

(

--------- ----
55 "::'=~'5:

. Order Number
GC26-4149-2

MVS/Extended Architecture
System - Data Administration

Data Facility Product
5665-XA2

------~-"---'--'---~~--------- ----_._--_. __ ... _-----_.-

Licensed
Program

Version 2
Release 3.0

Third Edition (June 1987)

This is a major revision of, and makes obsolete, GC26-4149-1.

This edition applies to Version 2 Release 3.0 of MVS/Extended Architecture Data
Facility Product, Licensed Product 5665-XA2, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the
preface. Specific changes are indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page affected. Editorial
changes that have no technical significance are not noted.

Changes ate made periodically to this publication; before using this publication in
connection with the operation of mM systems, consult the latest IBM System/3 70, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to mM products, programs, or services do not imply that
IBM intends to make these available in all countries in which mM operates. Any
reference to an mM licensed program in this publication is not intended to state or imply
that only mM's program may be lised. Any functionally equivalent program may be used
instead.

Requests for mM pUblications should be made to your mM representative or to the mM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked there.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to mM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. mM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1985, 1986, 1987

Preface

Organization

(

(-

This publication provides information for system programmers about
MVS/Extended Architecture Data Facility Product, and how to modify and extend
the data management capabilities of the operating system.

This publication contains the following chapters and appendixes:

• Chapter 1, "Managing the Volume Table of Contents (VTOC)" on page 1,
defines and discusses the structure of the VTOC and VTOC index, and the use
of system macros to read a data set control block (DSCB), rename a data set,
delete a data set from the VTOC, or obtain DASD volume free space
information.

• Chapter 2, "Executing Your Own Channel Programs (EXCP)" on page 63,
defines and discusses the use of the EXCP macro to control the organization of
data based on device characteristics with your own channel programs.

• Chapter 3, "Reading from and Writing to Direct Access Devices (XDAP)" on
page 99, defines and discusses the use of the XDAP macro to read, verify, and
update blocks without using an access method.

• Chapter 4, "Password Protecting Data Sets" on page 111, defines and
discusses system password protection and how to create and maintain the
PASSWORD data set.

• The information formerly in Chapter 5, "Exit Routines" on page 125 has
been moved to Data Facility Product: Customization.

• Chapter 6, "System Macro Instructions" on page 127, defines and discusses
the system macros used to refer to, validate, and modify system data areas.

• Chapter 7, "Maintaining SYS1.IMAGELm" on page 203, defines and
discusses adding a UCS or FCB image to the system image library, and
maintaining the UCS image tables.

• Chapter 8, "JES2 Support for the mM 1403, 3203 ModelS, and 3211
Printers" on page 225, defines and discusses JES2 support for UCS alias
names and the 3211 indexing feature.

Preface iii

• The information formerly in Chapter 9, "CATALOG, SCRATCH, and
RENAME Dummy Modules" on page 227 has been moved to Data Facility
Product: Customization.

• Chapter 10, "Specifying Buffer Numbers for DASD Data Sets" on page 229,
defines and discusses the performance considerations when using the BUFNO
keyword and subparameter.

• Appendix A, "CV AF VTOC Access Macros" on page 231, defines and
discusses the format of the VTOC access macros: CV AFDIR, CV AFDSM,
CV AFFILT, CV AFSEQ, and CV AFTST, and their return codes.

• Appendix B, "Examples of VTOC Access Macros" on page 259, defines and
discusses examples of using the VTOC access macros in your programs.

• Appendix C, "VTOC Index Error Message and Associated Codes" on
page 297, defines and discusses the error message and field codes issued by
the Common VTOC Access Facility (CVAF).

• The information formerly in Appendix D, "Example of an OPEN Installation
Exit Module" on page 305 has been moved to Data Facility Product:
Customization.

• Appendix E, "DFP ISMF Services" on page 307, defines and discusses the
DFP user services available with ISMF.

Prerequisite Knowledge

In order to use this book efficiently, you should be familiar with the following
topics:

• Assembler language

• Standard progr~ linkage conventions

• The utility programs IEHLIST and IEHPROGM

• Data management access methods and macro instructions

Required Publications

You should be familiar with the information presented in the following
publications:

• Assembler H Version 2 Application Programming: Language Reference,
GC26-4037, and Assembler H Version 2 Application Programming: Guide,
GC26-4036, contain more information on coding in assembler language.

• MVS / Extended Architecture System Programming Library: Supervisor Services
and Macro Instructions, GC28-1154, contains a description of standard linkage
conventions.

iv MVS/XA System-Data Administration

• MVS/Extended Architecture Data Administration: Utilities, GC26-4150,
describes how to use IEHLIST to maintain the VTOC, and IEHPROGM to
protect data sets.

• MVS/Extended Architecture Data Administration Guide, GC26-4140, and
MVS/ Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4141, contain information on using access methods and macro
instructions to do input and output.

Specific prerequisite reading is listed at the beginning of some chapters, as it relates
to the particular topic.

Related Publications

Within the text, references are made to the pUblications listed in the table below.

Short Title
(as it appears
in the text) Publication Title Order Number

Access Method MVS / Extended Architecture GC26-4135 ---
Services Reference Integrated Catalog

Administration: Access Method
Services Reference

GC26-4136
MVS / Extended Architecture
VSAM Catalog Administration:
Access Method Services Reference

Assembler H V2 Assembler H Version 2 SC26-4036
Application Application Programming: Guide
Programming:
Guide

Assembler H V2 Assembler H Version 2 GC26-4037
Application Application Programming:
Programming: Language Reference
Language
Reference

Checkpoint/Restart MVS / Extended Architecture GC26-4139
User's Guide Checkpoint/Restart User's Guide

Conversion MVS / Extended Architecture GC28-1143
Notebook Conversion Notebook

Data MVS / Extended Architecture Data GC26-4140
Administration Administration Guide
Guide

Preface V

~.

Short Title
(as it appears
in the text) Pub6cation Title Order Number

Data MVS / Extended Architecture Data GC26-4141
Administration: Administration: Macro
Macro Instruction Instruction Reference
Reference

Data Facility MVS / Extended Architecture Data GC26-4267
Product: Facility Product: Version 2
Customization Customization

Debugging MVS / Extended Architecture LC28-11641

Handbook Debugging Handbook, Volumes 1 LC28-1165
through 5 LC28-1166

LC28-1167
LC28-1168

Device Support Device Support Facilities User's GC35-0033
Facilities User's Guide and Reference
Guide and
Reference

mM System/370 IBM System/3 70 Principles of GA22-7000
Principles of Operation
Operation

mM 2821 Control IBM 2821 Control Unit GA24-3312
Unit Component Component Description
Description

mM 3203 Printer IBM 3203 Printer Component GA33-1515
Component Description and Operator's Guide
Description and
Operator's Guide

mM 3211 Printer, IBM 3211 Printer, 3216 GA24-3543
3216 Interchangeable Train Cartridge,
Interchangeable and 3811 Printer Control Unit
Train Cartridge, Component Description and
and 3811 Printer Operator's Guide
Control Unit
Component
Description and
Operator's Guide

mM 3262 Printer IBM 3262 Printer Model 5 GA24-3936
Model 5 Product Product Description
Description

Note:

All five volumes may be ordered under one order number, LBOF-I015.

vi MVS/XA System-Data Administration

(Short TIde
(as it appears
in the text) PubHcation TIde Order Number

mM 3800 Printing IBM 3800 Printing Subsystem GC26-3846
Subsystem Programmer's Guide
Programmer's
Guide

mM 4245 Printer IBM 4245 Printer Modell GA33-l54l
Modell Component Description and
Component Operator's Guide
Description and
Operator's Guide

mM 4248 Printer IBM 4248 Printer Description GA24-3927
Description

Initialization and MVS / Extended Architecture GC28-1149
Tuning System Programming Library:

Initialization and Tuning

JCL User's Guide MVS / Extended Architecture JCL GC28-l35l
User's Guide -" .. -

JCL Reference MVS / Extended Architecture JCL .- -oC28-l352
Reference

JES2 Initialization MVS / Extended Architecture SC23-0065
and Tuning System Programming Library:

JES2 Initialization and Tuning (
JES3 Data Areas MVS / Extended Architecture Data LYB8-1195

Areas (MVS/JES3)

JES3 Initialization MVS / Extended Architecture SC23-0059
and Tuning System Programming Library:

JES3 Initialization and Tuning

Linkage Editor and MVS / Extended Architecture GC26-4l43
Loader User's Linkage Editor and Loader User's
Guide Guide

Magnetic Tape MVS / Extended Architecture GC26-4l45
Labels and File Magnetic Tape Labels and File
Structure Structure Administration
Administration

Open/Close/BOY MVS / Extended Architecture LY26-3966
Logic Open/Close/EO V Logic

RACF General Resource Access Control Facility GC28-0722
Information (RACF): General Information

Manual

Preface vii

Short Title
(as it appears
in the text) PubHcation Title Order Number

Service Aids MVS I Extended Architecture GC28-1159
System Programming Library:
Service Aids

Supervisor Services MVS I Extended Architecture GC28-1154
and Macro System Programming Library:
Instructions Supervisor Services and Macro

Instructions

System Generation MVS I Extended Architecture GC26-4148
Installation: System Generation

System Logic MVS I Extended Architecture LY28-1234 (Part
Library System Logic Library: Volume 8 1)

of 17, Parts 1 and 2 (lOS) L Y28-1235 (Part
2)

System Macros and MVS I Extended Architecture GC28-1l50
Facilities System Programming Library: GC28-1151

System Macros and Facilities,
Volumes 1 and 2

System Messages MVS I Extended Architecture GC28-1376
Message Library: System GC28-1377
Messages, Volumes 1 and 2 _/ ._"

TSOCommand MVS Extended Architecture TSO GC28-0646
Language Command Language Reference
Reference (OS/VS2 TSO Command

Language Reference, as updated
by Supplement SD23-0259 for
MVS/XA)

TSO IE Data Areas MVS I Extended Architecture LYB8-1119
TSO IE Data Areas (plus
Supplement LDB3-0276)

Utilities MVS I Extended Architecture Data GC26-4150
Administration: Utilities

VSAM MVS I Extended Architecture GC26-4152
Administration: VSAM Administration: Macro
Macro Instruction Instruction Reference
Reference

viii MVS/XA System-Data Administration

---------------------------- --- -----

(

(/

Notational Conventions

A uniform system of notation describes the format of data management macro
instructions. This notation is not part of the language; it simply provides a basis for
describing the structure of the commands.

The command format illustrations in this book use the following conventions:

• Brackets (] indicate an optional parameter.

• Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

• Items separated by a vertical bar (I) represent alternative items. No more
than one of these items may be selected.

• An ellipsis (•••) indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

• Other punctuation (such as parentheses, commas, and spaces) must be entered
as shown. A space is indicated by a blank.

• BOLDFACE type indicates the exact characters to be entered, except as
described in the bullets above. Such items must be entered exactly as
illustrated.

• Lowercase italic type specifies fields to be supplied by the user.

• BOLDFACE UNDERSCORED type indicates a default option. If the
parameter is omitted, the underscored value is assumed.

• Parentheses () must enclose subfields if more than one is specified. If only
one subfield is specified, you may omit the parentheses.

Address and Register Conventions

The following describes the meaning of each notation used to show how an
operand can be coded:

symbol

(0)

(1)

The operand can be any valid assembler-language symbol.

General register 0 can be used as an operand. When used as an operand in a
macro instruction, the register must be specified as the decimal digit 0
enclosed in parentheses as shown above.

General register 1 can be used as an operand. When used as an operand in a
macro instruction, the register must be specified as the decimal digit 1
enclosed in parentheses as shown above. When you use register 1, the
instruction that loads it is not included in the macro expansion.

Preface ix

(2-12)
The operand specified can be any of the general registers 2 through 12. All
registers as operands must be coded in parentheses; for example, if register 3
is coded, it is coded as (3). When one of the registers 2 through 12 is used. it
can be coded as a decimal digit, symbol (equated to a decimal digit), or an
expression that results in a value of 2 through 12.

RX-Type Address
The operand can be specified as any valid assembler-language RX-type
address. The following shows examples of each valid RX-type address:

Name
ALPHA 1
ALPHA2
BETAl
BETA2
GAMMAl
GAMMA2
GAMMA3
LAMBDA 1

Operation
L
L
L
L
L
L
L
L

Operand
1,39(4,10)
REG 1,39(4,TEN)
2,ZETA(4)
REG2,ZETA(REG4)
2,ZETA
REG2,ZETA
2,=F'I000'
3,20(,5)

Both ALPHA instructions specify explicit addresses; REG 1 and TEN have
been defined as absolute symbols. Both BETA instructions specify implied
addresses, and both use index registers. Indexing is omitted from the
GAMMA instructions. GAMMAI and GAMMA2 specify implied
addresses. The second operand of GAMMA3 is a literal. LAMBDAI
specifies an explicit address with no indexing.

A -Type Address
The operand can be specified as any address that can be written as a valid
assembler-language A-type address constant. An A-type address constant
can be written as an absolute value, a relocatable symbol, or relocatable
expression. Operands that require an A-type address are inserted into an
A-type address constant during the macro expansion process. For more
details about A-type address constants, see Assembler H Version 2
Application Programming: LAnguage Reference.

absexp

relexp

The operand can be an absolute value or expression. An absolute expression
can be an absolute term or an arithmetic combination of absolute terms. An
absolute term can be a nonrelocatable symbol, a self-defining term, or the
length attribute reference. For more details about absolute expressions, see
Assembler H Version 2 Application Programming: LAnguage Reference.
OS/VS-DOS/VSE-VM/ 370 Assembler LAnguage.

The operand can be a relocatable symbol or expression. A relocatable
symbol or expression is one whose value changes by n if the program where
it appears is relocated n bytes away from its originally assigned area of
storage. For more details about relocatable symbols and expressions, see
Assembler H Version 2 Application Programming: LAnguage Reference.

x MVS/XA System-Data Administration

./ ."

(

(

Summary of Changes

I Release 3.0, June 1987

Enhancements and New Support

Data sets may now be retained beyond the year 1999 or be retained indefinitely
(never-scratch). "Deleting a Data Set from the VTOC (SCRATCH and CAMLST
SCRATCH)" on page 33 describes never-scratch designations.

Information about the new LSPACE macro instruction has been added.
Chapter 1, "Managing the Volume Table of Contents (VTOC)" on page 1,
explains how to use the LSPACE macro to determine the amount of free space and
the degree of space fragmentation on a direct access volume. The LSPACE macro
also allows you to obtain VTOC status information.

Open, Close, and End-of-Volume parameter lists may now reside at an address
above 16 megabytes. Chapter 2, "Executing Your Own Channel Programs
(EXCP)" on page 63 explains the changes to the EOV macro format and
description in support of parameter lists above 16 megabytes.

The retrieval area for information extracted from a JPCB can now be allocated at
an address above 16 megabytes. Chapter 6, "System Macro Instructions" on
page 127 now includes the following information in support of the retrieval area
above 16 megabytes.

• The differences in the RDJFCB and OPEN macro operands and parameter
lists.

• The new XI 13 I exit list entry code.

• The use of the IHAARL macro.

Information related to customizing the Data Facility Product for individual users
has been moved to Data Facility Product: Customization, a new book. This includes
the information in Chapter 2 under "Appendages" on page 71, all of Chapter 5
(including the new information about the conventions that installation-written
DADSM preprocessing and postprocessing modules must follow for 31-bit versus
24-bit addressing), all of Chapter 9, and the example formerly in Appendix D.

Summary of Changes xi

Service changes have been made throughout the manual, and are indicated in the
text by revision bars.

Release 2.0, June 1986

Enhancements and New Support

Information has been added for support of CV AF Filter Services.

• The format of the CVPL in Chapter 1, "Managing the Volume Table of
Contents," has been updated.

• Appen~ A now contains the CV AFFIL T macro syntax and explains the
parameters, register contents, and return codes.

• Appendix B now contains an example of a CV AFFIL T invocation.

Information has been added for support of DASD Calculation Services.

• Chapter 5, "Exit Routines," describes the use of the DASD Calculation
Services precalculation and postcalculation installation exits. It also explains
the parameters, register contents, and return codes.

Appendix E has been added to provide interface information for DFP /ISMF
services.

Chapter 1, "Managing the Volume Table of Contents," has been reorganized and
rewritten.

Chapter 7, "Maintaining SYS1.IMAGELm," has been reorganized and rewritten.

Service changes have been made throughout the manual, and are indicated in the
text by revision bars.

Release 1.0, April 1985

Enhancements and New Support

The SCRATCH and CAMLST SCRATCH macro descriptions have been updated
to include support for the erasure of residual DASD data.

Information has been added to the description of the REALLOC macro for
DADSM support of DFDSS that:

• Describes the new support and explains what it does.

• Adds new keywords.

xii MVS/XA System-Data Administration

(
• Adds new return codes.

The PARTREL macro has been added to the partial release section that:

• Describes the new support and explains what it does.

• Adds all keywords and descriptions.

• Adds new return codes.

Information supporting the ERASE-ON-SCRATCH option for RACF-defined
data sets has been added to "Deleting a Data Set from the VTOC (SCRATCH and
CAMLST SCRATCH)" on page 33.

Information has been added to Figure 29 on page 134 to support the:

• 3262 ModelS Printer.

• 4245 Printer.

• 4248 Printer.

Information has been added to support the IBM 3380 (all models).

The following IBM 3480 Magnetic Tape Subsystem support information has been
added:

• The high-speed positioning feature.

• Chapter 6, "System Macro Instructions" on page 127, has been updated.

• The MSGDISP macro has been added to permit loading a message display on
the 3480.

• The 3480 has been added to Figure 29 on page 134.

Summary of Changes xiii

Version 2 Pub6cations

"High-Speed mM 3480 Positioning" on page 149 in Chapter 6, "System Macro
Instructions" on page 127 has been added and describes how to set the tape block
ID for the mM 3480 Magnetic Tape Subsystem in full function mode.

Chapter 1, formerly titled "Controlling Space on DASD Volumes," has been
renamed, "Managing the Volume Table of Contents (VTOC)."

The Preface includes new order numbers for Version 2.

xiv MVS/XA System-Data Administration

/

(

Contents

Chapter 1. Managing the Volume Table of Contents (VTOC) ••••••••••••••• 1
TheVTOC ... 1

Data Set Control Block (DSCB) Format Types 3
Allocating and Releasing DASD Space 5

The VTOC Index .. 8
An Example of a VTOC and Its Index 8
The VTOC Index Entry Record (VIER) 9
The VTOC Pack Space Map (VPSM) 12
The VTOC Index Map (VIXM) 14
The VTOC Map of DSCBs (VMDS) 15
Structure of an Indexed VTOC 16
Scratch/Rename/Allocate Restrictions 16

Initializing and Maintaining the VTOC 17
Creating the VTOC and VTOC Index 17
Protecting the VTOC and VTOC Index 17
Copying/Restoring/Initializing the VTOC 18
Operations on Volumes Containing a Nonindexed VTOC 18
Operations on Volumes Containing an Indexed VTOC 18

Accessing the VTOC with DADSM Macros 19
Obtaining DASD Volume Information (LSPACE) 20
Reading a Control Block from the VTOC 29
Deleting a Data Set from the VTOC (SCRATCH and CAMLST

SCRATCH) .. 33
Renaming a Data Set in the VTOC (RENAME and CAMLST RENAME) 38

Accessing the VTOC and its Index with CV AF Macros 42
Diagnosing VTOC Errors 60
Listing a VTOC/and VTOC Index 61

Chapter 2. Executing Your Own Channel Programs (EXCP) ••••••••••••••• 63
Using EXCP in System and Problem Programs 64

How the System Uses EXCP 64
How To Use EXCP in Problem Programs 65
31-Bit IDA W Requirements 66
How EXCP Operates in a V -R Address Space 66

EXCP Requirements ... 67
Channel Program ... 67
Control Blocks ... 67

How the Channel Program Executes 68
Initiation of the Channel Program 68
Modification of a Channel Program during Execution 70
Completion of Execution 70
Interruption Handling and Error Recovery Procedures 70

Appendages ... 71
Channel Programming Considerations 72

Contents XV

Macro Specifications for Use with EXCP 73
Defining Data Control Blocks for EXCP (DCB)
Initializing Data Control Blocks (OPEN) ~
Executing a Channel Program (EXCP)

73 f~

80
I

81
'''-'oj

End of Yolume (EOY) .. . 81
Restoring Data Control Blocks (CLOSE) 83
Assigning an Alternate Track and Copying Data from the Defective Track

(ATLAS) 83
Control Block Fields .. . 88

Input/Output Block (lOB) Fields 89
Event Control Block (ECB) Fields 92
Data Extent Block (DEB) Fields ' 92

Executing Fixed Channel Programs in Real Storage (EXCPVR) 92
Building the List of Data Areas to Be Fixed 94
Page Fix (PGFX) and Start-I/O (SIO) Appendage 94

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) •••••• 99
XDAP Requirements ... 100
Macro Specifications for Use with XDAP 100

Defining a Data Control Block (DCB) 100
Initializing a Data Control Block (OPEN) 101
Executing Direct Access Programs (XDAP) 101
End of Yolume (EOY) .. 104
Restoring a Data Control Block (CLOSE) 104

Control Blocks Used with XDAP 104
Event Control Block (ECB) 104
Input/Output Block (lOB) 105
Direct Access Channel Program 105

Converting a Relative Track Address to an Actual Track Address 106
Return Codes from the Conversion Routine 107

Converting an Actual Track Address to a .Relative Track Address 107
Obtaining Sector Number of a Block on a Device with the RPS Feature 108

Chapter 4. Password Protecting Data Sets ••••••••••••••••••••••••••• 111
Providing Data Set Security 112

PASSWORD Data Set Characteristics 113
Creating Protected Data Sets 113
Protection Feature Operating Characteristics 114

Maintaining the PASSWORD Data Set (PROTECT Macro) 116
PASSWORD Data Set Characteristics and Record Format (With

PROTECT macro) 116
PROTECT Macro Syntax 117
PROTECT Macro Parameter Lists 118
Return Codes from the PROTECT Macro 124

Chapter S. Exit RoutiD.es•............. US

Chapter 6. System Macro Instructions •••••••••••••••••••••••••••••• U7
Introduction 127
Mapping System Data Areas 128

IEFUCBOB-Mapping the UCB 128
IEFJFCBN-Mapping the JFCB 128
CVT-Mapping the CVT

Obtaining I/O Device Characteristics
129

(f~' 129
,~o//

xvi MVS/XA System-Data Administration

DEVTYPE Macro Specification 130
Device Characteristics Information 131
Return Codes from the DEVTYPE Macro 133
DEVTYPE-List Form 136
DEVTYPE-Execute Form 136

Reading and Modifying a Job File Control Block 136
RDJFCB-Read a Job File Control Block. 137
DEQ at Demount Facility for Tape Volumes 147
OPEN-Initialize Data Control Block for Processing the JFCB 148
High-Speed mM 3480 Positioning 149

Ensuring Data Security by Validating the Data Extent Block 151
DEBCHK-Macro Specification 152

Purging and Restoring I/O Requests 156
PURGE-Halt or Finish I/O-Request Processing 158
Modifying the lOB Chain 161
RESTORE-Reprocess I/O Requests 161

Performing Track Calculations 162
TRKCALC-Standard Form 162
TRKCALC-Execute Form 165
TRKCALC-List Form 167
TRKCALC-DSECT Only 167
Input Register Usage for All Forms of MF 167
Output from TRKCALC 168
Return Codes from TRKCALC 169
TRKCALC Macro Examples 169

Releasing Unused Space from a DASD Data Set 170
The PARTREL Macro .. 170

(PARTREL-Execute Form 171
PARTREL-ListForm 172
PARTREL-DSECTForm 173
Return Codes From P ARTREL 174

Allocating a DASD Data Set 174
REALLOC-Execute Form .. 176
REALLOC-List Form 179
REALLOC-DSECT Only 180
Return Codes from REALLOC 181

Message Displays on the mM 3480 Magnetic Tape Subsystem 184
MSGDISP-Displaying a Mount Message 184
MSGDISP-Displaying a Verify Message 187
MSGDISP-Displaying a Ready Message 189
MSGDISP-Displaying a Demount Message 191
MSGDISP-Resetting the Message Display 194
MSGDISP-Providing the Full Range of Display Options 197
Return Codes from MSGDISP 200

Chapter 7. Maintaining SYSl.IMAGELm •••.•••••...•••••.••.•••..• 203
ues Images in SYSl.IMAGELIB 204

Adding a ues Image to the Image Library 204
UCS Image Tables in SYS1.IMAGELffi 209
Examples of Adding to the ues Image Table 216

FCB Images in SYSl.IMAGELffi 217
Adding an FCB Image to the Image Library 219
Retrieving an FeB Image from SYS1.IMAGELffi 222

Chapter 8. JES2 Support for the mM 1403, 3203 Model 5, and 3211 Printers 225

Contents xvii

UCS Alias Names .. 225
The 3211 Indexing Feature 226
mM 3203 Model 5 Printer 226

Chapter 9. CATALOG, SCRATCH, and RENAME Dummy Modules •••••• 227

Chapter 10. Specifying Buffer Numbers for DASD Data Sets.... •••• ••••• 229
Performance Considerations 229

Appendix A. CV AF VTOC Access Macros •••••••••••••••••••••••.•••• 231
CV AFDIR. Macro .. 231

Overview of the CV AFDIR Macro 231
Syntax ... 231
ACCESS: Read or Write a DSCB or VIR(S), or Release Buffer Lists ... 232
DSN: Specify the Name of the DSCB 233
BUFLIST: Specify One or More Buffer Lists 233
VERIFY: Verify that a DSCB is a Format-O DSCB 233
UCB I DEB: Specify the VTOC to Be Accessed 233
IOAREA: Keep or Free the I/O Work Area 234
MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers 235
IXRCDS: Retain VIERS in Virtual Storage 236
BRANCH: Specify the Entry to the Macro 237
MF: Specify the Form of the Macro 237
Return Codes from the CVAFDIR. Macro 238

CV AFDSM Macro ... 239
Overview of the CV AFDSM Macro 239
Syntax ... 239
ACCESS=MAPDATA: Request Information from the Index Space Maps 239
MAP: Identify the Map to Be Accessed 240
EXTENTS: Identify Where Extents from the VPSM Are Returned 240
MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers 240
UCB I DEB: Specify the VTOC to Be Accessed 241
COUNT: Obtain a Count of Unallocated DSCBs or VIRs 242
CT AREA: Supply a Field to Contain the Number of Format-O DSCBs .. 242
IOAREA: Keep or Free the I/O Work Area 242
BRANCH: Specify the Entry to the Macro 243
MF: Specify the Form of the Macro 243
Return Codes from the CV AFDSM Macro 244

CV AFFIL T Macro ... 245
Overview of the CV AFFIL T Macro 245
Syntax ... 245
Control Block Address Resolution: .. 245
ACCESS: Retrieve or Resume Retrieving a DSCB, or Release FLTAREA

and/ or IOAREA ... 246
UCB I DEB: Specify the VTOC to Be Accessed 247
BUFLIST: Specify a Buffer List 247
FCL: Specify a Filter Criteria List 247
FL T AREA: Keep or Free the Filter Save Area 247
IOAREA: Keep or Free the I/O Work Area 248
BRANCH: Specify the Entry to the Macro 248
MF: Specify the Form of the Macro 249
Return Codes from the CVAFFILT macro 249
Examples of Partially Qualified Names for CV AFFILT 250

CV AFSEQ Macro ... 251

xviii MVS/XA System-Data Administration

",'--"\
~~j

(,

(

--- .-~--.----

Overview of the CV AFSEQ Macro 251
Syntax ... 251
ACCESS: Specify Relationship between Supplied and Returned DSN ... 251
BUFLIST: Specify One or More Buffer Lists 251
DSN: Specify Access by DSN Order or by Physical-Sequential Order ... 252
UCB I DEB: Specify the VTOC to Be Accessed 252
DSNONLY: Specify That Only the Data Set Name Be Read 253
ARG: Specify Where the Argument of the DSCB Is to Be Returned 253
IOAREA: Keep or Free the I/O Work Area 253
IXRCDS: Retain VIERs in Virtual Storage 254
BRANCH: Specify the Entry to the Macro :..... 255
MF: Specify the Form of the Macro 255
Return Codes from the CV AFSEQ Macro 256

CV AFTST Macro .. 257
Overview of the CV AFTST Macro ". 257
Syntax ... 257
UCB: Specify the VTOC to Be Tested 257
Return Codes from the CV AFTST Macro 258

Appendix B. Examples of VTOC Access Macros ••••••••••••••••••••••• 259
Example 1: Using the CV AFDIR Macro with an Indexed or Nonindexed

VTOC ... 259
Example 2: Using the CV AFDIR Macro with an Indexed VTOC 265
Example 3: Using the CV AFFILT Macro 271
Example 4: Using the CV AFSEQ Macro with an Indexed VTOC 277
Example 5: Using the CVAFSEQ Macro with a Nonindexed VTOC 285
Example 6: Using the CV AFTST and CV AFDSM Macros 292

Appendix C. VTOC Index Error Message and Associated Codes ••••••••••• 297
Error Message '................ 297

Explanation .. 297
System Action .. 297
Programmer Response .. 298
Routing and Descriptor Codes 298

Codes Put in the CVSTAT Field 298

Appendix D. Exainple of an OPEN InstaDation Exit Module •••••••••••••• 305

Appendix E. DFP ISMF Services .••••••••••••••••••••••••••••••••• 307
Introduction .. 307

Standard Linkage and Error Handling 307
Input Register Usage ... 307
Output Register Usage .. 308

DFP ISMF Services .. 310
DGTCDT01 Decrement Use Count 310
DGTCDV01 Data Set Name Syntax Verification 311
DGTCEPOI Free Storage and Exit 313
DGTCFM01 Free Memory 314
DGTCGM01 Get Storage 315
DGTCLD01 Load a Module 316
DGTCLG01 Place Information in the ISPF Log 317
DGTCPR01 Obtain Automatic Data Area 318
DGTCVV01 Volume Serial Number Syntax Verification 319
DGTCW001 Word Finder 320
DGTFARF1 Find an Entry in the Data Set List Array 321

Contents xix

DGTFARPI Position Current Row Pointer at Top of List 322
DGTFARSI Obtain Count of Data Sets 323
DGTFARUI Update Data Set List Array 324
DGTFCTCK Verify Commands 325
DGTFCTPR Process commands 326
DGTFCTSE Enable Valid Commands 327
DGTFFOEI Obtain Input Information From the Screen Area Image 328
DGTFFOLI Refresh the Screen Image Area From the Data Set List Array . 329
DFP Common Services .. 330
IGBDISOO Call Device Information Services for UCB Address. 330
DFP ISMF Messages Available to External Applications 331
DFP ISMF Control Blocks Available to External Applications. 335

ARVT ...•.. 335
CLCB ... 335
CONH .. 336
CONH .. 336
CPPL ... 337
CTAP ... 338
CTFU ... 338
CTPL ... 339
CTVT ... 340
DAB .. 341
DABL ... 342
ERTB ... 343
ERNT ... 343
ET ... 344
FOVT ... 344
GDRB .. 345
IMTT ... 345
IMNT ... 346
LOGB .. 346
LPAP ... 347
LPCB ... 347
LPPL ... 348
PCCB ... 349
PVT .. 349
PVTV ... 350
SELB ... 351
SRVT ... 352

Index ...•.....•..••••.....•••.•...•..........•...•.....•..... 353

xx MVS/XA System-Data Administration

(

Figures

1. Locating the Volume Table of Contents (VTOC) 2
2. Contents of VTOC-DSCBs Describing Data Sets 7
3. Relationship of a VTOC to Its Index 9
4. Format of the VTOC Index Entry Record (VIER) 10
5. Structure of Linked VIERs 13
6. An Index Map ... 14
7. Format of a VTOC Map 15
8. Format of the LSPACE Parameter List (MF=D) 24
9. LSPACE Status Information Relationships 26

10. DADSM LSPACE Free Space Information Format, MF=(D,MSG) ... 27
11. DADSM LSPACE Message Area Contents 27
12. Format of the LSPACE Data Return Area 28
13. Format of the CV AF Parameter List (CVPL) 44
14. CVFCTN Field of CVPL-Contents and Definitions 45
15. Format of a Buffer List Header 46

(- 16. Format of a Buffer List Entry 47
17. Control Blocks Required for CV AF Filter Services 53
18. Format of a Filter Criteria List (FCL) Header 54
19. Format of a Filter Criteria List (FCL) Entry 56
20. Data Control Block (DCB) Format for EXCP (After OPEN) 75
21. Input/Output Block (lOB) Format 90
22. Event Control Block (ECB) after Posting of Completion Code (EXCP) 93
23. Event Control Block (ECB) after Posting of Completion Code

(XDAP) .. 105
24. The XDAP Channel Programs 106
25. Parameter List for ADD Function 118
26. Parameter List for REPLACE Function 120
27. Parameter List for DELETE Function 122
28. Parameter List for LIST Function. .. 123
29. Output from DEVTYPE Macro 134
30. Sample Code Using RDJFCB Macro 138
31. Format of the Allocation Retrieval List 144
32. Format of the Allocation Retrieval Area. .. 145
33. Sample Code Retrieving Allocation Information. 146
34. Macro Definition, JCL, and Utility Statements for Adding PURGE

Macro to the System Macro Library 157
35. Macro Definition, JCL, and Utility Statements for Adding RESTORE

Macro to the System Macro Library 158
36. The PIRL and lOB Chain... 161
37. Sample Code to Add a 1403 UCS Image to SYS1.IMAGELm 206
38. Sample Code to Add a 3203 UCS Image to SYS1.IMAGELm 207
39. Sample Code to Add a 3211 UCS Image to SYS1.IMAGELm 208
40. UCS Image Table Entry Format 210
41. UCS5 Image Table Contents 211

Figures xxi

42. UCS6 Image Table Contents 212
43. Sample of the Standard FCB Image SIDI 218
44. Sample of the Standard FCB Image SID2 219
45. Sample Code to Assemble and Add an FCB Load Module to

SYSl.IMAGELIB ... 221
46. DFP ISMF Messages Available to External Applications 331
47. DFP ISMF Problem Determination Messages 334

if~ '_ . ./

xxii MVS/XA System-Data Administration

Chapter 1. Managing the Volume Table of Contents (VTOC)

TheVTOC

.----.-.~--".------ .. -------------

The direct access device storage management (DADSM) routines control allocation
of space on direct access volumes through the volume table of contents (VTOC) of
that volume, and through the VTOC index if one exists. This chapter gives an
overview of the VTOC and the VTOC index and discusses how to use system
macros to access the VTOC and VTOC index.

The VTOC is a data set on a direct access volume that describes the contents of
that volume. It resides in a single extent (that is, it is a continuous data set)
anywhere on the volume after cylinder 0, track O. Its address is located in the
VOLVTOC field of the standard volume label (see Figure 1 on page 2).

Chapter 1. Managing the Volume Table of Contents (VTOC) 1

Standard Volume Label

VOLVTOC (10 bytes)
CCHHR of first
record in VTOC

11(B) J
~~/

~----_-.L/

Record
3

/
/

/
/

/

/

/
/

}

VTOC Data Set
(Can be located anywhere
on the volume after
cylinder 0, track 0.)

Figure 1. Locating the Volume Table of Contents (VTOC)

The VTOC is composed of 140-bytet data set control blocks (DSCBs) that
correspond either to a data set or VSAM data space currently residing on the
volume, or to contiguous, unassigned tracks on the volume. DSCBs for data sets or
data spaces describe their characteristics. DSCBs for contiguous, unassigned tracks
indicate their location.

The 140 bytes are defined as a 44-byte key portion followed by a 96-byte data
portion. You may make references to the logical 140-byte DSCB or to either of its
parts.

2 MVS/XA System-Data Administration

(
Data Set Control Block (DSeB) Format Types

Format-O DSCB

The VTOC has seven different kinds of DSCBs. This section lists the different
kinds of DSCBs, what they are used for, how many exist on a volume, and how
they are found.

The first record in every VTOC is the VTOC (format-4) DSCB that describes (1)
the device that the volume resides on, (2) the attributes of the volume itself, and
(3) the size and contents of the VTOC data set itself.

The format-4 DSCB is followed by a free-space (format-5) DSCB that, for a
nonindexed VTOC, lists the extents on the volume that have not been allocated to
a data set or VSAM data space. Each format-5 DSCB contains 26 extents. IT
there are more than 26 available extents on the volume, another format-5 DSCB
will be built for every 26 extents. The format-5 DSCBs are chained, using the last
field of each format-5 DSCB. An indexed VTOC does not use format-5 DSCBs
for describing free space; however, one empty format-5 DSCB is provided to allow
a basis for converting back to a nonindexed VTOC.

The third and subsequent DSCBs in the VTOC have no prescribed sequence.

A data set or VSAM data space is defined by one or more DSCBs in the VTOC of
each volume on which it resides. The number of DSCBs needed to define a data
set or VSAM data space is determined by (1) the organization of the data set
(ISAM data sets need a format-2 DSCB to describe the index) and (2) the number
of extents the data set or VSAM data space occupies (a format-3 DSCB is needed
to describe the 4th through the 16th extents; additional format-3 DSCBs may be
required to describe the extents for a VSAM data set cataloged in an Integrated
Catalog Facility catalog). Figure 2 on page 7 shows the general makeup of a
VTOC and the DSCBs needed to define two types of data sets (ISAM and
non-ISAM).

Data set A (in Figure 2 on page 7) is an ISAM data set; three DSCBs, a format-1,
format-2, and format-3, are identified. Data sets B, C, and D could be sequential,
partitioned, or direct data sets or they could be VSAM data spaces. Data set B has
more than three extents and therefore requires both a format-1 and a format-3
DSCB.

Data sets C and D have three or fewer extents and need only a format-1 DSCB.
The format-6 DSCB, pointed to by the format-4 DSCB, is used to keep track of
the extents allocated in order to be shared by two or more data sets (split-cylinder
data sets). For example, if data sets C and D share an extent made up of one or
more cylinders, this extent would be described in the format-6 DSCB. Note that
split-cylinder data sets cannot be allocated, but existing split-cylinder data sets can
still be processed.

NIIItIe: Free VTOC Record

FIHIdioIt: Describes an unused record in the VTOC (contains 140 bytes of binary
zeros). To delete a DSCB from the VTOC, a format-O DSCB is written over it.

Chapter 1. Managing the Volume Table of Contents (VTOC) 3

Fonnat-l DSCB

Fonnat-2 DSCB

Fonnat-3 DSCB

How M(IIIY: One for every unused 140-byte record on the VTOC. The
DS4DSREC field of the format-4 DSCB is a count of the number of format-O
DSCBs on the VTOC. This field is not maintained for an indexed VTOC.

How FOU1II/: Search on key equal to X'OO' (sometimes X'OOOOOOOO') for a
nonindexed VTOC; for an indexed VTOC, the VTOC map of DSCBs is used to
find a format-O DSCB.

Name: Identifier

F"nction: Describes the first three extents of a data set or VSAM data space.

How Many: One for every data set or data space on the volume, except the
VTOC.

How FOU1II/: Search on key equal to the data set name. For an indexed VTOC, a
CCHHR pointer for each data set name is in the VTOC index.

Name: Index

Function: Describes the indexes of an ISAM data set.

How M(IIIY: One for every ISAM data set (for a multivolume ISAM data set, a
format-2 DSCB exists only on the first volume).

How FOU1II/: Chained from a format-l DSCB that represents the data set.

Name: Extension

FIl1Idion: Describes the 4th through 16th extents of a data set or VSAM data
space. Data sets and VSAM data spaces are restricted to 16 extents per volume.
VSAM data sets cataloged in an Integrated Catalog Facility catalog may be
extended to a maximum of 123 extents, in which case there may be as many as ten
format-3 DSCBs.

How MallY: One for each data set or VSAM data space 'on the volume that has
more than three extents. There may be as many as ten for a VSAM data set
cataloged in an Integrated Catalog Facility catalog.

How FOU1II/: Chained from a format-2 or a format-l DSCB that represents the
data set or VSAM data space. In the case of a VSAM data set cataloged in an
Integrated Catalog Facility catalog, the chain may be from a preceding format-3
DSCB.

4 MVS/XA System-Data Administration

If' "'.

('~j

Format-4 DSCB

Format-5 DSCB

Format-6 DSCB

Name: VTOC

Fllnction: Describes the extent and contents of the VTOC and provides volume
and device characteristics. If the VTOC is indexed, certain fields of this DSCB are
not maintained by DADSM. See "Structure of an Indexed VTOC."

How Many: One on each volume.

How FOIIIIIl: VOL VTOC field of the standard volume label contains its address. It
is always the first record in the VTOC.

Name: Free Space

Flllldion: On a nonindexed VTOC, describes the space on a volume that has not
been allocated to a data set or to a VSAM data space (available space). For an
indexed VTOC, format-5 is zero, and the volume pack space map describes the
available space.

How Many: One for every 26 noncontiguous extents of available space on the
volume for a nonindexed VTOC; for an indexed VTOC, there is only one.

How Foll1lll: The first format-5 DSCB on the volume is always the second DSCB
of the VTOC. If there is more than one format-5 DSCB, it will be chained from
the previous format-5 DSCB via the DS5PTRDS field of each format-5 DSCB.

Name: Shared Extent

FIIIIdion: Describes the extents shared by two or more data sets (split-cylinder
extents).

How MallY: One for every 26 split-cylinder extents on the VTOC.

How FOIIIIIl: The address of the first format-6 DSCB is contained in the
DS4F6PTR field of the format-4 DSCB. If there is more than one format-6 DSCB
on the volume, it will be chained from the previous format-6 DSCB via the
DS6PTRDS field of the format-6 DSCB.

Allocating and Releasing DASD Space

The DADSM allocate and extend routines assign tracks and cylinders on direct
access volumes for new data sets and VSAM data spaces. The DADSM extend
routine obtains additional space for a data set or VSAM data space that has already
exceeded its original, primary allocation. The DADSM scratch and partial release
routines are used to release space that is no longer needed on a direct access
volume.

The DADSM routines allocate and release space by adding, deleting, and
modifying the DSCBs. When space is needed on a volume, the allocate routines

Chapter 1. Managing the Volume Table of Contents (VTOC) 5

search the appropriate DSCBs for enough contiguous, available tracks to satisfy the
request. H there are not enough contiguous tracks, the request is filled, using as
many as five noncontiguous groups of free tracks. The appropriate DSCBs are
modified to reflect the assignment of the tracks.

When space is released, the scratch routines free the DSCBs of the deleted data set
or data space. For a nonindexed VTOC, to indicate that the tracks containing the
affected data set or data space can be reallocated, a free space (format-5) DSCB is
built (or modified if existent). For an indexed VTOC, the index is updated.

6 MVS/XA System-Data Administration

rf~

'-J

(

(

(-

Standard Volume Label

VOLVTOC C 11 (B)

field
~~

VTOC Data Set

Format-4 DSCB First FS DSCB

Description of
26 available
extents

Description of
as many as 26
shared-cylinder
extents

DSCB for an ISAM
data set (Data Set A)

Data Set A

DSCB for a non-ISAM
data set (Data Sets B, C, D)
or a VSAM data space

Note: Empty boxes in the VTOC data set represent free VTOC Records (Format-O DSCBs)

Figure 2. Contents of VTOC-DSCBs Describing Data Sets

Chapter 1. Managing the Volume Table of Contents (VTOC) 7

The VTOC Index

--- ----------------

The VTOC index is a physical-sequential data set, residing on the same volume as
the VTOC. It contains an index of data set names of format-l DSCBs in the
VTOC and free space information. The index is searched instead of the hardware
keys.

The VTOC index is optional. You may build it when you initialize the volume, or
for an existing VTOC (with the volume online or offline). You may subsequently
inactivate it (online or offline) so that the VTOC is processed without using the
index.

Each VTOC index is formatted by Device Support Facilities with physical blocks
2048 bytes in length. These physical blocks are the VTOC index records (VIRs),
the basic structural units of the index. The kind of information they contain
depends Qn the part of the index they belong to.

Several different kinds of records, each built from one or more VIRs, are in a
VTOCindex:

• The VTOC index entry record (VIER) that is used to access format-l DSCBs
and the format-4 DSCB

• The VTOC pack space map (VPSM) that shows what space has been allocated
on a disk pack

• The VTOC index map (VIXM) that shows which VIRs have been allocated in
the VTOC index

• The VTOC map of DSCBs (VMDS) that shows which DSCBs have been
allocated in the VTOC

An Example of a VTOC and Its Index

A format-l DSCB in the VTOC contains the name and extent information of the
VTOC index. The name of the index must be 'SYSl.VTOCIX.xxxxxxxx', where
'xxxxxxxx' can be anything valid in a data set name and is generally the serial
number of the volume containing the VTOC and its index. The name must be
unique within the system to avoid ENQ contention. The relationship of a VTOC
to its index is shown in Figure 3 on page 9. Each of the components of the index
is discussed separately in the following sections.

8 MVS/XA System-Data Administration

(VTOC VTOC Index

Format-4 OSCB VIXM

Format-5 OSCB VPSM

VMOS
Other OSCBs

VIER

VIER
Format-l OSCB for the VTOC
Index: SYS1.VTOCIX.nnn VIER

Other OSCBs .

Figure 3. ReiatioDSbip of a VTOC to Its Index

The VTOC Index Entry Record (VIER)

Contents of VIER Fields

VIERs have these characteristics:

• A VIER uses one VIR and contains variable-length index entries. The number
of VIERs in an index varies depending upon the number of data sets on the
volume.

• VIERs in a VTOC index may be on one or many levels. All index entries in a
VIER are at the same index level. VIERs have a hierarchic relationship. Index
entries in higher-level VIERs point to lower-level VIERs. Index entries in
level-one VIERs (those at the lowest level) point to format-1 DSCBs for data
sets on the volume.

• A higher-level VIER is created when the fourth lower-level VIER is created.
When that new higher-level VIER is filled with pointers to lower-level VIERs,
a new VIER at the same level is created. Again, when the fourth VIER at the
same level is created, a VIER at a still higher level is created, adding another
level to the index.

Each VIER contains a header and sections (see Figure 4 on page 10). The VIER
header contains:

• A field identifying the VTOC index record as a VIER.

• The relative byte address (RBA) of the VIER.

• A pointer to a VIER at the same level (hence, a "horizontal" pointer). The
VIER pointed to contains index entries whose keys are greater than any key in
the pointing VIER.

Chapter 1. Managing the Volume Table of Contents (VTOC) 9

• The level number (L VL) of this VIER.

• The number (SECNO) of sections (a VIER contains eight sections).

• The length (SECL) of the sections (each section is 246 bytes in length).

• The offsets to the first-used and the last-used sections.

• The 44-byte high key of the VIER.

Each section contains:

• An offset to the last entry in the section (or zero if the section is empty)

• Index entries

0(00)

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(IC)

32(20)

76(4C)

EBCDIC Characters 'VIER'

RBA of This VIER

Horizontal Pointer

Old Horizontal Pointer

LVL FLGI Reserved

PTRL SECNO SECL

Offset to First-Used Section

Offset to Last-Used Section

Highest Key in This V I ER

Section 1

Section 8

F'igure 4. Format of the VTOC Index Entry Record (VIER)

10 MVS/XA System-Data Administration

]

Index
Header

8 Sections
Containing
Index Entries

(
Format of a VTOC Index Entry

When a VIER Is Created

The format of an index entry is:

FLG KEYL Unused

NAME OFFSET BYTES

VXEFLG OO{OO) 1
VXEKEYL 01 (01) 1
VXEFC 02(02) 1
VXERPTR 03(03) 4 or 5
VXEKEY 07(07) 1 to 44

or
OS{OS)

Each index entry contains:

• A flag byte.

Record Pointer Key

DESCRIPTION

Flag byte
Length of the VXEKEY field
Unused
Record pointer
Name of a data set, if a
level-one VIER; if not, the
high key in the header of a
lower-level VIER

• A keylength field (containing a value of 1 to 44, depending on the length of the
data set name).

• A record pointer (VXERPTR) that is one of the following:

In level-one VIERs, the 5-byte CCHHR of the format-lor format-4
DSCB that represents the data set whose name is the key in the entry

In other VIERs, the 4-byte RBA of the lower-level VIER whose high key
is the key in the entry

• A key that, for level 1 VIERS, is the data set name, and for level 2 or higher
VIERs is the high key of a lower-level VIER. Trailing blanks are suppressed in
the VTOC index entry.

The first level-one VIER is created when the VTOC index is created. Subsequent
VIERs are created when a data set name is to be added to the VTOC index but the
VIER where it should be added is full. A new VIER is created in the following
manner:

• A new VIER is allocated.

• Half of the sections from a full VIER (those containing the highest keys) are
moved into the new VIER, leaving each VIER half empty.

• The new index entry is added to one of the two VIERs, depending on its key.

Chapter I. Managing the Volume Table of Contents (VTOC) 11

A Tree of Linked VIERs

~~~~ ~ -- -~-~---"--.-----.. ----~.-. _. 

Figure 5 on page 13 shows how VIERS are related to each other. Note that the 
VIERs (which are simplified here--only the high key is shown in the header) form 
a type of "tree structure." 

How to Find a Format-l DSCB 

In the search for the format-l DSCB for a particular data set, one path along the 
tree structure is followed. 

As seen in Figure 4 on page 10, a field in the header of a VIER contains the 
highest key of any index entry in that VIER. Beginning with this field in the first 
high-level VIER, the following search logic is used: Is the key of the data set (the 
data set name) lower than or equal to the VIER's high key? If neither, the test is 
again applied with the VIER having a greater high key pointed to by the horizontal 
pointer. This procedure continues until a VIER is found having a high key that is 
greater than or equal to the key of the data set. Comparisons are then made with 
the entries in the VIER's sections. Eventually, an entry is found with a key greater 
than or equal to the data set key. This entry points to a VIER at the next-lower 
level. 

The search proceeds to successively lower levels until an entry in a level-two VIER 
is found whose key is greater than or equal to the key of the data set. This entry 
points to a level-one VIER that, in turn, contains an entry with a key that is equal 
to the data set key and that points to the format-l DSCB for the desired data set. 

Special Cases in a DSCB Search 

If there is only one level in the VTOC index, the entries in the VIERs all point to 
format-l DSCBs, so that only one level need be searched. 

If an update to the VTOC index requires a new VIER and the update is interrupted 
(for example, because of an I/O error or a system failure), the entry in the level-n 
VIER may contain a key that is greater than the high key in the lower~level VIER 
pointed to by that entry. In this case, two VIERs at level n-l may have to be 
searched. This situation is corrected when DADSM next processes the volume. 

The VTOC Pack Space Map (VPSM) 

The VPSM accounts for space on a disk pack. It shows what space on the volume 
has been allocated and what space remains free. 

The map contains bit maps of the cylinders and tracks on the volume. A value of 
one indicates that the cylinder or track has been allocated; a value of zero, that it 
has not been allocated. The bit representing a cylinder is set to zero if no tracks on 
the cylinder have been allocated; it is set to one if any track has been allocated. 
Tracks assigned as alternate tracks are marked as allocated. 

The VPSM replaces the chain of format-5 DSCBs, but one empty format-5 DSCB 
is left in the VTOC to allow for conversion back to a nonindexed VTOC, a process 
that requires reconstruction of a format-5 DSCB chain. 

12 MVS/XA System-Data Administration 

;("" 
~ 



( 

VIER 

High Key M32107.LlB 

Entries {~ B41103.TEST 
M32107.LlB r-

VIER VIER 

---. 
B41103.TEST M32107.LlB 

44X'04' 

r-- A11307.CLlST 
C0102.ASM 
M32107.LlB 

r-- B0102.DATA 

Format-1 DSCBs 
In the VTOC 

Format-4 OSCS in the VTOC 

VIER 

44X'FF' Level·2 
VIERs 

r- SYS1.MACLIB 
44X'FF' -

VIER VIER 

------.. -----
SYS1.MACLIB 44X'FF' 

r- SYS1.VTOCIX.A 
f- fo- X.Y.Z. 
f-

44X'FF' ~ 

Le\'el-1 
VIERs 

Dummy Last 
Entry in 
VTOC Index 

Figure S. Structure of Linked VIERs 

The format of an index map (including the VPSM) is shown in Figure 6 on 
page 14. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 13 

~------ .. -.-~~---------



OO(OO} 

04(04} 

oS(oS} 

12(OC} 

16( 10} 

20 ( 14) 

24(IS} 

2S(IC} 

32(20} 

36(24} 

40(28} 

ID of This Map 

RBA of This Map 

Horizontal Pointer to Next VIR 

Sequence Number of First Entry 

VRFDA VRFO 

FLGI I LUFI LUOF 

Size of Large Unit Map 

SUFI I SUBIT SUOF 

Size of Small Unit Map 

Reserved I VIR 

RBA of First High-Level VIER 

(VTOC 
Large Unit Map 
Pack Space Map Only) 

Small Unit Map 

VTOC Recording Facility Data 
(VTOC Index Map Only) 

Figure 6. An Index Map 

The VTOC Index Map (VIXM) 

The VIXM contains a bit map in which each bit represents one VTOC index record 
(VIR). The status of the bit indicates whether the VIR is allocated (1) or 
unallocated (0). 

An area of the VIXM is reserved for VTOC recording facility (VRF) data. (This is 
the facility that allows detection of and recovery from certain errors in an indexed 
VTOC.) 

A field in the first VIXM record points to the first high-level VIER. Another field 
in the first VIXM record (VIR in Figure 7 on page 15) contains the number of 
VTOC index records that contain all the space maps. 

14 MVS/XA System-Data Administration 

/( ..... "'-",\ 

~j 



(" 

( 

The VTOC Map of DSCBs (VMDS) 

The VMDS contains a bit map where each bit represents one DSCB in the VTOC. 
The status of the bit indicates whether the DSCB is allocated (1) or unallocated 
(0). 

Name Offset Bytes Description 

VIMAP OO(X'OO') 2048 VTOCmap 

VIMH OO(X'OO') 44 VTOC map header 

VIMID OO(X'OO') 4 Map ID in EBCDIC ('VPSM', 
'VIXM', or 'VMDS') 

VIMRBA 04(X'04') 4 RBA of this map 

VIMHZPTR 08(X'08') 4 Horizontal RBA pointer to next VIR 
of this map 

VIMORG 12(X'OC') 4 Sequence number of the first entry in 
the map 

VIMVRFDA 16(X' 10') 2 Offset to current VRF data (if 
VIMVRFSW -1) or offset where VRF 
data may be written (if 
VIMVRFSW-O), (first VIXM only) 

VIMVRFO 18(X'12') 2 Offset to VRF area (first VIXM VIR 
only) 

VIMFLGI 20(X' 14') 1 Flag byte 

VIMVRFSW X'80' VRF data exists if 1 

.xxxxxxx Reserved 

VIMLUFI 21(X'15') 1 Large unit flag byte 

VIMLUOF 22(X'16') 2 Offset into VIR of large unit map 
(zero if none) 

VIMLUSZ 24(X' 18') 4 Size in bits of large unit map 

Figure 7 (Part 1 of 2). Format of a VTOC Map 

Chapter 1. Managing the Volume Table of Contents (VTOC) 15 



Name Offset Bytes Description 

VIMSUF1 28(X'1C') 1 Small unit flag byte 

VIMSUBIT 29(X'1D') 1 Number of small unit bits per large 
unit (zero if none) 

VIMSUOF 30(X'1E') 2 Offset into VIR of small unit map 

VIMSUSZ 32(X'20') 4 Size in bits of small unit map 

36(X'24') 3 Reserved 

VIMVIR 39(X'27') 1 Number of map records (VIXM only) 

VIMFHLV 40(X'28') 4 RBA of first high-level VIER (VIXM 
only) 

VlMLUMAP 44(X'2C') kk Large unit map (kk is VlMLUSZ/8, 
rounded up) 

VIMSUMAP mm nn Small unit map (mm is VIMSUOF, nn 
is VIMSUSZ/8, rounded up) 

VIMVRF pp qq VRF area (pp is VIMVRFO. qq is 
remainder of first VIXM) 

Figure 7 (Part 2 of 2). Format of a VTOC Map 

Structure of an Indexed VTOC 

An indexed VTOC is identical to a nonindexed VTOC, except that, for an indexed 
VTOC, only a single format-5 DSCB exists and is empty, and certain format-4 
DSCB data (the number of format-O DSCBs and the CCHHR of the highest 
format-1 DSCB) is not maintained by DADSM. The DOS bit (bit 0 in field 
DS4VTOCI), set to one in the format-4 DSCB, indicates that these fields (and the 
format-5 DSCB) cannot be relied on. The index bit (bit 7 in field DS4VTOCI) is 
set in the format-4 DSCB; it indicates that a VTOC index exists. 

Scratch/Rename/ Allocate Restrictions 

A VTOC index data set may not be scratched if the VTOC index is active. Neither 
maya VTOC index data set be renamed if the VTOC index is active, unless it is 
being renamed to another name beginning with 'SYS 1. VTOCIX. '. A data set may 
not be renamed to a name beginning with 'SYS 1. VTOCIX.' if there is already such 
a data set on the volume. Only one data set whose name begins with 
'SYS 1. VTOCIX.' may be allocated on a volume. 

16 MVS/XA System-Data Administration 

f-~ 

'-/' 

/\ 

'-/ 



( 

(' 

Initializing and Maintaining the VTOC 

Creating the VTOC and VTOC Index 

To prepare a volume for use (to initialize it), the Device Support Facilities utility is 
used. One of the things this utility does is to build the VTOC. After initialization, 
this VTOC will contain a format-4 DSCB and a format-S DSCB. For a 
nonindexed VTOC, the format-S DSCB contains an extent entry for all the free 
space on the volume; the initial number of extents in the format-S DSCB is one or 
two, depending on where the VTOC is located on the volume. H the VTOC is 
located somewhere other than at the beginning or end of the volume, two extent 
entries are needed to describe the free space that precedes and follows it. For an 
indexed VTOC, the format-S DSCB contains a zero. 

A v'rOC index can be created when a volume is initialized by using the Device 
Support Facilities command INIT and specifying the INDEX key word. 

A nonindexed VTOC can be converted to an indexed VTOC by using the 
command BUILDIX and specifying the IXVTOC keyword. The reverse is also 
possible by using the BUILDIX command and specifying the OSVTOC keyword. 

For more detailed information, see Device Support Facilities User's Guide and 
Reference. 

Protecting the VTOC and VTOC Index 

Resource Access Control Facility (RACF) 

You can protect the VTOC and VTOC index by using the Resource Access 
Control Facility (RACF). This is done by defining the volume serial entity under 
the RACF class DASDVOL. A user must be authorized to the 
DASDVOL/volume serial entity at the following levels: 

• At the UPDATE level, to open the VTOC for output processing. 

• At the UPDATE level, to open for output processing any data set whose name 
begins with 'SYS 1. VTOCIX. ' . 

• At the ALTER level, to allocate, rename, or scratch any data set whose name 
begins with 'SYS 1. VTOCIX. ' . 

• At the ALTER level, to rename a data set to any name that begins with 
'SYS1. VTOCIX.'. 

Neither the VTOC nor the VTOC index is protected from being opened for input 
processing by the DASDVOL/volume serial entity. 

Note that neither the VTOC nor the VTOC index can be protected through the 
RACF class DATASET. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 17 



Authorized Program Faci6ty (APF) Requirements 

Password Protection 

A program must be authorized by the authorized program facility (APF) to 
perform any of the following functions: 

• Opening a VTOC for output processing 

• Opening for output processing a data set whose name begins with 
'SYSl. VTOCIX. ' 

• Allocating, renaming, or scratching any data set whose name begins.with 
'SYSl.VTOCIX. ' 

• Renaming a data set to any name that begins with 'SYS 1. VTOCIX. ' 

The VTOC index data set may be password protected. The protection is the same 
as for any password-protected data set. Password checking is bypassed if the 
volume in which the VTOC index resides is protected by RACF through the 
DASDVOL class. 

Copying/Restoring/Initializing the VTOC 

Operations on Volumes Containing a Nonindexed VTOC 

• RestOring a Volume from a Dump Tape. There are no operational requirements 
if you change the volume serial number or do a partial restore that does not 
modify the VTOC. If you do a restore and change the VTOC size without 
changing the volume serial number, the volume must be varied offline after it is 
restored. You should not do a restore on a volume with an indexed VTOC. 

• Copying a Volume. There are no operational requirements if you change the 
volume serial number or do not modify the VTOC of the receiving volume. If 
you do a copy and change the VTOC size without changing the volume serial 
number, the volume must be varied offline after it is copied. You should not 
do a copy from a volume with an indexed VTOC. 

Operations on Volumes Containing an Indexed VTOC 

You should use Device Support Facilities to convert a VTOC to a nonindexed 
format to update the volume. If you do not, take note of the following 
information: 

• Initializing a Volume. If you do not change the volume serial number, the 
volume should be varied offline before starting the job. 

• Restoring a Volume from a Dump Tape. There are no operational requirements 
if you change the volume serial number or do a partial restore that does not 
modify the VTOC or VTOC index. If you do a restore and modify the VTOC 
or VTOC index without changing the volume serial number, the volume should 
be varied offline after it is restored. 

18 MVS/XA System-Data Administration 



( 

( 

• Copying a Volume. There are no operational requirements if you change the 
volume serial number of the receiving volume or do a partial dump without 
modifying the VTOC or VTOC index. If you modify the VTOC or VTOC 
index without changing the volume serial number, the receiving volume should 
be varied offline after it is copied. 

• Shared DASD Considerations. In shared DASD environments, whenever the 
VTOC index is modified or relocated or whenever the volume is changed from 
indexed VTOC to OS VTOC or from OS VTOC to indexed VTOC, the device 
should be varied offline to the sharing system or systems. 

Accessing the VTOC with DADSM Macros 

You may use DADSM or CV AF to access the VTOC and its index. (CV AF access 
is described in "Accessing the VTOC and its Index with CV AF Macros" on 
page 42.) DADSM macros and associated tasks include: 

LSPACE - Obtain free space, volume fragmentation, and VTOC 
status information for a DASD volume. 

OBTAIN - Read a DSCB from a VTOC. 
PARTREL - Release unused space from a SAM or PAM data set. 
REALLOC - DASD space allocation. 
RENAME - Rename a non-VSAM data set. 
SCRATCH - Release all space and DSCBs for a non-VSAM data set. 

The PARTREL macro is described in "Releasing Unused Space from a DASD 
Data Set" on page 169. The REALLOC macro is described in "Allocating a 
DASD Data Set" on page 174. 

This section tells how to use the LSPACE, OBTAIN, SCRATCH, and RENAME 
macro instructions. These macros are most commonly used by the operating 
system and the data set utility programs (IEHMOVE, IEBCOPY. and 
IEHPROGM), but you may use them in your own routines. The functions you can 
perform with these macros are: 

LSPACE Obtaining free space. volume fragmentation. and VTOC status 
information for a DASD volume 

OBTAIN Reading a data set control block from the VTOC 

RENAME Changing the name of a data set 

SCRATCH Deleting a data set 

You can obtain free space. volume fragmentation. and VTOC status information 
for a DASD volume by using the LSPACE macro instruction. LSPACE returns 
information to any of three user-specified areas. 

You can read a data set control block (DSCB) into virtual storage by using the 
OBTAIN and CAMLST macro instructions. There are two ways to specify the 
DSCB that you want to read: by using the name of the data set associated with the 
DSCB. or by using the absolute track address of the DSCB. You must provide a 
140-byte data area in virtual storage. into which the DSCB is to be read. When 
you specify the name of the data set. an identifier (format-lor format-4) DSCB is 

Chapter 1. Managing the Volume Table of Contents (VTOC) 19 



read into virtual storage. To read a DSCB other than a format-lor a format-4 
DSCB, you must specify an absolute track address (see "Example" on page 32). 

You can change a data set name by using the RENAME and CAMLST macro 
instructions. This causes replacement of the data set name in the data set's 
format-l DSCB with the new name. 

You can delete a non-VSAM data set by using the SCRATCH and CAMLST 
macro instructions. This causes deletion of the data set's DSCBs. 

Coding examples, programming notes, and exception return code descriptions 
accompany the following macro instruction descriptions. 

Note: You cannot use LSPACE, OBTAIN, SCRATCH, or RENAME macro 
instructions with either a SYSIN or SYSOUT data set. 

Obtaining DASD Volume Information (LSPACE) 

You can use the LSPACE macro to obtain free space, volume fragmentation, and 
VTOC status information for a DASD volume. LSPACE normally returns status 
information (such as LSPACE subfunction, return code, and reason code) to the 
parameter list. The format of the LSPACE parameter list is shown in Figure 8 on 
page 24. You may request that LSPACE return additional information such as the 
total number of free extents on the volume, or the fragmentation index. This 
additional information can be returned in either: 

• A message return area: "Message Return Area" on page 27 describes the 
format and content of the message return area. 

• A data return area: "Data Return Area" on page 27 describes the format and 
content of the data return area. 

• A Format-4 DSCB return area: "Format 4 DSCB Return Area" on page 28 
describes the format and content of the Format-4 DSCB return area. 

The format of the LSPACE macro is: 

[symbol) LSPACE IUCB=={addr I (reg)J) 
I,MSG=laddr I (reg) I 01 
I DATA==laddr I (reg) I OJ) 
I,SMF=ITEST I YES I NONEH 
I,F4DSCB==laddr I (reg) I ~J) 
I,MF=I! 10 I (D,MSG) I (D,DATA) 
I L I (L,MSG) I (L,DATA) 
I (E,addr) I (E,(reg)J1 

UCB={addr I (reg)J 
specifies the address of the UCB for the volume whose free space 
information you are requesting. 

addr-RX-type address 
specifies the address of a fullword that contains the address of the 
UCB. 

20 MVS/XA System-Data Administration 

) 



( 

(reg)-(2-12) 
specifies a register containing the UCB address for the device. 

When using the standard (MF=I) form of the macro, you must provide a 
UCB address. 

MSG=laddr I (reg) I OJ I DATA=laddr I (reg) I OJ 
specifies the way LSPACE is to return free space information. 

Note: The MSG and DATA parameters are mutually exclusive. 

MSG={addr I (reg) I OJ 
specifies the address of a caller-provided 30-byte message return area 
into which LSPACE returns either a free space message or, for 
unsuccessful requests, status information. For a description of this 
area, see "Message Return Area" on page 27. 

addr-RX-Iype address 
specifies the address of the message return area. 

(reg)-(2-12) 

o 

specifies a register containing the address of the message return 
area. 

specifies that you do not want the free space message. This is 
the default for all forms of the macro except execute. 

DATA=laddr I (reg) I OJ 
specifies the address of a caller-provided 36-byte data return area into 
which LSPACE returns free space and volume information. For a 
description of this area, see "Data Return Area" on page 27. 

addr-RX-type address 
specifies the address of the data return area. 

(reg)-(2-12) 

o 

specifies a register containing the address of the data return 
area. 

specifies that you do not want the free space and volume 
information. 

SMF=ffEST I YES I NONEJ 
specifies the type of SMF processing desired. 

TEST 
specifies that LSPACE is to test for an SMF system and whether SMF 
volume information is desired. Only programs executing in supervisor 
state, protect key 0-7, or APF-authorized may specify this operand. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 21 



YES 
specifies that you want LSPACE to provide SMF volume information. 
Only programs executing in supervisor state, protect key 0-7, or 
APF-authorized may specify this operand. 

NONE 
specifies that you do not want LSPACE to provide SMF volume 
information. This is the default for all forms of the macro except 
execute. 

F4DSCB= {addr I (reg) I ru 
specifies the address of a 96-byte DSCB return area provided by the calling 
program, into which LSPACE returns the volume's format-4 DSCB. For a 
description of the format-4 DSCB fields, see the DSCB4 data area section in 
Debugging Handbook. 

addr-RX-type address 
specifies the address of the format-4 DSCB return area. 

(reg)-(2- t 2) 

o 

specifies a register containing the address of the format-4 DSCB 
return area. 

specifies that you do not want the data portion of the format-4 DSCB 
for the volume. This is the default for all forms of the macro except 
execute. 

MF=lll D I (D,MSG) I (D,DATA) I L I (L,MSG) I (L,DATA) I (E,addr) I (E,(reg»J 
specifies the form of the LSPACE macro. 

I 

D 

specifies the inline (standard) form of the macro. This generates an 
inline parameter list containing the required variables, loads the 
address of the parameter list in register 1, and issues an SVC 78. This 
form is the default. 

generates a DSECT that maps the LSPACE parameter list. See 
Figure 8 on page 24 for the format of the LSPACE parameter list. 

(D,MSG) 
generates a DSECT that maps the message return area. For the 
format of the area, see "Message Return Area" on page 27. 

(D,DATA) 

L 

generates a DSECT that maps the data return area. For the format of 
the area, see "Data Return Area" on page 27. 

generates the required constants in the calling program. You may then 
issue the execute form of the macro, which uses these constants. 

22 MVS/XA System-Data Administration 

'\ 

/ 



( 
(L,MSG) 

generates the required message return area constants in the calling 
program. 

(L,DATA) 
generates the required data return area constants in the calling 
program. 

(E,addr) 
loads the address of the parameter list specified by addr into register 1, 
puts the specified variables into the parameter list, and issues an SVC 
78. 

(E,(reg) 
loads the address of the parameter list specified by (reg) into register 1, 
puts the specified variables into the parameter list, and issues an SVC 
78. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 23 



Name Offset Bytes Description I.(-~ 

~_/ 
LSPAPL 
LSPAPLID OO(X'OO') 4 EBCDIC'LSPA' 
LSPANGTH 04(X'04') 2 Length of parameter list 
LSPAFLAG 06(X'06') 1 Parameter flag byte 
LSPASMFY X'80' SMF=YES 
LSPASMFf X'40' SMF=TEST 
LSPADATA X'20' Free space data request 
LSPARSVB ... x xxxx Reserved 
LSPARSVD 07(X'07') 1 Reserved 
LSPAERCD 08(X'08') 1 LSPACE return code 
LSPASFID 09(X'09') 1 LSPACE subfunction 
LSPASFPC X'OO' Processing complete 
LSPASFVP X'Ol' Validate parameters 
LSPASFUS X'02' Check UCB status 
LSPASFNQ X'03' Enq on SYSZDMNT 
LSPASF45 X'04' Read F4 and first F5 (EXCP) 
LSPASFN5 X'05' Read next F5 (EXCP) 
LSPASFRV X'06' Read volume label (EXCP) 
LSPASF4X X'80' Read F4 and maps (CV AFDIR) 
LSPASFEX X'8l' Get free extents (CV AFDSM) 
LSPASFFO X'82' Get FO count (CV AFDSM) 
LSPASFVR X'83' Get VIR count (CV AFDSM) 
LSPASFVD X'84' Check for VRF (CV AFVRF) 
LSPASFRT lO(X'OA') 1 Subfunction return code , "-
LSPASFRS ll(X'OB') 1 Subfunction reason code 
LSPARSOl X'Ol' Check parameter list storage key ';, // 

LSPARS02 X'02' Check parameter list ID 
LSPARS03 X'03' Check LSPACE flag 
LSPARS04 X'04' Check authorization for SMF flag 
LSPARS05 X'05' Check message or data return area storage key 
LSPARS06 X'06' Check format-4 DSCB return area storage key 
LSPARS07 X'07' Check UCB address 
LSPARS08 X'08' Check for virtual UCB address 
LSPARS09 X'09' Check for zero VTOC pointer 
LSPAUCB l2(X'OC') 4 UCB address 
LSPAFRSP l6(X'lO') 4 Address of message or data return area 
LSPAFMT4 20(X'l4') 4 Address of format-4 DSCB 

Figure 8. Format of the LSPACE Parameter List (MF=D) 

Note: For more information about the LSPAERCD, LSPASFID, LSPASFRT, and 
LSPASFRS fields, see "LSPACE Status Information" on page 26. 

24 MVS/XA System-Data Administration 

- .------... --.~~--... - ---------



( 

( 

( 

Return Codes from LSPACE 

Return codes from LSPACE are as follows: 

Code 

O(X'OO') 

4(X'04') 

8(X'08') 

12(X'OC') 

16(X'10') 

Meaning 

Successful processing 

Permanent 110 Error 

Non-Standard OS Volume 

Invalid Parameter or UCB Not Ready 

Invalid Parameter List 

Chapter 1. Managing the Volume Table of Contents (VTOC) 25 



LSPACE Status Information 

LSPAERCD 
16 (X'10') 
16 (X' 10') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
08 (X'08') 
04 (X'04') 
04 (X'04') 
04 (X'04') 
04 (X'04') 
04 (X'04') 
04 (X'04') 
04 (X'04') 
04 (X'04') 
00 (X'OO') 

Register 0 and the LSPACE macro's parameter list2 contain additional diagnostic 
information. Figure 9 shows the relationship between the following LSPACE 
parameter list fields: 

• LSPAERCD (return code) 
• LSPASFID (subfunction identifier) 
• LSPASFRT (subfunction return code) 
• LSPASFRS (subfunction reason code) 

LSPASFID LSPASFRT LSPASFRS Description 
01 (X'Ol ') N/A 01 (X'Ol ') Bad parm list storage key 
01 (X'Ol ') N/A 02 (X'02') Bad parm list ID 
01 (X'Ol ') N/A 03 (X'03') Invalid LSPACE flag 
01 (X'Ol ') N/A 04 (X'04') Not authorized for SMF 
01 (X'Ol ') N/A 05 (X'05') Bad MSG/DATA area storage key 
01 (X'Ol ') N/A 06 (X'06') Bad FMT4 area storage key 
01 (X'Ol ') N/A 07 (X'07') UCB not found 
01 (X'Ol ') N/A 08 (X'08') UCB not direct access device 
01 (X'Ol ') N/A 09 (X'09') UCB VTOC pointer is zero 
02 (X'02') N/A N/A Invalid UCB status 
03 (X'03') ENQRETC N/A Failed ENQ on SYSZDMNT 
04 (X'04') N/A N/A F5s are invalid 
04 (X'04') ECBSTAT N/A Error reading F4 and first F5 
05 (X'05') ECBSTAT N/A Error reading next F5 
06 (X'06') ECB STAT N/A Error reading volume label 
80 (X'80') DIRRETC CVSTAT Error getting F4/space maps 
81 (X'81 ') DSMRETC CVSTAT Error getting free extents 
82 (X'82') DSMRETC CVSTAT Error getting FO count 
83 (X'83') DSMRETC CVSTAT Error getting VIR count 
84 (X'84') VRFRETC CVSTAT Error checking for VRF 
00 (X'OO') N/A N/A No problems 

Figure 9. LSPACE Status Information Relationships 

LSPACE Subfunction Return Code and Reason Code 

The following table identifies the information returned in the LSPASFRT and 
LSPASFRS fields of the LSPACE macro's parameter list. 

N/A - Not Applicable 
CVSTAT - CVSTAT field of CVAF parameter list 
ENQ RETC - Return code from ENQ 
DIR RETC - Return code from CVAFDIR 
DSM RETC - Return code from CVAFDSM 
VRF RETC - Return code from CVAFVRF 
ECB STAT - ECB completion code 

2 Status information does not appear in the parameter list for return code 16. 

26 MVS/XA System-Data Administration 

/(-, 
\ . ,_/ 

'''''-....-. ,/ 
; 



LSPACE Information Return Areas 

The LSPACE macro returns status information to the parameter list and, 
optionally, the return of volume information to any of the three caller requested 
return areas described below. 3 

Mes.qe Return Area: LSPACE returns information to a 30-byte message return 
area (Figure 10). If you provide a message return area with the MSG option, 
LSPACE returns EBCDIC text, qualified by return codes as shown in Figure 11. 

LSPMSG DSECT 
LSPMTEXT DS CL30 

Message Area 
Message Text 

Figure 10. DADSM LSPACE Free Space Information Format, MF=(D,MSG) 

Return 
Code 
16(X'1O') 
12(X'OC') 

08(X'08') 
04(X'04') 
OO(X'OO') 

Textor 
Explanation 
No text returned (invalid parameter list or SMF indicator) 
Text: LSPACE-UCB NOT READY 
Text: LSPACE-UCBVTOC IS ZERO 
Text: LSPACE-INV ALID PARAMETER 
Text: LSPACE-NOT A DIRECT ACCESS VOL 
Text: LSPACE-NON-STANDARD OS VOLUME 
Text: LSPACE-PERMANENT I/O ERROR 
Text: SPACE=aaaa,bbbb,cccc/ dddd,eeee 

where: 
aaaa = Total number of free cylinders 
bbbb = Total number of additional free tracks 
ccce = Total number of free extents 
dddd = Number of cylinders in largest free extent 
eeee = Number of additional tracks in largest free extent 

Figure 11. DADSM LSPACE Message Area Contents 

Data Retunt Area: If you provide a data return area with the DATA option, 
LSPACE returns information as described in Figure 12. 

3 Requests for the MSG and DATA areas are mutually exclusive. LSPACE checks to 
ensure that the storage key of each information return area is equal to the caller's key 
or that the caller is authorized prior to its use. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 27 



Name 

LSPDRETN 
LSPDSPAC 
LSPDFOCN 
LSPDVRCN 
LSPDRRES 
LSPDSTAT 
LSPDIXDS 
LSPDIXAC 
LSPDIRES 
LSPDRSVI 
LSPDNEXT 
LSPDTCYL 
LSPDTTRK 
LSPDLCYL 
LSPDLTRK 
LSPDFOS 
LSPDVIRS 
LSPDFRAG 

Offset 

OO(X'OO') 

01(X'Ol ') 

02(X'02') 
04(X'04') 
08(X'08') 
12(X'OC') 
16(X'1O') 
20(X'14') 
24(X'18') 
28(X'IC') 
32(X'20') 

Bytes 

1 
X'80' 
X'40' 
X'20' 
... x xxxx 
1 
X'80' 
X'40' 
.. xx xxxx 
2 
4 
4 
4 
4 
4 
4 
4 
4 

Description 

Return area status byte 
Returned space information 
Returned format-O DSCB count 
Returned free VIR count 
Reserved 
Status byte 
Index exists for VTOC 
Index VTOC active 
Reserved 
Reserved 
Number of free extents 
Total free cylinders 
Total additional free tracks 
Number of cylinders in largest free extent 
Number of additional tracks in largest free extent 
Format-O DSCB count 
Free VIR count 
Fragmentation indexl 

Figure 12. Format of the LSPACE Data Return Area 

Note to Figure 12: 

The fragmentation index is a numeric representation of the relative size and 
distribution of free space on the volume. A large index value indicates a high 
degree of fragmentation. 

Format 4 DSCB Retum AIWI: If you provide a format-4 DSCB retUrn area with the 
F4DSCB option, LSPACE returns information as described by the DSCB4 data 

. area in Debugging Handbook. 

Example of LSPACE Using Message Return Area 

The following example requests that LSPACE return free space information in the 
message return area. 

LSPAMFIM LSPACE MSG=MYMSG,UCB=(Rl0),MF=I 

Example of LSPACE Using Data Return Area 

The following example requests that LSPACE return free space information in the 
data return area. 

LSPAMFID LSPACE DATA=MYDATA,UCB=(Rl0),MF=I 

28 MVS/XA System-Data Administration 

(~ .. 

'~ 



( 
Example of LSPACE Specifying List and Execute Forms 

The following example uses the list form of the macro to define the parameter list, 
and the execute form to refer to the same parameter list 

LSPALIST LSPACE MSG=MYDATA,MF=L 

LSPAEX LSPACE MF=(E,LSPALIST),UCB=(R10) 

Reading a Control Block from the VTOC 

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH) 

If you specify a data set name using OBTAIN and the CAMLST SEARCH option, 
the OBTAIN routine reads the 96-byte data portion of the identifier (format-l} 
DSCB and the absolute track address of the DSCB into virtual storage. The 
absolute track address is a 5-byte field in the form CCHHR. The absolute track 
address field contains zeros for VSAM and VIO data sets. 

Because the VTOC does not contain a format-l DSCB for a suballocated VSAM 
data space, an OBTAIN request, which searches the VTOC for such a data space's 
DSCB, fails. If the volume contains VSAM data sets, the OBTAIN routine uses 
information from the VSAM catalog to build a pseudo format-l DSCB, setting its 
CCHHR to zeros. 

The format is: 

[symbol) OBTAIN listname-addrx 
listname CAMLST SEARCH 

,dsname-relexp 
,vol-relexp 
,wkarea-relexp 

listname-addrx 
points to the parameter list (labeled listname) set up by the CAMLST macro 
instruction. 

SEARCH 
this operand must be coded as shown. 

dsname-relexp 
specifies the virtual storage location of a fully qualified data set name. The 
area that contains the name must be 44 bytes long. 

Note: A DSNAME of 44 bytes of X'04' (X'040404 ... 04') can be used to 
read a format-4 DSCB. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 29 



vol-relexp 
specifies the virtual storage location of the 6-byte volume serial number on 
which the DSCB is located. 

wkarea-relexp 
specifies the virtual storage location of a 140-byte work area that you must 
define. 

Example: In the following example, the identifier (format-I) DSCB for data set 
A.B.C is read into virtual storage using the SEARCH option. The serial number of 
the volume containing the DSCB is 770655. 

* 
* 

OBTAIN 

DSCBABC CAMLST 
DSABC DC 
VOLNUM DC 
WORKAREA DS 

DSCBABC READ DSCB FOR DATA 
SET A.B.C INTO DATA 
AREA NAMED WORKAREA 

SEARCH, DSABC,VOLNUM, WORKAREA 
CL44'A.B.C' DATA SET NAME 
CL6'770655' VOLUME SERIAL NUMBER 
140C 140-BYTE WORK AREA 

Note: Check the return codes. 

The OBTAIN macro instruction points to the CAMLST macro instruction. 
SEARCH, the first operand of CAMLST, specifies that a DSCB be read into 
virtual storage, using the data set name you have supplied at the address indicated 
in the second operand. DSABC, the second operand, specifies the virtual storage 
location of a 44-byte area into which you have placed the fully qualified name of 
the data set whose format-l DSCB is to be read. VOLNUM, the third operand, 
specifies the virtual storage location of a 6-byte area into which you have placed 
the serial number of the volume containing the required DSCB. WORKAREA, the 
fourth operand, specifies the virtual storage location of a 140-byte work area into 
which the DSCB is to be returned. 

Control is returned to your program at the next executable instruction following the 
OBTAIN macro instruction. If the DSCB has been successfully read into your 
work area, register 15 contains zeros. Otherwise, register 15 contains one of the 
following return codes. The return codes are shown in decimal, with hexadecimal 
values in parentheses. 

30 MVS/XA System-Data Administration 

------- - ---- -~-~-----~~--~-~--------~~~~ 



( 

( 

( 

Return Codes from OBTAIN (Reading by data set name) 

Code Meaning 

4(X'04') 

8(X'08') 

The required volume was not mounted. 

The format-1 DSCB was not found in the VTOC of the 
specified volume. 

12(X'OC') A permanent I/O error was encountered, or an invalid 
format-1 DSCB was found when processing the specified 
volume, or an unexpected error return code was received 
from CV AF (Common VTOC Access Facility). 

16(X'10') Invalid work area pointer. 

After execution of these macro instructions, the first 96 bytes of the work area 
contain the data portion of the identifier (format-lor format-4) DSCB; the next 5 
bytes contain the absolute track address (CCHHR) of the DSCB. These 5 bytes 
contain zeros for VSAM or VIO data sets. 

Reading a DSCB by Absolute Device Address (OBTAIN and CAMLST SEEK) 

You can read any DSCB from a VTOC using OBTAIN and the CAMLST SEEK 
option. You specify the SEEK option by coding SEEK as the first operand of the 
CAMLST macro and by providing the absolute device address of the DSCB you 
want to read, unless the DSCB is for a VIO data set. Only the SEARCH option 
can be used to read the DSCB of a VIO data set. 

The format is: 

[symbol] OBTAIN Iistname-addrx 
Iistname CAMLST SEEK 

,cchhr-relexp 
, vol-relexp 
,wkarea-relexp 

Iistname-addrx 
points to the parameter list (labeled list name ) set up by the CAMLST macro 
instruction. 

SEEK 
this operand must be coded as shown. 

cchhr-relexp 
specifies the virtual storage location of the 5-byte absolute device address 
(CCHHR) of a DSCB. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 31 



vol-relexp 
specifies the virtual storage location of the 6-byte volume serial number on 
which the DSCB is located. 

wkarea-relexp 
specifies the virtual storage location of a 140-byte work area that you must 
define. 

ExompIe: In the following example, the DSCB at actual-device address 
X'OO 00 00 01 07' is returned in the virtual storage location READAREA, 
using the SEEK option. The DSCB resides on the volume with the volume serial 
number 108745. 

OBTAIN 

* 
* 
* 
ACTADDR CAMLST 
CCHHR DC 
VOLSER DC 
READAREA DS 

ACTADDR READ DSCB FROM 
LOCATION SHOWN IN CCHHR 
INTO STORAGE AT LOCATION 
NAMED READAREA 

SEEK, CCHHR,VOLSER, READAREA 
XL5'0000000107' ABSOLUTE TRACK ADDRESS 
CL6'108745' VOLUME SERIAL NUMBER 
140C 140-BYTE WORK AREA 

Note: Check the return codes. 

The OBTAIN macro points to the CAMLST macro. SEEK, the first operand of 
CAMLST, specifies that a DSCB be read into virtual storage. CCHHR, the second 
operand, specifies the storage location that contains the 5-byte actual-device 
address of the DSCB. VOLSER, the third operand, specifies the storage location 
that contains the serial number of the volume where the DSCB resides. The fourth 
operand, READAREA, specifies the storage location to which the 140-byte DSCB 
is to be returned. 

Control is returned to your program at the next executable instruction following the 
OBTAIN macro instruction. If the DSCB has been successfully read into your 
work area, register 15 contains zeros. Otherwise, register 15 contains one of the 
following return codes. The return codes are shown in decimal, with hexadecimal 
values in parentheses. 

32 MVS/XA System-Data Administration 



( 
Return Codes from OBTAIN (Reading by Absolute Device Address) 

Code 

4(X'04') 

8(X'08') 

Meaning 

The required volume was not mounted. 

The format-1 DSCB was not found in the VTOC of the 
specified volume. 

12(X'OC') A permanent I/O error was encountered or an 
unexpected error return code was received from CV AF. 

16(X'10') Invalid work area pointer. 

20(X' 14') The SEEK option was specified and the absolute track 
address (CCHHR) is not within the boundaries of the VTOC. 

Deleting a Data Set from the VTOC (SCRATCH and CAMLST SCRA TeH) 

You can use the SCRATCH and CAMLST macro instructions to delete a 
non-VSAM data set. SCRATCH processing deletes the associated data set control 
blocks (DSCBs) and makes the space occupied by the data set available for 
reallocation. Be aware that this process may not erase the data from the disk. 
Data sets that contain sensitive data should be erased (overwritten with zeros) 
before their space is made available. This erase can either be done before issuing 
the SCRATCH macro, or be requested in scratch processing by 

• Providing an associated RACF ERASE attribute, or 
• Activating bit 21 (X'OO 00 04 00'.) of the SCRATCH parameter list. 

Authorized callers of SCRATCH may set bit 22 to '1' to override the RACF 
profile ERASE attribute. 

H you want to scratch a data set being processed using virtual input/output (VIO), 
the data set must have been allocated for use by your job. Scratching VIO data 
sets not allocated to your job is not allowed. 

H the data set to be deleted is sharing one or more cylinders with one or more data 
sets (a split-cylinder data set), the space will not be made available for reallocation 
until all data sets on the shared cylinders are deleted. 

A data set cannot be deleted if the expiration date in the identifier (format-I) 
DSCB has not passed, unless you choose to ignore the expiration date. You may 
specify that DADSM is to ignore the expiration date by specifying the OVRD 
option in the CAMLST macro instruction. 

DADSM SCRATCH processing supports three never-scratch dates. To ensure that 
a data set will never be scratched, specify the expiration date as either of the 
following: 

Chapter 1. Managing the Volume Table of Contents (VTOC) 33 



• 1999.365 
• 1999.366 
• 1999.999 

For information on RACF-defined data sets, see RACF General Information 
Manual. You may scratch a RACF-defined data set (that is, the DSCB indicates 
RACF-defined) only if you have alter access authority to either the data 
set/volume serial in the DATASET class, or to the volume serial in the DASDVOL 
class (if the volume is RACF-defined). 

If a data set to be deleted is stored on more than one volume, either a device must 
be available for mounting the volumes or at least one volume must be mounted. In 
addition, all other required volumes must be serially mountable. 

When deleting a data set, you must build a volume list in virtual storage. This 
volume list consists of an entry for each volume on which the data set resides. The 
first two bytes of the list indicate the number of entries in the list. Each 12-byte 
entry consists of a 4-byte device code, a 6-byte volume serial number, and a 2-byt~ 
scratch status code that should be initialized to zero. 

If the space to be deleted is a VSAM data space, you must use the DELETE 
command provided by access method services. For complete information about the 
DELETE command, see Access Method Services Reference. 

Volumes are processed in the order that they appear in the volume list. The 
volume at the beginning of the list is processed first. If a volume is not mounted, a 
message is issued to the operator requesting that a volume be mounted. (A volume 
mount message will not be issued for a mass storage system (MSS) virtual volume; 
however, a status code will be returned to your program.) This is only done if 
register 0 has been loaded with the address of the UCB associated with the device 
where unmounted volumes are to be mounted. (The device must be allocated to 
your job.) If you do not load register 0 with a UCB address, its contents must be 
zero, and at least one of the volumes in the volume list must be mounted before the 
SCRATCH macro instruction is issued. 

If the requested volume cannot be mounted, the operator issues a reply indicating 
that the request cannot be fulfilled. A status code is then set in the last byte of the 
volume pointer (the second byte of the scratch status code) for the unavailable 
volume, and the next volume indicated in the volume list is processed. 

The format is: 

[symbol) SCRATCH listname-addrx 
listname CAMLST SCRATCH 

,dsname-relexp 
"vollist-relexp 
["OVRD) 

listname-addrx 
points to the parameter list (labeled listname) set up by the CAMLST macro 
instruction. 

34 MVS/XA System-Data Administration 

~-~---~~-~~-~~--~-------------------~ 



( 

(-

( 

SCRATCH 
this operand must be coded as shown. 

dsname-relexp 
specifies the virtual storage location of a fully qualified data set name. The 
area that contains the name must be 44 bytes long. The name must be 
defined by a C-type Define Constant (DC) instruction. 

vol list-relexp 
specifies the virtual storage location of an area that contains a volume list. 
The area must begin on a halfword boundary. 

OVRD 
when coded as shown, specifies that the expiration date in the DSCB should 
be ignored. 

Example: In the following example, data set A.B.C is deleted from two volumes. 
The expiration date in the identifier (format-I) DSCB is ignored. 

SR 0,0 SET REG 0 TO ZERO 
SCRATCH DELABC DELETE DATA SET A.B.C 

* FROM TWO VOLUMES, 

* IGNORING EXPIRATION 

* DATE IN THE DSCB 

DELABC CAMLST SCRATCH,DSABC"VOLIST"OVRD 
DSABC DC CL44'A.B.C' DATA SET NAME 
VOLIST DC H'2' NUMBER OF VOLUMES 

DC X'3030200E' 3380 DISK DEVICE CODE 
DC CL6'OOOO17' VOLUME SERIAL NO. 
DC H'O' SCRATCH STATUS CODE 
DC X'3030200E' 3380 DISK DEVICE CODE 
DC CL6'OOOO18' VOLUME SERIAL NO. 
DC H'O' SCRATCH STATUS CODE 

Note: Check the return codes and SCRATCH status codes. 

The SCRATCH macro instruction points to the CAMLST macro instruction. 
SCRATCH, the first operand of CAMLST, specifies that a data set be deleted. 
DSABC, the second operand, specifies the virtual storage location of a 44-byte 
area where you have placed the fully qualified name of the data set to be deleted. 
VOLIST, the fourth operand, specifies the virtual storage location of the volume 
list you have built. OVRD, the sixth operand, specifies that the expiration date in 
the DSCB of the data set to be deleted be ignored. 

When you attempt to delete a password-protected data set that is not also 
RACF-protected, the operating system issues a message (IEC301A) to ask the 
operator at the console or the terminal operator of a remote console to enter the 
password. The data set will be scratched only if the password supplied is 
associated with a WRITE protection mode indicator. The protection mode 
indicator is described in Chapter 5, "Password Protecting Data Sets." 

Control is returned to your program at the next executable instruction following the 
SCRATCH macro instruction. If the data set has been successfully deleted, 
register 15 will contain zeros, and the scratch status code in the volume list entry 

Chapter 1. Managing the Volume Table of Contents (VTOC) 35 



for each volume will be set to zero. Otherwise, register 15 will contain one of the 
return codes that follow. To determine whether the data set has been successfully 
deleted from each volume on which it resides, you must examine the scratch status 
code, that is, the last byte of each entry in the volume list. 

Return Codes from SCRATCH 

Code Meaning 

4(X'04') No volumes containing any part of the data set were mounted, nor 
did register 0 contain the address of a unit that was available for 
mounting a volume of the data set. The data set may be a VIO data 
set that was not allocated during your job. (This return code is 
accompanied by a scratch status code of 5 in each entry of the 
volume list.) 

8(X'08') An unusual condition was encountered on one or more volumes. 

12(X'OC') The volume list passed was invalid. The scratch status code (the last 
byte of each volume list entry) will not have been modified during 
scratch processing. 

36 MVS/XA System-Data Administration 

o 
I:. 
~/ 

/ '\ 

1" l,,-, 



( 

( 

Status Codes from SCRATCH 

After the SCRATCH macro instruction is executed, the last byte of each 12-byte 
entry in the volume list indicates one of the following conditions in binary codes: 

Scratch 
Status 
Code 

o 

1 

2 

3 

4 

5 

6 

7 

8 

Meaning 

All DSCBs for the data set have been deleted from the 
VTOC on the volume pointed to. 

The VTOC of this volume does not contain the format-l 
DSCB for the data set to be deleted. 

The macro instruction failed when the correct password 
was not supplied in the two attempts allowed, or an 
attempt was made to scratch a VSAM data space or data set 
cataloged in an Integrated Catalog Facility catalog. 

The data set was not deleted from this volume because 
either the OVRD option was not specified or the 
retention cycle has not expired. 

A permanent 110 error was encountered, or an invalid 
format-l DSCB was found when processing this volume, 
or an unexpected error return code was received from 
CVAF. 

It could not be verified that this volume was mounted, 
and no device was available for mounting this volume. 

The operator was unable to mount this volume. 
For IBM Mass Storage Systems (MSS), a volume mount 
failure occurred. 
For a JES3-managed virtual volume, JES3 would not 
allow the volume to be mounted. 

The specified data set could not be scratched 
because it was being used. 

The DSCB indicates the data set is defined to RACF, 
but either the user is not authorized to access the 
data set or the volume, or the data set is a VSAM 
data space, or the data set is cataloged in an Integrated Catalog 
Facility catalog, or the data set is not defined to RACF. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 37 



Renaming a Data Set in the VTOC (RENAME and CAMLST RENAME) 

You rename a data set that is not cataloged in an Integrated Catalog Facility 
catalog or VSAM catalog by using the RENAME and CAMLST macro 
instructions. These cause the data set name in all format-l DSCBs for the data set 
to be replaced by the new name you supply. (VIO data sets cannot be renamed.) 

If a data set to be renamed is stored on more than one volume, either a device must 
be available for mounting the volumes, or at least one volume must be mounted. In 
addition, all other volumes of the data set must be serially mountable. 

For information on RACF-defined data sets, see RACF General Information 
Manual. Only a user with alter access authority may rename a RACF-defined data 
set. 

When renaming a data set, you must build a volume list in virtual storage. This 
volume list consists of an entry for each volume on which the data set resides. The 
first two bytes of the list indicate the number of entries in the list. Each 12-byte 
volume list entry consists of a 4-byte device code, a 6-byte volume serial number, 
and a 2-byte rename status code that should be initialized to zero. Volumes are 
processed in the order in which they appear in the volume list. The first volume on 
the list is processed first. If a volume is not mounted, a message is issued to the 
operator requesting that the volume be mounted. (A volume mount message will 
not be issued for an MSS volume; however, a status code is returned to your 
program.) This is only done if you indicate the direct access device on which 
unmounted volumes are to be mounted by loading register 0 with the address of the 
UCB associated with the device to be used. (The device must be allocated to your 
job.) If you do not load register 0 with a UCB address, its contents must be zero, 
and at least one of the volumes in the volume list must be mounted before the 
RENAME macro instruction is executed. 

If the operator cannot mount a volume in the volume list, a reply is issued that the 
request cannot be fulfilled. A status code is then set in the last byte of the volume 
list entry (the second byte of the rename status code) for the unavailable volume, 
and the next volume indicated in the volume list is processed or requested. 

The format is: 

(symbol) RENAME listname-addrx 
listname CAMLST RENAME 

,dsname-relexp 
,new name-relexp 
,vollist-relexp 

listname-addrx 
points to the parameter list (labeled listname) set up by the CAMLST macro 
instruction. 

RENAME 
this operand must be coded as shown. 

38 MVS/XA System-Data Administration 



dsname-relexp 
specifies the virtual storage location of a fully qualified data set name to be 
replaced. The area that contains the name must be 44 bytes long. The name 
must be defined by a C-type Define Constant (DC) instruction. 

new name-relexp 
specifies the virtual storage location of a fully qualified data set name that is 
to be used as the new name. The area that contains the name must be 44 
bytes long. The name must be defined by a C-type Define Constant (DC) 
instruction. 

vollist-relexp 
specifies the virtual storage location of an area that contains a volume list. 
The area must begin on a halfword boundary. 

ExlllllJlle: In the following example, data set A.B.C is renamed D.E.F. The data 
set resides on two volumes. 

SR 0,0 SET REG 0 TO ZERO 
CHANGE DATA SET 
NAME A.B.C TO D.E.F 

DSABC 
OLD NAME 
NEWNAME 
VOLIST 

RENAME DSABC 

CAMLST 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

RENAME,OLDNAME,NEWNAME,VOLIST 
CL44'A.B.C' OLD DATA SET NAME 
CL44'D.E.F' NEW DATA SET NAME 
H'2' TWO VOLUMES 
X'3030200E' 3380 DISK DEVICE CODE 
CL6'000017' VOLUME SERIAL NO. 
H'O' RENAME STATUS CODE 
X'3030200E' 3380 DISK DEVICE CODE 
CL6'000018' VOLUME SERIAL NO. 
H'O' RENAME STATUS CODE 

Note: Check the return codes and RENAME status codes. 

The RENAME macro instruction points to the CAMLST macro instruction. 
RENAME, the first operand of CAMLST, specifies that a data set be renamed. 
OLDNAME, the second operand, specifies the virtual storage location of a 44-byte 
area where you have placed the fully qualified name of the data set to be renamed. 
NEWNAME, the third operand, specifies the virtual storage location of a 44-byte 
area where you have placed the new name of the data set. VOLIST, the fourth 
operand, specifies the virtual storage location of the volume list you have built. 

Control is returned to your program at the next executable instruction following the 
RENAME macro instruction. If the data set has been successfully renamed, 
register 15 will contain zeros, and the rename status code in the volume list entry 
for each volume will be set to zero. Otherwise, register 15 will contain one of the 
return codes below. To determine whether the data set has been successfully 
renamed on each volume where it resides, you must examine the rename status 
code, the last byte of each entry in the volume list. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 39 



Return Codes from RENAME 

Code Meaning 

4(X'04') No volumes containing any part of the data set were 
mounted, nor did register 0 contain the address of a unit 
that was available for mounting a volume of the data set 
to be renamed. 
The data set may be a VIO data set and cannot be renamed. 
(This return code is accompanied by a rename status code 
of 5 in each entry of the volume list.) 

8(X'08') An unusual condition was encountered on one or more 
volumes. 

12(X'OC') The volume list passed was invalid. 
The rename status code, the last byte of each volume list 
entry, will not have been modified during rename 
processing. 

After the RENAME macro instruction is executed, the last byte of each 12-byte 
entry in the volume list indicates one of the following conditions in binary code: 

40 MVS/XA System-Data Administration 



( 

( 

Rename 
Status 
Code Meaning 

0 The format-l DSCB for the data set has been renamed in 
the VTOC on the volume pointed to. 

1 The VTOC of this volume does not contain the format-l 
DSCB for the data set to be renamed. 

2 The macro instruction failed when the correct password 
was not supplied in the two attempts allowed, or the 
user tried to rename a VSAM data space or VSAM data 
set cataloged in an Integrated Catalog Facility catalog. 

3 A data set with the new name already exists on this 
volume. 

4 A permanent II 0 error was encountered, or an invalid 
format-l DSCB was found when trying to rename the data 
set on this volume, or an unexpected error return code 
was received from CV AF. 

5 It could not be verified that the volume was mounted, 
and no device was available for mounting the volume. 

6 The operator was unable to mount this volume. 
For Mass Storage Systems (MSS), a volume mount 
failure occurred. 
For a JES3-managed virtual volume, JES3 would not 
allow the volume to be mounted. 

7 The specified data set could not be renamed on 
this volume because it was being used. 

8 The data set is defined to RACF, but either the 
user is not authorized to alter the data set 
or the data set is defined to RACF on multiple 
volumes. 

When you attempt to rename a password-protected data set, the operating system 
issues a message (IEC30lA) to ask the operator or remote console operator to 
verify the password. The data set will be renamed only if the password supplied is 
associated with a WRITE protection mode indicator. The protection mode 
indicator is described in Chapter 4, "Password Protecting Data Sets" on 
page 111. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 41 



Accessing the VTOC and its Index with CV AF Macros 

SeriaUzation and Updating 

Identifying the Volume 

You may use CV AF or DADSM to access the VTOC or its index. DADSM access 
is described in "Accessing the VTOC with DADSM Macros" on page 19. 

CV AF macros and associated tasks include: 

CVAFDIR - Directly access DSCBs or VTOC index records. 
CVAFDSM - Obtain volume free space information. 
CVAFFILT - Read sets of DSCBs for one or more DASD data sets. 
CVAFSEQ - Retrieval of the following: 

- Data set names from an active VTOC index. 
- DSCBs in physical-sequential order. 
- DSCBs in data set name order (index required). 

CVAFTST - Determine if a DASD volume has an active VTOC index. 

Appendix A, "CV AF VTOC Access Macros" on page 231, contains detailed 
descriptions of these macros. Appendix B, "Examples of VTOC Access Macros" 
on page 259, contains examples of their use. 

CV AF requires that you provide all necessary system resource serialization for 
your request. You can only ensure the integrity of multiple data elements (sets of 
DSCBs and/or VIRs) returned by CV AF if you serialize system resources 
adequately. You compound this exposure if you must make multiple CV AFFIL T 
requests for a desired set of DSCBs and/or VIRs. 

You must weigh possible system performance loss because of serialization against 
the potential loss of data integrity. H you make updates without adequate 
serialization, you may compromise the integrity of the volume's VTOC, the VTOC 
index, and/or any associated data set. 

CV AF only honors requests to modify the volume's VTOC and/or index from 
authorized programs. 

CV AF assumes that an authorized program holds an exclusive RESERVE (or 
ENQ) on the qname (major name) of SYSVTOC, mame (minor name) of the 
volume's serial number, with the scope of SYSTEMS. The SYSVTOC qname does 
not serialize access to the format-l DSCB for a data set. You may provide this 
serialization by allocating the data set with disposition OLD, MOD, or NEW (not 
SHR). This causes the proper ENQ, ensuring that no other job can update that 
data set's format-l DSCB. 

H you are authorized, you may identify the volume to the CV AFDm, CV AFDSM, 
CV AFFIL T, and CV AFSEQ macros by specifying the address of its UCB. H you 
are not authorized, you must identify the volume by specifying the address of a 
SAM or EXCP DEB opened to the volume's VTOC. 

The DEB can be obtained by opening a DCB using the ROJFCB and OPEN 
TYPE=J macros. The DCBs DDNAME is that of a DD statement allocated to the 
unit whose VTOC is to be accessed. After issuing the ROJFCB macro, the 
JFCBDSNM field is overlaid with the data set name of the format-4 DSCB: 
44X'04'. You open the DCB for INPUT by using OPEN TYPE=J. The DEB 

42 MVS/XA System-Data Administration 

/f'~ 

~-~ 



( 

( 

Using Registers 

address is in DCB field DCBDEBA. The OPEN macro is described under 
"OPEN-Initialize Data Control Block for Processing the JFCB" on page 148; 
the RDJFCB macro is described under "RDJFCB-Read a Job File Control 
Block" on page 137. 

If a CV AF macro call specifies 10AREA=KEEP, a subsequent CV AF call using a 
different CVPL may omit the UCB and DEB keywords and supply the 10AREA 
address from the other CVPL. You can use the IOAREA keyword to do this. 

The requirements cited above do not apply to the CV AFTST macro. The 
CV AFTST macro only allows you to identify the VTOC by specifying a UCB, and 
does not require that you be authorized. 

Register 1 contains the address of the CV AF parameter list (CVPL). Register 15 
contains the return code when processing for a function is complete. 

Generating a CVPL (CV AF Parameter List) 

All the CV AF macros except CV AFTST use the CVPL to pass parameters to 
CV AF. The CV AFTST macro expands to provide its only parameter (UCB 
address) in register 1, and calls the associated CV AF module. CV AF uses the 
CVPL to return information related to the CV AF request. 

CV AF generates a CVPL when you specify the CV AFDIR, CV AFDSM, 
CV AFFILT, or CV AFSEQ macro with MF=L or MF=I as a subparameter. If 
you do not specify the MF subparameter, MF=I is the default. Upon return, the 
CVlIVT bit indicates whether an indexed or nonindexed VTOC was accessed. 
The CYST AT field contains feedback when an error occurs. The address of the 
map records buffer list is returned in the CVMRCDS field. The address of the· 
VIER buffer list is returned in the CVIRCDS field. CV AF returns the CV AF I/O 
area address in the CVIOAR field. CV AF returns the CV AF Filter Save Area 
address in the CVFSA field. 

You may use the CVPL generated by the MF=L or MF=I form of the CV AFDIR, 
CV AFDSM, CV AFFIL T, or CV AFSEQ macros (by using the MF =E keyword) to 
execute a different function than that specified by the macro that originally 
generated the CVPL. If you specify a CV AF filter request, you must use a CVPL 
generated by the CV AFFILT macro. (To support the CVFSA field, the 
CV AFFILT macro generates a CVPL four bytes larger than that generated by the 
other CV AF macros.) 

The ICV AFPL macro maps the CVPL. The format of the CVPL is shown in 
Figure 13 on page 44. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 43 



-------------------- ----------------- ------

Name Offset Bytes Description "'\ 

'-.J 
CVPL 
CVLBL OO(X'OO') 4 EBCDIC' CVPL' 
CVLTH 04(X'04') 2 Length of CVPL 

64(X' 40') for macros other than CV AFFIL T 
68(X'44') for CV AFFILT macro 

CVFCTN 06(X'06') 1 Function byte (See Figure 14 on page 45) 
CVSTAT 07(X'07') 1 Status information 
CVFLI 08(X'08') 1 First flag byte 
CVIIVT X'80' Indexed VTOC accessed 
CVlIOAR X'40' IOAREA-KEEP 
CVIPGM X'20' BRANCH-(YES,PGM) 
CVIMRCDS X'lO' MAPRCDS-YES 
CVIIRCDS X'08' IXRCDS-KEEP 
CVIMAPIX X r04' MAP-INDEX 
CVIMAPVT X'02' MAP-VTOC 
CVIMAPVL X'Ol' MAP-VOLUME 
CVFL2 09(X'09') 1 Second flag byte 
CV2HIVIE X'80' HIVIER-YES 
CV2VRF X'40' VRF data exists 
CV2CNT X'20' COUNT-YES 
CV2RCVR X'lO' RECOVER-YES 
CV2SRCH X'08' SEARCH-YES 
CV2DSNLY X'04' DSNONLY - YES 
CV2VER X'02' VERIFY-YES -\ 
CV2NLEVL X'OI' New highest level VIER (output) 
CVFL3 lO(X'OA') 1 Third flag byte '-- / 

CV3FILT X'80' FLT AREA-KEEP 
CV3IXERR X'40' Index error found 

.. xx xxxx Reserved 
11(X'OB') 1 Reserved 

CVUCB 12(X'OC') 4 UCB address 
CVDSN 16(X'1O') 4 Data set name address 
CVFCL 16(X'1O') 4 Filter criteria list address 
CVBUFL 20(X'14') 4 Buffer list address 
CVIRCDS 24(X'18') 4 Index VIRs buffer list address 
CVMRCDS 28(X'lC') 4 Map VIRs buffer list address 
CVIOAR 32(X'20') 4 I/O area address 
CVDEB 36(X'24') 4 DEB address 
CVARG 40(X'28') 4 Argument address 
CVSPACE 44(X'2C') 4 SPACE parameter list address 
CVEXTS 48(X'30') 4 Extent table address 
CVBUFL2 52(X'34') 4 New VRF VIXM buffer list address 
CVVRFDA 56(X'38') 4 VRF data address 
CVCTAR 60(X'3C') 4 Count area address 
CVFSA 64(X'40') 4 Filter save area 

Figure 13. Fonnat of the CV AF Parameter List (CVPL) 

Note: The CVAFFILT macro generates a CVPL four bytes longer (total length = 
(~ X'44') than that generated by the other CVAF macros (total length - X'40'). ~{. 

_J 

44 MVS/XA System-Data Administration 



( 

( 
Buffer Lists 

(-

The possible contents of the CVFCTN field in the CVPL and their meanings are as 
follows: 

Name Description 

CVDIRD X'01' -CVAFDIR ACCESS=READ 
CVDIWR X'02' -CVAFDIR ACCESS=WRITE 
CVDIRLS X'03' -CVAFDIR ACCESS=RLSE 
CVSEQGT X'04' -CVAFSEQ ACCESS=GT 
CVSEQGTE X'05' -CVAFSEQ ACCESS=GTEQ 
CVDMlXA X'06' -CVAFDSM ACCESS=IXADD 
CVDMIXD X'07' -CVAFDSM ACCESS=IXDI, T 
CVDMALC X'08' -CVAFDSM ACCESS=ALLOC 
CVDMRLS X'09' -CVAFDSM ACCESS=RLSE 
CVDMMAP X'OA' -CVAFDSM ACCESS=MAPDATA 
CVVOL X'OB' -CVAFVOL ACCESS=VIBBLD 
CVVRFRD X'OC' -CVAFVRF ACCESS=READ 
CVVRFWR X'OD' -CVAFVRF ACCESS= WRITE 
CVFIRD X'OE' -CVAFFILT ACCESS=READ 
CVFlRES X'OF' -CVAFFILT ACCESS=RESUME 
CVFIRLS X'lO' -CVAFFILT ACCESS=RLSE 

Figure 14. CVFCTN Field of CVPL-Contents and Def'mitions 

A buffer list consists of one or more chained control blocks, each with a header and 
buffer list entries, obtained and initialized by your program before calling CV AF. 
The header indicates whether the buffer list is for DSCBs or VTOC index records. 
The entries point to and describe the buffers. 

You can create buffer lists in two ways: 

• Directly, when you fill in the arguments and buffer addresses of DSCBs or 
VIRs to be read or written 

• Indirectly (by CVAF), when you code the IXRCDS=KEEP and/or 
MAPRCDS= YES keywords 

The ICVAFBFL macro maps CVAF buffer lists. Figure 15 on page 46 shows the 
format of a buffer list header. Figure 16 on page 47 shows the format of a buffer 
list entry. 

Bllller List H«MIer: The buffer list header indicates whether the buffer list 
describes buffers for DSCBs or for VTOC index records. The DSCB bit must be 
set to one and the VIR bit to zero for CV AF to process a request to read or write a 
DSCB. CV AF requires that you provide buffer lists and buffers in your program's 
protect key. CV AF uses the protect key and subpool fields in the buffer list header 
only if you code ACCESS=RLSE. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 45 



Name 

BFLHOR 
BFLHNOE 
BFLHFL 
BFLHKEY 
BFLHVIR 
BFLHOSCB 

BFLHSP 
BFLHFCHN 

Each buffer list header contains a count of the number of entries in the buffer list 
that directly follows the header. 

The forward chain address chains buffer lists together. You must not chain OSCB 
buffer lists to VIR buffer lists, or VIR buffer lists to OSCB buffer lists. 

The format of the buffer list header is shown in Figure 15. 

Offset Bytes Description 

O(X'OO') 8 Buffer list header 
O(X'OO') 1 Number of entries 
l(X'OI ') 1 Flag byte and key 

xxxx .... Protect key of buffer list and buffers 
X'08' Buffer list entries describe VIRs 
X'04' Buffer list entries describe OSCBs 
...... xx Reserved 

2(X'02') 1 Reserved 
3(X'03') 1 Identifies the subpool of buffer list and buffers 
4(X'04') 4 Forward chain address of next buffer list 

Figure IS. Format of a Buffer List Header 

Buffer List Entry: A buffer list contains one or more entries. Each entry provides 
the buffer address, the length of the OSCB or VIR buffer, the argument, and an 
indication whether the argument is an RBA, a TTR, or a CCHHR. 

The fields and bit uses are listed below. 

• For a VIR buffer, the TTR and CCHHR bits must be 0, and the RBA bit must 
be 1. 

• For a OSCB buffer, the RBA bit must be 0, and one of either the TTR or 
CCHHR bits must be set to 1 (they must not both be 1). 

• The BFLEAUPO bit is an output indicator from CV AF that the BFLEARG 
field of a VIR buffer list was updated. 

• The BFLEMOO bit indicates that a VIR buffer was modified and must be 
written; if no BFLEMOD bits are on in any of the entries for a CV AFDIR 
ACCESS= WRITE, all buffers are written. 

• The BFLESKIP bit is used to cause an entry to be ignored. 

• The BFLEIOER bit is an output indicator from CV AF to indicate an I/O error 
occurred during reading or writing of the OSCB or VIR. 

• The BFLELTH field is the length of the buffer; for a OSCB buffer, the length 
must be 96 or 140; for a VIR buffer, the length must be the length of the 
buffer divided by 256. 

• The BFLEARG field is the argument of the OSCB or VIR. Specify the desired 
format of the 5-byte field by setting either the BFLECHR. BFLETTR. or 

46 MVS/XA System-Data Administration 

- ------ -------- ---- --- ---------- ---------- -



( 

( ": .. 

Name 

BFLE 
BFLEFL 
BFLERBA 
BFLECHR 
BFLETIR 
BFLEAUPD 
BFLEMOD 
BFLESKIP 
BFLEIOER 

BFLELTH 

BFLEARG 
BFLEATTR 
BFLEARBA 
BFLEBUF 

BFLERBA bit to 1. The respective BFLEARG values and formats are as 
follows: 

CCHHR=5 byte CCHHR 

TTR=OTTRO 

RBA=One byte of 0 followed by a 4-byte RBA 

The optional and required values for BFLEARG are dependent upon the variables 
associated with a given request. These are described in the following 
request-oriented topics. 

The format of the buffer list entry is shown in Figure 16. 

Offset Bytes 

O(X'OO') 12 
O(X'OO') 1 

X'80' 
X'40' 
X'20' 
X'10' 
X'08' 
X'04' 
X'02' 
....... x 

l(X'OI ') 1 
2(X'02') 1 

3(X'03') 5 
4(X'04') 3 
4(X'04') 4 
8(X'08') 4 

Description 

Buffer list entry 
Flag byte 
Argument is RBA 
Argument is CCHHR 
Argument is TTR 
CV AF updated argument field 
Data in buffer has been modified 
Skip this entry 
I/O error 
Reserved 
Reserved 
Length of VIR buffer divided by 256, or length of DSCB 
buffer 
Argument of VIR or DSCB 
TTRof DSCB 
RBA of VIR 
Buffer address 

Figure 16. Format of a Buffer Ust Entry 

Accessing the DSCB Directly 

You may use the CV AFDIR macro to read or write a DSCB. You may also use it 
to read or write VTOC index records for indexed VTOCs. "CV AFDIR Macro" on 
page 231 discusses detailed information about the CV AFDIR VTOC access 
macro. 

After a CV AFDIR call, you may test the CV AF parameter list bit, CVIIVT, to 
determine whether the VTOC is indexed or nonindexed. 

Chapter t. Managing the Volume Table of Contents (VTOC) 47 



Specifying a Data Set Name to Read 01' Write a DSCB: If you want to read or write 
a single DSCB by specifying only the data set name (that is, BFLEARG is zero) 
you must specify either ACCESS=READ or ACCESS=WRITE. 

Specify the address of the data set name in the DSN keyword. Specify the address 
of the buffer list in the BUFLIST keyword. Each of these areas and the associated 
buffers must be in your program's protect key. 

The buffer list must contain at least one buffer list entry with the skip bit off and a 
pointer to a 96-byte buffer. You must not provide 140-byte buffers. You may 
chain buffer lists together, but CV AF only uses the first eligible entry. 

For an indexed VTOC, CV AF searches the index for the data set name and, if it is 
found, puts the DSCB argument into the buffer list entry and uses it to read or 
write the DSCB. If CV AF cannot find the data set name in the index, CV AF does 
a key search of the VTOC. 

For a nonindexed VTOC, CV AF uses a channel program to do a key search of the 
VTOC to locate the data set name and read or write the DSCBs. If CV AF finds 
the data set name, CV AF puts the DSCB argument into the buffer list entry. 

The DSCB argument returned in the buffer list entry is in the format determined by 
the buffer list entry bits BFLECHR or BFLETTR. 

If CV AF does not find the data set name in the VTOC, it provides a return code of 
'4' in register 15, and an error code of '1' in the CYST AT field. 

Specifying the DSCB Location: If you want to read or write a DSCB by specifying 
the DSCB's location (that is, BFLEARG), you must specify either 
ACCESS=READ or ACCESS= WRITE. 

Specify the address of the data set name in the DSN keyword. Specify the address 
of the buffer list in the BUFLIST keyword. Each of these areas and the associated 
buffer(s) must be in your program's protect key. 

The buffer list must have at least one buffer list entry with the skip bit off and a 
pointer to a 96-byte or 140-byte buffer. You may chain buffer lists together, but 
CV AF only uses the first eligible entry. 

If the buffer is for a 96-byte read or write, CV AF issues a channel program to 
verify that the key in the DSCB is the same as the 44-byte data set name you 
provide. CV AF does not execute the read or write unless the keys match. If they 
do not match, CV AF ignores the specified BFLEARG and reads or writes the 
DSCB according to the rules given in "Specifying a Data Set Name to Read or 
Write a DSCB" on page 48. 

IT the buffer is for a 140-byte read or write, CV AF issues a channel program to 
read or write the DSCB at the location specified in the buffer list entry. CV AF 
does not use the data set name you specified. If you specify VERIFY = YES, 
CV AF verifies that the designated DSCB is a format-O DSCB before issuing the 
write channel program. 

48 MVS/XA System-Data Administration 

----------- ~~~-------------- - --------------

II' -"" 
I 



( 

( 

(-

Reading or Writing YIOC Index ReconIs: You may read or write VIRs explicitly by 
using the BUFLIST keyword. You may read them implicitly by using the IXRCDS 
and MAPRCDS keywords. You may supply a buffer list address in the BUFLIST 
keyword to read or write one or more VIRS. The buffer list header must have the 
VIR bit set to one and the DSCB bit set to zero. CV AF inspects each entry in the 
buffer list (and any chained extensions). If the skip bit is set to zero, the RBA bit 
is set to one (and the CClllIR and TTR bits are set to zero), and the buffer 
address is nonzero, CV AF processes the entry. CV AF uses the RBA in the 
argument field of the buffer list entry to read or write a VIR using the buffer 
address. CV AF processes read and write requests in the order of their appearance 
in the buffer list. 

Each of the storage areas you provide must be in your program's protect key. 

For a write request, CV AF inspects the modification bit in the buffer list entries. If 
the bit is not set to '1' in any entry, CV AF writes all the entries. CV AF sets the 
modification bit to zero for entries whose VIR is written. 

If you specify the keywords MAPRCDS=YES and/or IXRCDS=KEEP and, at 
the same time, you do not provide an address in the CVMRCDS/CVIRCDS fields 
of the CVPL, CV AF reads the map records and the first high-level VTOC index 
entry record. 

Reading Map Records and VIERS: If you want to read the VTOC index map 
records and first high-level VIER, and retain them in virtual storage, you must code 
either ACCESS=READ or ACCESS= WRITE. CV AF does not require either the 
DSN or BUFLIST fields. 

If you want to read and retain map records, you must code MAPRCDS= YEs. The 
CV AF parameter list field CVMRCDS must be zero. CV AF obtains a buffer list 
with the number of entries and buffers required to read all the map VIRs. CV AF 
puts the buffer list address into the CVMRCDS field. 

If you want to read and retain the first high-level VIER and (if this requires an 
index search) all VIERs read, you must code IXRCDS=KEEP. If the CV AF 
parameter list field CVIRCDS is zero, CV AF obtains a buffer list with entries and 
buffers, and reads the first high-level VIER. CV AF determines the number of 
entries and buffers. If CVIRCDS is not zero, CV AF reads only the VIERs 
required for an index search. 

You can only ensure the integrity of the maps and VIER that CV AF reads if you 
enqueue the VTOC and (for shared DASD) issue a reserve to the unit. 

You must release the map and VIER buffers acquired and retained by CV AF by 
issuing a subsequent CV AF call. 

Releosillg Buffen and Buffer Lists Obtai1ll!Jd by CVAF: You may release buffers and 
buffer lists acquired by CV AF in the three following ways: 

• To free the MAP records buffer list, code MAPRCDS=NO or 
MAPRCDS=(NO,addr) specifying any ACCESS. 

• To free the index records buffer list, code IXRCDS=NOKEEP or 
IXRCDS=(NOKEEP,addr) specifying any ACCESS. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 49 



• Issue a CV AF call with ACCESS=RLSE, and specify a buffer list address with 
the BUFLIST keyword. 

CV AF frees all eligible buffers and any buffer lists if they become empty. Eligible 
buffers are those pointed to by buffer list entries with the skip bit off. CV AF frees 
a buffer list if none of its buffer list entries have the skip bit on. If buffer lists are 
chained together, CV AF checks and frees all buffer lists if appropriate. 

Ensure that you do not request CV AF to release the same buffer list twice by 
specifying its address in more than one place. 

Accessing DSNs or DSCBs in Sequential Order 

Each CV AFSEQ call may request the return of one of the following: 

• One format-lor format-4 DSCB in indexed (data-set-name) order. 

• One or more DSCBs in physical-sequential order (if you are unauthorized, you 
can only request one DSCB). 

• The next data set name in the index. 

CV AF reads the DSCBs into buffers supplied with the BUFLIST keyword. 
"CV AFSEQ Macro" on page 251 discusses detailed information about the 
CV AFSEQ VTOC access macro. 

Use the buffer list to specify the argument of each DSCB to be read. For indexed 
access, you must request 96-byte DSCBs in the buffer list. For physical-sequential 
access, you must request 140-byte DSCBs. 

If you select indexed order, CV AF returns each format-lor format-4 DSCB whose 
name is in the index. If you want CV AF to return only the data set names in the 
index (not the DSCBs), specify DSNONL Y = YEs. In this case, CV AF returns the 
CCHHR of the DSCB in the argument area supplied through the ARG keyword. 
CV AF updates the DSN area you specify, with the data set name of each DSCB 
read, each time you issue CV AFSEQ. 

Initiating Indexed ACCGY (DSN Order): To initiate indexed access (DSN order), 
either supply in the area coded through the DSN keyword 44 bytes of binary zeros 
(to indicate the first data set name in the index) or supply the data set name you 
want to serve as the starting place for the index search. 

The name that CV AF returns in the DSN area is the one equal to or greater than 
the DSN supplied, depending on the specification of the ACCESS keyword. 
CV AF updates the DSN field. 

The ACCESS keyword determines whether the search is for a DSN greater than or 
equal to that which you specify. 

If you specify DSNONL Y =NO, CV AF returns the DSCB and argument to you, 
using the buffer list you provide with the BUFLIST keyword. CV AF uses the first 
entry in the buffer list with the skip bit set to '0' and a nonzero buffer address. 
You must specify the argument value if you set either the TTR or CCHHR bit in 
the buffer list entry to '1'. The default is CCHHR. For indexed access, the DSCB 
size in the buffer list entry must be 96 bytes. 

50 MVS/XA System-Data Administration 

-~--~ .-~---~~~~-~------

,,(-~ 

~/ 



( 

( "'. 

/ 

If you specify DSNONL Y = YES, you must specify the CCHHR argument in the 
ARGarea. 

Note that the data set name of the format-4 DSCB is in the index and that CV AF 
may return its name (44 bytes of X'04'). The format-4 DSCB's name is likely to 
be the first data set name in the VTOC index. 

I"itiating Physical-Sequetltiol Access: To initiate physical-sequential access, you 
must either specify DSN =0, or not specify the DSN parameter at all. To begin the 
read, you must initialize the argument field in the first buffer list entry to zero or to 
the argument of the DSCB. If the argument is zero, CV AF uses the argument of 
the start of the VTOC. 

You must set the DSCB size to 140 in buffer list entries. 

The ACCESS= specification determines whether CV AF reads the DSCB whose 
argument is supplied or the DSCB following it. 

For example, to read the first DSCB (the format-4 DSCB) in the VTOC, you may 
set the BFLEARG in the first buffer list entry to zero and specify 
ACCESS=GTEQ in the CV AFSEQ macro. If you subsequently specify 
ACCESS=GT, CVAF reads the second DSCB (the first format-5 DSCB). 

If you are authorized, CV AF reads as many DSCBs as there are entries in the 
buffer list, with a single CV AF call. If you are not authorized, CV AF only reads 
one DSCB. 

CV AF only uses one buffer list. CV AF does not inspect a second buffer list 
chained from the first. If you are authorized, CV AF uses all entries in the buffer 
list. CV AF does not inspect the skip bit. Each entry must have a buffer address, 
the length field set to 140, and the TTR or CCHHR bit set to 1 (if neither bit is 
set, CVAF sets the CCHHR bit on). If you are unauthorized, CVAF only uses the 
first entry. CV AF updates the argument field of each buffer list entry with the 
argument of the DSCB. The argument value is returned in either TTR or CCHHR 
format, depending on whether you set the TTR or CCHHR bit to 1 in the buffer 
list entry. The default is CCHHR. 

CV AF uses only the argument in the first entry to begin the search. CV AF does 
not inspect arguments in subsequent entries. If you specify a nonzero argument 
value in the first entry, a DSCB with that argument must exist. 

CV AF indicates an end-of-data condition by providing return code 4 in register 15, 
and a value of X' 20' in the CYST AT field. CV AF sets the argument fields of all 
buffer list entries following the last DSCB read, to zero (the first entry is zero if 
CVAF does not read any DSCBs). 

Note that CV AF reads all DSCBs, including format-O DSCBs. You cannot be 
certain that you have read all format-l through format-6 DSCBs until CV AF had 
read the entire VTOC. For a nonindexed VTOC, the format-4 DSCB field 
DS4HPCHR contains the CCHHR of the last format-l DSCB. Format-2 through 
format-6 DSCBs may reside beyond that location. For an indexed VTOC, the 
VMDS contains information about which DSCBs are format-O DSCBs. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 51 



Reading Sets of DSCBs with CV AF Fllter 

The CV AF filter service retrieves sets of DSCBs into buffers provided by the 
calling program. The following text summarizes this service and its requirements. 

• You may invoke the CV AF filter service by issuing the CV AFFIL T macro. 
"CV AFFIL T Macro" on page 245 describes the macro's syntax and 
parameters. 

• You request DSCBs by specifying either one or more fully qualified data set 
names, or one partially qualified name. See "Filter Criteria List" on page 53 
and "Examples of Partially Qualified Names for CV AFFIL T" on page 250 for 
further information. 

• For each of the qualifying data sets, CV AF Filter returns DSCBs in the order 
that they are chained in the VTOC: format 1, format 2, then format 3. CV AF 
does not return DSCBs of other formats. 

• CV AF filter service returns complete DSCB chains for one or more qualifying 
data sets into caller-provided buffers. See "Example of CV AFFIL T Macro 
Sequences" on page 57 and "Example 3: Using the CVAFFILT Macro" on 
page 271 for further information. CV AF filter service does not return a 
partial DSCB chain: 

If you do not provide enough buffers to hold all of the requested DSCBs, 
CV AF filter service returns one or more complete DSCB chains and/or a 
status code (CVSTAT in the CVPL). The status code indicates whether 
or not you may use a "RESUME" CV AF call to retrieve the rest (or more) 
of the requested DSCBs. See "RESUME Capability" for specific 
information. 

If the total number of buffers provided is not sufficient to contain a data 
set's complete DSCB chain, CV AF filter service sets a status byte 
(FCLDSNST in the FCL), ignores the data set, and processes the next 
qualifying data set. You can avoid this situation by providing a minimum 
of eleven DSCB buffers (enough for a data set at the 123 extent limit). 

• You must identify a single DASD volume in the CV AF parameter list (CVPL). 
CV AF filter service supports both indexed and nonindexed VTOCs. 

• When calling CV AF, your program can be in either 24-bit or 31-bit addressing 
mode. If it is in 31-bit mode, the control blocks shown in Figure 17 on 
page 53 may reside above the 16Mb line. All these areas must be accessible in 
your program's storage key. 

RESUME Capability: If CV AF filter service terminates before returning a data 
set's DSCBs because you did not provide enough buffers, CV AF filter service 
saves the information necessary for a RESUME function in the filter save area 
(You must specify FL T AREA=KEEP on the initial CV AFFIL T call to cause 
CV AF filter service to obtain and keep the filter save area). 

To allow RESUME processing to execute correctly, you must maintain the 
relationship between the requested volume (identified by CVDEB, CVUCB, or a 
kept IOAREA), your FCL, and CV AF's FSA. If you observe this requirement, 
you can initiate and resume multiple CV AF filter service operations 

52 MVS!XA System-Data Administration 

( .. ~ 
=~ 



(, 

Reg 1 --+ CVPL--.., 

asynchronously on one or more DASD volumes. You can ensure this relationship 
by providing a unique CVPL and FCL for the duration of the 
READ/RESUME/RELEASE sequence associated with each logical request. 

If you issue an ACCESS=RESUME without having previously specified 
FLTAREA=KEEP, CYAF filter service provides return code '4' in register 15 
and '66' in the CYST AT field. 

If you specify FLTAREA=KEEP, you must issue a subsequent CY AFFILT call 
with the ACCESS=RLSE keyword to release the filter save area stor~ge. 

CVFCL -+----------+ FCL----. 

CVBUFL BFL----. 
BFLH 

BFLE-......... 

DSCB 
Buffer 

OSCB 
Buffer 

OSCB 
Buffer 

FLCH 

OSN 

OSN 

OSN 

Figure 17. Control Blocks Required for CVAF FHter Senices 

Filter Criteria List 

The filter criteria list consists of two kinds of elements; a list header, and a variable 
number of list entries. The list entries immediately follow the header, and each 
entry represents a different data set name to be processed by CY AF filter. The 
header and entries, shown in Figure 18 and Figure 19 are mapped by the 
ICYFCL macro. The format of the FCL header is shown in Figure 18. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 53 



Name Offset Bytes 

FCUD OO(X'OO') 4 
FCLCOUNT 04(X'04') 2 
FCLDSCBR 06(X'06') 2 
FCLIFLAG 08(X'08') 1 
FCLlUST X'80' 
FCLlORDR X'40' 

.. xx xxxx 
FCL2FLAG 09(X'09') 1 
FCL2SEQ X'80' 
FCL2SDIR X'40' 

.. xxxxxx 
FCLDRSV lO(X'OA') 6 

Description 

EBCDIC 'FCL , 
Number of data set name entries provided in the list. 
Number of DSCBs returned 
Request flag byte 
List contains fully qualified data set names 
FCL data set name order requested 
Reserved 
Status flag byte 
CV AFFIL T executed sequential VTOC access 
CV AFFIL T executed sequential VTOC access, but did at least 
one direct DSCB read 
Reserved 
Reserved 

Figure 18. Format of a Filter Criteria List (FeL) Header 

FCLID 
Must be a 4-character EBCDIC constant of 'FCL ' 

FCLCOUNT 
Specifies the number of data set name entries (FCLDSN) supplied in the list. 
You must not change this parameter between the initial CV AFFIL T call and 
any subsequent RESUME operations. 

When you specify a partially-qualified data set name, you must specify 
FCLCOUNT = 1. See "Examples of Partially Qualified Names for 
CV AFFIL T" on page 250 for the format of partially qualified data set 
names. 

• When you specify a list of fully qualified names, CV AFFIL T processes 
only the number of names specified in FCLCOUNT. 

FCLDSCBR 
Indicates the total number of DSCB entries (including format-I, format-2, 
and format-3) returned to the caller's buffers by a single CV AFFILT call. 

Because CV AF may encounter an error after successfully processing a data 
set, you may: 

1. Initialize FCLDSCBR to 0 before each READ and RESUME call. 

2. Upon return from CV AF filter service, process the number of DSCBs 
indicated by FCLDSCBR,. 

3. Then, interpret the CV AF return code and CYST AT. 

FCLIFLAG 
Define your request for ACCESS=READ with this flag byte. Any 
subsequent RESUME requests refer to a copy of these bits in the filter save 
area (FSA). 

54 MVS/XA System-Data Administration 

------------- - -- - ------- --------------------------- -

r# -, " 
I, 

"--7 



(-

FCLILIST 
Set this bit to 1 if you specify a list of fully qualified data set names. 
Set it to 0 if you specify a single partially qualified data set name. 

FCLlORDR 

FCL1FLAG 

If you specify that CV AF return DSCB chains in the data set name 
sequence implied by the placement of the FCLDSN elements, set this 
bit to 1. Note that: 

• If you allow CV AF to determine the sequence of return for 
format-l DSCBs, you may realize a performance gain. 

• CV AF always returns DSCBs for a given data set in format-I, 
format-2, format-3 order. 

• If you specify a single partially-qualified data set name, CV AF 
filter does not use this field. 

CV AF filter indicates the following status conditions in this byte. 

FCL1SEQ 
CV AF filter sets this bit to 1 if it determines that its sequential VTOC 
access path is most efficient. If CV AF filter selects the direct VTOC 
access path, it sets this field to O. 

FCL1SDIR 
CV AF filter sets this bit to 1 if storage limitations within its sequential 
VTOC access path require direct DSCB reads. CV AF initializes this 
bit to 0 on each ACCESS=READ and ACCESS=RESUME request. 
You may test this bit when CV AF filter returns control to you, to 
determine if you must take some action to relieve the storage 
limitation. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 55 



The format of the FCL entry is shown in Figure 19. 

Name Offset Bytes Description 

FCLDSN 16(X'10') 8 Data set name information entry 
FCLDSNST OO(X'OO') 1 Data set name status 

X'OO' Data set name not yet processed 
X'OI' DSCBs returned successfully 
X'02' Data set name not found 
X'03' Error in DSCB chain. RESUME function recommended. 
X'04' Error in CV AFFILT processing. RESUME not recommended. 
X'05' Insufficient user buffer list elements. RESUME function 

recommended. 
FCLDSNLG 01(X'OI ') 1 Data set name length 
FCL3FLAG 02(X'02') 1 Flag byte 
FCL3UPDT X'80' This data set name processed during this invocation 

.xxxxxxx Reserved 
FCLDSNRV 03(X'03') 1 Reserved 
FCLDSNA 04(X'04') 4 Data set name address 

Figure 19. Format of a FUter Criteria List (FCL) Entry 

FCLDSN 
Contains data set name information. This, and the following fields are 
repeated in the FCL as a "set," as many times as indicated by the value in 
FCLCOUNT. 

FCLDSNST 
Indicates DSCB retrieval status. 

• CV AF filter initializes this byte to 0 for ACCESS=READ 
requests. 

• CV AF filter updates this byte after processing this data set name 
for either ACCESS=READ or ACCESS=RESUME. 

• ACCESS=RESUME requests do not process data set names 
whose FCLDSNST field is non-zero, thus results may be 
unpredictable if you alter this field. 

• For partially-qualified data set name requests, CV AF filter does 
not post the FCLDSNST field until it has returned all DSCB 
chains for all qualifying data sets. CV AF filter posts the highest 
numeric value which applied during the its processing. 

• For fully-qualified data set name requests, CV AF filter returns a 
FCLDSNST byte for each data set name. If the value is greater 
than 1, CV AF filter has not returned any DSCBs for the 
associated data set name. 

See Figure 19 for the meanings of the possible values in this field. 

56 MVS/XA System-Data Administration 

r<"~ 

\"-j 

,(.'.-~ ... 
- / 



( 

( 

FCLDSNLG 
Indicates length of data set name. You must provide this value. 

FCL3FLAG 
This is the.status flag byte associated with the data set name pointed 
to by FCLDSNA. 

FCL3UPDT 
This bit indicates that CV AF filter processed the associated 
data set name during the current invocation of CV AFFILT. 

• When initializing for either a READ or RESUME request, 
CV AF filter sets this bit to O. 

• When CV AF filter has completed processing for the 
associated data set name, it sets this bit to 1. 

FCL3DSNRV 
Reserved, unused. 

FCLDSNA 
Specifies the address of a fully-qualified data set name, or, if this is the 
only data set name and FCLILIST is 0, a partially-qualified data set 
name. You must provide both this address and the storage area to 
which it points. 

EmmpIe 0/ CV AFFILT Macro~: The following example demonstrates the 
order in which you might issue CV AFFIL T macro calls to: 

1. Request the DSCBs for a list of data sets. 

2. Resume CV AFFIL T processing interrupted because of insufficient user 
buffers. 

3. Release the kept filter save area. 

The example assumes the following conditions: 

• You are an authorized caller (that is, you are specifying a UCB address and 
IOAREA=KEEP). 

• You have initialized a CV AF buffer list as follows: 

• 

You have specified four buffers. 

You have defined the buffer list address in your program with the label 
'BUFADDR'. 

You will use the same buffer list for ACCESS=READ and 
ACCESS=RESUME processing. 

You have initialized a filter criteria list (FCL) as follows: 

FCLCOUNT = 6 (You are requesting DSCB chains for six data set 
names.) 

Chapter 1. Managing the Volume Table of Contents (VTOC) 57 



FCLlLIST = '1 'B (The data set names are fully qualified.) 

FCLIORDR = '1 'B (You want the DSCB chains returned in the order 
implied by data set name elements in the FCL.) 

You have initialized each of the six data set name elements such that they 
form a list requesting SYSl.A, SYS2.B, SYS3.C, SYS4.D, SYS5.E, and 
SYS6.F respectively. 

• The first five data sets have DSCB chain lengths or 1, 5, 2, 3, and 1 
respectively on the volume. 

• The sixth data set (SYS6.F) is not defined on the volume. 

To obtain an initialized CVPL, you could issue the following CV AFFIL T macro 
(list form--does not call CV AF). This example requests the branch entry to 
CV AF and specifies that the caller is in supervisor state. 

CVPLIST CVAFFILT BRANCH=(YES,SUP),MF=L 

To obtain the first set of DSCB chains, you could issue the following CV AFFIL T 
macro (execute form-calls CV AF). This example specifies that the filter save 
area is to be kept to allow for ACCESS=RESUME calls. The IOAREA is to be 
kept for improved efficiency. 

CVAFFILT ACCESS=READ,BUFLIST=bufaddr,FCL=fcladdr, 
UCB=ucbaddr,FLTAREA=KEEP,IOAREA=KEEP, 
MF=(E,CVPLIST) 

This CV AFFIL T call would return DSCBs as follows: 

Buffer 

1 
2 
3 
4 

Contents of Buffer 

Format-1 DSCB, SYS1.A 
Format-1 DSCB, SYS3.C 
Format-3 DSCB, SYS3.C 
Undefined (unused) 

CVAF filter would provide return code = 4, CVSTAT = X'40' (RESUME 
recommended), and FCLDSCBR = 3 (CVAF would return a total of three 
DSCBs for the two data sets). CV AF would not return DSCBs for data set 
SYS2.B because its chain contains more DSCBs than the total number of buffers 
provided. To retrieve SYS2.B's DSCBs, you would have to specify at least five 
buffers AND execute another ACCESS=READ. (Even though CV AF allows you 
to specify a different buffer list for each READ OR RESUME, or modify the 
existing list between READ and RESUME calls, modifying the FCL would r~sult 
in unpredictable results.) Buffer entry 4 would not have any DSCBs returned, 
because SYS4.D's DSCB chain size is larger than the number of remaining buffers. 
The FCL status information would be as follows: 

DSN 
SYS1.A 
SYS2.B 
SYS3.C 
SYS4.D 
SYS5.E 
SYS6.F 

58 MVS/XA System-Data Administration 

FCLDSNST 
1 
5 
1 
o 
o 
o 

-.--~-------------

FCL3UPDT 
1 
1 
1 
o 
o 
o 

Comments 
DSCBs returned from this call 
DSCB chain exceeds total buffers 
DSCBs returned from this call 
DSCBs may be returned by RESUME 
DSCBs may be returned by RESUME 
DSCBs may be returned by RESUME 

'(--". 

~j 



( 
Because this CV AFFIL T invocation recommends RESUME, and you specified 
FLTAREA=KEEP, you could use the following execute form of CV AFFILT to 
obtain more DSCB chains: 

CVAFFILT ACCESS=RESUME,MF=(E,CVPLIST) 

This CV AFFIL T call would return DSCBs as follows: 

Buffer Contents of Buffer 
1 Format-1 DSCB, SYS4.D 
2 Format-2 DSCB, SYS4.D 
3 Format-3 DSCB, SYS4.D 
4 Format-1 DSCB, SYSS.E 

CVAF filter would provide return code = 0, CVSTAT = 0 (request completed), 
and would have updated the FCL status as follows: 

DSN 
SYS1.A 
SYS2.B 
SYS3.C 
SYS4.D 
SYSS.E 
SYS6.F 

FCLDSNST 
1 
5 
1 
1 
1 
2 

FCL3UPDT 
o 
o 
o 
1 
1 
1 

Comments 
DSCBs returned from prior call 
DSCB chain exceeds total buffers 
DSCBs returned from prior call 
DSCBs returned from this call 
DSCBs returned from this call 
Data set name not found 

FCLDSCBR would contain 4. (This CV AFFILT call returned a total of four 
DSCBs.) CV AF Filter would not return any DSCBs for SYS6.F, because its 
format-l DSCB cannot be found on the volume (FCLDSNST = '2'). 

Because this status indicates that CV AF Filter has returned all requested DSCBs, 
and you requested FLT AREA=KEEP and IOAREA=KEEP on the previous call, 
you should request the RLSE function as follows: 

CVAFFILT ACCESS=RLSE,FLTAREA=NOKEEP,IOAREA=NOKEEP, 
MF=(E,CVPLIST} 

Obtaining Information from the VTOC Index 

You may use ACCESS=MAPDATA to obtain information contained in the space 
maps. "CV AFDSM Macro" on page 239 discusses detailed information about the 
CV AFDSM VTOC access macro. 

To count the number of unallocated VIRs in the VTOC index space map (VIXM), 
you must code COUNT= YES and MAP = INDEX. CV AF returns the number of 
unallocated VIRs in the 4-byte area specified by the CT AREA keyword. 

To count the number of format-O DSCBs, you must code COUNT= YES and 
MAP = VTOC. CV AF returns the number of format-O DSCBs in the VTOC map 
of DSCBs VMDS in the 4-byte area specified by the CT AREA keyword. 

To obtain one or more free space extents from the VTOC pack space map 
(VPSM), you must code COUNT=NO and MAP = VOLUME. CV AF returns the 
extents in the area specified by the EXTENTS keyword. Each extent is returned in 
a 5-byte XXYYZ format, the same as for a format-5 DSCB extent, where XX is 
the relative track address (RT A) of the first track of the extent, YY is the number 
of whole cylinders in the extent, and Z is the number of additional tracks in the 
extent. The RT A specified by your program to CV AF in the first (or only) extent 

Chapter 1. Managing the Volume Table of Contents (VTOC) 59 



serves as a starting point for the VPSM search; the extent returned is the next free 
extent with a higher starting RT A than the one your program specified. 

If all the unallocated extents in the VPSM are supplied befote filling in all the 
extents supplied, the remaining extents are set to zero. CV AF provides return code 
4 in register 15 and indicates end-of-data condition by putting a value of X'20' in 
the CYST AT field. 

Diagnosing VTOC Errors 

Actions Taken When an Error Occurs 

These actions are taken if an error occurs: 

• If an index structure error is detected, DADSM or CV AF causes the VTOC 
index to be disabled. The indexed VTOC bit is zeroed in the format-4 DSCB. 
A software error record is written to SYSl.LOGREC. A system dump is 
taken. The VTOC is converted to a nonindexed format at the next DADSM 
allocate or extend call. 

• If a program check, machine check, or other error occurs while using a VTOC 
access macro, a SYS I.LOGREC message is written, and a system dump is 
taken. 

• An error code is put in the CYST AT field of the CVPL. The values and 
explanations of these error codes are listed in Appendix C, "VTOC Index 
Error Message and Associated Codes" on page 297. 

Recovering from System or User Errors 

Because an unauthorized user cannot modify a VTOC, neither the VTOC nor the 
VTOC index need be recovered from a user error caused by an unauthorized user. 

A system error affects a VTOC and VTOC index, probably by interrupting 
DADSM while it is updating, thus leaving the VTOC and/or the VTOC index in a 
partially updated state. Both the VTOC and the VTOC index are designed to 
allow DADSM to recover from such an interruption. 

For a nonindexed VTOC (or a VTOC with an index that has been disabled), a 
subsequent call to DADSM ALLOCATE or EXTEND causes VTOC convert 
routines to reestablish the free space (format-5 DSCBs). 

For an indexed VTOC, a subsequent call to any DADSM function causes the 
recovery of the previous interrupt (either by backing out or completing the 
interrupted function). 

60 MVS/XA System-Data Administration 



( 

( 

GTFTrace 

A trace function exists to trace all CV AF calls for VTOC index output I/O, all 
VTOC output I/O, and all VTOC index and space map modifications. For 
information on this function, see DFP Diagnosis. 

Listing a VTOC and VTOC Index 

You may obtain dump, formatted, or abridged listings of the VTOC and the VTOC 
index by using the LISTVTOC command of the IEHLIST utility program. 

Chapter 1. Managing the Volume Table of Contents (VTOC) 61 





( 

( 

Chapter 2. Executing Your Own Channel Programs (EXCP) 

The execute-channel-program (EXCP) macro instruction provides you with 
complete control of the data organization based on device characteristics. This 
chapter contains a general description of the function and application of the EXCP 
macro instruction, accompanied by descriptions of specific control blocks and 
macro instructions used with EXCP. Factors that affect the operation of EXCP, 
such as device variations and program modification, are also discussed. 

Before reading this chapter, you should be familiar with system functions and with 
the structure of control blocks, as well as with the operational characteristics of the 
1/ 0 devices required by your channel programs. Operational characteristics of 
specific I/O devices are described in mM publications for each device. 

You also need to understand the information in these publications: 

• Data Administration Guide contains the standard procedures for I/O processing 
under the operating system. 

• Assembler H Version 2 Application Programming: Guide contains the 
information necessary to code programs in the assembler language. 

• Data Administration: Macro Instruction Reference describes the system macro 
instructions that can be used in programs coded in the assembler language. 

• Conversion Notebook describes the factors to consider when converting from 
MVS/370 at the MVS/SP Version 1 level to MVS/XA. 

The execute-channel-program (EXCP) macro instruction causes a supervisor-call 
interruption to pass control to the EXCP processor. (I/O process is the name we 
will use for the EXCP processor and the I/O supervisor. For our purposes, it's 
unnecessary to understand how input/output processing is divided between the 
two.) EXCP also provides the I/O supervisor with control information regarding a 
channel program to be executed. When an mM access method is being used, an 
access method routine is responsible for issuing EXCP. If you are not using an 
mM access method, you must issue EXCP in your program. (The EXCP macro 
instruction cannot be used to process SYSIN or SYSOUT data sets.) 

You issue EXCP primarily for I/O programming situations to which the standard 
access methods do not apply. If you are writing your own access method, you must 
include EXCP for I/O operations. EXCP must be used for processing 
nonstandard labels, including reading and writing labels and positioning magnetic 
tape volumes. 

To issue EXCP, you must provide a channel program (a list of channel command 
words) and several control blocks in your program area. The I/O process then 

Chapter 2. Executing Your Own Channel Programs (EXCP) 63 



schedules I/O requests for the device you have specified, executes the specified 
I/O commands, handles I/O interruptions, directs error recovery procedures, and 
posts the results of the I/O requests. 

Using EXCP in System and Problem Programs 

This section explains the procedures performed by the system and the programmer 
when EXCP is issued by the routines of mM access methods. The additional 
procedures you must perform when issuing EXCP yourself are then described by 
direct comparison. 

How the System Uses EXCP 

When using an mM access method to perform I/O operations, the programmer is 
relieved of coding channel programs and constructing the control blocks necessary 
for the execution of channel programs. To permit I/O operations to be handled by 
an access method, the programmer need only issue the following macro 
instructions: 

• A DCB macro instruction that produces a data control block (DCB) for the 
data set to be retrieved or stored 

• An OPEN macro instruction that initializes the data control block and 
produces a data extent block (DEB) for the data set 

• A macro instruction (for example, GET or WRITE) that requests I/O 
operations 

Access method routines will then: 

1. Create a channel program that contains channel commands for the I/O 
operations on the appropriate device 

2. Construct an input/output block (lOB) that contains information about the 
channel program 

3. Construct an event control block (ECB) that is later posted with a completion 
code each time the channel program terminates 

4. Issue an EXCP macro instruction to pass the address of the lOB to the routines 
that initiate and supervise the I/O operations 

The I/O process consists of: 

5. Constructing a request queue element (RQE) for scheduling the request 

6. If the requestor is in a V = V address space, fixing the buffers so that they 
cannot be paged out and translating the requestor's virtual channel program 
into a real channel program 

7. Issuing a start subchannel (SSCH) instruction to cause the channel to execute 
the real channel program 

64 MVS/XA System-Data Administration 

-~ 

\ 

{ .
.. --" ,. 

"";7/ 



( 

(-

8. Processing I/O interruptions and scheduling error recovery procedures when 
necessary 

9. Posting a completion code in the event control block after the channel program 
has been executed 

Note: If the requestor is an authorized program in a V=R address space, a real 
channel program is provided; thus, item 6 is not performed. 

The programmer is not concerned with these procedures and does not know the 
status of I/O operations until they are completed. Device-dependent operations 
are limited to those provided by the macro instructions of the particular access 
method selected. 

How To Use EXCP in Problem Programs 

To issue the EXCP macro instruction directly, you must follow the procedures that 
the access methods would perform, as summarized in items 1 through 4 of the 
preceding discussion. In addition to constructing and opening the data control 
block with the DCB and OPEN macro instructions, you must construct a channel 
program, an input/output block, and an event control block before you can issue 
EXCP. The I/O process generally handles items 5 through 9. 

After issuing EXCP, you should issue a WAIT macro instruction, specifying the 
address of the event control block, to determine whether the channel program has 
terminated. If volume switching is necessary, you must issue an EOV macro 
instruction. When all processing of the data set has been completed, you must 
issue a CLOSE macro instruction to restore the data control block. 

All external interfaces for EXCP are compatible between MVS/370 and 
MVS/XA, except for the restrictions noted below. These restrictions relate only to 
the support of virtual and real addresses above 16 megabytes. 

EXCP will be available to programs executing in either 24-bit or 31-bit addressing 
mode. However, in order to maintain the required compatibility, the following 
restrictions apply: 

• EXCP will only support a 24-bit virtual storage interface. In addition, all areas 
related to I/O operations (for example, I/O buffers, channel command words, 
lOBs, DEBs, appendages, and so forth), must remain 24-bit virtual 
addressable. EXCP (channel command word translator) will allow 24-bit 
virtual I/O buffers to be fixed above 16-megabyte real. When a channel 
command word (CCW) references a real address above 16-megabyte, the 
CCW translator will build an indirect addressing word (IDAW) for that CCW. 
Note that this is not supported for format-l CCWs. All virtual addresses must 
be below 16-megabyte. For V=R users, CCWs and IDAWs must be below 
16-megabyte real. 

• Only format-O CCWs are accepted as input. 

• All user-specified appendage routines are given control in 24-bit addressing 
mode and must return in the same mode. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 65 



Note: Access methods run in 24-bit addressing mode. Users running in 31-bit 
mode must interface to the access methods by using a user-written routine that is 
resident below 16-megabyte virtual (because the access methods will be able to 
return control only to a 24-bit addressable location). All addresses, buffers, 
parameters, control blocks, save areas and exit addresses must be below 
16-megabyte virtual. All access methods (except VSAM), for example, GET or 
PUT, must be called in 24-bit addressing mode. 

31-Bit IDA W Requirements 

A virtual channel program provided by the EXCP caller may have one or more 
CCWs with the IDA flag set and the address portion of these CCWs pointing to a 
single 4-byte IDA W. This EXCP function is referred to as virtual IDA Ws. 

The 4-byte IDA W can contain a virtual address that ranges from 0 to the maximum 
31-bit address. Virtual IDAWs are supported on all virtual CCWs except: 

• Transfer in channel (TIC) commands. 

• All non data-transfer type commands: for example, recalibrate, rewind, set 
space, fold, block data check, no operation, control commands. 

• Read, read backward, and sense commands, with the skip flag set. 

The same addressing restrictions apply to EXCPVR inputs with the exception that 
31-bit real data areas may be specified by the user-created CCWs through the use 
of IDAWs. All CCWs and IDAWs must be below 16-megabyte real. 

Only format-O CCWs are accepted as input. 

All other areas related to the EXCP/EXCPVR I/O operation (for example, 
CCWs, IDA Ws, lOBs, DEBs, DCBs, appendages, and so forth) must remain 24-bit 
addressable. 

Note, however, that the EXCP processor will allow both 24-bit and 31-bit virtual 
I/O buffers to be fixed above 16-megabyte real. 

How EXCP Operates in a V=R Address Space 

User-constructed channel programs for I/O operations of an authorized program in 
a V=R address space are not translated. Because the address space is V=R, any 
CCWs created by the user have correct real data addresses. (Translation would 
only re-create the user's channel program, so the CCWs are used directly.) 

Modification of an active channel program by data read in or by processor 
instructions is legitimate in a V=R address space, but not in a V=V address space. 

66 MVS/XA System-Data Administration 

-------- .. --------~- . 

1'-" 
",--/ 

c 



EXCP Requirements 

Channel Program 

Control Blocks 

Input/Output Block (lOB) 

This section describes the channel program that you must provide in order to issue 
EXCP. This section also describes the control blocks that you must either directly 
construct or cause to be constructed by using macro instructions. 

All areas related to the EXCP /EXCPVR I/O operation (for example, CCWs, 
IDA Ws, lOBs, DEBs, DCBs, appendages, and so forth) must remain 24-bit 
addressable. 

Note, however, that the EXCP processor will allow both 24-bit and 31-bit virtual 
I/O buffers to be fixed above 16-megabyte real. 

The channel program supplied by you and executed through EXCP is composed of 
CCWs on doubleword boundaries. Each channel command word specifies a 
command to be executed and, for commands initiating data transfer, the area to or 
from which the data is to be transferred. 

Channel command word operation codes used with specific I/O devices can be 
found in IBM publications for those devices. All channel command word operation 
codes described in these publications can be used. In addition, both data chaining 
and command chaining may be used. 

To specify either data chaining or command chaining, you must set appropriate bits 
in the channel command word and indicate the type of chaining in the input/output 
block. Both data and command chaining should not be specified in the same 
channel command word; if they are, data chaining takes precedence. 

EXCP does not support channel programs that modify themselves, regardless of 
the method of modification: data chaining, command chaining, or a program to do 
the modification. The intended modification in virtual storage has no effect on the 
running real-channel program (see "Modification of a Channel Program during 
Execution" on page 70). 

When using EXCP, you must be familiar with the function and structure of the 
lOB, the ECB, the DCB, the DEB, and the IDAW. lOB and ECB fields are 
illustrated under "Control Block Fields" on page 88. DCB fields are illustrated 
under "Macro Specifications for Use with EXCP" on page 73. The handling of 
IDA Ws is described under "SID Appendage" on page 95. Descriptions of these 
control blocks follow. 

The input/output block is used for communication between the problem program 
and the system. It provides the addresses of other control blocks, and maintains 
information about the channel program, such as the type of chaining and the 
progress of I/O operations. You must define the input/output block and specify 
its address as the only parameter of the EXCP macro instruction. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 67 



Event Control Block (ECB) 

Data Control Block (DCB) 

Data Extent Block (DEB) 

The event control block provides you with a completion code that describes 
whether the channel program was completed with or without error. AWAIT 
macro instruction, which can be used to synchronize I/O operations with the 
problem program, must identify the event control block. You must define the 
event control block and specify its address in the input/output block. 

The data control block provides the system with information about the 
characteristics and processing requirements of a data set to be read or written by 
the channel program. A data control block must be produced by a DCB macro 
instruction that includes parameters for EXCP. If you are not using appendages, a 
short DCB is constructed. Such a DCB does not support reduced error recovery. 
You specify the address of the data control block in the input/output block. 

All DCBs must be located in storage that is not fetch-protected, or, if the task is 
authorized, in storage that is in the key of the task (TCB KEY). 

The data extent block contains one or more extent entries for the associated data 
set and other control information. An extent defines aU or part of the physical 
boundaries on an I/O device occupied by, or reserved for, a particular data set. 
Each extent entry contains the address of a unit control block (UCB) that provides 
information about the type and location of an I/O device. More than one extent 
entry can contain the same UCB address. For aU I/O devices supported by the 
operating system, the data extent block is produced during execution of the OPEN 
macro instruction for the data control block. The system places the address of the 
data extent block into the data control block. All DEBs must be located in storage 
that is not fetch-protected, or, if the task is authorized, in storage that is in the key 
of the task (TCB key). Only authorized tasks (APF-authorized or TCB PKF=O-7) 
may build DEBs to be used for I/O operations. 

How the Channel Program Executes 

This section explains how the system uses your channel program and control blocks 
after you issue EXCP. 

Initiation of the Channel Program 

By issuing EXCP, you request the execution of the channel program specified in 
the input/output block. The I/O process validates the request by checking certain 
fields of the control blocks associated with this request. If the I/O process detects 
invalid information in a control block, it initiates abnormal termination procedures. 

The EXCP processor gets: 

• The address of the data control block from the input/output block 

• The address of the data extent block from the data control block 

68 MVS/XA System-Data Administration 

,tI"" 

',.j 



( 

( 

• The address of the unit control block from the data extent block 

It places the lOB, TCB, DEB, and UCB addresses and other information about the 
channel program into an area called a request queue element (RQE). (Unless you 
are providing appendage routines (described under "Appendages" on page 71) 
you should not be concerned with the contents of RQEs.) 

If you have provided an SIO (start I/O) appendage, the EXCP processor now 
passes control to it. The return address from the SIO appendage determines 
whether the EXCP processor must: 

• Execute the I/O operation normally, or 

• Skip the I/O operation. 

For a description of the SIO appendage and its linkage to the EXCP processor, see 
"Appen~ages" on page 71. 

If you are issuing EXCP from a V = V address space, the channel program you 
construct contains virtual addresses. Because channel subsystems cannot use 
virtual addresses, the EXCP processor must: 

• Translate your virtual channel program into one that uses only real addresses. 

• Fix in real storage the pages used as I/O areas for the data transfer operations 
specified in your channel program. 

The EXCP processor builds the translated (real) channel program in a portion of 
real storage. 

For direct access devices, specify the seek address in the input/output block. The 
1/ 0 supervisor constructs a CCW chain to issue the seek and the set file mask 
specified in the data extent block, and to pass control to your real channel program. 

If your channel program begins with a locate-record CCW, the I/O process builds 
a define-extent CCW and passes control to your real channel program. (You 
cannot issue the initial seek, set file mask, or define extent CCWs. The file mask is 
set to prohibit seek-cylinder CCWs, or, if space is allocated by tracks, seek-head 
commands. If the data set is open for INPUT, write CCWs are also prohibited.) 

For a magnetic tape device, the I/O supervisor constructs a CCW chain to set the 
mode specified in the data extent block and passes control to your real channel 
program. (You cannot set the mode yourself.) 

If the I/O device is other than a direct access device or a magnetic tape device, the 
I/O supervisor then places the starting CCW of the channel program into the 
operation request block (ORB) and issues a start subchannel (SSCH) instruction. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 69 



---- --~-.----.-.--- ---"-'-' 

Modification of a Channel Program during Execution 

Any problem program that modifies an active channel program with processor 
instructions or with data read in by an I/O operation must be run in a V=R 
address space. It cannot run in a V = V address space because of the channel 
program translation performed by the I/O supervisor. (In a V = V address space, 
an attempt to modify an active channel program affects only the virtual image of 
the channel program, not the real channel program being executed by the channel 
subsystem.) 

A program of this type can be changed to run in a V = V address space by issuing 
another EXCP macro for the modified portion of the channel program. 

Completion of Execution 

The system considers the channel program completed when it receives an 
indication of a channel-end condition in the subchannel status word (SCSW). 
Unless a CHE (channel-end) or ABE (abnormal-end) appendage directs otherwise, 
the request queue element for the channel program is made available, and a 
completion code is placed into the event control block. The completion code 
indicates whether errors are associated with channel end. If device end occurs 
simultaneously with channel end, errors associated with device end (that is, unit 
exception or unit check) are also accounted for. 

If device end occurs after channel end and if an error is associated with device end, 
the completion code in the event control block does not indicate the error. 
However, the status of the unit and channel is saved by the I/O supervisor for the 
device, and the UCB is marked as intercepted. The input/output block for the 
next request directed to the I/O device is also marked as intercepted. The error is 
assumed to be permanent, and the completion code in the event control block for 
the intercepted request indicates interception. The DCBIFLGS field of the data 
control block is also flagged to indicate a permanent error. Note that, if a 
write-tape-mark or erase-long-gap CCW is the last or only CCW in your channel 
program, the I/O process will not attempt recovery procedures for device end 
errors. In these circumstances, command chaining a NOP CCW to your 
write-tape-mark or erase-long-gap CCW ensures initiation of device-end error 
recovery procedures. 

To be prepared for device-end errors, you should be familiar with device 
characteristics that can cause such errors. After one of your channel programs has 
terminated, you should not release buffer space until you have determined that 
your next request for the device has not been intercepted. You may reissue an 
intercepted request. 

Interruption Handling and Error Recovery Procedures 

An I/O interruption allows the processor to respond to signals from an I/O device 
that indicate either termination of a phase of I/O operations or external action on 
the device. A complete explanation of I/O interruptions is contained in IBM 
System/370 Principles of Operation. For descriptions of interruption by specific 
devices, see the mM publications for each device. 

70 MVS/XA System-Data Administration 

4"-""'-. 
(,' ,,_./ 

c 



( 

Appendages 

( 

If error conditions are associated with an interruption, the I/O supervisor schedules 
the appropriate device-dependent error routine. The channel subsystem is then 
restarted with another request that is not related to the channel program in error. 
(The following paragraphs discuss "related" channel programs.) If the error 
recovery procedures fail to correct the error, the system places ones in the first two 
bit positions of the DCBIFLGS field of the data control block. You are informed 
of the error by an error code in the event control block. 

If a channel program depends on the successful completion of a previous channel 
program (as when one channel program retrieves data to be used in building 
another), the previous channel program is called a "related" request. Such a 
request must be identified to the EXCP processor. To find out how to do this, see 
"Input/Output Block (lOB) Fields" on page 89 and "Purging and Restoring I/O 
Requests" on page 156. 

If a permanent error occurs in the channel program of a related request, the EXCP 
processor removes the request queue elements for all dependent channel programs 
from their queue and makes them available. 

The related request queue (RRQ) reflects the order in which request queue 
elements are removed from their queue. 

For all requests dependent on the channel program in error, the system places 
completion codes into the event control blocks. The DCBIFLGS field of the data 
control block is also flagged. Any requests for a data control block with error flags 
are posted complete without execution. To reissue requests dependent on the 
channel program in error, you must reset the first two bits of the DCBIFLGS field 
of the data control block to zeros. You then reissue EXCP for each channel 
program desired. 

With the mM 3800 Printing Subsystem, a cancel key or a system-restart-required 
paper jam causes both a lost data indicator to be set in DCBIFLGS and a lost page 
count and channel page identifier to be stored in the UCB extension. (See JES3 
Data Areas, TSO/E Data Areas, and IBM 3800 Printing Subsystem Programmer's 
Guide.) 

The detailed information about appendages that appeared in this section has been 
moved to Data Facility Product: Customization. 

An appendage is a user-written routine that provides additional control over I/O 
operations. By using appendages, you can examine the status of I/O operations 
and determine the actions to be taken for various conditions. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 71 



----_ .. _--------_ ..•..•.... 

Channel Programming Considerations 

Command retry is a function of the channel supporting the mM 2305-2, 
3330/3333,3340/3344, 3350, 3375, and 3380 direct access devices. When the 
channel subsystem receives a retry request, it repeats the execution of the CCW, 
requiring no additional input/output interrupts. For example, a control unit may 
initiate a retry procedure to recover from a transient error. 

A command retry during the execution of a channel program may cause any of the 
following conditions to be detected by the initiating program: 

• Modifying CCWs: A CCW used in a channel program must not be modified 
before the CCW operation has been successfully completed. Without the 
command retry function, a command was fetched only once from storage by a 
channel. Therefore, a program could determine through condition codes or 
program controlled interruptions (PCI) that a CCW had been fetched and 
accepted by the channel. This permitted the CCW to be modified before 
reexecution. With the command retry function, this cannot be done, because 
the channel will fetch the CCW from storage again on a command retry 
sequence. In the case of data chaining, the channel will retry commands 
starting with the first CCW in the data chain. 

• Program Controlled Interrupts (PCI): A CCW containing a PCI flag may cause 
multiple program-controlled interrupts to occur. This happens if the 
PCI-flagged CCW was retried during a command retry procedure and if a PCI 
could be generated each time the CCW is reexecuted. 

• Residual Count: If a channel program is prematurely terminated during the 
retry of a command, the residual count in the channel status word (CSW) will 
not necessarily indicate how much storage was used. For example, if the 
control unit detects a "wrong-length record" error condition, an erroneous 
residual count is stored in the CSW until the command retry is successful. 
When the retry is successful, the residual in the CSW reflects the correct length 
of the data transfer. 

• Command Address: When data chaining with command retry, the CSW may 
not indicate how many CCWs have been executed at the time of a PCI. For 
example: 

CCW# Channel Program 

1 Read, data chain 
2 Read, data chain 
3 Read, data chain, PCI 
4 Read, command chain 

In this example, assume that the control unit signals command retry on Read 
#3 and the processor accepts the PCI after the channel resets the command 
address to Read #1 because of command retry. The CSW stored for the PCI 
will contain the command address of Read #1 when the channel has actually 
progressed to Read #3. 

• Testing Buffer Contents on Data Read: Any program that tests a buffer to 
determine when a CCW has been executed and continues to execute based on 

72 MVS/XA System-Data Administration 

--- -~--~-----.- .. _-----.- -----~.---

c 



( 

( 

( 

this data may get incon:ect results if an error is detected and the CCW is 
retried. 

Macro Specifications for Use with EXCP 

If you are using the EXCP macro instruction, you must also use DCB, OPEN, 
CLOSE, and, in some cases, the EOY macro instruction. The parameters. of the 
DCB, EOY, and EXCP macro instructions are described here. The parameters and 
different forms of the OPEN and CLOSE macro instructions are described in Data 
Administration: Macro Instruction Reference. A diagram of the data control block 
(DCB) is included in this section with the description of the DCB macro 
instruction. 

Defining Data Control Blocks for EXCP (DCB) 

The EXCP form of the DCB macro instruction produces a data control block that 
can be used with the EXCP macro instruction. You must issue a DCB macro 
instruction for each data set to be processed by your channel programs. (Notation 
conventions and format illustrations of the DCB macro instruction are given in 
Data Administration: Macro Instruction Reference.) DCB parameters that apply to 
EXCP may be divided into four categories, depending on the following portions of 
the data control block that are generated when they are specified: 

• Foundation block. This portion is required and is always 12 bytes in length. 
You must specify two of the parameters in this category. 

• EXCP interface. This portion is optional. If you specify any parameter in this 
category, 20 bytes are generated. 

• Foundation block extension and common interface. This portion is optional 
and is always 20 bytes in length. If this portion is generated, the 
device-dependent portion is also generated. 

• Device dependent. This portion is optional and is generated only if the 
foundation block extension and common interface portion is generated. Its 
size ranges from 4 to 20 bytes, depending on specifications in the DEVD 
parameter. However, if you do not specify the DEVD parameter (and the 
foundation extension and common interface portion is generated), the 
maximum 20 bytes for this portion are generated. 

Some of the procedures performed by the system when the data control block is 
opened and closed (such as writing file marks for output data sets on direct access 
volumes) require information from optional data control block fields. You should 
make sure that the data control block is large enough to provide all information 
necessary for the procedures you want the system to handle. 

Figure 20 on page 75 shows the relative position of each portion of an opened 
data control block. The fields corresponding to each parameter of the DCB macro 
instruction are also designated, with the exception of DDNAME, which is not 
included in a data control block that has been opened. The fields identified in 
parentheses represent system information that is not associated with parameters of 
the DCB macro instruction. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 73 



Sources of information for data control block fields other than the OCB macro 
instruction are data definition (DO) statements, data set labels, and data control 
block modification routines. You may use any of these sources to specify OCB 
parameters. However, if a particular portion of the data control block is not 
generated by the OCB macro instruction, the system does not accept information 
intended for that portion from any alternative source. 

You may provide symbolic names for the fields in one or more EXCP OCBs by 
coding a OCBO macro to generate a dummy control section (OSECT). To map 
the common interface, foundation block extension, and foundation block, you code 
OSORG=XE. To map the foundation block and EXCP interface, you code 
OSORG=XA. You may code OSORG=(XA,XE) to map both. For further 
information, see Data Administration: Macro Instruction Reference. 

Foundation Block Parameters 

EXCP Interface Parameters 

DDNAME=symbol 
The name of the data definition (DO) statement that describes the data set 
to be processed. This parameter must be given. 

MACRF=(E) 
The EXCP macro instruction is to be used in processing the data set. This 
operand must be coded. 

REPOS={YIM 
Magnetic tape volumes: This parameter indicates to the dynamic device 
reconfiguration (OOR) routine whether the user is keeping an accurate block 
count. If the user is keeping an accurate block count, the OOR routine can 
attempt to swap the volume. (You must maintain the block count in the 
OCBBLKCT field.) 

Y-The user is keeping an accurate block count, and the OOR routine can 
attempt to swap the volume. 

N-The block count is unreliable, and the OOR routine cannot and will not 
attempt to swap the volume. 

If the operand is omitted, N is assumed. 

EOEA=symbol 
2-byte identification of an EOE appendage that you have entered into 
SYS1.LPALIB or SYSl.SVCLIB. 

PCIA=symbol 
2-byte identification of a PCI appendage that you have entered into 
SYS l.LPALIB or SYS l.SVCLIB. 

SIOA=symbol 
2-byte identification of a SIO appendage that you have entered into 
SYS1.LPALIB or SYSl.SVCLm. 

74 MVS/XA System-Data Administration 

~-~-- --- -~----------~--~~~~~ 
-------~--- -~~-~~-~~~~~--~~ 



(~ 

(-

o 
The device-dependent portion of the data control 

_ block varies in length and format according to 
specifications in the DSORG and DEVD parameters. 

_l 
~ Device 

Illustrations of this portion for each device J Dependent 
type are included in the description of the DEVD 
parameter. 

20 
BUFNO 

24 
BUFL 

28 
10BAD 

32 BFTEK. 
BFALN 

36 
RECFH 

40 
(TIOT) 

44 
(IFLGS) 

48 
(OFLGS) 

52 
OPTCD 

56 
Reserved 

60 
EOEA 

64 
SIOA 

68 
XENDA 

BUFCB 

DSORG 

EODAD 

EXLST 

HACRF 

(DEB Address) 

Reserved 

Reserved 

PCIA 

CENDA 

Reserved 

l 
~ Common J Inte,face 

l Foundation 
~ Block J Extens ion 

l 
~ Foundation J Block 

l 
~ EXCP 

Interface 

FJgUI'e 20. Data Control Block (DCB) Format for EXCP (After OPEN) 

CENDA=symbol 
2-byte identification of a CHE appendage that you have entered into 
SYSl.LPALIB or SYSl.SVCLm. 

XENDA=symbol 
2-byte identification of an ABE appendage that you have entered into 
SYS 1.LP ALm or SYS 1.SVCLm. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 75 



--- ----_._-_.-

OPfCD=Z 
indicates that, for magnetic tape (input only), a reduced error recovery 
procedure (5 reads only) will occur when a data check is encountered. It 
should be specified only when the tape is known to contain errors and the 
application does not require that all records be processed. Its proper use 
would include error frequency analysis in the SYNAD routine. Specification 
of this parameter will also cause generation of a foundation block extension. 
This parameter is ignored unless it was selected at system generation. 

IMSK=value 
Any specification indicates that the system will not use mM-supplied error 
routines. 

Foundation Block Extension and Common Interface Parameters 

EXLST=address 
the address of an exit list that you have written for exception conditions. The 
format of the exit list is provided in Data Facility Product: CustomizatioH. 

EODAD=address 
the address of your end-of-data-set routine for input data sets. If this 
routine is not available when it is required, the task is abnormally terminated. 

DSORG={PS I PO I DA I IS} 
the data set organization (one of the following codes). Each code indicates 
that the format of the device-dependent portion of the data control block is 
to be similar to that generated for a particular access method: 

Code DCB Format for 

PS QSAM or BSAM 
PO BPAM 
DA BDAM 
IS QISAM or BISAM 

For direct access devices, if you specify PS or PO, you must maintain the 
following fields of the device-dependent portion of the data control block so 
that the system can write a file mark for output data sets: 

• The track balance (DCBTRBAL) field that contains a 2-byte binary 
number that indicates the remaining number of bytes on the current 
track. This number can be obtained from the system track algorithm 
routine. 

• The full disk address (DCBFDAD) field that indicates the location of 
the current record. The address is in the form MBBCCHHR. 

These fields are written into the format-l DSCB and are used by Open 
routines for staging MSS data sets. Staging is done only up through the last 
cylinder specified by these fields if the data set is reopened for OUTPUT, 
INOUT, OUTIN, OUTINX, or EXTEND. 

If you specify PO for a direct access device, the DCBDIRCT field will not be 
updated. Therefore, you should be careful when using EXCP with the 
STOW macro. 

76 MVS/XA System-Data Administration 



( 
IOBAD = address 

the address of an input/output block (lOB). If a pointer to the current lOB 
is not required, you may use this field for any purpose. 

The following parameters are not used by the EXCP routines. They provide 
additional information that the system will store for later use by access methods 
that read or update the data set. 

RECFM = code 
the record format of the data set. (Record format codes are given in Data 
Administration: Macro Instruction Reference.) When writing a data set to be 
read later, RECFM, LRECL, and BLKSIZE should be specified to identify 
the data set attributes. LRECL and BLKSIZE can only be specified in a DD 
statement, because these fields do not exist in a DCB used by EXCP. 

BFfEK={S I E} 
the buffer technique, either simple or exchange. 

BFALN={F I D} 
the word boundary alignment of each buffer, either fuUword or doubleword. 

BUFL=length 
the length in bytes of each buffer; the maximum length is 32767. 

BUFNO=number 
the number of buffers assigned to the associated data set; the maximum 
number is 255. See Chapter 10, "Specifying Buffer Numbers for DASD 
Data Sets" on page 229, for further details and performance considerations. 

BUFCB=address 

Device-Dependent Parameters 

the address of a buffer pool control block, that is, the 8-byte field preceding 
the buffers in a buffer pool. 

DEVD = code 
the device in which the data set may reside. The codes are listed in order of 
descending space requirements for the data control block: 

Code Device 

DA Direct access 
T A Magnetic tape 
PR Printer 
PC Card punch 
RD Card reader 

Note: For MSS virtual volumes, DA should be used. 

If you do not want to select a specific device until job setup time, you should 
specify the device type requiring the largest area; that is, DEVD=DA. 

The following diagrams illustrate the device-dependent portion of the data control 
block for each combination of device type specified in the DEVD parameter and 
data set organization specified in the DSORG parameter. Fields that correspond to 

Chapter 2. Executing Your Own Channel Programs (EXCP) 77 



device-dependent parameters in addition to DEVD are indicated by the parameter 
name. For special services, you may have to maintain the fields shown in 
parentheses. The special services are explained in the note that follows the 
diagram. 

Device-dependent portion of data control block when DEVD=DA and 
DSORG=PS: 

4 5 
Reserved DCBFDAD 

8 

13 
DCBDVTBL 

16 17 18 
DCBKEYLE DCBDEVT DCBTRBAL 

For output data sets, the system uses the contents of the full disk address 
(DCBFDAD) field, plus one, to write a file mark when the data control block is 
closed, provided the track balance (DCBTRBAL) field indicates that space is 
available. If DCBTRBAL is less than 8, the file mark is written on the next 
sequential track. You must maintain the contents of these two fields yourself if the 
system is to write a file mark. OPEN will initialize DCBDVTBL and DCBDEVT. 

Device-dependent portion of data control block when DEVD=DA and 
DSORG=DA: 

16 18 
DCBKEYLE Reserved 

Device-dependent portion of data control block when DEVD=TA and 
DSORG=PS: 

12 
DCBBLKCT 

16 17 18 19 
DCBTRTCH Reserved DCBDEN Reserved 

The system uses the contents of the block count (DCBBLKCT) field to write the 
block count in trailer labels when the data control block is closed or when the EOV 
macro instruction is issued. You must maintain the contents of this field yourself if 
the system is to have the correct block count. (Note: The I/O supervisor 

78 MVS/XA System-Data Administration 

A-~, 

~/' 



increments this field by the contents of the IOBINCAM field of the lOB at the 
completion of each II 0 request.) 

When using EXCP to process a tape data set open at a checkpoint, you must be 
careful to maintain the correct count; otherwise, the system may position the data 
set incorrectly when restart occurs. If REPOS=Y, the count must be maintained 
by you for repositioning during dynamic device reconfiguration. 

Device-dependent portion of data control block when DEVD=PR and 
DSORG=PS: 

16 18 
DCBPRTSP Reserved 

Device-dependent portion of data control block when DEVD=PC or RD and 
DSORG=PS: 

16 18 
DCBMODE,DCBSTACK Reserved 

The following DCB operands pertain to specific devices and may be specified only 
when the DEVD parameter is specified. 

KEYLEN = length 
for direct access devices, the length in bytes of the key of a physical record, 
with a maximum value of 255. When a block is read or written, the number 
of bytes transmitted is the key length plus the record length. 

DEN=value 
for magnetic tape, the tape recording density in bits per inch: 

Value 

1 
2 
3 
4 

Density 

7-track tape device 

556 
800 

9-track tape device 

800 (NZRI) 
1600 (PE) 
6250 (GCR) 

NRZI-Non-return-to-zero change to ones recording 
PE-phase encoded recording 
GCR-group coded recording 

If this parameter is omitted, the highest density available on the device is 
assumed. 

TRTCH=value 
for 7-track magnetic tape, the tape recording technique: 

Chapter 2. Executing Your Own Channel Programs (EXCP) 79 



Value Tape Recording Technique 

C Data conversion feature is available. 
E Even parity is used. (If omitted, odd parity is assumed.) 
T BCDIC to EBCDIC translation is required. 

MODE = value 
for a card reader or punch, the mode of operation. Either C (column binary 
mode) or E (EBCDIC code) may be specified. 

STACK=va!ue 
for a card punch or card reader, the stacker bin to receive cards, either 1 or 
2. 

PRTSP=value 
for a printer, the line spacing, either 0, 1,2, or 3. 

DSORG Parameter of the DCBD Macro 

In addition to the operands described in Data Administration: Macro Instruction 
Reference for the DSORG parameter of the DCBD macro, you may specify the 
following operands. 

DSORG= 

XA specifies a DCB with the EXCP interface section (including appendage 
names) 

XE specifies a DCB with the foundation block extension 

Initializing Data Control Blocks (OPEN) 

The OPEN macro instruction initializes one or more data control blocks so that 
their associated data sets can be processed. You must issue OPEN for all data 
control blocks that are to be used by your channel programs. (A dummy data set 
may not be opened for EXCP.) Some of the procedures performed when OPEN is 
executed are: 

• Reading in the JFCB (job file control block), unless the TYPE=J option of the 
macro instruction was coded 

• Construction of the data extent block (DEB) 

• Transfer of information from the JFCB and data set labels to the DCB 

• Verification or creation of standard labels 

• Tape positioning 

• Loading of your appendage routines 

The parameters and different forms of the OPEN macro instruction are described 
in Data Administration: Macro Instruction Reference. 

80 MVS/XA System-Data Administration 



( 
If you intend to process a multivolume direct data set, you must cause the open 
routines to build a data extent block for each volume and issue mount messages for 
them. This can be done by reading in the JFCB with a ROJFCB macro instruction 
and opening each volume of the data set. See" Using ROJFCB to Process a 
Multivolume Direct Data Set" on page 141 for an example of how to code a 
routine to do this, and "Reading and Modifying a Job File Control Block" on 
page 136 for further uses of the ROJFCB macro. 

Executing a Channel Program (EXCP) 

End of Volume (EOV) 

The EXCP macro instruction requests the initiation of the I/O operations of a 
channel program. You must issue EXCP whenever you want to execute one of 
your channel programs. The format of the EXCP macro instruction is: 

I (symbol) I EXCP I iob-addr 

iob-addr-A-type address, (2-12), or (1) 
the address of the input/output block of the channel program to be 
executed. 

The EOY macro instruction identifies end-of-volume and end-of-data-set 
conditions. For an end-of-volume condition, EOY causes switching of volumes 
and verification or creation of standard labels. For an end-of-data-set condition, 
EOY causes your end-of-data set routine to be entered. Before processing trailer 
labels on a tape input data set, you must decrement the DCBBLKCT field. Your 
program issues EOY if switching of magnetic tape or direct access volumes is 
necessary, or if secondary allocation is to be performed for a direct access data set 
opened for output. 

For magnetic tape, you must issue EOY when either a tapemark is read or a 
reflective spot is written over. In these cases, bit settings in the I-byte 
DCBOFLGS field of the data control block determine the action to be taken when 
EOY is executed. Before issuing EOY for magnetic tape, you must make sure that 
appropriate bits are set in DCBOFLGS. Bit positions 2, 3, 6, and 7 of 
DCBOFLGS are used only by the system; you are concerned with bit positions 0, 
1, 4, and 5. The use of these DCBOFLGS bit positions is as follows: 

Bit 0 

Bit 1 

Bit 4 

Bit 5 

set to 1 indicates that a write command was executed and that a tapemark is 
to be written. 

indicates that a backward read was the last I/O operation. 

indicates that data sets of unlike attributes are to be concatenated. 

indicates that a tape mark has been read. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 81 



If bits 0 and 5 of DCBOFLGS are both off when EOV is executed, the tape is 
spaced past a tapemark, and standard labels, if present, are verified on both the old 
and new volumes. The direction of spacing depends on bit 1. If bit 1 is off, the 
tape is spaced forward; if bit 1 is on, the tape is backspaced. 

If bit 0 is on, but bit 5 is off, when EOV is executed, a tapemark is written 
immediately following the last data record of the data set. Standard labels, if 
specified, are created on the old and the new volume. 

After issuing EOV for sequentially organized output data sets on direct access 
volumes, you can determine whether additional space was obtained on the same or 
a different volume. You do this by examining the data extent block (DEB) and the 
unit control block (UCB). If neither the address of the UCB, as shown in the 
DEB, nor the volume serial number, as shown in the UCB, has changed, additional 
space was obtained on the same volume. Otherwise, space was obtained on a 
different volume. 

The parameters of the EOV macro instruction are: 

(symbol) EOV (deb addr I aeb addr) 
(,MODE=~ 13tH 

deb addr I aeb addr-A -type address, (2-12), or (I) 
the address of the data control block or access method control block that is 
opened for the data set. If this parameter is specified as (1), register 1 must 
contain this address. 

MODE=~13t} 
indicates whether the EOV parameter list may reside above or below the 16 
megabyte line in virtual storage. The modes are: 

24 

3t 

If you do not specify the MODE operand, this mode is assumed. The 
expansion of the EOV macro generates a parameter list of the 
standard form (4 bytes per entry). The parameter list must be below 
the 16 megabyte line, but the calling program may be above the line. 
If your program is in 24-bit mode and you do not use a register to 
provide the address of the DCB or ACB, the DCB or ACB must be 
below the 16 megabyte line. 

The expansion of the EOV macro generates a parameter list in the 
31-bit addressing mode format (8 bytes per entry). The parameter list 
may reside above or below the 16 megabyte line. The first byte (byte 
0) in each entry contains option information and the last four bytes 
(bytes 4-7) contain the 4-byte DCB or ACB address. The DCB (and 
all ACBs except VSAM/VTAM ACBs) must be below the 16 
megabyte line; therefore, byte 4 must be zeros. Bytes 1 through 3 must 
also be zeros. 

Note: Failure to provide a DCB below the 16 megabyte line causes an 
ABEND50D. 

82 MVS/XA System-Data Administration 

\, 
~/ 



( 

( 

Note: To determine how the system disposes of a tape volume when an EOV 
macro is issued, see the description of the DISP parameter of the OPEN macro in 
Data Administration: Macro Instruction Reference. 

Restoring Data Control Blocks (CLOSE) 

The CLOSE macro instruction restores one or more data control blocks so that 
processing of their associated data sets can be terminated. You must issue CLOSE 
for all data control blocks that were used by your channel programs. Some of the 
procedures performed when CLOSE is executed are: 

• Release of data extent block (DEB) 

• Removal of information transferred to data control block fields when OPEN 
was executed 

• Verification or creation of standard labels 

• Volume disposition 

• Release of programmer-written appendage routines 

When CLOSE is issued for data sets on magnetic tape volumes, labels are 
processed according to bit settings in the DCBOFLGS field of the data control 
block. Before issuing CLOSE for magnetic tape, you must set the appropriate bits 
in DCBOFLGS. The significant DCBOFLGS bit positions are listed in the EOV 
macro instruction description. 

The parameters and different forms of the CLOSE macro instruction are described 
in Data Administration: Macro Instruction Reference. 

Assigning an Alternate Track and Copying Data from the Defective Track (ATLAS) 

A program that uses the EXCP macro instruction for input and output and that is 
APF authorized may, during the execution of the program, use the ATLAS macro 
instruction to obtain an alternate track and to copy a defective track onto the 
alternate track. With the use of ATLAS, the program can recover from permanent 
(hard) errors encountered in the execution of the following types of I/O 
commands: 

• Search ID. 

• Write. (The error condition must be confirmed during the execution of the 
channel program by a CCW that checks the data written.) 

• Read count. Errors in the CCHHR part of the count area can be recovered 
from, unless the record is the home address or record zero. Errors in the KDD 
part of the count area cannot be recovered from, unless the user has identified 
the defective record. 

Note: ATLAS may be used for all direct access devices with the exception of MSS 
volumes (3330V). 

Chapter 2. Executing Your Own Channel Programs (EXCP) 83 



- ---------- ----------

Your DCB must include the DCBRECFM field, and the field must show whether 
the data set is in the track overflow format. IT it is, recovery from errors in last 
records on tracks depends on your identifying the track overflow record segments. 

Recovery takes the form of obtaining a good alternate track and copying the 
defective track onto the good alternate one. Unless a reexecution of the channel 
program by ATLAS can correct the defect, the user should examine, and if 
necessary replace, defective records in a subsequent job if the data set is to be 
processed again. 

The format is: 

[symbol] ATLAS PARMADR=laddtt 
[,CHANPRG=m I NRH 
[,CNTPTR=~ I FI) 
[,WRITS={YES I NOH 

PARMADR 

o 

4 

Address of a parameter address list of the following format: 

Address of lOB for the channel program that 
encountered the error 

Address of count area field 

The count area field contains the CCHHRKDD of a defective record or the 
CCHH of a track that is to be copied. 

addr-A-type address, (2-12), or (1) 

CHANPRG=m I NRJ 
specifies whether the channel program that encountered the error can be 
executed again. 

R Channel program may be executed again by ATLAS. Before 
permitting reexecution of the channel program by ATLAS, you must 
reset the error indications of the previous execution fields in the 
DCBIFLGS. (See the example of the use of ATLAS below.) 

NR Channel program may not be executed again. 

IT this parameter is omitted, R is assumed. 

CNTPTR 
specifies whether the count area field contains a full count area 
(CCHHRKDD) or a partial count area (CCHH). 

84 MVS/XA System-Data Administration 



Using ATLAS 

( 

P Part of the count area (the CCHH address of the track to be copied). 

F Full count area (CCHHRKDD count of the record that was found 
defective). 

If this parameter is omitted, P is assumed. 

WRITS 
track overflow segment identification. 

If your data set is in the track overflow format, this identification determines 
recovery from errors in last records on tracks. 

YES If this is the last record on the track, it is a segment other than the last 
of a track overflow record. 

NO If this is the last record on the track, it is the last or only segment of a 
track overflow record. 

If this parameter is omitted, it is assumed that it cannot be established 
whether a last record is a segment of an overflow record. 

If a channel program encounters a unit check condition (shown in the CSW) in its 
execution, the EXCP processor program will place the sense bytes in the lOB. 
ATLAS can be used to recover from sense conditions shown by the following bit 
settings: 

IOBSENSO X'08' Data check 

IOBSENS1 X'80' Permanent 

Also, before using ATLAS, you must reset error indications as follows: 

NI DCBIFLGS,X'3F' Reset the DCBIFLGS error indications. 

The ATLAS program will attempt to find a good alternate track and will attempt to 
copy the defective track onto the good track, including all error conditions in either 
key or data areas. The error conditions may be rectified by reexecuting the 
channel program or through the use of the IEHA TLAS utility program in a 
subsequent step. 

Example: The following illustrates the use of the ATLAS macro instruction. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 85 

.~~-

I. 



EXCP MYIOB 
WAIT ECB=MYECB 
TM MYECB,X'7F' TEST FOR I/O ERROR 
BO NEXT NO, SUCCESSFUL, GO TO 

* ANOTHER ROUTINE 
TM IOBCSW+3,X' 02 , UNIT CHECK 
BZ OTHER NO, DO OTHER ERROR 

* PROCESSING 
TM IOBSENSO,X'08' DATA CHECK 
BNO OTHER NO, CAN'T HANDLE 
TM IOBSENS1,X'80' PERMANENT 
BNO OTHER NO, CAN'T HANDLE 
NI DCBIFLGS,X'3F' RESET ERROR 

* INDICATORS 
ATLAS PARMADR=THERE,CHANPRG=R 

Operation of the ATLAS Program 

The ATLAS program (SVC 86): 

• Establishes the availability and address of the next alternate track from the 
format-4 DSCB of the VTOC. 

• Brings all count fields from the defective track into storage to establish the 
description of the track. 

• Initializes the alternate track. (Writes the home address and record zero.) 

• Brings the key and data areas of each record into storage, one at a time, and 
combines them with their new count area to write the complete record onto the 
alternate track. 

• When the copying is finished, chains the alternate to the defective track and 
updates the VTOC. 

Control is returned to your program at the next executable instruction following the 
ATLAS macro instruction. 

Return Codes from the ATLAS Program 

The success of the ATLAS macro instruction can be determined by examining the 
contents of register 15, which will contain one of the return codes described below. 
If register 15 contains decimal 0,36,40, or 44, the contents of register 0 may be 
significant. 

86 MVS/XA System-Data Administration 

4-~ 
/ 'J 



( 

(-

Code 

O(X'OO') 

Meaning 

Successful completion. Key and data areas have been copied from 
the defective track onto a good alternate one. The only error 
encountered was in the record identified by the user's CCHHRKDD 
value. 

H the channel program is reexecutable, it has been successfully 
reexecuted. 

4(X' 04') This device type does not have alternate tracks that can be assigned 
by programming. 

8(X'08') All alternate tracks for the device have been assigned. 

12(X'OC') A request for storage (GETMAIN macro instruction) could not be 
satisfied. 

16(X' 10') All attempts to initialize and transfer data to an alternate track failed. 
The number of attempts made is equal to 10% of the assigned 
alternates for the device. 

20(X' 14') The type of error shown by the sense byte cannot be handled 
through the use of the ATLAS macro instruction. The condition is 
other than a data check (in the count or data areas} or a missing 
address marker. 

24(X'18') The format-4 DSCB of the VTOC cannot be read; therefore 
alternate track information is not available to ATLAS. 

28(X'lC') The record specified by the user was the format-4 DSCB, and it 
could not be read. 

32(X'20') An error found in count area of last record on the track cannot be 
handled because last-record-on-track identification is not supplied. 

36(X'24') An error was encountered when reading or writing the home address 
record or record zero. No error recovery has taken place. 

H register 0 contains X '0 1 00 00 00', the defect is in record zero. 

40(X' 28') Successful completion. Key and data areas have been copied from 
the defective track onto a good alternate one. However, the alternate 
track may have records with defective key or data areas. Register 0 
identifies the first three found defective as follows: 

n R R R 

n-The number of record numbers that follow (0, 1,2, or 3). 

Chapter 2. Executing Your Own Channel Programs (EXCP) 87 



Code 

-------.-~------ --

Meaning 

R-The hexadecimal number of the record found defective but 
copied anyway. 

If the channel program is reexecutable, it has been successfully 
reexecuted. 

44(X'2C') Errors encountered and no alternate track has been assigned. The 
return parameter register (register 0) will contain the R of a 
maximum of three error records. 

Error conditions that return this code are: 

• ATLAS received an error indication for a record with a data 
length in the count field of zero. Recovery was not possible 
because a distinction cannot be made between an EOP record 
and an invalid data length. 

• An error occurred while reading the count field of a record, and 
the KDD (key length-data length) was found to be defective. 

• More than three records on the specified track contained errors 
in their count fields. 

48(X'30') No errors found on the track, no alternate assigned. ATLAS will not 
assign an alternate unless a track has at least one defective record. 

52(X'34') I/O error in reexecuting user's channel program. A good alternate is 
chained to the defective track, and data has been transferred. The 
user's control blocks will give indication of the error condition 
causing failure in reexecution of the channel program. 

56(X'38') The DCB reflects a track overflow data set, but the UCB device type 
shows that the device does not support track overflow. 

60(X'3C') The CCHH of the user-specified count area is not within the extents 
of the data set. 

64(X'40') The device is an MSS virtual device, which is not supported. 

Control Block Fields 

The fields of the input/output block, event control block, and data extent block are 
illustrated and explained here; the data control block fields are described with the 
parameters of the DCB macro instruction under "EXCP Requirements" on 
page 67. 

88 MVS/XA System-Data Administration 

,1-'" 
(I. 
~I 



( 
Input/Output Block (lOB) Fields 

The input/output block (lOB) is not automatically constructed by a macro 
instruction; it must be defined as a series of constants and must be on a fullword 
boundary. For unit-record and tape devices, the lOB is 32 bytes in length. For 
direct access, teleprocessing, and graphic devices, 8 additional bytes must be 
provided. You may want to use the system mapping macro IEZIOB, which 
expands into a DSECT, to help in constructing an lOB. 

In Figure 21 on page 90 the diagonally ruled areas indicate fields in which you 
must specify information. The other fields are used by the system and must be 
defined as all zeros. You may not place information into these fields, but you may 
examine them. 

IOBFLAGI (1 byte) 
You must set bit positions 0, 1, and 6. One-bits in positions 0 and 1 indicate 
data chaining and command chaining, respectively. (If both data chaining 
and command chaining are specified, the system does not use error recovery 
routines except for the direct access devices.) A one-bit in position 6 
indicates that the channel program is not a "related" request; that is, the 
channel program is not related to any other channel program. If you intend 
to issue an EXCP macro with a BSAM, QSAM, or BP AM data control 
block, you may want to turn on bit 7 to prevent access-method appendages 
from processing the I/O request. 

IOBFLAG2 (1 byte) 
If you set bit 6 in the 10BFLAG 1 field to zero, bits 2 and 3 in this field must 
then be set to: 

• 00, if any channel program or appendage associated with a related 
request might modify this lOB or channel program. 

• 01, if the conditions requiring a 00 setting don't apply, but the CRE or 
ABE appendage might retry this channel program if it completes 
normally or with the unit-exception or wrong-length-record bits on in 
the CSW. 

• lOin all other cases. 

The three combinations of bits 2 and 3 represent the three kinds of related 
requests, known as type 1 (00), type 2 (01), and type 3 (10). The type you 
use determines how much the EXCP processor can overlap the processing of 
related requests. Type 3 allows the greatest overlap, normally making it 
possible to quickly reuse a device after a channel-end interruption. (Related 
requests that were executed on a pre-MVS system are executed as type-l 
requests if not modified.) 

10BSENSO and 10BSENSl (2 bytes) 
are placed into the input/output block by the EXCP processor when a unit 
check occurs. On occasion, the system is unable to obtain any sense bytes 
because of unit checks when sense commands are issued. In this case, the 
system simulates sense bytes by moving X' 10FE' to 10BSENSO and 
10BSENSl. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 89 



--------- -------

0(0)/1 1/1 ////// IOBFLAG1 / IOBFLAG2 10BSENSO IOBSENS1 
////// / 

4(4) ////////////////////////////////////// 
10BECBCC /////////////// 10BECBPT ///////////// 

////////////////////////////////////// 

8(8) 
IOBFLAG3 

10BCSW 
12(C) 

16(10) ////////////////////////////////////// 
10BSIOCC /////////////// 10BSTART ///////////// 

////////////////////////////////////// 

20(14) ////////////////////////////////////// 
Reserved /////////////// 10BDCBPT ///////////// 

////////////////////////////////////// 

24(18) 
10BRESTR IOBRESTR+1 

28(lC) ///////////////////////// 
//////////// 10BINCAM ////////// 10BERRCT 
//////////////////////////////// 

32(20) ////////// ..., 
/// 10BSEEK // .. Direct Access, Teleprocessing, and 
/ (first byte, M) -J Graphic Devices 

33(21) /////////////////////////////// 
////////////////////////////////////// 
////////////////////////////////////// 
/// 10BSEEK //// 

/////////////////////// (second through eighth bytes, //// 
/////////////////////// BBCCHHR) //// 
/////////////////////////////////////////////////// 39(27) 

Figure 21. Input/Output Block. (lOB) Format 

IOBECBCC (1 byte) 

1-

.. 

'-

l .. 
J 

All 
Devices 

Direct 
Access 
Storage 
Devices 
(DASD) 

the first byte of the completion code for the channel program. The system 
places this code in the high-order byte of the event control block when the 
channel program is posted complete. The completion codes and their 
meanings are listed under "Event Control Block (ECB) Fields" on page 92. 

IOBECBPT (3 bytes) 
the address of the 4-byte event control block you have provided. 

IOBFLAG3 (1 byte) 
is used only by the system. 

90 MVS/XA System-Data Administration 



( 

( 

(" 

IOBCSW (7 bytes) 
the low-order seven bytes of the channel status word that are placed into this 
field each time a channel-end or PCI interruption occurs. 

IOBSIOCC (1 byte) 
in bits 0 and 1, the instruction-length code; in bits 2 and 3, the start 
subchannel (SSCH) condition code for the instruction the system issues to 
start the channel program; and, in bits 4 through 7, the program mask:. 

IOBSTART (3 bytes) 
the starting address of the channel program to be executed. 

Reserved (1 byte) 
used only by the system. 

IOBDCBPT (3 bytes) 
the address of the data control block of the data set to be read or written by 
the channel program. 

IOBRESTR (1 byte) 
used by the system for volume repositioning in error recovery procedures. 

IOBRESTR+ 1 (3 bytes) 
if a related channel program is permanently in error, used by the system to 
chain together lOBs that represent dependent channel programs. To learn 
more about the conditions under which the chain is built, see "Interruption 
Handling and Error Recovery Procedures" on page 70. 

IOBINCAM (2 bytes) 
for magnetic tape, the amount by which the block count (DCBBLKCT) field 
in the device-dependent portion of the data control block is to be 
incremented. You may alter these bytes at any time. For forward 
operations, these bytes should contain a binary positive integer (usually + 1); 
for backward operations, they should contain a binary negative integer. 
When these bytes are not used, all zeros must be specified. 

Reserved (2 bytes) 
used only by the system. 

IOBSEEK (first byte, M) 
for direct access devices, the extent entry in the data extent block that is 
associated with the channel program (0 indicates the first entry; 1 indicates 
the second, and so forth). For teleprocessing and graphic devices, it contains 
the UCB index. 

IOBSEEK (last 7 bytes, BBCCHHR) 
for direct access devices, the seek address for your channel program. 

Chapter 2. Executing Your Own Channel Programs (EXCP) 91 



Event Control Block (ECB) Fields 

You must define an event control block (ECB) as a 4-byte area on a fullword 
boundary. When the channel program has been completed, the input/output 
supervisor places a completion code containing status information 'into the ECB 
(Figure 22 on page 93). Before examining this information, you must test for the 
setting of the "complete bit." If the complete bit is not on, and your problem 
program cannot perform other useful operations, you should issue aWAIT macro 
instruction that specifies the event control block. Under no circumstances should 
you construct a program loop that tests for the complete bit. 

Data Extent Block (DEB) Fields 

The data extent block (DEB) is constructed by the system when an OPEN macro 
instruction is issued for the data control block. You may not modify the fields of 
the DEB, but you may examine them. 

Executing Fixed Channel Programs in Real Storage (EXCPVR) 

The EXCPVR macro instruction provides you with the same functions as the 
EXCP macro instruction (that is, a device-dependent means of performing 
input/output operations). In addition, it allows your program to improve the 
efficiency of the I/O operations in a paging environment by translating its own 
virtual channel programs to real channel programs. Authorized programs are 
allowed to execute in a V = V area and provide the EXCP processor with real 
channel programs. This eliminates the translation of channel programs by the 
EXCP processor. The program issuing the EXCPVR must remain in authorized 
state until the completion of the channel programs. 

Problem programs are authorized to use the EXCPVR macro instruction under the 
authorized program facility (APF). A description of how to authorize a program 
can be found in Supervisor Services and Macro Instructions. 

I [symbol] I EXCPVR I iob-addr 

iob-addr-A -type address, (2 -12), or (J) 
the address of the input/ output block of the channel program to be 
executed. 

To use EXCPVR, you must do all the things you would do to execute an EX~P 
request; in addition you must: 

1. Code PGFX= YES in the DCB associated with the EXCPVR requests and 
provide a page-fix (PGFX) appendage by specifying SIOA-symbol in the 
DCB. 

2. Fix the data area that contains your channel program, the data areas that are 
referred to by your channel program, your PCI appendage (if your program 
can generate program-controlled interrupts), and any area referred to by your 
PCI appendage. To cause EXCP to fix these data areas, you build a list that 

92 MVS/XA System-Data Administration 

,/ ""\ 
.... ~ 



( 

( 

WAIT bit=O COMPLETE bit=1 Remainder of completion code 

bit 
o 2 31 

Wait bit 
A one bit in this position indicates that the WAIT macro instruction has been 
issued, but the channel program has not been completed. 

Complete bit 
A one bit in this position indicates that the channel program has been completed; 
if it has not been completed, a zero bit is in this position. 

Completion code 
This code, which includes the wait and complete bits, may be one of the following 
4-byte hexadecimal ~xpressions: 

CODE MEANING 

7FOooOOO The channel program has terminated without error. 

41000000 The channel program has terminated with a permanent error. 

42000000 The channel program has terminated because a direct access extent address 
has been violated. 

44000000 The channel program has been intercepted because of a permanent error 
associated with a device end for the previous request. You may 
reissue the EXCP macro instruction to restart the channel 
program. 

48000000 The request queue element for a channel program has been made available 
after it has been purged. 

4BOOOOoo One of the following errors occurred during error recovery processing for 
a tape device. 

• The CSW command address in the lOB is zeros. 

• An unexpected load point was encountered. 

4FOOOOOO Error recovery routines have been entered because of direct access error 
but are unable to read the home address or record O. 

Figure 22. Event Control Block (ECB) after Posting of Completion Code (EXCP) 

contains the addresses of these virtual areas. You should build the list in your 
PGFX appendage. 

3. Determine whether the data areas in virtual storage specified in the address 
fields of your CCWs cross page boundaries. If they do, you must build an 
indirect data address list (IDAL) and put the address of the IDAL in the 
affected CCW. 

4. Translate the addresses in your CCWs from virtual to real addresses. 

All other areas related to the EXCP/EXCPVR I/O operation (that is, CCWs, 
IDA Ws, lOBs, DEBs, DCBs, appendages, and so forth) must remain 24-bit 

Chapter 2. Executing Your Own Channel Programs (EXCP) 93 



addressable. Note, however, that the EXCP processor will allow both 24-bit and 
31-bit virtual I/O buffers to be fixed above 16 megabytes real. 

Items 3 and 4 must be done in your start-I/O (SIO) appendage. A description of 
the SIO appendage is presented under "Appendages" on page 71. 

Building the List of Data Areas to Be Fixed 

The EXCP processor expects programs using the EXCPVR macro instruction to 
pass a list of data areas to be fixed. This list is to be built in the PGFX appendage, 
as described below. 

The data areas you must fix in real storage (if not already fixed in real storage) are: 

1. The channel program. If the channel program is already in a fixed subpool, it 
does not have to be fixed. 

2. The data areas to which your channel program will write and from which your 
channel program will read. If the data areas are already in a fixed subpool, they 
do not have to be fixed. 

3. The PCI appendage, if used, and any areas accessed by the PCI appendage 
(DEB, lOB, and so forth). 

EXCPVR users can specify 31-bit real data areas by creating CCWs through the 
use of IDAWs. 

Page Fix (PGFX) and Start-I/O (SIO) Appendage 

Page-Fix List Processing 

This appendage consists essentially of two independent appendages. The complete 
appendage can be viewed as a re-enterable subroutine having two entry points, one 
for the SIO appendage and one for the PGFX appendage. 

The SIO entry point is located at offset 0 in the subroutine; any other location in 
the appendage may be branched to from this entry point. The entry point of the 
PGFX appendage is at offset +4 in the SIO subroutine, which is set in register 15 
as the entry point of the PGFX appendage. 

Page Fix (PGFX) Appendage: The purpose of this appendage is to list all the areas 
that must be fixed to prevent paging exceptions during the execution of the current 
I/O request. This appendage may be entered more than once. However, each time 
it is entered, it must create the same list of areas to be fixed. The appendage may 
use the 16-word save area pointed to by register 13. Registers 10, 11, and 13 may 
be used as work registers. 

Each page-fix entry placed in the list by the appendage must have the following 
doubleword format: 

94 MVS/XA System-Data Administration 



( 
1011 31132 33 631 

0 Starting virtual 0 Ending virtual 
address of area address of area 
to be fixed to be fixed + 1 

- -

On return from your PGFX appendage to the EXCP processor (via the return 
address provided in register 14), register 10 must point to the first page-fix entry 
and register 11 must contain the number of page-fix entries in the work area. The 
EXCP processor then fixes the pages corresponding to the areas listed by the 
PGFX appendage. The pages remain fixed until the associated I/O request 
terminates. 

If either the channel end appendage or the abnormal end appendage returns via the 
return address in register 14 plus 8, the PGFX appendage is not normally 
reentered. Instead, the SIO appendage is entered, and the page-fix list built by the 
PGFX appendage is still active. However, the PGFX appendage is entered after 
either the channel end appendage or the abnormal end appendage returns via the 
return address in register 14 plus 8 when a PURGE macro has been issued (for 
instance, when a storage swap has occurred). In this case, when I/O is restored, 
the PGFX appendage is entered. 

Note: The page-fix list must be in page-fixed storage. 

SIO Appendage: If you are using EXCPVR to execute your channel program, you 
must translate the virtual addresses in the operands of your channel program to real 
addresses. This should be done in your SIO appendage. If indirect data addressing 
is required, the SIO appendage should also build the indirect data address lists 
(IDALs) and turn on the IDA indicators in the associated CCWs. 

Translating Virtual Addresses and Building the IDAL: You must convert the virtual 
addresses in the channel program to real addresses. You must also check the areas 
whose addresses appear in bits 8 through 31 of your CCWs to determine whether 
the data areas cross 2K-byte boundaries. If they do, you must provide an entry in 
the IDAL for each 2K-byte boundary crossed. The channel subsystem uses the 
IDAL to identify the address where it will continue reading or writing when a 
2K-byte boundary is crossed during a read or write operation. The IDAL must 
contain real addresses when it is processed by the channel. 

In MVS/XA, the LRA instruction returns a 31-bit real address regardless of the 
addressing mode. You must be careful when you construct the IDA W to ensure 
that the real storage obtained by GETMAIN (or branch entry) is below 16 
megabytes. Do your page fixing before you issue the LRA. (See Supervisor 
Services and Macro Instructions or System Macros and Facilities for information on 
how to obtain real storage below 16 megabytes real.) 

Chapter 2. Executing Your Own Channel Programs (EXCP) 95 



CCW 

Command Address of the 04 1111111111 Byte 
Code IDAL 1111111111 Count 

0 7 8 31 32 39 40 47 48 

IDAL 

0 
First Indirect Data 
Address Word 

4 
Second Indirect Data 
Address Word 

8 
Subsequent Indirect 
Data Address Word 

Notes: 

1. You must put one entry in the IDAL for each 2K-byte page boundary your data 
area crosses. 

2. If the CCW has an IDAL address rather than a data address, bit 37 must be set 
to signal this to the channel. 

3. The maximum number of entries needed in the IDAL is determined from the 
count in the CCW as follows: 

Number of IDAL entries = ((CCW byte-count - 1)/2048) + 1. 
(Round up division to next highest integer if remainder is not zero.) 

The number of IDAL entries required ultimately depends on the number of 
2K-byte boundaries crossed by the data. For example, if your data is 800 bytes 
long and does not cross a 2K-byte page boundary, no IDAL entries are required. 
If your data crosses a 4K-byte page boundary, then two IDAL entries are required. 
If your data is 5000 bytes long, at least two IDAL entries are required. If your 
data crosses two 4K-byte page boundaries, four IDAL entries are required. 

The first indirect address is the real address of the first byte of the data area. The 
second and subsequent indirect addresses are the real addresses of the second and 
subsequent 2K-byte boundaries of the data area. 

96 MVS/XA System-Data Administration 

c 



( 
For example, if the data area real address is X'707FF' and the byte count is 
X' 1802', the IDAL would contain the following real addresses (assuming the real 
addresses are contiguous, whlch may not always be the case): 

707FF 
70800 
71000 

If the data area real address is X'707FF' and the byte count is X'800', the IDAL 
would contain the following addresses: 

707FF 
70800 

Chapter 2. Executing Your Own Channel Programs (EXCP) 97 





(-

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 

Execute direct access program (XDAP) is a macro instruction that you may use to 
read, verify, or update a block on a direct access volume. This chapter explains 
what the XDAP macro instruction does and how you can use it. The control block 
generated when XDAP is issued and the macro instructions used with XDAP are 
also discussed. 

Because most of the specifications for XDAP are similar to those for the execute 
channel program (EXCP) macro instruction, you should be familiar with the 
"Executing Your Own Channel Programs (EXCP)" chapter of this publication, 
and with the information contained in Data Administration Guide that provides 
how-to information for using the access method routines of the system control 
program. 

If you are not using the standard mM data access methods, you can, by issuing 
XDAP, generate the control information and channel program necessary for 
reading or updating the records of a data set. (However, XDAP cannot be used to 
read, verify, or update a SYSIN or SYSOUT data set.) 

You cannot use XDAP to add blocks to a data set, but you can use it to change the 
keys of existing blocks. Any block configuration and any data set organization can 
be read or updated. 

Although the use of XDAP requires less storage than do the standard access 
methods, it does not provide many of the control program services that are included 
in the access methods. For example, when XDAP is issued, the system does not 
block or unblock records and does not verify block length. 

To issue XDAP, you must provide the actual track address of the track containing 
the block to be processed. You must also provide either the block identification or 
the key of the block, and specify which of these is to be used to locate the block. If 
a block is located by identification, both the key and data portions of the block 
may be read or updated. If a block is located by key, only the data portion can be 
processed. 

For additional control over I/O operations, you may write appendages that must be 
entered into the LPA library. Descriptions of these routines and their coding 
specifications are included under Chapter 2, "Executing Your Own Channel 
Programs (EXCP)" on page 63. 

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 99 



~~~~- ..... -----..... . 

XDAP Requirements

When using the XDAP macro instruction, you must, somewhere in your program,
code a DCB macro instruction that produces a data control block (DCB) for the
data set to be read or updated. You must also code an OPEN macro instruction
that initializes the data control block and produces a data extent block (DEB). The
OPEN macro instruction must be executed before any XDAP macro instructions
are executed.

When the XDAP macro instruction is assembled, a control block and executable
code are generated. This control block may be logically divided into three sections:

• An event control block (ECB) that is supplied with a completion code each
time the direct access channel program is terminated.

• An input/output block (lOB) that contains information about the direct access
channel program.

• A direct access channel program that consists of three or four channel
command words (CCWs). The type of channel program generated depends on
specifications in the parameters of the XDAP macro instruction. When
executed, it locates a block by either its actual address or its key and reads,
updates, or verifies the block.

When the channel program has terminated, a completion code is placed into the
event control block. After issuing XDAP, you should therefore issue a WAIT
macro instruction, specifying the address of the event control block, to regain
control when the direct access program has terminated. If volume switching is
necessary, you must issue an EOY macro instruction. When processing of the data
set has been completed, you must issue a CLOSE macro instruction to restore the
data control block.

Macro Specifications for Use with XDAP

When you are using the XDAP macro instruction, you must also code DCB,
OPEN, CLOSE, WAIT, and, in some cases, the EOY macro instructions. The
parameters of the XDAP macro instruction are listed and described here. For the
other required macro instructions, special requirements or options are explained,
but you should see "Macro Specifications for Use with EXCP" on page 73 for
listings of their parameters.

Denning a Data Control Block (DCB)

You must issue a DCB macro instruction for each data set to be read, updated, or
verified by the direct access channel program. To learn which macro instruction
parameters to code, see "Defining Data Control Blocks for EXCP (DCB)" on
page 73.

1 00 MVS/XA System-Data Administration

(

(

(-

Initializing a Data Control Block (OPEN)

The OPEN macro instruction initializes one or more data control blocks so that
their associated data sets can be processed. You must issue OPEN for all data
control blocks that are to be used by the direct access program. Some of the
procedures performed when OPEN is executed are:

• Construction of data extent block (DEB)

• Transfer of information from DD statements and data set labels to the data
control block

• Verification or creation of standard labels

• Loading of programmer-written appendage routines

The two parameters of the OPEN macro instruction are the address(es) of the data
control block(s) to be initialized and the intended method of I/O processing of the
data set. The method of processing may be specified as INPUT, OUTPUT, or
EXTEND; however, if nothing is specified, INPUT is assumed. The parameters
and different forms of the OPEN macro instruction are described in Data
Administration: Macro Instruction Reference.

Executing Direct Access Programs (XDAP)

The XDAP macro instruction produces the XDAP control block (that is, the ECB,
lOB, and channel program) and executes the direct access channel program. The
format of the XDAP macro instruction is:

[symbol] XDAP ecb-symbol
,type
,dcb-addr
,area-addr
, length-value
,[(key-addr,keylength-value)]
,blkref-addr
,[sector-addr]
[,MF'={EILH

ecb-symbol-symbolor (2-12)
the symbolic name to be assigned to the XDAP event control block.
Registers can be used only with MF=E.

type-{RI I RK I WI I WI{ I VI I VKJ
the type of I/O operation intended for the data set and the method by which
blocks of the data set are to be located. One of the combinations shown
must be coded in this field.

The codes and their meanings are:

R Read a block.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 101

w Update a block.

v Verify that the device is able to read the contents of a block,
but do not transfer data.

I Locate a block by identification. (The key portion, if present,
and the data portion of the block are read, updated, or verified.)

K Locate a block by key. (Only the data portion of the block is
read, updated, or verified.) If you code this value, you must
code the 'key-addr,keylength-value' operands.

dcb-addr-A-type address or (2-12)
the address of the data control block for the data set. If this data control
block is also being used by a sequential access method (BSAM, BP AM,
QSAM), you must reassemble the XDAP macro instruction. Otherwise,
sequential access method appendages will be called at the conclusion of the
XDAP channel program.

area-addr-A-type address or (2-12)
the address of an input or output area for a block of the data set.

length-value-absexp or (2-12)
the number of bytes to be transferred to or from the input or output area. If
blocks are to be located by identification and the data set contains keys, the
value must include the length of the key. The maximum number of bytes
transferred is 32767.

key-addr-RX-type address or (2-12)
when blocks are to be located by key, the address of a virtual storage field
that contains the key of the block to be read, updated, or verified.

keylength-value-absexp or (2-12)
when blocks are to be located by key, the length of the key. The maximum
length is 255 bytes.

blkref-addr-RX-type address or (2-12)
the address of a field in virtual storage containing the actual track address of
the track containing the block to be located. The actual address of a block is
in the form MBBCCHHR, where M indicates which extent entry in the data
extent block is associated with the direct access program; BB is not used, but
must be zero; CC indicates the cylinder address; HH indicates the actual
track address; and R indicates the block identification. R is not used when
blocks are to be located by key. (For more detailed information, see
"Converting a Relative Track Address to an Actual Track Address" on
page 106.)

sector-addr-RX-type address or (2-12)
the address of a 1-byte field containing a sector value. The sector-address
parameter is used for rotational position sensing (RPS) devices only. The
parameter is optional, but its use will improve channel performance. When
the parameter is coded, a set-sector CCW (using the sector value indicated
by the data address field) precedes the search-ID-equal command in the
channel program. The sector-address parameter is ignored if the type
parameter is coded as RK, WK, or VK. If a sector address is specified in the

102 MVS/XA System-Data Administration

~~ -~-- -~~ ~~~~~-~~~-----~~-.~---

(,

MF=

execute form of the macro, then a sector address, not necessarily the same,
must be specified in the list form. The sector address in the executable form
will be used.

Note: No validity check is made on either the address or the sector value
when the XDAP macro is issued. However, a unit check/command reject
interruption will occur during channel-program execution if the sector value
is invalid for the device or if the sector-addr operand is used when accessing
a device without RPS. (For more detailed information, see "Obtaining
Sector Number of a Block on a Device with the RPS Feature" on page 108.)

you may use the L-form of the XDAP macro instruction for a macro
expansion consisting of only a parameter list, or the E-form for a macro
expansion consisting of only executable instructions.

MF=E
The first operand (ecb-symbol) is required and may be coded as a symbol or
supplied in registers 2 through 12. The type, dcb-addr, area-addr, and
length-value operands may be supplied in either the L- or E-form. The
blkref-addr operand may be supplied in the E-form or moved into the
IOBSEEK field of the lOB by you. The sector-addr is optional; it may be
coded either in both the L- and E-form or in neither.

MF=L
The first two operands (ecb-symbol and type) are required and must be
coded as symbols. If you choose to code length-value or keylength-value,
they must be absolute expressions. Other operands, if coded, must be
A-type addresses. (blkref-addr is ignored if coded.)

Note: The XDAP macro builds a channel program containing A-type addresses.
These addresses refer to storage within the L-form of the macro. If you copy the
L-form of the macro to a workarea so that the program may be reentrant, the
E-form of the XDAP macro does not update the A-type addresses. This results in
an invalid channel program.

The dcb-addr, area-addr, blkref-addr, and sector-value operands may be coded as
RX-type addresses or supplied in registers 2 through 12. The length-value and
keylength-value operands can be specified as absolute expressions or decimal
integers or supplied in registers 2 through 12.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 103

End of Volume (EOV)

The EOV macro instruction identifies end-of-volume and end-of-data-set
conditions. For an end-of-volume condition, EOV causes switching of volumes
and verification or creation of standard labels. For an end-of-data-set condition,
EOV causes your end-of-data-set routine to be entered. When using XDAP, you
issue EOV if switching of direct access volumes is necessary or if secondary
allocation is to be performed for a direct access data set opened for output.

For details about the parameters of the EOV macro instruction, see "End of
Volume (EOV)" on page 81.

Restoring a Data Control Block (CLOSE)

The CLOSE macro instruction restores one or more data control blocks so that
processing of their associated data sets can be terminated. You must issue CLOSE
for all data sets that were used by the direct access channel program. Some of the
procedures performed when CLOSE is executed are:

• Release of data extent block (DEB)

• Removal of information transferred to data control block fields when OPEN
was executed

• Verification or creation of standard labels

• Release of programmer-written appendage routines

The CLOSE macro instruction must identify the address of at least one data
control block to be restored, and may specify other parameters. The parameters
and different forms of the CLOSE macro instruction are described in Data
Administration: Macro Instruction Reference.

Control Blocks Used with XDAP

The three control blocks generated during execution of the XDAP macro
instruction are described here.

Event Control Block (ECB)

The event control block (ECB) begins on a fullword boundary and occupies the
first 4 bytes of the XDAP control block. Each time the direct access channel
program terminates, the II 0 supervisor places a completion code containing status
information into the event control block (Figure 23 on page 105). Before
examining this information, you must wait for the completion of the channel
program by issuing a WAIT macro instruction that specifies the address of the
event control block.

104 MVS/XA System-Data Administration

--_._-------

(-

(....•

. ..

Input/Output Block (lOB)

The input/output block (lOB) is 40 bytes in length and immediately follows the
event control block. "Control Block Fields" on page 88 contains a diagram of the
input/output block (Figure 23 on page 105). You may want to examine the
IOBSENSO, IOBSENS1, and IOBCSW fields if the ECB is posted with X'41'.

WAIT bit COMPLETE bit Completion code

bit
o 2 31

Wait bit
A one bit in this position indicates that the direct access channel program has not
been completed.

Complete bit
A one bit in this position indicates that the channel program has been completed;
if it has not been completed, a zero bit is in this position.

Completion code
This code, including the wait and complete bits, may be one of the following 4-byte
hexadecimal expressions:

CODE MEANING

7FOOOOoo Direct access program has terminated without error.

41000000 Direct access program has terminated with permanent error.

42000000 Direct access program has terminated because a direct access extent
address has been violated.

4FooooOO Error recovery routines have been entered because of direct access error
but are unable to read home address or record O.

Figure 23. Event Control Block (ECB) after Posting of Completion Code (XDAP)

Direct Access Channel Program

The direct access channel program is 24 bytes in length (except when set sector is
used for RPS devices) and immediately follows the input/output block. Depending
on the type of I/O operation specified in the XDAP macro instruction, one 'of four
channel programs may be generated. The three channel command words for each
of the four possible channel programs are shown in Figure 24 on page 106.

When a sector address is specified with an RI, VI, or WI operation, the channel
program is 32 bytes in length. Each of these channel programs in Figure 24 on
page 106 would be, in this case, preceded by a set sector command.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 105

Converting a Relative Track Address to an Actual Track Address

To issue XDAP, you must provide the actual track address of the track containing
the block to be processed. If you know only the relative track address, you can
convert it to the actual address by using a resident system routine. The entry point
to this conversion routine is labeled IECPCNVT. The address of the entry point
(CVTPCNVT) is in the communication vector table (CVT). The address of the
CVT is in location 16.

Type of I/O Operation CCW Command Code

Read by identification , Search ID Equal
2 Transfer in Channel

Verify by identification' 3 Read Key and Data

Read by key 1 Search Key Equal
2 Transfer in Channel

Verify by key' 3 Read Data

Write by identification Search ID Equal
2 Transfer in Channel
3 Write Key and Data

Write by key 1 Search Key Equal
2 Transfer in Channel
3 Write Data

For verifying operations, the third CCW is flagged to
suppress the transfer of information to virtual storage.

Figure 24. The XDAP Channel Programs

The conversion routine does all its work in general registers. You must load
registers 0, 1,2, 14, and 15 with input to the routine. Register usage is as follows:

Register

o

1

2

Use

Must be loaded with a 4-byte value of the form TTRN, where TT is
the track number relative to the beginning of the data set, R is the the
block identification on that track, and N is the concatenation number
of a BPAM data set. (0 indicates the first data set in the
concatenation, an nonconcatenated BPAM data set, or a non-BPAM
data set.)

Must be loaded with the address of the data extent block (DEB) of the
data set.

Must be loaded with the address of an 8-byte area that is to receive
the actual address of the block to be processed. The converted
address is of the form MBBCCHHR, where M indicates which extent
entry in the data extent block is associated with the direct access
program (0 indicates the first extent, 1 indicates the second, and so
forth); BB is two bytes of zeros; CC is the cylinder address; lllI is the
actual track address; and R is the block number.

106 MVS/XA System-Data Administration

rf--~

'_J

(

(

(

3-8

9-13

14

15

Are not used by the conversion routine.

Are used by the conversion routine and are not restored.

Must be loaded with the address to which control is to be returned
after execution of the conversion routine.

Is used by the conversion routine as a base register and must be loaded
with the address where the conversion routine is to receive control.

Return Codes from the Conversion Routine

When control is returned to your program, register 15 will contain one of the
following return codes:

Code Meaning

O(X'OO') Successful conversion.

4(X'04') The relative block address converts to an actual track address outside
the extents defined in the DEB.

Converting an Actual Track Address to a Relative Track Address

To get the relative track address when you know the actual track address, you can
use the conversion routine labeled IECPRLTV. The address of the entry point
(CVTPRLTV) is in the communication vector table (CVT). The address of the
CVT is in location 16.

The conversion routine does all its work in general registers. You must load
registers 1,2, 14, and 15 with input to the routine. Register usage is as follows:

Register

o

1

2

3-8

9-13

Use

Will be loaded with the resulting TIRO to be passed back to the caller.

Must be loaded with the address of the data extent block (DEB) of the
data set.

Must be loaded with the address of an 8-byte area containing the
actual address to be converted to a TIR. The actual address is of the
form MBBCCHHR.

Are not used by the conversion routine.

Are used by the conversion routine and are not restored.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 107

14 Must be loaded with the address to which control is to be returned
after execution of the conversion routine.

15 Is used by the conversion routine as a base register and must be loaded
with the address where the conversion routine is to receive control.

Obtaining Sector Number of a Block on a Device with the RPS Feature

To obtain the performance improvement given by rotational position sensing, you
should specify the sector-addr parameter in the XDAP macro. For programs that
can be used with both RPS and non-RPS devices, the UCBRPS bit (bit 3 at an
offset of 17 bytes into the UCB) should be tested to determine whether the device
has rotational position sensing. If the UCBRPS bit is off, a channel program with a
"set sector" command must not be issued to the device.

The sector-addr parameter on the XDAP macro specifies the address of a I-byte
field in your region. You must store the sector number of the block to be located
in this field. You can obtain the sector number of the block by using a resident
conversion routine, IECOSCRI. The address of this routine is in field CVTOSCRI
of the CVT, and the address of the CVT is in location 16. The routine should be
invoked via a BALR 14,15 instruction. If you are passing the track balance to the
routine, invoke the routine using a BAL 14,8(15). If you are computing the sector
value on modulo devices (3375 and 3380) with variable length records, you must
pass the track balance to the sector convert routine.

For RPS devices, the conversion routine does all its work in general registers. You
must load registers 0, 2, 14, and 15 with input to the routine. Register usage is as
follows:

108 MVS/XA System-Data Administration

Register

o

1

2

(
3-8

9-11

12,13

14

15

(

Use

For fixed, standard blocks or fixed, unblocked records not in a
partitioned data set: Register 0 must be loaded with a 4-byte value in
the form XXKR, where XX is a 2-byte field containing the physical
block size, K is a I-byte field containing the key length, and R is a
I-byte field containing the number of the record for which a sector
value is desired. The high-order bit of register 0 must be turned off
(set to 0) to indicate fixed-length records.

Passing the track balance: Register 0 must be loaded with the 4-byte
value of the track balance of the record preceding the required record.

For all other cases: Register 0 must be loaded with a 4-byte value in
the form BBIR, where BB is the total number of key and data bytes on
the track up to, but not including, the target record; I is a I-byte key
indicator (1 for keyed records, 0 for records without keys); and R is a
I-byte field containing the number of the record for which a sector
value is desired. The high-order bit of register 0 must be turned on
(set to 1) to indicate variable-length records.

Not used by the sector-convert routine.

Must be loaded with a 4-byte field where the first byte is the UCB
device type code for the device (obtainable from UCB+19), and the
remaining three bytes are the address of a I-byte area that is to
receive the sector value.

Not used.

Used by the convert routine and are not saved or restored.

Not used.

Must be loaded with the address in which control is to be returned
after execution of the sector conversion routine.

Used by the conversion routine as a base register and must be loaded
with the address of the entry point to the conversion routine.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 109

Chapter 4. Password Protecting Data Sets

The password protection described in this chapter does not apply to VSAM data
sets. Information about VSAM data set protection is in VSAM Administration:
Macro Instruction Reference and Access Method Services Reference. (For
information on RACF and its relationship to password protection, see RACF
General Information.) To use the data set protection feature of the operating
system, you must create and maintain a PASSWORD data set consisting of records
that associate the names of the protected data sets with the password assigned to
each data set. There are four ways to maintain the PASSWORD data set:

• You can write your own routines.

• You can use the PROTECT macro instruction.

• You can use the utility control statements of the IEHPROGM utility program.

• If you have TSO, you can use the TSO PROTECT command.

This chapter discusses only the first two of the four ways: It provides technical
detail about the PASSWORD data set that is necessary for writing your own
routines, and it describes how to use the PROTECT macro instruction. (The last
two of the four ways are discussed in other publications, as indicated in the list of
publications below.)

Before using the information in this chapter, you should be familiar with
information in several related publications. The following publications are
recommended:

• Data Administration Guide contains a general description of the data set
protection feature.

• System Messages contains a description of the operator messages and replies
associated with the data set protection feature.

• JCL Reference contains a description of the data definition (DO) statement
parameter used to indicate that a data set is to be password protected.

• Utilities contains a description of how to maintain the PASSWORD data set
using the utility control statements of the IEHPROGM utility program.

• TSO Command Language Reference describes the use of the TSO PROTECT
command.

Chapter 4. Password Protecting Data Sets 111

Providing Data Set Security

In addition to the usual label protection that prevents the opening of a data set
without the correct data set name, the operating system provides data set security
options that prevent unauthorized access to confidential data. Password protection
prevents access to data sets until a correct password is entered by the system
operator, or, for TSO, by a remote terminal operator.

The following are the types of access allowed to password-protected data sets:

• PWREAD/PWWRITE-A password is required for read or write.

• PWREAD/NOWRITE-A password is required for read. Writing is not
allowed.

• NOPWREAD/PWWRITE-Reading is allowed without a password. A
password is required to write.

To prepare for use of the data set protection feature of the operating system, you
place a sequential data set, named PASSWORD, on the system residence volume.
This data set must contain at least one record for each data set placed under
protection. In turn, each record contains a data set name, a password for that data
set, a counter field, a protection mode indicator, and a field for recording any
information you desire to log. On the system residence volume, these records are
formatted as a "key area" (data set name and password) and a "data area"
(counter field, protection mode indicator, and logging field). The data set is
searched on the "key area."

Note: The area allocated to the data set should not have been previously used for
a PASSWORD data set, as this may cause unpredictable results when adding
records to the data set.

You can write routines to create and maintain the PASSWORD data set. If you
use the PROTECT macro instruction to maintain the PASSWORD data set, see
"Maintaining the PASSWORD Data Set (PROTECT Macro)" on page 116. If
you use the IEHPROGM utility program to maintain the PASSWORD data set, see
Utilities. These routines may be placed in your own library or in the system's
library (SYSl.LINKLIB). You may use a data management access method or
EXCP programming to read from and write to the PASSWORD data set.

If a data set is to be placed under protection, it must have a protection indicator set
in its label (format-l DSCB or header 1 tape label). This is done by the operating
system when the data set is created, by the IEHPROGM utility program, or by the
PROTECT macro when creating or adding the control password. The protection
indicator is set in response to a value in the LABEL= operand of the DD statement
associated with the data set being placed under protection. JCL Reference describes
the LABEL operand.

Note: Data sets on magnetic tape are protected only when standard labels are
used.

Password-protected data sets can only be accessed by programs that can supply the
correct password. When the operating system receives a request to open a
protected data set, it first checks to see whether the data set has already been

112 MVS/XA System-Data Administration

,"'--'
~--,./

(-

(

opened for this job step. If so, only the access mode will be checked to determine
whether it is compatible with the protection mode under which it was previously
opened. If the data set has not been previously opened by this job step or if the
access mode is not compatible with the protection mode under which it was
previously opened, a message is issued that asks for the password; the message
goes to the operator console. If the program requesting that the data set be opened
is running under TSO in the foreground, the message goes to the TSO terminal
operator. If you want the password supplied by another method in your
installation, you can modify the READPSWD source module or code a new routine
to replace READPSWD in SYS1.LPALm.

PASSWORD Data Set Characteristics

The PASSWORD data set must reside on the same volume as your operating
system. The space you allocate to the PASSWORD data set must be contiguous,
that is, its DSCB must indicate only one extent. The amount of space you allocate
depends on the number of da~ sets your installation wants to protect. Each entry
in the PASSWORD data set requires 132 bytes of space. The organization of the
PASSWORD data set is physical-sequential; the record format is unblocked,
fixed-length records (RECFM=F). Each record that forms the data area is 80
bytes long (LRECL=80,BLKSIZE=80) and is preceded by a 52-byte key
(KEYLEN=52). The key area contains the fully qualified data set name of as
many as 44 bytes and a password of one to eight bytes, left justified with blanks
added to fill the areas. The password assigned may be from one to eight
alphameric characters in length.

Note: For data sets on magnetic tape designed according to the specifications of
the International Organization for Standardization (ISO) 1001-1979, the
equivalent American National Standards Institute (ANSI) X3.27-1978, or the
Federal Information Processing Standards (FIPS) 79, do not include generation
and version numbers as part of generation data set names. The generation and
version numbers are not included as part of the names in the tape labels and' are
ignored if included in the PASSWORD data set.

You can protect the PASSWORD data set itself by creating a password record for
it when your program initially builds the data set. Thereafter, the PASSWORD
data set cannot be opened (except by the operating system routines that scan the
data set) unless the operator enters the password.

Note: If a problem occurs on a password-protected system data set, maintenance
personnel must be provided with the password in order to access the data set and
resolve the problem.

Creating Protected Data Sets

A data definition (DD) statement parameter (LABEL=) may be used to indicate
that a data set is to be password protected. For data sets on DASD, an alternative
method is to use the PROTECT macro instruction for a previously allocated data
set. A data set may be created and the protection indicator set in its label without
entering a password record for it in the PASSWORD data set.

Operating procedures at your installation must ensure that password records for all
data sets currently password-protected are entered in the PASSWORD data set.
Installations where independent computing systems share common DASD

Chapter 4. Password Protecting Data Sets 113

resources must ensure that PASSWORD data sets on all systems contain the
appropriate password records for any protected data set on shared DASD.

Under certain circumstances, the order in which data sets are allocated and
unallocated from multiple systems on shared DASD may result in loss of password
protection. For example, if an unprotected data set is allocated and opened by a
user on System A and then scratched by a different user on System B, the first user
is given a "window" to the unallocated (free) area. If any data set, protected or
unprotected, is allocated in that space by a user on either system during the time
the "window" is open, the new data set has no protection from the user with the
"window."

While the allocation disposition is still NEW, a password-protected data s,et can be
used without supplying a password. However, once the data set is unallocated, any
subsequent attempt to open will result in termination of the program unless the
password record is available and the correct password is supplied. Note that, if the
protection mode is NOPWREAD and the request is to open the data set for input
or read backward, no password will be required.

Tape Volumes Containing More Than One Password-Protected Data Set

To password protect a data set on a tape volume containing other data sets, you
must password protect all the data sets on the volume. (Standard labeIs--SL, SUL,
AL, or AUL--are required. For definitions of these label types and the
protection-mode indicators that can be used, see Magnetic Tape Labels and File
Structure Administration.)

If you issue an OPEN macro instruction to create a data set following an existing,
password-protected data set, the password of the existing data set will be verified
during open processing for the new data set. The password supplied must be
associated with a PWWRITE protection-mode indicator.

Protection Feature Operating Characteristics

The topics that follow provide information concerning actions of the protection
feature in relation to termination of processing, volume switching, data set
concatenation, SCRATCH and RENAME functions, and counter maintenance.

Processing is terminated when:

1. The operator cannot supply the correct password for the protected data set
being opened after two tries.

2. A password record does not exist in the PASSWORD data set for the protected
data set being opened.

3. The protection-mode indicator in the password record and the method of I/O
processing specified in the Open routine do not agree, for example, OUTPUT
specified against a read-only protection-mode indicator.

4. There is a mismatch in data set names for a data set involved in a volume
switching operation. This is discussed in the next paragraph.

114 MVS/XA System-Data Administration

,4'~'"

~=,/

/
/

(-

(

Volume Switching

Data Set Concatenation

The system ensures a continuation of password protection when volumes of a
multivolume data set are switched. It accepts a newly-mounted tape volume to be
used for input or a newly-mounted direct access volume, regardless of its use, if
these conditions are met:

• The data set name in the password record for the data set is the same as the
data set name in the JFCB. (This ensures that the problem program has not
changed the data set name in the JFCB since the data set was opened.)

• The protection-mode indicator in the password record is compatible with the
processing mode, and a valid password has been supplied.

The system accepts a newly-mounted tape volume to be used for output under any
of these conditions:

• The security indicator in the HDRllabel indicates password protection; the
data set name in the password record is the same as the data set name in the
JFCB; and the protection-mode indicator is compatible with the processing
mode. (If the data set name in the JFCB has been changed, a new password is
requested from the operator.)

• The security indicator in the HDRI label does not indicate password
protection. (A new label will be written with the security indicator indicating
password protection.)

• Only a volume label exists. (A HDRllabel will be written with the security
indicator indicating password protection.)

A password is requested for every protected data set that is involved in a
concatenation of data sets, regardless of whether the other data sets involved are
protected or not.

SCRATCH and RENAME Functions

Counter Maintenance

To delete or rename a protected data set, it is necessary that the job step making
the request be able to supply the password. The system first checks to see if the
job step is currently authorized to write to the data set. If not. message IEC301A
is issued to request the password. The password provided must be associated with
a "WRITE" protection-mode indicator.

The operating system increments the counter in the password record on each usage.
but no overflow indication will be given (overflow after 65535 openings). You
must provide a counter maintenance routine to check and, if necessary. reset this
counter.

Chapter 4. Password Protecting Data Sets 115

Maintaining the PASSWORD Data Set (pROTECT Macro)

To use the PROTECT macro instruction, your PASSWORD data set must be on
the system residence volume. The PROTECT macro can be used to:

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

• Delete an entry from the PASSWORD data set.

• Provide a list of information about an entry in the PASSWORD data set; this
list will contain the security counter, access type, and the 77 bytes of security
information in the "data area" of the entry.

In addition, the PROTECT macro updates the DSCB of a protected direct access
data set to reflect its protection status; this feature eliminates the need for you to
use job control language when you protect a data set.

PASSWORD Data Set Characteristics and Record Format (With PROTECT macro)

When you use the PROTECT macro, the record format and characteristics of the
PASSWORD data set are no different from the record format and characteristics
that apply when you use your own routines to maintain it.

Number of Records for Each Protected Data Set

Protection-Mode Indicator

When you use the PROTECT macro, the PASSWORD data set must contain at
least one record for each protected data set. The password (the last 8 bytes of the
"key area") that you assign when you protect the data set for the first time is called
the control password. In addition, you may create as many secondary records for
the same protected data set as you need. The passwords assigned to these
additional records are called secondary passwords. This feature is helpful if you
want several users to have access to the same protected data set, but you also want
to control the way they can use it. For example: One user could be assigned a
password that allowed the data set to be read and written, and another user could
be assigned a password that allowed the data set to be read only.

Note: The PROTECT macro will update the protection-mode indicator in the
format-l DSCB in the protected data set only when you issue it for adding,
replacing, or deleting a control password.

You can set the protection-mode indicator (third data byte) in the password record
to one of four different values:

• X' 00' to indicate that the password is a secondary password and the protected
data set is to be read only (PWREAD).

• X'80' to indicate that the password is the control password and the protected
data set is to be read only (PWREAD).

116 MVS/XA System-Data Administration

/r~,

~.~

c

(

(

• X'Ol' to indicate that the password is a secondary password and the protected
data set is to be read" and written (PWREAD/PWWRITE).

• X' 81' to indicate that the password is the control password and the protected
data set is to be read and written (PWREAD/PWWRITE).

Because of the sequence in which the protection status of a data set is checked, the
following defaults will occur:

If control password is: Secondary password must be:

1. PWREAD/PWWRITE or
PWREAD/NOWRITE

PWREAD/PWWRITE or
PWREAD/NOWRITE

2. NOPWREAD/PWWRITE NOPWREAD!PWWRITE

If the control password is set to either of the settings in item 1 above, the
secondary password will be set to PWREAD /PWWRITE if you try to set it to
NOPWREAD/PWWRITE.

If the control password is changed from either of the settings in item 1 to the
setting in item 2 above, the secondary password will be automatically reset to
NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to either of the
settings in item 1 above, the secondary password is set by the system to
PWREAD/PWWRITE.

Because the DSCB of the protected data set is updated only when the control
password is changed, you may request protection attributes for secondary
passwords that conflict with the protection attributes of the control password.

PROTECT Macro Syntax

The format is:

I [symbol] I PROTECT I parameter list address

parameter list address-A-type address, (2-12), or (J)
indicates the location of the parameter list. The parameter list must be set up
before the PROTECT macro is issued. The address of the parameter list
may be passed in register 1, in any of registers 2 through 12, or as an A-type
address. The first byte of the parameter list must be used to identify the
function (add, replace, delete, or list) you want to perform. See Figure 25
on page 118 through Figure 28 on page 123 for the parameter lists and
codes used to identify the functions.

Note: The parameter lists and the areas addressed by the list must reside below 16
megabytes virtual.

Chapter 4. Password Protecting Data Sets 117

PROTECT Macro Parameter Lists

0 X'Ol' 13 Control password pointer

1 00 00 00 16 Number of volumes

4 Data set name length 17 Volume list pointer

5 Data set name pointer 20 Protection code

8 00 21 New password pointer

9 00 00 00 24 String length

12 00 25 String pointer

Notes:

OX'OI'
Entry code indicating ADD function.

4 Data set name length.

5 Data set name pointer.

13 Control password pointer.
The control password is the password assigned when the data set was placed under protection for the
first time. The pointer can be 3 bytes of binary zeros if the new password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you must specify the
number of volumes in this field. A zero indicates that the catalog information should be used.

17 Volume list pointer.
If the data set is not cataloged and you want to have it flagged as protected, you provide the address of a
list of volume serial numbers in this field. Zeros indicate that the catalog information should be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates default protection (for the ADD
function; the default protection is the type of protection specified in the control password record of the
data set); X'Ol' indicates that the data set is to be read and written: X'02' indicates that the data set is
to be read only: and X'03' indicates that the data set can be read without a password. but a password is
needed to write into it. The PROTECT macro will use the protection code value. specified in the
parameter list. to set the protection-mode indicator in the password record.

Figure 25 (Part 1 of 2). Parameter List for ADD Function

118 MVS/XA System-Data Administration

(

(~

21 New password pointer.
If the data set is being placed under protection for the first time, the new password becomes the control
password. If you are adding a secondary entry, the new password is different from the control password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in the optional
information field of the password record. If you don't want to add information, set this field to zero.

25 String pointer.
The address of the character string that is going to be put in the optional information field. If you don't
want to add additional information, set this field to zero.

Figure 25 (Part 2 of 2). Parameter List for ADD Function

Chapter 4. Password Protecting Data Sets 11 9

0 X'02' 13 Control password pointer

1 00 00 00 16 Number of volumes

4 Data set name length 17 Volume list pointer

5 Data set name pointer 20 Protection code

8 00 21 New password pointer

9 Current password pointer 24 String length

12 00 25 String pointer

Notes:

OX'02'.
Entry code indicating REPLACE function.

4 Data set name length.

5 Data set name pointer.

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Control password pointer.
The address of the password assigned to the data set when it was first placed under protection. The
pointer can be set to 3 bytes of binary zeros if the current password is the control password.

t 6 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you have to specify the
number of volumes in this field. A zero indicates that the catalog information should be used.

t 7 Volume list pointer.
If the data set is not cataloged and you want to have it flagged as protected, you have to provide the
address of a list of volume serial numbers in this field. If this field is zero, the catalog information will be
used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates that the protection is default
protection (for the REPLACE function the default protection is the protection specified in the current
password record of the data set); X'Ol' indicates that the data set is to be read and written; X'02'
indicates that the data set is to be read only; and X'03' indicates that the data set can be read without a
password, but a password is needed to write into the data set.

Figure 26 (Part 1 of 2). Parameter List for REPLACE Function

120 MVS/XA System-Data Administration

"------ ---------

(

(

21 New password pointer.
The address of the password that you want to replace the current password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in the optional information
field of the password record. Set tbis field to zero if you don't want to add additional information.

25 String pointer.
The address of the character string that is going to be put in the optional information field of the password
record. Set the address to zero if you don't want to add additional information.

Figure 26 (Part 2 of 2). Parameter List for REPLACE Function

Chapter 4. Password Protecting Data Sets 121

0 X' 03 1 9 Current password pointer

1 00 00 00 12 00

4 Data set name length 13 Control password pointer

5 Data set name pointer 16 Number of volumes

8 00 17 Volume list pointer

Notes:

OX03'.
Entry code indicating DELETE function.

4 Data set name length.

S Data set name pointer.

9 Current password pointer.
The address of the password that you want to delete. You can delete either a control entry or a
secondary entry.

13 Control password pointer.
The address of the password assigned to the data set when it was placed under protection for the first
time. The pointer can be 2 bytes of binary zeros if the current password is also the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you must specify the
number of volumes in this field. A zero indicates that the catalog information should be used.

17 Volume list pointer.
If the data set is not cataloged and you want to have it flagged as protected, you must provide the
address of a list of volume serial numbers in this field. If this field is zero, the catalog information will be
used.

Figure 27. Parameter List for DELETE Function

122 MVS/XA System-Data Administration

/' ",

;('~, i,,-./

(C

(

0 X' 04 1 5 Data set name pointer

1 80-byte buffer pointer 8 00

4 Data set name length 9 Current password pointer

Notes:

OX'04'.
Entry code indicating LIST function.

1 80-byte buffer pointer.
The address of a buffer where the list of information can be returned to your program by the macro
instruction.

4 nata set name length.

5 Data set name pointer.

9 Current password pointer.
The address of the password of the record that you want listed.

Figure 18. Parameter List for LIST Function

Chapter 4. Password Protecting Data Sets 123

Return Codes from the PROTECT Macro

When the PROTECT macro finishes processing, register 15 contains one of the
following return codes:

Code Meaning

O(X'OO') The updating of the PASSWORD data set was successfully
completed.

4(X'04') The PASSWORD of the data set name was already in the password
data set.

8(X'08') The password of the data set name was not in the PASSWORD
data set.

12(X'OC') A control password is required or the one supplied is incorrect.

16(X'10') The supplied parameter list was incomplete or incorrect.

20(X'14') There was an I/O error in the PASSWORD data set.

24(X'18')1 The PASSWORD data set was full.

28(X'lC') The validity check of the buffer address failed.

32(X'20')2 The LOCATE macro failed. LOCATE's return code is in register 1,
and the number of indexes searched is in register O.

36(X'24')2 The OBTAIN macro failed. OBTAIN's return code is in register 1.

40(X' 28')2 The DSCB could not be updated.

44(X'2C') The PASSWORD data set does not exist.

48(X'30')2 Tape data set cannot be protected.

52(X'32')2 Data set in use.

56(X'38')2 The data set uses the virtual storage access method (VSAM).

Notes:

1

2

For this return code, a message is written to the console indicating that
the PASSWORD data set is full.

For this return code, the PASSWORD data set has been updated, but
the DSCB has not been flagged to indicate the protected status of the
data set.

124 MVS/XA System-Data Administration

c

Chapter S. Exit Routines

The detailed information about installation-written exit modules has been moved to
Data Facility Product: Customization.

This chapter discussed how exit modules can:

• Take control before and after direct access device storage management
(DADSM) processing

• Take control during Open for a DCB

• Determine whether a missing data set control block (such as for a data set that
has been moved to another volume) can be restored to a volume

• Recover from errors that may occur during the opening, closing, or handling of
an end-of-volume condition for a data set associated with the user's task

• Bypass, limit, or override system-calculated values that assist you in selecting
optimum DASD data set block size/CI size.

Chapter 5. Exit Routines 125

(

('

Chapter 6. System Macro Instructions

Introduction

This chapter describes miscellaneous macro instructions that allow you to:

• Modify control blocks (RDJFCB macro)

• Obtain information from control blocks and system tables (DEVTYPE macro)

• Perform track capacity calculations (TRKCALC macro)

• Allocate a data set based on a partial DSCB (REALLOC macro)

• Load a message display on an mM 3480 Magnetic Tape Subsystem
(MSGDISP macro)

Before reading this chapter, you should be familiar with the following publication:

• Assembler H Version 2 Application Programming: Guide contains the
information necessary to code programs in the assembler language.

The system macro instructions are described in these functional groupings:

• Mapping (IEFUCBOB, IEFJFCBN, and CVT)

• Obtaining device characteristics (DEVTYPE)

• Manipulating the JFCB (RDJFCB)

• Data security (DEBCHK)

• Manipulating queues (PURGE and RESTORE)

• Performing track capacity calculations (TRKCALC)

• Allocating a DASD data set (REALLOC)

• Releasing unused space from a DASD data set (PARTREL)

• Loading a message display on an mM 3480 Magnetic Tape Subsystem
(MSGDISP)

Chapter 6. System Macro Instructions 127

Mapping System Data Areas

The IEFUCBOB, IEFJFCBN, and CVT macro instructions are used as DSECT
expansions that define the symbolic names of fields within the unit control block
(UCB), job file control block (JFCB), and communication vector table (CVT),
respectively.

The CVT, IEFUCBOB, and IEFJFCBN macro definitions are in a distribution
library named SYSl.AMODGEN. Before you can issue the macros, you must copy
them from SYSl.AMODGEN into SYSl.MACLm (the IEBCOPY utility can be
used to copy the macros), or SYSl.AMODGEN may be concatenated to the macro
library before reference is made to SYSl.AMODGEN.

IEFUCBOB-Mapping the UCB

This macro instruction defines the symbolic names of the fields in the unit control
block (UCB). The macro does not include a DSECT statement. However, if you
specify PREFIX= YES, the DSECT statement is provided.

The format is:

[symbol] IEFUCBOB [LIST=Rm I YES}]
[,PREFIX=JNO I YESJ)

LIST=Rm I YESJ

NO

YES

specifies that only the UCB prolog is to be printed.

specifies that the UCB prolog and the rest of the UCB are to be
printed.

PREFIX=Rm I YESJ

NO

YES

IEFJFCBN-Mapping the JFCB

specifies that no prefix is to be printed.

specifies that the prefix and main body of the UCB are to be printed.
A DSECT statement is included if you specify PREFIX= YES.

This macro instruction defines the symbolic names of the fields in the job file
control block (JFCB). The macro does not include a DSECT statement. If you
require one, code a DSECT statement before the macro statement.

128 MVS/XA System-Data Administration

(' ---,
\~.--./

,r---'\

~--_/

(

(

The format is:

Ilsymbol] I IEFJFCBN IILIST={NQ I YESJ)

LIST={NO I YES}

NO

YES

CVT-Mapping the CVT

specifies that only the JFCB prolog is to be printed.

specifies that the JFCB prolog and the rest of the JFCB are to be
printed.

This macro instruction defines the symbolic names of all fields in the
communication vector table (CVT).

The format is:

I[~n Icvr IDSECT={NQ I YESJ)
I,LIST={NQ I YESJ)

DSECT={NQ I YES}

NO
specifies that you do not want a DSECT.

YES
specifies that you want a DSECT.

LIST={NQ I YES}

NO

YES

specifies that only the CVT prolog is to be printed.

specifies that the CVT prolog and the rest of the CVT are to be
printed.

Obtaining 110 Device Characteristics

Use the DEVTYPE macro instruction to request information relating to the
characteristics of an I/O device, and to cause this information to be placed into a
specified area. (The results of a DEVTYPE macro instruction executed before a
checkpoint is taken should not be considered valid after a checkpoint/restart
occurs.) The IHADVA macro maps the data returned by the DEVTYPE macro.

The topics that follow discuss the DEVTYPE macro, device characteristics, and
particular output for particular devices.

I

Chapter 6. System Macro Instructions 129

DEVTYPE Macro Specification

The format is:

(symbol) DEvrYPE ddloc-addrx
,area-addrx
(,DEVTAB]
(,RPS]

For the UCBLIST function, the format is:

(symbol) DEvrYPE (area-addrx,area-size)
,UCBLIST=(ucbl-addr,ucbl~num}

ddloc-addrx
the name of an 8-byte field that contains the symbolic name of the DD
statement to which the device is assigned. The name must be left justified in
the 8-byte field, and must be followed by blanks if the name is fewer than
eight characters. The doubleword need not be on a doubleword boundary.

area-addrx
the name of an area into which the device information is to be placed. If your
program does not specify the UCBLIST function, the area can be two, five,
or six fullwords long, depending on whether or not you specify the DEVT AB
and RPS operands. If your program specifies the UCBLIST function, the
area must be 6 fullwords long. The area must be on a fullword boundary.

area-size
the size of the area into which the device information is to be placed.

DEVTAB

RPS

This operand is only required for direct access devices. If DEVTAB is
specified, the following number of words of information is placed in your
area:

• For direct access devices: 5 words

• For non-direct access devices: 2 words

If you do not code DEVT AB, one word of information is placed in your area
if the reference is to a graphics or teleprocessing device; for any other type
of device, two words of information are placed in your area.

If RPS is specified, DEVTAB must also be specified. The RPS parameter
causes one additional full word of RPS information to be included with the
DEVTAB information.

UCBLIST
UCBLIST provides a list service in which the caller passes a list and count of
the addresses of UCBs. The information returned is always given in 6-word
entries (one entry per UCB address) regardless of the device type. The

130 MVS/XA System-Data Administration

(-
words that would contain information not applicable to the device for that
entry are not altered.

Note: Any reference for a DUMMY data set in the DEVTYPE macro instruction
will cause eight bytes of zeros to be placed in the output area. Any reference to a
SYSIN or SYSOUT data set causes X'00000102' to be placed in word 0 and
32760 (X'00007FF8') to be placed in word 1 in the output area. Any reference
to a file allocated to a TSO terminal causes X' 00000 10 l' to be placed in word 0
and 32760 (X'00007FF8') to be placed in word 1 in the output area.

Device Characteristics Information

The following information is placed into your area as a result of issuing a
DEVTYPE macro:

Word 0
Describes the device as defined in the UCBTYP field of the UCB.

Word 1
Maximum block size. For direct access devices, this value is the smaller of
either the maximum size of a nonkeyed block or the maximum block size
allowed by the operating system; for magnetic tape devices, this value is the
maximum block size allowed by the operating system. For all other devices,
this value is the maximum block size accepted by the device.

If your program specifies either DEVTAB or UCBLIST, the next three fullwords
contain the following information about direct access devices:

Word 2

Bytes 0-1

Bytes 2-3

Word 3

Bytes 0-1

The number of physical cylinders on the device. including
alternates.

The number of tracks per cylinder.

Note: Before you use bytes 2 and 3, read the description of
word 4, byte 1, bit O.

Maximum track length. Note that for the IBM 3375 and
3380 direct access devices, this value is not equal to the value
in word 1 (maximum block size) as it is for other IBM direct
access devices.

Note: Before using bytes 2 and 3, read the description of word 4.

Byte 2

Byte 3

Block overhead, keyed block-the number of bytes required
for gaps and check bits for each keyed block other than the
last block on a track.

Block overhead-the number of bytes required for gaps and
check bits for a keyed block that is the last block on a track.

Chapter 6. System Macro Instructions 13 1

Bytes 2-3

Word 4

Byte 0

Byte 1

Bytes 2-3

132 MVS/XA System-Data Administration

Block overhead-the number of bytes required for gaps and
check bits for any keyed block on a track including the last
block. Use of this form is indicated by a 1 in bit 4, byte 1 of
word 4.

Basic overhead-the number of bytes required for the count
field. Use of this form is indicated by a 1 in bit 3, byte 1 of
word 4.

Block overhead, block without key-the number of bytes to
be subtracted from word 3, bytes 2 or 3 or bytes 2 and 3, if a
block is not keyed.

H bit 3, byte 1 of word 4 is 1, this byte contains the modulo
factor for a modulo device.

Bit 0 H on, the number of cylinders, as indicated in
word 2, bytes 0 and 1 are invalid.

Bit 1 Reserved.

Bits 2-3 If on, indicates a 3380 is attached to a 3880
Model 13 or 23.

Bit 3 If on, indicates a modulo device (3375, 3380).
For information on how to calculate the
number of data bytes required for a data
block for a modulo device, see the device data
in Data Administration Guide.

Bit 4 If on, bytes 2 and 3 of word 3 contain a
halfword giving the block overhead for any
block on a· track, including the last block.

Bits 5-6 Reserved.

Bit 7 If on, a tolerance factor must be applied to all
blocks except the last block on the track.

Tolerance factor-this factor is used to calculate the effective
length of a block. The calculation should be performed as
follows:

Step 1

Step 2

add the block's key length to the block's data
length.

test bit 7 of byte 1 of word 4. If bit 7 is 0,
perform step 3. If bit 7 is 1, multiply the sum
computed in step 1 by the tolerance factor.
Shift the result of the multiplication 9 bits to
the right.

;-(--""

\ ,,_/

" "
\

((-------
"'-_/

(

Step 3 add the appropriate block overhead to the
value obtained above.

If bit 3, byte 1 of word 4 is I, bytes 2 and 3 contain the
overhead for the data or key field.

If your program specifies DEVTAB and RPS, or specifies UCBLIST, the
next fullword contains the following information:

Word 5

Bytes 0-1 RO overhead for sector calculations

Byte 2 Number of sectors for the device

Byte 3 Number of data sectors for the device

Figure 29 on page 134 shows the output for each device type that results from
issuing the DEVTYPE macro.

Nole: If your program specifies UCBLIST, the output consists of one 6-word
entry for every UCB address contained in the UCB list.

Return Codes from the DEVTYPE Macro

Control is returned to your program at the next executable instruction following the
DEVTYPE macro instruction. Register 15 contains a return code from the
DEVTYPE macro. The return codes and their meanings are as follows:

Code Meaning

OO(X'OO') Indicates that the information concerning the ddname you specified
has been successfully moved to your work area.

04(X'04') Indicates that the ddname you specified was not found.

Chapter 6. System Macro Instructions 133

Maximum
Record Size

IBM (Word 1, in DEVTAB (Words 2,3, and
Device 1 2 Decimal) 4, in Hexadecimal)

2540 Reader 80 Not Applicable

2540 Reader w / CI 80 Not Applicable

2540 Punch 80 Not Applicable

2540 Punch w/CI 80 Not Applicable

2501 Reader 80 Not Applicable

2501 Reader w/CI 80 Not Applicable

3890 Document 80 Not Applicable
Processor

3505 Reader 80 Not Applicable

3505 Reader w/CI 80 Not Applicable

3525 Punch 80 Not Applicable

3525 Punch w/CI 80 - Not Applicable

1403 Printer 1202 Not Applicable

1403 w/UCS 1202 Not Applicable

3203 Model 5 Printer 132 Not Applicable

3211 Printer 1322 Not Applicable

3262 Model 5 Printer 132 Not Applicable

4245 Printer 132 Not Applicable

4248 Printer 1324 Not Applicable

3800 Printing Subsystem 1363 Not Applicable

3400 (9-track, p.e.) 32760 Not Applicable

3400 (9-track, d.d.) 32760 Not Applicable

3400 (7-track) 32760 Not Applicable

3480 (I8-track) 32760 Not Applicable

2305 Model 2 14660 006000083AOA01215B080200
Fixed-lleadStorage

3330/3333 Disk Storage 13030 019BOO13336DBFBF38000200

3330V MSS Virtual 13030 019BOO13336DBFBF38000200
Volume

Figure 29 (Part 1 of 2). Output from DEVfYPE Macro

134 MVS/XA System-Data Administration

RPS (Word 5,
in Hexadecimal)

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

0140B4Bl

00ED807C

00ED807C

If'''
o

(

(

(:

Maximum
Record Size

IBM (Word I, in DEVTAB (Words 2, 3, and RPS (WordS,
Device 1 2 Decimal) 4, in Hexadecimal) in Hexadecimal)

3330 Model 11 (or 3333 13030 032FOO13336DBFBF38000200 00ED807C
Model 11) Disk Storage

3340 Disk Storage (35 8368 015DOOOC2157F2F24BOO0200 0125403D
megabytes)

3340/3344 Disk Storage 8368 0230001E4B36010B52080200 0125403D
(70 megabytes)

3350 Disk Storage 19069 0230001E4B36010B52080200 0185807B

3375 Disk Storage 32760 03BFOOOC8CAOOOE0201000BI 0340C4BB

3380 Models A04, AA4, 32760 0376000FBB6001002010010B 04EODED6
and B04 Disk Storage

3380 Models A04, AA4, 32760 0376000FBB6001002030010B 04EODED6
and B04 Disk Storage
(attached to a 3880
Model 13 or 23)

3380 Models AD4 and 32760 0376000FBB6001002010010B 04EODED6
BD4 Disk Storage

3380 Models AE4 and 32760 06EBOOOFBB6001002010010B 04EODED6
BE4 Disk Storage

2250 Model 3 Display Not Applicable Not Applicable
Unit

1030,1 050,83B3, Not Applicable Not Applicable Not Applicable
TWX,2250,S360

115A,1130 Not Applicable Not Applicable Not Applicable

2780 Not Applicable Not Applicable Not Applicable

2740 Not Applicable Not Applicable Not Applicable

Figure 29 (Part 2 of 2). Output from DEV1YPE Macro

Notes to Figure 29:

CI--card image feature; d.c.--data conversion; d.d.--dual density;
p.e.-phase encoding; UCS-universal character set; wi-with.

2 Although certain models can have a larger line size, the minimum line size is
assumed.

3 The IBM 3800 Printing Subsystem can print 136 characters per line at
10-pitch, 163 characters per line at 12-pitch, and 204 characters per line at
15-pitch. The machine default is 136 characters per line at 10-pitch.

4 The IBM 4248 Printer returns 132 characters even if the 168 Print Position
Feature is installed on the device.

Chapter 6. System Macro Instructions 135

DEVTYPE-List Form

The list form of the DEVTYPE macro is only valid with the UCBLIST function. It
is used to construct an empty parameter list. By specifying MF=L you construct a
parameter list, and you can subsequently supply the values by specifying the
execute form of the macro.

name1 DEVTYPE ,(area-addrx,area-size)

name1

,UCBLIST=YES
,MF=L

label of the parameter list to be constructed. It must also be specified in the
corresponding MF=E form.

DEVTYPE-Execute Form

The execute form of the DEVTYPE macro is only valid with the UCBLIST
function. It can be used to modify a parameter list and call the DEVTYPE
function.

(name1) DEVTYPE ,(area-addrx,area-size)
,UCBLIST=(ucbl-addrx,ucbl-num)
,MF=(E,name 1)

name1
label of the parameter list constructed by the corresponding MF=L form.

Reading and Modifying a Job File Control Block

To accomplish the functions that are performed as a result of an OPEN macro
instruction, the open routine requires access to information that you have supplied
in a data definition (DD) statement. This information is stored by the system in a
job file control block (JFCB).

In certain applications, you may find it necessary to modify the contents of a JFCB
before issuing an OPEN macro instruction. For example, suppose you are adding
records to the end of a sequential data set. You might want to add a secondary
allocation quantity to allow the existing data set to be extended when the space
currently allocated is exhausted. To assist you, the system provides the RDJFCB
macro instruction. This macro instruction causes a specified JFCB to be moved
from the scheduler work area (SW A), where it is stored, to an area specified in an
exit list. The use of the RDJFCB macro instruction with an exit list is shown under
"Example" on page 138. When you subsequently issue the OPEN macro
instruction, you must indicate, by specifying the TYPE=J operand, that you want
to open the data set using the JFCB in the area you specified.

The RDJFCB macro also allows you to retrieve allocation information (all JFCBs
and all volume serial numbers) for the data sets in a concatenation. You may either
select data sets or, by default, retrieve the information for all data sets in the

136 MVS/XA System-Data Administration

It. ~,
" '-_oj

concatenation. Figure 33 on page 146 illustrates how you can use RDJFCB to
retrieve this information.

Caution: If you set the bit JFCNWRIT in the field JFCBTSDM to 1 before you
issue the OPEN macro instruction, the JFCB is not written back to the SW A at the
conclusion of open processing. OPEN TYPE=J normally moves your program's
modified copy of the JFCB to the scheduler work area (SWA), replacing the
system copy. To ensure that this move is done, your program must set bit zero (0)
of the JFCBMASK+4 field to 1. The JFCBMASK format is shown in the Internal
Data Areas section of Open/C/ose/EOV Logic. If the user JFCB, which the system
used to open the data set, is not written back to SWA (JFCNWRIT set on), then
errors may occur during EOV or close processing.

Some of the modifications that are commonly made to the JFCB include:

•

•

•

•

•

•

•

•

Moving the creation and expiration date fields of the DSCB into the JFCB (see
"Using RDJFCB for MSS Virtual Volumes" on page 140).

Moving the secondary allocation quantity from the DSCB into the JFCB (see
"Using RDJFCB for MSS Virtual Volumes" on page 140).

Moving the DCB fields from the DSCB into the JFCB.

Adding volume serial numbers to the JFCB (see "Using RDJFCB for MSS
Virtual Volumes" on page 140 and "RDJFCB Security" on page 140).

Volume serial numbers in excess of five are written to the JFCBX (extension)
located in the SW A. The JFCBX cannot be modified by user programs.

Modifying the data set sequence number field in the JFCB.

Modifying the number-of-volumes field in the JFCB (see "Using RDJFCB for
MSS Virtual Volumes" on page 140).

Setting bit JFCDQDSP in field JFCBFLG3 to invoke the tape volume DEQ at
demount facility (see "DEQ at Demount Facility for Tape Volumes" on
page 147).

Modifying the JFCRBIDO field in the JFCB to cause high-speed positioning to
a specific data block on a 3480 tape volume.

RDJFCB-Read a Job Flle Control Block

The RDJFCB macro instruction causes a job file control block (JFCB) to be
moved from the SWA (scheduler work area) into an area of your choice as
identified via the EXLST parameter of the DCB macro for each data control block
specified.

I [symbol] I RDJFCB I (deb-address
. ,[(options»), ...)

Chapter 6. System Macro Instructions 137

dcb-address,(options»)
(same as the dcb-address, optionl, and option2 operands of the OPEN
macro instruction, as shown in Data Administration: Macro Instruction
Reference), except for the MODE operand, which is not valid with the
RDJFCB macro.

The option operands do not affect RDJFCB processing. You can, however,
specify them in the list form of the RDJFCB macro instruction and refer to
the generated parameter list with the execute form of the macro.

E:mmpIe: In Figure 30, the macro instruction at EXl creates a parameter list for
two data control blocks: INVEN and MASTER. In creating the list, both data
control blocks are assumed to be opened for input; option2 for both blocks is
assumed to be DISP. The macro instruction at EX2 moves the system-created
JFCBs for INVEN and MASTER from the SW A into the area you specified, thus
making the JFCBs available to your problem program for modification. The macro
instruction at EX3 modifies the parameter list entry for the data control block
named INVEN and indicates, through the TYPE=J operand, that the problem
program is supplying the JFCBs for system use.

EX1 RDJFCB (INVEN"MASTER},MF=L

EX2 RDJFCB MF=(E,EX1)

EX3 OPEN (, (RDBACK,LEAVE}},TYPE=J,MF=(E,EX1)

INVEN
MASTER
LSTA

DCB
DCB
DS
DC
DC

JFCBAREA DS

LSTB DS

EXLST=LSTA, .. .
EXLST=LSTB, .. .
OF
X'07'
AL3(JFCBAREA)

OF,176C

OF

Fipre 30. Sample Code Using RDJFCB Macro

Multiple data control block addresses and associated options may be specified in
the RDJFCB macro instruction. This facility makes it possible to read several job
file control blocks in parallel.

138 MVS/XA System-Data Administration

(
An exit list address must be provided in each DCB specified by an RDJFCB macro
instruction. Each exit list must contain an active entry that specifies the virtual
storage address of the area into which a JFCB is to be placed.

Two kinds of JFCB entries may appear in the exit list. Each is briefly explained in
the following text. A full discussion of the exit list and its use is contained in Data
Facility Product: Customization.

Type 07 JFCB Exit List Entry

The type 07 JFCB exit list entry allows a variety of functions to the user, as
described in the following text.

The format of the Type-07 JFCB exit list entry is as follows:

Types of Hexadecimal
Exit List Code (High- Contents of Exit List Entry
Entry Order Byte) (Low-Order Bytes)

Job file 07 Address of a 176-byte area to be provided
control if the ROJFCB or OPEN (TYPE=J)
block macro instruction is used. This area must

begin on a fullword boundary and must be
located within the user's region. Also,
users running in 31-bit addressing mode
must ensure that this area is located below
16 megabytes virtual.

The virtual storage area into which the JFCB is read must be at least 176 bytes
long. Each exit list entry must be 4 bytes long. The system recognizes only the first
occurrence of an exit list entry code. Indicate the end of the exit list by setting the
high order bit in the entry code to 1.

The DCB may be either open or closed when this macro instruction is executed.

If the JFCB is read successfully for all DCBs in the parameter list, return code 0 is
placed in register 15. If the JFCB is not read for any of the DCBs because the
DDNAME is blank, or a DD statement is not provided, return code 4 is placed in
register 15.

Warning: The following errors cause the results indicated:

Error Result

A DD statement has not been Return code 4 is placed in register 15.
provided.

DDNAME field in DCB is blank. A write-to-programmer is issued, the
request for this DCB is ignored, and
return code 4 is placed in register 15.

Chapter 6. System Macro Instructions 139

Error Result

A virtual storage address has not Abnormal termination of task.
been provided.

If you want to open a VTOC data set to change its contents (that is, open it for
OUTPUT, OUTIN, INOUT, UPDAT, OUTINX, or EXTEND), your program
must be authorized under the Authorized Program Facility (APF). APF provides
security and integrity for your data sets and programs. Details on how you
authorize your program are provided in System Programming Library: Supervisor
Services and Macro Instructions.

If the RDJFCB routine fails while processing a DCB associated with your RDJFCB
request, your task is abnormally terminated. None of the options available through
the DCB ABEND exit, as described in Data Facility Product: Customization, are
available when a RDJFCB macro instruction is issued.

When using concatenated data sets, the RDJFCB routine modifies only the first
JFCB.

Using RDJFCB for MSS Virtual Volumes: Care must be taken in using RDJFCB if
the data set resides on MSS virtual volumes such that:

• The expiration date added does not conflict with other volumes within the
specified MSVGP.

• The secondary allocation quantity should be in cylinder increments and be a
multiple or submultiple of the primary allocation quantity to avoid
fragmentation.

• The number of volumes must not exceed the number available in the specified
MSVGP.

• Any volume serial numbers added to the JFCB should exist in the MSVGP.

RDJFCB Security: The volume serial numbers specified in the user':supplied JFCB
will be compared with the volume serial numbers in the system JFCB located in the
SWA. Each different volume serial number will be enqueued exclusively. The
volumes will stay enqueued until the job step terminates, because the close routines
will not dequeue the volumes. If the job step already has the volume open, OPEN
TYPE=J will continue. If the volume is enqueued by another job step, a 413
abend will occur with a return code of 04.

Some JPCB modifications can compromise the security of existing
password-protected data sets. The following modifications are specifically nQt
allowed, unless the program making the modifications is authorized or can supply
the password:

• Changing the disposition of a password-protected data set from OLD or MOD
to NEW.

• Changing the data set name of one or more of the volume serial numbers when
the disposition is NEW.

140 MVS/XA System-Data Administration

(.

(

• Changing the label processing specifications to bypass label processing.

Note: An authorized program is one that is either in supervisor state, executing in
one of the system protection keys (keys 0 through 7), or authorized under the
Authorized Program Facility.

RDJFCB Use by Authorized Programs: If you change the data set name in the
JFCB, you should do a system enqueue on the major name of "SYSDSN" for the
substituted data set name. To use the correct interface with other system functions
(for example, partial release), the ENQUEUE macro should include the TCB of
the initiator and the length of the data set name (with no trailing blanks). When
you complete processing of the data set, you should use the DEQ macro to release
the resources. If the substituted data set name is enqueued by another job step, a
913 abend occurs with a return code of X' lC'.

Using RDJFCB to Process II Multivolume Direct Dlltll Set: This use of RDJFCB and
OPEN TYPE=J permits your program to process a multivolume data set. To do so,
your program must cause the open routines to build a data extent block for each
volume ,and issue mount messages for them. Your program must use the RDJFCB
macro to read in the JFCB, and open each volume of the data set. The following
code illustrates the procedure:

Chapter 6. System Macro Instructions 141

---"--_ .. _---_ -

RDJFCB DCB1 READS IN THE JFCB
SR R3,R3 CLEARS REG 3; IT WILL

* HOLD COUNT OF VOLS TO

* BE OPENED
IC R3,JFCBNVOL PUTS # OF VOLS

* IN REG 3
LA R4,DCBl R4 POINTS TO DCB FOR

* VOL TO BE OPENED
LA R5,1 PUTS SEQUENCE # OF

* FIRST VOL TO BE

* OPENED IN REG 5
LOOP EQU * STH R5,JFCBVLSQ PUTS SEQ # OF VOL

* TO BE OPENED WHERE

* OPEN RTNS LOOK
OPEN «R4),OUTPUT),TYPE=J OPENS ONE VOL

* NOTE THAT THE TYPE=J OPTION OF THE MACRO MUST BE USED
LA R4,DCB2-DCB1 (R4) INCREMENT REG 4 TO

* POINT TO THE DCB FOR
* THE NEXT VOL TO BE

* OPENED
LA R5,1 (R5) INCREMENT TO SEQ # OF

* NEXT VOL TO BE OPENED
BCT

*

JFCB DS
ORG

JFCBVLSQ DS
*

ORG
JFCBNVOL DS

ORG

R3,LOOP

CL176
JFCB+70
H

JFCB+117
FL1

LOOP UNTIL ALL VOLS
OPEN

JFCB READ IN HERE

SEQ # OF VOL TO BE
OPENED

OF VOLS IN DATA SET

* MAPPING MACRO IEFJFCBN MAY ALSO BE USED
DCB1 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB2 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB3 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB4 DCB DDNAME=SYSUT1 ,MACRF= (E) ,.EXLST=EXITS,DSORG=PS
DCB5 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
* THIS PROCEDURE WORKS FOR 5 VOLS OR LESS; THE JFCB
* EXTENSION, WHICH IDENTIFIES ADDITIONAL VOLS, CAN'T
* BE READ IN
EXITS DS

*
*
*

Type 13 JFCB Exit List Entry

DC
OF
X' 87' ,AL3 (JFCB) 87 IDENTIFIES THIS AS

THE EXIT LIST ENTRY
THAT SHOWS WHERE JFCB
WILL BE READ IN

The type 13 JFCB exit list entry allows you to retrieve selected allocation
information, as described in the following text.

The format of the type 13 JFCB exit list entry is as follows:

142 MVS/XA System-Data Administration

f~

~~?

(

(

(....

"

Types of Hexadecimal
Exit List Code (High- Contents of Exit List Entry
Entry Order Byte) (Low-Order Bytes)

Job file 13 Address of an allocation retrieval list.
control OPEN TYPE=J does not recognize this
block exit list entry. This entry allows you to use

RDJFCB to obtain copies of the JFCBs
for data sets in a concatenation, and lists
of all the volume serial numbers for those
data sets. You may select JFCBs in the
concatenation or by default, retrieve all of
them. See Figure 31 on page 144 for the
allocation retrieval list format, and
Figure 33 on page 146 for an example of
usage.

Using RDJFCB to Retrieve Allocotion Information: RDJFCB uses DCB exit list
entry type 13 to retrieve allocation information (JFCBs and volume serial
numbers) for concatenated data sets. The exit list entry code is XI 13 I, and is
defined as "retrieve allocation information." The second through fourth bytes of
this entry must point to an "Allocation Retrieval List," as described in Figure 31
on page 144. When you issue RDJFCB, this DCB exit list entry causes retrieval of
JFCBs for the specified concatenated data sets, and lists of all volume serial
numbers for these data sets. You may either select JFCBs in the concatenation or
by default, retrieve all of them. OPEN TYPE=J does not recognize this exit list
entry. RDJFCB uses the parameter list to receive and return information about the
request. You may use the IHAARL macro (shown below) to generate and map the
allocation retrieval list.

[symbol] lHAARL [DSECT=~ I NO}]
[,PREFIX = prefix]
[,DESCR={YES I NOH

DSECT=~INOI
specifies whether the symbol at the beginning of the generated area appears
on a DSECT instruction or a DC instruction. For DSECT=NO, the symbol
appears on a DC instruction. The default is DSECT=YES.

PREFIX = prefix
allows you to invoke the macro more than once per assembly. Specifies a
character string with which all generated symbols are to be prefixed. Do not
specify delimiters. such as quotation marks. If you omit this operand or
specify a null value. the prefix defaults to the characters ARL.

DESCR={yES I NOJ
specifies whether the macro expansion includes the macro description
(prolog). The default is DESCR=NO.

Chapter 6. System Macro Instructions 143

Figure 31 and Figure 32 describe the formats of the allocation retrieval list and
allocation retrieval area, respectively.

Name Offset Bytes Description

The FoUowing Fields Are Set by the Caller of RDJFCB:

ARLLEN OO(X'OO') 2
ARLIDENT 02(X'02') 2
ARLOPTI 04(X'04') 1
ARLLANY 0

1.
. xxxxxxx

ARLRSVDl OS(X'OS') 7
ARLRETRV 12(X'OC') 2

ARLFIRST 14(X'OE') '2

The FoUowing Fields Are Set by RDJFCB:

ARLAREA 16(X'1O') 4
ARLPOOL 20(X'14') 1
ARLRLEN 21(X'IS') 3
ARLRTRVD 24(X'18') 2

ARLCONC 26(X'IA') 2

ARLRCODE 28(X'IC') 1

ARLRSVD2 29(X'1D') 7

Figure 31. Fonnat of the Allocation Retrieval List

144 MVS/XA System-Data Administration

Length of this area. Value must be 36 or more.
EBCDIC 'AR'
Option byte.
Allocation retrieval area must be below 16Mb line.
Allocation retrieval area may be above 16Mb line.
Reserved. Must be zero .
Reserved. Must be zero.
Number of data sets for which to retrieve information. If
0, retrieve all in the concatenation.
Number of first data set in concatenation for which to
retrieve information. 0 or 1 specifies retrieval of
information beginning with first data set in the
concatenation.

Address of allocation retrieval area. See Figure 32.
Storage subpool containing allocation retrieval area.
Length of allocation retrieval area.
Number of concatenated data sets for which JFCBs were
retrieved.
Number of concatenated data sets. If no concatenation,
this value is 1.
Reason Code:

o = Requested information was read.

The following reason codes are related to return code 8:

4 = ARLFIRST is greater than ARLCONC.

8 = Insufficient storage to read information.
ARLPOOL and ARLRLEN describe what could not
be obtained.

Reserved. Used by RDJFCB.

/~ -""

\~-~ . ..,.-"/.

(

(

(

Offset

OO(X'OO')

02(X'02')
04(X'04')
180(X'B4')

Bytes

2

2
176(dec)
variable

Description

Length of the information for this data set (including this field). The
length is rounded up to a multiple of four so the starting address of the
allocation retrieval area plus the value in the length field designates the
address of the retrieval area for the next data set in the concatenation, if
requested.
Reserved. Set to zero.
JFCB
Sixth and subsequent volume serial numbers. Determined by the value in
JFCBNVOL. If the number of volume serial numbers is fewer than the
specified volume count, entries at the end of the list may contain all
blanks. If the first byte of an entry is X' FF', the J CL specified
VOL=REF and the volume could not be determined.

Figure 32. Format of the Allocation Retrieval Area

Return code 0 indicates that RDJFCB has filled in the allocation retrieval list fields.
When you have finished using information from the retrieval areas, you should
issue FREEMAIN to free the areas. To determine whether the release of the Data
Facility Product on your system is capable of using exit list entry type X' 13' to
retrieve allocation information, set the ARLAREA field in the allocation retrieval
list to zeros before issuing RDJFCB. If the ARLAREA is still zeros and the
ARLRCODE field contains reason code 00 when RDJFCB returns control to your
program, your release of DFP does not support this function.

ExtunpIe: In Figure 33 on page 146, the macro instruction at ALLOCINF creates
a parameter list for one DCB (INDCB), assumed to be open for input. The JFCBs
and volume serial numbers are retrieved for all data sets allocated to DD name
SYSLffi.

Chapter 6. System Macro Instructions 145

***JCL FOR FOLLOWING INVOCATION OF RDJFCB:

IISYSLIB DD
II DD
II DD

DISP=SHR,DSN=DEPT61.ROUTINES
DISP=SHR,DSN=CORPORAT.ROUTINES
DISP=SHR,DSN=SYS1.FORTLIB

***EXAMPLE CODE TO INVOKE RDJFCB ALLOCATION INFORMATION RETRIEVAL:

* GET A COPY OF THE JFCB FOR THE FIRST OR ONLY DATA SET ALLOCATED
* TO SYSLIB AND TRY TO READ THE JFCBS AND VOLUME SERIAL NUMBERS
* FOR ALL DATA SETS ALLOCATED TO SYSLIB.

*
TEST RDJFCB RETURN CODE

ALLOCINF RDJFCB (INDCB)
LTR R1S,R1S
BNZ NOJFCB
ICM R1,X'F',SLBAREA

BRANCH IF INFORMATION NOT AVAILABLE
GET AND TEST ADDRESS OF ARL

BZ OLDSYSTM GO IF SYSTEM DOES NOT SUPPORT ARL
ESTABLISH ADDRESSABILITY TO AREA
TEST RDJFCB REASON CODE

USING SLBSTRT,R1
CLI SLBRCODE,O
BNE NOJFCB BRANCH IF INFORMATION NOT AVAILABLE

*
* LOOP THROUGH THE JFCBS IN THE AREA TO WHICH SLBAREA POINTS.
* CODE CAN BE INSERTED HERE TO PRINT THE DATA SET NAMES AND
* VOLUME SERIAL NUMBERS.

OLDSYSTM DS OH ROUTINE TO HANDLE JUST LIBJFCB

*
NOJFCB

*
DS OH ROUTINE TO HANDLE INABILITY TO GET THE

JFCB. THE DATA SET MAY NOT BE ALLOCATED.

* SLBOPNX DS

*

INDCB DS

INEXLST DC
DC
DC

*
DC
DC

*
DC

*

OH DCB OPEN EXIT ROUTINE FOR SYSLIB.
HANDLES RECFM, LRECL, AND BLKSIZE.

DSORG=PO,DDNAME=SYSLIB,MACRF=R,SYNAD=INERROR,
EXLST=INEXLST
OF'O' ,X'OS' ENTRY CODE FOR OPEN EXIT ROUTINE
AL3 (SLBOPNX) ADDR OF DCB OPEN EXIT ROUTINE
X' 13' ENTRY CODE TO RETRIEVE ALLOCATION

INFORMATION
AL3(SLB) ADDR OF ALLOCATION RETRIEVAL LIST
X'87' ENTRY CODE TO RETRIEVE FIRST JFCB

INDICATE LAST ENTRY IN LIST
AL3(LIBJFCB) ADDR OF JFCB FOR FIRST DATA SET

AND

* AN ALLOCATION RETRIEVAL LIST FOLLOWS, POINTED TO BY DCB EXIT LIST.

* SLBSTRT IHAARL DSECT=NO,PREFIX=SLB
DC OF'O'

LIBJFCB DC CL176" FIRST JFCB

X

Figure 33. Sample Code Retrieving AUocatiOD lnformatioD. IHAARL PREFIX=SLB requires Assembler H.

146 MVS/XA System-Data Administration

/--~

DEQ at Demount Facility for Tape Volumes

---~- "~----.

This facility is intended to be used by long-running programs that create an
indefinitely long tape data set (such as a log tape). Use of this facility by such a
program permits the processed volumes to be allocated to another job for
processing (such as data reduction). This processing is otherwise prohibited unless
the indefinitely long data set is closed and dynamically unallocated.

You may invoke this facility only through the RDJFCB/OPEN TYPE=J interface
by setting bit JFCDQDSP (bit 0) in field JFCBFLG3 (offset 163 or X I A3 ') to 1.
The volume serial of the tape is dequeued when the volume is demounted by OPEN
or EOY with message IEC502E when all the following conditions are present:

• The tape volume is verified for use by OPEN or EOY.

• JFCDQDSP is set to 1.

• The program is APF authorized (protect key and supervisor/problem state are
not relevant).

• The tape volume is to be immediately processed for output. That is, either
OPEN verifies the volume and the OPEN option is OUTPUT, OUTIN, or
OUTINX; or EOY verifies the volume and the DCB is opened for OUTPUT,
OUTIN, INOUT, or EXTEND, and the last operation against the data set was
an output operation (DCBOFLWR is set to O.

Note that, in order for EOY to find JFCDQDSP set to 1, the program must not
inhibit the rewrite of the JFCB by setting bit 4 of JFCBTSDM to 1.

The tape volume is considered verified after file protect, label type, and density
conflicts have been resolved. The volume is dequeued when demounted after this
verification, even if further into OPEN or EOY processing the volume is rejected
because of expiration date, security protection, checkpoint data set protection, or
an I/O error.

When the volume serial is dequeued, the volume becomes available for allocation to
another job. However, because the volume DEQ is performed without unallocating
the volume, care must be exercised both by the authorized program and the
installation to prevent misuse of the DEQ at demount facility. A discussion of such
misuse follows.

1. The authorized program must not close and reopen the data set using the tape
volume DEQ at demount facility. If it does, one of the following can occur:

a. The dequeued volume may be mounted and in use by another job. When
the volume is requested for mounting, for the authorized program, the
operator is unable to satisfy the mount. Therefore, the operator must
either cancel the requesting job, cancel the job using the volume, wait for
the requesting job to time out, or wait for the job using the volume to
terminate.

b. The dequeued volume may be allocated to another job but not yet in use.
The operator mounts the volume to satisfy the mount request of the
authorized job. When the volume is requested for mounting by the other

Chapter 6. System Macro Instructions 147

job, the operator is unable to satisfy the mount request, and is faced with
the same choices as in a, above.

c. The dequeued volume may not yet be allocated to another job and the
volume is mounted to satisfy the mount request of the authorized job.
Another job may allocate the volume and, when the volume is requested
for mounting, the situation is the same as in b, above.

It is the responsibility of the installation that permits a program to run with
APF authorization to ensure that it does not close and reopen a data s~t using
the DEQ at demount facility.

2. Care should be exercised when an authorized program uses the DEQ at
demount facility (data set 1) but processes another tape data set (data set 2).
Assume the same volume serial numbers have been coded in the DD
statements for data set 1 and data set 2. As the volumes of data set 1 are
demounted, they are dequeued even though those volumes may yet be
requested for data set 2. All the problems explained in a, b, and c in 1, above,
may occur as data set 2 and another job contend for a dequeued volume.

This problem should not occur, given the intended use of the DEQ at demount
facility; that is, a long-running application creating an indefinitely long tape
data set. This type of application is not normally invoked through batch
execution with user-written DD statements.

3. After a volume has been demounted and dequeued because of the DEQ at
demount facility, the volume is not automatically rejected by the control
program when mounted in response to a specific or nonspecific mount request.
Without the use of the facility, the control program can recognize (by the
ENQ) that the volume is in use, and reject the volume. Therefore, operations
procedures, in effect to prevent incorrect volumes from being mounted, should
be reviewed in the light of reduced control program protection from such errors
when the DEQ at demount facility is used. Specifically, if a volume is
remounted for an authorized program and the volume had been used previously
by that authorized program, duplicate volume serial numbers will exist in the
JFCB, and the control program will be unable to release the volume during
EOV processing.

4. Checkpoint/restart considerations are discussed in Checkpoint/Restart User's
Guide.

OPEN-InitiaHze Data Control Block for Processing the JFCB

The OPEN macro instruction initializes one or more data control blocks so that
their associated data sets can be processed.

A full explanation of the operands of the OPEN macro instruction is contained in
Data Administration: Macro Instruction Reference. The TYPE-J option, because it
is used in conjunction with modifying a JFCB, should be used only by the system
programmer or under the system programmer's supervision.

The parameters of the OPEN TYPE-J macro instruction are:

148 MVS/XA System-Data Administration

r-'"
I

~/

(

[symbol] OPEN (dcb-addr
,[(options»), •••)
[,TYPE=J)

TYPE=J

Notes:

specifies that, for each data control block referred to, you have supplied a
job file control block (JFCB) to be used during initialization. A JFCB is an
internal representation of information in a DO statement.

During initialization of a data control block, its associated JFCB may be
modified with information from the data control block or an existing data set
label or with system control information.

The system always creates a job file control block for each DO control
statement. The job file control block is placed in the SW A (scheduler work
area). Its position, in relation to other JFCBs created for the same job step,
is noted in a table in virtual storage.

When the TYPE=J operand is specified, you must also supply a DO
statement. However, the amount of information given in the DO statement is
at your discretion, because you can modify many fields of the system-created
job file control block. If you specify DUMMY on your DO statement, the
open routine will ignore the JFCB DSNAME and open the data set as
dummy. (See Figure 30 on page 138 for an example of coding that
modifies a system-created JFCB.)

1. The DD statement must specify at least:

• Device allocation (refer to JCL User's Guide for methods of preventing share
status)

• A ddname corresponding to the associated data control block DCBDDNAM
field

2. The MODE operand is not shown here because it is not allowed with the TYPE=J
operand of the OPEN macro instruction.

High-Speed IBM 3480 Positioning

High-speed positioning for 3480 tape drives is available when opening a tape data
set on an IBM standard-labeled tape for either EXTEND (OUTINX. EXTEND. or
DISP=MOD). or when opening to the beginning of such a data set. To invoke
high-speed positioning. your program must modify certain fields in the JFCB and
use OPEN TYPE=J to open the data set.

You should use the following procedure to modify the JFCB:

I. Issue the RDJFCB macro to have the system move the JFCB into your work
area.

Chapter 6. System Macro Instructions 149

2. Set the JFCPOSID flag in the JFCBFLG3 flag byte to indicate that you are
providing a block ID for a high speed search.

3. Move the block ID into the JFCRBIDO field of the JFCB. H you are opening
to the beginning of a data set, use the block ID of the first header label record
of that data set. H you are opening to the end of a data set (for example, to
extend it), use the block ID of the tape mark immediately following the last
block of user data in that data set.

4. Issue the OPEN TYPE=J macro to have the system use your modified JFCB.

After the tape is positioned, OPEN processes the trailer labels for the data set
being extended.

H you set the JFCPOSID flag off, OPEN positions the volume normally, as though
the high-speed positioning feature were not active.

H you set the JFCPOSID flag on, but do not provide a block ID in the JFCRBIDO
field, OPEN positions the volume normally and does one of the following:

• H you are opening to the beginning of a data set, OPEN inserts the block ID of
the first header label record of that data set into the JFCRBIDO field.

• H you are opening to the end of the data set, OPEN inserts the the block ID of
the tape mark immediately following the last block of user data for that data
set into the JFCRBIDO field.

H the JFCPOSID flag is on during CLOSE processing, CLOSE inserts the block ID
for the first header label record of the next data set (which may not exist) into the
JFCRBIDC field. Therefore, if you deallocate the 3480 device and want to use the
current block ID for subsequent processing, you must save the block ID before you
CLOSE the data set.

OPEN resets the JFCPOSID flag if either of the following conditions exists:

• Your program issues an OPEN which is not TYPE=J.

• The requested tape volume is not an IBM standard-labeled volume.

• The requested unit is not a buffered tape device

Notes:

1. If you specify dynamic unallocation (with SVC 99, FREE=CLOSE on the DD
statement, or the FREE option on the CLOSE macro), then the block ID for the
next data set will not be available to your program. This is because dynamic
unallocation frees the JFCB.

2. When using high-speed positioning, specify the data set sequence number
normally, either explicitly by LABEL=(seqno,SL) on the DD statement, or by
default.

After the system routines have used the JFCRBIDO field for high-speed
positioning, they clear JFCRBIDO in the system's copy of the JFCB to prevent
misinterpretation during a subsequent OPEN.

150 MVS/XA System-Data Administration

(
Ensuring Data Security by VaIidating the Data Extent Block

Protecting one user's data from inadvertent or malicious access by an unauthorized
user depends on protection of the data extent block (DEB). The DEB is a critical
control block because it contains information about the device a data set is
mounted on, and describes the location of data sets on direct access device storage
volumes. The DEB also contains the address of the appendage vector table
(A VT). Using the A VT, an unauthorized user can modify the A VT to give control
to a routine in supervisor state to read from and write to data sets to which access
would otherwise be denied.

To guarantee protection of the DEB, the DEBCHK macro instruction is provided.
The DEBCHK macro instruction can be found in SYSl.MACLIB. The DEBCHK
macro is issued by several components of the system control program. For
example:

• The open access method executors issue the macro to add the address of a
DEB they have built to a list of valid addresses called the DEB table. The
DEB validity-checking routine builds and maintains a DEB table for each job
step.

• The EXCP processor uses the macro to verify that the DEB passed with each
EXCP request is in the DEB table.

• The close component issues the macro to remove a DEB from the DEB table.

If you code a routine that builds a DEB, you must add the address of the DEB you
built to the DEB table. If you code a rou~ine that depends on the validity of a DEB
that is passed to your routine, you should verify that the DEB passed to your
routine has a valid entry in the DEB table and points to your DCB or access
method control block (ACB). Use the TYPE=ADD and the TYPE=VERIFY
operands of the macro, respectively.

To prevent an asynchronous routine from changing or deleting, or assigning a new
DEB to a DCB, you must hold the local lock. In this case, you must use the branch
entry to the DEBCHK verify routine.

Additional details about the functions provided by the DEB validity-checking
routine and about the contents of the DEB table are available in Open/Close/EOV
Logic.

The DEBCHK macro instruction provides four functions:

• Adds the address of a DEB to the DEB table, which is located in protected
storage. The DEB table contains the address of every user DEB associated
with a given job step. Every system control program component that builds a
user DEB must add the address of that DEB to a DEB table.

• Verifies that the DEB table associated with a given job step contains the
address of a valid DEB and that the DEB points to the DCB (or ACB). Any
system control program component or problem program can use this function
to verify that a DEB is valid.

Chapter 6. System Macro Instructions 151

• Deletes the address of a DEB from the DEB table. Any program that deletes a
user DEB must, before it deletes the DEB, issue a DEBCHK macro with a
TYPE=DELETE operand to delete the address of the DEB from the DEB
table. If the DEB validity-checking routine encounters an error while deleting
the address from the DEB table, the job step is abnormally terminated.

• Deletes the address of a DEB from the DEB table in the same way as the
preceding function, except that, instead of terminating the job step, this
function merely returns an error code in register 15. This function is provided
to prevent recurring abnormal termination. The format of the DEBCHK and a
description of the operands follow:

DEBCHK-Macro Specification

(symbol] DEBCHK cbaddr
(,TYPE={VERIFY I ADD I DELETE I PURGE)]
(,AM=lamtype I (amaddr) I «amreg»)]
(,BRANCH = trill I YES)]
(, TCBADDR=address]
(,KEY ADpR=address]
(,SA VREG=req]
(,MF=L]

cbaddr

for BRANCH=NO
RX-type address, (2-12), or (1)

A control block address passed to the DEBCHK routine. This operand is
ignored if MF=L is coded. For verify, add, and delete requests, cbaddr is
the address of a DCB or ACB that points to the DEB whose address is either
verified to be in the DEB table, added to the DEB table, or deleted from the
DEB table. For the purge function, cbaddr is the address of the DEB whose
pointer is to be purged from the table: No reference is made to the DCB or
ACB.

Note: A spooled DCB's DEB does not point back to the DCB, but to the
spooled ACB; in this case, the DEBCHK should be issued against the ACB.

for BRANCH = YES
The A-type address of a 4-byte field, or a register (1) or (3-12), that
points to the DCB or ACB containing the DEB to be verified.

TYPE={VERIFY I ADD I DELETE I PURGE}
indicates the function to be performed. If MF=L is coded, TYPE is ignored.
The functions are:

VERIFY
This function is assumed if the TYPE operand is not coded. The
control program checks the DEB table to determine whether the DEB
pointer is in the table at the location indicated by the DEBTBLOF
field of the DEB. The DEB is also checked to verify that
DEBDCBAD points to the DCB (or ACB) passed to DEBCHK. The

152 MVS/XA System-Data Administration

(

(
AM

(-

ADD

DEBAMTYP field in the DEB is compared to the AM operand value,
if given. The two must be equal. TYPE = VERIFY may be issued in
either supervisor or problem state.

The DEB and the DCB (or ACB) must point to each other before the
DEB address can be added to the DEB table. Before the DEB pointer
can be added to the table, the DEB itself must be queued on the
current TCB DEB chain (the TCBDEB field contains the address of
the first DEB in the chain). The DEB address is added to the DEB
table at some offset into the table. That offset value is placed in the
DEBTBLOF field of the DEB, and the access method type is. inserted
into the DEBAMTYP field of the DEB. A zero is placed in the
DEBAMTYP field if the AM operand is not coded. TYPE=ADD can
be issued only in supervisor state.

DELETE
The DEB and the DCB (or ACB) must point to each other before the
DEB address can be deleted from the DEB table. TYPE=DELETE
can be issued only in supervisor state.

PURGE
The DEB pointer is removed from the DEB table without checking the
DCB (or ACB). TYPE=PURGE can be issued only in supervisor
state.

specifies an access method value. Each value corresponds to a particular
access method type (note that BPAM and SAM have the same values):

Type Value

TCAMAP (X'84')
SUBSYS (X'81 ')
ISAM (X'80')
BDAM (X'40')
SAM (X'20')
BPAM (X'20')
TAM (X'10')
GAM (X'08')
TCAM (X'04')
EXCP (X'02')
VSAM (X'OI ')
NONE (X'OO')

The operand can be coded in one of the following three ways, only the first
of which is valid for the list form (MF=L) of the instruction.

amlype
refers to the access method: ISAM, BDAM, SAM, BPAM, TAM
(which refers to BTAM only), GAM, TCAM, EXCP, or VSAM.
TCAMAP identifies a TCAM application-program DEB. SUBSYS
identifies a subsystem of the operating system, such as a job entry _
subsystem. NONE indicates that no access method or subsystem is
specified.

Chapter 6. System Macro Instructions 153

(amaddr)
is the RS-type addres~ of the access method value. This format may
not be coded when MF=L is used.

«amreg»
is one of the general registers 1 through 14 that contains the access
method value in its low-order byte (bit positions 24 through 31). The
high-order bytes are not inspected. This form may not be used when
MF=L is coded.

The use of amaddr and amreg should be restricted to those cases where the
access method value has been generated previously by the MF=L form of
DEBCHK. If MF=L is not coded, the significance of the AM operand
depends upon the TYPE.

If TYPE is ADD and AM is specified, the access method value is inserted in
the DEBAMTYP field of the DEB, and all subsequent DEBCHK macros
referring to this DEB must either specify the same AM or omit the operand.
When the AM operand is omitted for TYPE=ADD, a null value (0) is placed
in the DEB and all subsequent DEBCHK macros must omit the AM
operand.

If AM is specified when the TYPE is PURGE, DELETE, or VERIFY, the
access method value is compared to the value in the DEBAMTYP field of
the D~B. If AM is omitted, no comparison is made.

BRANCH=JN!! I YES}
specifies whether you want to use the branch entry to the DEBCHK verify
routines.

NO

YES

specifies branch entry is not to be used. The operands SA VREG,
TCBADDR, and KEY ADDR are ignored.

specifies the branch entry is to be used. TYPE = VERIFY must be
implicitly or explicitly specified. The operands TCBADDR and
KEY ADDR are required. AM and MF are ignored. Notes for
BRANCH= YES:

• Registers 1, 2, 10, 11, 14, and 15 must not be used for
SAVREG=.

• Registers 1, 2, 10, 11, 14, 15, and the register specified for
SA VREG= must not be used for cbaddr, TCBADDR=, or
KEYADDR=.

• The contents of registers 10, 11, and 14 are unpredictable on
completion. Also, if you do not specify SA VREG=, the contents
of register 2 are unpredictable.

• At completion time, register 1 contains the address of the DEB,
and register 15 contains either 0, 4, or 16 (see "Return Codes
from the DEBCHK Macro" on page 155 for codes and their
meanings).

154 MVS/XA System-Data Administration

,(-~
('" \

', __ c

(

(

TCBADDR=address-A-type address or (3-12)
specifies the location or register containing the address of the TCB to be
used by the DEBCHK verify routine. Use this operand only when
BRANCH = YES.

KEYADDR=address-A-type address or (3-12)
specifies the location, or a register pointing to the location of a field
containing the key to be used when accessing the DCB (or ACB). Use this
operand only when BRANCH= YES.

SAVREG=reg
specifies the register in which register 2 is to be saved. Use this operand
only when BRANCH= YES.

MF=L
indicates the list form of the DEBCHK macro instruction. When MF=L is
coded, a parameter list is built consisting of the access method value that
corresponds to the AM keyword. This value may be referenced by name in
another DEBCHK macro by coding AM=(amaddr), or it may be inserted
into the low-order byte of a register before issuing another DEBCHK macro
by coding AM=«amreg».

Return Codes from the DEBCHK Macro

If the DEBCHK routine completes successfully, register 15 will be set to 0 and
register 1 will contain the address of the DEB when control is returned to your
program. Otherwise, register 15 will contain one of the following decimal codes:

Code Meaning

04(X'04') Either (a) the DEB table associated with the job step does not exist;
or (b) the DEBTBLOF field of the DEB was set to zero or a
negative number, or was larger than the DEB table; or (c) register 1
did not contain the same address as the DEB table entry.

08(X'08') An invalid TYPE was specified. (The DEBCHK routine was entered
by a branch, not by the macro.)

12(X'OC') Your program was not authorized and TYPE was not VERIFY.

16(X'1O') DEBDCBAD did not contain the address of the DCB (or ACB) that
was passed to the DEBCHK routine.

20(X' 14') The AM value does not equal the value in the DEBAMTYP field.

24(X'18') The DEB is not on the DEB chain and TYPE=ADD was specified.

28(X'lC') TYPE = ADD was specified for a DEB that was already entered in
the DEB table.

32(X'20') The DEB table exceeded the maximum size (32760 bytes) and
TYPE = ADD.

Chapter 6. System Macro Instructions 155

Purging and Restoring I/O Requests

The system's purge routines, guided by a parameter list you pass them, perform
either a halt or a quiesce operation. In a halt operation, the purge routines stop the
processing of specified I/O requests that were initiated with an EXCP macro
instruction. In a quiesce operation, the purge routines:

• Allow the completion of I/O requests that were initiated with an EXCP macro
instruction and have been passed to the I/O supervisor for execution

• Stop the processing of those requests that have not as yet been passed to the
I/O supervisor, but save the lOBs of the requests so that they can be
reprocessed (restored) later.

The system's restore routines make it possible to reprocess I/O requests that are
quiesced. (Note: Not covered here is the purge and restore processing that takes in
I/O requests not initiated by an EXCP macro instruction. If you want to learn the
full scope of purge and restore processing, see the I/O supervisor logic section of
System Logic Library, Volume 8.)

You can give control to the purge and restore routines in one of two ways: (1) by
loading register 1 with the address of the parameter list and issuing specific SVC
instructions or (2) by issuing the PURGE and RESTORE macro instructions. If
your installation requires the use of macro instructions, you must add the macro
definitions to the macro library (SYS1.MACLm) or place them in a partitioned
data set and concatenate this data set to the macro library. The macro definitions,
JCL, and utility statements needed to add the macros to your macro library are
presented in Figure 34 on page 157 and Figure 35 on page 158. Whether you
issue the macro instructions or the SVC instructions, you must first build a
parameter list. The SVC instructions are SVC 16 for PURGE and SVC 17 for
RESTORE.

156 MVS/XA System-Data Administration

\" .. /

(

(

PURGE Macro Definition

MACRO
&NAME PURGE &LIST

AIF ('&LIST' EQ ' ,) . E1
&NAME IHBINNRA &LIST LOAD REG 1

SVC 16
MEXIT

.E1 IHBERMAC 01,147 LIST ADDR MISSING
MEND

Control statements Required

//jobname
//stepname
//SYSPRINT
//SYSUT2
//SYSIN
./ ADD

./ ENDUP
/*

JOB {parameter}
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=SYS1.MACLIB,DISP=OLD
DD *
NAME=PURGE,LIST=ALL

PURGE macro definition

Figure 34. Macro Defmition, JCL, and Utility Statements for Adding PURGE Macro to the
System Macro Ubrary

Chapter 6. System Macro Instructions 157

RESTORE Macro Definition

MACRO
&NAME RESTORE &LIST

AIF ('&LIST' EQ ") .E1
&NAME IHBINNRA &LIST LOAD REG 1

SVC 17 ISSUE SVC FOR RESTORE
MEXIT

.E1 IHBERMAC 01 , 150 LIST ADDR MISSING
MEND

Control Statements Required

//jobname
//stepname
//SYSPRINT
//SYSUT2
//SYSIN
./ ADD

./ ENDUP
/*

JOB {parameters}
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=SYS1.MACLIB,DISP=OLD
DD DATA
NAME=RESTORE,LIST=ALL

RESTORE macro definition

Figure 35. Macro Dermition, JeL, and Utility Statements for Adding RESTORE Macro to
the System Macro Library

PURGE-Halt or Finish I/O-Request Processing

The macro instruction used to call the purge routines is coded as follows:

I [symbol)
address

I PURGE I parameter-list

parameter list address-RX-type address. (2-12) or (1)
address of a parameter list. 12 or 16 bytes long. that you have built on a
fullword boundary in your storage. The parameter list address can be
specified as an RX-type constant or in registers 2 through 12. or 1.

The format and contents of the parameter list are as follows:

Byte Contents

o A byte in which you specify what the purge routines will do. These are .
the bit settings and their meanings:

1 Purge I/O requests to a single data set.

158 MVS!XA System-Data Administration

(

1,2,3

(

4

5,6,7

8

9,10,11

12

0

. 1.

.. 1.

... 1

.... 0 ...

..... 1..

.... .. 1.

....... 1

Either purge I/O requests associated with a TCB
or address space, or purge I/O requests to more
than one data set.

Post ECBs associated with purged I/O requests .

Halt I/O-request processing. (Quiesce
I/O-request processing, if 0.)

Purge related requests only. (Valid only if a
data-set purge is requested.)

Reserved-must be zero .

Do not purge the TCB request-block chain of
asynchronously scheduled processing.

Purge I/O requests associated with a TCB .

This is a 16-byte parameter list. Additional purge
options are specified in bytes 12 to 15. (If this bit
is off, the list is 12 bytes long, and the purge
routines do not put a return code in byte 4 of this
list or in register 15.)

The address of a DEB if you are purging I/O requests to a single data
set. The address of the first DEB in a chain of DEBs if you are
purging I/O requests to more than one data set. (The next-to-the-last
word of each DEB must point to the next DEB in the chain; the
second word of the last DEB must contain zeros.)

A byte of zeros. (If bit 7 of byte 0 is on, the purge routines will put a
code in this byte: X'7F' if the purge operation is successful; X'40' if
it is not successful. If bit 7 of byte 0 is off, then X'7F' appears in this
byte.)

The address of the TCB associated with the I/O requests you want
purged (but only if you turned on bit 6 of byte 0). May be zeros if the
TCB is the one you are running under.

Driver 10. (Default value of X'OO' implies that EXCP is the owner.

The address of a word in your storage or the address of the
DEBUSPRG field (which is X' 11' bytes more than the DEB address
in this parameter list). At whichever address you specify, the purge
routines store a pointer to the purged I/O restore list, PIRL. In the
PIRL is a pointer to the first lOB in the chain of lOBs. The location of
the pointer and format of the chain are shown in Figure 36 on
page 161.

Note: This field is relevant for quiesce options only.

A byte in which you can specify additional purge options. These are
the bit settings and their meanings:

Chapter 6. System Macro Instructions t 59

Note: The following applies only if bit 7 of byte 0 is set to one.

.. 1.

... 1

.... 1. ..

.... . 0 ..

Purge I/O requests associated with an address
space. (You must be in supervisor state.)

Check the validity of all the DEBs associated with
the purge operation if this is a data-set purge.
Validate this parameter list, whatever the type of
purge operation, by ensuring that there are no
inconsistencies in the selection of purge options.
(If you are in problem state, these actions are
taken regardless of the bit setting.)

Ensure that I/O requests will be reprocessed
(restored) under their original TCB. (If zero, and
this byte is meaningful (bit 7 of byte 0 is on), the
I/O requests will be reprocessed under the TCB
of the program making the restore request.)

Must be zero .

13 A byte of zeros.

14,15 The 2-byte ID of the address space associated with the I/O requests
you want purged. (Only meaningful if bit 2 of byte 12 is on.)

Control is returned to your program at the instruction following the PURGE macro
instruction.

Return Codes from PURGE Macro

If the purge operation was successful, register 15 will contain zeros. Otherwise,
register 15 will contain one of the following return codes:

Code Meaning

04(X' 04') Your request to purge I/O requests associated with a
given TCB was not honored because that TCB did not point
to the job step TCB, as it must when the requestor is in
problem state.

08(X'08') Either you requested an address-space purge operation,
but were not in supervisor state, or you requested a
data-set purge operation, but supplied no data-area address
in bytes 1, 2, and 3 of the purge parameter list.

20(X' 14') Another purge request has preempted your request. You
may want to reissue your purge request in a time-controlled
loop.

Note: Register 15 will contain zeros, regardless of the outcome of the purge
operation, if you set bit 7 in byte 0 of the parameter list to zero.

160 MVS/XA System-Data Administration

------~-----~------ ------

(

(

(

Modifying the lOB Chain

Note that, although this procedure is not recommended, if you want to change the
order in which purged I/O requests are restored or prevent a purged request from
being restored, you may change the sequence of lOBs in the lOB chain or remove
an lOB from the chain. The address of the lOB chain can be obtained from the
PIRL (see Figure 36). (The address of the PIRL is at the location pointed to by
bytes 9 through 11 of the purge parameter list.)

PIRL

PIRRSTR 20(X'14')

Pointer to the first lOB. If 1 s,
no 1/0 request was quiesced.

---+IOB(1) (where 1 is first lOB in chain)

10BRESTR 25(19)

Pointer to the next lOB in the
I chain.

LIOB(n) (where n is last lOB in chain)

10BRESTR 25(19)

Contains binary Is.

Figure 36. The PIRL and lOB Chain

RESTORE-Reprocess I/O Requests

The RESTORE macro is coded as follows:

I (symbol] I RESTORE I restore address

restore address-RX-type address, (2-12) or (1)
address you specified at byte 9 of the purge parameter list.

Chapter 6. System Macro Instructions 161

Performing Track Calculations

The TRKCALC macro performs track capacity calculations. The standard, list,
execute, and DSECT forms of the macro are described. Examples of the
TRKCALC macro follow the macro descriptions. Using TRKCALC, you may do
the following:

• Perform track capacity calculations

• Determine the number of records of a given size that can be written on a full
track or on the remainder of a -track

• Perform track balance calculations as follows:

TRKCALC-Standard Form

Determine whether a given record size can be written in the space
,remaining on the track and return the new track balance.

Determine the maximum size record that can be written on the track if the
given record does not fit.

Determine the track balance if the last physical record is removed from the
track.

The format of the TRKCALC macro is:

[symbol) TRKCALC FUNCTN={TRKBAL I TRKCAPJ
{,DEVTAB=addr I ,UCB=addr I ,TYPE=addti
[,BALANCE=addr]
[,REMOVE=lYES I NOH
[,MAXSIZE=lYES I NOn
{,RKDD=addr I ,R=addr,K=addr,DD=addti
[,REGSAVE=lYES I NO}]
[,MF=I]

FUNCTN={TRKBAL I TRKCAPI
specifies the function to be performed.

Note: You must specify one of the three keywords, DEVTAB, UCB, or
TYPE, to provide the macro a source for information.

TRKBAL
if REMOVE=NO is specified, TRKBAL calculates whether an
additional record fits on the track and what the new track balance
would be if the record were added. If REMOVE= YES is specified,
TRKBAL calculates what the track balance would be if a record were
removed from the track. The record to be added or removed from the
track is defined by the RKDD parameter, or by the R, K, and DD
parameters.

162 MVS/XA System-Data Administration

(

(

(.

If R= 1 (or the R value in the RKDD parameter is 1) and
REMOVE=NO is specified, record 1 is added to an empty track; if
R= 1 and REMOVE = YES is specified, record 1 is deleted from the
track, leaving an empty track.

If R~ 1, the specified record is added to or removed from the track.
The input track balance may be supplied through the BALANCE
parameter; if it is not supplied, it is assumed that the track contains
equal-sized records as specified in the RKDD parameter (or in the R,
K, and DD parameters).

When REMOVE=NO is specified, one of the following occurs:

• If the record fits on the track, register 0 contains the new track
balance.

• If the record does not fit on the track and MAXSIZE=NO is
specified, a "record does not fit" return code is given in register
15.

• If the record does not fit and MAXSIZE= YES is specified, one of
the following happens:

The data length of the largest record that fits in the remaining
space is returned in register O.

A code is returned that indicates no record fits in the
remaining space.

When REMOVE = YES is specified, one of the following occurs:

• If R=I, register 0 contains the track capacity.

• If R~ 1, registers 0 contains the input track balance (supplied
through the BALANCE parameter) incremented by the track
balance used by the input record. If the input balance is not
supplied, register 0 contains the track capacity left after R-l
records are written on the track.

TRKCAP
calculates, and returns in register 0, the number of fixed-length
records that may be written on a whole track (R= 1) or on a partially
filled track (R~ 1). The records are defined by the K and DD values
of the RKDD parameter, or by the K and DD parameters.

One of the following occurs:

• If R= 1, the BALANCE parameter is ignored and the calculation
is made on an empty track.

• If R~ 1 and the BALANCE parameter is omitted, the calculation
is made for a track that already contains R-l records of the
length defined by the K and DD values.

Chapter 6. System Macro Instructions 163

• If R~ 1 and the BALANCE parameter is supplied, the calculation
is made for a track whose remaining track balance is the value of
the BALANCE parameter.

DEVTAB=addr-RX-type address, (2-12), (0), (14)
addr specifies a word that contains the address of the device characteristics
table entry (DCTE). If you specify a register, it contains the address of the
DCTE, not the address of a word containing the address of the DCTE. The
address of the DCTE can be found in the DCBDVTBA field of an opened
DCB.

UCB=addr-RX-type address, (2-12), (0), (14)
addr specifies the address of a word that contains the address of the UCB. If
you specify a register, it contains the address of the UCB, not the address of
a word containing the address of the UCB. You must ensure that the UCB
address is valid by verifying that byte 3 (UCB+2) in the UCB contains
X'FF'.

TYPE=addr-RX-type address, (2-12), (0), (14)
you may specify the address of the UCB device type (UCBTBYT4), or you
may specify the I-byte UCB device type in the low-order byte of a register.

BALANCE=addr-RX-type address, (2-12), (0), (14)
you may specify either the address of a halfword containing the current track
balance, or you may specify the balance in the low-order two bytes of a
register. The value supplied may be the value returned when you last issued
TRKCALC. If R=I, the balance is reset to track capacity by TRKCALC,
and your supplied value is ignored. This is an input value and is not modified
by the TRKCALC macro. The resulting track balance is returned in register
o and in the TRKCALC parameter list field ST ARBAL.

REMOVE=IYES I NO}
indicates if a record is to be deleted from the track.

YES

NO

specifies that the record identified by the record number (specified in
the R keyword) is being deleted from the track. The track balance is
incremented instead of decremented.

Note: YES is valid only on a FUNCTN=TRKBAL call.

specifies that a record is not to be deleted from the track. NO is the
default.

MAXSIZE=IYES I NO}

YES
If the specified record does not fit, the largest length of a record with
the specified key length that fits is returned (register 0).

Note: YES is valid only on a FUNCTN=TRKBAL call.

164 MVS/XA System-Data Administration

(

(

NO
Maximum size is not returned. NO is the default.

RKDD=addr-RX-type address, (2-12), (0), (14)
addr specifies a word containing a record number (1 byte), keylength (1
byte), and data length (2 bytes) (bytes 0, 1, and 2 and 3, respectively) or a
register containing the record number, key length, and data length. R, K,
and DD may be specified by this keyword, or you may use the following
three keywords instead.

R=addr-RX-type address, (2-12), (0), (14), or n
you may specify either the address of the record number, or you may specify
the record number using the low-order byte of a register or immediate data
(n). Specify a decimal digit for n (immediate data).

K=addr-RX-type address, (2-12), (0), (14), or n
you may specify either the address of a field containing the hexadecimal
value of the record's key length, or you may specify the record's key length
using the low-order byte of a register or immediate data (n). Specify a
decimal digit for n (immediate data).

DD=addr-RX-type address, (2-12), (0), (14), or n
you may specify either the address of a field containing the hexadecimal
value of the record's data length, or you may specify the record's data length
using the low-order two bytes of a register or immediate data (n). Specify a
decimal digit for n (immediate data).

REGSA VE=IYES I NO'

TRKCALC-Execute Form

YES

NO

specifies registers 1 through 14 are saved and restored in the
caller-provided save area (pointed to by register 13) across the
TRKCALC call. Otherwise, registers 1,9, 10, 11, and 14 are
modified. Registers 0 and 15 are always modified by a TRKCALC
call.

specifies registers are not saved across a TRKCALC call. NO is the
default.

specifies storage definition for the TRKCALC parameter list and parameter
list initialization, using the given keywords, then calling the TRKCALC
function. MF=I is the default.

A remote parameter list is referred to and can be modified by the execute form of
the TRKCALC macro. The TRKCALC routine is called. The description of the
standard form of the macro provides the explanation of the function of each
operand.

Chapter 6. System Macro Instructions 165

[symbol) TRKCALC [FUNCfN=ITRKBAL I TRKCAPH
[{,DEVTAB=laddr I *1 I
,VCB=laddr I *1 I ,TYPE=laddr I *nJ

[,BALANCE=laddr I *H
[,REMOVE=IYES I NOn
[,MAXSIZE=IYES I NOH
[(,RKDD=addr I ,R=addr,K=addr,DD=addrJl
[,REGSAVE=IYES I NOn
,MF=(E,addr)

FUNCTN=ITRKBAL I TRKCAPI
is coded as shown in the standard form. If this keyword is omitted, any
specification of REMOVE, MAXSIZE, LAST, and the RX form of
BALANCE is ignored. In addition, DEVT AB is assumed if VCB is coded
and a failure occurs, or if. TYPE is specified. When you use FUNCTN, one
of the keywords (DEVT AB, VCB, or TYPE) must be specified to provide an
information source.

DEVTAB=addr I *-RX-type address, (2-12), (0), (14)
is coded as shown in the standard form except for the • subparameter.
Specify an • when you have inserted the address of the device characteristics
table entry (DCTE) in the parameter list.

VCB=addr I *-RX-type address, (2-12), (0), (14)
is coded as shown in the standard form except for the • subparameter.
Specify an • when you have inserted the address of the UCB in the
parameter list.

TYPE=addr I *-RX-type address, (2-12), (0), (14)
is coded as shown in the standard form except for the • subparameter.
Specify an • when you have inserted the address of the UCB type
(UCBTYP) in the parameter list.

BALANCE=addr I *-RX-type address, (2-12), (0), (14)
is coded as shown in the standard form except for the • subparameter.
Specify an • when you have inserted the balance in the parameter list.

REMOVE=IYES I NOI
is coded as shown in the standard form.

MAXSIZE=IYES I NOI
is coded as shown in the standard form.

RKDD=addr-RX-type address, (2-12), (0), (14)
is coded as shown in the standard form.

R=addr-RX-type address, (2-12), (0), (14) or n
is coded as shown in the standard form.

K=addr-RX-type address, (2-12), (0), (14), or n
is coded as shown in the standard form.

166 MVS/XA System-Data Administration

DD=addr-RX-type address, (2-12), (0), (14), or n
is coded as shown in the standard form.

REGSA VE={YES I NOJ
is coded as shown in the standard form.

MF=(E,addr)
This operand specifies that the execute form of the TRKCALC macro
instruction and an existing data management parameter list are used.

TRKCALC-List Form

E
Coded as shown.

addr-RX-type address, (0), (1), (2-12), or (14)
specifies an in-storage address of the parameter list.

The list form of the TRKCALC macro constructs an empty, in-line parameter list.
By coding only MF=L, you construct a parameter list, and the actual values can be
supplied by the execute form of the TRKCALC macro. Any parameters other than
MF=L are ignored.

I [symbol) I TRKCALC I MF=L

TRKCALC-DSECT Only

This call gives a symbolic expansion of the parameter list for the TRKCALC
macro. No DSECT statement is generated. If a name is specified on the macro
call, it applies, after any necessary boundary alignment, to the beginning of the list.
The macro-generated symbols all begin with "STAR".

I [symbol) I TRKCALC I MF=D

Input Register Usage for All Forms of MF

Registers 0, 2 through 12, and 14 are available to provide input for keywords.

Register 1 is used only to provide the address of the parameter list for an MF=E
call.

Register 13 may be used as input for keywords, if REGSA VE= YES is not
specified.

Register 15 is used as a work register to build the TRKCALC parameter list for the
MF=E call; it is not available as an input register.

Chapter 6. System Macro Instructions 167

Output from TRKCALC

FUNCfN=TRKBAL

Register 15=0
The record fits on the track. Register 0 and ST ARBAL contain the
new track balance.

Register 15=4
Record does not fit on the track. If MAXSIZE= YES is specified, a
partial record does not fit either. Register 0 and STARBAL are set to
zero.

Register 15=8
Record does not fit on the track. MAXSIZE= YES is specified, and a
partial record does fit. Register 0 and ST ARBAL are set to the
maximum number of data bytes that fit on the remainder of the track
with the specified keylength.

Note: The keylength is excluded from the count of maximum data
bytes.

STARBAL
This is the track balance field of the TRKCALC parameter list. This
field is first set to the track capacity if R=l, or to the supplied
BALANCE value if R:F 1, or to the calculated balance if R:F 1 and
BALANCE are omitted. ST ARBAL is updated to the new track
balance if the record fits; otherwise, ST ARBAL is left with the input
track balance value.

FUNCfN=TRKCAP

Register 15=0
Register 0 contains the number of records that fit on the track if R =
1, or the number of records that fit on the remainder of the track if R
:Fl.

Register 15=4
No records of the length specified fit on a full track (R = 1) or a
partial track (R :F 1). Register 0 is set to zero.

STARBAL
This is the track balance field of the TRKCALC parameter list. This
field is first set to the track capacity if R= 1, or to the supplied
BALANCE value if R:F 1, or to the calculated balance if R:F 1 and
BALANCE are omitted.

168 MVS/XA System-Data Administration

!r~

~--,/

(

Return Codes from TRKCALC

The TRKCALC macro passes a return code in register 15. The return codes and
their meanings are as follows:

Contents Meaning

OO(X'OO') Indicates that register 0 contains the new track balance

04(X'04') Indicates that the record did not fit (register 0 = 0)

08(X'08') Indicates that the record did not fit (Register 0 contains the maximum
data length that does fit)

TRKCALC Macro Examples

In this example, TRKCALC is coded to determine how many records of a given
size with lO-byte keys fit on an mM 3380 track. After issuing the macro, the
number of records is saved in NUMREC:

TRKCALC FUNCTN=TRKCAP,TYPE=UTYPE,R=1,K=10,DD=DL,MF=(E,(1»

ST O,NUMREC SAVE NUMBER OF RECORDS

DL DC H'xxxx' DATA LENGTH
UTYPE DC X'OE'
NUMREC DS F MAX # OF RECORDS

In this example, TRKCALC is coded to determine whether another record can fit
on a track of a 3380, given a track balance.

TRKCALC FUNCTN=TRKBAL, TYPE=UTYPE,R=REC,K=KL, DD=DD,BALANCE=BAL,
MAXSIZE=YES,MF=(E,(1»

UTYPE DC X'OE'
REC DC X'xx'
KL DC X'xx'
DD DC H'xxxx'
BAL DC H'xxxx'

Chapter 6. System Macro Instructions 169

Releasing Unused Space from a DASD Data Set

The PARTREL Macro

Direct Access Device Storage Management (DADSM) supports the release of
unused space that is allocated to sequential or partitioned data sets.4 This partial
release function is called when:

• The data set is closed (if the RLSE subparameter of SPACE was specified on
its DD card).

• A restart is processing from a checkpoint in which the data set was extended
after a checkpoint.

• A PARTREL macro is issued.

The PARTREL macro builds a parameter list and issues a LOAD, BASSM,
DELETE sequence. This sequence partially releases the space allocated to a data
set without an associated OPEN/CLOSE.

The PARTREL macro supports sequential and partitioned data sets on volumes
with or without an indexed VTOC. The macro may be coded in the execute,
DSECT, and list forms, but not the standard form. The calling program:

• Must be APF authorized.

• Must have allocated the volume to this task and must ensure it stays mounted
during the P ARTREL function.

• Must ensure that the data set is not open.

• Must not hold any locks.

• Must provide the address of an available standard register save area in general
register 13.

• Must provide the associated parameter list and parameters in storage below 16
megabytes virtual.

• May be in any storage key.

• May run in either supervisor or problem program state.

• May include the CVAFTBL mapping macro ICVAFPRM, and test the
CVFDFPFT field. If the CVFPREL bit is on, PARTREL is supported as
described.

4 The format-l DSCB for the data set contains an identifier (DSILSTAR) for the last
data record written.

170 MVS/XA System-Data Administration

--- --- --- ------------ ------~---------------------

(-

(-

PARTREL--Execute Form

The execute form of the PARTREL macro is as follows:

[symbol] PARTREL MF=t(E,addr) I (E,(reg»l
[,DSN=taddr I (reg»)J]
[,ERASE=tyES I NO I TESTJ]
[,MODE=tPGM I SUPJ]
[,TIOT=fENO I NOENQJ]
[,UCB = (reg»)

Except for MODE, all parameters default to the current contents of the parameter
list. The MODE parameter defaults to PGM.

To provide a better understanding of these parameters, their descriptions include
information about DADSM execution-time processing. These descriptions use the
term "effective value" to designate the value used by DADSM for this request.
The effective value may be:

• Specified as a parameter on the PARTREL macro.
• Provided as the parameter's associated value in the parameter list.
• Defined by DADSM from the information provided in the request.

MF=t(E,addr) I (E,(reg»J
specifies the execute form of the macro and the address of an existing
PARTREL parameter list.

addr-RX-type address, (reg)-(O-12)
specifies the PARTREL parameter list address.

DSN=taddrl (reg»J
specifies the address of a 44-byte area that contains the data set name. The
data set name must be left-justified, with any unused bytes defined as
blanks.

addr-RX-type address, (reg)-(O), (2-12)
You must provide an effective value for DSN.

ERASE=tyES I NO I TESTJ]
specifies a residual data erase attribute (see "Deleting a Data Set from the
VTOC (SCRATCH and CAMLST SCRATCH)" on page 33 for a
description of erase attributes). ERASE= YES and ERASE=NO are
mutually exclusive. The default is ERASE=TEST.

ERASE=YES
specifies that the area being released should be erased (overwritten
with zeros) before it is made available for new allocations.

ERASE = NO
specifies that the area should not be erased. This specification
overrides and RACF erase attribute.

Chapter 6. System Macro Instructions 171

PARTREL--LwtFonn

ERASE = TEST
specifies that the associated RACF erase attribute is to be used.

MODE=~ I SUP}
specifies that PARTREL is requested by a caller in problem program state
(MODE=PGM) or in supervisor state (MODE=SUP). MODE=PGM is the
default.

If the calling program is in supervisor state (and wants to be returned in
supervisor state), the effective value of MODE must be SUP. If the calling
program is in problem program state, the effective value of MODE must be
PGM.

TIOT=IENQ I NOENQU
specifies the desired SYSZTIOT and SYSDSN ENQ processing within partial
release. The default is ENQ.

TIOT=ENQ
specifies that partial release is to do its normal, exclusive ENQ on
SYSZTIOT and SYSDSN. If either of these ENQ requests fails,
P ARTREL will terminate the request with a return code of X' 08' .

TIOT=NOENQ

UCB = (reg)

specifies that the caller has provided the necessary serialization. If
partial release finds that the caller does not have exclusive use of
SYSDSN, PARTREL will terminate the request with a return code of
X'08'.

specifies the address of the UCB for the volume on which the subject data
set resides. The volume must be mounted, and you must ensure that it
remains mounted.

(reg}--(O), (2-12)
You must provide an effective value for the UCB parameter.

The list form of PARTREL is specified as follows:

[symbol) PARTREL MF=L
[,DSN =addr)
[,ERASE={YES I NO I TESTI)
[,MODE=WGM I SUP})
[,TIOT=IENO I NOENQU

172 MVS/XA System-Data Administration

('"

Notes:

1. The execute form of the UCB parameter can not be specified on the list form.

2. The list form MODE parameter is for documentation only. The effective value of
MODE is as specified or defaulted on the execute form.

For an explanation of the parameters, see the execute form.

An example of the list form's expansion is:

PRELPL PARTREL MF=L
+PRELPL DS OF
+ DC CL4'PREL'
+ DC AL2(PRL1E-PRELPL)
+ DC H'O'
+*
+ DC XL l' 00'
+ DC XL3'00'
+ DC A(O)
+ DC A(O)
+PRL1E EQU *

PARTREL-DSECT Form

EBCDIC 'PREL' FOR PARTREL
LENGTH OF PARAMETER LIST
ERROR CODE RETURNED FROM

PARTIAL RELEASE
PARAMETER FLAG BYTE
RESERVED
ADDRESS OF DATA SET NAME
UCB POINTER
END OF PARAMETER LIST

The DSECT form of PARTREL is specified as follows:

I [symbol] I PARTREL I MF=D

An example of the DSECT form's expansion is:

PRELPL PARTREL MF=D
+PRELPL DSECT DSECT FOR PARAMETER LIST
+PRLPLID DS CL4 EBCDIC 'PREL' FOR PARTREL
+PRLNGTH DS AL2 LENGTH OF PARAMETER LIST
+PRERRCDE DS H ERROR CODE RETURNED FROM
+* PARTIAL RELEASE
+PRLFLAG DS XL1 PARAMETER FLAG BYTE
+PRLPGM EQU x'OO' MODE=PGM (PROBLEM PROGRAM)
+PRLSUP EQU X'80' MODE=SUP (SUPERVISOR STATE)
+PRLTIOT EQU X'40' TIOT=NOENQ
+PRLNERAS EQU X'20' ERASE=NO
+PRLERASE EQU X' 10' ERASE=YES
+PRLFRES EQU X'OF' RESERVED
+PRLRSVD DS XL3 RESERVED
+PRLDSN DS A DATA SET NAME POINTER
+PRLUCB DS A UCB POINTER
+PRLEND EQU * END OF PARAMETER LIST
+PRLENGTH EQU PRLEND-PRELPL LENGTH OF PARAMETER LIST

Chapter 6. System Macro Instructions 173

Return Codes From PARTREL

Control returns to the instruction following the last instruction generated by the
PARTREL macro. If the data set was successfully processed, register 15 contains
zeros. Otherwise, register 15 contains one of the following return codes. This is a
cumulative list of DADSM partial release return codes. Some of these codes may
not apply to the PARTREL macro.

Code Meaning

02(X'02') Unable to find extent in format-l DSCB.

04(X'04') Unable to find extent in format-3 DSCB.

OS(X'OS') Either the required SYSZTIOT or SYSDSN ENQ failed, or an
unrelated DEB indicates that another DCB is open to the data set.

12(X'OC') Invalid parameter list.

16(X'1 0') Permanent 110 error or unexpected CV AF error return code or
installation exit rejected the request.

20(X'14') DSN, or DSN pointer is invalid.

24(X'IS') Invalid UCB pointer.

2S(X'IC') Given DSORG is not supported.

32(X'20') No room in the VTOC.

Allocating a DASD Data Set

The REALLOC macro builds a parameter list and issues an SVC 32 to allocate a
new data set. You can code the macro in the execute, DSECT, and list forms, but
not in the standard form. The calling program:

• Must be APF authorized.

• Must have allocated the volume to this task and must ensure it will stay
mounted during the REALLOC function.

• Must not hold any locks.

• Must provide the associated parameter list and parameters in storage below
16-megabyte virtual.

• May use any storage key.

• May run in either supervisor or problem program state.

174 MVS/XA System-Data Administration

~',

"''"--/

(

(

~.---.--~~--------------

• Must note that REALLOC does not call RACF or catalog management.

• May include the CV AFTBL mapping macro ICV AFPRM, and test the
CVFDFPFT field:

If the CVFPREL bit is on, REALLOC is supported as it is documented in
this release.

If the CVFPREL bit is off and the CVFREALL bit is on, REALLOC is
supported as documented in a prior release. (Absolute allocation is not
supported.)

If neither bit is on, REALLOC is not supported.

The calling program must provide the REALLOC macro with one or more model
DSCBs. You can use the OBTAIN macro to get the DSCBs from other data sets
and modify them for the request. DADSM uses these model DSCBs to validate the
allocation request, and to construct those DSCBs that are written to the VTOC for
the requested allocation.

The ALLOC parameter for the REALLOC macro defines the allocation request as
either absolute (ABS) or movableS (MOV).

An absolute request provides a set of allocation parameters, a full format-l DSCB,
an optional format-2 DSCB, and an optional format-3 DSCB that describe the
attributes of the desired data set:

• Support is provided for data sets with a user label extent and for ISAM data set
allocations,6 but is not limited to these two types.

• The number of extents to be allocated, and their absolute placement on the
volume, are defined by the format-l DSCB and one (optional) format-3
DSCB.

An absolute request is limited to a single volume with indexed VTOC support.

A movable request provides a set of allocation parameters and a partial DSCB' that
describe the attributes of the desired data set:

• Data sets with a user label extent, ISAM data sets, and absolute track allocated
data sets are not supported.

S The requested data set's allocation is not sensitive to its placement on the volume.
This is specifically NOT a reference to the format-l DSCB bit DSlDSGU (unmovable
bit), which may be either on or off in an ALLOC=MOV request's partial DSCB. That
is, the data set may subsequently contain location-dependent information.

6 See the description of the F2DSCB parameter in the REALLOC macro execute form
for more information.

, The partial DSCB (mapped by the IECPDSCB macro) consists of the first 98 bytes of
a format-l DSCB followed by two full words: PDPRIQTY (primary space request in
tracks), and PDDIRQTY (number of directory blocks).

Chapter 6. System Macro Instructions 175

• The maximum number of extents that may be allocated is determined by the
data set organization (PDIDSORG) and the data set indicator (PDIDSIND)
bytes in the partial DSCB. If PD IDSORG indicates a VSAM data set
organization and PDIDSIND indicates that the data set is cataloged in an
Integrated Catalog Facility catalog, the maximum number of extents is 123.
Otherwise, the maximum number of extents is 16.

A movable request is limited to a single volume with or without indexed VTOC
support.

REALLOC-Execute Form

The format of the REALLOC macro in execute form is:

(symbol) REALLOC MF=I(E,addr) I (E,(reg))}
I,ALLOC=IABS I MOVn
(,DSSIZE={addr I (reg)J]
(,F2DSCB={addr I (reg)J]
(,F3DSCB= {addr I (reg)J]
[,MINAU={addri (reg))]
[,PDSCB=laddr I (reg)J]
[,PDSDIR={addr I (reg))]
[,UCB=(reg))

All parameters except ALLOC default to the current contents of the referenced
parameter list. The ALLOC parameter defaults to MOV.

To provide a better understanding of this macro's parameters, their descriptions
include information about DADSM execution-time processing. These descriptions
use the term "effective value" to designate the value used by DADSM for this
request. The effective value may be:

• Specified as a parameter for the REALLOC macro.
• Provided as the parameter's associated value in the referenced parameter list.
• Defined by DADSM from information provided in the request.

MF={(E,addr I (E,(reg))}
specifies the execute form of the macro and the address of a REALLOC
parameter list.

addr-RX-type address, (reg)-(O-12)
specifies the address of the REALLOC parameter list.

ALLOC={ABS I MOp}
specifies that the REALLOC request is for absolute extents
(ALLOC=ABS) or for a movable allocation (ALLOC=MOV).
ALLOC=MOV is the default.

If you want absolute allocation, the effective value of ALLOC must be ABS.

DSSIZE=laddr I (reg)}
specifies the size of the data set to be allocated in tracks. The DSSIZE
parameter is invalid for an ALLOC=ABS request.

176 MVS/XA System-Data Administration

c

c

(

(

addr-RX-type address
specifies the address of a full word that contains the data set size.

(reg)-(O), (2-12)
specifies a register that contains the size of the data set.

You must provide an effective value for DSSIZE for an ALLOC-MOV
request. The PDPRIQTY field of the partial DSCB is ignored.

DADSM assumes that you have provided the effective value of DSSIZE in
tracks even if the PD1SCALO flag byte of the partial DSCB indicates a
cylinder request, X'CO', or an average block request, X'40'.

If the PD1SCALO flag byte of the partial DSCB indicates a cylinder request,
X' CO', or an average block with round request, X' 41', the effective value of
DSSIZE is rounded up to the next full cylinder.

F2DSCB-laddr I (regn
specifies the in-storage address of a format-2 DSCB. This DSCB is used as
a model to construct the allocated data set's format-2 DSCB.

The F2DSCB parameter is invalid for an ALLOC-MOV request.

addr-RX-type address, (regHO), (2-12)

You may provide an effective value for F2DSCB in an ALLOC-ABS
request when the DS1DSORG flag byte of the given format-1 DSCB is
X' 80' (indexed sequential organization).

Because REALLOC allocates on the basis of a single volume for each
request and because a multivolume ISAM data set is defined with one
format-2 DSCB (on the first volume only), the associated DADSM
allocation processing routines do not require a format-2 DSCB (that is,
multiple REALLOC requests may be used to to allocate a multivolume
ISAM data set).

F3DSCB-laddr I (regn
specifies the in-storage address of a format-3 DSCB. This DSCB is used as
a model to construct the allocated data set's format-3 DSCB.

The F3DSCB parameter is invalid for an ALLOC-MOV request.

addr-RX-type address, (regHO), (2-12)

You must provide an effective value for F3DSCB in an ALLOC-ABS
request when the DS1NOEPV byte of the format-1 DSCB indicates more
than three extents (or when the DS1NOEPV byte indicates more than two
extents and the DS1EXT1 extent type indicator is X'40'; a user label
extent).

The REALLOC request is limited to a maximum of 16 extents. No more
than one format-3 DSCB can be specified.

Chapter 6. System Macro Instructions 177

You must provide an effective value of zero for the F3DSCB in an
ALLOC=ABS request when the DS1NOEPV byte of the format-1 DSCB
indicates that there are less than four extents (or when the DS1NOEPV byte
indicates that there are less than three extents and the DSIEXTI extent type
indicator is X'40'; a user label extent).

MINAU=taddr I (reg)}
specifies the size of the minimum allocation unit in tracks. All primary
extents for this data set are in multiples of this minimum allocation unit.
This minimum does not apply to subsequent extensions of the data set.

The MINAU parameter is invalid on an ALLOC=ABS request.

addr-RX-type address
specifies the address of a full word containing the minimum allocation
unit.

(reg)-(O), (2-12)
specifies a register containing the minimum allocation unit.

The MINAU parameter has no effect on the requested allocation if:

• You provide an effective value of zero.
• The PD1SCALO flag byte of the partial DSCB indicates either a

cylinder request, X' CO', or an average block with round request, X' 41' .
Otherwise, the effective value of DSSIZE must be a multiple of the effective
value of MINAU.

PDSCB=taddr I (reg)}
specifies the address of a partial DSCB (for ALLOC=MOV) or the
in-storage address of a full format-1 DSCB (for ALLOC=ABS). This
DSCB is used as a model to construct the allocated data set's format-1
DSCB.

addr-RX-type address, (reg)-(O), (2-12)

You must provide an effective value for the PDSCB parameter.

PDSDIR=={addr I (reg)}
specifies the number of 256-byte directory blocks for a partitioned data set
(PDS).

addr-RX-type address
specifies an in-storage address of a full word containing the number of
256-byte PDS directory blocks.

(reg)-(O), (2-12)
specifies a register containing the number of 256-byte PDS directory
blocks.

You must provide an effective value for PDSDIR when partitioned
organization is indicated:

178 MVS/XA System-Data Administration

- -~------------~-------------

c

(

(-

• The DSlDSORG flag byte of the format-l DSCB is X'02'
(ALLOC=ABS).

• The PDlDSORG flag byte of the partial DSCB is X'02'
(ALLOC=MOV).

For an ALLOC=MOV request, you can specify the effective value of
PDSDffi in the PDDffiQTY field of the partial DSCB. The PDDffiQTY
field is used if and only if, the effective REALLOC parameter list value of
PDSDffi is zero.

Do not specify an effective value for PDSDffi when a PDS is not indicated.

UCB = (reg)

REALLOC-List Form

specifies the address of the UCB for the volume in which the data set is to be
allocated. The volume must be mounted, and you must ensure that it
remains mounted.

(reg)-(O), (2-12)

You must provide an effective value for the UCB parameter.

The list form of the REALLOC macro is specified as follows:

[symbol] REALLOC MF'=L
[,ALLOC={ABS I MOVH
[,F2DSCB=addr]
[,F3DSCB=addr]
[,PDSCB=addr]

Notes:

1. The execute form parameters DSSIZE, MINAU, PDSDIR, and UCB can not be
specified on the list form.

2. The list form's ALLOC parameter affects the tests made by the REALLOC
macro at assembly time and the contents of the parameter list.

3. The effective value of ALLOC is as specified or defaulted on the execute form.

See the execute form for an explanation of the parameters.

An example of the list form expansion is:

Chapter 6. System Macro Instructions 179

REALPL REALLOC MF=L
+REALPL DS OF
+ DC CL4'REAL' EBCDIC 'REAL' FOR REALLOC
+ DC AL2(RAL1E-REALPL} LENGTH OF PARAMETER LIST
+ DC H'O' ERROR CODE RETURNED FROM
+* ALLOCATE (SVC 32)
+ DC XL1'OO' PARAMETER FLAG BYTE
+ DC XL3'OO' RESERVED
+ DC F'O' DATA SET SIZE
+ DC F'O' MINIMUM ALLOCATION UNIT
+ DC A(O} PARTIAL DSCB POINTER
+ DC A(O} UCB POINTER
+ DC F'O' PDS DIRECTORY QUANTITY
+ DC A(O} FORMAT 2 DSCB POINTER
+ DC A(O} FORMAT 3 DSCB POINTER
+RAL1E EQU * END OF PARAMETER LIST

REALLOC-DSECT Only

The DSECT form of REALLOC is specified as follows:

I (symbol] I REALLOC I MF=D

An example of the DSECT form e'xpansion is:

REALPL REALLOC MF=D
+REALPL DSECT DSECT FOR PARAMETER LIST
+RALPLID DS CL4 EBCDIC 'REAL' FOR REALLOC

"

+RALNGTH DS AL2 LENGTH OF PARAMETER LIST
+RAERRCDE DS H ERROR CODE RETURNED FROM " - _/

* ALLOCATE (SVC 32)
+RALFLAG DS XL1 PARAMETER FLAG BYTE
+RALMOV EQU X'OO' ALLOC=MOV
+RALABS EQU X'80' ALLOC=ABS
+RALFRES EQU X'7F' RESERVED
+RALRSVD DS XL3 RESERVED
+RALDSSZ DS F DATA SET SIZE
+RALMAU DS F MINIMUM ALLOCATION UNIT
+RALPDSCB DS A PARTIAL DSCB POINTER
+RALUCB DS A UCB POINTER
+RALDQTY DS F PDS DIRECTORY QUANTITY
+RAL2DSCB DS A FORMAT 2 DSCB POINTER
+RAL3DSCB DS A FORMAT 3 DSCB POINTER
+RALEND EQU * END OF PARAMETER LIST
+RALENGTH EQU RALEND-REALPL LENGTH OF PARAMETER LIST

180 MVS/XA System-Data Administration

(

(-

Return Codes from REALLOC

Control returns to the instruction following the SVC 32 generated by the
REALLOC macro. If the data set was successfully allocated, register 15 contains
zeros. Otherwise, register 15 contains one of the following return codes:

Note: This is a cumulative list of DADSM allocation return codes. Some of these
codes may not apply to the REALLOC macro.

Return Reason
Code (R15) Code (RO) Meaning

004(X'04') Data set name of request already exists on this
volume. Initial allocation not possible under the
name given.

008(X'08') No room available in the VTOC or VTOC index.

012(X'OC') One of the following errors was encountered:

• Permanent 110 error

• Error returned by CV AF

016(X' 10') Requested absolute track not available.

020(X' 14') Requested quantity not available.

024(X'18') Average record length greater than 65535 bytes.

028(X'lC') Incorrect DSORG or DISP in an ISAM index
request.

032(X'20') No prime area requested for ISAM data set.

036(X'24') ISAM prime area must be requested before
overflow.

040(X'28') Space requested must begin on a cylinder
boundary.

044(X'2C') Duplicate ISAM DSNAME element.

048(X'30') 01(X'Ol ') Invalid REALLOC parmlist ID.

02(X'02') Invalid REALLOC parmlist length.

03(X'03') REALLOC request, but neither ALLOC==ABS nor
ALLOC==MOV is specified.

Chapter 6. System Macro Instructions 181

Return Reason If'
~~, Code (R15) Code (RO) Meaning

04(X'04') Invalid data set size specified for ALLOC=MOV.

05(X'05') The data set is not a PDS for an ALLOC=MOV.

06(X'06') The data set is not a PDS for an ALLOC=ABS.

07(X'07') No directory quantity specified for a PDS for an
ALLOC=ABS.

052(X'34') Invalid JFCB or partial DSCB pointer.

056(X'38') Requested directory space is larger than the space
available on this volume.

060(X'3C') Nonindexed VTOC not supported for REALLOC
ALLOC=ABS request.

064(X'40') Invalid user label request.

068(X'44') Invalid UCB pointer.

072(X'48') DOS VTOC cannot be converted to an OS VTOC.
!
/' ----.,

076(X'4C') No space parameter given for a new data set or "

\'-.,~

zero space requested at absolute track zero.

080(X'50') Invalid request for ISAM index.

084(X'54') ISAM multivolume index not allowed.

088(X'58') Invalid ISAM DSNAME element.

092(X'5C') ISAM multivolume overflow request not allowed.

096(X'60') ABSTR and CYL requests conflict.

100(X'64') CYL and CONTIG requests conflict.

104(X'68') Invalid space subparameter.

108(X'6C') Primary space request for an ISAM data set js zero,
or primary space for an ABSTR request is zero.

112(X'70') Duplicate ISAM index request.

116(X'74') User labels not supported.

120(X'78') Invalid combination of values for DSSIZE and ,f""'.
MINAU. ~ ,

182 MVS/XA System-Data Administration

(Return Reason
Code (RtS) Code (RO) Meaning

124(X'7C') DSSIZE is not a multiple of MINAU.

128(X'80') Directory space requested is larger than primary
space.

132(X'84') Space request must be ABSTR for DOS volume.

136(X'88') Invalid F3DSCB pointer.

140(X'8C') ISAM index must be requested before prime area.

144(X'90') Last concatenated DD card unnecessary or invalid
for this ISAM data set.

148(X'94') Overlapping extents in the VTOC.

152(X'98') Overlapping DOS split cylinder extents in the
VTOC.

156(X'9C') DADSM allocation terminated because of possible
VTOC errors.

(160(X'AO') ISAM allocation terminated because of possible
VTOC errors.

164(X'A4') Allocation terminated because of DOS stacked
pack format.

168(X'A8') RACF define failed, data set profile already
defined.

172(X'AC') User not authorized to define data set.

176(X'BO') Installation exit rejected this request with a return
code of 8. No further volumes should be
attempted.

180(X'B4') Installation exit rejected this request with a return
code of 4. For a nonspecific volume request,
another volume may be attempted.

184(X'B8') RACF define with modeling specified and model
not found.

188(X'BC') Invalid F2DSCB pointer.

(....

Chapter 6. System Macro Instructions 183

Message Displays on the mM 3480 Magnetic Tape Subsystem

The MSGDISP macro displays a message on the mM 3480. With MSGDISP, you
can specify the message to be displayed and how to display it (for example, steady
or flashing). The six main parameters of the macro and their functions are:

MOUNT

VERIFY

RDY

Displays an "M" in position 1 of the display area during a mount
request until a volume is loaded and made ready. The "M" is
followed by the volume serial number and label type.

Shows that a volume has been accepted by displaying its serial
number and label type in positions 2 through 8.

Displays text in positions 2 through 7 while a data set is open.

DEMOUNT Displays a volume disposition indicator in position 1 until a volume is
demounted.

RESET

GEN

Clears the display area.

Provides the full range of display options, including the option to
alternate two messages.

All except the ROY parameter require that you be in supervisor state, have a
storage protect key of 0 through 7, or be authorized by the authorized program
facility.

For MVS/XA, you may specify the 10SLEVEL (priority) of the request with the
FORCE parameter. 10SLEVEL support replaces single-level I/O quiescing with
multilevel quiescing; the higher the 10SLEVEL value, the greater your priority to
control the device.

The MSGDISP macro generates a parameter list as input to an SVC routine.

MSGDISP may be coded in the standard, execute, and list forms.

The formats for specifying MSGDISP with the six main parameters, and the return
codes generated by MSGDISP, are given in the sections that follow.

MSGDISP-Displaying a Mount Message

The format for specifying MSGDISP with the MOUNT parameter is:

[symbol) MSGDISP MOUNT
,UCB = (reg)
[,FORCE=Rm I YES I n I keyword I (reg)lJ
[,LABEL=t'A' I 'N' I '~' I 'X' I addrJ)
[,MF=tL I (E,addr)lJ
[,SER=t'vo/ser' I addrJ)
[,TEST=Rm I YESJ)
[,WAIT={NO I YESJ)

184 MVS/XA System-Data Administration

/ ." I

(f"
'~J

(

MOUNT
displays an "M" in position 1 of the display area during a mount request.
The "M" is followed by a volume serial number and label type. The display
flashes on and off until a volume is loaded and ready. If the device is ready
at the time a mount request is issued, the "M" is not displayed.

UCB=(reg)-(2-12)
specifies a register containing the UCB address for the device.

FORCE={NO I YES I n I keyword I (reg)}
specifies the priority (IOSLEVEL) for the display request's I/O. The higher
the 10SLEVEL value, the greater the priority.

If you do not specify the FORCE parameter, the default is FORCE=NO.

YES

n

prevents execution of a display request for a device whose I/O is
being qui~sced. The IOSLEVEL is set to the installation default, as
indicated in the CVTIONL V field of the CVT.

forces execution of a display request for a device even if its I/O is
being quiesced. The 10SLEVEL is set to 9, the highest priority.

specifies a decimal number from 1 to 9, to be used as the 10SLEVEL
value. A high number indicates a higher priority request for the
device.

keyword

(reg)

specifies a label equated to an 10SLEVEL value:

NORMAL 1
QUIESCE 2
DAVY 3
DDR 4
DYNPATH 5
UNCRSV 6
CHPRCVY 7
SCHRCVY 8
FDEV 9

specifies that the low-order byte of the indicated register (2 through
12) contains a value between 1 and 9, indicating the 10SLEVEL.

LABEL=I'A' I 'N' I '~I 'X' laddrJ
displays the label type of the mounted volume in position 8. If you specify
an unknown label type other than a blank, a "1" is displayed.

'A'
specifies ISO/ ANSI/FIPS (AL) or ISO/ ANSI/FIPS with user labels
(AUL). Specify in apostrophes.

Chapter 6. System Macro Inst.ructions 185

'N'

'~'

'X'

specifies no labels (NL), LTM (~OS), or bypass label processing
(BLP). Specify in apostrophes.

specifies IBM Standard (SL) or IBM Standard with user labels (SUL).
Specify in apostrophes.

specifies nonstandard labels (NSL). Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing an "A", "N",
"S", or "X" (see the following explanations of these characters). For
MF=L, you may only specify an A-type address.

MF= IL I (E,addr>l
specifies either the execute or the list form of MSGOISP. If you do not
specify this parameter, the standard form of the macro is used.

L
specifies the list form of MSGOISP. This generates a parameter list
that can be used as input to the execute form. The execute form can
modify the parameter list.

(E,addr)
specifies that the execute form of the macro and an existing parameter
list are used.

addr-RX-type address, (1), or (2-12)
specifies an in-storage address of the parameter list.

SER=I'volser' I addrl
specifies the serial number of the volume to be mounted. The serial number
is displayed in positions 2 through 7. If you do not specify SER, the system
supplies the volume serial number. If the serial number is not available, a
scratch volume is used, unless the volume use attribute indicates a default of
"PRIV AT".

'volser'
specifies the volume serial number as a literal. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of the volume serial number. For
MF=L, you may only specify an A-type address.

TEST=fNO I YESJ
specifies whether to test the UCB to determine if the device is capable of
displaying messages.

specifies that the SVC routine will test the UCB.

186 MVS/XA System-Data Administration

(

YES
specifies testing the UCB before the SVC call.

Note: TEST=YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code.

WAIT=INO I YES'
specifies when control is returned to you.

NO
specifies that control is to be returned before I/O is complete. I/O
return codes are not returned, and I/O errors are recorded in the same
manner as any permanent error by the error recovery procedure.

specifies that control is to be returned after I/O is complete.

MSGDISP-Displaying a Verify Message

The format for specifying MSGDISP with the VERIFY parameter is:

symbol) MSGDISP VERIFY
,UCB=(reg)
(,FORCE=1N2 I YES I n I keyword I (reg)JJ
(,LABEL=I'A' I 'N' I '~' I 'X' laddrB
(,MF=IL I (E,addr)JJ
(,SER={'volser' I addrl)
(,TEST=fNO I YESJ]
(,WAIT=INO I YESJ]

VERIFY
displays the serial number and label type of a volume that has been accepted
in positions 2 through 8. Position 1 remains blank. The display lasts until
the next display request is executed.

UCB=(reg)-(2-12)
specifies a register containing the UCB address for the device.

FORCE=(NO I YES I n I keyword I (reg)J
specifies the priority (IOSLEVEL) for the display request's I/O. The higher
the 10SLEVEL value, the greater the priority.

If you do not specify the FORCE parameter, the default is FORCE=NO.

YES

prevents execution of a display request for a device whose I/O is
being quiesced. The 10SLEVEL is set to the installation default, as
indicated in the CVTIONLV field of the CVT.

forces execution of a display request for a device even if its I/O is
being quiesced. The 10SLEVEL is set to 9, the highest priority.

Chapter 6. System Macro Instructions 187

n
specifies a decimal number from 1 to 9, to be used as the 10SLEVEL
value. A high number indicates a higher priority request for the
device.

keyword

(reg)

specifies a label equated to an 10SLEVEL value:

NORMAL 1
QUIESCE 2
DAVY 3
DDR 4
DYNPATH 5
UNCRSV 6
CHPRCVY 7
SCHRCVY 8
FDEV 9

specifies that the low-order byte of the indicated register (2 through
12) contains a value between 1 and 9, indicating the 10SLEVEL.

LABEL={'A' I 'N' I '.s' I ' I addrJ
specifies label type of the mounted volume in position 8 of the display. If an
unknown label type other than a blank is specified, a "1" is displayed.

'A'

'N'

'.s'

'X'

specifies ISO/ANSI/PIPS (AL) or ISO/ ANSI/FIPS with user (AUL)
labels. Specify in apostrophes.

specifies no labels (NL), LTM (DOS), or bypass label processing
(BLP). Specify in apostrophes.

specifies mM Standard (SL) or mM Standard with user (SUL) labels.
Specify in apostrophes.

specifies nonstandard (NSL) labels. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing an "A", "N",
"S", or "X" (see explanations below for these characters). For
MF=L, you may only specify an A-type address.

MF={L I (E,addr)J
specifies either the execute or list form of MSGDISP. If you do not specify
this parameter, the standard form of the macro is used.

L
specifies the list form of MSGDISP. This generates a parameter list
that can be used as input to the execute form. The execute form can
modify the parameter list.

188 MVS/XA System-Data Administration

,4' .~,

,--",

(

(E,addr)
specifies that the execute form of the macro and an existing parameter
list is to be used.

addr-RX-type address, (1), or (2-12)
specifies an in-storage address of the parameter list.

SER=I'volser' I addrJ
specifies the serial number of the volume that has been verified. The serial
number displays in positions 2 through 7. H you do not specify SER, the
system supplies the volume serial number. H the serial number is not
available, a scratch volume is used, unless the volume use attribute indicates
a default of "PRIV AT".

'volser'
specifies the volume serial number as a literal. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of the volume serial number. For
MF =L, you may only specify an A-type address.

TEST=INO I YESJ
specifies whether to test the UCB to determine if the device is capable of
displaying messages.

YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call.

Note: TEST= YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code.

W AIT=INO I YESJ
specifies when control is to be returned to you.

NO
specifies that control is to be returned before I/O is complete. I/O
return codes are not returned, and I/O errors are recorded in the same
manner as any permanent error by the error recovery procedure.

specifies that control is to be returned after I/O is complete.

MSGDISP-Displaying a Ready Message

The format for specifying MSGDISP with the ROY parameter is:

[symbol) MSGDISP ROY
,DCB=addr
[,MF=IL I (E,addr>H
[,TXT={'msgtxt' I addr)

Chapter 6. System Macro Instructions 189

RDY
displays the text supplied in the TXT parameter in positions 2 through 7
while the data set is open. The display is steady (not flashing) and is
enclosed in parentheses. The display is also written to the tape pool console
(routing code 3, descriptor code 7).

DCB=addr
specifies the address of a DCB opened to a data set on the mounted volume.
If multiple devices are allocated, the message display is directed to the one
containing the volume currently in use.

Note: If multiple devices or multiple volumes are allocated, you may update
a message display after an end-of-volume condition by using the EOV exit
specified in a DCB exit list. In the case of a concatenated data set with
unlike characteristics, the DCB OPEN exit may be used to update the
display.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of the opened DCB. For MF==L, you
may only specify an A-type address.

MF=lL I (E,addr)J
specifies either the execute or list form of MSGDISP. If this parameter is not
specified, the standard form of the macro is used.

L
specifies the list form of MSGDISP. This generates a parameter list
that can be used as input to the execute form. The execute form can
modify the parameter list.

(E,addr)
specifies that the execute form of the macro and an existing parameter
list is to be used.

addr-RX-type address, (1), or (2-12)
specifies an in-storage address of the parameter list.

TXT ={' msgtxl' I addfJ
specifies up to six characters to display in positions 2 through 7 of the
display. If you do not specify TXT, blanks are displayed.

'msgtxt'
specifies the text as a literal. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing the text to be
displayed. For MF==L, you may only specify an A-type address.

190 MVS/XA System-Data Administration

MSGDISP-Displaying a Demount Message

The format for specifying MSGDISP with the DEMOUNT parameter is:

[symbol) MSGDISP DEMOUNT
,UCB = (reg)
[,DISP=I'D' I'K' I'R' I addrH
[,FORCE=Rffi I YES I n I keyword I (reg)JI
[,MF=IL I (E,addr)J]
[,MLABEL=I'A'I'N'I'~'I'X' I addr)]
[,MSER={'volser-to-mount' I addr}]
[,SER={'volser' I addr}]
[,TEST={NO I YES}]
[,WAIT={NO I YES}]

DEMOUNT
Displays a volume disposition indicator in position 1 until the volume is
demounted. Optionally, you may display the serial number of the volume to
be demounted at the same time. The display flashes on and off. If a volume
is not mounted on the device when the display request is executed, blanks
are displayed.

The demount message may be displayed alternately (flashing) with a mount
message for the next volume by specifying the MSER parameter.

UCB=(reg)-(2-12)
specifies a register containing the UeB address for the device.

DISP=I'D' I'K' I'R' I addrl
specifies the character to display in position 1, representing the volume
disposition.

'D'

'KI

'RI

Demount a public volume. Specify in apostrophes.

Note: "D" also displays when you specify an invalid character or
when the volume use attribute is unknown (as in an automatic volume
recognition (A VR) error when reading a label).

Keep a private volume and return it to the library. Specify in
apostrophes.

Retain a private volume near the device for further use. Specify in
apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing a "D", "K", or
"R". For MF=L, you may only specify an A-type address.

FORCE=Rffi I YES I n I keyword I (reg)J
specifies the priority (IOSLEVEL) for the display request's I/O. The higher
the IOSLEVEL value, the greater the priority.

Chapter 6. System Macro Instructions 191

If you do not specify the FORCE parameter, the default is FORCE-NO.

YES

n

prevents execution of a display request for a device whose I/O is
being quiesced. The IOSLEVEL is set to the installation default, as
indicated in the CVTIONL V field of the CVT.

forces execution of a display request for a device even if its I/O is
being quiesced. The IOSLEVEL is set to 9, the highest priority.

specifies a decimal number from 1 to 9, to be used as the IOSLEVEL
value. A high number indicates a higher priority request for the
device.

kejword

(reg)

specifies a label equated to an IOSLEVEL value:

NORMAL
QUIESCE
DAVY
DDR
DYNPATH
UNCRSV
CHPRCVY
SCHRCVY
FDEV

1
2
3
4
5
6
7
8
9

specifies that the low-order byte of the indicated register (2 through
12) contains a value between 1 and 9, indicating the IOSLEVEL.

MF-IL I (E,addrn
specifies either the execute or list form of MSGDISP. If you do not specify
this parameter, the standard form of the macro is used.

L
specifies the list form of MSGDISP. This generates a parameter list
that can be used as input to the execute form. The execute form can
modify the parameter list.

(E,addr)
specifies that the execute form of the macro and an existing parameter
list is to be used.

addr-RX-type address, (1), or (2-12)
specifies an in-storage address of the parameter list.

MLABEL-I' A' I 'N' I '.s' I 'X' I addTi
displays the label type of the volume to be loaded and made ready following
a demount, in position 8. If you specify an unknown label type other than a
blank, a "1" is displayed. You may only specify this parameter if you also
specify the MSER parameter.

192 MVS/XA System-Data Administration

rf~'

"".j

;('-, ', .. /

('A'

'N'

IS'

'X'

specifies ISO/ANSI/PIPS (AL) or ISO/ ANSI/FIPS with user (AUL)
labels. Specify in apostrophes.

specifies no labels (NL), LTM (DOS), or bypass label processing
(BLP). Specify in apostrophes.

specifies mM Standard (SL) or mM Standard with user (SUL) labels.
Specify in apostrophes.

specifies nonstandard (NSL) labels. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing an "A", "N",
"S", or "X" (see the following explanations of these characters). For
MF=L, you may only specify an A-type a4dress.

MSER=I'volser-to-mount' I addrJ
displays the mount message for the next volume alternately (flashing) with
the demount message. The display continues untilyou demount the current
volume. At that time, the mount message will display (flashing) until you
load the volume and make the device ready. If no volume is mounted at the
time the demount and mount messages are executed, only the mount
message will display (flashing) until the volume is loaded and ready.

, volser-to-mount'
specifies the volume serial number of the volume to be mounted, as a
literal. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of the volume serial number of the
volume to be mounted. For MF=L, you may only specify an A-type
address.

SER=l'volser' I addrJ
specifies the serial number of the volume to be demounted. The serial
number is displayed in positions 2 through 7. If you do not specify SER, the
system supplies the volume serial number. If the serial number is not
available, a scratch volume is used, unless the volume use attribute indicates
a default of "PRIV AT".

'volser'
specifies the volume serial number as a literal. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of the volume serial number. This
parameter is not valid for the MF=L form. For MF=L, you may only
specify an A-type address.

TEST=INQ I YES}
specifies whether to test the UCB to determine if the device is capable of
displaying messages. message display SVC routine.

Chapter 6. System Macro Instructions 193

YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call.

Note: TEST=YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code.

W AIT={NO I YES}
specifies when control is to be returned to you.

NO
specifies that control is to be returned before I/O is complete. I/O
return codes are not returned, and I/O errors are recorded in the same
manner as any permanent error by the error recovery procedure.

specifies that control is to be returned after I/O is complete.

MSGDISP-Resetting the Message Display

The format for specifying MSGDISP with the RESET parameter is:

[symbol] MSGDISP RESET
,{UCB=(reg) I ,UCBL=addr}
[,FORCE={NQ I YES I n I keyword I (reg)}]
[,MF={L I (E,atidrm
(,TEST={NQ I YESJ)
(,WAIT={NO I YESJ)

RESET
clears all existing data on the display. If you specify WAIT=NO and the last
service requested was a demount, the display is not cleared.

After being cleared, the display will show the device's internal status message
(for example, a message indicating that the device is ready).

UCB=(reg)-(2-12)
specifies a register containing the UCB address for the device.

UCBL=addr-RX-type address, A-type address, (0), or (2-12)
specifies the address of a list containing a maximum of 64 words. Each word
in the list contains the address of a UCB representing a device whose display
is to be reset. The end of the list is indicated by a '1' in the high order bit of
the last address in the list. If an error is encountered while processing the
list, register 1 points to the associated UCB when you regain control.

You cannot specify UCBL with TEST=YES and WAIT=NO.

FORCE={NQ I YES I n I keyword I (reg)}
specifies the priority (IOSLEVEL) for the display request's I/O. The higher
the 10SLEVEL value, the greater the priority.

194 MVS/XA System-Data Administration

c

(

If you do not specify the FORCE parameter, the default is FORCE=NO.

YES

n

prevents execution of a display request for a device whose I/O is
being quiesced. The 10SLEVEL is set to the installation default, as
indicated in the CVTIONLV field of the CVT.

forces execution of a display request for a device even if its I/O is
being quiesced. The 10SLEVEL is set to 9, the highest priority.

specifies a decimal number from 1 to 9, to be used as the 10SLEVEL
value. A high number indicates a higher priority request for the
device.

keyword

(reg)

specifies a label equated to an 10SLEVEL value:

NORMAL
QUIESCE
DAVY
DDR
DYNPATH
UNCRSV
CHPRCVY
SCHRCVY
FDEV

1
2
3
4
5
6
7
8
9

specifies that the low-order byte of the indicated register (2 through
12) contains a value between 1 and 9, indicating the 10SLEVEL.

MF={L I (E,addr)J
specifies either the execute or the list form of MSGDISP. If you do not
specify this parameter, the standard form of the macro is used.

L
specifies the list form of MSGDISP. This generates a parameter list
that can be used as input to the execute form. The execute form can
modify the parameter list.

(E,addr)
specifies that the execute form of the macro and an existing parameter
list is to be used.

addr-RX-type address, (1), or (2-12)
specifies the address of the parameter list.

TEST={NO I YES,
specifies whether to test the UCB to determine if the device is capable of
displaying messages.

Chapter 6. System Macro Instructions 195

YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call. You cannot specify
TEST=YES if you also specify the UCBL parameter.

Note: TEST=YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code.

W AIT=lNO I YESJ
specifies when control is to be returned to you.

NO
specifies that control is to be returned before I/O is complete. I/O
return codes are not returned, and I/O errors ar~ recorded in the same
manner as any permanent error by the error recovery procedure.

You cannot specify WAIT=NO if you also specify the UCBL
parameter.

specifies that control is to be returned after I/O is complete.

Note: Demount messages can be reset only if WAIT = YES is
specified.

196 MVS/XA System-Data Administration

f~,.

L

(:
MSGDISP-Providing the FuH Range of Display Options

The format for specifying MSGDISP with the GEN parameter is:

[symbol] MSGDISP GEN
,UCB=(reg)
[,FLASH={STEADY I STEADY2
I BLINK I BLINK2 I AL Tn
[,FORCE={NO I YES I n I keyword I (reg)J)
[,MF=IL I (E,addr)J)
[,TEST =INQ I YESJ]
[,TXT={'msgtxt' I addrJ]
[,TXT2={'altmsgtxt' I addrH
[,VOL={STATIC I REMOVE I INSERT I SWAPn
[,WAIT={NO I YESn

GEN
specifies the full range of display options.

UCB=(reg)-(2-12)
specifies a register containing the UCB address for the device.

FLASH={STEADY I STEADY21 BLINK I BLINK21 ALTJ
specifies message display mode.

Note: If you specify VOL=SWAP, messages will always be displayed as if
you had specified FLASH=ALT

STEADY
specifies that the primary message (TXT) is to be displayed without
flashing.

STEADY2
specifies that the alternate message (TXT2) is to be displayed without
flashing.

BLINK
specifies that the primary message (TXT) flash on and off at a rate of
approximately two seconds on and one-half second off.

BLINK2

ALT

specifies that the alternate message (TXT2) flash on and off at a rate
of approximately two seconds on and one-half second off.

specifies that the primary and alternate messages (TXT and TXT2)
flash on and off alternately, at a rate of approximately two seconds on
and one-half second off.

FORCE={NO I YES I n I keyword I (reg)J
specifies the priority (IOSLEVEL) for the display request's I/O. The higher
the 10SLEVEL value, the greater the priority.

If you do not specify the FORCE parameter, the default is FORCE=NO.

Chapter 6. System Macro Instructions 197

YES

n

prevents execution of a display request for a device whose I/O is
being quiesced. The 10SLEVEL is set to the installation default, as
indicated in the CVTIONLV field of the CVT.

forces execution of a display request for a device even if its I/O is
being quiesced. The 10SLEVEL is set to 9, the highest priority.

specifies a decimal number from 1 to 9, to be used as the 10SLEVEL
value. A high number indicates a higher priority request for the
device.

keyword

(reg)

specifies a label equated to an 10SLEVEL value:

NORMAL 1
QUIESCE 2
DAVY 3
DDR 4
DYNPATH5
UNCRSV 6
CHPRCVY7
SCHRCVY8
FDEV 9

specifies that the low-order byte of the indicated register (2 through
12) contains a value between 1 and 9, indicating the 10SLEVEL.

MF=IL I (E,addr)J
specifies either the execute or the list form of MSGDISP. If you do not
specify this parameter, the standard form of the macro is used.

L
specifies the list form of MSGDISP. This generates a parameter list
that can be used as input to the execute form. The execute form can
modify the parameter list.

(E,addr)
specifies that the execute form of the macro and an existing parameter
list is to be used.

addr
specifies an in-storage address of the parameter list. Specify
either an RX-type address or a register in the range of 2
through 12.

TEST=INQ I YESJ
specifies whether to test the UCB to determine if the device is capable of
displaying messages.

198 MVS/XA System-Data Administration

c

(
YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call.

Note: TEST = YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code.

TXT={'msgtxt' 'addrJ
specifies 8 characters to be shown in positions 1 through 8 of the display. If
you do not specify TXT, blanks are displayed.

'msgtxt'
specifies the 8 characters as literals. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing the 8 characters.
For MF=L, you may only specify an A-type address.

TXT2=={'altmsgtxt' ,addrJ
specifies 8 alternate characters to display in positions 1 through 8 of the
display. If you do not specify TXT2, blanks are displayed.

, altmsgtxt'
specifies the 8 characters as literals. Specify in apostrophes.

addr-RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing the 8 characters.
For MF==L, you may only specify an A-type address.

VOL=={STATIC' REMOVE' INSERT, SWAPJ
specifies message display mode, based on volume status.

STATIC
specifies that messages will display without regard to volume status
until the next message request is executed, or until the next command
initiates volume movement.

REMOVE
specifies that messages will display until the current volume is
demounted. This parameter is ignored if a volume is not mounted
when the request is executed.

INSERT
specifies that messages will display until a volume is present, the tape
threaded, and the active/inactive switch is in the active position. This
parameter is ignored if a volume is loaded and ready when the request
is executed.

SWAP
specifies that messages will always display as if FLASH==ALT were
specified. The data from TXT and TXT2 displays alternately
(flashing) until the current volume has been demounted. Then only
TXT2 will display (flashing) until a new volume is loaded and ready.

Chapter 6. System Macro Instructions 199

If no volume is rttounted when this parameter is specified, only TXT2
data will display (flashing) until a new volume is loaded and ready.

WAIT={NO I YES'
specifies when control is to be returned to you.

NO

Return Codes from MSGDISP

specifies that control is to be returned before I/O is complete. I/O
return codes are not returned, and I/O errors are recorded in the same
manner as any permanent error by the error recovery procedure.

specifies that control is to be returned after I/O is complete.

When the system returns control to the problem program, the low-order byte of
register 15 contains a return code. The low-order byte of register 0 may contain a
reason code as follows:

Return
Code (RlS)

OO(X'OO')

04(X'04')

08(X'08')

08(X'08')

200 MVS/XA System-Data Administration

Reason
Code (RO)

01(X'01 ')

Meaning

Successful completion.

Device does not support MSGDISP.

Unauthorized request (failed TEST AUTH for
proper authority level) or invalid input parameters
(including DCB or UCB).

Invalid parameter.

02(X'02') Invalid DCB or DEBCHK error.

03 (X' 03') Environmental error.

04(X' 04') Authorization violation.

05(X'05') Invalid UCB.

06(X'06') Invalid request.

11(X'OB') Unsuccessful ESTAE macro call.

12(X'OC') Unsuccessful GETMAIN request.

(

('

Return
Code (R15)

12(X'OC')

Reason
Code (RO) Meaning

I/O error (I/O Supervisor posted the request for
an error).

Note: An I/O error occurs for load display if the
drive display has a hardware failure.

If you get return code X'04' or X'OC' on a RESET UCBL operation, register 1
points to the UCB associated with the error when you regain control.

Chapter 6. System Macro Instructions 201

Chapter 7. Maintaining SYSl.IMAGELIB

This chapter describes how to maintain the system image library
(SYSl.IMAGELm) and UCS images for the mM 1403, 3203, and 3211 Printers,
and FCB images for the mM 3203, 3211, and 4245 Printers. Sample JCL
jobstreams for adding a UCS image to SYSl.IMAGELm for the mM 1403,3203,
and 3211 Printers are shown in Figure 37 on page 206, Figure 38 on page 207,
and Figure 39 on page 208, respectively.

SYSl.IMAGELm does not contain ues images for the mM 3262 ModelS, 4245,
or 4248 Printers, but instead contains image tables. By means of these image
tables, the system relates the user-requested UCS image to the corresponding print
band. Figure 40 on page 210 defines and describes the structure of an image
table entry. The contents of mM-supplied image tables for the mM 4245 and
4248 Printers are shown in Figure 41 on page 211 and Figure 42 on page 212,
respectively. The mM 3262 ModelS Printer uses the same image table as the
4248.

This chapter also describes How to maintain the ues image table in
SYS1.IMAGELm for the mM 3262 ModelS, 4245, and 4248 Printers. To
determine which print bands are available, see:

• IBM 3262 Printer Model 5 Product Description, containing information on
band IDs for the 3262 ModelS Printer

• IBM 4245 Printer Modell Component Description and Operator's Guide,
containing information on band IDs for the 4245 Printer

• IBM 4248 Printer Description, containing information on band IDs for the
4248 Printer

SYSl.IMAGELm also contains control modules for the mM 3800 Printing
Subsystem. You can use the IEBlMAGE utility program to create and maintain
these control modules (character arrangement table modules, graphic character
modification modules, copy modification modules, library character set modules,
and FCB modules).

You can also use IEBIMAGE to create and maintain FCB modules in
SYSl.IMAGELm for the 4248 Printer. You can use FCB modules created for the
4248 with the 3262 ModelS Printer. However, the 3262 ModelS does not
support variable printer speeds or the horizontal copy feature of the 4248. For
more information about IEBIMAGE, see Utilities.

This chapter also describes how to retrieve an FCB image from SYS1.IMAGELm
for modification.

Chapter 7. Maintaining SYSl.IMAGELIB 203

To use the information presented in this chapter, you should be familiar with the
subjects of the following publications:

• Data Administration: Macro Instruction Reference describes the SETPRT macro
that you can use to specify the images or modules that you want.

• JCL Reference describes the CHARS, MODIFY, UCB, and FCB parameters
of the DD statement that are processed at OPEN time.

• IBM 2821 Control Unit Component Description contains information on
creating a user-designed chain/train for the 1403 Printer.

• IBM 3203 Printer Component Description and Operator's Guide contains
information on creating a user-designed train for the 3203 Printer.

• IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer
Control Unit Component Description and Operator's Guide contains information
on creating a user-designed train for the 3211 Printer.

• JES2 Initialization and Tuning and Network Job Entry Facility for JES2 contain
reference information for JES2.

• JES3 Initialization and Tuning

You can use the SPZAP service aid to display and modify an existing member of
SYSl.IMAGELffi. Service Aids describes the use of SPZAP.

ues Images in SYSl.IMAGELIB

Most ffiM standard character set images are included in SYSl.IMAGELffi at
system generation time, through the DAT AMGT macro and an IODEVICE macro
for the specified printer. (For details on the DATAMGT and IODEVICE macros,
see System Generation.) The standard character set images for the 1403, 3203, and
3211 Printers are shown below.

Printer Images

1403 or 3203 AN, HN, PCAN, PCHN, PN, QNC, QN, RN, SN, TN,
XN,YN

3211 All, GU, HU, PU, TU

Adding a ues Image to the Image Library

Using the assembler and linkage editor, you may add a UCS image to those that
reside in SYSl.IMAGELffi. No executable code is generated; the assembler
prepares DCs, and the linkage editor puts them into SYS1.IMAGELIB. The new
UCS image must be structured according to the following rules:

1. The member name must be 5 to 8 characters long; the first 4 characters must
be the appropriate UCS prefix, as shown below.

204 MVS/XA System-Data Administration

(-

(

ueSl - 1403 Printer

ueS2 - 3211 Printer (or 3211-compatible printer)

ueS3 - 3203 Printer

These first four characters must be followed by a character set code, one to
four characters long. Any valid combination of letters and numbers under
assembler language rules is acceptable. However, the single letters U or e
must not be used, because they are symbols for special conditions recognized
by the system. The assigned character set code must be specified on th~ DD
statement or SETPRT macro to load the image into the ues buffer.

You can supply an alias name for a new image with the ALIAS statement of
the linkage editor. (For more information on the ALIAS statement, see
Linkage Editor and Loader User's Guide.)

2. The first byte of the character set image load module specifies whether the
image is a default. (Default images may be used by the system for jobs that do
not request a specific image.) Specify the following in the first byte:

For JES2:

X'80' indicates a default image.

X'40' indicates that the output is to be folded.

x'eo' indicates default image and folding.

X'OO' indicates that the image is not to be used as a default.

For non-JES2:

X'80' indicates a default image.

X'OO' indicates that the image is not to be used as a default.

3. The second byte of the load module indicates the number of lines (n) to be
printed for image verification. See "Verifying the ues Image" on page 215
for more information on image verification.

4. Each byte of the next n bytes indicates the number of characters to be printed
on each verification line. For the 3211 Printer, the maximum number of
characters printed per line is 48; the bytes of associative bits (see note 5) are
not printed during verification.

5. The ues image itself must follow the previously described fields. The image
must fill the number of bytes required by the printer; see the table below for
image lengths. Note that, because of Assembler language syntax, two
apostrophes or two ampersands must be coded to represent a single apostrophe
or a single ampersand, respectively, within a character set image.

Chapter 7. Maintaining SYSl.IMAGELIB 205

I
'I

Printer Image Length

1403 240 bytes

3203 304 bytes (240 characters followed by 64 bytes of
associative bits)

3211 512 bytes (432 characters followed by 15 bytes of X'OO'
64 bytes of associative bits, and one reserved byte of
X'OO')

Associative bits must be coded to prevent data checks when adding a ues
image to SYS1.IMAGELffi. See the appropriate printer manual for more
information on coding associative bits.

UCS Coding Examples

• Figure 37 contains an example of adding a 1403 ues image, YN, to
SYSl.IMAGELffi or the image library. Notes follow Figure 39 on page 208.

• Figure 38 on page 207 shows the ,code used to add a 3203 ues image, YN,
to SYS1.IMAGELffi or the image library.

• Figure 39 on page 208 shows the code used to add a 3211 ues image, All,
to SYSl.IMAGELIB or the image library.

IIADDYN JOB MSGLEVEL=1
IISTEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',
II PARM.LKED='LIST,OL,REFR,RENT,XREF'
IIASM.SYSIN DD *
UCS1YN CSECT

DC X' 80' (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LINES TO BE PRINTED)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 1)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 2)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 3)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 4)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 5)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 6)

* THE FOLLOWING SIX LINES REPRESENT THE TRAIN IMAGE

1*

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
END

IILKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS1YN),DISP=OLD,
II SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 37. Sample Code to Add a 1403 UCS Image to SYS1.IMAGELIB

206 MVS/XA System-Data Administration

tf-~,

"'-J

('

(

IIADYN3203 JOB MSGLEVEL=1
IISTEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',
II PARM.LKED='LIST,OL,REFR,RENT,XREF'
IIASM.SYSIN DD *
UCS3YN CSECT

DC X'80' (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LINES TO BE PRINTED)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 1)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 2)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 3)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 4)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 5)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 6)

* THE FOLLOWING SIX LINES REPRESENT THE TRAIN IMAGE
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'123456.7890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'

* THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
* UCSB BYTE POSITIONS 241-304

1*

DC X'C01010101010101010100040000000000010'
DC X'101010101010101000404000000040001010'
DC X'101010101010004000000000101010101010'
DC X'10101010004000000000&'
END

IILKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS3YN),DISP=OLD,
II SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 38. Sample Code to Add a 3203 UCS Image to SYSt.lMAGELIB

Chapter 7. Maintaining SYSl.IMAGELIB 207

IIADDA11 JOB MSGLEVEL=1
IISTEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',
II PARM.LKED='LIST,OL,REFR,RENT,XREF'
IIASM.SYSIN DD *
UCS2A11 CSECT

DC X'80' (THIS IS A DEFAULT IMAGE)
DC AL1(9} (NUMBER OF LINES TO BE PRINTED)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 1)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 2)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 3)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 4)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 5)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 6)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 7)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 8)
DC AL1(48} (48 CHARACTERS TO BE PRINTED ON LINE 9)

* THE FOLLOWING NINE LINE$ REPRESENT THE TRAIN IMAGE
* NOTE 2 AMPERSANDS MUST BE CODED TO GET 1 IN ASSEMBLER SYNTAX

DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC 15X'OO' (RESERVED FIELD, BYTES 433-447)

* THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
* UCSB BYTE POSITIONS 448-511

1*

'DC X'C01010101010101010100040404240004010'
DC X'101010101010101000404041000040401010'
DC X'101010101010004040000000101010101010'
DC X'10101010004040444800'
DC X'OO' (RESERVED FIELD, BYTE 512)
END

IILKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS2A11} ,DISP=OLD,
II SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 39. Sample Code to Add a 3211 UCS Image to SYSl.IMAGELIB

208 MVS/XA System-nata Administration

(

Notes to Figure 37 on page 206, Figure 38 on page 207, and Figure 39:

1. The RENT and REFR linkage editor attributes are required.

2. For the 3203 and 3211 Printers, the 64 bytes of associative bits must be coded
to avoid data checks. To determine how to code these bits for a particular
image, see IBM 3203 Printer Component Description and Operator's Guide or
IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer
Control Unit Component Description and Operator's Guide.

3. Executing the ASMFCL procedure does not actually generate executable code.
The assembler/linkage editor merely places the UCS image into
SYS1.IMAGELm.

4. The SPACE parameter is overridden here because the ASMFCL cataloged
procedure has secondary allocation specified. By eliminating the override you
can use the original secondary allocation amount.

ues Image Tables in SYSl.IMAGELIB

SYSl.IMAGELm does not contain UCS images for the mM 3262 Model 5, 4245,
or 4248 Printers, but contains image tables. The UCS image for each band is
stored, instead, in the printer, and is automatically loaded into the UCS buffer
when the machine is powered on or a new band is installed. See Figure 40 on
page 210 for the format of image table entries, and "Adding or Modifying a UCS
Image Table Entry" on page 213 for information on how to add or modify an
image table entry.

AIias Names in Image Tables

SYS I.IMAGELm contains one UCS image table for each type of printer that
supports image tables. An image table contains an entry for most
installation-standard mM-supplied bands. The 4245 image table is named UCS5.
The shared 4248 and 3262 Model 5 image table is named UCS6.

The image tables also define alias names for most installation-standard print bands
used on the mM 4245 and 4248 Printers. The mM-supplied image tables do not
provide alias names for the mM 3262 Model 5 Printer.

Some print chains/trains/bands, such as SN and KA22, do not have alias names
because there is no equivalent chain/train/band on other printers. You can assign
an alias for these chains/trains with the linkage editor ALIAS statement. (For
more information on the ALIAS statement, see Linkage Editor and Loader User's
Guide.) For the 3262 Model 5, 4245, or 4248 Printer, you can add an alias name
by adding or modifying an entry in the UCS image table. See "Adding or
Modifying a UCS Image Table Entry" on page 213. A typical UCS image table
entry is shown in Figure 40 on page 210.

Chapter 7. Maintaining SYS1.IMAGELIB 209

Byte °l~ 1 _5 ----a.i~rj'_i ~'iIoo.--l'f :: I I ::j
I ~Doo>i""_' W length of d.m:ription data 1

'------~ lengths of verification Iines2
(V lENGTH); one byte per line

'---------~ Number of verification Iines2

'------------~ Reserved (set to zero)

--------------~ Description offset (set to zero if omitted)

'---------------~ Verification offset (set to zero if omitted)

Flag Byte: X'OO': Non-def.u~ image
X'40'= Fold image
X'60'= Fold imagel Default
X'SO'= Default image

'--------------------~ UCSlma~Name

Figure 40. UCS Image Table Entry Format

Notes to Figure 40:

1. This field is optional.

UCS Image Name or Alias (1-4 character
name, left-justified and pedded to 8

4-character length with blanks, if necessary)

Length of this entry

2. This field is optional for the 4245 Printer. For the 3262 Model 5 and the
4248, this field does not apply and is set to X '00' .

210 MVS/XA System-Data Administration

(f~

\-L/

(

(

(

The contents of the UCS image table UCS5 (IGGUCS5 macro), for the 4245
Printer, are shown in Figure 41.

Name Alias Default Description

AN21 AN21 YES Default UCS image

AN21 AN NO 1403/3203 AN image

AN21 All NO 3211 All image

AN21 40EI NO 4248 40EI image

HN21 HN21 NO Nondefault UCS image

HN21 HN NO 1403/3203 HN image

HN21 Hll NO 3211 Hll image

HN21 4101 NO 42484101 image

PL21 PL21 NO Nondefault UCS image

PL21 PN NO 1403/3203 PN image

PL21 Pll NO 3211 Pll image

PL21 4121 NO 42484121 image

SN21 SN21 NO Nondefault ues image

SN21 4201 NO 42484201 image

TN21 TN21 NO Nondefault UCS image

TN21 TN NO 1403/3203 TN image

TN21 Til NO 3211 Til image

TN21 4181 NO 42484181 image

GN21 GN21 NO Nondefault UCS image

GN21 Gil NO 3211 Gil image

GN21 41Cl NO 4248 41Cl image

RN21 RN21 NO Nondefault UCS image

RN21 RN NO 1403/3203 RN image

KA21 KA21 NO Nondefault UCS image

KA21 4041 NO 4248 4041 image

KA22 KA22 NO Nondefault UCS image

FC21 FC21 NO Nondefault UCS image

FC21 4161 NO 42484161 image

FIgure 41. UCSSImIIge Table COIltents

Chapter 7. Maintaining SYS1.IMAGELIB 211

The contents of the ues image table UeS6 (IGGUeS6 macro), for the 4248
Printer, are shown in Figure 42 ..

Name A6as Default Description

40El 40El YES Default UCS image

40El AN21 NO 4245 AN21 image

40El AN NO 1403/3203 AN wage

40El All NO 3211 All image

4101 4101 NO Nondefault UCS image

4101 HN21 NO 4245 HN21 image

4101 HN NO 1403/3203 HN image

4101 H11 NO 3211 H11 image

41Cl 41Cl NO Nondefault UCS image

41Cl GN21 NO 4245 GN21 image

41Cl GIl NO 3211 GIl image

4121 4121 NO Nondefault UCS image

4121 PL21 NO 4245 PL21 image

4121 PN NO 1403/3203 PN image

4121 P11 NO 3211 P11 image

4181 4181 NO Nondefault UCS image

4181 TN21 NO 4245 TN21 image

4181 TN NO 1403/3203 TN image

4181 TIl NO 3211 TIl image

4061 4061 NO Nondefault UCS image

40Cl 40el NO Nondefault UCS image

4161 4161 NO Nondefault UCS image

4161 FC21 NO 4245 FC21 image

4201 4201 NO Nondefault UCS image

4201 SN21 NO 4245 SN21 image

4041 4041 NO Nondefault UCS image

4041 KA21 NO 4245 KA21 image

Figure 41. UCS61mage Table Contents

Note: The image tables for the 4245 and 4248 Printers include USA and Canada
band IDs only. To support other national band IDs, you must modify the UCS
image table. See "Adding or Modifying a UCS Image Table Entry" on page 213.

The 3262 Model 5 Printer uses the 4248 UCS image table, UCS6. However, no
3262 Model 5 band names or aliases are provided by mM in UCS6. In order to
use 3262 Model 5 UCS images, you must add the names and aliases to UCS6

212 MVS/XA System-Data Administration

~-"

\\.j

(
yourself. "Adding or Modifying a ues Image Table Entry" on page 213
describes how to add entries to the ues image table. For a list of the bands
available for the 3262 Model 5, see IBM 3262 Printer Model 5 Product Description.

Adding or Modifying a UCS Image Table Entry

If you plan to use a new ues image name/alias with the 3262 Model 5, 4245, or
4248 Printer, you must add an entry for that image name/alias to the appropriate
ues image table. As shown below, use the assembler to compile the image table
module, then link-edit the object file into SYS1.IMAGELIB. Similarly, if you want
to select a new default image or change the description on an old image, you must
change the image table.

To build new ues table entries, or to change the format of old entries, use the
following procedure. Also, see "Example 1: Adding a New Band ID to the 4245
ues Image Table (UeS5)" on page 216 and "Example 2: Adding a New Default
Entry to the 4248 ues Image Table (UeS6)." on page 216.

1. Issue the IGGUeSIT macro, as described below, to build a new ues image
table entry. If you are updating the image table as shown in the following two
examples, the linkage editor builds a new entry at the start of the table, even if
you intended to replace an existing entry. When the system subsequently uses
the table, it encounters the new entry first, thus the old one is effectively
replaced.

2. Include the ues image table source, using the IGGUeS5 or IGGUeS6 macro,
both of which are found in SYSl.MAeLm.

3. Assemble the image table module (UeS5 or UeS6).

4. Link-edit the assembled module into SYS1.IMAGELIB.

Note: RENT and REFR are required attributes.

The IGGUeSIT macro instruction has the following format:

IGGUCSIT MF=ILIST 1 DSECll

,NAME=image name

[,ALIAS = image alias)

[,DEFAULT=IYES 1 NOH

[,DESCR=description)

[,DEVICE=14245 1424811

[,VLENGTH=(nl,n2, •• • n»)

[,FOLD = {YES 1 NOli

MF=ILIST 1 DSECTJ
specifies the form of the macro instruction.

Chapter 7. Maintaining SYS1.IMAGELIB 213

produces a UCS image table entry based on the information
supplied in other IGGUCSIT parameters. If LIST is selected or
allowed to default, the NAME parameter must also be coded.

DSECT
produces a DSECT for a single UCS image table entry, similar to
the sample entry shown in Figure 40 on page 210. If you code
DSECT, all other parameters of IGGUCSIT are ignored.

LIST is the default.

NAME=image name
specifies the 1 to 4 character UCS image name.

ALIAS= image alias
specifies a 1 to 4 character alias name for the UCS image. If ALIAS is
not specified, the image name coded in the NAME parameter will be
entered in the UCS image table.

DEFAULT=IYESI NOJ
indicates whether the new UCS image is to be used as a default value.

YES
indicates that this UCS image is a default. Default images are used
by the system for jobs that do not request a specific image.

indicates that this UCS image should not be used as a default.

If the DEFAULT parameter is not specified, the new UCS image is not
used as a default.

DESCR=description
specifies descriptive information about the new UCS image. description
can be up to 32 EBCDIC or hexadecimal characters long. You cannot use
EBCDIC and hexadecimal characters in combination.

Descriptive information is placed in the header line of the verification
display, following the real UCS image name. If you omit the DESCR
parameter, no description appears in the display. For more information on
the verification display, see "Verifying the UCS Image" on page 215.

If VLENGTH is not specified for the 4245 Printer, the DESCR parameter
is ignored.

DEVICE=f4245I 4248}
specifies the type of device for which an image table entry is to be created.

If you specify MF=LIST on the first invocation of the IGGUCSIT macro,
DEVICE defaults to 4245. The default for subsequent invocations is the
printer type that you specified (or the default) on the first invocation.
Table entries with different DEVICE specifications are not allowed.

214 MVS/XA System-Data Administration

rf .. "
\~.

(... ~
~

(

(-
Verifying the ues Image

(

For the 3262 ModelS Printer, DEVICE=4248 should be specified in
order to create the appropriate form of the image table entry.

VLENGTH=(nl,n2, ••• n)
specifies the length(s) of each line in the UCS verification display. The
length of each line must be specified separately, even if alllines are of the
same length.

nl is the length of print line 1; n2 is the length of print line 2; n is the
length of the last print line. To display the complete image, the sum of the
verification line lengths should equal 350.

For details on the verification report, see "Verifying the UCS Image."

The VLENGTH parameter is not valid for the 3262 ModelS or 4248
Printer.

FOLD=IYES I NO}
indicates whether the UCS image is to be folded.

YES
indicates that the UCS image is to be folded. Allows printing only
uppercase characters from either upper- or lowercase data codes.
Folding continues until an UNFOLD command is received.

indicates that the UCS image is not to be folded. This is the default.

For the 1403 (with the UCS feature), 3203, 3211, 3262 ModelS, 4245, and
4248 Printers, you can print the UCS image for visual verification using either of
the following parameters:

• In JCL: UeS=(character set code"VERIFY)

• In the SETPRT macro: UeS=(character set code"V)

You can also use these parameters for the 3262 ModelS and 4248 Printers.
However, because the UCS image cannot be read directly from the 3262 Model
5, or 4248, only the header information is printed. The verification display
header appears in the format shown below.

UCS IMAGE VERIFICATION image id [,FOLD] [descriPtion]

image id
The 1- to 4-character name of the UCS image.

description
The descriptive information supplied for this UCS image in the UCS
image table.

Chapter 7. Maintaining SYSl.lMAGELIB 215

For more information about the UCS VERIFY parameters, see JCL Reference
and Data Administration: Macro Instruction Reference.

Examples of Adding to the ues Image Table

Example 1: Adding a New Band ID to the 4245 ues Image Table (UeS5)

In this example, the band name RPQ1 with description "RPQ BAND" is added
to UCS5. In the UCS verification display, 7 lines of 50 characters each are
printed. Macro IGGUeS5 causes the UCS image table source (as distributed by
mM) to be included in the table entry.

IIUCSS JOB
II EXEC ASMFCL,
II PARM.ASM= 'NODECK, LOAD , ,
II PARM.LKED= , OL, RENT, REUS ,
IISYSPRINT DD SYSOUT=A
IIASM.SYSIN DD *
UCS5

1*

TITLE 'UPDATED UCSS IMAGE TABLE'
CSECT
IGGUCSIT NAME=RPQ1,

VLENGTH=(50,50,50,50,50,SO,SO),
DESCR='RPQ BAND'

IGGUCSS
END

IILKED.SYSLMOD DD DSN=SYS1.IMAGELIB(UCS5),DISP=OLD,
II SPACE= (OVERRIDE SECONDARY ALLOCATION)

Notes to Example 1:

1. The RENT and REUS linkage editor attributes are required.

72

X
X

2. Executing the ASMFCL procedure does not actually generate executable
code. The assembler/linkage editor places the updated UCS image table
into SYSl.IMAGELIB.

3. The SPACE parameter is overridden here because the ASMFCL cataloged
procedure has secondary allocation specified. Elimination of the override
causes the original secondary allocation amount to be used.

Example 2: Adding a New Default Entry to the 4248 ues Image Table (UeS6).

In the following example, the band name 40E1 with description "40E1
DEFAULT BAND" is added to UCS6 and defined as a default band. An alias
name, HN21, is also defined for band 40El. Macro IGGUCS6 causes the UCS
image table source (as distributed by ffiM) to be included in the table entry.

216 MVS/XA System-Data Administration

(-

(-

IIUCS6 JOB
II EXEC ASMFCL,
II PARM.ASM='NODECK,LOAD',
II PARM.LKED= , OL, RENT, REUS ,
IISYSPRINT DO SYSOUT=A
IIASM.SYSIN DO *

TITLE 'UPDATED UCS6 IMAGE TABLE'
UCS6 CSECT

1*

IGGUCSIT NAME=40E1,
DEVICE=4248,
ALIAS=HN21,
DEFAULT=YES,
DESCR='40E1 DEFAULT BAND'

IGGUCS6
END

IILKED.SYSLMOD DD DSN=SYS1.IMAGELIB(UCS6),DISP=OLD,
II SPACE= (OVERRIDE SECONDARY ALLOCATION)

Notes to Example 2:

72

X
X
X
X

1. This method creates a duplicate entry for 40El that becomes the first entry
in the table. Because the table is searched sequentially, the new entry is
always found before the old entry, thus effectively replacing the old entry.

2. The RENT and REUS linkage editor attributes are required.

3. Executing the ASMFCL procedure does not generate executable code. The
assembler/linkage editor places the updated UCS image table into
SYS1.IMAGELffi.

4. The SPACE parameter is overridden because the ASMFCL cataloged
procedure has secondary allocation specified. Elimination of the override
causes the original secondary allocation amount to be used.

FeB Images in SYSl.IMAGELIB

Two standard FCB images, SIDI and SID2, are included in SYS1.IMAGELffi
during system generation for the following printers:

3203

3211

3262 ModelS

4245

4248

The 4248 and 3262 ModelS Printers also accept FCBs that can be used with the
3203, 3211, and 4245 Printers. (These are referred to as 3211 format FCBs.)

Chapter 7. Maintaining SYSl.IMAGELIB 217

FCB2STDl

FIgure 43.

CSECT
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

X'80'
AL1(48}

SIDI sets Jine spacing at 6 Jines per inch for an 8-1/2 inch form; SID2 is a
default FCB image that sets line spacing at 6 Jines per inch for an II-inch form.
Channels for both images are evenly spaced., with Channell on the fourth line
and Channel 9 on the last line. See Figure 43 on page 218 and Figure 44 on
page 219 for sample SIDI and STD2 images.

The 3262 Model 5, the 4245, and the 4248 Printer each load a default FCB
image into the buffer when they are powered on. The 3262 ModelS default
FCB image is an II-inch fonD. with 6 Jines per inch, a Channell on the third
print Jine, and a Channel 12 on line 64. The 4245 default FCB image is an
II-inch form with 6 Jines per inch and a Channel I on the rust print line. The
4248 default FCB image is the last FCB image loaded.

The standard FCB images STD3 is included in SYSI.IMAGELIB during system
generation for the following printer:

3800

You should use the IEBIMAGE utility to create and modify FCB modules for
the 3800 Printing Subsystem. You should also use it to create and modify FCB
images for the 3262 Model 5 or 4248 Printer (4248 format FCBs).

Note: FCB module CSECT names for the 3262 Model 5 and 4248 Printers
must begin with the letters "FCB4" For information on IEBIMAGE and the
format of the 4248 FCB image, see Utilities.

DEFAULT
FCB IMAGE LENGTH = 48

X'OOOOOO' LINE 1, 2, 3
X'Ol' LINE 4, CHANNEL 1
X'OOOOOO' LINE 5, 6, 7
X'02' LINE 8, CHANNEL 2
X'OOOOOO' LINE 9, 10, 11
X'03' LINE 12, CHANNEL 3
X'OOOOOO' LINE 13, 14, 15
X'04' LINE 16, CHANNEL 4
X'OOOOOO' LINE 17, 18, 19
X'OS' LINE 20, CHANNEL 5
X'OOOOOO' LINE 21, 22, 23
X'06' LINE 24, CHANNEL 6
X'OOOOOO' LINE 25, 26, 27
X'07' LINE 28, CHANNEL 7
X'OOOOOO' LINE 29, 30, 31
X'08' LINE 32, CHANNEL 8
X'OOOOOO' LINE 33, 34, 35
X'OA' LINE 36, CHANNEL 10
X'OOOOOO' LINE 37, 38, 39
X'OB' LINE 40, CHANNEL 11
X'OOOOOO' LINE 41, 42, 43
X'OC' LINE 44, CHANNEL 12
X'OOOOOO' LINE 45, 46, 47
X'19' LINE 48, CHANNEL 9-END OF FCB IMAGE

SIuapIe of the Stmdud FeB STDl

218 MVS/XA System-Data Administration

;I~
, .~

'~j

(

(-

(

FCB2STD2 CSECT
DC X'80' DEFAULT
DC ALl (66) FCB IMAGE LENGTH 66
DC X'OOOOOO' LINE 1, 2, 3
DC X'Ol' LINE 4, CHANNEL 1
DC X'OOOOOOOOOO' LINE 5, 6, 7, 8, 9
DC X'02' LINE 10, CHANNEL 2
DC X'OOOOOOOOOO' LINE 11, 12, 13, 14, 15
DC X'03' LINE 16, CHANNEL 3
DC X '0000000000 , LINE 17, 18, 19, 20, 21
DC X'04' LINE 22, CHANNEL 4
DC X '0000000000 , LINE 23, 24, 25, 26, 27
DC X'05' LINE 28, CHANNEL 5
DC X'OOOOOOOOOO' LINE 29, 30, 31, 32, 33
DC X'06' LINE 34, CHANNEL 6
DC X'OOOOOOOOOO' LINE 35, 36, 37, 38, 39
DC X'07' LINE 40, CHANNEL 7
DC X'OOOOOOOOOO' LINE 41, 42, 43, 44, 45
DC X'08' LINE 46, CHANNEL B
DC X'OOOOOOOOOO' LINE 47, 48, 49, 50, 51
DC X'OA' LINE 52, CHANNEL 10
DC X'OOOOOOOOOO' LINE 53, 54, 55, 56, 57
DC X'OB' LINE 58, CHANNEL 11
DC X'OOOOOOOOOO' LINE 59, 60, 61, 62, 63
DC X'OC' LINE 64, CHANNEL 12
DC X'OO' LINE 65
DC X'19' LINE 66, CHANNEL 9-END OF FCB IMAGE
END

Figure 44. Sample of the Standard FeB ImIIge STDl

Adding an FeB Image to the Image Library

You may add a 321l-format FCB image to those that reside in
SYSI.IMAGELIB, using the assembler and linkage editor. No executable code
is generated; the assembler prepares DCs, and the linkage editor links them into
SYSI.IMAGELIB. The new FCB image must be structured according to the
following rules:

1. The member name may not exceed eight bytes. The IU'St four characters of
the name must be FCB2. The characters that follow identify the FCB image
and are referred to as the "image identifier" (ID). Any combination of valid
assembler language characters can be used, with the exception of a single
"e" or "U," because these are used by the system to recognize special
conditions. The image identifier must be specified in the FeB keyword of a
DD statement or in the SETPRT macro to load the image into the FeB
buffer.

2. The IlI'St byte of the FeB load module speciIleS whether the image is a
default. (Default images may be used by the system for jobs that do not
request a specific image.) Specify the following in the IU'St byte:

X'80' indicates a default image
X '00' indicates a nondefault image

Chapter 7. Maintaining SYSl.lMAGELIB 219

3. The second byte of the load module indicates the number of bytes to be
transferred to the control unit to load the FCB image. This count includes
the byte, if used, for the print position indexing feature.

4. The third byte of the load module (the first byte of the FCB image) is either
the print position indexing byte, or the lines-per-inch byte. The print
position indexing byte is optional and, when used, precedes the
lines-per-inch byte. The 3262 ModelS, 4245, and 4248 Printers accept and
discard the index byte if it is present, because neither printer supports the
indexing feature. A description of the print position indexing feature and its
use will be found in IBM 3211 Printer, 3216 Interchangeable Train
Cartridge, and 3811 Printer Control Unit Component Description and
Operator's Guide.

The special index flag in the third byte contains X' 80' plus a binary index
value, from 1 to 32 (the default is 1). This index value sets the left margin:
1 indicates flush-left; any other value indicates a line indented that many
spaces.

The form image begins with the lines-per-inch (LPI) byte. The LPI byte
defines the number of lines per inch (6 or 8) and also represents the first line
of the page.

Note: Printers controlled by JES2 require a channell identifier here.

Typically, the length of an FCB image is consistent with the length of the
form it represents. For example, an 8-1/2 inch form to be printed at 6 LPI
has an FCB image that is 51 bytes long (8-1/2 inches times 6 LPI).

The LPI byte appears as follows:

X'ln' sets 8 LPI

X'On' sets 6 LPI

5. All remaining bytes (lines) must contain X'On', except the last byte, which
must be X' In'. The letter n can be a hexadecimal value from 1 to C,
representing a channel (one to 12), or it can be 0, which means no channel
is indicated.

In Figure 45 on page 221, an FCB load module is assembled and added to
SYS1.IMAGELIB. The image defines a print density of 8 lines per inch on an
II-inch form, with a right shift of 15 line character positions (1-1/2 inches).

220 MVS/XA System-Data Administration

1-"
("

~.

IIADDFCB
IISTEP
II
IIASM.SYSIN
FCB2ID1
*THIS EXAMPLE

1*

JOB MSGLEVEL=1
EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREF'
DD *
CSECT

IS FOR
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

A FORM LENGTH O~ 11 INCHES WITH 8 LPI (88 LINES)
X'80' THIS IS A DEFAULT IMAGE
AL1(89) LENGTH OF FCB IMAGE AND INDEXING BYTE
X'8F' OFFSET 15 CHARACTERS TO THE RIGHT
X'10' 8 LINES PER INCH-NO CHANNEL FOR LINE 1
XL4'O' 4 LINES NO CHANNEL
X'01' CHANNEL 1 IN LINE 6
XL6'O' 6 LINES NO CHANNEL
X'02' CHANNEL 2 IN LINE 13
XL6'O' 6 LINES NO CHANNEL
X'03' CHANNEL 3 IN LINE 20
XL6'O' 6 LINES NO CHANNEL
X'04' CHANNEL 4 IN LINE 27
XL6'O' 6 LINES NO CHANNEL
X'05' CHANNEL 5 IN LINE 34
XL6'O' 6 LINES NO CHANNEL
X'06' CHANNEL 6 IN LINE 41
XL6'O' 6 LINES NO CHANNEL
X'07' CHANNEL 7 IN LINE 48
XL6'O' 6 LINES NO CHANNEL
X'08' CHANNEL 8 IN LINE 55
XL6'O' 6 LINES NO CHANNEL
X'09' CHANNEL 9 IN LINE 62
XL6'O' 6 LINES NO CHANNEL
X'OA' CHANNEL 10 IN LINE 69
XL6'O' 6 LINES NO CHANNEL
X'OB' CHANNEL 11 IN LINE 76
XL6'O' 6 LINES NO CHANNEL
X'OC' CHANNEL 12 IN LINE 83
XL4'O' 4 LINES NO CHANNEL
X'10' POSITION 88 LAST LINE IN IMAGE

IILKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(FCB2ID1),DISP=OLD,
II SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 45. Sample Code to Assemble and Add an FCB Load Module to SYSl.IMAGELIB

Notes to Figure 45:

1. The RENT and REFR linkage editor attributes are required.

2. Executing the ASMFCL procedure does not actually generate executable
code. The assembler/linkage editor is used to place the FCB image into
SYS1.IMAGELm.

3. The SPACE parameter is overridden here because the ASMFCL cataloged
procedure has secondary allocation specified. Elimination of the override
causes the original secondary allocation amount to be used.

Chapter 7. Maintaining SYSl.IMAGELm 221

Retrieving an FeB Image from SYSl.lMAGELm

H you want to modify an FCB image in virtual storage before loading it into a
forms control buffer, you can use this sequence of macro instructions to read the
FCB image into virtual storage.

1. An IMGLm macro instruction, along with the OPEN parameter

2. A BLDL macro instruction to determine whether the FCB image you want
is in the image library

3. A LOAD macro instruction to load the image into virtual storage

After the image has been read in, you should issue the IMGLm macro
instruction with the CLOSE parameter and the address of the DCB that was
built by the first IMGLm macro. A SETPRT macro instruction can be used to
load the forms control buffer with the modified image. Printers other than the
3800 require the use of an FCB entry in an exit list, as described in Data
Administration Guide.

The format of the BLDL and SETPRT macros is given in Data Administration:
Macro Instruction Reference; the format of the LOAD macro is given in
Supervisor Services and Macro Instructions.

The format of the IMGLm macro is shown below:

I [symbol) I IMGLm IIOPEN I CLOSE,addrJ

OPEN
specifies that a DCB is to be built for SYSl.IMAGELm and that
SYS 1.IMAGELIB is to be opened. The address of the DCB is returned in
register 1.

CLOSE
specifies that SYSl.IMAGELm is to be closed.

addr
specifies the RX-type address of the word that points to the DCB. H
coded in the form (reg), the register in parentheses then contains the
address of the DCB, not the address of the fullword.

Return codes from the IMGLIB OPEN macro are shown below:

Return Code Meaning

O(X'OO') Operation successful.

4(X'04') Either the volume containing SYS1.IMAGELIB is not
mounted or a required catalog volume is not mounted.

222 MVS/XA System-Data Administration

II"

~/

(f~

~j

(

(

RetumCode Meaning

8(X'08') Either SYS1.IMAGELm does not exist on the volume to
which the catalog points, or SYS1.IMAGELm is not
cataloged.

12(X'OC') An error occurred in reading the catalog or VTOC.

BLDL and LOAD are the only macros that may refer to the DCB built by the
IMGLm macro.

I

Chapter 7. Maintaining SYS1.IMAGELIB 223

I(
'\./

(

(.

Chapter 8. JES2 Support for the IBM 1403,3203 ModelS, and
3211 Printers

UCS Alias Names

The system assigns an alias for each installation-standard print chain not actually
defined on a given printer. This provides JES2 with flexibility in scheduling
printers for SYSOUT data sets. For example, a request for the 1403 TN train
would be assigned the TIl train if the data set were printed on a 3211. The
assigned alias names that follow the naming conventions currently used in
SYS1.IMAGELm are:

Image Alias

UCS1AN
UCSIHN
UCSIPN
UCSITN
UCS2Ali
UCS2Hli
UCS2Pll
UCS2T11

UCSIAll
UCSIHll
UCSIPII
UCSITll
UCS2AN
UCS2HN
UCS2PN,UCS2RN,UCS2QN
UCS2TN

The image and alias names are included in SYS1.IMAGELIB at system
generation.

Some trains, such as SN and GIl, do not have aliases because neither has an
equivalent train on the other printer. An installation can assign an alias, if it so
chooses. (For details about the ALIAS statement, see Linkage Editor and
Loader User's Guide.) If an alias is supplied, JES2 will use it. If an alias is not
supplied, an installation-defined SYSOUT class or a printer routing code
(specified via the DEST parameter) should be used to assign the data set to the
correct printer. If a SYSOUT class or a printer routing code is not used and if
JES2 is directed to print a data set on a printer for which the proper image is not
supplied, JES2 notifies the operator. The operator can then print the data set
with a valid train or redirect the data set to the proper printer via the '$E'
command.

If an installation defines a new train, it can supply an alias name for that train,
via the linkage editor ALIAS statement, when including the image in
SYSl.IMAGELm.

Chapter 8. JES2 Support for the mM 1403, 3203 ModelS, and 3211 Printers 225

The 3211 Indexing Feature

JES2 supports the 3211 Indexing Feature in two ways:

1. Specification of the INDEX parameter on the '*OUfPUT card.

2. The extended FCB image:

JES2 supplies two special FCBs: FCB26 for 6 lines per inch and FCB28 for
8 lines per inch (specified as FCB==6 and FCB==8, respectively). These
FCBs contain a channell indication in position 1, a special index flag in the
third byte, and the number of lines per inch in the fourth byte of the image.

The special index flag in the third byte of FCB26 and FCB28 contains
X'80' plus a binary index value, in the range 1 to 32 (default==I). The
index value sets the left margin (l indicates flush-left position; other values
cause indentation of the print line by N-I positions).

H any other FCB images are to be used by JES2, they must specify channel
1 in position 1; otherwise, JES2 incorrectly positions the forms in the
printer. (SIDI and STD2 do not specify channell in position 1 and
therefore must not be specified, unless altered, for JES2.)

H the third byte of any other FCB image contains a data character
(specifying the number of lines per inch) other than X'80', JES2 uses that
specification and supplies an index value of 1.

mM 3203 Model 5 Printer

The IBM 3203 ModelS Printer is treated as a 3211 Printer by JES2, except that
the 3203 Model S does not support the 3211 indexing feature, and any indexing
commands from JES2 are ignored by the 3203 Model S. The 3203 Model S uses
3211 FCB images and its own unique UCS images. UCS images are listed in
System Generation.

226 MVS/XA System-Data Administration

(.. ~
./

Chapter 9. CATALOG, SCRATCH, and RENAME Dummy Modules

The detailed information about installation-replaceable Catalog, Scratch, and
Rename dummy modules that appeared in this chapter has been moved to Data
Facility Product: Customization.

You can replace these modules to invoke special processing either before or after
CATALOG (SVC26), SCRATCH (SVC 29), or RENAME (SVC 30)
processing.

Chapter 9. CATALOG. SCRATCH, and RENAME Dummy Modules 227

c

(

(

(~

Chapter 10. Specifying Buffer Numbers for DASD Data Sets

The BUFNO keyword in the DCB macro and the BUFNO subparameter of the
DCB keyword in the DD statement determine how many buffers are allocated
when accessing a partitioned or sequential data set using QSAM. The NCP
keyword in the DCB macro determines how many un-CHECKed READ or
WRITE macro instructions are allowed when accessing a sequential or
partitioned data set using BSAM; one buffer is used for each READ or WRITE
macro instruction.

The sequential access method can construct a channel program to transfer as
many as 30 buffers or 240000 bytes of data, whichever is less. If BUFNO or
NCP is less than 30, no more than that number of buffers can be transferred
with a single channel program.

BUFNO is defaulted in OPEN to five if it is not specified for a QSAM DCB;
NCP is defaulted to one in OPEN if it is not specified. The QSAM access
method manages buffers. The user program must manage buffers when it uses
BSAM.

Performance Considerations

Buffer number and block size influence the rate at which data can be transferred
and the operating system overhead per block. The use of more buffers reduces
(per block transferred) the EXCP and lOS overhead and the time waiting for the
DASD device to seek to the requested cylinder and rotate to the requested
record (device latency time). However, if more buffers are allocated than a
program can effectively process, the virtual pages containing those buffers will
be paged out, effectively adding to the system overhead for the job. A large
number of buffers also cause a large amount of real storage to be allocated to
the job while the data is being transferred.

A job in a low-performance group may get swapped out more frequently than a
higher priority job. The number of buffers allocated for the job contributes to
the number of pages that have to be swapped out.

Programs that access data sets with small block size (for example, 80) can easily
make effective use of 30 buffers, which fit in, at most, two 4096-byte pages.
The advantage of 30 buffers over the default of five buffers is great: one
channel program versus six channel programs to transfer 30 blocks.

At the other end of the spectrum, usage of data sets with large blocking factors
such as full-track blocking on 3350 or half-track blocking on 3380 can still be
effective when only three or four buffers, rather than five or more, are specified.

Chapter 10. Specifying Buffer Numbers for DASD Data Sets 229

The slightly lower DASD pedormance and small increase in EXCP and lOS
instruction costs should be more than offset by a reduction in paging or
swapping in a constrained environment.

It can be seen that proper selection of buffer number can have a positive effect
on the elapsed time of a job and the system overhead associated with the job.
The DCB OPEN installation exit can use installation criteria for a default buffer
number for QSAM DCBs (for a description of the OPEN installation exit, see
Data Facility Product: Customization.) The NCP field of the DCB must be set by
the program for BSAM DCBs.

230 MVS/XA System-Data Administration

('

(-

Appendix A. CV AF VTOC Access Macros

CV AFDIR Macro

Overview of the CV AFDIR Macro

Syntax

For an indexed or nonindexed VTOC, you may use the CV AFOIR macro to:

• Read or write a OSCB by specifying the name of the data set it represents

• Read or write a OSCB by specifying its address

In addition, for an indexed VTOC, the macro may be used to:

• Read or write VTOC index records

• Read and retain in virtual storage the first high-level VIER, and VIERs used
during an index search.

• Read and retain in virtual storage the space map VIRs

• Free VIRs retained in virtual storage

[label] CVAFDIR ACCESS=READI~IRLSE
[,DSN =addr)
[,BUFLIST =addr)
[,VERIFY=YES I NO)
[,UCB==(reg) I DEB=addr)
[,IOAREA=KEEP I (KEEP,addr)NOKEEP I

(NOKEEP ,addr»)
[,MAPRCDS= YES I (YES,addr) I NO I

(NO,addr»)
[,IXRCDS=KEEP I (KEEP,addr) I NOKEEP I

(NOKEEP,addr»)
[,BRANCH= YESl I NO I (YES,SUP) I (YEs,PGM»
[,MF=II L I (E,addr»)

lThe default is SUP if YES is coded.

Appendix A. CV AF VTOC Access Macros 231

ACCESS: Read or Write a DSCB or VIR(S), or Release Buffer Lists

When ACCESS is READ or WRITE, a single DSCB is accessed for an indexed
or nonindexed VTOC, or ene or more VIRs are accessed for an indexed VTOC.

ACCESS=READ
Specifies that a single DSCB or one or more VIR(s) are to be read into a
buffer whose address is in a buffer list.

If the buffer list if for a DSCB, only one entry is used in the buffer list.
The first entry with the skip bit set to zero and a nonzero buffer address is
used.

All VIR(s) whose buffer list entry has the skip bit off will be read into a
buffer.

DSN and BUFLIST are required if ACCESS=READ for a DSCB buffer
list.

ACCESS=WRITE
Specifies that a single DSCB or one or more VIRs are to be written from
buffer(s) whose address is in a buffer list.

WRITE is permitted with BRANCH=NO only if the caller is authorized
byAPF.

DSN and BUFLIST are required if ACCESS= WRITE for a DSCB buffer
list.

If any buffer list entry has its modified bit set, only those entries with the
modified bit set will be written. If no modify bits are on, all VIRs will be
written.

ACCESS=RLSE
Applies only to VIR buffer lists. It requests the release of one or more
buffers in the VIR buffer list chain identified in the BUFLIST keyword,
and the release of each buffer list for which all buffers are released.

DSN and BUFLIST are not required if ACCESS=RLSE.

Only buffers in the buffer list with the skip bit set to zero and with a
nonzero buffer address are released. The buffer list is not released if any
entry has the skip bit set to one.

tf~ 'j

For an indexed VTOC, if ACCESS=RLSE is coded, buffer lists and
buffers pointed to by the BUFLIST keyword will be released, along with
buffer lists supplied in the CV AF parameter list CVMRCDS and
CVIRCDS fields. If the CVMRCDS or the CVIRCDS buffers are
supplied in the BUFLIST field, either directly or indirectly through
chaining, the keyword MAPRCDS= YES, IXRCDS = KEEP , or
MAPRCDS=(NO,O), IXRCDS=(NOKEEP,O) must be coded to prevent
CV AF from freeing the buffers more than once. If buffers are released,
the CV AF parameter list field pointing to the buffer list will be updated. (~

232 MVS/XA System-Data Administration

DSN: Specify the Name of the DSCB

DSN=addr
DSN specifies the address of a 44-byte data set name of the DSCB to be
accessed.

DSN is required if ACCESS=READ or WRITE and the request is to read
or write a DSCB. H a 140-byte DSCB is specified:

• CV AF validity checks the storage location, but ignores the contents of
the location.

• You must specify an argument that points to an extent within the
VTOC.

BVFLIST: Specify One or More Buffer Lists

BUFLIST=addr
The BUFLIST keyword contains the address of a buffer list used to read
or write a DSCB or VIRs.

VERIFY: Verify that a DSCB is a Fonnat-O DSCB

VERIFY = YES
CV AF will verify that the DSCB is a format-O DSCB before writing the
DSCB. The first four bytes of the key will be compared with binary zeros.
H the key does not start with four bytes of zeros, the DSCB will not be
written and an error code will be returned.

VERIFY=NO
CV AF will not test the key of the DSCB.

Note: VERIFY applies only when writing a 140-byte DSCB. VERIFY is
ignored when a VIR is written.

VCB I DEB: Specify the VTOC to Be Accessed

UCB=(reg)
Supplies the address of the UCB for the unit whose VTOC is to be
accessed. An unauthorized caller must not use this parameter.

Note: Code the address of the UCB parameter as register (2-12) ..
Coding an RX-Type address here gives you unpredictable results.

H the address of a previously obtained I/O area is supplied through the
IOAREA keyword, neither UCB nor DEB need be supplied. Otherwise,
either a UCB or DEB must be supplied. H a UCB address is supplied, it
will be overlaid in the CVPL by the UCB address present in the I/O area.

DEB = addr
Specifies the address of a DEB opened to the VTOC you want to access.
CV AF does not allow output requests to the VTOC or VTOC index if
you specify the DEB subparameter. H you are not authorized, you cannot

Appendix A. CV AF VTOC Access Macros 233

---- ---.----~---------.-------

perform any asynchronous activity (such as EXCP, CLOSE, EOV)
against the data set represented by the DEB because CV AF removes the
DEB from the DEB table for the duration of the CV AF caD. H you are
not authorized (neither APF authorized nor in a system key) you must
specify a DEB address, not a UCB, to CV AFDIR. See "Identifying the
Volume" on page 42 for further details.

H you supply both the DEB and the UCB in the CVPL, the DEB address will be
used and the UCB address will be overlaid in the CVPL by the UCB address in
the DEB.

IOAREA: Keep or Free the I/O Work Area

IOAREA==KEEP
Specifies the CV AF I/O area associated with the CV AF parameter list is
to be kept upon completion of the CV AF request. 10AREA-KEEP may
be coded with BRANCH-NO only if the caller is authorized (APF or
system key).

H 10AREA-KEEP is coded, the caller must issue CV AF with
IOAREA==NOKEEP specified at some future time, whether or not any
further VTOC access is required: for example, the recovery routine of the
caller of CV AF.

Coding IOAREA==KEEP allows subsequent CV AF requests to be more
efficient, as certain initialization functions can be bypassed. Neither DEB
nor UCB need be specified when a previously obtained CV AF I/O area is
supplied; neither can they be changed.

When IOAREA-KEEP is first issued, CV AF returns the CV AF I/O area
in the CV AF parameter list (CVIOAR). Subsequent calls of CV AF may
use that same parameter list, and CV AF will obtain its I/O area from the
CVIOAR.

When processing on the current volume is finished, release all areas that
were kept.

IOAREA=(KEEP,addr)
Provides the address of a previously obtained I/O area. H a different
CV AF parameter list is used, the previously obtained I/O area may be
passed to CV AF by coding its address as the second parameter of the
IOAREA keyword.

IOAREA-NOKEEP
Causes the work area to be freed upon completion of the CV AF request.

IOAREA-(NOKEEP,addr)
Causes a previously obtained work area to be freed upon completion of
the CV AF request.

234 MVS/XA System-Data Administration

MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers

This keyword applies to an indexed VTOC only and specifies the disposition of
the MAPRCDS buffer list and buffers.

MAPRCDS=YES
Specifies that the buffer list and buffers are to be retained at the end of
processing.

If no buffer list address is in the CV AF parameter list, CV AF will read
the MAP VIRs into buffers it obtains. The buffer list that contains the
address and RBAs of the VIRs can be accessed after processing from the
CV AF parameter list field, CVMRCDS. The buffer list and VIR buffers
are in your protect key: subpool 0 if you are not authorized; 229 if you
are.

When processing on the current volume is finished, release all areas that
were kept.

MAPRCDS=(YES,addr)
If YES is coded and the buffer list address (CVMRCDS in CV AF
parameter list) is supplied, VIRs are not read.

The CVMRCDS buffer list used in CV AFDIR macro can be passed to
another CV AF macro call through the MAPRCDS keyword.

If MAPRCDS= YES is coded for a nonindexed VTOC, the function is
performed, but an error code will be returned.

MAPRCDS=NO
If MAPRCDS=NO is coded, all the buffers without the skip bit on in the
buffer list whose address is in the CVMRCDS field of the CVPL will be
freed. If all the buffers are freed, the buffer list will also be freed.

MAPRCDS=(NO,addr)
Causes buffer lists and buffers previously obtained by CV AF to be freed.

You must free buffer lists and buffers obtained by CV AF. This can be done in
one of three ways:

• By coding MAPRCDS=NO on the CV AFDIR macro that obtained the
buffers

• By coding MAPRCDS=NO on a subsequent CV AF macro

• By coding CV AFDIR ACCESS=RLSE and providing the address of the
buffer list in the BUFLIST keyword

Note: You must enqueue the VTOC and reserve the unit to maintain the
integrity of MAP records read.

Appendix A. CV AF VTOC Access Macros 235

IXRCDS: Retain VIERS in Virtual Storage

This keyword applies to indexed VTOCs only.

IXRCDS = KEEP
Specifies that VIERs read into storage are to be kept in virtual storage.
The VIERs are retained even if processing cannot complete successfully.
The CV AF parameter list in field CVIRCDS contains the address of a
buffer list with the VIR buffer addresses and RBAs of the VIERs read.

The index search function will dynamically update the buffer list and,
when necessary, obtain additional buffer lists and chain them together.

If KEEP is specified and no buffer list is supplied to CV AF in the CVPL,
CV AF will obtain a buffer list and buffers and read the first high-level
VIER. The address of the buffer list is placed in the CVMICDS field of
the CVPL. The first high-level VIER will be checked for the VXFHL V
bit and to see whether the VXVISE bit is off.

The buffer list and VIR buffers are in your protect key. The subpool is 0
if you are not authorized; it is subpool 229 if you are.

If IXRCDS=KEEP is coded for a nonindexed VTOC, a request to read or
write a DSCB will be performed, but an error code will be returned.

When processing on the current volume is finished, release all areas that
were kept.

IXRCDS=(KEEP,addr)
The index records buffer list address from one CV AF request is being
passed to this CV AF parameter list by specifying its address as the second
parameter in the IXRCDS keyword.

IXRCDS-NOKEEP
If NOKEEP is coded, the VIERs that are accessed (if any) are not
retained. Furthermore, the buffer list supplied in the CVIRCDS field in
the CV AF parameter list is released, as are all buffers found in the buffer
list. If the skip bit is set in any entry in the buffer list, the buffer and
buffer list will not be freed.

IXRCDS=(NOKEEP,addr)
Specifies that previously accessed VIERs are not to be retained.

You must free buffer lists and buffers obtained by CV AF. This can be done in
one of three ways:

• By coding IXRCDS=NOKEEP on the CV AFDIR macro that obtained the
buffers

• By coding IXRCDS=NOKEEP on a subsequent CVAF macro

• By coding CV AFDIR ACCESS=RLSE and providing the address of the
buffer list in the BUFLIST keyword

236 MVS/XA System-Data Administration

c

(<f~.

~

Note: You must enqueue the VTOC and reserve the unit to maintain the
integrity of the VIERs read.

BRANCH: Specify the Entry to the Macro

BRANCH = (YES,SUP)
Requests that the branch entry to CV AFDIR be used. You must be in
supervisor state. Protect key checking is bypassed.

An IS-word save area must be supplied if BRANCH = YES is coded. No
lock may be held on entry to CV AF. SRB mode is not allowed.

BRANCH = YES
Equivalent to BRANCH=(YES,SUP), because SUP is the default when
YES is coded. Protect key checking is bypassed.

BRANCH = (YES,PGM)
Requests the branch entry. You must be authorized by APF and be in
problem state. Protect key checking is bypassed.

BRANCH-NO
Requests the SVC entry. You must be authorized by APF if any output
operations are requested. Protect key checking is performed.

MF: Specify the Form of the Macro

This keyword specifies whether the list, execute, or normal form of the macro is
requested.

If I is coded or if neither L nor E is coded, the CV AF parameter list is
generated and CV AF is called. This is the normal form of the macro.

MF=L
L indicates the list form of the macro. A parameter list is generated, but
CV AF is not called.

MF=(E,addr)
E indicates the execute form of the macro. The CV AF parameter list
whose address is in X'addr' can be modified by this form of the macro.

Appendix A. CVAF VTOC Access Macros 237

Return Codes from the CV AFDIR Macro

On return from CV AF, register 1 contains the address of the CVPL (CVAF
parameter list), and register 15 contains one. of the following return codes:

Code

OO(X'OO')

04(X'04')

08(X'08')

12(X'OC')

16(X'10')

238 MVS/XA System-Data Administration

Meaning

The request was successful. However, if the CVAFDIR request is
to read or write a DSCB and a VTOC index structure error is
encountered, the CYST AT field indicates the structure error
encountered. (CVST AT code descriptions are in
Appendix C, "VTOC Index Error Message and Associated
Codes" on page 297.)

An error occurred. The CYST AT field in the CVPL contains an
indication of the cause of the error. (CVSTAT code descriptions
are in Appendix C, "VTOC Index Error Message and Associated
Codes" on page 297.)

Invalid VTOC index structure while processing a request to read
or write a VTOC index record. The CYST AT field in the CVPL
contains an indication of the cause of the error. (CVSTAT code
descriptions are in Appendix C, "VTOC Index Error Message
and Associated Codes" on page 297.)

The CV AF parameter list is not in your protect key or is invalid
(the ID is invalid, or the length field is incorrect, or the CVFCTN
field is invalid). The CVPL has not been modified.

An I/O error was encountered.

!4-~

~-o/

(

CV AFDSM Macro

Overview of the CV AFDSM Macro

The CV AFDSM macro may be used for an indexed VTOC to:

• Obtain one or more extents that describe unallocated space on the volume

• Obtain a count of free DSCBs on the VTOC

• Obtain a count of free VTOC index records in the VTOC index.

Syntax

[label] CVAFDSM ACCESS=MAPDATA
,MAP=INDEX I VOLUME I VTOC
[,EXTENTS = addr)
[,MAPRCDS= YESt I (YES,addr) I N021

(NO,addr)]
[,UCB=(reg) I DEB=addr]
[,COUNT=YES I NO)
[,CT AREA=addr)
[,IOAREA=KEEP I (KEEP,addr) I NOKEEP I

(NOKEEP,addr»)
I,BRANCH=NO I YES31 (YES,SUP) I (YES,PGM)]
[,MF=! I L I (E,addr)]

Default if MF=1.

2 Default if MF=L or MF=(E,addr).

3 Default is SUP if YES is coded.

ACCESS = MAPDAT A: Request Information from the Index Space Maps

ACCESS=MAPDATA
Obtains data from the index space maps. Three kinds of data are
available:

• The number of format-O DSCBs (the data is obtained from the VTOC
map of DSCBs)

• The number of unallocated VIRs in the index (the data is obtained
from the VTOC index map)

• The number (and location) of extents of unallocated pack space (the
data is obtained from the VTOC pack space map)

Appendix A. CV AF VTOC Access Macros 239

MAP: Identify the Map to Be Accessed

MAP = INDEX
Specifies that the VTOC index map (VIXM) is to be accessed and a count
of unallocated VIRs returned. COUNT= YES must also be coded.

MAP=VOLUME
Specifies that the VTOC pack space map (VPSM) is to be accessed and
information on unallocated extents of pack space returned.
EXTENTS=addr and COUNT=NO must also be coded.

MAP=VTOC
Specifies that the VTOC map of DSCBs (VMDS) is to be accessed and a
count of format-O DSCBs returned. COUNT= YES must also be coded.

EXTENTS: Identify Where Extents from the VPSM Are Returned

EXTENTS=addr
If one or more extents from the VPSM are requested, EXTENTS is the
address of a I-byte count field containing the number of 5-byte extents
that follow. In the first two bytes of the first 5-byte extent, you must
supply the relative track address (RTA) at which CVAF should start the
VPSM search. The first extent area is updated with information on the
next free extent found that has a higher starting RTA than that supplied.
Each subsequent extent area is filled in with information on free space
extents (in ascending track address order).

Information on free extents has the format, XXYYZ, where:

• XX is the relative track address of the first track of the extent.

YY is the number of whole cylinders in the extent.

• Z is the number of additional tracks in the extent.

Only XX is supplied by the caller in the first extent area. CV AF will start
searching the VPSM at relative track address XX.

If all the unallocated extents in the VPSM are provided before filling in all
the supplied extent areas, the remaining extent areas are set to zero.
Register 15 is set to 4 on return, with the CYST A T field in the CVPL set
to X'20' to indicate end of data.

MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers

MAPRCDS=YES
Specifies that the buffer list and buffers are to be retained at the end of
the function.

If YES is specified and no buffer list is supplied through the CV AF
parameter list, CV AF will read the MAP VIRs into buffers obtained by
CVAF. The buffer list that contains the address and RBAs of the VIRs
can be accessed after the CV AF call from the CV AF parameter list field,

240 MVS/XA System - Data Administration

~~- ------------------------------------- - --- ~----

(

(

CVMRCDS. The buffer list and VIR buffers are in the caller's protect
key: subpool 0 if the caller is not authorized; subpool 229 if the caller is
authorized.

YES is the default if MF=I is specified or defaulted.

When processing on the current volume is finished, release all areas that
were kept.

MAPRCDS=(YES,addr)
If YES is coded, but the buffer list address (CVMRCDS in CV AF
parameter list) is supplied, the VIRs are not read.

The CVMRCDS buffer list from one CV AF call can be passed to another
CV AF macro call through the MAPRCDS keyword.

MAPRCDS=NO
If MAPRCDS=NO is coded, the MAP records buffers and buffer list will
be freed upon completion of the CV AFDSM function.

NO is the default if MF=L is specified.

MAPRCDS=(NO,addr)
Causes buffer lists and buffers previously obtained by CV AF to be freed.

Buffer lists and buffers obtained by CV AF must be freed by the caller. This can
be done in one of three ways:

• By coding MAPRCDS=NO on the call that obtained the buffers.

• By coding MAPRCDS=NO on a subsequent CV AF call.

• By calling CV AFDIR ACCESS=RLSE and providing the buffer list in the
BUFLIST keyword.

If MF=(E,addr) is coded and MAPRCDS is not coded, the parameter list
value of MAPRCDS is not changed.

Note: You must enqueue the VTOC and reserve the unit to maintain the
integrity of the MAP records read.

VCB I DEB: Specify the VTOC to Be Accessed

UCB=(reg)
Supplies the address of the UCB for the unit whose VTOC is to be
accessed. An unauthorized caller may not supply a UCB to CV AF.

Note: Code the address of the UCB parameter only as register (2-12).
Coding an RX-Type address here gives you unpredictable results.

DEB = addr
Specifies the address of a DEB opened to the VTOC you want to access.
CV AF does not allow output requests to the VTOC or VTOC index if
you specify the DEB subparameter. If you are not authorized, you cannot

Appendix A. CV AF VTOC Access Macro!! 241

,

perform any asynchronous activity (such as EXCP, CLOSE, EOV)
against the data set represented by the DEB because CV AF removes the
DEB from the DEB table for the duration of the CV AF call. If you are
not authorized (neither APF authorized nor in a system key) you must
specify a DEB address, not a UCB, to CV AFDSM. See "Identifying the
Volume" on page 42 for further details.

If a previously obtained CV AF I/O area is supplied through the IOAREA
keyword, neither UCB nor DEB need be supplied. Otherwise, either a UCB or
DEB must be supplied. If a UCB address is supplied, it will be overlaid in the
CVPL with the UCB address in the I/O area.

If DEB and UCB are supplied in the CVPL, the DEB will be used, and the UCB
address supplied will be overlaid in the CVPL with the UCB address obtained
from the DEB.

COUNT: Obtain a Count of Unallocated DSCBs or VIRs

COUNT=YES
Indicates that a count of unallocated DSCBs or VIRs in the designated
space map is requested. MAP = VTOC or MAP=INDEX must be
specified if COUNT=YES is coded.

COUNT=NO
Indicates that a count of unallocated DSCBs or VIRs is not desired but,
rather, information on free space on the pack is desired.
MAP=VOLUME must be coded if COUNT=NO is coded or defaulted.

CT AREA: Supply a Field to Contain the Number of Format-O DSCBs

CT AREA = addr
Gives the address of a 4-byte field to contain the number of format-O
DSCBs when COUNT= YES, MAP = VTOC is specified; or the number of
unallocated VIRs in the VTOC index when COUNT = YES,
MAP = INDEX is specified.

IOAREA: Keep or Free the I/O Work Area

IOAREA = KEEP
Specifies that the CV AF I/O area associated with the CV AF parameter
list is to be kept upon completion of the CV AF request.
IOAREA=KEEP may be coded with BRANCH=NO only if the caller is
authorized (APF or system key).

If 10AREA=KEEP is coded, the caller must issue CV AF with
IOAREA=NOKEEP specified at some future time, whether or not any
further VTOC access is required: for example, the recovery routine of the
caller of CV AF.

Coding 10AREA=KEEP allows subsequent CV AF requests to be more
efficient, as certain initialization functions can be bypassed. Neither DEB
nor UCB need be specified when a previously obtained CV AF I/O area is
supplied; neither can they be changed.

242 MVS/XA System-Data Administration

--- -.----""- -- - -------"----~-.---.-------~----- ---------"------ ------------._-- -----------"- ._----

if'"
\G

(

When 10AREA=KEEP is first issued, CVAF returns the CVAF I/O area
in the CV AF parameter list (CVIOAR). Subsequent calls of CV AF may
use that same parameter list, and CV AF will obtain its I/O area from the
CVIOAR.

When processing on the current volume is finished, release all areas that
were kept.

IOAREA=(KEEP,addr)
Provides the address of a previously obtained I/O area. If a different
CV AF parameter list is used, the previously obtained CV AF I/O area
may be passed to CV AF by coding its address as the second parameter of
the 10AREA keyword.

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the CV AF request.

IOAREA=(NOKEEP,addr)
Causes a previously obtained work area to be freed upon completion of
the CV AF request.

BRANCH: Specify the Entry to the Macro

BRANCH = (YES, SUP)
Requests that the branch entry to CV AFDIR be used. The caller must be
in supervisor state. Protect key checking is bypassed.

An I8-word save area must be supplied if BRANCH=YES is coded. No
lock may be held on entry to CVAF. SRB mode is not allowed.

BRANCH=YES
Is equivalent to BRANCH=(YES,SUP), because SUP is the default when
YES is coded. Protect key checking is bypassed.

BRANCH = (YES,PGM)
Requests the branch entry. The caller must be APF authorized and in
problem state. Protect key checking is bypassed.

BRANCH=NO
Requests the SVC entry. The caller must be APF authorized if any output
operations are requested. Protect key checking is performed.

MF: Specify the Form of the Macro

This keyword specifies whether the list, execute, or normal form of the macro is
requested.

If I is coded or if neither L nor E is coded, the CV AF parameter list is
generated, as is code, to call CV AF. This is the normal form of the
macro.

Appendix A. CV AF VTOC Access Macros 243

MF=L
L indicates the list fonn of the macro. A parameter list is generated, but
code to call CV AF is not generated.

MF=(E,addr)
E indicates the execute form of the macro. The remote CV AF parameter
list supplied as X'addr' is used in, and can be modified by, the execute
form of the macro.

Return Codes from the CV AFDSM Macro

On return from CV AF, register 1 contains the address of the CVPL (CV AF
parameter list), and register 15 contains one of the following return codes:

Code Meaning

O(X' 00') The request was successful.

4(X'04') End of data (CVSTAT is set to decima132), or an error was
encountered. The CVSTAT field in the CVPL contains an indication
of the cause of the error. (CVSTAT code descriptions are in
Appendix C, "VTOC Index Error Message and Associated Codes"
onpage 297)

8(X'08') Invalid VTOC index structure. CVSTAT contains an indication of
the cause of the error. (CVSTAT code descriptions are in
Appendix C, "VTOC Index Error Message and Associated Codes"
onpage 297)

12(X lOC') The CV AF parameter list is not in your protect key or is invalid (the
ID is invalid, or the length field is incorrect, or the CVFCTN field is
invalid). The CVPL has not been modified.

16(X' 10') An I/O error was encountered.

244 MVS/XA System-Data Administration

- ----~- --_.- -----
~---.--- -_ .. _---------_ .. - ------"'---

c

CV AFFILT Macro

Overview of the CV AFFIL T Macro

Syntax

You may use the CV AFFIL T macro to invoke the CV AF filter service. You
may also use it to map or initialize the CV AF parameter list (CVPL). To
accommodate the FSA address, the CVPL generated by CV AFFILT is 4 bytes
longer than the CVPL generated by the other CV AF macros. CV AF filter
retrieves data set DSCB chains from an indexed or no ninde xed VTOC and
places them in buffers you provide. You may request the DSCBs for a single
partially qualified data set name or for a list of fully qualified data set names.
You must identify a specific DASD device and provide both a filter criteria list
(FCL) defining the request, and a CV AF buffer list (with buffers) for DSCB
return. The format of the two elements of the FCL is shown in Figure 18 on
page 54 and Figure 19 on page 56. The format of the buffer list is shown in
"Buffer Lists" on page 45. CVAFFILT returns a complete set of DSCBs in the
order that they are chained in the VTOC (format-I, format-2, then format-3).

Note: Keywords coded on the list form of the macro need not be coded on the
execute form. Keywords coded on one CV AFFIL T call remain in effect for
subsequent calls unless overridden, if you use the same CV AFFIL T parameter
list.

[label] CVAFFILT [,ACCESS={READ I RESUME I RLSEH
(,BUFLIST={addr I (reg)))
(,{UCB={addr I (reg)} I DEB={addr I (reg)}]
(,FCL={addr I (reg)))
(,FLTAREA={KEEP I KEEP,{addr I (reg)} I

NOKEEP I NOKEEP,{addr I (reg)}})
[,IOAREA={KEEP I KEEP,{addr I (reg)} I

NO KEEP I NOKEEP,{addr I (reg)}})
(,BRANCH={NQ I YES I (YES,{SUP I PGM}m
[,{MF=11 MF=D I MF=L I MF=(E,{addr I (reg))})

Note: For the first operand following CV AFFILT. you must not code the
leading comma.

Control Block Address Resolution:

Keyword=addr I (reg)

You. as the caller. either define or reference the control blocks needed by CV AF
filter (caller-defined control blocks are: BUFLIST. CVPL. and FCL.
Caller-referenced control blocks are: DEB. FLT AREA. IOAREA. and UCB).
The CVAFFILT macro generates different instructions for keyword=addr and
keyword=(reg) depending upon whether you are specifying a "defined" or
"referenced" control block.

Appendix A. CV AF VTOC Access Macros 245

1. When you specify any control block's address as '(reg)', the CV AFFIL T
macro assumes that the register specified contains that address.

2. When you specify a "defined" control block's address as 'addr', the
CV AFFIL T macro assumes that the specified location is that of the control
block itself. The macro generates a load address instruction (LA) to obtain
the control block's address.

3. When you specify a "referenced" control block's address as 'addr', the
CV AFFIL T macro assumes that the specified location is that of a fullword
containing the address of the control block. The macro generates a load
instruction (L) to obtain the control block's address.

ACCESS: Retrieve or Resume Retrieving a DSCB, or Release FLTAREA and/or IOAREA

ACCESS=READ
Retrieves all DSCBs associated with the data set name(s) specified in the
filter criteria list (FCL), placing them in your buffers. You can select
(filter) the retrieved DSCBs by providing either a list of one or more fully
qualified names, or a single partially qualified name, using single or double
asterisk notation. (See the example of partially qualified names in
"Examples of Partially Qualified Names for CV AFFILT" on page 250.)

If the number of buffers is not large enough to hold all the requested
DSCBs, CV AFFIL T indicates this in the CYST AT status byte of the
CV AF parameter list (CVPL). You can resume the READ function by
issuing a call with ACCESS=RESUME. See "Codes Put in the CVSTAT
Field" on page 298.

When selecting DSCBs by partially qualified name, CV AFFIL T uses only
the first data set name in the FCL list. You must set the FCLCOUNT
count field in the FCL to '1' or CV AFFILT returns error code 63 in the
CYST AT status byte of the CVPL. The DSCBs returned by CV AFFIL T
may not be in sequence by data set name; however, the DSCBs for each
data set are always in order (format-I, format-2, format-3).

When selecting DSCBs by fully qualified names, you may request that
CV AF filter return the DSCBs for the selected data set names in the data
set name order implied by the FCL. See the FCLl ORDR flag in
Figure t 8 on page 54.

You should always test the status byte of each data set name in the FCL
list to ensure successful completion (Some error conditions result in failure
to return a data set's DSCBs). See the FCLDSNST byte in Figure t 9 on
page 56.

ACCESS=RESUME
Resumes a previously initiated READ or RESUME function that was
terminated.because you did not provide enough buffers to contain all the
requested DSCBs. For the RESUME function to execute correctly, you
must have coded the keyword FLTAREA=KEEP in each of the previous
READ and RESUME function calls.

246 MVS/XA SYHtcm-()ata Administmtion

(

(

(

ACCESS=RLSE
Releases the previously kept filter save area (FL T AREA) and/or CV AF
I/O work area (IOAREA).

UCB I DEB: Specify the VTOC to Be Accessed

UCB=addr I (reg)
Supplies the address of the UCB for the unit whose VTOC is to be
accessed. If you are not authorized, you cannot supply a UCB to CVAF.
CV AF returns CYST AT '8' and return code '4' if you specify a UCB
and you are not authorized.

DEB=addr I (reg)
Specifies the address of a DEB opened to the VTOC you want to access.
If you are not authorized, you cannot perform any asynchronous activity
against the data set represented by the DEB (such as EXCP, CLOSE,
EOV), because CV AF removes the DEB from the DEB table for the
duration of the CV AF call. If you are not authorized (neither APF
authorized nor in a system key) you must specify a DEB address, not a
UCB, to CV AFFILT. See "Identifying the Volume" on page 42 for
further details.

BUFLIST: Specify a Buffer List

BUFLIST=addr I (reg)
The BUFLIST keyword specifies the address of a buffer list used to read
DSCBs. When you specify ACCESS=RLSE, the BUFLIST keyword is
required for the standard form of the macro. See the format of the buffer
list header and buffer list entry in Figure 15 on page 46 and Figure 16
on page 47, respectively.

FCL: Specify a Filter Criteria List

FCL=addr I (reg)
The FCL keyword specifies the address of a filter criteria list. It is
required when ACCESS=READ is specified on the standard form of the
macro. The format of the two elements of the filter criteria list is shown
in Figure 18 on page 54 and Figure 19 on page 56.

FL T AREA: Keep or Free the Filter Save Area

FLTAREA=KEEP
Specifies keeping the filter save area. You must code this operand if the
RESUME function might be called later (to resume processing
prematurely terminated because the number of caller-supplied buffers is
not enough to contain all the returned DSCBs).

CVAFFILT returns the address of the kept filter save area in the
CV AFFILT parameter list (CVFSA field). If you specify the same
parameter list in subsequent RESUME calls, CV AFFIL T reuses the same
filter save area.

Appendix A. CV AF VTOC Access Macros 247

\

Note: If you code this operand, you must subsequently issue CVAFFILT
with ACCESS=RLSE to release the filter save area.

FLTAREA=(.KEEP,{addr I (regm
Specifies the address of a previously obtained filter save area. See the
description of FLTAREA=KEEP operand for additional concerns.

FLTAREA=NOKEEP
Frees the filter save area upon completion of the CV AF request.

FLTAREA=(NOKEEP,{addr I (reg)))
Frees a previously obtained filter save area upon completion of the CV AF
request.

10AREA: Keep or Free the I/O Work Area

IOAREA=KEEP
Specifies keeping the CV AF I/O work area. For authorized callers,
CV AFFIL T returns the address of the kept I/O work area in the
CV AFFILT parameter list (CVIOAR). If you specify the same parameter
list in subsequent calls, CV AFFIL T reuses the same I/O work area.

Note: If you code this operand, you must subsequently issue CV AFFIL T
with ACCESS=RLSE to release the I/O work area.

IOAREA=(KEEP,{addr I (reg)})
Provides the address of a previously obtained filter save area. See the
description of 10AREA=KEEP operand for additional concerns.

IOAREA=NOKEEP
Frees the filter save area upon completion of the CV AF request.

IOAREA=(NOKEEP,{addr I (reg)})
Frees a previously obtained CV AF I/O work area upon completion of the
CV AF request.

BRANCH: Specify the Entry to the Macro

BRANCH=NO
Requests the SVC (default) entry. Protect key checking is performed.

BRANCH=YES
Equivalent to BRANCH=(YES,SUP), because SUP is the default when
you code YES. You must be in supervisor state. Protect key checking is
bypassed.

BRANCH = (YES, SUP)
Requests the branch entry. You must be in supervisor state. Protect key
checking is bypassed. You must supply an IS-word save area if you
specify BRANCH = YES. You cannot hold a lock at entry to CV AF. You
cannot be in SRB mode.

248 MVS!XA System-Data Administration

c

(

BRANCH=(YES,PGM)
Requests the branch entry. You must be APF authorized and be in
problem state. Protect key checking is bypassed.

MF: Specify the Form of the Macro

Specifies whether the DSECT, list, execute, or normal form of the macro is
requested. You can be in either 24-bit or 31-bit addressing mode. If you are not
authorized, you must pass the address of a DEB built by OPEN. If you are
authorized, you may pass either the DEB address or the UCB address. You
must ensure that the volume is allocated and will remain mounted (for example,
by dynamic allocation).

MF=I
Specifies the standard form of the macro. The CV AF parameter list is
generated and CV AF is called. 'MF=!' is the default value.

MF=D
Specifies the DSECT form of the macro. The macro generates a request
for the ICV AFPL macro to map the unique CV AF filter CVPL (4-bytes
longer than standard CVPL).

MF=L
Specifies the list form of the macro. The CV AF parameter list is
generated, but CV AF is not called.

MF=(E,laddr I (reg)})
Specifies the execute form of the macro. The CV AF parameter list whose
address is in 'addr' or 'reg' is used. You can modify the parameter list
with this form of the macro.

Return Codes from the CV AFFILT macro

CV AF filter service does not issue any messages. Upon completion of a filter
request, register 15 contains one of the following return codes:

Code Meaning

OO(X'OO') The request was successful.

04(X'04') Logical error; status information in CVSTAT.

08(X'08') Invalid VTOC structure.

12(X' OC') CV AFFIL T parameter list in wrong key, or invalid.

16(X'10') I/O error.

Note: CYST AT in the CV AF parameter list explains the status codes. See
"Codes Put in the CYST AT Field" on page 298 for a list of the status codes.

Appendix A. CV AF VTOC Access Macros 249

Examples of Partially Qualified Names for CV AFFIL T

CV AFFIL T supports partially qualified data set names using single or double
asterisk notation as shown below:

• You may use a single asterisk to represent a single qualifier. For example,
SYS1.·.LOAD designates any data set with three qualifiers, the first being
SYS1, the second being any qualifier, and the third being LOAD.

• You may also use a single asterisk to represent zero or more unspecified
characters. For example, LOAD. ·Lm designates any data set having only
two qualifiers, with LOAD being the first, and the second qualifier ending
with the character string Lm (for example, LINKLm). The asterisk may
appear anywhere within the qualifier. You may use two single asterisks in
the following way: LOAD.A·B·.Lm. CVAFFILT doe~ not support the use
of two or more single asterisks with any other character within a single
qualifier (for example, LOAD.B·· .Lm is invalid).

• A double asterisk represents a place holder for zero or more qualifiers. For
example, SYS 1.·· designates any data set having SYS 1 as its first or only
qualifier.

250 MVS/XA System-Data Administration

c

(

(-

CV AFSEQ Macro

Oveniew of the CV AFSEQ Macro

The CV AFSEQ macro may be used to:

• Read an indexed VTOC sequentially in data-set-name (DSN) order

• Read an indexed VTOC or a nonindexed VTOC in physical-sequential order

Syntax

(label] CVAFSEQ ACCESS=GTIGTEQ
[,BUFLIST =Q(idr)
[,DSN =addr]
[,UCB=(reg) I DEB=addr)
[,DSNONLY=NO I YES)
[,ARG=addr]
[,IOAREA=KEEP I (KEEP,addr) I NOKEEP I

(NOKEEP,addr))
[,IXRCDS=KEEP I (KEEPaddr) I NOKEEP I

(NOKEEP,addr)]
[,BRANCH=NO I YESI I (YES, SUP) I (YES,PGM»)
[,MF=I I L I (E,addr)]

If YES, default is SUP.

ACCESS: Specify Relationship between Supplied and Returned DSN

ACCESS=GT
Specifies that the DSN or argument value is to be used to return a DSCB
whose DSN or argument is greater than that supplied.

ACCESS = GTEQ
Specifies that the DSN or argument value is to be used to return a DSCB
whose DSN or argument is greater than or equal to that supplied.

Note: A CV AF call specifying ACCESS=GTEQ should be followed by
an ACCESS=GT request, or the same DSCB or name will be returned.

BUFLIST: Specify One or More Buffer Lists

BUFLIST=addr
The BUFLIST keyword supplies the address of a buffer list used to read
or write DSCBs and VIRs.

Appendix A. CV AF VTOC Access Macros 251

DSN: Specify Access by DSN Order or by Physical-Sequential Order

DSN=addr
Specifies that access of an indexed VTOC is by DSN order. BUFLIST is
required if DSNONL Y =NO is coded or defaulted.

DSN omitted
If you omit the DSN keyword, access of an indexed or nonindexed VTOC
is by physical-sequential order. BUFLIST is required.

Note: If the order is physical-sequential, you must initialize the argument field
in the first buffer list entry to zero or to the argument of the DSCB. If the
argument is zero (BFLEARG=OO), the read begins at the start of the VTOC.
You must be authorized (APF or system key) to read multiple DSCBs with a
single invocation of the CV AFSEQ macro. See "Initiating Physical-Sequential
Access" on page 51 for more information.

UCB I DEB: Specify the VTOC to Be Accessed

UCB=(reg)
Supplies the address of the UCB for the unit whose VTOC is to be
accessed. An unauthorized caller may not supply a UCB to CV AF.

Note: Code the address of the UCB parameter only as register (2-12).
Coding an RX-type address here gives you unpredictable results.

DEB==addr
Specifies the address of a DEB opened to the VTOC you want to access.
CV AF does not allow output requests to the VTOC or VTOC index if
you specify the DEB subparameter. If you are not authorized, you cannot
perform any asynchronous activity (such as EXCP, CLOSE, EOV),
against the data set represented by the DEB because CV AF removes the
DEB from the DEB table for the duration of the CV AF call. If you are
not authorized (neither APF authorized nor in a system key), you must
specify a DEB address, not a UCB, to CV AFSEQ. See "Identifying the
Volume" on page 42 for further details.

If a previously obtained CV AF I/O area is supplied through the IOAREA
keyword, neither UCB nor DEB need be supplied.

Otherwise, either a UCB or DEB must be supplied. If a UCB address is
supplied, it will be overlaid in the CVPL with the UCB address in the I/O area.

If you specify both DEB and UCB in the CVPL, the DEB will be used, and the
UCB address supplied will be overlaid in the CVPL with the UCB address
obtained from the DEB.

252 MVS/XA System-Data Administration

(-

(

DSNONLY: Specify That Only the Data Set Name Be Read

This keyword is applicable only to accessing an indexed VTOC in DSN order.

DSNONLY=NO
Requests that the data set name be obtained from the VTOC index and
the DSCB be read into a buffer supplied through the BUFLIST keyword.
BUFLIST is required.

DSNONLY=YES
Requests that only the data set name be obtained from the VTOC index.
If the ARG keyword is coded, the argument of the DSCB is returned.

ARG: Specify Where the Argument of the DSCB Is to Be Returned

This keyword is applicable only to accessing an indexed VTOC in DSN order
with DSNONL Y = YES coded.

ARG=addr
Provides the address of the 5-byte area where the CCHHR of each data
set name in the VTOC index is returned when DSNONL Y = YES is coded.

IOAREA: Keep or Free the I/O Work Area

IOAREA=KEEP
Specifies that the CV AF I/O area associated with the CV AF parameter
list is to be kept upon completion of the CV AF request.
10AREA=KEEP may be coded with BRANCH=NO only if the caller is
authorized (APF, or system key).

If 10AREA=KEEP is coded, the caller must issue CV AF with
10AREA=NOKEEP specified at some future time, whether or not any
further VTOC access is required: for example, the recovery routine of the
caller of CV AF.

Coding 10AREA=KEEP allows subsequent CV AF requests to be more
efficient, because certain initialization functions can be bypassed. Neither
DEB nor UCB need be specified when a previously obtained CV AF I/O
area is supplied; neither can they be changed.

When 10AREA=KEEP is first issued, CV AF returns the CV AF I/O area.
in the CV AF parameter list (CVIOAR). Subsequent calls of CV AF may
use that same parameter list, and CV AF will obtain its I/O area from the
CVIOAR.

When processing on the current volume is finished, release all areas that
were kept.

IOAREA=(KEEP,addr)
Provides the address of a previously obtained I/O area. If a different
CV AF parameter list is used, the previously obtained CV AF I/O area
may be passed to CV AF by coding its address as the second parameter of
the 10AREA keyword.

Appendix A. CV AF VTOC Access Macros 253

IOAREA-NOKEEP
Causes the work area to be freed upon completion of the CV AF request.

IOAREA=(NOKEEP.addr)
Causes a previously obtained work area to be freed upon completion of .
the CV AF request.

IXRCDS: Retain VIERs in Virtual Storage

This keyword applies to an indexed VTOC only.

IXRCDS=KEEP
Specifies that the VIERs read into storage during the CV AF function are
to be kept in virtual storage. The VIERs are retained even if the index
function is unsuccessful. The VIERs are accessed from the CV AF
parameter list (CVIRCDS). CVIRCDS is the address of a buffer list
containing the VIR buffer addresses and RBAs of the VIERs read.

Index search function will dynamically update the buffer list and, when
necessary, obtain additional buffer lists and chain them together.

If KEEP is specified and no buffer list is supplied to CV AF in the CVPL,
CV AF will obtain a buffer list and buffers and read the first high-level
VIER. .The address of the buffer list is placed in the CVIRCDS field of
the CVPL. The first high-level VIER will be checked for the VXFHL V
bit and to see if the VXVISE bit is off.

The buffer list and VIR buffers are in the caller's protect key. The
subpool is 0 if the caller is not authorized; subpool 229 if the caller is
authorized.

If IXRCDS=KEEP for an nonindexed VTOC, a request to read a DSCB
may be performed, but an error code will be returned.

When processing on the current volume is finished, release all areas that
were kept.

IXRCDS=(KEEP.addr)
The CVIRCDS from one CV AF call can be passed to another CV AF
parameter list by specifying the address as the second parameter in the
IXRCDS keyword.

IXRCDS-NOKEEP
If NOKEEP is coded, the VIERs that are accessed (if any) are not
retained. Furthermore, the buffer list supplied in the CVIRCDS field in
the CV AF parameter list is released, as are all buffers found in the buffer
list. If the skip bit is set in any entry in the buffer list, the buffer and
buffer list will not be freed.

IXRCDS=(NOKEEP.addr)
Specifies that previously accessed VIERs are not to be retained.

You must free buffer lists and buffers obtained by CVAF. This can be done in
one of three ways:

254 MVS/XA System-Data Administration

/.~

(

(

• By coding IXRCDS==NOKEEP on the CV AFSEQ macro that obtained the
buffers

• By coding IXRCDS==NOKEEP on a subsequent CV AF macro

• By coding CV AFDIR ACCESS==RLSE and providing the address of the
buffer list in the BUFLIST keyword

Note: You must enqueue the VTOC and reserve the unit to maintain the
integrity of the VIERs read.

BRANCH: Specify the Entry to the Macro

BRANCH==(YES,SUP)
Requests that the branch entry to CV AFDIR be used. The caller must be
in supervisor state. Protect key checking is bypassed.

An I8-word save area must be supplied if BRANCH==YES is coded. No
lock may be held on entry to CVAF. SRB mode is not allowed.

BRANCH== YES
Is equivalent to BRANCH==(YES,SUP), because SUP is the default when
YES is coded. Protect key checking is bypassed.

BRANCH==(YES,PGM)
Requests the branch entry. The caller must be APF authorized and in
problem state. Protect key checking is bypassed.

BRANCH==NO
Requests the SVC entry. The caller must be APF authorized if any output
operations are requested. Protect key checking is performed.

MF: Specify the Form of the Macro

This keyword specifies whether the list, execute, or normal form of the macro is
requested.

MF==I
If I is coded, or neither L nor E is coded, the CV AF parameter list is
generated, as is code, to call CV AF. This is the normal form of the
macro.

MF==L
L indicates the list form of the macro. A parameter list is generated, but
code to call CV AF is not generated.

MF==(E,addr)
E indicates the execute form of the macro. The remote CV AF parameter
list supplied as 'addr' is used in and can be modified by the execute form
of the macro.

Appendix A. CV AF VTOC Access Macros 255

Return Codes from the CV AFSEQ Macro

On return from CVAF, register 1 contains the address of the CVPL (CVAF
parameter list), and register 15 contains one of the following return codes:

Code Meaning

OO(X' 00') The request was successful.

04(X'04') End of data (CVSTAT is set to decimal 32), or an error was
encountered. The CYST AT field in the CVPL contains an indication
of the cause of the error. Error descriptions are in
Appendix C, "VTOC Index Error Message and Associated Codes"
on page 297.

08(X'08') Invalid VTOC index structure. CVSTAT contains an indication of the
cause of the error. Error descriptions are in Appendix C, "VTOC
Index Error Message and Associated Codes" on page 297.

12(X' OC') The CVPL (CV AF parameter list) is not in your protect key, or is
invalid (the ID is invalid, or the length field is incorrect, or the
CVFCTN field is invalid). The CVPL has not been modified.

16(X'10') An I/O error was encountered.

256 MVS/XA System-Data Administration

- ". --------.-~.-.-------.-- - -- - -, ---------.~~---- --------

c

CV AFTST Macro

Overview of the CV AFfST Macro

Syntax

The CV AFTST macro determines whether the system supports an indexed
VTOC, and, if it does, whether the VTOC on the unit whose UCB is supplied is
indexed or nonindexed.

You will get a return code of 12 if CV AFTST cannot determine whether an
indexed or nonindexed VTOC is on the unit's volume. You should not receive a
return code of 12 from CV AFTST if you have opened a data set (including the
VTOC) on the volume.

You need no authorization to issue the CV AFTST macro.

Illabel) I CV AFfST I UCB=(reg)

ueB: Specify the VTOC to Be Tested

UCB = (reg)
Supplies the address of the UCB for the volume whose VTOC is to be
tested.

Note: Code the address of the UCB parameter only as register (2-12).
Coding an RX-type address here gives you unpredictable results.

Appendix A. CV AF VTOC Access Macros 257

Return Codes from the CV AFfST Macro

On return from CV AF, register 15 contains one of the following return codes:

Code Meaning

O(X'OO') The system does not support an indexed VTOC. The volume should be
considered to have a nonindexed VTOC. The UCB was not inspected
to determine its validity or status.

4(X'04') The system supports an indexed VTOC, but the volume has a
nonindexed VTOC.

8(X'08') The system supports an indexed VTOC and the volume has an indexed
VTOC.

12(X'OC') The system supports an indexed VTOC, but the volume is not mounted
or the VlB is not initialized for it; thus, the status (indexed or
nonindexed) of the VTOC cannot be determined.

16(X' 10') The system supports an indexed VTOC, but the unit is not a DASD or
has a VIO UCB, or the UCB address is invalid.

258 MVS/XA System-Data Administration

Appendix B. Examples of VTOe Access Macros

The examples that follow are partial assembler listings that include expansions of
each VTOC access macro. The expansions are provided to show how the
VTOC macros can be substituted for existing procedures.

Example 1: Using the ev AFDIR Macro with an Indexed or
Nonindexed VTOe

EXAMPLE 1 CSECT
STM
BALR
USING
ST
LA
ST
LR

This example uses the CV AFDIR macro to read a DSCB of a given data set
name and determines whether the DSCB is for a partitioned data set. The
address of the 44-byte data set name is supplied to the program in register 5
(labeled ROSN in the example). The address of a DEB open to the VTOC is
supplied to the program in register 4 (labeled ROEB in the example).

The buffer list is in the program and is generated by the ICV AFBFL macro. The
DSCB buffer is in the program and is generated by the IECSDSLI macro.

14,12,12 (RSAVE)
12,0
*,12
RSAVE,SAVEAREA+4
RWORK,SAVEAREA
RWORK,8 (,RSAVE)
RSAVE,RWORK

**
* * REGISTERS

*
**
REG 1 EQU 1 REGISTER 1
RWORK EQU 3 WORK REGISTER
RDEB EQU 4 DEB ADDRESS
RDSN EQU 5 ADDRESS OF DATA SET NAME
RSAVE EQU 13 SAVE AREA ADDRESS
REG15 EQU 15 RETURN CODE REGISTER 15

Appendix B. Examples of VTOC Access Macros 259

---- --------- ------------------------------- --------

**
*
* RETURN CODES

* **
PDSRTN
NOTFND
NOTPDS
UNEXPECD

EQU
EQU
EQU
EQU

o
4
8
12

DATA SET A PDS RETURN CODE
DATA SET NOT FOUND RETURN CODE
DATA SET NOT A PDS RETURN CODE
UNEXPECTED ERROR RETURN CODE

**
*
*
*
*
*
*
*

READ DSCB INTO DS1FMTID.
DATA SET NAME ADDRESS SUPPLIED IN RDSN.
ADDRESS OF DEB OPEN TO VTOC SUPPLIED IN RDEB.
DETERMINE IF DATA SET IS A PARTITIONED DATA SET.
THIS PROGRAM IS NEITHER REENTRANT NOR REUSABLE.

**
XC BUFLIST(BFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST

+
+
+ICV1S
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ICV1E
+
+

OI BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY
LA RWORK,DS1FMTID ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFER LIST
OI BFLEFL,BFLECHR CCHHR OF DSCB RETURNED BY CVAF
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN *

SUPPLIED IN CVPL
MVC DS1DSNAM,0(RDSN) MOVE IN DATA SET NAME TO WORKAREA
CVAFDIR ACCESS=READ,DSN=DS1DSNAM,BUFLIST=BUFLIST,DEB=(RDEB)
CNOP 0,4
BAL 1,ICV1E LOAD CVPL LIST ADDRESS
EQU * START OF CVPL
DC CL4'CVPL' EBCDIC 'CVPL'
DC AL2(ICV1E-ICV1S) LENGTH OF CVPL
DC XL 1 ' 01 ' FUNCTION CODE
DC XL 1 ' 00 ' STATUS INFORMATION
DC B'OOOOOOOO' FIRST FLAG BYTE
DC B'OOOOOOOO' SECOND FLAG BYTE
DC H ' 0 ' RESERVED
DC A (O) UCB ADDRESS
DC A(DS1DSNAM} DATA SET NAME ADDRESS
DC A (BUFLIST) BUFFER LIST ADDRESS
DC A(O) INDEX VIR'S BUFFER LIST ADDRESS
DC A(O) MAP VIR'S BUFFER LIST ADDRESS
DC A (O) I/O AREA ADDRESS
DC A (0) DEB ADDRESS
DC A (0) ARGUMENT ADDRESS
DC A(O} SPACE PARAMETER LIST ADDRESS
DC A(O) EXTENT TABLE ADDRESS
DC A(O) NEW VRF VIXM BUFFER LIST ADDR
DC A (O) VRF DATA ADDRESS
DC A (O) COUNT AREA ADDRESS
EQU * END OF CVPL
ST RDEB,36(,1} STORE DEB PTR IN PARM LIST
SVC 139
USING CVPL,REG1 ADDRESSABILITY TO CVPL
LTR REG1S,REG1S ANY ERROR
BZ NOERROR BRANCH IF NOT

260 MVS/XA System-Data Administration

r-'.
i "---/

c

(

(.

(

**

*
* DETERMINE WHAT ERROR IS

*
**

C
BNE
CLI
BNE
DROP

REG15,ERROR4
OTHERERR
CVSTAT,STAT001
OTHERERR
REG 1

IS RETURN CODE 4
BRANCH IF NOT 4
IS IT DATA SET NAME NOT FOUND?
BRANCH IF NOT
ADDRESSABILITY TO CVPL NOT NEEDED

**

*
* DATA SET NAME NOT FOUND

*
**

+
+
+

NOERROR

NOTF1

+
+
+

+
+
+

PDS

OTHERERR

L RSAVE,4(,RSAVE)
RETURN (14,12) ,RC=NOTFND
LM 14,12,12(13)
LA 15,NOTFND(Q,O)
BR 14
EQU *
MVC F1CCHHR,BFLEARG

CLI
BE
TM

DS1FMTID,C'4'
NOTF1
DS1DSORG,DS1DSGPO

BO PDS
EQU *
L RSAVE,4(,RSAVE)
RETURN (14,12),RC=NOTPDS
LM 14,12,12(13)
LA 15,NOTPDS(O,O)
BR 14
EQU *
L RSAVE,4(,RSAVE)
RETURN (14,12) ,RC=PDSRTN
LM 14,12,12(13)
LA 15,PDSRTN(O,O)
BR 14
EQU *
L RSAVE,4(,RSAVE)

SET UP DATA SET NOT FOUND
RESTORE THE
LOAD RETURN
RETURN

ERROR
REGISTERS
CODE

DSCB READ
MOVE CCHHR
WORKAREA
IS DSCB A
BRANCH IF
IS FORMAT
DATA SET

OF FORMAT 1/4 DSCB TO

FORMAT 4 DSCB
YES. NOT A FORMAT
1 DSCB FOR PARTITIONED

BRANCH IF PDS
DSCB IS NOT A PDS

SET UP NOT PDS RETURN CODE
RESTORE THE REGISTERS
LOAD RETURN CODE
RETURN

DATA SET IS PARTITIONED

SET UP PDS RETURN CODE
RESTORE THE
LOAD RETURN
RETURN

UNEXPECTED ERROR

REGISTERS
CODE

RETURN (14,12),RC=UNEXPECD
+
+
+

ERROR4
BUFLIST

LM 14,12,12(13)
LA 15,UNEXPECD(O,O)
BR 14

DC F'4'
ICVAFBFL DSECT=NO

RESTORE THE REGISTERS
LOAD RETURN CODE
RETURN

ERROR RETURN CODE 4
BUFFER LIST

+***
+* BUFFER LIST HEADER
+***
+BUFLIST DS OF BUFFER LIST HEADER
+BFLHNOE DS XL1 NUMBER OF ENTRIES

*

*

Appendix B. Examples of VTOC Access Macros 261

+BFLHFL DS
+ ORG
+BFLHKEY DS
+BFLHVIR EQU
+BFLHDSCB EQU
+ DS
+BFLHSP DS
+BFLHFCHN DS
+*
+BFLHLN EQU

XL1
BFLHFL
XL1
X'08'
X'04'
XL1
XL1
A

*-BUFLIST

KEY AND FLAG BYTE

PROTECT KEY (FIRST 4 BITS)
BUF. LIST ENTRIES DESCRIBE VIRS
BUF. LIST ENTRIES DESCRIBE DSCBS
RESERVED
SUBPOOL OF BUF. LIST/BUFFERS
FORWARD CHAIN PTR TO NEXT BUF.
LIST
LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***

DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
DS

OF
XL1
X'80'
X'40'
X'20'
X'10'
X'08'
X'04'
X'02'
XL1
XL1

+BFLE
+BFLEFL
+BFLERBA
+BFLECHR
+BFLETTR
+BFLEAUPD
+BFLEMOD
+BFLESKIP
+BFLEIOER
+
+BFLELTH
+*
+BFLEARG
+
+BFLEATTR
+
+BFLEARBA
+:E~FLEBUF

+BFLELN

DS XL5
ORG BFLEARG+1
DS XL3
ORG BFLEARG+1
DS XL4
DS A
EQU *-BFLE
IECSDSL 1 (1)

+IECSDSLi EQU
+IECSDSF1 EQU
+DS1DSNAM DS
+DS1FMTID DS
+DS1DSSN DS
+DS1VOLSQ DS
+DS1CREDT DS
+DS1EXPDT DS
+DS1NOEPV DS
+DS1NOBDB DS
+*
+ DS
+DS1SYSCD DS
+ DS

*
IECSDSL1
CL44
CL1
CL6
XL2
XL3
XL3
XL1
XL1

XL1
CL13
XL7

262 MVS/XA System-Data Administration

BUFFER LIST ENTRY
BUFFER LIST ENTRY FLAG
ARGUMENT IS RBA
ARGUMENT IS CCHHR
ARGUMENT IS TTR
CVAF UPDATED ARGUMENT FIELD
DATA IN BUF. HAS BEEN MODIFIED
SKIP THIS ENTRY
I/O ERROR
RESERVED
LENGTH OF DSCB BUFFER OR
LENGTH OF VIR DIVIDED BY 256
ARGUMENT OF VIR OR DSCB (CCHHR)

'TTR' OF ARGUMENT

'RBA' OF ARGUMENT
BUFFER ADDRESS
LENGTH OF A BUFFER LIST ENTRY

FORMAT DSCB DATA SET NAME AND *
BUFFER
FORMAT DSCB

DATA SET NAME
FORMAT IDENTIFIER
DATA SET SERIAL NUMBER
VOLUME SEQUENCE NUMBER
CREATION DATE
EXPIRATION DATE
NUMBER OF EXTENTS ON VOLUME
NUMBER OF BYTES USED IN LAST

DIRECTORY BLOCK
RESERVED
SYSTEM CODE
RESERVED

/'
/

I
7~---'

\
--=-----.;;;;;----

!4'~'

~j

(

(

XL2 DATA SET ORGANIZATION +DS1DSORG DS
+* FIRST BYTE OF DS1DSORG
+DS1DSGIS EQU
+*

X'SO'

+DS1DSGPS EQU
+*

X'40'

+DS1DSGDA EQU
+DS1DSGCX EQU

X'20'
X' 10'
X'OS'
X'04'
X'02'
X' 01 '

+* EQU
+* EQU
+DS1DSGPO EQU
+DS1DSGU EQU
+*
+*
+*
+*
+DS1DSGGS
+DS1DSGTX
+DS1DSGTQ
+*
+DS1ACBM
+DS1DSGTR
+*
+*
+DS1RECFM
+DS10PTCD
+DS1BLKL
+DS1LRECL
+DS1KEYL
+DS1RKP
+DS1DSIND
+DS1SCALO
+DS1LSTAR
+DS1TRBAL
+
+DS1EXT1
+*
+*

EQU X'SO'
EQU X'40'
EQU X'20'
EQU X' 10'
EQU X'OS'
EQU X'04'
EQU X'02'
EQU X' 01 '
DS XL1
DS XL1
DS XL2
DS XL2
DS XL1
DS XL2
DS XL1
DS XL4
DS XL3
DS XL2
DS XL2
DS XL10
FIRST BYTE
SECOND BYTE

SECOND BYTE

+*
+*
+DS1EXT2
+DS1EXT3
+DS1PTRDS
+DS1END

THIRD - SIXTH BYTES
SEVENTH - TENTH BYTES
DS XL10
DS XL10
DS XL5
EQU *

IS - INDEXED SEQUENTIAL
ORGANIZATION
PS - PHYSICAL SEQUENTIAL
ORGANIZATION
DA - DIRECT ORGANIZATION
CX - BTAM OR QTAM LINE GROUP
RESERVED
RESERVED
PO - PARTITIONED ORGANIZATION
U - UNMOVABLE, THE DATA
CONTAINS LOCATION DEPENDENT
INFORMATION

OF DS1DSORG
GS - GRAPHICS ORGANIZATION
TX - TCAM LINE GROUP
TQ - TCAM MESSAGE QUEUE
RESERVED
ACCESS METHOD CONTROL BLOCK
TR - TCAM 3705
RESERVED
RESERVED
RECORD FORMAT
OPTION CODE
BLOCK LENGTH
RECORD LENGTH
KEY LENGTH
RELATIVE KEY POSITION
DATA SET INDICATORS
SECONDARY ALLOCATION

Q)OlA

Q)OlA

Q)OlA
Q)OlA
Q)OlA
Q)OlA
Q)OlA
Q)OlA

Q)OlA
Q)OlA
Q)OlA
Q)OlA
Q)OlA
Q)OlA
Q)OlA
Q)OlA

LAST USED TRACK AND BLOCK ON TRACK
BYTES REMAINING ON LAST TRACK USED
RESERVED
FIRST EXTENT DESCRIPTION
EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER
LOWER LIMIT
UPPER LIMIT
SECOND EXTENT DESCRIPTION
THIRD EXTENT DESCRIPTION
POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB

DSCBLTH
F1CCHHR
SAVEAREA
CVPL

EQU *-IECSDSL1-L'DS1DSNAM LENGTH OF DATA PORTION OF DSCB
DS XL5 CCHHR OF DSCB
DS 1 SF SAVE AREA
ICVAFPL , CVPL MAPPING MACRO

+***
+* CVAF PARAMETER LIST
+***

+CVPL
+
+CVLBL
+CVLTH

DSECT
DS OF
DS CL4
DS H

CVAF PARAMETER LIST

EBCDIC 'CVPL'
LENGTH OF CVPL

Appendix B. Examples of VTOC Access Macros 263

+CVFCTN DS XL1 FUNCTION BYTE
+CVDIRD EQU X'01' CVAFDIR ACCESS=READ
+CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE 0 +CVDIRLS EQU X'03' CVAFDIR ACCESS=RLSE
+CVSEQGT EQU X'04' CVAFSEQ ACCESS=GT
+CVSEQGTE EQU X'05' CVAFSEQ ACCESS=GTEQ
+CVDMIXA EQU X'06' CVAFDSM ACCESS=IXADD
+CVDMIXD EQU X'O?' CVAFDSM ACCESS=IXDLT
+CVDMALC EQU X'08' CVAFDSM ACCESS=ALLOC
+CVDMRLS EQU X'09' CVAFDSM ACCESS=RLSE
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA
+CVVOL EQU X'OB' CVAFVOL ACCESS=VIBBLD
+CVvRFRD EQU x'oC' CVAFVRF ACCESS=READ
+CVVRFWR EQU X'OD' CVAFVRF ACCESS=WRITE
+CVSTAT DS XL1 STATUS INFORMATION (SEE LIST *
+ BELOW)
+CVFL1 DS XL1 FIRST FLAG BYTE
+CV1IVT EQU X'80' INDEXED VTOC ACCESSED
+CV1IOAR EQU X'40' IOAREA=KEEP
+CV1PGM EQU X'20' BRANCH=(YES,PGM)
+CV1MRCDS EQU X' 10' MAPRCDS=YES
+CV1IRCDS EQU X'08' IXRCDS=KEEP
+CV1MAPIX EQU X'04' MAP=INDEX
+CV1MAPVT EQU X'02' MAP=VTOC
+CV1MAPVL EQU X'01' MAP=VOLUME
+CVFL2 DS XL1 SECOND FLAG BYTE
+CV2HIVIE EQU X'80' HIVIER=YES
+CV2VRF EQU X'40' VRF DATA EXISTS
+CV2CNT EQU X'20' COUNT=YES
+CV2RCVR EQU X'10' RECOVER=YES
+CV2SRCH EQU X'08' SEARCH=YES
+CV2DSNLY EQU X'04' DSNONLY=YES
+CV2VER EQU X'02' VERIFY=YES ,/ -"
+CV2NLEVL EQU X'01' OUTPUT-NEW HIGHEST LEVEL VIER
+* CREATED
+ DS H RESERVED
+CVUCB DS A UCB ADDRESS
+CVDSN DS A DATA SET NAME ADDRESS
+CVBUFL DS A BUFFER LIST ADDRESS
+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS
+CVMRCDS DS A MAP VIR'S BUFFER LIST ADDRESS
+CVIOAR DS A I/O AREA ADDRESS
+CVDEB DS A DEB ADDRESS
+CVARG DS A ARGUMENT ADDRESS
+CVSPACE DS A SPACE PARAMETER LIST ADDRESS
+CVEXTS DS A EXTENT TABLE ADDRESS
+CVBUFL2 DS A NEW VRF VIXM BUFFER LIST ADDR
+CVVRFDA DS A VRF DATA ADDRESS
+CVCTAR DS A COUNT AREA ADDRESS
+CVPLNGTH EQU *-CVPL

+* VALUES OF CVSTAT
+*(THIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)

END

264 MVS/XA System-Data Administration

(-

(

Example 2: Using the CV AFDIR Macro with an Indexed VTOC

This example uses the CV AFDIR macro to read one or more DSCBs on a
VTOC. The UCB is supplied to the program in register 4 (labeled RUCB). The
TTR of each DSCB read is to be returned to the caller. This program must be
APF authorized.

The address of a parameter list is supplied to the program in register 5 (labeled
RLIST). The parameter list contains one or more 3-word entries. The format of
each 3-word entry is mapped by the LISTMAP DSECT. The first word contains
the address of the data set name of the DSCB to be read. The second word
contains the address of the 96-byte buffer into which the DSCB is to be read.
The third word contains the address of the 3-byte TTR of the DSCB read.

The CVPL is generated by a list form of the CV AFDIR macro at label CVPL.
The BUFLIST, IXRCDS, 10AREA, and BRANCH keywords are coded on the
list form of the macro. IXRCDS=KEEP and 10AREA=KEEP are coded to
avoid overhead if two or more DSCBs are to be read. BRANCH = (YES,PGM)
is coded in the list form of the CV AFDIR macro to cause the CVPL to have the
CVIPGM bit set to one; this will indicate to CV AF that the caller is authorized
by APF and not in supervisor state. The execute forms of the CV AFDIR macro
then specify BRANCH = YES, and not BRANCH=(YES,PGM), because the
CVIPGM bit is set in the list form of the macro.

The CV AFDIR macro with ACCESS=RLSE is coded before the program exits
in order to release the CV AF I/O area and the index records buffer list.
BUFLIST=O is coded because no user-supplied buffer list is to be released;
BUFLIST was coded on the list form of the CV AFDIR macro and, therefore, is
in the CVBUFL field of the CVPL. This field must be set to zero for the
release.

EXAMPLE2 CSECT
STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,13)
LR 13,RWORK

**
*
* REGISTERS

*
**
RWORK
RUCB
RLIST
RDSN
RTTR
REG15

EQU 3
EQU 4
EQU 5
EQU 6
EQU 7
EQU 15

WORK REGISTER
UCB ADDRESS SUPPLIED BY CALLER
ADDRESS OF PARAMETER LIST
ADDRESS OF DATA SET NAME
ADDRESS OF TTR
RETURN CODE REGISTER 15

Appendix B. Examples of VTOC Access Macros 265

**
*
*
*
*
*
*
*
*
*
*

READ DSCB OF DATA SET NAME SUPPLIED. RETURN TTR OF DSCB.
UCB ADDRESS SUPPLIED IN RUCB.
ADDRESS OF PARAMETER LIST IN RLIST.

WORD 1 OF PARAMETER LIST ADDRESS OF DATA SET NAME
WORD 2 OF PARAMETER LIST = ADDRESS OF DSCB TO BE RETURNED
WORD 3 OF PARAMETER LIST = ADDRESS OF TTR TO BE RETURNED

WORDS 1-3 DUPLICATED WITH THE HIGH ORDER BIT OF
WORD 3 SET TO ONE FOR LAST ENTRY.

**
USING LISTMAP,RLIST ADDRESSABILITY TO PARMLIST

TOPLOOP EQU * LOOP FOR EACH DSCB
XC BUFLIST(BFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST
OI BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY
LA RWORK,LISTDSCB ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFER LIST
OI BFLEFL,BFLETTR TTR OF DSCB RETURNED BY CVAF
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN *

SUPPLIED IN CVPL
L RDSN,LISTDSN ADDRESS OF DATA SET NAME
CVAFDIR DSN=(RDSN),UCB=(RUCB),MF=(E,CVPL),BRANCH=YES

+ LA 1 , CVPL LOAD PARAMETER REG
+ ST RUCB,12(,1) STORE UCB PTR IN PARM LIST
+ ST RDSN,16(,1) STORE DSN PTR IN PARM LIST
+ L 15,16 LOAD THE CVT
+ L 15,328(,15) LOAD VS1/VS2 COMMON EXTENSION2
+ L 15,12(,15) LOAD THE CVT CVAF TABLE
+ L 15,0(,15) LOAD THE CVAF ADDRESS
+ BALR 14,15 BRANCH AND LINK TO CVAF

L RTTR,LISTTTR ADDRESS OF TTR TO BE RETURNED
USING TTRMAP,RTTR MAP OF TTR
LTR REG15,REG15 ANY ERROR
BZ NOERROR BRANCH IF NOT
XC TTR,TTR ZERO TTR INDICATING NO DSCB
B RELOOP GET NEXT ENTRY

NOERROR EQU * DSCB READ
MVC TTR,BFLEARG RETURN TTR OF DSCB

RELOOP EQU * GET NEXT ENTRY
TM LASTLIST,LASTBIT IS IT LAST ENTRY IN LIST?
LA RLIST,NEXTLIST GET NEXT ENTRY
BZ TOP LOOP PROCESS NEXT LIST
CVAFDIR ACCESS=RLSE, RELEASE CVAF OBTAINED AREAS *

IOAREA=NOKEEP, RELEASE IOAREA *
IXRCDS=NOKEEP, RELEASE VIER BUFFER LIST *
BUFLIST=O, NO USER BUFFER LIST SUPPLIED TO RLSE*
BRANCH=YES , BRANCH ENTER CVAF *
MF=(E,CVPL)

+ LA 1 , CVPL LOAD PARAMETER REG 1
+ MVI 6 (1) , X' 03 ' SET FUNCTION CODE
+ NI 8(1),B'10110111' RESET CVAF FLAGS OFF
+ LA 15,0 GET BUFLIST ADDRESS AND
+ ST 15,20(,1) STORE BUFLIST PTR IN PARM LIST
+ L 15,16 LOAD THE CVT
+ L 15,328(,15) LOAD VS1/VS2 COMMON EXTENSION2
+ L 15,12 (, 15) LOAD THE CVT CVAF TABLE
+ L 15,0(,15) LOAD THE CVAF ADDRESS
+ BALR 14,15 BRANCH AND LINK TO CVAF

L 13,SAVEAREA+4
RETURN (14, 1 2)

266 MVS/XA System-Data Administration

c:

(

(

+
+

BUFLIST

LM 14,12,12(13)
BR 14

ICVAFBFL DSECT=NO BUFFER LIST

RESTORE THE REGISTERS
RETURN

+***
+* BUFFER LIST HEADER
+***

+BUFLIST DS OF BUFFER LIST HEADER
+BFLHNOE DS XL1 NUMBER OF ENTRIES
+BFLHFL DS XL1 KEY AND FLAG BYTE
+ ORG BFLHFL
+BFLHKEY DS XL1 PROTECT KEY (FIRST 4 BITS)
+BFLHVIR EQU X'08' BUF. LIST ENTRIES DESCRIBE VIRS
+BFLHDSCB EQU X'04' BUF. LIST ENTRIES DESCRIBE DSCBS
+ DS XL1 RESERVED
+BFLHSP DS XL1 SUBPOOL OF BUF. LIST/BUFFERS
+BFLHFCHN DS A FORWARD CHAIN PTR TO NEXT BUF.
+* LIST
+BFLHLN EQU *-BUFLIST LENGTH OF BUFFER LIST HEADER
+***
+* BUFFER LIST ENTRY
+***

+BFLE
+BFLEFL
+BFLERBA
+BFLECHR
+BFLETTR
+BFLEAUPD
+BFLEMOD
+BFLESKIP
+BFLEIOER
+
+BFLELTH
+*

DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
DS

+BFLEARG DS
+ ORG
+BFLEATTR DS
+ ORG
+BFLEARBA DS
+BFLEBUFDS
+BFLELN~U

OF
XL1
X'80'
X'40'
x'20'
X' 10'
X'08'
X'04'
X'02'
XL1
XL1

XL5
BFLEARG+1
XL3
BFLEARG+1
XL4
A
*-BFLE
1'8F SAVEAREA DS

LISTMAP DSECT
LISTDSN DS P
LISTDSCB DS F

LISTTTR DS OF

LASTLIST DS X
LASTBIT EQU X'80'

DS XL3
NEXTLIST EQU III

DSCB DSECT
IECSDSL 1 (1)

BUFFER LIST ENTRY
BUFFER LIST ENTRY FLAG
ARGUMENT IS RBA
ARGUMENT IS CCHHR
ARGUMENT IS TTR
CVAF UPDATED ARGUMENT FIELD
DATA IN BUF. HAS BEEN MODIFIED
SKIP THIS ENTRY
I/O ERROR
RESERVED
LENGTH OF DSCB BUFFER OR
LENGTH OF VIR DIVIDED BY 256
ARGUMENT OF VIR OR DSCB (CCHHR)

'TTR' OF ARGUMENT

'RBA' OF ARGUMENT
BUFFER ADDRESS
LENGTH OF A BUFFER LIST ENTRY

REGISTER SAVE AREA

ADDRESS OF DATA SET NAME
ADDRESS OF BUFFER FOR DSCB TO BE *
RETURNED
ADDRESS OF TTR OF DSCB TO BE *
RETURNED
FIRST BYTE
LAST ENTRY IN LIST
REMAINDER OF TTR ADDRESS
NEXT LIST

Appendix B. Examples of VTOC Access Macros 267

+IECSDSL1 EQU
+IECSDSF1 EQU
+DS1DSNAM DS
+DS1FMTID DS
+DS1DSSN DS
+DS1VOLSQ DS
+DS1CREDT DS
+DS1EXPDT DS
+DS1NOEPV DS
+DS1NOBDB DS
+*

* IECSPSL1
CL44
CL1
CL6
XL2
XL3
XL3
XL1
XL1

XL1
CL13
XL7
XL2

FORMAT 1 DSCB

DATA SET NAME
FORMAT IDENTIFIER
DATA SE~ SERIAL NUMBER
VOLUME SEQUENCE NUMBER
CREATION DATE
EXPIRATION DATE
NUMBER OF EXTENTS ON VOLUME
NUMBER OF BYTES USED IN LAST

DIRECTORY BLOCK
RESERVED
SYSTEM CODE
RESERVED
DATA SET ORGANIZATION

+ DS
+DS1SYSCD DS
+ DS
+DS1DSORG DS
+* FIRST BYTE OF DS1DSORG
+DS1DSGIS EQU
+*

X'80'

+DS1DSGPS EQU
+*

X'40'

+DS1DSGDA EQU
+DS1DSGCX EQU

x'20'
X'10'
X'08'
X'04'
X'02'
X' 01'

+* EQU
+* EQU
+DS1DSGPO EQU
+DS 1DSGU EQU
+*
+*
+*
+*
+DS1DSGGS
+DS1DSGTX
+DS1DSGTQ
+*
+DS1ACBM
+DS1DSGTR
+*
+*
+DS1RECFM
+DS10PTCD
+DS1BLKL
+DS1LRECL
+DS1KEYL
+DS1RKP
+DS1DSIND
+DS1SCALO
+DS1LSTAR
+DS1TRBAL
+
+DS1EXT1
+*
+*

EQU X'80'
EQU X'40'
EQU X'20'
EQU X'10'
EQU X'08'
EQU X'04'
EQU X'02'
EQU X'01'
DS XL1
DS XL1
DS XL2
DS XL2
DS XL1
DS XL2
DS XL1
DS XL4
DS XL3
DS XL2
DS XL2
DS XL10
FIRST BYTE
SECOND BYTE

SECOND BYTE

+*
+*
+DS1EXT2
+DS1EXT3
+DS1PTRDS
+DS1END

THIRD - SIXTH BYTES
SEVENTH - TENTH BYTES

DSCBLTH
TTRMAP
TTR

DS XL10
DS XL10
DS XL5
EQU *
EQU *-DSCB-L'DS1DSNAM
DSECT
DS XL3

268 MVS/XA System-Data Administration

IS - INDEXED SEQUENTIAL
ORGANIZATION
PS - PHYSICAL SEQUENTIAL
ORGANIZATION
DA - DIRECT ORGANIZATION
CX - BTAM OR QTAM LINE GROUP
RESERVED
RESERVED
PO - PARTITIONED ORGANIZATION
U - UNMOVABLE, THE DATA
CONTAINS LOCATION DEPENDENT
INFORMATION

OF DS1DSORG
GS - GRAPHICS ORGANIZATION
TX - TCAM LINE GROUP
TQ - TCAM MESSAGE QUEUE
RESERVED
ACCESS METHOD CONTROL BLOCK
TR - TCAM 3705
RESERVED
RESERVED
RECORD FORMAT
OPTION CODE
BLOCK LENGTH
RECORD LENGTH
KEY LENGTH
RELATIVE KEY POSITION
DATA SET INDICATORS
SECONDARY ALLOCATION

iil01A

iil01A

iil01A
iil01A
iil01A
iil01A
iil01A
iil01A

iil01A
iil01A
iil01A
iil01A
iil01A
iil01A
iil01A
iil01A

LAST USED TRACK AND BLOCK ON TRACK
BYTES REMAINING ON LAST TRACK USED
RESERVED
FIRST EXTENT DESCRIPTION
EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER
LOWER LIMIT
UPPER LIMIT
SECOND EXTENT DESCRIPTION
THIRD EXTENT DESCRIPTION
POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB

LENGTH OF DATA PORTION OF DSCB

TTR TO BE RETURNED

(
EXAMPLE2 CSECT
CVPL CVAFDIR ACCESS=READ,BUFLIST=BUFLIST,MF=L, *

IOAREA=KEEP, KEEP IOAREA TO AVOID OVERHEAD *
IXRCDS=KEEP KEEP VIERS FOR 2ND AND SUBSEQUENT CALLS*

+ CNOP 0,4
+CVPL EQU *
+ DC CL4'CVPL'
+ DC AL2(ICV8E-CVPL)
+ DC XL1'01'
+ DC XL1'OO'
+ DC B'01001000'
+ DC B'OOOOOOOO'
+ DC H'O'
+ DC A(O)
+ DC A(O)
+ DC A (BUFLIST)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ICV8E EQU *

ORG CVPL
CVPLMAP ICVAFPL DSECT=NO

CALLED IN PROGRAM STATE BUT APF *
AUTHORIZED SO UCB IS SUPPLIED

EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION CODE
STATUS INFORMATION
FIRST FLAG BYTE
SECOND FLAG BYTE
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS
END OF CVPL

OVERLAY CVPL WITH EXPANSION OF MAP

+***
+* CVAF PARAMETER LIST
+***
+CVPLMAP DS OF CVAF PARAMETER LIST
+CVLBL DS CL4 EBCDIC 'CVPL'
+CVLTH DS H LENGTH OF CVPL
+CVFCTN DS XL 1 FUNCTION BYTE
+CVDIRD EQU X'01' CVAFDIR ACCESS=READ
+CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE
+CVDIRLS EQU X'03' CVAFDIR ACCESS=RLSE
+CVSEQGT EQU X'04' CVAFSEQ ACCESS=GT
+CVSEQGTE EQU X'OS' CVAFSEQ ACCESS=GTEQ
+CVDMIXA EQU X'06' CVAFDSM ACCESS=IXADD
+CVDMIXD EQU X'07' CVAFDSM ACCESS=IXDLT
+CVDMALC EQU x'08' CVAFDSM ACCESS=ALLOC
+CVDMRLS EQU X'09' CVAFDSM ACCESS=RLSE
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA
+CVVOL EQU X' OB ' CVAFVOL ACCESS=VIBBLD
+CVVRFRD EQU X' OC' CVAFVRF ACCESS=READ
+CVVRFWR EQU X'OD' CVAFVRF ACCESS=WRITE
+CVSTAT DS XL1 STATUS INFORMATION (SEE LIST *
+ BELOW)

Appendix B. Examples of VTOC Access Macros 269

+CVFL1 DS XL1 FIRST FLAG BYTE

(~ +CV1IVT EQU X'80' INDEXED VTOC ACCESSED
+CV1IOAR EQU X'40' IOAREA=KEEP
+CV1PGM EQU X'20' BRANCH=(YES,PGM)
+CV1MRCDS EQU X'10' MAPRCDS=YES
+CV1 IRCDS EQU X'08' IXRCDS=KEEP
+CV1MAPIX EQU X'04' MAP=INDEX
+CV1MAPVT EQU X'02' MAP=VTOC
+CV1MAPVL EQU X' 01 ' MAP=VOLUME
+CVFL2 DS XL1 SECOND FLAG BYTE
+CV2HIVIE EQU X'80' HIVIER=YES
+CV2VRF EQU X'40' VRF DATA EXISTS
+CV2CNT EQU X'20' COUNT=YES
+CV2RCVR EQU X'10' RECOVER=YES
+CV2SRCH EQU X'08' SEARCH=YES
+CV2DSNLY EQU X'04' DSNONLY=YES
+CV2VER EQU X'02' VERIFY=YES
+CV2NLEVL EQU X'01' OUTPUT-NEW HIGHEST LEVEL VIER
+* CREATED
+ DS H RESERVED
+CVUCB DS A UCB ADDRESS
+CVDSN DS A DATA SET NAME ADDRESS
+CVBUFL DS A BUFFER LIST ADDRESS
+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS
+CVMRCDS DS A MAP VIR'S BUFFER LIST ADDRESS
+CVIOAR DS A I/O AREA ADDRESS
+CVDEB DS A DEB ADDRESS
+CVARG DS A ARGUMENT ADDRESS
+CVSPACE DS A SPACE PARAMETER LIST ADDRESS
+CVEXTS DS A EXTENT TABLE ADDRESS
+CVBUFL2 DS A NEW VRF VIXM BUFFER LIST ADDR
+CVVRFDA DS A VRF DATA ADDRESS
+CVCTAR DS A COUNT AREA ADDRESS

"

+CVPLNGTH EQU *-CVPLMAP "'---//

+* VALUES OF CVSTAT
+*(THIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)

END

c
270 MVS/XA System-Data Administration

- ----------- ---------

(

(.

Example 3: Using the CV AFFILT Macro

EXAMPLE3 CSECT

*

This example uses the CV AFFILT macro to read all format-I, format-2, and
format-3 DSCBS from a given VTOC, calculates the total number of DSCBs by
format type, and returns the totals to the calling program (the caller of this
example program, not the caller of CV AF). The address of a DEB opened to
the VTOC is passed to the example program in register I (labeled RI in the
example).

The buffer list and filter criteria list are defined in the program. The
ICV AFBFL macro generates the buffer list, and the ICVFCL macro generates
the filter criteria list.

* INPUT REGISTER 1 - ADDRESS OF A DEB OPENED TO THE VTOC.
* REGISTER 13 - ADDRESS OF A STANDARD REGISTER SAVE AREA
* REGISTER 14 - ADDRESS OF THE RETURN POINT WITHIN CALLER

* * PROCESS . USE THE CVAFFILT MACRO (ACCESS=READ, ACCESS=RESUME, AND
* ACCESS=RLSE) TO READ ALL FORMAT 1, 2, AND 3 DSCBS FROM A
* GIVEN VTOC. IF FILTER SERVICE DETECTS AN ERROR CONDITION,
* IT RETURNS DIAGNOSTIC INFORMATION FOR DEBUGGING ANALYSIS.
*
* OUTPUT .. REGISTER ADDRESS OF THE DATA RETURN AREA (SEE LABEL

RET$AREA AT THE END OF THIS LISTING). *
* REGISTER 15
*
*
*

ZERO IF NO ERRORS WERE ENCOUNTERED.
OTHERWISE, ERROR INFORMATION IS PROVIDED
IN THE DATA RETURN AREA (SEE LABEL RET$ERR) .

*
*

THE CVAF PARAMETER LIST (CVPL), FILTER CRITERIA LIST (FCL), BUFFER
LIST, AND DSCB BUFFERS ARE DEFINED WITHIN THIS CSECT.

*
**
* EQUATES FOR ASSEMBLY CONSTANTS AND REGISTERS
**
BFLE$N EQU 11 NUMBER OF BUFFER LIST ELEMENTS AND BUFFERS DESIRED
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

*
**
* SAVE CALLER'S REGISTERS AND ESTABLISH A NEW REGISTER SAVE AREA
**

*

STM
BALR
USING
ST
LA
ST
LR

R14,R12,12{R13)
R12,O
* ,R12
R13,SAVEAREA+4
R15,SAVEAREA
R15,8{,R13)
R13,R15

SAVE CALLER'S REGISTERS
ESTABLISH THIS PROGRAM'S

BASE REGISTER
SAVE ADDRESS OF CALLER'S SAVE AREA
GET ADDRESS OF THE NEW SAVE AREA
CHAIN CALLER'S AREA TO OURS
ESTABLISH THE NEW SAVE AREA

**

Appendix B. Examples of VTOC Access Macros 271

----- ----~--------~~-------------.-.--- -----.

* ESTABLISH ADDRESSABILITY TO THE CVPL. PLACE GIVEN DEB ADDRESS
* IN THE CVPL, INITIALIZE THE FLAG BYTE AND THE RETURN DATA AREA.
**

LA
USING
ST
MVI
XC

R11,CVPL$DEF
CVPL$MAP , R 1 1
R1,CVDEB
FLAGS,F$RSET
RET$AREA,RET$AREA

ESTABLISH ADDRESSABILITY
TO THE CVPL

PLACE GIVEN ADDR(DEB) IN CVPL
RESET THE LOCAL FLAG BYTE
INIT. DATA RETURN AREA TO ZERO

* **
* INITIALIZE THE BUFFER LIST HEADER (BFLH) AND ELEMENTS (BFLE)
**

XC
LA
USING
MVI
01
LA
USING
LA
LA

BFLH$DEF(BFL$SIZE),BFLH$DEF SET BUFR LIST AREA TO ZERO
R1,BFLH$DEF R1 -> BUFFER LIST HEADER
BFL$MAP,R1 ESTABLISH ADDRESSABILITY
BFLHNOE,BFLE$N SET NUMBER OF BUFFER ELEMENTS
BFLHFL,BFLHDSCB IDENTIFY AS DSCB BUFR ELEMNT LIST
R2,BFLH$DEF+BFLHLN R2 -> FIRST BUFFER LIST ELEMENT
BFLE,R2 ESTABLISH ADDRESSABILITY
R3,DSCB$DEF R3 -> FIRST DSCB BUFFER
R4,BFLE$N R4 = NUMBER OF ELEMENTS AND BUFRS

BFLE$INT or
MVI
ST
LA
LA
BCT
DROP

BFLEFL,BFLECHR REQUEST CCHHR ON RETURN
BFLELTH,DSCB$SIZ SET BUFR LNGTH TO FULL DSCB SIZE
R3,BFLEBUF SET ADDR(DSCB BUFFER)
R2,BFLELN(R2) R2 -> NEXT BUFFER LIST ELEMENT
R3,DSCB$SIZ(R3) R3 -> NEXT DSCB BUFFER
R4,BFLE$INT LOOP THROUGH ALL ELEMENTS
R1,R2 DROP TEMP USING

+
+
+
+
+
+
+

* **
* INITIALIZE THE FILTER CRITERIA LIST (FCL) HEADER AND ELEMENT
**

XC FCL$DEF(FCL$SIZE),FCL$DEF SET FCL AREA TO ZERO
LA R1,FCL$DEF R1 -> FCL HEADER
USING FCL$MAP,R1 ESTABLISH ADDRESSABILITY
MVC FCLID,FCL$ID SET THE EYECATCHER 'FCL '
MVC FCLCOUNT,=H'1' SET NUMBER OF FCL ELEMENTS
LA R2,FCLHDEND R2 -> FIRST (ONLY) FCL ELEMENT
USING FCLDSN,R2 ESTABLISH ADDRESSABILITY
MVI FCLDSNLG,X'02' SET LENGTH(DSN PATTERN)
LA R3,=C'**' R3 -> C'**'
ST R3,FCLDSNA SET ADDR(DSN PATTERN)
DROP R1,R2 DROP TEMP USING

*
**
* ISSUE CVAFFILT ACCESS=READ REQUEST
**

MVI RETFTN,RETREAD IDENTIFY THE CURRENT FUNCTION
CVAFFILT ACCESS=READ,FCL=FCL$DEF,BUFLIST=BFLH$DEF,

MF=(E,CVPL$DEF)
LA 1,CVPL$DEF LOAD PARAMETER REG 1
MVI 6 (1) ,X' OE' SET FUNCTION CODE
LA 15,FCL$DEF GET FCL ADDRESS AND
ST 15,16(,1) STORE FCL PTR IN PARM LIST
LA 15,BFLH$DEF GET BUFLIST ADDRESS AND
ST 15,20(,1) STORE BUFLIST PTR IN PARM LIST
SVC 139

* **
* TEST THE RETURN FROM CVAFFILT ACCESS=READ OR ACCESS=RESUME
**
TEST$RET LTR

BZ
CH
BNE
CLI

R15,R15
COUNTLST
R15,=H'4'
ERR$RET
CVSTAT,STAT064

IF DSCB RETURN IS COMPLETE
GO COUNT LAST SET OF DSCBS

IF RETURN CODE OTHER THAN FOUR
GO RETURN THE ERROR CONDITION

IF OTHER THAN RESUME RECOMMENDED

272 MVS/XA System-Data Administration

X

(-

(

BNE
B

ERR$RET
COUNTCUR

GO RETURN THE ERROR CONDITION
ELSE GO COUNT CURRENT DSCB SET

*
**
* COUNT THE NUMBER OF FORMAT 1, 2, AND 3 DSCBS RETURNED
**
COUNTLST
COUNT CUR

OI
LM

FLAGS,F$LAST
R1,R3,RET$F1
R4,FCL$DEF
FCL$MAP,R4

INDICATE LAST SET OF DSCBS
GET PRIOR DSCB COUNTS

LA
USING
SLR
ICM
BZ

R4 -> FCL HEADER
ESTABLISH ADDRESSABILITY
R5 = ZERO FOR FOLLOWING ICM
R5 = NUMBER OF DSCBS RETURNED
IF ZERO, GO TEST FOR RESUME
R4 -> FIRST DSCB BUFFER
ESTABLISH ADDRESSABILITY

COUNTNXT

LA
USING
CLI
BE
CLI
BE

R5,R5
R5,B'0011',FCLDSCBR
TST$RSUM
R4,DSCB$DEF
DSCB$MAP,R4
DS1FMTID,X'F1'
COUNT$F1
DS1FMTID,X'F2'
COUNT$F2

IF FORMAT 1 DSCB

+
+
+

+
+
+

LA
B

*
COUNT$F2 LA

B

*
COUNT$F1 LA
COUNTTST LA

BCT
STM
DROP

*

R3,1 (R3)
COUNTTST

R2,1 (R2)
COUNTTST

R1,1(Rl)
R4,DSCB$SIZ(R4)
R5,COUNTNXT
R1 ,R3 ,RET$F1
R4

GO INCREMENT ITS COUNTER
IF FORMAT 2 DSCB

GO INCREMENT ITS COUNTER
ELSE INCREMENT FORMAT 3 DSCB COUNT
GO TEST FOR MORE DSCBS

INCREMENT COUNT OF FORMAT 2 DSCBS
GO TEST FOR MORE DSCBS

INCREMENT COUNT OF FORMAT 1 DSCBS
R4 -> NEXT DSCB BUFFER
LOOP THROUGH ALL RETURNED DSCBS
SAVE UPDATED DSCB COUNTS
FINISHED COUNTING CURR DSCB SET

**
* CONDITIONALLY ISSUE CVAFFILT ACCESS=RESUME REQUEST
**
TST$RSUM TM FLAGS,F$LAST IF LAST SET OF DSCBS COUNTED

BO RLSE$REQ GO REQUEST A RELEASE
MVI RETFTN,RETRSUM IDENTIFY THE CURRENT FUNCTION
CVAFFILT ACCESS=RESUME,MF=(E,CVPL$DEF) RESUME REQUEST
LA 1,CVPL$DEF LOAD PARAMETER REG 1
MVI 6(1),X'OF' SET FUNCTION CODE
SVC 139
B TEST$RET GO TEST THE RETURN CODES

* **
* ISSUE CVAFFILT ACCESS=RLSE REQUEST
**
RLSE$REQ MVI RET$FTN,RET$RLSE IDENTIFY THE CURRENT FUNCTION

CVAFFILT ACCESS=RLSE,FLC=O,BUFLIST=O,FLTAREA=NOKEEP,
MF=(E,CVPL$DEF)

LA 1,CVPL$DEF LOAD PARAMETER REG 1
MVI 6(1),X'10' SET FUNCTION CODE
NI 10(1) ,B'01111111' RESET CVAF FLAGS OFF

+ LA 15,0 GET FCL ADDRESS AND
+
+
+
+

ST 15,16(,1) STORE FCL PTR IN PARM LIST
LA 15,0 GET BUFLIST ADDRESS AND
ST 15,20(,1) STORE BUFLIST PTR IN PARM LIST
SVC 139
LTR R15,R15 IF NO ERROR ON RELEASE REQUEST
BZ RETURN GO RETURN TO CALLER
LA R1,RET$RLSE ELSE INDICATE ERROR IN RELEASE

*
**
* PLACE ERROR INFORMATION IN THE OUTPUT DATA RETURN AREA
**
ERR$RET MVC

ST
RET$STAT,CVSTAT
R15,RET$RC

COPY CVSTAT TO RETURN AREA
COPY CVAFFILT'S RETURN CODE

X

Appendix B. Examples of VTOC Access Macros 273

*
**
* ASSUME R15 = DESIRED RETURN CODE, SET R1 -> DATA RETURN AREA,
* RESTORE CALLER'S REGISTERS 0, 2-14, AND RETURN TO CALLER
**
RETURN LA R1,RET$AREA R1 -> OUTPUT DATA RETURN AREA

L R13,SAVEAREA+4 R13 -> CALLER'S REG SAVE AREA
L R14,12(R13) RESTORE CALLER'S REGISTER 14
L RO, 20 (R13) RESTORE CALLER'S REGISTER 0
LM R2,R12,2S(R13) RESTORE CALLER'S REGISTERS 2-12
BR R14 RETURN TO CALLER

FLAGS DC X'OO' LOCAL FLAG BYTE
F$RSET EQU X'OO' FLAG RESET VALUE
F$LAST EQU X'SO' LAST DSCB SET ENCOUNTERED
*

LTORG
=H'1'
=C'**'
=H'4'

*
SAVEAREA DC 1SF'O' REGISTER SAVE AREA
*
**
* MAPPING MACROS
**
CVPL$MAP ICVAFPL CVPLFSA=YES

+**
+* CVAF PARAMETER LIST
+**
+CVPL$MAP DSECT CVAF PARAMETER LIST
+ DS OF
+CVLBL DS CL4
+CVLTH DS H
+CVFCTN DS XL1
+CVDIRD EQU X'01'
+CVDIWR EQU X'02'
+CVDIRLS EQU X'03'
+CVSEQGT EQU X'04'
+CVSEQGTE EQU X'05'
+CVDMIXA EQU X'06'
+CVDMIXD EQU X'O?'
+CVDMALC EQU X'OS'
+CVDMRLS EQU X'09'
+CVDMMAP EQU X'OA'
+CVVOL EQU X'OB'
+CVVRFRD EQU X'OC'
+CVVRFWR EQU X'OD'
+CVFIRD EQU X'OE'
+CVFIRES EQU X'OF'
+CVFIRLS EQU X'10'
+CVSTAT DS XL1
+
+CVFL1
+CV1IVT
+CV1IOAR
+CV1PGM
+CV1MRCDS
+CV1IRCDS
+CV1MAPIX
+CV1MAPVT
+CV1MAPVL
+CVFL2
+CV2HIVIE
+CV2VRF
+CV2CNT
+CV2RCVR

DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
EQU
EQU
EQU
EQU

XL1
X'80'
X'40'
X'20'
X'10'
X'OS'
X'04'
X'02'
X'01'
XL1
X'80'
X'40'
X'20'
X'10'

274 MVS/XA System-Data Administration

EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION BYTE
CVAFDIR ACCESS=READ
CVAFDIR ACCESS=WRITE
CVAFDIR ACCESS=RLSE
CVAFSEQ ACCESS=GT
CVAFSEQ ACCESS=GTEQ
CVAFDSM ACCESS=IXADD
CVAFDSM ACCESS=IXDLT
CVAFDSM ACCESS=ALLOC
CVAFDSM ACCESS=RLSE
CVAFDSM ACCESS=MAPDATA
CVAFVOL ACCESS=VIBBLD
CVAFVRF ACCESS=READ
CVAFVRF ACCESS=WRITE
CVAFFILT ACCESS=READ
CVAFFILT ACCESS=RESUME
CVAFFILT ACCESS=RLSE
STATUS INFORMATION (SEE
BELOW)
FIRST FLAG BYTE
INDEXED VTOC ACCESSED
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IXRCDS=KEEP
MAP=INDEX
MAP=VTOC
MAP=VOLUME
SECOND FLAG BYTE
HIVIER=YES
VRF DATA EXISTS
COUNT=YES
RECOVER=YES

LIST X

c

(

(

(

+CV2SRCH
+CV2DSNLY
+CV2VER
+CV2NLEVL
+*
+CVFL3
+CV3FILT
+CV3IXERR
+
+CVUCB
+CVDSN
+
+CVFCL
+CVBUFL
+CVIRCDS
+CVMRCDS
+CVIOAR
+CVDEB
+CVARG
+CVSPACE
+CVEXTS
+CVBUFL2
+CVVRFDA
+CVCTAR
+CVFSA
+CVPLNGTH

EQU
EQU
EQU
EQU

DS
EQU
EQU
DS
DS
DS
ORG
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU

X'08'
X'04'
X'02'
X' 01 '

XL1
X'80'
X'40'
XL1
A
A
CVDSN
A
A
A
A
A
A
A
A
A
A
A
A
A
*-CVPL$MAP

+* VALUES OF CVSTAT

SEARCH=YES
DSNONLY=YES
VERIFY=YES
OUTPUT-NEW HIGHEST LEVEL VIER
CREATED
THIRD FLAG BYTE
FLTAREA=KEEP
INDEX ERROR FOUND
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS

FILTER CRITERIA LIST ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS
FILTER SAVE AREA ADDRESS

+*(THIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)

FCL$MAP ICVFCL
+**
+* FILTER CRITERIA LIST
+**
+FCL$MAP DSECT CVAF FILTER CRITERIA LIST
+FCLID DS CL4 EYE CATCHER 'FCL '
+FCLCOUNT DS H NUMBER OF DSN'S IN LIST
+FCLDSCBR DS H NUMBER OF DSCB'S RETURNED
+FCL1FLAG DS X REQUEST FLAG BYTE
+FCL1LIST EQU X'80' LIST CONTAINS FULLY QUALIFIED
+* DATA SET NAMES
+FCL10RDR EQU X'40' CALLER REQUESTS FCL ORDER
+FCL2FLAG DS X STATUS FLAG BYTE
+FCL2SEQ EQU X'80' SEQUENTIAL VTOC ACCESS SELECTED
+FCL2SDIR EQU X'40' SEQUENTIAL VTOC ACCESS REQUIRED
+* AT LEAST ONE DIRECT DSCB READ
+FCLDRSV DS XL6 RESERVED
+FCLHDEND EQU * DSN ENTRIES DIRECTLY FOLLOW
+FCLHDLEN EQU *-FCLID LENGTH OF FCL HEADER
+*
+
+FCLDSN

DSECT
CL8

+ ORG
+FCLDSNST DS
+FCLSTOO EQU
+FCLST01 EQU
+* FOR FCLST02
+* DSCB(S) FOR
+FCLST02 EQU
+FCLST03 EQU
+FCLST04 EQU
+FCLSTOS EQU
+*
+*
+*
+FCLDSNLG DS

FCLDSN
X
X'OO'
X' 01 '

THROUGH FCLST05 -
THE ASSOCIATED DSN

X'02'
X'03'
X'04'
X'OS'

X

MAP OF EACH DSN ELEMENT
DATA SET NAME INFORMATION

STATUS OF THIS DATA SET NAME
DSN REMAINS TO BE PROCESSED
DSCB(S) HAVE BEEN RETURNED

CVAFFILT WILL NOT RETURN ANY

DSN NOT FOUND
ANOMALY FOUND IN DSCB(S)
ANOMALY FOUND IN CVAFFILT
NUMBER OF DSCBS FOR THIS DSN

IS GREATER THAN THE TOTAL
NUMBER OF BFLE PROVIDED

DATA SET NAME LENGTH

Appendix B. Examples of VTOC Access Macros 275

,~~----------------,-"-,----

+FCL3FLAG DS X FLAG BYTE
+FCL3UPDT EQU X'80' THIS ELEMENT WAS PROCESSED
+* BY THIS INVOCATION
+FCLDSNRV DS X RESERVED
+FCLDSNA DS F DATA SET NAME ADDRESS
+FCLDSNEL EQU *-FCLDSN LENGTH OF DSN INFO ENTRY

BFL$MAP ICVAFBFL
+**
+* BUFFER LIST HEADER
+**
+BFL$MAP DSECT BUFFER LIST HEADER
+ DS OF
+BFLHNOE DS XL1
+BFLHFL DS XL1
+ ORG BFLHFL
+BFLHKEY DS XL1
+BFLHVIR EQU X'08'
+BFLHDSCB EQU X'04'
+ DS XL1
+BFLHSP DS XL1
+BFLHFCHN DS A
+*
+BFLHLN EQU *-BFL$MAP

NUMBER OF ENTRIES
KEY AND FLAG BYTE

PROTECT KEY (FIRST 4 BITS)
BUF. LIST ENTRIES DESCRIBE VIRS
BUF. LIST ENTRIES DESCRIBE DSCBS
RESERVED
SUBPOOL OF BUF. LIST/BUFFERS
FORWARD CHAIN PTR TO NEXT BUF.
LIST
LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***
+BFLE DSECT BUFFER LIST ENTRY
+ DS OF
+BFLEFL DS XL1
+BFLERBA EQU X'80'
+BFLECHR EQU X'40'
+BFLETTR EQU X'20'
+BFLEAUPD EQU X'10'
+BFLEMOD EQU x'08'
+BFLESKIP EQU X'04'
+BFLEIOER EQU X'02'
+ DS XL1
+BFLELTH DS XL1
+*
+BFLEARG DS XL5
+ ORG BFLEARG+1
+BFLEATTR DS XL3
+ ORG BFLEARG+1
+BFLEARBA DS XL4
+BFLEBUF DS A
+BFLELN EQU *-BFLE

PUSH PRINT
PRINT NOGEN

DSCB$MAP DSECT

BUFFER LIST ENTRY FLAG
ARGUMENT IS RBA
ARGUMENT IS CCHHR
ARGUMENT IS TTR
CVAF UPDATED ARGUMENT FIELD
DATA IN BUF. HAS BEEN MODIFIED
SKIP THIS ENTRY
I/O ERROR
RESERVED
LENGTH OF DSCB BUFFER OR
LENGTH OF VIR DIVIDED BY 256
ARGUMENT OF VIR OR DSCB (CCHHR)

'TTR' OF ARGUMENT

'RBA' OF ARGUMENT
BUFFER ADDRESS
LENGTH OF A BUFFER LIST ENTRY

IECSDSL1 (1) USE FORMAT 1 DSCB MAPPING TO GET BUFFER SIZE
DSCB$SIZ EQU *-IECSDSL1 LENGTH OF FULL DSCB

POP PRINT

* SPACE ALLOCATION FOR CVPL, FCL, BFL, AND DSCB BUFFERS

EXAMPLE 3
CVPL$DEF

+
+CVPL$DEF

CSECT , CONTINUATION OF CSECT
CVAFFILT MF=L,BRANCH=NO,FLTAREA=KEEP
CNOP 0,4
EQU *

+
+
+
+

DC CL4'CVPL'
DC AL2(ICV11E-CVPL$DEF)
DC XL1 'OE'
DC XL1 '00'

276 MVS/XA System-Data Administration

EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION CODE
STATUS INFORMATION

r-'
i ,-.

c

(
+ DC B'OOOOOOOO'
+ DC B'OOOOOOOO'
+ DC B' 10000000'
+ DC X'O'
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)

FIRST FLAG BYTE
SECOND FLAG BYTE
THIRD FLAG BYTE
RESERVED
UCB ADDRESS
FILTER CRITERIA LIST ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDRESS
VRF DATA ADDRESS
COUNT AREA ADDRESS
FILTER SAVE AREA ADDRESS

+ICV11E EQU * END OF CVPL

FCL$ID
FCL$DEF
FCL$SIZE
* DEFINE
BFLH$DEF
BFLE$DEF
BFL$SIZE
* DEFINE
DSCB$DEF

DC CL4'FCL'
DS (FCLHDLEN+FCLDSNEL)X FCL HEADER AND ONE FCL ELEMENT
EQU *-FCL$DEF
A CVAF BUFFER LIST WITH
DS (BFLHLN) X
DS (BFLE$N*BFLELN)X
EQU *-BFLH$DEF
N FULL DSCB BUFFERS
DS (BFLE$N*DSCB$SIZ)X

N BUFFER LIST ELEMENTS
BUFFER LIST HEADER
N BUFFER LIST ELEMENTS

* OUTPUT DATA RETURN AREA

DS
RET $ AREA DS
RET$F1 DC
RET$F2 DC
RET$F3 DC
*
RET$ERR DS
*
*
RET$FTN DC
RET $ READ EQU
RET$RSUM EQU
RET$RLSE EQU

DC
RET$STAT DC
RET$RC DC

END

OF
OXL20
F'O'
F'O'
F'O'

OXL8

X'OO'
X'01'
X'02'
X'03'
XL2'OO'
X'OO'
F'O'

OUTPUT DATA RETURN AREA
COUNT OF FORMAT 1 DSCBS RETURNED BY CVAFFILT
COUNT OF FORMAT 2 DSCBS RETURNED BY CVAFFILT
COUNT OF FORMAT 3 DSCBS RETURNED BY CVAFFILT

IF NO ERROR CONDITION WAS ENCOUNTERED THEN
REGISTER 15 = ZERO ON RETURN

OTHERWISE THE FOLLOWING INFORMATION IS PROVIDED
IDENTIFICATION OF CVAFFILT SUBFUNCTION
CVAFFILT ACCESS=READ
CVAFFILT ACCESS=RESUME
CVAFFILT ACCESS=RLSE
UNUSED
COPY OF CVSTAT FROM CVAFFILT
COpy OF THE RETURN CODE FROM CVAFFILT

Example 4: Using the ev AFSEQ Macro with an Indexed VTOe
This example uses the CV AFSEQ macro to count the number of ISAM data sets
whose data set names are within the range defined by two supplied data set
names. The addresses of the two data set names are supplied to the program in
registers 6 and 7, labeled RDSNI and RDSN2, respectively. The address of a
DEB open to the VTOC is supplied in register 4, labeled RDEB.

Appendix B. Examples of VTOC Access Macros 277

." -.---.-.--.~~--"- .. ----.----.----.--... -. . -------

The CV AF parameter list is expanded by a list form of the CV AFSEQ macro.
ACCESS=GTEQ is specified on the list form of the macro and is, therefore, not
coded in the first execution of the CVPL. Subsequent executions of the CVPL
(at label RELOOP) specify ACCESS=GT.

End of data is tested by comparing the CYST A T field to the value of ST AT032 ,
which is an equate in the ICV AFPL mapping macro.

The count of ISAM DSCBs matching the data set name criterion is returned in
register 15, unless an error is encountered, in which case a negative 1 is returned
in register 15.

278 MVS/XA System-Data Administration

c

(-

(-

(~

EXAMPLE4 CSECT
STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,13)
LR 13,RWORK

**
*
* REGISTERS

*
**
REG1
RWORK
RDEB
RDSN1
RDSN2
REG15

EQU
EQU
EQU
EQU
EQU
EQU

1
3
4
6
7
15

REGISTER 1
WORK REGISTER
DEB ADDRESS
ADDRESS OF DATA SET NAME 1
ADDRESS OF DATA SET NAME 2
RETURN CODE REGISTER 15

+
+

**
*
*
*
*
*
*

COUNT THE NUMBER OF ISAM DATA SETS WHOSE DATA SET NAMES ARE
BETWEEN DSN1 AND DSN2 INCLUSIVELY.
RDSN1 CONTAINS ADDRESS OF DSN1.
RDSN2 CONTAINS ADDRESS OF DSN2.

ADDRESS OF DEB OPEN TO VTOC SUPPLIED IN RDEB.

*
**

XC BUFLIST(BFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST
01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY
LA RWORK,DS1FMTID ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFER LIST
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN *

SUPPLIED IN CVPL
MVC DS1DSNAM,O(RDSN1) MOVE IN STARTING DATA SET NAME TO *

WORKAREA
XR RWORK,RWORK ZERO COUNT
CVAFSEQ DEB=(RDEB), FIND FIRST DATA SET WHOSE DATA SET *

BUFLIST=BUFLIST, NAME IS GREATER THAN OR EQUAL TO *
MF=(E,CVPL) THAT OF DSN1

LA 1,CVPL LOAD PARAMETER REG
ST RDEB,36(,1) STORE DEB PTR IN PARM LIST

+
LOOP

SVC 139
EQU * LOOP UNTIL END OF DATA OR DATA SET *

NAME GREATER THAN DSN2
USING CVPL,REG1 ADDRESSABILITY TO CVPL
LTR REG15,REG15 ANY ERROR
BZ TESTDSN BRANCH IF NOT-CHECK DSN LIMIT

**
*
* DETERMINE WHAT ERROR IS

*
**

REG15,ERROR4
OTHERERR
CVSTAT,STAT032
OTHERERR·

IS RETURN CODE 4
BRANCH IF NOT 4
IS IT END OF DATA?
BRANCH IF NOT

C
BNE
CLI
BNE
DROP REG1 ADDRESSABILITY TO CVPL NOT NEEDED

**
*
* END OF DATA

*
**

Appendix B. Examples of VTOC Access Macros 279

-------.-.-.-.... ------

B RELEASE RELEASE CVAF RESOURCES AND RETURN
TESTDSN EQU * IS DATA SET NAME GREATER THAN DSN2

CLI DS1FMTID,C'1' IS THIS A FORMAT 1 DSCB?
BNE CKLAST BRANCH IF NO. CAN NOT BE ISAM.
CLC DS1DSNAM,0(RDSN2) HAS LIMIT BEEN REACHED?
BNH TESTIS BRANCH IF NO-TEST FOR ISAM
B RELEASE RELEASE CVAF RESOURCES AND RETURN

TESTIS EQU * ONLY COUNT ISAM
TM DS1DSORG,DS1DSGIS IS DATA SET ISAM
BZ CKLAST BRANCH IF NO-DO NOT COUNT IT
LA RWORK,1 (,RWORK) INCREMENT COUNT BY ONE

CKLAST EQU * CHECK IF LAST DATA SET NAME (DSN2)
CLC DS1DSNAM,0(RDSN2) HAS LIMIT BEEN REACHED?
BNH RELOOP BRANCH IF NO-READ NEXT ONE
B RELEASE RELEASE CVAF RESOURCES AND RETURN

RELOOP EQU * READ NEXT DSCB
CVAFSEQ ACCESS=GT,MF=(E,CVPL) GET DSCB WITH DATA SET NAME *

GREATER THAN THE ONE LAST READ
+ LA 1 , CVPL LOAD PARAMETER REG
+ MVI 6 (1) , X' 04 ' SET FUNCTION CODE
+ SVC 139

B LOOP CHECK RESULTS OF CVAFSEQ
OTHERERR EQU * UNEXPECTED ERROR
**
*
*
*

UNEXPECTED ERROR PROCESSING

**
LA RWORK,1 (0,0)
LNR RWORK,RWORK

RELEASE CVAFDIR ACCESS=RLSE,
BUFLIST=O,
IXRCDS=NOKEEP,

+RELEASE
+
+
+
+
+
+

+
+
+

ERROR4
BUFLIST

MF= (E,CVPL)
EQU *
LA 1,CVPL
MVI 6 (1) , X' 03'
NI 8 (1) , B ' 1111 0111 '
LA 15,0
ST 15,20 (, 1)
SVC 139
LR REG15,RWORK
L 13,SAVEAREA+4
RETURN (1 4, 1 2) , RC= (1 5)
L 14,12(13,0)
LM 0,12,20(13)
BR 14
DC F'4'
ICVAFBFL DSECT=NO

280 MVS/XA System-Data Administration

ONE IN RWORK
SET NEGATIVE COUNT INDICATING ERROR
RELEASE CVAF BUFFERS/IOAREA *
DO NOT RELEASE USER BUFFER LIST *
RELEASE CVAF VIER BUFFERS *
RELEASE CVAF I/O AREA

LOAD PARAMETER REG 1
SET FUNCTION CODE
RESET CVAF FLAGS OFF
GET BUFLIST ADDRESS AND
STORE BUFLIST PTR IN PARM LIST

CURRENT COUNT IS RETURN CODE

RETURN CURRENT COUNT
RESTORE REGISTER 14
RESTORE THE REGISTERS
RETURN

ERROR RETURN CODE 4
BUFFER LIST

c

(

(

+***
+* BUFFER LIST HEADER
+***

+BUFLIST OS
+BFLHNOE OS
+BFLHFL OS
+ ORG
+BFLHKEY OS
+BFLHVIR EQU
+BFLHDSCB EQU
+ OS
+BFLHSP OS
+BFLHFCHN OS
+*
+BFLHLN EQU

OF
XLl
XLl
BFLHFL
XLl
X'08'
X'04'
XLl
XLl
A

*-BUFLIST

BUFFER LIST HEADER
NUMBER OF ENTRIES
KEY AND FLAG BYTE

PROTECT KEY (FIRST 4 BITS)
BUF. LIST ENTRIES DESCRIBE VIRS
BUF. LIST ENTRIES DESCRIBE DSCBS
RESERVED
SUBPOOL OF BUF. LIST/BUFFERS
FORWARD CHAIN PTR TO NEXT BUF.
LIST
LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***

+BFLE OS OF BUFFER LIST ENTRY
+BFLEFL OS XLl BUFFER LIST ENTRY FLAG
+BFLERBA EQU X'80' ARGUMENT IS RBA
+BFLECHR EQU X'40' ARGUMENT IS CCHHR
+BFLETTR EQU X'20' ARGUMENT IS TTR
+BFLEAUPD EQU X' 10' CVAF UPDATED ARGUMENT FIELD
+BFLEMOD EQU X'08' DATA IN BUF. HAS BEEN MODIFIED
+BFLESKIP EQU X'04' SKIP THIS ENTRY
+BFLEIOER EQU X'02' I/O ERROR
+ OS XLl RESERVED
+BFLELTH OS XLl LENGTH OF DSCB BUFFER OR
+* LENGTH OF VIR DIVIDED BY 256
+BFLEARG OS XL5 ARGUMENT OF VIR OR DSCB (CCHHR)
+ ORG BFLEARG+l
+BFLEATTR OS XL3 'TTR' OF ARGUMENT
+ ORG BFLEARG+l
+BFLEARBA OS XL4 'RBA' OF ARGUMENT
+BFLEBUF OS A BUFFER ADDRESS
+BFLELN EQU *-BFLE LENGTH OF A BUFFER LIST ENTRY

IECSDSLl (1) FORMAT 1 DSCB DATA SET NAME AND
BUFFER

+IECSDSLl EQU * FORMAT DSCB
+IECSDSFl EQU IECSDSLl
+DS1DSNAM OS CL44 DATA SET NAME
+DS1FMTID OS CLl FORMAT IDENTIFIER
+DS1DSSN OS CL6 DATA SET SERIAL NUMBER
+DS1VOLSQ OS XL2 VOLUME SEQUENCE NUMBER
+DS1CREDT OS XL3 CREATION DATE
+DS1EXPDT OS XL3 EXPIRATION DATE
+DS1NOEPV OS XLl NUMBER OF EXTENTS ON VOLUME
+DS1NOBDB OS XLl NUMBER OF BYTES USED IN LAST
+* DIRECTORY BLOCK
+ OS XLl RESERVED
+DS1SYSCD OS CL13 SYSTEM CODE
+ OS XL7 RESERVED
+DS1DSORG OS XL2 DATA SET ORGANIZATION

*

Appendix B. Examples of VTOC Access Macros 281

+* FIRST BYTE OF DS1DSORG
+DS1DSGIS EQU X'80' IS - INDEXED SEQUENTIAL Gl01A (~
+* ORGANIZATION ~,. +DS1DSGPS EQU X'40' PS - PHYSICAL SEQUENTIAL Gl01A
+* ORGANIZATION
+DS1DSGDA EQU X'20' DA - DIRECT ORGANIZATION Gl01A
+DS1DSGCX EQU X'10' CX - BTAM OR QTAM LINE GROUP Gl01A
+* EQU X'08' RESERVED Gl01A
+* EQU X'04' RESERVED Gl01A
+DS1DSGPO EQU X'02' PO - PARTITIONED ORGANIZATION Gl01A
+DS1DSGU EQU X' 01' U - UNMOVABLE, THE DATA Gl01A
+* CONTAINS LOCATION DEPENDENT
+* INFORMATION
+*
+* SECOND BYTE OF DS1DSORG
+DS1DSGGS EQU X'80' GS - GRAPHICS ORGANIZATION Gl01A
+DS1DSGTX EQU X'40' TX - TCAM LINE GROUP Gl01A
+DS1DSGTQ EQU X'20' TQ - TCAM MESSAGE QUEUE Gl01A
+* EQU X'10' RESERVED Gl01A
+DS{ACBM EQU X'08' ACCESS METHOD CONTROL BLOCK Gl01A
+DS1DSGTR EQU X'04' TR - TCAM 3705 Gl01A
+* EQU X'02' RESERVED Gl01A
+* EQU X' 01' RESERVED Gl01A
+DS1RECFM DS XLl RECORD FORMAT
+DS10PTCD DS XL1 OPTION CODE
+DS1BLKL DS XL2 BLOCK LENGTH
+DS1LRECL DS XL2 RECORD LENGTH
+DS1KEYL DS XL1 KEY LENGTH
+DS1RKP DS XL2 RELATIVE KEY POSITION
+DS1DSIND DS XLl DATA SET INDICATORS
+DS1SCALO DS XL4 SECONDARY ALLOCATION
+DS1LSTAR DS XL3 LAST USED TRACK AND BLOCK ON TRACK
+DS1TRBAL DS XL2 BYTES REMAINING ON LAST TRACK USED '-

\

+ DS XL2 RESERVED
+DS1EXT1 DS XL10 FIRST EXTENT DESCRIPTION
+* FIRST BYTE EXTENT TYPE INDICATOR
+* SECOND BYTE EXTENT SEQUENCE NUMBER
+* THIRD - SIXTH BYTES LOWER LIMIT
+* SEVENTH - TENTH BYTES UPPER LIMIT
+DS1EXT2 DS XL10 SECOND EXTENT DESCRIPTION
+DS1EXT3 DS XL10 THIRD EXTENT DESCRIPTION
+DS1PTRDS DS XL5 POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB
+DS 1 END EQU *

DSCBLTH EQU *-IECSDSL1-L'DS1DSNAM LENGTH OF DATA PORTION OF DSCB
SAVEAREA DS l8F SAVE AREA
CVPL CVAFSEQ ACCESS=GTEQ, READ DSCB WITH DSN >= SUPPLIED DSN *

IXRCDS=KEEP, KEEP VIERS IN STORAGE DURING CALLS *
DSN=DS1 DSNAM, SUPPLIED DATA SET NAME *
BUFLIST=BUFLIST,
MF=L

+ CNOP 0,4
+CVPL EQU *
+ DC CL4'CVPL' EBCDIC 'CVPL'
+ DC AL2(ICV10E-CVPL) LENGTH OF CVPL
+ DC XL l' 05' FUNCTION CODE
+ DC XL1'OO' STATUS INFORMATION
+ DC B'OOO01000' FIRST FLAG BYTE
+ DC B'OOOOOOOO' SECOND FLAG BYTE

282 MVS/XA System-Data Administration

- - - ------------_._----

+ DC H'O' RE.SERVED

(- + DC A(O) UCB ADDRESS
+ DC A (DS1DSNAM) DATA SET NAME ADDRESS
+ DC A(O) BUFFER LIST ADDRESS
+ DC A(O) INDEX VIR'S BUFFER LIST ADDRESS
+ DC A(O) MAP VIR'S BUFFER LIST ADDRESS
+ DC A(O) I/O AREA ADDRESS
+ DC A(O) DEB ADDRESS
+ DC A(O) ARGUMENT ADDRESS
+ DC A(O) SPACE PARAMETER LIST ADDRESS
+ DC A(O) EXTENT TABLE ADDRESS
+ DC A(O) NEW VRF VIXM BUFFER LIST ADDR
+ DC A(O) VRF DATA ADDRESS
+ DC A(O) COUNT AREA ADDRESS
+ICV10E EQU * END OF CVPL

ORG CVPL EXPAND MAP OVER LIST
CVPLMAP ICVAFPL DSECT=NO CVPL MAP

+***
+* CVAF PARAMETER LIST
+***

+CVPLMAP DS OF CVAF PARAMETER LIST
+CVLBL DS CL4 EBCDIC 'CVPL'
+CVLTH DS H LENGTH OF CVPL
+CVFCTN DS XL1 FUNCTION BYTE
+CVDIRD EQU X' 01 ' CVAFDIR ACCESS=READ
+CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE
+CVDIRLS EQU X'03' CVAFDIR ACCESS=RLSE
+CVSEQGT EQU X'04' CVAFSEQ ACCESS=GT
+CVSEQGTE EQU X'OS' CVAFSEQ ACCESS=GTEQ
+CVDMIXA EQU X'06' CVAFDSM ACCESS=IXADD
+CVDMIXD EQU X'07' CVAFDSM ACCESS=IXDLT (0 +CVDMALC EQU X'OS' CVAFDSM ACCESS=ALLOC
+CVDMRLS EQU X'09' CVAFDSM ACCESS=RLSE
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA
+CVVOL EQU X'OB' CVAFVOL ACCESS=VIBBLD
+CVVRFRD EQU X'OC' CVAFVRF ACCESS=READ
+CVVRFWR EQU X'OD' CVAFVRF ACCESS=WRITE
+CVSTAT DS XL1 STATUS INFORMATION (SEE LIST *
+ BELOW)
+CVFL1 DS XL1 FIRST FLAG BYTE
+CV1IVT EQU X'SO' INDEXED VTOC ACCESSED
+CV1IOAR EQU X'40' IOAREA=KEEP
+CV1PGM EQU X'20' BRANCH=(YES,PGM)
+CV1MRCDS EQU X'10' MAPRCDS=YES
+CV1IRCDS EQU X'OS' IXRCDS=KEEP
+CV1MAPIX EQU X'04' MAP=INDEX
+CV1MAPVT EQU X'02' MAP=VTOC
+CV1MAPVL EQU X'01' MAP=VOLUME
+CVFL2 DS XL1 SECOND FLAG BYTE
+CV2HIVIE EQU X'SO' HIVIER=YES
+CV2VRF EQU X'40' VRF DATA EXISTS
+CV2CNT EQU X'20' COUNT=YES
+CV2RCVR EQU X'10' RECOVER=YES
+CV2SRCH EQU X'OS' SEARCH=YES
+CV2DSNLY EQU X'04' DSNONLY=YES
+CV2VER EQU X'02' VERIFY=YES
+CV2NLEVL EQU X'01' OUTPUT-NEW HIGHEST LEVEL VIER
+* CREATED
+ DS H RESERVED

{

Appendix B. Examples of VTOC Access Macros 283

"------- --""--------~"

+CVUCB DS A UCB ADDRESS
+CVDSN DS A DATA SET NAME ADDRESS r-
+CVBUFL DS A BUFFER LIST ADDRESS ~--+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS
+CVMRCDS DS A MAP VIR'S BUFFER LIST ADDRESS
+CVIOAR DS A I/O AREA ADDRESS
+CVDEB DS A DEB ADDRESS
+CVARG DS A ARGUMENT ADDRESS
+CVSPACE DS A SPACE PARAMETER LIST ADDRESS
+CVEXTS DS A EXTENT TABLE ADDRESS
+CVBUFL2 DS A NEW VRF VIXM BUFFER LIST ADDR
+CVVRFDA DS A VRF DATA ADDRESS
+CVCTAR DS A COUNT AREA ADDRESS
+CVPLNGTH EQU *-CVPLMAP

+* VALUES OF CVSTAT
+*(THIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)

END

284 MVS/XA System-Data Administration

Example S: Using the CV AFSEQ Macro with a Nonindexed VTOC

EXAMPLES CSECT
STM
BALR
USING
ST
LA
ST
LR

This example reads as many as five DSCBs in physical-sequential order. The
address of the UCB is supplied to the program in register 5 (labeled RUCB).
The address of a parameter list is supplied in register 4 (labeled RLIST). The
first word of the parameter list contains the address of a 5-byte field. On entry,
this field is set to zero if no previous DSCBs have been read; otherwise, the field
is set to the CCHHR of the last DSCB read. This 5-byte field is supplied by the
caller of this program and is not modified by this program.

The remainder of the parameter list consists of one or more 2-word entries; to a
maximum of five 2-word entries. The first word of each entry contains the
address of a 140-byte DSCB buffer. The second word contains the address of a
5-byte field that is to contain the CCHHR of the DSCB.

A buffer list with five buffer list entries is contained in the program. The
ICV AFBFL macro generates the buffer list header and one buffer list entry.
The remaining buffer list entries are generated following the ICV AFBFL macro.

The CV AFSEQ macro is used once in the program to read as many DSCBs as
there are 2-word entries in the parameter list. The buffer list header field
BFLHNOE is initialized with the number of buffer list entries that CV AFSEQ is
to process. The number matches the number of 2-word entries in the parameter
list supplied to this program.

After the CV AFSEQ call, the CCHHR for each DSCB read is moved from the
buffer list entry field BFLEARG to the field whose address is supplied by the
caller of the program. If the BFLEARG field is zero, the previous DSCB read
was the last in the VTOC.

The BFLEARG in the first buffer list entry is initialized with the CCHHR
supplied by the caller: its address is the third word in the parameter list. This
CCHHR serves as the starting place for the CV AFSEQ call. DSCBs with a
CCHHR greater than the supplied CCHHR are read.

This program must be APF authorized.

14,12,12(13)
12,0
*,12
13,SAVEAREA+4
RWORK,SAVEAREA
RWORK,8(,13)
13,RWORK

Appendix B. Examples of VTOC Access Macros 285

**
*
*
*

REGISTERS

**
REG 1
RWORK
RLIST
RUCB
RCURRENT
RBLE
RCOUNT
REG15

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

1
3
4
5
6
7
8
15

REGISTER 1
WORK REGISTER
ADDRESS OF PARM LIST
UCB ADDRESS
CURRENT ENTRY IN PARM LIST
CURRENT BUFFER LIST ENTRY
COUNT OF ENTRIES IN BUFFER LIST
RETURN CODE REGISTER 15

**
*
*
*
*
*
*
*
*
*
*
*

READ UP TO 5 DSCBS.
RUCB CONTAINS ADDRESS OF UCB.
RLIST CONTAINS ADDRESS OF PARAMETER LIST.

WORD 0 ADDRESS OF CCHHR OF LAST DSCB READ. THIS DSCB IS
NOT TO BE READ

WORD ADDRESS OF DSCB BUFFER.
WORD 2 ADDRESS OF CCHHR OF DSCB READ.

WORD 1 AND WORD2 REPEATED UP TO 4 TIMES.
HIGH ORDER BIT OF WORD 2 SET TO ONE FOR LAST ENTRY.

**
USING LIST,RLIST ADDRESSABILITY TO PARM LIST
XC BFLHDR(BFLHLN+5*BFLELN),BFLHDR ZERO BUFFER LIST WITH *

5 BUFFER LIST ENTRIES
OI BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
LA RCURRENT,LISTPRMS FIRST DOUBLEWORD ENTRY IN PARM LIST
USING LISTPRMS,RCURRENT USING ON DOUBLEWORDS
LA RBLE,BFLE FIRST BUFFER LIST ENTRY
USING BFLE,RBLE
L RWORK,LISTSTRT ADDRESS OF STARTING CCHHR
MVC BFLEARG,O(RWORK) MOVE STARTING CCHHR, INTO FIRST *

BUFFER LIST ENTRY
XR RCOUNT,RCOUNT ZERO COUNT

BUFLOOP EQU *- PUT BUFFER ADDRESSES IN BUFFER LIST *
ENTRIES

LA RCOUNT,1(,RCOUNT) INCREMENT COUNT
L RWORK,LISTBUF ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF-BFLE(;RBLE) PLACE IN BUFFER LIST
MVI BFLELTH-BFLE(RBLE),DSCBLTH FULL DSCB READ
TM LISTLAST,LASTBIT IS IT LAST ENTRY IN LIST
LA RCURRENT,LISTNEXT INCREMENT TO NEXT ENTRY IN LIST
LA RBLE,BFLELN(,RBLE) INCREMENT TO NEXT BUFFER LIST ENTRY
BZ BUFLOOP LOOP TO PUT NEXT BUFFER IN BFLE
STC RCOUNT,BFLHNOE SET NUMBER OF ENTRIES IN BUFFER *

LIST HEADER
DROP RCURRENT,RBLE

**
*
*
*
*

READ UP TO 5 DSCBS WHOSE CCHHR IS GREATER THAN THE CCHHR IN
THE FIRST BUFFER LIST ENTRY

**

286 MVS/XA System-Data Administration

c

(

(

(

+

+
+
+
+
+
+

CVAFSEQ UCB=(RUCB),
BRANCH=YES,
MF=(E,CVPL)

LA 1,CVPL

ST
L
L
L
L
BALR
USING
LTR
BZ

RUCB,12(,1)
15,16
15,328 (, 15)
15,12(,15)
15,0(,15)
14,15
CVPL,REG1

REG15,REG15
MOVECHR

CALL CVAF
BRANCH ENTER

LOAD PARAMETER REG

STORE UCB PTR IN PARM LIST
LOAD THE CVT
LOAD VS1/VS2 COMMON EXTENSION2
LOAD THE CVAF TABLE ADDRESS
LOAD THE CVAF ADDRESS
BRANCH AND LINK TO CVAF

ADDRESSABILITY TO CVPL
ANY ERROR
BRANCH IF MOVE IN CCHHRS

**
*
*
*

DETERMINE WHAT ERROR IS

**
C
BNE
CLI
BNE
DROP

REG15,ERROR4
OTHERERR
CVSTAT,STAT032
OTHERERR
REG1

IS RETURN CODE 4
BRANCH IF NOT 4
IS IT END OF DATA?
BRANCH IF NOT
ADDRESSABILITY TO CVPL NOT NEEDED

f*************
*
*
*
*

DETERMINE IF ANY DSCBS HAVE BEEN READ. BFLEARG IS NON-ZERO
IN EACH BUFFER LIST ENTRY FOR WHICH A DSCB HAS BEEN READ

**
MOVECHR EQU * IS DATA SET NAME GREATER THAN DSN2

LA RCURRENT,LISTPRMS FIRST ENTRY IN PARM LIST
USING LISTPRMS,RCURRENT
LA RBLE,BFLE FIRST BUFFER LIST ENTRY
USING BFLE,RBLE

CHRLOOP EQU * MOVE CCHHR ARGUMENT TO'CALLER AREA
L RWORK,LISTCHR ADDRESS OF CCHHR OF CALLER
XC O(L'BFLEARG,RWORK),O(RWORK) ZERO CALLER CCHHR AREA
NC BFLEARG,BFLEARG IS CCHHR ZERO
BZ EXIT BRANCH IF YES-NO MORE DSCBS
MVC O(L'BFLEARG,RWORK),BFLEARG MOVE CCHHR TO CALLER AREA
TM LISTLAST,LASTBIT LAST ENTRY IN PARM LIST?
BO EXIT BRANCH IF YES
LA RCURRENT,LISTNEXT NEXT ENTRY IN LIST
LA RBLE,BFLELN(,RBLE) NEXT BUFFER LIST ENTRY
B CHRLOOP TEST NEXT BFLE

EXIT EQU * RETURN TO CALLER
L 13, SAVEAREA+4
RETURN (1 4, 1 2)

+ LM 14,12,12(13) RESTORE THE REGISTERS
+ BR 1 4 RETURN

OTHERERR EQU *
*
*
*
ERROR4

B EXIT
DC F'4'
ICVAFBFL DSECT=NO

ERROR PROCESSING

RETURN
RETURN CODE 4
BUFFER LIST WITH ONE BUFFER LIST
ENTRY

*
*

*

Appendix B. Examples of VTOC Access Macros 287

.. ---------~---.-------

+***
+* BUFFER LIST HEADER
+***

+BFLHDR DS OF BUFFER LIST HEADER
+BFLHNOE DS XL1 NUMBER OF ENTRIES
+BFLHFL DS XL1 KEY AND FLAG BYTE
+ ORG BFLHFL
+BFLHKEY DS XL1 PROTECT KEY (FIRST 4 BITS)
+BFLHVIR EQU X'08' BUF. LIST ENTRIES DESCRIBE VIRS
+BFLHDSCB EQU X'04' BUF. LIST ENTRIES DESCRIBE DSCBS
+ DS XL1 RESERVED
+BFLHSP DS XL1 SUBPOOL OF BUF. LIST/BUFFERS
+BFLHFCHN DS A FORWARD CHAIN PTR TO NEXT BUF.
+* LIST
+BFLHLN EQU *-BFLHDR LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***

+BFLE
+BFLEFL
+BFLERBA
+BFLECHR
+BFLETTR
+BFLEAUPD
+BFLEMOD
+BFLESKIP
+BFLEIOER
+
+BFLELTH
+*
+BFLEARG
+
+BFLEATTR
+
+BFLEARBA
+BFLEBUF
+BFLELN

SAVEAREA
DSCB

+IECSDSL1
+IECSDSF1
+DS1DSNAM
+DS1FMTID
+DS1DSSN
+DS1VOLSQ
+DS1CREDT
+DS1EXPDT
+DS1NOEPV
+DS1NOBDB
+*

DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
DS

OF
XL1
X'80'
X'40'
X'20'
X' 10'
X'08'
X'04'
X'02'
XL1
XL1

DS XL5
ORG BFLEARG+1
DS XL3
ORG BFLEARG+1
DS XL4
DS A
EQU *-BFLE
DS CL(4*BFLELN)
DS 18F
DSECT
IECSDSL1 (1)

EQU
EQU
DS
DS
DS
DS
DS
DS
DS
DS

* IECSDSL1
CL44
CL1
CL6
XL2
XL3
XL3
XL1
XL1

+ DS XL1
+DS1SYSCD DS CL13
+ DS XL7
+DS1DSORG DS XL2

288 MVS/XA System-Data Administration

BUFFER LIST ENTRY
BUFFER LIST ENTRY FLAG
ARGUMENT IS RBA
ARGUMENT IS CCHHR
ARGUMENT IS TTR
CVAF UPDATED ARGUMENT FIELD
DATA IN BUF. HAS BEEN MODIFIED
SKIP THIS ENTRY
I/O ERROR
RESERVED
LENGTH OF DSCB BUFFER OR
LENGTH OF VIR DIVIDED BY 256
ARGUMENT OF VIR OR DSCB (CCHHR)

'TTR' OF ARGUMENT

'RBA' OF ARGUMENT
BUFFER ADDRESS
LENGTH OF A BUFFER LIST ENTRY

FOUR BUFFER LIST ENTRIES
SAVE AREA

FORMAT
DATA
FORMAT

DSCB DATASET NAME AND

DSCB

DATA SET NAME
FORMAT IDENTIFIER
DATA SET SERIAL NUMBER
VOLUME SEQUENCE NUMBER
CREATION DATE
EXPIRATION DATE
NUMBER OF EXTENTS ON VOLUME
NUMBER OF BYTES USED IN LAST

DIRECTORY BLOCK
RESERVED
SYSTEM CODE
RESERVED
DATA SET ORGANIZATION

*

(

(

+* FIRST BYTE OF DS1DSORG
+DS1DSGIS EQU
+*

X'80'

+DS1DSGPS EQU
+*

X'40'

+DS1DSGDA EQU
+DS1DSGCX EQU

X'20'
X' 10'
X'08'
X'04'
X'02'
X' 01'

+* EQU
+* EQU
+DS1DSGPO EQU
+DS1DSGU EQU
+*
+*
+*
+*
+DS1DSGGS
+DS1DSGTX
+DS1DSGTQ
+*
+DS1ACBM
+DS1DSGTR
+*
+*
+DS1RECFM
+DS10PTCD
+DS1BLKL
+DS1LRECL
+DS1KEYL
+DS1RKP
+DS1DSIND
+DS1SCALO
+DS1LSTAR
+DS1TRBAL
+
+DS1EXT1
+*
+*

EQU X'80'
EQU X'40'
EQU X'20'
EQU X'10' .
EQU X'08'
EQU X'04'
EQU X'02'
EQU X' 01'
DS XL1
DS XL1
DS XL2
DS XL2
DS XL1
DS XL2
DS XL1
DS XL4
DS XL3
DS XL2
DS XL2
DS XL10
FIRST BYTE
SECOND BYTE

SECOND BYTE

+*
+*
+DS1EXT2
+DS1EXT3
+DS1PTRDS
+DS1END

THIRD - SIXTH BYTES
SEVENTH - TENTH BYTES

DSCBLTH
LIST
LISTSTRT
LISTPRMS
LISTBUF
LISTCHR
LISTLAST
LASTBIT

LISTNEXT
EXAMPLES

DS XL10
DS XL10
DS XLS
EQU *
EQU *-IECSDSL1
DSECT
DS F
EQU *
DS F
DS OF
DS X
EQU X'80'
DS AL3
EQU *
CSECT

IS - INDEXED SEQUENTIAL
ORGANIZATION
PS - PHYSICAL SEQUENTIAL
ORGANIZATION
DA - DIRECT ORGANIZATION
CX - BTAM OR QTAM LINE GROUP
RESERVED
RESERVED
PO - PARTITIONED ORGANIZATION
U - UNMOVABLE, THE DATA
CONTAINS LOCATION DEPENDENT
INFORMATION

OF DS1DSORG
GS - GRAPHICS ORGANIZATION
TX - TCAM LINE GROUP
TQ - TCAM MESSAGE QUEUE
RESERVED
ACCESS METHOD CONTROL BLOCK
TR - TCAM 370S
RESERVED
RESERVED
RECORD FORMAT
OPTION CODE
BLOCK LENGTH
RECORD LENGTH
KEY LENGTH
RELATIVE KEY POSITION
DATA SET INDICATORS
SECONDARY ALLOCATION

@01A

@01A

@01A
@01A
@01A
@01A
@01A
@01A

@01A
@01A
@01A
@01A
@01A
@01A
@01A
@01A

LAST USED TRACK AND BLOCK ON TRACK
BYTES REMAINING ON LAST TRACK USED
RESERVED
FIRST EXTENT DESCRIPTION
EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER
LOWER LIMIT
UPPER LIMIT
SECOND EXTENT DESCRIPTION
THIRD EXTENT DESCRIPTION
POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB

LENGTH OF DSCB
PARAMETER LIST
ADDRESS OF CCHHR TO START SEARCH

BUFFER ADDRESS
ADDRESS OF CCHHR FIELD
BYTE
LAST DOUBLE WORD
3 BYTE ADDRESS OF CCHHR
NEXT DOUBLEWORD

**
*
*
*
*

READ DSCBS WITH CCHHR GREATER THAN THE CCHHR IN THE FIRST
BUFFER LIST ENTRY.

**

Appendix B. Examples of VTOC Access Macros 289

CVPL CVAFSEQ ACCESS=GT, *
BUFLIST=BFLHDR,
MF=L

ADDRESS OF BUFFER LIST *

+ CNOP 0,4
+CVPL EQU *
+ DC CL4'CVPL'
+ DC AL2(ICV6E-CVPL)
+ DC XL1'04'
+ DC XL1'OO'
+ DC B'00100000'
+ DC B'OOOOOOOO'
+ DC H'O'
+ DC A(O)
+ DC A(O)
+ DC A (BFLHDR)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ICV6E EQU *

ORG CVPL
CVPLMAP ICVAFPL DSECT=NO

EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION CODE
STATUS INFORMATION
FIRST FLAG BYTE
SECOND FLAG BYTE
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS
END OF CVPL

EXPAND MAP OVER LIST
CVPL MAP

+***
+* CVAF PARAMETER LIST
+***

+CVPLMAP
+CVLBL
+CVLTH
+CVFCTN
+CVDIRD
+CVDIWR
+CVDIRLS
+CVSEQGT
+CVSEQGTE
+CVDMIXA
+CVDMIXD
+CVDMALC
+CVDMRLS
+CVDMMAP
+CVVOL
+CVVRFRD
+CVVRFWR
+CVSTAT
+
+CVFL1
+CV1IVT
+CVlIOAR
+CV1PGM
+CV1MRCDS

DS
DS
DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS

DS
EQU
EQU
EQU
EQU

OF
CL4
H
XL1
X'01'
X'02'
X'03'
X'04'
X'OS'
X'06'
X'07'
X'08'
X'09'
X'OA'
X'OB'
X'OC'
X'OD'
XL1

XL1
X'80'
X'40'
X'20'
X' 10'

290 MVS/XA System-Data Administration

CVAF PARAMETER LIST
EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION BYTE
CVAFDIR ACCESS=READ
CVAFDIR ACCESS=WRITE
CVAFDIR ACCESS=RLSE
CVAFSEQ ACCESS=GT
CVAFSEQ ACCESS=GTEQ
CVAFDSM ACCESS=IXADD
CVAFDSM ACCESS=IXDLT
CVAFDSM ACCESS=ALLOC
CVAFDSM ACCESS=RLSE
CVAFDSM ACCESS=MAPDATA
CVAFVOL ACCESS=VIBBLD
CVAFVRF ACCESS=READ
CVAFVRF ACCESS=WRITE
STATUS INFORMATION (SEE
BELOW)
FIRST FLAG BYTE
INDEXED VTOC ACCESSED
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES

LIST *

c

(

(""

+CVlIRCDS EQU
+CV1MAPIX EQU
+CV1MAPVT EQU
+CV1MAPVL EQU
+CVFL2 DS
+CV2HIVIE EQU
+CV2VRF EQU
+CV2CNT EQU
+CV2RCVR EQU
+CV2SRCH EQU
+CV2DSNLY EQU
+CV2VER EQU
+CV2NLEVL EQU
+*
+ DS
+CVUCB DS
+CVDSN DS
+CVBUFL DS
+CVIRCDS DS
+CVMRCDS DS
+CVIOAR DS
+CVDEB DS
+CVARG DS
+CVSPACE DS
+CVEXTS DS
+CVBUFL2 DS
+CVVRFDA DS
+CVCTAR DS
+CVPLNGTH EQU

X'08'
X'04'
X'02'
X'01 '
XL1
X'80'
X'40'
X'20'
X'10'
X'08'
X'04'
X'02'
X'01'

H
A
A
A
A
A
A
A
A
A
A
A
A
A
*-CVPLMAP

+* VALUES OF CVSTAT

IXRCDS=KEEP
MAP=INDEX
MAP=VTOC
MAP=VOLUME
SECOND FLAG BYTE
HIVIER=YES
VRF DATA EXISTS
COUNT=YES
RECOVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES
OUTPUT-NEW HIGHEST LEVEL VIER
CREATED
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS

+*(THIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)
END

Appendix B. Examples of VTOC Access Macros 29 f

Example 6: Usingtbe CV AFfST and CV AFDSM Macros

EXAMPLE 6 CSECT
STM
BALR
USING
ST
LA
ST
LR

This example returns a format-5 DSCB to the caller. The format-5 DSCB is
constructed by this program if the volume contains an indexed VTOC. The
format-5 DSCB is read by another program, F5RTN (not described in the
example), if the volume contains a nonindexed VTOC.

The CV AFTST macro is used to determine if a nonindexed VTOC is on the
volume.

If the CV AFTST return code is neither 0 nor 4 (a nonindexed VTOC is on the
volume), the CVAFDSM macro is issued to obtain up to 27 extents from the
VPSM in the VTOC index. The program does not determine whether the
CV AFTST return code is 8 (volume contains indexed VTOC) or 12 (it cannot
be determined what type of VTOC is on the volume). In either case, the
CV AFDSM macro is issued. If the CV AFTST reiurn code is 12, the
CV AFDSM macro call will cause CV AF to determine whether an indexed or a
nonindexed VTOC is on the volume, and the CVIIVT bit will be set to one or
zero, accordingly.

,
The extent table (at label EXTABL) is initialized to request 27 extents from the
CV AFDSM macro, which is one more than the number of extents that fit in a
format-5 DSCB. The format-5 DSCB is constructed from the first 26 extents
returned from the CV AFDSM call.

The first extent in the extent table is initialized from the last extent in the
format-5 DSCB area supplied by the caller of the program. If this is the first
call, the program assumes that the format-5 area is initialized to zero. Thus, the
first extent in the extent table has a value of zero to serve as the starting place
for the extent search. If this is the second or subsequent call, the last extent in
the format-5 area would be the last extent obtained from the previous
CV AFDSM call.

The format-5 chain pointer field (DS5PTRDS) is set to a nonzero value if
CV AFDSM returned a 27th extent. In this case, the program will be called
again to obtain another format-5 DSCB.

The program's return code is 0 if no errors were encountered and 4 if an error
was encountered.

This program must be APF authorized.

14,12,12(13)
12,0
*,12
13,SAVEAREA+4
RWORK,SAVEAREA
RWORK,8(,13)
13,RWORK

292 MVS/XA System-Data Administration

c

(~

(

**
*
* REGISTERS

*
**
RDEB EQU 3 DEB ADDRESS SUPPLIED BY CALLER
RUCB EQU 4 UCB ADDRESS SUPPLIED BY CALLER
RF5 EQU 5 ADDRESS OF FORMAT 5 BUFFER SUPPLIED *

+
+
+
+
+
+
+
+

BY CALLER
RWORK EQU 6 WORK REGISTER
REG15 EQU 15 RETURN CODE REGISTER 15

*
KF5 EQU 26 NUMBER OF FORMAT 5 EXTENTS
**
*
*
*
*
*
*
*
*
*
*
*

READ FORMAT 5 DSCB OR BUILD A FORMAT 5 DSCB IF
AN INDEXED VTOC

UCB ADDRESS SUPPLIED IN RUCB.
RF5 CONTAINS THE ADDRESS OF THE FORMAT 5 DSCB BUFFER. IT

CONTAINS THE LAST FORMAT 5 DSCB READ OR BUILT. THE FORMAT 5
BUFFER IS ZERO IF THIS IS THE FIRST CALL

IF THE FORMAT 5 DSCB BUFFER RETURNED TO THE CALLER HAS A
NONZERO VALUE IN DS5PTRDS, THIS ROUTINE WILL BE CALLED
AGAIN TO OBTAIN THE NEXT FORMAT 5 DSCB.

**
USING IECSDSF5,RF5 ADDRESSABILITY TO FORMAT 5 BUFFER
CVAFTST UCB=(RUCB) TEST VTOC
CNOP 0,4 START OF CVAFTST MACRO
LR 1,RUCB
L 15,16
L 15,328(,15)
L 15,12(,15)
LTR 15,15
BZ ICV1E
L 15,4(,15)

LOAD PARAMETER REG 1
LOAD THE CVT
LOAD VS1/VS2 COMMON EXTENSION2
LOAD THE CVAF TABLE ADDRESS
TEST FOR ZERO VALUE

+
+ICV1E

BALR 14,15
EQU *

CVAF IS NOT ON THE SYSTEM
LOAD POINTER TO CVAF TEST E.P.
BRANCH AND LINK TO CVAF TEST
END OF CVAFTST

LTR REG15,REG15
BZ UNINDXD
C REG15,NOTIXRC
BE UNINDXD

READ NEXT FORMAT 5
UNINDEXED VTOC?
READ NEXT FORMAT 5

**
*
* ASSUME INDEXED VTOC UNLESS CVAFDSM CALL INDICATES UNINDEXED

*
**

MVC EXTS(L'DS5AVEXT) ,DS5MAVET+L'DS5MAVET-L'DS5AVEXT MOVE THE *
LAST EXTENT FROM FORMAT 5 TO FIRST *
ENTRY IN THE EXTENT TABLE

CVAFDSM MF=(E,CVPL),
UCB= (RUCB) ,
DEB=(RDEB),

BRANCH=YES

GET 27 EXTENTS FROM CVPL
RUCB ADDRESS REQUIRED
RDEB ADDRESS REQUIRED BY

*
*
*

UNAUTHORIZED PROGRAMS CALLING CVAF *
BRANCH ENTRY CALL *

Appendix B. Examples of VTOC Access Macros 293

------- --- -----------------------------,

+
+
+
+
+
+

NOERROR

+
+
+
+
+
+

+
+
+

UNINDXD

RETURN

OTHERERR

DSCB

+IECSDSL5
+IECSDSF5
+DS5KEYID
+DS5AVEXT
+*
+*
+*
+*

LA
L
L
L
L
BALR
TM
BZ
LTR
BZ
C
BNE
CLI
BNE
EQU
MVC

1,CVPL
').5, 16
15,328(,15)
15,12(,15)
15,0(,15)
14,15

CVFL 1, CV1 IVT
UNINDXD
REG15,REG15
NOERROR
REG15,RC04
OTHERERR
CVSTAT,STAT032
OTHERERR

*
DS5KEYID,F5ID

LOAD PARAMETER REG 1
LOAD THE CVT
LOAD VS1!VS2 COMMON EXTENSION2
LOAD THE CVAF TABLE ADDRESS
LOAD THE CVAF ADDRESS
BRANCH AND LINK TO CVAF

IS THIS INDEXED VTOC
READ FORMAT 5 IF NOT
ANY ERROR

UNEXPECTED ERROR
END OF DATA
UNEXPECTED ERROR
BUILD FORMAT 5

MVC DS5AVEXT(L'DS5AVEXT+L'DS5EXTAV),EXTS MOVE IN EXTENTS *
TO DS5FMTID

MVI DS5FMTID,C'5'
MVC DS5MAVET,EXTS+L'DS5AVEXT+L'DS5EXTAV MOVE REMAINING *

EXTENTS
XR REG15,REG15 RETURN CODE ZERO
XC DS5PTRDS,DS5PTRDS ZERO CHAIN POINTER
NC EXTS+L'EXTS-L'DS5AVEXT(L'DS5AVEXT),EXTS+L'EXTS-L'DS5AVEXT*

IS LAST(27TH) EXTENT FROM CVAF *
ZERO?

BZ RETURN BRANCH IF YES-LEAVE DS5PTRDS ZERO
MVI DS5PTRDS+L'DS5PTRDS-1,1 SET DS5PTRDS NONZERO TO SIMULATE *

THERE BEING ANOTHER FORMAT 5
B RETURN
EQU *
LINK EP=F5RTN

CNOP
BAL
DC
DC
DC
SVC
EQU *

0,4
15,*+20
A(*+B)
A(O)
CLB'F5RTN'
6

CALL ROUTINE TO READ NEXT FORMAT 5
LINK TO FORMAT 5 ROUTINE. RETURN
CODE PASSED BACK IN REG15

LOAD SUP.PARAMLIST ADR
ADDR OF EP PARAMETER

DCB ADDRESS PARAMETER LCOA
EP PARAMETER
ISSUE LINK SVC

RETURN TO CALLER
L 13,SAVEAREA+4
RETURN (14,12),RC=(15)
L 14,12(13,0) RESTORE REGISTER 14

RESTORE THE REGISTERS
RETURN

LM 0,12,20(13)
BR 14
EQU *
L REG15,RC04
B RETURN
DSECT
IECSDSL 1 (5)
EQU *
EQU IECSDSL5
DS XL4
DS XL5
BYTES 1 - 2

BYTES ~ - 4
BYTE 5

ERROR
. ERROR RETURN CODE

FORMAT 5 DSCB

KEY IDENTIFIER
AVAILABLE EXTENT

RELATIVE TRACK ADDRESS OF THE FIRST TRACK
IN THE EXTENT
NUMBER OF UNUSED CYLINDERS IN THE EXTENT
NUMBER OF ADDITIONAL UNUSED TRACKS

*

294 MVS/XA SYHlcm-Data AdminiHtration

c

(-

(-

+DS5EXTAV
+DS5FMTID
+DS5MAVET
+DS5PTRDS
+DS5END

DS
DS
DS
DS
EQU
CSECT

XL35
CL1
XL90
XL5

*

SEVEN AVAILABLE EXTENTS
FORMAT IDENTIFIER
EIGHTEEN AVAILABLE EXTENTS
POINTER TO NEXT FORMAT 5 DSCB

EXAMPLE6
NOTIXRC
RC04
F5ID
SAVEAREA
EXTABL
EXTNO
EXTS
CVPL

DC F'4' CVAFTST RETURN CODE-UNINDEXED
DC F ' 4 ' RETURN CODE 4
DC XL4'0505050505' FORMAT 5 FIELD, DS5KEYID
DS 1SF REGISTER SAVE AREA
DS OCL(1+(KF5+1)*L'DS5AVEXT) EXTENT TABLE
DC AL1(KF5+1) NUMBER OF EXTENTS IN TABLE
DS CL((KF5+1)*L'DS5AVEXT) EXTENTS
CVAFDSM ACCESS=MAPDATA,

COUNT=NO,
MAP=VOLUME,
EXTENTS=EXTABL,
MF=L

+ CNOP 0,4
+CVPL EQU *
+ DC CL4'CVPL'
+ DC AL2(ICV9E-CVPL)
+ DC XL1'OA'
+ DC XL1'OO'
+ DC B'00100001'
+ DC B'OOOOOOOO'
+ DC H'O'
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ DC A (EXTABL)
+ DC A(O)
+ DC A(O)
+ DC A(O)
+ICV9E EQU *

ORG CVPL
CVPLMAP ICVAFPL DSECT=NO

DO NOT COUNT EXTENTS
ACCESS VOLUME SPACE MAP
EXTENT TABLE ADDRESS
LIST FORM OF MACRO

EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION CODE
STATUS INFORMATION
FIRST FLAG BYTE
SECOND FLAG BYTE
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENTS TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS
END OF CVPL

OVERLAY CVPL WITH EXPANSION OF MAP

+***
+* CVAF PARAMETER LIST
+***
+CVPLMAP
+CVLBL
+CVLTH
+CVFCTN
+CVDIRD
+CVDIWR
+CVDIRLS
+CVSEQGT
+CVSEQGTE
+CVDMIXA
+CVDMIXD
+CVDMALC
+CVDMRLS
+CVDMMAP

DS
DS
DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OF
CL4
H
XL1
X'01 '
X'02'
X'03'
X'04'
X'05'
X'06'
X'07'
X'OS'
X'09'
X'OA'

CVAF PARAMETER LIST
EBCDIC 'CVPL'
LENGTH OF CVPL
FUNCTION BYTE
CVAFDIR ACCESS=READ
CVAFDIR ACCESS=WRITE
CVAFDIR ACCESS=RLSE
CVAFSEQ ACCESS=GT
CVAFSEQ ACCESS=GTEQ
CVAFDSM ACCESS=IXADD
CVAFDSM ACCESS=IXDLT
CVAFDSM ACCESS=ALLOC
CVAFDSM ACCESS=RLSE
CVAFDSM ACCESS=MAPDATA

*
*
*
*

Appendix B. Examples of VTOC Access Macros 295

+CVVOL EQU
+CVVRFRD EQU
+CVVRFWR EQU
+CVSTAT DS
+
+CVFL1 DS
+CV1IVT EQU
+CV 1 IOAR EQU
+CV1PGM EQU
+CV1MRCDS EQU
+CV1IRCDS EQU
+CV1MAPIX EQU
+CV1MAPVT EQU
+CV1MAPVL EQU
+CVFL2 DS
+CV2HIVIE EQU
+CV2VRF EQU
+CV2CNT EQU
+CV2RCVR EQU
+CV2SRCH EQU
+CV2DSNLY EQU
+CV2VER EQU
+CV2NLEVL EQU
+*
+ DS
+CVUCB DS
+CVDSN DS
+CVBUFL DS
+CVIRCDS DS
+CVMRCDS DS
+CVIOAR DS
+CVDEB DS
+CVARG DS
+CVSPACE DS
+CVEXTS DS
+CVBUFL2 DS
+CVVRFDA DS
+CVCTAR DS
+CVPLNGTH EQU
+*
+*(THIS PART OF

END

X'OB'
X'OC'
X'OD'
XL1

XL1
x'80'
X'40'
X'20'
X' 10'
X'08'
X'04'
X'02'
X'01'
XL1
X'80'
X'40'
X'20'
X' 10'
X'08'
X'04'
X'02'
X' 01 '

H
A
A
A
A
A
A
A
A
A
A
A
A
A
*-CVPLMAP
VALUES OF CVSTAT
THE ICVAFPL MACRO

296 MVS!XA System-Data Administration

CVAFVOL ACCESS=VIBBLD
CVAFVRF ACCESS=READ
CVAFVRF ACCESS=WRITE
STATUS INFORMATION (SEE LIST
BELOW)
FIRST FLAG BYTE
INDEXED VTOC ACCESSED
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IXRCDS=KEEP
MAP=INDEX
MAP=VTOC
MAP=VOLUME
SECOND FLAG BYTE
HIVIER=YES
VRF DATA EXISTS
COUNT=YES
RECOVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES
OUTPUT-NEW HIGHEST LEVEL VIER
CREATED
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS

EXPANSION IS NOT SHOWN)

X

(-

(

Appendix C. VTOC Index Error Message and Associated Codes

Error Message

Explanation

System Action

When CV AF finds an error in a VTOC index, it issues this message:

IEC606I VTOC INDEX DISABLED ON dev,volser,
code,[rba[,secno,offset]]

In addition, CV AF puts a return code in the CYST AT field of the CVPL.

The Common VTOC Access Facility (CVAF) detected a VTOC index error on
the device "dev" with volume serial number "volser." "code" is a number that
represents the kind of VTOC index error encountered. "rba" is the RBA of the
VIR in the VTOC index that contains a structure error indicated by "code." If
the VIR is a VIER, the section number in the VIER containing the VTOC index
entry is supplied in "secno," and the offset into the section of that VTOC index
entry is supplied in "offset."

The VTOC index is disabled by zeroing the index bit in the format-4 DSCB and
setting the bit in the first high-level VIER that indicates invalid VTOC index
structure. The VTOC will be converted to nonindexed format when DADSM
next allocates space on the volume. A system dump is written to the
SYSl.DUMP data set, and an entry is made in the SYSl.LOGREC data set.
The message IEC6041 (which indicates that the VTOC convert routines have
been used) will be issued later.

Appendix C. VTOC Index Error Message and Associated Codes 297

Programmer Response

Examine the system dump and a print of the VTOC index, and use the
information in message IEC606I to determine the cause of the VTOC index
structure error.

Routing and Descriptor Codes

The routing codes are 4 (direct access pool) and 10 (system/error maintenance),
and the descriptor code is 4 (system status).

Codes Put in the CYST AT Field

Code

O(X'OO')

I(X'OI ')

2(X'02')

4(X'04')

5(X'05')

6(X'06')

7(X'07')

8(X'08')

9(X'09')

Meaning

No error.

Data set name not found, or VIER is empty.

Argument is outside VTOC extents or RBA range of VTOC index.

Invalid parameter supplied (wrong key), or VRFAREA too small.

DSN keyword omitted.

Not authorized to perform this fuitCtion.

Buffer list omitted.

DEB invalid or omitted or ndt 'Open to VTOC.

IOAREA==KEEP and user notlltitl'tdrized, or I/O area supplied and either user not authorized or
CV AFVOL function.

10(X'OA') Function not supported on OS V'flOC.

11(X'OB') DSCB is not format-O DSCB ilml \13uFY== YES.

12(X'OC') MAPRCDS==YES and/or IXI:<efiSliI=KEEP but VTOC is nonindexed.

298 MVS/XA System-Data Administration

c·------~ . '.

/

c

('
Code Meaning

13(X'OD') IXRCDS=KEEP not specified for CVAFDSM ACCESS=IXADD or IXDLT.

14(X' OE') CT AREA keyword omitted.

15(X'OF') UCB invalid, volume not mounted; VIO unit, not DASD.

17(X' 11 ') DSCB length invalid for the function requested: 96 bytes for CV AFDIR
ACCESS=WRITE,VERIFY=YES; 140 bytes for CVAFSEQ reading in data set name
sequence; 96 bytes for CV AFSEQ reading in physical sequence.

19(X'13') UCB omitted and CVAF I/O area not supplied.

22(X'16') Data set name already supplied in index.

23(X'17') Invalid DSN supplied (44 X'FF' is a reserved data set name).

24(X' 18') ARG keyword not supplied.

25(X'19') Conflicting or incomplete information specified in the space table for a CV AFDSM
ACCESS=ALLOC, MAP = VOLUME request.

27(X'lB') VTOC index full. No free VIRs available and a VIER split is required.

28(X'lC') Space keyword omitted (CVSPACE field zero in CVPL).

29(X'lD') CV AFDSM ACCESS=ALLOC: No format 0 DSCB available (MAP=VTOC), or VTOC index
full (MAP=INDEX), or volume space not available (MAP=VOLUME).

30(X'lE') CVAFDSM ACCESS=ALLOC: CCHHR (MAP=VTOC) or RBA MAP=INDEX or volume
space extent (MAP = VOLUME) already allocated.

31(X'lF') CVAFDSM ACCESS=ALLOC or ACCESS=MAPDATA: CCHHR supplied outside VTOC
extents (MAP=VTOC), or RBA outside VTOC index extents (MAP=INDEX), or volume space
~J!:t~nt invalid or outside volume (MAP = VOLUME).

32(X'20') End of data. CVAFDSM ACCESS=MAPDATA: no more free extents in VPSM. CVAFSEQ:
I}.,o more names in index or DSCBs in VTOC. For indexed access, no DSN in VTOC index with
bigher or higher-or-equal key than that supplied. For physical-sequential access, no DSCB in the
VTOC has a higher argument than that supplied. For a multiple DSCB request. the last DSCB.in
the VTOC was read and more DSCBs were requested.

Appendix C. VTOC Index Error Message and Associated Codes 299

Code Meaning

33(X'21 ') EXTENTS keyword omitted, or supplied number of extents is zero.

34(X '22') CV AFDSM ACCESS=RLSE and format-O DSCB already free (MAP= VTOC) , or VIER
already unallocated (MAP = INDEX) or volume space extent already unallocated
(MAP = VOLUME).

42(X'2A') VRF data supplied for write too long.

43(X'2B') Buffer list is for VIRs, but a DSCB buffer list is required.

44(X'2C') No buffer list entry found.

45(X'2D') Invalid DSCB buffer length (neither 96 nor 140) in buffer list entry, or VIR buffer length not
equal to VIB VIR size.

46(X'2E') Neither TTR nor CCHHR bits set in buffer list entry to be used in writing or reading a 140-byte
DSCB.

47(X'2F') More than one of the TTR, CCHHR, and RBA bits set in the buffer list entry.

48(X'30') Both the DSCB and VIR bits set in the buffer list header.

49(X'31 ') RBA bit set in a buffer list entry for a DSCB buffer list.

50(X'32') TTR or CCHHR bit set in buffer list entry but buffer list header indicates buffer list is for a VIR.

52(X'34') Combination of MAP and COUNT not supported.

53(X'35') MAP omitted.

54(X' 36') Buffer list for a VIR chained to or from a buffer list for a DSCB.

55(X'37') Unauthorized caller and VIB not initialized.

56(X'38') MAPRCDS=YESnot specified but required.

57(X'39') Buffer list for a DSCB supplied, but buffer list for a VIR is required (in MAPRCDS or IXRCDS
buffer list address in CVAF parameter list).

58(X' 3A ') Neither the VIR nor DSCB bit set in a buffer list header.

300 MVS/XA System-Data Administration

c

(-
Code

60(X'3C')

61(X'3D')

62(X'3E')

63(X'3F')

64(X'40')

Meaning

Invalid or conflicting setting of allocate option byte in space parameter

Filter criteria list address omitted (CYFCL=O) or ID not "FCL" (CYAFFILT).

FCLCOUNT field is zero or no elements to process (CYAFFILT).

FCLCOUNT field is greater than 1 and FCLlLIST indicates a generic data set name
(CY AFFIL T).

Insufficient number of user buffer list entries to complete this request. All data set names in the
filter criteria list up to this point processed successfully. Use RESUME function to continue
processing (CY AFFILT).

65(X'41 ') Buffer list entry error, for example, buffer length not 140 bytes (CYAFFILT).

66(X'42') ACCESS=RESUME and filter save address (FSA) omitted (CVFSA=O), or FSA not in CYAF
protect key (CYAFFILT).

67(X'43 ') Invalid partially qualified data set name for generic access (CY AFFILT).

68(X'44') Filter criteria list not in user key (CYAFFILT).

69(X'45') Internal GETMAIN error (CYAFFILT).

70(X'46') Direct VTOC access I/O error (CYAFFILT).

71(X'47') Sequential VTOC access I/O error (CYAFFILT).

72(X' 48') Error in CY AFFIL T processing. RESUME function not recommended (CY AFFIL T).

73(X'49') Insufficient number of user buffer list entries to complete this request. Error in DSCB chain. One
or more names in the filter criteria list not processed successfully; however, RESUME function
recommended for remaining DSCBs (CY AFFILT).

7 4(X' 4A ') Data set name information is invalid (FCLDSNLG is either "0" or greater than '44', or
FCLDSNA is either "0" or not in user key) (CY AFFILT).

127(X'7F') I/O error occurred.

128(X'80') Reserved.

Appendix C. VTOC Index Error Message and Associated Codes 301\

Code Meaning

129(X'81 ') The first high-level VIER as indicated in the VIXM does not have the flag bit set indicating it is
the first high-level VIER.

130(X'82') A horizontal or vertical VIER pointer is outside the RBA range of the VTOC index.

131 (X' 83 ') A vertical VIER pointer points to a VIR that is not a VIER (invalid ID in header).

132(X'84') A level n vertical index entry pointer points to a VIER that is not at level n - 1.

133(X'85') Level n horizontal index entry pointer points to VIER that is not at level n.

134(X'86') Horizontal VIER/map pointer points to a VIR that is not a VIER/map (invalid ID in header).

135(X'87') Horizontal map pointer points to VIR that is not one of the first n VTOC index records (n is
recorded in VIXM field VIMRCDS), or the first record in the VTOC index is not aVIXM.

136(X'88') A level-1 index entry contains a CCHHR pointer that is outside the VTOC extent.

137(X'89') The first high-level VIER, as indicated in the VIB, does not have the flag bit set indicating it is
the first high-level VIER. (This error is either recovered from by updating theVIB from the
VIXM, or the error is changed to 129.)

138(X'8A') The RBA of the VTOC index VIR does not match the RBA recorded in the header of the
record.

139(X'8B') The first record of a map (VIXM, VPSM, or VMDS) is not one of the first n VTOC index
records (n is recorded in the VIXM field, VIMRCDS).

140(X'8C') The data set name in a level n + 1 VIER entry is lower than the high key of the level n VIER
that the level n + 1 VIER entry points to.

141(X'8D') First high-level VIER structure error bit is on.

142(X'8E') I/O error indicating the VTOC index is not formatted correctly.

143(X'8F') Either the index bit is zero, or the DOS bit is zero in the format-4 DSCB of a VTOC previously
found to be an indexed VTOC.

144(X'90') No SYS1.VTOCIX.nnn data set name in a VTOC whose format-4 DSCB has the index bit on,
indicating the VTOC has an index.

302 MVS/XA System-Data Administration

c

('

Code Meaning

145(X'91 ') The data set name in a level n + 1 VIER entry is higher than the high key of the level n VIER
that the level n + 1 VIER entry points to

146(X'92') Four or more high-level VIERs were encountered.

147 (X' 93') Too many levels in the VTOC index. The length of the search list was exceeded.

148(X'94') VIER invalid, because offset to last section is invalid.

149(X'95') VIER invalid, because offset to last entry in a section is invalid.

150(X'96') Media Manager initialization failed.

151(X'97') Level-2 or higher VIER contains fewer than two entries.

152(X'98')

153(X'99')

154(X'9A')

155(X'9B')

156(X'9C')

157(X'9D')

158(X'9E')

159(X'9F')

RECOVER=YES specified, but the static text module (ICVIXSTO) indicates recovery is not
permitted.

The format-4 DSCB on an indexed VTOC is written with either the index- or DOS-bit zeroed on
an indexed VTOC.

A space map extends over more than 10 VTOC index records.

Data set name not found in section with key greater than or equal to the name being searched
for. The VIER section containing the name is invalid.

Invalid VIER horizontal pointer. Horizontal pointer of VIER1 points to VIER2 whose high key
is lower than or equal to the high key of VIER!.

Could not find entry in level-2 or higher VIER that matches the high key of the VIER.

Invalid section length or invalid number of sections in a VIER header.

The first high-level VIER pointed to by the VIB has an invalid ID in the header.

Appendix C. VTOC Index Error Message and Associated Codes 303

(

(

Appendix D. Example of an OPEN Installation Exit Module

The description and example of IFOOEXOB (an installation-written OPEN exit
module that takes control during OPEN for a DeB) has been moved to Data
Facility Product: Customization.

Appendix D. Example of an OPEN Installation Exit Module 305

c

c

Appendix E. DFP ISMF Services

Introduction

This appendix describes services of the ISMF component of DFP available for
use by external application programs that are executing as ISMF line operators
or commands. See Data Facility Product: Customization for details related to
creating new line operators or commands. This appendix is organized into the
following sections:

• DFP ISMF service descriptions
• DFP ISMF messages available to external applications
• DFP ISMF control blocks available to external applications

Standard Linkage and Error Handling

Input Register Usage

ISMF uses registers as described below.' Services are accessed by creating
required parameter lists, loading the entry point address of the desired routine
into register 15, then branching to the address in register 15. The first four
letters of all entry point names identify associated control blocks.

The following table describes registers on input to a line operator or command
running in a DFP ISMF environment.

Register Value on Input to Line Operator or Command

o Unused

1 LPPL on input to line operator; CPPL on input to command

2-9 Unused

10 Points to GDRB

11, 12 Unused

13 Points to standard save area of calling routine

14 Address of return point in calling routine

Appendix E. DFP ISMF Services 307

Register Value on Input to Line Operator or Command

15 Address of called routine

The following table describes registers on input to a DFP ISMF service from a
line operator or command.

Register Value on Input to DFP ISMF Service

o Unused unless otherwise specified below

1 Points to input parameter list

2-9 Unused unless otherwise specified below

10 Points to GDRB

11, 12 U:nused unless otherwise specified below

13 Points to standard save area of calling routine

14 Address of return point in calling routine

15 Address of called routine

Output Register Usage

The following table describes registers on output from a DFP ISMF service to a
line operator or command, or on output from a line operator or command to
ISMF.

Register Value on Output from DFP ISMF Service, Line Operator,
or Command

0-14 Unused unless otherwise specified below

15 Return code

BuDding Parameter Lists and Finding Control Blocks

Parameter lists must be constructed in one of two ways:

• The list consists of 31-bit pointers to required inputs, with the last entry of
the list marked by having the high-order bit set to 1.

• The list consists of a set of flag bits followed by 31-bit pointers. The flag
bits indicate which parameters are present and which are omitted.

Most control blocks are pointed to by fields in other control blocks. To find a
control block, use the entry point name provided and find the control block
whose name is equal to the first four letters of the given entry point name. The
rest of the given entry point name identifies the field in the control block
(identified by the first four letters) that contains the entry point.

308 MVS/XA System-Data Administration

c

(

Error Logging

(

(~

For example, the control block ARVT identifies the field GDRBARVT as its
entry point. Following the rules stated above, GDRB is the control block that
contains the entry point address for the ARVT in the field labeled GDRBARVT
(offset 8). The GDRB lists register 10 as its entry point; therefore, you find the
entry point for the ARVT in the field at location GDRB + 8. Some fields in
parameter lists refer io fields in control blocks; you may locate these fields in a
similar manner.

If an error occurs, all services write information to the ERNT (see service
descriptions for details). Typical error logging includes the failing module name,
return code, reason code, and other diagnostic information. DFP ISMF creates a
chain of ERNT control blocks to log errors. The ERTBCURR field in the
ERTB always points to the current ERNT.

Appendix E. DFP ISMF Services 309

DFP ISMF Services

DGTCDTOI Decrement Use Count

Function: DGTCDTOI decrements the use count of modules loaded by
DGTCLDOl.

Entry Point Address: SR VTDTO 1

Input: R 1 points to the parameter list described below.

Parameter list

Offset
Hex Parameter

o 3 I-bit pointer to an 8-byte character variable set to the name of the
module to be deleted

Output: DGTCDTOI provides a return code, as follows.

Register states: R15 contains a return code, and the ERNT is updated as
described below.

Return Code ERNT Field
Name

o
8 ERNTMODN

ERNTPD
ERNTPROC
ERNTRC
ERNTRSNC

310 MVS/XA System-Data Administration

----~-~-~~---------~

/!--,
~,

c

(

DGTCDVOI Data Set Name Syntax Verification

Function: DGTCDVOI verifies data set name syntax. If the variable pointed to
by the last parameter in the following list is set to a blank (X'40'), unquoted
input data set names are returned unquoted with the TSO prefix appended.
Quoted input data set names are returned unchanged, but without quotation
marks.

Entry Point A.ddress: SRVTDVOI

Input: Rl points to the parameter list described below.

Parameter liJt

Offset
Hex (Dec)

0

4

8

C (12)

10 (16)

14 (20)

18 (24)

Parameter

31-bit pointer to a 60-byte character variable set to input data set
name

31-bit pointer to a I-byte character variable set to Y (allow) or
blank (disallow) full data set name

31-bit pointer to a I-byte character variable set to Y (allow) or
blank (disallow) partial data set name

31-bit pointer to a I-byte character variable set to Y (allow) or
blank (disallow) member of partitioned data set

31-bit pointer to a I-byte character variable set to Y (allow) or
blank (disallow) relative generation reference data set

31-bit pointer to a 60-byte character variable to be set to output
data set name.

31-bit pointer to a I-byte character variable set to Y (allow) or
blank (disallow) the following: TSO prefix should not be
appended to data set name and data set name must be unquoted

Output: The output data set name is updated.

RegiJter states: R 15 contains a return code, and the ERNT fields listed below
are updated.

Return
Code

o
8

ERNT Field
Name

ERNTLMSG
ERNTMODN
ERNTPROC
ERNTRSNC
ERNTRC
ERNTSMSG

Appendix E. OFP ISMF Services 311

-----~--,--,- ,-,-----------

Return
Code

12

ERNTField
Name

ERNTLMSG
ERNTMODN
ERNTPROC
ERNTRSNC
ERNTRC
ERNTSERV
ERNTSMSG

312 MVS/XA System-Data Administration

(

(

DGTCEPOI Free Storage and Exit

Function: DGTCEPOI frees storage gotten by DGTCPROI and exits to the
caller of the routine that called DGTCEPOI.

Entry Point Addrm: SR VTEPO 1

Input: Rl points to the parameter list described below.

Parameter list

Register Parameter

o
1

2

31-bit pointer to a IS-bit variable set to the ISMF exit return code

31-bit pointer to an 8-byte character variable set to the name of
the calling module

31-bit pointer to storage to be freed

Output: DGTCEPOI provides a return code, as follows.

Register states: R 1 S contains a return code, and the following ERNT fields are
updated. RO contains a pointer to the return code to be passed back to the
original caller (caller of the caller of DGTCEPOl). Rl contains a pointer to the
size of the invoking module's automatic data area.

Return ERNTField
Code Name

0

12
ERNTMODN
ERNTPROC
ERNTRSNC
ERNTRC

Appendix E. DFP ISMF Services 313

---~-------.-----~---.~.--.... -.-... -.---------

DGTCFMOI Free Memory

Function: DGTCFM01 frees storage acquired through DGTCGMOI.

Entry Point Atldress: SRvrFM01

Inptd: R1 points to the parameter list described below.

Offset
Hex (Decimal) Parameter

o 31-bit pointer to a 4-byte character variable set to the storage
identifier of the caller

4 31-bit pointer to a 31-bit pointer to the address of the area to be
freed

Output: DGTCFM01 provides a return code, as follows.

Register states: R15 contains a return code and the following ERNT fields are
updated.

Return ERNTField
Code Name

0

12
ERNTMODN
ERNTPD
ERNTPROC
ERNTRSNC
ERNTRC
ERNTSERV

314 MVS/XA System-Data Administration

j

c

(

(

DGTCGMOI Get Storage

Function: DGTCGMOI gets storage (which is freed by DGTCFMOl). If the
first attempt to obtain storage fails, DGTCGMOI deletes modules (loaded by
DGTCLDOl) whose use count is zero and will retry the operation.

Entry Point Address: SRVTGMOI

Input: R 1 points to the parameter list described below.

Parameter list

Offset
Hex (Decimal) Parameter

o 3 I-bit pointer to a 3 I-bit variable set to number of storage
bytes to be obtained

4 3 I-bit pointer to a 5-byte character variable set to BLANK or
ZERO, specifying whether to initialize obtained storage to
zeros or blanks

8 3 I-bit pointer to a 4-byte character variable set to the storage
identifier of the obtained storage

C (12)

10 (16)

14 (20)

3 I-bit pointer to a 5-byte character variable set to BELOW or
ANY, specifying storage to be obtained from BELOW the 16
megabyte boundary or from ANY location

31-bit pointer to a 5-byte character variable set to DBL WD or
PAGE, specifying storage to be aligned on a doubleword or
page boundary

31-bit pointer to a 31-bit variable to be set to the address of the
obtained storage

Output: The last field of the parameter list (address of obtained storage) is
updated to contain a pointer to the new storage.

Register stales: R15 contains a return code and the following ERNT fields are
updated.

Return
Code

o
12

ERNTField
Name

ERNTMODN
ERNTPD
ERNTPROC
ERNTRSNC
ERNTRC
ERNTSERV

Appendix E. DFP ISMF Services 315

DGTCLDOI Load a Module

Function: DGTCLDOlloads a requested module into storage; if the module is
already loaded, DGTCLDOI increments the module's use count.

Entry Point Address: SRVTLDOI

IIIJIId: Register states: Rl points to the parameter list described below.

PlII'fInU!Ier list

Offset
Hex (Decimal) Parameter

o 31-bit pointer to an 8-byte character variable set to the name of
the requested module

4 31-bit pointer to a 31-bit variable that will be updated to
contain the entry point address of the loaded module

Output: DGTCLDOI provides a return code, as follows, and the variable
pointed to by the load entry point address field of the parameter list is updated.

Register states: R15 contains a return code and the ERNT is updated as
described below.

Return ERNTField
Code Name

0

12
ERNTMODN
ERNTPROC
ERNTRC
ERNTRSNC
SRVC
ERNTPD

316 MVS/XA System-Data Administration

,~~

c

(

(

(

DGTCLGOI Place Information in the ISPF Log

FlIIICIion: DGTCLGOI creates log entries based on information from the
current ERNT, the current IMNT, or the log buffer. If the first parameter in the
following list is set to ERROR, the ERNT is used as the information source; if
the first parameter is set to IMTT, the IMNT is used as the source, and if the
first parameter is set to STATUS, the log buffer is used as the source.

Entry Point Address: SRVTLGOI

Input: Rl points to the parameter list described below.

PfI1YIIIIeter list

Offset
Hex Parameter

o 31-bit pointer to a 6-byte character variable set to the type of
entry to be generated. Possible entries: ERROR, STATUS, IMTT

4 31-bit pointer to an 8-byte character variable set to the address
of a message to be written to the log if type was set to STATUS,
set to blanks otherwise

8 31-bit pointer to a 31-bit variable set to zeros

Output: DGTCLGOI provides a return code, as follows.

Register stIltes: R15 contains a return code and the following ERNT fields are
updated.

Return
Code

o
12

ERNTField
Name

ERNTMODN
ERNTPD
ERNTPROC
ERNTRSNC
ERNTRC
ERNTSERV

Appendix E. DFP ISMF Services 317

-----_. ~ - -----~--~

DGTCPROI ·Obtain Automatic Data Area

Flllldion: H tracing is on, DGTCPR01 gets a module's automatic data area,
adds an entry to the Inter-Module Trace Table, and writes an entry to the ISMF
log.

Entry Point Address: SRVTPR01

/IIJHII: R1 points to the parameter list described below.

PatrIIIIIder list

Register Parameter

o

1

31-bit pointer to a 31-bit variable set to the amount of storage
needed

31-bit pointer to an 8-byte character variable set to calling module
name

Output: DGTEPR01 provides a return code, as follows.

Registerstotes: R15 contains a return code, R1 contains the address of the new
storage, and the following ERNT fields are updated.

Return ERNTField
Code Name

0

12 ERNTMODN
ERNTPROC
ERNTRSNC
ERNTRC

318 MVS/XA System-Data Administration

"'---./

c

(

DGTCVVOI Volume Serial Number Syntax Verification

Function: DGTCVVOl verifies volume serial number syntax. DGTCVVOl does
not support quoted volume serial numbers.

Entry Point A.ddress: SRVTVVOl

Input: Rl points to the parameter list described below.

Offset
Hex Parameter

o 3l-bit pointer to a 6-byte character variable set to the volume
serial number to be checked

4 3l-bitpointer to a l-byte character variable set to Y (allow) or
blank (disallow) full volume serial number

8 3l-bit pointer to a l-byte character variable set to Y (allow) or
blank (disallow) partial volume serial number

Output: DGTCVVOl provides a return code, as follows.

Register states: Rl5 contains a return code and the following ERNT fields are
updated.

Return
Code

ERNTField
Name

o
8 ERNTLMSG

ERNTMODN
ERNTPROC
ERNTRSNC
ERNTRC
ERNTSMSG

Appendix E. DFP ISMF Services 319

DGTCWOOI Word Finder

FlIIICtion: DGTCWOOI scans a specified section of storage for a character
string delimited by blanks.

Entry Point Address: SRVTWOOI

Input: Rl points to the parameter list described below.

Parameter list

Offset
Hex (Decimal) Parameter

o 3 I-bit pointer to a 3 I-bit variable set to the start address of
storage to be scanned

4 3 I-bit pointer to a 31-bit variable set to the end address of
storage to be scanned

8 3 I-bit pointer to a 3 I-bit variable that will contain the address
of the first word found

C (12) 31-bit pointer to a 31-bit variable that will contain the size of
the first word found

Output: The word and size fields of the parameter list will be updated.

Register states: R15 contains a return code and the following ERNT fields are
updated.

Return
Code

o
12

ERNTField
Name

ERNTMODN
ERNTPROC
ERNTRSNC
ERNTRC

320 MVS/XA System-Data Administration

(

(

(

DGTF ARFI Find an Entry in the Data Set List Array

Flllldion: DGTFARFI finds information in the data set list array and moves the
current row pointer to the new position.

Entry Point Address: ARVTFIND

Input: Register states: Rl points to the parameter list described below.

PfI1YIIIIeIer list

Offset
Hex Parameter

o 31-bit pointer to a 32-bit parameter set to X'3', indicating which
parameters are present

4 31-bit pointer to the SELB

8 31-bit pointer to a 3-byte character variable set to YES, specifying
retrieve information, or NO, specifying find information only.

Output If the retrieve information field of the parameter list specified YES,
DGTFARFI updates variables addressed by the DABVAR fields. DGTFARFI
provides a return code, as follows:

Register slides: R15 contains a return code and the ERNT is updated as
described below.

Return
Code

ERNTField
Name

o
8

12

ERNTLMSG
ERNTMODN
ERNTPD
ERNTPROC
ERNTRC
ERNTRSNC
ERNTSERV
ERNTSMSG

ERNTLMSG
ERNTMODN
ERNTPD
ERNTPROC
ERNTRC
ERNTRSNC
ERNTSERV
ERNTSMSG

Appendix E. DFP ISMF Services 321

---------.,--~----.-- -

DGTF ARPI Position Current Row Pointer at Top of List

Function: DGTFARPI positions the current row pointer at the top of the data
set list array. The data set list array is an internal representation of data set
names.

Entry Point Address: ARVTPOS

Input: Register states: Rl points to the parameter list described below.

PartlItIeter list

Offset
Hex (Decimal)

o

4

8

C (12)

10 (16)

14 (20)

18 (24)

lC (28)

Parameter

31-bit pointer to a 32-bit parameter set to X' 19', indicating
which parameters are present

31-bit pointer set to the value of CPPLARNM

31-bit pointer to a 31-bit variable set to zeros

31-bit pointer to a 31-bit variable set to zeros

31-bit pointer to a 3-byte character variable set to 'TOP'

31-bit pointer to a 2-byte character variable set to 'NO'

31-bit pointer to a 31-bit variable set to zeros

31-bit pointer to a 31-bit variable set to zeros

Output:: DGTFARPI provides a return code, as follows.

Register states: R15 contains a return code and the ERNT is updated as
described below.

Return
Code

o
8

12

ERNTField
Name

ERNTLMSG
ERNTMODN
ERNTPROC
ERNTRC
ERNTRSNC
ERNTSERV
ERNTSMSG

ERNTLMSG
ERNTMODN
ERNTPROC
ERNTRC
ERNTRSNC
ERNTSERV
ERNTSMSG

322 MVS/XA System-Data Administration

(

DGTFARSI Obtain Count of Data Sets

Function: OGTFARSI obtains the total number of displayable data sets from
the data set list array.

Entry Point Address: ARVTST AT

Input: Register states: Rl points to the parameter list described below.

PIlI'IIItIeIer list

Offset
Hex (Decimal)

o

4

8

C (12)

10 (16)

10 (20)

Parameter

31-bit pointer to a 32-bit string set to X'F', indicating which
parameters are present

31-bit pointer set to the value in CPPLARNM

31-bit pointer to a 6-byte character variable set to 'RETURN'

31-bit pointer to a 7-byte character variable set to 'DISPROW'

31-bit pointer to a 31-bit variable where OGTFARSI will pass
back count of displayable data sets

31-bit pointer to a 31-bit variable set to zeros

Output: OGTFARSI updates the variable pointed to by the count field, and
provides a return code as follows:

Register stIlfes: R15 contains a return code and the ERNT is updated as
described below.

Return
Code

o
8

12

ERNTField
Name

ERNTLMSG
ERNTMODN
ERNTPO
ERNTPROC
ERNTRC
ERNTRSNC
ERNTSERV
ERNTSMSG

ERNTLMSG
ERNTMODN
ERNTPD
ERNTPROC
ERNTRC
ERNTRSNC
ERNTSERV
ERNTSMSG

Appendix E. DFP ISMF Services 323

DGTFARUI Update Data Set List Array

FIIIICfion: DGTFARU1 updates columns for the entry in the data set list array
pointed to by the current row pointer.

Entry Point AJIdreas: ARVTUPDT

IIlJllll: Register states: R1 points to the parameter list described below.

Offset
Hex (Decimal) Parameter

o 31-bit pointer to a 32-bit parameter set to X'3', indicating which
parameters are present

4 31-bit pointer set to the value of CPPLARNM

8 31-bit pointer to the DABL

C (12) 31-bit pointer to a 31-bit variable set to zeros

Output: DGTFARU1 updates the data set list array and provides a return code
as follows:

Registersllltes: R15 contains a return code and the ERNT is updated as
described below.

Return
Code

o
8

12

ERNTField
Name

ERNTLMSG
ERNTMODN
ERNTPD
ERNTPROC
ERNTRC
ERNTRSNC
ERNTSERV
ERNTSMSG

ERNTLMSG
ERNTMODN
ERNTPD
ERNTPROC
ERNTRC
ERNTRSNC
ERNTSERV
ERNTSMSG

324 MVSjXA System-Data Administration

~ ..

(

(

(

DGTFCTCK Verify Commands

Function: DGTFCTCK checks the validity of commands in the CTAP.
Commands in the CTAP must be enabled by DGTFCTSE before use.

Entry Point Address: CTVTCTCK

Input: R1 points to the parameter list described below.

PatrIIIIeter list

Offset
Hex (Decimal) Parameter

o 31-bit pointer to a 31-bit pointer to the command line field

4 31-bit pointer to a 31-bit variable set to the command line length

8 31-bit pointer to a I-byte character variable set to a blank
(X'40')

C (12) 3I-bit pointer to an 8-byte character variable where
DGTFCTCK will pass back the name of the load module which
processes the named command

10 (16) 3I-bit pointer to an 8-byte character variable where
DGTFCTCK will pass back the name of the command

Output: DGFFCTCK updates the command routine (load module) and command
name fields, and provides a return code as follows:

Register states: R15 contains a return code and the following ERNT fields are
updated.

Return
Code

ERNTFieid
Name

o
8

12

ERNTLMSG
ERNTRSNC
ERNTSMSG

ERNTLMSG
ERNTRSNC
ERNTSMSG

Appendix E. DFP ISMF Services 325

DGTFCTPR Process commands

FUlldion: DGTFCTPR gives control to the load module that processes input
commands. You must create the CTPL in order to use DGTFCTPR.

Entry Point Addre.D: CTVTCTPR

Input: Rl points to the parameter list described below.

Parameter list

Offset
Hex Parameter

o 31-bit pointer to the CTPL

Output: DGTFCTPR provides a return code, as follows.

Register states: R15 contains a return code and the following ERNT fields are
updated.

Return
Code

o
8

12

ERNTField
Name

ERNTLMSG
ERNTRSNC
ERNTSMSG

ERNTLMSG
ERNTRSNC
ERNTSMSG

326 MVS/XA System-Data Administration

('

c

(

(

DGTFCTSE Enable Valid Commands

Function: DGTFCTSE;by updating the CTAP, enables all commands listed in
the CTFU and disables all others. others by updating the CT AP. You must
create the CTFU to use DGTFCTSE.

Entry Point Address: CTVTCSE

Input: Register states: Rl points to the parameter list described below.

PfI1'tlIIIeter list

Offset
Hex Parameter

o 31-bit pointer to the CTFU

Output: DGTFCTSE provides a return code, as follows.

Register states: R15 contains a return code and the ERNT is updated as
described below.

Return ERNTField
Code Name

0

8 ERNTLMSG
ERNTRSNC
ERNTSMSG

12 ERNTLMSG
ERNTRSNC
ERNTSMSG

Appendix E. DFP ISMF Services 327

DGTFFOEI Obtain Input Information From the Screen Area Image

Function: DGTFFOEI obtains input information from the specified entry in the
list of data sets displayed in the screen area image.

Entry Point Address: FOVTGTVL

Input: Register states: Rl points to the parameter list described below.

Pll1YlItIeter list

Offset
Hex (Decimal) Parameter

o 31-bit pointer to a 32-bit parameter set to X' F' , indicating which
parameters are present

4 31-bit variable set to the value of LPPLFOAD

8 31-bit variable set to the value of LPPLARAD

C (12) 31-bit pointer to the address of LPPLENT

10 (16) 31-bit pointer to the DABL

14 (20) 31-bit pointer to a 31-bit variable set to zeros.

18 (24) 31-bit pointer to a 31-bit variable set to zeros.

lC (28) 31-bit pointer to a 31-bit variable set to zeros.

Output: DGTFFOEI updates the variables addressed by the DABV AR, and
provides a return code as follows:

Register states: R15 contains a return code and the ERNT is updated as
described below.

Return
Code

o
12

ERNTField
Name

ERNTMODN
ERNTPROC
ERNTRC
ERNTRSNC

328 MVS/XA System-Data Administration \

(

(

DGTFFOLI Refresh the Screen Image Area From the Data Set List
Array

FIIIICtiOll: DGTFFOLI uses the data set list array to refresh the screen image
area.

Entry Point A.ddress: FOVTLOAD

II1Jl1l1: Register states: RI points to the parameter list described below.

Offset
Hex Parameter

o 3 I-bit pointer to a 32-bit parameter set to X' 3' , indicating which
parameters are present

4 3 I-bit pointer set to the value of CPPLFONM

8 3 I-bit pointer set to the value of CPPLARNM

Output: DGTFFOLI provides a return code, as follows.

Register sIIItes: R15 contains a return code and the ERNT is updated as
described below.

Return
Code

o
8

12

ERNTField
Name

ERNTMODN
ERNTPROC
ERNTRC
ERNTRSNC

ERNTMODN
ERNTPROC
ERNTRC
ERNTRSNC

Appendix E. DFP ISMF Services 329

,---~---------.----.. -.--.--

DFP Common Services

IGBDISOO Call Device Information Services for UCB Address

Flllldion: IGBDISOO returns the address of the first UCB found for the generic
device type passed as input. Whenever IGBDISOO provides return code 8, you
must re-call the function, passing the same parameter list you used on the first
call. Do not initialize any fields as indicated in the following instructions for
making the first call to the service; make the second call with the parameter
exactly as it is returned from the first call. The second call to IGBDISOO frees
storage acquired by the function on the first call.

Entry Point AIIdNss: CVTEXT2 + 12; resulting address + 36.

IIlJlld: RO contains zeros and R1 contains a pointer to a pointer to the
parameter list described below. You must create the parameter list described
below; it must be 60 bytes long and you must fill in only the indicated fields; you
must set the rest to zeros. You must also create a 32-byte problem determination
area and a 25-byte return area, both initialized to zeros.

Pturlllleteriist

Offset
Hex (Decimal) P3QlIleter

o X'003C0100'

6 X'10'

7 X'QO' (first call); X'02' (second call)

8 3l-bit pointer to return area

C (12) ~l-bit variable set to the return area length

10 (16) 31-bit pointer to the problem determination area

14 (20) 31-bjt variable set to the problem determination area length

28 (40) i-byte character variable set to the generic device type name

Output: IGBPJSOO provides the UCB address in the return area + 20, and, if an
error occurre4, ij~tes the problem determination area. It also provides a return
code as follows.

Register -.: l1..5 contains one of the following hex return codes: 0, 8
(successful), 10, Ie, 20, 3C (unsuccessful). See DFP Diagnosis for a
description of the problem determination area and details about the valid return
codes and r.eason .codes.

330 MVS/XA System-Data Administration

rf\
\~ I
,j

(

(

DFP ISMF Messages Available to External Applications

The following messages are in the data set 'SYSl.DGTMLm', with member
names identified by the full message name minus the last character of the
message name. For example, message DGTUVOO5 is in
'SYSl.DGTMLm(DGTUVOO)' Likewise, message DGTUV016 is in
'SYSl.DGTMLffi(DGTUV01)' and so on. Each member contains 10 messages,
numbered 0 through 9.

DGTUV005 'ENTER Y OR N' .HELP= DGTMUV05 .ALARM= YES
'ENTER Y OR N AT THE CURSOR POSITION

DGTUV006 'INVALID COMBINATION' .HELP= DGTMUV06 .ALARM= YES
'IF MAXIMUM NUMBER OF RETRIES=O THEN SECONDS BETWEEN RETRIES MUST BE 0

DGTUV007 'INVALID COMBINATION' .HELP= DGTMUV07 .ALARM= YES
'IF SECONDS BETWEEN RETRIES=O THEN MAXIMUM NUMBER OF RETRIES MUST BE 0

DGTUV016 'MUST BE BLANK' .HELP= DGTMUV16 .ALARM= YES
'AMOUNT OF I/O BUFFERING MUST NOT BE SPECIFIED IF DUMP IN COMPRESSED FORM = Y

DGTUV021 'SPECIFY ONE OR MORE' .HELP= DGTMUV21
'YOU MUST SPECIFY ONE OR MORE OF THE FIELDS BELOW

DGTUV024 'ISMF INTERNAL ERROR'
'ISMF INTERNAL PROCESSING ERROR

.HELP= DGTMUV24

DGTUV031 'ENTER 1 OR 2' .HELP= DGTMUV31
'ENTER 1 OR 2 AT THE CURSOR POSITION

.ALARM= YES

.ALARM= YES

.ALARM= YES

DGTUV032 'RESET MUST EQUAL N' .HELP= DGTMUV32 .ALARM= YES
'RESET = Y IS INVALID IF ACCESS SOURCE DATA SET IN SHARED MODE = Y

DGTUV037 ' ,
'&LOGBJBNM(&LOGBJBNO) SUBMITTED

DGTUV038 "
'&LOGBJBNM PLACED IN &LOGBJBDS

DGTUV040 "
'&LOGBJBNM ADDED TO &LOGBJBDS

.ALARM= NO

.ALARM= NO

.ALARM= NO

DGTUV045 '&CURLIOP FAILED' .HELP= DGTMUV45 .ALARM= YES
'&CURLIOP LINE OPERATOR FAILED DUE TO AN UNEXPECTED ISMF INTERNAL ERROR

DGTUV046 '&CURCMD FAILED' .HELP= DGTMUV46 .ALARM= YES
'&CURCMD COMMAND FAILED DUE TO AN UNEXPECTED ISMF INTERNAL ERROR

DGTUV048 'COMMAND FAILED' .HELP= DGTMUV48 .ALARM= YES
'EITHER THE COMMAND FAILED OR AN UNEXPECTED INTERNAL ISMF ERROR OCCURRED

DGTUV049 'MISSING VOLSER' .HELP= DGTMUV49 .ALARM= YES
'AT LEAST ONE VOLUME SERIAL NUMBER MUST BE SPECIFIED

DGTUV050 'MISSING UNIT TYPE' .HELP= DGTMUV50 .ALARM= YES
'UNIT TYPE MUST BE SPECIFIED FOR VOLUME SERIAL(S)

FIgure 46 (Part I of 3). DFP ISMF Messages AvaDable to External AppHcations

Appendix E. DFP ISMF Services 331

DGTUV051 '&CURCMD INVALID' .HELP= DGTMUV51 .ALARM= YES
'&CURCMD IS ONLY VALID WHEN ENTERED FROM THE LIST PANEL

DGTUV052 'UNABLE TO FIND VOLSER' .HELP= DGTMUV52 .ALARM= YES
'THE ACTUAL VOLUME SERIAL FOR THE INDIRECT VOLSER COULD NOT BE FOUND

DGTUV053 'UPDATE OF LIST FAILED' .HELP= DGTMUV53 .ALARM= YES
'BACKGROUND JOB SUCCESSFULLY CREATED BUT UPDATE OF LIST FAILED

DGTUV054 'INVALID STATUS' .HELP= DGTMUV54 .ALARM= YES
'IF NO OUTPUT VOLUMES OR UNIT SPECIFIED, STATUS MUST BE OLD

DGTUV055 'MISSING DEVICE TYPE' .HELP= DGTMUV55 .ALARM= YES
'WHEN STATUS OF DATA SET IS NEW, AT LEAST A VALUE FOR UNIT MUST BE SPECIFIED

DGTUV056 'MUST BE 3 OR BLANK' .HELP= DGTMUV56 .ALARM= YES
'WHEN REPLACE IF DUPLICATE REQUESTED, DO NOT RENAME DATA SET

DGTUV057 'DUPLICATE DATA SET NAME' .HELP= DGTMUV57
'DUPLICATE DATA SET NAME INVALID FOR LIST COMMAND

DGTUV062 'PANEL PRIMING FAILED' .HELP= DGTMUV62
'UNABLE TO RETRIEVE SAVED PANEL VALUES - LAST-USE MODE

DGTUV063 'PANEL PRIMING FAILED' .HELP= DGTMUV63
'UNABLE TO RETRIEVE SAVED PANEL VALUES

DGTUV067 '&CURLIOP INVALID' .HELP= DGTMUV67
'&CURLIOP INVALID FOR A DFHSM MIGRATED DATA SET

.ALARM=

.ALARM=
IGNORED

.ALARM=

.ALARM=

YES

YES

YES

YES

DGTUV068 'MIGRATED DATASET INVALID' .HELP= DGTMUV68
'DFHSM MIGRATED DATA SETS ARE INVALID FOR THE &CURCMD

.ALARM= YES
LIST COMMAND

DGTUV069 'TOO MANY VOLSERS' .HELP= DGTMUV69
'MORE THAN 255 DIFFERENT VOLSERS IN THE DATA SET LIST

.ALARM= YES

DGTUV070 '&CURCMD JOB CREATED' .HELP= DGTMUV70 .ALARM= NO
'BACKGROUND JOB SUCCESSFULLY CREATED FOR THE &CURCMD COMMAND

DGTUV071 'INVALID VOLSER' .HELP= DGTMUV71 .ALARM= YES
'VALID VOLSER REQUIRED TO PERFORM THE REQUESTED FUNCTION

DGTUV072 'ENTER REQUIRED FIELD' .HELP= DGTMUV72 .ALARM= YES
'WHEN SPACE UNITS IS BLKS, A VALUE FOR BLOCKSIZE IS REQUIRED

DGTUV073 'ENTER REQUIRED FIELD' .HELP= DGTMUV73 .ALARM= YES
'WHEN STATUS IS NEW, SPACE QUANTITIES ARE REQUIRED

DGTUV080 'INVALID DATA SET NAME' . HELP= DGTMUV80 . ALARM= YES
'THE LINE OPERATOR FAILED BECAUSE IT WAS ISSUED AGAINST A BLANK DATA SET NAME

DGTUV082 'BLANK NAME INVALID' .HELP= DGTMUV82 .ALARM= YES
'BLANK DATA SET NAMES ARE INVALID FOR LIST COMMANDS

DGTUV083 'INVALID DEVICE TYPE' .HELP= DGTMUV83 .ALARM= YES
'VALID DEVICE TYPE REQUIRED TO PERFORM THE REQUESTED FUNCTION

FIgure 46 (part 1 of 3). DFP ISMF Messages Available to External AppHcatioas

332 MVS/XA System-Data Administration

"

(-

(

DFQHA001 'RANGE o TO 999' .HELP= DFQHA001 .ALARM= YES
'SPECIFY A NUMBER IN THE RANGE OF 0 TO 999

DFQHAOO2 'RANGE o TO 13' .HELP= DFQHA002 .ALARM= YES
'SPECIFY A NUMBER IN THE RANGE OF 0 TO 13

DFQHA003 'MUTUALLY EXCLUSIVE FIELDS' .HELP= DFQHA003 .ALARM= YES
'CANNOT SPECIFY NO. OF DAYS OR NO. OF BACKUP VERSIONS FOR SYSTEM DEFAULT

DFQHR001 'INVALID VOLSER'
'CONTAINS INVALID CHARACTERS

.HELP= DFQHR001 .ALARM= YES

DFQHR002 'ENTER REQUIRED INPUT' .HELP= DFQHR002 .ALARM= YES
'VOLUME AND DEVICE TYPE MUST BOTH BE SPECIFIED, OR SPECIFY NEITHER

DFQHR003 'INVALID DEVICE TYPE' .HELP= DFQHR003 .ALARM= YES
'THE DEVICE TYPE MUST BE 3330, 3330-1, 3330v, 3350, 3375, or 3380

DFQHC001 'RANGE 0 TO 12' .HELP= DFQHC001 .ALARM= YES
'SPECIFY A NUMBER IN THE RANGE OF 0 TO 12

DFQHM001 'INVALID HMIGRATE COMMAND .HELP= DFQHM001 .ALARM= YES
'CANNOT BE MIGRATED TO LEVEL-1 FOR A TAPE ONLY MIGRATE SYSTEM

DFQHM002 'INVALID HMIGRATE COMMAND .HELP= DFQHM002 .ALARM= YES
'HMIGRATE CANNOT BE ISSUED FOR A LEVEL-2 TO A LEVEL-1

DFQHM003 'INVALID HMIGRATE COMMAND .HELP= DFQHM003 .ALARM= YES
'HMIGRATE CANNOT BE ISSUED FOR A LEVEL-1 TO A LEVEL-1

DFQHD001 'INVALID HBDELETE COMMAND' .HELP= DFQHD001 .ALARM= YES
'THERE ARE NO BACKUP VERSIONS TO DELETE

DFQCN001 'INVALID CONDENSE COMMAND' .HELP= DFQCN001 .ALARM= YES
'CONDENSE CANNOT BE ISSUED FOR A MIGRATED DATA SET

DFQCN002 'INVALID CONDENSE COMMAND' .HELP= DFQCN002 .ALARM= YES
'CONDENSE CANNOT BE ISSUED FOR A TAPE ONLY MIGRATE SYSTEM

DFQCN003 'INVALID CONDENSE COMMAND' .HELP= DFQCN003 .ALARM= YES
'CONDENSE CAN ONLY BE ISSUED FOR A DATA SET WITH DSORG OF PS OR PO

DFQCNOO4 'DSORG CANNOT BE OBTAINED' .HELP= DFQCN004 .ALARM= YES
'ERROR DURING THE OBTAIN OF THE FORMAT1 DSCB TO DETERMINE DSORG

Figure 46 (Part 3 of 3). DFP ISMF Messages Available to External ApplicatioDS

Appendix E. DFP ISMF Services 333

The following messages are not displayed on a line operator entry panel, but are
written in the ISPF log as problem determination aids.

DFQLP001 'READ FOR DFHSM RECORD FAILED' .HELP= DFQLP001
'THE READ FOR THE DFHSM CDS RECORD FAILED, SVC ERROR

DFQLP002 'LINE OPERATOR FAILED'
'LINE OPERATOR FAILED

.HELP= DFQLP002

DFQLP003 'READ FOR DFHSM RECORD FAILED' .HELP= DFQLP003
'THE READ FOR THE DFHSM CDS RECORD FAILED, DFHSM ERROR

DFQLP004 'SUCCESSFUL SUBMISSION' .HELP= DFQLP004
'lineop LINE OPERATOR SUBMITTED SUCCESSFULLY

Figure 47. DFP ISMF Problem Determination Messages

334 MVS/XA System-Data Administration

.ALARM= YES

.ALARM= YES

.ALARM= YES

.ALARM= YES

(.

. ..

(

DFP ISMF Control Blocks Available to External Applications

ARVT

This section describes DFP ISMF control blocks available for use by external
applications. Most control blocks are pointed to by fields in other control
blocks. To find a control block, use the entry point name provided and find the
control block whose name is equal to the first four letters of the given entry
point name. The rest of the given entry point name identifies the field in the
control block (identified by the first four letters) which contains the entry point.

For example, the control block ARVT identifies the field GDRBARVT as its
entry point. Following the rules stated above, GDRB is the control block that
contains the entry point address for the ARVT in the field labeled GDRBARVT
(offset 8). The GDRB lists register 10 as its entry point; therefore, you find the
entry point for the ARVT in the field at location GDRB + 8.

Entry Point: GDRBARVT

ARVT
Offsets Type Length Name Description
===

ARRAY SERVICE VECTOR TABLE (ARVT)
===

0 (0) CHARACTER 56 ARVT
0 (0) CHARACTER 4 ARVTVID VISUAL ID: 'ARVT'
4 (4) FIXED 2 ARVTLEN LENGTH OF ARVT
6 (6) FIXED 2 ARVTUCNT USE COUNT
8 (8) ADDRESS 4 ARVTBEG ADDRESS OF ARBEGIN MODULE

12 (C) ADDRESS 4 ARVTDONE ADDRESS OF ARDONE MODULE
16 (10) ADDRESS 4 ARVTADD ADDRESS OF ARADD MODULE
20 (14) ADDRESS 4 ARVTCRET ADDR. OF ARCREATE MODULE
24 (18) ADDRESS 4 ARVTDELR ADDR. OF ARDELROW MODULE
28 (1 C) ADDRESS 4 ARVTENDM ADDRESS OF AREND MODULE
32 (20) ADDRESS 4 ARVTFIND ADDRESS OF ARPIND MODULE
36 (24) ADDRESS 4 ARVTPOS ADDRESS OF ARPOSIT MODULE
40 (28) ADDRESS 4 ARVTSORT ADDRESS OF ARSORT MODULE
44 (2C) ADDRESS 4 ARVTSTAT ADDRESS OF ARSTATS MODULE
48 (30) ADDRESS 4 ARVTUPDT ADDR. OF ARUPDATE MODULE
52 (34) ADDRESS 4 ARVTTBLS ADDR. OF ROWID CNTRL BLK
56 (38) CHARACTER ARVTEND END OF ARVT

CLeB

Entry Point: LPPLCLCB/CPPLCLCB (LPPLCLCB for line operators, CPPLCLCB for commands).

Appendix E. OFP ISMF Services 335

CLCB
Offsets Type Length Name Description
===

COMMAND/LINE OPERATOR CONTROL BLOCK
===

0 {OJ CHARACTER * CLCB
0 (OJ CHARACTER 4 CLCBVID VISUAL ID: 'CLCB'
4 (4) FIXED 2 CLCBLEN LENGTH OF CLCB
6 (6) BITSTRING 1 CLCBFLG1 FLAG FIELD
7 (7) BITSTRING 1 CLCBFLG2 FLAG FIELD
8 (8) ADDRESS 4 CLCBNEXT ADDR OF ENXT CLCB

12 (C) ADDRESS 4 CLCBPREV ADDR. PREV CLCB
16 (10) CHARACTER * CLCBENT CLCB ENTRY

CON"

Entry Point: SELBCONH

If you are using DGTFARFI, the CONHCNT field must be a IS-bit variable set to the number of DABs
whose column values are used to search the data set list array. The CONHCONE must be a 3 I-bit pointer
to each CONE associated with the CONH.

CONH
Offsets Type Length Name Description
===

CONDITIONAL CONTROL BLOCK HEADER (CONH)
===

CONH

o
o
o
4
6
8

(O) CHARACTER
(0) CHARACTER
(OJ CHARACTER
(4) FIXED
(6) FIXED
(8) ADDRESS

Entry Point: CONHCONE

* CONH
8 CONHMAIN
4 CONHVID
2 CONHLEN
2 CONHCNT
4 CONHCONE{*)

VISUAL ID: 'CONH'
LENGTH OF CONH
NUMBER OF ENTRIES
CONE ADDRESSES

If you are using DGTFARFI, you must set the CONENAME to a column name as specified in the DAB
associated with the CONE; you must set the CONECOND to either 'EQ' or 'NE', used when comparing
the value in the variable pointed to by the DABV AR in the DAB associated with this CONE to the column
values in the data set list array.

CONH
Offsets Type Length Name Description
===

END OF CONDITIONAL CONTROL BLOCK HEADER (CONH) CONDITIONAL
CONTROL BLOCK ENTRY (CONE)

===
o
o
8

10
12

{OJ CHARACTER
(OJ CHARACTER
(8) CHARACTER
(A) CHARACTER
(C) CHARACTER

12 CONE
8 CONENAME
2 *
2 CONECOND

CONEEND

336 MVS/XA System-Data Administration

~~- -~~~~------ ------

NAME OF COLUMN
RESERVED UNUSED
CONDITION
END OF CONE

CPPL

Entry Point: R 1 on entry to command routine.

CPPL
Offsets Type Length Name Description

COMMAND PROCESSOR PARAMETER LIST (CPPL) PASSES TO THE COMMAND
ROUTINE

===
o
o
4
6

7
8

12
16
20
24
32
36
40

44
48
52

56
60
64
68
72
74

75
76

80
84
88

(0) CHARACTER
(0) CHARACTER
(4) FIXED
(6) BITSTRING
1 •••
• 1 ••
• • 1 •
• •• 1

1 •••
• 1 ••
• • 1 •
• •• 1

(7) CHARACTER
(8) ADDRESS
(C) ADDRESS

(10) ADDRESS
(14) FIXED
(1 8) CHARACTER
(20) ADDRESS
(24) ADDRESS
(28) ADDRESS

(2C) ADDRESS
(30) ADDRESS
(34) ADDRESS

(38) FIXED
(3C) ADDRESS
(40) ADDRESS
(44) ADDRESS
(48) CHARACTER
(4A) BITSTRING
1 •••
.1 ..
.. 11 1111

(4B) CHARACTER
(4C) ADDRESS

(50) ADDRESS
(54) CHARACTER
(58) CHARACTER

88 CPPL
4 CPPLVID
2 CPPLLEN
1 CPPLFLG1

CPPLSTD
CPPLTEOL
CPPLTEOA
CPPLLOFL
CPPLSMSG
CPPLSCNM
CPPLSORT
CPPLFILT

1 CPPLPNTP
4 CPPLARNM
4 CPPLFONM
4 CPPLCLAD
4 CPPLCMDL
8 CPPLCMD
4 CPPLCMAD
4 CPPLPMAD
4 CPPLCSCB

4 CPPLCSCR
4 CPPLPSCR
4 CPPLCLCB

4 CPPLERRW
4 CPPLCNAM
4 CPPLDABL
4 CPPLMODA
2 CPPLAPPL
1 CPPLFLG2

CPPLMCDF
CPPLVOLF

*
1 *
4 CPPLCNTN

4 CPPLLMSG
4 *

CPPLEND

VISUAL ID: 'CPPL'
LENGTH OF CPPL
FLAG FIELD
STD INVOCATION
INVOKE AT END OF LIST
INVOKE AT END OF APPLICAT
ACTIVE LINE OPERATOR?
SET SHORT MSG DONE?
LIST GEN'D FRM CATALOG
SORT FLAG
FILTER FLAG
PANEL TYPE
ADDRESS OF FIELD W/ ARRAY
ADDR. OF FIELD W/ FORMAT
ADDR. OF THE COMMAND LINE
COMMAND LINE LENGTH
COMMAND
ADDR. OF COMMAND ON LINE
ADDRESS OF COMMAND PARAM.
ADDR. OF CURSOR CNTL BLK IT
MAY BE EITHER THE ADDR OF PCCB
OR LPCB
CURRENT SCROLL AMNT ADDR.
PREVIOUS SCROLL AMNT ADDR
COMMAND/LINE OPERATOR CONTROL
BLOCK CHAIN PTR
ROWID NAME OF ROW W/ERROR
ADDR OF CATALOG NAME
ADDR OF DABL
ADDR OF FILTER MOD NAME
APPLICATION ID
FLAG FIELD
HSM = YES ?
VOL = YES ?
RESERVED, UNUSED
RESERVED, UNUSED
ADDR OF THE NAME OF THE
CATALOG NAME TABLE
ADDR OF THE LONG MSG
RESERVED UNUSED
END OF CPPL

Appendix E. DFP ISMF Services 337

CTAP

Entry Point: CT ABCTAP

CTAP
Offsets Type Length Name Description
===

COMMAND TABLE - APPLICATION TABLE (CTAP)
===

0 (0) CHARACTER * CTAP
0 (0) CHARACTER 8 CTAPMAIN
0 (0) CHARACTER 4 CTAPVID VISUAL ID: 'CTAP'
4 (4) FIXED 2 CTAPLEN LENGTH OF CTAP
6 (6) FIXED 2 CTAPCNT # OF COMMAND ENTRIES
8 (8) CHARACTER 28 CTAPENT(*)
8 (8) CHARACTER 8 CTAPNAME COMMAND NAME

16 (10) FIXED 1 CTAPTRUN MIN. # OF CHARACTERS USED IN
TRUNCATION

17 (11) BITSTRING CTAPFLAG FLAG FIELD
1 ... CTAPST COMMAND STATUS
· 1 .. CTAPIMED IMMEDIATE COMMAND
· . 1 . CTAPLIST LIST COMMAND
· .• 1 1111 CTAPRSVD RESERVED

18 (12) CHARACTER 8 CTAPRTNM COMMAND ROUTINE NAME
26 (1A) CHARACTER 8 CTAPTENM CMD TERMINATION ROUTINE
34 (22) BITSTRING 2 * FILL UP END OF WORD

Constants
Length Type Value Name Description
===

END OF COMMAND TABLE - APPLICATION TABLE (CTAP) DEFINED
COMMAND STATUS

===

CTFU

BIT
BIT

CMDENABL
CMDDSABL

Entry Point: Created by invoker of DGTFCTSE

CTFU
Offsets Type Length Name

COMMAND STATUS IS ENABLE
COMMAND STATUS IS DISABL

Description
===

COMMAND TABLE - FUNCTION TABLE (CTFU)
===

0 (0) CHARACTER 168 CTFU
0 (0) CHARACTER 8 CTFUMAIN
0 (0) CHARACTER 4 CTFUVID VISUAL ID: 'CTFU'
4 (4) FIXED 2 CTFULEN LENGTH OF CTFU
6 (6) FIXED 2 CTFUCNT # OF COMMAND ENTRIES
8 (8) CHARACTER 160 CTFUNMS
8 (8) CHARACTER 8 CTFUNAME (20) COMMAND NAMES

338 MVS/XA System-Data Administration

c

(
CTPL

EIIIry Point: Created by invoker of DGTFCTPR

CTPL
Offsets Type Length Name Description
===

COMMAND TABLE PROCESSOR PARAMETER LIST (CTPL)
===

o
o
4
6

7
8

12
16
24
32
36
38
40
44
48
52

56

60
64
68
70
72
76
80

(0) CHARACTER
(0) CHARACTER
(4) FIXED
(6) BITSTRING
1 •••
• 1 ••

• • 1 •

• •• 1

1 •••
• 1 ••
•• 11

(7) CHARACTER
(8) ADDRESS
(C) ADDRESS

(1 0) CHARACTER
(18) CHARACTER
(20) ADDRESS
(24) FIXED
(26) FIXED
(28) ADDRESS
(2C) ADDRESS
(30) ADDRESS
(34) ADDRESS

(38) ADDRESS

(3C) ADDRESS
(40) ADDRESS
(44) CHARACTER
(46) CHARACTER
(48) ADDRESS
(4C) CHARACTER
(50) CHARACTER

80 CTPL
4 CTPLVID
2 CTPLLEN
1 CTPLFLG1

CTPLLOFL
CTPLSCNM

CTPLVOLF

CTPLMCDF

CTPLSORT
CTPLFILT
CTPLFLGU

1 CTPLPANL
4 CTPLARNM
4 CTPLFONM
8 CTPLCMDN
8 CTPLCMDR
4 CTPLCLAD
2 CTPLCMDL
2 CTPLERLN
4 CTPLCSCB
4 CTPLCSCR
4 CTPLPSCR
4 CTPLCNAM

4 CTPLCNTN

4 CTPLDABL
4 CTPLMODA
2 CTPLAPPL
2 *
4 CTPLLMSG
4 *

CTPLEND

VISUAL ID: 'CTPL'
LENGTH OF CTPL
FLAG BYTE 1
LINEOP FLAG
SOURCE OF THE GENERATED LIST
1 CATG,O VTOC
VOLUME DATA REQUEST FLG
1 VOLUME DATA REQUESTED
MCDS DATA REQUEST FLG 1 MCDS
DATA REQUESTED
SORT COMMAND FLAG
FILTER COMMAND FLAG
FLAG UNUSED
PANEL TYPE
ADDRESS OF ARRAY NAME
ADDRESS OF FORMAT NAME
NAME OF COMMAND
NAME OF COMMAND ROUTINE
ADDR OF COMMAND LINE
LEN OF COMMAND LINE
ERROR LINE NUMBER FIELD
ADDR OF CURSOR CNTL BLOCK
CURRENT SCROLL AMNT ADDR
PREVIOUS SCROLL AMNT ADDR
ADDRESS OF THE VDEFINED
CATALOG NAME
ADDRESS OF THE NAME OF THE
CATALOG NAME TABLE
ADDRESS OF DABL
ADDRESS OF FILTER MODULE NAME
APPLICATION ID 'DS', 'VO'
RESERVED
ADDRESS OF LONG MESSAGE
RESERVED
END OF CTPL

Appendix E. DFP ISMF Services 339

CTVT

Entry Point: GDRBCTVT

CTVT
Offsets Type Length Name Description
===

COMMAND TABLE PROCESSOR VECTOR TABLE (CTVT)
===

0 (0) CHARACTER 36 CTVT
0 (0) CHARACTER 4 CTVTVID VISUAL ID: 'CTVT'
4 (4) FIXED 2 CTVTLEN LENGTH OF CTVT
6 (6) FIXED 2 CTVTUCNT USE COUNT
8 (8) ADDRESS 4 CTVTCBE ADDRESS OF PGM DGTFCTB1

12 (C) ADDRESS 4 CTVTCEN ADDRESS OF PGM DGTFCTE1
16 (10) ADDRESS 4 CTVTCIN ADDRESS OF PGM DGTFCTIN
20 (14) ADDRESS 4 CTVTCTE ADDRESS OF PGM DGTFCTTE
24 (18) ADDRESS 4 CTVTCSE ADDRESS OF PGM DGTFCTSE
28 (1 C) ADDRESS 4 CTVTCCK ADDRESS OF PGM DGTFCTCK
32 (20) ADDRESS 4 CTVTCPR ADDR. OF PGM DGTFCTPR
36 (24) CHARACTER CTVTEND END OF CTVT

340 MVS/XA System-Data Administration

(

(

(-

DAB

Entry Point: DABLDAB

The DAB must be created by the external application that uses it. Follow the rules in the tables below when
using a DAB.

Note: The DABRQST field of the DAB must always be set to X'80'

Service Field Field
Using DAB Name Value

DGTFARFI DABVAR 3 I-bit pointer to a variable containing the column value to use for the search (if
this DAB's address is contained in the DABL pointed to by SELBDBLI) or a
3 I-bit pointer a variable where retrieved column contents will be stored (if this
DAB's address is contained in the DABL pointed to by SELBDBLO). Variables
must be the same length as the value of DABCLEN.

DGTFARUI DABV AR 3 I-bit pointer to a variable containing information which is to be written to the
data set list array in the column specified by DABCNAME. Variables must be
the same length as the value of DABCLEN.

DGTFFOEI DABVAR 3 I-bit pointer to a variable where retrieved column value will be stored.
Variables must be the same length as the value of DABCLEN.

DABCNAME Description DABTYPE DABCLEN DABV AR
Restrictions

DDISPFLG Undisplayed column, represents X'OI' X'OOOI' Must be X'FO' or X'FI'
whether entry is displayable

DLINEOP Line operator history column X'OI' X'OOOA'

DOBJ Data set name X'OI' X'OO2C'

DALLOCUS Allocated used space X'U' X'OOO7'

DDSORG Data set organization X'07' X'OOO3'

DRECFMT Data set record format X'09' X'OOO5'

DVOLSER Volume serial number X'OI' X'OOO6'

DDEVTYPE Generic device type X'OE' X'OOO7'

DENTYP Catalog entry type X'OI' X'OOOI'

DUCAT Indicates user catalog or non-user X'13' X'OOOI' Must be 'Y' or 'N'
catalog

DMULTV Indicates multi-volume data set X'OI' X'OOO3' Must be 'YES' or 'NO'

Appendix E. DFP ISMF Services 341

DAB
Offsets Type Length Name Description
===

DATA ATTRIBUTE BLOCK (DAB)
=============~===

o
o
4
6

7
8

16

17
18
20
24

(0) CHARACTER
(0) CHARACTER
(4) FIXED
(6) FIXED

(7) FIXED
(8) CHARACTER

(10) CHARACTER
1 •••
• 1 •.
•. 1 .
... 1 1111

(11) BITSTRING
(12) FIXED
(14) ADDRESS
(1 8) CHARACTER

Constants
Length Type Value

24 DAB
4 DABVID
2 DAB LEN
1 DABRS

1 DABFS
8 DABCNAME
1 DABFLAG1

DABRQST
DABDISP
DABEXT

* 1 DABTYPE
2 DABCLEN
4 DABVAR

DAB END

Name

VISUAL ID: 'DAB'
LENGTH OF DAB
RETURN STATUS OF COLUMN NAME
DAB
FILTER STATUS OF DSN DAB
COLUMN NAME

REQUEST STATUS FLAG
DISPLAYABLE STATUS FLAG
EXTENSION DAB INDICATOR
RESERVED, UNUSED
DATA ATTRIBUTES FOR COL
DATA LENGTH OF COLUMN
ADDRESS OF VARIABLE
END OF DAB

Description
===

VALUES FOR DABRS
===

DECIMAL
DECIMAL
DECIMAL

o
8
12

DABRSO
DABRS8
DABRS12

DATA RETURNED SUCCESSFULLY
DATA RETURNED AS NULLS
DATA NOT RETURNED

===
VALUES FOR DABFS

===

DABL

DECIMAL
DECIMAL
DECIMAL

DECIMAL

o
4
8

12

DABFSO
DABFS4
DABFS8

DABFS12

DATA NOT PROCESSED
DATA PASSED FILTER CRITERIA
DATA DID NOT PASS FILTER
CRITERIA
DSN NOT FOUND BY CVAFFILT

Entry Point: The DABL must be created by the external application that uses the service that requires the
DAHL. For DGTFARFl, SELBDBLI points to the entry point for the DABL associated with column
information used as the search criteria to locate entries in the data set list array. SELBDBLO points to the
DABL associated with the column information to be retrieved from the entries in the data set list array that
meet the search criteria.

DABL
Offsets Type Length Name Description
===

DATA ATTRIBUTE BLOCK LIST (DABL)
===

0 (0) CHARACTER * DABL
0 (0) CHARACTER 8 DABLMAIN
0 (0) CHARACTER 4 DABLVID VISUAL ID: 'DABL'
4 (4) FIXED 2 DABLLEN LENGTH OF DABL
6 (6) FIXED 2 DABLNUM # OF ENTRIES IN DABL
8 (8) ADDRESS 4 DABLDAB(*) LIST OF DAB'S

342 MVS/XA System-Data Administration

c

(
ERTB

Entry Point: GDRBERTB
ERTB
Offsets Type Length Name Description
===

ISMF ERROR TABLE (ERTB) - 08/15/84
===

0 (0) CHARACTER 1404 ERTB
0 (0) CHARACTER 84 ERTBHDR ERROR TABLE HEADER
0 (0) CHARACTER 4 ERTBVID VISUAL ID CONTAINS 'ERTB'
4 (4) FIXED 2 ERTBLEN LENGTH OF ERTB
6 (6) CHARACTER 2 * RESERVED UNUSED
8 (8) ADDRESS 4 ERTBBUFR PTR TO LOG BUFFER

12 (C) ADDRESS 4 ERTBCURR PTR TO CURRENT ERTB ENTRY
16 (10) CHARACTER 8 ERTBAPPL ISMF APPLICATION ID
24 (18) CHARACTER 8 ERTBFUNC FUNCTION/DIALOG NAME
32 (20) CHARACTER 44 ERTBOBJ LIST PANEL FUNCTION OBJ
76 (4C) CHARACTER 8 ERTBPNL LAST PANEL DISPLAYED ERTB

ENTRIES
84 (54) CHARACTER 1320 ERTBENT

ERNT

Entry Point: Before completing the ERNT, you must set the ERTBCURR field to the value of ERNTPTR
(found in the current ERNT). The ERTBCURR then contains the entry point value for the ERNT.

ERTB
Offsets Type Length Name Description

ERROR TABLE ENTRIES - 08/15/84
==~====

o
o
4
4

12
20
22
24
28
36
44
52
87

(0) CHARACTER
(0) ADDRESS
(4) CHARACTER
(4) CHARACTER
(C) CHARACTER

(14) FIXED
(16) FIXED
(18) CHARACTER
(1 C) CHARACTER
(24) CHARACTER
(2C) CHARACTER
(34) CHARACTER
(57) CHARACTER

Constants
Length Type Value

88 ERNT
4 ERNTPTR

84 ERNTINFO
8 ERNTMODN
8 ERNTPROC
2 *
2 ERNTRC
4 ERNTRSNC
8 ERNTSMSG
8 ERNTLMSG
8 ERNTSERV

35 ERNTPD
1 *

Name

PTR TO NEXT ERTB ENTRY
ERNT INFORMATION
MODULE NAME
PROCEDURE NAME
RESERVED UNUSED
RETURN CODE
REASON CODE
SHORT MESSAGE ID
LONG MESSAGE ID
FAILING EXTERNAL SRVC
PROBLEM DATA
RESERVED, UNUSED

Description
===

END OF ISMF ERROR TABLE (ERTB)
===

2
2

DECIMAL
DECIMAL

15
1320

CNTERNT
LENERNT

NUMBER OF ERTB ENTRIES

Appendix E. DFP ISMF Services 343

ET

Entry Point: GDRBET
ET
Offsets Type Length Name Description
===

ISMF ENVIRONMENT TABLE (ET)
===

FOVT

o
o
4
6
8

12

16

22
30
39

45
49

(0) CHARACTER
(0) CHARACTER
(4) FIXED
(6) FIXED
(8) FIXED

(C) FIXED

(10) CHARACTER

(16) CHARACTER
(1 E) CHARACTER
(27) CHARACTER

(2D) CHARACTER
(31) CHARACTER

Entry Point: GDRBFOVT
FOVT
Offsets Type

52 ET
4 ETVID
2 ETLEN
2 *
4 ETDSS

4 ETHSM

6 ETHSMV

8 ETFMID
9 ETCOMPID
6 ETSYSRES

4 ETDEVTYP
3 *

Length Name

VISUAL ID CONTAINS lET I

LENGTH OF ET
RESERVED UNUSED
LEVEL OF DFDSS INSTALLED ON
SYSTEM 'NNVVRRMM'X WHERE NN
IS 04 IF LEVEL COULD NOT BE
DETERMINED VV IS VERSION RR
IS RELEASE MM IS MODIFICATION
LEVEL OF DFHSM INSTALLED ON
SYSTEM I NNVVRRMM I X WHERE NN
IS 04 IF LEVEL COULD NOT BE
DETERMINED VV IS VERSION RR
IS RELEASE MM IS MODIFICATION
6 CHARACTER VOLUME SERIAL
NUMBER USED BY DFHSM TO SIGNAL
MIGRATED NORMALLY I MIGRAT I
FMID OF ISMF
ISMF COMPONENT ID
VOLSER OF SYSTEM RESIDENCE
VOLUME
DEVICE TYPE OF SYSRES
RESERVED, UNUSED

Description
===

FORMAT SERVICE VECTOR TABLE (FOVT)
===

0 (0) CHARACTER 84 FOVT
0 (0) CHARACTER 4 FOVTVID VISUAL ID: I FOVT I

4 (4) FIXED 2 FOVTLEN LENGTH OF FOVT
6 (6) FIXED 2 FOVTUCNT USE COUNT
8 (8) ADDRESS 4 FOVTBEG ADDRESS OF FOBEGIN MODULE

12 (C) ADDRESS 4 FOVTDONE ADDRESS OF FODONE MODULE
16 (10) ADDRESS 4 FOVTFIND ADDRESS OF FOFIND MODULE
20 (14) ADDRESS 4 FOVTGTLA ADDRESS OF FOGETLA MODULE
24 (18) ADDRESS 4 FOVTGTVL ADDR. OF FOGETVLA MODULE
28 (1 C) ADDRESS 4 FOVTHIDE ADDRESS OF FOHIDE MODULE
32 (20) ADDRESS 4 FOVTHILT ADDRESS OF FOHILT MODULE
36 (24) ADDRESS 4 FOVTHRO ADDRESS OF FOHRO MODULE
40 (28) ADDRESS 4 FOVTINIT ADDRESS OF FOINIT MODULE
44 (2C) ADDRESS 4 FOVTLAI ADDRESS OF FOLAI MODULE
48 (30) ADDRESS 4 FOVTLOAD ADDRESS OF FOLOAD MODULE
52 (34) ADDRESS 4 FOVTMOVE ADDRESS OF FOMOVE MODULE
56 (38) ADDRESS 4 FOVTPCSR ADDRESS OF FOPCSR MODULE

344 MVS/XA System-Data Administration

(:

(

(~-

GDRB

60
64
68
72
76
80
84

(3C) ADDRESS
(40) .ADDRESS
(44) ADDRESS
(48) ADDRESS
(4C) ADDRESS
(50) ADDRESS
(54) CHARACTER

4 FOVTPTLA
4 FOVTPTVL
4 FOVTQCSR
4 FOVTQURY
4 FOVTTE;RM
4 FOVTAREA

FOVTEND

Entry Poillt: Address is in RlO at all times.
GDRB
Offsets Type Length Name

ADDRESS OF FOPUTLA MODULE
ADDR. OF FOPUTVLA MODULE
ADDRESS OF FOQCSR MODULE
ADDRESS OF FOQUERY MODULE
ADDRESS OF FOTERM MODULE
ADDR OF FOFXAREA MODULE
END OF FOVT

Description
===

ISMF GLOBAL DATA REPOSITORY BLOCK (GDRB)
===

0 (0) CHARACTER 96 GDRB
0 (0) CHARACTER 4 GDRBVID VISUAL ID CONTAINS 'GDRB'
4 (4) FIXED 2 GDRBLEN LENGTH OF GDRB
6 (6) FIXED 2 * RESERVED
8 (8) ADDRESS 4 GDRBARVT ARRAY SERVICES VECTOR TABLE

12 (C) ADDRESS 4 GDRBASAB ARRAY SERVICES ANCHOR BLOCK
16 (10) ADDRESS 4 GDRBCTAB COMMAND TABLE ANCHOR BLOCK
20 (14) ADDRESS 4 GDRBDAAB DATA ACQUISITION ANCHOR BLK
24 (18) ADDRESS 4 GDRBDSAB DATA SET ANCHOR BLOCK
28 (1C) ADDRESS 4 GDRBERTB ERROR TABLE ADDRESS
32 (20) ADDRESS 4 GDRBET ENVIRONMENT TABLE
36 (24) ADDRESS 4 GDRBFOVT FORMAT SERVICE VECTOR TABLE
40 (28) ADDRESS 4 GDRBFSAB FORMAT SERVICE ANCHOR BLOCK
44 (2C) ADDRESS 4 GDRBFST FROZEN STORAGE TABLE PTR
48 (30) ADDRESS 4 GDRBIMTT INTER MODULE TRACE TABLE
52 (34) ADDRESS 4 GDRBLLBL LOAD LIST BLOCK POINTER
56 (38) ADDRESS 4 GDRBLPAB LINE OPERATOR ANCHOR BLOCK
60 (3C) ADDRESS 4 GDRBMDAB MAIN DIALOG ANCHOR BLOCK
64 (40) ADDRESS 4 GDRBPVT PROFILE VARIABLE TABLE
68 (44) ADDRESS 4 GDRBSCT STORAGE CONTROL TABLE PTR
72 (48) ADDRESS 4 GDRBSRVT SERVICE ROUTINE VECTOR TBL
76 (4C) ADDRESS 4 GDRBTPTT TRACE POINT TRACE TABLE PTR
80 (50) ADDRESS 4 GDRBISPF POINTER TO ISPF
84 (54) ADDRESS 4 GDRBCTVT POINTER TO CTVT
88 (58) ADDRESS 4 GDRBDCMD PTR TO ZTRAIL TRUNC REMAIN
92 (5C) ADDRESS 4 GDRBDEVT PTR TO DEVICE TYPE TABLE

IM'IT

Entry Poillt: Before completing the IMTT, you must set the IMTTCURR field to the value of IMNTPTR
(found in the current ERNT). The IMTTCURR then contains the entry point value for the IMTf.

IMTT
Offsets Type Length Name Description
===

ISMF INTER MODULE TRACE TABLE (IMTT)
===

0 (0) CHARACTER 6288 IMTT
0 (0) CHARACTER 16 IMTTHDR INTER MODULE TRACE TABLE HDR
0 (0) CHARACTER 4 IMTTVID VISUAL ID CONTAINS 'IMTT'
4 (4) FIXED 2 IMTTLEN LENGTH OF IMTT
6 (6) FIXED 2 * RESERVED UNUSED
8 (8) ADDRESS 4 IMTTCUR POINTER TO THE CURRENT ENTRY

12 (C) CHARACTER 4 * RESERVED UNUSED IMTT ENTRIES
16 (10) CHARACTER 6272 IMNTENT

Appendix E. DFP ISMF Services 345

IMNT

Elltry Point: IMTICURR
IMTT
Offsets Type Length Name Description
===

IMTT ENTRIES
===

0 (0) CHARACTER 56 IMNT
0 (0) ADDRESS 4 IMNTPTR PTR TO NEXT IMTT ENTRY
4 (4) CHARACTER 52 IMNTINFO IMNT INFORMATION
4 (4) CHARACTER 8 IMNTEMID MODULE ID

12 (C) ADDRESS 4 IMNTREG1 PARM LIST REG REG 1
16 (10) ADDRESS 4 IMNTREGB CURRENT WORK AREA ADDR
20 (14) CHARACTER 35 IMNTUSER USER AREA
55 (37) CHARACTER 1 * RESERVED, UNUSED

Constants
Length Type Value Name Description
===

END OF ISMF INTER-MODULE TRACE TABLE (IMTT)
===

2 DECIMAL 112 CNTIMNT NUMBER OF IMNT ENTRIES
2 DECIMAL 6272 LENIMNT

LOGB

Elltry Poillt: ERTBBUFR
LOGB
Offsets Type Length Name Description
===

ISMF LOG BUFFER (LOGB)
===

0 (0) CHARACTER 236 LOGB
0 (0) CHARACTER 4 LOGBVID VISUAL ID CONTAINS 'LOGB'
4 (4) FIXED 2 LOGBLEN LENGTH OF LOGB
6 (6) CHARACTER 2 * RESERVED
8 (8) CHARACTER 72 PGMLOG08 VARS WITH LENGTH OF B
B (8) CHARACTER 8 LOGBAPPL ISMF APPLICATION ID

16 (10) CHARACTER B LOGBMODN MODULE ID
24 (18) CHARACTER B LOGBPROC PROCEDURE ID
32 (20) CHARACTER B LOGBPNL LAST PANEL DISPLAYED
40 (28) CHARACTER 8 LOGBSERV NAME OF FAILING SERVICE
48 (30) CHARACTER 8 LOGBJBNM SUBMIT JOB NAME
56 (38) CHARACTER B LOGBJBNO SUBMIT JOB NUMBER
64 (40) CHARACTER B LOGBSMSG SHORT MESSAGE
72 (48) CHARACTER 8 LOGBLMSG LONG MESSAGE
80 (50) CHARACTER 11 PGMLOG11 VARS WITH LENGTH OF 44
80 (50) CHARACTER 11 LOGBFUNC FUNCTION/DIALOG NAME
91 (5B) CHARACTER 1 * RESERVED UNUSED
92 (5C) CHARACTER 44 PGMLOG44 VARS WITH LENGTH OF 44
92 (5C) CHARACTER 44 LOGBOBJ LIST PANEL FUNCTION OBJ

136 (88) CHARACTER 54 PGMLOG54 VARS WITH LENGTH OF 54
136 (88) CHARACTER 54 LOGBJBDS SUBMIT DATA SET NAME
190 (BE) CHARACTER 2 * RESERVED UNUSED
192 (CO) CHARACTER 8 PGMLOG04 VARS WITH LENGTH OF 4
192 (CO) CHARACTER 4 LOGBRC RETURN CODE
196 (C4) CHARACTER 4 LOGBRSNC REASON CODE
200 (C8) CHARACTER 35 PGMLOG35 VARS WITH LENGTH OF 35
200 (C8) CHARACTER 35 LOGBPD PROBLEM DATA
235 (EB) CHARACTER 1 * FILL UP REST OF WORD

346 MVS/XA System-Data Administration

~,

'~

C

(

<.

LPAP

Entry Point: LP ABLP AP
LPAP
Offsets Type Length Name Description
===

LINE OPERATOR TABLE - APPLICATION TABLE (LPAP)
===~=========================

0 {OJ CHARACTER * LPAP
0 (OJ CHARACTER 8 LPAPMAIN
0 (O) CHARACTER 4 LPAPVID VISUAL ID: 'LPAP'
4 (4) FIXED 2 LPAPLEN LENGTH OF LPAP
6 (6) FIXED 2 LPAPCNT # OF LINE OPERATORS
8 (8) CHARACTER 28 LPAPENT{*)
8 (8) CHARACTER 8 LPAPLONM LINE OPERATOR NAME

16 (1 0) FIXED 1 LPAPTRUN MIN. # OF CHARACTERS USED IN
TRUNCATION

17 (1 1) CHARACTER 3 * RESERVED, UNUSED
20 (14) CHARACTER 8 LPAPRTNM LINE OP ROUTINE NAME
28 (1 C) CHARACTER 8 LPAPTENM TERMINATION ROUTINE

LPCB

Entry Point: LPPLLPCB (line operator is invoker) / CPPLCSCB (command is invoker)
LPCB
Offsets Type Length Name Description
===

LIST PANEL CURSOR CONTROL BLOCK (LPCB)
===

0 (O) CHARACTER 30 LPCB
0 (O) CHARACTER 4 LPCBVID VISUAL ID: 'LPCB'
4 (4) FIXED 2 LPCBLEN LENGTH OF LPCB
6 (6) FIXED 2 LPCBENO ENTRY NUMBER
8 (8) CHARACTER 1 LPCBMFG MULTI LINE ENTRY FLAG
9 (9) CHARACTER 1 * RESERVED, UNUSED

10 (A) FIXED 2 LPCBMLN MULTI LNE ENTRY INDICATOR
12 (C) CHARACTER 2 LPCBCTG COLUMN TAG
14 (E) CHARACTER 2 * RESERVED, UNUSED
16 (1 0) CHARACTER 8 LPCBAREA AREA NAME
24 (18) FIXED 4 LPCBRND ROW ID NAME
28 (1 C) FIXED 2 LPCBOFF OFFSET WITHIN AREA
30 (1 E) CHARACTER LPCBEND END OF LPCB

Appendix E. DFP ISMF Services 347

LPPL

Elltry Point: Rl on entry to line operator routine
'LPPL
Offsets Type Length Name Description
===

LINE OPERATOR PROCESSOR PARAMETER LIST (LPPL) PASSES TO THE
LINE OPERATOR ROUTINES

===
o
o
4
6

7
8

12
16
20
28
32
34
35
36

40
44
48
52
56

60
64
68

(0) CHARACTER
(0) CHARACTER
(4) FIXED
(6) BITSTRING
1 •••
• 1 ••
• • 1 •
• •• 1

1 •••
• 1 ••
• • 1 •
• •• 1

(7) BITSTRING
(8) ADDRESS
(C) ADDRESS

(10) ADDRESS
(14) CHARACTER
(1C) FIXED
(20) FIXED
(22) CHARACTER
(23) CHARACTER
(24) ADDRESS

(28) ADDRESS
(2C) ADDRESS
(30) FIXED
(34) ADDRESS
(38) ADDRESS

(3C) ADDRESS
(40) CHARACTER
(44) CHARACTER

68 LPPL
4 LPPLVID
2 LPPLLEN
1 LPPLFLG1

LPPLSTD
LPPLTEOA
LPPLTEOL
LPPLLOFL
LPPLLAST
LPPLSMSG
LPPLSCNM
LPPLHIDE

1 LPPLFLG2
4 LPPLARAD
4 LPPLFOAD
4 LPPLCLCB
8 LPPLLO
4 LPPLROWI
2 LPPLENT
1 LPPLCMDF
1 *
4 LPPLCNAM

4 LPPLLAIA
4 LPPLROWA
4 LPPLLAIT
4 LPPLLPCB
4 LPPLCNTN

4 LPPLLMSG
4 *

LPPLEND

348 MVS/XA System-Data Administration

VISUAL ID: 'LPPL'
LENGTH OF LPPL
FLAG FIELD
STD INVOCATION
INVOKE AT END OF APPL
INVOKE AT END OF LIST?
ACTIVE LINE OPERATOR?
LAST USED MODE?
MSG ID SET IN ERTB ?
LIST GEN'D FR CATALOG
HIDE LINE OP
FLAG FIELD , UNUSED
ARRAY NAME ADDRESS
FORMAT NAME ADDRESS
COMMAND/LINE OP CNTL BLK
LINE OPERATOR IN PROGRESS
ROWID # OF THE LAI ENTRY
LAI ENTRY #
COMMAND FLAG
RESERVED
ADDRESS OF CATALOG NAME FOR
DATA SET APPLICATION
ADDRESS OF LAI
ADDRESS OF ROW IDS
TOTAL ENTRIES IN LAI
LIST PNL CURSOR CTL BLK
ADDR OF THE NAME OF THE
CATALOG NAME TABLE FOR DATA
SET APPLICATION
ADDR OF THE LONG MSG
RESERVED UNUSED
END OF LPPL

(

(

peeD
Entry Point: CPPLCSCB

PCCB
Offsets Type Length Name

PANEL CURSOR CONTROL BLOCK (PCCB)

Description

===
0 (0) CHARACTER
0 (0) CHARACTER
4 (4) FIXED
6 (6) FIXED
8 (8) ADDRESS

12 (C) ADDRESS
16 (10) CHARACTER

PVT

Entry Point: GDRBPVT
PVT
Offsets Type

16 PCCB
4 PCCBVID VISUAL ID: 'PCCB'
2 PCCBLEN LENGTH OF PCCB
2 * RESERVED, UNUSED
4 PCCBCFAD CURSOR FIELD ADDRESS
4 PCCBCOAD CURSOR OFFSET ADDRESS

PCCBEND END OF PCCB

Length Name Description
===

ISMF PROFILE VARIABLE TABLE (PVT)

0 (0) CHARACTER 16 PVT
0 (0) CHARACTER 4 PVTVID VISUAL ID CONTAINS 'PVT '
4 (4) FIXED 2 PVTLEN LENGTH OF PVT
6 (6) FIXED 2 * RESERVED
8 (8) ADDRESS 4 PVTL72 PTR TO VARS WITH LEN 72

12 (C) ADDRESS 4 PVTL1 PTR TO VARS WITH LEN 1

Appendix E. DFP ISMF Services 349

PVTV

Entry Point: PVTL72 (field PVTL72 in control block PVT-for structure PGMPVT72)

PVTLI (field PVTLI in control block PVT-for structure PGMPVTOl)

PVTV
Offsets Type Length Name Description
===

ISMF PROFILE VARIABLE TABLE VARIABLES (PVTV)
===

0 CO) CHARACTER 1512 PGMPVT72 PVT VARS WITH LEN OF 72
0 (0) CHARACTER 72 APPFDE11 DFDSS EXECUTE STATEMENT

VARIABLE
72 (48) CHARACTER 72 APPFDE12 DFDSS EXECUTE STATEMENT

VARIABLE
144 (90) CHARACTER 72 APPFDE13 DFDSS EXECUTE STATEMENT

VARIABLE
216 (D8) CHARACTER 72 APPFDE14 DFDSS EXECUTE STATEMENT

VARIABLE
288 (120) CHARACTER 72 APPFDE15 DFDSS EXECUTE STATEMENT

VARIABLE
360 (168) CHARACTER 72 APPFDE16 DFDSS EXECUTE STATEMENT

VARIABLE
432 (1BO) CHARACTER 72 APPFDE17 DFDSS EXECUTE STATEMENT

VARIABLE
504 (1F8) CHARACTER 72 APPFJOB1 JOB STATEMENT VARIABLE
576 (240) CHARACTER 72 APPFJOB2 JOB STATEMENT VARIABLE
648 (288) CHARACTER 72 APPFJOB3 JOB STATEMENT VARIABLE
720 (2DO) CHARACTER 72 APPFJOB4 JOB STATEMENT VARIABLE
792 (318) CHARACTER 72 APPFJOB5 JOB STATEMENT VARIABLE
864 (360) CHARACTER 72 APPFJOB6 JOB STATEMENT VARIABLE / '\
936 (3A8) CHARACTER 72 APPFJOB7 JOB STATEMENT VARIABLE

1008 (3FO) CHARACTER 72 APPFDE21 DFDSS EXECUTE STATEMENT
VARIABLE

1080 (438) CHARACTER 72 APPFDE22 DFDSS EXECUTE STATEMENT
VARIABLE

1152 (480) CHARACTER 72 APPFDE23 DFDSS EXECUTE STATEMENT
VARIABLE

1224 (4C8) CHARACTER 72 APPFDE24 DFDSS EXECUTE STATEMENT
VARIABLE

1296 (510) CHARACTER 72 APPFDE25 DFDSS EXECUTE STATEMENT
VARIABLE

1368 (558) CHARACTER 72 APPFDE26 DFDSS EXECUTE STATEMENT
VARIABLE

1440 (SAO) CHARACTER 72 APPFDE27 DFDSS EXECUTE STATEMENT
VARIABLE

PVTV
Offsets Type Length Name Description

0 (0) CHARACTER 4 PGMPVT01 PVT VARS WITH LEN OF 01
0 CO) CHARACTER 1 APPFLDED LOGGING/ABEND CONTROL VARIABLE
1 (1) CHARACTER 1 APPFLIMT LOGGING/ABEND CONTROL VARIABLE
2 (2) CHARACTER 1 APPFLTPT LOGGING/ABEND CONTROL VARIABLE
3 (3) CHARACTER 1 APPFLRFA LOGGING/ABEND CONTROL VARIABLE

350 MVS/XA System-Data Administration

(-

(

(-

SELB

Elltry Po;lII: This control block and all control blocks addressed by it must be created by the external
application that uses the service requiring the control block.

When using the SELB, observe the requirements in the following table.

Service Field Name Field Value
UsingSELB

DGTFARFI SELBARNM Value pointed to by CPPLARNM

SELBNP 'N'

SELBNO

SELB
Offsets

IS-bit value set to XIII

Type Length Name Description
===

SELECT BLOCK (SELB)
===

0 (0) CHARACTER
0 (0) CHARACTER
4 (4) FIXED
6 (6) FIXED
8 (8) CHARACTER

16 (10) CHARACTER
17 (11) CHARACTER
18 (12) FIXED
20 (14) BITSTRING

1 ...
. 1 ..
.. 1 .

21 (1 5) CHARACTER
24 (1 8) ADDRESS
28 (1 C) ADDRESS
32 (20) ADDRESS
36 (24) ADDRESS
40 (28) CHARACTER

40 SELB
4 SELBVID
2 SELBLEN
2 *
8 SELBARNM
1 SELBNP
1 *
2 SELBLNO
1 SELBFLG1

SELBKEEP
SELBUSE
SELBONE

3 *
4 SELBDBLO
4 SELBCNDL
4 SELBDBLI
4 SELBRID

SELBEND

VISUAL ID: 'SELB'
LENGTH OF SELB
RESERVED, UNUSED
ARRAY NAME
DIRECTION OF SEARCH
RESERVED, UNUSED
NTH LINE TO BE RETRIEVED
FLAG FIELD
SAVE SEARCH CRITERIA
USE OLD SEARCH CRITERIA
USE NEW SEARCH CRITERIA
RESERVED, UNUSED
ADDR OF DABL FOR OUTPUT
ADDRESS OF CONDITION LIST
ADDR OF DABL FOR INPUT
ADDR OF VAR TO PUT ROWID
END OF SELB

Appendix E. DFP ISMF Services 351

SRVT
r

Entry Point: GDRBSRVT ~7
SRVT
Offsets Type Length Name Description

0 (0) CHARACTER 112 SRVT
0 (0) CHARACTER 8 SRVTHDR SRVT HEADER
0 (0) CHARACTER 4 SRVTVID SRVT VISUAL ID IS 'SRVT'
4 (4) FIXED 2 SRVTLEN LENGTH OF SRVT
6 (6) FIXED 2 * UNUSED, RESERVED
8 (8) ADDRESS 4 SRVTPROl PROLOG ENTRY POINT ADDRESS

12 (C) ADDRESS 4 SRVTPR02 PROLOG ENTRY POINT ADDRESS
16 (10) ADDRESS 4 SRVTEPOl EPILOG ENTRY POINT ADDRESS
20 (14) ADDRESS 4 SRVTGMOl GETMEM ENTRY POINT ADDRESS
24 (18) ADDRESS 4 SRVTFMOl FREEMEM ENTRY POINT ADDRESS
28 (1 C) ADDRESS 4 SRVTLD01 LOAD ENTRY POINT ADDRESS
32 (20) ADDRESS 4 SRVTDT01 DELETE ENTRY POINT ADDRESS
36 (24) ADDRESS 4 SRVTDV01 DSN VERIFICATION ENTRY POINT

ADR
40 (28) ADDRESS 4 SRVTVV01 VOL VERIFICATION ENTRY POINT

ADR
44 (2C) ADDRESS 4 SRVTWOOl WORD PARSER ENTRY POINT

ADDRESS
48 (30) ADDRESS 4 SRVTARB1 ARRAY SERVICE INITIALIZATION
52 (34) ADDRESS 4 SRVTARN1 ARRAY SERVICE TERMINATION
56 (38) ADDRESS 4 SRVTFOB1 FORMAT SERVICE INITIALIZATION
60 (3C) ADDRESS 4 SRVTFONl FORMAT SERVICE TERMINATION
64 (40) ADDRESS 4 SRVTAS01 RACROUTE SERVICE ROUTINE
68 (44) ADDRESS 4 SRVTCD01 CONVERSION SERVICE ROUTINE
72 (48) ADDRESS 4 SRVTDAOO DATA ACQUISITION EPA
76 (4C) ADDRESS 4 SRVTLG01 LOG SERVICE ROUTINE EPA
80 (50) ADDRESS 4 SRVTCC01 SELECT FILTER VERIFICATION
84 (54) ADDRESS 4 SRVTCTBl COMMAND TABLE BEGIN
88 (58) ADDRESS 4 SRVTCTE1 COMMAND TABLE END
92 (5C) ADDRESS 4 SRVTCD02 CONVERSION SERVICE ROUTINE
96 (60) ADDRESS 4 SRVTCD03 CONVERSION SERVICE ROUTINE

100 (64) ADDRESS 4 SRVTCD04 CONVERSION SERVICE ROUTINE
104 (68) ADDRESS 4 SRVTCD05 CONVERSION SERVICE ROUTINE
108 (6C) ADDRESS 4 SRVTCDQ1 CONVERSION TABLE QUERY ROUTINE

Constants
Length Type Value Name Description
===

ISMF COMMON SERVICE ROUTINE VECTOR TABLE (SRVT)
===

2 DECIMAL 18 SRVTCNT

c
352 MVS/XA System-Data Administration

--- --~------ ----- ------------

Index

ABE appendage 71
abnormal-end appendage

See ABE appendage
access method routines, functions performed in I/O

operations 63
accessing VTOCs and VTOC indexes 42-60
alias name

of UCS images for JES2 225
allocating DASD space 5
allocation retrieval area

format 144
allocation retrieval list

format 144
altering DADSM processing 125
alternate track

assigning with ATLAS 83
AM operand

in DEBCHK macro 153
APF (authorized program facility) requirements 18
appendages

ABE (abnormal end) 71
CHE (channel end) 71
entry points 71
EOE (end of extent) 71
listing in SYSl.P ARMLIB 71
naming convention 71
PCI (program controlled interruption) 71
PGFX (page fix) 94
programming restrictions 71
returns 71
SIO (start I/O) 71

ARVT (array service vector table) 335
assigning alternate track with ATLAS 83-85
ATLAS macro

coding example 85
how to use 85
10BSENS fields with 85
operations performed 86
return codes 86
specification 83-85
unit check with 85
with track overflow option 84

luthorized appendage list 71
.uthorized program facility

SeeAPF

BALANCE operand (TRKCALC macro) 164,166
BFALN operand (DCB macro) 77
BFTEK operand (DCB macro) 77
bit maps

of allocated DSCBs 14
of allocated VIRs 14

block ID
setting in JFCB for high-speed positioning 149

BSAM (basic sequential access method)
defaulting buffer number 125

BUFCB operand (DCB macro) 77
buffer

DASD data sets
performance considerations with

BUFNO 229
selecting quantity with BUFNO 229

lists 49
entry format 46
format 45-47
function 45
header format 45
how created 45
releasing 49

releasing 49
BUFL operand (DCB macro) 77
BUFNO operand (DCB macro) 77

defaulting in OPEN installation exit
example (QSAM) 305

selecting value for DASD data sets 229
performance considerations 229

CAMLST macro
with RENAME operand 38-41
with SCRATCH operand 33-37
with SEARCH operand 29-31
with SEEK operand 31-33

catalogs
dummy module 227

CCW (channel command word) 69
See also channel programs

CENDA operand (DCB macro) 75
channel-end appendage

See CHE appendage
channel programs

appendages used with 71
execution 68-69
initiation 68-69
related 71
restrictions on modification 70

Index 353

translation, virtual addresses to real
addresses 95-97

CHE appendage 71
checking the DEB (DEBCHK) 151-155
checkpoint data set

processed with EXCP macro 79
CLCB (command/line operator control block) 335
CLOSE macro

used with EXCP macro 83
used with XDAP macro 104

codes
returned with error message 298-303
routing and descriptor 298

command retry 72
communication vector table (CVT) mapping macro

See CVT mapping macro
completion codes

See also return codes
following use of EXCP macro 93
following use of XDAP macro 105

CONH (conditional control block header) 336
control blocks

PIRL 161
used with EXCP

DCB 73-80
DEB 92
ECB 92
lOB 88-91

control password 116
conversion

of sector value for RPS devices 108
routine, actual track address to relative track

address 107
register usage 107

routine, relative track address to actual track
address 106

register usage 106
return codes 107

copy operation
DASDvolume

indexed VTOC requirements 18
noniodexed VTOC requirements 18

copying
DASD volumes 18

CPPL (command processor parameter list) 337
creating

protected data sets 113
CTAP (command table - application table) 338
CTFU (command table - function table) 338
CTPL (command table processor parameter list) 339
CTVT (command table processor vector table) 340
CV AF (common VTOC access facility)

filter service
control blocks required for 53
reading sets of DSCBs with 52

processing of GTF trace 61
serialization 42
volume identification to 42
VTOC access macros

CV AFDIR examples 259-270

354 MVS/XA System-Data Administration

---"~~"---

CVAFFILTexample 271-277
CV AFSEQ example 277-292
CV AFTST and CV AFDSM

examples 292-296
uses and syntax 231-258

CV AF parameter list
SeeCVPL

CV AFDIR macro
examples 259-270
howtouse 47
parameters 232, 237
return codes 238
syntax 231
uses 231

CV AFDSM macro
example 292-296
how to use 59
parameters 239-244
return codes 244
syntax 239
uses 239

CV AFFILT macro
control block address resolution 245-246
examples 271-277
filter criteria list

entry format 56
header format 54

how to use 52
invocation sequences

example 57
parameters 246-249
partially qualified names

examples 250
RESUME capability 52
return codes 249
syntax 245
uses 245

CV AFSEQ macro
examples 277-292
how to use 50
parameters 251-255
return codes 256
syntax 251
uses 251

CV AFTST macro
example 292-296
return codes 258
syntax 257
uses 257

CVFCTN field of CVPL
contents 45
definitions 45

CVPL (CV AF parameter list)
format 44
function 43-44
when created 43

CVSTATcodes 298
CVT (communication vector table) mapping

macro 129

/ '\

DAB (data attrubute block) 341
DABL (data attribute block list) 342
DADSM

allocate routine 5
return codes 181

overview 1
postprocessing exit

when given control 125
pre/postprocessing exits 125

data passed from DADSM 125
format-1 DSCB passed by IGGPREoo 125
operating environment 125
parameter list (IEPL) 125
register contents 125
rejecting a DADSM request 125
return codes from IGGPREOO 125
system control block addresses 125

preprocessing exit
altering DADSM processing 125
when given control 125

DASD (direct access storage devices)
obtaining free space

LSPACE macro 20-29
reading and writing to

XDAP macro 99-103
DASD calculation (DCS) exits

See DCS pre/postcalculation exits
data control block

See DCB (data control block)
data extent block (DEB)

See DEB
data management

ABEND installation exit 125
modifying 125
parameter list (OAIXL) 125
register contents 125
return codes 125

data set
security

See password protection
data set control block (DSCB)

See DSCB
DCBmacro

used with EXCP macro 68, 73-80
used with XDAP macro 100

DCB OPEN installation exit 125
description 125
example 305
example, defaulting buffer number (QSAM) 305
example, requesting partial release 305
example, updating secondary space data 305
operating environment 125
parameter list (OIEXL) 125
register contents 125
return codes 125
when executed 125

DCBDIRCT field of DCB 76

DCBFDAD field, maintaining 76
DCBIFLGS field of DCB, permanent I/O error

indicators 70
DCBOFLGS field of DCB, meanings of bit

settings 81-82, 83
DCBTRBAL field, maintaining 78
DCS (DASD calculation services)

exit routines 125
overview 125
parameter list (DCSIEPL) 125
register contents 125

postcalculation exit
overview 125
return codes 125

precalculation exit
overview 125
return codes 125

DCSIEPL (DCS pre/postcalculation exit parameter
list) 125

DD operand (TRKCALC macro) 165, 167
DDNAME operand (DCB macro) 74
DDR (dynamic device reconfiguration), repositioning

tape data sets 74
DEB (data extent block)

fields 92
obtaining 42
used with EXCP macro 68
validating with DEBCHK 151-155

DEBCHK macro
functions of 151-155
register contents 154
return codes 155
specification 152-155

defaulting buffer number
forBSAM 125
forQSAM 125
in OPEN installation exit

example for QSAM 305
defective track

See assigning alternate track with ATLAS
define extent CCW

in EXCP processing 69
deleting

a data set
coding example 35
macro instructions for 33
when volume not mounted 34

DEMOUNT parameter (MSGDISP macro) 191
DEN operand (DCB macro) 79
DEQmacro

at demount facility 147
DEVD operand (DCB macro) 77-79
device characteristics 129-135
device dependent parameters in DCB 77 -80
DEVTAB operand (TRKCALC macro) 164,166
DEVTYPE macro

EXECUTE form
specification 136

for RPS devices 130
list form

specification 136

Index 355

output from 130-135
return codes 133
specification 130-131

DFP ISMF common services 330
control blocks available to external applications

ARVT (array service vector table) 335
CLCB (command/line operator control

block) 335
CONH 336
CONH (conditional control block

header) 336
CPPL (command processor parameter

list) 337
CT AP (command table - application

table) 338
CTFU (command table - function table) 338
CTPL (command table processor parameter

list) 339
CTVT (command table processor vector

table) 340
DAB (data attribute block) 341
DABL (data attribute block list) 342
ERNT (error table entries) 343
ERTB (ISMF error table) 343
ET (ISMF environment table) 344
FOVT (format service vector table) 344
GDRB (ISMF global data repository

block) 345
IMNT (IMTT entries) 346
IMTT (ISMF inter module trace table) 345
introduction 335
LOGB (ISMF log buffer) 346
LP AP (line operator table - application

table) 347
LPCB (list panel cursor control block) 347
LPPL (line operator processor parameter

list) 348
PCCB (panel cursor control block) 349
PVT (ISMF profile variable table) 349
PVTV (ISMF profile variable table

variables) 350
SELB (select block) 351
SRVT (ISMF common service routine vector

table) 352
functions

IGBDISOO 330
messages available to external applications 331

DFP ISMF services
control blocks

locating 308
error logging 309
functions

data set name syntax verification 311
decrement use count 310
enable valid commands 327
find an entry in the data set list array 321
free memory 314
free storage and exit 313
get storage 315
load a module 316
obtain automatic data area 318

356 MVS/XA System-Data Administration

obtain count of data sets 323
obtain input information from the screen area

image 328
place information in the ISPF log 317
position current row pointer at top of list 322
process commands 326
refresh the screen image area from the data set

list array 329
update data set list array 324
verify commands 325
volume serial number syntax verification 319
word finder 320

input register contents 307
input requirements 307
linkage and error handling 307
output register contents 308
overview 307
parameter lists 308

DSCB (data set control block)
described 3
format-O 3
format-l 4
format-l not found user exit 125
format-2 4
format-3 4
format-4 5
format-5 5
format-6 5
reading from VTOC by absolute device address

coding example 32
macro specifications 31
return codes 33

reading from VTOC by data set name
coding example 30
macro specifications 29
return codes 31

DSECT expansions
See CVT, IEFJFCBN, IEFUCBOB, TRKCALC

DSN order
initiating access to DSNs, DSCBs 50

DSORG operand (DCB macro) 76
dynamic device reconfiguration

SeeDDR

ECB (event control block)
used with EXCP macro 68, 92
used with XDAP macro 104

end-of-extent appendage
See EOE appendage

end-of-volume
See EOY macro

EODAD operand (DCB macro) 76
EOE appendage 71
EOEA operand (DCB macro) 74
EOYmacro

and Format-l DSCB not found 125
C".~\ { ,

(
used with EXCP macro 81-83
used with XDAP macro 104

ERNT (error table entries) 343
error

EXCPI/O
recovery procedures 70

VTOC
processing 60
recovering from system or user errors 60

error messages
See messages, CV AF VTOC error

ERTB (ISMF error table) 343
ET (ISMF environment table) 344
event control block (ECB)

SeeECB
examples

of CV AFDIR macro 259-270
ofCVAFFlLTmacro 271-277
of CVAFSEQ macro 277-292
of CV AFTST and CV AFDSM macros 292-296
of OPEN installation exit module 305

EXCP (execute channel program)
ABE appendage 71
building list of fixed data areas 94
channel programs

appendage entry points 71
appendage programming restrictions 71
appendage register usage 71
appendage returns 71
appendages used with 71
authorized appendage list 71
completion processing 70
execution 68-69
I/O error handling 70
including appendages in the system 71
initiation 68-69
modifying 70
programming considerations 72-73
translation by I/O supervisor 95

CHE appendage 71
control blocks used with

DCB 68
DEB 68
ECB 68
lOB 67

EOE appendage 71
IDA Ws (indirect addressing words) 66
in V =R address space 66
PCI appendage 71
requirements 67

channel program 67
control blocks 67

SIO appendage 71
EXCPmacro

advantages of using 64
control blocks used with

DCB 73-80
DEB 92
ECB 92
lOB 89-91

in problem programs 65

in real storage 92
in system control programs 64
macro specification 81
macros used with

ATLAS 83
CLOSE 83
EOV 81-83
OPEN 80-81

multivolume data set requirement 80
used with WAIT macro 65

EXCPVR macro 92-94
executing channel programs

in problem programs 65
in real storage 92
in system control programs 64

exit routine
See also DADSM pre/postprocessing exits
See also data management ABEND installation exit
See also DCB OPEN installation exit
See also DCS pre/postcalcuiation exits
See also format-l DSCB not found
See also OPEN/EOV mM-standard labeled tape

security verification exit
See also OPEN/EOV nonspecific tape mount

request user exit
functions possible 125

EXLSToperand (DCB macro) 76
expiration date

overriding 35

FCB (forms control buffer) image
adding image to SYS1.IMAGELm 219-221
default image

3262 printer 217
4245 printer 217
4248 printer 217

in SYS1.IMAGELm 217-223
JES2support 225
retrieving image from SYS1.IMAGELm 222-223

FCL (filter criteria list) 53
entry format 56
header format 54

filter criteria list (FCL)
SeeFCL

fixing data areas with EXCPVR 92
format

of allocation retrieval area 144
of allocation retrieval fist 144
of buffer fist entry 46-47
of buffer tist header 45
of CVPL (CV AF parameter tist) 44
of DADSM pre/postprocessing exit parameter

fist 125
of DCS pre/postcalculation exit parameter

list 125
of LSPACE data return area 27

Index 357

of LSPACE message return area 27
of LSPACE parameter list 24
of OIEXL (OPEN installation exit parameter

list) 125
of VIER 10
of VIER index entries 11
of VTOC maps 15

format 0-6 DSCB 3
format-l DSCB

reading from VTOC 29
format-l DSCB not found

installation exit (IFGOEXOA) 125
parameter list 125
register contents 125
return codes 125

forms control buffer image
See FCB image

FOVT (format service vector table) 344
free space

on DASD volume
obtaining with LSPACE macro 20-29

FUNCTN operand (TRKCALC macro) 162-170

GDRB (ISMF global data repository block) 345
GEN operand (MSGDISP macro) 197
GTF trace of CV AF processing

See CVPL

high-speed 3480 positioning 149

I/O devices
characteristics 129

IDAL (indirect data address list) 95-97
IDA W (indirect addressing word)

requirements 66
IEAAPPOO, authorized appendage list 71
IEBUPDTE program

SYS1.PARMLm
use in listing appendages in 71

IECPCNVT (relative track address to actual track
address conversion routine) 106

IECPRLTV (actual track address to relative track
address conversion routine) 107

IECOSCRI (sector conversion routine) 108
IEFJFCBN macro 128
IEFUCBOB macro 128

358 MVS/XA System-Data Administration

IEHATLAS program 85
IEHLIST program 61
IEPL (DADSM pre/postprocessing exit parameter

list) 125
IFGOEXOA program

See format-l DSCB not found
IFGOEXOB program

See DCB OPEN installation exit
IFG01991 program

See data management ABEND installation exit
IGBDCSXl

See DCS precalculation exit
IGBDCSX2

See DCS postcalculation exit
IGGPOSTO program

See DADSM pre/postprocessing exits
IGGPREOO program

See DADSM pre/postprocessing exits
IGGUCSIT macro 213
lHAARL macro

specification 143
IMNT (IMTT entries) 346
IMSK operand (DCB macro) 76
IMTT (ISMF inter module trace table) 345
indexed VTOC

compared to nonindexed 16
initiating access to DSCBs 50

indexing feature for 3211 226
indirect addressing word (IDA W)

SeeIDAW
indirect data address list (IDAL)

SeeIDAL
initializing DASD volumes 18
interruption handling procedures 70
lOB (input/output block)

chain modification 161
fields with EXCP macro 89-91
fields with XDAP macro 105
used with EXCP macro 67

10BAD operand (DCB macro) 77
10BSENS fields with ATLAS macro 85

JES2
Printer support 225-226

JFCB (job file control block)
See also RDJFCB macro
macros used with

IHAARL 143
OPEN 148-149
RDJFCB 137-140

mapping macro 128
modifying 125, 136-150

precautions 137
job file control block (JFCB)

SeeJFCB

(

K operand (TRKCALC macro) 165,166
KEYLEN operand (DCB macro) 79

LABEL operand (DD statement)
password protected data set 112, 113

library character set modules 203
LIST operand

CVT macro 129
IEFJFCBN macro 128
IEFUCBOB macro 128

locate record CCW
in EXCP processing 69

LOGB (ISMF log buffer) 346
LPAP (line operator table - application table) 347
LPCB (list panel cursor control block) 347
LPPL (line operator processor parameter list) 348
LSPACE macro 20-29

coding example
list and execute forms 29
using data return area 28
using message return area 28

data return area
format 27

message return area
format 27

parameter list
format 24

return codes 25

MACRF=(E) operand (DCB macro) 74
macros, data management

See also CV AFDIR macro
See also CV AFDSM macro
See also CV AFFIL T macro
See also CV AFSEQ macro
See also CV AFTST macro
ATLAS 83
CAMLST

with RENAME operand 38-41
with SCRATCH operand 33-37
with SEARCH operand 29-31
with SEEK operand 31-33

CLOSE
used with EXCP macro 83
used with XDAP macro 104

CV AF (VTOC access)
uses 42

CVT 129

DCB 73-80
DEBCHK 152-155
DEVTYPE 129-135
EOV

and Format-l DSCB not found 125
used with EXCP macro 81-83
used with XDAP macro 104

EXCP 81
EXCPVR 92-94
IEFJFCBN 128
IEFUCBOB 128
LSPACE 20-29
MSGDISP 184-201
OBTAIN 29-33
OPEN

and Format-l DSCB not found 125
for JFCB 149
for modified JFCB 148
used with EXCP macro 80-81

PARTREL 170-174
PROTECT 116-124
PURGE 156
RDJFCB 136-140
REALLOC 174-183
RENAME 38-41
RESTORE 156

specification 161
SCRATCH 33
TRKCALC 162-170
used with XDAP macro 100-101
XDAP 99-103

maintaining 124
See also PROTECT macro
PASSWORD data set 116-124
VTOC (volume table of contents) 19-41

mapping macros
CVT 129
IEFJFCBN 128
IEFUCBOB 128

maps of allocated space
for cylinders and tracks 12
for DSCBs 15
forVlRs 14

MAXSIZE operand (TRKCALC macro) 164,166
messages

CV AF VTOC error
descriptor codes 298
programmer response 298
return codes 298-303
routing codes 298
system action 297
text and explanation 297
when issued 297

MFoperand
DEBCHK macro 155
TRKCALC macro 165-167

MODE operand
EOVmacro 82

MODE operand (DCB macro) 80
modifying

channel program during execution 70

Index 359

lOB chain 161
JFCB 136, 150

in OPEN installation exit 125
MOUNT operand (MSGDISP macro) 184
MSGDISP macro 184

displaying a demount message 191
displaying a mount message 184
displaying a ready message 189
displaying a verify message 187
providing the full range of display options 197
resetting the message display 194
return codes 200

multivolume data set
processing with EXCP macro 80

name
VTOCindex 8

nonindexed VTOC
compared to indexed 16

nonpageable address space, V = V 69
NOPWREAD protection-mode indicator 116
NOWRITE protection-mode indicator 116

OAIXL (data management ABEND installation exit
parameter list) 125

OBTAIN macro 29-31
obtaining a sector number (RPS devices) 108
OmXL (OPEN installation exit parameter list) 125
OPEN installation exit

See DCB OPEN installation exit
OPEN macro

and DEQ at demount facility 147
and Format-1 DSCB not found 125
getting control from 125
TYPE=J

example 141
invoking 147
specification 149

used with EXCP macro
dummy data set restriction 80
procedures pedormed 80

used with XDAP macro 101
with modified JFCB 148

open processing
after IFGOEXOB gets control 125
and OPEN installation exit 125
before IFGOEXOB gets control 125

opening a VTOC
restriction on changing contents 140

OPENJ (OPEN, TYPE=J) macro
specification 148

OPTCD=Z operand (DCB macro) 76

360 MVS/XA System-Data Administration

---~ .. --~.

OUTINX operand (OPEN macro) 76
output data set

maintaining DCBBLKCT field 74

page boundary 95
page-fix

appendage
See PGFX appendage

list processing 94
pageable address space, V =R 66
parameter list

SeeCVPL
See DADSM pre/postprocessing exits
See data management ABEND installation exit
See DCB OPEN installation exit
See DCS pre/postcalculation exits
See format-1 DSCB not found installation exit

partial release via JFCB modification 125
in OPEN installation exit

example 305
PARTREL macro 170-174

return codes 174
password

See also PROTECT macro
control 116
counter maintenance 115
data set concatenation 115
deleting or renaming a protected data set 115
parameter list 118

ADD a record 118
DELETE a record 122
UST a record 123
REPLACE a record 120

protecting data sets 111-124
protecting tape data sets 114
protecting VTOC indexes 18
protection mode indicator 116
record 113

protection mode indicator 113
secondary 116
standard label restriction 112
terminating protection 114
volume switching 115

PASSWORD data set
characteristics 116
creating 113
protected data set records in 116
requirements 113

PCCB (panel cursor control block) 349
PCI appendage 71
PCI operand (DCB macro) 74
PCIA operand (DCB macro) 74
PGFX appendage 94
physical sequential access, initiating 51
PIRL (purged I/O restore list)

use in restoring I/O requests 161

posting completion code in ECB
following use of EXCP macro 92
following use of XDAP macro 104

postprocessing
See DADSM pre/postprocessing exits

PREFIX operand (IEFUCBOB macro) 128
preprocessing

See DADSM pre/postprocessing exits
printer image

See UCS image
program controlled interruption appendage

See PCI appendage
PROTECT macro

See also password
parameter list 122

ADD function 118
DELETE function 122
LIST function 123
REPLACE function 120

protection mode indicator 116
return codes 124
syntax 117
use with PASSWORD dataset 111-123

protecting
VTOC

withRACF 17
VTOCindex

with passwords 18
withRACF 17

PRTSP operand (DCB macro) 80
PURGE macro

adding to macro library 156
definition 156
parameter list 158
return codes 160
specification 158

purged I/O restore list
See PIRL

PVT (ISMF profile variable table) 349
PVTV (ISMF profile variable table variables) 350
PWREAD protection-mode indicator 116
PWWRITE protection-mode indicator 116

QSAM (queued sequential access method)
defaulting buffer number 125

R operand (TRKCALC macro) 165,166
RACF

protecting VTOCs and VTOC indexes 17
renaming a data set 38
scratching a data set 34

RDJFCB

retrieving allocation information 143
RDJFCB macro

allocation retrieval area
format 144

allocation retrieval list
format 144

coding example 138
common coding errors 139
description 13 7
exit list entry for

type '07' 139
type '13' 142

invoking DEQ at demount 147
retrieving allocation information

coding example 145
return codes 139
security 140
specification 137
use by authorized programs 141
with MSS virtual volumes 140

RDYoperand (MSGDISP macro) 189
reading

and modifying a JFCB 136-140
data from index maps 49
DSCBs

directly by data set name 48
directly by DSCB location 48
sequentially 50

VIRs 48-49
reading sets of DSCBs

with CV AF filter service 52
READPSWD module 113
REALLOC macro 174-183

return codes 181
RECFM operand (DCB macro) 77
recovering

from errors 60
from permanent DASD I/O error

See ATLAS macro
register

contents at return from DCB OPEN exit 125
conventions for appendages 71
usage by conversion routines

actual to relative routine 107
relative to actual routine 106

usage by CV AF routines 43
usage by I/O supervisor 71

REGSA VE operand (TRKCALC macro) 165, 167
related

channel program 71
requests 71

releasing DASD space 5
REMOVE operand (TRKCALC macro) 164, 166
RENAME macro

dummy module 227
return codes 40
specification 38

renaming a data set
coding example 39
macro specification 38
with password protection 41

Index 361

WRITE protection mode indicator 41
REPOS operand (DCB macro) 74
requesting partial release via JFCB modification 125
requirements

for APF 18
for DASD copy, restore, operations

indexed VTOC 18
nonindexed VTOC 18

RESET operand (MSGDISP macro) 194
Resource Access Control Facility

SeeRACF
RESTORE macro

adding to macro library 156
definition 156
specification 161

restore operation
DASDvolume

indexed VTOC requirements ~ 8
nonindexed VTOC requirements 18

restoring DASD volumes 18
restoring iob chain 161
restrictions

when scratching, renaming, allocating 16
return codes

ATLAS macro 86
CV AFDIR macro 238
CV AFDSM macro 244
CV AFFILT macro 249
CV AFSEQ macro 256
CV AFTST macro 258
DEBCHK macro 155
DEVTYPE macro 133
from DADSM allocation 181
from DADSM exits 125
from data management ABEND exit 125
from DCB OPEN exit 125
from DCS exits 125
from format-1 DSCB not found exit 125
from IECPCNVT convert routine 107
LSPACE macro 25
MSGDISP macro 200
OBTAIN macro

when reading from VTOC by absolute device
address 33

when reading from VTOC by data set
name 31

PARTRELmacro 174
RDJFCB macro 139
REALLOC macro 181
RENAME macro 40
SCRATCH macro 36
TRKCALC macro 169
with CV AF VTOC error message 298-303

RKDD operand (TRKCALC macro) 165, 166
RPS (rotational position sensing)

devices
used with XDAP macro 108

362 MVS/XA System-Data Administration

SCRATCH macro
coding example 35
dummy module 227
general description 33
return codes 36
status codes 37

scratching a data set
when volume not mounted 34

secondary
passwords 116
space data

updating in OPEN installation exit 125
updating in OPEN installation exit,

example 305
sector, address in XDAP macro

specification 102
with RPS devices 108

securing
aVTOC

with passwords 18
withRACF 17

a VTOCindex
See also protecting a VTOC index
withRACF 17

seekCCW
in EXCP processing 69

SELB (select block) 351
serialization, CV AF 42
SIO appendage 71

for EXCPVR 94
SIOA operand (DCB macro) 74
space map

of allocated cylinders and tracks 12
of allocated DSCBs 12
of allocated VIRs 12

SRVT (ISMF common service routine vector
table) 352

SSCH (start subchannel) instruction
how used in I/O process 64
when issued by lOS 69

STACK operand (DCB macro) 80
stand-alone seek 69
standard label restriction, password data sets 112
start-I/O appendage

See SIO appendage
start subchannel instruction

See SSCH
status codes

SCRATCH macro 37
system control blocks 125

mapping macros for
CVT 129
JFCB (IEFJFCBN) 128
UCB (IEFUCBOB) 128

system macro instructions 127
SYS1.IMAGELIB data set

adding a UCS image to 204

c

maintaining 203
UCS image tables in 209
UCS images in 204

tape volumes
DEQ at demount facility 147

testing for a VTOC index 257
trace of CV AF processing 61
track

assigning an alternate
with ATLAS 83

calculating capacity 162-170
translation of channel program

by I/O supervisor
in V=R address space 95
in V = V address space 69
in your own program 95

TRKBAL operand (TRKCALC macro) 162-163
example 169

TRKCALC macro 162-170
return codes 169

TRKCAP operand (TRKCALC macro) 163-164
example 169

TRTCH operand (DCB macro) 79
TYPE operand

DEBCHK macro 152
in OPEN macro 148
TRKCALC macro 164, 166

examples 169
TYPE=] (OPEN macro) 148

UCB (unit control block)
getting information from

See DEVTYPE macro
mapping macro 131
operand of TRKCALC macro 164, 166

UCS (universal character set)
image

adding to SYS1.IMAGELm 204
examples of adding to SYS1.IMAGELm 206
for IES2 225
verifying 215-217

image table
adding aliases 213
adding image names 213
contents 211
entry format 209
examples of adding to 216
modifying entries 213
structure 209

unit check with ATLAS macro 85
unit control block (UCB)

SeeUCB
universal character set (UCS)

Seeucs
updating secondary space data

in OPEN installation exit 125
example 305

user exit routine
See exit routine

V =R address space
EXCP operations 66

V=Vaddress space 69
validating the DEB (DEBCHK) 151-155
VERIFY operand (MSGDISP macro) 187
VIER (VTOC index entry record)

characteristics 9
contents of fields 9
format 10
function 8
how chained together 12
how to find a format-l DSCB 12

special cases 12
index entry

format 11
when created 11

VIR (VTOC index record)
kinds 8
length 8

virtual IDA W (indirect addressing word) 66
VIXM (VTOC index map)

bitmaps
of allocated DSCBs 14
of allocated VIRs 14

format 15
function 14
maps of allocated space

forVIRs 14
VMDS (VTOC map of DSCBs)

format 15
maps of allocated space

function 15
volume

identification to CV AF 42
switching 141
table of contents

SeeVTOC
VPSM (VTOC pack space map)

bitmaps
of allocated cylinders and tracks 12

description 12
format 15
function 12
space map

of allocated DSCBs 12
of allocated VIRs 12

VTOC (volume table of contents)

Index 363

access macros
See CV AFDIR macro
See CV AFDSM macro
See CV AFFILT macro
See CV AFSEQ macro
See CV AFTST Macro

creating 17
description 1
example 8
how to locate 1
index

contents 8
creating 17
description 8
how to list 61
name 8
password protection 18
protecting with RACF 17
relationship to VTOC 9
structure 9
testing for 257

index entry record (VIER)
See VIER

index map (VIXM)
SeeVIXM

index record (VIR)
See VIR

initializing and maintaining 17
maintaining

description 1
index 19,33
using OBTAIN macro 29-33
using RENAME macro 38-41
using SCRATCH macro 33-37

map of DSCBs (VMDS)
SeeVMDS

pack space map (VPSM)
SeeVPSM

protecting
withRACF 17

WAIT macro
used with EXCP macro 65

writing
DSCBs 49
VIRs 49

364 MVS/XA System-Data Administration

XDAP
channel program 105
macro

CLOSE macro used with 104
control blocks used with 104
DCB macro used with 100
EOV macro used with 104
OPEN macro used with 101
requirements 100-101
specification 101-103

XENDA operand (DCB macro) 75

I Numerics I
1403 printer

JES2 support 225
31-bit IDA W (indirect addressing word) 66
3203 printer

JES2 support 226
output from DEVTYPE 134

3211 printer
indexing feature 226
JES2support 226

3262 Model 5 printer
default FCB image 217
UCS image table for 209, 212

3480 tape drive
high-speed positioning 149
output from DEVTYPE macro 134

3800 printer
output from DEVTYPE macro 134

4245 printer
default FCB image 217
output from DEVTYPE macro 134
UCS image table 209

4248 printer
default FCB image 217
UCS image table 209

c

(-

(

..: E c: ...
'" 0 E a.", .:; :c
0"'"
"'iU
CI'"
c: '"

'';: 0
o '" "'a.
:= co
E"tJ
-gE
10 E
E :l o CI
:l '" , to£

~ . .r:. 0
~ 0

"en Q)

E .~
~ or;;
.c c:
o '" ... '" a.",
'" ... '" :l
:l '"
~ ~

c.

'" o
2

MVS/XA System-Data Administration
GC26-4149-2

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because pUblications
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of
publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

If you wish a reply, give your name, company, mailing address, and telephone number .

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ----------

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

Thank you for your cooperation.

GC26-4149-2

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

II II I

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

"'tJ -,
:i' ~/ .. ".. .. • • • .. Cit
a.

Fold and tape Please do not staple Fold and tape

-~-.------ - ------- -. ---- - - --------------" -<I>

.,
o z

MVS/XA System-Data Administration
GC26-4149-2

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Do not use this form to request IBM pUblications. If you do, your order will be delayed because publications
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of
publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

If you wish a reply, give your name, company, mailing address, and telephone number .

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ----------

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

Thank you for your cooperation.

GC26-4149-2

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WI LL BE PAID BY ADDRESSEE

I BM Corporation
P.O_ Box 50020
Programming Publishing
San Jose, California 95150

1111

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

..

Fold and tape Please do not staple Fold and tape

--..-- -------- - ------- -. ---- - - -------------y-
®

~~~ -- --- --~-- --- .-

s: 
< en 
X » 
~ 
S 
3 
6 
III 
r+ 
III 

~ 3( .. " :r ' 
~"j 
III 
r+ o· 
::J 

"T1 

CD 
Z 
~ 

~ 
-..J 
9 
~ 



( 

'" o z 

MVS/XA System-Data Administration 
GC26-4149-2 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications 
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of 
publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office 
serving your locality. 

If you wish a reply, give your name, company, mailing address, and telephone number. 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL ----------

Previous TNL ________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) 

Thank you for your cooperation. 



GC26-4149-2 

Reader's Comment Form 

Fold and tape Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

II 
Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

......................... ~' ................................... "" ............................................................................. : 

Fold and tape Please do not staple Fold and tape 

--...- ------ - ------- -. ---- - - ------------_.-
® 

(~ 




