA MVS/XA
Version of Service Version of Service

MVS/ESA Compression Expansion
Expansion Query
Query

MVS/XA Not applicable Expansion
Query

Figure 18-1. Summary of Data Compression and Expansion Services

Note: These services do not provide a recovery routine (for example, ESTAE or
FRR) because it would not contribute to reliability or availability.

Running under an MVS/ESA System
Programs running under MVS/ESA can access the MVS/ESA version of the data
compression, data expansion, and query services. Programs running under
MVS/ESA can also access the MVS/XA version of the data expansion and query
services.

Using the MVS/ESA Version of the Services
The MVS/ESA version of the data compression, data expansion, and query services
resides in SYS1.LPALIB. Your program can invoke these services by using the
CSRCESRV macro.

See Assembler Programming Reference for complete instructions on how to use the
CSRCESRV macro.

To invoke the data compression or data expansion services, follow these steps:

1. Invoke the query service by coding the CSRCESRV macro specifying
SERVICE=QUERY. The macro returns the information you need to invoke the
data compression or data expansion service.

2. If you plan to compress data, check the information returned to ensure that
compression is supported.

3. Invoke the data compression service (or the data expansion service) by coding
the CSRCESRV macro specifying SERVICE = COMPRESS (or
'SERVICE = EXPAND).

18-2 Assembler Programming Guide

Using the MVS/XA Version of the Services
Programs running under MVS/ESA can invoke the MVS/XA version of the query
service and the data expansion service. You might use the MVS/XA version if you
write a program that must expand data on both MVS/ESA and MVS/XA. You can
invoke the MVS/XA version in the same manner when running under MVS/ESA as
you do when running under MVS/XA. See "Running under an MVS/XA System" on
page 18-4 for details on invoking the MVS/XA version.

An alternative approach for a program that must expand data on both MVS/ESA and
MVS/XA is to test the level of the MVS system at execution time to determine which
version of the services to use. Figure 18-2 provides an example of the code you.
might use to conduct this test.

*
* TEST FOR MVSjESA
*

TM CVTDCB,CVTOSEXT
BNO SP2CHK
TM CVTOSLV0,CVTXAX
BNO SP2CHK

*
* TEST FOR MVSjXA
*
SP2CHK TM CVTDCB,CVTMVSE

BNO SPI

*
* CONTINUE CODING
*
SPI

*
* MAP THE COMMUNICATIONS VECTOR TABLE (CVT)
*

CVT DSECT=YES

*

Figure 18-2. Testing the Level of the MVS System at Execution Time

Chapter 18. Using Data Compression and Expansion Services 18-3

Running under an MVS/XA System
Programs running under MVS/XA can use the MVS/XA version of the query service
and the data expansion service, but there is no MVS/XA version of the data
compression service. Therefore, to expand data under MVS/XA, the data must have
been compressed by a program running under MVS/ESA. Programs running under
MVS/XA must also adhere to the following restrictions:

• To assemble, include the correct level (Version 3 Release 1.3 or later) of
SYS1.MACUB in the SYSUB concatenation for the assembly step.

• To execute, include the correct level (Version 3 Release 1.3 or later) of
SYS1.MIGUB in the STEPUB (or JOBUB) of the JCL to execute the program.
(See JCL User's Guide for further information about STEPUB and JOBUB DO
statements.)

Programs running under MVS/XA may use the CSRCESRV macro, but the macro will
not automatically locate the entry point address for the service requested. Your
program must supply that information. To expand data on an MVS/XA system, here
are the steps you must follow. (See Assembler Programming Reference for
complete instructions on how to use the CSRCESRV macro.)

1. Load the CSRCEXA load module from SYS1.MIGUB, using the LOAD macro.
You must do so while your program is in task mode. See Assembler
Programming Reference for LOAD macro syntax.

2. Save the entry point address and place it in a general purpose register (GPR) so
you can pass it to the CSRCESRV macro.

3. Invoke the query service by coding the CSRCESRV macro specifying
SERVICE=QUERYand VECTOR = (reg), where reg is the GPR containing the
entry point address of CSRCEXA. The macro returns the information you need
to invoke the data expansion service.

4. Invoke the data expansion service by coding the CSRCESRV macro specifying
SERVICE = EXPAND and VECTOR = (reg), where reg is the GPR containing the
entry point address of CSRCEXA.

18-4 Assembler Programming Guide

Chapter 19. Accessing Unit Control Blocks (UCBs)

Each device in a configuration is represented by a unit control block (UCB). In a
dynamic configuration environment, a service obtaining UCB information needs to
be able to detect any changes in the configuration that could affect the returned
information. The MVS I/O configuration token provides this capability. You can
scan UCBs with the UCBSCAN macro to obtain information about the devices in the
configuration.

The eligible device table (EDT) contains the definitions for the installation's device
groups. The EDTINFO macro allows you to obtain information from the EDT.

Detecting 1/0 Configuration Changes
You can use the MVS I/O configuration token to detect I/O configuration changes.
The MVS I/O configuration token is a 48-byte token that uniquely identifies an I/O
configuration to the system. The token will change whenever the software
configuration definition changes. Thus, if your program obtains the current MVS I/O
configuration token and compares it to one previously obtained, the program can
determine whether there has been a change in the I/O configuration: If the tokens
do not match, the I/O configuration has changed.

An optional parameter, 10CTOKEN, is available with the UCBSCAN macro.
Specifying 10CTOKEN ensures that the system will notify the caller through a return
code and will not return any data if the current I/O configuration is not consistent
with the configuration represented by the token specified as input by the caller.

Use the following ways to obtain the current MVS I/O configuration token:

• Issue the 10CINFO macro.

• Issue the UCBSCAN macro, setting the input specified by the 10CTOKEN
parameter to binary zeroes. The macro will then return the current I/O
configuration token at the start of the scan.

• Issue EDTINFO macro, setting the input specified by the 10CTOKEN parameter
to binary zeroes.

Use of the MVS I/O configuration token can help prevent data inconsistencies that
might occur if the I/O configuration changes between the time the caller obtained
the token and the time the service returns the information. For example, you can
use the configuration token to determine whether the I/O configuration changes
during a UCB scan. If the 10CTOKEN parameter is specified with UCBSCAN, the
caller will be notified through a return code if the set of UCBs changes while the
scan is in progress. Checking for this return code allows the caller to restart the
scan to ensure that copies of all UCBs in the current configuration are obtained.

An unauthorized program can use the MVS 110 configuration token to regularly
check whether a configuration change has occurred, as in' the following example:

• The program issues the 10CINFO macro to obtain the MVS I/O configuration
token.

• The program sets a time interval that is to expire in 10 minutes, using the
STIMER macro.

© Copyright IBM Corp, 1988. 1991 19-1

• When the time interval expires, the user-specified timer exit routine gets control
and issues the 10CINFO macro to obtain the MVS I/O configuration token that is
current at this later time.

• The program compares the newly-obtained token with the original one.

• If the tokens match, no I/O configuration change has occurred, and the program
resets the time interval for another 10 minutes to check again at that time.

• If the tokens do not match, a configuration change has occurred. The program
then rebuilds its control structures by using the UCBSCAN macro, specifying the
10CTOKEN parameter to check for any further I/O configuration changes while
the rebuilding process is in progress. After the control structures are rebuilt for
the new I/O configuration, the program resets the time interval for 10 minutes to
check again for I/O configuration changes

Scanning UCBs
You can use the UCBSCAN macro to scan UCBs. On each invocation, UCBSCAN
returns a copy of a UCB in a user-supplied work area. The scan can include all
UCBs in the system, or be restricted to a specific device class. For example, you
could use UCBSCAN to find all DASD devices currently defined to the configuration.
It is also possible to restrict the scan to UCBs for static and installation-static
devices, or to include UCBs for dynamic devices as well.

Example of a Program That Obtains Copies of All the UCBs: This example program
obtains copies of all UCBs, including those for devices defined as dynamic. It uses
the MVS I/O configuration token to determine if the 1/0 configuration changes during
the scan, and it restarts the scan if the I/O configuration has changed. On each
invocation of UCBSCAN, the system returns a copy of a UCB at the address
specified by UCBAREA and return the current MVS I/O configuration token.

19~2 Assembler Programming Guide

SCANEXMP CSECT
SCANEXMP AMODE 31
SCANEXMP RMODE ANY

*
*
*

OS 0H
BAKR R14,0
LR R12,R15
USING SCANEXMP,R12
LA R13,SAVEAREA
MVC SAVEAREA+4(4),FIRSTSAV

RESCANLP OS 0H

Save regs on linkage stack
Set up code reg

Get save area address
First save area in chain

IOCINFO IOCTOKEN=TOKEN Get current IOCTOKEN
XC SCANWORK,SCANWORK Clear scan work area

SCAN LOOP OS 0H
UCBSCAN UCBAREA=UCBCOPY,WORKAREA=SCANWORK,DYNAMIC=YES, +

LTR
BNZ

*
*
*
* Process
*

B
SCANDONE OS

LA
*

CR
*

BE
FINISHED OS
*
*
*
ENDIT DS

PR
EJECT

*

IOCTOKEN=TOKEN
R15,R15
SCANDONE

UCB

SCAN LOOP
0H
R02,12

R15,R02

RESCANLP
0H

0H

Was a UCB returned?
No, either a configuration
change has occurred
or no more UCBs

Return code for a
configuration change
Did a configuration change
occur?
Yes, start scan again

Return to caller

* Register equates
*
R02 EQU
R03 EQU
R09 EQU
R12 EQU
R13 EQU
R14 EQU
R15 EQU

DS
FIRSTSAV DC
SAVEAREA DS
TOKEN OS
UCBCOPY DS
*
SCANWORK DS

END

2
3
9
12
13
14
15
0F
CL4 1 FlSA I

18F
48C
48C

CL100
SCANEXMP

First save area ID
Save area
IOCTOKEN area
UCB Copy returned by
SCAN
Work area for SCAN

Chapter 19. Accessing Unit Control Blocks (UCBs) 19·3

Obtaining Eligible Device Table Information
The installation's device groups are defined in the eligible device table (EDT). An
EDT is an installation-defined and named representation of the devices that are
eligible for allocation. This table also defines the relationship of generic device
types and esoteric group names. The term "generic device type" refers to the
general identifier IBM gives a device; for example, 3380. An esoteric device group
is an installation-defined and named collection of I/O devices; TAPE is an example
of an esoteric group name. See System Modifications for further information on the
EDT and allocation considerations.

The EDTINFO macro enables you to obtain information from the EDT and to check
your device specification against the information in the EDT. You can use the
EDTINFO macro to perform the followi ng functions:

• Check groups. The EDTINFO macro determines whether the input device
numbers constitute a valid allocation group. The device numbers are a valid
allocation group if either of the following is true:

For any allocation group in the EDT that contains at least one of the device
numbers specified in the input device number list, all of the device numbers
in that group in the EDT are contained in the input device number list

None of the allocation groups in the EDT contain any of the numbers
specified in the input device number list.

If neither of these is the case, the device numbers are not a valid allocation
group.

• Check units. The EDTINFO macro determines whether the input device numbers
correspond to the specified unit name. The unit name is the EBCDIC
representation of the IBM generic device type or esoteric group name.

• Return unit name. The EDTINFO macro returns the unit name associated with
the UCB device type provided as input.

• Return unit control block (UCB) addresses. The EDTINFO macro returns a list of
UCB addresses associated with the unit name or device type provided as input.

Note: The EDTINFO macro returns UCB addresses only for static and
installation-static UCBs.

• Return group ID. The EDTINFO macro returns the allocation group ID
corresponding to each UCB address specified as input.

• Return attributes. The EDTINFO macro returns general information about the
unit name or device type specified as input.

• Return unit names for a device class. The EDTINFO maCi"O returns a list of
generic device types or esoteric group names associated with the device class
specified as input.

• Return UCB device number list. The EDTINFO macro returns the UCB device
number list associated with the unit name or UCB device type specified as input.
You can also specify that devices defined to the system as dynamic are to be
included in the list.

19;.4 Assembler Programming Guide

• Return maximum eligible device type. The EDTINFO macro returns the
maximum eligible device type (for the allocation and cataloging of a data set)
associated with the unit name or device type, recording mode, and density
provided as input. The maximum eligible device type is the tape device type
that contains the greatest number of eligible devices compatible with the
specified recording mode and density.

Chapter 19. Accessing Unit Control Blocks (UCBs) 19-5

19·6 Assembler Programming Guide

Index

A
ABDUMP symptom area 8-6
ABEND completion code, field containing 8-7
ABEND dump

requesting 8-13
ABEND macro

use of 8-4
abends

handling 8-3
abnormal conditions, processing and detecting 7-1
abnormal termination

providing an ESTAI to handle 8-9
requesting 8-4
ways to avoid with ENQ/DEQ 6-8
when deleting a SPIE/ESPIE environment 7-1
when issuing CLOSE 9-12

access list
adding an entry 12-9
adding entry for data space 12-10
adding entry for hiperspace 13-31
definition of 12-1
types of 12-3

access list entry
adding 12-9
deleting 12-10

access register
illustration of use 12-2
use of 12-1, 13-7
using 12-1

access to data objects, overview
permanent objects 14-6
temporary objects 14-7

accessing data in a data space
rules for 13-8

adding an entry to an access list
description of 12-9
example of 12-10

adding entries to the DU-AL
rutes for 13-8

adding entries to the PASN-AL
rules for 13-8

address space control mode
definition of 12-1
switching 12-1

address space priority 3-2
addressing mode

See also AMODE program attribute
affect on BAL and BALR 4-2
bit in the PSW 4-2
changing

example 4-4
using BSM or BASSM 4-3

considerations when passing control 4-3

© Copyright IBM Corp. 1988, 1991

addressing mode (continued)
indicator

in a PDS entry 4-1
in an entry point address 4-3,4-14

of a loaded module 4-19
of alias entry pOints 4-26
of SPIE routines 7-1
specifying

in source code 4-1
using linkage editor control cards 4-1

ALESERV macro
ADD request

example of 12-10, 13-31
use of 12-9, 13-31

DELETE request
example of 12-10

example of 13-21
ALET

ALET qualified address 2-1
definition of 12-1
example of loading a zero into an AR 12-8
for primary address space 12-6
illustration of use 12-2
loading into an AR 12-8
pu rpose of 2-1
when ALET qualification is required 2-1
with a value of zero 12-6

ALET-qualified addresses
used in macro parameter lists 12-11

algorithm
run length encoding 18-1
used by data compression service 18-1
u~ by data expansion service 18-1

aliases
addressing mode of 4-26
establishing 4-26

AMODE program attribute
See also addressing mode
changing

example 4-3
using BSM or BASSM 4-3

indicator
in a PDS entry 4-1
in an entry point address 4-3,4-14

purpose 4-1
specifying

in source code 4-1
using linkage editor control cards 4-1

values 4-2
anchor 10-1
APF-authorization

when needed by problem state programs 4-14
AR

example of loading an ALET of zero into 12-8

X-1

AR (continued)
illustration of use 12-2

AR information
formatting and displaying 12-12

AR instructions
for manipulating contents of ARs 12-8

AR mode
coding instructions in 12-7
description of 12-1
example of use 12-6
importance of comma 12-7
importance of the contents of ARs 12-8
issuing macros in 12-11
rules for coding in 12-7
use of 12-1
writing programs in 12-6

AR mode program
calling a primary mode program 2-8
calling an AR mode program 2:..8
defined 2-1
linkage procedures for 2-7
passing parameters 2-9
receiving control from a caller 2-7
returning control to a caller 2-7

ARCHECK subcommand
formatting and displaying AR information 12-12

ARs
rules for coding in 12-7
use of 13-7
using 12-1

ASC mode
AR mode program defined 2-1
definition of 12-1
primary mode program, defined 2-1
switching 12-1
switching modes 2-2
when control is received 2-2

assembler example using window services 14-19
Assembler H 4-1
assembler instructions

examples of use in AR mode 12-8
use in AR mode 12-6, 12-7, 12-8

ATTACH macro
addressing mode considerations 4-14
creating subpools 9-8
DPMOD parameter 3-2
ECB parameter, use of 3-5
ESTAI parameter, use of 8-5
ETXR parameter, use of 3-5
example of sharing DU-ALs 13-21
GSPL parameter 9-8
GSPV parameter 9-8
LPMOD parameter 3-2
requesting subpool ownership 9-8
sharing a DU-AL with subtask 13-20
SHSPL parameter 9-8
SHSPV parameter 9-8
specifying subpools 9-8

X-2 Assembler Programming Guide

ATTACH macro (continued)
SZERO parameter 9-8
TASKLIB parameter 4-15,4-16
use of 3-1,4-5,4-14

ATIACHX macro
use of 8-5

authorization code for a loaded module 4-19

B
BAL instruction 4-2
BALR instruction 4-2
BAS instruction 4-2
base register, establishing 2-5
BASR instruction 4-2
BASSM instruction 4-3,4-22
BLDL macro, use of 4-17,4-21,4-22
BLDMPB macro 17-11
blocks of an object

definition 14-1
identifying blocks to be viewed 14-13
size of 14-1
updating blocks in a temporary object 14-15
updating blocks on DASD 14-16

BLOCKS parameter on DSPSERV 13-9, 13-17, 13-29,
13-34

branch and link instruction, register form (BALR) 4-2
branch and link (BAL) instruction 4-2
branch and save and set mode (SASSM)

instruction 4-3
branch and save instruction, register form (BASR) 4-2
branch and save (BAS) instruction 4-2
branch and set mode (BSM) instruction 4-3
branch instructions

BAL 4-2
BALR 4-2
BAS 4-2
SASR 4-2
BASSM 4-3
BSM 4-3
use of 4-22
using with XCTL, danger of 4-24

branching table, use in analyzing return codes 4-10
bringing a load module into virtual storage 4-14
BSM instruction 4-3

C
CALL macro

use of 4-8,4-9,4-20,4-22
callable cell pool services

advantages of using 10-1
compared to the CPOOL macro 10-1
example of use for data spaces 13-18
for data spaces 13-18

calling program, defined 2-1
calling sequence identifier 4-26

cell pool 10-2
activating 10-4
anchor 10-1
contracti ng 10-4
creating 10-4
deactivating 10-5
disconnecting 10-5
expanding 10-4
extent 10-1
obtaining 9-5
obtaining status about 10-5
size 10-3
storage 10-2

cell pool services
See a/so callable cell pool services
CSRPACT 10-5
CSRPBLO 10-4
CSRPCON 10-5
CSRPOAC 10-5
CSRPOIS 10-5
CSRPEXP 10-4
CSRPFRE 10-5
CSRPGET 10-5
CSRPRFR 10-5
CSRPRGT 10-5
query 10-5
return codes 10-6
types of services 10-2, 10-4

control 10-4
cell storage 10-2
cells 9-5, 10-2

allocating 10-5
deallocating 10-5

CHAP macro
use of 3-3

characters printed on an MCS console 16-3
CHNGOUMP command 8-13
choosing the name of a data space 13-9
codes

authorization 4-19
completion 8-2
descriptor 16-5
message routing 16-5
reason 8-2

coding instructions in AR mode 12-7
comma

careful use of in AR mode 12-7
communicating

in a sysplex environment 16-8
compiler

message 17-7
invoking 17-7

completion codes, changing 8-2
compressing data

steps required 18-2
using the data compression service 18-1

concatenated data sets 4-15

concurrent requests for resources
limiting 6-6

configuration token
See 110 configuration token

console
CONVCON macro 16-10
determining status 16-11
determining the name or 10 16-10
parameter list

initializing fields 16-10
retrieving information 16-10
validating a name or 10 16-11
validating area 10 16-12

control
See also passing control
returning 4-11,4-13,4-23

control/ing virtual storage 9-6
CONVCON macro

parameter list 16-10
retrieving console information 16-10

conventions
for passing control 4-5

CPOOL macro
use of 9-5

CPUTIMER macro
use of 16-1

CPYA instruction
description of 12-8
example of 12-8

creating
a subpool 9-8
a task 3-1
hiperspaces 13-26

creating data spaces
example of 12-10,13-12,13-24
rules for 13-8

creating hiperspaces
example of 13-28

creating, using, deleting hiperspace, example of 13-35
critical eventual action message 16-5
CSRCESRV macro

using wLth an MVS/ESA system 18-2
using with an MVS/XA system 18-4

CSRCEXA load module 18-4
CSREVW window service

defining a view of an object 14-11
CSRIOAC window service

obtaining access to a data object 14-9
terminating access to an object 14-18

CSRREFR window service
refreshing changed data 14-16

CSRSAVE window service
updating a permanent object on OASD 14-16

CSRSCOT window service
saving interim changes in a scroll area 14-15
updating a temporary object 14-15

CSRVIEW window service
defining a view of an object 14-11

Index X-3

CSRVIEW window service (continued)
terminating a view of an object 14-17

current size of data space 13-10

D
DAE

See dump analysis and elimination
DASD

data transfer from by window services 14-3
updating a permanent object on DASD 14-16

data compression and expansion services
data which can exploit 18-1
recovery routine 18-2
summary table 18-2
using 18-1

data compression service
steps required to compress data 18-2
using 18-1

data control block
deleting load modules that contain 9-12
for SNAP dumps 8-14

data expansion service
running under an MVS/ESA system 18-2
running under an MVS/XA system 18-4
using 18-1

data object
defining a view of 14-10
defining multiple views of 14-14
extending the size of 14-13
identifying 14-9
mapping

a scroll area to DASD, example 14-4
a temporary object, example 14-4
a window to a scroll area, example 14-4
a window to DASD, example 14-3
multiple objects, example 14-6
multiple windows to an object, example 14-5

obtaining
a scroll area 14-10
access to a data object, overview 14-8
access to a data object, procedure for 14-9

refreshing changed data 14-15
saving interim changes 14-14
specifying type of access 14-10
structure of 14-1
terminating access to an object 14-18
updating a temporary object 14-15

data sets, dump 8-14
data space

choosing the name for 13-9
compared to address spaces 13-1
creating 13-8
default size of 13-3
definition of 13-1, 13-7
deleting 13-18
dumping storage in 13-25
establishing addressability to 13-12

X-4 Assembler Programming Guide

data space (continued)
example of creating 12-10, 13-24
example of deleting 13-24
example of moving data into and out of 13-13
example of use 13-2
example of using 13-24
extending current size of 13-16
identifying the origin 13-11
illustration of 13-1
loading pages into central storage 13-17
managing storage 13-3
paging out of central storage 13-17
rules for using 13-8
shared between two programs 13-20, 13-21
storage avai lable for 13-3
use of 13-2, 13-7
using efficiently 13-23

data space storage
managing 13-3
releasing 13-8, 13-17
rules for releasing 13-17

data to be viewed, identifying 14-13
data-in-vi rtual

mapping a hiperspace object to an address space
window 13-40

mapping into hiperspace 13-37
data-in-virtual object

definition of 11-1
mapped into data space storage 13-22, 13-23

data-in-virtual object, defined 14-1
data-in-virtual window

requirements for 11-1
date and time of day, obtaining 16-1
DCB parameter 4-17
DD statements required for dumps 8-13
DE parameter 4-17
debugging aids for calling sequences 4-26
default priority 3-2
defining a view of a data object 14-10
defining multiple views of an object 14-14
defining the expected window reference pattern 14-12
defining window disposition 14-11
DELETE macro

lowering the responsibility count 9-12
deleting

access I ist entry 12-10
example of 12-10

data space 13-3
example of 12-10

hiperspace 13-3
description of 13-34
example of 13-41

deleting data spaces
example of 13-24
rules for 13-8, 13-18

deleting messages 16-3
deleting messages already written 16-9

DEQ macro
return codes 6-10
rules for using 6-4
use of 6-4,6-8

descriptor codes 16-5
DETACH macro

use of 3-5
DFP requirement for window services 14-9
directory entry, PDS 4-1
directory search 4-16
dispatching priority

assigning 3-2
displaying AR information 12-12
DIV macro

example of mapping object into data space 13-23
example of use 13-41
mapping a data-in-virtual object to a hiperspace

example of 13-38
mapping a hiperspace as a data-in-virtual object

example of 13-41
mapping object to a data space 13-22
programming example 11-20
retain mode 11-14,11-17,11-19
rules for invoking 11-20
services of 11-4

reset 11-17
save 11-15
unaccess 11-19
unidentify 11-19
unmap 11-18

sharing data in a window among tasks 11-20
use of 13-37
using data-in virtual 11-1
when to use data-i n-vi rtual 11-2

DOM macro
function 16-9

DPMOD parameter on ATTACH 3-2
DPRTY parameter on the EXEC statement 3-2
DSPSERV macro

CREATE request
example of 12-10, 13-12, 13-29, 13-35, 13-38,

13-41
DELETE request

example of 12-10, 13-34, 13-39, 13-41
use of 15-1

EXTEND request
example of 13-16

LOAD service
use of 13-17

OUT service
use of 13-17

RELEASE request
use of 13-34, 15-2

rules for 13-17
DU-AL

compared with a PASN-AL 12-3
definition of 12-3
illustration of 12-3

dump analysis and elimination (DAE)
providing information for 8-6

dumping services 8-13
dumping storage in a data space 13-25
dumps

ABEND 8-13
data sets for 8-14
indexes in SNAP dumps 8-14
requesting 8-13
SNAP 8-13
summary 8-14
symptom 8-13
types a problem program can request 8-13

duplicate
names in unique task libraries 4-17
requests for a resource 6-7

dynamic I/O configuration change
detecti ng 19-1

dynamic load module structure
advantages of 4-5
description of 4-4, 4-5

E
EAR instruction

description of 12-8
ECB (event control block)

description of 6-1
parameter of ATTACH 3-5, 6-1

EDT (eligible device table)
description of 19-4
obtaining information from 19-4

EDTINFO macro 19-4
eligible device table

See EDT
end-of-task exit routine 3-5
ENQ macro

example 6-7
return codes 6-8
rules for using 6-4
use of 4-23, 6-3

entry point
adding 4-26
address

AMODE indicator 4-3
of a loaded module 4-19

identifier 4-26
identifying 4-8
using aliases 4-26

EP parameter 4-16
EPIE (extended program interruption element) 7-4
EPLOC parameter 4-16
error process; ng 8-1, 8-3-8-5
ESD (external symbol dictionary), AMODE/RMODE

indicators 4-1
ESO hiperspace

definition of 13-28

Index X-5

ESPIE environment
deleting 7-1
establishing 7-1

ESPIE macro
options

RESET 7-4
SET 7-4
TEST 7-4

use of 7-1
using 7-4

establishing addressability to a data space 13-12
definition of 12-2
example of 13-24

ESTAE macro
use of 8-5

EST AE recovery routi ne
how to use 8-5
interface to 8-6
pOinter to parameter list created by 8-7
retry processing 8-10

ESTAEX macro
use of 8-5

ESTAI recovery routine
how to use 8-9
interface to 8-9
retry processing 8-10

ETXR parameter of An ACH, use of 3-5
event

control block
See ECB

signalling completion of 6';'1
EVENTS macro

use of 6-1
examples

data object mapped to a window 14-2
mapping

a permanent object that has a scroll area 14-4
a permanent object that has no scroll area 14-3
a temporary object 14-4
an object to multiple windows 14-5
multiple objects 14-6

structure of a data object 14-2
window services coding examples 14-19

exclusive resource control 6-5
EXEC statement, DPRTY parameter 3-2
execution of load modules 4-5
exit routine

end-of-task 3-5
functions performed by 7-6
register contents on entry 7-5
specifying 7-1
using serially reusable resources 6-3

expanding data
steps required under an MVS/ESA system 18-2
steps required under an MVS/XA system 18-4
using the data expansion service 18-1

explicit requests for virtual storage 9-1

X-6 Assembler Programming Guide

EXTEND parameter on DSPSERV 13-16, 13-34
extended PIE (program interruption element) 7-4
extended SPIE macro

See ESPIE macro
extended ST AE

See ESTAE recovery routine
extending current size of data space

example of 13-16
procedure for 13-16

extending current size of hiperspace
procedure for 13-34

extending the size of an object 14-13
extent 10-1
external symbol dictionary (ESO), AMODE/RMODE

indicators 4-1

F
finding

a load module 4-15
formatting AR information 12-12
frames

assigning 15-1
repossessing 15-1

freeing virtual storage 9-12
FREEMAIN macro

use of 9-1, 9-5

G
gap, in reference pattern services

defining 15-8
definition 15-8
definition of 15-8

GENNAME parameter on DSPSERV 13-8,13-9,13-28
GETMAIN macro

creating subpools 9-8
LOC parameter 9-2
types of 9-2
use of 9-2

gigabytes 4-1
global resources 6-5

H
handling abends 8-3
hiperspace

as data-in-virtual objects 13-40
compared to address spaces 13-1
creating 13-26, 13-28
default size of 13-3
definition of 13-1, 13-26
deleting 13-34
extending current size of 13-34
fast data transfer 13-31
illustration of 13-1
managing storage 13-3
manipulating data in

illustration of 13-26

hiperspace (continued)
mapping data-in-virtual object into 13-37
referencing data in 13-29
releasing storage in 13-34
shared between two programs 13-31
storage available for 13-3
two types of 13-27
window services use of 14-3

hiperspace storage
managing 13-3
releasing 13-34
rules for releasing 13-34

HSPALET parameter on HSPSERV macro 13-31
HSPSERV macro

example of 13-31
read operation 13-29, 13-30
SREAD and SWRITE operation

example of 13-35
illustration of 13-29

use of move-page facility 13-31
write operation 13-29

HSTYPE parameter on DSPSERV 13-28

IDENTIFY macro
use of 4-26

identifying a data object 14-9
identifying a window 14-11
identifying blocks to be viewed 14-13
identifying messages to be deleted 16-10
identifying the origin of the data space 13-11
IHASDWA mapping macro 8-7
immediate action message 16-5
implicit requests for virtual storage 9-9
initial size of data space 13-10
inline parameter list, use of 4-8
installation limits

on amount of storage for data spaces and
hiperspaces 13-3, 13-10

on size of data spaces 13-10
on size of data spaces and hiperspaces 13-3

interface
to a retry routine 8-10
to an ESTAI routine 8-9

interlock
avoiding 6-10
illustration of 6-11

interruptions
See program interruption

interval timing, establishing 16-1
introduction 1-1
introduction to window services 14-1
10CfNFO macro 19-1
IPCS

formatting and displaying AR information 12-12
issuing macros in AR mode 12-11

110 configuration change
detecting 19-1

lID configuration token
detecting 110 configuration changes with 19-1

J
job library

reason for limiting size of 4-17
use of 4-14
when to define 4-17

job pack area (JPA) 4-15
job step task, creating 3-1
JPA (job pack area) 4-15

L
LAE instruction

description of 12-8
example of 12-9

LAM instruction
description of 12-8
example of 12-8, 12-10

language query block (LOB)
See LOB

languages
checking availability of 17-10

length of a loaded module 4-19
library

description of 4-15
search 4-15

limit priority 3-2, 3-3
limiting use of data spaces and hiperspaces 13-3
linear data set

creating a 11-3
link library 4-14
LINK macro

addressing mode considerations 4-14
use of 4-14,4-20,4-21,4-22
when to use 9-12

link pack area (LPA) 4-15
linkage

considerations 4-2
editor 4-1

linkage conventions
advantages of using the linkage stack 2-2
AR mode program linkage procedures 2-7
AR mode program, defined 2-1
establishing a base register 2-5
for branch instructions 2-1
introduction to 2-1
parameter conventions 2-8
primary mode program linkage procedures 2-5
primary mode program, defined 2-1
register save area, providing 2-2
registers, saving 2-2
using a caller-provided save area 2-3
using the linkage stack 2-2

Index X-7

linkage stack
advantages of using 2-2
example of using the 2-3
how to use 2-2

LlNKX macro
use of· 4-20

load instruction in AR mode
example of 12-7

load list area 4-16
LOAD macro

indicating addressing mode 4-14
use of 4-14,4-19,4-22
when to use 9-12

load module
addressing mode 4-19
aliases 4-26
authorization code 4-19
characteristics of 4-4
entry point address 4-19
execution 4-5
how to avoid getting an unusable copy 4-19
length 4-19
location 4-14
more than one version 4-17
names 4-26
responsibility count 4-24
searching for 4-15
structure types 4-4
use count 4-20
using an existing copy 4-18

loading
registers and passing control 4-7
virtual storage 15-3

loading an ALET into an AR 12-8
LOC parameter on the GETMAIN macro 9-2
local resource 6-5
location of a load module 4-14
LPA (link pack area) 4-15
LPMOD parameter on ATTACH 3-2
LOB 17-10

M
machine check, recovery 8-1
macros

forms of
execute 9-10
list 9-10
standard 9-10

issuing in AR mode 12-11
reenterable form 9-9
ways of passing parameters 9-9

manipulating data In hlperspaces 13-26
manipulating the contents of ARs 12-8
mapping data-in-virtual object into data space

rules for problem state programs 13-22
mapping data-in-virtual object into hiperspace 13-37

example of 13-38

x-a Assembler Programming Guide

mapping data-In-virtual object Into hiperspace
(continued)

rules for problem state programs 13-37
mapping hiperspace as data-In-virtual object 13-40

example of 13-41
mapping object into data space

using DIV macro 13-23
mapping object to a data space

using DIV macro 13-22
maximum size of data space 13-10
MCS consoles, characters displayed 16-3
megabytes 4-1
member names, establishing 4-26
message

critical eventual action 16-5
descriptor codes 16-5
disposition of 16-5
example of WTO 16-6
identifier 16-7
immediate action 16-5
indicator in first character 16-5
multiple-line (MLWTO) 16-4
replying to 16-7
routi ng 16-5
single-line 16-4

message compiler 17-7
invoking 17-7

message file
compiling 17-7

message parameter block (MPB)
See MPB

message service (MMS)
See MMS

message skeleton
creating 17-3
format 17-3
validating 17-5

message skeletons
creating a set of 17-2

message text
format 17-4

messages
deleting 16-3, 16-9, 16-10
translating 17-1
writing 16-3

MLWTO (multiple-line messages), considerations for
using 16-4

MMS 17-1-17-15
coding example 17-13
support for additional languages . 17-12

mode
primary 12-1

module
See load module

move-page facility 13-31
moving data between hiperspace and address

space 13-29

MPB 17-11
building 17-11

using BLDMPB and UPDTMPB 17-11
using for new messages 17-11

multiple versions of load modules 4-17
multiple-line (MLWTO) messages, considerations for

using 16-4
MVS macros

issuing in AR mode 12-11

N
NAME parameter on DSPSERV 13-8, 13-9, 13-28
names

of resources 6-4
naming a data space 13-9
non-shared standard hiperspace

creating 13-28
definition of 13-28

nonreenterable load modules 9-11
nonreusable load module, passing control to 4-23
NUMRANGE parameter on HSPSERV 13-30

o
obtaining access to a data object, procedure for 14-9
operator

consoles, characters displayed 16-3
messages, writing 16-3

origin of data space 13-11
originating task 3-1
OUTNAME parameter on DSPSERV 13-8,13-9
overlay load module structure 4-4
overview of window services 14-1
ownership of subpools 9-8

p
page

faults, decreasing 15-4
movement of 15-1
size of 15-1

page service list (PSL) 15-5
page-ahead function 15-3
paging 110 15-1
paging out virtual storage 15-3
paging services

input to 15-4
list of services 15-1

parallel execution, when to choose 3-1
parameter area for recovery routines 8-2
parameter conventions 2-8
parameter list

description of 4-6
example of passing 4-7
indicating end of 4-8
inline, use of 4-8
location of 4-24

parameter list for AR mode programs
illustration of 2-9

partitioned data set directory entry
See PDS directory entry

PASN-AL
compared with a DU-AL 12-3
definition of 12-3

passing control
between control sections 4-6
between programs with different AMODEs 4-3, 4-22
between programs with the same AM ODE 4-3
in a dynamic structure 4-14-4-25

with return 4-20
without return 4-24

in a simple structure 4-5-4-13
with return 4-8
without return 4-6

preparing to 4-6, 4-8
using a branch. instruction 4-8,4-24
using CALL 4-9
using LINK 4-20
with a parameter list 4-7
with return 4-8
without control program assistance 4-5,4-22

passing parameters
in lists 4-6,9-9
in registers 9-9

passing return addresses 4-6
PDS directory entry

AMODE indicator 4-1
RMODE indicator 4-1,4-2

percolation 8-1,8-2,8-6
permanent object

accessing an existing object 14-9
creating a new object 14-9
data transfer from 14-3
data-in-virtual object, relationship to 14-1
defining a view of 14-10
defining multiple views of 14-14
definition 14-1
extending the size of 14-13
functions supported for 14-6
identifying 14-9
mapping a scroll area to a permanent object,

example 14-4
mapping with no scroll area, example 14-3
new object, creating 14-9
obtaining

a scroll area 14-10
access to a permanent object, overview 14-8
access to a permanent object, procedure

for 14-9
overview of supported functions 14-6
refreshing changed data 14-15
refreshing, overview 14-9
requirements for new objects 14-9
saving changes, overview 14-8
saving interim changes 14-14

Index X-9

permanent object (continued)
size of, maximum 14-1
specifying new or old status 14-9
specifying type of access for an existing

object 14-10
structure of 14-1
terminating access to a permanent object 14-18
updating on DASD 14-16

PGLOAD macro
page-ahead function 15-3
use of 15-1

PGOUT macro
use of 15-1

PGRLSE macro
use of 15-1

PGSER macro
input to 15-5
page-ahead function 15-3
use of 15-2

PICA (program interruption control area)
format 7-2
pOinter to 7-2
pu rpose of 7-2
restoring a previous 7-2

PIE (program interruption element)
format of 7-3
purpose of 7-2

planned overlay load module structure 4-4
pointer-defined entry pOint address 4-3
post bit 6-2
POST macro

use of 6-1
PRB (program request block) 4-26
preparing to pass control

with return 4-8
without return 4-6

primary mode
description of 12-1

primary mode program
calling a program 2-7
defined 2-1
linkage procedures for 2-5
passing parameters 2-8
receiving control from a caller 2-5
returning control to a caller 2-6

priority
address space 3-2
assigning 3-3
changing 3-3
control program's influence on 3-2
dispatching 3-2
higher, when to assign 3-3
limit 3-2, 3-3
subtask 3-3
task 3-2

private library 4-14
processor storage management 15-1-15-14

X-10 Assembler Programming Guide

program check, recovery 8-1
program design 4-5
program exceptions

See program interruption
program interruption

causes 7-1
determining the cause of 7-3
determining the type of 7-6
handling 7-1

program management 4-1-4-26
program mask 7-2
program request block (PRB) 4-26
program status word

See PSW
program termination services 8-1
protecting resources

via serialization 6-3
PSL (page service list) 15-5
PSW (program status word)

addressing mode bit 4-2, 4-3
at time of error, field containing 8-7

purging the RB queue 8-10

Q
qname of a resource

purpose of 6-4
QRYLANG macro 17 -10
query service

R

running under an MVS/ESA system 18-2
running under an MVS/XA system 18-4
using 18-1

RANGLIST parameter on HSPSERV 13-30,13-36
RB (request block), purging queue of 8-10
read operation

for standard hiperspaces 13-29, 13-30
reading from a standard hiperspace 13-30, 13-35
reason code

changing 8-2
field containing 8-7

recovery routine
altering register contents 7-6
altering the old PSW 7-6
avoiding recursion 8-2
creating your own 8-5
function performed by 7-6
interfaces to ESTAEs 8-6
parameter area for 8-2

recovery routine characteristics
summary of 8-12

recovery termination manager (RTM), function of 8-1
recursion, avoiding in recovery routines 8-2
reenterable

load module 4-19,4-22,9-9
_macros 9-9

reenterable (continued)
recovery routine 8-6

reenterable code
'use of 9-2,9-4,9-9

reenterable load module
use of 9-3, 9-9

reference pattern services 15-5-15-14
reference unit, in reference pattern services

choosing 15-8
definition 15-8
definition of 15-8

REFPAT macro
example of 15-13
use of 15-5
using 15-9

refreshable module 9-11
refreshing changed data in an object 14-15
REGION system parameter 9-1
register

altering the contents of 7-6
contents at time of error 8-7
contents for a retry routine 8-10
providing a save area 2-2
saving 2-2

register 14
use of 4-8
when to restore 4-6

register 15, use of 4-6
register 1, paSSing parameters with 4-6
registers 2-12 4-8
RELEASE parameter on HSPSERV macro 13-30
releasing

a resource 6-8
data space and hiperspace storage 13-3
data space storage 13-17

rules for 13-17
hiperspace storage 13-34

rules for 13-34
virtual storage 15-1

releasing storage in data spaces
rules for 13-8, 13-17

remove
entry from access list 12-10

REPLACE option for a window 14-11
replying to WTOR messages 16-7
request block (RB), purging queue of 8-10
requesting

dumps 8-13
requests for resources

limiting concurrent 6-6
requirements for window services

DFP requirement 14-9
SMS requirement 14-9

residency mode of programs
See RMODE program attribute

resource
control 6-1
global 6-5

resource (continued)
local 6-5
making duplicate requests for 6-7
name lists 6-5
naming 6-4
processing a request for 6-6
protecting

via serialization 6-3
releasing 6-8
requesting

conditionally 6-8
exclusive control of 6-5
pairs of 6-11
shared control of 6-5
unconditionally 6-8

serially reusable
use of 6-3

types that can be shared 6-5
responsibility count for a loaded module 4-24, 9-12
restoring

a PICA 7-2
110 operations during retry processing 8-10
registers upon return 4-11

RETAIN option for a window 14-11
retry processing 8-1
retry routines

EST AE/EST AI 8-10
interface to 8-10
register contents 8-10
requirements of 8-10
restoring 110 operations 8-10

return address
paSSing 4-6

return codes
analyzing 4-10
establishing 4-12
for cell pool services 10-6
using 4-10

RETURN macro
use of 4-11,4-12

returning
control

in a dynamic structure 4-23
in a simple structure 4-11

reusability attributes of a load module 4-22
reusable modules 4-18
reusing a save area 4-8
RMODE program attribute

indicator in PDS entries 4-1
purpose 4-1
specifying

in sou rce code 4-1
using linkage editor control cards 4-1

use of 4-14
values 4-2

routing
codes 16-5
messages 16-5

Index X-11

RTM (recovery termination manager), function of 8-1
run length encoding 18-1
run-time message file

updating 17-9

S
SAC instruction

example of 12-10
use of 12-1

SAR instruction
description of 12-8
example of 12-8

save area
example of using a 2-3, 2-4
how to tell if used 4-12
passing address of 4-6
reusing 4-8
using a caller-provided save area 2-3
who must provide 2-2

SAVE macro
example of using 2-4
use of 4-26

saving interim changes to a permanent object 14-14
scope of a resource

changing 6-5
STEP, when to use 6-4
SYSTEMS, when to use 6-4
SYSTEM, when to use 6-4
use of 6-4

SCOPE parameter on DSPSERV 13-8
SCOPE = ALL data spaces

use of 13-9
SCOPE = COMMON data spaces

use of 13-9
SCOPE = SINGLE data spaces

use of 13-9
scroll area

data transfer from 14-3
definition 14-2
mapping a scroll area to DASD, example 14-4
mapping a window to a scroll area, example 14-4
obtaining a scroll area 14-10
refreshing a scroll area 14-15
saving changes in, overview 14-8
saving interim changes in a 14-15
storage used for 14-2
updating a permanent object from a scroll

area 14-16
updating DASD from, overview 14-8
use of 14-2

SCROLL hiperspace
See standard hiperspace 13-27

SDWA extensions 8-6
SDWA (system diagnostic work area) 8-6

changing via SETRP 8-2
key fields in

SDWACCF bit 8-3,8-8
SDWACLUP bit 8-10

X-12 Assembler Programming Guide

SDWA (system diagnostic work area) (continued)
key fields in (continued)

SDWACMPC 8-3,8-7
SDWACOMU 8-7
SDWACRC 8-3,8-7
SDWADAET 8-8
SDWAEBC bit 8-8
SDWAEC1 8-7
SDWAEC2 8-7
SDWAFAIN 8-8
SDWAGRSV 8-7
SDWAHEX bit 8-8
SDWALNTH 8-7
SDWAOCUR 8-8
SDWAPARM 8-7
SDWAREAF bit 8-3,8-8
SDWASPID 8-7
SDWASRSV 8-7
SDWAURAL 8-8
SDWAVRAL 8-7

length, field containing 8-7
mapping macro for 8-7
obtaining storage for 8-7

SDWAVRA 8-6
searching for a load module 4-15-4-18

areasllibraries searched 4-16
limiting 4-16
order of 4-16

serializing resources
avoiding an interlock 6-10
requesting exclusive control 6-5
requesting shared control 6-5

serially reusable
modules

obtaining a copy of 4-19
passing control to 4-22

resources
using 6-3-6-12

set up
addressability to a data space

example of 12-10
SETRP macro

use of 8-2, 8-8
using 8-2

shared resource control 6-5
shared standard hiperspace

definition of 13-28
sharing data spaces 13-21
sharing subpools 9-7, 9-8
simple load module structure 4-4,4-5
size of data space, specifying 13-10
size of hiperspace, specifying 13-10
SMS requirement for window services 14-9
SNAP data control block 8-14
SNAP dump

index 8-14
requesting 8-13

SNAP macro
use of 8-13

SNAPX macro
use of 8-13

specify program interruption exit
See SPIE

SPIE macro
addressing mode restrictions 7-1
use of 7 -1, 7-2

SPIE (specify program interruption exit) environment
addressing mode of 7-1
adjusting 7-2
canceling 7-2
definition 7-2
reestablishing 7-2

STAM instruction
description of 12-8

standard hiperspace
definition of 13-27
example of creating 13-29
non-shared 13-28
read and write operations 13-30
shared 13-28
use of 13-27

START parameter on OSPSERV 13-17, 13-34
step library

reason for limiting size of 4-17
use of 4-14

STIMER macro
use of 16-1

STIMERM macro
use of 16-1

STOKEN parameter on ALESERV 12-9
STOKEN parameter on OSPSERV 12-9, 13-8, 13-28
STOKEN parameter on HSPSERV 13-30
storage

See a/so virtual storage
freshly obtained 11-5
managing data space 13-18
services of

access 11-7
identify 11-6
map 11-10

storage available for data spaces and
hiperspaces 13-3

STORAGE macro
OBTAIN request

example of 13-36
use of 9-1, 9-2, 9-4, 9-5

storage request
explicit 9-1
implicit 9-1

storage subpool, see subpool 9-6
structure of a data object 14-1
structured data base (SOB) format

description 8-16
subpool

creating 9-8

subpool (continued)
handling 9-6
10 of the SOWA 8-7
in task communication 9-9
ownership of 9-8
sharing 9-7,9-8
transferring ownership 9-8

subpool release
definition of 9-5

substitution token 17-3
subtask

communications with tasks 3-4
controll ing 3-1
creati ng 3-1
priority 3-3
terminating 3-5,6-1

summary dumps 8-14
switching addressing modes

See addressing mode, changing
symptom dumps 8-13
symptom record

description 8-14
SYMRBLD macro

building a symptom record 8-14
SYMREC macro

symptom recording 8-14
sysplex envi ronment

communication 16-8
SYSST ATE macro

example of 12-11
use of 4-19,8-13,12-11

system conventions for parameter lists 4-6
system diagnostic work area

See SOWA
SYSTEM inclusion resource name list 6-5
system log, writing to 16-9
system-generated PICA 7-4
SYSUOUMP PARMLIB member 8-13
SYS1.LOGREC

description 8-14

T
target program, defined 2-1
task

advantage of creating additional 3-1
communications with subtasks 3-4
creating 3-1
library, establishing 4-15
priority, affect on processing 3-2
synchronization 6-1

TASKLIB parameter of ATTACH 4-15,4-16
tasks in a job step, illustration of 3-4
TCB (task control block)

address of 3-1
removing 3-5

temporary object
acceSSing a temporary object 14-9

Index X-13

temporary object (continued)
creating a temporary object 14-9
data transfer from 14-3
defining a view of 14-10
defining multiple views of 14-14
definition 14-1
extending the size of 14-13
functions supported for 14-7
initialized value 14-2
mapping a window, example 14-4
obtaining

a scroll area 14-10
access to a temporary object, overview 14-8
access to a temporary object, procedure

for 14-9
overview of supported functions 14-7
refreshing changed data 14-15
refreshing, overview 14-9
saving changes, overview 14-8
size of, maximum 14-1
specifying the object size 14-10
storage used for 14-2
structu re of 14-1
terminating access to a temporary object 14-18
updating a temporary object 14-15

terminating a view of an object 14-17
terminating access to an object 14-18
testing return codes 4-10
time interval

example of using 16-2
time of day and date, obtaining 16-1
time-of-day (TOO) clock

See TOO clock
TIMEUSED macro

use of 16-3
TOO (time-of-day) clock 16-1

obtaining contents of 16-1
token

used with DaM macro 16-10
TOKEN parameter

of DaM macro 16-10
TRANMSG macro 17-10
transferring control

See passing control
transferring data between hiperspace and address

space 13-29
translating messages 17-1

See a/so TRANMSG macro
TTIMER macro

use of 16-1

U
UCB (unit control block)

scanning 19-2
UCBSCAN macro 19-2
unit control block

See UCB

X-14 Assembler Programming Guide

updating a permanent object on DASD 14-16
updating a temporary object 14-15
UPDTMPB macro 17-11
use count 4-20
use of data spaces 13-2
user exit routine

See exit routine
using an entry to an access list

example of 12-10
using data spaces efficiently 13-23
using window services 14-8

V
V-type address constant, using to pass control 4-8
variable recording area

See VRA
version record

format 17-2
virtual storage

controlling 9-6
explicit requests for 9-1
freeing 9-12
implicit requests for 9-9
loading 15-1, 15-3
obtaining via CPOOL 9-5
page-ahead function 15-3
paging out 15-3
releasing 15-1, 15-2
specifying the amount allocated to a task 9-1,9-2
subpools 9-6
using efficiently 9-1

virtual storage management (VSM) 9-1-9-12
vi rtual storage wi ndow 11-1, 11-5
virtual subarea list (VSL) 15-4
vi rtual = central (V = R) storage, allocation of 15-1
VRA (variable recording area)

length of, field containing 8-7
length used, field containing 8-8

VSL (virtual subarea list) 15-4
VSM (virtual storage management) 9-1-9-12
V= R (virtual = central) storage, allocation of 15-1

W
wait

bit 6-2
condition 6-1
long 6-2

WAIT macro
use of 6-1

ways that window services can map an object 14-3
what window services provides 14-2
window

affect of terminating access to an object 14-18
blocks to be viewed, identifying 14-13
changing a view in a window 14-17
changing the view, overview 14-9

window (continued)
data to be viewed, identifying 14-13
defining

a window, overview 14-8
multiple windows 14-14
the window reference pattern 14-12
window disposition 14-11
windows with overlapping views 14-14

definition 14-1
identifying a window 14-11
identifying blocks to be viewed 14-13
mapping

multiple objects, example 14-6
to a window, example 14-3
to multiple windows, example 14-5

refreshing a window 14-15
REPLACE option 14-11
RETAIN option 14-11
size of 14-11
storage for 14-11
terminating a view in a window 14-17
updating a permanent object from a window 14-16
use of 14-1

window services
functions provided 14-2
overview 14-1
services provided 14-2
using window services 14-8
ways to map an object 14-3

work area
used by data compression service 18-1
used by data expansion service 18-1

write operation
for standard hiperspaces 13-29

writing
to the operator with reply 16-3
to the operator without reply 16-6
to the programmer 16-8
to the system log 16-9

writing messages 16-3
writing programs in AR mode 12-6
writing to a standard hiperspace 13-30, 13-35
WTL macro

use of 16-9
WTO macro

descriptor code for 16-5
example 16-6
multiple-line (MLWTO) form 16-4
single-line form 16-4
use of 16-3

WTOR macro
example 16-7
use of 16-3

x
X-macro

definition of 12-11

X-macro (continued)
rules for using 12-11

XCTL macro
addressing mode considerations 4-14
lowering the responsibility count 9-12
use of 4-14, 4-24
using with branch instructions, danger of 4-24

XCTLX macro
use of 4-24

Numerics
24-bit addressing mode

description 4-1
SPIE routine considerations 7-1

31-bit addressing mode
description 4-1
SPIE considerations 7-1

460 system completion code 7-1

Special Characters
IIJOBLIB DO statements 4-14
IISTEPLIB DO statements 4-14

Ind~x X-1S

X-16 Assembler Programming Guide

Reader's Comments

MVS/ESA
Application Development Guide:
Assembler Language Programs

MVS/ESA System Product:
JES2 Version 4
JES3 Version 4

Publication No. GC28-1644-1

Use this form to tell us what you think about this manual. If you have found errors in
it, or if you want to express your opinion about it (such as organization, subject
matter, appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer. This form is provided for comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Reader's Comments
GC28-1644-1

-------.-- -------- -. ---- --. -------------,,-
®

I

I

I

I

I

I

Fold an'd Tape Please do not staple Fold and Tape I

-------------------------------------_ ... _-------------- _-_ -... _-----------_ .. _ .. -------_ ... -----------.. _--:

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO BOX 950
POUGHKEEPSIE NY 12602-9935

1 ••• 11 •• 1.1.11 •• 11 ••••• 1.11.1111.1"1.11111.1 ••• 11.1

NO POSTAGE
NECESSARY
IF MAILEO IN THE
UNITED STATES

--------------_ .. --------------_ .. _--------------------------_ .. ---_ ... _---_ ... --------,
Fold and Tape Please do not staple

GC28-1644-1

Fold and Tape
I

I

I

I

I

I

Cut
Alor

Cut
Alol

Reader's Comments

MVS/ESA
Application Development Guide:
Assembler Language Programs

MVS/ESA System Product:
JES2 Version 4
JES3 Version 4

Publication No. GC28·1644·1

Use this form to tell us what you think about this manual. If you have found errors in
it, or if you want to express your opinion about it (such as organization, subject
matter, appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer. This form is provided for.comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Reader's Comments
GC28-1644-1

--..------- ----.----- -. ----- -- -~-----------.,-
®

, ,
,
, ,
,
,

,
,
, ,
I

,
,
, ,
,
,
, , , ,

Fold and Tape Please do not staple Fold and Tape ,

--r--------r-----------------i;*~i;!:~-:-----<

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT_NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department f'-58, Building 921-2
PO BOX 950
POUGHKEEPSIE NY 12602-9935

1 ••• 11 •• 1.1.11 •• 11 ••••• 1.11.1 •• 1.1'11111 •• 1.111111.1

UNITED STATES

I

,
, , ,
,
I

, ,
, ,
,
,
,
,
I

,
,
,

,
,

.----__ ... __ _________________ ... _ __________________ ... ______ -------...... --... ---------.. --------------------------... --------------------------------------"1
Fold and Tape Please do not staple Fold and Tape ,

, ,

,
,

, ,

,
,
I .
,

,

,
,

Cut
Alo

! CUi

GC28-1644-1 i Ale

Reader's Comments

MVS/ESA
Application Development Guide:
Assembler Language Programs

MVS/ESA System Product:
JES2 Version 4
JES3 Version 4

Publication No. GC28·1644·1

Use this form to tell us what you think about this manual. If you have found errors in
it, or if you want to express your opinion about it (such as organization, subject
matter, appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer. This form is provided for comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Reader's Comments
GC28-1644-1

Fold an'<;f Tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO BOX 950
POUGHKEEPSIE NY 12602-9935

1 ••• 11'11.1.11 •• 11"11.1.11.1 •• 1.1'1' III ,,1.1 ... 11.1

--..------- -------- -. ---- _ ... ----------_.-
®

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

,
,
, ,

-------------........... _---- _-----_ .. _--------------_ -----_ _-------........ --------------_ _-------... _--------------------------------... ---------------------------------.. ----------------_ ... _ .. _--------- ...
Fold and Tape Please do not staple Fold and Tape

GC28-1644-1·

Cut
Alol

Cut
Alo

Reader's Comments

MVS/ESA
Application Development Guide:
A$sembler Language Programs

MVS/ESA System Product:
JES2 Version 4
JES3 Version 4

Publication No. GC28-1644-1

Use this form to tell us what you think about this manual. If you have found errors in
it, or if you want to express your opinion about it (such as organization, subject
matter, appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer. This form is provided for comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or ~ation

Phone No.

Reader's Comments
GC28-1644--1

Fold and Tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO BOX 950
POUGHKEEPSIE NY 12602-9935

1 ••• 11 •• 1.1.11 •• 11 ••••• 1.11.1 •• 1.1 •••• 11 •• 1.1 ••• 11.1

---------- ------.-- -. ---- -- ---------~-.,-
®

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

I

I

I

I

I

I

I

I

I

I

I

I

I ._-------------------------_ ... -----------------------------------_ -----------......... -----.......... _----_ .. ---------------------...... ------_ ... _-----..... _--_ ... -----------..,
Fold and Tape Please do not staple Fold and Tape

GC28-1644-1·

I

I

I

I

I
I

Cu
Ale

Cl
AI

--------- - ------- - ---- - - ----------_ .-
<l>

File Number:8370 / 8390-36
Program Numbers: 5695-047

5695-048

Printed in U.S.A.

GC28-1644-01

