
--------- - ---- - -- - ---- - - ------ ----- ·-
MVS/ESA Service Aids

MVS/System Product:
JES2 Version 3
JES3 Version 3

GC28-1844-2

5 : =ii~ MVS/ESA Service Aids

MYS/System Product:
JES2 Version 3
JES3 Version 3

GC28-1844-2

Third Edition (December 1989)

This is a major revision of, and obsoletes, GC28-1844-1. See the Summary of Amendments following the
Contents for a summary of the changes made to this manual. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

This edition applies to Version 3 of MVS/System Product 5685-001 or 5685-002 and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters. Changes are made
periodically to the information herein; before using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. References to IBM products in this document do not imply
that functionally equivalent products may be used. The security certification of the trusted computing base
that includes the products discussed herein covers certain IBM products. Please contact the manufacturer
of any product you may consider to be functionally equivalent for information on that product's security
classification. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the forn;i has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building
921-2, PO Box 950, Poughkeepsie, NY 12602. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1988, 1989
All Rights Reserved.

(

PROGRAMMING INTERFACES ------------------,

The majority of this book consists of guidance Information to help the system
programmer diagnose and fix failures In system or application programs. Such
Information should never be used as programming Interface Information.
However, this book also contains general-use programming interface
Information.

General-Use Programming Interfaces: General-use programming interfaces are
provided to allow a customer installation to write programs that use the services of
MVS/System ProductVersion 3. General-use programming interfaces do not have
significant dependencies on detailed product design or implementation.

General-use programming interface information is identified by brackets before and
after the information, as follows:

GENERAL-USE PROGRAMMING INTERFACE

Description of the interface.

~---- End of GENERAL-USE PROGRAMMING INTERFACE ____ ___.

iii

iv Service Aids

Contents

Chapter 1. GTF 1-1
Introduction 1-1
Using GTF 1-2

Features of GTF 1-2
GTF Trace Output 1-2
Retrieving GTF Trace Output 1-2

How to Start GTF 1-3
How to Specify the START Command 1-3
IBM-Supplied Cataloged Procedure 1-7
IBM-Supplied SYS1.PARMLIB Member 1-7

How to Specify GTF Trace Options 1-8
How GTF Identifies Options in SYS1.PARMLIB 1-8
How You Indicate Trace Options 1-8
GTF Trace Options 1-9
Combining Certain GTF Options 1-12
Prompting 1-13

GTF Examples 1-18
Using the GTF Cataloged Procedure 1-18

How to STOP GTF 1-24
How to Specify the STOP Command 1-24
Sample STOP Commands 1-25

GTF Storage Requirements 1-26
User Trace Data Created With GTRACE 1-27

EID Assignment for User Events 1-27
How to Print User Data 1-27

GTF Error Recovery Handling 1-28
GTF Output 1-28

Chapter 2. LIST 2-1
Introduction 2-1
JCL Statements 2-2

Control Statements 2-3
Output 2-6
Examples 2-15

Example 1: Listing Several Object Modules 2-15
Example 2: Listing Several Load Modules 2-16
Example 3: Listing IDR Information for Several Load Modules 2-17
Example 4: Verifying an Object Deck 2-18
Example 5: Verifying Several Load Modules 2-19
Example 6: Listing a System Nucleus and Mapping the Link Pack Area 2-20

Chapter 3. SADMP program 3-1
Introduction 3-1
SADMP Program 3-2
Creating the SADMP Program 3-4

Considerations in Creating Stand-Alone Dumps 3-5
Dump Specification: Coding the AMDSADMP Macro 3-6

Syntax of the AMDSADMP Macro for an Unformatted Dump Program 3-6
Syntax of the AMDSADMP Macro for a Formatted Dump Program 3-8

Two-Stage Generation: 3-10
Assembling the Macro Instruction 3-10
Assembling Multiple Versions of AMDSADMP 3-12

GC28-1844-2 © Copyright IBM Corp. 1988, 1989 v

Vi Service Aids

Message Output from AMDSADMP 3-13
Initializing the Residence Volume 3-16

One-Step Generation 3-16 \
Using One-Step Generation 3-19

Dumping Additional Storage 3-19
Requesting Additional Storage During SADMP Generation 3-19
Requesting Additional Storage During SADMP Execution 3-19
Dump Tailoring Options 3-20
Specifying The Minimal SADMP 3-22
SADMP DUMP Col')'lmand Syntax 3-23

Executing SADMP 3-24
Procedure A: IPLing and Executing SADMP 3-25
Procedure B: Restarting SADMP 3-27
Procedure C: RelPLing SADMP 3-27
Procedure D: Dumping SADMP 3-27

Messages and Operator Communications During Execution 3-28
SADMP Messages on the 3480 Display 3-31
SADMP Output 3-32

Unformatted Output 3-32
Formatted Output 3-32
Copying SADMP Output 3-32

SADMP Examples 3-35
Example 1: Accepting All Defaults 3-35
Example 2: Generating an Unformatted, Tape Resident Dump Program 3-36
Example 3: Generating a Formatted Dump Program with Defaults 3~36

Example 4: Generating a Formatted Dump Program with Output Directed to
Tape 3-36

Chapter 4. SPZAP 4-1
Introduction 4-1
Capabilities of SPZAP 4-1
Monitoring the Use of SPZAP 4-1
Inspecting and Modifying Data 4-2
Inspecting and Modifying a Load Module 4-2
Accessing a Load Module 4-2
Inspecting and Modifying a Data Record 4-4
Accessing a Data Record 4-4
Dumping Data 4-5
Updating System Status Information 4-5
Operational Considerations 4-6
JCL Statements 4-7
Return Codes 4-8
Dynamic Invocation of SPZAP 4-9
SPZAP Control Statements 4-11
SPZAP Output 4-18
Formatted Hexadecimal Dump 4-18
Translated Dump 4-18
SPZAP Examples 4-21

Example 1: Inspecting and Modifying a Load Module Containing a Single
CSECT 4-21

Example 2: Inspecting and Modifying a CSECT in a Load Module Containing
Several CSECTs 4-22

Example 3: Inspecting and Modifying Two CSECTs in the Same Load
Module 4-23

Example 4: Inspecting and Modifying a Data Record 4-25
Example 5: Entering SPZAP Control Statements Through the Console 4-26

Example 6: Using the BASE Control Statement for Inspecting and Modifying a
Load Module 4-26

Chapter 5. Abbreviation Dictionary 5-1

Index X-1

Contents Vii

viii Service Aids

Figures

1-1. General Format of the START Command for GTF 1-3
1-2. IBM-Supplied Cataloged Procedure 1-7
1-3. GTFPARM Member in SYS1.PARMLIB 1-7
1-4. Combining Certain GTF Options 1,.12
1-5. CCW Defaults for Selected TRACE Options 1-14
1-6. General Format of the STOP Command 1-24
1-7. GTF Storage Requirements 1-26
2-1. Sample Module Summary of LISTLOAD 2-6
2-2. Sample LISTLOAD Output Load-Module Map 2-8
2-3. Sample LISTLOAD Output - Cross-Reference Listing 2-10
2-4. Sample LISTOBJ Output 2-12
2-5. Sample LISTIDR Output 2-13
2-6. Sample LISTLPA Output 2-14
3-1. Format of AMDSADMP Macro Instruction Used to Generate a High-Speed

Dump Program 3-6
3-2. Format of AMDSADMP Macro Instruction Used to Generate a Low-Speed

Dump Program 3-8
3-3. Sample JCL to Assemble AMDSADMP Macro (For releases of MVS/SP

Version 3 prior to MVS/SP 3.1.3) 3-10
3-4. Sample JCL to Assemble AMDSADMP Macro (MVS/SP 3.1.3) 3-11
3-5. Sample JCL for Assembling Multiple Versions of AMDSADMP Macro (For

releases of MVS/SP Version 3 prior to MVS/SP 3.1.3) 3-12
3-6. Sample JCL for Assembling Multiple Versions of AMDSADMP Macro

(MVS/SP3.1.3) 3-12
3-7. Sample JCL for One-Step Generation of SADMP 3-16
3-8. One-Step Generation With Overriding ddnames 3-17
3-9. ddnames and Defaults Used by AMDSAOSG 3-18

3-10. Sample Exchange Between SADMP and the Operator 3-20
3-11. Requesting The Minimal Dump Option During SADMP Generation 3-22
3-12. Requesting The Minimal Dump Option During SADMP Execution 3-23
3-13. Sample of a Formatted, or Low-Speed, Dump 3-32
3-14. Sample JCL Used to Invoke IEBPTPCH to Print Formatted SADMP

Output 3-34
3-15. Sample JCL Used to Invoke IEBPTPCH to Display Portions of a SADMP

Output Tape 3-34
3-16. Sample JCL Used to Invoke IEBGENER to Copy SADMP Output Tape to

DASO 3-34
4-1. Sample Assembly Listing Showing Multiple Control Sections 4-4
4-2. SSI Bytes in a Load Module Directory Entry 4-5
4-3. Flag Bytes in the System Status Index Field 4-6
4-4. Sample Assembler Code for Dynamic Invocation of SPZAP 4-10
4-5. Sample Formatted Hexadecimal Dump 4-19
4-6. Sample Translated Dump 4-20

GC28-1844-2 ©Copyright IBM Corp. 1988, 1989 ix

X Service Aids

(

r
\

About This Book

Trademarks

Service aids are programs designed to help system programmers and IBM program
support representatives diagnose and fix failures in system or application programs.
The service aids described in this book are designed to assist in identifying the
symptoms of the problem, gathering relevant data from system data areas to isolate
the problem to the component level, and analyzing the component to determine the
cause of the problem. This publication explains how, why, and when to use IBM
service aids programs.

The service aids are:

• GTF (Generalized Trace Facility) - Traces selected system events such as SVC
and 1/0 interruptions,

• AMBLIST - Formats and prints object modules, load modules, and CSECT
identification records; maps reenterable load module area.

• AMDSADMP - Operates as a stand-alone program to produce a dump of central
and virtual storage and processor-related data.

• AMASPZAP - Verifies or replaces instructions or data in a load module.

• IPCS (interactive problem control system) - Provides installations with the
expanded capabilities for diagnosing software failures and facilities for
managing problem information and status.

Note: IPCS is not discussed in this publication; for information on IPCS, see the
MVSIESA Interactive Problem Control System User's Guide.

The following are trademarks of International Business Machines Corporation.

Enterprise Systems Architecture/370™
MVS/ESA™
MVS/DFP™
MVS/SP™

Who Should Use This Book
This book is intended for anyone who must determine and diagnose system
problems and debug a failed system. Usually, this person is a system programmer.
The book assumes that the reader can:

• Code JCL statements to execute programs or cataloged procedures
• Code in assembler language and read assembler and linkage editor output
• Understand basic data processing terminology.

GC28-1844-2 ©Copyright IBM Corp. 1988, 1989 xi

How This Book Is Organized
Each service aid is explained in a separate chapter and the chapters are arranged
in alphabetical order. The chapter headings show the names of the programs
without the three-character component identifier (such as AMO). This means that
you should expect to see AMDSADMP referred to as simply SADMP, except in JCL
examples and other situations where the full name is necessary.

Note that throughout the text each service aid is referred to by its abbreviated name,
except where the full name of the program is necessary for technical accuracy.
Although you may be confused by the abbreviations at first, you will soon find that
the shorter names are easier to remember because they remind you of the functions
that the service aids perform.

Think of the abbreviated names as acronyms, like this:

GTF - generalized trace facility
UST - module listing program
SADMP - stand-alone dump program
SPZAP - superzap (data checker and modifier).

How To Use This Book
Service aids have three general functions:

Information Gathering
• To dump central storage, use the stand-alone program SADMP. To dump virtual

storage, all central storage, and processor-related data, use the high-speed
version of SADMP. You can use IPCS to view the output of SADMP at the
terminal or format the output for printing.

• To trace system events such as SVC and 1/0 interruptions, use GTF. GTF output
.can be formatted and printed using the GTFTRACE subcommand of IPCS.

Formatting and Printing: Mapping
• To summarize and print records in the SYS1.LOGREC data set, use EREP which

is described in the publication SYS1 .LOGREC Error Recording.

• To format and print load modules, object modules and CSECT identification
records, or to map the reenterable load module area or the link pack area, use
LIST.

• To format, print, and view SADMP output, other system dumps, and GTF trace
output, use IPCS.

• To process dumps interactively, see /PCS User's Guide.

Generating and Applying Fixes

Xii Service Aids

• To apply new releases, PTFs, or user modifications, use SMP. For information
on SMP, see the references listed under "Related Information" on page xiv.

• To verify and/or replace instructions in a load module, or data on a direct
access device, use SPZAP.

• To initialize the SYS1.LOGREC data set, use IFCDIPOO, which is described in the
publication SYS1 .LOGREC Error Recording.

Notation for Defining Control Statement Parameters
The following discussion describes the notations this publication uses in the format
descriptions. For further coding conventions, see MVS!ESA JCL Reference.

1. On the control statement, code uppercase letters, words, and the following
characters exactly as they appear in the format description.

ampersand &
asterisk
comma
equal sign
parenthesis ()
period

2. Lowercase letters, words, and symbols appearing in the format description
represent variables for which you substitute specific information when coding
the parameter.

For example, DDN=ddname is the format description for the DON parameter of the
USTLOAD control statement. When you code the DON parameter, you
substitute an alphameric character for the word 'ddname'.

3. Braces {} are a special notation and you never code them on a control
statement. Braces group related items.

For example, {IDENT IALL} is part of the format description of the OUTPUT
parameter of the USTIDR control statement of UST. When you use USTIDR,
code either !DENT or ALL. If you omit the OUTPUT parameter, UST will assume
a default of OUTPUT= ALL.

4. Brackets [] are a special notation and you never code them on a control
statement. Brackets indicate that the enclosed item or items are optional and
you can code one or none of the items.

For example, [,MLPA] is part of the format description for the USTLPA control
statement. When you code the USTLPA control statement, you can include
MLPA or omit it.

An example of more than one item enclosed in brackets is [SI I I SI], which is
part of the format description for the CCW trace option of GTF. When coding the
CCW trace option, you can include 'S' or 'I' or 'SI' or omit them all.

5. An ellipsis ... (three consecutive periods) is a special notation and you never
code it on a control statement. An ellipsis indicates that you can code the
preceding item more than once in succession.

For example, ASID=(asidl ••• asidn) is a possible response to GTF prompting.
The ellipsis indicates that you can repeat asid.

6. Underlining is a special notation and you never code it on a control statement.
When either brackets or braces enclose a group of items, and you do not code
any of the grouped items, then the underlined item in that group is the default.

For example, [,SYSUT={unit ISYSDA}] is part of the AMDSADMP macro
instruction. The brackets indicate that SYSUT is an optional parameter. If you
code SYSUT, the braces indicate that you can code either unit or SYSDA. If you
omit both unit and SYSDA, then SYSUT=SYSDA is the default.

About This Book Xiii

I
I
I
I

Related Information
Where necessary, this book references information in other books, using shortened
versions of the book title. The following table shows the shortened titles, complete
titles, and order numbers of the books you might need while you are using this
book.

Short Title Used In This Book Title Order Number

Application Development Macro MVS/ESA Application Development Macro Reference GC28-1822
Reference

Component Diagnosis: Service MVS/ESA Component Diagnosis and Logic: Service LY28-1846
Aids Aids

DFP: Diagnosis Reference MVS/ESA Data Facility Product Version 3: Diagnosis LY27-9551
Reference
MVS/ESA Data Facility Product Version 3 Release 2: LY27-9571
Diagnosis Reference

Initialization and Tuning MVS/ESA System Programming Library:. ~nitialization GC28-1828
and Tuning

IPCS Command Reference MVS/ESA Interactive Problem Control System (IPCS) GC28-1'834
Command Reference

IPCS Planning and Customization MVS/ESA Interactive Problem Control System GC28-1832
Planning

IPCS User's Guide MVS/ESA Interactive Problem Control System (IPCS) GC28,.1833.
User's Guide

JCL Reference MVS/ESA JCL Reference GC28-1829

Managing Non-VSAM Data Sets MVS/DFP Version 3 Release 2: Managing Non-VSAM SC26-4557
Data Sets

SPL:. Application Development MVS/ESA System Programming Library: Application GC28-1852
Guide Development Guide

SPL: Application Development MVS/ESA System Programming. Library: Application GC28-1857
Macro Reference Development Macro Reference

System Codes MVS/ESA Message Library: System Codes GC28-1815

System Commands MVS/ESA Operations: System Commands GC28-1826

Using Dumps and Traces MVS/ESA Diagnosis: Using Dumps and Traces LY28-1843

Utilities MVS Data Administration: Utilities GC26-4018
MVS/Data Facility Product Version 3 Release 2: SC26-4559
Utilities

VTAM Operations Advanced Communications FunctionNirtual SC27-0612
Telecommunications Access Method Operations

xiv Service Aids

(

\

PLANNING:

Planning:
Dump and
Trace
Services

GC2B-1B3B

DIAGNOSIS:

JPCS
Planning
and
Custom
ization
GC2B-1B32

For Diagnostic Procedures

Basics of
Problem
Determi
nation

GC2B-1B39

For Data Collection

Diagnosis: Service
Using Aids
Dumps and
Traces

LY2B-1843 GC2B-1B44

For Data Interpretation

Diagnosis: Diagnosis:
Data Areas System

Reference
LY2B-1043

to
LY28-1047 LY2B-1011

SYS1.LOGREC
Error
Recording

GC28-1845

Dump
Output
Messages

GC28-1814

For Component-Specific Information

JPCS
User's
Guide

GC2B-1B33

System
Codes

GC28-1815

!PCS
Command
Reference

GC2B-1B34

System
Messages

GC28-1812
&

GC28-1813

l
Data Areas
Microfiche

LYBB-xxxx

(To identify the component, see Basics of Problem Determination)

Component --------- Component
Diagnosis: Diagnosis:
ABC XYZ

LY28-xxxx LY28-xxxx

Component
Diagnosis:
Module
Descrip
tions
LY28-1420

About This Book XV

xvi Service Aids

Summary of Changes

Summary of Changes
for GC28-1844-2
MYS/System Product Version 3 Release 1.3

This edition contains the following new or changed information for MVS/SP 3.1.3.

New Information

• A new requirement for the JCL that builds the stand-alone dump program.
System macros that SADMP needs are now in SYS1 .MODGEN as well as in
SYS1.MACLIB, so the JCL must include a SYSLIB DD statement that
concatenates these two data sets.

• A new type of partitioned data set (PDS) introduced by MVS/DFP Version 3
Release 2. Partitioned data sets extended (PDSEs) can consist of source and
object modules that you might want to format and print. Certain discussions in
the LIST chapter now include PDSEs, where appropriate.

Changed Information

• Minor editorial and maintenance changes.

• A terminology change:

Storage ~~~~~~~~~~~~~~~~~~~--~~~~~~

This book uses the term central storage for the storage that has been called real
storage. In the 3090 processor, storage consists of:

Central storage + expanded storage = processor storage

Virtual storage consists of pages contaiped in processor storage and auxiliary
storage.

Summary of Changes
for GC28-1844-1
as updated December 1988

This edition contains the following new or changed information:

• Changes to GTF (APARs OY13937, OY14565, and UY14566). GTF now:

Allows users to address the data for the ASM CCWs
Gives users more control over the buffers that GTF uses
Increases the tape block size for GTF data sets going to tape.

• Minor editorial and maintenance changes.

Do not use the new GTF functions until the PTFs for the cited APARs are installed.

GC28-1844-2 ©Copyright IBM Corp. 1988, 1989 xvii

xviii Service Aids

Summary of Changes
for GC28-1844-0
as updated September 16, 1988
by Technical Newsletter GN28·1259

This newsletter contains an update for AMASPZAP.

Summary of Changes
for GC28-1844-0
MVS/System Product Version 3 Release 1.0

This book contains information previously presented in MVS!Extended Architecture
Service Aids, GC28-1159. The following summarizes the changes to that
information.

Changed Information: All the chapters, headings, figures, and so forth, have been
altered to accommodate the elimination of Print Dump.

Deleted Information: Chapter 3, Print Dump, has been deleted. All references to
Print Dump have been removed or changed to reference appropriate replacement
information.

Chapter 1. GTF

Introduction
The generalized trace facility is a service aid program that is available for
determining and diagnosing system problems. GTF records system and
user-defined program events. Through GTF you can trace:

• Any combination of system events, such as all 110 interruptions and all SVC
interruptions

• Specific incidences of one type of system event, such as all 1/0 interruptions on
one particular device

• User-defined events which are generated by the GTRACE macro.

GTF produces output trace records of system events, subsystem events, and user
events directed to buffers in virtual storage. The user may also direct output to a
data set (IEFRDER). IPCS may be used to format, display, and print the GTF output.
See /PCS User's Guide tor further information about using IPCS to process GTF
output.

The following apply to GTF 31-bit addressing support:

• GTF receives control from all branch callers in 31-bit addressing mode,
regardless of where the caller resides in storage.

• GTF 31-bit support allows the tracing of user and system data above 16
megabytes.

• Users can issue the GTRACE macro in either 24- or 31-bit addressing mode.
However, a user must execute in 31-bit mode to trace data above 16 megabytes.

Notes:

• GTF traces events on all processors regardless of the specification for GTF on
the AFFINITY macro during system generation.

• Installations can run with both system trace and GTF active. Starting GTF does
not alter the status of system trace.

GC28-1844-2 ©Copyright IBM Corp. 1988, "1989 1-1

Using GTF

Features of GTF

GTF is an integral part of the system defined at system generation and runs as a
system task.

GTF provides many features to allow you to trace a variety of system and user
events. You can trace channel programs and associated data for start subchannel
and resume subchannel operations and 1/0 interruptions by means of the CCW trace
option. PCI causes GTF to record intermediate status interruptions in the same
format that GTF uses to create other 1/0 trace records. GTF can also record system
recovery routine operations including STAE/ESTAE operations through the RR
option. For a complete summary of GTF trace options see the topic "GTF Trace
Options" on page 1-9.

Note: For special considerations in the use of GTF to trace events in indexed VTOC
processing, see DFP: Diagnosis Reference.

GTF ·Trace Output
For the DSP, EXT, Pl, RNIO, RR, SRM, and SVC options, GTF produces system trace
records with two kinds of format: comprehensive and minimal. For all other GTF
options, GTF produces trace records in only one format. To see what the records
contain for each record type, see Using Dumps and Traces.

GTF writes trace record output in a trace table in virtual storage (internal mode) and
can also write to the IEFRDER data set on an external storage device (external or
deferred mode). The external storage device can be either a tape or a direct access
device. When the trace records fill up the internal trace table or the data set, GTF
overlays previously stored or written output beginning at the oldest buffer or
physical block.

Retrieving GTF Trace Output

1-2 Service Aids

IPCS makes it possible to format and print internal and external GTF trace records
or to view them at the terminal. In addition, you may format and print the trace
records generated by the GTRACE macro. For information on using the GTRACE
macro, see SPL: Application Development Macro Reference.

If you request that trace data be included in an ABEND, SNAP, SVC, or stand-alone
dump, and if GTF is active, you can use IPCS to format the records created by
GTRACE. Formatting occurs independently of the trace mode or options for GTF~
You control the number of buffers that GTF formats when you specify the ABDUMP,
SDUMP or SADMP parameter in the START GTF command. Also, for ABEND and
SNAP dumps, only those records directly associated with the failing address space
are formatted. GTF does not format the channel program trace data associated with
the failing address space in ABEND and SNAP dumps.

How to Start GTF
You invoke GTF as a system task in an address space by entering a START
command from the operator's console; you cannot start GTF as a job. Using the
START command, you select the GTF cataloged procedure or your own cataloged
procedure. Optional parameters in the cataloged procedure and START command
allow you to specify internal or external tracing, timestamps on records, what action
should occur if GTF encounters an error during processing, and the number of
buffers which are to appear on ABDUMP/SNAP or SVC dumps. If you specify one or
more of the START command parameters, the EXEC parameters from the
catalogued procedure are ignored. To select the trace options, you either specify
each option directly through the console or retrieve (via the cataloged procedure) a
set of previously stored options which exist as a member of SYS1.PARMLIB.

How to Specify the START Command
Figure 1-1 shows the general format of the START command as it is used to invoke
GTF. Since all messages go to the master console, (also called the integrated
operators console), the ST ART command should be entered only from a console
eligible to be a master console.

{STARTIS}{GTFlprocname}[.identifier][,devname][,volserial]]

[,(parm[,parm] ..•)][,MEMBER={GTFPARMluserparm}]

[,keyword=option[,option] ••.]

devname and volserial are positional parameters all other parameters are
keyword parameters. When you omit a positional parameter and code any
keyword parameters, you must indicate the absence of the positional parameter
by coding a comma in place of the positional parameter.

Figure 1-1. General Format of the START Command for GTF

The descriptions below explain the parameters of the START command as they are
used by GTF:

GTF
indicates the name of the IBM-supplied cataloged procedure that invokes GTF.

procname
identifies the name of the user-written cataloged procedure that you write to
invoke GTF.

Identifier
specifies the user-specified name identifying this GTF session.

devname
specifies the device number or the device type of an output device to contain the
trace data set. If you do not specify a device number or.device type on the
START command, GTF uses the device number provided on the IEFRDER DD
statement in the cataloged procedure. devname is a positional parameter.
When you omit devname and code any keyword parameters, you must code a
comma to indicate the absence of devname.

Chapter 1 . GTF 1-3

1-4 Service Aids

volserlal
indicates the serial number of a magnetic tape or direct access volume which is
to contain the trace data set. volserial is a positional parameter. When you
omit volserial and code any keyword parameters, you must code a comma to
indicate the absence of the volserial.

(parm)
overrides the value specified in the PARM= parameter of the EXEC statement
in the cataloged procedure and may contain any combination of the following
parameters:

([parm][,parm] •••)

where parm is one of the following:

MODE={INTIEXTIDEFER}
SADMP={nnnnnnKlnnnnnnMl48K}
SDUMP={nnnnnnKlnnnnnnMl48K}
ABDUMP={nnnnnnKlnnnnnnMjeig..
BLOK={nnnnnlH}
TIME={YES I NO}
DEBUG={YESINO}

MODE= {INTIEXTIDEFER}
defines where GTF maintains the trace data. MODE= INT causes GTF to
maintain the trace data in the GTF address space. MODE= EXT causes GTF to
maintain the trace data in an external data set that.is defined by the IEFRDER
DD statement in the cataloged procedure. MODE= DEFER causes GTF to
maintain the trace data in the GTF address space until the STOP GTF command
is issued. Then, during its termination processing, GTF transfers the data from
the GTF address space to. the GTF output data set.

When you code the ST ART command without any parameters, GTF obtains the
MODE= parameter from the EXEC parameter in the cataloged procedure. The
default is MODE= EXT.

When tracing to an external device, you can use IPCS to format data in the trace
data set.

{SADMPISA} = {nnnnnnKfnnnnnnMl40K}
allows you to specify the amount of storage you need to save GTF trace data for
stand-alone dumps. You must specify the amount of storage in terms of either K
(kilobytes) or M (megabytes). The minimum amount is 40K, and the maximum
is 2048M-400K; the amount you specify is rounded up to 4K boundaries for
DASD data sets, or 32K boundaries for tape data sets.

Instead of the BUF= parameter, use the SADMP= parameter on the START
GTF command. The system ignores BUF= and uses the defaults for the
SADMP=, SDUMP=, or ABDUMP= parameters.

When you code the START command without any parameters, GTF obtains the
SADMP = parameter from the EXEC parameter in the cataloged procedure. The
default is 40K if the GTF data set is on DASD, or 64K if the GTF data set is on
tape.

If the system takes a stand-alone dump, you can use IPCS to format this storage.

(
\

(
\

{SDUMPISD} = {nnnnnnKlnnnnnnMl40K}
allows you to specify the amount of storage you need to save GTF trace data for
SVC dumps. You must specify the amount of storage in terms of either K
(kilobytes) or M (megabytes). The minimum amount is zero, and the maximum
cannot exceed the maximum amount of storage defined by the SADMP =
parameter. The amount you specify is rounded up to 4K boundaries for DASD
data sets, or 32K boundaries for tape data sets.

Instead of the BUF= parameter, use the SDUMP= parameter in conjunction
with SADMP= and ABDUMP= on the START GTF command. The system
ignores BUF = and uses the defaults for the SAD MP=, SD UMP=, or
AB DUMP= parameters.

When you code the START command without any parameters, GTF obtains the
SDUMP--=- parameter from the EXEC parameter in the cataloged procedure. The
default is 40K if the GTF data set is on DASD, or 64K if the GTF data set is on
tape.

If the system takes an SDUMP, you can use !PCS to format this storage.

{ABDUMPIAB} = {nnnnnnKlnnnnnnMl40K}
allows you to specify the amount of GTF data to be formatted in an ABEND or
SNAP dump. You must specify the amount of data in terms of either K
(kilobytes) or M (megabytes). The minimum amount is zero, and the maximum
cannot exceed the maximum amount of storage defined by the SADMP =
parameter. The amount you specify is rounded up to 4K boundaries for DASD
data sets, or 64K boundaries for tape data sets.

Instead of the BUF= parameter, use the ABDUMP= parameter in conjunction
with SADMP= and SDUMP= on the START GTF command. The system ignores
BUF = and uses the defaults for the SADMP =, SDUMP =, or AB DUMP=
parameters.

When you code the START command without any parameters, GTF obtains the
AB DUMP= parameter from the EXEC parameter in the cataloged procedure.
The default is zero, which means that no GTF data will appear in SNAP or
ABEND dumps.

If the system takes an ABEND or SNAP dump, you can use IPCS to format this
storage.

BLOK= { nnnnnl10}
allows you to specify the number (1 to 99999) of pages of common storage to
contain the GTF trace records. The pages of storage will reside in ESQA.

When you code the START command without any parameters, GTF obtains the
BLOK= parameter form the EXEC statement in the cataloged procedure. The
default is 10 pages of storage.

TIME= {YESINO}

YES
requests that every trace record be time-stamped in addition to the block
time stamp associated with every block of data. The time stamp is the
8-byte TOD clock value at the local time the record is put into the trace
buffers. (TOD clock values are described in Principles of Operation.)

When TIME= YES is specified and trace records are formatted and printed
by IPCS, a timestamp record follows each trace record. These timestamp

Chapter 1. GTF 1-5

1-6 Service Aids

NO

records can be used to calculate tine elapsed time between trace entries.
The timestamp record is described in Using Dumps and Traces.

When you code the START command without any parameters, GTF obtains
the TIME= parameter from the EXEC parameter in the cataloged
procedure. The default is TIME= NO.

requests no time stamping of individual trace records. That is, no time
stamp recording or place-holder is kept for the trace record.

DEBUG= {VESINO}

YES

NO

requests that all error recovery be bypassed, making.all errors terminate
GTF.

When DEBUG=YES is in effect and an error occurs in the tracing process,
GTF issues an error message and immediately terminates, whether or not
the error is recoverable.

When you code the START command without any parameters, GTF obtains
the DEBUG= parameter from the EXEC parameter in the cataloged
procedure. The default is DEBUG= NO.

requests that GTF attempt to recover from an error, and continue.

When DEBUG= NO is in effect ancl an error occurs in the tracing process,
GTF issues an error message but does not terminate.

MEMBER= {GTFPARMluserparm}
specifies the member of SYS1.PARMLIB that contains the GTF trace options. If
not specified in the START command, the IBM-supplied GTF procedure specifies
the SYS1.PARMLIB member GTFPARM. See Figure 1-3 on page 1-7.

keyword = option
specifies parameters to override or acid to JCL parameters, especially DD
parameters, in the IEFRDER DD statement in the cataloged procedure. For
example:

• To specify a different name for the trace data set, code
DSNAME = newname.

• To prevent the system from sending mount messages to the operator's
console when specifying MODE= INT, code DSN = NULLFILE.

• To specify an existing data set, code DISP =OLD. (Note: If you specify
DISP =MOD, GTF will change the data set disposition to OLD.)

• To specify a REGION parameter, c::ode REG= value K. Note that the
minimum value is 800 and that "K'" must be included. See Figure 1-7 on
page 1-26 for further GTF storage information.

IBM-Supplied Cataloged Procedure
An IBM-supplied cataloged procedure for GTF is supplied in SYS1.PROCLIB with a
member name of GTF. The format of the cataloged procedure is shown in
Figure 1-2.

//GTF PROC
//IEFPROC EXEC

MEMBER=GTFPARM
PGM=AHLGTF,REGION=2880K,TIME=1440,
PARM=('MODE=EXT,DEBUG=NO,TIME=NO')
DSNAME=SYSl.TRACE,UNIT=SYSDA,
SPACE=(4096,20),DISP=(NEW,KEEP)
DSN=SYSl.PARMLIB(&MEMBER),DISP=SHR

II
/IIEFRDER DD
II
I ISYSLIB DD

Figure 1-2. IBM-Supplied Cataloged Procedure

The following description explains the statements in the cataloged procedure:

PROC Statement
defines the cataloged procedure GTF.

EXEC Statement
calls for the exE~cution of AHLGTF.

IEFRDER DD Statement
defines the trace output data set, according to the following defaults: the trace
output data set has the name SYS1.TRACE; it is directed to a direct access
device with sufficient allocation to allow the data set to contain twenty 4096-byte
physical blocks. When the primary allocation is filled, recording continues at
the beginning of the data set.

Note that the data set and attributes on the IEFRDER may be changed using the
START command.

If the TRACE data set is directed to tape on the START command, normal
end-of-volume processing occurs.

SVSLIB DD Statement (Optional)
defines a member in the SYS1 .PARM LIB data set that contains GTF options. If
such a member exists, GTF uses the options in the member. If the member
does not exist, GTF issues an error message and stops.

If you start GTF with a procedure which does not contain a SYSLIB DD
statement, GTF issues message AHL 100A. This message requests that you
supply trace options through the console.

IBM-Supplied SYS1 .PARM LIB Member
The GTF cataloged procedure automatically invokes the GTFPARM member of
SYS1.PARMLIB. Fitiure 1-3 shows the format of the GTFPARM member in
SYS1.PARMLIB. The options in GTFPARM cause GTF to record specific events.
See the topic "GTF Trace Options" on page 1-9 for an explanation of the options.

TRACE=SYSM,USR,TRC,DSP,PCl,SRM

Figure 1-3. GTFPARM Member in SYS1.PARMLIB

Chapter 1 . GTF 1-7

How to Specify GTF Trace Options
You select trace options by either directly specifying each option through the system
console or retrieving a set of options previously stored as a member of
SYS1.PARMLIB. When you start GTF using the IBM-supplied cataloged procedure,
GTF retrieves trace options from the GTF-defined member in SYS1.PARMLIB. If you
set up a GTF cataloged procedure, you may define the SYS1.PARMLIB member and
GTF retrieves trace options from it. If you do not define options, you must specify
them directly through the console.

How GTF Identifies Options in SYS1 .PARMLIB
GTF identifies the options set up in SYS1.PARMLIB by issuing the console messages
AHL 1211 and AHL 1031. You have the opportunity either to accept these options or to
reject them and respecify your own. This sequence appears as:

AHL121I SYSl.PARMLIB INPUT INDICATED
AHL103I TRACE OPTIONS SELECTED -- options from SYSl.PARMLIB
AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

Some GTF options cause GTF to prompt you for keywords if you specify these
options through the system console. If the SYS1.PARMLIB member contains any of
these options, GTF will not prompt you for keywords; the keywords must also
appear in the member.

If you choose to reject the options in the SYS1 .PARMLIB member, you will
completely override all options specified in that member. Respecifying trace
options in response to AHL 125A is not a method of modifying the options in
SYS1 .PARM LIB.

If you start GTF with a user procedure that does not contain a SYSLIB DD statement,
you must reply to supply options to the following message:

AHL100A SPECIFY TRACE OPTIONS

How You Indicate Trace Options

1-8 Service Aids

To respecify new options or specify options for the first time, you respond to the
message AHL125A or AHL100A with TRACE= keyword, to indicate events to be
traced during GTF execution. The format of this response is:

I TRACE=trace option[, trace option] ...

Note that the trace options you specify determine the GTF storage requirements.
See Figure 1-7 on page 1-26.

/

\

(

GTF Trace Options
You can specify the following trace option values:

ASIDP
requests that GTF tracing be limited to a subset of address spaces. ASIDP
requests GTF prompting for one to five address space identifiers in which you
want GTF tracing to occur. ASIDP only works when you also specify a GTF
option that generates tracing, such as SVC or 10.

ccw
requests tracing of channel programs and associated data for 1/0 events. CCW
is valid only if the other trace options you specify include SSCH, SSCHP, 10, or
IOP.

CCWP
requests tracing of channel programs and associated data for 1/0 events, and
requests GTF prompting for the following information: tracing CCWs for SSCH
operations or 1/0 interruptions or both; maximum number of.CCWs for each
event; maximum number of bytes of data for each CCW; optional IOSB and EWA
tracing; and size of the PCI table. For information on responding to GTF
prompts, see the topic "Prompting" on page 1-13. CCWP is valid only if the
other trace options you specify include SSCH, SSCHP, 10, or IOP.

CSCH
requests recording for all clear subchannel operations.

DSP
requests recording for all dispatchable units of work (that is, SRB, LSR, TCB and
SVC prologue. dispatch events). When you specify both SYSM and DSP, GTF
records minimal trace data for DSP. Otherwise, GTF records comprehensive
trace data for DSP.

EXT
requests comprehensive recording for all external interruptions.

HSCH
requests recording for all halt subchannel operations.

10 requests recording of all non-program-controlled 1/0 interruptions. Unless you
also specify the PCI trace option, GTF does not record program-controlled
interruptions.

IOP
requests GTF prompting for specific device numbers for which you want GTF to
record 1/0 interruptions. Unless you also specify the PCI trace option, GTF does
not record program-controlled interruptions. For information on responding to
GTF prompts, see "Prompting" on page 1-13.

JOBNAMEP
requests that GTF tracing be limited to a subset of jobs. JOBNAMEP requests
GTF prompting for one to five jobnames for which you want GTF tracing to
occur. JOBNAMEP only works when you also specify a GTF option that
generates tracing, such as SVC or 10.

MSCH
requests recording for all modify subchannel operations.

Chapter 1. GTF 1 ·9

1-10 Service Aids

PCI
requests recording of intermediate status interruptions in the same format as
other 1/0 trace records that GTF creates. Specifically, PCI causes GTF to record
program-controlled 1/0 interruptions, initial status request interruptions, and
resume and suspend channel program interruptions. When you select specific
devices as a result of prompting for 1/0 events (IOP), GTF records intermediate
status interruptions only for those devices. PCI only works when you specify
PCI and the other trace options that you specify include 10, IOP, SYS, SYSM, or
SYSP.

Pl requests comprehensive recording for all program interruptions (0-255).

PIP
requests GTF prompting for those interruption codes for which you want GTF to

·record program interruptions. For information on responding to GTF prompts,
see "Prompting" on page 1-13.

RNIO

RR

requests recording of all VTAM network activity. When you specify both SYSM
and RNIO, GTF records minimal trace data for RNIO. Otherwise, GTF records
comprehensive trace data for RNIO.

Note: For successful processing, VTAM trace must be active.

requests comprehensive recording of data associated with all invocations of
functional recovery routines (such as STAE and ESTAE routines). GTF creates a
trace record describing the activity of the recovery routine when control passes
from the recovery routine back to the recovery termination manager (RTM).

{SIO I
SIOP

If you request the SIO or SIOP option, GTF processes your request as a request
for SSCH or SSCHP. GTF issues message AHL 1381 to indicate this substitution.
Subsequent messages refer to the original SIO or SIOP option.

SLIP
requests that a trace entry be made each time that a match occurs for a SLIP
trap with a tracing action specified or each time a SLIP trap with the SLIP
DEBUG option is checked. The amount of data and the type of SLIP trace record
to be built is specified on the SLIP command. The SLIP option is not included in
the specification of SYS or SYSM; it must be specified additionally.
Specification of the SYS or SYSM option does not affect the data collected on the
SLIP trace. record.

SRM
requests recording of trace data each time the system resource manager is
invoked. When you specify both SYSM and SRM, GTF records minimal trace
data for SRM. Otherwise, GTF records comprehensive trace data for SRM.
Further information regarding the use of this option is in Initialization and
Tuning.

SSCH
requests recording for start subchannel and resume subchannel operations.

SSCHP
requests GTF prompting for the specific device numbers for which you want GTF
to record start subchannel and resume subchannel events. For information on
responding to GTF prompts, see the topic "Prompting" on page 1-13.

SVC
requests comprehensive recording for all SVC interruptions.

SVCP
requests GTF prompting for those SVC numbers for which you want data
recorded. For information on responding to GTF prompts, see the topic
"Prompting" on page 1-13.

SYS
requests recording of comprehensive trace data for all external interruptions
(EXT), program interruptions (Pl), recovery routines (RR), and supervisor call
interruptions (SVC). SYS causes recording of all 1/0 interruptions (10), start
subchannel and resume channel operations (SSCH), clear subchannel
operations (CSCH), halt subchannel operations (HSCH), and modify subchannel
operations (MSCH). When you specify DSP, RNIO, or SRM in addition to SYS,
GTF produces comprehensive trace data for those events.

Note: Specification of SYS, SYSM, or SYSP causes GTF to ignore the following
trace options if you specify them in any f_orm: CSCH, HSCH, MSCH, SSCH, 10,
SVC, Pl, EXT, RR.

SYSM
requests recording of minimal trace data for all external interruptions (EXT),
program interruptions (Pl), recovery routines (RR), and supervisor call
interruptions (SVC). SYSM causes recording of all 110 interruptions (10), start
subchannel and resume channel operations (SSCH), clear subchannel
operations (CSCH), halt subchannel operations (HSCH), and modify subchannel
operations (MSCH). When you specify DSP, RNIO, or SRM in addition to SYSM,
GTF produces minimal trace data for those events.

Note: Specification of SYS, SYSM, or SYSP causes GTF to ignore the following
trace options if you specify them in any form: CSCH, HSCH, MSCH, SSCH, 10,
SVC, Pl, EXT, RR.

SYSP
requests recording for the same events as the SYS option, but causes GTF to
prompt you for selection of specific SVC, 10, SSCH, and Pl events that you want
recorded. When you specify DSP, RNIO, or SRM in addition to SYSP, GTF
produces comprehensive trace data for those events. For information on
responding to prompts, refer to the topic "Prompting" on page 1-13.

Nole: Specification of SYS, SYSM, or SYSP causes GTF to ignore the following
trace options if you specify them in any form: CSCH, HSCH, MSCH, SSCH, 10,
SVC, Pl, EXT, RR.

TRC
requests recording of those trace events which are associated with GTF itself.
Unless you request TRC, the GTF associated events are filtered out and not
recorded. TRC only works when you also specify a GTF option that generates
tracing, such as SVC or 10.

USR
requests recording of all data that the GTRACE macro passes to GTF. You must
specify USR or USRP if you want to code the GTRACE macro. When you code
the GTRACE macro but do not specify USR or USRP, GTF ignores the GTRACE
macro.

Chapter 1. GTF 1-11

USRP
causes GTF prompting for specific event identifiers (EIDs). See "Prompting" on
page 1-13. GTF builds an internal table of the EIDs that you specify. The TEST
parameter of the GTRACE macro tests whether or not tracing is active for the
EIDs that you specify for USRP. USRP does not limit GTF tracing to those user
EIDs that you specify. The purpose of USRP is to cause GTF to build an internal
table of EIDs that GTF uses when you specify TEST=YES on the GTRACE
macro.

The GTRACE data consists of user event trace records and/or IBM subsystem
event records. The subsystems are VTAM, JES2, OPEN/CLOSE/EOV,
SAM/PAM/DAM, and VSAM.

Combining Certain ~TF Options

1-12 Service Aids

Figure 1-4 shows those TRACE= options that GTF will not use in combination, If
you specify two or more options from the same row, GTF uses the option that has
the lower column number and ignores the other options. For example, if you specify
both SYSP and Pl (see row D), GTF uses SYSP (column 2) and ignores Pl (column 5).

1 2 3 4 5
A SYSM SYSP SYS SSCHP SSCH

B SYSM SYSP SYS IOP IO

c SYSM SYSP SYS SVCP SVC

D SYSM SYSP SYS PIP PI

E SYSM SYSP SYS EXT

F SYSM SYSP SYS RR

G SYSM SYSP SYS CSCH

H SYSM SYSP SYS HSCH

I SYSM SYSP SYS MSCH

J CCWP ccw

K USRP USR

Figure 1-4. Combining Certain GTF Options

Prompting
When you specify ASIDP, CCWP, IOP, JOBNAMEP, PIP, SSCHP, SVCP, SYSP, or
USRP as trace options, GTF prompts you to supply specific values by the following
message:

AHL101A SPECIFY TRACE EVENT KEYWORDS -- keyword=, ••• ,keyword=

The keywords in the message correspond to those trace options that cause
prompting (ASID=, CCW=, 10=, JOBNAME=, Pl=, SSCH=, SVC=, SYS=, or
USR=). GTF accepts only these keywords in your reply. If you specify SYSP, the
valid keywords are: 10 =, 10 = SSCH =, SSCH =, Pl=, and SVC=. Specify only
those keywords for which you want specific event recording. Keywords not
specified default to cause recording of all events within those classes.

END is also a keyword and signifies that the event definition is complete. If END is
not encountered in a reply, GTF prompts the operator to continue specification.
Event keywords are as follows:

ASID = (asld1 [,asldn] ... [,asld5])
specifies one to five address space identifiers in which you want GTF tracing to
occur. The values 'asid1' through 'asid5' are hexadecimal numbers from
X'0001' to the maximum number of entries in the address space vector table
(ASVT). When you specify ASIDP, GTF traces events for the address spaces you
specify. If you specify ASIDP, but do not specify ASID= before replying END,
then no ASID filtering takes place and GTF traces all address space identifiers.

If you use more than one line to specify ASIDs, GTF stacks your replies until you
specify the maximum of five ASIDs. If a line of your reply contains an error in
the specification of ASIDs, GTF prompts you to respecify the invalid value, and
leaves intact the valid stacked values from other lines of your reply.

Note: If you specify both ASIDP and JOBNAMEP, GTF might trace address
spaces that ASIDP did not identify. This occurs if the jobs that JOBNAMEP
identified are running in address spaces that ASIDP did not identify.

CCW = [(SlllSl][,CCWN = nnnnn][,DATA = nnnnn][,IOSB][,PCITAB = n])
specifies different options for tracing channel programs. If you specify CCW=
more than once, GTF uses your last specification of CCW =.

Chapter 1. GTF 1·13

1-14 Service Aids

If you specify CCWP, but do not specify CCW= before replying END, then the
following defaults are in effect:

TRACE OPTIONS SELECTED
SSCH or SSCHP

IO or IOP

SSCH or SSCHP,
and IO or IOP

PCI

ANY

ANY

Examples:
TRACE=IO,CCWP
TRACE=IOP,SSCH,PCI,CCWP

CCW SUBPARAMETER DEFAULTS
s

I

SI

PCITAB=l

CCWN=50

DATA=20

CCW defaults to: CCW=(I,CCWN=50,DATA=20)
CCW defaults to: CCW=(SI,CCWN=50,DATA=20,PCITAB=l)

Figure 1-5. CCW Defaults for Selected TRACE Options

If you specify an option more than once in one line, GTF uses your last specification
of that option. An exception is that GTF uses your first specification of S, I, or SI. If a
line contains an error, GTF prompts you to respecify the invalid value.

s111s1
specifies the type of 1/0 event for which you want channel programs traced. If
you specify more than one option, GTF uses the first option that you specified. If
you do not specify any option; SI is the default.

S specifies GTF tracing of channel programs for start subchannel and resume
subchannel operations. CCW=S only works if you specify SSCH or SSCHP as
trace options.

specifies GTF tracing of channel programs for 1/0 interruptions, including
program-controlled interruptions if you specify PCI as a trace option. CCW=I
only works if you specify 10 or IOP as trace options.

SI specifies GTF tracing of channel programs for start subchannel and resume
subchannel operations and 1/0 interruptions. CCW =SI only works if you specify
either SSCH or SSCHP and either 10 or IOP as trace options.

CCWN=nnnnn
specifies the maximum number of CCWs that you want traced for each event.
The value 'nnnnn' is a decimal number. It is defined as any integer from 1 to
32767. The default is 50.

DATA=nnnnn
specifies the maximum number of bytes of data that you want traced for each
CCW. The value 'nnnnn' is a decimal number. It is defined as any integer from
zero to 32767. The default is 20.

GTF treats each CCW that belongs to a chain of 'data-chained' CCWs as one
CCW. Therefore, GTF traces 'nnnnn' bytes of data for each CCW on the data
chain. GTF also traces 'nnnnn' bytes of data for each word in an IDAW (indirect
data addressing word) list.

(

\

For start subchannel or resume subchannel operations, GTF does not trace data
for read, read backwards, or sense commands in the channel programs. If the
skip bit is on, (that is, no data is being transferred) regardless of the type of 110
operation, GTF does not trace data for read, read backwards, or sense
commands. When the data count in the CCW is equal to or less than 'nnnnn',
GTF traces all data in the data buffer. When the data count in the CCW is
greater than 'nnnnn', GTF traces data only from the beginning and end of the
data buffer. The first half of the traced data is measured from the start of the
data buffer. The second half of the traced data is measured backward from the
end of the data buffer. Examination of the traced data shows whether the
channel completely filled the buffer on a read operation.

Nole: GTF uses a different CCW tracing method for a data transfer that is in
progress when an 110 interruption occurs. Instead of using the data count in the
CCW, GTF tracing depends on the transmitted data count. The transmitted data
count is the difference between the data count in the CCW and the residual
count in the CSW. If the residual count in the CSW is greater than the data count
in the CCW, then GTF traces all of the data in the CCW. When the transmitted
data count is less than or equal to 'nnnnn', GTF traces all of the transmitted
data. When the transmitted data count is greater than 'nnnnn', GTF traces data
only from the beginning and end of the transmitted data. The first half of the
traced data is measured from the start of the transmitted data. The second half
of the traced data is measured backward from the end of the transmitted data.

IOSB
specifies tracing of the IOS block (IOSB) and, if available, the ERP work area
(EWA), for all CCW events. If you do not specify IOSB, then GTF performs IOSB
and EWA tracing only when GTF encounters an exceptional condition when
tracing a channel program.

PCITAB=n
specifies a decimal number of 100-entry increments that you want GTF to
allocate in an internal PCI table. The value of 'n' is an integer from 1 to 9. The
default is 1 (100 entries).

The PCI table keeps track of the channel programs that use PCI. One entry in
the PCI table contains information about a program-controlled interruption in
one channel program. An entry. in the PCI table includes a CCW address and an
IOSB address.

GTF initializes an entry in the table when the first program-controlled
interruption occurs for an IOSB that represents a channel program requesting
PCI. For each subsequent program-controlled interruption that occurs when
tracing channel programs, the address of the first CCW traced is taken from the
PCI table. When GTF completes tracing for each event, GTF updates the entry in
the PCI table by changing the CCW address to equal the CSW address minus
eight bytes. GTF deletes the entry when the channel program terminates. If the
table is not large enough, GTF writes a message to the trace data set indicating
that the GTF trace data might be incorrect.

10 = (devnum1 [,devnumn] ... [,devnumSO])
specifies one to 50 device numbers (hexadecimal notation) for which you want
110 interruptions traced. All other 110 interruptions are filtered out. If you
specify IOP or SYSP and do not specify 10= in response to the prompting
messages, no 1/0 interruption filtering takes place and GTF traces all
non-program-control! ed interruptions.

Chapter 1. GTF 1-15

1-16 Service Aids

10 = SSCH = (devnum1 [,devnumn] ... [,devnum50])
only valid after you request either SYSP, or both IOP and SSCHP; specifies one
to 50 device numbers for which you want GTF to trace both 10 and SSCH events.
GTF filters out all other 10 and SSCH events, except those requested specifically
by 10= or SSCH =.

JOBNAME = (jobname1 [,jobnamen] ... [,jobname5])
specifies one to five jobnames for which you want GTF tracing to occur. The
values 'job1' through 'job5' must be valid jobnames. When you specify
JOBNAMEP, GTF traces events for the jobs you specify. If you specify
JOBNAMEP, but do not specify JOBNAME = before replying END, then no
JOBNAME filtering takes place and GTF traces all jobnames.

If you use more than one line to specify jobnames, GTF stacks your replies until
you specify the maximum of five jobnames. If any line of your reply contains an
error in the specification of jobnames, GTF prompts you to respecify the invalid
value, and leaves intact the valid stacked values from other lines of your reply.

Note: If you specify both JOBNAMEP and ASIDP, GTF might trace jobs that
JOBNAMEP did not identify. This occurs if the address spaces that ASIDP
identified contain jobs that JOBNAMEP did not identify.

Pl= (code0[,coden] ... [,code255])
specifies one to 256 program interruption codes (decimal notation) that you want
traced. All other program interruptions are filtered out If you specify PIP or
SYSP, and do not specify Pl= in response to this prompting message, no
program interruption filtering takes place and GTF traces all program
interruptions.

SSCH = (devnum1 [,devnumn] ... [,devnum50])
specifies one to 50 device numbers (hexadecimal notation) for which you want
SSCH operations traced. All other SSCH operations are filtered out. If you
specify SSCHP or SYSP, and do not specify SSCH = in response to the
prompting message, no SSCH filtering takes place and GTF traces all SSCH
operations.

SVC= (svcnum1 [,svcnumn] .•. [,svcnum50])
specifies one to 50 SVC numbers (decimal notation) that you want traced. All
other SVC numbers are filtered out. If you specify SVCP or SYSP, and do not
specify SVC= in response to the prompting message, no SVC filtering takes
place and GTF traces all SVC numbers.

USR = (event1 [,eventn] ... [,event50])
specifies one to 50 user event identifiers (EIDs) that you want GTF to test when
you specify TEST= YES on the GTRACE macro. When you specify TEST= YES,
GTF tests whether or not you specified the EID in the list of EIDs that you
selected for USRP. The values 'event1' through 'event50' are three-digit
hexadecimal numbers from X' 000' to X' FFF'. If you specify USRP and do not
specify USR = in response to the prompting message, all executions of GTRACE
using TEST=YES return an indication that tracing is not active.

USRP does not limit GTF tracing to those user EIDs that you specify. The
purpose of USRP is to cause GTF to build an internal table of EIDs that GTF uses
when you specify TEST= YES on the GTRACE macro.

Notes:

• GTF imposes a limit on the number of specific values you can supply through
prompting. When you exceed this limit, GTF issues a message and you must
respecify all values.

• You may specify one to 50 device numbers for 10 = or SSCH =; you may specify
one to 50 device numbers for 10 = SSCH =. However, the sum of device
numbers that you specify using 10 = and 10 = SSCH = may not exceed 50;
likewise the sum of device numbers that you specify using SSCH = and
10 = SSCH = may not exceed 50.

• The device number is not the same as the subchannel number. You must
specify device numbers for 10 =, 10 = SSCH =, and SSCH =.

• Within a given reply, each keyword that you specify must be complete. If you
need to specify more events for the same category, respecify the keyword in a
subsequent reply with the additional events as follows:

Reply #1 10=(191,192,193),SVC=(l,2,3,4,5)
Reply #2 SVC=(6,7,8,9,10)

• If you use more than one reply to specify values for the same keyword, the
maximum number of values you can specify for that keyword does not change.
For example:

Reply #1 10=(191,192,193),ASID=(l,C)
Reply #2 ASID=(3,A,B)

Although you use two replies to specify ASID =,the maximum number of ASIDs
you can specify is still 5.

• To ensure recording 10 events for a device with multiple addresses, specify all
addresses in the reply.

• If END is not encountered within a reply, the following message prompts for
further specification by the user/operator:

AHL102A CONTINUE TRACE DEFINITION OR REPLY END

When trace option specification is complete, the operator is notified which trace
parameters are accepted. (Message AHL 1031).

• For sample prompting sequences, refer to "Example 6: Prompting Keywords
Stored in SYS1.PARMUB", "Example 7: Specifying Which System Events GTF
Traces, Using Trace Options SYSP and USRP", and "Example 9: Specifying
Which System Events GTF Traces, Using Trace Options SSCHP, IOP, PCI,
CCWP, SVC, and JOBNAMEP".

• Prompting increases GTF storage requirements. Refer to Figure 1-7 on
page 1-26 GTF Storage Requirements for further information.

Chapter 1. GTF 1-17

GTF Examples

Using the GTF Cataloged Procedure

Example 1: Initialization
You initialize GTF by starting a cataloged procedure that indicates the parmlib
member GTFPARM. (See example 4). The trace options are specified in the
parmlib member record. In this example; the options are TRACE=SYSM, DSP, PCI,
SRM, TRC, USR. This example shows the messages and reply, (r), generated by the
initial START command.

START GTF.EXAMPLEl

AHL121I SYSl.PARMLIB INPUT INDICATED

AHL1031 TRACE OPTIONS SELECTED--SYSM.USR.TRC.DSP.PCI.SRM

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY u

R ee.u

AHL031I GTF INITIALIZATION COMPLETE

Example 2: Internal Tracking

1-18 Service Aids

This example shows GTF started with MODE= INT. The trace data is maintained in
virtual memory and is not recorded on an external device. In this example, the
operator overrides the trace options given in the supplied SYS1.PARMLIB member.

START GTF.EXAMPLE2 ••• (MODE=INT).DSN=NULLFILE

AHL121I SYSl.PARMLIB INPUT INDICATED

AHL103I TRACE OPTIONS SELECTED - SYSM,USR,TRC.DSP.PCI.SRM

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R ee,TRACE=IO,SSCH,SVC,DSP

AHL103I TRACE OPTIONS SELECTED -- DSP,SVC,IO,SSCH

ee AHL125A RESPECIFY TRACE OPTIONS OR REPLY u

R 01,U

AHL0311 GTF INITIALIZATION COMPLETE

Example 3: Tracing Output to an Existing Data Set on Tape
This example shows how the START command is used to direct GTF trace output to
an existing data set residing on tape rather than to an existing data set residing on a
DASO. The device type and volume serial number are supplied. The disposition
and name of the trace data set are changed from DISP=(NEW,KEEP) and
DSNAME=SYS1.TRACE to DISP=(OLD,KEEP) and DSNAME=TPOUTPUT. The
specified tape has a volume serial of TRCTAP and resides on a 3400 tape drive.
Note that the GTFPARM member of SYS1 .PARMLIB is used to specify the trace
options.

START GTF,3400,TRCTAP,(MODE=EXT),DISP=OLD,DSNAME=TPOUTPUT

AHL103I TRACE OPTIONS SELECTED--SYSM,DSP,PCI,SRM,TRC,USR

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 00,U

AHL031I GTF INITIALIZATION COMPLETE

Example 4: Storing Trace Options in SVS1 .PARM LIB
To save time when starting GTF, first store one or more combinations of trace
options as members in SYS1 .PARMLIB, and include a SYSLIB DD statement in the
cataloged procedure. If you do this, GTF will retrieve the trace options from
SYS1.PARMLIB, instead of prompting you to supply them through the console. GTF
will display the trace options for you, and then issue AHL 125A, to which you reply
'U' to accept the SYS1.PARMLIB options.

This example shows the job control statements and utility control statements
needed to add trace options to SYS1.PARMLIB using IEBUPDTE:

llGTFPARM
II
llSYSPRINT
llSYSUT2
I ISYSIN
·I ADD

JOB MSGLEVEL=(l,)
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=SYSl.PARMLIB,DISP=SHR
DD DATA

NAME=GTFA,LIST=ALL,SOURCE=O
TRACE=SYSP,USR
SVC=(l,2,3,4,10),IO=(D34,DOC),SSCH=ED8,PI=l5
·I ADD NAME=GTFB,LIST=ALL,SOURCE=O
TRACE=IO,SSCH,TRC
·I ADD NAME=GTFC,LIST=ALL,SOURCE=O
TRACE=SYS,PCI
I*

For full descriptions of the statements, refer to Utilities and JCL Reference. For
further information regarding SYS1 .PARM LIB, refer to Initialization and Tuning.

Chapter 1. GTF 1-19

A sample SYSLIB DD statement to be included in a GTF cataloged procedure might
look like this: (

//SYSLIB DD DSN=SYSl.PARMLIB(GTFA),DISP=SHR

The new member name can also be specified on the START command while using
the IBM-supplied GTF procedure, as in the following example:

S GTF,,,(MODE=EXT,TIME=YES),MEMBER=GTFB

Example 5: Starting GTF With a User Cataloged Procedure That Does Not Have a SYSLIB
DD Statement

1-20 Service Aids

When GTF is started with a user procedure containing no SYSLIB DD statement, the
operator receives the following message:

I AHL100A SPECIFY TRACE OPTIONS

The operator must then reply with the TRACE= keyword to specify the events to be
recorded during GTF execution.

In the following example, a user cataloged procedure (USRPROC) is invoked to start
GTF in external mode to a direct access data set, ABCTRC, on device 250. The
trace options selected by the operator result in trace data being gathered for all SVC
and 10 interruptions, for all SSCH operations, for all matching SLIP traps with a
tracing action specified or SLIP traps in DEBUG mode, and for all dispatcher events.
Also, all issuers of the GTRACE macro will have their user data recorded in the
trace buffers. The trace data is written into the data set ABCTRC. (Note that when
the end of the primary extent is reached, writing continues at the beginning).

START USRPROC,250,333005,(MODE=EXT),DSN=ABCTRC

00 AHL100A SPECIFY TRACE OPTIONS

R 00,TRACE=SVC,SSCH,IO,DSP,SLIP,USR

AHL103I TRACE OPTIONS SELECTED--USR,DSP,SVC,IO,SLIP,SSCH

01 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 01,U

AHL031I GTF INITIALIZATION COMPLETE

\

Example 6: Prompting Keywords Stored in SYS1 .PARMLIB
Some GTF options cause GTF to prompt you for keywords if you specify these
options through the system console. If the SYS1 .PARM LIB member contains any of
these options, GTF will not prompt you to enter keywords through the console; the
prompting keywords must appear in the member's records. A SYSLIB DD statement
in a cataloged procedure causes the prompting keywords to be read from the
specified SYS1 .PARMLIB member. The second and subsequent logical records in
the member should contain only those keywords for which prompting is allowed.

Prompting input from PARMLIB is complete when either the END keyword is
encountered, or when end-of-file is reached on the member. Each keyword must be
complete for each prompting record. If the need arises to indicate more events for
the same keyword, respecify the keyword in a subsequent prompting record with the
additional events as follows·

Record #1 TRACE=IOP,SVCP,SSCH

Record #2 10=(034,DOC),SVC=(l,2,3)

Record #3 SVC=(4,5,6,7,8,9,10),END

At this point, do not attempt to respecify the keyword through the system console, or
you will override all of the options and keywords in the SYS1.PARMLIB member.

When GTF finishes reading the options and prompting keywords in the
SYS1 .PARMLIB member, it displays the options through message AHL 1031:

AHL103I TRACE OPTIONS SELECTED--SYSP,USR J
AHL103I IO=(D34,DOC),SSCH=(ED8),SVC=(l,2,3,4,10)
~----

This message may be multilined depending on the number of options selected by
the operator. If the set of devices specified for 10 = and SSCH = are identical,
message AHL 1031 will show them as if specified by use of 10 = SSCH.

After GTF displays all of the options specified, it gives you the opportunity to accept
the SYS1 .PARMLIB options, or completely change the options by respecifying them
through the console:

AHL125A RESPECIFY TRACE OPTIONS OR REPLY U. J
Example 7: Specifying Which System Events GTF Traces, Using Trace Options SYSP and
USRP

In this example, the operator started GTF in external mode to the data set defined in
the cataloged procedure. The operator selected two trace options in reply 00. SYSP
requests that GTF trace specific system event types; USRP requests that GTF trace
specific user entries that the GTRACE macro generates. Message AHL 101A
instructed the operator to specify values for the SVC, 10, SSCH, Pl, and USR
keywords. In reply 01, the operator selected five SVCs, two devices for

Chapter 1. GTF 1-21

non-program-controlled 1/0 interruptions, one device for SSCH operations, and
three user event identifiers. GTF does not record any other SVC,
10, and SSCH events. Because the operator did not specify any program (
interruption codes for Pl=, GTF would trace all program interruptions.

START MYPROC.EXAMPLE7,,,(MODE=EXT)

00 AHL100A SPECIFY TRACE OPTIONS
R 00,TRACE=SYSP,USRP
01 AHL101A SPECIFY TRACE EVENT KEYWORDS--IO=,SSCH=,SVC=,PI=,USR=
01 AHL101A SPECIFY TRACE EVENT KEYWORDS--IO=SSCH=
R 01,SVC=(l,2,3,4,10),IO=(l91,192),USR=(l0,07A,AB)
02 AHL102A CONTINUE TRACE DEFINITION OR REPLY END
R 02,SSCH=282,END
AHL1031 TRACE OPTIONS SELECTED--SYSP,PI,10=(191,192),SSCH=(282)
AHL1031 SVC=(l,2,3,4,10),USR=(010,07A,0AB)
03 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U
R 03,U

Example 8: Starting GTF to Trace VTAM Remote Network Activity

1-22 Service Aids

GTF can be used to trace VT AM activity only if VT AM is started with the GTF option.
See VTAM Operations for details. In the following example, .GTF options are not
stored in SYS1 .PARM LIB; the operator enters the trace options directly at the
console. Three GTF options are required to record all VTAM traces:

• RNIO must be specified so that the VTAM 1/0 trace can function for an NCP or a
remote device attached to the NCP.

• 10 or IOP must be specified so that the VTAM 1/0 trace can function for a local
device.

• USR must be specified so that the VTAM buffer and the NCP line traces can
function.

GTF must be started with the GTF START command before a trace can be activated
from VTAM.

START MYPROC.EXAMPLE8,,,(MODE=EXT,TIME=YES)

00 AHL100A SPECIFY TRACE OPTIONS

R 00,TRACE=RNIO,IO,USR

AHL1031 TRACE OPTIONS SELECTED--10,USR,RNIO

01 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 01,U

AHL0311 GTF INITIALIZATION COMPLETE

Example 9: Specifying Which System Events GTF Traces, Using Trace Options SSCHP,
IOP, PCI, CCWP, SVC, and JOBNAMEP

In this example, the operator started GTF in external mode to the data set defined in
the cataloged procedure. The operator selected six trace options in reply 00.
Message AHL 101A instructed the operator to specify values for the 10, SSCH, CCW,
and JOBNAME keywords. In reply 01 the operator selected one device for tracing
both 10 and SSCH events, limited GTF tracing to one job, and specified five options
for CCW tracing. As a result of the operator's specifications, GTF would trace CCWs
for both start subchannel operations and 1/0 interruptions at device 580 for the job
BACKWARD, and all SVCs in BACKWARD's address space. GTF would allocate 200
entries in the PCI table, and trace up to 100 CCWs, up to 40 bytes of data for each
CCW, and the IOSB.

START USRPROC,,,(MOD=EXT)

00 AHL100A SPECIFY TRACE OPTIONS

R 00, TRACE=SSCHP,IOP,PCI,CCWP,SVC,JOBNAMEP

01 AHL101A SPECIFY TRACE EVENT KEYWORDS
--10=,SSCH=,CCW=,JOBNAME=,IO=SSCH=

R 01,JOBNAME=(BACKWARD),IO=SSCH=580

02 AHL102A CONTINUE TRACE DEFINITION OR REPLY END

R 02, CCW=(CCWN=100,DATA=40, PCITAB=2, IOSB,SI), END

AHL103I TRACE OPTIONS SELECTED--PCI,SVC,IO=SSCH=(580)

AHL103I CCW=(SI,IOSB,CCWN=100,DATA=40,PCITAB=2)

AHL103I JOBNAME=(BACKWARD)

03 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 03,U

Chapter 1. GTF 1-23

How to STOP GTF
To stop GTF processing, you specify the STOP command and either the GTF
identifier that you specified in the START command, or the device number of the
GTF trace data set. See the description under "How to Specify the START
Command" on page 1-3. If you are not sure of the identifier or device number, use
the operator display command:

DISPLAY ACTIVE,LIST

This command causes the system to display the number of:

• Active batch jobs
• Active time sharing users
• Mount commands in execution
• Started tasks, including GTF

The LIST parameter causes the system to include jobnames and V = R region
boundaries in the A display.

How to Specify the STOP Command

1-24 Service Aids

Figure 1-6 shows the general format of the STOP command that you use to stop GTF
processing. The STOP command is similar to the START command. When you
enter either the START or STOP command, you must enter the command from a
master console.

{STOPIP}{{identifierlGTF}ldevice number}

Figure 1-6. General Format of the STOP Command

The identifier on the STOP command is the same identifier that you specified on the
START command when you started GTF. The device number on the STOP command
is the same device number that you specified on the START command when you
started GTF. if you started GTF in internal mode and did not specify an identifier,
the identifier is 'GTF'.

You may enter the STOP command at any time during GTF processing. The STOP
command stops anything that satisfies the parameters on the STOP command. For
example, if you start both an external writer and GTF with the identifier 162, and
later specify 'STOP 162', both the external writer and GTF stop.

Note: If GTF does not respond to the STOP command with message AHL0061, then
the STOP command is not in effect and the GTF session continues. The GTF session
remains active in the system until the next IPL. The CANCEL and FORCE
commands have no effect because GTF is a non-cancellable system task. However,
you can stop GTF by using the FORCE ARM command. Refer to Operations:
System Commands of the FORCE ARM command.

Sample STOP Commands

Example 1: Using the Identifier
This example starts a GTF session with the identifier EXAMPLE and with trace data
maintained in the GTF address space. The DSN keyword is entered to prevent
allocation of an external trace data set as specified in the cataloged procedure.

START GTF.EXAMPLE,,,(MODE=INT),DSN=NULLFILE

This command would stop the GTF session started in the previous example:

STOP EXAMPLE

Example 2: Using the Device Number
This example starts a GTF session with trace data recorded on the non-labeled tape
on device 282. Each trace record will be timestamped. Twenty kilobytes of GTF
data will be formatted if an SVC dump is taken.

START GTF,282,,(TIME=YES,SDUMP=20K),LABEL=(,NL)

This command would stop the GTF session started in the previous example:

STOP 282

Example 3: When You Must Display Active Jobs
This example starts a GTF session with trace data recorded on an external device.
Since it is not apparent which is the GTF recording device, you have to display
active jobs with the D A.LIST command before you can stop GTF. The GTF session
started in this example could run in an address space of a maximum of 1000K.

START GTF,,,(MODE=EXT),REGION=l000K

Chapter 1. GTF 1-25

~
I

N en

(/)
(!l

<! c;·
(!l

)>

a:
CJ)

GTF Storage Requirements

Extended Pageable Link Pack Area

Fix = Opt + Prmpt + BK

Fix: Fixed storage in pageable EPLPA while GTF.
is active.

Opt: Sum of storage required for each GTF option
specified. See the table below to calculate OPT.

Prmpt: Optional additional 1.5K if any prompting
options specified.

SK: SK required for services.
-

O~ion Size Required
SYSM 4K
SYS with DSP and/or SRM
and/or RNIO 7K
SYS SYSP 1SK
Pl DSP PIP 2.5K
EXT 2K
10, IOP, SIO, SIOP~ SSCH,
SSC HP 6K
SVC, SVCP 10K
SAM RR RNIO 3K

SLIP SK
USR,USRP 1.5K
PCI, TRC No Requirement
CCW,CCWP 9.3K

Notes:
1. When you specify more than one event from a line, the

size requirement is the same as if you specified only
one option i.e., DSP and Pl require 2.5K.

2. For the maximum storage requirement round up the
storage requirement for each option you specified,
to the nearest 4K boundary.

3. For the minimum storage requirement, round up the
'FIX' value to the nearest 4K boundary.

Example -
1) Options= IOP, SSCHP, SVC

Fix= 10.5 + 1.5 + S = 20K minimum or
= 12 + 1.5 + S = 21.5 = 24K maximum

2) Options= SYSM, SRM, USR, TRC
Fix= S.5 + 0 +SK= 16.5 = 20K minimum or

= 12 + 0 +SK= 20K maximum

Figure 1-7. GTF Storage Requirements

System Queue Area Region Storage

SQA = 16500 +REG +SAVE+ CBLOC SUBPOOL: GTF uses 4-16K in subpools 5 and 6 for

SCA: System Queue Area storage requirement.
control blocks; this area is fixed while
GTF is active.

REG: 232 bytes per processor are required for
GTF requires a minimum of an SOOK register save areas, regardless of whether REGION:

or not GTF is active.
virtual region to execute. Also, if GTF
must hold large amounts of trace data in
its address space, it can use a maximum of
750 pages in the page data set. To acquire

SAVE: 1352 bytes per processor are required this space you specify the REGION°·
for save/work areas when GTF is active. parameter on an EXEC card or ST ART

CBLOC: 1700-2200 bytes are needed for control command with one of the following values:

blocks when GTF is active. 1) G +708K (only if BUF =specifies a

Notes: value of 57 or defaults.}

1. When you specify PCI and either CCW or CCWP, 2) G + 1400K

GTF requires the following additional SQA 3) G +2080K
storage: 4) G +2770K
16 + 1200 * (value of PCIT AB in bytes)

2. When you specify either CCW or CCWP, GTF G: The amount of address space
uses 4096 additional bytes of the SQA for each required for the maximum size
processor. combination GTF and BSAM.

3. When you specify USRP, GTF uses 4096
additional bytes of the SOA for each processor. Note:

Coding a large REGION size does not mean that GTF
will use the maximum available address space. The

Extended System Queue Area space is used as long as it is necessary to hold trace

ESQA= N
data, and then when the trace data is moved into trace
data set the space is freed: GTF drops to its normal

N: 4096 times the number of blocks specified
requirement; G + 40K or G/4K + 10 pages.

on the BLOK = keyword parameter of the
GTF START command.

The default is 40960 bytes.

User Trace Data Created With GTRACE
If you want your own trace data to be recorded in the GTF trace buffers, you can use
the GTRACE macro instruction to define the data. In one invocation of GTRACE, an
application program can record up to 256 bytes of data in a GTF trace buffer. The
number of bytes of data in the data field of the GTF trace record is equal to the
number of bytes of data that you specify plus 12 bytes. The additional 12 bytes are
the GTRACE header, which consists of a 4-byte ASCB address followed by an 8-byte
jobname.

GTRACE is effective only when GTF is active and is accepting user data -- that is
when GTF was started with at least TRACE= USR specified.

For information on coding the GTRACE macro instruction, see SPL: Application
Development Macro Reference.-

EID Assignment for User Events
Events traced by the GTRACE macro will use an event identifier (EID) from one of
the three ranges listed below:

0000-1023
1024-1535
1536-4095

user events
reserved for program products
reserved for IBM components and subsystems

EIDs in the first range are available for general use by all GTF users. EIDs in the
second and third ranges are reserved.

How to Print User Data
Like other trace data, information recorded by the GTRACE macro can be printed
using IPCS. Also, IPCS allows the writing of user exits to format specific types of
data records. For information on writing IPCS user exits, see /PCS Planning and
Customization.

Chapter 1. GTF 1-27

GTF Error Recovery Handling

GTF Output

1-28 Service Aids

GTF recognizes all errors that occur while building a trace record as potentially
recoverable. Whether or not recovery is attempted depends on what you specify in
the START command.

If you specify DEBUG= YES, GTF does not attempt error recovery. It issues an error
message and then terminates, so that the contents of the GTF buffers immediately
prior to the error are preserved.

If you specify DEBUG= NO, GTF initiates the following error procedures:

• For minor errors in the routine that builds the trace record (the build routine),
GTF flags the field in the trace record that led to the error and continues
processing .. GTF does not issue a message to the operator's console, nor does
GTF disable the function that caused the error. Instead, GTF proceeds as if no
error had occurred.

• For severe errors in the build routine, GTF flags the entire record that was being
built, issues a message to the console, suppresses the error and continues
processing without the function that caused the error.

• For errors in the routine that filters trace events, GTF suppresses filtering for
future events of the same type, issues a message to the console, and continues
processing, gathering all events of the type that encountered the error.

Errors that occur outs.ide the build and .filter routines are not recoverable; they
result in immediate abnormal termination of GTF.

Note: The termination of GTF does not cause termination of a user's task.

GTF creates two. kinds of records: trace records and control records. For
information about the format of trace records prior to GTF processing, refer to Using
Dumps and Traces.

Chapter 2. LIST

Introduction
LIST is a service aid that operates as a problem program. It produces several kinds
of output that you need to perform certain diagnostic functions; these functions are
described below:

Verifying an object module. LIST produces a formatted listing that contains the
external symbol dictionary (ESD), the relocation dictionary (RLD), the text of the
program containing instructions and data, and the END record.

Mapping CSECTs In a load module. LIST produces a listing of the load module
along with its module map and cross-reference listing, which you can examine to
determine the organization of CSECTs within the load module, the overlay structure,
and the cross-references for each CSECT.

Verifying the contents of the nucleus. LIST can produce a map and cross-reference
listing of a nucleus. The map no longer represents the IPL version of the nucleus
and message AMB1291 ls issued. Use IPCS to format a NUCMAP. For information
on using IPCS see /PCS User's Guide.

Tracing modifications to the executable code In a CSECT. LIST produces a
formatted listing of all information in a load module's CSECT identification records
(IDRs). An IDR provides the following information:

• It identifies the version and modification level of the language translator and the
date that each CSECT was translated. (Translation data is available only for
CSECTs that were produced by a translator that supports IDR generation.)

• It identifies the version and modification level of the linkage editor that built the
load module and gives the date the load module was created.

• It identifies, by date, modifications to the load module that may have been
performed by SP ZAP.

An IDR may also contain optional user-supplied data associated with the executable
code of the CSECTs.

Mapping the link pack area. LIST produces a map of all modules in the fixed link
pack area, the modified link pack area, and the pageable link pack area.

Note: Any load module to be formatted and printed by AMBLIST must have the
same format as those created by the linkage editor.

GC28-1844-2 ©Copyright IBM Corp. 1988, 1989 2-1

JCL Statements

2-2 Service Aids

The minimum partition or region for executing of AMBLIST is 64K for all functions
except LISTLPA, which requires 100K.

LIST requires the following JCL statements:

JOB Statement
initiates the job.

EXEC Statement
calls for the execution of AMBLIST.

SYSPRINT DD Statement
defines the message data set.

anyname DD Statement
defines an input data set. This statement cannot define a concatenated data set.

SYSIN DD Statement·
defines the data set (in the input stream) that contains LIST control statements.

Control Statements
You control LIST processing by supplying control statements in the input stream.
You must code the control statements according to the following rules:

• Leave column 1 blank, unless you want to supply an optional symbolic name. A
symbolic name must be terminated by one or more blanks.

• If a complete control statement will not fit on a single card, end the first card
with a comma or a non-blank character in column 72 and continue on the next
card. Begin all continuation cards in columns 2 - 16. You must not split
parameters between two cards; the only exception is the MEMBER parameters,
which may be split at any internal comma.

The control statements and their parameters are:

LISTLOAD [OUTPUT={MODLISTIXREFIBOTH}][,TITLE={'title',position)]

[,DDN=ddname][,MEMBER={memberl{memberl,membern ••.)}]

[, RELOC=hhhhhh]

OUTPUT== {MODLISTIXREFIBOTH}
specifies the type of load module listing to be produced. OUTPUT= MODLIST
requests a formatted listing of the control and text records of a load module,
including its external symbol dictionary and relocation dictionary records.
OUTP4T=XREF requests a module map and cross-reference listing for the load
module. OUTPUT= BOTH requests both a fprmatted listing of the load module
and its map and cross-references. If this parameter is omitted, OUTPUT= BOTH
will be assumed.

TITLE= ('tltle' ,position)
specifies a title, from one to forty characters long, to be printed below the
heading line on each page of output. (The heading line identifies the page
number and the type of listing being printed, and is not subject to user control.)
The position subparameter specifies whether or not the title should be indented;
if TITLE= ('title', 1) is specified, or if the position parameter is omitted, the title
will be printed flush left, that is, starting in the first column. If you want the title
indented from the margin, use the position parameter to specify the number of
characters that should be left blank before the title. If you specify a position
greater than 80, the indentation from the margin defaults to 1.

Note: Do not punctuate your title with commas; since LIST recognizes a comma
as a delimiter, anything that follows an embedded comma in a title will be
ignored.

DDN-ddname
identifies the DD statement that defines the data set containing the input
module. If the DON= parameter is omitted, LIST will assume SYSLIB as the
default ddname.

MEMBER= {memberl(member1,membern ...)}
identifies the input load module by member name or alias name. To specify
more than one load module, enclose the list of names in parentheses and
separate the names with commas. If you omit the MEMBER= parameter, LIST
will print all modules in the data set.

Chapter 2. LIST 2-3

2-4 Service Aids

RELOC = hhhhhh
specifies a relocation or base address in hexadecimal of up to eight characters.
When the relocation address is added to each relative map and cross-reference
address, it gives the absolute main storage address tor each item on the output
listing. If you omit the RELOC = parameter, no relocation is performed.

LISTOBJ [TITLE=('title',position)][,DDN=ddname]
[,MEMBER={memberl(memberl,membern •••)}]

TITLE ={'title' ,position)
specifies a title, from one to forty characters long, to be printed below the
heading line on each page of output. (The heading line identifies the page
number and the type of listing being printed, and is not subject to user control.)
The position parameter specifies whether or not the title should be indented; if
TITLE= ('title', 1) is specified, or if the position parameter is omitted, the title
will be printed flush left, that is, starting in the first column. If you want the title
indented from the margin, use the position parameter to specify the number of
characters that should be left blank before the title. If you specify a position
greater than 80, the indentation from the margin defaults to 1.

Note: Do not punctuate your title with commas; since LIST recognizes a comma
as a delimiter, anything that follows an embedded comma in a title will be
ignored.

DDN=ddname
identifies the DD statement that defines the data set containing the input
module. If the DDN = parameter is omitted, UST will assume SYSLIB as the
default ddname.

MEMBER= {memberl(member1 [,membern] ...)}
identifies the input object module by member name or alias name. To specify
more than one object module, enclose the list of names in parentheses and
separate the names with commas. CAUTION: You must include the MEMBER=
parameter if the input object modules exist as members in a partitioned data set
{PDS or POSE). If you do not include the MEMBER= parameter, LIST will
assume that the input data set is organized sequentially and that it contains a
single, continuous object module.

LISTIDR [OUTPUT={IOENTIALL}][,TITLE=('title',position)]
[,DDN=ddname][,MEMBER={memberl (memberl,membern •..)}]

[,MODLIB]

OUTPUT= {IDENTIALL}
specifies whether LIST should print all CSECT identification records or only
those containing AMASPZAP data and user data. If you specify OUTPUT= ALL,
all IDRs associated with the module will be printed. If you specify
OUTPUT= IDENT, LIST will print only those IDRs that contain SPZAP data or
user-supplied data. If you omit this parameter, LIST will assume a default of
OUTPUT=ALL. Do not specify OUTPUT if you specify the MODUS parameter.

TITLE= ('title' ,position)
specifies a title, from one to forty characters long, to be printed below the
heading line on each page of output. (The heading line identifies the page
number and the type of listing being printed, and is not subject to user control.)
The position parameter specifies whether or not the title should be indented; if
TITLE= ('title', 1) is specified, or if the position parameter is omitted, the title is
printed flush left, that is, starting in the first column. If you want the title
indented from the margin, use the position parameter to specify the number of
characters that should be left blank before the title. If a position greater than 80
is specified, the indentation from the margin defaults to 1.

Note: Do not punctuate your title with commas; since LIST recognizes a comma
as a delimiter, anything that follows an embedded comma in a title will be
ignored. If the MODLIB parameter is specified, do not indicate a TITLE because
it will be ignored.

DDN=ddname
identifies the DD statement that defines the data set containing the input
module. If you omit the DDN = parameter, LIST will assume SYSLIB as the
default ddname.

MEMBER= { memberl(member1 ,membern ...)}
identifies the input load module by member name or alias name. To specify
more than one load module, enclose the list of names in parentheses and
separate the names with commas. If you omit the MEMBER= parameter, LIST
will print all modules in the data set. Do not specify MEMBER if you specify the
MODLIB parameter.

MODLIB
prevents LIST from printing the module summary. LIST prints the IDRs that
contain SPZAP data or user-supplied data. No page ejects occur between
modules. When you specify MODLIB, the TITLE= parameter is ignored, and the
OUTPUT= or MEMBER= parameters are not valid parameters.

~PA [FLPA][,MLPA][,PLPA]

LISTLPA
lists the modules in the fixed link pack area, the modified link pack area, and the
pageable link pack area. The map includes modules residing in the extended
sections of each link pack area. If you do not specify any parameters on the
LISTLPA control statement, then LIST maps modules from all three link pack
areas.

Note: LIST reflects only the system currently operating.

FLPA
requests mapping of the modules in the fixed link pack area.

MLPA
requests mapping of the modules in the modified link pack area.

PLPA
requests mapping of the modules in the pageable link pack area.

Chapter 2. LIST 2-5

Output

MEMBER NAME

LIST produces a separate listing for ea~h control statement'that you specify. The
first page of each listing always shows the control statement as you entered it. The
second page of the listing is a module summary, unless. you requested LISTOBJ,
LISTLPA, or MODLIB with LISTIDR; in that case, no module ~ummary will be
produced, and the second page of the listing will be the beginning of the formatted
output.

The module summary gives the member name (with aliases), the entry point, the
linkage editor attributes, and system status index information (SSI) for the module
being formatted~ Figure 2-1 shows a typical module summary. Note that the
linkage editor attributes are not represented by a bit map.

***** M 0 D U L E SUMMARY *****

IGC0002I MAIN ENTRY POINT 000000 AMODE OF MAIN ENTRY POINT 31

** ALIASES ** ALIAS ENTRY POINT AMODE OF ALIAS ENTRY POINT

IGG029ER 0042F0 31
IGG0290A 0011F0 31
IGG030CM 000948 31
IGG0300F 0047B0 31

**** LINKAGE EDITOR ATTRIBUTES OF MODULE ****

** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **

0 NOT-RENT
4 NOT-OL
8 NOT-DC
12 EDIT

1 NOT-REUS
5 BLOCK
9 ZERO
13 NO-SYMS

MODULE SSI: NONE
APFCODE 00000000
RMODE ANY

2 NOT-OVLY
6 EXEC
10 EP-ZERO
14 F-LEVEL

3 NOT-TEST
7 MULTI-RCD
11 RLD
15 NOT-REFR

*****LOAD MODULE PROCESSED BY VS LINKAGE EDITOR

Figure 2-1. Sample Module Summary of LISTLOAD

2-6 Service Aids

The third page of the listing (or, for LISTOBJ, LISTLPA, or MODLIB with LISTIDR the
second page) is the beginning of the formatted output itself.

For LISTLOAD, the formatted output consists of the load module, or the module map
and cross-reference listing, or both. Figure 2-2 on page 2-8 shows an example of
LISTLOAD module map output. Figure 2-3 on page 2-10 shows an example of the
cross-reference listing for the same module.

For LISTOBJ, the body of the listing consists of the object module listing, the
module's external symbol dictionary, and its relocation dictionary. Figure 2-4 on
page 2-12 shows an example of LISTOBJ output.

For LISTIDR, the third page of the listing begins a complete list of all CSECT
identification records for the module. Figure 2-5 on page 2-13 shows an example of
LISTIDR output.

For LISTLPA, the second page of the listing is a map of the link pack area, with
modules ordered alphabetically by name. Figure 2-6 on page 2-14 shows an
example of LISTLPA output.

Chapter 2. LIST 2-7

RECORD# 1

RECORD# 2

!<ECORD# 3

RECORD# 4

RECORD# 5

LISTING OF LOAD MODULE PLlLOAD

TYPE 20 - CESD ESDID 1 ESD SIZE 240

CESD# SYMBOL TYPE ADDRESS SEGNUM ID/LENGTH (DEC} IHEXJ
1 PLl TC02 00 (SD) 000000 1 1200 486
2 PL1TC02A 00(80) 0004B8 1 608 260
3 IHEQINV 06CPRJ 000000 3 4
4 IHESADA 02<ERJ 000000
5 IHESADB 02<ERJ 000000
6 IHEQERR Ob CPRl 000004 • •
7 IHEQTIC 06tPR> 000008 4 4
8 IHEMAIN 00 (SD> 000718 4 4
9 IHENTRY 00($0) 000720 12 c

10 IHESAPC 02<ERl 000000
11 IHEQLWF 06(PR> oooooc
12 IHEQSLA 06 f PR) 000010
13 IHEQLWO 06<PR> 000014
14 PL1TC02B 06 (PR> 000018
15 PLl'IC02C 061 PRI 00001C

TYPE 20 - CESD ESDID 16 ESO SIZE 240

CESD# SYMBOL TYPE ADORE SS SEGNUM ID/LENGTHlOECI tHEXI
lb IHELDOA 02CER> 000000
17 IHELOOB 02CERI 000000
18 IHEIOBT 02 (ERl 000000
19 IHEIOBC 02CERJ 000000
20 IHESAFA 02 (ER> 000000
21 IHESAFB 02<ERI 000000
22 AA 02 (ER> 000000
23 c OO<SDt 000730
24 B 00 (SD) 000738 4
25 A 00 I SOI 000740 4 4

26 IHESPRT 00 CSDJ 000748 56 3 8
27 IHEQSPR OMP!U 000020
28 IHEDNC 02 (ER) 000000
29 IHEVPF 02(ERI 000000
30 IHEDMA 02 (ER> 000000

TYPE 20 - CFSD ESDID 31 ESD SIZE 64

CESD# S'iMBOL TYPE ADDRESS SEGNUt-'. ID/LENGTH<OEC > (HEX)

31 IHEVPB 02(ERI 000000
32 IHEVSC 02 (ERi 000000
)3 I HEU PA 021 ERi 000000
34 IHEVQC 02 (ERi 000000

LISTING OF i.oAD MODULE PLlLOAD

TYPE 01 - CONTROL CONTROL SIZE 32 ccw 06000000 40000780

CESD#
1

LENG'l'.H
04B8
0260
0008
0010
0008
0008
0008
0038

000000
000020
000040
000060
000080
OOOOAO
ooooco
0000£0
000100
000120
000140
000160
000180
0001AO
0001CO
OOOlEO
000200
000220
000240
000260
000280
0002AO
0002CO
0002EO
000300
000320
000340
000360
000380
OOOJAO
OOOJCO
0003!0
000400
000420
000440
000460
000480
0004AO
0004CO
0004EO

2
8
9

23
24
25
26

T E
47FOF011i 07D7D3Fl E3CJFOF2 00000008
58FOB020 05EF05AO 41900088 50DC0018
F8110090 B132F810 00928080 FA110092
00AEB134 F8110090 813CF810 00928080
009241AO A0600700 92030063 41108174
805405EF 92030063 58F08058 05EF9204
~002FA20 00938111 5870B06C 02017000
7000F821 00937002 FA200093 810F5860
00634150 OOAE5050 00944150 00905050
58808070 02038000 00909207 0063F811
F9118000 00904770 A0C9F911 80020092
05EF4110 B14058FO B05005EF 92080063
OOA85080 00984180 00825080 D09C4180
B04005EF 02050082 00909211 00630202
A13E9280 00900202 00910085 F921009l
00940090 06000094 00919180 00944780
411080AO 41208183 58FOB054 05EF4110
5BFOB058 05EF9213 00634110 Bl5058FO
05EF9213 006358FO B05805EF 92140063
00000000 90EBDOOC 18AF41EO A0285830
92010084 58E01000 50EOD088 14580A03A
92090063 41AOA088 07F80700 47FOFOOC
45EOA016 92020084 D20700AO 10009200
A0000700 47FOF00C 03C1C3F2 00000258
020700"8 10009200 OOAC58EO 100850EO
920CD063 58BOOOAO F821D090 80005870
00937002 95020084 4780A062 95030084
009810FE 54E08078 90EF0098 964ED098
00880201 80000091 02018002 009447FO
05EF9200 0063920E 00635880 OOA8F822
00939001 F8220093 10039502 ooe•4780
00980090 4FE00098 10FE54EO B07890EF
47FOA106 58800088 02018000 00910201
009058FO B06005EF 920F0063 58FOB02C
12224770 F03C59DC 00104770 F03C5800
D00447FO F0225020 000898E8 D00C07FE
587C0014 02033050 70504140 4001504C
58JC0010 50300004 SOOC0010 50200008
00002488 00003488 0000448~ 00005488
00000434 00000434 00000000 89300008

X T
000004B8 90EBDOOC 58B0F010 SBOOFOOC
92000062 92010063 92COOOOO 92020063
B130F821 OOA80090 F82100AB 00920203
FA110092 B13AF821 OOB2D090 F82100B5
58FOB05C 05EF4110 Bl144120 B18358FO
00635880 B070F821 00908000 F8210093
00910201 70020094 92050063 F8210090
B068D201 60000091 02016002 00949206
00989680 00984110 009458FO B06•05EF
0090B10C F8100092 B080FA11 0092810A
4780AOEE 92080063 41108168 58FOB05C
58FOB058 05EF9208 00639210 00634180
00905080 OOA09680 OOA04110 009858FO
00900082 F9210090 80019200 00904780
BOCF9200 00914780 A1569280 00910200
A19E9212 00634110 815c58FO 805c05EF
00824120 B18758FO 805405EF 92120063
B05c05EF "1108084 41208183 58FOB054
58F08030 05EF47FO 47FOFOOC 03C1E7F1
80381622 50203050 5BF0802C 47FOF062
07FA05AO 111900080 50DC001C 92000062
03C1C3F1 00000258 90EBOOOC 58AOF008
OOA•58EO 100850EO 00884580 A03A47FO
90EBOOOC 58AOF008 45EOA016 92030084
00884580 A03A•7FO A0860700 92080063
OOA4FA21 00907000 F821D093 8002FA21
4780A076 58600088 F8720098 00904FEO
2B006AOO 00987000 600047FO A0805880
A0805880 00880205 80000090 58FOB060
00908000 587000AC F8220090 7000F822
A0E89503 00844780 AOFC5860 0088F872
0098964E 00982800 6A000098 70006000
80020094 47FOA106 58800088 02058000
05EFF014 91800001 4780F03C 58200050
000450DC 00109180 00004710 F0325B00
58F08030 07FF584C 00001244 4780F056
00005040 30549200 304C5030 00081803
50200060 07FE1C44 00001000 00001488
00006488 00007488 00000000 00000000
00000648 41660001 0000021::4 00000;'.AC

Figure 2-2 (Part 1 of 2). Sample LISTLOAD Output Load-Module Map

2-8 Service Aids

PAGE 0001

PAGE 00'02

RECORDtl 6

UCORDI 7

000500
000520
0005•0
000560
000580
0005AO
ooosco
000510
000600
001>620
000640
000660
000680
0006AO
0006(:0
000610
000700
000720
000700
000760

LISTING OF LOAD MODULE PLlLOAD

00000258 00000000 00000000 00000000
00000730 00000738 00000740 000007•8
OOUOOU •OD7D3Fl E3C3FOF2 6060C3D6
40C5D9D9 D6D96BC5 E707C5C3 E3CSC4•0
•OC1C4•0 C9£24002 OC040COO 00000594
E3CSC4•0 CUOC9E2 •OF1F84E F•F1C9•0
000C041C 018COC2C OClCOOOO 000005D4
E3C5D9C5 C440000C O•Oc050C OOOC006C
00000700 80000638 000007"8 000002•2
00000708 0000016C 8000053• 00000748
04800b20 41C90008 C08000DO 1C021AC1
900647FO 8206D2AF 4000C000 1BFF50FD
00033BC8 00480AOA 05804860 808050£7
801C9206 7010•UO A05818C6 41D00020
804048DO 900447FO 80581822 8D200008
00224820 807A•8DO 808641'0 807A1BCC
47F0808A 4AOOB086 4AOOB084 06208920
58roroo8 01rroooo 00000000 50010034
003CCO•c D2071024 00201002 00000000
07E2EBE2 D709C9D5 E3000000 00000000

00000000 00000000 00000000. 00000000
eooooooo 00000001 oco20000 000005••
D•D7D3C5 E3C5C••O 00000560 00270027
c1c••OC9 E2•0FOFO •EF2FOC9 •OC2E•E3
002C002C •OC5D9D9 D6D96BC5 E7D7C5C3
C2EltEJllO Cl&t0C9E2 ll009C5C1 03DJEB40
00120012 •OD7D3Fl E3C3FOF2 6060C5D5
oooco2oc 01ocoo1c ooooo5ec 00000035
8000053• 00000748 0000021C 80000534
OOOOOOA4 80000530 8903802C 8A060089
95043008 47808200 D2AFC000 •0009680
00101817 41000038 OAOA98EC D00C07FE
00309180 9006•780 80189205 7010"7FO
1CCC1AD5 50D700U 18•D9505 70104770
•1100001 19128C20 00084780 809648D7
•810B07E 1oc11AD2 B9Dooooe •1ocD001
OOOB1AD2 410DOOOO 00000000 "7F0809E
oo3coo•c 001058FO 003C004C 58070034.
0000000• 00000000 00000000 00000000
00000000 00000000 00000000 00000000

TYPE 02 • RLD RLD SIZE 236

R·PTR
2

1•
15

1
12

3
13

3
12

2

4
5
1
2
1

16
17
18
19
20
21
22
23

P•PTR
1
1
1
1
1
1
1
1
1
2

2
2
2
2
2
2
2
2
2
2
2
2
2

TYPE OE - RLD

R•PTR
24
25
26

2
25

2
26

1
2

26
1
2

26
1
2

26
1
2
1

10
27

P-PTR
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
8
9

26

FL ADOR
oc 000010
24 00002£
2• 00029A
OD 000284
25 000448
24 000478
24 000482
24 000490
25 0004A2
OD 0004BC
OC OOO•D•
ec ooo•DB
BC OOO•DC
OD 0004EO
OC OOO•FO
OD 0004F8
9C 000508
9C 00050C
9C 000510
9C 000514
9C 0004£8
9C 000518
9C 00051C
OC 000520

FL ADDR
oc 000524
oc 000528
OC 00052C
09 00053D
oc 000600
08 000605
oc 000608
Oc 00060C
OB 000611
oc 000614
oc 000618
08 00061D
oc 000620
oc 000624
08 000629
Oc 00062C
oc 000630
08 000635
OC 000718
8C 000728
24 0007"8

FL ADDR FL ADDR FL ADDR

OC 0002EC
2• 00045•

20 OOO•M
OD 0004CO OD 0004C4 OD OOOllcB

OC OOO•E•

OD OOOOFC OD 000500 oc 00050•

LISTING OF LOAD MODULE PLlLOAO

F~ ADDR FL ADOR

OD OOOLICC 00 000400

RLD SIZE 188

FL ADDR FL ADDR FL ADDR FL ADOR FL ADDR

09 000559 09 00058D 09 QOOSCD OD OOOSF8 OC QOOSFC

••• •••BMD OF LOAD MODULE LISTING

Figure 2-2 (Part 2 of 2). Sample LISTLOAD Output Load-Module Map

PAGE 0003

PAGE' ODO•

Chapter 2. LIST 2-9

NUMERICAL MAP AND CROSS-REFERENCE LIST OF LOAD MODULI:; PLlLOAD PAGE 0001

CONTROL SECTION ENTRY
LMOD LOC NAME LENGTH TYPE LMOD LOC CSECT LOC NAME

00 PL1TC02 486 SD
488 PL1TC02A 260 SD
718 IHEMAIN 04 SD
720 IHENTRY oc SD
730 c 04 SD
738 B 04 SD
740 A 04 SD
748 IHESPRT 38 SD

LMOD LOC CSECT LOC JN CSECT REFERS TO SYMBOL AT LMOD LOC CSECT LOC IN CSECT

10 10 PL1TC02 PL1TC02A 488 00 PL1TC02A
4D8 20 PL1TC02A I HE SADA $UNRESOLVED
4DC 24 PL1TC02A IHESADB $UNRESOLVED
4EO 28 PL1TC02A PLl TC02 00 00 PL1'IC02
4E4 2C PL1TC02A PL1TC02 00 00 PLl'I'C02
4E8 30 PL1TC02A IHESAFA $UNRESOLVED
4F8 40 PL1TC02A PLl TC02 00 00 PL1TC02
ore 44 PL1TC02A PL1TC02 00 00 PL1TC02
500 48 PL1TC02A PL1TC02 00 00 PL1TC02
504 4C PL1TC02A PLl TCO 2 00 00 PL1TC02
508 50 PL1TC02A IHELDOA $UNRESOLVED
soc 54 PL1TC02A IHELDOB $UNRE.SOLVED
510 58 PL1TC02A IHEIOBT $UNRESOLVED
514 oc PL1TC02A IHEIOBC $UNRESOLVED
518 60 PL1TC02A IHESAFb $UNRESOLVED
51C 64 PL1TC02A M $UNRESOLVED
520 68 PL1TC02A c 730 co c
524 6C PLl TC02A B 738 00 B
528 70 PL1TC02A A 740 00 A
52C 74 PL1TC02A IHESPRT 748 00 IHE°sPRT
600 148 PL1TC02A A 740 00 A
608 150 PL1TC02A !HESPRT 748 00 IHESPRT
60C 154 PL1TC02A PL1TC02 00 00 PL1TC02
614 lSC PL1TC02A IHESPRT 748 00 IHESPRT
&18 160 PL1TC02A PL1TC02 00 00 PL1TC02
620 168 PL1TC02A IHESPRT 748 00 IH~SPRT
624 16C PL1TC02A PL1TC02 00 00 PL1TC02
62C 174 PL1TC02A IHESPRT 748 00 HIESPRT
630 178 PL1TC02A PL1TC02 00 00 PL1TC02
718 00 IHEMAIN PL1TC02 00 00 PL1TC02
728 08 I BENT RY IHESAPC $UNRESOLVED

LENGTH OF LOAD MODULE 780

NUMERICAL MAP AND CROSS-REFERENCE LlciT OF LOAD MODULE PLlLOAD PAGE 0002

PSEUDO REGISTE.t<
VECTOR LDC NAME. LENGTH

00 IHEQINV
014 IHEQEHR
08 IhEQTIC
OC IHEQLWF
10 IHEQSLA
14 IriEQLWO
18 PL1TC02B
lC PL1TC02C
20 IHEQSPR

LENGTH OF PSEUDO REGISTERS 24

Figure 2-3 (Part 1 of 2). Sample LISTLOAD Output- Cross-Reference Listing

2-10 Service Aids

ALPHABETICAL MAP OF LOAD MODULE PLlLOAD

CONTROL SECTION ENTRY
NAME LMOD LOC LENGTH TYPE NAME LMOO LOC CSECT LOC

A ·740 o• so
73B o• so
7'0 OU sn

IHEMAIN 71B o• so
IHENTRY 720 oc so
IHESPRT 7•B 3B so
PL1TC02 00 UB6 so
PL1TC02A •BS 260 so

PSEUDO REGISTER
NAME VECTOR LOC LENGTH

IHEQERR 04
IHEQINV 00
IHEQLWF OC
IHEQLWO 14
IHEQSLA 10
IHEQSPR 20
IHEQTIC 08
PL1TC02H 18
PL1TC02C lC

ALPHABETICAL CROSS-REFERENCE LIST OF LOAD MODULE PLlLOA.D

SYMBOL AT LMOD LOC CSECT LOC IN CSECT IS REFERRED TO PY LMOD LOC CSECT LOC

A 7"0 00 A S2B 70
A 1•0 00 A 600 148
M $UNRESOLVED 51C 64
B 7 3B 00 B S2• 6C
c 730 00 c S20 6B
IHEIOBC $UNRESOLVED Sl. SC
IHEIOBT $UNRESOLVED SlO SB
IHELDOA $UNRESOLVED sos so
IHELDOB $UNRESOLVED soc Su
IHESADA $UNRESOLVED UDB 20
IHESADB $UNRESOLVED •oc 2•
IHESAFA $UNRESOLVED UEB 30
IHESAFB $UNRESOLVED SlB 60
IHESAPC $UNRESOLVED 12 8 OB
IHESPRT 74 8 00 IHESPRT S2C 1•
IHESPRT 74 8 00 IHESPRT 60B lSO
IHESPRT 748 00 IHESPRT 61• 15C
IHESPRT 74 8 00 IHESPRT 620 168
lHESPRT 7•B 00 IHESPRT 62C 17"
PL1TC02 00 00 PLl TCO 2 •EO 2B
PLl TC02 00 00 PL1TC02 4E4 2C
PL1TC02 00 00 PLl TCO 2 4F8 uo
PL1TC02 00 00 PL1TC02 UFC 44
PL1TC02 00 00 PLl TCO 2 soo "8
PL1TC02 00 00 PL1TC02 SO• •c
PL1TC02 00 00 PL1TC02 60C 15"
PL1TC02 00 00 PL1TC02 61B 160
PL1TC02 00 00 PLl TCO 2 62• 16C
PL1TC02 00 00 PLlTr.02 630 17B
PL1TC02 00 00 PL1TC02 718 00
PL1TC02A •BB 00 PL1TC02A. 10 10

••••••END OF MJ\.P AND CROSS··?EFERENCE LISTING

Figure 2-3 (Part 2 of 2). Sample LISTLOAD Output- Cross-Reference Listing

CSECT NAM£

IN CSECT

PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PLlTC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
IHENTRY
PLl'l'C02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
IHEMAIN
PL1TC02

PAGE 000]

PAGE OOOlf

Chapter 2. LIST 2-11

N

I I
N

(/)
(1) ...,
< c:;·
(1)

)>
a:
I/)

OBJECT MODULE LISTING PAGE 0001

ESD RECORD:
ESDID TYPE NAME ADDR R/R/A ID/LTH 00000001

0001 SD(OO) RDONLYBl 000000 03 00002C
0002 ER(02) RDONLYB2 000000 40 404040
0003 ER(02) RDONLYEl 000000 40 404040

ESD RECORD: 00000002
ESDID TYPE NAME ADDR R/R/A ID/LTH

0004 ER(02) RDONLYE2 000000 40 404040
0005 ER(02) RDWRTEOl 000000 40 404040
0006 ER(02) RDWRTE02 000000 40 404040

ESD RECORD: 00000002
ESDID TYPE NAME ADDR R/R/A ID/LTH

LD(Ol) LYBl oooooc 40 000001

TXT: 00000004
ADDR=OOOOOO ESDID= 0001 TEXT: 90CED000 05C098CE D00007FE 90CEDOOO 05C098CE D00007FE 00000000 00000000 00000000 00000000

00000000

RLD RECORD:

END RECORD:

R PTR
0002
0005

P PTR
0001
0001

Figure 2-4. Sample LISTOBJ Output

FLAGS
lC
lC

ADDR
000018
000024

R PTR
0003
0006

P PTR
0001
0001

FLAGS
lC
lC

ADDR
OOOOlC
000028

R PTR
0004

P PTR
0002

15741SC103 020180171

FLAGS
lC

ADDR
000020

00000005

00000006

,.,----,

()
::T
Ill
"O
<D ...
I\)

r
en
--t

~
I
w

CSECT

SAMPl
SAMP2
SAMP4
SAMP4
SAMP4

LISTIDR FOR LOAD MODULE SAMPLE

YR/DAY

71/329
71/329
71/329
71/329
71/329

IMASPZAP DATA

FIX12345
LEVEL003
PATCHOOl
PATCH002
PATCH003

PAGE 0001

THIS LOAD MODULE WAS PRODUCED BY LINKAGE EDITOR 360SED521 AT LEVEL 21.01 ON DAY 329 OF YEAR 71.

CSECT TRANSLATOR VR MD YR/DY

SAMPl 360SAS037 21 00 71/329
SAMP2 360SAS037 21 00 71/329
SAMP3 360SAS037 21 00 71/329
SAMP4 360SAS037 21 00 71/329
SAMPS 360SAS037 21 00 71/329

CSECT YR/DAY USER DATA

SAMPl 71/329 CHANGE LEVEL 01
SAMP2 71/329 VERSION 6
SAMP3 71/329 FIX LEVEL 2735
SAMP4 71/329 SORT SUBROUTINE
SAMPS 71/329 CARD SCANNING SUBROUTINE

Figure 2-5. Sample LIST/DR Output

ti)
J I MODIFIED LINK PACK AREA MAP - ALPHABETICALLY BY NAME NAME LOCATION LENGTH EP ADDR MAJOR LPDE NAME NAME LOCATION LENGTH EP ADDR MAJOR LPDE NAME

IGC00020 -------- -------- OOB42000 IGCOOOSE -------- -------- OOB37FAO
fl) IGC0006I -------- -------- OOB419CO IGG019BN -------- -------- OOB414D8
CD N 00.12SEC VIRT 200K SYS 276K ...
< MODIFIED LINK PACK AREA MAP - NUMERICALLY BY ENTRY POINT 0
CD NAME LOCATION LENGTH EP ADDR MAJOR LPDE NAME NAME LOCATION LENGTH EP ADDR MAJOR LPDE NAME
)> IGC0005E -------- -------- OOB37FA0 IGG019BN -------- -------- OOB414D8
0: IGC0006I -------- -------- OOB419CO IGC00020 -------- -------- OOB42000 Ul

N 00.12SEC VIRT 200K SYS 276K
PAGEABLE LINK PACK AREA MAP - ALPHABETICALLY BY NAME
NAME LOCATION LENGTH EP ADDR MAJOR LPDE NAME NAME LOCATION LENGTH EP ADDR MAJOR LPDE NAME
AHLACFV 819B595E AHLTVTAM AHLDMPMD 81926EBE AHLSETD
AHLDSP 81963962 AHLTXSYS AHL EXT 8198F660 AHLTSYSM
AHLF IO 8193A926 AHLTSYFL AHLFPI 8193A9FC AHLTSYFL
AHLF RR 8198F7EA AHLTSYSM AHLFSSCH 8193A946 AHLTSYFL
AHLF SVC 8193A9D8 AHLTSYFL AHLMCER 81926450 AHLSETD
AHLPINT 8198F748 AHLTSYSM AHLREADR 01977C08 000003F8 81977C08
AHLSBCUl 81991F4A AHLWSMOD AHLSBLOK 819916BO AHLWSMOD
AHLSBUF 81991A90 AHLWSMOD AHLSETD 01926000 00001708 81926000
AHLSETEV 01928000 00001998 81928000 AHLSFEOB 819917EE AHLWSMOD
AHLSRB 819639EE AHLTXSYS AHLSRM 81963A62 AHLTXSYS
AHLSTAE 8198F8C6 AHLTSYSM AHLSVC 8198F61A AHLTSYSM
AHLTACFV 819B596A AHLTVTAM AHLTCCWG 0192A000 00002378 8191A000
AHLTDIR 81926A58 AHLSETD AHLTDSP 81971658 AHLTPID
AHLTEXT 01956920 000006EO 81956920 AHLTFCG Ol92DOOO 000016DO 81920000
AHLTFOR 01954570 00000A90 81954570 AHLTFRR 81954694 AHLTFOR
AHLTLSR 819717D2 AHLTPID AHLTPI 8197147E AHLTPID
AHLTPID 01971468 OOOOOB98 81971468 AHLTSLIP 0192FOOO 00001C50 8192FOOO
AHLTSRB 81971770 AHLTPID AHLTSRM 8195458C AHLTFOR
AHLSTAE 819547B4 AHLTFOR AHLTSVC 01931000 00002768 81931000
AHLTSYFL 0193A908 000006F8 8193A908 AHLTSYSM Ol98F508 00000AF8 8198F508
AHLTUSR 019299CO 00000640 819299CO AHLTVTAM 019B5940 000006CO 819B5940
AHLTXSYS 01963850 000007BO 81963850 AHLVCOFF 019B6F40 ooooooco 819B6F40
AHLVCON 01989EE8 00000118 81989EE8 AHLWSMOD 0199l6BO 00000950 819916BO
AHLWTOMD 81926E4C AHLSETD AMDSYSOO 01934000 00001208 81934000
AMDSYSOl 01936000 00002AD8 81936000 AMDSYS02 019BB648 00000548 819BB648
AMDSYS03 01939000 00001828 91039000 AMDSYS04 0193BOOO 00002038 8193BOOO
AMDSYS05 01975178 99999358 81975178 AMDSYS06 01961C08 000003F8 81961C08
AMOUS RFD OOF28000 00001E60 OOF28000 AMDUSRFE OOBF1008 000006C8 OOBF1008
AMDUSRFF OOC4COOO IMDUSRFF AMDUSRF8 OOC08590 IMDUSRF8
AMDUSRF9 OOB8E230 000003F8 OOB8E230 CCKRIUWT OOC48000 ISTAICIR
CVAFGTF OOC4E730 OOOOOSDO OOC4E730 DCMBEO OOC56328 DCM3B3
DCMBEl OOC56328 DCM3B3 DCM180 OOF26000 00001360 OOF26000
DCM181 OOCB8078 OOOOOF88 OOCB8078 DCM182 OOC54020 OOOOOFEO OOC54020
DCM183 OOC26318 OOOOOCES OOC26318 DCM270 OOF24000 000014EO OOF24000
DCM271 OOF24000 DCM270 DCM272 OOE1E830 000007DO OOE1E830

Figure 2-6. Sample L/STLPA Output

Examples
The following examples show sample uses of LIST.

Example 1 : Listing Several Object Modules
In this example, LIST is used to list all object modules contained in the data set
named OBJMOD, and three specific object modules from another data set called
OBJ MODS.

//OBJLIST JOB MSGLEVEL=(l,1)
//LISTSTEP EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DD SYSOUT=A
//OBJLIB DD DSN=OBJMODS,DISP=SHR
//OBJSDS DD DSN=OBJMOD,DISP=SHR
//SYSIN DD *

LISTOBJ DDN=OBJSDS,
TITLE=('OBJECT MODULE LISTING OF OBJSDS',20)

LISTOBJ DDN=OBJLIB,MEMBER=(OBJ1,0BJ2,0BJ3),
TITLE=('OBJECT MODULE LISTING OF OBJl OBJ2 OBJ3',20)

/*

OBJLIB and OBJSDS DD Statements
define input data sets that contain object modules.

SVSIN DD Statement
defines the data set in the input stream containing LIST control statements.

LISTOBJ Control Statement #1
instructs LIST to format the data set defined by the OBJSDS DD statement,
treating them as a single member. It also specifies a title for each page of
output, to be indented 20 characters from the left margin.

LISTOBJ Control Statement #2
instructs LIST to format three members of the partitioned data set (PDS or
POSE) defined by the OBJLIB DD statement. It also specifies a title for each
page of output, to be indented 20 characters from the left margin.

Chapter 2. LIST 2-15

Example 2: Listing Several Load Modules

2-16 Service Aids

In this example, UST is used to produce formatted listings of several load modules.

//LOADLIST JOB MSGLEVEL=(l,1)
//LISTSTEP EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYSl.LINKLIB,DISP=SHR
//LOADLIB DD DSNAME=LOADMOD,DISP=SHR
//SYSIN DD *

/*

LISTLOAD OUTPUT=MODLIST,DDN=LOADLIB,
MEMBER=TESTMOD,
TITLE=('LOAD MODULE LISTING OF TESTMOD',20)

LISTLOAD OUTPUT=XREF,DDN=LOADLIB,
MEMBER=(MOD1,MOD2,MOD3),
TITLE=('XREF LISTINGS OF MODI MOD2 AND MOD3',20)

LISTLOAD TITLE=('XREF&LD MOD LSTNG-ALL MOD IN LINKLIB',20)

SVSLIB DD Statement
defines an input data set, SYS1 .LINKLIB, that contains load modules to be
formatted.

LOADLIB DD Statement
defines a second input data set.

SVSIN DD Statement
defines the data set (in the input stream) containing the LIST control statements.

LISTLOAD Control Statement #1
instructs LIST to format the control and text records including the external
symbol dictionary and relocation dictionary records of the load module
TESTMOD in the data set defined by the LOADLIB DD statement. It also
specifies a title for each page of output, to be indented 20 characters from the
left margin.

LISTLOAD Control Statement #2
instructs LIST to produce a module map and cross-reference listing of the load
modules MOD1, MOD2, and MOD3 in the data set defined by the LOADLIB DD
statement. It also specifies a title for each page of output, to be indented 20
characters from the left margin.

LISTLOAD Control Statement #3
instructs LIST to produce a formatted listing of the load module and its map and
cross-reference listing. Because no DON= parameter is included, the input
data set is assumed to be the one defined by the SYSLIB DD statement.
Because no MEMBER= parameter is specified, all load modules in the data set
will be processed. This control statement also specifies a title for each page of
output, to be indented 20 characters from the left margin.

Example 3: Listing IDR Information for Several Load Modules
In this example, LIST is used to list the CSECT identification records in several load
modules.

//IDRLIST
//LISTSTEP
//SYSPRINT
//SYSLIB
//LOADLIB
//SYSIN

JOB MSGLEVEL=(l,1)
EXEC PGM=AMBLIST,REGION=64K
DD SYSOUT=A
DD DSN=SYSl.LINKLIB,DISP=SHR
DD DSN=LOADMODS,DISP=SHR
DD *

/*

LISTI DR
LISTI DR

LISTI DR

LISTI DR

TITLE=('IDR LISTINGS OF ALL MODS IN LINKLIB',20)
OUTPUT=IDENT,DDN=LOADLIB,MEMBER=TESTMOD
TITLE=('LISTING OF MODIFICATIONS TO TESTMOD',20)
OUTPUT=ALL,DDN=LOADLIB,MEMBER=(MOD1,MOD2,MOD3),
TITLE=('IDR LISTINGS OF MODI MOD2 MOD3',20)
DDN=LOADLIB,MODLIB

SYSLIB DD Statement
defines the input data set SYS1.LINKLIB, which contains load modules to be
processed.

LOADLIB DD Statement
defines a second input data set.

SYSIN DD Statement
defines the data set (in the input stream) containing the LIST control statements.

LISTIDR Control Statement #1
instructs LIST to list all CSECT identification records for all modules in
SYS1.LINKLIB (this is the default data set since no DON= parameter was
included). It also specifies a title for each page of output, to be indented 20
characters from the left margin.

LISTIDR Control Statement #2
instructs LIST to list CSECT identification records that contain SPZAP or
user-supplied data for load module TESTMOD. TESTMOD is a member of the
data set defined by the LOADLIB DD statement. This control statement also
specifies a title for each page of output, to be indented 20 characters from the
left margin.

LISTIDR Control Statement #3
instructs LIST to list all CSECT identification records for load modules MOD1,
MOD2, and MOD3. These are members in the data set defined by the LOADLIB
DD statement. This control statement also specifies a title for each page of
output, to be indented 20 characters from the left margin.

LISTIDR Control Statement #4
instructs LIST to list CSECT identification records that contain SPZAP or
user-supplied data for the LOADLIB data set. The module summary print out is
suppressed.

Chapter 2. LIST 2-17

Example 4: Verifying an Object Deck

2-18 Service Aids

In this example, LIST is used to format and list an object module included in the
input stream.

llLSTOBJDK JOB MSGLEVEL=(l,1)
PGM=AMBLIST,REGION=64K
SYSOUT=A

II EXEC
llSYSPRINT DD
llOBJDECK DD *

object deck
I*
llSYSIN DD *

LISTOBJ DDN=OBJDECK,
TITLE=('OBJECT DECK LISTING FOR MYJOB',25)

I*

OBJDECK DD Statement
defines the input data set, which follows immediately. In this case, the input
data set is an object deck.

SYSIN DD Statement
defines the data set containing LIST control statements, which follows
immediately.

LISTOBJ Control Statement
instructs LIST to format the data set defined by the OBJDECK DD statement. It
also specifies a title for each page of output, to be indented 20 characters from
the left margin.

Example 5: Verifying Several Load Modules
This example shows how to use LIST to verify all three modules. Assume that an
unsuccessful attempt has been made to link edit an object module with two load
modules to produce one large load modul.e.

llLSTLDOBJ JOB MSGLEVEL=(l,1)
II EXEC PGM=AMBLIST,REGION=64K
llSYSPRINT DD SYSOUT=A
llOBJMOD DD DSN=MYMOD,DISP=SHR
llLOADMODl DD DSN=VOURMOD,DISP=SHR
llLOADMOD2 DD DSN=HISMOD,DISP=SHR
llSYSIN DD *

LISTOBJ DDN=OBJMOD,
TITLE=('OBJECT LISTING FOR MYMOD',20)

LISTLOAD DDN=LOADMODl,OUTPUT=BOTH,
TITLE=('LISTING FOR YOURMOD',25)

LISTI DR DDN=LOADMODl,OUTPUT=ALL,
TITLE= (I IDRS FOR YOURMOD I ,25)

LISTLOAD DDN=LOADMOD2,0UTPUT=BOTH,
TITLE=('LISTING FOR HSMOD',25)

LISTIDR DDN=LOADMOD2,0UTPUT=ALL,
TITLE=('IDRS FOR HISMOD',25)

I*

OBJMOD DD Statement
defines an input load module data set.

LOADMOD1 and LOADMOD2 DD Statements
define input load module data sets.

SYSIN DD Statement
defines the data set containing LIST control statements, which follows
Immediately.

LISTOBJ Control Statement
instructs LIST to format the data set defined by the OBJ MOD DD statement. It
also specifies a title for each page of output, to be indented 20 characters from
the left margin.

LISTLOAD Control Statement #1
instructs LIST to format all records associated with the data set defined by the
LOADMOD1 DD statement. It also specifies a title for each page of output, to be
indented 25 characters from the left margin.

LISTIDR Control Statement #1
instructs LIST to list all CSECT identification records associated with the data
set defined by the LOADMOD1 DD statement. It also specifies a title for each
page of output, to be indented 25 characters from the left margin ..

LISTLOAD Control Statement #2
instructs LIST to format all records associated with the data set defined by the
LOADMOD2 DD statement. It also specifies a title for each page of output, to be·
indented 25 characters from the left margin.

Chapter 2. LIST 2·19

LISTIDR Control Statement #2
instructs LIST to list all CSECT identification records associated with the data
set defined by the LOADMOD2 DD statement. It also specifies a title for each
page of output to be indented 25 characters from the left margin.

Example 6: Listing a System Nucleus and Mapping the Link Pack Area

2-20 Service Aids

This example shows how to use the LISTLOAD and LISTLPA control statements to
list a system nucleus and map the fixed link pack area, the modified link pack area,
and the pageable link pack area. Note that in this example the data set containing
the nucleus is named SYS1.NUCLEUS, and the nucleus occupies the member named
IEANUC01. The map no longer represents the IPL version of the nucleus and
message AMB1291 will be issued. Use IPCS to format the NUCMAP. For
information on using IPCS see the IPCS User's Guide.

//LISTNUC JOB MSGLEVEL=(l,1)
PGM=AMBLIST,REGION=100K //STEP EXEC

//SYSPRINT DD SYSOUT=A
DSN=SYS1.NUCLEUS,DISP=SHR,UNIT=3330, //SYSLIB DD

// VOL=SER=nnnnn
//SYSIN DD *

/*

LISTLOAD DDN=SYSLIB,MEMBER=IEANUC01,
TITLE=('LISTING FOR NUCLEUS IEANUC01',25)

LISTLPA

SYSLIB DD Statement
defines the input data set, which in this case contains the nucleus.

SYSIN DD Statement
defines the data set containing LIST control statements, which follows
immediately.

LISTLOAD Control Statement
instructs LIST to format the control and text records including the external
symbol dictionary and relocation dictionary records of the load module
IEANUC01 in the data set defined by the SYSLIB DD statement. It also specifies
a title for each page of output, to be indented 25 characters from the left margin.

LISTLPA Control Statement
instructs LIST to map the fixed link pack area, the modified link pack area, and
the pageable link pack area.

(

\

Chapter 3. SADMP program

Introduction
AMDSADMP (SADMP) is a stand-alone program designed to dump storage from a
system that has failed. It is available to help you diagnose the failed system.

SADMP produces an unformatted dump of central (also called real) storage and
parts of paged-out virtual storage, on a tape. This is also called a 'high-speed'
stand-alone dump. The interactive problem control system (IPCS) can be used to
format the dump and view it on the console or print it on a printer. For information
on using IPCS, see the /PCS User's Guide.

SADMP can also produce a formatted dump of portions of central storage, on a tape
or printer. This is called a 'low-speed' stand-alone dump.

You can use the IEBPTPCH utility program to print the formatted dump tape.

You can generate different versions of SADMP by coding several AMDSADMP
macros and varying the values of keywords on the macros. AMDSADMP is supplied
in the system library SYS1 .MACLIB. The SADMP program is generated under the
operating system, but its execution is a stand-alone operation.

Notes:

1. Stand-alone dump uses only on-line devices. When you dump to or from
devices that have both real and virtual addresses, specify only the real
addresses to SADMP. SADMP must reside on an on-line storage device.

2. You cannot direct SADMP output to its residence volume.

3. The SADMP residence volume, output device, and console do not have to be
attached to the same processor.

4. To ensure that SADMP is available and successfully processes, the
SYS1 .PAGEDUMP data set should not be deleted or moved to another volume or
pack.

The rest of this chapter describes the SADMP program and SADMP output, and
shows how to generate and execute SADMP.

GC28-1844-2 ©Copyright IBM Corp. 1988, 1989 3-1

SADMP Program

3-2 Service Aids

There are two types of SADMP programs:

1. Unformatted (high-speed dump)

• data set resides on a direct access device with output directed to a tape
volume

• data set resides on a tape device, with output directed to a tape volume

2. Formatted (low-speed dump)

• data set resides on a direct access device with output directed to a tape
volume

• data set resides on a direct access device with output directed to a printer

SADMP unformatted output is intended for processing by IPCS.

The unformatted high-speed version of SADMP dumps all central storage and some
areas of virtual storage not backed by central storage. The output includes:

• The prefixed save areas (PSAs)

• The nucleus and extended nucleus

• The system queue area (SQA) and the extended SQA

• The common service area (CSA) and the extended CSA

• Subpools 203-205, 213-215, 229, 230, 236, 237, 247, and 248 for the eligible
address spaces based on the MINASID option specified

• The local system queue area (LSQA) and the extended LSQA for eligible
address spaces based on the MINASID option specified

• A dump title

• The processor STORE STATUS information for each processor

• Main storage from address 0 to the top of main storage in absolute address
sequence (some blocks may be missing because of off-line storage elements}

• Instruction trace data created by the instruction address trace

• Vector data for each processor that has a Vector Facility installed.

• Virtual storage areas selected by the DUMP= keyword, or selected by the
operator at execution time.

• A message log, normally consisting of all console messages issued by the
virtual dump program (whether or not messages were suppressed}.

• Eligible address spaces that are physically swapped-in or all address spaces as
specified by the MINASID keyword or by the operator at execution.

If SADMP detects an internal error, the output may also include one or more SADMP
self-dumps.

To format and print the SADMP message log, invoke the SADMPMSG VERBEXIT
under IPCS.

SADMP dumps the instruction trace data (created by the instruction address trace)
only it SADMP loads the virtual storage dump program, AMDSAPGE. SADMP loads
AMDSAPGE only when the central (also called real) storage dump program

AMDSARDM does not detect any unexpected program errors and when SADMP
determines that the virtual environment is valid. SADMP does not dump the
instruction trace data (created by instruction address trace) when any of the
following conditions exist:

• The prefix register is invalid.

• Any of the following control blocks fail the SADMP validity check: the CVT, the
RSM control blocks, or the SADMP RLT.

• The LPA has not been initialized.

• SADMP cannot read AMDSAPGE into storage due to an 1/0 error.

You can request that SADMP dump additional storage by specifying dump tailoring
options. See "Dumping Additional Storage" on page 3-19.

The formatted low-speed version of SADMP produces a dump title specified at dump
execution time, followed by processor related data for each available processor,
followed by a dump of user selected areas of central storage.

If your program contains Vector Facility data and you are unable to dump that data,
one of the following conditions exist:

1. The Vector Facility was not on-line at the time the dump was requested.

2. A machine check occurred on the processor on which your program was
running while SADMP was issuing vector instructions.

3. While dumping vector data, an error occurred in SADMP. Some data might be
missing on the SADMP output tape.

SADMP does not issue a message if it cannot dump data.

Chapter 3. SADMP program 3-3

Creating the SADMP Program

3-4 Service Aids

Before you can run SADMP, you must .create a SADMP program in ready-to-load
form on an appropriate device. The procedure for creating a ready-to-load SADMP
program is as follows:

1. Device selection - Select a tape or direct access device as the SADMP IPL
volume ("residence volume"). If the residence volume is a direct access
device, make sure that it does not already contain a SYS1.PAGEDUMP dataset;
otherwise, SADMP initialization will fail. The SADMP volume mount attribute
must be PRIVATE.

2. Dump specification - Specify the type of SADMP program that you want by
coding the AMDSADMP macro.

3. Residence volume initialization - Put the SADMP program onto the residence
volume in ready-to-load form, using either a two-stage generation or a one-step
generation. In two-stage generation, first assemble the AMDSADMP macro.
This will produce the input required to run the second stage of the JCL. Then
run stage two to initialize the SADMP residence volume. In one-step
generation, execute the AMDSAOSG program as a single job step, using the
AMDSADMP macro as input data (SYSIN control statement).

With both two-stage or one-step generation, SADMP residence volume initialization
consists of three phases:

• Phase One

The AMDSADM2 macro is assembled to produce the SADMP central storage
dump program AMDSARDM, which dumps central storage, and the SADMP
common communication table AMDSACCT, an internal control block.

• Phase Two

The SADMP build module AMDSABLD puts the output from phase one onto
the residence volume in ready-to-load form. AMDSABLD locates the
SADMP IPL program AMDSAIPL and the SADMP virtual storage dump
program AMDSAPGE, and puts them onto the residence volume.

• Phase Three

If the residence volume is a direct access device, the device utility ICKDSF
is invoked to put SADMP's IPL text onto the device's IPL track (cylinder 0,
track 0).

Considerations In Creating Stand-Alone Dumps
The JCL for the AMDSADM2 assembly in stage two of the two-stage generation must
provide a SYSLIB DDNAME that refers to a macro library containing the system
macros BLSRDRPX, BLSRDATS, IEZBITS, IHAIRB, IHAMSF, IHAORB, IHAPSA,
IHASCCB, and IHASCHIB. The same is true of any SYSLIB DDNAME in the JCL for
the one-step generation program AMDSAOSG.

If you are using MVS/SP 3.1.3, some of these system macros are in SYS1 .MODGEN,
so make sure that the SYSLIB DDNAME concatenates SYS1.MODGEN to
SYS1.MACLIB. Your installation should catalog the SYS1.MODGEN data set before
creating the SADMP program; otherwise, the JCL that AMDSADMP produces will
fail to build the stand-alone dump program.

You should consider some form of password or other security protection for
SYS1 .PAGEDUMP; this data set contains copies of several pages of central storage
whose contents are unpredictable. You should also consider protecting the SADMP
macros and modules from unauthorized modification.

To ensure that SADMP is available and successfully processes, the
SYS1.PAGEDUMP data set should not be deleted or moved to another volume or
pack.

You should consider which MINASID keyword option default Is appropriate for your
installation:

• MINASID(PHYSIN) will reduce the overall execution time of SADMP.
• MINASID(ALL) will cause SADMP output to contain a more complete image of

your system at the time the dump is taken but will also increase the time
required for execution.

Note: ALL address spaces are likely to be needed for hangs, enabled waits, and
performance problems. PHYSIN should suffice for coded waits, loops, and spin
loops.

Chapter 3. SADMP program 3·5

Dump Specification: Coding the AMDSADMP Macro
This section describes the syntax of the AMDSADMP macro instruction used to
produce both high-speed and low-speed versions of the dump program. For
examples using the AMDSADMP macro, see the "SADMP. Examples" on page 3-35.

GENERAL-USE PROGRAMMING INTERFACE

Syntax of the AMDSADMP Macro for an Unformatted Dump Program
Figure 3-1 shows the AMDSADMP macro parameters.

3-6 Service Aids

[symbol] AMDSADMP [TYPE={HIIUNFORMATTED}]

[,IPL={TunitlDunitlDSYSDA}]

[,VOLSER={volserlSADUMP}][,ULABEL={PURGEINOPURGE}]

[,CONSOLE=({cnuml(cnum,ctype} [,(cnum,ctype}] ••. l81F,3278}}]

[,SYSUT={unitlSYSDA}][,OUTPUT={TunitlT282}]

[,DUMP='dto'][,PROMPT][,LOADPT={loadptl!'l888'}]

[,MSG={ACTIONIALL}][,MINASID={ALLIPHYSIN}]

Figure 3-1. Format of AMDSADMP Macro Instruction Used to Generate a High-Speed
Dump Program

symbol
an arbitrary name you can assign to the AMDSADMP macro instruction. ·
SADMP uses this symbol to create a job name for use in the initialization step.

AMDSADMP
the name of the macro instruction.

TYPE= {HI I UNFORMATTED}
indicates the high-speed version of the dump program. When you omit this
parameter, SADMP assumes TYPE= HI as the default. TYPE= HI and
TYPE=UNFORMATTED have the same meaning.

IPL= {TunitlDunitlDSYSDA}
indicates the unit address or t.he device type of the SADMP residence volume.
The first character indicates the volume type; T for tape, D for DASO. SADMP
uses the unit character string as the UNIT= value to allocate the residence
volume for initialization. IPL= DSYSDA is the default. When you specify IPL=T,
SADMP assumes T3400. When you specify IPL=D, SADMP assumes DSYSDA.

VOLSER = {volserlSADUMP}
indicates the VOL=SER= value to allocate the residence volume for
initialization. When you specify a tape volume, it must be NL (no labels).
VOLSER = SADUMP is the default.

ULABEL= {PURGEINOPURGE}
indicates whether SADMP deletes (PURGE) or retains (NOPURGE) existing user (
labels on a DASO residence volume. When you specify NOPURGE, the SADMP
program is written on cylinder 0 track 0 of the residence volume, immediately

following all user labels. If the user labels occupy so much space that the
SADMP program does not fit on track 0, the initialization program issues an
error message and terminates.

ULABEL=NOPURGE is the default.

CONSOLE=({cnuml(cnum,ctype)[,(cnum,ctype)] ... I01F.3278})
indicates the device numbers and device types of the system consoles that
SADMP is to use while taking the dump. When you specify CONSOLE= cnum,
SADMP assumes (cnum,3278). You can specify from 2 to 21 consoles by coding:

CONSOLE=((cnum,ctype),(cnum,ctype),[,(cnum,ctype)] •••)

The 3277, 3278, 3279, and 3290 device types are valid, and are interchangeable.

CONSOLE= (01 F ,3278) is the default.

SYSUT= {unitlSYSDA}
specifies the UNIT=value of the device that SADMP uses for work files during
the initialization stage. You may specify the device as a group name (for
example, SYSDA), a device type (for example, 3330), or a unit address (for
example, 131). SYSUT=SYSDA is the default.

OUTPUT= {TunltlT282}
specifies the unit address of the output device that SADMP uses as a default
value if you use the EXTERNAL INTERRUPT key to bypass console
communication, or if you give a null response to message AMD001A during
SADMP IPL. You must always direct high-speed dump output to a tape device.
This parameter does not allow the same flexibility that the IPL parameter allows
(for example, T3400 is not a valid OUTPUT parameter). With a response to
message AMD001A, you can override the address specified on OUTPUT= at
execution time. OUTPUT=T282 is the default.

DUMP= 'dlo'
indicates additional virtual storage that you want dumped. This storage is
described as address ranges and subpools in address spaces. See the topic
"Dumping Additional Storage" on page 3-19. When you do not specify DUMP,
SADMP does not dump any additional storage unless you specify PROMPT.

PROMPT
causes SADMP, at execution time, to prompt you for additional virtual storage
that you want dumped. You may respond with the same information that can be
specified for the DUMP keyword. See the topic "Dumping Additional Storage"
on page 3-19. When you do not specify PROMPT, SADMP does not prompt you
to specify additional storage that you want dumped.

LOADPT = { loadpt I~' 1000'}
indicates the real address where SADMP will load the high-speed version of the
dump program. The load point address must be a hexadecimal number larger
than X' FFF' and smaller, by at least X' 15000', than the highest real address in
the configuration. The load point is rounded down to a page boundary. The
SADMP central storage dump program requires four page frames of contiguous
central storage. With the default LOADPT of X' 1000', the dump program will
use X' 1000' - X' 4FFF' .

An alternate SADMP version can be created so that the dump program can be
IPLed even if there is bad or offline storage at locations X' 1000' - X' 15000'.
The LOADPT can be set equal to one megabyte (X' 100000') less than the
address at the top of on-line central storage.

Chapter 3. SADMP program 3-7

MSG- {ACTIONIALL}
indicates the type of SADMP messages that are to appear on the console. When
you specify ACTION, SADMP writes only messages that require operator action.
When you specify ALL, SADMP suppresses no messages. ALL is the default.

This keyword has no effect on the SADMP message log; even If you specify
MSG =ACTION, the SAPMP virtual dump program writes messages to the
message log on the output tape.

MINASID == {ALLIPHYSIN}
indicates the status of the address spaces that are to be Included in the minimal
dump. Specify PHYSIN to dump the minimum virtual storage (LSQA and
selected system subpools) for the physically swapped-in address spaces only.
Specify ALL to dump the minimum virtual storage (LSQA and selected system
subpools) for all of the address spaces. ALL is the default.

At execution, If PHYSIN was specified, SADMP writes message AMD0821 to the
operator's console to warn the operator that some virtual storage may be
excluded from the dump.

Syntax of the AMDSADMP Macro for a Formatted Dump Program

3-8 Service Aids

Figure 3-2 shows the syntax of the AMDSADMP macro instruction for producing a
low-speed dump program.

[symbol] AMDSADMP TYPE={LO I.FORMATTED}}[, IPL={Dunit IDSYSDA}]

[,VOLSER={volserlSADUMP}][.ULABEL={PURGEINOPURGE}]

[,CONSOLE=({cnuml(cnum,ct) [.(cnum,ct)] ••• l&lf,3278})

[,SYSUT={unitlSYSDA}][,OUTPUT={TunitlPunitlP88E}]

[.ADDR={VIRTUAL I REAL}][, LOADPT={loadpt I' 1888'}]

[,MSG={ACTIONIALL}]

Figure 3-2. Format of AMDSADMP Macro Instruction Used to Generate a Low-Speed
Dump Program

symbol
an arbitrary name you can assign to the AMDSADMP macro Instruction.
SADMP uses this symbol to create a job name for use In the initialization step.

AMDSADMP
the name of the macro Instruction.

TYPE• {LOIFORMA TTED}
specifies the low-speed version of the dump program. When you do not specify
TYPE=, SADMP uses a high-speed dump as the default. LO and FORMATTED .
have the same meaning.

IPL• {DunltlDSYSDA}
specifies the unit address or the device type of the SADMP residence volume.
The first character must be D (for DASO). SADMP uses the unit character string
as the UNIT=value to allocate the residence volume for inltlalization.
IPL= DSYSDA Is the default.

OUTPUT= {TunitlPunitlPOOE}
specifies the device to which SADMP writes output. The first character specifies
the output device type: P for printer, T for tape. The unit character string
specifies the unit address that SADMP uses if you use the EXTERNAL
INTERRUPT key to bypass console communication during SADMP IPL. This
parameter does not allow the same flexibility that the IPL parameter allows (for
example, T3400 is not a valid OUTPUT parameter). At execution time, you can
override the address that you specified on OUTPUT= with a response to
message AMD001A. Note that a null response causes SADMP to use the
OUTPUT= value. OUTPUT= POOE (that is, a printer) is the default.

VOLSER = {volserlSADUMP}
specifies the VOL=SER= value to allocate the residence volume for
initialization. VOLSER=SADUMP is the default.

CONSOLE= ({cnuml{cnum,ctype)[,(cnum,ctype)] ... 101 F,3278})
indicates the device numbers and device types of the system consoles that
SADMP is to use while taking the dump. When you specify CONSOLE=cnum,
SADMP assumes (cnum,3278). You can specify from 2 to 21 consoles by coding:

CONSOLE=((cnum,ctype),(cnum,ctype),[,(cnum,ctype)] •••)

The 3277, 3278, 3279, and 3290 device types are valid, and are interchangeable.

CONSOLE= (01 F,3278) is the default.

SYSUT= {unitlSYSDA}
specifies the UNIT= value of the device that SADMP uses for work files during
the initialization stage. You may specify the device as a group name (for
example, SYSDA), a device type (for example, 3330), or a unit address (for
example, 131). SYSUT=SYSDA is the default.

ULABEL = {PURGEINOPURGE}
specifies whether SADMP deletes (PURGE) or retains (NOPURGE) existing user
labels on a DASO residence volume. When you specify NOPURGE, the SADMP
program is written on cylinder 0 track 0 of the residence volume, immediately
following all user labels. If the user labels occupy so much space that the
SADMP program does not fit on track 0, the initialization program issues an
error message and terminates. ULABEL = NOPURGE is the default.

ADDR = {REALIVIRTUAL}
specifies the default action that SADMP takes if the console is unavailable or if
you specify end of block to a prompting message for the type of dump desired.
REAL specifies that central storage (from 0 to 2048 megabytes) is dumped in
ascending order by real addresses. VIRTUAL specifies that central storage
(from 0 to 2048 megabytes) is dumped in ascending order by virtual addresses
using the segment table of the address space in control when the IPLed
processor was stopped or if no STORE STATUS was done, the master address
space. The default is REAL.

Note that the ADDR keyword is valid for low-speed SADMP only.

Chapter 3. SADMP program 3-9

LOADPT= {loadpt1!'1000'}
specifies the real address where SADMP loads the low-speed version of the
dump program. The address 'loadpt' must be a hexadecimal number larger
than X' FFF' and smaller, by at least X' 4000', than the highest real address in
the configuration. The load point is rounded down to a page boundary. The
SADMP central storage dump program requires four page frames of contiguous
central storage. With the default LOAD PT of X' 1000', the dump program will
use X ' 1000 ' - X '4FFF ' .

An alternate SADMP version can be created so that the dump program can be
IPLed even if there is bad or offline storage at locations X' 1000' - X' 4FFF'. The
LOADPT can be set equal to one megabyte (X'100000') less than the address at
the top of on-line central storage.

MSG= {ACTIONIALL}
specifies the type of SADMP messages that appear on the console. When you
specify ACTION, SADMP writes only messages that require operator action.
When you specify ALL, SADMP writes all messages. ALL is the default.

~-------- End of GENERAL-USE PROGRAMMING INTERFACE --------~

Two-Stage Generation:

Assembling the Macro Instruction

3-10 Service Aids

Figure 3-3 and Figure 3-4 are examples of the JCL statements needed to assemble
the AMDSADMP macro. Figure 3-3 is a sample for installations using a release
prior to MVS/SP 3.1.3; Figure 3-4 on page 3-11 is for installations using MVS/SP
3,1.3. In both examples, the stage two JCL is placed in the SYSPUNCH data set.

//ASSEMSAD
//ASM
//SYSLIB
//SYSUTl
//SYSPRINT
//SYSPUNCH
//SYSIN

/*

JOB
EXEC
DD
DD
DD
DD
DD

MSGLEVEL=(l,1)
PGM=IEV90,PARM='DECK'
DSN=SYSl.MACLIB,DISP=SHR
UNIT=SYSDA,SPACE=(1700,(400,50))
SYSOUT=A
SYSOUT=B
*

AMDSADMP TYPE=HI
END

Figure 3-3. Sample JCL to Assemble AMDSADMP Macro (For releases of MVSISP Version
3 prior to MVSISP 3.1 .3)

llASSEMSAD
llASM
I ISYSLIB
II
llSYSUTl
I ISYSPRINT
llSYSPUNCH
llSYSIN

I*

JOB
EXEC
DD
DD
DD
DD
DD
DD
AMDSADMP
END

MSGLEVEL=(l,l)
PGM=IEV90,PARM='DECK'
DSN=SYSl.MACLIB,DISP=SHR
DSN=SYSl.MODGEN,DISP=SHR
UNIT=SYSDA,SPACE=(l700,(400,50))
SYSOUT=A
SYSOUT=B
*
TYPE=HI

Figure 3-4. Sample JCL to Assemble AMDSADMP Macro (MVSISP 3.1.3)

The SYSLIB data set must contain the AMDSADMP macro.

To direct the punched output to tape, use ,the following SYSPUNCH DD statement:

llSYSPUNCH DD UNIT=tape,LABEL=(,NL),DISP=(NEW,KEEP),
II VOL=SER=SCRTCH

To direct the punched output to a new direct access data set, use the following
SYSPUNCH DD statement:

llSYSPUNCH DD UNIT=dasd,SPACE=(80,(30,10)),DSN=dsname,
II DISP=(NEW,KEEP),VOL=SER=volser

Chapter 3. SADMP program 3-11

Assembling Multiple Versions of AMDSADMP

3-12 Service Aids

You can assemble multiple versions of AMDSADMP at the same time, provided that
each version specifies a different residence volume. Differentiate between versions
by coding a unique symbol at the beginning of each macro instruction. AMDSADMP
uses the symbol you indicate to create unique stage-two job names. The output
from a multiple assembly is a single listing and a single object deck, which may be
broken into separate jobs if desired.Figure 3-5 and Figure 3-6 show sample JCL for
coding multiple versions of AMDSADMP. Figure 3-5 is a sample for installations
using releases prior to MVS/SP 3.1.3; Figure 3-6 is for installations using MVS/SP
3.1.3.

llMULTISAD JOB MSGLEVEL=(l,1)
llASM EXEC PGM=IEV90,PARM='DECK'
llSYSLIB DD DSN=SYSl.MACLIB,DISP=SHR
llSYSUTl DD UNIT=SYSDA,SPACE=(1700,(400,50))
llSYSPRINT DD SYSOUT=A
llSYSPUNCH DD SYSOUT=B
llSYSIN DD *
HITAPE AMDSADMP IPL=T3400,VOLSER=SADMP1
HIDASDl AMDSADMP VOLSER=SADMP2,MINASID=PHYSIN
HIDASD2 AMDSADMP VOLSER=SADMP3,LOADPT=X'10000000'
LOTAPE AMDSADMP TYPE=LO,OUTPUT=T282,VOLSER=SADMP4
LOPRINTER AMDSADMP TYPE=LO,VOLSER=SADMP5

END
I*

Figure 3-5. Sample JCL for Assembling Multiple Versions of AMDSADMP Macro (For
releases of MVSISP Version 3 prior to MVSISP 3.1.3)

llMULTISAD JOB MSGLEVEL=(l,1)
llASM EXEC PGM=IEV90,PARM='DECK'
llSYSLIB DD DSN=SYSl.MACLIB,DISP=SHR
II DD DSN=SYSl.MODGEN,DISP=SHR
llSYSUTl DD UNIT=SYSDA,SPACE=(1700,{400,50))
llSYSPRINT DD SYSOUT=A
llSYSPUNCH DD SYSOUT=B
llSYSIN DD *
HITAPE AMDSADMP IPL=T3400,VOLSER=SADMP1
HIDASDl AMDSADMP VOLSER=SADMP2,MINASID=PHYSIN
HIDASD2 AMDSADMP VOLSER=SADMP3,LOADPT=X'10000000'
LOTAPE AMDSADMP TYPE=LO,OUTPUT=T282,VOLSER=SADMP4
LOPRINTER AMDSADMP TYPE=LO,VOLSER=SADMP5

END
I*

Figure 3-6. Sample JCL for Assembling Multiple Versions of AMDSADMP Macro (MVS/SP
3.1.3)

(

\

Message Output from AMDSADMP
The output listing might contain error messages, which describe errors that you may
have made in specifying the AMDSADMP macro instruction. To respond to one of
these messages, check your specification of the macro instruction and run the
assembly step again.

Note: Words shown here that begin with & are replaced in the error messages with
the keyword values in error.

CONSOLE PARM NOT DETECTED. DEFAULT (81F, 3278) WILL BE USED.

Explanation: Either the console parameter was not specified or it was not
specified correctly on the continuation statement. The parameter was probably
not continued correctly on the next defined statement. Continue the interrupted
parameter or field beginning in any column from 4 through 16.

(See JCL Reference. Read the topic covering 'Continued Statements'.)

Severity Code: 4.

IPLUNIT WAS NOT SPECIFIED OR IPL= TYPE (D OR T) WAS SPECIFIED
INCORRECTLY. UNIT WILL BE DEFAULTED TO SYSDA.

Explanation: The IPL parameter should be specified as IPL=duuu, where'd' is
for D for direct access or T for tape, and 'uuu' is a valid unit type or address
for the SADMP IPL volume as described by the UNIT= uuu JCL parameter.

Severity Code: O.

IPL=&IPL IS INVALID. FIRST CHARACTER MUST BED ORT,
AND HAS BEEN REPLACED WITH A D.

Explanation: The IPL operand is invalid. It is not prefixed with a 'D' or a 'T'.

Severity Code: 4.

IPL=&IPL IS TOO LONG. THE UNIT NAME WILL BE TRUNCATED.

Explanation: The unit name can be at most 8 characters long.

Severity Code: 4.

Chapter 3. SADMP program 3-13

3-14 Service Aids

CONSOLE ADDRESS &CONAD IS INVALID. IT MUST BE A DEVICE
NUMBER. 01F IS SUBSTITUTED.

Explanation: The console address operand is not three hexadecimal digits.

Severity Code: 4.

CONSOLE TYPE &CONTP IS INVALID. IT MUST BE A 4 DIGIT
NUMBER. 3278 HAS BEEN USED.

Explanation: An invalid console type was specified. Only 3277, 3278, and 3279
are acceptable. The length of the console type was not equal to 4.

Severity Code: 4.

TYPE=&TYPE IS INVALID. IT MUST BE EITHER UNFORMATTED OR
FORMATTED. TYPE=UNFORMATTED HAS BEEN USED.

Explanation: Type operand must be HI, LO, UNFORMATTED, or FORMATTED.

Severity Code: 4.

TYPE=&TYPE CAN ONLY BE RESIDENT ON A DASO. A DASO
RESIDENCE VOLUME HAS BEEN USED.

Explanation: TYPE= LO and TYPE= FOR MA TIED can only be resident on a
direct access device.

Severity Code: 8.

OUTPUT=&OUTPUT IS INVALID. IT MUST BE A T OR P FOLLOWED BY
A DEVICE NUMBER. OUTPUT=P00E HAS BEEN USED.

Explanation: For TYPE= LO the output address was not prefixed with a 'T' or 'P'
or the address was not a 3-character address.

Severity Code: 4.

(

\

OUTPUT=&OUTPUT IS INVALID. IT MUST BE A T FOLLOWED BY
A DEVICE NUMBER. OUTPUT=T282 HAS BEEN USED.

Explanation: For TYPE= HI the output address was not prefixed by a 'T' or the
address was not a 3-character address.

Severity Code: 4.

ULABEL=NOPURGE IS NOT POSSIBLE FOR A TAPE RESIDENCE VOLUME.

Explanation: The ULABEL cannot be NOPURGE when the IPL device is tape.
SADMP ignores your ULABEL specification.

Severity Code: 8.

ADDR=&ADDR IS INVALID. ADDR=REAL HAS BEEN USED.

Explanation: The ADDR operand is not REAL or VIRTUAL.

Severity Code: 4.

MSG=&MSG IS INVALID. IT MUST BE ALL OR ACTION.
MSG=ALL HAS BEEN USED.

Explanation: The MSG operand is not ALL or ACTION.

Severity Code: 4.

LOADPT=&VALUE IS INVALID. X'1000' HAS BEEN USED.

Explanation: The LOADPT operand must be a hexadecimal number from X' 1000'
to X' 7FFFFFFF'.

Severity Code: 4.

Chapter 3. SADMP program 3-15

Initializing the Residence Volume
You must make sure that the SADMP residence device does not contain a
SYS1.PAGEDUMP data set if you are generating a direct access resident dump
program. When SADMP finds a SYS1.PAGEDUMP data set on the direct access
device to be initialized as the residence volume, initialization terminates.

Execution of the stage-two JCL initializes the SADMP residence volume. The
execution of this stage creates a SYS1 .PAGEDUMP data set (on the residence
volume) that contains the SADMP programs.

Physical output from the assembly part of the initialization step is a listing for the
SADMP central storage dump program, AMDSARDM. The remainder of the output
consists of messages from the SADMP build module AMDSABLD and, when the
residence volume is direct access, the device utility ICKDSF.

One-Step Generation

3-16 Service Aids

The SADMP utility program, AMDSAOSG, initializes a SADMP residence volume in
one job step by dynamically allocating data sets and invoking the appropriate
programs. To run the one-step generation program, indicate one AMDSADMP
macro as a control statement for ddname GENPARMS, just as you would do on the
SYSIN statement in the first stage of a two-stage generation. Figure 3-7 is a sample
job to generate SADMP in one job step:

//SADMPGEN JOB MSGLEVEL=(l,1)
//OSG EXEC PGM=AMDSAOSG
//GENPARMS DD *

/*

AMDSADMP TYPE=HI,IPL=DSYSDA,VOLSER=SPOOL2,
CONSOLE=(1A0,3277)

END

Figure 3-7. Sample JCL for One-Step Generation of SADMP

x

The output from AMDSAOSG is the same as the output from the residence volume
initialization stage of two-stage generation, followed by a message from
AMDSAOSG. AMDSAOSG returns the following codes:

Code Message

0 RESIDENCE VOLUME INITIALIZED

4 RESIDENCE VOLUME NOT INITIALIZED DUE TO ERROR, OR A WARNING
WAS ISSUED DURING AMDSADMP ASSEMBLY

8 RESIDENCE VOLUME NOT INITIALIZED; GENPRINT COULD NOT BE
OPENED

AMDSAOSG allocates several ddnames for its own use and for use by the programs
it calls. You can override these allocations by specifying DD statements in the
AMDSAOSG job step. For example, when you want to:

1. use a local modification of the AMDSABLD program in the cataloged load
library SADMP.LOAD; and

2. use a local modification of the AMDSADM2 macro in the cataloged macro
library SADMP.MACLIB; and

3. preserve the output listing in the cataloged data set SADMP.LIST

you would code the JCL shown in Figure 3-8.

//SADMPGEN JOB MSGLEVEL=(l,1)
//OSG EXEC PGM=AMDSAOSG
/ISTEPLIB DD DSN=SADMP.LOAD,DISP=SHR
llSYSLIB DD DSN=SADMP.MACLIB,DISP=SHR
II DD DSN=SYSl.MACLIB,DISP=SHR
llGENPRINT DD DSN=SADMP.LIST,DISP=OLD
l/GENPARMS DD *

I*

AMDSADMP TYPE=HI,IPL=DSYSDA,VOLSER=SPOOL2,
CONSOLE=(lAG,3277)

END

Figure 3-8. One-Step Generation With Overriding ddnames

x

Chapter 3. SADMP program 3-17

Figure 3-9.

ddname

GEN PARMS

GEN PRINT

IPLDEV

IPL TEXT

PGETEXT

STEPLIB

SYSIN

SYSLIB

SYSPRINT

SYSPUNCH

SYSTERM

SYSUT1

TRKOTEXT

Figure 3-9 (which has related notes that follow it) shows the ddnames AMDSAOSG
uses, and the defaults for the ddnames.

ddnames and Defaults Used by AMDSAOSG

Default Value Use

Must be preallocated. Input for AMDSAOSG, passed to
assembler.

SYSOUT=A Output listing from AMDSAOSG.

DSN = SYS1 .PAGEDUMP,UNIT= iplunit, SADMP program, output from AMDSABLD.
VOL=(PRIVATE,SER=iplser), ICKDSF uses VOL keywords to describe

the residence volume.

DISP =OLD.DCB= (BLKSIZE = 12288,RECFM = U, Tape IPL volume.
DSORG =PS), LABEL= (,NL)

DISP= (NEW,KEEP),DCB = (LRECL = 4096,BLKSIZE = 4096, DASO IPL volume.
RECFM = F,DSORG = PS),SPACE = (4096,(58),CONTIG),
LABEL= EX PDT= 99366

DSN = SYS1 .LINKLIB(AMDSAIPL),DISP = SHR Input for AMDSABLD.

DSN = SYS1 .LINKLIB(AMDSAPGE),DISP = SHR Input for AMDSABLD.

None AMDSAOSG, H assembler IEV90,
AMDSABLD and ICKDSF programs. This
must be an APF-authorized library.

Must not be preallocated. Input for assembler and ICKSDF.

DSN=SYS1.MACLIB,DISP=SHR AMDSADMP and AMDSADM2 macros.
DSN=SYS1.MODGEN,DISP=SHR

Must not be preallocated Temporary listings from called programs.

DSN = &OBJ,UNIT= SYSDA,SPACE= (80,(250,50)) Object module passed from assembler to
AMDSABLD.

None Assembly messages.

UNIT= SYSDA,SPACE = (1700,(50,50)) Work file for assembler.

DSN= &TRKOTEXT,UNIT= iplunit, Cylinder 0, Track O IPL text from
VOL= SER= iplser ,SPACE= (4096, (2, 1)) AMDSABLD to ICKDSF.

Notes:

1. To ensure that SADMP is available and successfully processes, the
SYS1 .PAGEDUMP data set should not be deleted or moved to another volume or
pack.

2. You must specify the GENPARMS ddname on the job step.

3. You may not specify the SYSPRINT and SYSIN DD statements in the job step.

4. In GENPARMS, you specify values for UNIT= and VOLSER= on the
AMDSADMP macro statement.

3-18 Service Aids

Using One 0 Step Generation
You must make sure that the SADMP residence device does not contain a
SYS1 .PAGEDUMP data set if you are generating a direct access resident dump
program. When SADMP finds a data set on the device to be initialized as the
residence device, initialization terminates.

Execution of AMDSAOSG initializes the SADMP residence volume. The execution of
the SADMP utility program creates a SYS1 .PAGEDUMP data set (on the residence
volume); this data set contains the SADMP program.

Physical output from the assembly part of the initialization step is a listing for the
SADMP central storage dump program AMDSARDM. The remainder of the output
consists of messages from SADMP build modules AMDSAOSG and AMDSABLD, and
when the residence volume is direct access, the device utility ICKDSF.

Dumping Additional Storage
You can request that SADMP dump additional storage by specifying dump tailoring
options, either when the SADMP residence volume is initialized, or at execution
time. For instance, you may want to request more storage to retrieve information
from a user address space.

Requesting Additional Storage During SADMP Generation
Indicate the dump tailoring options described in "Dump Tailoring Options" on
page 3-20 within parentheses and single quotes as the value of the DUMP keyword
on the AMDSADMP macro.

Examples:

DUMP=(I SP(5,37 ,18) IN ASID('JES3') I)
DUMP=('RANGE(O:lOOOOOO) IN ASID(l)')
DUMP=('DATASPACES OF ASID('RASP') ')

Note: Do not double the quotes within the DUMP options. The DUMP options may
not exceed 255 characters in length.

Requesting Additional Storage During SADMP Execution
By coding the PROMPT keyword on the AMDSADMP macro, you can have SADMP
prompt the operator to dump additional storage during execution. When you code
PROMPT= YES, and the virtual storage dump program gets control, it issues the
following message:

AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.

The operator responds with one of the following:

1. DUMP followed by dump options. In this case, the '=' after DUMP is optional.

2. SET followed by the MINASID options.

3. LIST. On the console, SADMP displays the current virtual storage areas to be
dumped.

4. END. SADMP stops prompting the operator for options and begins processing.

When SADMP detects an error in the dumping command, it repeats the incorrect
line at the console, underscores the invalid part with '*'s, and prompts the operator

Chapter 3. SADMP program 3-19

for replacement text. When the dump command input is longer than 255 characters,
SADMP marks the whole line in error.

A system restart during the virtual storage dump program causes SADMP to
reprompt the operator for dump options. SADMP does not use any of the dump
options that the operator specified before the system restart.

Figure 3-10 shows a sample exchange between SADMP and the operator. The
operator's replies are in lowercase.

AMD0821 WARNING: THE MINASID SPECIFICATION HAS BEEN SET TO 'PHYSIN'.
AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.

dump sp(0::9) inasid('jes2'}
AMD0601 ERROR IN INPUT TEXT INDICATED BY '*'·
DUMP SP(0::9) INASID('JES2')

*
AMD065A ENTER TEXT TO BE SUBSTITUTED FOR THE TEXT IN ERROR.

>
AMD0601 ERROR IN INPUT TEXT INDICATED BY'*':
DUMP SP(0:9) INASID('JES2')

AMD065A ENTER TEXT TO BE SUBSTITUTED FOR THE TEXT IN ERROR.
> in asid
AMD0821 WARNING: THE MINASID SPECIFICATION HAS BEEN SET TO 'PHYSIN'.
AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.
>list
AMD0671 CURRENT DUMP OPTIONS:

CSA ALSO LSQA, SP(203:205,213:215,229:230,236:237,247:248) IN ASID(PHYSIN)
ALSO SP(0:9) IN ASID('JES2')

AMD0821 WARNING: THE MINASID SPECIFICATION HAS BEEN SET TO 'PHYSIN'.
AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.
> end
AMD0101 PROCESSING ASID=0001 ASCB=00FDAF00 JOBNAME=*MASTER*

Figure 3-10. Sample Exchange Between SADMP and the Operator

Dump Tailoring Options

3-20 Service Aids

You request additional storage that you want dumped by specifying address ranges,
subpools, or LSQA in a list of address spaces when you reply to the message:

AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'. (as in Figure 3-10)

RANGE(qualifier) IN ASID(qualifier)
SP(qualifier)
LSQA
{DATASPACESIDSP} OF ASID(qualifier)
{PAGETABLES OF DATASPACES}

The above example specifies one or more ranges of storage addresses, subpools,
or LSQA that you want dumped from particular address spaces that you specify as
ASIDs, jobnames, or TCB system keys. The example also requests dumping of user
data spaces owned by specific address spaces and RSM data spaces. You can
extend this syntax by combining parts into lists. See "SADMP DUMP Command
Syntax" on page 3-23.

RANGE Option

SP Option

ASID Option

When you specify RANGE, SADMP dumps all pages within the address range that
you specify. You can specify RANGE as any of the following:

RANGE(xxx:yyy,xxx:yyy ...)
specifies one or more ranges of storage that you want dumped. xxx and yyy are
hexadecimal addresses from Oto X' 7FFFFFFF'

RANGE(ALL)
specifies dumping of all storage from o to X'7FFFFFFF'

When you specify SP, SADMP dumps only the storage allocated to the subpools that
you specify. You can specify SP as any of the following:

SP(ddd)
causes SADMP to dump subpool ddd. ddd is a decimal integer from 0 to 255.

SP(ddd:eee)
causes SADMP to dump all subpools from ddd to eee, inclusive.

SP(ddd:eee,ddd:eee, ...)
causes SADMP to dump the combination of subpools that you specify.

SP(ALL)
causes SADMP to dump all subpools, from 0 to 255 inclusive.

LSQA
causes SADMP to dump the LSQA.

You can specify ASID as any of the following:

ASID(xxx:yyy)
causes SADMP to dump storage for the range of address spaces whose address
space identifiers begin at xxx and end at yyy, inclusive. xxx and yyy are
hexadecimal numbers from X' 1' to X' FFFF'.

ASID('jjj')
causes SADMP to dump storage for the address space that jobname jjj
identifies. Note that you must enclose the jobname in single quotes.

ASID(SYSKEY)
causes SADMP to dump storage for all address spaces whose active TCB has
an associated storage key of 0 to 7.

ASID(combinatlon)
You may combine any of the above specifications. An example of a valid
combination is ASID(2, 'IMSJOB' ,SYS KEY).

ASID(PHYSIN)
causes SADMP to dump storage for physically swapped-in address spaces.

ASID(ALL)
causes SAD MP to dump storage for all address spaces. Note that you cannot
specify ASID(ALL) in combination with any of the other ASID specifications.

Chapter 3. SADMP program 3-21

DATASPACES Option
DATASPACES OF ASID(qualifier)

When you specify the DATASPACES OF ASID(qual ifier) keyword, SADMP dumps
all data spaces owned by the specified address space. For each requested data
space, SADMP:

• Dumps pages backed by central storage during the central storage dump.

• Copies into central storage and dumps every page that is not a first
reference page and not backed by central storage

PAGETABLES OF DATASPACES
When you specify the PAGETABLES OF DATASPACES keyword, SADMP dumps
paged-out virtual storage that contains the page tables for all data spaces.

When SADMP dumps the storage that you specify, SADMP dumps all listed subpools
and address ranges in all specified address spaces for each specification of dump
options. However, SADMP does not merge your specifications across the dump
options that you specify. For example,

DUMP SP(0,1) IN ASID(A,B)

causes SADMP to dump subpools 0 and 1 in address space A, and subpools O and 1
in address space B.

DUMP SP(0) IN ASID(A) ALSO SP(l) IN ASID(B)

causes SADMP to dump subpool 0 in address space A and subpool 1 in address
space B.

Specifying The Minimal SADMP
You can request SADMP to dump certain system related storage ranges in all
address spaces that are physically swapped-in at the time the dump is taken.

Requesting The Minimal Dump Option

3-22 Service Aids

Use the MINAS ID keyword on the AMDSADMP macro to specify the minimal dump
option. If MINAS ID is not specified on the AMDSADMP macro invocation, the default
of MINASID=ALL is assumed. You can also use the new command SET MINAS ID in the
SADMP dialogue if you requested prompting on the AMDSADMP macro invocation.

If you specify MINASID=ALL on the AMDSADMP macro invocation, or MINAS ID is
omitted, or if you enter SET MINASID(ALL) in the SADMP dialogue, the minimal dump
will include:

DUMP CSA ALSO LSQA, SP(203:205,213:215,229:230,236:237,247:248) IN ASID(ALL)

If you specify MINASID=PHYSIN on the AMDSADMP macro invocation, or if you enter
SET MINASID(PHYSIN) in the SADMP dialogue, the minimal dump will include:

DUMP CSA ALSO LSQA, SP(203:205,213:215,229:230,236:237,247:248) IN ASID(PHYSIN)

AMDSADMP TYPE=HI,IPL=SYSDA,VOLSER=VSSA02,MINASID=PHYSIN

Figure 3-11. Requesting The Minimal Dump Option During SADMP Generation

AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.
>set minasid{physin)

Figure 3-12. Requesting The Minimal Dump Option During SADMP Execution

SADMP DUMP Command Syntax
dump-command :: = DUMP [=] dump-spec-list

:: = SET MINASID(ALL I PHYSIN)
::=LIST
::=END

dump-spec-list :: = range-spec-list IN domain-spec-list [ALSO ...]
:: = {DATASPACES I DSP} OF domain-spec-list[, ...]
::= PAGETABLES OF DATASPACES
:: = (dump-spec-list)

range-spec-list :: = {SP(subpool-list)IRANGE(address-range-list)ILSQA}[, ...]
:: = (range-spec-list)

subpool-list :: = subpool-number TO subpool-number [, ...]
::=ALL

address-range-list :: = address TO address [, ...]
::=ALL

domain-spec-list :: = ASID(address-space-list)[, ...]
:: = (domain-spec-list)

address-space-list :: = {asid TO asidljobnamelSYSKEYIPHYSIN}[, ...]
::=ALL

where

• address is a hexadecimal number from 0 to X'7FFFFFFF'
• subpool-number is a decimal number from 0 to 255
• asld is a hexadecimal number from 0 to X' FFFF'
• jobname is a valid jobname enclosed in single quotes
• range-spec-llst is a list of subpools, a list of storage ranges, or both
• domain-spec-list is a list of address spaces
• 'TO' and':' are synonyms
• 'DATASPACES' and 'DSP' are synonyms

You may truncate keywords, such as DATASPACES, on the right, provided the
truncated form is unambiguous. You may enter letters either in lower or upper
case. You may insert blanks between numbers, keywords, and separators; you may
not insert blanks within numbers or keywords.

The following are examples of valid specifications:

DUMP SP(0:7,15),RANGE(0:1eeeeeee) IN ASID(SYSKEY),ASID(8)
DU (SP(0 TO 7 OR 15),SP(255)) IN AS('TCAM')
DUMP RANGE(ALL) IN ASID(l) ALSO SP(0) IN ASID(SYSKEY,8)
DU DAT OF AS(ALL)
DUMP (SP(0:127) IN ASID('GENER') ALSO SP(0) IN ASID('IMS'))
DUMP LSQA IN AS('MYJOB',14)
DU SP(128),LS IN ASID(C,PHYSIN)

Chapter 3. SADMP program 3-23

Executing SADMP

3-24 Service Aids

This section describes four procedures for executing SADMP:

• Initialization and execution
• Restart
• Reinitialization
• Dumping

Procedure A: IPLing and Executing SADMP: Use procedure A to IPL the SADMP
program and dump storage. If you want to rerun SADMP, for instance when SADMP
fails, use procedure B, procedure C, or procedure D.

Procedure B: Restarting SADMP: When you want to rerun SADMP, use procedure B
(restart) before you try procedure C (re-IPL that dumps MYS) or procedure D (new
IPL that dumps SADMP). Procedures C and D can result in the loss of some central
storage from the output, whereas procedure B usually does not.

However, a system restart cannot always work, either because it occurs at a point
when SADMP internal resources are unserialized, or because SADMP has been too
heavily damaged to function. If the restart does not work, try procedure C (re-IPL).

If SADMP terminates abnormally while dumping central storage (before message
AMD0051 appears), try to restart SADMP by performing procedure B. If the restart
succeeds, SADMP reruns the entire dump. It will first enter wait state X'140000' to
allow you to specify a new console and output tape. You can do this to recover from
a terminating 1/0 error on the output tape.

Messages AMD0051 and AMD0101 indicate that SADMP is beginning to dump virtual
storage. If you cause a system restart at this time, SADMP redumps only the
paged-out virtual storage. Do not issue a system restart if the previous output tape
has been rewound and has not been replaced with a new one.

The maximum number of times that you can restart the virtual storage dump
program is two.

Procedure C: RelPLing SADMP: When you re-IPL SADMP, the previous execution
of SADMP has already overlaid some parts of central storage and modified the page
frame table.

If the virtual storage dump program was in control, a re-IPL may not dump
paged-out virtual storage. The number of times that you can IPL SADMP to dump
paged-out virtual storage is equal to the number of processors present.

Procedure D: Dumping SADMP: Use a new IPL of SADMP to debug SADMP if
SADMP fails. The self-durnps and system restart are two features of SADMP error
recovery. When errors occur during virtual storage dump execution, SADMP can
take a maximum of two self-dumps. You can use these to diagnose SADMP
processing errors. The SADMP system restart capability also assists you in testing
and debugging SADMP.

Self-Dumps: During virtual storage dump execution, when SADMP error recovery
detects errors in SADMP, SADMP may take a self-dump before proceeding. At
most, SADMP takes two self-dumps; on the third request for a self-dump, module
AMDSAAUD terminates SADMP processing. SADMP places both the self-dump and
the operating system dump onto the output tape.

You can use the LIST subcommand of IPCS to print SADMP self-dumps. The format
of the subcommand is:

LIST address COMPDATA(AMDSAeex) where x = 1 or 2

For complete information on using the LIST subcommand of IPCS, see /PCS
Command Reference.

System Restart: SADMP has a built-in system restart capability that assists you in
testing and debugging SADMP. By causing a system restart, you can reinitialize
and restart a failing SADMP program. For a virtual storage dump program, you can
restart SADMP at most twice.

Procedure A: IPLing and Executing SADMP
1. Use the global STOP function to STOP all processors. Do not clear storage.

2. Select a processor that was on-line when you stopped the system.

3. If the processor provides a function to IPL a stand-alone dump without
performing a manual STORE STATUS, use this function to IPL SADMP. If you do
not use such a function, perform a STORE STATUS before IPLing stand-alone
dump.

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~

Do not use the LOAD CLEAR option. If the LOAD CLEAR option is used, main
storage is erased and the dump data set will contain invalid information.

4. Mount the volume that contains the stand-alone dump program on a device
attached to the selected processor; ready the device.

Note: If this is a tape volume, make sure that the file-protect ring is in place. If
it is a disk volume, make sure it is write-enabled.

5. IPL SADMP.

SADMP does not communicate with the operator console. Instead, SADMP
loads an enabled wait PSW with wait reason code X' 140000'.

Note: SADMP is waiting for a console 1/0 interrupt or an external interrupt.

6. Identify the console and output device. Select one operator console whose
device address is in the console list that you specified at SADMP generation
time. Cause that console to generate an interruption. Depending on the type of
console, pressing one or more of the following keys will generate the required
interrupt: ATTENTION, CLEAR, ENTER, or SYSTEM REQUEST. (On some
consoles, you might have to press RESET first.) This interruption informs
SADMP of the console's address, and SADMP responds with message
AMD001A.

a. Ready an output device. For tapes, make sure that the tape is initialized
with a tape mark and the file protect ring is inserted. Reply with the
three-digit address of the device. If the device is the default that you
specified at SADMP generation time, then press ENTER instead of providing
the three-digit device address.

Note: If you reply with the address of an attached device that is not the
required device type, or if the device causes certain types of 1/0 errors,

Chapter 3. SADMP program 3-25

3-26 Service Aids

SADMP might load a disabled wait PSW with wait reason code X' 150900'.
When this occurs, use procedure B to restart SADMP.

b. SADMP prompts you, with message AMD045A, to specify whether or not you
want to write over the existing label on a labeled tape.

c. SADMP prompts you, with message AMD011A, for a dump title.

d. For formatted dumps, SADMP issues message AMD008A. Respond with R
for real or V for virtual, followed by the address range that you want
dumped. Specify addresses that are eight hexadecimal digits in length.
When the output device is a tape, SADMP dumps storage for the address
range that you specify. When the output device is a printer, SADMP
reprompts the operator with message AMD008A.

7. When no console is available, you can run SADMP without a console by
entering a null response to AMD001A:

a. Determine the device address that you specified as the default output
address (in the OUTPUT parameter on the AMDSADMP macro) during
SADMP residence volume initialization. To execute SADMP, you must
define this address to the processor. Ready this device. For tapes, ensure
that the file protect ring is in.

b. Enter an external interruption on the processor that SADMP was IPLed from.
SADMP proceeds using the default output device. No messages appear on
any consoles; SADMP uses PSW wait reason codes to communicate to the
operator.

8. When TYPE= LO and the output device is a tape, SADMP loads a wait PSW with
wait reason code X'410000' after completing the dump. This PSW indicates
normal termination of SADMP.

9. When SADMP finishes dumping central storage, it issues message AMD0051.
SADMP may terminate at this step.

a. When message AMD0681 appears, followed by wait reason code X' 150200',
SADMP is unable to dump paged-out virtual storage, so SADMP unloads the
tape and stops processing. This is normal termination of SADMP when:

• The system being dumped was at an early stage of initialization, or
• The system being dumped was not MVS/ESA, or
• No STORE STATUS was performed.

b. Wait reason codes equal to X' 25xxxx' are normal when MVS/ESA was not
fully initialized. SADMP does not unload the output tape, but it has written
an end-of-file.

10. If you specified PROMPT on the AMDSADMP macro, SADMP prompts you for
additional storage that you want dumped by issuing message AMD059D.

11. SADMP dumps instruction trace data, paged-out virtual storage, and the SADMP
message log.

12. When SADMP completes processing, SADMP unloads the tape and enters a wait
reason code X '410000' .

!

\

Procedure B: Restarting SADMP
1. Enter a system restart on the processor that you IPLed SADMP from.

2. If the restart is successful, SADMP backs ~p to a certain point, and continues as
in procedure A. During the central storage dump, a system restart causes
SADMP to reenter wait reason code X' 140000'. During the virtual storage
dump, a system restart causes SADMP to repeat the virtual storage dump.

3. Continue procedure A. If you restarted SADMP during the central storage dump
program, continue procedure A at step 5. If you restarted SADMP during the
virtual storage dump program, continue procedure A at step 9.

Procedure C: RelPLing SADMP
1. Repeat procedure A, but do not issue a STORE STATUS. When you are IPLing

using a stand-alone dump hardware function, the STORE STATUS is omitted
from all IPLs of SADMP after the first IPL. If the previous IPL of SADMP did not
load a wait state and reason code of X'250000' or higher and the relPL
succeeds, SADMP usually completes processing as in procedure A. Some
storage locations might not reflect the original contents of central storage
because, during a previous IPL, SADMP overlaid the contents. These locations
include the absolute PSA and possibly other PSAs.

Procedure D: Dumping SADMP
When you use SADMP to dump itself, you specify either an unformatted (high-speed)
SADMP, or a formatted (formatted) SADMP to a printer.

1. Record all messages and wait state and reason codes from the failed SADMP.

2. Select a high-speed or a formatted dump.

For a high-speed dump, do the following:

a. Perform a STORE STATUS.

b. Do procedure A.

For a formatted dump, do the following:

a. (Optional) Instead of examining the printed dump in steps e and f that follow,
you can inspect central storage to determine which addresses to dump.

b. Perform a STORE STATUS.

c. Do procedure A.

d. Respond 'R,OOOOOOOO:OOOOOFFF' to message AMD008A. This dumps real
page 0.

e. Examine the printed output from step d. Respond 'R,aaaaaaaa:bbbbbbbb'
to message AMD008A, where aaaaaaaa is the contents of the fullword at
location X '208' and bbbbbbbb is the contents of the fullword at location
X' 20C'. This dumps the failed central storage dump program, if the central
storage dump program was in storage at the time of the failure.

f. Examine the printed output from step d. cccccccc is the contents of the
fullword at location X' 244'. If cccccccc equals X' 00000000', then do not
continue trying to dump SADMP. If cccccccc is non-zero, dddddddd equals
cccccccc plus X'80000'. Respond 'V,cccccccc:dddddddd' to message
AMD008A. This dumps the virtual storage dump program that failed.

3. Save the original SADMP output as well as the dump of SADMP.

Chapter 3. SADMP program 3-27

Messages and Operator Communications During Execution

3-28 Service Aids

After IPL, SADMP enters an enabled wait state and reason code of X' 140000' to wait
for operator communication. Select one of the consoles whose address you
specified on the CONSOLE= keyword, and press ENTER at that console. On some
consoles, you may have to press RESET before you press ENTER. If no console is
available, enter an external interruption. The dump program then bypasses
operator communication and attempts to dump storage to the unit that you specified
in the OUTPUT= keyword.

If the dump output is directed to tape, you receive this message:

I AMD001A ENTER ADDRESS OF OUTPUT TAPE.

After readying the tape that you want to use, enter the tape's three-character
hexadecimal address. When you press ENTER and do not enter an address, SADMP
uses the address that you specified on the OUTPUT= keyword.

SADMP looks at the tape label, if one is present, for indication of protection. If the:

• 'security' code, in the case of an 'IBM Standard Data Set Label 1', or the

• 'accessibility' code, in the case of an 'ANSI Standard Data Set Label 1',

indicates that the tape is 'protected' by either standard, then SADMP does not read
the tape.

If the tape is not protected, SADMP issues this message:

AMD045D TAPE LABEL=vvvvvv. REPLY 'USE' or 'UNLOAD'.

where vvvvvv is the volume serial number. Reply USE to write over the label and
use the tape. When you reply UNLOAD, SADMP unloads the tape and issues the
following message:

I AMD051A MOUNT ANOTHER TAPE.

Continue until a suitable tape is mounted.

If the dump output is directed to a printer, you receive this message:

I AMDee1A ENTER ADDRESS o~ PRINTER.

You can use the printer that you specified in the macro instruction, or you can
specify a different printer.

After you specify the output device, SADMP issues message AMD011A to prompt
you for a dump title.

AMD011A TITLE= J
You can specify a title of up to 100 characters. The dump title appears at the top of
each page of output that SADMP formats, or at the top of each page of unformatted
output after IPCS formats the output. You should select a title that explains why the
dump was taken.

For the formatted (formatted) dump program, SADMP prompts for a real or virtual
address range to dump after processing the dump title. SADMP issues the following
message:

I AMD008A ENTER ADDRESS RANGE. "R,NNNNNNNN:MMMMMMMM"

You must specify 'R' (real addresses) or 'V' (virtual addresses) followed by an
eight-digit hexadecimal starting address, ':', and an eight-digit hexadecimal ending
address. For example, 'R,000070000:00007FFFF' and 'V,OOC00000:01800000' are
valid specifications. Before dumping, SADMP rounds the starting address down to
the closest 4K boundary, and rounds the ending address up to the closest 4K
boundary.

When the formatted (formatted) dump output is directed to tape, SADMP dumps only
one storage range. When the formatted dump is directed to a printer, SADMP
reprompts the operator for address ranges.

When SADMP completes the dump of central storage, SADMP issues this message:

AMD005I DUMPING OF REAL STORAGE COMPLETED.

After completion of the central storage dump program, the high-speed dump
program starts to dump console trace data and paged-out virtual storage.

If you specified PROMPT on the AMDSADMP macro, SADMP prompts the operator
for additional virtual storage to dump by issuing the following message:

AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.
(as in Figure 3-10 on page 3-20)

See "Requesting Additional Storage During SADMP Generation" on page 3-19 for
the format and meaning of your reply to this message.

Chapter 3. SADMP program 3-29

3-30 Service Aids

When the console screen is full with messages, SADMP issues this message:

AMD029D REPLY W TO WAIT AFTER NEXT FULL SCREEN, ELSE
REPLY N; REPLY=

When you reply W, SADMP erases the screen and writes message AMD029D again
the next time the screen is full. When you reply N, SADMP erases the screen
whenever the screen is full, and does not issue message AMD029D again.

To terminate the virtual storage dump program before the dump would ordinarily
end, cause an external interruption on the processor that SADMP is executing on.

The following is a sample exchange between SADMP and the operator during
execution of an unformatted SADMP program. The operator's replies are in
lowercase.

AMD001A ENTER ADDRESS OF OUTPUT TAPE. 571
AMD011A TITLE= sample dump
AMD045D TAPE LABEL= T75638. REPLY 'USE' OR 'UNLOAD'. use
AMD005I DUMPING OF REAL STORAGE COMPLETED.
AMD082I WARNING: THE MINASID SPECIFICATION HAS BEEN SET TO 'PHYSIN'.
AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.
> set minasid(all)
AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.
>dump sp(all) in asid('jes2')
AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.

dump dataspaces of asid('dumpsrv')
AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.
> list
AMD067I CURRENT DUMP OPTIONS:

CSA ALSO LSQA, SP(203:205,213:215,229:230,236:237,247:248) IN ASID(ALL)
ALSO SP(ALL) IN ASID('JES2')
ALSO DATASPACES OF ASID('DUMPSRV')

AMD059D ENTER 'DUMP' OR 'SET' WITH OPTIONS, 'LIST' OR 'END'.
> end
AMD010I PROCESSING ASID=0001 ASCB=00FDAFOO JOBNAME=*MASTER*
AMD010I PROCESSING ASID=0002 ASCB=00F24400 JOBNAME=PCAUTH
AMD010I PROCESSING ASID=0003 ASCB=00F24180 JOBNAME=RASP
AMD010I PROCESSING ASID=0004 ASCB=00F0AE00 JOBNAME=TRACE
AMD010I PROCESSING ASID=0005 ASCB=00F0AC00 JOBNAME=GRS
AMD057I COMPLETED SPECIFIC DUMPING FOR GRS
AMD010I PROCESSING ASID=0006 ASCB=00F27E00 JOBNAME=DUMPSRV
AMD076I PROCESSING DATA SPACE SDUMPCSA, OWNED BY ASID 0006.
AMD010I PROCESSING ASID=0008 ASCB=00F40E00 JOBNAME=CONSOLE
AMD081I ASID 0009 NOT DUMPED, PHYSICALLY SWAPPED OUT (JOBNAME=INIT).
AMD010I PROCESSING ASID=000A ASCB=00F0AA00 JOBNAME=SMF
AMD081I ASID 000B NOT DUMPED, PHYSICALLY SWAPPED OUT (JOBNAME=INIT).
AMD081I ASID 000C NOT DUMPED, PHYSICALLY SWAPPED OUT (JOBNAME=INIT).
AMD029D REPLY W TO WAIT AFTER NEXT FULL SCREEN, ELSE REPLY N; REPLY= w

SADMP also communicates to the operator using wait state and reason codes. See
System Codes.

SADMP Messages on the 3480 Display
When stand-alone dump output is sent to a 3480 magnetic tape subsystem, SADMP
uses the subsystem's eight-character message display to inform and prompt the
operator. The leftmost position on the message display indicates a requested
operator action. The eighth position (rightmost) gives additional information.

The SADMP messages that can appear on the 3480 display are:

Dvolser
MSADMP#U

(alternating)

informs the operator that a labeled tape has been rejected and a new tape must
be mounted.

MSADMP#U (blinking)
requests that the operator mount a new tape.

RSADMP#U (blinking)
indicates that the SADMP program has finished writing to the tape.

RSADMP#
MSADMP#U

(alternating)

informs the operator that an end-of-reel condition has occurred and a new tape
must be mounted.

SAD MP# (blinking)
indicates that the tape is in use by SADMP.

SAD MP#
NTRDY

(alternating)

informs the operator that some type of intervention is required.

The symbols used in the messages are:

D

M

R

u

volser

is the actual number of reels SADMP has mounted. It is a decimal digit
starting at 1 and increasing by 1 after each end-of-reel condition. When
the# value exceeds 9, it is reset to 0.

means to demount the tape and retain it for further system use, for
example as a scratch tape. SADMP does not write on the tape.

means to mount a new tape.

means to demount the tape and retain it for future SADMP use.

means the new tape should not be file-protected.

is the volume serial number on the existing tape label.

Chapter 3. SADMP program 3-31

SADMP Output
The format of SADMP output depends on the version of the stand-alone program
that generated it.

Unformatted Output
Unformatted SADMP output must be displayed at a terminal or printed using IPCS.
For full information, refer to the /PCS User's Guide.

Use the SADMPMSG verb name of the IPCS VERBEXIT subcommand to format and
print the SADMP message log, or, using IPCS, view the message log on the screen.
See the /PCS User's Guide tor details.

Formatted Output
If you direct formatted dump output to a printer, you can immediately use the output
as a diagnostic aid. Figure 3-13 shows an example of SADMP formatted output
directed to a printer. The IEBPTPCH and IEBGENER utilities can be used to print
SADMP output. Figure 3-14 on page 3-34 shows how to use IEBPTPCH to print
SADMP output. For information on using IEBGENER, see the publication Utilities.

You can also use IEBPTPCH to display the contents of a SADMP output on tape. You
can code your JCL so that IEBPTPCH displays all or selected SADMP output
records, and displays each record totally or partially. Figure 3-15 on page 3-34
shows how to use IEBPTPCH to print portions of a SADMP output tape.

Copying SADMP Output

3-32 Service Aids

You can copy SADMP output from tape to a DASD data set. Figure 3-16 on
page 3-34 shows how to use IEBGENER to copy tape output to DASD. Two·
advantages from copying SADMP tape output to DASD are:

• When SADMP terminates prematurely and does not give the SADMP output
(SYSUT1) an end-of-file, the SYSUT2 data set does contain an end-of file.
(SYSUT2 is the data set to which SADMP output is copied.) This occurs even
when SYSUT2 is another tape. IEBGENER might end with an 1/0 error on
SYSUT1; this is normal termination if SYSUT1 does not contain an end-of-file.

• When SYSUT2 is a direct access data set and you use it as input for IPCS, this
saves IPCS processing time.

------->>> SAMPLE LOW SPEED (FORMATTED) SADMP OUTPUT
CURRENT PSW OOOC000080D1F1DO PREFIX OOD21000 CPU ID 0001

GR 0-7 FFFFFFFC 00000004 7FFEFOOO 7FFEFOOO 00010003 OOFF5768 OOAC5FF8 FDOOOOOO
AR 0-7 00000000 00000000 00000000 00010003 00000000 00000000 00000000 00000000
GR 8-F 00000000 01F01F88 01F01E20 01F02E1F 81F009F8 01F01E20 OOOOOOOD 00000000
AR 8-F 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
CR 0-7 5E81EE40 0051207F 002E3D40 8000000C OOOOOOOC OOC90300 FEOOOOOO 0051207F
CR 8-F 00000000 00000000 00000000 00000000 00052238 0051207F DF880C68 7FFE4080
FR 0-2 00000000 00000000 00000000 00000000
FR 4-6 00000000 00000000 00000000 00000000

STORAGE KEY OE
00000000 V 040COOOO 81116CA8 00000000 00000000 OOFD8460 00000000 070COOOO 80FE3076
00000020 V 071COOOO 80015C38 070D6000 81FOOE5E 00000000 00000000 070COOOO 811F350C
00000040 V 00000000 00000000 00000000 OOFD8460 00000000 00000000 040COOOO 8110ACD8
00000060 V 040COOOO 80FE2EOO OOOCOOOO 80D1F1DO 00080000 80D203A8 040COOOO 8101CFOO
00000080 V 00000000 00001004 00020072 00060028 7FFE4003 00000000 01FOOE5E 00000000
OOOOOOAO V 03000000 0101CE08 00000000 00000000 00000000 00000000 00010000 OOF69270
ooooooco v 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

PRINTING OF DUPLICATE LINES WAS SUPPKESS~D.

00000200 V D7E2Cl40 00010041 OOFOC008 OOCDE008 OOF28000 OOCFCOOO OOAEAA58 OOAEAA58
00000220 V OOF34200 OOF34200 00000000 00000000 00000000 00000000 00000000 00000072
00000240 V 00000000 00000000 00000000 01129E90 040COOOO OOFE4FOO 040COOOO 80039D5C
00000260 V AD070950 AD000950 AD040950 AD070950 AD070950 00000000 00000704 00000000
00000280 V OOFD8C78 00000000 OOFD8C80 00000000 00000000 00000000 00000000 00000000
000002AO V 00000000 00000000 OOFD8C88 00000000 OOFD8CCO 00000000 00000000 00000000
000002CO V 00000000 OOFD8CDO 00000000 00000000 OOFD8CC8 OOFD8CD8 OOFD8CEO 00000000
000002EO V 00000000 00000000 00000000 00000000 00000000 00000041 00000000 OOFEF880
00000300 V OOFC5098 00000000 5E810200 00040000 00000000 00000000 00000001 OOFFE07F
00000320 v 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

PRINTING OF DUPLICATE LINES WAS SUPPRESSED.
00000360 V 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOBOE OBOEOOOO
00000380 V OOOOOCOO OOOOOCOO OOF2E370 OOOOOCOO 01A81108 00000000 OOF2EC68 OOOOOCOO
000003AO V OOF2F560 OOOOOCOO OOF2FE58 OOF2F560 OOF30750 00000000 OlA81AOO 00000000
000003CO V 00000000 00000000 00000000 00000000 OlA80810 00000000 01AAFF18 00000000
000003EO V 00000000 00000000 00000000 00000000 80070000 581003FO OAODOOOO AD00027B
00000400 V 040CEOOO 80FE3F36 00000000 00000000 01AACFD8 01A94C90 040COOOO 80FF23DE
00000420 V 070COOOO 80FEDA62 00000000 00000000 00000000 00000000 00000000 00000000
00000440 v 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000460 V 00000000 00000000 070D6000 81FOOE5E 00000000 035E1AOO 00000000 00000000
00000480 v 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000004AO V 00000007 00000000 00000000 00000000 00000000 OOFFOlAO 00000000 00000000

Figure 3-13. Sample of a Formatted, or Low-Speed, Dump

* 11 .0. 11 .0 ,..,8 *
* *
* 0.8. O ... 0 .. A0.8.0 *
* *
; 1 II ••• ••••••••• I II

* II .H. t II. 0*
* *
* *

* A.%Y D-•... *
* * ... - .AO.; A ... *
* .•••..••.•••.. D- ..•.•••...•. A .. Q*
* Jl. K. Y •••• A ••• *
* 0.; *
* 6K. *
* *

*PSA 0 20 *
* .3 ... 3 *
* 1 •••••••• **
* *
* *
* H *
* H ••• Q •••••••• *
* O*
* ..)Q •.•• ;l. "*
* *

* *
* 2T. ..••..•...... 2 *
*. 25- 2 ... 25- .3•........ *
* *
* .•.....•.•....•.•••.••. o #*
* Q.Z< ..••.•••• *
* *
* *
* -.AO.; ; *
* *
* *

Chapter 3. SADMP program 3-33

3-34 Service Aids

//PRINTLO JOB MSGLEVEL=(l,l)
//LIST EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUTl DD UNIT=tape,VOL=SER=DUMPTP,LABEL=(,NL),
II DISP=SHR,DCB=(BLKSIZE=121,RECFM=FBS)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT PREFORM=A
/*

Figure 3-14. Sample JCL Used to Invoke IEBPTPCH to Print Formatted SADMP Output

//PRINTAPE JOB MSGLEVEL=(l,1)
//LISTl EXEC PGM=IEBPTPCH
//*
//* PRINT THE FIRST 10 RECORDS
//*
//SYSUTl DD DSN=SADMP.OUTPUT,VOL=SER=DUMPTP,LABEL=(,NL),
// DCB=(RECFM=FBS,LRECL=4160,BLKSIZE=29120),UNIT=tape,DISP=SHR
//SYSUT2 DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

PRINT STOPAFT=l0,TOTCONV=XE
/*
//LIST2 EXEC PGM=IEBPTPCH
//*
//*PRINT THE HEADERS FOR ALL BUT THE FIRST 10 RECORDS
//*
//SYSUTl DD DSN=SADMP.OUTPUT,VOL=SER=TAPENO,LABEL=(,NL),
// DCB=(RECFM=FBS,LRECL=4160,BLKSIZE=29120),UNIT=tape,DISP=SHR
//SYSUT2 DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/*

PRINT MAXFLDS=9,STRTAFT=10
RECORD FIELD=(8,l,XE,l)

Figure 3-15. Sample JCL Used to Invoke IEBPTPCH to Display Portions of a SADMP
Output Tape

//SADCOPY JOB MSGLEVEL=(l,1)
//COPY EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUTl DD DSN=SADUMP.TAPE,UNIT=tape,
II VOL=SER=SADOUT,LABEL=(,NL),DISP=SHR,
II DCB=(RECFM=FBS,LRECL=4160,BLKSIZE=29120,DEN=4)
jj* DEN=3 IS FOR 1600 BPI;DEN=4 IS FOR 6250 BPI
//SYSUT2 DD DSN=SADUMP.COPY,UNIT=dasd,
II VOL=SER=SADCPY,DISP=(NEW,CATLG),
II DCB=(RECFM=FBS,LRECL=4160,BLKSIZE=29120),
II SPACE=(4104,(8000,4000),RLSE)

Figure 3-16. Sample JCL Used to Invoke IEBGENER to Copy SADMP Output Tape to DASO

SADMP Examples
The following examples show how to code the AMDSADMP macro instruction to
create various kinds of stand-alone dump programs.

Example 1: Accepting All Defaults
This example shows the AMDSADMP macro instruction coded with no parameters
to generate an unformatted, direct access resident dump program.

I DUMPl AMDSADMP

This is equivalent to coding the following parameters:

TYPE=UNFORMATTED
IPL=DSYSDA
VOLSER=SADUMP
ULABEL=NOPURGE
CONSOLE=(01F,3278)
SYSUT=SYSDA
OUTPUT=T282
LOADPT=X'l000'
MSG=ALL
MINASID=ALL

Chapter 3. SADMP program 3-35

Example 2: Generating an Unformatted, Tape Resident Dump Program
In this example, the IPL= parameter specifies tape as the residence volume, and
the VOLSER = parameter identifies that tape. All other parameters are allowed to
default.

I AMDSADMP IPL=T3400-2,VOLSER=SATAPE

The implied defaults are:

TYPE=UNFORMATTED
CONSOLE=(OlF,3278)
SYSUT=SYSDA
OUTPUT=T282
LOADPT=X'1000'
MSG=ALL
MINASID=ALL

Example 3: Generating a Formatted Dump Program with Defaults
In this example the TYPE= parameter specifies a formatted dump. All other
parameters are allowed to default.

I AMDSADMP TYPE=LO

The implied defaults are:

IPL=DSYSDA
OUTPUT=P00E
VO LS ER=SADUMP
CONSOLE=(OlF,3278)
ULABEL=NOPURGE
SYSUT=SYSDA
ADDR=REAL
LOADPT=X'l000'

Example 4: Generating a Formatted Dump Program with Output Directed to
Tape

3-36 Service Aids

In this example, the TYPE= and OUTPUT= parameters specify a formatted dump
directed to tape. All other parameters are allowed to default.

I DUMP2 AMDSADMP TYPE=LO,OUTPUT=T571

The implied defaults are:

IPL=DSYSDA
VOLSER=SADUMP
CONSOLE=(OlF,3278)
ULABEL=NOPURGE
SYSUT=SYSDA
ADDR=REAL
LOADPT=X'1000'

Chapter 4. SPZAP

Introduction
SPZAP is a service aid program that operates as a problem program. Its purpose is
to allow you to dynamically update and maintain programs and data sets. With
SP ZAP, an authorized user can:

• Inspect and modify instructions and data in any load module that is a member of
a partitioned data set

• Inspect and modify data in a specific record in a direct access data set

• Dump an entire data set, a specific member of a partitioned data set, or any
portion of a data set residing on a direct access device

• Update the system status index (SSI) in the directory entry for any load module.

SPZAP cannot inspect, modify, or dump data in partitioned data sets extended
(PDSEs); PDSEs have a data structure that is different from that of partitioned data
sets (PDSs). For more information about PDSEs and their data structure, refer to
Managing Non-VSAM Data Sets.

Capabilities of SPZAP
The functions of SPZAP provide many capabilities. Three of these are described
below:

• Using the inspect and modify functions of SPZAP, you can fix programming
errors that require only the replacement of instructions in a load module without
recompiling the program.

• Using the modify function of SPZAP, you can set traps in a program by inserting
invalid instructions. The invalid instructions will force abnormal termination;
the dump of storage provided as a result of the abnormal termination is a
valuable diagnostic tool, because it shows the contents of storage at a
predictable point during execution.

• Using SPZAP to replace data directly on a direct access device, you can
reconstruct VTOCs or data records that may have been destroyed as the result
of an 110 error or a programming error.

Monitoring the Use of SPZAP
SPZAP allows its user to modify data on a direct access storage device. Misuse of
this program could result in serious damage to both user and system load modules
or data sets. To protect against such damage by SPZAP, an installation controls the
use of SPZAP. SPZAP is subject to an installation's security protection scheme,
except possibly for the VTOC. For the VTOC, the console operator must respond to
message AMA117D before a job can update a VTOC.

One means of protecting against unauthorized use of SPZAP is to store SPZAP in a
security protected private library. Only authorized users of that library would be
able to execute that private version of SPZAP. Note however, that the private

GC28-1844-2 ©Copyright IBM Corp. 1988, 1989 4-1

version of SPZAP must be linkedited into the authorized library with an
authorization code equal to one (AC= 1) if the private version will ever be used to
update a VTOC, or to zap a VSAM data set or catalog. 1\

Inspecting and Modifying Data
SPZAP can be used to inspect and modify data in either a specific record of a direct
access data set or a load module that is part of a partitioned data set.

The SPZAP modification function is controlled by the REP (replace) control
statement. The REP control control statement allows you to replace instructions or
data at a specific location in a load module or physical record.

The inspection function is controlled by the VERIFY statement. VERIFY allows you
to check the contents of a specific location in a load module or physical record prior
to replacing it. If the contents at the specified location do not agree with the
contents as specified in the VERIFY statement, subsequent REP operations are not
performed.

To avoid possible errors in replacing data, you should always precede any REP
operation with a VERIFY operation.

Inspecting and Modifying a Load Module
To inspect or modify data in a load module, you need a NAME control statement to
supply SPZAP with the member name of the load module. The load module must be
a member of the partitioned data set identified by the SYSLIB DD statement included
in the execution JCL.

If the load module being inspected or modified contains more than one control
section (CSECT), you must also supply SPZAP with the name of the CSECT that is to
be inspected or modified. If no CSECT name is given in the NAME statement,
SPZAP assumes that the control section to be processed is the first one
encountered in searching the load module.

Whenever SPZAP replaces a CSECT in a load module in response to your REP and
NAME control statements, it also puts descriptive maintenance data in a CSECT
identification record (IDR) associated with the load module. This function will be
performed automatically after all REP statements associated with the NAME
statement have been processed; any optional user data that has to be placed in the
IDR will come from the IDRDATA statement. See "SPZAP Control Statements" on
page 4-11 for an explanation of the IDRDATA statement.

Accessing a Load Module

4-2 Service Aids

Once the CSECT has been found, SPZAP must locate the data that is to be verified
and replaced. This is accomplished through the use of offset parameters in the
VERIFY and REP statements. These parameters are specified in hexadecimal
notation, and define the displacement of the data relative to the beginning of the
CSECT. For example, if a hexadecimal offset of X'40' is specified in a VERIFY
statement, SPZAP will find the location that is 64 bytes beyond the beginning of the
CSECT identified by the NAME statement, and begin verifying the data from that
point.

Normally, the assembly listing address associated with the instruction to be
inspected or modified can be used as the offset value in the VERIFY or REP
statement. However, if a CSECT has been assembled with other CSECTs so that its
origin is not at assembly location zero, then the locations in the assembly listing do
not reflect the correct displacements of data in the CSECT. The proper
displacements must be computed by subtracting the assembly listing address
delimiting the start of the CSECT from the assembly listing address of the data to be
referenced.

To eliminate the need for such calculations and allow you to use the assembly
listing locations, SPZAP provides a means of adjusting the offset values on VERIFY
and REP statements. This is achieved through the use of the BASE control
statement. This statement should be included in the input to SPZAP immediately
following the NAME statement that identifies the CSECT. The parameter in the
BASE statement must be the assembly listing address (in hexadecimal) at which the
CSECT begins. SPZAP then subtracts this value from the offset specified on any
VERIFY or REP statement that follows the BASE statement, and uses the difference
as the displacement of the data.

For a complete description of the control statements mentioned in this discussion,
see the topic "SPZAP Control Statements" on page 4-11.

Figure 4-1 on page 4-4 is a sample assembly listing showing more than one control
section. To refer to the second CSECT (IEFCVOL2), you could include in the input to
SPZAP a BASE statement with a location of 0398. Then, to refer to the subsequent
LOAD instruction (LR2,CT JCT AD), you could use an offset of 039A in the VERIFY or
REP statements that follow in the SPZAP input stream.

Chapter 4. SPZAP 4-3

LISTING TITLE

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT

000000 1 IEFCVOLl CSECT 10000017

000384 00000000 378 VCNQMSSS DC V(IEFQMSSS)
379 *

55800017
56000017
56100017
56200017
56300017
56400017
56500017

000388 00000000 380 VCMSG15 DC V(IEFVMG15)
00038C D200 1001 8000 00000 00000 381 MVCMSG MVC 0(1,Rl),0(R8)

382 *
000392 D200 1001 1000 00001 00000 383 MVCBLNKS MVC l(l,Rl),0(Rl)

384 *

000398
000398 0590
00039A
00039A 5820 C010

386
387
388

00010 389

CSE CT
BALR R9.0
USING *.R9
L R2,LCTJCTAD

56600017
56700017
56800017
56900017

Figure 4-1. Sample Assembly Listing Showing Multiple Control Sections

Inspecting and Modifying a Data Record
To inspect or modify a specific data record, you must use a CCHHR control
statement to specify its direct access address. This CCHHR address must be within
the limits of the direct access data set defined in the SYSLIB DD control statement.

If you request a REP operation for a record identified by a CCHHR control statement,
SPZAP issues message AMA1121 to provide a record of your request.

Accessing a Data Record

4-4 Service Aids

When you use the CCHHR control statement, SPZAP reads directly the physical
record you want to inspect or modify. The offset parameters specified in
subsequent VERIFY and REP statements are then used to locate the data that is to
be verified or replaced within the record. These hexadecimal offsets must define
the displacement of data relative to the beginning of the record and include the
length of any key field.

Dumping Data
SPZAP's dumping options provide a visual representation of the load module or
data record that has been changed, thus allowing you to double check the
modifications you have made.

You use the DUMP and ABSDUMP control statements to specify the SPZAP dumping
options. The operation codes in the DUMP and ABSDUMP statements indicate the
kind of dump you want: a formatted hexadecimal dump or a translated dump. The
parameters identify the portion of the data to be dumped. See "SPZAi;> Control
Statements" on page 4-11 for additional information on the DUMP and ABSDUMP
control statements.

Updating System Status Information
The system status index (SSI) is a 4-byte field created by the linkage editor in the
directory entry of a load module. It is useful for keeping track of any modifications
that are performed on a load module. SPZAP updates the system status index
automatically whenever it replaces data in the associated module.

SPZAP also supplies the SETSSI control statement, that you can use to overlay the
existing data in the SSI with your own data. For a complete description of the
SETSSI control statement, see "SPZAP Control Statements" on page 4-11.

Not all load modules have system status information. In those that do, the SSI
system status index is located in the last four bytes of the user data field in the
directory entry. Figure 4-2 shows the position of the SSI in load module directory
entries.

Figure 4-2. SS/ Bytes in a Load Module Directory Entry

Member Name
1 8 l TTR l C l User Data Field

9 11 12 13 to 70 maximum I SSI
variable

Figure 4-3 on page 4-6 shows the composition of the SSI field and the flag bits used
to indicate the types of changes made to the corresponding load module program.

The first byte of SSI information contains the member's change level. When a load
module is initially released by IBM, its change level is set at one. Thereafter, the
change level is increased by one for each release that includes a new version of
that program. If you make a change to the SSI for any of the IBM-released
programs, take care not to destroy this maintenance level indicator unless you
purposely mean to do so. To keep the change level byte at its original value, find
out what information is contained in the SSI before using the SETSSI function. The
LISTLOAD control statement of the LIST service aid can give you the information
you need.

Chapter 4. SPZAP 4-5

1 byte

Change
Level

1 byte

Flog
Byte

... I
/" I

_,/ I /,.///// II
//,,,, ...

Bits: ,...o" 1 2 3 4 5 6 7 /

I I I I I I I I
i

I
(Reserved) --------------'

I , ---
i

Force Flog -------------------1

Local Fix Flog-------------------'
I

Program Temporary Fix Flag-----------'

Dependency Flag--------------------------·

Critical Flag -----------------------------------

IBM Flog--

Figure 4-3. Flag Bytes in the System Status Index Field

2 bytes

Serial
Number

The second byte of the SSI is termed the flag byte. Bits within the flag byte contain
information reflecting the member's maintenance status. You need only be
concerned with two of the eight bits when you are using SPZAP:

• Bit 2, the local fix flag, indicates that the user has modified a particular member.
(It is not used to reflect modifications made by IBM-supplied program temporary
fix or a PTF.) SPZAP sets this local fix flag bit to one after successfully
modifying a load module.

• Bit 3, the program temporary fix flag, is set to one when an IBM-authorized PTF
is applied to a system library to correct an error in an IBM module.

All other bits in the flag byte should be retained in the SSI as they appeared before
the SETSSI operation took place, so as not to interfere with the normal system
maintenance procedures.

The third and fourth bytes of the system status index are used to store a serial
number that identifies the first digit and the last three digits of a PTF number.
SPZAP will not change these bytes unless you request a change by using the
SETSSI control statement.

Operational Considerations

4-6 Service Aids

Consider the following points when you run SPZAP:

• SPZAP cannot inspect, modify, or dump data in partitioned data sets extended
(PDSEs); PDSEs have a data structure that is different from that of partitioned
data sets (PDSs). For more information about PDSEs and their data structure,
refer to Managing Non-VSAM Data Sets.

• SPZAP uses the system OPEN macro. Therefore, SPZAP cannot modify or
inspect security protected data sets when SPZAP cannot successfully complete
the authorization checks that occur during the OPEN.

• Unexpired data sets such as system libraries cannot be modified unless the
operator replies r xx,'U' to the expiration message that occurs during OPEN.

• If SPZAP is used to modify an operating system module that is made resident in
virtual storage only at IPL time, an additional IPL is required to invoke the new
version of the altered module. (Note that this includes all modules in
SYS1.LPALIB.)

• The SYSLIB DD statement cannot define a concatenated or a multi-volume data
set.

• SPZAP supports only direct access devi~es for the SYSUB device"

• SPZAP is a non-reusable module.

• When modifying a system data set, such as SYS1.LINKLIB, specify DISP=OLD
on the SYSLIB DD statement.

JCL Statements
SPZAP is executed using the following job control statements. The minimum region
size needed is 17K plus the larger of 3K or the blocksize in bytes for the data set
specified on the SYSLIB DD statement.

JOB Statement
marks the beginning of the job.

EXEC Statement
invokes AMASPZAP using either PGM=AMASPZAP or PGM=IMASPZAP. The
only valid parameter that you may specify is PARM= IGNIDRFULL, which
enables SPZAP to override the standard restrictions placed upon CSECT
updates (via NAME and REP) when IDR space for the module is found to be full.

Note: Use PARM= IGNIDRFULL with caution. It should be avoided for
IBM-maintained modules.

SYSPRINT DD Statement
defines a sequential output message data set, that can be written on a system
printer, a magnetic tape volume, or a direct access volume. This statement is
required for each execution of SPZAP.

SYSLIB DD Statement
defines the direct access data set that will be accessed by SPZAP when
performing the operations specified on the control statements. The DSNAME
parameter and DISP =OLD or DISP = SHR are required. The VOLUME and UNIT
parameters are necessary only if the data set is not cataloged. When this data
set is the VTOC, you must specify DSNAME = FORMAT4.DSCB. This statement
cannot define a concatenated or multi-volume data set. It is required for the
execution of SP ZAP.

Chapter 4. SPZAP 4-7

Return Codes

4-8 Service Aids

Notes:

1. When you access a record in the VTOC (that is, a DSCB) for modification,
SPZAP issues message AMA 1170 to the console. No message is issued,
however, when an ABSDUMPT operation is performed on the VTOC.

2. When you access a VSAM object (for example, rebuilding a catalogue), you
are required to reference the appropriate catalogue. If you fail to include a
STEPCAT or JOBCAT card referring to the appropriate user catalogue, your
job might fail. If it does, your job is assigned an abend 913-C; the data set is
dumped; and, the system displays message IEC1501.

SYSABEND DD Statement
defines a sequential output data set to be used in case SPZAP terminates
abnormally. The data set can be written to a printer, a magnetic tape volume,
or a direct access volume. This statement is optional.

SYSIN DD Statement
defines the input stream data set that contains SPZAP control statements.

When SPZAP terminates, it issues one of the following return codes:

Code Meaning

0 Successful completion.

4 Warning of a condition that may result in future errors if remedial action
is not taken.

8 A SPZAP input statement contains an error or was overridden by
operator intervention.

12 A requested JCL statement is absent or specifies a data set that was not
successfully opened. SPZAP terminates immediately.

16 A permanent 1/0 error has occurred, perhaps caused by a JCL error,
such as invalid blocksize. SPZAP terminates immediately.

20 A record is larger than the blocksize. SPZAP terminates immediately.

Dynamic Invocation of SPZAP
SPZAP can be invoked by an application program at execution time through the use
of the CALL, LINK, XCTL, or ATIACH macro instruction. The program must supply a
list of alternate ddnames of data sets to be used by SPZAP if the standard ddnames
are not used.

The general form of these macros when used to invoke SPZAP is shown below.

(anyname)
(anyname)
(anyname)
(anyname)

CALL AMASPZAP,(oplistad,ddnamadr),VL
XCTL EP=AMASPZAP
LINV EP=AMASPZAP, PARAM=(opl i stad,ddnamadr), VL=l
ATTACH EP=AMASPZAP,PARAM=(oplistad,ddnamadr),VL=l

anyname
indicates an optional statement label on the macro statement.

EP is the entry point - in each case for the SPZAP program.

PARAM
specifies, as a sublist, address parameters to be passed from the program to
SPZAP.

opllstad
specifies the address, if present, of either a halfword of zeros (indicating no
options) or a non-zero halfword followed by a character string whose length is
given in halfwords. For possible parameter values, see "JCL Statements" in
this chapter.

ddnamadr
specifies the address of a variable-length list containing alternate ddnames for
data sets to be used during SPZAP processing. If all the standard ddnames
(SYSPRINT, SYSLIB, and SYSIN) are used, then this parameter can be omitted.

The ddname list must begin on a halfword boundary. The first two bytes contain
a count of the number of bytes in the rest of the list. The format of the list is
fixed, with each entry having eight bytes. Any name of less than eight bytes
must be left justified and padded with blanks. If a name is left out in the list, the
entry must contain binary zeros; the standard name is then assumed. Names
can be omitted from the end of the ddname list by shortening the list.

The sequence of 8-byte entries in the list is as follows:

Entry Standard name
0-7 not applicable
8-15 not applicable
16-23 not applicable
24-31 SYSLIB
32-39 SYSIN
4-47 SYS PRINT

Chapter 4. SPZAP 4-9

indicates that the sign bit is to be set to 1 in the last word of the address
parameter list.

Figure 4-4 is an example of two functionally equivalent dynamic invocations of
SPZAP.

EXSPZAP CSECT
USING *,15
MOD ID
SAVE (14,12)
BALR 12,0
USING * ,12
ST 13,SAVEAREA+4
LR 2,13
LA 13,SAVEAREA
ST 13,8(0,2)

ASSUME REG15 IS BASE
MODULE ID AND DATE IN PROLOG
SAVE REGISTERS
ESTABLISH BASE REGISTER

CHAIN NEW SAVEAREA TO PREVIOUS
TEMPORARILY SAVE ADDRESS OF OLD SAVEAREA
INIT REG13 WITH ADDRESS OF NEW SAVEAREA
CHAIN PREVIOUS SAVEAREA TO NEW

*
*
*
*
*
*
*
*

THIS EXAMPLE SHOWS TWO FUNCTIONALLY EQUIVALENT DYNAMIC
INVOCATIONS OF SUPERZAP.

NO OPTIONS ARE PASSED.
THE DDNAME FOR THE SYSLIB FILE IS CHANGED TO TESTLIBR.
THE DDNAME FOR THE SYSIN FILE IS NOT CHANGED.
THE DDNAME FOR THE SYSPRINT FILE IS CHANGED TO PRINTOUT.

*
*
*
*
*
*
*
*

LINKZAPl LINK EP=AMASPZAP,PARAM=(OPTLIST,DDLIST),VL=l
LINKZAP2 LINK EP=AMASPZAP,PARAM=(0,DDLIST),VL=l

L 13,SAVEAREA+4 LOAD ADDRESS OF PREVIOUS SAVEAREA
RETURN (14,12),T,RC=El RETURN TO CALLER

OPTLIST DC H'0' NO OPTIONS ARE PASSED TO AMASPZAP
DDLIST OS 0H ALIGN DDNAMES TO HALFWORD BOUNDARY

DC H'48' LENGTH OF THE CHARACTER STRING
* CONTAINING DDNAME OVERRIDES

oc 24XL1 • ee · FIRST 24 CHARACTERS ARE IGNORED
DC CLB'TESTLIBR' CHANGE SYSLIB FILE TO DDNAME OF TESTLIBR
DC 8XL1'00' USE SYSIN FILE FOR INPUT OF CONTROL

* STATEMENTS
DC CLB'PRINTOUT' CHANGE SYSPRINT FILE TO DDNAME OF

* PRINTOUT
SAVEAREA DC 18F'0' REGISTER SAVEAREA

END

Figure 4-4. Sample Assembler Code for Dynamic Invocation of SPZAP

4-10 Service Aids

l
\

SPZAP Control Statements
SPZAP control statements (entered either through the user's input stream or
through the system console) define the processing functions to be performed during
a particular execution of SPZAP.

Coding Rules for SPZAP Control Statements

• They can begin in any column, but the operation name must precede the
parameters.

• There must be at least one blank between the specified operation name and the
first parameter.

• All parameters must also be separated by at least one blank space.

• Data field parameters may be formatted with commas for easier visual check,
but embedded blanks within data fields are not permitted.

• Data and offset values must be specified as a multiple of two hexadecimal
digits.

• The size of an SPZAP control statement is 80 bytes.

• Following the last required parameter and its blank delimiter, the rest of the
space on most control statements can be used for comments. Exceptions to this
are the NAME and DUMP control statements: if the CSECT parameter is omitted
from either of these statements, the space following the load module parameter
should not be used for comments.

• A record beginning with an asterisk and a blank is considered to be a comment
statement.

Following are detailed descriptions of the SPZAP control statements, in the order in
which you usually code them.

NAME member [csect]
identifies a CSECT in a load module that is to be the object of subsequent
VERIFY, REP, or SETSSI operations. The variables are:

member
the member name of the load module that contains the control section in
which the data to be inspected or modified is resident. The load module
must be a member of the partitioned data set defined by the SYSLIB DD
statement.

csect
the name of the particular control section that contains the data to be
verified or replaced. If this variable is omitted, it is assumed that the first
CSECT contained in the load module is the one to be used. If there is only
one CSECT in the load module, this variable is not necessary.

Note: You can define more than one NAME statement in your input to SPZAP.
However, the VERIFY, REP and SETSSI statements associated with each NAME
statement must immediately follow the NAME statement to which they apply.

Chapter 4. SPZAP 4-11

4-12 Service Aids

CCHHR record address
identifies a physical record on a direct access device that is to be modified or
verified. The record must be in the data set defined by the SYSLIB DD
statement. Any immediately following REP or VERIFY statements will reference
the data in the specified record. The variable is:

record address
the actual direct access address of the record containing data to be
replaced or verified. It must be specified as a 10-digit hexadecimal number
in the form cccchhhhrr, where cccc is the cylinder, hhhh is the track, and rr
is the record number. For example, 0001000A01 addresses record 1 of
cylinder 1, track 10. A zero record number is invalid and defaults to 1.

Note: You can define more than one CCHHR statement in your input to SPZAP.
However, the VERIFY, REP and SETSSI statements associated with each CCHHR
statement must immediately follow the specific CCHHR statement to which they
apply.

{VERIFVIVER} offset expected-content
causes the data at a specified location within a CSECT or physical record to be
compared with the data supplied in the statement.

offset
is the hexadecimal displacement of data to be inspected in a CSECT or
record. This displacement does not have to be aligned on a fullword
boundary, but it must be specified as a multiple of two hexadecimal digits
(OD, 021C, 014682, etc.). If this offset value is outside the limits of the
CSECT or data record defined by the preceding NAME or CCHHR statement,
the VERIFY statement will be rejected. When inspecting a record with a key,
the length of the key should be considered in the calculation of the
displacement; that is, offset zero is the first byte of the key.

expected-content
defines the bytes of data that are expected at the specified location. As with
the offset variable, the number of bytes of data defined must be specified as
a multiple of two hexadecimal digits. If desired, the data within the
parameter may be separated by commas (never blanks), but again, the
number of digits between commas must also be a multiple of two. For
example, expected content might look like this:

5840C032 (without commas),
or like this:

5840,C032 (with commas)

If all the data does not fit into one VERIFY statement (80-byte logical record),
then another VERIFY statement must be defined.

Note: If the two fields being compared are not in agreement, that is, if the
VERIFY operation is rejected, no succeeding REP or SETSSI operations are
performed until the next NAME or CCHHR control statement is encountered.
SPZAP provides a formatted dump of each CSECT or record for which a
VERIFY operation failed.

REP offset data
modifies data at a specified location in a CSECT or physical record that was
previously defined by a NAME or CCHHR statement. The data specified on the
REP statement will replace the data at the record or CSECT location stipulated
in the offset variable field. (Always use the VERIFY function to make sure you
know what you are going to change with the REP function.) SPZAP issues
message AMA1221 to record the contents of the specified location as they were
before the change was made.

offset
provides the hexadecimal displacement of data to be replaced in a CSECT
or data record. This displacement need not address a fullword boundary,
but it must be specified as a multiple of two hexadecimal digits (OD, 02C8,
001C52). If the offset value is outside the limits of data record (physical
block) or CSECT being modified, the replacement operation will not be
performed. When replacing data in a record with a key, the length of the
key should be considered in the calculation of the displacement; that is,
offset zero is the first byte of the key, not of the data.

data
defines the bytes of data to be inserted at the location. As with the offset
variable, the number of bytes of data defined must be specified as a
multiple of two hexadecimal digits. If desired, the data within the variable
may be separated by commas (never blanks); but again, the number of
digits between commas must also be a multiple of two. For example, a REP
data variable may look like this:

41608820 (without commas)
or like this:

4160,8820 (with commas).

If all the data to be modified does not fit into one REP statement (an 80-byte
logical record), you can code another REP statement.

Notes:

• Remember that SPZAP automatically updates the system status index (SSI)
when it successfully modifies the associated load module. For more
detailed information about SSI, see "Updating System Status Information" in
this chapter.

• If you are performing multiple VERIFY and REP operations on a CSECT,
make sure that all the VERIFY statements precede all the REP statements.
This procedure ensures that all REP operations are ignored if one VERIFY
reject occurs.

• When you access a record in the VTOC (that is, the DSCB) for modification,
SPZAP issues the message AMA117D to the console. No message is
issued, however, when an ABSDUMPT operation is performed on the VTOC.

Chapter 4. SPZAP 4-13

4-14 Service Aids

IDRDATA xxxxxxxx
causes SPZAP to place up to eight bytes of user data into the SPZAP CSECT
identification record of the load module; this is only done if a REP operation
associated with a NAME statement is performed and the load module was
processed by the linkage editor to include CSECT identification records. The
variable is:

xxxxxxxx
eight (or fewer) bytes of user data (with no embedded blanks} that are to be
placed in the user data field of the SPZAP IDR of the named load module. If
more than eight characters are in the variable field, only the first eight
characters will be used.

Note: The IDRDATA statement is valid only when used in conjunction with the
NAME statement. It must follow its associated NAME statement and precede
any DUMP or ABSDUMP statement. IDRDATA statements associated with
CCHHR statements will be ignored.

SETSSI xxyynnnn
places user-supplied system status information in the PDS directory entry for
the library member specified in the preceding NAME statement. The SSI,
however, must have been created when the load module was link edited. The
variable is:

xxyynnnn
four bytes of system status information the user wishes to place in the SSI
field for this member. Each byte is supplied as two hexadecimal digits
indicating the following:

xx - change level
yy - flag byte
nnnn - modification serial number

If SPZAP detects an error in any previous VERIFY or REP operation, the SETSSI
function is not performed.

Note: Because all bits in the SSI entry are set (reset) by the SETSSI statement,
be very careful when using it to avoid altering the vital maintenance-status
information. SPZAP issues message AMA1221 to record the SSI as it was before
the SETSSI operation was performed. (See "Updating System Status
Information" on page 4-5.)

{DUMPIDUMPT} member {csectlALL}
dumps a specific control section or all control sections in a load module. The
output format of this dump is hexadecimal. See the topic "SPZAP Output" on
page 4-18 for further information. The DUMPT statement differs from the DUMP
statement in that it also produces an EBCDIC and an instruction mnemonic
translation of the hexadecimal data. The variables are:

member
the member name of the load module that contains the control section(s) to
be dumped. (Note: This load module must be a member of a partitioned
data set that is defined by the SYSLIB DD statement.)

csect
defines the name of the particular control section that is to be dumped. To
dump all the CSECTs of a load module, code "ALL" instead of the CSECT
name; if the CSECT variable is omitted entirely, SPZAP assumes that you
mean to dump only the first control section contained in the load module.

Note: DUMP or DUMPT applied to a CSECT consisting only of space allocations
(DS statements) will produce no output between the statement printback and the
dump-completed message.

{ ABSDUMP IABSDUMPT} { startaddr stopaddrlmembernamelALL}
used to dump a group of data records, a member of a partitioned data set, or an
entire data set, as defined in the SYSLIB DD statement. If the key associated
with each record is to be formatted, DCB= (KEYLEN = nn), where "nn" is the
length of the record key, must also be specified by the SYSLIB DD statement.
Note that when dumping a VTOC, DCB= (KEYLEN = 44) should be specified;
when dumping a PDS directory, DCB= (KEYLEN = 8) should be specified.
ABSDUMP produces a hexadecimal printout only, while ABSDUMPT prints the
hexadecimal data, the EBCDIC translation, and the mnemonic equivalent of the
data (see "SPZAP Output" on page 4-18). The variables are:

startaddr
is the absolute direct access device address of the first record to be
dumped. This address must be specified in hexadecimal in the form
cccchhhhrr (cylinder, track and record numbers).

stopaddr
is the absolute direct access device address of the last record to be
dumped, and it must be in the same format as the start address.

Note: Both addresses must be specified when this method of dumping
records is used, and both addresses must be within the limits of the data set
defined by the SYSLIB DD statement. The record number specified in the
start address must be a valid record number. If a record number of 0 is
specified, SPZAP will change it to 1 since the READ routine skips over such
records. The record number specified as the stop address need not be a
valid record number, but if it is not, the dump will continue until the last
record on the track specified in the stop address has been dumped.

membername

ALL

is the name of a member of a partitioned data set. The member can be a
group of data records or a load module. In either case, the entire member
is dumped when this variable is specified.

specifies that the entire data set defined by the SYSLIB DD statement is to
be dumped. How much of the space allocated to the data set is dumped
depends on how the data set is organized:

• For sequential data set, SPZAP dumps until it reaches end of file.

• For indexed sequential and direct access data sets, SPZAP dumps all
extents.

• For partitioned data sets, SPZAP dumps all extents, including all linkage
editor control records, if any exist.

Chapter 4. SPZAP 4-15

4• 16 Service Aids

BASE xxxxxx
used by SPZAP to adjust offset values that are to be specified in any subsequent f
VERIFY and ·REP statements. This statement should be used when the offsets \
given in the VERIFY and REP statements for a CSECT are to be obtained from
an assembly listing in which the starting address of the CSECT is not location
zero.

For example, assume that CSECT ABC begins at assembly listing location
X' 000400', and that the data to be replaced in this CSECT is at location
X' 000408'. The actual displacement of the data in the CSECT is X' 08'.
However, an offset of X'0408' (obtained from the assembly listing location
X'000408') can be specified in the REP statement if a BASE statement
specifying X'000400' is included prior to the REP statement in the SPZAP input
stream. When SPZAP processes the REP statement, the base value X'000400'
will be subtracted from the offset X' 0408' to determine the proper displacement
of data within the CSECT. The variable is:

xxxxxx
is a 6-character hexadecimal offset that is to be used as a base for
subsequent VERIFY and REP operations. This value should reflect the
starting assembly listing address of the CSECT being inspected or modified.

Note: The BASE statement should be included in the SPZAP input stream
immediately following the NAME statement that identifies the control section
that is to be involved in the SPZAP operations. The specified base value
remains in effect until all VERIFY, REP, and SETSSI operations for the CSECT
have been processed.

CONSOLE
indicates that SPZAP control statements are to be entered through the system
console.

When this statement is encountered in the input stream, the following message
is written to the operator:

AMA116A ENTER AMASPZAP CONTROL STATEMENT OR END

The operator may then enter in any valid SPZAP control statement conforming
to the specifications described in the beginning of this control statement
discussion. After each operator entry through the console is read, validated,
and processed, the message is reissued, and additional input is accepted from
the console until "END" is replied. SPZAP will then continue processing control
statements from the input stream until an end-of-file condition is detected.

Note: The control statements can be entered through the console in either
upper or lower case letters.

*(Comment)
used to annotate the SPZAP input stream and output listing. Any number of
comment statements can be included in the input stream. When such a
statement is encountered, SPZAP writes the entire statement to the data set
specified for SYSPRINT.

Note: The asterisk (*) can be specified in any position of the statement, but it
must be followed by at least one blank space as a delimiter.

CHECKSUM [hhhhhhhh]
used to print or verify a fullword checksum (parity-check). All of the valid
hexadecimal operands since the preceding CHECKSUM statement or SPZAP
initialization are logically concatenated into a single string divided into
fullwords, the sum of which is the checksum. For example, the string
12345678FACE produces the checksum 00025678. Each CHECKSUM statement
resets the accumulated checksum value to zeros.

The CHECKSUM statement is effective in detecting clerical errors that may
occur when transcribing an SPZAP type of fix. CHECKSUM does not prevent
errors; it only causes a message to be issued. By the time the CHECKSUM
statement is processed, all prior replaces have been done.

hhhhhhhh
are 8 hexadecimal characters that are compared with the checksum. If the
two values are equal, a message is written indicating that the checksum
was correct and has been reset.

If the operand field is blank, a message is written giving the actual value of
the checksum, and indicating that the checksum has been reset.

When the CHECKSUM control statement is provided with an incorrect
operand, the REP and SETSSI statements processed already are not
affected.

If the operand is invalid or is not equal to the checksum, a message is
written indicating invalid operand or checksum error. All subsequent REP
and SETSSI statements are ignored until the next NAME or CCHHR
statement is encountered. The results of previously processed statements
are not affected.

Chapter 4. SPZAP 4· 17

SPZAP Output
SPZAP provides two different dump formats for the purpose of checking the data
that has been verified or replaced. These dumps (written to the SYSPRINT data set
specified by the user) may be of the formatted hexadecimal type or the translated
form. Both formats are discussed below in detail with examples showing how each
type will look.

Formatted Hexadecimal Dump
When DUMP or ABSDUMP is the control statement used, the resulting printout is a
hexadecimal representation of the requested data. Figure 4-5 on page 4-19 gives a
sample of the formatted hexadecimal dump. A heading line is printed at the
beginning of each block. This heading consists of the hexadecimal direct access
address of the block, a two-byte record length field, and the names of the member
and the control section that contain the data being printed (if the dump is for specific
CSECT or load module). Each printed line thereafter has a three-byte displacement
address at the left, followed by eight groups of four data bytes each. The following
message:

AMA1131 COMPLETED DUMP REQUIREMENTS

is printed under the last line of the dump printout.

Translated Dump

4· 18 Service Aids

The control statements DUMPT and ABSDUMPT also provide an operation code
translation and an EBCDIC representation of the data contained in the dump.
Figure 4-6 on page 4-20 shows the format of the translated dump. The first byte of
each halfword of data is translated into its mnemonic operation code equivalent,
provided such a translation is possible. If there is not equivalent mnemonic
representational value to be given, the space is left blank. This translated line of
codes and blanks is printed directly under the corresponding hexadecimal line. An
EBCDIC representation of each byte of data is printed on two lines to the right of the
corresponding line of text, with periods (.) substituted for those bytes that do not
translate to valid printable characters.

t.JU!-.P lEriMVkSN ALL

••CCHHR- 0022001108 RECORD LENGTH- 0850 MEMBER NAME IEllMVESN CSECT NAME IEHMVSSN
000000 47FOF014 OEC5E205 60E609C1 0760E407 60606000 90ECOOOC 189F5010 004811110
000020 00485000 100115010 00081801 58100000 9200DOOC 92FF0008 91110C20A 47809011A
000040 9.l00C2F4 020EC2F5 C2F49108 C20C4710 90E69500 C2FC4780 906110203 Cl0096611
000060 9200C2FC 0203Cl20 C31C95FF C32All770 908A4180 C00141FO 001450EO 964845EO
000080 951858EO 96484520 95705820 C2640700 115109098 00000000 50210000 92801000
OOOOAO 0Ai495FF C3274780 910A9108 C20C4710 91685820 C2749581 20114770 90009102
ooooco C2084710 90F89110 C2084710 90F80700 45109008 00000000 50210000 92801000
0000.t:O 0A1447FO 910A9180 ClFC4780 9168947F ClFC47FO 908A0700 115109100 00000000
000100 50..:10000 92801000 0Al495FF C3344780 9 6DCll1AO C0089200 C2Fll9200 C2F89200
1)00120 C2FC9.l00 C30094F7 A0429101 C2094780 91689102 C2094710 91685810 C27458FO
J00140 10149601 1017481:.0 F00411CEO F0069101 102011710 915E.4100 E00847FO 916211100
,·OOlbO E.0104110 FOOOOAOA 18444340 C.l245810 C2245830 C27C4833 OOOE95FF 30024780
000180 918C0505 300111004 117F09192 0505301C 1001111780 91E.84lll OOOC46110 917A4140
OOOlAO 000Clt114 1111100001 02031000 301095FF 30024780 91C00205 100113004 47F091C6
OOOlCO t.J;.'051004 301Cl833 403096FC 0201100A 96FC4130 00019580 100211780 91E24030
OOOHO 96~'C0201 100A90C 5010C224 4240C224 9110C.l08 47109204 9102C208 47109204
000.200 47F09236 5810C2211 95801002 47709236 020196FC l00A4820 96FC4122 000111130
000220 00011932 4770922C 41220001 402096FC 0201100A 96FC9140 C2094710 92885820
0002110 00105822 00284832 00005930 9.lBllll780 92881233 47809268 91203012 4780926
000260 91023003 47109270 111220002 47F09246 0203CL28 C2005820 C2000203 2000
000280 D.lU5 . .10il.I.:. -·a..r..c:.H22 OOOC5020 C2009640 C20947FO 004143

218
oo _ 11000.l 80964C
000600 4u OC014 0205FOOO l FF' 00060201 6FC 9634926e
000620 F0004EE0 C080F337 F001C080 96FOF004 41F'FOOO'.> lllFFOOOl 4lll000C 46009604
0006110 58):;09648 07FElBOO 7FFFOOOO 58F09660 58n·oooo 0219C014 F0019200 C33C07FE
000660 00000708 04000668 41800668 1BF8189F 0503C31C 970047!10 96089500 C32811780
0001>80 96C25881 00001288 47809608 95801008 4770969A 96FFC3311 07FE58BO C32058FO
0006AO 10000.l4F ~·oooeooo 41880050 50BOC320 1BBB43BO C32806BO 42BOC328 111F00008
0006CO 07Ft;58a0 C31C4100 02801818 41110000 OAOA0707 C3lCC3lC 1BFF07FE 9600C3311
0006EO 4180C001 41F00018 50E09648 45E09518 58E09b48 45209570 47F09112 8CA00000
000700 00000000 113A0400B

.. CCilttk- 0022001108 KECORO LENGTH- 0850 MEMBER NAM.<: IEHMVESN CSECT NAME IEHMVMSN
000000 00000724 0000073~' 00000750 00000761 00000775 00000793 000007E6 19E405C9
000020 E34009C5 C34006D9 40E40503 ClC2C503 C5C440J::3 Cl07C50F C9CSC8F3 F6FlC940
000040 CllClE3Cl 40E2C5E3 OF404040 40404040 40C4CH:3 C140E2C5 E312C3D6 07C9C5C4
000060 40.1:.30640 E506D3E4 04C540E2 501CD506 E340040b E5CSCll60 Cl0607C9 C5Cll40E3
000080 D640t;506 03E1104C5 40E25051 C9C5C8F3 F3~'1C940 E4E2C509 4003ClC2 C503E240
OOOOAO C109C5110 0506E340 0406E.'5C5 C461C306 07C9C5C4 48400506 40E4E2C5 D94003Cl
ooooco C.lC50340 E309C1C3 D240Cl03 D3D6C3Cl E3C5C440 C606D940 C905D7Ell E34B66C9
OOOOE.0 CSC8F3F3 F5C911007 C50904Cl D5C5D5E.3 40C96106 40C5D9D9 D6D940E6 C8C9D3C5
000100 40B609C9 E3C905C7 40E4E2C5 0940061':4 E3D7E4J:;3 40E309Cl C9D3C509 40D3ClC2

(') I
000120 C5i.l3E24S 40050640 0406D9C5 4003ClC2 C503E240 E6C90303 llOC2C5110 070906C3

::;- 000140 C5E2E2C5 C44B58BO
Ill ;1!'1All 3I COMPUTE.I> DUMP REQUll<J::MENl'S
u
1D
f>- Figure 4-5. Sample Formatted Hexadecimal Dump
Ul
"U
N
)>
"U

.i::.
I

<O

ol:lio HMASPZAP lNSPECl'S, MODIFIES, AND DUMPS CSECTS OR SPECIFIC DATA ~ECORDS ·ON DIRECT ACCESS STORAGE. I
~ DUMPT IEHMVt:SN ALL 0

••CCHHR- 0022001108 RECORD LENGTH- 0850 MEMBER NAME IEHMVESN CSECT NAME IEHMVSSN
en 000000 47FO F014 OEC5 E2D5 60E6 D9C1 . D760 EllD7 6060 6000 90EC DOOC 189F 5010 D048 4110 •.OO •• ESN-WtlAP-UP• (!) ., BC SRP MVCL STD xc STD STD STM LR ST LA ·---·······'······ < 000020 D048 5000 1004 5010 DOOS 1801 5810 DODO 9200 DOOC 92FF 0008 9140 C20A 4780 904A ···'···'····J• o·
(!) ST LPR ST LR L MVI MVI TM BC STM •••••••••• B •••• -•
)> OQ0040 9200 C2F4 D20E C2F5 C2F4 9108 C20C 4710 90E6 9500 C2FC 4780 9064 D203 C300 9664 • •• B4K.B5B4 •• B ••• •
a: MVI MVC TM BC STM CLI BC STM MVC OI •.w .• B ••••• K.c ••• •
UI 000060 9200 C2FC D203 C320 C31C 95FF C32A 4770 908A 4180 COOl 41FO 0014 50EO 9648 45EO • •• B.K.c.c ••• c ••• •

MVI MVC CLI BC STM LA LA ST OI BAL • ••••••• O •• i ••••• •
000080 9518 58EO 9648 4520 9570 5820 C264 0700 4510 9098 0000 0000 5021 0000 9280 1000 ••••••••••••• & ••••

CLI L OI BAL CLI L BCd BAL S'Dl ST MVI LPR ·········'········
OOOOAO 0A14 95FF C327 4780 910A 9108 C20C 4710 9168 5820 C274 9581 2011 4770 9000 9102 • •••• c ••••••• B ••• •

SVC CLI BC TM TM BC TM L CLI LPOR BC STM TM • •••• B ••••••••••• •
ooooco C208 4710 90F8 9110 C208 4710 90F8 0700 4510 90D8 0000 0000 5021 0000 9280 1000 •B •••• a •• a •••• s •• •

BC , STM TM BC STM BCR BAL STM ST MVI LPR •••• Q •••• i ••••••••
OOOOEO OA14 47FO 910A 9180 ClFC 4780 9168 947F ClFC 47FO 908A 0700 4510 9100 0000 0000 • ••• O •••• A •••••• ••

SVC BC TM TM BC TM NI BC STM BCR BAL TM •A •• O •••••••••••• •·
000100 5021 0000 9280 1000 OAlll 95FF C334 4780 96DC 41AO coos 9200 C2F4 9200 C2F8 9200 •i ••••••••••• c ••• •

ST MVI LPR SVC CLI BC OI LA MVI MVI MVl • •••••••• B4 •• BS •• •
000120 C2FC 9200 C300 94F7 A042 9101 C209 4780 9168 9102 C209 4710 9168 5810 C274 58FO •B ••• c •• 7 •••• d ••• •

MVI NI TM BC TM Tf'! BC TM L L • •••• B ••••••• B •• O•
000140 1014 9601 1017 48EO F004 4CEO F006 9101 1020 4710 915E 4100 EOOS 47FO 9162 4100 • •••••••• O.<.O ••• •

LPR OI LPR Ll:i SRP Ml:i SRP 'IM LPR BC TM LA BC TM LA • ••••• ; ••••• o •••• •
000160 t:OlO 4110 FOOO OAOA lBlllJ IJ31JO C221J 5810 C224 5830 C27C 4833 OOOE 95FF 3002 IJ780 ••••• o •••••• B ••••

LA SRP SVC SR IC L L LH CLI LPER BC •B ••• Ba •••••••••• •
000180 918C u505 3001J lOOIJ "7FO 9192 D505 301C 1004 4780 91E8 "111 OOOC IJ61JO 917A llllJO • •• N •••••• O •• N ••• •

rM CLC LPER LPR BC TM CLC LPER LPR BC TM LA BCT TM LA • ••••• Y •••••• :. ~
0001AO OOOC lBllJ IJllJO 0001 D203 1000 3010 95FF 3002 IJ780 91CO 0205 lOOIJ 300IJ 47FO 91C6 •..... •• K ••••••• •

SR LA MVC LPR LPER CLI LPER BC TM MVC LPR LPER BC TM • •••••• K •••••• O.F•
OOOlCO O.l05 lOOIJ 301C 1B33 IJ030 96FC D201 lOOA 96F<;: 4130 0001 9580 1002 IJ780 91E2 4030 •K •••••••••• K ••• •

MVC LPR' LPER SR STH 01 MVC LPR OI LA CLI LPR BC TM STH ••••.•......•. s .•
OOOlEO 96FC D201 lOOA 96FC 5010 C224 IJ21JO C221J 9110 C208 4710 9204 9102 C208 4710 9201J • •• K ••••• i.B •• B.•

01 MVC LPR 01 ST STC TM BC MVI TM BC MVI • •• a ••••••• s ••••• •
000200 47FO 9236 5810 C224 9580 1002 4770 9236 D201 96FC lOOA 4820 96FC 4122 0001 4130 •.O •••• B ••••••••• •

oC MVI L CLI LPd BC MVI MVC OI LPR LH 01 LA LA •K••••••••••••••••
000220 0001 1932 4770 922C 4122 0001 4!)20 96FC 0201 lOOA 96FC 9140 C209 4710 92B8 5820 •...............•

CR BC MVI LA STH OI MVC LPR 01 TM BC MVI L •K •••••• B ••••••• •
000240 0010 5822 0028 4832 0000 5930 92B4 4780 92B8 1233 4780 9268 9120 3012 4780 9268 •................•

L LH c MVI BC MVI LTR BC MVI TM LPER BC MVI •................•
000260 9102 3003 4710 9270 4122 0002 47FO 9246 D203 'c22e C200 5820 C200 D203 2000 3010 • ••••••••••••• o •• •

TM LPER BC MVI LA BC MVI MVC L MVC LPDR LPER •K.B.B ••• B.K ••••• •
000280 D205 200.4 301C 4122 oooc 5020 C200 9640 C209 47FO 92B8 5830 C200 4143 0002 5860 •K ••••••••• i.B •• •

MVC LPOR LPER LA ST 01 BC MVl L LA L •B •• o •••• a •••••• -•
0002AO C224 4156 0004 4170 0001 4180 0001 47FO B002 FFFF FFFF 9108 C20C 9296 •s •••••••••••••• O•

LA LA LA BC TM MVI • •••••••••• B ••••• •
0002CO 95Ff' C327 4780 9296 coos 5010 cooo cooo C274 4120 cooo 0024 • •• c ••••••••• i ••• •

CLl BC MVI •.....
:;C

Figure 4-6. Sample Translated Dump

/ /--------.,

SPZAP Examples

Example 1: Inspecting and Modifying a Load Module Containing a Single
CSE CT

This example shows how to inspect and modify a load module containing a single
CSE CT.

//ZAPCSECT
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

NAME
VERIFY
REP
SETSSI
IDRDATA
DUMP

/*

In this example:

JOB
EXEC
DD
DD
DD

IEEVLNKT
0018
0018
01211234
71144
IEEVLNKT

SVSLIB DD Statement

MSGLEVEL=(l, 1)
PGM=AMASPZAP
SYSOUT=A
DSNAME=SYSl.LINKLIB,DISP=OLD
*

C9C8,D2D9,D1C2,C7D5
E5C6,D3D6,E6F0,4040

defines the system library SYS1 .LINKLIB containing the module IEEVLNKT that
SPZAP is to process.

SVSIN DD Statement
defines the input stream.

NAME Control Statement
instructs SPZAP that the operations defined by the control statements that follow
are to be performed on the module IEEVLNKT.

VERIFY Control Statement
requests that SPZAP check the hexadecimal data at offset X'0018' in the
module IEEVLNKT to make sure that it is the same as the hexadecimal data
specified in this statement. If the data is the same, SPZAP continues processing
the subsequent statements sequentially. If the data is not identical, SPZAP will
not perform the REP and SETSSI operations requested for the module. It will,
however, perform the requested DUMP operation before discontinuing the
processing. It will also dump a hexadecimal image of the module IEEVLNKT to
the SYSPRINT data set.

REP Control Statement
causes SPZAP to replace the data at offset X'0018' in module IEEVLNKT with
the data given in this cont~ol statement, provi,ded the VERIFY statement was
successful.

Chapter 4. SPZAP 4-21

SETSSI Control Statement
instructs SPZAP to replace the system status information in the directory entry
for module IEEVLNKT with the SSI data given in the statement, if the VERIFY
statement was successful. The new SSI is to contain:

• A change level of 01.
• A flag byte of 21.
• A serial number of 1234.

IDRDATA Control Statement
causes SPZAP to update the IDR in module IEEVLNKT with the data 71144, if the
REP operation is successful.

DUMP Control Statement
requests that a hexadecimal image of module IEEVLNKT be dumped to the
SYSPRINT data set. Since the DUMP statement follows the REP statement, the
image will reflect the changes made by SPZAP if the VERIFY operation was
successful.

Example 2: Inspecting and Modifying a CSECT in a Load Module Containing
Several CSECTs

4-22 Service Aids

This example shows how to apply an IBM-supplied PTF in the form of an SPZAP fix,
rather than a module replacement PTF.

//PTF4G228
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

NAME
IDRDATA
VERIFY
VERIFY
REP
REP
SETSSI
DUMPT

/*

JOB
EXEC
DD
DD
DD

MSGLEVEL=(l,l)
PGM=AMASPZAP
SYSOUT=A
DSNAME=SYSl.NUCLEUS,DISP=OLD
*

IEANUC81 IEWFETCH
LOCFIXGl
81Fe 47FGCG18
8218 5838C8F4
GlFG 478GC872
0218 4138C8F4
82114228
IEANUC81 IEWFETCH

SYSLIB DD Statement
defines the library (SYS1 .NUCLEUS) that contains input module IEANUC01.

SYSIN DD Statement
defines the input stream that contains the SPZAP control statements.

NAME Control Statement
instructs SPZAP that the operations defined by the control statements that
immediately follow this statement are to be performed on the CSECT IEWFETCH
contained in the load module IEANUC01.

IDRDATA Control Statement
causes SPZAP to update the IDR in module IEANUC01 for CSECT IEWFETCH
with the date LOCFIX01, if either of the REP operations is successful.

VERIFY Control Statements
request that SP ZAP compare the contents of the locations X' 01 FO' and X '0210'
in the control section IEWFETCH with the data given in the VERIFY control
statements. If the comparisons are equal, SPZAP continues processing
subsequent control statements sequentially. However, if the data at the
locations does not compare identically to the data given in the VERIFY control
statements, SPZAP dumps a hexadecimal image of CSECT IEWFETCH to the
SYSPRINT data set; the subsequent REP and SETSSI statements are ignored.
The DUMPT function specified will be performed before SPZAP terminates
processing.

REP Control Statements
cause SP ZAP to replace the data at offsets X' 01FO' and X' 0210' from the start
of CSECT IEWFETCH with the hexadecimal data specified on the corresponding
REP statements.

SETSSI Control Statement
causes SPZAP to replace the system status information in the directory for
module IEANUC01 with the SSI data given in the SETSSI statement after the
replacement operations have been effected. The new SSI will contain:

• A change level of 02.
• A flag byte of 11.
• A serial number of 4228.

DUMPT Control Statement
causes SPZAP to produce a translated dump for CSECT IEWFETCH of load
module IEANUC01.

Example 3: Inspecting and Modifying Two CSECTs in the Same Load Module
This example shows how to inspect and modify two control sections in the same
module.

//CHANGIT
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

NAME
VERIFY
REP
IDRDATA
SETSSI
DUMPT
NAME
VERIFY
REP
IDRDATA
SETSSI
DUMPT

/*

JOB MSGLEVEL=(l,l)
EXEC PGM=AMASPZAP
DD SYSOUT=A
DD DSNAME=SYSl.LINKLIB,DISP=OLD
DD *

IEFX5000 IEFQMSSS
0284 4780,C096
0284 4770,C096
PTF01483
01212448
IEFX5000 IEFQMSSS
IEFX5000 IEFQMRAW
0154 4780,C042
0154 4770,C042
PTF01483
01212448
IEFX5000 IEFQMRAW

Chapter 4. SPZAP 4-23

4-24 Service Aids

SYSLIB DD Statement
defines the data set to be accessed by SPZAP while performing the operations
specified by the control statements. In this case, it defines the system library
SYS1.LINKLIB containing the load module IEFX5000 that is to be changed by
SPZAP.

NAME Control Statement #1
instructs SPZAP that the operations requested via the control statements
immediately following it are to be performed on CSECT IEFQMSSS in load
module IEFX5000 that resides in the data set defined by the SYSLIB DD
statement.

VERIFY Control Statement #1
requests that SPZAP check the hexadecimal data at offset X' 0284' in CSECT
IEFQMSSS to make sure it is the same as the data specified in this control
statement. If the data is identical, SPZAP continues processing the control
statements. If the data is not identical, SPZAP does not perform the REP or
SETSSI for CSECT IEFQMSSS, but it does perform the DUMPT operation. It also
provides a hexadecimal dump of CSECT IEFQMSSS.

REP Control Statement #1
causes SPZAP to replace the data at offset X'0284' in CSECT IEFQMSSS with
the hexadecimal data given in this control statement.

IDRDAT A Control Statement #1
causes SPZAP to update the IDR in module IEFX5000 for CSECT IEFQMSSS with
the data PTF01483, if the first REP operation is successful.

SETSSI Control Statement #1
instructs SPZAP to replace the system status information in the directory entry
for module IEFX5000 with the SSI data given. The new SSI will contain:

• A change level of 01.
• A flag byte of 21.
• A serial number of 2448.

DUMPT Control Statement #1
causes SPZAP to provide a translated dump of CSECT IEFQMSSS.

NAME Control Statement #2
indicates that the operations defined by the control statements that immediately
follow this statement are to be performed on CSECT IEFQMRAW in the load
module IEFX5000.

VERIFY Control Statement #2
requests that SPZAP perform the VERIFY function at offset X' 0154' from the
start of CSECT IEFQMRAW. If the VERIFY operation is successful, SPZAP
continues processing the subsequent control statements sequentially. If the
VERIFY is rejected, however, SPZAP does not perform the following REP or
SETSSI operations, but it does dump a hexadecimal image of CSECT
IEFQMRAW to the SYSPRINT data set and performs the DUMPT operation as
requested.

REP Control Statement #2
causes SPZAP to replace the data at hexadecimal offset X' 0154' from the start
of CSECT IEFQMRAW with the hexadecimal data that is specified in this control
statement.

IDRDATA Control Statement #2
causes SPZAP to update the IDR in module IEFX5000 for CSECT IEFQMRAW
with the data PTF01483, if the second REP operation is successful.

SETSSI Control Statement #2
causes SPZAP to perform the same function as the previous SETSSI, but only if
the second VERIFY is not rejected.

DUMPT Control Statement #2
causes SPZAP to perform the DUMPT function on control section IEFQMRAW.

Example 4: Inspecting and Modifying a Data Record
In this example, the data set to be modified is a volume table of contents.

//ZAPIT JOB MSGLEVEL=(l,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=FORMAT4.DSCB,DISP=OLD,
II UNIT=3330,VOLUME=SER=llllll,DCB=(KEYLEN=44)
//SYSIN DD *

CCHHR 0005000001
VERIFY 2C 0504
REP 2C 0A08
REP 2E 0001,03000102
ABSDUMPT ALL

/*

SYSPRINT DD Statement
defines the message data set.

SYSLIB DD Statement
defines the data set to be accessed by SPZAP in performing the operations
specified by the control statements. In this example, it defines the VTOC (a
Format 4 DSCB) on a 3330 volume with a serial number of 111111.
DCB= (KEYLEN = 44) is specified so that the dump produced by the ABSDUMPT
control statement will show the dsname which is a 44-byte key. Note that this is
not necessary for the VERIFY and REP control statements.

CCHHR Control Statement
indicates that SPZAP is to access the direct access record address
"0005000001" in the data set defined by the SYSLIB DD statement while
performing the operations specified by the following control statements.

VERIFY Control Statement
requests that SPZAP check the data at hexadecimal displacement X' 2C' from
the start of the data record defined in the CCHHR statement to make sure it is
the same as the hexadecimal data specified in this control statement. If the data
is the same, SPZAP continues processing the following control statements
sequentially. If the data is not identical, SPZAP does not perform the REP
function but does perform the ABSDUMPT operation; it also dumps a formatted
hexadecimal image of the data record defined by the CCHHR statement to the
SYSPRINT data set.

Chapter 4. SPZAP 4-25

REP Control Statements
cause the eight bytes of data starting at displacement 2C from the beginning of
the record to be replaced with the hexadecimal data in the REP control
statements. The 2C displacement value allows for a 44-byte key at the
beginning of the record.

ABSDUMPT Control Statement
causes SPZAP to dump the entire data set to the SYSPRINT data set. Since
DCB= (KEYLEN = 44) is specified on the SYSLIB DD statement, the 44-byte
dsname is also dumped.

Note: If the VTOC is to be modified, message AMA117D is to be issued to the
operator, requesting permission for the modification.

Example 5: Entering SPZAP Control Statements Through the Console
This example shows how to enter SPZAP control statements through the console.

//CONSOLIN JOB
//STEP EXEC
//SYSPRINT DD
//SYSLIB DD
//SYSIN DD

CONSOLE
/*

SYSLIB DD Statement

MSGLEVEL=(l,1)
PGM=AMASPZAP
SYSOUT=A
DSNAME=SYSl.LINKLIB,DISP=OLD
*

defines the data set that contain$ the module to be updated.

SYSIN DD Statement
defines the input stream.

CONSOLE Control Statement
indicates that SPZAP control statements are to be entered through the console.

Example &: Using the BASE Control Statement for Inspecting and Modifying a
Load Module

4-26 Service Aids

This example shows how to inspect and modify a CSECT whose starting address
does not coincide with assembly listing location zero.

//MODIFY
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

NAME
BASE
IDRDATA
VERIFY
REP
DUMP

/*

JOB MSGLEVEL=(l,1}
EXEC PGM=AMASPZAP
DD SYSOUT=A
DD DSNAME=SYSl.LINKLIB,DISP=OLD
DD *

IEFMCVOL IEFCVOL2
0398
MOD04
039A 5820C010
039A 47000000
IEFMCVOL IEFCVOL2

SYSLIB DD Statement
defines the data set to be accessed by SPZAP when performing the operations
requested via the control statements. In this case, it defines the system library,
SYS1 .LINKLIB, that contains the module IEFMCVOL in which the CSECT to be
changed, IEFCVOL2, resides.

SYSIN DD Statement
defines the input stream that contains the SPZAP control statements.

NAME Control Statement
instructs SPZAP that the operations defined by the control statements that
immediately follow it are to be performed on CSECT IEFCVOL2 in the load
module IEFMCVOL.

BASE Control Statement
provides SPZAP with a base value that is to be used to readjust the offsets on
the VERIFY and REP statements that follow it.

IDRDATA Control Statement
causes SPZAP to update the IDR in module IEFMCVOL for CSECT IEFCVOL2
with the data MOD04, if the REP operation is successful.

VERIFY Control Statement
requests that SPZAP inspect the data at offset X '039A'. The base value
X '0398' given in the previous BASE statement is subtracted from this offset to
determine the proper displacement of the data within CSECT IEFCVOL2.
Therefore, SPZAP checks the data at the location that is actually displaced
X'0002' bytes from the beginning of CSECT IEFCVOL2 to ensure that it is the
same as the hexadecimal data specified in this control statement. If the data is
the same, SPZAP continues processing the following statements in the order in
which they are encountered. If the data is not identical, SPZAP does not
perform the REP, SETSSI, or IDRDATA functions, but it does perform the DUMPs
operation; it also dumps a hexadecimal image of CSECT IEFCVOL2 to the
SYSPRINT data set.

REP Control Statement
causes SPZAP to replace the data at displacement X'0002' (offset 039A minus
base value 0398) into CSECT IEFCVOL2 with the hexadecimal data specified in
this control statement.

DUMP Control Statement
requests that SPZAP dump a hexadecimal image of CSECT IEFCVOL2 to the
SYSPRINT data set. Since the DUMP statement follows the REP statement, the
image will reflect the changes made by SPZAP (assuming no verification has
been rejected).

Chapter 4. SPZAP 4-27

4-28 Service Aids

Chapter 5. Abbreviation Dictionary

Abbreviation

AID
ASCB
ASID
ASXB
ASVT
ASMVT
BCB
BSAM
CCT
ccw
COE
CESD
CHPID
COM
cs
CSCB
CSCH
CSD
CSE CT
CVT
DA
DCB
DEB
DUB
DOE
DS
DSCB
EBCDIC
ECB
EID
EOF
EOV
EP
EPA
ERB
EREP
ESD
FID
FSS
FXTAB
GSMQ
GSPL
GTF
GTFBCB
GTFBLOK
GTFBUFR
GTFPCT
HSCH
ICR
IDR

GC28-1844-2 © Copyright IBM Corp. 1988, 1989

Meaning

record identifier
address space control block
address space identifier
address space control block extension
address space vector table
auxiliary storage manager vector table
buffer control block
basic sequential access method
common control table
channel command word
contents directory entry
composite external symbol dictionary
channel path identifier
common communication area
control section name
command scheduling control block
clear subchannel
common system data area
control section
communication vector table
data area or direct access
data control block
data extent block
distribution library
description queue element
data set
data set control block
extended bi nary-coded-decimal-interchange code
event control block
event identifier
end of file
end of volume
entry point name
entry point address
error recovery block
environmental record error and printing program
external symbol dictionary
format identifier
functional subsystem
fix table
global service manage queue
global service priority list queue
generalized trace facility service aid program
GTF buffer control block
GTF blocking area
GTF buffer
GTF primary control table
halt subchannel
independent component release
CSECT identification record

5-1

5-2 Service Aids

INITDATA
110
IOS
IPL
IOE
JCL
JFCB
JOB NAME
LCCA
LCCAVT
LGVT
LIST
LLE
LPA
LPID
LPRB
LR
LRECL
LSMO
LSPL
LSOA
LT
LTH
MC
MCAWSA
MCCD
MCCE
MC CLE
MCED
MCEE
MCHEAD
MCOE
MCRWSA
MN
MSCH
PCB
PCI
PDS
POSE
PER
PICA
PSW
PTF
OCB
OCR
OEL
RANGETAB
RB
RCSW
RE
REC FM
RLD
RNIO
ROE
SAD MP
scsw

initialization data
input/output
input/output supervisor
initial program load
interruption queue element
job control language
job file control block
jobname
logical configuration communication area
logical configuration communication area vector table
logical group vector table
AMBLIST service aid program
load list element
link pack area
logical page identifier
loaded program request block
label reference
logical record length
logical service manage queue
logical service priority list
local system queue area
logical track
logical track header
monitor call
monitor call application work/save area
monitor call class directory
monitor call control element
monitor call class element
monitor call event directory
monitor call event element
monitor call base table
monitor call queue element
monitor call router work/save area
module name
modify subchannel
print control block
program controlled interruption
partitioned data set
partitioned data set extended
program event recording
program interruption control area
program status word
program temporary fix
queue control block
queue control record
queue element
range table
request block
real channel status word
record entry
record format
relocatable load dictionary
remote network input/output
reply queue element
AMDSADMP service aid program
subchannel status word

SD
SDATA
SLE
SLH
SLIP
SMP
SP ZAP
SQA
SR
SSCH
SSI
STA
SVC
SYSGEN
SYSIN
SYSOUT
TCAM
TCB
TIOT
TOD
TOE
TTR
UCB
VCCT
VOLID
VPA
vs

section definition
service data area
save list element
subchannel logout handler
serviceability level indication processing
System Modification Program
AMASPZAP service aid program
system queue area
subroutine
start subchannel
system index status
starting address
supervisor call
system generation
system input
system output
telecommunications access method
task control block
task input/output table
time of day
timer queue element
relative trace and record address
unit control block
virtual common communications table
volume identification
virtual page address
virtual storage

Chapter 5. Abbreviation Dictionary 5-3

5-4 Service Aids

Index

A
abbreviation dictionary

SADMP service aid 5-1
abbreviations for service aid names xii
ABDUMP= parameter

in GTF 1-2, 1-4, 1-5
ABEND dump

including trace data 1-2
ABSDUMP/ABSDUMPT control statement

example 4-26
in SPZAP 4-5, 4-15, 4-26
parameter 4-15

AB= parameter
in GTF 1-5

ADDA= parameter
of AMDSADMP macro 3-9

AMASPZAP service aid xii
See also SPZAP service aid

AMA1121 4-4
AMBLIST service aid xii

See also LIST service aid
AMDSADMP macro

assembly 3-10
example 3-35
format for high-speed dump 3-6
low-speed dump 3-8
low-speed dump, format 3-8
multiple versions, assembling 3-12
parameter

ADDA= 3-9
CONSOLE= 3-7, 3-9
DUMP 3-19
DUMP= 3-7
IPL= 3-6, 3-8
LOADPT= 3-7, 3-10
MINASID 3-8
MSG= 3-8, 3-10
OUTPUT= 3-7, 3-9
PROMPT 3-7, 3-19
SYSUT= 3-7, 3-9
TYPE = 3-6, 3-8
ULABEL = 3-6, 3-9
VOLSER = 3-6, 3-9

sampleJCL 3-11
symbol 3-6, 3-8, 3-12
syntax

for high-speed dump 3-6
SYS1.MACLIB data set

assembly 3-11
two-stage generation 3-10

AMDSADMP service aid xii
See also SADMP service aid

GC28-1844-2 ©Copyright IBM Corp. 1988, 1989

application identifier
See AID

applying fixes xii
ASID option

for SADMP 3-21
ASIDP trace option

description 1-9

B

in GTF 1-9, 1-17
prompting 1-13, 1-17

BASE control statement
example 4-27
in SPZAP 4-3, 4-16, 4-27
parameter 4-16

BUF = parameter
in GTF 1-4, 1-5

c
CANCEL command 1-24
catalog

rebuilding 4-8
cataloged procedure

GTF 1-3, 1-7
CCHHR control statement

in SPZAP 4-4, 4-12
parameter 4-12

CCW trace option
combining certain trace options 1-12
description 1-9
in GTF 1-9, 1-12

CCWN= parameter of GTF CCWP 1-13, 1-14
CCWP trace option

combining certain trace options 1-12
description 1-9
in GTF 1-9, 1-12, 1-13, 1-14, 1-15
parameter

CCWN= 1-14
DATA= 1-14
IOSB 1-15
PCITAB 1-15
s111s1 1-14

prompting 1-13
central (also called real) storage dump

description 3-1
of SADMP 3-2

changing the name of the trace data set 1-19
channel program data

record 1-9
CHECKSUM control statement

in SPZAP 4-17
parameter 4-17

X-1

choosing a service aid xii
clear subchannel operation

record 1-9
code

See return code, wait reason code
combination of LIST control statement 2-3
combining GTF trace options 1-12
comment control statement

See *control statement in SPZAP
console communication

in GTF 1-8, 1-13, 1-18
in SADMP 3-28

CONSOLE control statement
example 4-26
in SPZAP 4-16, 4-26

consoles supported by SADMP 3-7, 3-9
CONSOLE= parameter

of AMDSADMP macro 3-9
CONSOLE= parameter of

AMDSADMP macro 3-7
control statement

for LIST 2-3
for SPZAP 4-11

copying dumps
tape to DASO 3-32

cross-reference I ist
LIST output 2-6

CSA dumped by SADMP 3-2
CSCH trace option

combinirig certain trace options 1-12
description 1-9
in GTF 1-9, 1-12

CSECT identification record
print 2-1

CSECT name

D

NAME control statement
of SPZAP 4-2

data
inspecting with SPZAP 4-2
modifying with SPZAP 4-2

DATASPACES option
for stand-alone dump 3-22

DATA= parameter of GTF CCWP 1-13, 1-14
DD statement

in LIST
anyname 2-2
SYSIN 2-2
SYSPRINT 2-2

in SADMP 3-5, 3-32
SYSIN 3-18
SYSPRINT 3-18
SYSPUNCH 3-11

in SPZAP
SYSABEND 4-8
SYSIN 4-8, 4-21, 4-22, 4-26, 4-27
SYSLIB 4-2, 4-7, 4-21, 4-22, 4-24, 4-25, 4-26, 4-27

X-2 Service Aids

DD statement (continued)
in SPZAP (continued)

SYSPRINT 4-7, 4-25
SYSLIB 3-5
SYSUT2 3-32

DDN = parameter
LISTIDR control statement 2-5
LISTLOAD control statement 2-3
LISTOBJ control statement 2-4

DEBUG option
of SLIP 1-10

DEBUG= parameter
in GTF 1-4, 1-6

DEBUG= NO 1-6
DEBUG= YES 1-6
devname

on START command for GTF 1-3
DISP parameter

output data set specification 1-6
dispatchable units of work

record 1-9
DSNAME parameter

changing the name of the trace data set 1-6
DSP trace option

description 1-9
in GTF 1-9

DUMP command 3-23
DUMP control statement

in SPZAP 4-5
DUMP parameter

of AMDSADMP macro 3-7, 3-19
dump tailoring option

for SADMP 3-20
dump title

in LIST
LISTIDR control statement 2-4, 2-5
LISTLOAD control statement 2-3
LISTOBJ control statement 2-4

specification 2-3, 2-4, 2-5
specification in SADMP 3-28

DUMP/DUMPT control statement
example 4-22, 4-23, 4-24, 4-25, 4-27
in SPZAP 4-14, 4-15, 4-22, 4-23, 4-24, 4-25, 4-27
parameter 4-14, 4-15

dvolser 3-31
dynamic invocation

of SPZAP 4-9

E
EID assignment

user event 1-27
END keyword

in GTF prompting 1-13, 1-17, 1-21
EREP xii
error recovery 1-28
ESTAE operation

record 1-10

event identifier
See EID

example
of using GTF 1-18
of using LIST 2-15
of using SADMP 3-35
of using SPZAP 4-21

EXEC statement
in GTF cataloged procedure 1-7

EXT trace option
combining certain trace options 1-12
description 1-9
in GTF 1-9, 1-12

external interruption
record 1-9

F
filter routine

handling errors 1-28
fixed link pack area

map 2-5
fixes xii
FLPA parameter

of LISTLPA (LIST) 2-5
FORCE ARM command 1-24
FORCE command 1-24
format identifier

See FID
formatted dump 3-2
formatted dump program

example 3-36
Formatted SADMP printing 3-32
formatting and printing service aids xii
FRR data

record 1-10
functional recovery routine data

record 1-10

G
generalized trace facility xii

See also GTF
generating and applying fixes xii
GTF cataloged procedure

EXEC statement 1-7
IEFRDER DD statement 1-7
PROC statement 1-7
SYSLIB DD statement 1-7

GTF START command parameter
devname 1-3
example 1-3
identifier 1-3
keyword= option 1-3, 1-6
MEMBER= 1-6
parm member

ABDUMP= 1-4, 1-5
BLOK= 1-5
BUF= 1-4, 1-5

GTF START command parameter (continued)
parm member (continued)

DEBUG= 1-4, 1-6
MODE= 1-4
SADMP= 1-4
SDUMP= 1-4, 1-5
specifying on the START command 1-3
TIME= 1-4, 1-5

procname 1-3
volserial 1-3, 1-4

GTF trace event
record 1-11

GTF trace option
ASIDP 1-9
CCWP 1-9
combining certain options 1-12
CSCH 1-9
DSP 1-9
EXT 1-9
HSCH 1-9
in SYS1.PARMLIB 1-7, 1-8
JOBNAMEP 1-9
MSCH 1-9
PCI 1-10
Pl 1-10
PIP 1-10
prompting for 1-13
RNIO 1-10
RR 1-10
SLIP 1-10
specification 1-8
specifying 1-18
SRM 1-10
SSCH 1-10
SSCHP 1-10
storing 1-19
summary of 1-9
SVC 1-11
SVCP 1-11
SYS, SYSM, SYSP 1-11
TRC 1-11
USR, USRP 1-11, 1-12

GTF trace options
in SYS1 .PARMLIB

storage 1-19
GTF trace record format

comprehensive 1-2
minimal 1-2

GTF (generalized trace facility)
AFFINITY macro 1-1
cataloged procedure

EXEC statement 1-7
IEFRDER DD statement 1-7
in SYS1 .PROCLIB 1-7
PROC statement 1-7
SYSLIB DD statement 1-7

combining certain trace options 1-12
description xi, 1-1

Index X-3

GTF (generalized trace facility) (continued)
error recovery handling 1-28
example 1-18
function xii
GTF usage 1-2
initialization

example 1-18
specify trace option 1-18

output
deferred mode 1-2
external mode 1-2
internal mode 1-2

prompting 1-13
recording user data

coding the GTRACE macro 1-27
printing user data 1-27

starting GTF
cataloged procedure 1-3
example 1-7
how to start 1-3
prompting 1-13
specify trace option 1-8
START command 1-3
storing trace options in SYS1.PARMLIB 1-19

STOP command 1-24
storage requirement 1-26
system trace 1-1
trace option summary 1-9
trace output 1-2, 1-19
trace output retrieval 1-2
trace VTAM remote network activity 1-22
user trace data 1-27
31-bit addressing support 1-1

GTFPARM parameter 1-3, 1-6, 1-7
GTRACE header in data field of GTF user trace

record 1-27
GTRACE macro

addressing mode 1-1

H

effect on EDIT user program 1-27
function 1-27
recording user trace data 1-27

halt subchannel operation
record 1-9

high speed dump 3-2
high speed dump program

example 3-35
high-speed version

of SADMP 3-6
high-speed version of SADMP 3-2
HSCH trace option

combining certain trace options 1-12
description 1-9
in GTF 1-9, 1-12

X-4 Service Aids

identifier
on START command for GTF 1-3

IDRDATA control statement
example 4-22, 4-24, 4-25, 4-27
in SPZAP 4-14, 4-22, 4-24, 4-25, 4-27
parameter 4-14

IEBGENER utility 3-32
IEBPTPCH utility 3-1
IEFRDER DD statement

in GTF cataloged procedure 1-7
information gathering service aids xii
initial status request interruption

record 1-10
initialization error messages

in SADMP 3-13
inspecting data

using SPZAP 4-2
instruction address trace 3-2
interactive problem control system

SeelPCS
intermediate status interruption

record 1-10
internal trace

request 1-4, 1-18
interruption

code 1-10, 1-16
external 1-9
initial status request 1-10
intermediate status 1-10
110 1-9, 1-15
program 1-10, 1-16
program-controlled 1-10
resume channel program 1-10
supervisor (SVC) 1-11, 1-16
suspend channel program 1-10

10 trace option
combining certain trace options 1-12
description 1-9
in GTF 1-9, 1-12

IOP trace option
combining certain trace options 1-12
description 1-9
in GTF 1-9, 1-12, 1-15
prompting 1-15

IOSB parameter of GTF CCWP 1-13, 1-15
IO=SSCH= prompting 1-16, 1-17
IPCS (interactive problem control system) xi
IPL= parameter

of AMDSADMP macro 3-6, 3-8
1/0 GTFBLOK

how to request 1-5
1/0 interruption

record 1-9

(

\

J
JCL statement

LIST service aid 2-2, 2-15
SADMP program 3-34
SPZAP service aid 4-7

JOBNAMEP trace option
description 1-9

K

in GTF 1-9, 1-16
prompting 1-16

keyword= option 1-6

L
link pack area

LIST service aid 2-5
map 2-5

list a link pack area 2-5
list a load module 2-3
list CSECT identification record 2-4
LIST service aid

control statement
LISTIDR 2-4
LISTLOAD 2-3, 4-5
LISTLPA 2-5
LISTOBJ 2-4
rules for coding 2-3

description xi
example 2-15
function xii, 2-1
JCL statement 2-2
mapping CSECTs in a load module 2-1
output 2-6
verification of an object model 2-1
verification of nucleus contents 2-1

LISTIDR control statement
example 2-17, 2-19, 2-20
format 2-4
in LIST 2-4, 2-5, 2-7, 2-17, 2-19, 2-20
output 2-7
parameter

DON= 2-5
MEMBER= 2-5
MODLIB 2-5
OUTPUT= 2-4
TITLE= 2-5

LISTLOAD control statement
example 2-16, 2-19, 2-20
format 2-3
in LIST 2-3, 2-4, 2-6, 2-16, 2-19, 2-20, 4-5
output 2-6
parameter

DON= 2-3
MEMBER= 2-3
OUTPUT= 2-3
RELOC= 2-4
TITLE= 2-3

LISTLOAD control statement (continued)
to I ist the SSI 4-5

LISTLPA control statement
example 2-20
format 2-5
in LIST 2-5, 2-7, 2-20
output 2-7
parameter

FLPA 2-5
MLPA 2-5
PLPA 2-5

LISTOBJ control statement
example 2-15, 2-18, 2-19
format 2-4
in LIST 2-4, 2-7, 2-15, 2-18, 2-19
output 2-7
parameter

DON 2-4
MEMBER= 2-4
TITLE= 2-4

load module list
LIST output 2-3, 2-6, 2-16

LOADPT = parameter
of AMDSADMP macro 3-7, 3-10

low speed dump 3-2
low-speed version

of SADMP 3-3, 3-8
LPA map

See link pack area, map
LSQA dumped by SADMP 3-2

M
macro expansion messages

in SADMP 3-13
main storage dump

description 3-1
of SADMP 3-2

map
link pack area 2-1, 2-5, 2-20
load module 2-1
nucleus 2-1, 2-20

MEMBER= parameter 1-6
LISTIDR control statement 2-5
LISTLOAD control statement 2-3
LISTOBJ control statement 2-4

message
from SPZAP 4-18
GTF 1-8, 1-17, 1-18, 1-19, 1-20, 1-21, 1-22, 1-23
SADMP program 3-28

message display
SADMP program 3-31
3480 device 3-31

MINASID parameter
of AMDSADMP macro 3-8

MLPA parameter
of LISTLPA (LIST) 2-5

Index X-5

MODE= parameter
in GTF 1-4

modified link pack area
map 2-5

modify subchannel operation
record 1-9

modifying data
using SPZAP 4-2, 4-21, 4-25

modifying data (SPZAP) 4-22, 4-23, 4-26
MODLIB parameter

of LISTIDR (LIST) 2-5
module listing program xii
MSCH trace option

combining certain trace options 1-12
description 1-9
in GTF 1-9, 1-12

MSG= parameter
of AMDSADMP macro 3-8, 3-10

N
NAME control statement

example 4-21, 4-22, 4-24, 4-27
in SPZAP 4-2, 4-11, 4-21, 4-22, 4-24, 4-27
parameter 4-11

notation for defining control statement parameters xiii
nucleus

map using LIST 2-1

0
object module list

how to obtain 2-15
of SADMP 3-33
OPEN/CLOSE/EOV 1-12
operator communication

See message
console communication

output 3-32
of GTF 1-28
of LIST 2-6
of SPZAP 4-18

output space requirements
of GTF 1-26

OUTPUT= parameter

p

LISTIDR control statement 2-4
LISTLOAD control statement 2-3
of AMDSADMP macro 3-7, 3-9

pageable link pack area
map 2-5

parameter
of EXEC statement

in GTF 1-7
of GTF START command 1-3

X-6 Service Aids

PARM option
IGNIDRFULL 4-7
of JCL EXEC statement 4-7

for SPZAP service aid 4-7
SPZAP 4-7

PARM= parameter of EXEC statement
in GTF cataloged procedure

ABDUMP= 1-5
BLOK= 1-5
BUF= 1-4, 1-5
DEBUG= 1-6
keyword= 1-6
MEMBER= 1-6
MODE= 1-4
SADMP= 1-4
SDUMP= 1-5
TIME= 1-5

PCI trace option
description 1-10
in GTF 1-10

PCITAB= parameter of GTF CCWP 1-13, 1-15
Pl trace option

combining certain trace options i-12
description 1-10
in GTF 1-10, 1-12

PIP trace option
combining certain trace options 1-12
description 1-10
in GTF 1-10, 1-12, 1-16
prompting 1-16

PLPA parameter
of LISTLPA (LIST) 2-5

PROC statement
in GTF cataloged procedure 1-7

procname
on START command for GTF 1-3

program interruption
record 1-10

program interruption code 1-10
program interruptions

record 1-10
program-controlled interruption

record 1-10
PROMPT parameter

of AMDSADMP macro 3-7, 3-19
prompting

example 1-18
how to request 1-13
in GTF 1-13, 1-18

PSA dumped by SADMP 3-2

R
RANGE option

for SADMP 3-21
reason code

issued by SADMP 3-25, 3-27

REGION parameter
GTF cataloged procedure 1-6

RELOC = parameter
of LISTLOAD (LIST) 2-4

remote network activity
See RNIO

REP control statement
example 4-21, 4-23, 4-24, 4-27
in SPZAP 4-2, 4-13, 4-21, 4-23, 4-24, 4-27
variable 4-13

resume channel program interruption
record 1-10

resume subchannel data
how to record 1-10
record 1-10

return code 3-16
from SPZAP 4-8

RNIO trace option
description 1-10
in GTF 1-10

RR trace option

s

combining certain trace options 1-12
description 1-10
in GTF 1-10, 1-12

SADMP message
display example 3-31
MSADMP#U 3-31
NTRDY 3-31
RSADMP# 3-31
RSADMP# U 3-31
SADMP# 3-31
status information

3480 device 3-31
SADMP output

description 3-2
printing 3-32

SADMP program variation
description 3-2

SADMP service aid
abbreviation dictionary 5-1
AMDSADMP macro 3-8

coding 3-35
assembly of the AMDSADMP macro 3-10
central (also called real) storage

print 3-32
central (also called real) storage dump 3-2
coding AMDSADMP macro

for high-speed dump 3-6
consideration 3-5
copying dumps

tape to DASO 3-32
creation 3-4
DD statement 3-18
description xi
device selection 3-4

SADMP service aid (continued)
DUMP command 3-23
dump program execution 3-24, 3-25, 3-27
dump specification 3-4
dump tailoring option 3-20
dump title specification 3-28
dumping 3-27
dumping additional storage 3-19, 3-20
dvolser 3-31
error condition 3-13
example 3-35
execution 3-19, 3-24
execution procedure 3-24, 3-25, 3-27
formatted output 3-32
formatted printing 3-32
function xii
generation

requesting additional storage 3-19
IEBGENER utility 3-32
IEBPTPCH utility 3-32
initialization of residence volume 3-4, 3-16
instruction address trace 3-2
IPCS LIST subcommand 3-25
IPLing and executing 3-24, 3-25
JCL statement 3-34
low-speed dump 3-8
low-speed version 3-3
macro message 3-16
macro parameter 3-6, 3-7, 3-8, 3-9, 3-10, 3-12, 3-19
main storage dump 3-2
mapping

nucleus 3-2
message 3-28
message output 3-13
nucleus 3-2
one-step generation 3-4, 3-16, 3-19
output 3-32
re-IPLing 3-24, 3-27
reason code 3-25, 3-27
residence volume initialization 3-4
restart 3-24
restarting SADMP 3-27
return code 3-16
sample console exchange 3-30
sample JCL 3-11, 3-16
self-dump 3-2, 3-24
specification

of address range 3-20
of subpool 3-20

storage dump 3-24
system restart 3-25
two-stage generation 3-4, 3-10, 3-16
unformatted output 3-32
used for self-dump 3-25
using IPCS 3-32
vector facility data 3-2
virtual storage dump 3-2
wait state 3-27

Index X-7

SADMP service aid (continued)
wait state code 3-25
wait-reason code 3-26, 3-27, 3-28

processing completion 3-26
3480 message 3-31

SADMP = parameter
in GTF 1-2, 1-4

SA= parameter
in GTF 1-4

SDUMP = parameter
in GTF 1-2, 14, 1-5

SD= parameter
in GTF 1-5

self-dump
of SADMP 3-2, 3-24

service aid
choosing xii
GTF xii
IPCS xii
LIST xii
SADMP xii
SPZAP xii
summary xii

serviceability level indication processing (SLIP)
See SLIP index entries

SETSSI control statement
example 4-22, 4-23, 4-24, 4-25
in SPZAP 4-5, 4-14, 4-22, 4-23, 4-24, 4-25
parameter 4-14

SLIP data
record 1-10

SLIP trace option
description 1-10
in GTF 1-10

SNAP dump
including trace data 1-2

SP option
for SADMP 3-21

SPZAP service aid
access

data record 4-4
load module 4-2

AMASPZAP program 4-1
control statement

ABSDUMP 4-5, 4-15, 4-26
ABSDUMPT 4-15, 4-26
BASE 4-3, 4-16, 4-27
CCHHR 4-4, 4-12
CHECKSUM 4-17
CONSOLE 4-16, 4-26
DUMP 4-5, 4-14, 4-22, 4-23, 4-24, 4-25, 4-27
DUMPT 4-14, 4-22, 4-23, 4-24, 4-25, 4-27
IDRDATA 4-14, 4-22, 4-24, 4-25, 4-27
NAME 4-2, 4-11, 4-21, 4-22, 4-24, 4-27
REP 4-2, 4-13, 4-21, 4-23, 4-24, 4-27
rules for coding 4-11
SETSSI 4-5, 4-14, 4-22, 4-23, 4-24, 4-25
VERIFY 4-2, 4-12, 4-21, 4-23, 4-24, 4-27
* 4-16

X•8 Service Aids

SPZAP service aid (continued)
data modification and inspection 4-2
data record

inspection 4-4
modification 44

description xi
dumping data 4-5
dynamic invocation

example 4-10
macro form 4-9

example 4-21
executing SPZAP 4-21
JCL statement 4-7
load module

inspection 4-2
modification 4-2

monitoring SPZAP use 4-1
operational consideration 4-6
output 4-18
return code 4-8
updating system status information 4-5

SQA dumped by SADMP 3-2
SRM data

record 1-10
SRM trace option

description 1-10
in GTF 1-10

SSCH trace option
combining certain trace options 1-12
description 1-10
in GTF 1-10, 1-12

SSCHP trace option
combining certain trace options 1-12
description 1-10
in GTF 1-10, 1-12, 1-16
prompting 1-16

ST AE operation
record 1-10

stand-alone dump program xii
START command 1-3, 1-19, 1-24
start subchannel data

record 1-10
STOP command 1-24
storage

See central (also called real) storage
virtual storage

storage requirements
for GTF 1-26

STORE STATUS command 3-2, 3-25, 3-26, 3-27
subpools dumped by SADMP 3-2
superzap (data checker and modifier) xii
suspend channel program interruption

record 1-10
SVC dump

including trace data 1-2
SVC interruption

record 1-11

/
\

SVC trace option
combining certain trace options 1-12
description 1-11
in GTF 1-11, 1-12

SVCP trace option
combining certain trace options 1-12
description 1-11
in GTF 1-11, 1-12, 1-16
prompting 1-16

SYS trace option
combining certain trace options 1-12
description 1-11
in GTF 1-11, 1-12

SYSABEND DD statement 4-8
SYSIN DD statement 4-8, 4-21, 4-22, 4-26, 4-27

in SADMP 3-18
used in LIST 2-2
used in SPZAP 4-26

SYSLIB DD statement 4-2, 4-7, 4-21, 4-22, 4-24, 4-25,
4-26, 4-27

in SADMP 3-5
used in GTF 1-7, 1-20
used in SPZAP 4-26

SYSM trace option
combining certain trace options 1-12
description 1-11
in GTF 1-11, 1-12

SYSP trace option
combining certain trace options 1-12
description 1-11
in GTF 1-11, 1-12

SYSPRINT DD statement 4-7, 4-25
in SADMP 3-18
used in LIST 2-2

SYSPUNCH DD statement
in SADMP 3-11

system event
trace with GTF 1-1

system resource manager data
record 1-10

system restart
for SADMP 3-25

system status index
function 4-5

system status index (SSI)
field 4-5
flag byte 4-5, 4-6

system trace 1-1
SYSUT2 DD statement 3-32
SYSUT = parameter

of AMDSADMP macro 3-7, 3-9
SYS1 .LPALIB library 4-7
SYS1.MACLIB 3-1

AMDSADMP macro instruction
assembly 3-11

SYS1.PARMLIB library 1-3, 1-6, 1-7, 1-8
SYS1.PROCLIB library 1-7

SYS1 .TRACE library 1-7
SlllSI parameter of GTF CCWP 1-14

T
timestamp record

how to request 1-5
TIME= parameter

GTF 1-5
in GTF 1-4

TIME=NO 1-6
TIME=YES 1-5
title, specification

See dump title, specification
TITLE= parameter

LISTIDR control statement 2-5
LISTLOAD control statement 2-3
LISTOBJ control statement 2-4

trace buffers
storage required 1-26

trace dispatchable units of work 1-9
trace option

See GTF trace option
trace record format

comprehensive 1-2
minimal 1-2

tracing external interruption 1-9
tracing functional recovery routine operation 1-10
tracing halt subchannel operation 1-9
tracing initial status request interruption 1-10
tracing intermediate status interruption 1-10
tracing 110 interruption 1-9
tracing modify subchannel operation 1-9
tracing program interruption 1-10
tracing program-controlled interruption 1-10
tracing resume channel program interruption 1-10
tracing SLIP trap 1-10
tracing suspend channel program interruption 1-10
tracing VTAM network activity 1-10
TRC trace option

description 1-11
in GTF 1-11

TYPE= parameter 3-8
of AMDSADMP macro 3-6, 3-8

u
ULABEL = parameter

of AMDSADMP macro 3-6, 3-9
unformatted dump 3-2
unformatted dump program

example 3-36
user trace data

record 1-11, 1-12
USR trace option

combining certain trace options 1-12
description 1-11; 1-12
in GTF 1-11, 1-12

Index X-9

USRP trace option

v

combini1"9 certain trace options 1-12
description 1-11, 1-12
in GTF 1-11, 1-12, 1-16
prompting 1-16

vector facility data 3-2
VERIFY control statement

example 4-21, 4-23, 4-24, 4-27
in SPZAP 4-2, 4-12, 4-21, 4-23, 4-24, 4-27
parameter 4-12

virtual storage dump
description 3-1
of SADMP 3-2

volserial
on START command for GTF 1-4

VOLSER = parameter
of AMDSADMP macro 3-6, 3-9

VSAM object
accessing 4-8

VT AM network activity
record 1-10

w
wait state code

issued by SADMP 3-25, 3-27
wait-reason code

issued by SADMP 3-26, 3-27, 3-28
unloading a tape 3-26

Special Characters
* control statement

in SPZAP 4-16

X-10 Service Aids

(

\

MVS/ESA Service Aids

GC28-1844-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publica
tion, its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
di.rect any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

MVS/ESA Service Aids
GC28-1844-2

Reader's Comment Form

Fold and Tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO Box 950
Poughkeepsie, New York 12602-9935

S370-37

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1 ••• 11 •• 1.1.11 .. 11 1.11.1 .. 1.1 •••• 11 •• 1.1 ••• 11.1

Fold and Tape Please Do Not Staple Fold and Tape

Printed in U.S.A. --...------- - - ---- - -- -.. ---- -----------_ _...._._
®

c
u
t

a
1
0

n
g

t
h

;
n
e

/

\

--------- ----- - -- - ---- - - ------ -----·-®

Printed in U.S.A.

Program Number
5665-001
5665-002

GC28-1844-2

File Number
8370-37

J

