

o
--------- -------- - ---- - - ----------_.-

Order Number
GC26-4011-2

MVS/Extended Architecture
Linkage Editor and Loader
User's Guide

Data Facility Product
5665-284

Licensed
Program

Version 1
Release 1.2

Third Edition (January 1987)

This is a major revision of, and makes obsolete, GC26-40ll-l.

This edition applies to Version I Release 1.2 of MVS/Extended
Architecture Data Facility Product, Licensed Program 5665-284,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters. This publication was
formerly titled MVS/Extended Architectyre Linkage Editor and
loader.

The changes for this edition are summarized under "Summary of
Changes" following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not
noted.

Changes are made periodically to this pUblication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370. 30xx. and 4300
Processors Bibliography, GC20-000l, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality. If you request publications from the address given
below, your order will be delayed because publications are not
stocked there.

A form for readers' comments is provided at the back of this
publication,. 'If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring, any obligation to you.

@ Copyright International Business Machines Corporation 1982,
1984, 1987

PREFACE

(

ORGANIZATION

(

This publication supports Data Facility Product, a component of
MVS/Extended Architecture CMVS/XA), and provides application
programmers with the information necessary to use the linkage
editor and loader to prepare the output of a language translator
for execution. Additional information on the operation and use
of the linkage editor and loader is directed to the system
programmer responsible for installing and maintaining the
operating system.

This pUblication contains an introduction and two major parts I

• "Introduction" defines the functions and gives
recommendations for the use of the linkage editor and
loader.

• "Part I. Linkage Editor" describes the processing facilities
and operation of the linkage editorl

"Chapter 1. Overview" describes object and load modules
and gives a general overview of linkage editor
processing.

"Chapter 2. Uses of the Linkage Editor" provides
descriptions of the functions of the linkage editor, and
explains its relationship to the operating system.

"Chapter 3. Defining Input to the Linkage Editor"
describes how to define the primary input data set, how
to use the automatic library call mechanism, and how to
include other data sets as input.

"Chapter 4. Specifying JCL to Run a Linkage Editor Job"
explains the job control language necessary to run a
linkage editor job step.

"Chapter 5. Specifying an Operation with Control
Statementsn summarizes the various linkage editor
control statements that can be used in running the job.

"Chapter 6. Editing a Control Section" describes how to
change external symbols, replace control sections,
delete control sections or entry names, order control
sections or named common areas, and align control
sections or named common areas on page boundaries.

"Chapter 7. Invoking .the Linkage Editor" gives the macro
instructions used by 8 problem program to invoke the
linkage editor.

"Chapter 8. Interpreting Linkage Editor Output"
describes how to interpret the output load modules and
diagnostic information produced by the linkage editor.

"Appendix A. Sample Linkage Editor Program" contains
four sample programs illustrating the use of the linkage
editor.

"Appendix B. Linkage Editor Requirements and Capacities"
describes the record-processing capacities of the
linkage editor, the types of devices that can be used
for the intermediate data set, and the amount of virtual I

storage the linkage editor requires.

"Appendix C. Designing and Specifying Overlay Programs"
describes how to use the overlay facilities of the

Preface iii

•

linkage editor to minimize .the amount of vidual storage
required. .

"Part II. loader" includes function descriptions and
operating instructions for the loader programs

"Chapter 9. Overview and Uses of the Loader" describes
the functional characteristics of the loader, its
compatibility with the linkage editor, and the
restrictions on its use.

"Chapter 10. Preparing Input for the Loader" explains
how to prepare an input deck for the loader, including
how to specify EXEC statements and how to use DD
statements to define loaded program data.

"Chapter 11. Invoking the Loader" shows how to use the
EXEC statement or specified macro instructions to invoke
the loader program.

"Chapter 12. Interpreting Loader Output" describes how
to interpret the diagnostic and error messages, and the
optional storage map, produced by the loader program.

"Appendix D. loader storage Considerations" describes
the virtual storage space required by the loader
program.

"Appendix E. Loader Return Codes" lists the return codes
that can result from loader processing and defines their
meanings.

The diagnostic messages issued by both tha linkage editor and
the loader program are described in MVS/Extended Architectyre
Message library: System Messages, Volumes I and 2, GC28-1376 and
GC28-1377. The description of each message includes an
explanation, a system action, and a problem determination action
to be taken.

EBERI.Viiii. KNOWLiPli

In order to use this book efficiently, you should be familiar
with MVS/Extended Architecture job control language.

REQUIRED PUBLICATIONS

You should be familiar with the information presented in the
following publicationsl

RELATED PUILICATIONS

•

•

MYS/Extended Architectyre JCt describes the job control
language used to run the linkage editor and loader programs.

MYS/Extende~ Architectyre Message Library: System Messages
describes t e diagnostic messages issued by the linkage
editor and loader programs.

Within the text, references are made to the publications listed
in the table beiowl

iv MVS/XA Linkage Editor and Loader User's Guide

/
I

\""'0/

""...,.. -

Short Title publication Title Order Number
(as it appears
in the text)

Data MVS/~x!ended Ar~hitec!y[g GC26-4013
Administration nata AdministrSlj;ign Guidg
Guide

Data MVS/E~tenged Archi!gc!yrg LYB8-1195
Areas-JES3 Data Areas JES3

Initialization MVS/E~tended archi.tgcty[& GC28-1149
and Tuning S~stem Programming librar~:

Initialization and Tuoing

JCL MVS/Exteoded Arcbite~turl GC28-1148
JCl

Linkage Editor MVS/Extended Architecj;urg LY26-3902
Logic Linkage Edij;or 199ic

Loader Logic MVS/Exj;ended Archite!;Ctu[g LY26-3901
loader Logi~

Routing and MVS/Extended Architgcj;urg GC28-1194
Descriptor Message librar~: Royting
Codes SInd Descrietor Codg~

Service Aids MVS/E~tengeg a[~hitgctyrg GC28-1159
S~stem Programming librSlr~:
Service Aid~

SMP System OS/VS S~stgm Modifj~aj;ign GC28-0673
Programmer's Program (SMP) §~ste!!l
Guide Programmer'~ Guide

SMP/E User's SMP/!; User's §uidg SC28-1302
Guide

Supervisor MVS/E~tgnded Ar~hitg~tu[g GC28-1154
Services and S~~tem Programming Librar~:
Macro Sueervisor Servi~g~ aog
Instructions Macro Instrucj;ions

System Codes MVS/Extended Archij;ecturg GC28-1157
tles~Slge Librar~: S~~j;em
Codes

System tlVS/Extendgd ar~hij;gcj;ytg GC26-4009
Generation lnstallat i gn: §~§tg!!l
Reference Generation

System Messages MVS/Extended ar~hi:tecj;yr& GC28-1376
tle~sage librar~: S~~j;em GC28-1377
Message~, Volumes 1 and 2

I
TSO Command MVS/Extendgd Ar~hij;ecj;yrg GC28-0646
Language I§O Command laDguagg
Reference Referencg(0§/VS2 T§Q

Command languSlge Befergncl,
as updated by Supplement
SD23-0259 for MVS/XA)

TSO/E Data MVS/Exj;gndgd Ar~hitectY[1 LYB8-1191
Areas TSO/E DatSl Arga::i (plus

supplement, lDB3-2078)

Utilities tlV~/!;xtenged Ar!;Chij;I!;Cj;ytl
nata Adminjsj;raj;ign:

GC26-4018

Utilities

Preface y

NOTATIONAL CONVENTIONS

A uniform system of notation describes the format of linkage
editor and loader control statements. This notation is not part '~~
of the language, it simply provides a basis for describing the
structure of the commands. The command format illustrations in
this book use the following conventions I

• Brackets [J indicate an optional parameter.

• Braces () indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

Items separated by a vertical bar (I) represent alternative
items. No more than one of these items may be selected.

• An ellipsis (•••) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

• Other punctuation (parentheses, commas, spaces, etc.) must
be entered as shown. A space is indicated by a blank.

• BOLDFACE type indicates the exact characters to be entered,
except as described in the first four bullets. Such items
must be entered exactly as illustrated.

• Lowercase underscored type specifies fields to be supplied
by the user.

• BOLDFACE UNDERSCORED type indicates a default option. If
the parameter is omitted, the underscored value is essumed.

vi MVS/XA Linkage Editor and Loader User's Guide

~---~-~~~--- .~-----
-~~~~~--~ --~

,<
,I \

(j

(

I SUMMARY OF CHANGES

I RELEASE 1.2 LIBRARY UPDAlE, JANUARY 1987

SERVICE CHANGES

Information has been added, corrected, or deleted to reflect
technical service changes.

RELEASE 1.2, FEBRUARY 1984

REVISION AND RESTRUCTURE

The contents of this manual are substantially the same as in
Releasa 1.0. Changes are as foilowsl

• The manual has been restructured for easa of usa.

• References to other manuals have been updated.

• Minor technical changes have been made in Chapter 5,
-Specifying an Operation with Control Statements.- Thesa
changes are indicated by revision bars.

Sumll8ry of Changes vii

viii MVS/XA linkage Editor and loader User's Guide

CONTEHTS

Introduction .
Part I. Linkage Editor
Chapter 1. Overview •••••••
Object and Load Modules ..

External Symbol Dictionary
Text
Relocation Dictionary
End Indication

Linkage Editor Processing
Input and Output Sources
Load Module Creation

Assigning Addresses .. .
Resolving External References

Chapter 2. Uses of the Linkage Editor
Linkage Editor Input ..•......

Links Modules

. . .
Edits Modules
Aligns Control Sections or Common Areas on Page

Boundaries
Accepts Additional Input Sources
Reserves Storage
Processes Pseudo registers
Creates Overlay Programs
Creates Multiple Load Modules
Provides Special Processing and Diagnostic Output
Options

Assigns Load Module Attributes
Allocates User-Specified Virtual Storage Areas
Stores System Status Index Information
Traces Processing History
Lengthens Control Sections or Named Common Sections
Assigns an Authorization Code to Output Load Modules
Assigns Addressing Mode
Assigns Residence Mode
AMODE/RMODE Hierarchy
Assigns Read-only Attribute .

Relationship to the Operating System
Time Sharing Option (TSO)

Chapter 3. Defining Input to the Linkage Editor
Primary Input Data Set

Object Modules
From Cards
As a Member of a Partitioned Data Set
Passed from a Previous Job Step
Created in a Separate Job

Control Statements
Object Modules and Control Statements

Control Statements in the Input Stream
Control statements in a Separate Data Set

Automatic Library Call
SYSLIB DD Statement

System Call Library ...•..
Private Call Libraries
Concatenation of Call Libraries

Library Control Statement
Additional Call libraries
Restricted No-Call Function
Never-Call Function

NCAL Option
Included Data Sets

Including Sequential Data Sets
Including library Members ..
Including Concatenated Data Sets

. . . .

1

3

4
6
7
8
9
9
9
9

10
11
12

13
13
14
14

15
15
16
16
17
17

17
17
17
18
18
18
18
19
20
21
21
21
21

22
22
22
23
23
24
25
25
26
26
27
27
28
28
29
29
29
30
30
31
31
32
33
34
34

Contents ix

Chapter 4. -Specifying JCL to Run a Linkage Editor Job 36
EXEC Statement--Introduction 36 1'---", EXEC Statement--Job Step Options · · · · 36

Module Attributes 37
,

· · · · · · ,=J
Downward Compatible Attribute 37
Scatter Format Attribute 37
Not Editable Attribute 38
Only-Loadable Attribute 38
Overlay Attribute 38
Reusability Attributes 39
Refreshable Attribute 40
Test Attribute · · · · 40
Authorization Code .. 40
Addressing Mode Attribute · · · · 41
Residence Mode Attribute · 41
Combinations of Addressing Mode and Residence Mode 41
Default Attributes 42
Incompatible Attributes 42

Special Processing Options · · · · · 42
Exclusive Call Option 42
Let Execute Option · · .. 43
No Automatic Library-Call Option 43

Space Allo~ation Options 43
SIZE Option · · · · · · · 43
DCBS Option · · · · · · 49

Output Options · · · · · · 50
Control Statement Listing Option 50
Module Map Option · · · 50
Cross Reference Table Option 50
Alternate Output (SYSTERM) Option 51

Incompatible Job Step Options 51
EXEC Statement--Region Parameter 53
EXEC Statement--Return Code 53
DD Statements · · · · · · 54
Linkage Editor DD Statements · · · · · 55

SYSLIN DD Statement 55
SYSLIB DD Statement 56
SYSUTl DD Statement 56 7/
SYSPRINT DD Statement 57
SYSLMOD DD Statement · · · · 57
SYSTERM DD Statement 59

Additional DD Statements 59
Size Parameter Guidelines 60

Cataloged Procedures · 61
Linkage Editor Cataloged Procedures · · · · 61

Procedure LKED · · · · 61
Procedure LKEDG · 63

Overriding Cataloged Procedures 64
Overriding the EXEC Statement · · · · 64
Overriding DD Statements 6S

Adding DD Statements · · 65

Chapter 5. Specifying an Operation with Control Statements 66
General Format · · · · 66
Format Conventions · · · · 66
Placement Information · · · · 67
ALIAS Statement 68
CHANGE Statement · · · · · 69
ENTRY Statement · · · · · · · 71
EXPAND Statement · · · · · · 72
IDENTIFY Statement · · · · · · · 73
INCLUDE Statement · · · · · 75
INSERT Statement · · · · · · · · · 76
LIBRARY Statement · · · · · · · · · · 77
MODE Statement · · · · · · 79
NAME Statement 81
ORDER Statement · · · · 82
OVERLAY Statement 84
PAGE Statement · · · · · 86
REPLACE Statement · · · · · 88 (' SETCODE Statement 90
SETSSI Statement 91 ' . ".;)

x MVS/XA Linkage Editor and Loader User's Guide

--------------- -----.---- ... -.

(
Chapter 6. Editing a Control Section

Editing Conventions
.

Changing External Symbols
Replacing Control Sections

Automatic Replacement
Example I
Example 2 • .

REPLACE Statement
Deleting a Control Section or Entry Name ..
Ordering Control Sections or Named Common Areas
Aligning Control Sections or Named Common Areas on

Boundaries

Chapter 7. Invoking the Linkage Editor

Chapter 8. Interpreting Linkage Editor output
Output load Module

Output Module library
Member Name
Alias Names

Entry Point .
Authorization Code
Residence and Addressing Modes

Reserving Storage in the Output load Module
Processing Pseudo registers
Multiple load Module Processing

Diagnostic Output
Diagnostic Messages

Module Disposition Messages
Error/Warning Messages
Sample Diagnostic Output

Optional Output
Control Statement listing
Module Map
Cross-Reference Table

load Module Format

Part II. Loader

; .

Page

Chapter 9. Overview and Uses of the Loader
Functional Characteristics

. .
Addressing Mode
Residence Mode
AMODE/RMODE Combinations
Implied AMODE or RMODE .

Compatibility and Restrictions
Time Sharing Option (TSO)
Processing Object Modules in Virtual Storage

Chapter 10. Preparing Input for the Loader
Input for the loader

EXEC Statement
PARM Field Format

loader Options
AMODE=mode: Specifying Address Mode ...
CAllINOCAll: Automatically Searching SYSlIB
EP=name: Specifying the Program Entry Point

. .

lETINOlET: Executing with Severity 2 Errors
MAPINOMAPI Printing a Program Map
NAME=namel Identifying the loaded Program
PRINTINOPRINT: Printing Messages on SYSlOUT
RESINORES: Automatically Searching the link Pack Area

Queue •.•...•......•.•.•
RMODE=mode: Specifying Residence Mode
SIZE=size: Specifying Virtual Storage
TERMINOTERM: Sending Messages to SYSTERM

EXEC Statement Example
DO Statements

SYSlIN OD Statement
SYSlIB 00 Statement
SYSlOUT 00 Statement
SYSTERM DO Statement

loaded Program Data

92
92
94
95
96
96
97
98

100
102

103

lOS

107
107
107
108
109
110
111
111
111
112
112
113
113
113
114
115
116
116
116
117
118

121

122
122
122
123
124
124
127
127
127

128
128
128
128
129
129
129
130
130
130
130
131

131
131
131
132
132
132
133
134
134
134
135

Contents xi

Sample Input for the loader

Chapter 11. Invoking The Loader • • • • • • • • • • • •
Chapter 12. Interpreting Loader output • • • • • • • •
Appendix A. Sample Linkage Editor Programs
Sample Program COBFORT • • • • • • •

Job Control Language • • • • •
Linkage Editor Output ...•.••••

Sample Program RPLACJOB • • • • .
Job Control Language ...•.••.

Linkage Editor Control Statements ••••••
Linkage Editor Output •.•.••••••

Sample Program REGNOVLY ..•••.
Job Control language .•...•
linkage Editor Control Statements ••••••
linkage Editor Output •.•.. . •••

Sample Program PARTDS ...•.•••••••
Job Control Language .•.•....•• ..••
Linkage Editor Control Statements .••••
linkage Editor Output .••.. . • • . •

Appendix B. Linkage Editor Requirements and Capacities •
Capacities•.••..
Intermediate Data Set•..••..•

Appendix C. DeSigning and Specifying Overlay Programs
Design of an Overlay Program . . . • • . • •

Single Region Overlay Program• •.••
Control Section Dependency . . • • • •
Segment Dependency .•... .•.•••
length of an Overlay Program • . . • .
Segment Origin
Communication between Segments
Overlay Process•••

Multiple Region Overlay Program
Specification of an Overlay Program

Segment Origin
Region Origin
Positioning Control Sections

Using Object Decks • .
Using INCLUDE Statements•
Using INSERT Statements•.

Special Options
OVlY Option
LET Option•.
XCAl Option
AMODE and RMODE Options

Special Considerations
Common Areas
Storage Requirements••••••••
Overlay Communication • • • . •

CAll Statement or CAll Macro Instruction
Branch Instruction.••.• •
Segment load (SEGlD) Macro Instruction
Segment Wait (SEGWT) Macro Instruction

Appendix D. Loader Storage Considerations • • • • • • •
Appendix E. Loader Return Codes ·

. • • • • • • • • • • • • Glossary

Index .

xii MVS/XA linkage Editor and loader User's Guide

135

138

143

145
145
145
146
146
148
149
150
150
151
153
153
156
157
158
159

160
160
162

163
163
164
164
166
167
168
169
17.2
173
176
176
177
178
179
179
180
181
181
182
182
182
182
182
184
185
186
186
188
188

190

192

194

197

c

FIGURES

1. Preparing a Source Module for Execution 4
2. Preparing a Source Module for Execution, and Executing the

Load Module 5
3. External Names and External References 6
4. Use of the External Symbol Dictionary 8
5. Input, Intermediate, and Output Sources for the Linkage

Editor 10
6. A Load Module Produced by the Linkage Editor 11
7. Linkage Editor Processing--Modu1e Linkage 14
8. Linkage Editor Processing--Module Editing 15
9. Linkage Editor Processing--Additional Input Source. 16

10. System Automatic Call Libraries 28
11. Processing of One INCLUDE Control Statement 32
12. Processing of More than One INCLUDE Control Statement 33
13. SYSUTI and SYSLMOD Device Types and Their Maximum Record

Sizes 45
14. Load Module Buffer Area and SYSLMOD and SYSUT1 Record

Sizes 46
15. Incompatible Job Step Options for the Linkage Editor 52
16. Linkage Editor Return Codes 53
17. Linkage Editor ddnames 55
18. DCB Requirements for Object Module and Control Statement

Input 56
19. DCB Requirements for SYSPRINT 57
20. DCB Requirements for Data Sets Used by Include and Library

Control Statements 59
21. Statements in the LKED Cataloged Procedure 61
22. Statements in the LKEDG Cataloged Procedure 63
23. Overlay Structure for INSERT Statement Example 77
24. Output Load Module for ORDER Statement Example 83
25. Overlay Structure for OVERLAY Statement Example 85
26. Output load Module for PAGE Statement Example 87
27. Editing a Module 92
28. Changing an External Reference and an Entry Point 95
29. Automatic Replacement of Control Sections 98
30. Replacing a Control Section with th. REPLACE Control

Statement 100
31. Deleting a Control Section 101
32. Ordering Control Sections 103
33. Aligning Control Sections on Page Boundaries 104
34. Diagnostic Messages Issued by the Linkage Editor 116
35. Module Map 117
36. Cross-Reference Table 118
37. load Module Format 119
38. loader Processing--SYSlIB Resolution 125
39. loader Processing--link Pack Area and SYSlIB

Resolution 126
40. Loader Processing--Automatic Editing 126
41. Input Deck for the Loade~Basic Format 128
42. loader and Loaded Program Data Input Stream 135
43. Input Deck for a Load Job 135
44. Input Deck for a Compile-Load Job 136
45. Input Deck for Compilation and Loading of the Three

Modules 137
46.. Using the LINK Macro Instruction to Refer to the

Loader 139
47. Using the LOAD and CALL Macro Instructions to Refer to

HEWLOADR (Loading Without Identification) 141
48. Using the LOAD and CALL Macro Instructions to Refer to

HEWLOAD (Loading With Identification) 142
49. Module Map Format Example 144
50. linkage Editor Output for Sample Program COBFORT 147
51. Linkage Editor Output for Job step that Created SUB ONE 148
52. Job Control statements for RPLACJOB 149
53. Linkage Editor Control statements for RPLACJOB 149
54. Linkage Editor Output for Sample Program RPLACJOB 150
55. Overlay Tree for Multiple-Region Sample Program

REGNOVLY 151

Figures xiii

56. Job Control Statements for REGNOVLY 152
57. Linkage Editor Output for Sample Program REGNOVlY 154
58. Input Statements for IEBUPDTE Utility Program 157
59. Job Control Statements for PARTDS 158
60. Linkage Editor Capacities for Minimal SIZE Values (96K

bytes, 6K bytes) 160
61. Control Section Dependencies 165
62. Single-Region Overlay Tree Structure 166
63. Length of an Overlay Module 167
64. Segment Origin and Use of Storage 169
65. Inclusive and Exclusive Segments 170
66. Inclusive and Exclusive References 171
67. Location of Segment and Entry Tables in an Overlay

Module 172
68. Control Sections Used by Several Paths 174
69. Overlay Tree for Multiple-Region Program 175
70. Symbolic Segment Origin in Single-Region Program 177
71. Symbolic Segment and Region Origin in Multiple-Region

Program 178
72. Common Areas before Processing 183
73. Common Areas after Processing 184
74. Branch Sequences for Overlay Programs 187
75. Use of the SEGLD Macro Instruction 188
76. Use of the SEGWT Macro Instruction 189
77. Virtual Storage Requirements 191
78. Return Codes 192

xiv MVS/XA Linkage Editor and Loader User's Guide

/ " \

INTRODUCTION

(-

The linkage editor and the loader processing programs prepare
the output of language translators for execution. The linkage
editor prepares a load module that is to be brought into storage
for execution by program fetch. The loader prepares the
executable program in storage and passes control to it directly.

The linkage editor provides several processing facilities~ such
as creating overlay programs and aiding program modification.
(The linkage editor is also used to build and edit system
libraries.> The loader provides high performance loading of
programs that do not require the special processing facilities
of the linkage editor.

Use of the linkage editor is recommended in the following cases:

• If the program requires linkage editor services in addition
to the MAP, lET, NCAl~ and SIZE options

• If the program uses linkage editor control statements, such
as INCLUDE, NAME, OVERLAY

• If a load module is to be produced for a program library

Use of the loader is recommended if the program only requires
the use of the following linkage editor optionsl MAP, LET,
NCAL, and SIZE. Because of its fewer options and because it can
process a job in one job step, the loader reduces editing and
loading time by about one-half.

Linkage editor processing is performed in a link-edit step. The
linkage editor can be used for compile-link edit-go,
compile-link edit, link-edit, and link-edit-go jobs. LDader
processing is performed in a ~ step, which is equivalent to
the link-edit-ao steps. The loader can be used for compile-load
and load jobs.

The MVS/XA linkage editor is modified to support the followingl

• AMODE/RMODE attributes

• Read-only CSECT (RSECT)

• Preservation of the high-order bit in 4-byte A-CONs and
V-CONs

Details of how each language interfaces with the linkage editor
can be found in the publication(s) describing that language.

Introduction I

2 MVS/XA Linkage Editor and Loader User's Guide

PART I. LINKAGE EDITOR

(

Part I. Linkage Editor 3

CHAPTER 1. OYERVIE~

Source
Module

linkage editor processing is a necessary step that follows the
source program assembly or compilation of any problem program.
The linkage editor is both a processing program and a service
program used in association with the language translators.

Every problem program is designed to fulfill a perticular
purpose. To achieve that purpose, the program can generally be
divided into logical units that perform specific functions. A
logical unit of coding that performs a function, or several
related functions, is a module. Separate functions should be
programmed into separate modules, a process called modular
programming. Each module can be written in the symbolic
language that best suits the function to be performed. (The
symbolic languages are Assembler, ALGOL, BASIC, COBOL, FORTRAN,
PASCAL, Pl/I, and RPG.)

Each module is separately assembled or compiled by one of the
language translators. The input to a language translator is a
source module; the output from a language translator is an
object module. Before an object module can be executed, it must
be processed by the linkage editor. The output of the linkage
editor is a load module (Figure 1).

Object
Module

Load
Module

{J
Figure 1. Preparing a Source Module for Execution

An object module is in relocatable format with unexecutable
machine code. A load module (see n load Module Formatn on
page 118) is also relocatable, but with executable machine code.
A load module is in a format that can be loaded into virtual
storage and relocated by program fetch (Figure 2 on page 5).

4 MVS/XA linkage Editor and Loader User's Guide

----------------------- --'------------_ .. ~------- ---------. __ ."-"------ --_ .. _---" ---

Figure 2.

(

Load

Program
Fetch

Execution

Preparing a Source Module for Execution, and Executing the Load Module

Any module is composed of one or more control sections. A
control section is a unit of coding (instructions and data) that
is, in itself, an entity. All elements of a control section are
loaded and executed in a constant relationship to one another.
A control section is, therefore, the smallest separately
relocatable unit of a program.

Each module in the input to the linkage editor may contain
symbolic references to control sections in other modules; such
references are called external references. These references are
made by means of address constants (adcons). The symbol
referred to by an external reference must be either the name of
a control section or the name of an entry point in a control
section. Control section names and entry names are called
external names. By matching an external reference with an
external name, the linkage editor resolves references between
modules. External references and external names are called
external symbols (Figure 3 on page 6). An external symbol is
one that is defined in one module and can be referred to in
another.

Chapter 1. Overview 5

External
Symbols

Input
Module A

~/==------<,/
CSECT Al

ENTRY All

CALL Bl

External Names:

Control Section

Al
Bl

Entry Name

All

External References:

From Al to Bl
From Bl to All

Input
ModuleB

./ /' / CSECT BI

CALL All

Output Load
Module AD

,c./:......-----r/
CSECT Al

ENTRY All

CALL BI

t-------rv
CSECT BI

CALL All

Figure 3. External Names and External References

OBJECT AND LOAD MODULES

Object modules and load modules have the same basic logical
structure. Each consists of:

• Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules, and to relocate address
constants. Control dictionary entries are generated when
external symbols, address constants, or control sections are
processed by a language translator. Each language
translator usually produces two kinds of control
dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD).

• Text, containing the instructions and data of the program.

• An end-of-module indication: an END statement in an object
module, an end-of-module indicator in a load module.

Each control dictionary, text, and end indication is described
in greater detail below.

. /

'" /'

Both object modules and load modules can contain data used by
the linkage editor to create CSECT identification (IDR) records.
If the language translator creating an object module supports
CSECT identification, the input object module can contain
translator data for identification records on the END statement.
Input load modules differ from object modules in the type of
data they supply. Input load modules can also provide HMASPZAP I .. __ .·~/'
data, linkage editor data, and user data to the identification ~~~.
records that are built during linkage editor processing. During
the link-edit step, the optional IDENTIFY control statement is

6 MVS/XA Linkage Editor and Loader User's Guide

(-

(

used to supply the optional user data for the CSECT
identi fication records. See "IDENTIFY Statement" on page 73 for
more information.

External Symbol Dictionary

The external symbol dictionary (ESD) contains one entry for each
external symbol defined or referred to within a module. The
dictionary contains an entry for each external reference,
pseudoregister (external dummy section), entry name, named or
unnamed control section, and blank or named common area. An
entry name, pseudoregister, or named control section can be
referred to by any control section or separately processed
module; an unnamed control section cannot.

Each entry identifies a symbol, or a symbol reference, and gives
its location, if known, within the module. Each entry in the
external symbol dictionary is classified as one of the
following;

• External reference--a symbol that is defined as an external
name in another separately processed module, but is referred
to in the module being processed. The external symbol
dictionary entry specifies the symbol; the location is
unknown.

• Weak external reference--a special type of external
reference that is not to be resolved by automatic library
call unless an ordinary external reference to the same
symbol is found. The external symbol dictionary entry
specifies the symbol; the location is unknown.

•

•

Entry name--a name that defines an entry point within a
control section. The external symbol dictionary entry
specifies the symbol and its location, and identifies the
control section to which it belongs.

Control section name--the symbolic name of a control
section. The external symbol dictionary entry specifies the
symbol, the length of the control section, and its location.
In this case, the location represents the origin of the
control section, which is the first byte of the control
section. This external symbol dictionary entry may also
specify the addressing mode and residence mode of the
control section and whether or not the control section is
read-only.

• Blank or named common area--a control section used to
reserve a virtual storage area that can be referred to by
other modules. The reserved storage area can be used, for
example, as a communications region within a program or to
hold data supplied at execution time. The external symbol
dictionary entry specifies the name, if there is one, and
the length of the area. If there is no name, the name field
contains blanks.

• Private code--an unnamed control section. This external
symbol dictionary entry specifies the length of the control
section and the origin. The name field contains blanks.
The external symbol dictionary entry may also specify the
addressing mode and residence mode of the control section
and whether or not the control section is read-only.

• Pseydoregister--a special facility (corresponding to the
external dummy section feature of Assembler H Version 2)
that can be used to write reenterable programs. A
pseudo register is a dynamically obtained word in virtual
storage that can be used as a pointer to dynamically
acquired storage; that is, the space for such areas is not
reserved in the load module but is acquired during
execution. The external symbol dictionary contains the
name, length, alignment, and displacement of the
pseudoregister.

Chapter 1. Overview 7

L

Input
Module A

ESO

CSECT Al

ENTRY All

.
CALL BI

I
I

/
I /11

1/

" '. \

~

\
\ ,

Symbol

Al

All

BI

When processing input modules, the linkage editor resolves
references between modules by matching the referenced symbols to
defined symbols. To do this, the linkage editor searches for
the external symbol definition in the external symbol dictionary
of each input module. As shown in Figure 4, the linkage editor
matches the external reference to Bl by locating the definition
for Bl in the external symbol dictionary of Module B. In the
same way, it matches the external reference to All by locating
the definition for All in the external symbol dictionary of
Module A.

Note: External names, including CSECT names and entry names,
must be I to 8 alphameric characters in length. No leading or
embedded blanks are permitted, nor are the following characters
permitted:

, (or)

All other characters in the 48-character set are permitted in
any character position of the name by the linkage editor,
including:

+ - = . * ' / and &
Special characters should be used with caution, however, because
the compilers and assemblers that produce the object decks
usually have a more limited character set.

ESO for A

Type Location

Control Known Symbol
Section
Name BI

Entry Name Known ~:JI

~, External Unknown ; ...
All Reference

ESO for B

Type Location

Control Known
Section
Name

External Unknown
Reference

\
\

I

\ , ,
I

I

,
Input
ModuleB

ESO

CSECT BI

CALL All

./'

/

I-'

Figure 4. Use of the External Symbol Dictionary

Text

The text contains the instructions and data of the module.

Note: Object module text records may not necessarily be in
ascending address sequence (it is possible that the language
translator may have created them out of order). When processing
large object modules with out-of-order text, the performance of
the linkage editor may be improved by presorting the object
module text in ascending address sequence (columns 6 through 8
of the text record).

8 MVS/XA Linkage Editor and Loader User's Guide

c

Relocation Dictionary

End Indication

The relocation dictionary (RLD) contains one entry for each
relocatable address constant that must be modified before a
module is executed. An entry identifies an address constant by
indicating both its location within a control section and the
external symbol whose value must be used to compute the value of
the address constant. (The external symbol is defined in an
external symbol dictionary entry in another control section or
module.)

The linkage editor uses the relocation dictionary whenever it
processes a module to adjust the address constants for
references to other control sections and modules. This
dictionary is also used to adjust these address constants again
after program fetch reads an output load module from a library
and loads it into virtual storage for execution.

The end of a load module is marked by an end-of-module indicator
(EOM). The EOM cannot. unlike the assembler END instruction.
specify an entry point. Therefore. whenever a load module is
reprocessed by the linkage editor. a main entry point should be
specified on an ENTRY statement. If one is not specified. the
linkage editor will assign the first byte of the first control
section encountered as the entry point. The programmer will not
usually be concerned with the format of records in the object
deck. The record formats are described in the appendix of
Linkage Editor Logic.

LINKAGE EDITOR PROCESSING

This section discusses the input and output sources of the
linkage editor. and the way in which the linkage editor produces
a load module.

INPUT AND OUTPUT SOURCES

The linkage editor accepts two major types of inputl

• Primary input. which can contain only object modules and
linkage editor control statements (called control statements
in the following text).

• Additional user-specified input. which can contain either
object modules and control statements. or load modules.
This input is either specified by the user as input. or
incorporated automatically by the linkage editor from a call
library.

During processing. the linkage editor generates intermediate
~. Intermediate data is placed on a direct access storage
device when virtual storage allocated for input data is
exhausted.

Output of the linkage editor is of two types I

• A load module, which is always placed in a library (a
partitioned data set) as a named member

• Diagnostic output, which is produced as a sequential data
set

Figure 5 on page 10 shows the input, intermediate, and output
sources for the linkage editor program.

Chapter 1. Overview 9

LOAD MODULE CREATION

In processing object and load modules, the linkage editor
assigns consecutive relative virtual storage addresses to all
control sections and resolves all references between control
sections. Object modules produced by several different language
translators can be used to form one load module.

An output load module is composed of all input object modules
and input load modules processed by the linkage editor. The
control dictionaries of an output module are, therefore, a
composite of all the control dictionaries in the linkage editor
input. The control dictionaries of a load module are called the
composite external symbol dictionary (CESP) and the relocation
dictionary (RlP). The load module also contains all of the text
from each input module, and one end-of-module indicator (see
Figure 6 on page 11). See also" Load Module Format" on
page 118 for the format of a load module.

Primary
Input

User
Specified
Input

Inter
mediate
Data

Load
Module

Figure 5. Input, Intermediate, and Output Sources for the
Linkage Editor

10 MVS/XA Linkage Editor and Loader User1s Guide

Assigning Addresses

(

(-

c:

Each module to be pr.ocessed by the linkage editor has an or1g1n
that was assigned during assembly, compilation, or a previous
execution of the linkage editor. When several modules, each
with an independently assigned origin, are to be processed by
the linkage editor, the sequence of the addresses is
unpredictable; two input modules may even have the same origin.

Each input module can be made up of one or more control
sections. To produce an executable output load module, the
linkage editor assigns relative virtual storage addresses to
each control section by assigning an origin to the first control
section encountered and then assigning addresses, relative to
that origin, to all other control sections to be included in the
output load module. The value assigned as the origin of the
control section is used to relocate each address-dependent item
in the control section.

Although the addresses in a load module are consecutive, they
are all relative to base zero. When a load module is to be
executed, program fetch prepares the module for execution by
loading it at a specific virtual storage location. The
addresses in the module are then increased by this base address.
Each address constant must also be readjusted, another function
of program fetch.

Object Module A

./ /'
ESD

./

Output Load
ModuleAB

TXT
CESD

.,/
RLD

./
END l/ ~ TXT

•
Object Module B

/' /'
ESD

.,/
TXT

./
/ RLD

EOM

RLD
V

END

Figure 6. A Load Module Produced by the Linkage Editor

Chapter 1. Overview 11

Resolving External References

The linkage editor also resolves external references in input
modules. Cross-references between control sections in different
modules are symbolic. They must be resolved relative to the
addresses assigned to the load module. The linkage editor
calculates the new address of each relocatable expression in a
control section and determines the assigned origin of the item
to which it refers.

12 MVS/XA Linkage Editor and Loader User's Guide

----- ------ --- --------- ------ ----------

(-

(

CHAPTER 2. USES OF THE LINKAGE EDITOR

LINKAGE EDITOR INPUT

Linkage editor input may consist of a combination of object
modules, load modules, and control statements. The primary
function of the linkage editor is to combine these modules, in
accordance with the requirements stated on control statements,
into a single output load module. Although this linking or
combining of modules is its primary function, the linkage editor
alsol

• Edits modules by replacing, deleting, rearranging, and
ordering control sections as directed by control statements

• Aligns control sections and named common areas on 4K-byte
page boundaries as directed by control statements

• Accepts additional input modules from data sets other than
the primary input data set~ either automaticallY or upon
request

• Reserves storage for the common control sections generated
by Assembler and FORTRAN language translators, and static
external areas generated by PL/I

•

•

•

•
•

•

•

•
•

Computes total length and assigns displacements for all
pseudo registers (external dummy sections)

Creates overlay programs in a structure defined by control
statements

Creates multiple output load modules as directed by control
statements

Provides special processing and diagnostic output options

Assigns module attributes that describe the structure,
content, and logical format of the output load module

Allocates storage areas for linkage editor processing as
specified by the programmer

Stores system status index information in the directory of
the output module library (systems personnel only)

Traces the processing history of a program

Allows the user to lengthen a control section or named
common section without changing source code, reassembling,
or recompiling

• Allows the user to assign an authorization code to a load
module that (a) makes it a restricted resource and (b)
enables it to pass control to other restricted resources

• Assigns an addressing mode for the main entry point, all
true aliases, and each alternate entry point into the output
load module

• Assigns a residence mode for the output load module

• Indicates which control sections are read-only (relevant
only in creating a nucleus load module for MVS/XA)

Each of the linkage editor functions is described in the
following paragraphs.

Chapter 2. Uses of the Linkage Editor 13

Links Modules

f r Assembler
Source
Module II

Processing by the linkage editor makes it possible for the
programmer to divide a program into several modules# which can
be separately assembled or compiled# and each containing one or
more control sections. The linkage editor combines these
modules into one output load module (see Figure 7) with
contiguous, virtual storage addresses. During processing by the
linkage editor# references between modules within the input ere
resolved. The output module is placed in a library (partitioned
data set).

Load
Module

Object
Module

Figure 7. linkage Editor Processing--Module linkage

Edits Modules

Program modification is made easier by the editing functions of
the linkage editor. When the fUnctions of a program are
changed, the programmer modifies, then compiles and link-edits
again, only the affected control sections instead of the entire
source module.

Control sections can be replaced, renamed# deleted# moved# or
ordered as directed by control statements. Control sections can
also be automaticallY replaced by the linkage editor. External
symbols can be changed or deleted as directed by control
statements.

Figure 8 on page 15 illustrates the module editing function of
the linkage editor.

14 MVS/XA linkage Editor and Loader User's Guide

(-

Control
Statements

Object
Module

A

Load
Module

B
C

..

/

Load
Module

A
('

Figure 8. Linkage Editor Processing--Module Editing

Aligns Control sections or Common Areas on Page Boundaries

Control sections or named common areas in the output load module
can be aligned on 4K-byte page boundaries. Alignment on page
boundaries enables the programmer to use real storage more
efficiently and thus appreciably reduce the paging rate for the
job.

Accepts Additional Input Sources

Standard subroutines can be included in the output module, thus
reducing the work in coding programs. The programmer can
specify that a subroutine be included at a particular time
during the processing of the program by using a control
statement. When the linkage editor processes a program that
contains this statement, the module containing the subroutine is
retrieved from the indicated input source and made a part of the
output module (Figure 9 on page 16).

Symbols that are still undefined after all input modules have
been processed cause the automatic library-call mechanism to
search for modules that will resolve these references. When a
module name is found that matches the unresolved symbol, the
module is processed by the linkage editor and also becomes part
of the output module (Figure 9).

Note: The linkage editor distinguishes a special type of
external reference--the weak external reference. An unresolved
weak external reference does n21 cause the linkage editor to use
the automatic library-call mechanism. Instead, the reference is
left unresolved, and the load module is marked as executable.

Chapter 2. Uses of the Linkage Editor 15

Reserves storage

Primary Input:

Control
Statements

Additional Input:

Object
Module E

______________________ . --______ 0_-

Object
Module

A

Load
Module

A
B
C
D
E
F
G

Figure 9. Linkage Editor Processing--Additional Input Sources

The linkage editor processes common control sections generated
by the FORTRAN and Assembler language translators. The static
external storage areas generated by the PL/I compiler are
processed in the same way. The common areas are collected by
the linkage editor, and a reserved virtual storage area is
provided within the output module.

Processes Pseudo registers

Pseudoregisters, like the external dummy sections of Assembler H
Version 2, aid in generating reenterable code. The linkage
editor processes pseudoregisters by accumulating the total
length of storage required for all pseudoregisters and recording
the displacement of each. During execution, the program
dynamically acquires the necessary storage.

16 . MVS/XA Linkage Editor and Loader User's Guide

creates Overlay Programs

To minimize virtual storage requirements, the programmer can
organize a program into an overlay structure by dividing it into
segments according to the functional relationships of the
control sections. Two or more segments that need not be in
virtual storage at the same time can be assigned the same
relative virtual storage addresses, and can be loaded at
different times.

The programmer uses control statements to specify the
relationship of segments within the overlay structure.
segments of the load module are placed in a library so
control program can load them separately when the load
executed.

creates Multiple Load Modules

The
that the
module is

The linkage editor can also process its input to form more than
one load module within a single job step. Each load module is
placed in the library under a unique member name, as specified
by a control statement.

Provides special Processing and Diagnostic Output options

The programmer can specify special processing options that
negate automatic library call or the effect of minor errors. In
addition, the linkage editor can produce a module map or
cross-reference table that shows the arrangement of control
sections in the output module and indicates how they communicate
with one another. A list of the control statements processed
can also be produced.

Throughout processing, errors and possible error conditions are
logged. Serious errors cause the linkage editor to mark the
output module not executable. Additional diagnostic data is
automaticallY logged by the linkage editor. The data indicates
the disposition of the load module in the output module library.

Assigns Load Module Attributes

When the linkage editor generates a load module, it places an
entry for the module in the directory of the library. This
entry contains attributes that describe the structure, content,
and logical format of the load module. The control program uses
these attributes to determine how a module is to be loaded, what
it contains, if it is executable, whether it is executable more
than once without reloading, and if it can be executed by
concurrent tasks. Some module attributes can be specified by
the programmer; others are specified by the linkage editor as a
result of information gathered during processing. See also
"Assigns Addressing Mode" on page 19, "Assigns Residence Mode"
on page 20, and "Assigns Read-only Attribute" on page 21.

Allocates User-Specified Virtual Storage Areas

The programmer can specify the total amount of virtual storage
to be made available to the linkage editor, the amount to be
used for the load module buffer, and the buffer for the output
load module.

Chapter 2. Uses of the Linkage Editor 17

- -- ---------- ------

stores system status Index Information

The following information is intended for systems personnel
responsible for maintaining IBM-supplied load modules. It is
not generally applicable to non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load
modules are used to store system status index information. This
information, which is used for maintenance of the modules, is
placed in the directory with a control statement.

Traces Processing History

Tracing the processing history of a program is simplified by the
CSECT identification (lOR) records created and maintained by the
linkage editor. A CSECT identification record can contain data
that describes:

• The language translator, its level, and the translation date
for each control section

• The most recent processing by the linkage editor

• Any modification made to the executable code of any control
section

Optionally, user-supplied data associated with the executable
code of a control section can also be recorded.

Lengthens Control Sections or Named Common Sections

The user can lengthen control sections or named common sections
of a program to add patch space without changing the source
code, reassembling, or recompiling.

Added space, consisting of binary zeros, is put at the end of a
specified control section by using the EXPAND control statement
(see "Chapter 5. Specifying an Operation with Control
Statements" on page 66). Space cannot be added to a private
code or blank common section.

Assigns an Authorization Code to Output Load Modules

The authorized program facility (APF) limits the use of
sensitive system and (optionally) user services and resources to
authorized system and user programs. Authorization is defined
as access to those services and resources. The services and
resources to which access is limited are described in System
Programming Library, System Macros and Facilities Yo1ume 1.

Programs are authorized at the job-step level. For a job step
to gain authorization initially, the first module loaded at the
start of the job step must be an authorized module, and it must
have been loaded from an authorized library. Otherwise, the job
step is not authorized initially and cannot subsequently gain
authorization.

For a job step to maintain its authorization, all subsequent
modules invoked during the job step (via LINK, LOAD, ATTACH,
and/or XCTL macro instructions) must be loaded from an
authorized library. As the authorized program executes, the
program manager verifies that all subsequent modules for the
program come from authorized libraries. If one or more modules
are not APF authorized libraries, a 306 abend results.

A library becomes an "authorized" library by the inclusion of
its name in a list called IEAAPFOO. This list is described in
more detail in Initialization and Tyning.

A load module becomes "authorized" by the assignment of an
authorization code to the load module during linkage-editing.

18 MVS/XA Linkage Editor and Loader User's Guide

C··~. ' '
. ;/

(

(

This assignment is made via the PARM field parameter AC or via
the control statement SETCODE, which are described in the
sections that follow. See nSETCODE statement" on page 90.

Assigns Addressing Mode

The addressing mode (AMODE) is the attribute of an entry point
into a load module that specifies the addressing mode in effect
when the load module is entered at that entry point at execution
time.

The valid addressing modes arel

24 Indicating that 24-bit addressing will be in effect

31 Indicating that 3l-bit addressing will be in effect

ANY Indicating that either 24-bit or 3l-bit addressing may
be in effect

The linkage editor determines the addressing mode for an entry
point (either the main entry point, its true alias, or an
alternate entry point) according to the following ruleSI

• The linkage editor assigns a default AMODE of 24. This is
done only in the absence of a valid, explicit specification
of the addressing mode for the entry point.

• The linkage editor assigns the AMODE values contained in the
object module's ESD. These AMODE values were specified by
the user at assembly time and represent the AMODE values
assigned to the entry points within the CSECTs and private
code for the module.

• The linkage editor assigns all the entry points into the
load module (the main entry point, its true aliases, and the
alternate entry points) the AMODE value specified as a
parameter in the PARM field of the EXEC statement. This
AMODE value overrides the AMODE value, if any, found in the
ESD data.

• The linkage editor assigns the AMODE value specified as an
operand on the MODE control statement to all of the entry
points into the load module (the main entry point, its true
aliases, and the alternate entry points). This AMODE value
overrides any value specified as a parameter in the EXEC
statement or any values found in the ESD data.

The linkage editor provides the AMODE value for each entry point
into the load module in its directory entry. In the case of a
true alias of the main entry point or an alternate entry point,
the directory entry contains the AMODE value for both the
elias/alternate entry point and the main entry point.

The AMODE value provided to the linkage editor in the ESD data
of an object module is retained in the ESD data of the load
module, for use in subsequent link-editing, except in the case
of a load module built for overlay. In building a load module
for overlay, the AMODE value in the ESD data of the load module
is lost and can only be reintroduced by inclusion of the object
module(s) carrying that value. Use of the overriding AMODE
specifications (the parameter in the PARM field of the EXEC
statement or the operand in the MODE cont~ol statement)
establishes the AMODE value carried in the directory entry, but
does not affect the ESD data.

All entry points in load modules built for overlay are assigned
an AMODE of 24, regardless of the ESD data, the PARM field
parameter, or the MODE statement operand.

Chapter 2. Uses of the Linkage Editor 19

I

Assigns Residence Mode

The residence mode (RHODE) is the attribute of a load module ~
that specifies the residence mode ofa load module when it is \'---/
loaded into virtual storage for execution.

The valid residence modes aret

24 Indicating that the module must reside within 24-bit
addressable virtual storage (that is, below the
16-megabyte virtual storage line)

ANY Indicating that the module may reside enywhere in
virtual storage (that is, either above or below the
l6-megabyte virtual storage line)

The linkage editor determines the residence mode for a load
module according to the following rulest

• The linkage editor assigns a default RHODE of 24. This
occurs only in the absence of a valid explicit specification
of the residence mode for the load module.

• The linkage editor assigns the RMODE specified in the object
module. This RHODE value is specified by the user to the
assembler for the control section or private code. The
RHODE value passes to the linkage editor in the ESD data.
The linkage editor assigns the RMODE value taken from the
control section or private code that contributes to the
output load module, ignoring identically named control
sections and private code that are replaced or deleted.

• As the control sections and private code that contribute to
the output load module are processed, the RMODE value for
the load module, based on the ESD data, is accumulated on a
"most restrictivea basis. This meanst

If any section in the load module has an RMODE of 24, \ ... /
the RHODE for the load module is 24.

If all sections in the load module have an RMODE of ANY,
the RMODE for the load module is ANY.

• The linkage editor assigns to the load module the RMODE
value specified as a parameter in the PARH field of the EXEC
statement. This RMODE value overrides the RHODE value, if
any, found in the ESD data.

• The linkage editor assigns to the load module the RMODE
value specified as an operand on the MODE control statement.
This RMODE value overrides the RMODE value, if any,
specified as a parameter in the PARM field of the EXEC
statement as well as the RHODE value, if any, found in the
ESD data.

Load modules built for overlay are assigned an RMODE of 24,
regardless of the ESD data, the PARM field parameter, or the
HODE statement operand.

The linkage editor provides the RHODE value for the load module
in each directory entry applicable to that load module.

Except in the case of a load module built for overlay, the RHODE
value provided to the linkage editor in the ESD data of an
object module is retained in the ESD data of the load module,
for use in subsequent link-editing. In building a load module
for overlay, the RHODE value in the ESD data of the load module
is lost and can only be reintroduced by inclusion of the object
module(s) carrying that value. Use of the overriding RMODE
specifications (the parameter in the PARM field of the EXEC
statement or the operand in the MODE control statement)
establishes the RMODE value carried in the directory entry, but
does not affect the ESD data.

20 MVS/XA Linkage Editor and Loader User's Guide

o

AMODE/RHODE Hierarchy

The following hierarchy is used to determine the addressing and
residence modes of the linkage editor outputl

1. Value on the linkage editor MODE statement
2. Value of the parm field on the EXECUTE statement
3. Value in the ESD data produced by the AMODE= or RHODE=

assembler statement
4. Default value of 24

Nate: An overlay module always results in an AHODE of 24 and an
RHODE of 24. A load module produced from multiple object
modules results in an RHODE of 24, if anyone of the object
modules has an RHODE of 24.

Assigns Read-only Attribute

A read-only control section (RSECT) is defined by the user in
the source language which assembles the control section. The
assembler indicates in the-external symbol dictionary entry for
the control section that it is read-only. The linkage editor
reflects that indication in the scatter table for the output
load module.

The indication of the read-only attribute is relevant only to
the nucleus initialization program in MVS/XA. In all other
cases it is ignored.

RELATIONSHIP TO THE OPERATING SYSTEM

The linkage editor has the same relationship to the operating
system as any other processing program. It can be executed
either as a job step, a subprogram, or a subtask. Control is
passed to the linkage editor in one of three ways I

• As a job step, when the linkage editor is specified on an
EXEC job control statement in the input stream

• As a subprogram, with the execution of a CALL macro
instruction (after the execution of a LOAD macro
instruction), a LINK macro instruction, or an XCTL macro
instruction

• As a subtask, in multitasking systems, with the execution of
the ATTACH macro instruction

Execution of the linkage editor and the data sets used by the
linkage editor are described to the system with job control
language statements. These statements describe all jobs to be
performed by the system.

Nate: Job control statements should not be confused with
linkage editor control statements. Job control statements are
processed before the linkage editor is executedl linkage editor
control statements are processed during linkage editor
execution.

TiMa Sharing Option (TSO)

When the linkage editor is used under TSO, it is invoked by the
linkage editor prompter program that acts as an interface
between the user, the operating system, and the linkage editor.
Under TSO, execution of the linkage editor and definition of
data sets used by the linkage editor are described to the system
through use of the LINK command that causes the prompter to be
executed. Operands of the LINK command can also be used to
specify the linkage editor options a job requires. Complete
procedures for use of the LINK command are given in TSO Command
Langyage Reference.

Chapter 2. Uses of the Linkage Editor 21

CHAPTER 3. DEFINING INPUT TO THE LINKAGE EPITOR

The linkage editor accepts input from two major sources. the
primary input data set and additional data sets. The primary
inpyt data set is made available through job control statements.
Additional data sets are made available either through the
automatic library call mechanism, or through user-specified
control statements. They must, however, also be defined with
job control statements.

Primary and additional input data sets may contain the following
types of date I

• One or more object modules

• One or more load modules

• Control statements

• Combinations of the above <restrictions on certain
combinations are noted where they apply)

Object modules and control statements may be contained in either
sequential or partitioned data sets. load modules must be
contained in partitioned data sets.

This chapter describes the "linking" functions of the linkage
editor only; the "editing" functions are described in nChapter
6. Editing a Control Section" on page 92.

PRIMARY INPUT PATA SET

OBJECT MODULES

The primary input data set is required for every linkage editor
job step. It must be defined by a DD statement with the ddnama
SYSlIN. The primary input can bel

• A sequential data set

• A member of a partitioned data set

• A concatenation of sequential data sets and/or members of
partitioned data sets

The primary input data set must contain object modules and/or
control statements. The modules and control statements are
processed sequentiallY and their order determines the basic
order of linkage editor processing during a given eXecution.
However, the order of the control sections after processing does
not necessarily reflect the order in which they appeared in the
input.

In the examples that follow, only the statements necessary to
define the input to the linkage editor are shown; complete
examples are shown in "Appendix A. Sample Linkage Editor
Programs" on page 145.

The primary input to the linkage editor may consist solely of
one or more object modules. The rest of this section discusses
object module input from cards, as a member of a partitioned
data set, passed from a previous job step, or created in a
separate job.

22 MVS/XA Linkaga Editor and Loader User's Guide

c

:

".j

()

From Cards

Object module input to the linkage editor may be on cards. The
card deck itself is treated as a sequential data set; the cards
are placed in the input stream, after a DD • statement, as
foilowsl

//SYSLIN DD
Object Deck A
Object Deck B
/.

The card input is followed by a /. statement.

An example of the JCL when card decks are used in addition to
other input is as foilowsl

//SYSLIN DD
DD

Deck A
Deck B

//
Object
Object
/.

DSNAME=INPUT, •.•
•

By omitting the ddname on the second DD statement, the card
input is concatenated to the data set described on the SYSLIN DD
statement.

As a Member of a Partitioned Data set

An object module in a partitioned data set can be used as
primary input to the linkage editor by specifying its data set
name and member name on the SYSLIN DD statement. In the
following example, the member named TAXCOMP in the object module
library LIBROUT is to be the primary input; LIBROUT is a
cataloged data setl

/I'SYSLIN
//

DD DSNAME=lIBROUT(TAXCOMP),
DISP=COLD,KEEP)

The library member is processed as if it were a sequential data
set.

Members of partitioned data sets can be concatenated with other
input data sets, as foilowsl

I'/SYSLIN
/1'
/1'

DD
DD

DSNAME=OBJLIB,DISP=(OLD,KEEP), •••
DSNAME=LIBROUTCTAXCOMP),
DISP=(OLD,KEEP)

Library member TAXCOMP is concatenated to data set OBJLIB;
because they are the primary input, both must contain object
modules.

Chapter 3. Defining Input to the Linkaga Editor 23

Passed from a Previous ~ob step

An object module to be used as input can be passed from a
previous job step to a linkage editor job step in the same job,
as in a compile-link-edit job. That is, the output from the
compiler is direct input to the linkage editor. In the
following example, an object module that was created in a
previous job step (STEPA) is passed to the linkage editor job
step (STEPB)I

STEPA

//SYSGO

STEPB

//SYSlIN

DD

DD

DSNAME=&&OBJECT,DISP=(NEH,PASS), ••.

DSNAME=&&OBJECT,DISP=(OlD,DElETE)

The data set name &&OBJECT, used in both job steps, identifies
the object module as the output of the language processor on the
SYSGO DD statement, and as the primary input to the linkage
editor on the SYSlIN DD statement.

Note: The double ampersand (&&) in the data set name defines a
temporary data set. These data sets exist for the duration of
the job and are automatically deleted at the end of the job. If
the data set is to be preserved for longer than the duration of
a single job, the double ampersand is not used (DSNAME=OBJECT).

The method used in the preceding example can also be used to
retrieve object modules created in previous steps. If the same
data set name is used for the output of each language processor,
one SYSlIN DD statement can be used to retrieve all the object
modules, as foilowsl

STEPA.

//SYSGO

STEPB.

//SYSPUNCH

STEPC.

//SYSlIN

DD

DD

DD

DSNAME=&&OBJMOD,DISP=(NEW,PASS), •••

DSNAME=&&OBJMOD,DISP=(MOD,PASS)

DSNAME=&&OBJMOD,DISP=(OlD,DElETE)

The two object modules from STEPA and STEPB are placed in the
same sequential data set, &&OBJMOD. The SYSLIN DD statement in
STEPC causes both object modules to be used as the primary input
to the linkage editor.

./ .'\.

\ /

Another method can be used to accomplish this purpose. rf~ .. ./. i
concatenation of data sets. This method could be used if the \./
object modules were created in previous job steps with diffarent
member names, as follows.

24 MVS/XA Linkage Editor and Loader User's Guide

----------_._--_. ----

STEPA.

//SYSGO
//

STEPB.

//SYSPUNCH
//

STEPC.

//SYSLIN
//
//
//

DD

DD

DD

DD

DSNAME=&&OBJLIBCMODA),DISP=CNEW,
PASS), ...

DSNAME=&&OBJLIBCMODB),DISP=CMOD,
PASS), ...

DSNAME=&&OBJLIBCMODA),DISP=COLD,
DELETE)
DSNAME=&&OBJLIBCMODB),DISP=COLD,
DELETE),YOL=REF=-.STEPB.SYSPUNCH

The object modules created in STEPA and STEPB were placed in a
partitioned data set with different member names. The two
members are concatenated in STEPC as primary input. Each member
is considered to be a sequential data set.

Created in a Separate Job

CONTROL STATEMENTS

If the only input to the linkage editor is an object module from
a previous job, the SYSLIN DD statement contains all the
information necessary to locate the object module, as follows I

//SYSLIN
//

DD DSNAME=OBJECT,DISP=COLD,DELETE),
UNIT=33S0,YOlUME=SER=LIB613

An object module created in a separate job may also be on cards,
in which case it is handled as described earlier.

The primary input data set may also consist solely of control
statements. When the primary input is control statements, input
modules are specified on INCLUDE control statements Csee
nIncluded Data Setsn on page 32). The control statements may be
either placed in the input stream or stored in a permanent data
set.

In the following example, the primary input consists of control
statements in the input stream I

//SYSLIN DD -
Linkage Editor Control Statements
/-

Chapter 3. Defining Input to the Linkage Editor 25

In the next example, the primary input consists of control
statements stored in the member INCLUDES in the parU Uoned data [~
set CTLSTMTS. ('" '

.~

//SYSLIN
//

DD DSNAME=CTLSTMTS(INCLUDES),DISP=(OLD,
KEEP), •••

In either case, the control statements can be any of those
described in ·Chapter 5. Specifying an Operation with Control
Statements· on page 66, as long as the rules given there are
followed.

OBJECT MODULES AND CONTROL STATEMENTS

The primary input to the linkage editor may contain both object
modules and control statements. The object modules and control
statements may be in either the same data set or in different
data sets. If the modules and statements are in the same data
set, this data set is described on the SYSLIN DD statement as
any data set is described.

If the modules and statements are in different date sets, the
data sets are concatenated. The control statements may be
defined either in the input stream or as a separate data set.

Control Statements in the Input Stream

Control statements can be placed in the input stream and
concatenated to an object module data set, as followsl

//SYSLIN DD DSNAME=&&OBJECT, •••
// DD *
Linkage Editor Control Statements
/*

Another method of handling control statements in the input
stream is to use the DDNAME parameter, as follows!

//SYSLIN
//

DD
DD

DSNAME=&&OBJECT, .••
DDNAME=SYSIN

//SYSIN DD *
Linkage Editor Control Statements
/*

Note: The linkage editor cataloged procedures use DDNAME=SYSIN
for the SYSLIN DD statement to allow the programmer to specify
the primary input data set required.

26 MVS/XA Linkage Editor and Loader User's Guide

"",",./

--_._---_. ---- _.

(

(-'

/

Control statements in a separate Data Set
A separate data set that contains control statements may be
concatenated to a data set that contains an object module. The
control statements for a frequently used procedure (for example,
a complex overlay structure or a series of INCLUDE statements)
can be stored permanently. In the following example, the
members of data set CTLSTMTS contain linkage aditor control
statements. One of the members is concatenated to data set
&&OBJECT.

nSYSLIN
//
//

DD
DD

DSNAME=&&OBJECT,DISP=(OLD,DELETE), .••
DSNAME=CTLSTMTS(OVLY),DISP=(OLD,
KEEP), •••

The control statements in the member named OVLY of the
partitioned data set CTLSTMTS are used to structure the object
module.

AUTOMATIC LIBRARY CALL

The automatic library-call mechanism is used to resolve external
references that were not resolved during primary input
processing. Unresolved external references found in modules
from additional data sources are also processed by this
mechanism.

Nate: The following discussion of automatic library call does
not apply to unresolved weak external references; they are left
unresolved.

The automatic library-call mechanism involves a search of the
directory of the automatic call library for an entry that
matches the unresolved external reference. When a match is
found, the entire member is processed as input to the linkage
editor.

Automatic library call can resolve an external reference when
the following conditions exist: The external reference must be
(1) a member name or an alias of a module in the call library,
and (2) it must be defined as an external name in the external
symbol dictionary of the module with that name. If the
unresolved external reference is a member name or an alias in
the library, but is not an external name in that member, the
member is processed but the external reference remains
unresolved unless subsequently defined.

The automatic library-call mechanism searches the call library
defined on the SYSlIB DD statement. The call library can
contain either (1) object modules and control statements or (2)
load modules; it must not contain both.

Modules from libraries other than the SYSlIB call library can be
searched by the automatic library-call mechanism as directed by
the lIBRARY control statement. The library specified in the
control statement is searched for member names that match
specific external references that are unresolved at the end of
input processing. If any unresolved references are found in the
modules located by automatic library call, they are resolved by
another search of the library. Any external references not
specified on a LIBRARY control statement are resolved from the
library defined on the SYSLIB DD statement.

In addition, two means exist to negate the automatic
library-call mechanism. The lIBRARY statement can be used to
negate the automatic library call for selected external
references unresolved after input processing; the NCAl option on
the EXEC statement can be used to negate the automatic library

Chapter 3. Defining Input to the Linkage Editor 27

SVSLla DD STATEMENT

System Call Library

call for all external references unresolved after input
processing. Use of the LIBRARY control statement and the NCAL,r_'\,
option are discussed after the SYSLIB DD statement following. ('

If the automatic library-call mechanism is to be used, the call
library must be a partitioned data set described by a DD
statement with a ddname of SYSLIB. Details concerning DCB
requirements and record formats for SYSLIB libraries are given
in nSYSLIB DD Statementn on page 56. The call library may be
either a system call library or a private call librarYI call
libraries may be concatenated.

For an example of some of the system programs that have their
own automatic call library~ see Figure 10. This library must be
defined when an object module produced by that assembler or
compiler is to be link-edited.

Program Library Name

ALGOL SYSl.ALGLIB

COBOL SYSl.COBlIB

FORTRAN SYSl.FORTlIB

Pl/I SYSI. PlIBASE

Sort/Merge SYSI. SORTlIB

Figure 10. System Automatic Call libraries

The call library may contain input/output, data conversion,
and/or other special routines (such as Sort/Merge SYSl.SORTlIB)
that are needed to complete the module. The assembler or
compiler creates an external reference for these special
routines and the linkage editor resolves the references from the
appropriate call library.

In the following example, a FORTRAN object module created in
STE~A is to be link-edited in STEPB~ and the FORTRAN automatic
call library is used to resolve external references'

STEPA,

//SYSOBJ
//

STEPB.

//SYSlIN
//SYSlIB

DD

DD
DD

DSNAME=&&OBJMOD~DISP=(NEH~
PASS), •..

DSNAME=&&OBJMOD,DISP=(OlD~DElETE)
DSNAME=SYSI.FORTlIB,DISP=SHR

The disposition of SHR ,on the SYSlIB DD statement means that
other tasks that may be executing concurrent! y wi th STEPB may f., '~.,
also use SYS1.FORTlIB. ~ /

28 MVS/XA Linkage Editor and loader User's Guide

--_ .. ".'--

(

(

Private Call Libraries

The SYSLIB DD statement can also describe a private,
user-written library. In this case, the automatic library-call
mechanism searches the private library for unresolved external
references. In the following example, unresolved external
references are to be resolved from a private library named
PVTPROG.

//SYSLIB
//

concatenation of Call Libraries

DD DSNAME=PVTPROG,DISP=SHR,UNIT=3350,
VOLUME=SER=PVT002

System call libraries and private call libraries may be
concatenated either to themselves, and/or to each other. When
libraries are concatenated, they must all be either object
module libraries or load module libraries; they may not be
mixed.

If object modules from different system processors are to be
link-edited to form one load module, the call library for each
must be defined. This is accomplished by concatenating the
additional call libraries to the library defined on the SYSLIB
DD statement. In the following example, a FORTRAN object module
and a COBOL object module are to be link-edited; the two system
call libraries are concatenated as foilowsl

//SYSLIB
//

DD
DD

DSNAME=SYSI.FORTLIB,DISP=SHR
DSNAME=SYSI.COBLIB,DISP=SHR

System libraries are cataloged; no unit or volume information is
needed.

A system call library and a private call library can also be
concatenated in this way. For example, by adding the following
statement to the two in the preceding example, the private call
library PVTPROG, which is not cataloged, is concatenated to the
two system call librariesl

//
//

DD DSNAME=PVTPROG,DISP=SHR,UNIT=3350,
VOLUME=SER=PVT002

Any external references not resolved from the two system
libraries are resolved from the private library.

LIBRARY CONTROL STATEMENT

The LIBRARY control statement can be used to direct the
automatic library-call mechanism to a library other than that
specified in the SYSLIB DD statement. Only external references
listed on the LIBRARY statement are resolved in this way. All
other unresolved external references are resolved from the
library in the SYSLIB DD statement.

Chapter 3. Defining Input to the Linkage Editor 29

The LIBRARY statement can also be used to specify external
references that are DAi to be resolved by the automatic
library-call mechanism. The LIBRARY statement specifies the
duration of the nonresolutionl either during the current
linkage editor job step, called restricted no-cell, or during
this or any subsequent linkage editor job step, called
nevar-call.

Examples of each use of the LIBRARY statement followJ a
description of the format is given in "LIBRARY Statement" on
page 77.

Additional Call Libraries

If the additional libraries are to be used to resolve specific
references, the LIBRARY statement contains the ddname of a DD
statement that describes the library. The LIBRARY statement
also contains, in parentheses, the external references to be
resolved from the library; that is, the names of the members to
be used from the library. If the unresolved external reference
is not a member name in the specified library, the reference
remains unresolved unless subsequently defined.

For example, two modules CDATE and TIME) from a system call
library have been rewritten. The new modules are to be tested
with the calling modules before they replace the old modules.
Because the automatic library call mechanism would otherwise
search the system call library (which is needed for other
modules), a LIBRARY statement is used, as follows:

//SYSlIB
//TESTLIB
//SYSLIN
//

LIBRARY
/lE

DD
DD
DD
DD

DSNAME=SYS1.COBlIB,DISP=SHR
DSNAME=TEST,DISP=(OLD,KEEP), ...
DSNAME=ACCTROUT, ...
lE
TESTLIB(DATE,TIME)

Two external references, DATE and TIME, are resolved from the
library described on the TESTLIB DD statement. All other
unresolved external references are resolved from the library
described on the SYSLIB DD statement.

Restricted No-Call Function

The programmer can use the LIBRARY statement to specify those
external references in the output module for which there is to
be no library search during the current linkage editor job step.
This is done by specifying the external referenceCs) in
parentheses without specifying a ddname. The reference remains
unresolved, but the linkage editor marks the module executable.

For example, a program contains references to two large modules
that are called from the automatic call library. One of the
modules has been tested and corrected; the other is to be tested
in this job step. Rather than execute the tested module again.
the restricted no-call function is used to prevent automatic
library call from processing the module as foilowsl

30 MVS/XA Linkage Editor and Loader User's Guide

,1 "-.

\'f'

Never-Call Function

NCAL OPTION

(\

//
//SYSLIB
//

//SYSLIN
//

LIBRARY
/JE

EXEC
DD

.
DD
DD

PGM=HEHL,PARM=LET
DSNAME=PVTPROG,DISP=SHR,UNIT=3350,
VOLUME=SER=PVT002

DSNAME=&&PAYROL, •••
JE
(OVERTIME)

As a result, the external reference to OVERTIME is not resolved
by automatic library call.

The never-call function specifies those external references that
are not to be resolved by automatic library call during this or
any subsequent linkage editor job step. This is done by
specifying an asterisk followed by the external reference(s) in
parentheses. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a certain part of a program is never executed, but
it contains an external reference to a large module (CITYTAX)
which is no longer used by this program. However, the module is
in a call library needed to resolve other references. Rather
than take up storage for a module that is never used, the
never-call function is specified, as foilowsl

//
//SYSLIB
//

//SYSLIN
//

LIBRARY
/JE

EXEC
DD

PGM=HEWL,PARM=LET
DSNAME=PVTPROG,DISP=SHR,UNIT=33S0,
VOLUME=SER=PVT002

DD DSNAME=TAXROUT,DISP=OLD, ...
DD JE
JE(CITYTAX)

As a result, when program TAXROUT is link-edited, the external
reference to CITYTAX is not resolved by automatic library call.

When the NCAL option is specified, no automatic library call
occurs to resolve external references that are unresolved after
input processing. The NCAL option is similar to the restricted
no-call function on the LIBRARY statement, except that the NCAL
option negates automatic library call for all unresolved
external references and restricted no-call negates automatic
library call for selected unresolved external references. With
NCAL, all external references that are unresolved after input
processing is finished, remain unresolved. The module is,
however, marked executable.

The NCAL option is a special processing parameter that is
specified on the EXEC statement as described in ftNo Automatic
Library-Call Optionft on page 43.

Chapter 3. Defining Input to the Linkage Editor 31

~~~~~~~--~~~~-------~-------------------.-.-"--.---.--._------



INCLUDED DATA SETS 

The INCLUDE control statement requests the linkage editor to use 
additional data sets as input. These can be sequential data 
sets containing object modules and/or control statements, or 
members of partitioned data sets containing object modules 
and/or control statements, or load modules. 

The INCLUDE statement specifies the ddname' of a DD statement 
that describes the data set to be used as additional input. If 
the DD statement describes a partitioned data set, the INCLUDE 
statement also contains the name of each member to be used. See 
"INCLUDE Statement" on page 75 for a detailed description of the 
format of the INCLUDE statement. 

When an INCLUDE control statement is encountered, the linkage 
editor processes the module or modules indicated. Figure 11 
shows the processing of an INCLUDE statement. In the 
illustration, the primary input data set is a sequential data 
set named OBJMOD which contains an INCLUDE statement. After 
processing the included data set, the linkage editor processes 
the next primary input item. The arrows indicate the flow of 
processing. 

If an included data set also contains an INCLUDE statement, this 
specified module is also processed. However, any data following 
the INCLUDE statement is not processed. 

If the OBJMOD data 
the data following 
processed. Figure 
for this example. 

Primary Input 
Data Set OBJMOD 

set shown in Figure 11 is itself included, 
the INCLUDE statement for OBJLIB is not 
12 on page 33 shows the flow of processing 

Library OBJLIB 
Member MODA 

Figure 11. Processing of One INCLUDE Control Statement 

32 MVS/XA Linkage Editor and Loader User1s Guide 

C\ 
, I 

~,/ 



( 

( 

Primary Input 
Data Set SYSLIN 

Include OBJMOD 

Sequential 
Data Set OBJMOD 

Library OBJLlB 
Member MODA 

Figure 12. Processing of More than One INCLUDE Control Statement 

Including sequential Data sets 

Sequential data sets containing object modules and/or control 
statements can be specified by an INCLUDE control statement. In 
the following example. an INCLUDE statement specifies the 
ddnames of two sequential data sets to be used as additional 
input: 

//ACCOUNTS DD DSNAME=ACCTROUT.DISP=(OLD.KEEP), ..• 
//INVENTRY DD DSNAME=INVENTRY,DISP=(OLD,KEEP) •... 
//SYSLIN DD DSNAME=QTREND, ... 
// DD * 

INCLUDE ACCOUNTS.INVENTRY 
/* 

Each ddname could also have been specified on a separate INCLUDE 
statement; with either method, a DD statement must be specified 
for each ddname. 

Another method of doing the preceding example is given in 
"Including Concatenated Data Sets" on page 34. 

Chapter 3. Defining Input to the Linkage Editor 33 

------- ---------------- --



Including Library Members 

One or more members of a parU Uoned data set can be speci fied f~\ 
on an INCLUDE control statement. The member name must be ~ 
specified on the INCLUDE statement; no member name should appear 
on the DO statement itself. 

In the following example, one member name is specified on the 
INCLUDE statement a 

I'I'PAYROll 
I'I'SYSLIN 
1'1' 

INCLUDE 
1'. 

DO DSNAME=PAYROUTS,DISP=(OLDiKEEP), ••• 
DO DSNAME=&&CHECKS, DISP=(OLD, DELETE), •• '. 
DO J( 

PAYROLLCFICA) 

If more than one member of a partitioned data set is to be 
included, the INCLUDE statement specifies all the members to be 
used from each library. The member names appear in parentheses, 
following the data set name of the library. The member names 
are not repeated on the DO statement. 

In the following example, an INCLUDE statement specifies two 
members from each of two libraries to be used as additional 
input. 

I'/PAYROll 
//ATTEND 
//SYSLIN 

INCLUDE 
1'. 

DO DSNAME=PAYROUTS,DISP=(OLD,KEEP), ••. 
DD DSNAME=ATTROUTS,DISP=(OLD,KEEP), ••• 
DO )( 
PAYROLL(FICA,TAX),ATTEND(ABSENCE,OVERTIME) 

Each library could have been specified on a separate INCLUDE 
statement; with either method, a DO statement must be specified 
for each ddname. 

Another method of doing this example is given in "Including 
Concatenated Data Sets." 

Including concatenated Data sets 

Several data sets can be designated as input with one INCLUDE 
statement that specifies one ddname; additional data sets are 
then concatenated to the data set described on the specified DD 
statement. When data sets are concatenated, all records must 
have the same characteristics (that is, format, record length, 
block size, etc.). 

SEQUENTIAL DATA SETS. In the following example, two sequential 
data sets are concatenated and then specified as input with one 
INCLUDE statement •. 

//CONCAT 
1'/ 
I'I'SYSLIN 
1'1 

INCLUDE 
1')( 

DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), ••• 
DD DSNAME=INVENTRY,DISP=(OLD,KEEP), ••. 
DD DSNAME=SALES,DISP=OLD, .•• 
DD • 

CONCAT 

34 MVS/XA Linkage Editor and Loader User's Guide 

---~--~-~--~----



(-

(-

When the INCLUDE statement is recognized, the contents of the 
sequential data sets ACCTROUT and INVENTRY are processed. 

LIBRARY MEMBERS, Members from more than one library can be 
designated as input with one ddname on an INCLUDE statement. In 
this case. all the members are listed on the INCLUDE statementJ 
the partitioned data sets are concatenated using the ddname from 
the INCLUDE statement. 

//CONCAT 
// 
//SYSLIN 
// 

INCLUDE 
/'A. 

DD DSNAME=PAYROUTS,DISP=COLD,KEEP1, ••• 
DD DSNAME=ATTROUTS,DISP=COLD,KEEP), ••. 
DD DSNAME=REPoRT,DISP=oLD, •.• 
DD 'A. 
CoNCATC FICA, TAX, ABSENCE, OVERTIME) 

When the INCLUDE statement is recognized, the two libraries, 
PAYRoUTS and ATTROUTS, are searched for the four membersJ the 
members are then processed as input. 

Chapter 3. Defining Input to the Linkage Editor 3S 



CHAPTER 4. SPECIFYING JCL TO RUN A LINKAGE EDITOR JOB 

This chapter summarizes those aspects of the job 
language that pertain directly to the use of the 
The major topics covered are the EXEC statement, 
and cataloged procedures for the linkage editor. 
should be familiar with the job control language 
the publication JCL. 

EXEC STATEMENr--INTRODUCTION 

control 
linkage editor. 
DD statements, 

The reader 
as described in 

The EXEC statement is the first statement of every job step. 
For the linkage editor job step, the following topics are 
pertinent I 

.0 The program name of the linkage editor 

• Linkage editor options passed to the job step 

• Region-size requirements for the linkage editor 

For an execution job step following the linkage editor job step, 
the linkage editor return code is important. 

The EXEC statement contains the symbolic name of the load module 
to be invoked for execution. The linkage editor can be invoked 
with the following program namel 

HEHL 

(\ t j 
,~ 

LINKEDIT is an alias name for the linkage editor and can also be 
used to invoke it. / ", 

For example, the following EXEC statement causes the linkage 
editor to be invoked I 

//LKED EXEC PGM=HEWl 

PGM=LINKEDIT could also be used. 

To ensure compatibility with the operating system, the linkage 
editor can also be invoked by any of the following alias names I 
IEWl, IEHLF440, IEHlF880, and IEHLF128. 

EXEC STATEMENT--JOB STEP OPTIONS 

The EXEC statement also contains a list of options or parameters 
to be passed to the linkage editor. These options are of four 
types I 

• Module attributes, which describe the characteristics of the 
output load module 

• Special processing options, which affect linkage editor 
processing 

• Space allocation options, which affect the amount of storage 
used by the linkage editor for processing and output module 
library buffers 

• Output options, which specify the kind of output the linkage 
editor is to produce 

The rest of this section describes the options in each category. 
All the options for a particular linkage editor execution are I '\ 
listed in the PARMparameter on the EXEC statement. They can be ~ / 
listed in any sequence, as long as the rules for coding . -=--
parameters are followed. 

36 MVS/XA linkage Editor and Loader User's Guide 



( 

( 

MODULE ATTRIBUTES 

The ~odule attributes describe the characteristics of the output 
module, or modules. (If more than one load module is produced 
by the same linkage editor ;ob step, all output modules will 
have the attributes assigned on the EXEC statement.) The 
attributes for each load module are stored in the directory of 
the output module library along with the member name. (The 
format of the directory entry of a partitioned data set is given 
in Data Areas--JES3.) 

Module attributes specify whether or not the modulel 

• Can ever be processed by the linkage editor 

• Can be brought into virtual storage only by the LOAD macro 
instruction 

• Is to be in overlay format 

• Can be reused 

• Can be placed in the link pack area; that is, is reenterable 

• Can be replaced during execution by recovery management; 
that is, is refreshable 

• Is to be tested by the TSO TEST command 

• Is to have specified control sections aligned on page 
boundaries 

• Is or is not authorized to use the restricted system 
resources and functions 

After the descriptions of the module attributes, the default and 
incompatible attributes are discussed. 

I Downward Compatible Attribute 

When this attribute is specified, a maximum record size of 1024 
bytes is used for the output module library. 

To assign the downward compatible attribute, code DC in the PARM 
field as foliowsl 

//LKED EXECPGM=IEWL,PARM='DC, ... ' 

Note: If the DC attribute is specified and the output 
load module library is a data set created by the linkedit 
;ob step, the blocksize in the data set control block 
(DSCB) is set to 1024. If the DC attribute is specified 
and the output load module library is an existing data 
set, then the blocksize in the DSCB is set to 1024, but 
only if the current blocksize in the DSCB is less than 
1024. If the current blocksize in the DSCB is greater 
than 1024, the load module is written using a maximum 
record size of 1024 bytes; the blocksize in the DSCB is 
not changed. 

Scatter Format Attribute 

When the scatter format attribute is specified, the linkage 
editor produces a load module in a format suitable for either 
scatter or block loading. 

To assign the scatter format attribute, code SCTR in the PARM 
field, as foilowsl 

//LKED EXEC PGM=IEHL,PARM='SCTR, ... ' 

Chapter 4. Specifying JCL to Run a Linkage Editor Job 37 



I· 

I Notes: 

1. If scatter format is not specified. the block format 
attribute is assigned by the linkage editor. (The 
programmer cannot specify block format.> 

2. If SCTR is specified, the programmer should ensure that the 
load module does not contain zero-length control sections, 
private code sections, or common areas. The presence of 
such sections in a module that is to be scatter loaded can, 
under certain circumstances, cause the module to be loaded 
incorrectly. 

3. The SCTR attribute must be specified when the nucleus for a 
VS system is link-edited. In all other instances, if the 
SCTR attribute is specified, the linkage editor builds the 
output load module appropriately; however, scatter load 
support is not provided in VS systems and the attribute/load 
module format is ignored when fetching the load module. 

Not Editable Attribute 

A load module which is marked NE (not editable> is not 
reprocessable by the linkage editor. If a module map or a 
cross-reference table is requested, the not-editable attribute 
is ignored. 

To assign the not-editable attribute, code NE in the PARM field, 
as foilowsl 

//LKED EXEC PGM=HEWL,PARM='NE, ... ' 

Note: The not-editable attribute disables the EXPAND function 
for the output load module and also limits to 18 the number of 
consecutive iterations of AMASPZAP. If the EXPAND function is 
required or more than 18 iterations of AMASPZAP are required, 
the load module must be re-created. 

only-Loadable Attribute 

Overlay Attribute 

A module with the onlY-loadable attribute can be brought into 
virtual storage only with a LOAD macro instruction. Some 
subsets of the control program use a smaller control table when 
the load module is invoked with a LOAD. This reduces the 
overall virtual storage requirements of the module. 

The module with the only-Ioadable attribute must be entered by 
means of a branch instruction or a CALL macro instruction. If 
an attempt is made to enter the module with a LINK, XCTL, or 
ATTACH macro instruction. the program making the attempt is 
terminated abnormally by the control program. 

To assign the only-loadable attribute, code OL in the PARM field 
as follows I 

//LKED EXEC PGM=HEWL,PARM='OL •••. ' 

A program with the overlay attribute is placed in an overlay 
structure as directed by linkage editor OVERLAY control 
statements. The module is suitable only for block loading; it 
cannot be refreshable. reenterable. or serially reusable. 

c 

If the overlay attribute is specified and no OVERLAY control 
statements are found in the linkage editor input, the attribute 
is negated. The condition is considered a recoverable error; 
that is, if the LET option is specified. the module is marked ! ... ' ........ "./. 
executable. \../ 

38 MVS/XA Linkage Editor and Loader User's Guide 



The overlay attribute must be specified for overlay processing. 
If this attribute is omitted, the OVERLAY and INSERT statements 
are considered invalid, and the module is not an overlay 
structure. This condition is also recoverable; if the LET 
option is specified, the module is marked executable. 

To assign the overlay attribute, code OVLY in the PARM field as 
follows • 

.I.1LKED EXEC PGM=HEWL,PARM='OVLY, ••• ' 

See ftAppendix C. Designing and Specifying Overlay Programsft on 
page 163 for information on the design and specificetion of an 
overlay structure. 

Reusability Attributes 

Either one of two attributes may be specified to denote the 
reusability of a module. (Reusability means that the same copy 
of a load module can be used by more than one task either 
concurrently or one at a time.) The reusability attributes are 
reenterable and serially reusable; if neither is specified, the 
module is not reusable and a fresh copy must be brought into 
virtual storage before another task can use the module. 

The linkage editor only stores the attribute in the directory 
entry; it does not check whether the module is really 
reenterable or serially reusable. A reenterable module is 
automatically assigned the reusable attribute. However, a 
reusable module is not also defined as reenterable; it is 
reusable only. 

REENTERABLEI A module with the reenterable attribute can be 
executed by more than one task at a time; that is, a task may 
begin executing a reenterable module before a previous task has 
finished executing it. This type of module cannot be modified 
by itself or by any other module during execution. 

If a module is to be reenterable, all the control sections 
within the module must be reenterable. If the reenterable 
attribute is specified, and any load modules that are not 
reenterable become a part of the input to the linkage editor, 
the attribute is negated. 

To assign the reenterable attribute, code RENT in the PARM 
field, as follows. 

.I.1LKED EXEC PGM=HEWl,PARM='RENT, ... ' 

SERIALLY REUSABLE, A module with the serially reusable 
attribute can be executed by only one task at a time; that is, a 
task may not begin executing a serially reusable module before a 
previous task has finished executing it. This type of module 
must initialize itself and/or restore any instructions or data 
in the module altered during execution. 

If a module is to be serially reusable, all its control sections 
must be either serially reusable or reenterable. If the 
serially reusable attribute is specified, and any load modules 
that are neither serially reusable nor reenterable become a part 
of the input to the linkage editor, the serially reusable 
attribute is negated. 

To assign the serially reusable attribute, code REUS in the PARM 
field, as foilowsl 

.I.1LKED EXEC PGM=HEWL,PARM='REUS, ... ' 

Chapter 4. Specifying JCl to Run a linkage Editor Job 39 



Refreshable Attribute 

Test Attribute 

Authorization Code 

A module with the refreshable attribute can be replaced by a new 
copy during execution by a recovery management routine without 
changing either the sequence or results of processing. This 
type of module cannot be modified by itself or by any other 
module during execution. The linkage editor only stores the 
attribute in the directory entry; it does not check whether the 
module is refreshable. 

If a module is to be refreshable, all the control sections 
within it must be refreshable. If the refreshable attribute is 
specified, and any load modules that are not refreshable become 
a part of the input to the linkage editor, the attribute is 
negated. 

To assign the refreshable attribute, code REFR in the PARM 
field, as followsl 

I'I'LKED EXEC PGM=HEHL,PARM=·REFR, ... ' 

A module with the test attribute is to be tested and contains 
the testing symbol tables for the TSO TEST command. The linkage 
editor accepts these tables as input, and places them in the 
output module. The module is marked as being under test. If 
the test attribute is not specified, the symbol tables are 
ignored by the linkage editor and are not placed in the output 
module. If the test attribute is specified, and no symbol table 
input is received, the output load module will not contain 
symbol tables to be used by the TSO TEST command. 

To assign the test attribute, code TEST in the PARM field, as 
foliowsl 

I'I'LKED EXEC PGM=HEHL,PARM='TEST, ... • 

Note: The test attribute applies to programs using either 
TESTRAN or the TSO TEST command. Do not use the 'TEST' option 
unless the load module is to be executed by either TSO or 
TESTRAN. 

The output load module is assigned an authorization code that 
determines whether or not the load module may use restricted 
system services and resources. 

To assign an authorization code through the PARM field, code the 
AC parameter as foilowsl 

I'I'LKED EXEC PGM=HEHL,PARM=·AC=n, ... ' 

The authorization code, n, must be I to 3 decimal digits with a 
value from 0 to 255. 

·AC=, .•. • and 'AC= , are equivalent to 'AC=O·. The 
authorization code assigned in the PARM field is overridden by 
an authorization code assigned through the SETCODE control 
statement. 

40 MVSI'XA Linkage Editor and Loader User's Guide 

,rf-~ 
I ' "J 

(, '" 
'-0/ 



Addressing Mode Attribute 

To assign the addressing mode for all the entry points into the 
load module (the main entry point, its true aliases, and all the 
alternate entry points), code the AMODE parameter as foilowsl 

//LKED EXEC PGM=IEHL, 
PARM='AMODE=xxx, ... ' 

The addressing mode 'xxx' must be either 24, 31, or ANY. 

The addressing mode assigned in the PARM field overrides the 
separate addressing modes found in the ESD data for the control 
sections or private code where the entry points are located. 
The addressing mode assigned in the PARM field is overridden by 
an addressing mode assigned in the MODE control statement. 

If the AMODE parameter occurs more than once in the PARM field 
of the EXEC statement, the last valid parameter is used. 

If only the AMODE value is specified in the PARM field of the 
EXEC statement, an RMODE value of 24 is implied. 

Nate: The keyword 'AMODE' may also be specified as 'AMOD'. 

Residence Mode Attribute 

To assign the residence mode for the output load module, code 
the RMODE parameter as foilowsl 

//LKED EXEC PGM=IEHL, 
PARM='RMODE=xxx, ... ' 

The residence mode 'xxx' must be either 24 or ANY. 

The residence mode assigned in the PARM field overrides the 
residence mode accumulated from the input control sections and 
private code. The residence mode assigned in the PARM field is 
overridden by a residence mode assigned through the MODE control 
statement. 

If the RMODE parameter occurs more than once in the PARM field 
of the EXEC statement, the last valid parameter is used. 

If only an RMODE value of ANY is specified in the PARM field of 
the EXEC statement, an AMODE value of 31 is implied. 

If only an RMODE of 24 is specified, no overriding AMODE value 
is assigned; instead, the AMODE value in the ESD data for the 
main entry point, a true alias, or an alternate entry point is 
used in generating its respective directory entry. If any 
control section to be linked has an RMODE=24, then the load 
module is marked RMODE=24. 

Nate: The keyword 'RMODE' may also be specified as 'RMOD'. 

Combinations of Addressing Made and Residence Made 

In generating a directory entry for the main entry point, a true 
alias, or an alternate entry point, the linkage editor validates 
the combination of the AMODE value and the RMODE value, as 
specified by the user in the PARM field of the EXEC statement, 
according to the following tablet 

RMODE=24 RMODE=ANV 

AMODE=24 valid invalid 

Chapter 4. Specifying JCL to Run a linkage Editor Job 41 



Default Attributes 

RMODE=24 RMODE=ANY 

AHODE=31 valid valid 

AHODE=ANV valid invalid 

If the AMODE/RMODE combination ... esulting f ... om the PARM field of 
the EXEC statement is invalid, an e ...... o ... message is issued and 
the linkage edito ... igno ... es the PARM field of the EXEC stat.m.nt 
as the sou ... ce of AMODE/RMODE data. 

Unless specific module att ... ibutes a ... e indicated by the 
p ... og ... amme ... , the output module is not in an ove ... lay st ... uctu ... e, 
and it is not tested. The module is in block fo ... mat, not 
... ef ... eshable, not ... eente ... able, and not se ... ially .... usable. If 
page bounda ... y alignment is ... equested, its cont ... ol sections a ... e 
aligned on 4K-byte page bounda ... ies. 

One othe ... att ... ibute is specified by the linkage edito ... afte ... 
p ... ocessing is finished. If, du ... ing processing, severity 2 
errors were found that would p ... event the output module from 
being executed successfully, the linkage edito ... assigns the 
not-executable att ... ibute. The control p ... og ... am will not load a 
module with this att ... ibute. 

If the LET option is specified, the output module is ma ... ked 
executable even if severity 2 errors occur. (The LET option is 
discussed late ... in this section.) 

If the AC pa ... amete ... is not specified 0 ... is coded incorrectly, / 
the default autho ... ization code of 0 is assigned to the output 
load module. " j 

Incompatible Attributes 

Of the module attributes the programmer may specify, several a ... e 
mutuallY exclusive. When mutually exclusive attributes a ... e 
specified for a load module, the linkage edito ... ignores the 
less-significant attributes. For example, if both OVLY and RENT 
are specified, the module will be in an ove ... lay structure and 
will not be reenterable. 

Certain attributes are also incompatible with othe ... job step 
options. All job step options a ... e shown in Figure 15 on page 52 
along with those options that a ... e incompatible. 

SPECIAL PROCESSING OPTIONS 

The special processing options affect the executability of the 
output module and the use of the automatic lib ... ary-call 
mechanism. These options are the exclusive call option, the let 
execute option, and the no automatic-call option. 

Exclusive Call Option 

When the exclusive call option is specified, valid exclusive 
references have been made between segments, and the linkage 
editor marks the output module as executable. However, a 
wa ... ning message is given fo ... each valid exclusive ... efe ... ence. 

To specify the exclusive call option, code XCAL in the PARM 
field as follows. 

//LKED EXEC PGM=HEWL,PARM=·XCAL,OVLY, ... • 

42 MVS/XA Linkage Editor and Loade ... User's Guide 

----- --.. -- ------------ ---_. __ .. - -----~----

(," .. ". 
./ 



( 

( 

Let Execute opt ian 

The OVLY attribute must also be specified for an overlay 
program. 

Nate: Unless the let execute option is specified, other errors 
may cause the module to be marked not executable. 

When the let execute option is specified, the linkage editor 
marks the output module as executable even though a severity 2 
error condition was found during processing. (A severity 2 
error condition could make execution of the output load module 
impossible.) Some examples of severity 2 errors arel 

• Unresolved external references 

• Valid or invalid exclusive calls in an overlay program 

• Error on a linkage editor control statement 

• A library module that cannot be found 

• No available space in the directory of the output module 
library 

To specify the let execute option, code LET in the PARM field as 
follows I 

//LKED EXEC PGM=HEWL,PARM=·LET, ... • 

Nate: If LET is specified, XCAL need not be specified. 

Na Automatic Library-Call Option 

When the no automatic library-call option is specified, the 
linkage editor library-call mechanism does not call library 
members to resolve external references. The output module is 
marked executable even though unresolved external references are 
present. If this option is specified, the LIBRARY statement 
need not be used to negate the automatic library call for 
selected external references. Also, with this option, a SYSLIB 
DO statement need not be supplied. 

To specify the no automatic library-call option, code NCAL in 
the PARM field, as foilowsl 

//LKED EXEC PGM=HEWL,PARM=·NCAL, ..• • 

Nate: Unless the LET option is also specified, other errors may 
cause the module to be marked not executable. 

SPACE ALLOCATION OPTIONS 

SIZE Option 

These options allow the programmer to specify the storage 
available to the linkage editor, and to specify the block size 
for the output module. For large modules and SMP, see SMf 
System Programmer's Guide; for SMP/E, see SMP/E User's Guide. 

The programmer can specify, through the SIZE option, the amount 
of virtual storage to be used by the linkage editor and the 
portion of that storage to be used as the load module buffer. 

The linkage editor provides default values for the SIZE option. 
The default values are used if one or both of the values are not 
specified correctly by the user or are not specified at all. 
These defeults should be adequate for most link-edits, relieving 
the programmer from specifying the SIZE option for each 

Chapter 4. Specifying JCL to Run a Linkage Editor Job 43 



link-edit. The default values are. yaluel is 256K bytes and 
yalue2 is 48K bytes. 

FORMAT. The format of the SIZE option is. 

SIZE=(yaluel,yalye2) 

SIZE=(yaluel ) 

SIZE=(yalYel, ) 

SIZE=(,yalye2) 

SIZE=(,) 

When coded in the PARM field, yalyel and yalue2 parameters are 
enclosed in parentheses as follows. 

//LKED 
// 

EXEC PGM=HEHL, 
PARM='SIZE=(yalyel,yalue2)'.A.' 

Both yalyel and yalye2 may be expressed as integers specifying 
the number of bytes of virtual storage or as nK, where n 
represents the number of lK (1024) bytes of virtual storage. 

When determining the values for the SIZE option, it is bast to 
establish yalye2 first, then yalyel. 

VALUE2. Valye2 specifies the number of bytes of storage to be 
allocated as the load module buffer. The allocation specified 
by yalye2 is a part of the virtual storage specified by yaluel. 

The actual minimum for yalue2 is 6144 (6K) or the length of the 
largest input load module text record, whichever is larger. 
AMBLIST may be used to find the size of the load module text 
records. If a value less than 6144 (6K) is specified, the 
default value of 48K for yalye2 is used. 

The space allocated by yalye2 is used forI the buffer into which 
the input load module text is read, the buffer from which load 
module text is written to the intermediate data set, the buffer 
into which the load module text is read from the intermediate 
data set, and the buffers from which the load module text is 
written to the output data set. Therefore, the determination of 
yalue2 requires that the programmer consider the record sizes of 
the data sets from which any load module text records are to be 
read (SYSLIB, any data set referenced by an INCLUDE, any library 
data set), the record size for the intermediate data set 
(SYSUTl), and the record size for the output load module data 
set (SYSLMOD). 

Figure 13 on page 45 lists the direct access devices that may 
contain data sets that are the source of input load module text, 
the intermediate data set, and the output load module data set, 
and lists the maximum record size used for each device by the 
linkage editor. These maximum record sizes may always be used 
in specifying yalye2 or, if the programmer can determine them, 
exact sizes can be used. 

44 MVS/XA Linkage Editor and Loader User's Guide 

- .. -~-------- ---------------

rr-", 
~_/ 



(-

( 

Device Maximum SVSUTI or SVSLMOD 
Record Size Maximum Record Size 

Device (Bytes) (K Bytes) 

2305-2 14660 14 

3330-1 13030 12 

3330-11 13030 12 

3340 8368 8 

3344 8368 8 

3350 19069 18 

3375 32760 18 

3380 32760 18 

Figure 13. SYSUTI and SYSlMOD Device Types and Their Maximum 
Record Sh:es 

The programmer must specify valye2 so that the linkage editor 
has sufficient space to allocate buffers that are compatible 
with the record sizes for the intermediate data set and the 
output load module data set. 

The linkage editor optimizes the record size for the device type 
of output load module data set unless one of the following 
conditions exists. 

1. The programmer has specified PARM=' ... DCBS, ... ', and the 
SYSlMOD DD statement contains a BlKSIZE subparameter in the 
DCB parameter, forcing the linkage editor to write records 
having a maximum length equal to the BlKSIZE specification. 

2. The output load module data set is an existing data set 
having a block size less than the optimum record size, 
forcing the linkage editor to write records no longer than 
that block size. 

3. The programmer has specified a value2 less than twice the 
maximum record size for the output load module data set, 
forcing the linkage editor to write records having a maximum 
size of one-half value2. 

4. The intermediate data set and the output load module data 
set have dissimilar record sizes, forcing the linkage editor 
to write records having a maximum size determined for 
compatibility between the two data sets. 

The linkage editor optimizes the record size of the output load 
module data set for its device type but selects a record size 
compatible with the intermediate data set (see restrictions 
above). Therefore, if the intermediate data set and the output 
load module data set reside on the same device type, use of the 
load module buffer is optimized. Also, if the data sets are on 
different units of the same type, the performance of the linkage 
editor is improved. 

Figure 14 on page 46 shows the record sizes used for 
compatibility between every combination of device types for the 
intermediate and output load module data sets. 

Chapter 4. Specifying JCl to Run a linkage Editor Job 45 



I 

SVSLMOD Record Size SVSUT1 Record Size 

Device 
Used 

IBM 2305-2 

IBM 3330 
IBM 3330-11 

IBM 3340 
IBM 3344 

Maximum 
Record 
Size 
Produced 

14K 
12K! 
12K! 
14K 

12K 
12K 
12K 
12K 

7K 
6K 
8K 
8K 

IBM 3350 14K! 
IBM 3375/3380 12Kl 

18K 
18K 

Device 
Used 

2305-2 
3330,3330-11 
3340 
3350,3375,3380 

2305-2 
3330,3330-11 
3340 
3350,3375,3380 

2305-2 
3330,3330-11 
3340 
3350,3375,3380 

2305-2 
3330,3330-11 
3340 
3350,3375,3380 

Maximum 
Record 
Size 
Produced 

14K 
12K 

6K 
14Kz 

12Kz 
12K 

6Kz 
12Kz 

7K2 
12K2 

8K 
16Kz 

14K 
12K 

6K 
18K 

MiniBml 
Load Module 
Buffer Area 
(Value2l 

28K 
24K 
24K 
28K 

24K 
24K 
24K 
24K 

14K 
12K 
16K 
16K 

28K 
24K 
36K 
36K 

Figure 14. Load Module Buffer Area and SYSLMOD and SYSUTI 
Record Sizes 

Notes to Figure 14: 

1 The SYSLMOD record size is reduced to less than the maximum 
to make it compatible with the SYSUTl record size. 

2 The SYSUT1 record size is reduced to less than the maximum to 
to make it compatible with the SYSLMOD record size. 

46 MVS/XA Linkaga Editor and Loadar User's Guide 

--------------

i 
''''_J 



( 

( \. 
. ./ 

Valye2 should be, minimally, twice the record size for the 
output load module data set. If yalye2 can be made larger than 
twice the record size for the output load module data set, the 
increase should be the larger of the record sizes for the 
intermediate and output load module data sets. 

The practical maximum for yalueZ is the length of the load 
module to be built, plus 4K bytes if the length of the load 
module to be built is equal to or greater than 40960 (40K). Any 
space allocated to the load module buffer above this amount is 
not used and does not need be allocated to yalueZ. 

If a yalyeZ is specified that cannot be 
available storage, valyeZ is reduced to 
multiple of storage that is available. 
never decreases yalyeZ to less than the 

accommodated in the 
the next lower 2K-byte 
This reduction, however, 
minimum, 6144 (6K). 

The optimal valye2 is the practical maximum, as explained above. 
If the entire load module is contained in storage, the 
performance of the linkage editor is improved and the use of the 
intermediate data set may be eliminated. 

Examples of Value2 Determination 

1. A load module of between ZlK and ZZK bytes is to be built. 
The load module data set is a new data set on an IBM 3330 
Disk Storage device. The intermediate data set is allocated 
to an IBM 3340 Direct Access Storage device. A SYSLIB data 
set is to be used, residing on a 3330. The entire load 
module could be contained in the load module buffer if 
valueZ were ZZK bytes (the load module size). The practical 
minimum for valye2 would be lZK bytes (the size of the 
largest possible input load module text record from the 
SYSLIB data set). However, valueZ should be at least as 
large as two records to be written to the load module data 
set (that is, 24K bytes). There is a reconciliation 
necessary in this case between the two dissimilar device 
types for the intermediate and output load module data sets; 
but the record size of the output load module data set is an 
even multiple of the record size of the intermediate data 
set so no adjustment of the record sizes is made. 
Therefore, the practical minimum, as well as the practical 
maximum and optimal yalyeZ in this case is 24K bytes. 

2. A load module of more than 5DK bytes is to be relink-edited; 
however, a maximum of 40K bytes is available to be allocated 
to yalue2. The output load module data set is an old data 
set residing on a 3340, written with maximum record size. 
The intermediate data set is allocated to an IBM 2305-2 
Fixed Head Storage device. The link-edit involves a control 
section in the SYSLIN data set that will replace a control 
section in the old load module, followed by an INCLUDE 
statement naming the old load module on the SYSLMOD data 
set. The maximum for yalye2 cannot be satisfied, since only 
40K bytes is available. The size of two maximum records 
written to a 3340 would be 14K bytes. However, the size of 
one record to be written or to be read from the intermediate 
data set is 14K bytes. Therefore, the minimum for yalye2 in 
this case is 14K bytes. This is sufficient space for one 
input load module text record or one record written to or to 
be read from the intermediate data set or two records 
written to the output load module data set. 

3. The output load module data set resides on a 2305-2. The 
intermediate data set is allocated to a 3330. All load 
module input comes from a 3330. ValyeZ in this case is 24K 
bytes, because the input load module text records are, at 
most, 12K bytes, the records written to and read from the 
intermediate data set are 12K bytes, and the records written 
to the output load module data set are 12K bytes. The 
maximum record size of 14K bytes for the 2305-2 is reduced 
to 12K bytes for this link-edit in order to be compatible 
with the intermediate data set . 

Chapter 4. Specifying JCL to Run a linkage Editor Job 47 



An alternative for value2 in the above example is 12K bytes. 
This 12K bytes is adequate for the input load module text 
records and the records written to and read from the 
intermediate data set. The 12K value forces a maximum 
record size of 6K bytes to be written to the output load 
module data set. At 6K bytes each, two records can be 
written on a 2305-2 track while, as in the above example, 
only one record of 12K bytes can be written on a 2305-2 
track. 

4. The output load module data set is a new data set allocated 
to a 3330. The programmer has specified the linkage editor 
parameter DCBS, and the SYSLMOD DD statement contains 
' ... DCB=( ... BLKSIZE=3072, .•. ), ... '. The only load module 
input comes from a data set created previously in a similar 
manner. The intermediate data set is allocated to a 3340. 
The minimum for value2 in this case is 6K bytes; the input 
load module records are 3K bytes at most, the intermediate 
data set records are 7K bytes at most, and, as directed by 
the programmer, the linkage editor produces records having a 
maximum size of 3K bytes on the output load module data set. 

VALUE1, Valyelspecifies the number of bytes of virtual storage 
available to the linkage editor regardless of the private area 
size. The storage specified by valyel includes the allocation 
specified by valye2. 

The absolute minimum for valuel is the design point of the 
linkage editor, 96K bytes. If a value less than the minimum for 
valyel is specified, the default options for both valuel and 
valye2 are used. 

The practical minimum for valyel is 98304 (96K) bytes plus any 
excess in valye2 over 6144 (6K) bytes, plus any additional space 
required to support the blocking factor for the SYSLIN, object 
module library, and SYSPRINT data sets. 

c 

The design point of the linkage editor provides for the minimum ! 

load module buffer--6144 (6K) bytes of virtual storage. If a ,~~ 
load module buffer larger than 6144 (6K) bytes is specified in 
valye2, valyel must be increased by the excess of that valye2 
over 6144 (6K) bytes. 

The linkage editor supports three different blocking factors for 
the SYSLIN, object module library, and SYSPRINT data sets; they 
are 5, 10, and 40 to 1. The requirement for additional space 
depends upon the blocking factor that is to be supported. 

The following table shows the additional space required to 
support each blocking factor. 

Blocking Space 
Factor Required 

5 to 1 o or OK 

10 to 1 18432 or 18K 

40 to 1 28672 or 28K 

Blocking factors of 1 through 4, 6 through 9, and 11 through 39 
are treated as blocking factors of 5, 10, and 40, respectively. 
Blocking factors greater than 40 are invalid. 

The additional space requirement is determined by the largest 
blocking factor among the affected data sets. 

The blocking factor supported is dependent upon space available ( \ 
after value2 has been allocated to the load module buffer out of '. 
valye1. Therefore, if the space provided in valyel is . Hj 
insufficient, the next smallest blocking factor is used. 

48 MVS/XA Linkage Editor and Loader User's Guide 



DeBS option 

The performance of the linkage editor can be improved by the 
allocation of additional storage by valuel, especially in 
providing for the optimal valye2. 

The maximum value that can be specified for valyel is 9999999 or 
9999K. However, the amount of virtual storage actually 
allocated for valyel is the smaller ofe 

• The region size 

• The amount specified for valyel 

Examples of Valuel Determination 

1. Assume that an optimum valye2 of 36K bytes has already been 
determined for the link-edit. An appropriate valuel is 126K 
bytes, because an additional 30K bytes, above the minimum of 
96K bytes, is needed to support the allocation of 36K bytes 
to valye2 and no additional storage is required to support 
the blocking factors for SYSLIN, SYSPRINT, and any object 
module libraries. 

2. The minimum for valye2 (6K bytes) is used. All the object 
module libraries are blocked 5-to-l, except one that is 
blocked lo-to-l. The SYSLIN and SYSPRINT data sets are 
assigned blocking factors of 5. An appropriate valyel for 
this link-edit is ll4K bytes, the minimum plus the 18K bytes 
needed to support the blocking factor of 10-to-l on the 
object module library. 

The DCBS option allows the programmer to specify the block size 
for the SYSLMOD data set in the DCB parameter of SYSLMOD DD 
statement. 

If the DCBS option is specified, the block size value in the 
DSCB for the SYSLMOD data set ~ be overridden. If the DCBS 
option is not specified, the block size value in the DSCB for 
the SYSLMOD data set mav not be overridden. 

If the DCBS option is specified and no block size value is 
provided in the DCB parameter of the SYSLMOD DD statement, the 
linkage editor uses the maximum record size for the device. If 
the DCBS option is not specified and a block size value is 
provided in the DCB parameter of the SYSLMOD DD statement, the 
block size value in the DCB parameter of the SYSlMOD DD 
statement is ignored by the linkage editor. 

Even though the DCBS option is specified, the linkage editor 
will not allow the programmer to set the block size for the 
SYSlMOD data set to a value less than the minimum; that is, 256, 
or 1024 if the SCTR option is specified, or a value less than 
the block size in the DSCB for an existing data set. 

The block size specified by the programmer will be used unless 
(1) it is larger than the maximum record size for the device, in 
which case the maximum record size is used, or (2) it is less 
than the minimum block size, in which case the minimum block 
size is used. 

Chapter 4. Specifying Jel to Run a Linkage Editor Job 49 



OUTPUT OPTIONS 

The following exemple shows the use of the DCBS option for en 
IBM 5550 Direct Access Storage device1 

//LKED 

//SYSLMOD 
// 

EXEC 

DD 

PGM=HEWL,PARM='XREF,DCBS' 

DSNAME=LOADMODCTEST),DISP=CNEW,KEEP), 
DCB=CBLKSIZE=5072), ••. 

As a result, the linkage editor uses a 5K-byte block size for 
the output module library. 

These options control the optional diagnostic output produced by 
the linkage editor. The programmer can request that the linkage 
editor produce a list of all control statements and a module map 
or cross-reference table to help in testing a program. The 
format of each is described in "Chapter 8. Interpreting Linkage 
Editor Output" on page 107. 

In addition, the programmer can request that the numbered 
error/warning messages generated by the linkage editor appear on 
the SYSTERM data set as well as on the SYSPRINT data set. 

Control statement Listing Option 

Module Map Option 

To request a control statement listing, code LIST in the PARM 
field, as foilowsl 

//LKED EXEC PGM=HEWL,PARM='LIST, ... • 

When the LIST option is specified, all control statements 
processed by the linkage editor are listed in card-image format 
on the diagnostic output data set. 

To request a module map, code MAP in the PARM field, as follows1 

//lKED EXEC PGM=HEWL,PARM=·MAP, .•• • 

When the MAP option is specified, the linkage editor produces a 
module map of the output module on the diagnostic output data 
set. 

Cross Re~erence Table Option 

To request a cross-reference table, code XREF in the PARM field, 
.. s follows1 

//LKED EXEC PGM=HEWL,PARM=·XREF, ••. • 

When the XREF option is specified, the linkage editor produces a 
cross-reference table of the output module on the diagnostic 
output data set. The cross-reference table includes a module 
mapJ therefore, both XREF and MAP need not be specified for one 
linkege editor job step. 

50 MVS/XA Linkage Editor and Loader User's Guide 

.,4' .. ~ 

(~.// 



( 

Alternate output (SYSTER") opt ian 

To request that the numbered linkage editor error/warning 
messages be generated on the data set defined by a SYSTERM DD 
statement, code TERM in the PARM field, as foilowsl 

//LKED EXEC PGM=HEWL,PARM='TERM, ... ' 

When the TERM option is specified, a SYSTERM DD statement must 
be provided. If it is not, the TERM option is negated. 

Output specified by the TERM option supplements printed 
diagnostic information; when TERM is used, linkage editor 
error/warning messages appear in both output data sets. 

INCOMPATIBLE JOB STEP OPTIONS 

When mutuallY exclusive job step options are specified for a 
linkage editor execution, the linkage editor ignores the less 
significant options. Figure 15 on page S2 illustrates the 
significance of those options that are incompatible. When an X 
appears at an intersection, the options are incompatible. The 
option that appears higher in the list is selected. 

Chapter 4. Specifying JCL to Run a Linkage Editor Job SI 



-:y4.-
04 

I-- ~<v~~ 

-+-~~ 
~~ 

~ ~~ -:y 
~~ 

~ 
~~ 

~~ 

~ lX ~~ 
G~~ 

X lX 
C,) 

~<v ex C>< IX -:y 
-+-(,~ 

"-",,~ 
:v 

~(,~ 

0'" 
~,'V<v 

«.~ 

C>< 
~~ 

-f<9~ 

'9;-~ 
~~ 

J 
~(, 

Figure 15. Incompatible Job Step Options for the Linkage Editor 

For example, to check the compatibility of XREF and NE, follow 
the XREF column down and the NE row across until they intersect. 
Because an X appears where they intersect, they are 
incompatible; XREF is selected; NE is negated. 

If incorrect values are specified for the SIZE parameter, the 
default values are used. If incompatible options are detected, 
the message 

*** OPTIONS INCOMPATIBLE *** 
is printed. This message follows the standard module 
disposition message. 

If the incompatible options OVLY and AMODE or RMODE are 
specified, a diagnostic message is issued. 

52 MVS/XA Linkage Editor and Loader User's Guide 

------------------

,~ 
\'-...J 

//~ ~\ 

i 
\' .... _.0>"'7' 



(' 

( ": . ./ 

EXEC STATEMENT--REGION PARAMETER 

The REGION parameter specifies the maximum amount of storage 
that can be allocated to satisfy a request for storage that the 
linkage editor makes. In its minimal situation, the linkage 
editor requires a REGION parameter of not less than 96K bytes; 
in its default situation, not less than ZS6K bytes; and, in its 
maximal situation (see ftSize Parameter Guidelinesft on page 60), 
not less than lSOOK bytes. 

EXEC STATEMENT--RETURN CODE 

The linkage editor passes a return code to the control program 
upon completion of the job step. The return code reflects the 
highest severity code recorded in any iteration of the linkage 
editor within that job step. The highest severity code 
encountered during processing is multiplied by 4 to create the 
return code; this code is placed into register IS at the end of 
linkage editor processing. Figure 16 contains the return codes, 
the corresponding severity code, and a description of each. 

Return 
Code 

00 

04 

08 

OC 

10 

Severity 
Code Description 

o Normal conclusion 

I Warning messages have been listed; execution 
should be successful. For example, if the 
overlay option is specified and the overlay 
structure contains only one segment, a 
return code of 04 is placed in register 15. 

2 

3 

4 

Error messages have been listed; execution 
may fail. The module is marked not executable 
unless the LET option is specified. For 
example, if the block size of e specified 
library data set cannot be handled by the 
linkage editor, a return code of 08 is placed 
in register 15. 

Severe errors have occurred; execution is 
impossible. For example, if an invalid entry 
point has been specified, a return code of OC 
is placed in register 15. 

Terminal errors have occurred; the 
processing has terminated. For example, if 
the linkage editor cannot handle the blocking 
factor requested for SYSPRINT, a return code 
of 10 is placed in register 15. 

Figure 16. Linkage Editor Return Codes 

The programmer may use a return code to determine whether or not 
the load module is to be executed by using the condition 
parameter (COND) on the EXEC statement for the load module. The 
control program compares the return code with the values 
specified in the COND parameter, and the results of the 
comparisons are used to determine subsequent action. The COND 
parameter may be specified either in the JOB statement or the 
EXEC statement (see the publication lkL). 

Chapter 4. Specifying JeL to Run a Linkage Editor Job 53 

-- ~-- -- --. -----



DD STATEMENTS 

Every date set used by the linkage editor must be described with ('. ~\. 
a DD statement. Each DD statement must have a name, unless data 
sets ere concatenated. The DO statements for data sets required j 

by the linkage editor have preassigned namesl those for 
additional input data sets have user-assigned names, those for 
concatenated data sets (after the first) have no names. 

In addition to the name, the DO statement provides the control 
program with information about the input/output device on which 
the data set resides, and a description of the data set itself. 
All of the job control language facilities for device 
description are available to the users of the linkage editor. 

Besides information about the device, the DO statement also 
contains a data set description which includes the data set name 
and its disposition. Information for the data control block 
(DCB) may also be given. 

General information pertinent to the linkage editor on the data 
set name and DCB information follows; information on disposition 
is given in the discussion for each data set. 

DATA SET NAHEt The linkage editor uses either sequential or 
partitioned data sets. For sequential data sets, only the name 
of the data set is specified; for partitioned data sets, the 
member name must also be specified either on the DO statement or 
with a control statement. 

When input data sets are passed from a previous job step, or 
when the output load module is being tested, a recommended 
practice is to use temporary data set names (that is, &&dsname). 
Use of temporary names ensures that there are no duplicate data 
sets with out-of-date modules. A data set with a temporary name 
is automatically deleted at the end of the job. When a module 
is to be stored permanently, a data set name without ampersands ", 
is used. 

DCB INFORMATION, Before a data set can be used for input, 
information describing the data set must be placed in the data 
control block (DCB). If this information does not exist in the 
DCB or header label, or if no labels are used (magnetic tape 
does not require labels), the programmer must specify it in the 
DCB parameter on the DO statement. 

Record format (RECFM), logical record size (LRECL), and block 
size (BLKSIZE) subparameters of the DCB parameter are discussed 
as they apply to the linkage editor. Specific information on 
each as it applies to the linkage editor data sets is given in 
the description of the data set later in this section. Other 
DeB information (tape recording technique, density, and so 
forth) is described in the publication JkL. 
Record Formatt The following record formats are used with the 
linkage editort 

F The records are fixed length. 

FB The records are fixed length and blocked. 

FBA The records are fixed length, blocked, and contain 
American National Standards Institute (ANSI) control 
characters. 

FBS The records are fixed length, blocked, and written in 
standard blocks. 

FA The records are fixed length and contain ANSI control 
characters. 

FS The records are fixed length and written in sta.ndard 
blocks. 

54 MVS/XA linkage Editor and loader User's Guide 

-------.--~ ... ,---.----



( 

( 

( 

U The records are undefined length. 

UA The records are undefined length and contain ANSI 
control characters. 

A record format of FS or FBS must be used with caution. All 
blocks in the data set must be the same size. This size must be 
equal to the specified block size. A truncated block can occur 
only as the last block in the data set. 

Nate: Track overflow is never used by the linkage editor. When 
moving or copying load modules, it is recommended that the track 
overflow feature not be used on the target data set, as errors 
may occur in fetching the load modules for execution. 

LOGICAL RECORD AND BLOCK SIZEt Blocking is allowed for input 
object module data sets and the diagnostic output data set. The 
blocking factors used to determine buffer allocations are 5, 10, 
and 40. The BlKSIZE must therefore be a multiple of lRECl. See 
the description of blocking factors in the discussion of the 
SIZE option. 

When the DCBS option is specified, a block size should be 
specified for the output load module library (see ftSYSlMOD DD 
Statementft on page 57). 

LINKAGE EDITOR DD STATEMENTS 

SYSLIN DD statement 

The linkage editor uses six data sets; of these, four are 
required. The DD statements for these data sets must use the 
preassigned ddnames given in Figure 17. The descriptions that 
follow give pertinent device and data set information for each 
linkage editor data set. 

Data set ddname Required 

Primary input data set SYSlIN Yes 

Automatic call library SYSlIB Only if the 
automatic library 
call mechanism is 
used 

Intermediate data set SYSUTl Yes 

Diagnostic output data set SYSPRINT Yes 

Output module library SYSlMOD Yes 

Alternate output data set SYSTERM Only if the TERM 
option is specified 

Figure 17. linkage Editor ddnames 

The SYSLIN DD statement is always required; it describes the 
primary input data set that can be assigned to a direct access 
device, a magnetic tape unit, or the card reader. The data set 
may be either sequential or partitioned; in the latter case, a 
member name must be specified. 

If SYSlIN is assigned to a card reader or ftpseudo card raader,ft 
input records must be unblocked and 80 bytes long. (A pseudo 
card reader is defined as input from a tape or a direct acce.s 
device in card reader mode.) 

Chapter 4. Specifying JCL to Run a Linkage Editor Job 55 



SYSLIB DD statement 

SYSUTI DD statement 

This data set must contain object modules and/or control 
statements. Load modules used in the primary input data set are 
considered a severity 4 error. 

The recommended disposition for the primary input data set is 
SHR or OLD. 

The DCB requirements are shown in Figure 18. 

DCB Requirements 

LRECl 

80 

80 

BlKSIZE 

80 

4c}0,800,3200 1 

RECFM 

F,FS 

FB,FBS 

lThese are the maximum block sizes allowed for each of the 
optimal blocking factors (5, 10, and 40). Which maximum is 
applicable depends on the value given to value1 and value2 of 
the SIZE option. . 

Figure 18. DCB Requirements for Object Module and Control 
Statement Input 

The SYSLIB DD statement is required when the automatic 
library-call mechanism is to be used. This DD statement 
describes the automatic call library, which must be assigned to 
a direct access device. The data set must be partitioned, but 
member names should not be specified. 

The recommended disposition for the call library is SHR or OLD. 

If concatenated call libraries are used, object and'load module 
libraries must not be mixed. If only object modules are used, 
the call library may also contain control statements. 

The DCB requirements for object module call libraries are given 
in Figure 18. The DCB requirement for load module call 
lib.-aries is a record format of U; the block size used for 
storage allocation is equal to the maximum for the device used, 
not the record read. Note that the linkage editor recognizes 
object and load module call libraries solely from their record 
format, and not from the data within them. 

This data set must not be assigne~ to SYSOUT. 

The SYSUTI DD statement is always required; it describes the 
intermediate data set, which is a sequential data set assigned 
to a direct access device. Space must be allocated for this 
data set, but the DCB requirements are supplied by the linkage 
editor. 

56 MVS/XA Linkage Editor and Loader User's Guide 

(,\ 
j 

---------------------------------------.. - ... -~--.------_. 



( 

SYSPRINT DD statement 

The SYSPRINT DD statement is always required; it describes the 
diagnostic output data set, which is a sequential data set 
assigned to a printer or to an intermediate storage device. If 
an intermediate storage device is used, the data records contain 
a carriage control character as the first byte. 

The usual specification for this data set is SYSOUT=A. The 
programmer may assign a block size. The record format assigned 
by the linkage editor depends on whether blocking is used or 
not. 

Figure 19 shows the DCB requirements for SYSPRINT. The only 
information that can be supplied by the programmer is the block 
size. 

SVSLMOD DD statement 

DCB Requirements for SYSPRINT 

lRECl 

121 

121 

BLKSIZE 

121 

n x 121 where n 
is less than or 
equal to 40 

RECFM 

FA 

FBA 

Note: The value specified for BLKSIZE, either on the DCB 
parameter of the SYSPRINT DD statement or in the DSCB (data set 
control block> of an existing data set, must be a multiple of 
121; if it is not, the linkage editor issues a message to the 
operator's console and terminates processing. 

Figure 19. DCB Requirements for SYSPRINT 

The SYSLMOD DD statement is always required; it describes the 
output module library, which must be a partitioned data set 
assigned to a direct access device. 

A member name may be specified on the SYSLMOD DD statement. If 
a member name is specified, it is used only if a name was not 
specified on a NAME control statement. This member name must 
conform to the rules for the name on the NAME control statement. 
This would imply the replacement of an identically named member 
in the output load module library, if one exists. 

If SYSLMOD is to be referenced by an INCLUDE statement, the 
member name on the DD statement, if present, must be the name of 
an existing member. 

If the member is to replace an identically named member in an 
existing library, the disposition should be OLD or SHR. If the 
member is to be added to an existing library, the disposition 
should be MOD, OLD, or SHR. If no library exists and the member 
is the first to be added to a new library, the disposition 
should be NEW or MOD. If the member is to be added to an 
existing library that may be used concurrently in another region 
or partition, the disposition should be SHR. 

The record format U is assigned by the linkage editor. See 
"Appendix D. Loader Storage Considerations· on page 190. 

Chapter 4. Specifying JCL to Run a Linkage Editor Job 57 



Procedures used by the linkage editor to assign block size arel 

1. If the data set is newl 

a. Without the DCBS option specifiedl 

• The DSCB (data set control block) reflects the 
maximum block size available for the device type if 
it is not restricted by yalye2 of the size 
parameter. 

• If SCTR is specified, the block size is 1024. 

b. With the DCBS option specified, the DSCB block size is 
the smaller ofl 

• The maximum track size for the device. 

• The value of the BLKSIZE subparameter on the DCB 
parameter of the SYSLMOD DD statement. 

• The actual output buffer length (half the number 
specified for yalye2 if the size option was 
utilized) . 

c. The minimum DSCB block size is 256 without the SCTR 
option specified and 1024 with the SCTR option. 

2. When the DSCB block size already exists (not a new data set 
and the SCTR option is specified, 1024 is used. 

3. When the DSCB block size already exists and the DCBS or SCTR 
option is not specified, the larger of the existing block 
sizes or 256 is used. 

4. See ftDCBS Optionft on page 49 for the procedure when the DSCB 
block size exists and the DCBS option is specified. 

Note: When a new data set is created at linkage editor time 
without the DCBS option specified, the DSCB reflects the maximum 
block size available for the device type. 

If the SYSLMOD DD statement is used as e source of load module 
input, the SYSLMOD data set is read with a record format of U in 
all cases. 

In the following example, the SYSLMOD DD statement specifies a 
permanent library on an IBM 3350 Disk Storage Devicel 

.I.1SYSlMOD 
/.1 

DD DSNAME=USERLIB(TAXES),DISP=MOD, 
UNIT=3350, ... 

The linkage editor assigns a record format of U, and a logical 
record and block size of 18K bytes, the maximum for a 3350. 
However, consider the following examplel 

.I.1LKED 

.I.1SYSlMOD 

.1.1 

EXEC 

. 
DD 

PGM=HEWL,PARM='XREF,DCBS' 

DSNAME=USERlIB(TAXES),DISP=MOD, 
UNIT=3340,DCB=(BLKSIZE=3072), ••. 

The linkage editor still a~signs a record format of U, but the 
logical record and block S1ze are now 3K bytes rather than 7K 
bytes, because of the use of the DCBS option. 

58 MVS/XA Linkage Editor and Loadar User's Guide 



( 

( 

. SYSTERM DD stateMnt 

The SYSTERM DD statement is optional; it describes a data set 
that is used only for numbered error/warning messages. Although 
intended to define the terminal data set when the linkage editor 
is being used under the Time Sharing Option (TSO) of MVS, the 
SYSTERM DD statement can be used in any environment to define a 
data set consisting of numbered error/warning messages that 
supplements the SYSPRINT data set. 

SYSTERM output is defined by including a SYSTERM DD statement 
and specifying TERM in the PARM field of the EXEC statement. 
When SYSTERM output is defined, numbered messages are then 
written to both the SYSTERM and SYSPRINT data sets. 

The following example shows how the SYSTERM DO statement could 
be used to specify the system output unitt 

//SYSTERM DD SYSOUT=A 

The DCB requirements for SYSTERM (LRECL=121,BlKSIZE=121, and 
RECFM=FBA) are supplied by the linkage editor. If necessary, 
the linkage editor will modify the DSCB (data set control block) 
of an existing data set to reflect these values. 

ADDITIONAL DD STATEMENTS 

Each ddname specified on an INCLUDE or a LIBRARY control 
statement must also be described with a DD statement. These DD 
statements describe sequential or partitioned data sets, 
assigned to magnetic tape units or direct access devices (not 
pseudo card readers). 

The ddnames are specified by the user with any other necessary 
information. The DCB requirements for these data sets are shown 
in Figure 20. 

Object modules and/or 
control statements 

Load modules 

LRECL 

80 
80 

Ignored 

BLKSIZE 

80 
400,800,32001 

Maximum 
for device, 
or one-hal" 0" value2, 
whichever 
is smaller 

RECFM 

F,FS 
FB,FBS 

U 

Figure 20. DCB Requirements for Data Sets Used by Include and 
Library Control Statements 

Note to Figure 20: 

I These are the maximum block sizes allowed for each of the 
optimal blocking factors (5, 10, 40). Which maximum is 
applicable depends on the values given to valyel and Va1ye2 
of the SIZE option. 

When concatenated data sets are included, each data set must 
contain records of the same format, record size, and block size. 
If the data sets reside on magnetic tape, the tape recording 
technique and density must also be identical. 

If the SYSlMOD DO statement is used as a source of load module 
input, the SYSlMOD data set is read with a record format of U in 
all cases. 

Chapter 4. Specifying JCL to Run a Linkage Editor Job 59 



SIZI PARAMETER GUIDELINES 

This section gives guidelines for determining appropriate SIZE ~~, 
parameter values for a linkage editor job step. ~_/" 

First--determine yalue2 of the SIZE parameter. 

Yalye2=[6KI6l44Iflgl(a+b)l(cMd)I(CM.)] 

where. 

a is the length of the load module to be built. 

b is 0, if the length of the load module to be built is < 
40K bytes. 

is 4K, if the length of the load module to be built is ~ 
40K bytes. 

C is an integer equal to or greater than 2, such that cMd 
or eM. is ~ 999999 or 9999K bytes (c is the integer that 
represents the number of buffers to be reserved for 
SYSLMOD). 

d is the track capacity of the SYSLMOD device, or 18K 
whichever is larger. 

e is the block size of the SYSLMOD data set. 

f is the length of the largest text record in load module 
input. 

g is the track capacity of the SYSUTl device, or 18K 
whichever is larger. 

Selecting the largest of the above parameters provides optimal 
results. 

Second--determine yalyel of the SIZE parameter. 

Yalyel = h + j + k 

yalyel must range between hand 9999K or 9999999 

where I 

h = 96K 

j is the excess of Yalye2 over 6K 

k is the additional storage required to support the 
blocking factor for SYSLIN, object module libraries, and 
SYSPRINT. 

Blocking Factor K (Bytes) 

5 to I 0 

10 to 1 18 

40 to 1 28 

Third--determine the REGION parameter. 

REGION = Equal to or greater than Yalyel 

60 MVS/XA Linkage Editor and Loader User's Guide 



( 

(~ 

( 

CATALOGED PROCEDURES 

To facilitate the operation of the system, the control program 
allows the programmer to store EXEC and DD statements under a 
unique member name in a procedure library. Such a series of job 
control language statements is called a cataloged procedyre. 
These job control language statements can be re-cal ed at any 
time to specify the requirements for a job. To request this 
procedure, the programmer places an EXEC statement in the input 
stream. This EXEC statement specifies the unique member name of 
the procedure desired. 

The specifications in a cataloged procedure can be temporarily 
overridden, and DD statements can be added. The information 
altered by the programmer is in effect only for the duration of 
the job step; the cataloged procedures themselves are not 
altered permanently. Any additional DD statements supplied by 
the programmer must follow those that override the cataloged 
procedure. 

LINKAGE EDITOR CATALOGED PROCEDURES 

Procedure LKED 

Two linkage editor cataloged procedures are provided. a 
single-step procedure that link-edits the input and produces a 
load module (procedure LKED), and a two-step procedure that 
link-edits the input, produces a load module, and executes that 
module (procedure LKEDG). Many of the cataloged procedures 
provided for language translators also contain linkage editor 
steps. The EXEC and DD statement specifications in these steps 
are similar to the specifications in the cataloged procedures 
described in the following paragraphs. 

The cataloged procedure named LKED is a single-step procedure 
that link-edits the input, produces a load module, and passes 
the load module to another step in the same job. The statements 
in this procedure are shown in Figure 211 the following text 
describes these statements. 

.I.1LKED 

.I.1SYSPRINT 

.I.1SYSLIN 

.I.ISYSlMOD 

.1.1 

.I.1SYSUTl 

.1.1 

EXEC 
DD 
DD 
DD 

DD 

PGM=HEWL,PARM='XREF,lIST,LET,NCAL',REGION=96K 
SYSOUT=A 
DDNAME=SYSIN 
DSNAME=&&GOSET(GO),SPACE=(1024,(SO,20,1», 
UNIT=SYSDA,DISP=(MOD,PASS) 
UNIT=(SYSDA,SEP=(SYSlMOD,SYSLIN», 
SPACE=(I024,(200,20» 

Figure 21. Statements in the LKED Cataloged Procedure 

STATEMENT NUMBERS. The 8-digit numbers on the right side of 
each statement (not shown in Figure 21) are used to identify 
each statement and would be used, for example, when permanently 
modifying the cataloged procedure with the system utility 
program IEBUPDTE. For a description of this utility program, 
see Utilities. 

EXEC STATEMENT. The PARM field specifies the XREF, LIST, LET, 
and NCAl options. If the automatic library-call mechanism is to 
be used, the NCAl option must be overridden, and a SYSLIB DD 
statement must be added. Overriding and adding DD statements is 
discussed later in this section. 

Chapter 4. Specifying JCL to Run a Linkage Editor Job 61 



SVSPRINT STATEMENT. The SYSPRINT DD statement specifies the 
SYSOUT class A~ which is either a printer or an intermediete 
storage device. If an intermediate storage device is used, 
American National Standard Institute control characters 
accompany the data to be printed. 

SVSLIN STATEMENT. The specification of DDNAME=SYSIN allows the 
programmer to specify any input data set as long as it fulfills 
the requirements for linkage editor input. The input data set 
must be defined with a DD statement with the ddname SYSIN. This 
data set may be either in the input stream or reside on a 
separate volume. 

If the data set is in the input stream, the following SVSIN 
statement is used. 

I'I'LKED.SYSIN DD 

If this SYSIN statement is used, it may be anywhere in the job 
step DD statements as long as it follows all overriding DD 
statements. The object module decks andl'or control statements 
should follow the SYSIN statement, with a delimiter statement 
(1'*) at the end of the input. 

If the data set resides on a separate volume, the following 
SYSIN statement is used. 

I'I'LKED.SYSIN DD (parameters describing the input data set) 

If this SYSIN statement is used, it may be anywhere in the job 
step DD statements as long as it follows all overriding DD 
statements. Several data sets may be concatenated, as described 
in "Chapter 3. Defining Input to the Linkage Editor" on 
page 22. 

SVSLMOD STATEMENT. The SYSLMOD DD statement specifies a 
temporary data set and a general space allocation. The 
disposition allows the next job step to execute the load module. 
If the load module is to reside permanently in a library, these 
general specifications must be overridden. 

SVSUTI STATEMENT. The SYSUTI DD statement specifies that the 
intermediate data set is to reside on a direct access device, 
but not the same device as either the SYSLMOD or the SYSLIN data 
sets. Again, a general space allocation is given. 

SVSLII STATEMENT. Note that there is no SYSLIB DD statement. 
If the automatic library-call mechanism is to be used with a 
cataloged procedure, a SYSLIB DD statement must be added; also, 
the NCAL option in the PARM field of the EXEC statement must be 
negated. 

INVOKING THE LKED PROCEDURE. To invoke the LKED procedure, code 
the following EXEC statement. 

I'l'stepname EXEC LKED 

where stepname is optional and is the name of the job step. 

The following example shows a sample JCL sequence for using the 
LKED procedure in one step to link-edit object modules to 
produce a load module, then execute the load module in a 
subsequent step. 

62 MVSI'XA Linkage Editor and Loader User's Guide 



Procedure LKEDG 

.I.1LESTEP EXEC LKED 

(Overriding and additional DD .t.t ••• nts for the lKED step) 

.I.1LKED.SYSIN DD • 

(Object module decks and.lor control statements) 

.I.1EXSTEP EXEC PGM= •. lESTEP.LKED.SYSLMOD 

(DD statements and data for load module execution) 

(If data is supplied for tha axecution step) 

Note: LESTEP invokes the LKED procedure and EXSTEP executes the 
load module produced by LESTEP. 

The cataloged procedure named lKEDG is a two-step procedure that 
link-edits the input, produces a load module, and executes that 
load module. The statements in this procedure are shown in 
Figure 22. The two steps are named LKED and GO. The 
specifications in the statements in the LKED step are identical 
to the specifications in the LKED procedure. 

//LKED 
//SYSPRINT 
//SYSLIN 
//SYSLMOD 
.II' 
.I/SYSUTl 
/.1 
//GO 

EXEC 
DD 
DD 
DD 

DD 

EXEC 

PGM=HEHL,PARM='XREF,LIST,NCAL',REGION=96K 
SYSOUT=A 
DDNAME=SYSIN 
DSNAME=&&GOSETCGO),SPACE=CI024,CSO,20,1», 
UNIT=CSYSDA,DISP=CMOD,PASS) 
UNIT=(SYSDA,SEP=CSYSLMOD,SYSLIN», 
SPACE=(I024,C200,20» 
PGM= •. LKED.SYSLMOD,COND=C4,LT,LKED) 

Figure 22. Statements in the lKEDG Cataloged Procedure 

GO STEP I The EXEC statement specifies that the program to be 
executed is the load module produced in the LKED step of this 
job. This module was stored in the data set described on the 
SYSLMOD DD statement in that step. CIf a NAME statement was 
used to specify a member name other than that used on the 
SYSLMOD statement, use the LKED procedure.) 

The condition parameter specifies that the execution step is to 
be bypassed if the return code issued by the LKED step is 
greater than 4. 

INVOKING THE LKEDG PROCEDURE I To invoke the lKEDG procedure, 
code the following EXEC statement • 

.I/stepname EXEC lKEDG 

where stepname is optional and is the name of the job step. 

The following example shows a sample JCL sequence for using tha 
LKEDG procedure to link-edit object modules, produce a load 
module, and execute that load module. 

Chapter 4. Specifying JCL to Run a Linkaga Editor Job 63 



.I.ITHOSTEP EXEC LKEDG. 

(Overriding and additional DD statements for the lKED step) 

.I.ILKED.SYSIN DD • 

(Object module decks and/or control statements) 

.I. 

(DD statements for the GO step) 

.I.IGO.SYSIN DD 

(Data for the GO step) 

OVERRIDING CATALOGED PROCEDURES 

The programmer may override any of the EXEC or DD statement 
specifications in a cataloged procedure. These new 
specifications remain in effect only for the duration of the job 
step. For a detailed description of overriding cataloged 
procedures, see the publication JkL. 

Overriding the EXEC Statement 

The EXEC statement in a cataloged procedure is overridden by 
specifying the changes and additions on the EXEC statement that 
invokes the cataloged procedure. The stepname should be 
specified when overriding the EXEC statement parameters. 

For example, the REGION parameter can be increased as follows. 

.I.1LESTEP EXEC LKED,REGION.LKED=l36K 

The rest of the specifications on the EXEC statement of 
procedure LKED remain in effect. 

If the PARM field is to be overridden, all the options specified 
in the cataloged procedure are negated. That is, if XREF, lIST, 
or NCAl is desired when overriding the PARM field, it must be 
respecified. In the following example, the OVlY option is added 
and the NCAl option is negated • 

.I.IlESTEP EXEC lKED,PARM.lKED='OVlY,XREF,lIST' 

As a result, the XREF and lIST options are retained, but the 
NCAl option is negatedJ when NCAl is negated, a SYSlIB DD 
statement must be added. 

If you use the LKEDG procedure and want to execute the load 
module just built, an efficient way is to specify the parameter 
LET in the LKED step and invoke the lKEDG procedure with the 
following EXEC statement. 

.I.lstepname 

.1.1 
EXEC lKEDG,PARM.lKED='XREF,lIST,NCAl,lET', 

COND.GO=(8,lT,lKED) 

64 MVS.lXA linkage Editor and loader User's Guide 



( 

( 

Overriding DD statements 

Each DD statement that is used to override a DD statement in the 
lKED step of either the lKED procedure or the lKEDG procedure 
must begin with //LKED.ddnama .... 

Any of the DD statements in the cataloged procedures can be 
overridden as long as the overriding DD statements are in the 
same order as they appear in the procedure. If any DD 
statements are not overridden, or overriding DD statements are 
included but are not in sequence, the specifications in the 
cataloged procedure are used. 

Only those parameters specified on the overriding DD statement 
are affected; the rest of the parameters remain as specified in 
the procedure. In the following example, the output load module 
is to be placed in a permanent librarYI 

//lIBUPDTE EXEC 
//lKED.SYSlMOD DD 
//lKED.SYSIN DD 

lKED 
DSNAME=lOADlIB(PAYROll),DISP=OlD 
DSNAME=OBJMOD,DISP=(OlD,DELETE) 

Unit and volume information should be given if these data sets 
are not cataloged. 

As a result of the statements in the example, the LKED procedure 
is used to process the object module in the OBJMOD data set. 
The output load module is stored in the data set LOADLIB with 
the name PAYROLL. The SPACE parameter on the SYSLMOD DD 
statement and the other specifications in the procedure remain 
in effect. 

ADDING DD STATEMENTS 

DD statements for additional data sets can be supplied when 
using cataloged procedures. These additional DD statements must 
follow any overriding DD statements. 

Each additional DD statement for the LKED step must begin with 
//LKED.ddname ... and, for the GO step, must begin with 
/ /GO . ddname. .. . 

In the following example, the automatic library-call mechanism 
is to be used along with the LKEDG procedure I 

//CPSTEP EXEC lKEDG,PARM.lKED='XREF,lIST' 
//lKED.SYSLMOD DD DSNAME=LOADLIB(TESTER),DISP=OLD, .•. 
//LKED.SYSLIB DD DSNAME=SYLl.PLlLIB,DISP=SHR 
//lKED.SYSIN DD JE 

(Object module decks and/or control statements). 

/JE 
//GO.SYSIN DD 

(Data for execution step) 

The NCAL option is negated, and a SYSLIB DD statement is added 
between the overriding SYSLMOD DD statement and the SYSIN DD 
statement. 

Chapter 4. Specifying JCL to Run a Linkage Editor Job 6S 



CHAPTER 5, SPECIfYING ANOPERAIION KITH CONTROL STATIMENTS 

General Format 

Format conventions 

This chapter summarizes the linkage editor control statements. 
The description of each statemant includesl 

• What the statement does 

• Tha format of the statement 

• Placement of the statement in the input 

• Notes on use, if any 

• One or more examples that include job control language 
statements, when necessary 

The control statements are described in alphabetic order. 
Before using this chapter, the user should be familiar with the 
following information on general format, format conventions, and 
placement. 

Each linkage editor control statement specifies an operation and 
one or more operands. Nothing must be written preceding the 
operation, which must begin i.n or after column 2. The operation 
must be separated from the operand by one or more blanks. 

A control statement can be continued on as many cards as 
necessary by terminating the operand at a comma, and by placing 
a nonblank character in column 72 of the card. Continuation 
must begin in column 16 of the next card. A symbol cannot be 
split; that is, it cannot begin on one card and be continued on 
the next. 

Comments can be written in a utility statement, but they must be 
separated from the last parameter of the operand field by one or 
more blanks. 

The following conventions are used in the formats to describe 
the coding of the linkage editor control statements I 

• Bold~ace type indicates the exact characters to be entered. 
Such items must be entered exactly as illustrated (in 
uppercase, if applicable). 

• Lowercase ynderscored type specifies fields to be supplied 
by the user. 

• Other punctuation (parentheses, commas, spaces, etc.) must 
be entered as shown. 

• Braces { ) indicate a choice of entry; unless a default is 
indicated, you must choose one of the entries. 

• Brackets [ ] indicate an optional field or paramater. 

• An ellipsis (,',) indicates that multiple entries of the 
type immediately preceding the ellipsis are allowed. 

• Items separated by a vertical bar ( I ) represent 
alternative items. No more than one of the items may be 
selected. 

66 MVS/XA Linkage Editor and Loader User's Guide 

,# .. ~ 

V 

j 



( 

, . ( ' 

Placement Information 
Linkaga editor control statements are placed before, between, or 
after modules. They can be grouped, but they cannot be placed 
within a module. However, specific placement restrictions may 
be imposed by the nature of the functions being requested by the 
control statement. Any placement restrictions are noted. 

Chapter S. Specifying an Operation with Control Statements 67 



ALIAS Statement 

The ALIAS statement specifies additional names for the output 
librarv member, and can also specifv names of alternative entrv 
points. Up to 16 names can be specified on one ALIAS statement, 
or separate ALIAS statements for one librarv member. The nemes 
are entered in the directorv of the partitioned data set in 
eddition to the member name. 

FORMAT. The format of the ALIAS statement is. 

ALIAS (symbollexternal name) 

symbol 
specifies an alternate name for the load module. When the 
module is executed, the main entrv point is used as the 
starting point for execution. 

external name 
specifies a name that is defined as a control section name 
or entrv name in the output module. When the module is 
called for execution, execution begins at the external name 
referred to. 

PLACEMENT: An ALIAS statement can be placed before, between, or 
after object modules or other control statements. It must 
precede a NAME statement used to specify the member name, if'one 
is present. 

Notes: 

1. In an overlav program, an external name specified bv the 
ALIAS statement must be in the root segment. 

2. 'No more than 16 alias names can be assigned to one output '\ 
module. \,_/ 

3. Each alias specified for a load module is retained in the 
directorv entrv for the module; the linkage editor does not 
delete an old alias. Therefore, each alias that is specified 
must be unique; assigning the same alias to more than one 
load module can cause incorrect module references. 

4. Obsolete alias names should be deleted from the PDS 
directory using a svstem utilitv such as IEHPROGM, to avoid 
future name conflicts. 

5. If the replace option is in effect for the output load 
module (that is, the load module built i,n this link-edit 
does or may replace an identically named load module in the 
output module library), the replace option is in effect for 
each ALIAS name for the load module as well as for the 
primary name. 

EXAMPLE. An output module, ROUTl, is to be assigned two 
alternate entrv points, CODEI and CODE2. In addition, calling 
modules have been written using both ROUTI and ROUTONE to refer 
to the output module. Rather than correct the calling modules, 
an alternative library member name is also assigned. 

ALIAS 
NAME 

CODEl,CODE2,ROUTONE 
ROUTl 

Because CODEI and CODE2 are entry names in the output module, 
execution begins at the point referred to when these names are 
used to' call the module. The modules that call the output 
module with the name ROUTONE now correctlv refer to ROUTI at its 
main entrv point. The names CODEl, CODE2, and ROUTONE appear in 
the librarv directory along with ROUTI. 

68 MVS/XA Linkage Editor and Loader User's Guide 

---~---------



CHANGE statement 

(' The CHANGE statement causes an external symbol to be replaced by 
the symbol in parentheses following the external symbol. The 
external symbol to be changed can be a control section name, an 
entry name. or an external reference. More than one such 
substitution may be specified in one CHANGE statement. 

FORMAT, The format of the CHANGE statement is. 

CHANGE 

externalsymbol 
is the control section name. entry name, or external 
reference that is to be changed. 

newsymbol 
is the name to which the external symbol is to be changed. 

PLACEMENT, The CHANGE control statement must be placed 
immediately before either the module containing the external 
symbol to be changed, or the INCLUDE control statement 
specifying the module. The scope of the CHANGE statement is 
across the immediately following module (object module or load 
module); the END record in the immediately following object 
module or the end-of-module indication in the immediately 
following load module delimits the scope of the CHANGE 
statement. 

Notes: 

1. External references from other modules to a changed control 
section name or entry name remain unresolved unless further 
action is taken. 

2. If the external symbol specified on the CHANGE statement is 
misspelled. the symbol will not be changed. Linkage editor 
output. such as the cross-reference listing or module map, 
can be used to verify each change. 

3. When a REPLACE statement that deletes a control section is 
followed by a CHANGE statement with the same control section 
name. unpredictable results will occur. 

EXAMPLE 1, Two control sections in different modules have the 
name TAXROUT. Because both modules are to be link-edited 
together. one of the control section names must be changed. The 
module to be changed is defined with a DD statement named 
OBJMOD. The control section name could be changed as follows, 

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,KEEP), ... 
//SYSLIN DD ~ 

CHANGE TAXROUTCSTATETAX) 
INCLUDE OBJMOD 

As a result, the name of control section TAXROUT in module TAXES 
is changed to STATETAX. 

Chapter S. Specifying an Operation with Control Statements 69 



EXAMPLE 21 A load module contains references to T~XROUT that 
must now be changed to STATETAX. This module is defined with a 
DD statement named LOADMOD. The external referencas could ba 
changed at the same time the control .ection name is changed, a. 
followsl 

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,DELETE), ••. 
//LOADMOD DD DSNAME=LOADLIB,DISP=OLD, ••• 
//SYSLIN DD * 

CHANGE TAXROUT(STATETAX) 
INCLUDE OBJMOD 
CHANGE TAXROUT(STATETAX) 
INCLUDE LOADMOD(INVENTRY) 

As a result, control section name TAXROUT in module TAXES and 
external reference TAXROUT in module INVENTRY ara both changed 
to STATETAX. 

70 MVS/XA Linkage Editor and Loader User's Guide 



ENTRY statement 
The ENTRY statement specifies the symbolic name of the first 
instruction to be executed when the program is called by its 
module name for execution. An ENTRY statement should be used 
whenever a module is reprocessed by the linkage editor. If more 
than one ENTRY statement is encountered, the first statement 
specifies the main entry point; all other ENTRY statements are 
ignored. 

FORMAT: The format of the ENTRY statement is: 

ENTRY externalname 

externalname 
is defined as either a control section name or an entry 
name in a linkage editor input module. 

PLACEMENT: An ENTRY statement can be placed before, between, or 
after object modules or other control statements. It must 
precede the NAME statement for the module, if one is present. 

Notes: 

1. In an overlay program, the first instruction to be executed 
must be in the root segment. 

2. The external name specified must be the name of an 
instruction, not a data name, if the module is to be 
executed. 

EXAMPLE: In the following example, the main entry point is 
INITl: 

//lOADlIB DD DSNAME=lOADlIB,DISP=OlD, .•. 
//SYSlIN DD * 

ENTRY INITl 
INCLUDE lOADlIBCREAD,WRITE) 

ENTRY READIN 
/* 

INITI must be either a control section name or an entry name in 
the linkage editor input. The entry point specification of 
READIN is ignored. 

Chapter 5. Specifying an Operation with Control Statements 71 



·1 
I 

EXPAND statement 

The EXPAND statement lengthens control sections or named common 
sections by a specified number of bytes. 

FORMAT, The format of an EXPAND statement is 

EXPAND DAmA(XXXXJ 
E,DAmA(XXXXJJ ••• 

is the symbolic name of a common section or control section 
whose length is to be increased. 

is the decimal number of bytes to be added to the length of 
a common section. The maximum is 4095 for each section 
indicated. Binary zeros will be added for an expanded 
control section. 

The EXPAND statement is followed by a message, IEW0740, that 
indicates the number of bytes added to the control section and 
the offset, relative to the start of the control section, at 
which the expansion begins. The effective length of the 
expansion is given in hexadecimal and may be greater than the 
specified length if, after the specified expansion, padding 
bytes must be added for alignment of the next control section or 
named common section. 

PLACEMENT I An EXPAND statement can be placed before, between, 
or after other control statements or object modules. However, 
the statement must follow the module containing the control or 
named common section to which it refers. If the control section 
or named common section is entered as the result of an INCLUDE / ~ 
statement, the EXPAND statement must immediately follow the 
INCLUDE statement. ,_/ 

Note: EXPAND should be used with caution so as not to increase 
the length of a program beyond its own design limitations. For 
example, if space is added to a control section beyond the range 
of its base register addressability, that space is unusable. 

EXAMPLE I In the following example, EXPAND statements add a 
250-byte patch area (initialized to zeros) at the end of control 
section CSECTI and increase the length of named common section 
COMI by 400 bytes. 

//LKED 
//SYSPRINT 
//SYSUTl 
//SYSLMOD 
//SYSLIN 
// 
// 

EXPAND 
EXPAND 
NAME 

/ 3( 

EXEC 
DD 
DD 
DD 
DD 

DD 

PGM=HEWL 
SYSOUT=A 
UNIT=SYSDA,SPACE=(TRK,(10,4» 
DSNAME=PDSX,DISP=OLD 
DSNAME=&&LOADSET,DISP=(OLD,PASS), 
UNIT=SYSDA 
3( 

CSECTH2S0) 
COMI(400) 
MODHR) 

72 MVS/XA Linkage Editor and Loader User's Guide 



IDENTIFY statement 

( 

( -" 

.. 

The IDENTIFY statement specifies any data supplied by the user 
to be entered into the CSECT identification (IDR) records for e 
particular control section. The statement can be used either to 
supply descriptive data for a control section or to provide a 
means of associating system-supplied data with executable code. 

FORHATI The format of the IDENTIFY statement iSI 

IDENTIFY csectname('da!a')[.csectname('da!a')] ••• 

csectname 
is the symbolic name of the control section to be 
identi fied. 

specifies up to 40 EBCDIC characters of identifying 
information. The user may supply any information desired 
for identification purposes. 

The rules of syntax for the operand field arel 

1. No blanks or characters may appear between the left 
parenthesis and the leading single quotation mark nor 
between the trailing single quotation mark and the right 
parenthesis. 

2. The data field consists of from 1 to 40 characters; 
therefore, a null entry must be represented, minimally, by a 
single blank. 

3. Blanks may appear between the leading single quotation mark 
and the trailing single quotation mark. Each blank counts 
as 1 character toward the 40-character limit. 

4. A single quotation mark between the leading quotation mark 
and the trailing quotation mark is represented by 2 
consecutive quotation marks. The pair, of quotation marks 
counts as 1 character toward the 40-character limit. 

5. Any EBCDIC character may appear between the leading 
quotation mark and the trailing quotation mark. Each 
character counts as 1 character toward the 40-character 
limit. 

6. The IDENTIFY statement may be continued; however, a whole 
operand must appear on a single card image and at least 1 
whole operand must appear on each card image of the 
continued statement. 

7. If a leading quotation mark is found, all characters are 
absorbed until a trailing quotation mark is found or the 
40-character limit is exhausted. 

8. Blanks may not appear between the CSECT name and the left 
parenthesis. 

9. A blank following a left parenthesis terminates the operand 
field; a blank following a comma that terminates an operand 
also terminates the operand field of that card image. 

PLACEMENT. An IDENTIFY statement can be placed before, between, 
or after other control statements or object modules. The 
IDENTIFY statement must follow the module containing the control 
section to be identified or the INCLUDE statement specifying the 
module. 

Note: When two or more IDENTIFY statements specify the same 
CSECT name, only the last statement is effective . 

Chapter 5. Specifying an Operation with Control Statements 73 



EXAMPLE. In the following exemple, IDENTIFY statements are used 
to identify the source level of a control section, a PTF f .. . ". 
application to a control section, and the functions of several (. 
control sections. ~.j 

/.IlKED 
//SYSPRINT 
//SYSUTl 
//SYSlMOD 
//OlDMOD 
//PTFMOD 
//SYSlIN 

EXEC 
DD 
DD 
DD 
DD 
DD 
DD 

PGM=HEWl 
SYSOUT=A 
UNIT=SYSDA,SPACE=(TRK,(lO,S» 
DSNAME=LOADSET,DISP=OLD 
DSNAME=OlD.LOADSET,DISP=OlD 
DSNAME=PTF. OBJECT, DISP=OlD 

* 
(input object deck for a control section named FORT) 

/* 

IDENTIFY 
INCLUDE 
IDENTIFY 
INCLUDE 
IDENTIFY 

FORH'lEVEL 03') 
PTFMOD(CSECT4) 
CSECT4('PTF99999') 
OLDMOD(PROGl> 
CSECTl('I/O ROUTINE'), 
CSECT2('SORT ROUTINE'), 
CSECT3('SCAN ROUTINE') 

Execution of this example produces IDR records containing the 
following identification datal 

• The name of the linkage editor that produced the load 
module, the linkage editor version and modification level, 
and the date of the current linkage editor processing of the 
module. This information is provided automatically. 

• User-supplied data describing the functions of several 
control sections in the module, as indicated on the third 
IDENTIFY statement. 

• If the language translator used supports IDR, the 
identification records produced by the linkage editor also 
contain the name of the translator that produced the object 
module, its version and modification level, and the data of 
compilation. 

The IDR records created by the linkage editor can be referenced 
by using the LISTIDR function of the service aid program 
AMBlIST. For instructions on how to use AMBlIST, see Service 
Ai.d:i. 

74 MVS/XA Linkage Editor and Loader User's Guide 

--.. -~--. ----------



INCLUDE statement 

( 

The INCLUDE statement specifies sequential data sets and/or 
libraries that are to be sources of additional input for the 
linkage editor. INCLUDE statements are processed in the order 
in which they appear in the input. However. the sequence of 
data sets and modules within the output load module does not 
necessarily follow the order of the INCLUDE statements. If the 
order of the CSECTs within the module is significant, the user 
must specify the desired sequence by using order cards. 

FORMAT I The format of the INCLUDE statement iSI 

INCLUDE 

ddname 

ddname[(membernameE, ••• JJ] 
E,ddname[(membername[, ••• JJJJ ••• 

is the name of a DD statement that describes either a 
sequential or a partitioned data set to be used as 
additional input to the linkage editor. For a sequential 
data set. ddname is all that must be specified. For a 
partitioned data set, at least one member name must also be 
specified. 

membername 
is the name of or an alias for a member of the library 
defined in the specified DD statement. The membername must 
not be specified again on the DD statement. 

PLACEMENT I An INCLUDE statement can usually be placed before, 
between, or after object modules or other control statements. 
When link-editing the nucleus, however, any ORDER statements 
used should precede the INCLUDE statements. 

Note: A NAME statement in any data set specified in an INCLUDE 
statement is invalid; the NAME statement is ignored. All other 
control statements are processed. 

EXAMPLE 11 In the following example, an INCLUDE statement 
specifies two data sets to be the input to the linkage editorl 

NOBJMOD 
//LOADMOD 

DD 
DD 

. 

DSNAME=880BJECT,DISP=COLD,DELETE) 
DSNAME=LOADLIB,DISP=SHR, .•• 

//SYSLIN DD K 
INCLUDE OBJMOD,LOADMODCTESTMOD,READMOD) 

/K 

Note that a DD statement must be supplied for every ddname 
specified in an INCLUDE statement. 

EXAMPLE 21 Two separate INCLUDE statements could have been used 
in the preceding example, as foilowsl 

INCLUDE OBJMOD 
INCLUDE LOADMODCTESTMOD,READMOD) 

Chapter S. Specifying an Operation with Control Statements 7S 



INSERT Statement 

The INSERT statement repositions a control section from its 
position in the input sequence to a segment in an overlay 
structure. However, the sequence of control sections within a 
segment is not necessarily the order of the INSERT statements. 

If a symbol specified in the operand field of an INSERT 
statement is not present in the external symbol dictionary, it 
is entered as an external reference. If the reference has not 
been resolved at the end of primary input processing, the 
automatic library-call mechanism attempts to resolve it. 

FORMAT I The format of the INSERT statement iSI 

INSERT csectname, ••• 

csectname 
is the name of the control section to be repositioned. A 
particular control section can appear only once within a 
load module. 

PLACEMENT I The INSERT statement must be placed in the input 
sequence following the OVERLAY statement that specifies the 
origin of the segment in which the control section is to be 
positioned. If the control section is to be positioned in the 
root segment, the INSERT statement must be placed before the 
first OVERLAY statement. 

Note: Control sections that are positioned in a segment must 
contain all address constants to be used during execution 
unlessl 

-The A-type address constants are located in a segment in the r ~ 
path. 

- The V-type address constants used to pass control to another 
segment are located in the path. If an exclusive reference 
is made, the V-type address constant must be in a common 
segment. 

- The V-type address constants used with the SEGlD and SEGWT 
macro instructions are located in the segment. 

EXAMPLE, The following INSERT (and OVERLAY) statements specify 
the overlay structure shown in Figure 23 on page 771 

// EXEC 

. 
//SYSLIN DD 

/JE 

INSERT CSA 
INSERT CSB 
OVERLAY ALPHA 
INSERT CSC,CSD 
OVERLAY ALPHA 
INSERT CSE 

PGM=HEWL,PARM='OVLY,XREF,LIST' 

76 MVS/XA Linkage Editor and Loader User's Guide 



( 

( 
LIBRARY statement 

T 
CSA 

t 
CSB 

ALPHA 

esc 

t 
CSE 

1 
CSD 

1 
Figure 23. Overlay Structure for INSERT Statement Example 

The LIBRARY statement can be used to specify: 

• Additional automatic call libraries, which contain modules 
used to resolve external references found in the program. 

• Restricted no-call function: External references that are 
not to be resolved by the automatic library call mechanism 
during the current linkage editor job step. 

• Never-call function: External references that are not to be 
resolved by the automatic library call mechanism during any 
linkage editor job step. 

Combinations of these functions can be written in the same 
LIBRARY statement. 

FORMAT: The format of the LIBRARY statement is: 

LIBRARY £ddname(membername[, ••• ]) 

ddname 

(externalreference[, ••• ]) 
.(externalreference[, ••• ]), ••• 

is the name of a DD statement that defines a library. 

membername 
is the name of or an alias for a member of the specified 
library. Only those members specified are used to resolve 
references. 

Chapter 5. Specifying an Operation with Control Statements 77 



external reference 

)I 

is an external reference that may be unresolved after /~ 
primary input processing. The external reference is not to (' \ 
be resolved by automatic library call. \.....J 

indicates that the external reference is never to be 
resolved; if the * (asterisk) is missing, the reference is 
left unresolved only during the current linkage editor run. 

PLACEMENT, A lIBRARY statement can be placed before, between, 
or after object modules or other control statements. 

Notes: 

1. If the unresolved external symbol is not a member name in 
the library specified, the external reference remains 
unresolved unless defined in another input module. 

2. If the NCAl option is specified, the LIBRARY statement 
cannot be used to specify additional call libraries. 

3. Members called by automatic library call are placed in the 
root segment of an overlay program, unless they are 
repositioned with an INSERT statement. 

4. Specifying an external reference for restricted no-call or 
never-call by means of the LIBRARY statement prevents the 
external reference from being resolved by automatic 
inclusion of the necessary module from an automatic call 
library; it does not prevent the external reference from 
being resolved if the module necessary to resolve the 
reference is specifically included or is included as part of 
an input module. 

EXAMPLE, The following example shows all three uses of the 
lIBRARY statementl 

// 
//TESTlIB 

EXEC 
DD 

PGM=HEWl,PARM='lET,XREF,LIST' 
DSNAME=TEST,DISP=SHR, .•. 

//SYSLIN DD * 
LIBRARY TESTlIB(DATE,TIME),(FICACOMP),*(STATETAX) 

/* 

As a result, members DATE and TIME from the additional library 
TESTLIB are used to resolve external references. FICACOMP and 
STATETAX are not resolved; however, because the references 
remain unresolved, the lET option must be specified on the EXEC 
statement if the module is to be marked executable. In 
addition, STATETAX will not be resolved in any subsequent 
reprocessing by the linkage editor. 

78 MVS/XA Linkage Edit~r and Loader User's Guide 



MODE statement 

( 

( 

The MODE statement specifies the residence mode for the output 
load module and/or the addressing mode for all the entry points 
into the load module (the main entry point, its true aliases, 
and all the alternate entry points). 

FORMAT, The format of the MODE statement is as foilowsl 

I MODE modespec(.modespec) 

modespec 
is either of the following, 

• The designation of an addressing mode for the output load 
module by one of the following' 

AMODE(24) 

AMODE(31) 

AMODE(ANY) 

• The designation of residence mode for the output load module 
by one of the following, 

RMODE(24) 

RMODECANY> 

PLACEMENT. The MODE control statement can be placed before, 
between, or after object modules or other control statements. 
It must precede the NAME statement for the module, if one is 
present. 

Nates: 

1. The residence mode assigned by the MODE control statement 
overrides the residence mode accumulated from the input 
control sections and private code. The residence mode 
assigned by the MODE control statement also overrides the 
residence mode assigned by the RMODE parameter in the PARM 
field of the EXEC statement. 

2. The addressing mode assigned by the MODE control statement 
overrides the separate addressing modes found in the ESD 
data for the control sections within which the entry points 
are located. The addressing mode assigned by the MODE 
control statement overrides the addressing mode assigned by 
the AMODE parameter in the PARM field of the EXEC statement. 

3. If more than one MODE control statement is encountered in 
the link-edit of a load module, the last valid mode 
specification is used. Likewise, if a mode specification 
occurs more than once within a MODE statement, the last 
valid mode specification is used. 

Chapter S. Specifying an Operation with Control Statements 79 



4. If only one value, either AMODE orRMODE, is specified in 
the MODE control statement, the other value is implied 
according to the following tables ("'\ 

~~/ 
Value Specified Value Implied 

AMODE=24 RMODE=24 

AMODE=31 RMODE=24 

AMODE=ANY RMODE=24 

RMODE=24 see below 

RMODE=ANY AMODE=31 

If only an RMODE of 24 is specified, no overriding AMODE 
value is assigned; instead, the AMODE value in the ESD data 
for the main entry point, a true alias, or an alternate 
entry point is used in generating its respective directory 
entry. 

5. In generating a directory entry for either the main entry 
point, a true alias, or an alternate entry point, the 
linkage editor validates the combination of the AMODE value 
and the RMODE value, as specified by the user in the MODE 
control statementCs), according to the table beiowl 

RMODE=24 RMODE=ANV 

AMODE=24 valid invalid 

AMODE=31 valid valid 

AMODE=ANV valid invalid 

6. If the AMODE/RMODE combination resulting from the MODE 
control statementCs) is invalid, an error message is issued 
and the linkage editor ignores the MODE control statement(s) 
as the source of AMODE/RMODE data. 

EXAMPLEs In the following example, an output load module, named 
NEWMOD, is created; it is given a true alias of TESTMOD; the 
residence mode for the load module is ANY; the addressing mode 
for both the main entry point, NEWMOD, and the true alias, 
TESTMOD, is 31. 

//SYSlMOD DD DSN=TESTlOAD, DISP=MOD, ... 
//SYSlIN DD J( 

MODE 
ALIAS 
NAME 

AMODE(31),RMODE(ANY) 
TESTMOD 
NEWMOD 

80 MVS/XA Linkage Editor and Loader User's Guide 



NAME StateMnt 

( 

The NAME statement specifies the name of the load modul. created 
from the preceding input modules, and serves as a delimiter for 
input to the load module. As a delimiter, the NAME statement 
allows multiple load module processing in one linkage editor job 
step. The NAME statement can also indicate that the load module 
replaces an identically named module in the output module 
library. 

FORMAT. The format of the NAME statement is. 

NAME membername[(RJ] 

member name 
is the name to be assigned to the load module that is 
created from the preceding input modules. 

(R) 
indicates that this load module replaces an identically 
named module in the output module library. If the module 
is not a replacement, the parenthesized value (R) should 
not be specified. 

PLACEMENT. The NAME statement is placed after the last input 
module or control statement that is to be used for the output 
module. 

Nates: 

1. Any ALIAS statement used must precede the NAME statement. 

2. A NAME statement found in a data set other than the primary 
input data set is invalid. The statement is ignored. 

EXAMPLE. In the following example, two load modules, RDMOD and 
WRTMOD, are produced by the linkage editor in one job step. 

//SYSLMOD DD 
//NEWMOD DD 
//SYSLIN DD 
// DD 

/)( 

NAME RDMOD(R) 
INCLUDE NEWMOD 
NAME WRTMOD 

DSNAME=AUXMODS,DISP=MOD, .•. 
DSNAME=&&WRTMOD,DISP=OLD 
DSNAME=&&RDMOD,DISP=OLD 
)( 

As a result, the first module is named RDMOD and replaces an 
identically named module in the output module library AUXMODS; 
the second module is named WRTMOD and is added to the library. 

Chapter 5 •. Specifying an Operation with Control Statements 81 



ORDER stateant 

The ORDER statement indicates the sequence in which control 
sections or named common areas appear in the output load module. 
The control sections or named common areas appear in the 
sequence in which they ere specified on the ORDER statement. 
When multiple ORDER statements are used, their sequence further 
determines the sequence of the control sections or named common 
areas in the output load module; those named on the first 
statement appear first, and so forth. 

FORMAT. The format of the ORDER statement is. 

I ORDER (common area name[(P)Jlcsectname[(P)J)~ ••• 

common area name 
is the name of the common area to be sequenced. 

csectname 

(P) 

is the name of the control section to be sequenced. 

indicates that the starting address of the control section 
or named common area is to be on a page boundary within the 
load module. The control sections or common areas are 
aligned on 4K-byte page boundaries. 

PLACEMENT. An ORDER statement can usually be placed before, 
between, or after object modules or other control statements. 
When link-editing the nucleus, however, any ORDER statements 
used should precede the INCLUDE statements. 

Notes: 
/ " 

1. A control section or common area can be named on only one 
ORDER statement. If the same name is used more than once, \< J 
except when it is the last operand on one ORDER statement 
and the first operand on the next, the name is ignored, as 
is the balance of the control statement on which it appears. 

2. The control sections and common areas named as operands can 
appear in either the primary input or the automatic call 
library, or both. 

3. If a control section or a named common area is changed by a 
CHANGE or REPLACE control statement and sequencing is 
desired, specify the new name on the ORDER statement. The 
ORDER statement refers to the control section by its new 
name. 

EXAMPLE. In this example, the control sections in the load 
module LDMOD are arranged by the linkage editor according to the 
sequence specified on ORDER statements. The page boundary 
alignments and the control section sequence made as a result of 
these statements ara shown in Figure 24 on page 83. Assume each 
control section is IK byte in length. 

82 MVS/XA Linkage Editor and Loader User's Guide 

(" '"", ,''\ \ 

, , ,/ 



JCL and Control Statements Output Load Module 

LDMOD 

OK ./ ./' 
ROOTSEG 

//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD, ••• 
//SYSLIN DD * ./ 

/* 

ORDER 
ORDER 
ORDER 
INCLUDE 

Figure 24. 

ROOTSEG(P),MAINSEG,SEGl,SEG2 
SEG3(P) ,ENTRYl 
FSTPART,SESECTA,SESECTB(P) 
SYSLMOD(LDMOD) 

4K 

8K 

MAINSEG 

./ 
SEGl 

./ 
SEG2 

./ 
SEG3 

./ 
ENTRYl 

./ 
FSTPART 

./ 
SESECTA 

./ 
SESECTB 

./ 

Output load Module for ORDER Statement Example. The control section 
name PARTl is changed by a CHANGE statement to FSTPART. The ORDER 
statement refers to the control section by its new name. 

Chapter S. Specifying an Operation with Control Statements 83 



OVERLAY statement 

----- -- -------~---- ,- ---~~ 

The OVERLAY statement indicates either the beginning of an 
overlay segment, or of an overlay region. Because a segment or 
a region is not named, the programmer identifies it by giving 
its origin (or load point) a symbolic name. This name is then 
used on an. OVERLAY statement to signify the start of a new 
segment or region. 

FORMATs The format of the OVERLAY statement iss 

OVERLAY svmbol(REGION) 

symbol 
is the symbolic name assigned to the or1g1n of a segment. 
This symbol is not related to external symbols in a module. 

(REGION) 
specifies the origin of a new region. 

PLACEMENT: The OVERLAY statement must precede the first module 
of the next segment, the INCLUDE statement specifying the first 
module of the segment, or the INSERT statement specifying the 
control sections to be positioned in the segment. 

Notes: 

1. The OVLY option must be specified on the EXEC statement when 
OVERLAY statements are to be used. 

2. The sequence of OVERLAY statements should reflect the order 
of the segments in the overlay structure from top to bottom, 
left to right, and region by region. 

3. No OVERLAY statement should precede the root segment. 

EXAMPLE. The following OVERLAY and INSERT statements specify 
the overlay structure in Figure 25 on page 85. 

// EXEC PGM=HEHL,PARM='OVLY,XREF,LIST' 

. 
//SYSLIN DD DSNAME=&&OBJ, ... 
// DD * 

/* 

INSERT CSA 
OVERLAY ONE 
INSERT CSB 
OVERLAY THO 
INSERT CSC 
OVERLAY THO 
INSERT CSD 
OVERLAY ONE 
INSERT CSE,CSF 
OVERLAY THREECREGION) 
INSERT CSH 
OVERLAY THREE 
INSERT CSI 

84 MVS/XA Linkage Editor and Loader User's Guide 

_ .. -- - --- ---------~------~---

(,~\ 

~J 



REGION I T 
eSA 

I 
ONE I 

CSB eSE 

+ CSF 

I 
TWO 

..L esc 
.1 

eSD 
.1 

------------I---~~;-------i--------
REGION 2 eSH eSI 

J.. J.. 

Figure 25. Overlay Structure for OVERLAY Statement Example 

I ( 

(' 

Chapter 5. Specifying an Operation with Control Statements 85 



-----~.------"---

The PAGE statement aligns a control section or named common area 
on a 4K-byte page boundary in the load module. 

FORHAT. The format of the PAGE statement is. 

PAGE (common area namelcseciname), ••• 

common area name 
is the name of the common area to be aligned on a page 
boundary. 

csectname 
is the name of th. control section to be aligned on a page 
boundary. 

PLACEMENT. The PAGE statement can be placed before, between, or 
after object modules or other control statements. 

Notes: 

1. If a control section or a named common area is changed by a 
CHANGE or REPLACE control statemeni, and page alignment is 
wanted, specify the new name in the PAGE statement. 

2. The control sections and common areas named as operands can 
appear in either the primary input or the automatic call 
library, or both. 

EXAMPLE. In this example, the control sections in the load 
module lDMOD are aligned on page boundaries as specified in the 
following PAGE statement. 

PAGE AlIGN,BNDRY4K,EIGHTK 

The job control statements and linkage editor control statements 
as well as the output load module are shown in Figure 26 on 
page 87. Assume each control section is 3K bytes in length. 

86 MVS.lXA Linkage Editor and loader User's Guide 

~---~~--~-------~---~-------~--~- ---------



( 

JCL And Control Statements 

//LKED 

//SYSLMOD 
//SYSLIN 

PAGE 
INCLUDE 

/* 

Figure 26. 

EXEC PGM=HEWL,PARM=, ••• 

DD 
DD 

DSNAME=PVTLIB,DISP=OLD, ••• 

* 
ALIGN,BNDRY4K,EIGHTK 
SYSLMOD(LDMOD) 

Output Load Module for PAGE Statement Example 

OK 

4K 

8K 

Output Load Module 

LDMOD 

./ / 
ALIGN 

./ 
Empty Space 
Due to Boundary 
Alignment 

./ 
BNDRY4K 

./" 
Empty Space 
Due to Boundary 
Alignment 

/ 
EIGHTK 

V 

Chapter 5. Specifying an Operation with Control Statements 87 



REPLACE statement 

The REPLACE statement specifies one or more of the following. 

e The replacement of one control section with another 

e The deletion of a control section 

eThe deletion of an entry name 

When a control section is replaced, all references within the 
input module to the old control section are changed to the new 
control section. Any external references to the old control 
section from other modules are unresolved unless changed. 

When a control section is deleted, the control section name is 
also deleted from the external symbol dictionary, unless 
references are made to the control section from within the input 
module. If there are eny such references, the control section 
name is changed to an external reference. External references 
from other modules to a deleted control section also remain 
unresolved. 

When deleting an entry name, if there are any references to it 
within the same input module, the entry name is changed to an 
external reference. 

FORMAT. The format of the REPLACE statement is. 

REPLACE I (csectname-l[(csectname-Zll.entryname) 

csectname 
is the name of a control section. If only csectname-l is 
used, the control section is deleted; if csectname-2 is 
also used, the first control section is replaced with the 
second. ~ j 

entrvname 
is the entry name to be deleted. 

PLACEMENT. The REPLACE statement must immediately precede 
either (1) the module containing the control section or entry 
name to be replaced or deleted, or (2) the INCLUDE statement 
specifying the module. The scope of the REPLACE statement is 
across the immediately following module (object module or load 
module). The END record in the immediately following object 
module or the end-of-module indication in the load module 
terminates the action of the REPLACE statement. If the REPLACE 
statement is the last control statement in the SYSLIN data set, 
and there are unresolved external references to be resolved from 
SYSLIB, the REPLACE function operates on the first module from 
SYSLIB by an AUTO CALL. 

Notes: 

1. Unresolved external references are not deleted from the 
output module even though a deleted control section contains 
the only reference to a symbol. 

2. When some but not all control sections of a separately 
assembled module are to be replaced, A-type address 
constants that refer to a deleted symbol will be incorrectly 
resolved, unless the entry name is at the same displacement 
from the origin in both the old and the new control 
sections. 

3. If no INCLUDE statement follows the REPLACE statement, one 
module may be left out of AUTO CALL. Message lEWOl32 is 
issued. 

4. If the control section identified as csectnama-l (specified 
on the REPLACE statement) is misspelled, the control section 

88 MVS/XA Linkage Editor and Loader User's Guide 

~-~~----~--~----



( 

( 

will not be replaced 01'" deleted. Linkage editor output, 
such es the cross-reference listing and module map, can be 
used to verify each change. 

EXAMPLE. In the following example, assume that control section 
INT7 is in member LOANCOMP and that control section INT8, which 
is to replace INT7, is in data set &&NEWINT. Also assume that 
control section PRIME in member LOANCOMP is to be deleted. 

//NEWMOD DO 
//OLDMOD DO 
//SYSLIN DO 

ENTRY MAINENT 
INCLUDE NEWMOD 

DSNAME=&&NEWINT,DISP=COLD,DELETE) 
DSNAME=PVTLIB,DISP=OLD, .•. 
JE 

REPLACE INT7CINT8),PRIME 
INCLUDE OLDMODCLOANCOMP) 

/JE 

As a result, INT7 is removed from the input module described by 
the OLDMOD DO statement, and INT8 replaces INT7. All references 
to INT7 in the input module now refer to INT8. Any references 
to INT7 from other modules remain unresolved. If there are no 
references to PRIME in LOANCOMP, control section PRIME is 
deleted; the control section name is also deleted from the 
external symbol dictionary. 

Chapter 5. Specifying an Operation with Control Statements 89 



SETCODE statement 

The SETCODE statement assigns the specified authorization code C.'.-.-.',~. 
to the output load module. The authorization code is placed in 
the directory entry for the output load module. 

FORMAT. The format of the SETCODE statement is as follows. 

SETCODE AC(authorizationcode) 

authorizatioDcode 
is 1 to 3 decimal digits specifying a value from 0 to 255. 

PLACEMENT. A SETCODE statement can be placed before, between, 
or after object modules or other control statements. It must 
precede the NAME statement for the module, if one is present. 

Notes: 

1. The authorization code assigned by the SETCODE statement 
overrides the authorization code assigned by the AC 
parameter in the PARM field of the EXEC statement. 

2. If more than one SETCODE statement is encountered in the 
link-edit of a load module, the last valid authorization 
code assigned is used. 

3. The operand 'AC( )' results in an authorization code of 
zero. 

EXAMPLE. In the following example, an authorization code of 1 
is assigned to the output load module MODI. 

//LKED 
//SYSPRINT 
//SYSUTl 
//SYSLMOD 
//SYSLIN 
// 
// 

/J( 

SETCODE 
NAME 

EXEC 
DD 
DD 
DD 
DD 

DD 

PGM=HEWL 
SYSOUT=A 
UNIT=SYSDA,SPACE=(TRK,(lO,5» 
DSNAME=SYSl.LINKLIB,DISP=OlD 
DSNAME=&&lOADSET,DISP=(OlD,PASS) 
UNIT=SYSDA 
J( 

AC(l) 
MODlCR) 

90 MVS/XA linkage Editor and Loader User's Guide 

------- ,-.. -~.' -

('."'-, . 

. . ,.?/ 



SETSSI statement 

( 

The SETSSI statement specifies hexadecimal information to be 
placed in the system status index of the directory entry for the 
output module. 

FORMAT. The format of the SETSSI statement iSI 

SETSSI xxxxxxxx 

xxxxxxxx 
represents 8 hexadecimal characters (0 through 9 and A 
through F) to be placed in the 4-byte system status index 
of the output module library directory entry. 

PLACEMENTr The SETSSI statement can be placed before, between, 
or after object modules or other control statements. If one is 
present, it must precede the NAME statement for the module. 

Nate: A SETSSI statement must be provided whenever an 
IBM-supplied load module is reprocessed by the linkage editor. 
If the statement is omitted, no system status index information 
is present. 

Chapter 5. Specifying an Operation with Control Statements 91 



CHAPTER 6. EDITING A CONTROL SECTION 

Input Modules 

The linkage editor performs editing functions either 
automatically or as directed by control statements. These 
editing functions provide for program modification on a control 
section basis. That is, they make it possible to modify a 
control section within an object or load module, without 
recompiling the entire source program. 

The editing functions can modify either an entire control 
section or external symbols within a control section. Control 
sections can be deleted, replaced, or arranged in sequence; 
external symbols can be deleted or changed. (External symbols 
are control section names, entry names, external references, 
named common areas, or pseudoregisters.) 

Whatever function is used, it is requested in reference to an 
ineY! module. The resulting output load module reflects the 
request. That is, no actual change, deletion, or replacement is 
made to an input module. The requested alterations are used to 
control linkage editor processing (Figure 27). 

JCL and Control Statements Output Load Module 

MODAl } 

I_:ECTA_O " IISYSLMOD 
IIMODATWO 
IISYSLIN 
II 

DD DSNAME=NEWLIB(MODA1A2), ... 
DD DSNAME=MODA2, .. . 
DD DSNAME=MODA1, .. . 

MODAIA2 

./ ./ 
CSECT! 

./" 
MODA2 DD * CSECTA 

./ /'" 
CSECT! 

../ 
CSECT2 

( 
ENTRY 
REPLACE 
INCLUDE 

CSECT3 
CSECT2(CSECTA) 
MODATWO 

./" 
CSECT3 

./ 

../ 
CSECn 

./ 

Figure 27. Editing a Module 

Editing Conventions 

In requesting editing functions, certain conventions should be 
followed to ensure that the specified modification is processed 
correctly. These conventions concern the following items: 

• 
• 

Entry points for the new module 

Placement of control statements 

• Identical old and new symbols 

92 MVS/XA Linkage Editor and Loader User's Guide 

(1''\ 

~_/ 

---------



( 
ENTRY POINTS. Each time the linkage editor reprocesses a load 
module, the entry point for the output module should be 
specified in one of two ways. 

• Through an ENTRY control statement. 

• Through the assembler-produced END statement of an input 
object module, if one is present. If the entry point 
specified in the assembler-produced END statement is not 
defined in the object module, the entry name must be defined 
as an external reference. 

The entry point assigned must be defined as an axternal nama 
within the resulting load module. 

PLACEMENT OF CONTROL STATEMENTS. The control statement (such as 
CHANGE or REPLACE) used to specify an aditing function must 
precede either the module to be modified, or the INCLUDE 
statement that spacifies the module. If an INCLUDE statement 
specifies several modules, the CHANGE or REPLACE statement 
applies only to the first module included. 

IDENTICAL OLD AND NEW SYMBOLS. The same symbol should not 
appear as both an old external symbol and a new external symbol 
in one linkage editor run. If a control section is to be 
replaced by another control section with the same name, the 
linkage editor handles this automatically (sae nAutomatic 
Replacementn on page 96). 

Chapter 6. Editing a Control Section 93 



CHANGING EXTERNAL SYMBOLS 

The linkage editor can be directed to change an external symbol (.'~~_~J 
to a new symbol while processing an input Module. External ~~ 
references and address constants within the Module eutomatically 
refer to the new symbol. External references from othar modules 
to a changed external symbol must be changed with separate 
control statements. 

Both the old and the new symbols are specified on either a 
CHANGE control statement or a REPLACE control statement. The 
use of the old symbol within the module determines whether the 
new symbol becomes a control section name, an entry name, or an 
external reference. The old symbol appears first, followed by 
the new symbol in parentheses. 

The CHANGE control statement changes a control section name, an 
entry name, or an external reference. The REPLACE statement 
changes or deletes an entry name, if the symbols on a REPLACE 
statement are control section names, the entire control section 
is replaced or deleted (see ftReplacing Control Sectionsft on 
page 95). 

The CHANGE statement must immediately precede either the input 
module that contains the external symbol to be changed, or the 
INCLUDE statement that specifies the input module. The scope of 
the CHANGE statement is across the immediately following module 
(object module or load module). The END record in the 
immediately following object module or the end-of-module 
indication in the load module terminates the action of the 
CHANGE statement. 

In the following example, assume that SUBONE is defined as an 
external reference in the input load module. A CHANGE statement 
is used to change the external reference to NEWMOD (Figure 28 on 
page 95), 

//SYSLMOD 
// 
//SYSLIN 

/J( 

ENTRY 
CHANGE 
INCLUDE 
NAME 

DD 

DD 

DSNAME=PVTLIB,DISP=OLD,UNIT=3350, 
VOLUME=SER=PVT002 
J( 

BEGIN 
SUBONE(NEWMOD) 
SYSLMOD(MAINROUT) 
MAINROUHR) 

94 MVS/XA Linkage Editor and Loader User's Guide 



( 

Input Module 

MAINROUT 

./ /' 
BEGIN ENTRY 

CALLSUBONE 

CALLSUBONE 

t-------4"'"/ 

CALL SUBONE 

I..-___ "V 

JCL and Control Statements 

//SYSLMOD 
//SYSLIN 

ENTRY 
CHANGE 
INCLUDE 
NAME 

/* 

DD DSNAME=PVTLIB, ... 
DD * 
MAINEP 
SUBONE(NEWMOD),BEGIN(MAINEP) 
SYSLMOD(MAINROUT) 
MAINROUT(R) 

Output Load Module 

MAINROUT 

./ /' 
MAINEP ENTRY 

CALL NEWMOD 

CALL NEWMOn 

t--------+"'/ 

CALL NEWMOD 

L.-___ ,/ 

Figure 28. Changing an External Reference and an Entry Point 

In the load module MAINRoUT, every reference to SUB ONE is 
changed to NEWMoD. Note also that the INCLUDE statement 
specifies a ddname of SYSLMoD. This allows a library to be used 
both as input and as the output module library. 

More than one change can be specified on the same control 
statement. If, in the same example, the entry point is also to 
be changed, the two changes can be specified at once (see 
Figure 28). 

//SYSLMoD 
// 
//SYSLIN 

/:lE 

ENTRY 
CHANGE 
INCLUDE 
NAME 

DD 

DD 

DSNAME=PVTLIB,DISP=oLD,UNIT=3350, 
VoLUME=SER=PVT002 
3( 

MAINEP 
SUBoNE(NEWMOD),BEGIN(MAINEP) 
SYSLMODCMAINROUT) 
MAINROUHR) 

The main entry point is now MAINEP instead of BEGIN. The ENTRY 
control statement specifies the new entry point, because this is 
the source of the name that is entered in the library directory 
entry for the load module's entry point. 

REpLACING CONTROL SECTIONS 

An entire control section can be replaced with a new control 
section. Control sections can be replaced either automaticallY 
or with a REPLACE control statement. Automatic replacement acts 
upon all input modules; the REPLACE statement acts only upon the 
module that follows it. 

Chapter 6. Editing a Control Section 95 



------~~~~-

Notes: 

1. Any CSECT identification (IDR) records associated with a 
particular control section are also replaced. 

2. (For Assembler language programmers only.) When some but 
not all control sections of a separately assembled module 
are to be replaced, A-type address constants that refer to a 
deleted symbol will be incorrectly resolved unless the entry 
name is at the same displacement from the origin in both the 
old and the new control section. If all control sections of 
a separately assembled module are replaced, no restrictions 
apply. 

AUTOMATIC REPLACEMENT 

Example 1 

Control sections are automaticallY replaced if both the old and 
the new control section have the same name. The first of the 
identically named control sections processed by the linkage 
editor is made a part of the output module. All subsequent 
identically named control sections are ignored; external 
references to identically named control sections are resolved 
with respect to the first one processed. Therefore, to cause 
automatic replacement, the new control section must have the 
same name as the control section to be replaced, and must be 
processed before the old control section. 

Caution: Automatic replacement applies to duplicate control· 
section names only; if duplicate entry points exist in control 
sections with different names, a REPLACE control statement must 
be used to specify the entry point name. If a control section 
being automatically replaced contains unresolved external 
references and the control section replacing it does not, the 
parameter NCAL must be specified or the unresolved external 
references must be explicitly deleted using the REPLACE 
statement or marked for restricted no-call or never-call using 
the LIBRARY statement; otherwise, the unresolved external 
reference is retained. 

NOTE ON OVERLAY PROGRAMSc When identically named cont.rol 
sections appear in modules being placed in an overlay structure, 
the second and any subsequent control sections with that name 
are ignored. This occurs whether the modules are in segments in 
the same path or in exclusive segments. Resolution of external 
references may therefore cause invalid exclusive references. 
Invalid exclusive references cause the linkage editor to mark 
the output module not executable unless the exclusive call 
(XCAL) option is specified on the EXEC statement (see "Chapter 
4. Specifying JCL to Run a Linkage Editor JobR on page 36). 

An object module deck contains two control sections, READ and 
WRITE; member INOUT of library PVTLIB also contains a control 
section WRITE. 

I'I'SYSLMOD 
1'1' 
I'I'SYSLIN 

DD 

DD 

DSNAME=PVTLIB,DISP=OLD,UNIT=3350, 
VOLUME=SER=PVT002 
)( 

Object Deck for READ 
Object Deck for WRITE 

1')( 

ENTRY 
INCLUDE 
NAME 

READIN 
SYSLMOD(INOUn 
INOUHR) 

96 MVSI'XA linkage Editor and Loader User's Guide 



Example 2 

The output load module contains the new READ control section, 
the new WRITE control section (replacing the old WRITE control 
section in member INOUT), and all remaining control sections 
from INOUT. 

A large load module named PAYROLL, originally written in COBOL, 
contains many control sections. Two control sections, FICA and 
STATETAX, were recompiled and passed to the linkage editor ;ob 
step in the &&OBJECT data set. Then, by including the load 
module PAYROLL (a member of the partitioned data set LIBOOl) es 
well as the output of the language translator, the modified 
control sections automatically replace the identically named 
control sections (Figure 29 on page 98). 

//SYSLMOD DD DSNAME=LIB002(PAYROLL),DISP=OLD, 
// UNIT=3350,VOLUME=SER=LIB002 
//SYSLIB DD DSNAME=SYSI.COBlIB,DISP=SHR 
//OLDLOAD DD DSNAME=LIBOOI,DISP=(OLD,DELETE), 
// UNIT=3350,VOLUME=SER=LIBOOl 
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE) 
// DD )f 

/)f 

INCLUDE OLDLOAD(PAYROlL) 
ENTRY INITl 

Chapter 6. Editing a Control Section 97 



Input Modules 

&&OBJECT 

L ./' 
FICA 
(new) 

./ 
STATETAX 
(new) 

./ 

LlBOOl 
(Payroll) 

./ ../ 
MAINROUT 

./ 
OVERTIME 

./ 
FICA 
(old) 

./ 
STATETAX 
(old) 

./ 
FEDTAX 

./ 
ILLACC 

./ 
VAKTION 

./ 
· · 

~/ · .-
~-- ..... 

JCL and Control Statements 

IISYSLMOD 
IIOLDLOAD 
IISYSLIN 
II 

INCLUDE 
ENTRY 

1* 

DD DSNAME=LIB002(PAYROLL) , ... 
DO DSNAME=LIBOOl, ••. 
DO DSNAME=&&OBJECT, ••• 
DO * 
OLDLOAD(PAYROLL) 
INITI 

Output Load Module 

LlBOO2 
(Payroll) 

./ 
FICA 
(new) 

STATETAX 
(new) 

MAINROUT 

OVERTIME 

FEDTAX 

ILLAC(, 

VAKTION 

· · · - ~ .--- .,... .".-

/" 

V 

V 

V 

./ 

./ 

./ 

./ 

~ 

Figure 29. Automatic Replacement of Control Sections 

REPLACE STATEMENT 

The output module contains the modified FICA and STATETAX 
control sections and the rest of the control sections from the 
old PAYROLL module. The main entry point is INITl. and the 
output module is placed in a library named LIB002. The COBOL 
automatic call library is used to resolve any external 
references that may be unresolved after the SYSLIN data sets are 
processed. 

The REPLACE statement is used to replace control sections when 
the old and the new control sections have different names. The 
name of the old control section appears first. followed by the 
name of the new control section in parentheses. The REPLACE 
statement must precede either the input module that contains the 
control section to be replaced. or the INCLUDE statement that 
specifies the input module. The scope of the REPLACE statement 
is across the immediately following module (object modula or 

98 MVS/XA Linkage Editor and Loader User's Guide 

() 

«-''\ ,-_/ 

--------- ----- --- ----------~---~- --
-~------------------



( 
load module). The END record in the immedietely following 
object module or the end-of-module indication in the load module 
terminates the action of the REPLACE statement. 

An external reference to the old control section from within the 
same input module is resolved to the new control section. An 
external reference to the old control section from any other 
module becomes an unresolved external reference unless one of 
the following occursl 

• The external reference to the old control section is changed 
to the new control section with a separate CHANG£ control 
statement. 

• The same entry name appears in the new control section or in 
some other control section in the linkage editor input. 

In the following example, the REPLACE statement is used to 
replace one control section with another of a different name. 
Assume that the old control section SEARCH is in library member 
TBLESRCH, and that the new control section BINSRCH is in the 
data set &&OBJECT, which was passed from a previous step 
CFigure 30 on page 100). 

//SYSLMOD 
// 
//SYSLIN 
// 

/JE 

ENTRY 
REPLACE 
INCLUDE 
NAME 

DD 

DD 
DD 

DSNAME=SRCHRTN,DISP=OLD,UNIT=3350, 
VOLUME=SER=SRCHLIB 
DSNAME=&&OBJECT,DISP=COLD,DELETE) 
JE 

READIN 
SEARCHCBINSRCH) 
SYSlMODCTBlESRCH) 
TBLESRCHCR) 

Chapter 6. Editing a Control Section 99 



Input Modules JCL and Control Statements Output Load Module 

&.lOBJECT 

~IISYSLIN 

DD DSNAME=SRCHRTN .•.• 
DD DSNAME=&&OBJECT ..•. 

BINSRCH, 

II DD * TBLESRCH 
READ IN 

~ } IISYSLMOD 

./ ENTRY 
~----------~ REPLACE SEARCH (BINSEARCH) 

SYSLMOD(TBLESRCH) 
TBLESRCH (R) 

./ ./ 
READIN ENTRY 

INCLUDE 

TBLESRCH NAME 

L ./' 1* CALL BINSRCH 

READIN ENTRY 
,,/ 

BINSRCH 
CALL SEARCH 

,,/ 
SEARCH 

Figure,30. Replacing a Control Section with the REPLACE Control Statement 

The output module contains BINSRCH instead of SEARCH; any 
references to SEARCH within the module refer to BINSRCH. Any 
external references to SEARCH from other modules will not be 
resolved to BINSRCH. 

DELETING A CONTROL SECTION OR ENTRY NAME 

The REPLACE statement can be used to delete a control section or 
an entry name. The REPLACE statement must immediately precede 
either the module that contains the control section or entry 
name to be deleted or the INCLUDE statement that specifies the 
module. Only one symbol appears on the REPLACE statement; the 
appropriate deletion is made depending on how the symbol is 
defined in the module. 

If the symbol is a control section name, the entire control 
section is deleted. The control section name is deleted from 
the external symbol dictionary only if no address constants 
refer to the name from within the same input module. If an 
address constant does refer to it, the control section name is 
changed to an external record. 

The preceding is also true of an entry name to be deleted. Any 
references to it from within the input module cause the entry 
name to be changed to an external reference. 

These editor-supplied external references, unless resolved with 

o 
\. . 
'-.../ 

I 
\ 
'<\.,/' 

to attempt to resolve them. Also, the deletion of a control . 
other input modules, cause the automatic library call mechanism ~.~ 

section or an entry name may cause external references from ..... / 
other input modules to be unresolved. Either condition can 
cause the output load module to be marked not executable. 

100 MVS/XA Linkage Editor and Loader User's Guide 



Input Module 

CODEROUT 

./ ,/ 
ENCODE 

/' 
CODER 

/"" 
DECODF 

If a deleted control section contains an unresolved external 
reference, the reference remains. 

If a REPLACE statement, used to delete a CSECT, is the last 
control statement and there are external references to be 
resolved from SYSLIB, the delete request operates on the first 
module from SYSLIB and deletes it. The external reference 
remains unresolved. 

Note: When a control section is deleted, any CSECT 
identification data associated with that control section is also 
deleted. 

In the following example, control section CODER is to be deleted 
(Figure 31). 

//SYSLMOD 
// 
//SYSLIN 

DD DSNAME=PVTLIB,DISP=OLD,UNIT=3350, 

/* 

ENTRY 
REPLACE 
INCLUDE 
NAME 

VOLUME=SER=PVT002 
DD * 
STARTl 
CODER 
SYSLMODCCODEROUT) 
CODEROUTC R) 

JCL and Control Statements 

//SYSLMOD 
//SYSLIN 

ENTRY 
REPLACE 
INCLUDE 

---.. NAME 
/* 

DD DSNAME=PVTLIB, ... 
DD * 
START 1 
CODER 
SYSLMOD(CODEROUT) 
CODEROUT(R) 

Output Load Module 

CODEROUT 

./ ,/ 
ENCODE 

DECODE 

Figure 31. Deleting a Control Section 

The control section CODER is deleted. If no address constants 
refer to CODER from other control sections in the module, the 
control section name is also deleted. If address constants 
refer to CODER, the name is retained as an external reference. 

Chapter 6. Editing a Control Section 101 



ORDERING CONTROL SECTIONS OR NAMED COMMON AREAS 

The sequence of control sections or named common areas in an r~ 
output load module can be specified by using the ORDER control \~ 
statement. '_J 
Individual control sections or named common areas are arranged 
in the output load module according to the sequence in which 
they appear on the ORDER control statement. Multiple ORDER 
control statements can be used in a job step. The sequence of 
the ORDER statements determines the sequence of the control 
sections or named common areas in the load module. 

Any control sections or named common areas that are not 
specified on ORDER statements appear last in the output load 
module. If a control section or named common area is changed by 
a CHANGE or REPLACE control statement, the new name must be used 
on the ORDER statement. 

In the following example, ORDER statements are used to specify 
the sequence of five of the six control sections in an output 
load module. A REPLACE statement is used to replace the old 
control section, SESECTA, with the new control section, CSECTA, 
from the data set &&OBJECT, which was passed from a previous 
step. Assume that the control sections to be ordered are found 
in library member MAINROOT (Figure 32 on page 103). 

//SYSLMOD 
// 
//SYSLIN 
// 

/)( 

ORDER 
REPLACE 
ORDER 
INCLUDE 
NAME 

DD 

DD 
DD 

DSNAME=PVTLIB,DISP=OLD, 
UNIT=3350,VOLUME=SER=PVT002 
DSNAME=&&OBJECT,DISP=(OLD,DELETE) 
)( 

MAINEP,SEGMTl,SEG2 
SESECTACCSECTA) 
CSECTA,CSECTB 
SYSLMODCMAINROOT) 
MAINROOT 

102 MVS/XA linkage Editor and Loader User's Guide 



( Input Modules 

&&OBJECT 

./ ./ 
CSECTA 

l/ 
MAINROOT 

./' ./' 
CSECTB 

./ 
SESECTA 

V 
MAINEP 

./ 
LASTEP 

/" 
SEGMTl 

V 
SEG2 

l/ 

---------- ---~-----~ 

JCL and Control Statements 

II 

IISYSLMOD 
IISYSLIN 
II 

ORDER 
REPLACE 
ORDER 
INCLUDE 
NAME 

1* 

EXEC PGM=HEtvL 

DD 
DD 
DD 

DSNAME=PVTLIB, ••• 
DSNAME=&&OBJECT, ••• 

* 
MAINEP(P) ,SEGMTl,SEG2 
SESECTA(CSECTA) 
CSECTA,CSECTA,CSECTB(P) 
SYSLMOD(MAINROOT) 
MAINROOT 

Output Load Module 

MAIN ROOT 

OK ./ 
MAINEP 

/' 

'/" 
SEGMTl 

/" 
SEG2 

V 
CSECTA 

./ 
CSECTB 

/" 
LASTEP 

V 

V 

( ~~ Figure 32. Ordering Control Sections 

In the load module MAINROOT, the control sections MAINEP, 
SEGMTI, SEG2. CSECTA. and CSECTB are rearranged in the output 
load module according to the sequence specified in the ORDER 
statements. A REPLACE statement is used to replace control 
section SESECTA with control section CSECTA from data set 
&&OBJECT. which was passed from a previous step. The ORDER 
statement refers to the new control section CSECTA. Control 
section LASTEP appears after the other control sections in the 
output load module. because it was not included in the ORDER 
statement operands. 

ALIGNING CONTROL SECTIONS OR NAMED COMMON AREAS ON pAGE BOUNDARIES 

A control section or named common area can be placed on a page 
boundary (to effect a lower paging rate and thus make more 
efficient use of real storage) by using either the ORDER 
statement or the PAGE statement. 

The control section or common area to be aligned is named on 
either the PAGE statement or the ORDER statement with the P 
operand. Either the PAGE statement or the ORDER statement (with 
the P operand) causes the linkage editor to locate the starting 
address of the control section or common area on a page boundary 
within the load module. 

In the following example. the control sections RAREUSE and 
MAINRT are aligned on page boundaries by PAGE and ORDER control 
statements. Control sections MAINRT. CSECTA. and SESECTI are 
sequenced by the ORDER control statement. Assume that each 
control section. except for SESECTI and RAREUSE, is 4K bytes in 
length (Figure 22). 

Chapter 6. Editing a Control Section 103 



Input Module 

MAINROOT 

./ /' 
CSECTA 

/' 
RAREUSE 

./ 
SESECTl 

/' 
BOTTOM 

V 
MAINRT 

l/ 

//LKED 

//SYSLMOD 
// 
//SYSLIN 

/)E 

EXEC PGM=HEWL,PARM=· ... • 

DD DSNAME=OWNLIB,DISP=OLD,UNIT=33S0, 
VOLUME=SER=OWN002 

DD )E 
PAGE RAREUSE 
ORDER MAINRT(P),CSECTA,SESECTl 
INCLUDE SYSLMOD (MAINROOT) 
NAME MAINROOT 

JCL and Controls Statements Output Load Module 

MAINROOT 

OK ./ /' 

//LKED EXEC PGM=HEWL MAINRT 

4K V 
CSECTA 

//SYSLMOD DD DSNAME=OWNLIB, ••• 
//SYSLIN DD * 

PAGE RAREUSE 8K ./ 
ORDER MAINRT(P) ,CSECTA,SESECTI 
INCLUDE SYSLMOD(MAINROOT) 

SESECTl 

/' 
NAME MAINROOT 

/* 12K /' 
RAREUSF 

V 
BOTTOM 

l/ 

Figure 33. Aligning Control Sections on Page Boundaries 

The linkage editor places the control sections MAINRT and 
RAREUSE on page boundaries. Control sections MAINRT, CSECTA, 
and SESECTl are sequenced as specified in the ORDER statement. 
RAREUSE, while placed on a page boundary, appears after the 
control sections specified in the ORDER statement because it was 
not included. The control section BOTTOM comes after RAREUSE 
because it appeared after RAREUSE in the input module. 

104 MVS/XA Linkage Editor and Loader User's Guide 

/ ." 
"-.j 



CHAPTER 7. 

( 

~~~~~---------- ------

INYOKING THE LINKAGE EDITOR

The linkage editor can be invoked by a problem program at
execution time through the use of one of the following macro
instructions.

E:i~mbgl J ELlNKJ EP=linkeditname

PARAM=(gptignlistE.ddname listJ),
VL=l

ElimbglJ [ATTACHJ EP=linkegitname

PARAM=(gptionlist[,ddname lilit]),
VL=l

11SYllbP!l [LOAD] EP=linkeditname

[XCTL] EP=linkeditname

EP= linkeditname
specifies the symbolic name of the linkage editor. The
entry point at which execution is to begin is determined
by the control program (from the library directory entry).
Any of the symbolic names that can be used as operands of
the EXEC command's PGM parameter are acceptable as the
nlinkedi tnamen .

PARAM=(optionlilitE,ddname list])
specifies, as a sublist,address parameters to be passed
from the problem program to the linkage editor. The first
fullword in the address parameter list contains the
address of the option and attribute list for the load
module. The second fullword contains the address of the
ddname list. If standard ddnam.s are to be used, this
list may be omitted.

gptionlist
specifies the address of a variable-length list
containing the options and attributes. This address
must be written even though no list is provided.

The option list must begin on a halfword boundary.
The 2 high-order bytes contain a count of the number
of bytes in the remainder of the list. If no options
or attributes are specified, the count must be zero.
The option list is free form, with each field
separated by a comma. No blanks or zeros should
appear in the list.

ddname list
specifies the address of a variable-length list
containing alternative ddnames for the data sets used
during linkage editor processing. If standard
ddnames are used, this operand may be omitted.

Chapter 7. Invoking the Linkage Editor 105

The ddname list must begin on a helfword boundary.
The 2 high-order bytes contain a count of the number
of bytes in the remainder of the list. Eech name of
less than 8 bytes must be left justified and padded
with blanks. If an alternate ddname is omitted from
the list, the standard name will be assumed. If the
name is omitted within the list, the 8-byte entry
must contain binary zeros. Names can be omitted from
the end by merely shortening the list.

The sequence of the 8-byte entries in the ddname list
is as follows I

Entry Alternate Name For:

1

2

3

4

5

6

7

8

9-11

12

VL=l

SYSLIN

Member name (the name under
which the output load module
is stored in the SYSLMOD data
setJ this entry is used if tha
name is not specified on the
SYSLMOD DD statement or if
there is no NAME control
statement)

SYSLMOD

SYSLIB

Not applicable

SYSPRINT

Not applicable

SYSUTl

Not applicable

SYSTERM

specifies that the sign bit is to be set to 1 in the last
fullword of the address parameter list.

When the linkage editor completes processing, a condition code
is returned in register 15 (see Figure 16 on page 53 for a list
of linkage editor return codes).

106 MVS/XA Linkage Editor and Loader User's Guide

(

(

CHAPTER 8. INTERpRETING LINKAGE EDITOR OUTPUT

OUTPUT LOAD MODULE

The linkage editor produces two types of OUtPUtl a load module
and diagnostic information. The principal output of the
linkage editor is the output load module. The linkage editor
always places this load module in a partitioned data set. In
addition, the linkage editor issues diagnostic information.
Error and/or warning messages, module disposition data, and
optional diagnostic output are stored in the diagnostic output
data set.

The linkage editor produces one or more load modules (see "
Load Module Format" on page 118) from the input processed.
When more than one load module is produced, the process is
called mUltiple load module processing.

Whether or not the linkage editor produces one or more load
modules, the following applYI

• The load module is stored in a partitioned data set called
the outPut module library.

• The load module must have an entry point; if the programmer
has not assigned one, the linkage editor does.

• The output load module is assigned an authorization code.

•

•

During processing, the linkage editor reserves and collects
common areas, as specified in the source language program.

During processing, the linkage editor accumulates total
length and individual displacements for each pseudo register
(external dummy section).

• During processing, the linkage editor collects and records
identification data in the CSECT identification (IDR)
records.

• During the processing of a load module, the linkage editor
deletes any private code (unnamed control section) having a
length of zero and any identification data associated with
it.

• The main entry point, each true alias, and each alternate
entry point are assigned an addressing mode (AMODE).

• The output load module is assigned a residence mode
(RMODE)'

OUTPUT MODULE LIBRARY

The linkage editor stores every load module it produces in the
output module library. This library is a partitioned data set
that must be described by a DD statement with the name SYSLMOD.
The data set name of the library is also specified on this DD
statement. The data set can be either temporary (defined with
a double ampersand), or permanent (defined with a single or no
ampersand). If the data set name is either SYSl.LINKLIB or
SYSl.SVCLIB, it would be advisable to re-IPl the system after
linkage editor processing is complete. This ensures that the
corresponding data extent block (DEB) is updated to reflect
additional extents if secondary allocation of direct-access
space was required.

Whether the data set is permanent or temporary, each module
must be assigned a unique name, called the member name, to

Chapter a. Interpreting Linkage Editor Output 107

Member Name

distinguish one load module from another. The output module
can be assigned aliases if the programmer wants the module
ei ther identified by' more than one name or entered for C' --"
execution at several different points. Each member name and
alias in a load module library must be unique. The library .- J
member name and aliases for each load module appear as separate
entries in the library directory, along with the module
attributes. (Some module attributes can be assigned on the
EXEC statement for each linkage editor job step~ see "Module
Attributes" on page 37.)

The member name of the output load module may be specified on
the SYSLMOO 00 statement, in a NAME statement, or both. If the
member name is not specified, the default is TEMPNAME. If this
default name has been previously assigned to a load module,
using it again will cause a failure.

ASSIGNED ON SVSLMOD DD STATEMENT I If the member name is
assigned on the SYSlMOO 00 statement, the name is written in
parentheses following the data set name of the library.. For
example I

//SYSlMOO
//
//

00 OSNAME=MATHlIB(SQOEV),OISP=(NEW,KEEP),
UNIT=3350,SPACE=(TRK,(100,10,1»,
VOlUME=SER=lIB002

The member name SQOEV is assigned to the load module, which is
placed in the new library named MATHlIB.

ASSIGNED ON NAME CONTROL STATEMENT I If the member name is not
specified on the SYSlMOO 00 statement, it may be assigned in a
NAME control statement. For example I

//SYSlMOO
//SYSlIN
//

NAME
/JE

00
00
DO
SQDEV

DSNAME=MATHlIB,DISP=(NEW,KEEP), ...
DSNAME=&&OBJECT,DISP=(OlO,DELETE), .••
)(

The member name SQDEV is assigned to the load module, which is
placed in the library named MATHlIB.

ASSIGNED ON BOTHa If both the SYSlMOD DO statement and the
NAME control statement specify a member nama, the names should
be identical. If the names are different, the name on the NAME
control statement is used as the member name.

Note: If a "link-edit and go" sequence of job steps is
performed and the program name in the EXEC statement of the
"go" step contains a backward reference to the SYSlMOO DO
statement in the "link-editn step, the user must ensure that
the member name specified in the SYSlMOD DD statement is valid
and is not overridden by a NAME control statement.

""-../

108 MVS/XA Linkage Editor and Loader User's Guide

(

(,

An example of an error.

//lKED

//SYSlMOD
//
//SYSlIN
//

NAME
/)(
//GO

EXEC

.
DD

DD
DD
READ

EXEC

PGM=HEWl

DSNAME=&&lOADSTCGO),DISP=(NEW,
PASS), ...
DSNAME=&&OBJECT,DISP=COlD,DELETE), ...
)(

PGM=)(.lKED.SYSlMOD

Remember, this example is incorrect!

The EXEC statement of the GO step specifies that the module to
be executed is described in the lKED step in the SYSlMOD
statement. The system tries to locate a member named GO;
however, the output module was assigned the name READ.

REPLACING AN IDENTICALLY NAMED LIBRARY MEMBER. The output
module can replace an identically named member in the library
in either of two ways. The SYSLMOD DD statement names an
existing data set, as follows.

//SYSlMOD
//

DD DSNAME=MATHlIB(SQDEV),DISP=(OLD,
KEEP), ...

Or, the NAME control statement specifies the replace function,
as follows.

NAME SQDEV(R)

In either case, the member named SQDEV is replaced with a new
module of the same name.

An output module can be assigned a maximum of 16 aliases,
specified with the ALIAS control statement. The aliases exist
in addition to the member name of the output module. When a
module is referred to by an alias, execution begins at the
external name specified by the alias. If the name specified by
the ALIAS statement is not an external symbol within the
module, the main entry point is used.

For example, an output module is to be assigned two additional
entry points, CODEl and CODE2. In addition, because of a
misunderstanding, calling modules have been written and tested
using both ROUTONE and ROUTl to refer to the output module.
Rather than correct the calling modules, an alternate library
member name (alias) is also assigned.

Chapter 8. Interpreting linkage Editor Output 109

ENTRY POINT

//SYSLMOD
//
//SYSLIN
//

ALIAS
NAME

/J(

DD DSNAME=PVTLIB.DISP=OLD.UNIT=33S0,
VOLUME=SER=LIBOOI

DD DSNAME=&&OBJECT. DISP=(OLD. DELETE)
DD J(

CODEl.CODE2,ROUTONE
ROUTl

The names CODEI. CODE2, and ROUTONE appear in the library
directory along with ROUTl, the member name. Because CODEl and
CODE2 are defined as external symbols within the output module,
when these names are used. execution begins at these points.
Control may be passed to the main entry point by using either
the member name ROUTI or the alias ROUTONE.

Every load module must have a main entry point. The programmer
may specify the entry point in one of two ways'

• On a linkage editor ENTRY control statement.

• On an Assembler language END statement, which is the last
statement in the source program. The assembler produces an
object module and an END statement for the module. The
assembler-produced END statement contains an entry point
only if the source language END statement contained one.

From its input, the linkage editor selects the entry point for
the load module as follows.

1. From the first ENTRY control statement in the input.

2. If there is no ENTRY control statement in the input, from
the first assembler-produced END statement that specifies
an entry point.

3. If no ENTRY control statement or no assembler-produced END
statement specifies an entry point. the first byte of the
first control section of the load module is used as the
entry point.

In general, the entry point should be explicitly specified,
because it is not always possible to predict which control
section will be first in the output module.

When a load module is reprocessed by the linkage editor. it has
no END statement. Therefore, if the first byte of the first
control section of the load module is not a suitable entry
point, the entry point must be specified in one of two ways'

• Through an ENTRY control statement.

• Through the assembler-produced END statement of another
input module, which is being processed for the first time.
This object module must be the first such module to be
processed by the linkage editor.

An entry point other than the main entry point may be specified
with an ALIAS control statement. The symbol specified on the
ALIAS statement must be defined as an external sYmbol in the
load module. Any reference to that symbol causes execution of
the module to begin at that point instead of at the main entry
point.

In the following example, assume that CDCHECK, CODEI, and CODE2
are defined as external symbols in the output module.

110 MVS/XA Linkage Editor and Loader User's Guide

rf--\
\~/

(

(

('

Authorization Code

//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
// DD.

/.

ENTRY CDCHECK
ALIAS CODEl,CODE2,ROUTONE
NAME ROUTl

As a result of the preceding control statements, CDCHECK is the
main entry point; CODEl and CODE2 are additional entry points.
Any reference to ROUTONE or ROUTl causes execution to begin at
CDCHECK; any reference to CODEl and CODE2 causes execution to
begin at these points.

Each load module link-edited is assigned an authorization code
that determines whether or not the module is allowed to use
restricted system services and resources. A nonzero code
allows the module to use restricted services and resources; a
zero code disallows that usage. The authorization code becomes
part of the directory entry for the module in the library
containing the module.

Residence and Addressing Modes

Each entry in the library directory for the output load module
(one for the main entry point and one for each true alias or
alternate entry point) contains an indication of the residence
mode for the load module and an indication of the addressing
mode for that entry point. The entries for true aliases and
alternate entry points also contain an indication of the
addressing mode for the main entry point.

RESERVING STORAGE IN THE OUTPUT LOAD MODULE

In FORTRAN, Assembler language, and Pl/I, tha programmer can
create control sections that reserve virtual storage areas that
contain no data or instructions. These control sections are
called ·commonn or "static external" areas, and are produced in
the object modules by the language translators. These common
areas are used, for example, as communication regions for
different parts of a program or to reserve virtual storage
areas for data supplied at execution time. These common areas
are either named or unnamed (blank).

COLLECTION OF COMMON AREAS. During processing, the linkage
editor collects common areas. That is, if two or more blank
common areas are found in the input, the largest blank common
area is used in the output module; all references to a blank
common area refer to the one retained. If two or more named
common areas have the same name, the largest of the identically
named common areas is used in the output module; all references
to the named common areas refer to the one area retained.

IDENTICALLY NAMED COMMON AREAS AND CONTROL SECTIONS I If a
control section (as is generated from a BLOCK DATA subprogram
in FORTRAN, for example) and a named common area have the same
name, the length of the control section must be greater than or
equal to the length of the named common area. If the control
section is smaller in length than the named common area, a
diagnostic message is issued. The control section is regarded
as the largest of the common areas processed with that name.
All subsequent control sections and/or common areas with the
same name are ignored.

Chapter 8. Interpreting Linkage Editor Output 111

PROCESSING PSEUDOREGISTERS

In Pl/I, programmers can use pseudoreg~sters to define storage C'~
that will not be reserved in the load module but can be ~~
allocated dynamically during execution. The external dummy
sections generated by Assembler H Version 2 correspond to the
pseudoregisters of PL/I.

The linkage editor accumulates the total length of all
pseudoregisters in the input and records the displacement of
each. If two or more pseudoregisters have the same name, the
one with the longest length and the most restrictive alignment
will be retained. All other. pseudoregisters with the same name
will be ignored; all references to the identically named
pseudoregisters will refer to the one retained. .

MULTIPLE LOAD MODULE PROCESSING

The linkage editor can produce more than one load module in a
single job step. A NAME control statement in the input stream
is used as a delimiter for input to a load module. If
additional input modules follow the NAME statement in the input
stream, they are used in the formation of the next load module.

Each load module that is formed has a unique name and is placed
in the same library as a separate member. When processing
multiple load modules in a single job step, the options and
attributes specified in the EXEC statement for that job step
apply to all load modules created. If the linkage editor
terminates abnormally during processing of any of the output
modules, neither that module nor any of the modules yet to be
processed in the job step is processed or placed in the
library. Load modules processed before abnormal termination
have already been placed in the library.

In the following example, two load modules are produced in one
linkage editor job steps

//LKED

//SYSLMOD
//

//MODTHO
//SYSLIN
//

/.

ENTRY
NAME
INCLUDE
ENTRY
NAME

EXEC

.
DD

DD
DD
DD

PGM=HEWL,PARM='MAP,LIST'

DSNAME=PAYROll(OVERTIME),DISP=OlD,
UNIT=33S0,VOlUME=SER=LIB002

DSNAME=&&OBJECT,DISP=(OLD,DELETE)
DSNAME=&&OBJECT(A),DISP=(OLD,DElETE)
• INIT

OVERTIME
MODTHO(B)
HSKEEP
VACATION

The first load module is produced from the object module in the
data set defined on the SYSlIN DD statement. The main entry
point is INIT and the member name is OVERTIME.

The second load module is produced from the object module
specified by the INCLUDE statement. The main entry point is
HSKEEP and the member name is VACATION.

112 MVS/XA Linkage Editor and Loader User's Guide

(

DIAGNOSTIC OUTPUT

DIAGNOSTIC MESSAGES

If an INCLUDE statement specifies a member name that is
different from the member name on the DD statement, the member
specified on the DD statement must exist even though it is not
to be included.

Both load modules are placed in the library PAYROLL, defined on
the SYSLMOD statement.

The parameters on the EXEC card specify that a module map and a
control statement listing are produced for each load module.
The map and listing are discussed in detail in the next
section.

Diagnostic information is stored in the diagnostic output data
set, which must be defined by a DD statement with the name
SYSPRINT. This output is a collection of messages generated by
the linkage editor, as well as any optional output requested by
the programmer.

The linkage editor generates two types of messages I module
disposition messages and error/warning messages. Descriptions
of the error/warning messages will be found in System Messages.

Module Disposition Messages

Module disposition messages of several types are printed for
each load module produced. The first message indicates the
options and attributes specified for each module. Invalid
options or attributes are replaced by INVALID in the output.
Messages are also generated to inform the programmer that
incompatible attributes have been specified.

Disposition messages also describe the handling of the load
module. These messages are preceded by several asterisks, and
arel

• member name NOW ADDED TO DATE SET.

• member name NOW REPLACED IN DATA SET.

• member name DOES NOT EXIST BUT HAS BEEN ADDED TO THE DATA
SET.

The replacement function was specified, but the member did
not exist in the data set; the module is added to the data
set using the member name given.

• alias name IS AN ALIAS FOR THIS MEMBER.

• MODULE HAS BEEN MARKED NOT EXECUTABLE.

In addition, module disposition messages are used when the
reenterable (RENT), reusable (REUS), and/or refreshable (REFR)
linkage editor options have been specified for the module.
When one or more of these module attributes have been
indicated, a message informs the user what attribute(s) have
been assigned to the module. This message indicates whether
the load module has been marked reenterable or not reenterable,
reusable or not reusable, refreshable or not refreshable,
depending on the option or options used. (See "Reusability
Attributes" on page 39 and "Refreshable Attribute" on page 40
for more information on these options.)

Chapter 8. Interpreting linkage Editor Output 113

The ~essage consists of several asterisks and MODULE HAS BEEN
MARKED, followed by the attributeCs) assigned as a result of
the linkage editor options specified. The programmer, of
course, is responsible for verifying that the ~odule actually
is reenterable, reusable, and/or refreshable. The following
messages are examples of some possible combinations I

• MODULE HAS BEEN MARKED REFRESHABlE.

• MODULE HAS BEEN MARKED NOT REFRESHABlE.

• MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABlE.

• MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not
executable, only the MODULE HAS BEEN MARKED NOT EXECUTABLE
message appears; no attribute messages are generated.

Error/Warning Messages

Certain conditions that are present when a module is being
processed can cause an error or warning ~essage to be printed.
These messages contain a ~essage code and ~essage text. If an
error is encountered during processing, the ~essage code for
that error is printed with the applicable symbol or record in
error. After processing is completed, the diagnostic message
associated with that code is printed. The error warning
messages have the following formatl

IEWOmms message text

where.

IEWO indicates a linkage editor message

s

is the message number

is the severity code, and may be one of the following
valuesl

1

2

3

,.

Indicates a condition that may cause an
error during execution of the output
module. A module map or cross-reference
table is produced if specified by the
programmer. The output module is marked
executable.

Indicates an error that could make
execution of the output module impossible.
Processing continues. When possible, a
module map or a cross-reference table is
produced if specified by the programmer.
The output module is marked not executable,
unless the LET option is specified on the
EXEC statement.

Indicates an error that will make execution
of the output module impossible. Processing
continues. When possible, a module map or
a cross-reference table is produced if
specified by the programmer. The output
~odule is ~arked not executable.

Indicates an error condition fro~ which no
recovery is possible. Processing
terminates. The only output is diagnostic
messages.

Note: A special severity code of zero is generated for each
control statement printed as a result of the lIST option.
Severity zero does not indicate an error warning condition.

114 MVS/XA Linkage Editor and Loader User's Guide

The highest severity code encountered during processing is
multiplied by 4 to create a return code that is placed in
register 15 at the end of processing. This return code can be
tested to determine whether or not processing is to continue
(see "EXEC Statement--Return Code" on page 53).

message text contains combinations of the followings

• The message classification (either error or warning)

• Cause of error

• Identification of the symbol, segment number (when in
overlay), or input item to which the message applies

• Instructions to the programmer

• Action taken by the linkage editor

Optionally, error/warning messages can be sent to a separate
output data set, which is defined by specifying TERM in the
PARM field of the EXEC statement and including a SYSTERM DD
statement. This separate SYSTERM data set consists of only
numbered error/warning messages. It supplements the SYSPRINT
output data set, which can also include module disposition
messages and optional diagnostic output. When SYSTERM is used,
the numbered error/warning messages appear in both data sets.

System Messaaes contains a complete list of error/warning
messages.

Sample Diagnostic output

Figure 34 on page 116 shows the format of the diagnostic output
for the linkage editor. No optional output was requested other
than the list of control statements.

The letters indicate the disposition and error/warning messages
as foilowsl

A

B

c

D

Is a module disposition message that lists the
options and attributes specified. Additional
information is printed indicating the variable and
default options used.

Is a list of control statements used (IEWOOOO) and
the message codes (IEW0201 and IEW046l) for
error/warning conditions discovered during
processing. For error/warning message codes, the
symbol in error, if necessary, is also listed
(CCCCCCCC and BASEDUMP).

Is a module disposition message (~~~~) that indicates
that the output module (BBBBBBBB) has been added to
the output module data set.

Is the diagnostic message directory that contains the
text of the error codes listed in item B. .

Chapter 8. Interpreting Linkage Editor Output 115

A

B

c

D

Figure 34.

Module Map

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST
DEFAULT OPTIONS(S) USED - SIZE=(65536,61Q4)

IEWOOOO NAME BBBBBBBB
IEW0201
IEW0461 CCCCCCCC
IEW0461 BASECUMP

•••• BBBBBBBB NOW ADDED TO DATA SET
DIAGNOSTIC MESSAGE DIRECTORY

IEW0201 WARNING -OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLY OPTION
CANCELED.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS
SPECIFIED.

Diagnostic Messages Issued by the Linkage Editor

If the MAP option is specified on the EXEC statement, a module
map of the output load module is produced. The module map
shows all control sections in the output module and all entry
names in each control section. Named common areas are listed
as control sections.

For each control section, the module map indicates its origin
(relative to zero) and length in bytes (in hexadecimal
notation). For each entry name in each control section, the
module map indicates the location at which the name is defined.

(\.
\Io. •. ~ .. /

These locations are also relative to zero. / ~

If the module is not in an overlay structure, the control ,j
sections are arranged in ascending order according to their
or1g1ns. An entry name is listed with the control section in
which it is defined.

If the module is an overlay structure, the control sections are
arranged by segment. The segments are listed as they appear in
the overlay structure, top to bottom, left to right, and region
by region. Within each segment, the control sections and their
corresponding entry names are listed in ascending order
according to their assigned origins. The number of the segment
in which they appear is also listed.

116 MVS/XA Linkage Editor and Loadar User's Guide

(

CONTROL SECTION

NAME ORIGIN LENCTH

COBSUB 00 33A
$PRIVATE 340 EF

NAINHOD 4)0 166
ILBODSPO· 598 5E2
ILBOSTPO· B80 35

ENTRY ADDRESS 430
TOTAL LENGTH BB8

In any module map. the following are identified by a dollar
sign:

• Blank common area

• Private code (unnamed control section)

• For overlay programs. the segment table and each entry
table

When the load module processed by the linkage editor does not
have an origin of zero. the linkage editor generates a one-byte
private code (unnamed control section) as the first text
record. This private code is deleted in any subsequent
reprocessing of the load module by the linkage editor.

Each control section that is obtained from a call library
during automatic library call is identified by an asterisk
after the control section name.

At the end of the module map is the entry address. that is. the
relative address of the main entry point. The entry address is
followed by the total length of the module in bytes; in the
case of an overlay module. the length is that of the longest
path. Pseudoregisters. if used. also appear at the end of the
module map; the name. length. and displacement of each
pseudo register are given.

Figure 35 contains a module map with five control sections.
There are two named control sections (COBSUB snd MAINMOD). one
unnamed control section (designated by $PRIVATE), and two
control sections obtained from a call library (ILBODSPO and
ILBOSTPO). In addition, two entry names are defined: SUBI in
the unnamed control section and ILBOSTPI in control section
ILBOSTPO.

ENTRY

NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

SUB1 340

ILBOSTP1 B96

•••• GO OOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

Figure 35. Module Map

Crass-Reference Table

If the XREF option is specified on the EXEC statement, a
cross-reference table is produced. The cross-reference table
consists of a module map and a list of cross-references for
each control section. Each address constant that refers to a
symbol defined in another control section is listed with its
assigned location, the symbol referred to, and the name of the
control section in which the symbol is defined. When control
sections are compiled together, and simple address constants
are used to refer from one control section to another (instead
of using external symbols and entry names). the control section
name is listed as the symbol referred to.

Chapter 8. Interpreting Linkage Editor Output 117

._--_._-_. __ .. _ .. _

CONTROL SECTION

NAME

COBSUB
$PRIVATE

MAINMOD
ILBODSPO·
ILBOSTPO·

LOCATION

250
258
478

ORIGIN LENGTH

00 33A
340 EF

430 166
598 5E2
B80 35

REFERS TO SYMBOL

ILBOSTPO
ILBOSTP1
COBSUB

ENTRY ADDRESS 430
TOTAL LENGTH BB8

For overlay programs, this information is provided for each
segment; in addition, the number of the segment in which the
symbol is defined, is provided.

If a symbol is unresolved after processing by the linkage
editor. it is identified by $UNRESOLVED in the list. However.
if an unresolved symbol is marked by the never-call function
(as specified on a LIBRARY control statement). it is identified
by $NEVER-CALL. If an unresolved symbol is a weak external
reference. it is identified by $UNRESOLVEDCW).

Figure 36 contains a cross-reference table for the same program
whose module map is shown in Figure 35 on page 117. All the
information from the module map is present. plus a list of
cross-references for each control section.

CROSS-REFERENCE TABLE

ENTRY

NAME LOCATION

SUB1 340

I LBOSTP 1 696

NAME LOCATION NAME LOCAT I ON NAME LOCATION

IN CONTROL SECTION

ILBOSTPO
IL60STPO
COBSUB

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

254
450

ILBODSPO
SUB1

ILBODSPO

Figure 36. Cross-Reference Table

LOAD MODULE FORMAT

The format of a load module built by the linkage editor is
shown in Figure 37 on page 119.

In writing the output load module to the SYSLMOD data set, the
linkage editor does not use the track overflow feature. When
moving or copying load modules. the track overflow feature must
not be used on the target data set, as errors may occur in
fetching the load modules for execution.

118 MVS/XA Linkage Editor and Loader User's Guide

(

j
ITR_P2, if TEST option and SYM records present

lTTR-P2, if no TEST option

~
ITR-T3, ifOVLY option used

1 TT~-N/S I, if SCTR
,optIon

fR-T3, ;, '0 OVl Y opU ..

I SYM I I CESD I I (DR I CTL I 1 SEGTAD I I sen I ~ 1st TXT I ENTAD I (continued)

t Present if TEST tpresentroVLY tpresent ifSCTR
'option and SYM
records present

option and more
than 1 segment

option is used

I RLD I I CTL,RLD, • j; CTL, RLD, TXT, ENTAD

+ Carries EOS if
following ENT AB

II RLD JI

t Carries EOM
if this is RLD
for Last TXT

ITTR-N/S: TTR of the note list or scatter/translation table. Used for
modules in scatter load format or overlay structure only.

2TTR-P: ITR of the first block of the named member (load module).

3TTR-T: ITR of the first block of text.

Figure 37. Load Module Format

CTL 1 I TXT

t Carries EOM
if no RLDs
for Last TXT

+ Present if OVL Y option
used and more than I
segment

TTR-N/Sl, if OVLY option
and more than I segment

\
ITR 1

t Present if OVL Y option
and more than I segment

Chapter 8. Interpreting Linkage Editor Output 119

c

120 MVS/XA Linkage Editor and Loader User's Guide

----------~ ----------------------------

PART II. LOADER

! (

(

(~

Part II. Loader 121

CHAPTER I, OVERVIEW AND USES OF THE LOADER

The Loader is a processing program that combines basic editing
and loading functions of the linkage editor and program fetch
into one job step. Therefore, the lRAd function is equivalent
to the link-edit-go function. The loader can be used for
compile-load and load jobs.

The loader will load object modules produced by a language
processor and load modules produced by the linkage editor into
virtual storage for execution. Optionally, it will search a
call library (SYSLIB) or a resident link pack area, or both, to
resolve external references. The loader does not produce load
modules for program libraries.

The functional characteristics, compatibility and restrictions,
performance considerations, and storage considerations of the
loader are described in the following sections.

FUNCTIONAL CHABACTERISTICS

The loader is reenterable and, therefore, can reside in the
resident link pack area.

The loader combines the following basic functions of the
linkage editor and program fetcha

1. Resolution of external references between program modules.

2. Optional inclusion of modules from a call library (SYSLIB)
or from a link pack area, or from both (Figure 38 on
page 125 and Figure 39 on page 126). (Inclusion of modules
from a call library or the link pack area is performed, if .~

Addressing Made

requested, when external references remain unresolved after
processing the primary input to the loader. If both are
requested, the link pack area is searched first.)

3. Automatic deletion of duplicate copies of program modules
(Figure 40 on page 126). (The first copy is loaded and all
following requests use that COpy.)

4. Relocation of all address constants so that control may be
passed directly to the assigned entry point in virtual
storage.

S. The loader can load programs and relocate address constants
both above and below the 16-megabyte virtual storage line,
as specified by the residence mode for the loaded program.
The loader can also provide for entry into the loaded
program according to a specified addressing mode.

The addressing mode (AMODE) is the attribute of the entry point
into the loaded module that specifies the addressing mode that
will be in effect when the module is entered at that entry
point.

The valid addressing modes area

24 Indicating that 24-bit addressing will be in effect

31 Indicating that 3l-bit addressing will be in effect

ANY Indicating that either 24-bit or 3l-bit addressing
mey be in effect

122 MVS/XA Linkage Editor and Loader User's Guide

rf··\
~~/

(

Residence Mode

(

The loader determines the addressing mode for the entry point
as follows I

The default AMODE of 24 is assumed.

If the AMODE is specified in the ESD data for the entry
point, that specification replaces the default, AMODE.
(This AMODE value was specified by the user as an assembler
statement.) The loader assigns the AMODE value from the
control section or private code that contributes to the
loaded module, ignoring identically named control sections
end private code, which are replaced.

If AMODE is specified as a parameter in the PARM field of
the EXEC statement, that specification replaces the
previously determined AMODE.

The residence mode (RMODE) is the attribute of the loaded
module that specifies where in virtual storage the module is to
be loaded.

The valid residence modes arel

24 Indicating that the module must be loaded within
24-bit addressable virtual storage (below the
16-megabyte virtual storage line)

ANY Indicating that the module may be loaded anywhere in
virtual storage (either above or below the
16-megabyte virtual storage line)

The loader determines the residence mode for the loaded program
es followsr

The default RMODE of 24 is assumed.

If the RMODE is specified in the ESD data for the first
control section or private code which contributes to the
loaded module, that specification replaces the default
RMODE. (This RMODE value was specified by the user as an
assembler statement.)

If the RMODE is specified as a parameter in the PARM field
of the EXEC statement, that specification replaces the
previously determined RMODE.

If the ESD data for any subsequent control section or
private code which contributes to the loaded module
specifies an RMODE of 24, the RMODE for the entire module
is reset to 24. If loading begins above the 16-megabyte
virtual storage line on the basis of an early determination
of RMODE=ANY, and the RMODE is later reset to 24, an error
message is issued and loading is restarted below the
16-megabyte virtual storage line.

Chapter 9. Overview and Uses of the Loader 123

AMODI~RMODE Combinations

The loader validates the combination of the AMODE value and the ~\
RMODE value, as specified by the user in the PARM field of the ~-/J
EXEC statement, according to th. following table.

RMODE=24 RMODE=ANY

AMODE=24 valid invalid

AMODE=31 valid valid

AHODE=ANY valid invalid

If the AMODE/RMODE combination resulting from the PARM field of
the EXEC statement is invalid, en error message is issued and
the loader ignores the PARM field as the source of AMODE~RHODE
data.

Implied AHODE Dr RHODE

If only one value, either AMODE or RMODE, is specified in the
PARM field of the EXEC statement, the other value is implied
according to the following tablel

Value Specified Value Implied

AMODE=24 RMODE=24

AMODE=31 RMODE=24

AMODE=ANY RMODE=24

RMODE=24 see note

RMODE=ANY AMODE=31

NDte: If only an RMODE of 24 is specified, no overriding AMODE
value is assigned; instead, the AMODE value in the ESD data for
the entry point into the loaded module is used.

The diagnostics produced by the loader are similar to those of
the linkage editor.

124 MVS/XA Linkage Editor and Loader User's Guide

(

(~

A

B

C

SYSLIN /' /

Object or
Load Modules

/'
0
E

F

G
~

SYSLIB - called automatically when references
were unresolved at the end of input
from SYSLIN.

./

A

B

C

D

E

F

G

./

Virtual Storage

Figure 38. Loader Processing--SYSLIB Resolution

Chapter 9. Overview and Uses of the Loader 125

Object and/or

r-... Load Modules

A

B

C

SYSLIN •

~

........

Object or

r--....
Load Modules

D

E /'
/'

F /'
/'

H
.......

/'
/'

/'
/'

/'

/

SYSLIB - Called automatically when
references remain unresolved
at the end of input from
SYSLIN and after searching
the link pack area.

User's Region

~--------

A
B __

c)
H~

,~

-......
" "\

\
\
\

Link Pack Area J
--------- i4

D ... --_ /V/
_.//

E"--- ./"/
..... /

F4-- ./
./

G
.........

Virtual Storage

References made in B to
D, E, F, and G are
resolved to the link
pack area.

Modules in link pack
area must be
reenterable.

Figure 39. Loader Processing--Link Pack Area and SYSLIB Resolution

Object and/or
Load Modules

E " D/
A
B
C
D

SYSLIN

Figure 40.

--- ----- ------

Loader Processing--Automatic Editing

126 MVS/XA Linkage Editor and Loader User's Guide

-

Virtual Storage

The first copy is
loaded

c

COMPATIBILITY AND RESTRICTIONS

The loader accepts the same basic input as the linkage editor.

1. All object modules that can be processed by the linkage
editor can be input to the loader.

2. All load modules produced by the linkage editor can be
input to the loader (except load modules edited with the HE
option) .

The loader supports the following linkage editor optionsl MAP,
LET, NCAL, SIZE, and TERM. All other linkage editor options
and attributes are not supported, but, if used, they will not
be considered as errors. A message will be listed on SYSLOUT
indicating that they are not supported. The supported options
are specified in the PARM field of the EXEC statemant, or with
the LINK, ATTACH, LOAD, or XCTL macro instruction. In addition
to the supported linkage editor options. the loader provides
several other options. All loader options are described under
"EXEC Statement" on page 128.

The loader does not process linkage editor control statements
(for example, INCLUDE, NAME, OVERLAY, etc.). If they are used,
they will not be treated as errors, and a message will be
listed on SYSLOUT indicating that the control statements are
not supported.

The loader and the linkage editor are bound by the same input
conventions. (These conventions are discussed in Part 1 of
this publication.) In addition. the loader can accept load
modules in the SYSLIN data set and object modules from a data
area in virtual storage.

The loader does not use auxiliary storage space for work areas;
that is, there is no loader function corresponding to the
linkage editor's creation of intermediate work data sets or
output load modules.

Time Sharing Option (TSO)

When the loader is used under TSO. it is invoked by the loader
prompter, a program that acts as an interface between the user
and the operating system and the loader. Under TSO, execution
of the loader and definition of the data sets used by the
loader are described to the system through use of the LOADGO
command that causes the prompter to be executed. Operands of
the LOADGO command can also be used to specify the loader
options a job requires.

Complete procedures for using the LOADGO command to load and
execute an object module are given in TSO Command Languaae
Reference.

Processing Object Modules in Virtual storage

The loader can act as an interface with a compiler that has the
ability to construct a data area of one or more object modules
in virtual storage as an alternative to a data set on a
secondary storage volume (such as a tape or disk). The
compiler passes the loader a description of the internal data
area, which the loader then processes as primary input. This
internal data area replaces external SYSLIN data set input to
the loader.

Instead of placing text records for the object module in the
internal data area. the compiler can pass pointers to preloaded
text. The loader can then perform its relocation and linkage
functions on the preloaded text itself; text is not moved
during processing.

Chapter 9. Overview and Uses of the Loader 127

CHAPTER 10. PREpARING INPUT FOR THE LOADER

This chapter discusses how to prepare an input deck for the
loader and how to invoke the loader; it also describes the
output from the loader.

INPUT FOR THE LOADER

EXEC STATEMENT

PARM Field Format

The input deck for the loader must contain job control language
statements for the loader and, optionally, for the loaded
program (Figure 41).

I'l'name JOB parameters (optional)
I'l'name EXEC PGM=LOADER,

PARM=(parameters)
I'I'SYSLIN DD parameters
I'I'SYSLIB DD parameters (optional>
I'I'SYSlOUT DD parameters (optional)
I'I'SYSTERM DD parameters (optional>

1'1' (optional DD statements and data
1'1' required for loaded program)

Figure 41. Input Deck for the Loader--Basic Format

Only the EXEC statement and the SYSLIN DD statement are
required for a loader step. The JOB statement is required if
the loader is the first step in the job.

The EXEC statement is used to call the loader and to specify
options for the loader and the loaded program. The loader is
called by specifying PGM=HEWLDRGO or PGM=LOADER (see "Chapter
11. Invoking The Loadern on page 138).

Loader and loaded program options are specified in the PARM
field of the EXEC statement. The PARM field must have the
following format.

,PARM='(loaderoption(, •••)(l'programoption(, •••)))'

Note that the loaded program option(s), if any, must be
separated from the loader option(s) by a slash (1'). If there
are no loader options, the program option must begin with a
slash. The entire PARM field may be omitted if there are no
loader or loaded program options.

Parameters must be enclosed in single quotation marks when
special characters (I' and => are used.

128 MYSI'XA Linkage Editor and Loader User's Guide

(

-. ("."

LOADER OPTIONS

The loader options are outlined below. Fields that must be
supplied by the user are underlined; default options are
underlined in boldface type.

Parameter Options

PARM= AMODE=m2dAI AHODE=24
"-IJ.INOCALL
EP=
LETvn3fET
MAPItmtJA!
NAME=namAINAME=MMao
mlNOPRINT
flU NORES
RMODE=~IRMODE=24
SIZE=aiz§ SIZE=300K
TERMltlQIEBM

AMODE=mode: Specifying Address Made

CALLINOCALL:

Explanation: AMODE=m2dA is a loader option specifying the
addressing mode to be in effect when the loaded module is
entered. H2da can be specified as 24, 31, or ANY.

Abbreviations: None.

Default: The default addressing mode is 24.

Restrictions: The eddressing mode assigned in the PARM field
overrides the addressing mode found in the ESD data for the
control section or private code at which the entry point is
located.

If the AMODE parameter occurs more than once in the PARM field
of the EXEC statement, the last valid parameter is used.

Automatically Searching SYSLIB

Explanation: ~INOCALL are options specifying whether an
automatic search of the SYSlIB data set is made when the loader
is invoked.

CALL
Indicates that the SYSLIB data set will automatically be
searched when the loader is invoked.

NOCALL
Indicates that no automatic search of the SYSLIB data set
is to be made.

Abbreviations:

NOCALLINCAL

Default: The default is CALL.

Restrictions: If the SYSlIB DD statement is not included in
the input deck, the CAlllNOCAll option is ignored.

If the NOCALl option is specified, the NORES option is
automatically set.

Chapter 10. Preparing Input for the loader 129

EP=name: Specifying the program Entry Point

Explanation: EP=nama is a loader option that specifies the
external name to be assigned as the entry point of the loaded
program.

Abbreviations: None.

Default: None.

Restrictions: EP=nama must be specified if the entry point of
the loaded program is in an input load module.

For FORTRAN, ALGOL, and PL/I, these entry points must be named
MAIN, IHIFSAIN, and IHENTRY, respectively, unless changed by
compiler options.

LET I NOLET: Executing with Severity 2 Errors

Explanation: LETI~ are loader options specifying whether
the loader should try to execute the object program if a
severity 2 error condition is found. A severity 2 error
condition is one that could make execution of the loaded
program impossible.

LET

NOLET

Indicates that the loader will attempt to execute the
program even if a severity 2 error is found.

Indicates that the loader will not attempt to execute the
program if a severity 2 error is found.

Abbreviations: None.

Default: The default is NOLET.

MAP I NOHAP: Printing a Program Map

Explanation: MAPIHQMA! are loader options specifying whether
to produce a map of the loaded program that lists external
names and their absolute storage addresses on the SYSlOUT data
set. The module map is described in RChapter 12. Interpreting
Loader OutputR on page 143.

HAP
Indicates that a program map will be printed.

NOMAP
Indicates that a program map will not be printed.

Abbreviations: None.

Default: The default is NOMAP.

Restrictions: If the SYSLOUT DD statement is not used in the
input deck, the MAPINOMAP option is ignored.

NAME=name: Identifying the Loaded Program

Explanation: NAHE=nama is a loader option specifying the name
to be used to identify the loaded program to the systam.

Abbreviations: None.

Default: If this option is not used, the loaded program will
be named JOEGO.

130 MVS/XA Linkage Editor and Loader User's Guide

/'

(-

('

PRINT I NOPRINTI Printing Messages on SYSLOUT

Explanation: !BlUIINOPRINT are loader options specifying that
informational and diagnostic messages are to be produced on the
SYSlOUT data set.

PRINT
Indicates that messages are printed in SYSlOUT.

NOPRINT
Indicates that no messages are printed in SYSlOUT.

Abbreviations: None.

Default: The default is PRINT.

Restrictions: If NOPRINT is specified, the SYSlOUT data set is
not opened.

RES I NORES: Automatically Searching the Link Pack Area Queue

Explanation: BElINORES are loader options specifying whether
an automatic search of the link pack area queue is to be made
after processing the primary input (SYSLIN) and before
searching the SYSlIB data set.

RES

NORES

Indicates that an automatic search of the link pack area
queue is to be made.

Indicates that no automatic search of the link pack area
queue is to be made.

Abbreviations: None.

Default: The default is RES.

Restrictions: When the RES option is specified, the CAll
option is also automatically set.

RMODE=mode: Specifying Residence Mode

Explanation: RMODE=~ is a loader option specifying the
residence mode that applies to the loaded module. M2dA may be
specified as 24, 31, or ANY.

Abbreviations: None.

Default: The default residence mode is 24.

Restrictions: The residence mode assigned in the PARM field
overrides the residence mode assigned to the first control
section or private code.

If the RMODE parameter occurs more than once in the PARM field
of the EXEC statement, the last valid parameter is used.

SIZE=size: Specifying Virtual Storage

Explanation: SlZE=~ is a loader option specifying the
amount of dynamic virtual storage, in bytes, that can be used
by the loader. See nAppendix E. loader Return Codesn on
page 192 for more information on size.

Abbreviations: None.

Default: If this option is not specified, the size defaults to
300K bytes.

Chapter 10. Preparing Input for the loader 131

I.

TERHINOTERH: Sanding Hassages tOSYSTERM

Explanation: TERMINOTERH are loader options specifying whether C~
to send numbered diagnostic messages to the SYSTERM data set.',
Although TERMI HOTERM is intended to be used when operating '
under the Time Sharing Option nSO), the SYSTERM data set can
be used to replace or supplement the SYSLOUT data sat at any
time.

TERM
Indicates that numbered diagnostic messages are sent to
the SYSTERM data set.

NOTERM
Indicates that no messages are to be sent to SYSTERM.

Abbreviations: Hone.

Default: The default is HOTERM.

Restrictions: If the SYSTERM DD statement is not included in
the input deck, the TERM option is ignored.

EXEC STATEMENT EXAMPLE

DD STATEMENTS

The following are examples of the EXEC statement. In these
examples. X and Yare parameters required by the loaded
program.

//LOAD
//lOAD
//
//lOAD
//lOAD
//lOAD
//LOAD

//LOAD

//

EXEC
EXEC

EXEC
EXEC
EXEC
EXEC

EXEC

PGM=LOADER
PGM=HEWLDRGO,
PARM='MAP,EP=FIRST/X,Y'
PGM=lOADER.PARM='/X,Y'
PGM=lOADER,PARM=HOPRIHT
PGM=lOADER, PARM=(MAP. LET)
PGM=lOADER,
PARM='NAME=NEWPROG,TERM.HOPRIHT'
PGM=LOADER,
PARM='NAME=HEWMOD,EP=EHTRYZ,

AMODE=31,RMODE=AHY'

For further details in coding the EXEC statement, refer to tha
publication J&L.

The loader uses four DD statements, named SYSLIH, SYSLIB,
SYSlOUT, and SYSTERM. The SYSlIN DD statement must be usad in
every loader job. The others are optional.

The following considerations apply to the DCB parameter of
SYSlIN, SYSLIB, and SYSlOUT.

• For better performance, BLKSIZE and BUFHO can be specified.

• If BUFHO is omitted, BUFHO=2 is assumed.

• Any value given to BUFHO is assumed for HCP (number of
channel programs).

• If RECFM=U is specified, BUFNO=2 is assumed, and BLKSIZE
and lRECL are ignored.

• RECFM=V is not accepted.

• RECFM=FBSA is always assumed for SYSLOUT.

132 MVS/XA Linkage Editor and loader User's Guide

SVSLIN DD statement

• If RECFM is omitted, RECFM=F is assumed for SYSlIN and
SYSLIB.

• If BLKSIZE is omitted, the value given to LRECL is assumed.

• LRECL=12l is assumed for SYSlOUT unless the loader is
operating under the Time Sharing Option (TSO), when
lRECl=8l is assumed.

• If LRECL is omitted, LRECL=80 is assumed for SYSlIN and
SYSLIB.

• If OPTCD=C is used to specify chained scheduling. and if
the necessary data management routines are not resident. an
additional 2K bytes (2048 bytes) of virtual storage is
needed in the user's region.

Nate: The SYSTERM data set will always consist of unblocked
8l-character records with BUFNO=2 and RECFM=FSA. Because these
values are fixed, the DCB parameter need not be used.

In addition to the DD statements used by the loader, any DD
statements and data required by the loaded program must be
included in the input deck.

The SYSLIN DD statement defines the input data for the loader.
This input can be either object modules produced by a language
translator, or load modules produced by the linkage editor, or
both. The data sets defined by the SYSLIN DD statement can be
either sequential data sets or members of a partitioned data
set, or both. The DSNAME parameter for a partitioned data set
must indicate the member name, that is,

DSNAME=dsname(membername).

Concatenation can be used to include more than one module in
SYSLIN.

The following are examples of the SYSLIN DD statement. The
first example defines a member of a previously cataloged
partitioned data setr

//SYSLIN
//

DD DSNAME=OUTPUT.FORT(MODI2),
DISP=OLD,DCB=BLKSIZE=3200

The second example defines a sequential data set on magnetic
taper

//SYSLIN
//
//

DD DSNAME=PROG15,UNIT=3400-6,DISP=(OLD,
KEEP),VOLUME=(PRIVATE,RETAIN,
SER=MCSI67)

The third example defines a data set that was the output of a
previous step in the same jobl

//SYSLIN
//

DD DSNAME=*.COBOL.SYSLIN,DISP=(OLD,
DELETE)

The fourth example shows the concatenation of three data sets.
The first two data sets are members of different partitioned
data sets; the first is an object module, and the second is a
load module. The third data set is in the input stream
following a SYSLIN DD statement (see nloaded Program Datan on
page 135).

//SYSLIN
//
//
//
//

DD

DD

DD

DSNAME=PGMLIB.SETI(RFSl),DISP=OLD,
DCB=(BlKSIZE=3200,RECFM=FB)
DSNAME=PGMLIB.SET2(ABC5),DISP=OLD,
DCB=RECFM=U
DDNAME=SYSIN

Chapter 10. Preparing Input for the Loader 133

SYSLIB DD statement
The SYSlIB data set contains IBM-supplied Dr user-written f'~.
library routines to be included in the loaded program. The '-'07/
data set is searched when unresolved references remain after
processing SYSLIN and optionally searching the link pack area.

The SYSLIB data set is used to resolve an external reference
when the following conditions exist. the external reference
must be (1) a member name Dr an alias of a module in the data
set, and (2) defined as an external name in the external symbol
dictionary of the module with that name. If the unresolved
external reference is a member name Dr an alias in the library,
but is not an external name in that member, the member is
processed but the external reference remains unresolved unless
subsequently defined.

The data set defined by the SYSLIB DD statement must be a
partitioned data set that contains either object modules Dr
load modules, but not both. Concatenation may be used to
include more partitioned data sets in SYSLIB. All concatenated
data sets must contain the same type of modules (object or
load).

The following are examples of the SYSLIB DD statement. The
first example defines a cataloged partitioned data set that can
be shared by other steps.

.I.ISYSlIB DD DSNAME=SYSl.AlGLIB,DISP=SHR

The second example shows the concatenation of two data sets.

.I.ISYSLIB

.1.1
DD
DD

DSNAME=SYSl.PLILIB,DISP=SHR
DSNAME=LIBMOD.MATH,DISP~OlD

SYSLOUT DD statement
The SYSLOUT DD statement is used for error and warning messages
and for an optional map of external references (see "Chapter
12. Interpreting Loader Output" on page 143). The data set
defined by this DD statement must be a sequential data set.

SYSTERM DD statement

The DCB parameter can be used to specify the blocking factor
(BLKSIZE) of this data set. For better performance, the number
of buffers (BUFNO) to be allocated to SYSLOUT can also be
specified.

The following are examples of the SYSLOUT DD statement. The
first example specifies the system output unit.

.I.ISYSLOUT DD SYSOUT=A

The second example defines a sequential data set on a 3800
printer •

.I.ISYSLOUT

.1.1
DD UNIT=3800,DCB=(BLKSIZE=12l,

BUFNO=4)

The SYSTERM DD statement defines a data set that is used for
numbered diagnostic messages only. When the loader is being
used under the Time Sharing Option (TSO) of the operating
system, the SYSTERM DD statement defines the terminal output
data set. However, SYSTERM can also be used at any time to
replace or supplement the SYSLOUT data set. Because the
SYSTERM data set is not opened unless the loader must issue a
diagnostic message, using SYSTERM instead of SYSLOUT can reduce
loader processing time.

When the SYSTERM data set replaces the SYSLOUT data set, the
numbered messages in the SYSTERM data set are the only
diagnostic output; when SYSTERM supplements the SYSLOUT data

134 MVS.lXA Linkage Editor and loader User's Guide

LOADED PROGRAM DATA

set, the numbered messages appear in both data sets, and
optional diagnostic and informational output, such as a list of
options or a module map, can be obtained on SYSlOUT.

The DCB parameters for SYSTERM are fixed and need not be
specified. The SYSTERM data set always consists of unblocked
8l-character records with BUFNO=2 and RECFM=FSA.

The following example shows the SYSTERM DO statement when used
to specify the system output unit.

//SYSTERM DO SYSOUT=A

loaded program data and loader data can both be specified in
the input reader. loaded program data can be defined by a DD
statement following the loader data.

Figure 42 shows the loading of a previously compiled FORTRAN
problem program. The program to be loaded (loader data)
follows the SYSlIN DD statement. The loaded program data
follows the FT05FOOl DD statement.

//lOAD
//lDR
//SYSlIB
//SYSlOUT
//FT06FOOl
//SYSlIN

/)(

//FT05FOOl

/)(

JOB
EXEC
DD
DD
DD
DO

MSGlEVEl=l
PGM=lOADER,PARM=MAP
DSNAME=SYSI.FORTlIB,DISP=SHR
SYSOUT=A
SYSOUT=A
)(

(loader data)

DO

(loaded program data)

Figure 42. loader and loaded Program Data Input Stream

SAMPLE INPUT FOR THE LOADER

Figure 43 shows an input deck for a load job. A previously
assembled program, MASTER, is to be loaded. The SYSlOUT,
SYSlIB, and SYSTERM DD statements are not used.

//lOAD
//
//SYSLIN

JOB
EXEC
DO

MSGlEVEl=1
PGM=lOADER
DSNAME=MASTER,DISP=OlD

(DO statements and data required for execution of MASTER)

Figure 43. Input Deck for a load Job

Figure 44 on page 136 shows an input deck for a compile-load
job. The OS/VS COBOL (IKFCBlOO) compiler is used for the

Chapter 10. Preparing Input for the Loader 135

compile step. The loaded program requires the SYSOUT, TAXRATE,
and SYSIN DD statements.

.I.1JOB

.I.1COBOL

.I.1SYSPRINT

.I.1SYSPUNCH

.I.1SYSUTl

.I.1SYSUT2

.I.1SYSUT3

.I.1SYSUT4

.I.1SYSLIN

.1.1

.I.1SYSIN

JOB
EXEC
DD
DD
DD
DD
DD
DD
DD

DD

22,MCS,MSGLEVEL=1
PGM=IKFCBLOO,PARM=DMAP,REGION=2S6K,RD=R
SYSOUT=A
SYSOUT=B
UNIT=SYSDA,SPACE=(TRK,(lOO,lO»
UNIT=SYSDA,SPACE=(TRK,(lOO,lO»
UNIT=SYSDA,SPACE=(TRK,(lOO,10»
UNIT=SYSDA,SPACE=(TRK,(lOO,lO»
DSNAME=&&LOADSET,DISP=(MOD,PASS),
UNIT=SYSSQ,SPACE=(TRK,(30,lO»
)E

(source program)

.I.1LOAD

.1.1

.I.1SYSLIN

.1.1

.I.1SYSLOUT

.I.1SYSLIB

.I.1SYSOUT

.I.1TAXRATE

.I.1SYSIN

EXEC PGM=LOADER,PARM='MAP,LET',COND=(S,LT,
COBOL)

DD DSNAME=)E.COBOL.SYSLIN,DISP=(OLD,
DELETE)

DD SYSOUT=A
DD DSNAME=SYS1.COBLIB,DISP=SHR
DD SYSOUT=A
DD DSNAME=TAXRATE,DISP=OLD
DD)E

(Data for Loaded Program)

.I)E

Figure 44. Input Deck for a Compile-Load Job

Figure 45 on page 137 shows the compilation and loading of
three modules. In the first three steps, the OV.lVS FORTRAN
(FORTVS) compiler is used to compile a main program, MAIN, and
two subprograms, SUBI and SUB2. Each of the object modules is
placed in a sequential data set by the compiler and passed to
the loader job step. In addition to the FORTRAN library, a
private library, MYlIB, is used to resolve external references.
In the loader job step, MYlIB is concatenated with the SYSLIB
DD statement. SUBl and SUB2 are included in the program to be
loaded by concatenating them with the SYSLIN DD statement. The
SYSTERM statement is used to define the diagnostic output data
set. The loaded program requires the FT01FOOl and FT10FOOI DD
statements for execution, and it does not require data in the
input stream.

136 MVS.lXA Linkage Editor and Loader User's Guide

rf~~"\

~j

(

//JOBX
//STEPI

JOB
EXEC PGM=FORTVS,PARM='NAME=MAIN,lOAD'

//SYSLIN DD DSNAME=&&GOFIlE,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD *.

(Source module for MAIN)

EXEC PGM=FORTVS,PARM='NAME=SUBl,LOAD'

.
//SYSLIN DD DSNAME=&&SUBPROGI,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD K

(Source module for SUBI)

/*.
//STEP3 EXEC PGM=FORTVS,PARM='NAME=SUB2,lOAD'

.
//SYSLIN DD DSNAME=&&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD K

(Source module for SUB2)

/K
//STEP4
//SYSTERM
//SYSLIB
//
//SYSLIN
//
//
//FTOIFOOI
//FTlOFOOl
/K

EXEC PGM=LOADER
DD SYSOUT=A
DD DSNAME=SYS1.FORTlIB,DISP=OlD
DD DSNAME=MYlIB,DISP=OlD
DD DSNAME=K.STEPI.SYSLIN,DISP=OLD
DD DSNAME=K.STEP2.SYSLIN,DISP=OLD
DD DSNAME=K.STEP3.SYSlIN,DISP=OLD
DD DSNAME=PARAMS,DISP=OlD
DD SYSOUT=A

Figure 45. Input Deck for Compilation and Loading of the Three
Modules

Chapter 10. Preparing Input for the Loader 137

CHAPTER 11. INVOKING THE LOADER

The loader can be referred to by either its program name,
HEHLDRGO, or its alias, LOADER. The loader can be invoked
through the EXEC statement, as described in nInput for the
Loadern on page 128, or through one of the following macro
instructions.

Ea~mbglJ UNK EP=lgadername,
PARAM={gptignliatr,ddname UstJ),
VL=l

hi~mbglJ ATTACH EP=lgaderngme ,
PARAM=(gptignliatl,ddname liatH,
VL=l

LOAD EP=loaderngme

hi~mbglJ XCTL EP=lggderngme,
PARAM=(gptignliatE,ddngme listJ),
VL=l

EP=lgadername
specifies the symbolic name of the loader. The entry point
at which execution is to begin is determined by the control
program from the library directory entry.

PARAM=(optionlistE,ddname li§tJJ
specifies, as a sublist, address parameters to be passed to
the loader. The first fullword in the address parameter
list contains the address of the option list for the loader
and/or loaded program. The second fullword contains the
address of the ddname list. If standard ddnames are to be
used, ddname list may be omitted.

optionli§t
specifies the address of a variable-length list
containing the loader and loaded program options.
This address must be written even though no real list
is provided; for example, when the optionlist points
to a halfword of zero.

The option list must begin on a halfword boundary.
The two high-order bytes contain a count of the number
of bytes in the remainder of the list. If no options
are specified, the count must be zero.

The option list is free form, with the loader and
loaded program options separated by a slash (/), and
with each option separated by a comma. No blanks or
zeros should appear in the list.

ddngme list
specifies the address of a variable-length list
containing alternative ddnames for the data sets used
during loader processing. If the standard ddnames are
used, this operand may be omitted.

138 MVS/XA Linkage Editor and Loader User's Guide

------~----.--- ---- ---- -~------~---

(

--- ---- --- ---

Entry

1

2

3

4

5

6

7-11

12

VL=l

The format of the ddname list is identical to the
format of the ddname list for invoking the linkage
editor; the 8-byte entries in the list are as foilowsl

Alternate Name For:

SYSLIN

not applicable

not applicable

SYSLIB

not applicable

SYSLOUT

not applicable

SYSTERM

specifies that the sign bit is to be set to I in the last
fullword of the address parameter list.

Figure 46 shows an Assembler language program that uses the LINK
macro instruction to refer to the loader.

SAVE

· lA

· LINK

l
RETURN

· DS
PARM DC
OPTIONS DC
LENGTH EQU
SAVEAREA DS

END

(14,12)

13,SAVEAREA

Initialize save
registers and point
to new save area

EP=LOADER,PARAM=(PARM),Vl=l

13,4(13)
(14,12), T

OH
AL2CLENGTH)
C'NOPRINT,CAlL/X,Y,Z'
JE-OPTIONS
18F

length of options
loader and loaded
program options
Save area

Figure 46. Using the lINK Macro Instruction to Refer to the
Loader

If desired, the loader may be used to process a program but not
execute it. To invoke just the portion of the loader that
processes input data, specify either the name HEWlOAD or the
name HEWLOADR with a LOAD and CALL macro instruction.

HEWLOAD loads and identifies the program. HEWLOAD returns the
address of an 8-character name in register 1. This name can be

Chapter 11. Invoking The Loader 139

used with an ATTACH, LINK, LOAD, or XCTLmacro instruction to
invoke the loaded program. A user program that is going to (~
atTtaAch a loaded program should avoid specifyinghSZERO=NO in its .~j.

AT CH macro. If SZERO=NO must be specified, t e user program _/
should issue a LOAD for the loaded program before performing the
ATTACH and a DELETE for the loaded program after the ATTACH.

HEWLOADR loads the program but will not identify it. HEWLOADR
returns the entry point of the loaded program in register O.
Register 1 points to two fullwordsI the first points to the
begining of storage occupied by the loaded program; the second
contains the size of the loaded program. This location and size
can then be used in a FREEMAIN macro instruction to free the
storage occupied by the loaded program when it is no longer
needed.

Figure 47 on page 141 shows an Assembler language program that
uses the LOAD and CALL macro instructions to refer to HEWLOADR.
Figure 48 on page 142 shows an Assembler language program that
uses the LOAD and CALL macro instructions to refer to HEWLOAD.

140 MVSI'XA UnkageEditor and Loader User's Guide

(

(

SAVE (14,12), T Initialize save ~egisters
and point to new save area

ST 13,SAVEAREA+4
lA 13,SAVEAREA

lOAD EP=HEWlOADR load the loader
lR 15,0 Get its entry point address
CALL (15),(PARMl),Vl=1 Invoke the loader

lR 7,lS Save return code
lR S,O Save entry to loaded program
lR 6,1 Save pointer to list containing

Start address and length
DELETE EP=HEWlOADR Delete loader
CH 7,=H'4' Verify successful loading
BH FREE Negative branch
lR 15,5 loading successful--get entry

point address for CAll
CALL (lS),(PARM2),Vl=1 Invoke program

FREE l 0,4(6) Get length into register 0
l 1,0(6) Get start address
FREEMAIN R,lV=(O),A=(l) Delete loaded program

l 13,4(13)
RETURN (14,12),T
DS OH

PARMI DC Al2(lENGTHl> length of loader options
OPTIONSI DC C'NOPRINT,CALL' loader options
lENGTHl EQU JE-OPTIONSI

DS OH
PARM2 DC AlZCLENGTHZ) length of loaded program options
OPTIONS2 DC C'X,Y,Z' loaded program options
lENGTH2 EQU JE-OPTIONSZ
SAVEAREA DS 18F Save area

END

Figure 47. Using the lOAD and CALL Macro Instructions to Refer to HEHLOADR (Loading
Without Identification)

Chapter 11. Invoking The loadar 141

ERROR

PARMI
OPTIONSI
LENGTHI

PARM2
OPTIONS2
LENGTH2
SAVEAREA
PGMNAM

Figure 48.

SAVE

ST
LA

.
LOAD
LR
CALL
LR
MVC
DELETE
CH
BH
LINK

L
RETURN
DS
DC
DC
EQU
DS
DC
DC
EQU
DS
DS

.
END

(14,12),1

13,SAVEAREA+4
13,SAVEAREA

Initialize save registers and
point to new save area

EP=HEWlOAD Load the loader
15,0 Get its entry point address
(lS),(PARMl),Vl=l Invoke the loader
7,15 Save the return code
PGMNAM(8),0 (1) Save program name
EP=HEWLOAD Delete the loader
7,=H'4' Verify successful loading
ERROR Negative branch
EPLOC=PGMNAM,PARM=(PARM2),VL=1

13,4(13)
(14,12), T
OH
Al2CLENGTHl)
C'MAP'
JE-OPTIONSI
OH
Al2CLENGTH2)
C'X,Y,Z'
JE-OPTIONS2
18F
2F

Loading successful,
invoke program

Length of loader options
Loader options

length of loaded program options
Loaded program options

Save area
Program name

Using the LOAD and CALL Macro Instructions to Refer to HEWLOAD (Loading
With Identification)

For further information on the use of these macro instructions,
see Supervisor Services and Macro InstructIons.

142 MVS/XA Linkage Editor and Loader User's Guide

CHAPTER 12. INTERpRETING LOADER OUTPUT

Loader output consists of a collection of diagnostics and error
messages, and of an optional storage map of the loaded program.
This output is produced in the data set defined by the SYSLOUT
DD and SYSTERM DD statements. If these are omitted, no loader
output is produced.

SYSLOUT output includes a loader heading, and the list of
options and defaults requested through the PARM field of the
EXEC statement. The SIZE stated is the size obtained, and not
necessarily the size requested in the PARM field. Error
messages are written when the errors are detected. After
processing is complete, an explanation of the error is written.
Loader error messages are similar to those of the linkage editor
and are listed in System Messages.

SYSTERM output includes only numbered warning and error
messages. These messages are written when the errors are
detected. After processing is complete, an explanation of each
error is written.

The storage map includes the name and absolute address of each
control section and entry point defined in the loaded program.
Each map entry marked with an asterisk (K) comes from the data
set specified on the SYSLIB DD statement. Two asterisks (KK)
indicate the entry was found in the link pack area; three
asterisks (***) indicate the entry comes from text that was
preloaded by a compiler. The TYPE column indicates what each
entry on the map is used for: SD=control section, lR=label
reference, and PR=pseudoregister.

The map is written as the input to the loader is processed, so
all map entries appear in the same sequence in which the input
ESD items are defined. The total size and storage extent of the
loaded program are also included. For Pl/I programs, a list is
written showing pseudo registers with their addresses assigned
relative to zero. Figure 49 on page 144 shows an example of a
module map. The loader issues an informational message when the
loaded program terminates abnormally.

Chapter 12. Interpreting loader Output 143

OPTIONS USEO- PRINT. MAP. NOLET. CALL. NORES. SIZE=424176

NAME _ TYPE ADOR NAME TYPE AODR NAME TYPE AOOR NAME TYPE AOOR NAME TYPE ADOR

SAMPL2B SO
SYSIN SO
IHEOIA SO
IHEVPA SO
IHEVPCA. LR
IHEONC SO
IHEDMA SO
IHEVFAA. LR
IHEIOB SO
IHESARC. LR
IHEBEGA. LR
IHEERRA. LR
IHEITAZ. LR
IHEDCNB. LR
IHEVTB

IHEQINV
SYSIN
IHEQLW3
IHEQFVO
IHEQEVT
IHEQSFC

SO

PR
PR
PR
PR
PR
PR

IEW100l IHEUPBA
IEW100l IHEUPAA
IEW100l IHETERA
IEW100l IHEM91C
IEW100l IHEM91B
IEW100l IHEM91A
IEW100l-- IHEODOO
IEW100l IHEVPFA
IEW100l IHEVPOA
IEW100l IHEOBNA
IEW100l IHEVSFA
IEWl 00 1 IHEVSBA
IEW100l IHEVCAA
IEWl 00 1 IHEVSAA
IEWl 00 1 IHEONBA
IEW100l IHEUPBB
IEW1001 IHEUPAB
IEW1001 IHEVSEB

TOTAL LENGTH
ENTRY ADDRESS

161 EO SAMPL2BA SO
17048 IHEVQC SO
183CO IHEOlAA. LR
18870 IHEVPAA. LR
189F8 IHEVFE SO
18CB8 IHEONCA. LR
19010 IHEDMAA LR
19160 IHEVPB SO
19488 IHEIOBA. LR
1 A9CB IHESADO. LR
lAE28 IHE~R SO
lAE86 IHEERRE. LR
lB81E IHEITAX. LR
lB862 IHEIOO SO
lBCFO IHEVTBA. LR

00 IHEGERR
14 IHEQLSA
28 IHEQLW4
3C IHEQCFL
58 IHEQSLA
70

5068
17000

PR
PR
PR
PR
PR

16EC8 IHEMAIN SO
17080 IHEVQCA. LR
183CO IHEOIAB. LR
18870 IHEVFC SO
18BE8 IHEVFEA. LR
18CB8 IHEDOA SO
19010 IHEVFO SO
19248 IHEVPBA. LR
19488 IHEIOBB. LR
lA90E IHESAFF. LR
lAE68 IHEERRO. LR
lB4E2 IHEIOF SO
lB82A IHEITAA. LR
lBA50 IHEIOIlG. LR
1 BCFO I HEVQA SO

4 SAMPL2BB .PR
18 I HEQLWO PR
2C IHEQLWE PR
40 IHEQFOP PR
60 I HEQSAR PR

17CF8 IHENTRY SO
17080 IHEVQB SO
183C2 IHEVPE SO
18900 I HEVFCA. LR
188E8 IHEVSC SO
18F30 IHEDOAA. LR
19108 IHEVFOA. LR
19248 IHEXIS SO
19490 IHEIOBC. LR
lAA18 IHEPRT •. SO
1 AE68 I HEERRC. LR
lB580 IHEIOFB. LR
lB83E IHEDCN SO
1 BA50 ·IHEIOOp. LR
1 B078 IHEVQAA. LR

8 SAMPL2BC PR
lC IHEQLWl PR
30 IHEQLCA PR
48 I HEQADC PR
64 IHEQLWF PR

IEW100l WARNING - UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)

Figure 49. Module Map Format Example

144 MVS/XA Linkage Editor and Loader User's Guide

17000
17F08
18608
18900
18C08
18F30
19108
193FO
19498
lAB70
lAE72
lB580
lB860
lBA52
lB078

IHESPRT SO
IHEVQBA* LT
IHEVPEA. LR
IHEVPC • SO
IHEVSCA. LR
IHEOOAB. LR
IHEVFA * SO
IHEXISO. LR
IHEIOBO. LR
IHEPRTA. LR
IHEERRB. LR
IHEIOFA. LR
IHEDCNA. LR
IHEIODT. LR

C IHEQSPR PH
20 IHEQLW2 PR
34 IHEQVOA PR
4C IHEQXLV PR
68 IHEQRTC PR

17010
17F08
18608
1&9F8
18C08
18F32
19160
193FO
194AO
lAB70
lAE7C
lB582
18860
18B4A

10
24
38
50
6C

(

('

APPENDIX A. SAMPLE LINKAGE EDITOR PROGRAMS

This appendix contains sample linkage editor programs. The
material presented for each program includes a description of
the program, the job control language necessary for the linkage
editor job step, linkage editor control statements (if any), and
the linkage editor output. The sample programs arel

• Link-editing a COBOL and a FORTRAN object module (COBFORT)

• Replacing one control section with another by using the
REPLACE statement (RPLACJOB)

• Creating a multiple-region overlay program (REGNOVLY)

• Placing the control statements for the multiple region
overlay program in a partitioned data set, and using them
(PARTDS)

The output for each program includes a cross-reference table, a
module map, a control statement listing, and diagnostic
messages, if any.

SAMPLE pROGRAM COIEORJ

Job Control Language

Sample program COBFORT link-edits a COBOL object module and a
FORTRAN object module to form one load module. The source
programs were compiled in two steps previous to the linkage
editor job step, and the output from each compilation was placed
in data set &&OBJMOD.

The job control language for the linkage editor job step of this
sample program iSI

.I.1lKED

.I.1SYSUTl

.1.1

.I.1SYSlIB

.1.1

.I.1SYSLMOD

.1.1

.1.1

.I.ISYSPRINT

.I.1SYSLIN

.1:1(

statement

EXEC

SVSUTI

EXEC
DD

DD
DD
DD

DD
DD

PGM=HEHL,PARM='XREF'
DSNAME=&&UTl,UNIT=SYSDA,SPACE=(TRK,
(l00,10»
DSNAME=SYSI.COBLIB,DISP=SHR
DSNAME=SYSl.FORTlIB,DISP=SHR
DSNAME=&&lOADMD(GO),UNIT=SYSDA,
DISP=(NEH,PASS),SPACE=(TRK,
(l00,10,1»
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

Explanation

Causes the execution of the linkage editor. The
PARM field option requests a cross-reference table
and a module map to be produced on the diagnostic
output data set.

Defines a temporary direct access data set to be
used as the intermediate data set.

Appendix A. Sample Linkage Editor Programs 145

SVSLlB

SVSLMOD

SVSPRINT

SVSLlN

Linkage Editor output

Defines the automatic call librarYJ the call
libraries for COBOL and FORTRAN are concatenated;
both are used to resolva external references.

Defines a temporary data set to be used as the
output module library; the load module is assigned a
member name of GO, and is passed to a subsequent
step for execution.

Defines the diagnostic output data set, which is
assigned to output class A.

Defines the primary input data set, aaOBJMOD, which
contains both input object modules; this data set
was passed from a previous job step and is to be
deleted at the end of this job step.

Figure 50 on page 147 shows the linkage editor output for
COBFORT. The listing header indicates the options specified
(XREF), and the SIZE option values in decimal (196608 for yaluel
and 65536 for yalye2). Because XREF is specified, the heading
CROSS REFERENCE TABLE precedes the rest of the output.

Figure 50 also shows the modyle map for COBFORT. IPCT30 and
TX652F are the names of the input control sections. The rest of
the control sections are either from the COBOL automatic call
library or from the FORTRAN automatic call library. (They can
be distinguished by the initial three letters; ILB indicates a
COBOL control section, IHC a FORTRAN control section.) The
origin and length (in hexadecimal) of each control section
follow the name.

To the right of each control section is a list of the entry
names defined in each control section. The location (in
hexadecimal) of each entry name is also given. For example, in
control section IHCCOMH2 (the asterisk is not a part of the
name; it indicates that the control section is from the
automatic call library), entry name SEQDASD is defined at
location 154A.

Figure SO shows the cross-reference table for COBFORT. The
table contains the location of any address constant that refers
to a symbol defined in another control section. The symbol the
address constant refers to is also listed, along with the
control section in which the symbol is defined. For example, at
location IFO in control section IPCT30 (determined by using the
module map; IFO falls between origin 00 and origin 360), an
address constant refers to symbol IHDFDISP, defined in control
section IHDFDISP.

The entry address is 00 and the total length of the load module
is 4AE8. Note that the length of the module is rounded up to a
doubleword boundary.

The disposition message at the end of the output in Figure 50
indicates that the load module GO has been added to the output
module library. The library did not contain any other module
with that name. The four asterisks identify the message.

SAMPLE pROGHAM RPLACJOB

Sample program RPLACJOB shows the use of the REPLACE statement
to replace one control section with another. The source program
for the new control section (NEHMOD) is processed in a previous
job step and passed to the linkage editor job step. The control
section (SUBONE) to be replaced is in an existing load module. r',
Figure 51 on page 148 shows the linkage editor output for the if·
job step that created this load module. Note that the entry \.(.j
address is FO, which is the location of the entry point MAINMOD
(specified on the ENTRY control statement). .

146 MVS/XA Linkage Editor and loader User's Guide

(Module Map

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF
DEFAULT OPTIONS (S) USED - SIZE=(196608,65536)

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
lPCT30 00 360
TX652F 360 lEO
IHCFCOMH* 540 CD9

IBCOM. 540 FDlOCS. 5FC INTSWTCH 11 FE
IHCCOMH2* 1220 434

SEQDASD 154A
IHDFDISP* 1658 626
I HCFCVTH* lC80 1190

ADCON' lC80 FCVAOUTP lD2A FCVLOUTP 1 DBA FCVZOUTP lFOA
FCVlOUTP 22B8 FCVEOUTP 27BA FCVCOUTP 2904 lNT6SWCH 2CBB

IHCFlNTH* 2E20 39E
MITH. 2E20 l\DJSWTCH 3008

IHCFIOSH* 31CO lODE
FlOCS. 31CO

IHCUOPT * 4100 8
lHCTRCH * 4108 204

IHCERRM 4108
IHCUATBL* 44BO 638

Cross-Reference Table

LOCATION REFERS TO SYMBOL IN CONTROL SECT ION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
lFO IHDFDISP IHDFDISP lF4 TX652F TX652F
410 rSCOM# I HCFCOMH 5FC SEQOASO I HCCOMH2

1108 ADCON# I HCFCVTH 1100 FlOCS# IHCFIOSH
110C MITH# IHCFINTH 112C AllJSWTCH IHCFINTH
1128 I HCUOPT I HctJOPT I I 10 FCVEOUTP IHCFCVTH
1 I 14 FCVLOUTP I HCFCVTH 1118 FCVIOUTP IHCFCVTH
I I lC FCVCOUTP I HCFCVTH 1120 FCVAOUTP IHCFCVTH
1124 FCVZOUTP I HCFCVTH lOEO I HCCOMH2 I HCCOMH 2

(lOE4 IHCERRM IHCTRCH '4A9 I HCFCOMH IHCFCOMH
14AC I HCFCOMH I HCFCOMH 1268 I HCERRM I HCTRCH
1264 I BCOM. IHCFCOMH 2C7C I BCOM# I HCFCOMH
2C78 I HCERRM I HCTRCH 311C IBCOM# I HCFCOMH
3120 INTSWTCH I HCFCOMH 3004 INT6SWCH IHCFCVTH
3000 IHCUOPT IHCUOPT 3128 ADCON# IHCFCVTH
3124 FIOCS# IHCFIOSH 32F8 I HCERRM IHCTRCH
3FF8 IHCUATBL IHCUATBL 4004 I BCOM# IHCFCOMH
4300 I BCOM# I HCFCOMH 4304 ADCON# IHCFCVTH
4308 FlOCS# IHCFIOSH

ENTR Y ADDRESS 00

TOTAL LENGTH 4AE8

····GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

AUTHORIZATION CODE IS O.

Figure SO. Linkage Editor Output for Sample Program COBFORT

Appendix A. Sample linkage Editor Programs 147

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF, LIST
DEFAULT OPTION(S) USED - SIZE-C196608,65536)

I EWOOOO ENTRY MAINMOD

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
SUBONE 00 EF

SU81 00
MAINMOD FO 146

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
llC

ENTRY ADDRESS
SUBONE
FO

TOTAL LENGTH 238

SUBONE

•••• GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
AUTHORIZATION CODE IS 0

Figure 51. Linkage Editor Output for Job step that Created SUBONE

Job Control Language

The job control language for the replacement job step of this
sample program is shown below.

//LKED
//SYSUTl
//lNPUTX
//
//SYSLMOD
//
//SYSPRINT
//SYSLIN
//
//

EXEC
DO
DD

DD

DD
DO

DD

PGM=HEWL,PARM='XREF,LIST'
UNIT=SYSDA,SPACE=CTRK,CIOO,10»
DSNAME=LOADLIB,DISP=OLD,UNIT=SYSDA,
VOL=SER=SCRTCH
DSNAME=LOADLIBCGO),DISP=OLD,UNIT=SYSDA,
VOL=SER=SCRTCH
SYSOUT=A
OSNAME=&&OBJMOD,OISP=COLD,DELETE),
UNIT=SYSDA
3(

Linkage Editor Control Statements

/3(

148 MVS/XA Linkage Editor and Loader User's Guide

(f'"
\~-j

(

statement

EXEC

SYSUTl

INPUTX

SYSLMOD

SYSPRINT

SYSLIN

Explanat:l.on

Causes the execution of the linkage editor. The PARM
field options request a cross-reference table and a
module map CXREF), and a control statement listing
CLIST) to be produced on the diagnostic output data
set.

Defines a temporary direct access data set to be
used as the intermediate data set.

Defines a permanent data set, used later as
additional linkage editor input.

Defines a permanent data set to be used as the
output module library. Note that it is the same data
set that was described on the INPUTX DD statement.
The output load module is added to the data set,
under the member name GO.

Defines the diagnostic output data set, which is
assigned to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object module for the replacement
control section. This data set is temporary and was
passed from a previous job step; it is to be deleted
at the end of this job. This statement also
concatenates the input stream to the primary input
data set. The input stream contains linkage editor
control statements that must be followed by a /.
statement.

Figure 52. Job Control Statements for RPLACJOB

LINKAGE EDITOR CONTROL STATEMENTS

The input stream contains the linkage editor control statements
that are necessary for the replacement of SUBONE with NEWMOD.
The control statements are shown beiowl

ENTRY
REPLACE
INCLUDE

Statement

ENTRY

REPLACE

INCLUDE

MAINMOD
SUBONECNEWMOD)
INPUTXCGO)

Explanat:l.on

Specifies that the entry point is to be MAINMOD.

Specifies that control section SUBONE in the module
that follows the REPLACE statement is to be replaced
by control section NEHMOD.

Specifies additional inputr member GO of the data
set described on the INPUTX DD statement. This
library member contains the control section to be
replaced. Because this member name is identical to
that specified on the SYSLMOD DD statement, the
output load module replaces the existing library
member.

Figure 53. linkage Editor Control Statements for RPlACJOB

Appendix A. Sample linkage Editor Programs 149

Linkage Editor output

Figure 54 shows the linkage editor output for sample program
RPLACJOB. The listing header indicates the options specified
(XREF and LIST), and the SIZE option values used (196608 for
yaluel and 65536 for yalye2).

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF.LIST
DEFAULT OPTIONCS! USED - SIZEa'19~608.6~5)6)

IEWOOOO
IEWOOOO
IEWOOOO

ENTRY MAINMOD
REPLACE SUBONEfNEWMOD!
INCLUDE I NPUTX COO)

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME QPI~IN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
NENMOD 00 Fl
MAINMOD FIJ 146

LOCATION REFERS TO SYMBOL IN CONTROL SECTlfJN LOCATION REFERS TO SYMBOL IN CONTROL SECTION
124 NEWMOD NEWMOD

ENTRY ADDRESS F8

TfJTAL LENGTH 240
.··.00 HQW REPLACED IN DATA SET
AUTWJIIIZATION CODE IS '"

Figure 54. Linkage Editor Output for Sample Program RPLACJOB

Because the LIST option is specified, a control statement
listing is produced. Each control statement is preceded by a
special message number, IEWOOOO. Because XREF is specified, the
heading CROSS REFERENCE TABLE precedes the rest of the output.

The modyle map shows that control section NEWMOD is now part of
the load module, and that control section SUB ONE has been
deleted. The new entry address is F8, because NEWMOD is longer
than SUBONE. The total length of the load module is 240 bytes.

The cross-reference table indicates that at location 124 in
MAINMOD, an address constant refers to symbol NEWMOD, defined in
control section NEWMOD. Note that before the replacement
occurred, the address constant in MAINMOD referred to SUBONE,
defined in control section SUBONE (Figure 51 on page 148). When
the REPLACE statement is used to replace a control section,
references to the old control section from within the same input
module are also changed.

The dispositign message indicates that the output load module
(GO) has been added to the output module library.

SAMPLE pROGRAM REGNOYLY

Sample program REGNOVLY creates a multiple-region overlay
structure. The structure produced is shown in Figure 55 on
page 151. In this program, some of the references between
control sections are:

CSA to CSE

CSB to CSE

CSB to CSD

CSD to CSC.

The reference from CSB to CSE is a valid exclusive call, because
there is a reference to CSE in the segment common to both CSB
and CSE; the reference from CSD to esc is invalid, because there
is no reference to esc in the common segment.

150 MVS/XA Linkage Editor and Loader User's Guide

(

(

REGION 1 1
eSA Root Segment 1

Alpha

eSB Segment 2 eSE Segment 5

1
Beta

Segment 3 eSD Segment 4

~---
REGION 2

L l-------Gamma

Segment 6 Segment 7

1

Figure 55. Overlay Tree for Multiple-Region Sample Program REGNOVLY

Job Control Language

The source programs for all the control sections were compiled
in previous job steps. All the object modules were placed in
the same data set, which was passed to the linkage editor job
step.

The job control language for the linkage editor job step of this
sample program is shown below.

Appendix A. Sample Linkage Editor Programs 151

--------~-~~~ ... ~.~~--.---- .~ .. ~--=-"=.".~-~-•. -.-

I'I'LKED EXEC PGM=HEWL, PARM='XREF, LIST ,OVL Y, LET' (' ~
I'I'SYSUTI DD DSNAME=&&UTI,UNIT=SYSDA,SPACE=(TRK,/
1'1' (100,10»
I'I'SYSLIB DD DSNAME=SYSI.COBLIB,DISP=SHR
I'I'SYSLMOD DD DSNAME=&&OVLYJB(GO),UNIT=SYSDA,
1'1' DISP=(NEW,PASS),SPACE=(TRK,(IOO,IO,I»
I'I'SYSPRINT DD SYSOUT=A
I'I'SYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DElETE)
1'1' DD.
Linkage Editor Control statements
1'.

statement

EXEC

SVSUTI

SYSLlB

Explanation

Causes the execution of the linkage editor. The
PARM field options request a cross-reference table
and a module map (XREF), and a control statement
listing (LIST) to be produced on the diagnostic
output data set. The module is to be assigned the
overlay attribute (OVLY), and marked executable in
spite of severity 2 errors (LET). The LET option is
specified to permit testing of the output module,
even though an invalid exclusive call is present.
The XCAL option allows only valid exclusive calls.

Defines a temporary direct access data set to be
used as the intermediate data set.

Defines the automatic call library (SYS1.COBLIB) to
be used to resolve external references. All control
sections from this library are placed in the root
segment; they remain there unless they are
repositioned. .

SYSLMOD Defines a temporary data set to be used as the
output module library; the load module is assigned
the member name GO and is passed to a subsequent
step for execution.

SVSPRINT Defines the diagnostic output data set, which is
assigned to output class A.

SYSLIN Defines the primary input data set, &&OBJMOD, which
contains the object modules for the overlay
structure. This data set is temporary and was
passed from a previous job step; it is to be daleted
at the end of this jo.b. This statemant also
concatenates the input stream to the primary input
data set. The input stream contains linkage editor
control stataments, which must ba delimited by a 1'.
statement.

Figura 56. Job Control statements for REGNOVLY

152 MVSI'XA Linkage Editor and Loader User's Guida

\"., ~~/

i'·\
'~j

(-

(

Linkage Editor Control statements

The input stream contains the linkage editor control statements
that structure the overlay program. The control statements arel

Linkage Editor output

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT esc
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMACREGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG

Figure 57 on page 154 shows the linkage editor output for sample
program REGNOVlY. The list header indicates the options
specified and the SIZE option values used.

Appendix A. Sample linkage Editor Progra.. 153

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF ,LIST ,OVLY ,LET
DEFAULT OPTION(S) USED - SIZE=(196608,65536)

IEWOOOO INSERT CSA
IEWOOOO ENTRY CSA
IEWOOOO OVERLAY ALPHA
IEWOOOO INSERT CSB
IEWOOOO OVERLAY BETA
IEWOOOO INSERT CSC
IEWOOOO OVERLAY BETA
IEWOOOO INSERT CSD
IEWOOOO OVERLAY ALPHA
I EWOOOO INSERT CSE
I EWOOOO OVERLAY GAMMA(REGION)
IEWOOOO INSERT CSF
IEWOOOO OVERLAY GAMMA
IEWOOOO INSERT CSG
IEWOl72 2 CSE
IEW0182 4 CSC

Root Segment 1:
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME
$SEGTAB 00 34 1

CSA 38 366
ILBODSPO* 3AO 6F8
ILBOSTPO* A98 35

I LBOSTP 1

$ENTAB ADO 30

LOCATION REFERS TO SYMBOL IN CONTROL SECTION
2CO ILBODSPO ILBODSPO

2C8 CSG CSG

2DO CSB CSB

Segment 2:
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME

CSB BOO 360 2
$ENTAB E60 18

LOCATION REFERS TO SYMBOL IN CONTROL SECTION
D54 ILBODSPO ILBODSPO

D58 CSE CSE
D5C CSD CSD

Segment 3:
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME

CSC E78 336 3

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

10CC ILBODSPO ILBODSPO

10DO ILBOSTPl ILBOSTPO

Segment 4:
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME

CSD E78 362 4

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

10CC ILBODSPO ILBODSPO
10D4 ILBOSTPl ILBOSTPO

CROSS REFERENCE TABLE

LOCATION

ME

SEG. NO.
1
7
2

LOCATION

SEG. NO.
1
5
4

LOCATION

SEG. NO.

LOCATION

SEG. NO.

NAME LOCATION NAME LOCATION NAME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
2C4 ILBOSTPO ILBOSTPO 1

2CC CSE CSE 5
2D4 ILBOSTPl ILBOSTPO

NAME LOCATION NAME LOCATION NAME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
D50 ILBOSTPO ILBOSTPO 1

D60 I LBOSTP 1 ILBOSTPO

NAME LOCATION NAME LOCATION NAME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
1 10C8 ILBOSTPO ILBOSTPO

NAME LOCATION NAME LOCATION NAME LOCATION

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
10C8 ILBOSTPO ILBOSTPO 1
10DO CSC CSC 3

Figure 57 (Part 1 of 2). Linkage Editor Output for Sample Program REGNOVLY

154 MVS/XA Linkage Editor and Loader User's Guide

CROSS REFERENCE TABLE

Sepleat5:
COlI'I'ROL SECTION ENTRY

IIMI!! ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CSE BOO 336 5

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
054 ILBODSPO ILBODSPO I 050 IL80STPO ILBOSTPO I
058 ILBOSTPI ILBOSTPO

Sepaellt6:
COlI'I'ROL SECTION ENTRY

IIMI!! ORIGIN LENGTH SEG. NO. IIMI!! LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CSF II EO 21'A 6

LOCATION REFERS TO SYMBOL IN COlI'I'ROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
1430 ILBOSTPO ILBOSTPO I 1434 ILBOSTPI IL80STPO I

SepaeIIt 7:
COlI'I'ROL SECTION ENTRY

IIMI!! ORIGIN LENGTH SEG. NO. IIMI!! LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CSG 11 EO 336 7

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
1434 IL80DSPO IL80DSPO I 1430 ILBOSTPO IL80STPO I
1438 ILBOSTPI ILBOSTPO

ENTRY ADDRESS 38

TOTAL LENGTH 1518
."-00 DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
AUTHORIZATION CODE IS O.

DIAGNOSTIC MESSAGE DIRECTORY
IEW0172 ERROR - EXCLUSIVE CALL FROM Sl!GME!IT NUMBER PRINTED TO SYMBOL PRINTED.
II!lI0182 ERROR - INVALID EXCLUSIVE CALL PROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.

Figure 57 (Part 2 of 2). Linkage Editor Output for Sample Program REGNOVLY

Because the LIST option was specified, the control statement
listing is produced. Each control statement is preceded by a
special message number, IEWOOOO.

The control statement listing is followed by two diagnostic
message numbers (IEW0172 and IEW0182). The explanation of the
messages and the information following each message are given at
the end of the output in the diagnostic message directory.

The output for each segment contains a module map and a
cross-reference table. The segments are listed as they appear
in the overlay structure, top to bottom, left to right, and
region by region. (Note that this is also the sequence in which
the OVERLAY and INSERT statements must be given.)

Within each segment, a modyle map lists the control sections in
ascending sequence according to their assigned origin. The
origin, length, and segment number are listed for each control
section, along with any entry names and the location at which
each entry name is defined. For example, the root segment has
five control sections: $SEGTAB, which is always the first
control section in the root segment; CSA, which is from the
object module input; ILBODSPO and ILBOSTPO, which are from the
automatic call library (indicated by an asterisk) and were not
repositioned; and $ENTAB, which, when present, is always the
last control section in any segment (as also in segment 2). One
entry name is defined, ILBOSTPI at location D58 in control
section ILBOSTPO.

The cross-reference table for each segment contains all the
address constants that refer to symbols defined in other control
sections. The location of the address constant is followed by
the symbol referred to, the control section in which the symbol
is defined, and the segment in which the control section is

Appendix A. Sample Linkage Editor Programs 155

located. For example, in the root segment, an address constant
at location HEO refers to symbol csa, which is defined in {-'-"
control section CSG in segment 7. Although the region is not (,
given, the overlay tree in Figure 55 on page 151 shows that ~~.
segment 7 is in region 2.

At the end of the output for all the segments are the entry
address and total length. The entry address is 38, which is the
origin of CSA, the specified entry point. The total length
given refers to main storage used, not device storage. The
length given, therefore, is that of the longest path. The
longest path is that formed by the root segment and segments 2,
4, and 7; the length given is 1518.

However, if the given lengths of the control sections in each
segment are added, the result is l4D3. The discrepancy exists
because the given lengths do not include the padding bytes
necessary to make control sections begin on a doubl.word address
(multiple of 8). For example, in the root segment, the length
of $SEGTAB is 341 however, the origin of CSA which follows
$SEGTAB is 38 (decimal 56). Four additional bytes are needed so
that the origin of CSA is a multiple of 8.

The disposition messagg indicates that the load module GO has
been added to the output module library. The library did not
contain any other module by that name. The four asterisks
identify the message.

The last item in the output for this sample program is the
diagnostic mgssagg dirgctory. The directory contains the text
for the message numbers listed after the control statement
listing. The directory must be correlated to the information
following the number to interpret the message.

For example, message IEWOl72 is an error message that indicates
that an exclusive call was made f£2m the segment number printed
(2) following the message number ~ the symbol printed (CSE).
The output for segment.2 indicates that this call is at location
D58 in control section CSB, and the symbol is defined in control
section CSE in segment 5. This is the valid exclusive call from
CSB to CSE described earlier. (If XCAL were specified, a
warning message would be issued instead of an error message.)

If an invalid exclusive call is detected, message IEW0182
appears as shown. This is also an error message; it indicates
that an invalid exclusive call was made from segment 4 to symbol
CSC. This call is at location E78 in control section CSD, and
the symbol is defined in control section CSC in segment 3. This
is the invalid exclusive call from CSD to CSC, also described
earlier.

SAMPLE pROGRAM PARID9

Sample program PARTDS illustrates that linkage editor control
statements can be placed in a separate data set and then used as
input. For convenience, the control statements are those for
sample program REGNOVLY, described previously. These control
statements are placed in a partitioned data set. When the
member that contains the control statements is referenced, the
linkage editor uses the control statements to produce the
overlay structure shown in Figure 55 on page 151.

Figure 58 on page 157 shows the input statements for the
IEBUPDTE utility program used to place the control statements in
a partitioned data set.

156 MVS/XA Linkage Editor and Loader User's Guide

('

(

IlpARTDS JOB
/ICTLG EXEC
IISYSUT2 DD
II
IISYSPRINT DD
IISYSIN DD
.1 ADD
.1 NUMBER

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT esc
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT eSE

(accounting information)
PGM=IEBUPDTE,PARM=(NEW)
DSNAME=OVLYLIB,UNIT=2314,VOL=SER=DA028,DISP=(NEW,KEEP),
SPACE=(TRK,(lO,5,2»,DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
SYSOUT=A
*
NAME==OVLY , LEVEL=OO, SOURCE=OO, LIs'r=ALL

NEW1=lO,INCR=5

OVERLAY GAMMA(REGION)
INSERT CSF'
OVERLAY GAMMA
INSERT esc

1 ENDUP
1*

Figure 58. Input Statements for IEBUPDTE Utility Program

Job Control Language

The source programs for all the control sections were compiled
in previous job steps. All the object modules were placed in
the same data set, which was passed to the linkage editor job
step. The input modules are those used for sample program
REGNOVlY.

The job control language for the overlay program job step of
this sample program is shown below.

//lKED
//SYSUTl
//
//OVlYCDS
//
//SYSLIB
//SYSlMOD
//
//SYSPRINT
//SYSLIN
//

EXEC
DD

DD

DD
DD

DD
DD
DD

PGM=HEWl,PARM='XREF,lIST,OVlY,lET'
DSNAME=&&UTl,UNIT=SYSDA,SPACE=(TRK,
(100,10»
DSNAME=OVlYlIB,UNIT=SYSDA,
VOl=SER=SCRTCH,DISP=OlD
DSNAME=SYSl.COBlIB,DISP=SHR
DSNAME=&&OVlYJB(GO),UNIT=SYSDA,
DISP=(NEW,PASS),SPACE=(TRK,(lOO,lO,l»
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OlD,DELETE)

*
(Linkage Editor Control Statements)

/*

Appendix A. Sample linkage Editor Programs 157

SYSUTI

OVLYCDS

SYSLlB

SYSLMOD

SYSPRINT

SYSLlN

Explanation

Causes the execution of the linkage editor. The PARM
field options request a cross-reference table and a
module map (XREF), and a control statement listing
(LIST) to be produced on the diagnostic output dat.a
set. The output load module is to be assigned the
overlay attribute (OVLY), and is to be marked
executeble despite severity 2 errors (LET).

Defines a temporary direct access data set to be
used as the intermediate data set.

Defines a permanent data set to be used later as
additional input; this is the partitioned data set
which was created by IEBUPDTE and contains the
control statements for structuring the overlay
program.

Defines the automatic call library (SYSI.COBLIB) to
be used to resolve external references. All control
sections from this library are placed in the root
segment; they remain there unless they are
repositioned.

Defines a temporary data set to be used as the
output module library; the load module is to be
assigned the member name GO, and is passed to a
subsequent step for execution.

Defines the diagnostic output data set, which is
assigned to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object modules for the overlay
structure. This data set is temporary and was
passed from a previous job step; it is to be deleted
at the end of this job. This statement also
concatenates the input stream to the primary input
data set. The input stream contains linkage editor
control statements that must be delimited by a /~
statement.

Figure 59. Job Control Statements for PARTDS

Linkage Editor Control statements

The input stream contains an INCLUDE statement, as follows.

INCLUDE OVLYCDS(OVLY)

This statement causes the control statements to be read from the
partitioned data set described on the OVLYCDS DD statement. The
member name of the statements is OVLY, the same name used in the
ADD statement for the utility program.

158 MVS/XA Linkage Editor and Loader User's Guide

--

(-

('

Linkage Editor output

The output of this sample program is identical to the output
from the REGNOVLY sample program, with one exception. The list
of control statements begins with the statement

IEWOOOO INCLUDE OVlYCDS(OVLY)

This statement is followed by a list of the control statements
read from the additional input data set specified in this
INCLUDE statement. The rest of the output is identical to that
shown in Figure 57 on page 154.

Appendix A. Sample Linkage Editor Programs 159

APPENDIX B. LINKAGE EDITOR REQUIREMENTS AND CAPACITIES

Capacities

This appendix describes the record-processing capacities of the
linkage editor, the types of devices that can be used for the
intermediate data set (SYSUT1), and the amount of virtual
storage the linkage editor requires.

The m1n1mum storage requirement and processing capacities of the
linkage editor program are described in Figure 60. To increase
the capacity for processing external symbol dictionary records,
intermediate text records, relocation dictionary records, and
identification records, you should increase valuel and/or
'decrease' value2 of the SIZE option, but in no case may the
record length ever exceed the track length for the device or
32760 bytes, whichever is lower. The number of overlay segments
and regions that can be processed is not affected by increasing
the storage available.

Function
Capacity
(Bytes)

Virtual storage allocated (in bytes) 96K

Maximum number of entries in composite external 558
symbol dictionary (CESD)

Maximum number of intermediate text records 372

Maximum number of relocation dictionary (RLD) 192
records

Maximum number of segments per program 255

Maximum number of overlay regions per program 4

Maximum blocking factor for input object modules 5
object modules (number of aO-column card images
per physical record)

Maximum blocking factor for SYSPRINT output 5
(number of 121-character logical records per
physical record)

Output text record length (in bytes) I

On IBM 2305-2 Fixed Head Storage 3072 1

On IBM 3330 Disk Storage 30721

On IBM 3330-11 Disk Storage 30721

On IBM 3340 Direct Access Storage 3072 1

On IBM 3344 Direct Access Storage 30721

On IBM 3350 Direct Access Storage 30721

On IBM 3375 Direct Access Storage 3072 1

On IBM 3380 Direct Access Storage 3072 1

Figure 60. Linkage Editor Capacities for Minimal SIZE Values
(96K bytes, 6K bytes)

160 MVS/XA linkage Editor and loader User's Guide

Note to Figure 60:

1 The maximum output text record length is achieved when value2
of the SIZE parameter is at least twice the record length
size. For example, on a 3330, 12288 byte records are written
when yalue2 is at least 24576.

For the composite external symbol dictionary, the number of
entries permitted can be computed by subtracting, from the
maximum number given in Figure 60 on page 160, one entry for
each of the followingl

• A data definition name (ddname) specified in LIBRARY
statements

• A data definition name (ddname) specified in INCLUDE
statements

• An ALIAS statement

• A symbol in REPLACE or CHANGE statements that are in the
largest group of such statements preceding a single object
module in the input to the linkage editor

• The segment teble (SEGTAB) in an overlay program

• An entry table (ENTAB) in an overlay program

To compute the number of intermediate text records that will be
produced during processing of either program, add one record for
each group of ~ bytes within each control section, where ~ is
the record size for the intermediate data set. The minimum
value for ~ is 1024; a maximum is chosen depending on the amount
of storage available to the linkage editor and the devices
allocated for the intermediate and output data sets.

The number of intermediate text records that can be handled by a
linkage editor program is less than the maximums given in
Figure 60 on page 160 if the text of one or more control
sections is not in sequence by address in the input to the
linkage edi tor.

The total length of the data fields of the CSECT identification
records associated with a load module cannot exceed 32K (32768)
bytes. To determine the number of bytes of identification data
contained in a particular load module, use the following
formulas

SIZE = 269 + 16A + 3lB + 2C + I(n + 6)

where I

A = the number of compilations or assemblies by a processor
supporting CSECT identification that produced the object
code for the module.

B = the number of preprocessor compiler compilations by a
processor supporting CSECT identification that produced
the object code for the module.

C = the number of control sections in the module with END
statements that contain identification data.

I = the number of control sections in the module that contain
user-supplied data supplied during link-editing by the
optional IDENTIFY control statement.

n = the average number of characters in the data specified by
IDENTIFY control statements.

Appendix B. Linkage Editor Requirements and Capacities 161

Notes:

I. The size computed by the formula includes space for
recording up to 19 HMASPZAP modifications. When 75X of this
space has been used, a new 251-byte record is created the
next time the module is reprocessed by the linkege editor.

2. To determine the approximate number of records involved,
divide the computed size of the identification data by 256.

EXAMPLE I A module contains 100 control sections produced by 20
unique compilations. Each control section is identified during
link-editing by 8 characters of user data specified by the
IDENTIFY control statement. The size of the identification data
is computed as foilowsl

A = 20
I = 100
n = 8

269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control
statements is omitted, the size can be reduced considerably, as
computed beiowl

269 + 320 = 589 bytes

The maximum number of downward calls made from a segment to
other segments lower in its path can never exceed 340. To
compute the maximum number of downward calls allowed, subtract
12 from the SYSlMOD record size and then divide the difference
by 12. Examples of maximum downward calls are 84 for a SYSlMOD
record size of 1024 bytes and 340 for a SYSlMOD record size of
6144 bytes.

Intermediate Data set

The intermediate data set (SYSUTI) is used by the linkage editor
to hold intermediate data records during processing. The
linkage editor places intermediate data in this data set when
storage allocated for input data or certain forms of
out-of-sequence text is exhausted.

The following direct access devices, if supported by the system,
can be used for this data set,

IBM 2305-2 Fixed Head Storage

IBM 3330 Disk storage

IDM 3330-11 Disk storage

IBM 3340 Direct Access Storage

IBM 3344 Direct Access Storage

IBM 3350 Direct Access Storage

IBM 3375 Direct Access Storage

IBM 3380 Direct Access Storage

162 MVS/XA Linkage Editor and Loader User's Guide

(
APPENDIX C. DESIGNING AND SPECIFYING 0YERLAY PROGRAMS

Ordinarily, when a load module produced by the linkage editor is
executed, all the control sections of the module remain in
virtual storage throughout execution. The length of the load
module is, therefore, the sum of the lengths of all the control
sections. When storage space is not at a premium, this is the
most efficient way to execute a program. However, if a program
approaches the limits of the virtual storage available, the
programmer should consider using the overlay facilities of the
linkage editor.

In most cases, all that is needed to convert an ordinary program
to an overlay program is the addition of control statements to
structure the module. The programmer chooses the overlayable
portions of the program, and the system arranges to load the
required portions when needed during execution of the program.

When the linkage editor overlay facility is requested, the load
module is structured so that, at execution time, certain control
sections are loaded only when referenced. When a reference is
made from an executing control section to another, the system
determines whether or not the code required is already in
virtual storage. If it is not, the code is loaded dynamically
and may overlay an unneeded part of the module already in
storage.

The rest of this chapter is divided into three sections that
describe the design, specification, and special consideretions
for overlay programs.

4[DESIGN OF AN OYERLAY pROGRAM

The way in which an overlay module is structured depends on the
relationships among the control sections within the module. Two
control sections tha.t do not have to be in storaga at the same
time can overlay each other. Such control sections are
independent; that is, they do not reference each other either
directly or indirectly. Independent control sections can be
assigned the same load addresses and are loaded only when
referenced. For example, control sections that handle error
conditions or unusual data may be used infrequently, and need
not be occupying storage unless in use.

Control sections are grouped into segments. A segment is the
smallest functional unit (one or more control sections) that can
be loaded as one logical entity during execution. The control
sections required all the time are grouped into a special
segment called the root segment. This segment remains in
storage throughout execution of an overlay program.

When a particular segment is to be executed, any segments
between it and the root segment must also be in storage. This
is a 2A1b. A reference from one segment to another segment
lower in a path is a downward reference Csee "Control Section
Dependency" on page 164). That is, the segment contains a
reference to another segment farther from the root segment.
Conversely, a reference from one segment to another segment
higher in a path (closer to the root segment) is an ypward
reference.

Therefore, a downward reference may cause overlay, because the
necessary segment may not yet be in virtual storage. An upward
reference will not cause overlay, because ell segments between a
segment and the root segment must be present in storage.

Sometimes several paths need the same control sections. This
problem may be solved by placing the control sections in another
region. In an overlay structure, a region is a contiguous area

Appendix C. Designing and Specifying Overlay Programs 163

of virtual storage within which segments can be loaded
independently of paths in other regions. An overlay program can
be designed in single or multiple regions.

SINGLE REGION OVERLAY PROGRAM

To design an overlay structure, the programmer should select
those control sections that will receive control at the
beginning of execution, plus those that should always remain in
storage; these control sections form the root segment. The rest
of the structure is developed by determining the dependencies of
the remaining control sections and how they can use the same
virtual storage locations at different times during execution.

Besides control section dependency, other topics discussed in
this section are segment dependency, the length of the overlay
program, segment origin, communication between segments, and
overlay processing.

Control Section Dependency

Control section dependency is determined by the require~ents of
a control section for a given routine in another control
section. A control section is dependent upon any control
section from which it receives control, or which processes its
data. For example, if control section C receives control from
control section B, then C is dependent upon B. That is, both
control sections must be in storage before execution can
continue beyond a given point in the program.

Assume that a program contains seven control sections, CSA
through CSG, and exceeds the amount of storage available for its
execution. Before the program is rewritten, it is examined to
see whether or not it could be placed into an overlay structure.
Figure 61 on page 165 shows the groups of dependent control
sections in the program (the arrows indicate dependencies). ~

164 MVS/XA Linkage Editor and Loader User's Guide

~--~-~-~------- ~---~-

(-

(~

CSA

t
CSB

esc

CSD

t
CSE

Dependent
Group I

CSA CSA

t ,
CSB CSB

esc CSG

Dependent
Group 3

CSF

Dependent
Group 2

Figure 61. Control Section Dependencies

Each dependent group is also a path. That is, if control
section CSG is to be executed, CSB and CSA must also be in
storage. Because CSA and CSB are in each path, they must be in
the root segment. Control section CSC is in two groups, and
therefore is a common seament in two different paths.

A better way to show the relationship between segments is with a
tree structure. A ~ is the graphic representation that shows
how segments can use virtual storage at different times. It
does not imply the order of execution, although the root segment
is the first to receive control. Figure 62 on page 166 shows
the tree structure for the dependent groups shown in Figure 61.
The structure is contained in one region, and has five segments.

Appendix C. Designing and Specifying Overlay Programs 165

T
....

CSA

t ~ Root Segment I

CSB

I ..

CS G Segment 5
esc >- Segment 2

1 ...,

c L
t
c

1

CSF >- Segment 4
>- Segment 3

L SF

..

Figure 62. Single-Region Overlay Tree Structure

Segment Dependency

When a segment is in virtual storage, all segments in its path
are also in virtual storage. Each time a segment is loaded, all
segments in its path are loaded if they are not already in
virtual storage. In Figure 62, when segment 3 is in virtual
storage, segments 1 and 2 are also in virtual storage. However,
if segment 2 is in storage, this does not imply that segment 3
or 4 is in virtual storage, because neither segment is in the
path of segment 2.

The position of the segments in an overlay tree structure does
not imply the sequence in which the segments are executed. A
segment can be loaded and overlaid as many times as required by
the logic of the program. However, a segment will not be
overlaid by itself. If a segment is modified during execution,
that modification remains only until the segment is overlaid.

166 MVS/XA Linkage Editor and Loader User's Guide

./

(

Length of an OVerlay progr ..

eSD
4,000
bytes

t
eSE
3,000
byte~

1

Segment 3
7,000 bytes

For purposes of illustration, assume that the control sections
in the sample program have the following lengths I

Control Section Length (in bytes)

CSA 3000

CSB 2000

CSC 6000

CSD 4000

CSE 3000

CSF 6000

CSG 8000

If the program were not in overlay, it would require 32000 bytes
of virtual storage. In overlay, however, the program requires
the amount of storage needed for the longest path. In this
structure, the longest path is formed by segments 1, 2, and 3,
since, when they are all in storege, they require 18000 bytes,
as shown in Figure 63.

ese
6,000
bytes

Segment 2
6,000 bytes

T
eSA
3,000
bytes

t
eSB
2,000
bytes

eSF
6,000
bytes

1

Root Segment 1
5,000 bytes

Segment 4
6,000 bytes

eSG
8,000

T
Segment 5
8,000 bytes

Figure 63. Length of an Overlay Module

Appendix C. Designing and Specifying Overlay Programs 167

Segment Origin

Note: The length of the longest path is not the m1n1mum
requirement for an overlay program, when a program is in
overlay, certain tables are used. and their storage requirements
must also be considered. The storage required by these tables
is given in the section nSpecial Considerationsn on page 182.

The linkage editor assigns the relocatable origin of the root
segment (the origin of the program) at O. The relative origin
of each segment is determined by 0 plus the length of all
segments in the path. For example, the origin of segments 3 and
4 is equal to 0 plus 6000 (the length of segment 2) plus 5000
(the length of the root segment), or 11000. The origins of all
the segments are as follows,

Segment Origin

1 0

2 5000

3 11000

4 11000

5 5000

The segment or1g1n is also called the load point, because it is
the relative location at which the segment is loaded.

Figure 64 on page 169 shows the segment origin for each segment
and the way storage is used by the sample program. In the
illustration. the vertical bars indicate segment origin; any two
segments with the same origin may use the same storage area.
Figure 64 also shows that tha longest path is that of segments
1, 2, and 3.

168 MVS/XA linkage Editor and loader User's Guide

I' '\
~.J

(

o

Root Segment 1
5,000 bytes

2 3

I

4 5 6

Segment 5
8,000 bytes

Segment 2
6,000 bytes

7 8 9

segment 4
6,000 bytes

I~~~----'I Segment 3
7,000 bytes

10 11 12 13 14 15 16 17 18 19 20

Relative Storage Location (in 1,000 byte increments) -------------.....

Figure 64. Segment Origin and Use of Storage

Communication between Segments

Segments that can be in virtual storage simultaneously are
considered to be inclysive. Segments in the same region but not
in the same path are considered to be exclysive; they cannot be
in virtual storage simultaneously. Figure 65 on page 170 shows
the inclusive and exclusive segments in the sample program.

Appendix C. Designing and Specifying Overlay Programs 169

T
Root
Segment 1

I
I

Segment 2

I
I

Segment 4

1

I
"'1",5 "01",,, ",m,'"

1,2,and3
1,2, and 4
1 and 5

Exclusive Segments

2 and 5
3 and 4
3 and 5
4 and 5

Figure 65. Inclusive and Exclusive Segments

Segments upon which two or more exclusive segments are dependent /
are called common segments. A segment common to two other
segments is part of the path of each segment. Figure 65,
segment 2 is common to segments 3 and 4, but not to segment 5.

An inclusive reference is a reference between inclusive
segments; that is, a reference from a segment in storage to an
external symbol in a segment that will not cause overlay of the
calling segment. An exclysiye reference is a reference between
exclusive segments; that is, a reference from a segment in
storage to an external symbol in a segment that will cause
overlay of the calling segment.

Figure 66 on page 171 shows the difference between an inclusive
reference and an exclusive reference; the arrows indicate
references between segments.

INCLUSIVE REFERENCES: Wherever possible, inclusive references
should be used instead of exclusive references. Inclusive
references between segments are always valid and do not require
special options. When inclusive references are used, there is
also less chance for error in structuring the overlay program
correctly.

EXCLUSIVE REFERENCES: An exclusive reference is made when the
external reference in the requesting segment is to a symbol
defined in a segment not in the path of the requesting segment.
Exclusive references are either valid or invalid.

An exclusive reference is VAlid only if there is also an
inclusive reference to the requested control section in a
segment common to both the segment to be loaded and the segment
to be overlaid. The same symbol must be used in both the common
segment and the exclusive reference. In Figure 66 on page 171,
a reference from segment B to segment A is valid, because there
is an inclusive reference from the common segment to segment A.

170 MVS/XA linkage Editor and loader User's Guide

------_ .. _----
._----"" --.~------~.----------

(

(

Inclusive
Reference

I
Segment A

(An entry table in the common segment contains the address of
segment AJ the overlay does not destroy this table.)

Exclusive
Reference

Common Segment

Segment B

Figure 66. Inclusive and Exclusive References

In the same illustration, a reference from segment A to segment
B is invalid, because there is no reference from the common
segment to segment B. A reference from segment A to segment B
can be made valid by including, in the common segment, an
external reference to the symbol used in the exclusive reference
to segment B.

Another way to eliminate exclusive references is to arrange the
program so that the references that will cause overlay are made
in a higher segment. For example, the programmer could
eliminate the exclusive reference shown in Figure 66 by writing
a new module to be placed in the common segment; the new
module's only function would be to reference segment B. The
code in segment A could then be changed to refer to the new
module instead of to segment B. Control then would pass from
segment A to the common segment, where the overlay of segment A
by segment B would be initiated.

If either valid or invalid exclusive references appear in the
program, the linkage editor considers them errors unless one of
the special options is used. These options are described later
in this section (see "Special Considerations" on page 182).

Nates:

1. During the execution of a program written in a higher level
language such as FORTRAN, COBOL, or Pl/I, an exclusive call
results in abnormal termination of the progrem if the
requested segment attempts to return control ~irectly to the
invoking segment that has been overlaid.

2. If a program written in COBOL includes a segment that
contains a reference to a COBOL class test or TRANSFORM
table, the segment containing the table must be either (1)

Appendix C. Designing and Specifying Overlay Programs 171

Overlav Proce ••

I
eSD

+ Segment 3

eSE

1

I
ese

t

in the root segment or (2) a segment that is higher in the
same path than the segment containing the reference to the (.' -~'\
table. .

.' ,j

The overlav process is initiated during execution of a program
onlv if a control section in virtual storage references a
control section not in storage. The control program determines
the segment that the referenced control section is in and, if
necessary, loads the segment. When a segment is loaded, it
overlavs anv segment in storage with the same relative origin.
Anv segments in storage that are lower in the path of the
overlaid segment may also be overlaid. An exclusive reference
can also cause segments higher in the path to be overlaid. If a
control section in storage references a control section in
another segment already in storage, no overlav occurs.

The portion of the control program that determines when overlav
is to occur is the overlay syperyisor, which uses special tables
to determine when overlay is necessarv. These tables are
generated bv the linkage editor, and are part of the output load
module. The special tables are the segment table and the entrv
table(s). Figure 67 shows the location of the segment and entry
tables in the sample program.

T StAB
eSA

t Root Segment 1

eSB

t
ENTAB

I

I
Segment 2 eSG Segment 5

ENTAB 1 I

Figure 67. Locetion of Segment and Entrv Tables in an Overlav Module

172 MVS/XA Linkege Editor and Loader User's Guide

(

Because the tables are present in every overlay module, their
size must be considered when planning the use of virtual
storage. The storage requirements for the tables are given in
nSpecial Considerations" on page 182. A more detailed
discussion of the segment and entry tables follows.

SEGMENT TABLE I Each overlay program contains one segment table
(SEGTAB); this table is the first control section in the root
segment. The segment table contains information about the
relationship of the segments and regions in the program. During
execution, the table also indicates which segments are either in
storage or-being loaded, and other control information.

ENTRY TABLE: Each segment that is not the last segment in a
path may contain one entry table (ENTAB); this table, when
present, is the last control section in a segment.

When overlay will be required, an entry in the table is created
for a symbol to which control is to be passed, provided (1) the
symbol is used as an external reference in the requesting
segment, and (2) the symbol is defined in another segment either
lower in the path of the requesting segment, or in another
region. An ENTAB entry is not created for any symbol already
present in an entry table closer to the root segment (higher in
the path), or for a symbol defined higher in the path. (A
reference to a symbol higher in the path does not have to go
through the control program because no overlay is required.)

If an external reference and the symbol to which it refers are
in segments not in the same path but in the same region, an
exclusive reference was made. If the exclusive reference is
valid, an ENTAB entry for the symbol is present in the common
segment. Because the common segment is higher in the path of
the requesting segment, no ENTAB entry is created in the
requesting segment. When the reference is executed, control
passes through the ENTAB entry in the common segment. That is,
a branch to the location in the ENTAB entry causes the overlay
supervisor to be called to load the needed segment or segments.

If the exclusive reference is invalid, no ENTAB entry is present
in the common segment. If the LET option is specified, an
invalid exclusive reference causes unpredictable results when
the program is executed. Because no ENTAB entry exists, control
is passed directly to the relative address specified in the
reference, even though the requested segment may not be in
virtual storage.

MULTIPLE REGION OVERLAY PROGRAM

If a control section is used by several segments, it is usually
desirable to place that control section in the root segment.
However, the root segment can get so large that the benefits of
overlay are lost. If some of the control sections in the root
segment could overlay each other (except for the requirement
that all segments in a path must be in storage at the same
time), the job may be a candidate for multiple region structure.
Multiple region structures can also be used to increase segment
loading efficiencYI Processing can continue in one region while
the next path to be executed is being loaded into another
region.

With multiple regions, a segment has access to segments that are
not in its path. Within each region, the rules for single
region overlay programs apply, but the regions are independent
of each other. A maximum of four regions can be used.

Figure 68 on page 174 shows the relationship between the control
sections in the sample program and two new control sections, CSH
and CSI. The two new control sections are each used by two
other control sections in different paths. Placing CSH and CSI
in the root segment makes the segment larger than necessary,
because CSH and CSI can overlay each other. The two control
sections should not be duplicated in two paths, because the

Appendix C. Designing and Specifying Overlay Programs 173

I
CSD

t
CSE

1

Figure 68.

linkage editor automatically deletes the second pair and an
invalid exclusive reference may then result.

T
CSA

+ CSB

I

I I
esc

I
CSG

CSF

Control Sections Used bv Severel Paths

If, however, the two control sections are placed in another
region, they can be in virtual storage when needed, regardless
of the path being executed in the first region. Figure 69 on
page 175 shows all the control sections in a two-region
structure. Either path in region 2 can be in virtual storage
regardless of the path being executed in region II segments in
region 2 can cause segments in region 1 to be loaded without
being overlaid themselves.

174 MVS/XA Linkaga Editor and Loader User's Guide

c

(

(

(

REGION 1 T
eSA + >- Root Segment I

CSB

I

I esc ~Segment 2

esc Se~mcnt 5

1
>- Se~ment 3

eSE

;;,;;--L-------r·------------T1------------
I CSI Se~ment 7

eSH > Segment 6 1-
L

Figure 69. Overlay Tree for Multiple-Region Program

The relative or1g1n of a second region is determined by the
length of the longest path in the first region (18000 bytes).
Region 2, therefore. begins at 0 plus 18000 bytes. The relative
origin of a third region would be determined by the length of
the longest path in the first region plus the longest path in
the second region.

The virtual storage required for the program is determined by
adding the lengths of the longest path in each region. In
Figure 69, if CSH is 4000 bytes and CSI is 3000 bytes, the
storage required is 22000 bytes. plus the storage required by
the special overlay tables.

Care should be exercised when choosing multiple regions. There
may be some system degradation caused by the overlay supervisor
being unable to optimize segment loading when multiple regions
are used.

Appendix C. Designing and Specifying Overlay Programs 175

SPECIFICATION OF AN OYERLAY PROGRAM

SEGMENT ORIGIN

Once the programmer has designed an overlay structure, the
module must be placed in that structure by indicating to the
linkage editor the relative positions of the segments and
regions, and the control sections in each segment. Positioning
is accomplished as foilowsl

• Segments are positioned by OVERLAY statements. Because
segments are not named, the programmer identifies a segment
by giving its origin (or load point) a symbolic name and
then uses that name in an OVERLAY statement to specify a
symbolic origin. Each OVERLAY statement begins a new
segment.

• Regions are also positioned by OVERLAY statements. The
programmer specifies the origin of the first segment of the
region, followed by the word REGION in parentheses.

• Control sections are positioned in the segment specifi~d by
the OVERLAY statement with which they are associated in the
input sequence. However, the sequence of the control
sections within a segment is not necessarily the order in
which the control sections are specified.

The input sequence of control statements and control sections
should reflect the sequence of the segments in the overlay
structure from top to bottom, left to right, and region by
region. This sequence is illustrated in later examples.

In addition, several special options are used with overlay
programs. These options are specified on the EXEC statement for
the linkage editor job step, and are described at the end of
this section.

Nate: If a load module in overlay structure is to be
reprocessed by the linkage editor, the OVERLAY statements and
special options (such as OVlY) must be respecified. If the
statements and options are not provided, the output load module
will not be in overlay structure.

The symbolic orlg1n of every segment, other than the root
segment, must be specified with an OVERLAY statement. The first
time a symbolic origin is specified, a load point is created at
the end of the previous segment. That load point is logically
assigned a relative address at the doubleword boundary that
follows the last byte in the preceding segment. Subsequent use
of the same symbolic origin indicates that the next segment is
to have its origin at the same load point.

In the sample single-region program, the symbolic origin names
ONE and TWO are assigned to the two necessary load points, as
shown in Figure 69 on page 175. Segments 2 and 5 are at load
point ONE; segments 3 and 4 are at load point TWO.

The following sequence of OVERLAY statements will result in the
structure in Figure 70 on page 177 (the control sections in each
segment are indicated by name) I

Control section CSA
Control section CSB
OVERLAY ONE
Control section CSC
OVERLAY TWO
Control section CSD
Control section CSE
OVERLAY TWO
Control section CSF
OVERLAY ONE
Control section CSG

176 MVS/XA Linkage Editor and Loader User's Guide

;<--"
i ': "

''-j

(

REGION ORIGIN

Note: The sequence of OVERLAY statements reflects the order of
segments in the structure from top to bottom and left to right.

Root Segment 1

ONE

Segment 2

Segment 5

TWO 1
Segment 3 Segment 4

1 1

Figure 70. Symbolic Segment Origin in Single-Region Program

The symbolic origin of every region, other than the first, must
be specified with an OVERLAY statement. Once a new region is
specified, a segment origin from a previous region should not be
specified.

In the sample multiple-region program, the symbolic origin THREE
is assigned to region 2, as shown in Figure 71 on page 178.
Segments 6 and 7 are at load point THREE.

Appendix C. Designing and Specifying Overlay Programs 177

=~=~=~ ---~--=-----

REGION 1

T
Root Segment 1

ONE

Segment 2

I
I

TWO

Segment 5

1
Segment 4

Segment 3 1

---l------T---------r-- ------
THREE

REGION 2
Segment 7

1 Segment 6

1
Figure 71. Symbolic Segment and Region Origin in Multiple-Region Program

If the following is added to the sequence for the single-region
program, the multiple-region structure will be produced.

OVERLAY THREECREGION)
Control section CSH
OVERLAY THREE.
Control section CSI

POSITIONING CONTROL SECTIONS

After each OVERLAY statement, the control sections for that
segment must be specified. The control sections for a segment
can be specified in one of three ways I

• By placing the object decks for each segment after the
appropriate OVERLAY statement

• By using INCLUDE control statements for the modules
containing the control sections for the segment

• By using INSERT control statements to reposition a control
section from its position in the input stream to a
particular segment

Any control sections that precede the first OVERLAY statement (I("'"
are placed in the root segment, they can be repositioned with an \ '
INSERT statement. Control sections from the automatic call '\.."'/
library are also placed in the root segment. The INSERT

178 MVS/XA Linkage Editor and Loader User's Guide

Using Object Decks

statement can be used to place these control sections in another
specific segment. Common areas in an overlay program are
described in "Special Considerations" on page 182.

An example of each of the three methods of positioning control
sections follows. Each example results in the structure for the
single-region sample program. An example is also given of
repositioning control sections from the automatic call library.

The primary input data set for this example contains an ENTRY
statement and seven object decks, separated by OVERLAY
statements I

.I.1LKED EXEC PGM=HEWL,PARM='OVLY'

.I.1SYSLIN DD)(

ENTRY BEGIN.
Object deck for CSA
Object deck for CSB

OVERLAY ONE.
Object deck for CSC

OVERLAY TWO.
Object deck for CSD
Object deck for CSE

OVERLAY TWO.
Object deck for CSF

OVERLAY ONE.
Object deck for CSG
.1)(

The EXEC statement illustrates that the OVLY parameter must be
specified for every overlay program to be processed by the
linkage editor.

USing INCLUDE statements

The primary input data set for this example contains a series of
control statements. The INCLUDE statements in the primary input
data set direct the linkage editor to library members that
contain the control sections of the program.

.I.1LKED EXEC PGM=HEWL,PARM='OVLY'

.I.1MODLIB DD DSNAME=OBJLIB,DISP=COLD,KEEP), .•.

.I.1SYSLIN DD)(

.1)(

ENTRY BEGIN
INCLUDE MODLIBCCSA,CSB)
OVERLAY ONE
INCLUDE MODLIBCCSC)
OVERLAY TWO
INCLUDE MODLIBCCSD,CSE)
OVERLAY TWO
INCLUDE MODLIBCCSF)
OVERLAY ONE
INCLUDE MODLIBCCSG)

Appendix C. Designing and Specifying Overlay Programs 179

- - --~------------------- - ------ ----- --- --------------~-~- ----

This example differs from the previous one in that the control
sections of the program are not part of the primary input data
set, but are represented in the primary input by the INCLUDE t~~\
statements. When an INCLUDE statement is processed, the ,j
appropriate control section is retrieved from the library and
processed.

Using INSERT statements

When INSERT statements are used, the INSERT and OVERLAY
statements may either follow or precede all the input modules.
However, the order of the control sections in a segment is not
necessarily the same as the order of the INSERT statements for
each segment. An example of each is given, as well as an
example of repositioning automatically called control sections.

FOLLOWING ALL INPUT I The control statements can follow all the
input modules, as shown in the following examplel

//LKED EXEC PGM=HEWL,PARM='OVLY'

//SYSLIN DD
// DD

.Ill:

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG

DSNAME=OBJECT,DISP=(OLD,KEEP), •..
lI:

The primary input data set contains the object modules for the
control sections, and the input stream is concatenated to it.

PRECEDING ALL INPUT I The control statements can also precede
all input modules, as shown in the following example I

//LKED
//MODULES

EXEC PGM=HEWL,PARM='OVLY'
DD DSNAME=OBJSEQ,DISP=(OLD,KEEP), ...

.
//SYSLIN DD lI:

.Ill:

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
INCLUDE MODULES

180 MVS/XA Linkage Editor and loader User's Guide

(

SPECIAL OPTIONS

OVLY Option

The primary input data set contains all the control statements
for the overlay structure and an INCLUDE statement. The data
set specified by the INCLUDE statement contains all the object
modules for the structure, and is a sequential data set.

REPOSITIONING AUTOMATICALLY CALLED CONTROL SECTIONS. The INSERT
statement can also be used to move automaticallY called control
sections from the root segment to the desired segment. This is
helpful when control sections from the automatic call library
are used in only one segment. By moving such control sections,
the root segment will contain only those control sections used
by more than one segment.

Hhen a program is written in a higher level language, special
control sections are called from the automatic call library.
Assume that the sample program is written in COBOL and that two
control sections (ILBOVTRO and ILBOSCHO) are called
automatically from SYSl.COBLIB. Ordina.rily, these control
sections are placed in the root segment. However, INSERT
statements are used in the following example to place these
control sections in segments other than the root segment.

//LKED
//MODLIB
//SYSLIB

EXEC
DD
DD

.

PGM=HEHL,PARM='OVLY'
DSNAME=OBJLIB,DISP=(OLD,KEEP), ..•
DSNAME=SYSl.COBLIB,DISP=SHR

//SYSLIN DD.
ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY THO
INCLUDE MODLIB(CSD,CSE)
INSERT ILBOVTRO
OVERLAY THO
INCLUDE MODLIB(CSF)
INSERT ILBOSCHO
OVERLAY ONE
INCLUDE MODLIB(CSG)

/.

As a result, segments 3 and 4 will also contain ILBOVTRO and
ILBOSCHO, respectively.

This example also combines two of the ways of specifying the
control sections for a segment.

The linkage editor provides three special job step options
(OVLY, LET, and XCAL) for the overlay programmer. These options
are specified on the EXEC statement for the linkage editor job
step. They must be specified each time a load module in overlay
structure is reprocessed by the linkage editor.

The OVLY option must be specified for every overlay program. If
the option is omitted, all the OVERLAY and INSERT statements are
considered invalid. Unless the LET option is specified, the
output module is marked not executable. The output module is
not in an overlay structure.

Appendix C. Designing and Specifying Overlay Programs 181

LET Option

XCAL Option

With the LET option, the output module is marked executable even
though certain error conditions were found during linkage editor
processing. When LET is specified, any exclusive reference
(valid or invalid) is accepted. At execution time, a valid
exclusive reference is executed correctly; an invalid exclusive
reference usually causes unpredictable results.

Also with the LET option, unresolved external references do not
prevent the module from being marked executable. This could be
helpful when part of a large program is ready for testingJ the
segments to be tested may contain references to segments not yet
coded. If LET is specified, the program can be executed to test
those parts that are finished (as long as the references to the
absent segments are not executed). If the LET option is not
specified, these unresolved references will cause the module to
be marked not executable.

With the XCAL option, a valid exclusive call is not considered
an error, and the load module is marked executable. However,
unless the LET option is specified, other errors could cause the
module to be marked not executable. In this case, the XCAl
option is not required.

AMODE and RMODE Options

If the OVLY option is specified, the AMODE and RMODE options are
ignored and a diagnostic message is issued to that effect.
Overlay programs are assigned a residence mode of 24 and an
addressing mode of 24.

SPECIAL CONSIDERATIONS

COMMON AREAS

This section discusses several special considerations that
affect overlay programs. These considerations include the
handling of common areas, special storage requirements, and
overlay communication.

When common areas (blank or named) are encountered in an overlay
program, the common areas are collected as described previously
(that is, the largest blank or identically named common area is
used). The final location of the common area in the output
module depends on whether INSERT statements were used to
structure the program.

If INSERT statements are used to structure the overlay program,
a named common area should either be part of the input stream in
the segment to which it belongs, or should be placed there with
an INSERT statement.

Because INSERT statements cannot be used for blank common areas,
a blank common area should always be part of the input stream in
the segment to which it belongs.

If INSERT statements are not used, and the control sections for
each segment are placed or included between OVERLAY statements,
the linkage editor npromotesn the common area automatically.
That is, the common area is placed in the common segment of the
paths that contain references to it so that the common area is
in storage when needed. The position of the promoted area in
relation to other control sections within the common segment is ~-~
unpredictable. (~ 'j'

182 MVS/XA Linkage Editor and Loader User's Guide

(
I

Named Common A

+
CSD

t
CSE

1

I

If a common area is encountered in a module from the automatic
call library, automatic promotion places the common area in the
root segment. In the case of a named common area, this may be
overridden by use of the INSERT statement.

Assume that the sample program is written in FORTRAN and that
common areas are present as shown in Figure 72. Further assume
that the overlay program is structured with INCLUDE statements
between the OVERLAY statements so that automatic promotion
occurs.

T
CSA t Root Segment 1

CSB

I

Blank Common Blank Common

t Segment 5 t
CSG

Segment 2

+
CSC

I Named Common B
...L I

Named Common A

t
CSF Segment 4

+
Segment 3

Named Common B

1-

Figure 72. Common Areas ~efore Processing

Segments 2 and 5 contain blank common areas, segments 3 and 4
contain named common area A, and segments 4 and 5 contain named
common area B. During linkage editor processing, the blank
common areas are collected and the largest area is promoted to
the root segment (the first common segment in the two paths);
the common areas named A are collected and the largest area is
promoted to segment 2; the common areas named B are collected
and promoted to the root segment. Figure 73 on page 184 shows
the location of the common areas after processing by the linkage
editor.

Appendix C. Designing and Specifying Overlay Programs 183

T
CSA

+ CSB

t Root Segment 1

Blank Common

+
Named Common B

I

I
CSC

t Segment 2

I
CSG

1
Segment 5

CSD

t Segment 3
C S F Segment 4

1 CSE

1
Figure 73. Common Areas after Processing

STORAGE REQUIREMENTS

The virtual storage requirements for an overlay program include
the items placed in the module by the linkage editor and the
overlay supervisor necessary for execution.

ITEMS IN THE LOAD MODULE. The items that the linkage editor
places in an overlay load module are the segment table, entry
tables, and other control information. Their size must be
included in the minimum requirements for an overlay program,
along with the storage required by the longest path and any
control sections from the automatic call library.

Every overlay program has one segment table in the root segment.
The storage requirements area

SEGTAB = 4n + 24

where.

n = the number of segments in the program

184 MVS/XA linkage Editor and loader User's Guide

(

(

(

Some segments will have an entry table. The requirements of the
entry tables in the segments in the longest path must be added
to the storage requirements for the program. The requirements
for an entry table arel

ENTAB = l2(x + 1)

where I

x = the number of entries in the table

Finally, a NOTE list is required to execute an overlay program.
The storage requirements aret

NOTELST = 4n + 8

where I

n = the number of segments in the program

OVERLAY SUPERVISOR I To the minimum requirements of the load
module itself must be added the requirements of the overlay
supervisor. This system routine is not placed in an overlay
module, but, during execution of the module, the supervisor may
be called to initiate an overlay. If called, the storage
allocated for the program must also be large enough for the
supervisor.

This asynchronous
the system. This
through the SEGLO
Communication").
supervisor module

OVERLAY COMMUNICATION

overlay supervisor module is furnished with
asynchronous module also permits overlay
macro instruction (see "Overlay
The storage requirement for the overlay
is 180 bytes.

Several ways of communicating between segments of an overlay
program are discussed in this section. A higher level or
Assembler language program may use a CALL statement or a CALL
macro instruction, respectively, to cause control to be passed
to a symbol defined in another segment. The CAll may cause the
segment to be loaded if it is not already present in storage.
An Assembler language program may also use three additional ways
to communicate between segments I

• By a branch instruction, which causes a segment to be loaded
and control to be passed to a symbol defined in that
segment.

• By a segment load (SEGLO) macro instruction, which requests
loading of a segment. Processing continues in the
requesting segment while the requested segment· is being
loaded.

• By a segment load and wait (SEGHT) macro instruction, which
requests loading of a segment. Processing continues in the
requesting segment only after the requested segment is
loaded.

Any of the four methods may be used to make inclusive
references. Only the CALL and branch may be used to make
exclusive references. Neither the SEGLO nor tha SEGHT macro
instruction should be used to make exclusive referencesJ because
both imply that processing is to continue in the requesting
segment, an exclusive reference leads to erroneous results when
the program is executed.

Appendix C. Designing and Specifying Overley Programs 185

CALL statement or CALL Macro Instruction

Branch Instruction

A CALL statement or a CALL macro instruction refers to an r\
external name in the segment to which control is to be passed. ~/
The external name must be defined as an external reference in
the requesting segment. In Assembler language. the name must be
defined as a 4-byte V-type address constant; the high-order bit
is reserved for use by the control program, and must not be
altered during execution of the program.

When a CALL is used. the requested segment and any segments in
its path are loaded if they are not part of the path already in
virtual storage. After the segment is loaded, control is passed
to the requested segment at the location specified by the
external name.

A CALL between inclusive segments is always valid. A return can
be made to the requesting segment by another source language
statement. such as RETURN. A CALL between exclusive segments is
valid if the conditions for a valid exclusive reference are met;
a return from the requested segment can be made only by another
exclusive reference. because the requesting segment has been
overlaid.

Any of the branching conventions shown in Figure 74 on page 187
can be used to request loading and branching to a segment. As a
result, the requested segment and any segments in its path are
loaded if they are not part of the path already in virtual
storage. Control is then passed to the requested segment at the
location specified by the address constant placed in general
register 15.

186 MVS/XA Linkage Editor and Loader User's Guide

(

(

(

Example Name I Operation OperandZ,3

I L RI5.=V(name)
BAlR Rn.RI5

2 L RIS.ADCON
BALR Rn.RIS

ADCON DC V(name)

3 L RIS.=V(name)
BAL Rn.O(O.RIS)4

4 L RIS.=V(name)
BAL Rn.O(RIS)'

S6 L RIS.=V(name)
BCR IS.RIS

6 6 L RIS.=V(name)
BC IS.O<O.RIS)4

76 L RIS.=V(name)
BC IS.O(RIS)'

Figure 74. Branch Sequences for Overlay Programs

Nates to Figure 74:

1 When the name field is blank. specification of a name is
optional.

2 R15 must hold a 4-byte address constant that is the address
of an entry name or a control section name in the requested
segment. The address constant must be loaded into the
standard entry point register, register IS.

• Rn is any other register and is used to hold the return
address. This register is usually register 14.

4 This may also be written so that the index register is loaded
with the address constant; the other fields must be zero.

, In this format. the base register must be loaded with the
eddress constant; the displacement must be zero.

6 This example is an unconditional branch; other conditions are
also allowed.

The address constant must be a 4-byte V-type address constant.
The high-order bit is reserved for use by the control program.
and must not be altered during execution of the program.

A branch between inclusive segments is always valid; a return
may be made by means of the address stored in Rn. A branch
between exclusive segments is valid if the conditions for a
valid exclusive reference are met; a return can be made only by
another exclusive reference.

AppendixC. Designing and Specifying Overlay Programs 187

Segment Load (SEGLDJ Macro Instruction

The SEGLD macro instruction is used to provide overlap between
segment loading and processing within the requesting segment.
As a result of using any of the examples in Figure 75, the
loading of the requested segment and any sagments in its path is
initiatad when they are not part of the path already in virtual
storage. Processing then resumes at the naxt sequential
instruction in the requesting segment while the segment or
segments are being loaded. Control may be passed to the
requested segment with either a CAll or a branch, as shown in
Examples I and 2, respectively. A SEGWT instruction can be used
to ensure that the data in the control section specified by the
external name is in virtual storage before processing resumes,
as shown in Example 3.

Example Name1 Operation operandZ,3

1 SEGlD external name
CAll external name

2 SEGlD external name
branch external name

3 SEGlD external name

SEGWT external name
l Rn,=V(name)

Figure 75. Use of the SEGlD Macro Instruction

Notes to Figure 75:

I When the name field is blank, specification of a name is
optional.

2 External name is an entry name or a control section name in
the requested segment.

• Rn is any other register and is used to hold the return
address. This register is usually register 14.

The external name specified in the SEGlD macro instruction must
be defined with a 4-byte V-type address constant. The
high-order bit is reserved for use by the control program and
must not be altered during execution of the program.

Segment Wait (SEGWTJ Macro Instruction

The SEGWT macro instruction is used to stop processing in the
requesting segment until the requested segment is in virtual
storage.

As a result of using any of the examples in Figure 76 on
page 189, no further processing takes place until the requested
segment and all segments in its path are loaded when not alreadY
in virtual storage. Processing resumes at the next sequential
instruction in the requesting segment after the requested
segment has been loaded.

188 MVS/XA Linkage Editor and loader User's Guide

c

(

(

Ex_pIe N_el Operation OparandZ,3

1 SEOlD externel name

SEOWT externel name
l Rn,ADCON

brench
ADCON DC V(name)

2 SEOWT externel name
l Rn,,=V(name)

Figure 76. Use of the SEOWT Mecro Instruction

Nates to Figura 76:

I When the name field is blenk, specification of e name is
optional.

2 External name is an entry name or a control section name in
the requested statement.

• Rn is any other register and is used to hold the return
address. This register is usually register 14.

If the SEOWT and SEOlD macro instructions are used together"
overlap occurs between processing and segment loading; use of
the SEGWT macro instruction serves as a check to see that the
necessary information is in storage when it is finally needed
(see Example I in Figure 76). In Example 2 in Figure 76, no
overlap is provided; the SEGWT macro instruction initiates
loading, and processing is stopped in the requesting segment
until the requested segment is in virtual storage.

The external name specified in the SEGWT macro instruction must
be defined with a 4-byte V-type address constant. The
high-order bit is reserved for use by the control program, and
must not be altered during execution of the program.

If the contents of a virtual storage location in the requested
segment are to be processed, the entry name of the location must
be referred to by an A-type address constant.

Appendix C. Designing and Specifying Overlay Programs 189

APPENDIX D. LOADER STORAGE CONSIDERATIONS

The loader requires virtual storage space for the following
itemsl

• Loader code

• Data management access methods

• Buffers and tables used by the load.r (dynamic storage)

• loaded program (dynamic storage)

Region size includes all four of the above itemsl the SIZE
option refers to the last two items.

For the SIZE option, the minimum required virtual storage is 4K
bytes plus the size of the loaded program. This minimum
requirement grows to accommodate the extra table entries needed
by the program being loaded. For example, FORTRAN requires at
least 3K bytes plus 4K bytes plus the size of the loaded
program, and PL/I needs at least 8K bytes plus 4K bytes plus the
size of the loaded program. Buffer number (BUFNO) and block
size (BLKSIZE) could also increase this minimum size. Figure 77
on page 191 shows the appropriate storage requirements in bytes.

The maximum virtual storage that can be used is whatever virtual
storage is available up to 8192K bytes.

Allor part of the storage required is obtained from user
storage. If the access methods are made resident at IPL time,
they are allocated in system storage. However, 6K bytes is
always reserved for system use.

The loader code could also be made resident in the link pack
area. If so, it requires the following spacel HEHLDRGO, the
control/interface module (alias LOADER), approximately 700
bytes; HEHlOADR, the loader processing portion, approximately
13 664 bytes.

The size of the loaded program is the same as if the program had
been processed by the linkage editor and program fetch.

The loader does not use auxiliary storage space for work areas.

190 MVS/XA linkage Editor and loader User's Guide

('
Approximate
Virtual storage
Requirements

Consideration (in Bytes) Coments

Loader Code Control 2000

Loader Code Processing 14000

Data Management 6K BSAM

Object Module Buffers BUFNOK(BLKSIZE + 24) Concatenation of
and DECBs different BLKSIZE and

BUFNO must be
considered. (Minimum
BUFNO=2)

Load Module Buffer and 304
DECBs

SYSTERM DCB Buffers and 312 Allocated if TERM
DECBs option is specified

SYSLOUT Buffers and BUFNOK(BLKSIZE + 24) Buffer size rounded UP
DECBs to integral number of

double words. (Minimum
BUFNO=2)

Size of program being Program size Program size is
loaded restricted only by

available virtual
storage, up to 8
megabytes

(
Each external relocation 8
dictionary entry

Each external symbol 20

Largest ESD number 4n (n is the largest Allocated in
number of ESDs in any increments of 32
input module) entries

Fixed Loader Table Size 1260 Subtract 88 if NOPRINT
is specified

Condensed Symbol Table 12n (n is the total Built only if TSO is
number of control operating and space is
sections and common available
areas in the loaded
program)

System Requirements 4000

Figure 77. Virtual Storage Requirements

Appendix D. Loader Storage Considerations 191

APPENDIX E. LOADER RETURN CODES

The return code of a loader step is determined by the return
codes resulting from loader processing and from loaded program
processing.

The return code indicates whether errors occurred during the
execution of the loader or of the loaded program. The return
code can be tested through the COND parameter of the JOB
statement specified for this job and/or the COND parameter of
the EXEC statement specified in any succeeding job step. (For
details, see the publication ill). Figure 78 shows the return
codes. I

Code Loader Program
Returned Return Return
to Caller Code Code Conclusion or Meaning

0 0 0 Program loaded successfully,
and execution of the loaded
program was successful.

0 4 0 The loader found a condition
that may cause an error during
execution, but no error
occurred during execution of
the loaded program.

0 8eLEn 4 The loader found a condition
that may cause an error during
execution, but no err:-or
occurred during execution of
the loaded program.

4 0 4 Program loaded successfully,
and an error occurred during
execution of the loaded
program.

4 4 4 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

4 8eLEn 4 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

8 0 8 Program loaded successfully,
and an error occurred during
execution of the loaded
program.

Figure 78 (Part 1 of 2). Return Codes

I Error diagnostics (SYSOUT and/or SYSTERM data set) for the
loader will show the severity of errors found by the loader.

192 MVS/XA linkage Editor and loader User's Guide

Code Loader Program
Returned Return Return
to Caller Code Code Conclusion or Meaning

8 4 8 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

8 8<LETl 8 The loader found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

8 8 The loader found a condition
that could make execution
impossible. The loaded
program was not executed.

12 0 12 Program loaded successfully,
and an error occurred during
execution of the loaded
program.

12 4 12 The loade; found a condition
that may cause an error during
execution, and an error did
occur during execution of the
loaded program.

12 8<LETl 12 The loader found a condition
that may cause an error during

(
execution, and an error did
occur during execution of the
loaded program.

12 12 The loader could not load the
program successfully;
execution impossible.

16 0 16 Program loaded successfully,
a.nd the loaded program found a
terminating error.

16 4 16 The loader found a condition
that may cause an error during
execution, and a terminating
error was found during
execution of the loaded
program.

16 8<LETl 16 The loader found a condition
that may cause an error during
execution, and a terminating
error was found during
execution of the loaded
program.

16 16 The loader could not load
program; execution impossible.

Figure 78 (Part 2 of 2). Return Codes

Appendix E. Loader Return Codes 193

I
I,

GLOSSARY

This glossary includes definitions
developed by the American National
Standards Institute (ANSI). This
material is reproduced from the American
~~~~~~al ~ictionary fpr Jnfprmatipn 
Processing, copyright 19 7 by the 
Computer and Business Equipment 
Manufacturers Association, copies of 
which may be purchased from the American 
National Standards Institute, 1430 
Broadway, New York, New York 10018. 
ANSI definitions are preceded by an 
asterisk 00 . 

-address. An identification, as 
represented by a name, label, or number, 
for a register, location in storage, or 
any other data source or destination 
such as the location of a station in a 
communication network; any part of an 
instruction that specifies the location 
of an operand for the instruction. 

address constant. A value, or an 
expression representing a value, used in 
the calculation of storage addresses; 
can be used for branching or retrieving 
data. 

addressing mode (AMODE). The attribute 
of an entry point in which control is 
received. 

address translation. The process of 
changing the eddress of a data item or 
an instruction from its virtual address 
to the real storage address of the 
location where it will reside. See also 
dynamic address translation. 

alias name. An alternate name or entry 
point for e load module that is also 
entered in the output module library 
directory entry along with the member 
name. 

automatic call library mechanism. The 
process whereby control sections are 
processed by the linkage editor or 
loader to resolve external references to 
members of partitioned data sets not 
resolved by primary input processing. 

auxiliary storage. Data storage other 
than virtual storage; for example, 
storage on magnetic tape or 
direct-access devices. 

comman area. A control section used to 
reserve a virtual storage area that can 
be referred to by other modules; may be 
either named or unnamed (blank). 

common segment. A segment upon which 
two exclusive segments are dependent. 

composite external symbol dictionary 
(CESDJ. Control information associated 

with a load module that identifies th. 
external symbols in the module. 

control section. That part of a program 
(instructions and data) specified by the 
programmer to be a reloc~table unit, all 
elements of which are to be loaded into 
adjoining storage locations for 
execution. Abbreviated CSECT. 

control section name. The symbolic name 
of a control section. 

demand paging. Transfer of a page from 
external page storage to real storage at 
the time it is needed for execution. 

downward reference. A reference made 
from a segment to another segment lower 
in the same path; that is, farther from 
the root segment. 

dynamic address translation (DATJ. (1) 
The change of a virtual storage address 
to a real storage address during 
execution of an instruction. See also 
address translation. (2) A hardware 
feature that performs the translation. 

entry name. A name within a control 
section that defines an entry point, and 
can be referred to for execution by any 
control section. 

exclusive reference. A reference 
between exclusive segments; that is, a 
reference from a segment in storage to 
an external symbol in a segment that 
will cause overlay of the calling 
segment. 

exclusive segments. Segments in the 
same region of an overley program, 
neither of which is in the path of the 
other; they cannot be in virtual storage 
simultaneously. 

external name. A name that can be 
referred to by any control section or 
separately assembled or compiled module; 
that is, a control section name or an 
entry name. 

external page storage. The portion of 
auxiliary storage that is used to 
contain pages. 

external reference. (1) A reference to 
a symbol that is defined as an external 
name in another module. (2) An external 
symbol that is defined in another 
module; that which is defined in the 
Assembler language by an EXTRN statement 
or by a V-type address constant, and is 
resolved during linkage editing. See 
also weak external reference. 

194 MVS/XA linkage Editor and loader User's Guide 

rf-"\, 

~/ 



( 

external symbol. A control section 
name. entry point name. or external 
reference that is defined or referred to 
in a particular module. A symbol 
contained in the external symbol 
dictionary. 

external symbol dictionary (ESD). 
Control information associated with an 
object or load module that identifies 
the external symbols in the module. 

inclusive reference. A reference 
between inclusive segments; that is. a 
reference from a segment in storage to 
an external symbol in a segment that 
will not cause overlay of the calling 
segment. 

inclusive segments. Segments in the 
same region of an overlay program that 
are in the same path; they can be in 
virtual storage simultaneously. 

invalid exclusive reference. An 
exclusive reference in which a common 
segment does not contain a reference to 
the symbol used in the exclusive 
reference. 

library. In this publication. a 
partitioned data set that always 
contains named members. 

load module. The output of the linkage 
editor; a program in a format suitable 
for loading into virtual storage for 
execution. 

load module buffer. An entity of 
virtual storage used by the linkage 
editor to read input load module text 
records and possibly to retain the text 
information in storage for subsequent 
writing of the output load module text 
records. 

-module. A program unit that is 
discrete and identifiable with respect 
to compiling, combining with other 
units, and loading, for example, the 
input to. or output from, an assembler, 
compiler. linkage editor, or executive 
routine. 

multiple load module processing. A 
method of processing whereby two or more 
load modules can be produced in a single 
linkage editor job step. 

_object module. A module that is the 
output of an assembler or compiler and 
is input to a linkage editor. 

overlay program. A program in which 
certain control sections can use the 
same storage locations at different 
times during execution. 

_overlay supervisor. A routine that 
controls the proper sequencing and 
positioning·ofs~gme~ts of computer 
programs in limited storage during their 
execution. 

overlay tree. A graphic representation 
showing the relationships of segments of 
an overlay program and how the segments 
are arranged to use the same main 
storage area at different times. 

page. (1) A fixed-length block of 
instructions. data. or both, that can be 
transferred between real storage and 
external page storage. (2) To transfer 
instructions, data, or both between real 
storage and external page storage. 

page fault. A program interruption that 
occurs when a page that is marked Rnot 
in real storageR is referred to by an 
active page. 

paging. The process of transferring 
pages between real storage and external 
page storage. 

path. All of the segments in an overlay 
tree between a given segment and the 
root segment, inclusive. 

private code. An unnamed control 
section. 

program. A logically self-contained 
sequence of operations or instructions 
that, when followed in some 
predetermined sequence, will produce a 
specified result; a sequence of 
instructions to be performed by a 
computer; one or more modules, in source 
language or relocatable object code, or 
one module in executable code, that is a 
logically self-contained process. 

program fetch. A program that prepares 
load modules for execution by loading 
them at specific storage locations; it 
also readjusts each address constant. 

pseudoregister. In Pl/I, a location in 
virtual storage that is used as a 
pointer to dynamically acquired virtual 
storage. It enables the PL/I compiler 
to generate reenterable code. External 
dummy sections give the programmer using 
Assembler F or Assembler H the same 
facility. 

real storage. The storage from which 
the central processing unit can directly 
obtain instructions and data, and to 
which it can directly return results. 

reenterable load module. A module that 
can be used concurrently by more than 
one task. 

refreshable load module. A load module 
that cannot be modified by itself or by 
any other module during execution; can 
be replaced by a new copy during 
execution by a recovery management 
routine without changing either the 
sequence or results of processing. 

region~ In an overlay structure. a 
contiguous area of virtual storage 

Glossary 195 



within which segments can be loaded 
independently of paths in other regions. 
Only one path within a region can be in 
virtual storage at anyone time. 

relocation. The modification of address 
constants required to compensate for a 
change of origin of a module, program, 
or control section. 

R$ECT. A read-only CSECT in the 
nucleus. 

root segment. That segment of an 
overlay program that remains in virtual 
storage at all times during the 
execution of the overlay program, the 
first segment in an overlay program. 

residence mode (RHODE). Defines whether 
the program must be resident in storage 
addressable by 24-bit addressing or 31-
bit addressing. 

scatter format. A load module attribute 
that permits the control program to 
dynamically load control sections into 
noncontiguous areas of virtual storage. 

segment. The smallest functional unit 
(one or mare control sections) that can 
be loaded as one logical entity during 
execution of an overlay program. 

serially reusable load module. A module 
that cannot be used by a second task 
until the first task has finished using 
it. 

----------------------------- ----

source module. The source statements 
that constitute the input to a language 
translator for a particular translation. 

storage block. A 2K-byte block of real 
storage to which a storage key can be 
assigned, processor-model dependent. 

upward reference. A reference made from 
a segment to another segment higher in 
the same path; that is, closer to the 
root segment. 

valid exclusive reference. 
reference in which a common 
contains a reference to the 
in the exclusive reference. 

An axclusive 
segment 
symbol used 

virtual address. An address that refers 
to virtual storage and must, therefore, 
be translated into a real storage 
address when it is used. 

virtual storage. Addressable space that 
appears to the user as real storage, 
from which instructions and data are 
mapped into real storage locations. The 
size of virtual storage is limited by 
the addressing scheme of the computing 
system and the amount of auxiliary 
storage available, rather than by the 
actual number of real storage locations. 

weak external reference. An external 
reference that does not have to be 
resolved during linkage editing. If it 
is not resolved, it appears as though 
its value was resolved to zero. 
Abbreviated WXTRN. 

196 MVS/XA Linkage Editor and Loader User's Guidp 



<,--

Special Characters 

$PRIVATE 117 
~nEGO 130 

A-type address constant 
replacing control sections 88, 96 
SEGWT macro 189 

AC option 19, 40 
adcons 

See address constant 
additional call libraries 30 
additional input sources 

automatic call library 27-31 
general description of 15, 22 
included data sets 32-35 
libraries 27-35 
processing of 27-35 
specification of 

automatic call library 29 
INCLUDE statement 33-35 
LIBRARY statement 29, 77 

address 
assignment 11 
of main entry point 

module map 117 
specifications 110 

sequence in object module text 8 
address constant 6, 9 

See also A-type, V-type address 
constant 

resolution of 6-9 
addressing mode 

assignment 
linkage editor 19 
loader 122 

combinations 
loader 124 
residence mode 41 

control section name 7 
default 19 
entry point 111 
implied 124 
options 182 
override 19 
parameter 

linkage editor 41 
loader' 129 

private code 7 
alias name -

example 109 
linkage editor 36 
loader 138 
specifying 109 

ALIAS statement 68, 109 
alignment, page 103 
alternate output data set 

See SYSTERM data set 
AMODE 

See addressing mode 
assigning block size, linkage editor 58 

asynchronous overlay supervisor 185 
attributes, module 

See module attributes 
authorization codes 

See AC option 
Authorized Program Facility (APF) 18 
automatic call library for loader 

DD statement for 132 
description of 122 
options 129 

automatic call library mechanism 117 
See also call library, linkage editor 
module map 117 

eutomatic deletion of modules 122 
eutomatic replacement 

control sections 96-98 
examples 96-98 
modules 109 
note on overlay programs 96 

automatic search 
of link pack area queue 131 
of SYSLIB 129 

blank common area 
collection of Ill, 182 
definition 7 
module map 117 

BLKSIZE operand (DCB macro) 54-59 
block size 54-59 
blocking factors, SIZE option 48, 60 
branch instructions, in overlay 

programs 185-187 
buffer, load module 

See load module buffer 
BUFNO operand (DCB macro) 

loader DD statements 132 

call library, linkage editor 
additional libraries 30 
concatenating 29 
ddname 28 
example 28 
NCAl option 31 
negating 31, 43 
never-call 31 
restricted no-call 30 
specification of 28-29 

call library, loader 
DD statement for 132-135 
description 122 
options for use 129 

CAll loader option 129 
CAll macro 

definition 186 
invoking the loader 140 
with only loadable attribute 38 

capacities, linkage editor 160 
cataloged procedure 

Index 197 



adding DD statements 65 
definition 61 
linkage editor 61 
LKED 61-63 
LKEDG 63-64 
overriding 64-65 

CESD 
See composite external symbol 
dictionary 

CHANGE statement 
example 94 
summary 69-70 
using INCLUDE statement 
using REPLACE statement 

changing external symbols 
class test table 172 

102 
102 

94 

collection of common areas Ill, 182-184 
common area 

blank 7 
collection of Ill, 182, 184 
definition 7 
lengthening 18, 72 
module map 116 
named 7 
ordering named 102-103 
reserving storage for III 

common segment 
defini tion 170 
exclusive references 170 
promotion of common areas 182 

comparison of linkage editor and 
loader 1, 122 

compatibility, linkage editor and 
loader 127 

composite external symbol dictionary 
definition 10 
number of entries permitted 161 

concatenation 
call libraries 29 
data sets 

linkage editor 34 
loader 133 
restrictions 59 

COND parameter 
determining load module execution 53 
in LKEDG 63 
specified in EXEC statement 53 
specified in JOB statement 53 

condition parameter 
See COND parameter 

constant 
See address constant 

control dictionaries 6 
control section 

aligning on page boundary 103 
definition 5 
deleting 100 
external symbol dictionary 6 
lengthening 18, 72 
module map 116 
name 

changing 94 
external symbol dictionary 6 

ordering of 102-103 
positioning 178 
replacing 95 

control statements 
as input 25 
concatenating object module data 
set 25 

continuation of 66 
format conventions 66 
general format 66 
listing 116 

listing option 50 
placement information 67 
summary list 66 

cross-reference table 
option 50 
producing 117 
sample 118 

CSECT identification records 
function 18 
object and load modules 6 
storage required 161 
using IDENTIFY statement 73 

data definition statement 
See DD statement 

data for loaded program 135 
data set 

concatenation of 29, 34, 133-135 
li nkage edi tor 

input 22 
output 107 

loader 133 
DCB information 

linkage editor 54 
loader 132 

DCBS option, block size 49 
DD statement 

general description 54 
linkage editor data sets 

ddnames 54-56 
SYSlIB 30, 56 
SYSlIN 55 
SYSlMOD 57 
SYSPRINT 57 
SYSTERM 59 
SYSUTl 56 

loader data sets 
ddnames 132, 138 
SYSLIB 134 
SYSLIN 133 
SYSlOUT 134 
SYSTERM 134 

ddname list 105 
ddnames, linkage editor 

invoking 54-59 
loader 

automatic call library 132 
diagnostic data set 134 
input data set 133 
specifying alternate names 105, 

138 
default module attributes 42 
deleting a control section 100 
deleting an entry name 100 
deleting modules 122 
diagnostic messages 

linkage editor 
directory 113 
format 113-115 

loader 
defined by SYSlOUT DD and SYSTERM 

nn 143 
format 143 

diagnostic output 
linkage editor 

messages 113 
optional 116-118 
options, summary 17-18 

loader 

198 MVS/XA Linkage Editor and Loader User's Guide 

c 



( 
data set 134 
format 143 
options 129 

dictionaries 
composite external symbol 10, 161 
external symbol 7 
relocation 6, 9, 160 

directory entry 
authorization code III 
changing 9S 

disposition messages 113-114 
downward call 

See downward reference 
downward reference 

defini tion 163 
maximum number 162 

editing 
conventions 92-93 
module 92-93 

end of module indication 9 
END statement 

object module 6 
specifying entry point 110 

ENTAD (entry table) 173 
entry address, module map 117 
entry name 

definition 7 
ESD 

changing 94 
deleting 100 
module map 116 

entry point 
example 110 
loaded program 130, 140 
specification of 

END statement 110 
ENTRY statement 71, 110 

ENTRY statement 
main entry point 110 
summary 71 

entry table 173 
EOM (end of module indication) 9 
EP loader option 130 
error conditions 

See severity code 
error messages 

See diagnostic messages 
ESD (external symbol dictionary) 7 
exclusive call option 42 
exclusive reference 

definition 169 
entry table 173 
restrictions 170 
segment table 173 
XCAL option 42 

exclusive segments 
note on overlay programs 96 

EXEC statement 
linkage editor 

introduction 36 
job step options 36 
program name 36 
REGION parameter 53 
return code 53 

loader 
description 128, 132 
examples 132 

executable module 42 

EXPAND statement 18, 72 
external dummy section 7, 16, 112 

See also pseudoregister 
defini tion 7 
processing of 16, 112 

external name 5 
See also control section name, entry 

name 
defini tion S 

external reference 
changing 94 
definition 5, 7 
external symbol dictionary 7 
resolving 12, 27 
weak 

automatic library-call 27 
cross-reference table 118 

external symbol 
changing 94 
definition 5 

external symbol dictionary 7 

functions 
linkage editor 13 
loader 122 

HEHL 36, 61 
HEHLOAD 139, 142 
HEHLOADR 139 

IDENTIFY statement summary 73 
IDR 

See CSECT identification records 
IEDUPDTE program 

input statements lS6 
INCLUDE statement 

requesting additional data sets as 
input 32 

specifying ddname of DD statement 32 
summary 7S 

included data sets 
concatenated data sets 33 
library members 34 
linkage editor 32 
sequential data sets 33 

inclusive reference 
when to use 170 

inclusive segments 
defini tion 169 

incompatible job step options 51 
incompatible module attributes 42 
input data sets 

linkage editor 22 
loader 133 

input processing 22 
input sources 

linkage editor 9 
loader 128, 133 

INSERT statement 

Index 199 



summary 76 
using 180 

intermediate data set 
devices supported 162 
linkage editor 9 
loader 127 
SIZE option 43, 160 
storage required 160 
SYSUTI DD statement 56 

intermediate text records, number 
produced 161 

internal data area 127 
invalid attributes or options 113 
invalid exclusive reference 

illustration 171 
invocation of 

linkage editor 105 
loader 138 

job control language summary 36 
job control statements 

linkage editor 36 
loader processing 

basic format 128 
compile-load job 135 
load job 192 
multiple compilations 136 

job step 
options 

EXEC statement 36 

let execute option 43 
LET option 

linkage editor 43, 152 
loader 127, 130 
overlay programs 182 

library call 
See automatic call library for loader 

library members 
including 34 
input to linkage edi tor 23 
input to loader 133 

LIBRARY statement 
additional call libraries 30 
NCAL option 43 
never-call function 31 
restricted no-call function 30 
summary 77 
using 29 

LINK command 21 
LINK macro 

invoking 
linkage editor 105 
loader 139 

link pack area resolution 
loader 131 

linkage editor 
assigning block size 58 
capacities 160 
,cataloged procedures 61 
compared to loader 1, 122 
control statement summary 66 
DD statements 55-59 

functions 13 
input 

additional data sets 22 
control statements 26 
object modules 26 
primary data sets 22 

invoking 105 
output 107 
processing 9 
relationship to operating system 21 
storage requirements 160 
when to use 1 

LINKEDIT 36 
linking modules' 14 
LIST option 50, 116 
LKED procedure 61-63 
LKEDG procedure 63-64 
LOAD macro 

invoking the loader 141 
only loadable modules 38 

load module 
attribute assignment 17 
attributes 37 
buffer 44 
definition 4 
entry point 110 
input 

linkage editor 22 
loader 128 

linkage editor output 107 
multiple processing of 112 
structure 6 

load module buffer 
allocating storage 44 

load module creation 10 
load module format 

loader 
example 

load point 168, 176 
load step 1, 128 
loaded program 

data 135 
module map 143 
options 129, 132 
return codes 192 

loader 
abnormal termination message 

(YS2) 143 
alias name 138 
compared to linkage editor 1, 122 
compatibility with linkage 
editor 127 

data sets 133 
input 122, 128 
invoking 138 
options 129, 132 
output 143 
program name 138 
restrictions 127 
return codes 192 
when to use 1 

LOADGO command 127 
loading 

with identification 142 
without identification 140 

logical record length 
linkage editor data sets 

blocking factors 55 
diagnostic output 57 
input 55 

SIZE option 43 
LRECL operand (DCB macro) 54-55 

200 MVS/XA Linkage Editor and Loader User's Guide 



( 

macros, linkage editor 
format 105 

MAP option 
linkage editor 50, 116-117 
loader 127, 130 

maximum record size for device 
types 44-45 

member name 
definition 108 
example 108 
specifying 108 

member, partitioned data set 
including 34 
input to the linkage editor 23 
input to the loader 133 

messages 
disposition 113-114 

.examples 115 
format 114 
text 115 
unnumbered 114 

MODE statement 
example 80 
specifying addressing mode 79 
specifying residence mode 79 
summary 79-80 
values 80 

modular programming 4 
module attributes 

default attributes 42 
describing output module 37 
incompatible attributes 42, 51 
not editable 38 
not-executable 42 
only loadable 38 
overlay 38 
refreshable 40 
reusability 

reenterable 39 
serially reusable 39 

scatter format 37 
test 40 

module disposition messages 113 
module editing 

general description 92 
summary 14 

module linking 14-15 
module map 

linkage editor 
description 116-117 
example 117 
MAP option 50 

loader 
description 143 
example 144 
specifying 130 

module, definition 4 
multiple load module processing 

producing 112 
multiple region overlay program 

general description 173 
specifying 177 
using 173 

NAME loader option 130 
NAME statement 

multiple load module processing 112 
replace function 109 
summary 81 
SYSLMOD DD 108 

named common area 
aligning on page boundary 103 
collection of Ill, 182 
definition 7 
module map 116 

NCAL option 
linkage editor 31, 43 
loader 127, 129 

NE attribute 38 
negation of automatic library call 

linkage editor 31 
loader 

diagnostic output 131 
module map 131 
search of link pack area 131 

not editable attribute 38 
not executable attribute 43 
reenterable attribute 39 
refreshable attribute 40 
serially reusable 39 

never-call function 
cross-reference table 118 
specifying external references 31 

no automatic library call option 43 
no-cal1 31 
NOCALL loader option· 129 
node point 

See load point 
NOLET loader option 130 
NOMAP loader option 130 
NOPRINT loader option 131 
NORES loader option 131 
not editable attribute 

linkage editor 38 
loader 127 

not-executable attribute 42 
NOTERM loader option 132 

object module 
definition 4 
input to linkage editor 26 
input to loader 133 
structure 6 
virtual storage 127 

OL attribute 38 
only loadable attribute 38 
optional output 116 
options, incompatible 51 
options, linkage editor 

addressing mode 182 
module attributes 37 
output 50 
residence mode 182 
space allocation 43 
special processing 42-43 

ORDER statement 82, 102-103 
origin 

control section in module map 116 
region 177 

Index 201 



segments 168 
output module library 107 
output of linkage editor 

diagnostic messages 113 
load module 107 
optional output 116-118 
output module library 107 
output options 50 

output of the loader 
messages 143 
module map 143 
specifying 128-132 

output text record length 160 
overlap of loading and processing, 
overlay segments 188 

overlay attribute 
specifying 38 

overlay program 
communication 185 
design 163 
module map 116 
multiple region 173 
process 172-173 
region origin 177 
respecifying control statements 176 
sample program 150-156 
segment origin 168, 176 
single region 164 
special considerations 182 
specifying 176 
storage requirements 184-185 

OVERLAY statement 
specifying 176-181 
summary 84 

overlay supervisor, definition 172 
overlay tree 

positioning segments 166 
overriding cataloged procedures 

DD statements 65 
EXEC statement 64 

OVLY attribute 38-39 

page boundary 
aligning control sections or named 

common areas 103 
PAGE statement 

aligning control sections 103 
summary 86 

parameter 
addressing mode 41 
combination 41 
residence mode 41 

partitioned data set 
input 

linkage editor 23 
loader 133 

output, linkage editor 107 
path 

in overlay program 163 
placement of control statements 67 
positioning control sections 178 
preloaded text 127, 143 
primary input data set 

control statements 25 
job control language 
specifications 22 

object modules 22, 26 
PRINT loader option 131 
private call libraries 29 

private code 
definition 7 
module map 117 

procedure LKED 61-63 
procedure LKEDG 63-64 
processing history, tracing 

CSECT Identification record 18 
processing options, special 42 
program fetch 

functions 11 
prompter 

linkage editor, function of 21 
loader, function of 127 

pseudo register 
defi ni ti on 7 
module map 117 
processing of 16, 112 

read-only attribute, assignment 21 
RECFM 

See record format 
record format (RECFM) 

linkage editor data sets 
diagnostic output 59 
input 54-55 
load modules 55-59 

loader data sets 133 
record size 

maximum 
device type 45 

reenterable attribute 39 
reenterable load module 

module attribute 39 
REFR attribute 40 
refreshable attribute 40 
refreshable load module 

module attribute 42 
REGION parameter 

specifying storage 53 
region, overlay programs 

specifying 177 
using 173 

region, virtual storage 
linkage editor 

cataloged procedures 61 
SIZE option 49 

loader 140 
relocating a load module 4 
relocation dictionary 

number of entries 160 
using 9 

RENT attribute 39 
replace function 95-101, 109 
REPLACE statement 

deleting CSECT 101 
example 99 
sample program 146-150 
summary 88-89 
using 98 

replacing control sections, assembler 
language note 96 

replacing external symbols 
See CHANGE statement, changing 
external symbols 

replacing load modules with the same 
name 109 

repositioning control statements 
automatic call library 181 
INSERT control statement 76, 178 

202 MVS/XA Linkage Editor and Loader User's Guide 



(-

(. 

reprocessing load modules 
entry point assignment 110 
not editable attribute 38 

RES loader option 131 
reserving storage III 
residence mode 

assignment 
linkage editor 20 
loader 123 
output load module 107 

combinations 
addressing mode 41 
loader 124 

control section name 7 
default 20 
entry point III 
implied 124 
options 182 
override 20 
parameter 

linkage editor 41 
loader 131 

private code 7 
resolving external references 12, 27 
restricted no-call function 30 
restrictions, virtual storage size 
requirements 40 

return codes 
linkage editor 53 
loader 192 
severity code 114 

REUS attribute 39 
reusability attributes 

general description 39 
reenterable 39 
serially reusable 39 

RLD 
See relocation dictionary 

RMODE 
See residence mode 

root segments 
definition 163 
OVERLAY 176 
segment table 173 

sample programs 145 
scatter loading 37 
SCTR attribute 37 
SEGLD macro 185 
segment 166, 168, 169, 172 

See also exclusive. inclusive. root 
segments 

communication 169-172 
dependency 166 
origin 168 

segment load macro 188 
segment table 173 
segment wait macro 

SEGLD 189 
using 188 

SEGTAB (segment table) 173 
SEGWT macro 

SEGLD 189 
using 188 

sequential data set 
INCLUDE statement 33 
input to linkage editor 22, 33 
input to loader 133 

serially reusable 

attri bute 39 
SETCODE statement 19, 90 
SETSSI statement 91 
severity code 

linkage editor messages 114 
return codes 53 
severity 0,2 errors 114 

SIZE option 
linkage editor 43, 60 
loader 131. 190 

space allocation 
DCBS option 49 
maximum values 43. 47 
minimum values 43, 47 
SIZE option 43 
specifying storage 43 

special processing options 
affecting automatic library call 

mechanism 42 
affecting output module 42 
summary 17 

static external areas III 
SYSLIB DD statement 

automatic call library 27 
linkage editor 56 
loader 134 

SYSLIN DD statement 55, 133 
See also automatic call library for 

loader 
linkage editor 55, 133 

SYSLMOD DD statement 57. 112, 113 
See also output module library 
function 57 
NAME statement 112-113 
referenced by INCLUDE statement 57 

SYSLOUT DD statement 131, 134 
SYSPRINT DD statement 57 
system call library 

example 28 
list 28 

system status index information, storage 
of 18 

SYSTERM data set 
linkage editor 51, 59, 115 
loader 133, 134, 143 

SYSTERM DD statement 
linkage editor 51, 59, 115 
loader 133, 134, 143 

SYSUTI DD statement 56 

TEMPNAME 108 
temporary data set 24, 108 
TERM option 

linkage editor 51, 59, 115 
loader 132 

TEST attribute 40 
text 

message 115 
note 8 
processing out-of-order 6 

time sharing option 
See TSO 

tracing processing history 18 
TRANSFORM table 172 
tree structure 

positioning of segments 166 
purpose of 165 

TSO (time sharing option) 
linkage editor 

Index 203 



invoking 21 
SYSTERM data set 59 
TERM aptian 115 

loader 
invoking 127 
SYSTERM data set 132, 134 
TERM option 132 

unnumbered messages 113-114 
unresolved references 

automatic library-call, resolving 
with 27 

cross-reference table 118 
upward reference, definition 163 
user-specified 

input 9 
storage 17 

user-written library 29 

V-type address constant 
branch instruction, overlay 187 
CAll 187 
SEGLD 188 
SEGWT 189 

valid exclusive reference 170 

virtual storage requirements 
linkage editor 160 
loader 190 
overlay programs 184-185 
restrictions 40 

wait for loading of segment 188 
warning messages 114-115 
weak external reference 

automatic library-call 27 
crass-reference table 118 
definition 7 
level F linkage editor 15 

XCAL aptian 
XCTL macro 

input to 
invoking 

XREF aptian 

42, 182 

loader 127 
the loader 

50 
138 

204 MVS/XA Linkage Editor and Loader User'. Guide 



E g 
'" 0 E .... 
0." 
'5 :c 
0'''' "'-"'~ c: .. 
';; 0 ...... 
o '" "'0. 
=cv to ... 

Ei 
i E ... E 
E 6, 
o ... 
"'", 

t E 'p 
~.Ci.i 
..0 c: 
o '" ... '" 0.", 

'" ... '" :l 
:l '" 
~ f 
c:o. 
to '" U U> 

'" :l 

'" '" - '" 0.., ., '" ... -
(1)0. 

Gl o z 

MVS/XA Linkage Editor and Loader 
User's Guide 
GC26-4011-2 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM 
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter, 
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate 
without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate. 

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not 
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for 
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality. 

If you have applied any technical newsletters (TNLs) to this book, please list them here: _____________ _ 

Chapter/Section _______________________________________ _ 

Page No. _____________ _ 

Comments: 

If you want a reply, please complete the following information. 

Name ____________________________ _ Phone No. ( __ ) __________ _ 

Company _______________________________________________________________________________ _ 

Address 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the 
back of the title page.) 



GC26-4011-2 

Reader's Comment Form 

Fold and tape Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO_ 40 ARMONK, N_Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

I I II I 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

.............................................................................................................................................. : 

Fold and tape PI ease do not staple Fold and tape 

--...------- - ------- -. ---- -- ---------~-,-
(I) 

-- ~------------------ ----~---- .. -------------------------~ 

;f ." , . "";/ 




