

--------- ----
.!.:I:i::i'fi:

Order Number
GC26-4150-1

MYS/Extended Architecture
Data Administration:
Utilities

Data Facility Product
5665-XA2

Licensed
Program

Version 2
Release 3.0

Second Edition (June 1987)

This is a major revision of, and makes obsolete, GC26-4150-0.

This edition applies to Version 2 Release 3.0 of MVS/Extended
Architecture Data Facility Product, Licensed Program 5665-XA2,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Changes" following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using
this pUblication in connection with the operation of IBM
systems, consult the latest IBM System/370, 30xx, and 4300
Processors Bibliography, GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality. If you request publications from the address given
below, your order will be delayed because pUblications are not
stocked there.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985,
1987

PREEA9E

ORGANIZATION

(

This publication describes how to use the MVS/Extended
Architecture Data Facility Product utility programs to
manipulate system and user data and data sets.

This publication contains the following major parts:

• "Introduction" summarizes the utility programs and
information on the differences among system, data set, and
independent utility programs. The introduction contains
basic information about how the programs are executed and
abQut the utility control statements used to specify program
functions. New or infrequent users of the utility programs
should give particular attention to the introduction.

• "Guide to Utility Program Functions" contains a table,
arranged in alphabetic order, of utility program functions
and the programs that perform them. This table enables you
to find the program that can do what you need to have done.

• "Invoking Utility Programs from a Problem Program" contains
a description of the macro instructions used to invoke a
utility program from a problem program rather than executing
the utility program by job control statements or by a
procedure in the procedure library. This section should be
read only if you plan to invoke a utility program from a
problem program.

• The remainder of the book contains individual chapters for
each utility program arranged in alphabetic order. For a
discussion of the organization of these chapters, see
"Organization of Program Descriptions" on page iv.

• Appendix A, "Exit Routine linkage" contains info~mation
about linking to and returning from optional user-supplied
exit routines. This appendix should be read only if you
plan to code or use an exit routine. If you are coding an
exit routine, this appendix provides linkage conventions,
descriptions of parameter lists, and return codes. If you
are using an existing exit routine, you may be interested in
the meaning of return codes from the exit routine.

• Appendix B, "DD Statements for Defining Mountable Devices"
contains a review of how to define mountable volumes to
ensure that no one else has access to them. For a
definitive explanation of this subject, see MVS/Extended
Architectyre JCl, GC28-1148.

• Appendix C, "Processing User labels" describes the
user-label processing that can be performed by IEBGENER,
IEBCOMPR, IEBPTPCH, IEHMOVE, and IEBUPDTE. This appendix
should be read only if you plan to use a utility program for
processing user labels.

• Appendix D, "IEHlIST VTOC listing" provides a sample of the
volume table of contents listing produced by IEHlIST,
including a detailed explanation of fields.

Preface iii

ORGANIZATION OF pROGRAM DESCRIPTIONS

To enable you to find information more easily, program
descriptions are all organized, as much as possible, in the same
way. Most programs are discussed according to the following
pattern:

• Introduction to and description of the functions that can be
performed by the program. This description typically
includes an overview of the program's use, definitions of
terms, illustrations, etc.

• Functions supported by the utility and the purpose of each
function.

• Input and output (including return codes) used and produced
by the program.

• Control of the program through job control statements and
utility control statements. Explanations of utility control
statement parameters are presented in alphabetic order in
tabular format, showing applicable control statements,
syntax, and a description of the parameters. Any general
information, restrictions, and relationships of a given
utility control statement to other control statements are
described in the sections concerning the statements or in
the section for restrictions.

• Examples of using the program, including the job control
statements and utility control statements.

PREREQUISITE KNOWLEDGE

In order to use this book efficiently, you should be familiar
with the following:

• Job control language

• Data management

• Virtual storage management

REQUIRED PUBLICATIONS

You should be familiar with the information presented in the
following pUblications:

• MVS/Extended Architecture Message library: System Messages,
Volumes 1 and 2 , GC28-1376 and GC28-1377, contains a
complete listing and explanation of the messages and codes
issued by MVS/XA utility programs.

• MVS/Extended Architecture JCl User's Guide, GC28-1351,
contains a description of the use and coding of the job
control language.

• MVS/Extended Architecture Data Administration Guide,
GC26-4140, describes the input/output facilities of the
operating system. It contains information on record
formats, data set organization, access m~thods, data set
disposition, space allocation, and generation data sets.

•

•

MVS/Extended Architecture Data Administration: Macro
Instruction Reference, GC26-4141, contains a description
the WRITE macro instruction; it also contains the format
contents of the DCB.

MVS/Extended Architecture System Programming library:
Supervisor Services and Macro Instructions, GC28-1154,
contains information on how to use the services of the
supervisor. Among the services of the supervisor are

iv MVS/XA Data Administration: Utilities

of
and

(-
RELATED PUBLICATIONS

(

program management. task creation and management. and
virtual storage management.

Within the text. references are made to the publications listed
in the table below.

Short Title Publication Title Order Number

Access Method MVS/Extended Ih:!:;hi te!:;j;Yl:e GC26-4l35
Services Integrated Catalog
Reference AQm;i,oisj;l:aj;;i,on: 8ccess

[1etbod Servi!:;e§ Rehl:~Oc~

MYS/Ed~!Jdeg lu::chi:!;ec±ure GC26-4136
~SAM Catalog
Administratioo: Access
[1ethod Services Ref~r!:m~e

Catalog [1~S/E25:j;~nded Archij;ectul:e GC26-4l38
Administration Catalog Admioi§±I:Sl±iQO
Guide Guide

Conversion [1VS/E25:tended AI:!:;h;i,te!:;j;YI:~ GC28-1143
Notebook ConversiQn Noteboo~

Data [1VS/Extended AI:!:;bi:t{;l!:;tYI:~ GC26-4l40
Administration Ils±s 8dmioi§±l:aj;iQO !:2uig~
Guide

Data [1VS/E25:±endedAl:ch;i,t~!:;j;yr~ GC26-414l
Administration: Data 8dmi ois±rati on: ~1scl:o
Macro In§±l:y!:;tioo Rdel:!::lO!:;~
Instruction
Reference

Data Facility t1VS/Exj;ended Archij;e~j;yr~ GC26-4267
Product: Daj;a Esci lij;y: Product
Customization Vel:s;i,on Z: ~usj;omi!i::atioD

Debugging MVS/E25:teoded Al:cbi±~cj;ul:~ LC28-1164 1

Handbook Dlilbugging HandboQ~. Volumes LC28-1165
1 through 5 LC28-1166

LC28-1167
LC28-1168

Device Support n~vi!:;~ SUEEQC± Es~i li:!;i~§ GC35-0033
Facilities !.!§el:'§ Guide sod Ref~l:~n!:;~
User's Guide
and Reference

DFDSS: User's nsts Escility: Ds±s Sej; SC26-4125
Guide and Sel:y:i~~§: !.!§!::ll:'§ !:2yide £lOg
Reference Reference

IBt1 3480 IBt1 34§Q t1agoetic IsE~ GC35-0098
Magnetic Tape S!.!bs~§tem: Plsooiog sod
Subsystem: [1igl:sj;;i,00 !:2y;i.d~
Planning and
Migration Guide

Note:

All five volumes may be ordered under one order number.
LBOF-IOI5

\
\

Preface v

Short Title Publication Title Order Number

IBM 3480 UH1 3~§0 MS!gndic IsH~~ GC35-009.9
Magnetic Tape Syb~~:a:hm: !.!:aer:::':a Quig~
Subsystem:
User's Guide

IBM 3800 aM 3§OQ Pr:::inting Syb:a~j;~m GC26-~846
Printing ~CQgcS!mm~r':a Qyigg
Subsystem
Programmer's
Guide

JCL User's MVS/ !;~teodeg Arsobi:t~sotyC~ GC28-1351
Guide J~L User's Qyige

JCL Reference MVS/ !;~teng~g AccbH~so±uc~ GC28-1352
J~L Refecensoe

Reference R~hrensoe Manual foe j;b~ GA26-1653
Manual for the I1H:1 3§QO ~c;i. nti ng Sybs~:a:tem
IBM 3800
Printing
Subsystem

Linkage Editor MVS/ !;~:teoged Acs<bij;~s<j;yr:::~ GC26-4143
and Loader Licl:sS!ge !;di:tQC eng LOeg~C

Usec's Quid§

Magnetic Tape M~S/J;~j;end§g Ars<bi:tectycg GC26-4145
Labels and File Magne:tiso Labd:a and Eilg
Structure S±rucj;uce Adrnicisj;ratioD

Supervisor MVS/E~j;§nd§d Accbitesoj;ycg GC28-1154
Services and S~:aj;em Pr:::ogrS!mming L;i.brar:::~:
Macro Sueervisoc Servi~es anQ
Instructions Mss<rQ IC:aj;cucj;ioD:a

System-Data M~S/E~hDded ArcbihsotYCg GC26-4149
Administration S~:aj;~m-~aj;e Admicisj;caj;ioc

System Messages M~S/J;~j;~mded Acs<bHe!<j;ucg GC28-1376
Me:a§ag~ LibCsH:~: S~:atem and
Messages, Volumes 1 and 2 GC28-l377

VSAM !:1VS/Exj;~nded Accbi:tecj;ycg GC26-4l5l
Administration !lS8M 8dmioi:aj;ca:tioc Quid~
Guide

UTILITIES NOT EXPLAINED IN THIS BOOK

Utility

IDCAMS

There are several specialized utilities not discussed in this
book. The following list shows their names and functions, and
indicates which book contains their explanation.

Function Reference

Allows users to define, manipulate, M~:V J;2S:t§C9gg
or delete VSAM data sets, define Acs<hites<:tyrg ~S!j;S!lQg
and manipulate VSAM catalogs, and AQmioi:a:tCs:tiQD Qyigg,
copy, print, or convert SAM and GC26-4l38
ISAM data sets to VSAM dab sets.

vi MVS/XA Data Administration: Utilities

--_. ~"' -------------- ------

If '\
~j

Utility Function Reference

Device Support Used for the initialization and Dev;i.!;;e SYEEoej;
Facili ties maintenance of DASD volumes. Ea!;;ilH;ies Usec':!

~u;ide sng R~f~ce[l!;;~.
GC35-0033

Data Facility Describes DASD utility functions Data Facilit~ nata Sej;
Data Set Services such as dump/restore and reduction Sgcvices: UsgC's Guid~

of free space fragmentation sod Ref~r~n!;;e,
SC26-4125

Offline IBM Describes the Offline IBM 3800 OffliCg HM 380Q
3800 Utility Utility program, used with the IBM !.!:tilij;~, SH20-9138

3800 Tape-to-Printing Subsystem
Feature.

Preface vii

viii MVS/XA Data Administration I Utilities

._-_._---

r'"
~".,,/

/ '""'" \,

\,~j

C·' ": .J

(~

SUMMARY OF CHANGES

I RELEASE 3.0. JUNE 1987

ENHANCEMENT

Support for the years beyond 1999 has been added to the IEHLIST
system utility.

CUSTOMIZATION RESTRUCTURE

I SERVICE CHANGES

Most of the text from Appendixes A and C has been removed and
placed in Data Facility Product: Customization.

The chapter on the IFHSTATR program has been completely
replaced.

Examples throughout the book have been corrected, where
necessary, with respect to beginning the continued portion of
job control and utility control statements in the correct
columns.

A formula has been added for calculating the region size needed
when executing the IEBGENER program (in cases where you specify
the number of buffers to be used rather than use the default
number). A new IEBGENER example has been added to illustrate
this.

RELEASE 1.0. APRIL 1985

ENHANCEMENTS AND NEW SUPPORT

NEW DEVICE SUPPORT

• Appendix D, "IEHLIST VTOC Li~ting" has been added.

• Examples have been updated to reflect 3380 support.

• The IEBCOPY, IEBGENER, IEHINITT, IEHLIST, and IEHPROGM
chapters have been updated.

• IBM 4248 Printer

The FCB Statement in IEBIMAGE can now be used to create
forms control buffer modules in a form appropriate for use
on the IBM 4248 Printer. Information to support the 4248
has been added to the IEBIMAGE chapter.

• IBM 3262 Model 5 Printer

•

Information to support the IBM 3262 Model 5 Printer has been
added to the IEBIMAGE chapter.

IBM 4245 Printer

Information to support the IBM 4245 Printer has been added
to the IEBIMAGE chapter.

Preface ix

VERSION 2 PUBLICATIONS

The Preface includes the new order numbers for Version 2.

,/' '\
("

\,--/

tI- """\,

Ilj

x MVS/XA Data Administration: Utilities

------ "-"~~---"""--------------~

CONTENTS

(

(

()

Introduction ••••••••
System Utility Programs
Data Set Utility Programs
Independent Utility Programs
DASD and Tape Device Support
Control

Job Control Statements .
Utility Control Statements

Continuing Utility Control
Restrictions

Notational Conventions
keyword=device=list

Installation Considerations
Special Referencing Aids

.....
Statements

Guide to utility Program Functions

Invoking Utility Programs from a Problem Program
LINK or ATTACH Macro Instruction

ICAPRTBL Program
Executing ICAPRTBL
Input and Output
Control

Utility Control Statements
JOB Statement
DFN Statement
UCS Statement
FCB Statement
END Statement

ICAPRTBL Examples
ICAPRTBL Example 1
ICAPRTBL Example 2
ICAPRTBL Example 3
ICAPRTBL Example 4

IEBCOMPR Program
Input and Output

Return Codes
Control

Job Control Statements .
Utility Control Statements

COMPARE Statement
EXITS Statement
LABELS Statement

IEBCOMPR Examples
IEBCOMPR Example 1
IEBCOMPR Example 2
IEBCOMPR Example 3
IEBCOMPR Example 4
IEBCOMPR Example 5
IEBCOMPR Example 6
IEBCOMPR Example 7

, .

IEBCOPY PrQgram •••••••••••••••••
Creating.:a'. Backup COpy
Copying Data Sets
Copying or loading Unloaded Data Sets ..

1
1
1
2
3
4
4
4
5
5
5
6
6
7

8

12
12

15
15
16
16
17
17
17
18
18
18
20
21
21
22
22

24
25
25
25
26
27
27
27
28
29
30
31
31
32
33
33
34

Selecting Members to be Copied, Unloaded, or Loaded

36
37
37
37
37
38
38
39
39
39
40
40
40
40

Copying Members That Have Alias Names
Replacing Identically Named Members
Replacing Selected Members
Renaming Selected Members
Excluding Members from a Copy Operation
Compressing a Data Set
Merging Data Sets
Re-creating a Data Set
Altering Load Modules in Place

Contents xi

Copying and Reblocking Load Modules
Load Module Requirements
Inserting RLD Counts
Overlay Load Modules

Input and Output
Return Codes

Control .
Job Control Statements

PARM Information on the EXEC Statement
SYSPRINT DD Statement
anynamel and anyname2 DD Statements
SYSIN DD Statement

IEBCOPY Unloaded Data Set Block Size
Space Allocation
Restrictions

Utility Control Statements
COPY Statement .
ALTERMOD Statement
COPYMOD Statement
SELECT Statement
EXCLUDE Statement

IEBCOPY Examples
IEBCOPY Example 1
IEBCOPY Example 2
IEBCOPY Example 3
IEBCOPY Example 4
IEBCOPY Example 5
IEBCOPY Example 6
IEBCOPY Example 7
IEBCOPY Example 8
IEBCOPY Example 9
IEBCOPY Example 10
IEBCOPY Example 11
IEBCOPY Example 12
IEBCOPY Example 13
IEBCOPY Example 14
IEBCOPY Example 15
IEBCOPY Example 16
IEBCOPY Example 17
IEBCOPY Example 18

IEBDG Program • • • • • • • • • • • • • • •
Types of Patterns ..

IBM-Supplied Patterns
User-Specified Pictures .

Modification of Selected Fields
Input and Output

Return Codes
Control

Job Control Statements
PARM Information on the EXEC Statement
SYSPRINT DD Statement
SYSIN DD Statement
seqinset DD Statement
parinset DD Statement
seqout DD Statement
parout DD Statement .

Utility Control Statements
DSD Statement
FD Statement .
CREATE Statement
REPEAT Statement
END Statement

I EBDGExampl es
IEBDG Example 1
IEBDG Example 2
IEBDG Example 3
IEBDG Example 4
IEBDG Example 5
IEBDG Example 6
IEBDG Example 7

IEBEDIT Program
Input and Output

xii MVS/XA Data Administration: Utilities

. . . .

41
41 t'-",
42 .. I

42 \">_.-/i
43
43
44
44
44
44
45
46
46
47
48
48
49
51
52
53
54
57
60
61
64
66
69
71
74
77
79
80
83
87
93
94
94
96
97
98

100
100
100
101
102
103
103
103
104
105
105
105
105
106
106
106
107
107
108
110
113
114
122
122
123
124
126
128
129
131

132
132

(

Return Codes
Control

Job Control Statements
Utility Control Statement

EDIT Statement
IEBEDIT Examples

IEBEDIT Example 1
IEBEDIT Example 2
IEBEDIT Example 3
IEBEDIT Example 4
IEBEDIT Example 5
IEBEDIT Example 6

IEBGENER Program •••
Creating a Backup Copy
Producing a Partitioned Data Set from Sequential Input
Expanding a Partitioned Data Set
Producing an Edited Data Set. .
Reblocking or Changing Logical Record Length

Input and Output
Return Codes

Control
Job Control Statements

EXEC Statement
SYSPRINT DD Statement
SYSUTI DD Statement
SYSUT2 DD Statement
SYSIN DD Statement ..

Utility Control Statements
GENERATE Statement
EXITS Statement
LABELS Statement
MEMBER Statement
RECORD Statement

IEBGENER Examples
IEBGENER Example 1
IEBGENER Example 2
IEBGENER Example 3
IEBGENER Example 4
IEBGENER Example 5
IEBGENER Example 6
IEBGENER Example 7
IEBGENER Example 8
IEBGENER Example 9
IEBGENER Example 10
IEBGENER Example 11

IEBIMAGE Program
General Information

Storage Requirements
For IEBIMAGE
For SYS1.IMAGELIB

Maintaining the SYSl.IMAGELIB Data Set
General Module Structure
Naming Conventions for Modules

Using IEBIMAGE. .
Creating a Forms Control Buffer Module

3800 FCB Module Structure
4248 FCB Module Structure
FCB Module Listing

Creating a Copy Modification Module
COPYMOD Module Structure
COPYMOD Module Listing. .

Creating a Character Arrangement Table Module
TABLE Module Structure
TABLE Module Listing

Creating a Graphic Character Modification Module
GRAPHIC Module Structure
GRAPHIC Module Listing

Creating a Library Character Set Module
CHARSET Module Structure
CHARSET Module Listing

Input and Output
Return Codes

132
133
133
134
134
136
137
137
138
139
140
141

142
142
142
143
144
145
145
146
146
146
147
148
148
148
149
149
150
150
151
151
151
157
158
159
159
160
161
161
162
163
164
165
166

168
168
168
168
169
170
171
172
172
172
173
173
175
177
177
178
178
179
181
182
183
183
185
185
186
187
187

Contents xiii

Control
Job Control Statements

SYSPRINT DD Statement
SYSUTI DD Statement
SYSIN DD Statement ..

Utility Control Statements
Operation Groups

FCB Statement
COPYMOD Statement
TABLE Statement
GRAPHIC Statement
CHARSET Statement
INCLUDE Statement
NAME Statement
OPTION Statement

Using OVERRUN
IEBIMAGE Examples•.

Example I: Building a New 3800 Forms Control Buffer
Module •

3800 Modell. . . • . . . • . . .
Example 2: Replacing a 3800 Forms Control Buffer Module

3800 Modell.
Example 3: Replacing a 3800 Forms Control Buffer Module

3800 Modell.
Example 4: Building a New 3800 Forms Control Buffer
Module

3800 Modell.
Example 5: Replacing the 3800 Forms Control Buffer
Module STD3•...

3800 Modell. •
Example 6: Building a New 3800 Forms Control Buffer
Module for Additional ISO Paper Sizes •.....•

3800 Model 3•........
Example 6A: Building a 4248 Forms Control Buffer Module
Example 7: Building a New Copy Modification Module

3800 Modell. ...•..•.......•
Example 8: Building a New Copy Modification Module From
an Existing Copy

3800 Model 3 .•.......•......•
Example 9: Adding a New Character to a Character

Arrangement Table Module•
3800 Model 3

Example 10: Building a New Characte~ Arrange~ent Table
Module From an Existing Copy•...

3800 Model 3
Example II: Building Graphic Characters in a Character

Arrangement Table Module
3800 Modell.

Example 12: Deleting Graphic References Fro~ a
Character Arrangement Table Module

3800 Model 3
Example 13: Listing the World Trade National Use
Graphics Graphic Character Modification Module

3800 Modell. •
Example 14: Building a Graphic Character Modification

Module From the World Trade GRAFMOD
3800 Model 3•.

Example 15: Building a New Graphic Character
Modification Module and Modifying a Character
Arrangement Table to Use It•.

3800 Model 3
Example 16: Building a Graphic Character Modification

Module From Multiple Sources .•.....
3800 Modell. • . . .

Example 17: Defining and Using a Character in a Graphic
Character Modi fication Module

3800 Model 3•..• " . . .
Example 18: Listing a Library Character Set Module

3800 Modell. •
Example 19: Building a library Character Set Module

3800 Model 3
Example 20: Building a Library Character Set Module and
Modifying a Character Arrangement Table to Use It

3800 Model 3 . . • •

xiV; MVS/XA Data Administration: Utili ties

------------------"""-----------

188
188
189
189
189
189
190
190
191
192
193
194
195
195
195
196
212

213
213
214
214
214
214

215
215

216
216

217
217
218
219
219

220 '" ~j) 220

221
221

221
222

222
222

223
223

224
224

225
225

226
226

227
227

228
228
231
231
231 {',
231 l' i. j

/
232
232

(.

(

Example 21: Building a Library Character Set Module
From Multiple Sources

3800 Model 1

IEBISAM Program
Copying an ISAM Data Set ...
Creating a Sequential Backup Copy
Overriding DCB Control Information
Creating an ISAM Data Set from an Unloaded Data Set
Printing the Logical Records of an ISAM Data Set

Input and Output
Return Codes

Control
Job Control Statements .

PARM Information on the EXEC Statement
IEBISAM Examples

IEBISAM Example 1
IEBISAM Example 2
IEBISAM Example 3
IEBISAM Example 4
IEBISAM Example 5

IEBPTPCH Program ••
Printing or Punching
Printing or Punching
Printing or Punching
Printing or Punching
Printing or Punching

Input and Output
Return Codes

Control

.
an Entire Data Set
Selected Members
Selected Records ..
a Partitioned Directory
an Edited Data Set

Job Control statements
SYSPRINT DD Statement
SYSUTl DD Statement
SYSUT2 DD Statement
SYSIN DD Statement ..

Utility Control Statements
PRINT Statement
PUNCH Statement
TITLE Statement
EXITS Statement
MEMBER Statement
RECORD Statement
LABELS Statement

IEBPTPCH Examples
IEBPTPCH Example 1
IEBPTPCH Example 2
IEBPTPCH Example 3
IEBPTPCH Example 4
IEBPTPCH Example 5
IEBPTPCH Example 6
IEBPTPCH Example 7
IEBPTPCH Example 8
IEBPTPCH Example 9
IEBPTPCH Example 10

IEBUPDTE Program • • • • • • • • • •
Creating and Updating Data Set Libraries
Modifying an Existing Data Set
Changing Data Set Organization

Input and Output
Return Codes

Control
Job Control Statements

PARM Information on the EXEC Statement
SYSPRINT DD Statement
SYSUTI DD Statement
SYSUT2 DD Statement
SYSIN DD Statement ..

Utility Control Statements
Function Statement
Function Restrictions
Detail Statement
Detail Restrictions

234
234

236
236
236
237
238
238
239
240
240
240
241
242
243
243
244
244
245

246
246
247
247
247
247
247
248
248
248
249
249
249
249
249
250
251
251
252
252
252
253
263
264
264
265
266
267
267
268
269
270
271

272
272
272
272
272
273
273
274
274
275
275
275
276
276
277
278
280
281

Contents xv

Data Statement
LABEL Statement
ALIAS Statement
ENDUP Statement

IEBUPDTE Examples
IEBUPDTE Example 1
IEBUPDTE Example 2
IEBUPDTE Example 3
IEBUPDTE Example 4
IEBUPDTE Example 5
IEBUPDTE Example 6
IEBUPDTE Example 7
IEBUPDTE Example 8
IEBUPDTE Example 9
IEBUPDTE Example 10
IEBUPDTE Example 11

.....
IEHATLAS Program
Input and Output

Return Codes

.
Control

Job Control Statements .
Utility Control Statements

TRACK Statement
VTOC Statement

IEHATLAS Examples
IEHATLAS Example 1
IEHATLAS Example 2
IEHATLAS Example 3
IEHATLAS Example 4

IEHINITT Program ••••••••••••••••••••
Placing a Standard Label Set on Magnetic Tape

Input and Output
Return Codes

Control
Job Control Statements

PARM Information on the EXEC Statement
SYSPRINT DD Statement
anyname DD Statement
SYSIN DD Statement

Utility Control Statement
INITT Statement

IEHINITT Examples
IEHINITT Example 1
IEHINITT Example 2
IEHINITT Example 3
IEHINITT Example 4
IEHINITT Example 5
IEHINITT Example 6
IEHINITT Example 7

IEHLIST Program •••
Listing OS CVOL Entries
Listing a Partitioned Data Set Directory

Edited Format
Unedited (Dump) Format

Listing a,Volume Table of Contents
Edited Format
Unedited (Dump) Format

Input and Output
Return Codes ...•.

Control

. . .

Job Control Statements
PARM Information on the EXEC Statement
SYSPRINT DD Statement
anynamel DD Statement
anyname2 DD Statement
SYSIN DD Statement ..

Utility Control Statements
LISTCTLG Statement
lISTPDS Statement
LISTVTOC Statement

IEHLIST Examples

xvi MVS/XA Data Administration I Utilities

-----------------------~----.-----... ------

. . .

282
282
284 rf"', 285

\l.J 290
292
293
294
295
296
297
298
299
302
303
303

305
305
306
307
307
308
308
308
309
310
310
311
311

313
314
315
315
316
316 "-\

317
317
317
317
317
318
321 '
321
322
322
323
,323
324
324

325
325
325
326
327
327
328
330
330
331
331
331
332
333
333
333
333
333
334 C 334 "

"
335
337

IEHLIST Example 1
IEHLIST Example 2
IEHLIST Example 3
IEHLIST Example 4

IEHMOVE Program ••••
Volume Size Compatibility
Space Allocation
Reblocking Data Sets
Using IEHMOVE with RACF

Moving or Copying a Data Set
Sequential Data Sets
Partitioned Data Sets
BDAM Data Sets
Multivolume Data Sets
Unloaded Data Sets
Unmovable Data Sets

Moving or Copying a Group of Cataloged Data Sets
Moving or Copying an OS CVOL .
Moving or Copying a Volume of Data Sets . . • •
Moving or Copying BDAM Data Sets with Variable-Spanned

Records
Input and Output

Return Codes
Control ..

Job Control Statements
PARM Information on the EXEC Statement
SYSPRINT DD Statement
SYSUTI DD Statement
anynamel DD Statement
anyname2 DD Statement
tape DD Statement
SYSIN DD Statement • . . .
Job Control Language for the Track Overflow Feature

Utility Control Statements
MOVE DSNAME Statement
COPY DSNAME Statement
MOVE DSGROUP Statement
COPY DSGROUP Statement
MOVE PDS Statement
COPY PDS Statement
MOVE CATALOG Statement
COPY CATALOG Statement
MOVE VOLUME Statement
COpy VOLUME Statement
INCLUDE Statement
EXCLUDE Statement
SELECT Statement
REPLACE Statement

IEHMOVE Examples
IEHMOVE Example 1
IEHMOVE Example 2
IEHMOVE Example 3
IEHMOVE Example 4
IEHMOVE Example 5
IEHMOVE Example 6
IEHMOVE Example 7
IEHMOVE Example 8
IEHMOVE Example 9
IEHMOVE Example 10
IEHMOVE Example 11
IEHMOVE Example 12
IEHMOVE Example 13

IEHPROGM Program ••••••••••••
Scratching a Data Set or Member
Renaming a Data Set or Member
Cataloging a Data Set in an OS CVOL ..•

. -.

Building or Deleting an Index in an as CVOL .
Building or Deleting an Index Alias in an OS CVOL
Connecting or Releasing Two as CVOLs . • • •
Building and Maintaining a Generation Data Group Index
in an OS CVOL .

Maintaining Data Set Passwords

337
338
338
339

340
341
342
343
344
344
345
346
348
348
349
349
349
350
351

352
353
353
353
354
354
355
355
356
356
357
357
357
358
360
360
361
361
362
363
363
364
364
365
365
366
366
367
373
374
375
375
376
377
378
379
380
381
381
382
383
384

385
385
386
386
386
387
388

389
390

Contents xvii

Adding Data Set Passwords
Replacing Data Set Passwords
Deleting Data Set Passwords
Listing Password Entries

Input and Output
Return Codes

Control
Job Control Statements

PARM Information on the EXEC Statement
SYSPRINT DD Statement
anynamel DD Statement
anyname2 DD Statement
SYSIN DD Statement ..

Utility Control Statements
SCRATCH Statement
RENAME Statement
CATLG Statement
UNCATLG Statement . .
BLDX (Build Index) Statement
DLTX (Delete Index) Statement .
BLDA (Build Index Alias) Statement
DLTA (Delete Index Alias) Statement
CONNECT Statement
REL EASE (Disconnect) Statement
BLDG (Build Generation Data Group Index) Statement
ADD (Add a Password) Statement
REPLACE (Replace a Password) Statement
DELETEP (Delete a Password) Statement
LIST (List Information from a Password) Statement

IEHPROGM Examples
IEHPROGM Example 1
IEHPROGM Example 2
IEHPROGM Example 3
IEHPROGM Example 4
IEHPROGM Example 5
IEHPROGM Example 6
IEHPROGM Example 7
IEHPROGM Example 8
IEHPROGM Example 9
IEHPROGM Example 10

IFHSTATR Program •
Assessing the Quality of
Input and Output
Legend
Control

Job Control Statements

.
Tapes in a Library

Appendix A. Exit Routine Linkage

Appendix B.
DD Statement

DD Example
DD Example
DD Example
DD Example
DD Example

DD statements
Examples
1
2
3
4
5

for Defining Mountable Devices

Appendix C. Processing User Labels

392
392
393 ;-'\

~~~ ~J 
394 
394 
395 
395 
396 
396 
396 
397 
397 
397 
398 
398 
399 
399 
400 
400 
400 
401 
401 
401 
402 
402 
403 
403 
409 
409 
410 
410 
411 
411 
412 
412 (' 
413 
413 
414 

417 
418 
419 
419 
420 
420 

422 

423 
423 
423 
424 
424 
424 
425 

426 

Appendix D. IEHLIST VTOC Listing ••••••••••• 427 
Explanation of Fields in IEHLIST Formatted VTOC Listing 428 

Index . . . . . . . . . . . . . . . . . . . . . . . . . 432 

xviii MVS/XA Data Administration: Utilities 

•. ! 

,,---------- -< ------------------_ .. - - - ---- --------



FIGURES 

(-

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 

13. 

14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 

27. 

28. 

29. 

30. 
31. 

32. 

33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 

41. 

42. 
43. 
44. 

45. 

46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 

System Utility Programs 
Data Set Utility Programs 
Independent Utility Program 
Utility Programs-Supported DASD and Tape Devices 
Locating the Correct Example 
Tasks and Utility Programs 
Typical Parameter Lists 
Sequence of DDNMELST Entries 
ICAPRTBL Wait-State Codes .... 
ICAPRTBL Utility Control Statements 
ICAPRTBL Example Directory . 
Partitioned Directories Whose Data Sets Can Be 
Compared Using IEBCOMPR 
Partitioned Directories Whose Data Sets Cannot Be 
Compared Using IEBCOMPR 
IEBCOMPR Return Codes 
Job Control Statements for IEBCDMPR 
IEBCOMPR Utility Control Statements 
IEBCOMPR Example Directory 
IEBCOPY Return Codes 
Job Control Statements for IEBCOPY 
Changing Input Record Format Using IEBCOPY 
IEBCOPY Utility Control Statements 
Multiple Copy Operations within a Job Step 
IEBCOPY Example Directory .... 
Copying a Partitioned Oata Set--Full COpy 
Copying from Three Input Partitioned Data Sets . 
COpy Operation with "Replace" Specified on the Data 
Set Level .... . 
Copying Selected Members with R~blocking and 
Deblocking. . . 
Selective Copy with "Replace" Specified on the Member 
Level . . . . . . . . 
Selective Copy with "Replace~ Specified on th~ Data 
Set Level . . 
Renaming Selected Members Using IEBCOPY 
Exclusive Copy with "Replace" Specified for One Input 
Partitioned Data Set. • 
Compress-in-Place Following Full COpy with "Replace" 
Specified .. 
Multiple Copy Operations/Copy Steps . . 
Multiple Copy Operations/Copy Steps within a Job Step 
IBM-Supplied Test Date Patterns 
IEBDG Actions . 
IEBDG Return Codes . 
Job Control Statements for IEBDO 
IEBDG Utility Control Statements . 
Defining and Selecting Fields for Output Records 
Usi ng I EBDG ... 
Field Selected from the Input Record for Use in the 
Output Record . 
Compatible IEBDG Operations 
IEBDG User Exit Return Codes 
Default Placement of Fields within an Output Record 
Using IEBDG. . 
Creating Output Records with Utility Control 
Statements . . ... 
Repetition Caused by the REPEAT Statement Using IEBDG 
IEBDG Example Directory •.. 
Output Records at Job Step Completion .... 
Output Partitioned ~ember at Job Step Completion 
Partitioned Data Set Members at Job Step Completion 
Contents of Output Records at Job Step Completion 
IEBEDIT Return Codes . .... 
Job Control Statements for IEBEDIT . .. 
IEBEDIT Example Directory ....... . 
Creating a Partitioned Data Set from Sequential Input 
Using IEBGENER . .. .•..• 

1 
2 
3 
3 
7 
8 

13 
14 
16 
17 
20 

24 

25 
25 
26 
27 
29 
43 
45 
47 
49 
50 
58 
60 
62 

65 

67 

70 

72 
75 

78 

81 
84 
88 

101 
102 
103 
104 
107 

108 

109 
110 
III 

III 

112 
113 
122 
125 
126 
128 
129 
133 
133 
136 

143 

. Figures xix 



56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 
66. 
67. 
68. 
69. 

70. 
71. 

72. 
73. 

74. 
75. 

76. 
77. 
78. 
79. 

80. 
81. 
82. 
83. 
84. 
85. 
86. 
87. 
88. 
89. 
90. 
91. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. 
100. 
101. 
102. 
103. 
104. 
105. 
106. 

107. 
108. 
109. 
1l0. 
Ill. 
112. 
113. 
114. 
115. 
116. 

117. 

118. 
119. 
120. 

Expanding a Partitioned Data Set Using IEBGENER 
Editing a Sequential Data Set Using IEBGENER 
IEBGENER Return Codes . 
Job Control Statements for IEBGENER 
IEBGENER Utility Control Statements 
IEBGENER Example Directory 
3800 General Module Header 
3800 FCB Module Structure 
4248 FCB Module Structure 
4248 FCB Module Control Byte 
4248 FCB Module Data Byte .......... . 
IEBIMAGE Listing of a Forms Control Buffer Module 
COpy Modification Module Structure . 
IEBIMAGE Listing of Three Segments of a COpy 
Modification Module . . . 
Character Arrangement Table Module Structure . 
IEBIMAGE Listing of a Character Arrangement Table 
Module . 
Graphic Character Modification Module Structure 
IEBIMAGE Listing of Two Segments of a Graphic 
Character Modification Module .. .. 
Library Character Set Module Structure 
IEBIMAGE Listing of Two Segments of a Library 
Character Set. . 
IEBIMAGE Return Codes . 
Job Control Statements for IEBIMAGE 
Utility Control Statements for IEBIMAGE ... 
IEBIMAGE Listing of a COpy Modification Module with 
Overrun Notes . . 
IEBIMAGE Example Directory . 
An Unloaded Data Set Created Using IEBISAM 
Record Heading Buffer Used by IEBISAM 
IEBISAM User Exit Return Codes 
IEBISAM Return Codes . .. 
Job Control Statements for IEBISAM 
IEBISAM Example Directory 
IEBPTPCH Return Codes .. 
Job Control Statements for IEBPTPCH 
IEBPTPCH Utility Control Statements 
IEBPTPCH Example Directory 
IEBUPDTE Return Codes . 
Job Control Statements for IEBUPDTE 
IEBUPDTE Utility Control Statements 
NEW, MEMBER, and NAME Parameters 
UPDATE=INPLACE Return Codes 
IEBUPDTE Example Directory 
Example of Reordered Sequence Numbers 
Reordered Sequence Numbers . .. 
IEHATLAS Return Codes .. . 

Job Control Statements for IEHATLAS 
Utility Control Statements for IEHATLAS 
IEHATLAS Example Directory . . . . .... 
IBM Standard Label Group after Volume Receives Data 
IEHINITT Return Codes. . . . . 
IEHINITT Job Control Statements .. 
Printout of INITT Statement Specifications and 
Initial Volume Label Information 
IEHINITT Example Directory 
Index Structure--Listed by IEHLIST 
Sample Directory Block 
Edited Partitioned Directory Entry 
Sample Partitioned Directory Listing 
IEHLIST Return Codes . . ... 
IEHLIST Job Control Statements 
IEHLIST Utility Control Statements 
IEHLIST Example Directory . . . . . . . • . . 
Move and Copy Operations--DASD Receiving Volume with 
Size Compatible with Source Volume 
Move and COpy Operations--DASD Receiving Volume with 
Size Incompatible with Source Volume 
Move and Copy Operations--Non-DASD Receiving Volume 
Moving and Copying Sequential Data Sets 
Moving and Copying Partitioned Data Sets 

xx MVS/XA Data Administration: Utilities 

144 

~:~ (~" 
147 ~/ 
149 
157 
171 
173 
174 
174 
175 
176 
177 

178 
180 

181 
183 

184 
185 

186 
188 
188 
189 

196 
212 
238 
239 
239 
240 
240 

~:~/ ~ 
248 \.,~j 
250 
263 
273 
274 
276 
279 
284 
290 
299 
301 
306 
307 
308 
309 
314 
316 
316 

318 
321 
325 
326 
326 
327 
331 
332 
334 
337 

341 

341(' .', 
342 I 

345 0' 
346 



( 

( --/ 

--

121. 

122. 
123. 
124. 

125. 
126. 
127. 
128. 
129. 
130. 
131. 

132. 
133. 

134. 
135. 

136. 

137. 
138. 
139. 
140. 
141. 
142. 
143. 
144. 
145. 
146. 
147. 

148. 

Partitioned Data Set Before and After an IEHMOVE 
Copy Operation . 
Merging Two Data Sets Using IEHMOVE 
Merging Three Data Sets Using IEHMOVE 
Moving and Copying a Group of Non-VSAM Cataloged 
Data Sets . . 
Moving and Copying the OS CVOL . 
Moving and Copying a Volume of Data Sets 
IEHMOVE Return Codes 
IEHMOVE Job Control Statements 
IEHMOVE Utility Control Statements 
IEHMOVE Example Directory 
Index Structure Before and After an IEHPROGM Build 
Operation 
Building an Index Alias Using IEHPROGM 
Connecting an OS CVOL to a Second OS CVOL Using 
IEHPROGM 
Connecting Three OS CVOLs Using IEHPROGM 
Building a Generation Data Group Index Using 
IEHPROGM 
Relationship between the Protection Status of a Data 
Set and Its Passwords 
Listing of a Password Entry 
IEHPROGM Return Codes 
IEHPROGM Job Control Statements 
IEHPROGM Utility Control Statements 
IEHPROGM Example Directory 
SMF Type 21 (ESV) Record Format (48 bytes) 
SMF Type 21 (ESV) Record Format (62 Bytes) 
Sample Output from IFHSTATR 
IFHSTATR Job Control Statements 
IFHSTATR Example . .. 
Parameter Lists for Non-Label Processing Exit 
Routines . . . . 
Sample Output of IEHLIST--Volume Table of Contents 

347 
347 
348 

350 
351 
352 
353 
354 
358 
373 

387 
387 

388 
389 

390 

391 
393 
394 
395 
397 
409 
417 
418 
419 
420 
421 

422 
427 

Figures xxi 





( 

f 

INTRODUCTION 

MVS/Extended Architecture Data Facility Product provides utility 
programs to assist in organizing and maintaining data. Each 
utility program falls into one of three classes of programs, 
determined by the function performed and the type of control of 
the uti Ii ty. 

SYSTEM UTILITY pROGRAMS 

System utility programs are used to maintain and manipulate 
system and user data sets. Entire volume manipulation, for 
example, copying or restoring, is also provided. These programs 
must reside in an authorized library and are controlled by JCL 
statements and utility control statements. 

They can be executed as jobs or can be invoked as subroutines by 
authorized programs. The invocation of utility programs and the 
linkage conventions are discussed in "Invoking Utility Programs 
from a Problem Program" on page 12. 

Figure 1 is a list of system utility programs and their purpose. 

System 
Utility 

IEHATLAS 

IEHINITT 

IEHLIST 

IEHMOVE 

IEHPROGM 

IFHSTATR 

Figure 1. 

DATA SET UTILITY pROGRAMS 

PUl'pose 

To assign alternate tracks and recover usable data 
records when defective tracks are indicated 

To write standard labels on tape volumes 

To list system control data 

To move or copy collections of data 

To build and maintain system control data 

To select, format, and write information about tape 
errors from the IFASMFDP tape 

System Utility Programs 

Data set utility programs are used to reorganize, change, or 
compare data at the data set and/or record level. These 
programs are controlled by JCL statements and utility control 
statements. 

These utilities manipulate partitioned, sequential, or indexed 
sequential data sets provided as input to the programs. Data 
ranging from fields within a logical record to entire data sets 
can be manipulated. 

Data set utility programs can be executed as jobs or can be 
invoked as subroutines by a calling program. The invocation of 
utility programs and the linkage conventions are discussed in 
"Invoking Utility Programs from a Problem Program" on page 12. 

Utility programs that manipulate data sets and are included in 
this manual cannot be used with VSAM data sets. Information 
about VSAM data sets can be found in VSAM Administration Guide. 

Introduction 1 



Two utilities, IEHMOVE and IEBCOPY, do not support Virtual 
Input/Output (VIO) data sets. 

Figure 2 is a list of data set utility programs and their 
purpose. 

Data set 
utility 

IEBCOMPR 

IEBCOPY 

IEBDG 

IEBEDIT 

IEBGENER 

IEBIMAGE 

IEBISAM 

Purpose 

To compare records in sequential or partitioned data 
sets 

To copy, compress, or merge partitioned data sets, to 
add RLD count information to load modules, to select 
or exclude specified members in a copy operation, and 
to rename and/or replace selected members of 
partitioned data sets 

To create a test data set cQnsisting of patterned 
data 

To selectively copy job steps and their associated 
JOB statements 

To copy records from a sequential data set or to 
convert a data set from sequential organization to 
partitioned organization 

To modify, print, or link modules for use with the 
IBM 3800 Printing Subsystem, the IBM 3262 Model 5, or 
the 4248 printer 

To place source data from an indexed sequential data 
set into a sequential data set in a format suitable 
for subsequent reconstruction 

IEBPTPCH To print or punch records that reside in a sequential 
or partitioned data set . 

IEBUPDTE To incorporate changes to sequential or partitioned 
data sets 

Figure 2. Data Set Utility Programs 

INDEPENDENT UTILITY PROGRAMS 

Independent utility programs are used to prepare devices for 
system use when the operating system is not available. They 
operate outside of, and in support of, the operating system, are 
controlled by utility control statements, and cannot be invoked 
by a calling program. This pUblication addresses only the 
ICAPRTBL utility program. 

Figure 3 on page 3 shows the independent utility program and its 
purpose. 

2 MVS/XA Data Administration: Utilities 

(.\ 
j 



C"·, 
" 

Independent 
utility Purpose 

ICAPRTBL To load the forms control and universal character 
set buffers of the IBM 3203-5 or 3211 printer after 
an unsuccessful attempt to IPL. with the 3203-5 or 
3211 assigned as the output portion of a composite 
console. ICAPRTBL operates only in a System/370 
environment but supports MVS/XA with stand-alone 
buffer loading for the IBM 3211 printer. ICAPRTBL 
does not function with any IBM processor in 
extended architecture mode. 

Figure 3. Independent Utility Program 

The selection of a specific program depends on the nature of the 
job to be performed. For example. renaming a data set involves 
modifying system control data. Therefore. a system utility 
program can be used to rename the data set. In some cases. a 
specific function can be performed by more than one program. 
nGuide to Utility Program Functionsn on page 8 will help you 
find the program that performs the function you need. 

DASD AND TAPE DEVICE SUPPORT 

Except where noted. all the following DASD and tape devices are 
supported by all utility programs. Restrictions and peculiar 
device support are noted in the individual utility sections. 

The table below indicates specific devices supported. and the 
notation to be used to reference them. The term DASD includes 
all direct access storage devices listed below. 

Device Number Devices 

DASD: 2305-2 2305-2 

3330 3330-1. 3330-2. 3.333 and 3350 
in 3330-1 compatibility mode 

3330-1 3330-11. 3333-11 and 3350 in 
3330-11 compatibility mode 

3330V 3850 MSS Virtual Volumes 

3340 3340. 3344 (both 35 & 70 
megabyte models) 

3350 3350 Native mode 

3375 3375 

3380 3380 (all models) 

Tape: 3400 3420 (all models) ~md 3430 

3480 3480 

Figure 4. Utility Programs-Supported DASD and Tape Devices 

Introduction 3 



CONTROL 

System and data set utility programs are controlled by job 
control statements and utility control statements. The 
independent utility program is controlled by utility control 
statements only; because this program is independent of the 
operating system. job control statements are not required. The 
job control statements and utility control statements necessary 
to use utility programs are provided in the major discussion of 
each utility program. 

JOB CONTROL STATEMENTS 

A system or data set utility program can be introduced to the 
operating system in different ways: 

• Job control statements can be included in the input stream. 

• Job control statements. placed in a procedure library or 
defined as an inline procedure, can be included by means of 
the EXEC job control statement. 

• A utility program can be invoked by a calling program. 

If job control statements are placed in a procedure library, 
they should satisfy the requirements for most applications of 
the program; a procedure. of course, can be modified or 
supplemented for applications that require additional 
parameters. data sets, or devices. The data set utility 
IEBUPDTE can be used to enter a procedure into a procedure 
library; see "IEBUPDTE Program" on page 272. 

A job that modifies a system data set (identified by SYSl.) 
must be run in a single job environment; however. a job that 
uses a system data set, but does not modify it, can be run in a 
multiprogramming environment. The operator should be informed 
of all jobs that modify system data sets. 

DD statements should ensure that the volumes on which the data 
sets reside cannot be shared when update activity is being 
performed. 

Job control statements can be continued on subsequent lines, but 
the continued line must begin in column 4 through 16. No 
continuation mark is required in column 72. 

UTILITY CONTROL STATEMENTS 

Utility control statements are used to identify a particular 
function to be performed by a utility program and, when 
required, to identify specific volumes or data sets to be 
processed. 

The control statements for the utility programs have the 
following standard format: 

~ operation operand 

The ~ symbolically identifies the control statement and. 
with the exception of system utility program IEHINITT, can be 
omitted. When included. a name must begin in the first position 
of the statement and must be followed by one or more blanks. It 
can contain from one to eight alphameric characters, the first 
of which must be alphabetic. 

The operation identifies the type of c~ntrol statement. It must 
be preceded and followed by one or more blanks. 

The operand is made up of one or more keyword parameters, 
separated by commas. The operand field must be preceded and 
followed by one or more blanks. Commas, parentheses, and blanks 
can be used only as delimiting characters. 

4 MVS/XA Data Administration: Utilities 

__________________ ". ______________ 0_ •• 



( 

(/ 

Comments can be written in a utility statement, but they must be 
separated from the last parameter of the operand field by one or 
more blanks. 

Continuing Utility Control statements 

Restrictions 

Utility control statements are coded on cards or as online input 
and are contained in columns 1 through 71. A statement that 
exceeds 71 characters must be continued on one or more 
additional lines. A nonblank character must be placed in column 
72 to indicate continuation. A utility statement can be 
interrupted either in column 71 or after any comma. 

The continued portion of the utility control statement must 
begin in column 16 of the following statement. 

Note: The IEBPTPCH and IEBGENER utility programs permit certain 
exceptions to these requirements (see the applicable program 
description) . 

The utility control statements are discussed in detail, as 
applicable, in the remaining chapters. 

• Unless otherwise indicated in the description of a specific 
utility program, a temporary data set can be processed by a 
utility program only if you specify the complete name 
generated for the data set by the system (for example, 
DSNAME=SYS82296.T00005l.RP001.JOBTEMP.TEMPMOD). 

• The utility programs described in this book do not normally 
support VSAM data sets. For certain exceptions, refer to 
the various program descriptions. 

• Most utility programs do not support ISCII/ASCII tape data 
sets. (Conversion from EBCDIC codes to ISCII/ASCII codes 
will result in loss of data.) Refer to the IEHINITT program 
for specific exceptions. 

NOTATIONAL CONVENTIONS 

A uniform system of notation describes the format of utility 
commands. This notation is not part of the languagej it merely 
provides a basis for describing the structure of the commands. 

The command format illustrations in this book use the following 
conventions: 

• Brackets [ J indicate optional parameters. 

• Braces ( ) indicate a choice of entry; unless a default is 
indicated, you must choose one of the entries. 

• Items separated by a vertical bar (I) represent alternative 
items. No more than one of these items may be selected. 

• An ellipsis ( ... ) indicates that multiple entries of the 
type immediately preceding the ellipsis are allowed. 

• Other punctuation (parentheses, commas, spaces, etc.) must 
be entered as shown. A space is indicated by a blank. 

• BOLDFACE type indicates the exact characters to be entered, 
except as described in the bulleted notes above. Such items 
must be entered exactly as illustrated. 

• Lowercase ynderscored type specifies fields to be supplied 
by the user. 

Introduction 5 



keyword=device=list 

• BOLDFACE UNDERSCORED type indicates a default option. If 
the parameter is omitted, the underscored value is assumed. 

The term keyword is replaced by VOL, FROM, or TO. 

The term device is replaced by either a generic name, for 
example, 3380; or an esoteric name, for example, DISK, if this 
esoteric name has been generated into your system. For DASD, 
the term ~ is replaced by one or more volume serial numbers 
separated by commas. When there is more than one volume serial 
number, the entire ~ field must be enclosed in parentheses. 

For tapes, the term ~ is replaced by either one or more 
volume serial number/comma/data set sequence number pairs. Each 
pair is separated from the next pair by a comma. When there is 
more than one pair, the entire ~ field must be enclosed in 
parentheses; for example: FROM=3400=(tapeA,1,tapeB,1). 

INSTALLATION CONSIDERATIONS 

The System/370 versions of Device Support Facilities (Releases I 
through 5) are not applicable for Data Facility Product 
installations. You must order and install the MVS/XA version of 
Device Support Facilities Release 6 (5655-257) to run in an 
MVS/XA Data Facility Product environment. 

Releases 1.0 and 1.1 of Data Facility Data Set Services (DFDSS) 
are not applicable for Data Facility Product installations. You 
must install DFDSS Release 1.2 or higher to run in an MVS/XA 
Data Facility Product environment. Installation of Release 1.2 
supersedes Release 1.1. 

The following utilities are ngi included as support for the Data 
Facility Product for MVS/XA. 

• IBCDASDI--Disk initialization functions are described in 
Device Support Facilities User's Guide and Reference. 

• IBCDMPRS--Stand-alone disk restore functions are described 
in DFDSS: User's Guide and Reference. 

• IEHDASDR--Disk initialization functions are described in 
Device Support Facilities User's Guide and Reference. Dump 
restore functions are described in DFDSS: User's Gyide and 
Reference. 

Note: DFDSS does not support the dump format produced by 
IEHDASDR or DRWDASDR. Dumps taken by DFDSS in a System/370 
environment may be restored by DFDSS in an MVS/XA environment. 

• Analysis Program-l (AP-I)--Functions to aid in the analysis 
of DASD errors are described in Device Sypport Facilities 
User's Guide and Reference. 

6 MVS/XA Data Administration: Utilities 

/ ", 
} 

'",-,.,/ 



( 
SPECIAL REFERENCING AIDS 

To help you locate the correct utility program for your needs 
and locate the correct example of the program for reference two 
special referencing aids are included in this publication. 

To locate the correct utility program, refer to Figure 6 on 
page 8 under "Guide to Utility Program Functions." 

To locate the right example, use the figure (called an "example 
directory") that precedes each program's examples. Figure 5 
shows a portion of the example directory for IEHMOVE. The 
figure shows that IEHMOVE Example 1 is an example of moving a 
sequential data set and that IEHMOVE Example 2 is an example of 
copying a sequential data set. 

Operation Device Comments Example 

MOVE Disk Source volume is demounted 1 
Sequential after job completion. 

COPY Disk Three cataloged sequential 2 
Sequential data sets are to be copied. 

The disks are mountable. 

Figure 5. Locating the Correct Example 

Introduction 7 



gUIDE TO UTILITY PRO§RA~ FUNCTIONS 

Fig~re 6 is a list of tasks that th~ utility programs can be 
used to perform. The left-hand column shows tasks you might 
want to perform. The middle column more specifically defines 
the tasks. The right-hand column shows the utility programs 
that can b, used for each task. Notice that, in some cases, 
more than one program may be available to perform the same task. 

Task Options 
Utility 
Program 

Add a password IEHPROGM 

Alter in a load module IEBCOPY 
place 

Assign tracks to a DASD volume and IEHATLAS 
alternate recover usable data 

Cat~log a data set in an OS CVOL IEHPROGM 

Change data set organization IEBUPDTE 
logical record length IEBGENER 

Compare partitioned data sets IEBCOMPR 
sequential data sets records 

Compress in a partitioned data set IEBCOPY 
place .,. 

Convert to a sequential data set created as IEBCOPY 
pa rti ti ooed a result of an unload 

sequential data sets IEBUPDTE, 
IEBGENER 

Convert to a partitioned data set IEBUPDTE, 
sequential IEBCOPY 

an indexed sequential data set IEBISAM, 
IEBDG 

Copy a direct access volume IEHMOVE 

a load module IEBCOPY 

a pa rti ti oned data set IEBCOPY, 
IEHMOVE 

a volume of data sets IEHMOVE 

an indexed sequentia.l data set IEBISAM 

job steps IEBEDIT 

selected members IEBCOPY, 
IEHMOVE 

sequential data sets IEBGENER, 
IEHMOVE, 
IEBUPDTE 

Figure 6 (Part 1 of 4). Tasks and Utility Programs 

8 MVS/XA Data Administration: Utilities 



Options 
utility 

Task Program 

Create a backup copy of a partitioned IEBCOPY 
(' 

data set 

a character arrangement table IEBIMAGE 
module 

a copy modification module IEBIMAGE 

a 3800 or 4248 forms control IEBIMAGE 
buffer module 

a graphic character modification IEBIMAGE 
module 

a library character set module IEBIMAGE 

a library of partitioned members IEBUPDTE 

a member IEBDG 
IEBGENER 
IEBUPDTE 

a sequential output data set IEBDG 

an indexed sequential data set IEBDG 

an output job stream IEBEDIT 

Delete a password IEHPROGM 

catalog entries IEHPROGM 

(- records in a partitioned data set IEBUPDTE 

Edit and a sequential data set IEBGENER, 
convert to IEBUPDTE 
partitioned 

Edit and a job stream IEBEDIT 
copy 

a sequential data set IEBGENER, 
IEBUPDTE 

Edit and error statistics by volume ( ESV) IFHSTATR \ 
list records. 

Edit and a sequential data set IEBPTPCH 
print 

Edit and a sequential data set IEBPTPCH 
punch 

Enter a procedure into a procedure IEBUPDTE 
library 

Exclude a partitioned data set member IEBCOPY, 
from a copy operation IEHMOVE 

Expand a part~tioned data set IEBCOPY 

a sequential data set IEBGENER 

Generate test data IEBDG 

Figure 6 (Part 2 of 4). Tasks and Utility Programs 

Guide to Utility Program Functions 9 



Task Options 

Get alternate tracks on a DASD volume 

Include changes to members or sequential 
data sets 

Insert into a partitioned data set 
records 

Label magnetic tape volumes 

List a password entry 

a volume table of contents 

number of unused directory blocks 
and tracks 

partitioned directories 

Load a previously unloaded partitioned 
data set 

an indexed sequential data set 

an unloaded data set 

UCS and FCB buffers of a 3211 

Merge parti Honed data sets 

Modify a parH Honed or sequential 
data set 

Move a volume of data sets 

partitioned data sets 

sequential data sets 

Number in s new member 
records 

in a partitioned data set 

Password add a password 
protect 

delete a password 

list passwords 

replace a password 

Print sequential data sets 

partitioned data sets 

selected records 

Punch a partitioned data set member 

a sequential data set 

Figure 6 (Part 3 of 4). Tasks and Utility Programs 

10 MVS/XA Data Administration I Utilities 

utility 
Program 

IEHATlAS 

IEBUPDTE 

IEBUPDTE 

IEHINITT 

IEHPROGM 

IEHLIST 

IEBCOPY 

IEHLIST 

IEBCOPY 

IEBISAM 

IEHMOVE 

ICAPRTBL 

IEHMOVE, 
IEBCOPY 

IEBUPDTE 

IEHMOVE 

IEHMOVE 

IEHMOVE 

IEBUPDTE 

IEBUPDTE 

IEHPROGM 

IEHPROGM 

IEHPROGM 

IEHPROGM 

IEBGENER, 
IEBUPDTE, 
IEBPTPCH 

IEBPTPCH 

IEBPTPCH 

IEBPTPCH 

IEBPTPCH 

I~-'\ 

'"~} 

/"\ 
. ! 
\'~ ... r __ "-'/ 



utility 
Task Options Program 

selected records IEBPTPCH (. 
Reblock a load module IEBCOPY 

a parti tioned data set IEBCOPY 

a sequential data set IEBGENER, 
IEBUPDTE 

Recover data from defective tracks on IEHATLAS 
direct access volumes 

Re-create a partitioned data set IEBCOPY 

Rename a partitioned data set member IEBCOPY, 
IEHPROGM 

a sequential or partitioned IEHPROGM 
data set 

moved or copied members IEHMOVE 

Renumber logical records IEBUPDTE 

Replace a password IEHPROGM 

data on an alternate track IEHATLAS 

identically named members IEBCOPY 

logical records IEBUPDTE 

( members IEBUPDTE 

records in a member IEBUPDTE 

records in a partitioned data set IEBUPDTE, 
IEBCOPY 

selected members IEBCOPY 

selected members in a move or IEBCOPY, 
copy operation IEHMOVE 

Scratch a volume table of contents IEHPROGM 

data sets IEHPROGM 

Uncatalog data sets IEHPROGM 

Unload a partitioned data set IEHMOVE, 
IEBCOPY 

a sequential data set IEHMOVE 

an indexed sequential data set IEBISAM 

Update in a partitioned data set IEBUPDTE 
place 

Figure 6 (Part 4 of 4). Tasks and Utility Programs 

Guide to Utility Program Functions 11 



INVOKING UTILITY pROGRAMS FROM A PROBLEM pROGRAM 

Utility programs can be invoked by a problem program through the 
use of the ATTACH or LINK macro instruction. 

The problem program must supply the following to the utility 
program: 

• The information usually specified in the PARM parameter of 
the EXEC statement 

• The ddnames of the data sets to be used during processing by 
the utility program 

The following programs maY execute authorized functions: 

IEBCOPY, IEHATLAS, IEHINITT, IEHMOVE, IEHPROGM 

When executing an authorized function, the calling program must 
be authorized via the Authorized Program Facility (APF). 

For details on program authorization, see Conversion Notebook. 

When IEHMOVE, IEHPROGM, or IEHLIST is dynamically invoked in a 
job step containing a program other than one of these three, the 
DD statements defining mountable devices for the IEHMOVE, 
IEHPROGM, or IEHLIST program must be included in the job stream 
ahead of DD statements defining data sets required by the other 
program. 

LINK OR ATTACH MACRO INSTRUCTION 

The LINK or ATTACH macro instruction can be used to invoke a 
utility program from a problem program. 

The format of the LINK or ATTACH macro instruction is: 

[~] {LINK I ATTACHl EP=progname 

,PARAM=(optionaddr[,ddnameaddr] 

[,hdingaddr] ) 

,VL=l 

where: 

EP=progname 
specifies the name of the utility program. 

PARAM= 
specifies, as a sublist, address parameters to be passed 
from the problem program to the utility program. These 
values can be coded: 

( 

optionaddr 
specifies the address of an option list, OPTLIST, 
which is usually specified in the PARM parameter of 
the EXEC statement. This address must be written for 
all utility programs. 

12 MVS/XA Data Administration: Utilities 



( .. 

ddnameaddr 
specifies the address of a list, DDNMELST, of 
alternate ddnames for the data sets used during 
utility program processing. If standard ddnames are 
used and this is not the last parameter in the list, 
it should point to a halfword of zeros. If it is the 
last parameter, it may be omitted. 

hdingaddr 

VL=l 

specifies the address of a 6-byte list. HDNGLIST, 
which contains an EBCDIC page count for the output 
device. If hdingaddr is omitted, the page number 
defaults to I. 

specifies that the sign bit of the last fullword of the 
address parameter list is to be set to 1. 

Figure 7 shows these lists as they exist in the user's DC area. 
Note that the symbolic starting addresses for OPTLIST and 
DDNMELST fallon halfword boundaries that are not also fullword 
boundaries. 

Full word Full word 
boundary boundary 

Half word J Half word J 
bouiry boulary 

100 108 
of Starting addrvss 

the optionaddr 
parameter list 
(OPTLlST) , 

:/ Starting address 
the ddnameadd 
parameter list 
(ODNMELST) 

Starting address 
the hdingaddr 
parameter list 
(HDNGLlST) 

of 

.-

N 

-

~ 
00 

00 

00 

T 

00 

00 

T 

00 

0 V E 

-llil 00 48 

~ 00 00 

00 00 00 

00 00 00 

00 00 00 

1 1 40 

00 00 00 

00 00 00 

S E T 

Qo. 

OA 

Figure 7. Typical Parameter Lists 

R 

00 

00 

00 

00 

I 

00 

00 

I 

W 

00 

I F 

00 00 

00 00 

00 00 

00 00 

N P 

00 00 

00 00 

N P 

H I 

04 00 

y 

00 

00 

00 

00 

U 

00 

00 

U 

C 

00 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

The PARAM parameter of the LINK macro instruction in the calling 
program provides the utility program with the symbolic addresses 
of the parameter lists shown in Figure 7. as follows: 

• The option list, OPTLIST, which includes the number of bytes 
in the list (hexadecimal 08) and the NOVERIFY option 

• The alternate ddname list, DDNMELST, which includes the 
number of bytes in the list (hexadecimal 48) and alternative 
names for the SYSIN INPUTll, SYSUTI INPUTSET, and SYSUT2 
WHICHPTR data sets 

Invoking Utility Programs from a Problem Program 13 



• The heading list, HDNGlIST, which includes the number of 
bytes in the list (hexadecimal 04) and indicates the 
starting page number (hexadecimal OA, or decimal 10) for 
printing operations controlled through the SYSPRINT data 

The option list, OPTlIST, must begin on a halfword boundary that 
is not also a fullword boundary. The two high-order bytes 
contain a hexadecimal count of the number of bytes in the 
remainder of the OPTlIST. (For all programs except IEHMOVE, 
IEHlIST, IEHPROGM, IEHINITT, IEBUPDTE, and IEBISAM, the count 
must be zero.) OPTlIST is free form, with fields separated by 
commas. No blanks or zeros should appear in the list. 

The ddname list, DDNMElST, must begin on a halfword boundary 
that is not also a fullword boundary. The two high-order bytes 
contain a count of the number of bytes in the remainder of the 
list. Each name of fewer than 8 bytes must be left aligned and 
padded with blanks. If an alternate ddname is omitted from the 
list, the standard name is assumed. If the name is omitted 
within the list, the 8-byte entry must contain binary zeros. 
Names can be omitted from the end by merely shortening the list. 
Figure 8 shows the sequence of the 8-byte entries in the ddname 
list pointed to by ddnameaddr. 

Entry 

1 

standard Name 

00000000 
00000000 
00000000 
00000000 
SYSIN 
SYSPRINT 
00000000 
SYSUTl 

2 
3 
4 
5 
6 
7 
8 
9 SYSUT2 
10 SYSUT3 
11 SYSUT4 

Figure 8. Sequence of DDNMElST Entries 

The first 2 bytes of HDNGlIST contain the length in bytes of the 
heading list. The remaining 4 bytes contain a page number that 
the utility program is to place on the first page of printed 
output. 

Some utilities, however, use fewer than four bytes per page 
number. Storing a page number that is too large in HDNGlIST 
could cause unpredictable results. For example, if you link to 
IEBIMAGE with a page number of 998 in HDNGlIST, the following 
page numbers result: 

998 
999 
(blank) 

I 
2 

(and so on) 

In this case, you cannot specify a page number larger than 999. 

14 MVS/XA Data Administration: Utilities 

c 



ICAPRTBL pROGRAM 

( 

EXECUTING ICAPRTBL 

( 

c 

ICAPRTBL is an independent utility that operates only in a 
System/370 environment but supports MVS/XA with stand-alone 
buffer loading. It is used to load the universal character set 
(UCS) buffer and the forms control buffer (FCB) for an IBM 3211 
or 3203-5 Printer. ICAPRTBL does not function with any IBM 
processor in extended architecture mode. 

ICAPRTBL is used when the 3211/3203-5 is assigned as the output 
portion of a composite console and an unsuccessful attempt has 
been made to initialize the operating system because the UCS and 
FCB buffers contain improper bit patterns. ICAPRTBL loads the 
buffers properly so the operating system can be initialized. 

Note: When an operable console printer keyboard is available, 
the buffers are loaded under the control of the operating 
system. 

ICAPRTBL must be loaded from a card reader. Control statements 
must follow the last card of the program. Only one printer can 
be initialized each time the program is executed. 

To execute ICAPRTBL: 

1. Mount the correct train on the printer and ready the 
printer. 

2. Place the object program deck and the control cards in the 
card reader. Ready the reader and press the END OF FILE 
key. 

3. Load the object program from the reader by setting the load 
selector switches and pressing the console LOAD key. 

Wait state codes will be displayed in the address portion of the 
PSW for normal termination and for input/output, system, or 
control card errors. Code BOI is issued for normal termination; 
B02 through B07 are issued for control card errors; BOA through 
BOC are issued for system errors; and Bll through BID are issued 
for input/output errors. Figure 9 on page 16 shows these codes 
and their meanings. 

ICAPRTBL Program 15 



INPUT AND OUTPUT 

CONTROL 

Code 

BOl 

Meaning 

Visually check the train image printed on the 
3211/3203-5. 

B02 Missing control card or control card out of order. 

B03 Incorrect JOB statement. 

B04 Incorrect DFN statement. 

B05 Incorrect UCS statement. 

B06 Incorrect FCB statement. 

B07 Incorrect END statement. 

BOA External interrupt. 

BOB Program check interrupt. 

BOC Machine check interrupt. 

Bll Reader not online. 

B12 Reader not ready. 

B13 Reader unit check (display low virtual storage locations 
2 through 7 for sense information). 

B14 Reader channel error. 

B15 No device end on reader. 

B19 

B1A 

Printer not online. 

Printer not ready. 

B1B Printer unit check (display low virtual storage locations 
2 through. 7 for sense information). 

B1C Printer channel error. 

B1D No device end on printer. 

Figure 9. ICAPRTBl Wait-State Codes 

ICAPRTBl uses, as input, utility control statements that contain 
images to be loaded into the universal character set and/or the 
forms control buffer. ICAPRTBl produces, .as output, properly 
loaded UCS and FCB buffers. 

ICAPRTBl is controlled by utility control statements. Because 
ICAPRTBL is an independent utility program, operating system job 
control statements are not used. 

16 MVS/XA Data Administration: Utilities 



( 

UTILITY CONTROL STATEMENTS 

JOB Statement 

DFN Statement 

All utility control statement operands must be preceded and 
followed by one or more blanks. Continuation requirements for 
utility control statements are described in "Continuing Utility 
Control Statements" on page 5. 

ICAPRTBl utility control statements are listed in Figure 10. 

Statement Use 

JOB Indicates the beginning of an ICAPRTBl job. 

DFN Defines the address of the 3211 or 3203-5, specifies 
that lowercase letters are to be printed in 
uppercase when the lowercase print train is not 
available, and identifies UCS and FCB image names. 

UCS Contains an image of the characters to be loaded 
into the UCS buffer. 

FCB Defines the image to be loaded into the FCB. 

END Indicates the end of an ICAPRTBl job. 

Figure 10. ICAPRTBl Utility Control Statements 

The JOB statement indicates the beginning of an ICAPRTBl job. 

The format of the JOB statement is: 

I[~l JOB [user-information] 

The DFN statement is used to define the address of the 3211 or 
3203-5, to specify that lowercase letters are to be printed in 
uppercase when the lowercase print train is not available, and 
to identify UCS and FCB image names. 

The format of the DFN statement is: 

DFN ADDR=£YY 

[,FOLD=YIHl 

[,DEVT=321113203-Sl 

[,UCS=ucsnameIANIA11] 

[,FCB=fcbnameISTDI~] 

ICAPRTBl Program 17 



ucs statement 

FCB statement 

END statement 

The UCS statement contains an image to be loaded into the UCS 
buffer. 

The format of the UCS statement is: 

I [ucsname] ucs yes-image 

The FCB statement defines the image to be loaded into the forms 
control buffer. The FCB statement may precede or follow the UCS 
statement. 

The format of the FCB statement is: 

[f~blJsm~] FCB LPI={618l 

,LNCH=((l,~)E,(l,~) ••• ]) 

, FORMEND=X 

The END statement signals the end of the ICAPRTBL job. 

The format of the END statement is: 

I[~] END Eyser-information] 

18 MVS/XA Data Administration: Utilities 

, '. ( '-'" 
"-j 

(:~ 
./ 



(-
Parameters 

ADDR 

DEVT 

FCB 

FOLD 

( 
FORMEND 

LNCH 

LPI 

C".· 
/ 

Applicable 
Control 
statements 

DFN 

DFN 

DFN 

DFN 

FCB 

FCB 

FCB 

Description of Parameters 

ADDR=£YY 
specifies the channel number, ~, and unit 
number, yy, of the 3211 or 3203-5. 

DEVT=~13203-S 
specifies the device type to which the ADDR 
parameter applies. 3211 is the default device 
type. 

FCB=fcbnameISTDISTD2 
specifies a 1- to 8-character name of the image 
loaded into the forms control buffer. The 
actual image loaded into the buffer is not 
affected by this name, but serves as a 
meaningful reference when printed on the 
printer. fcbname should be the same as the FCB 
image being used. STD2 is the default. 

FOLD=VIN 
specifies whether lowercase letters are to be 
printed as uppercase letters when the lowercase 
print train is not available. The values can be 
coded: 

v 

N 

FORMEND=~ 

specifies that lowercase letters are to be 
printed as uppercase letters when the 
lowercase print train is not available. 

specifies that lowercase letters are not to 
be printed as uppercase letters. This is 
the default. 

specifies the number of lines (maximum 180) on 
the printer form. For an II-inch form, spacing 
six lines per inch, ~ must be 66. 

LNCH=((l,~)[,(l,~) ••• ]) 
specifies the channels of the FCB image. Each 
set of parentheses must contain the line number 
(1-180), a comma, and the channel number (1-12) 
to be assigned to that line. One or all of the 
12 channels may be assigned in any order. Each 
set must be separated by commas and the entire 
group surrounded by parentheses. 

LPl=(618) 
specifies the number of lines per inch that will 
be printed on the document. These values can be 
coded: 

6 

8 

specifies that six lines per inch are to be 
printed. 

specifies that eigh~ lines per inch are to 
be printed. 

ICAPRTBL Program 19 



Applicable 
Control 

Parameters statements Description of Parameters 

UCS DFN UCS=ucsnameIANIA11 
is a I to 8 character alphameric name of the 
image loaded into the UCS buffer. This name is 
printed on the printer to serve as a reference 
to the print train being used. 

AN 
is the default for 3203-5 devices. 

All 
is the default for 3211 devices. 

ucs-image UCS y~s-image 
specifies characters to be loaded into the UCS 
buffer. The characters must be contained in 
columns 16 through 71. The first UCS statement 
contains the first 56 characters; subsequent 
statements contain continuations of the image to 
be loaded into the UCS buffer. A continuation 
mark (any printable character) is required in 
column 72 of a continued UCS image card. 

user- JOB [y~gc-ioforms~ioo] 
information END specifies user explanation of action and 

comments. 

ICAPRTBL EXAMPLES .c 

The examples that follow illustrate some of the uses of '''-.cJ 
ICAPRTBL. Figure 11 can be used as a quick-reference guide to 
the examples. The numbers in the "Examples" column refer to 
examples that follow. 

Devices Examples 

3211 1, 2 

3203-5 3, 4 

Figure 11. ICAPRTBL Example Directory 

20 MVS/XA Data Administration: Utilities 



ICAPRTBL EXAMPLE 1 

JOB 
DFN 
All 

STD2 

END 

In this example, a 3211 UCS image (All) and an FCB image are 
loaded into the UCS and FCB buffers. 

LOAD All IMAGE 
ADDR=002,FOLD=N 
UCS 1<.=IHGFEDCBA*$-RQPONMLKJ~,&ZYXWVUTS/~#0987654321<.=IHGF 

EDCBA*$-RQPONMLKJ~,&ZYXHVUTS/~#~987654321<.=IHGFEDCBA*$
RQPONMLKJ~,&ZYXWVUTS/~#0987654321<.=IHGFEDCBA*$-RQPONMLK 
J~,&ZYXWVUTS/~#0987654321<.=IHGFEDCBA*$-RQPONMLKJ~,&ZYXW 
VUTS/~10987654321<.=IHGFEDCBA*$-RQPONMLKJ~,&ZYXWVUTS/~#0 
987654321<.=IHGFEDCBA*$-RQPONMLKJ~,&ZYXWVUTS/23098765432 
1<.=IHGFEDCBA*$-RQPONMLKJ~,&ZYXWVUTS/@t0987654321<.=IHGF 
EDCBA*$-RQPONMLKJ~,&ZYXHVUTS/@#098765432 

FCB LPI=6, 
LNCH=«4,1),(10,2),(16,3),(22,4),(28,5),(34,6),(40,7), 
(46,8),(52,10),(58,11),(64,12),(66,9», 
FORMEND=66 

The control statements are discussed below: 

72 

C 
C 
C 

• DFN specifies the channel and unit number of the default 
device type 3211 and FOLD=N specifies that lowercase letters 
are not to be printed as uppercase letters when the 
lowercase print train is not available. 

• 

• 

UCS specifies the characters to be loaded into the UCS 
buffer. 

FCB specifies the values to be loaded into the forms control 
buffer. LPI=6 indicates that six lines per inch are to be 
printed, and FORMEND=66 specifies 66 lines per page. 

ICAPRTBL EXAMPLE 2 

In this example, a 3211 UCS image (Pll) and an IBM standard FCB 
image are loaded into the UCS and FCB buffers by specifying 
images via the UCS and FCB parameters of the DFN statement. 

JOB LOAD 3211 Pil IMAGE 
DFN UCS=Pll,ADDR=004,FCB=STD 
END 

The DFN control statement is discussed below: 

• By omitting the DEVT parameter, the default device type is 
3211. 

• The UCS parameter specifies the UCS image ID to be loaded 
into the UCS buffer from standard image tables provided by 
the uti Ii ty. 

• The ADDR parameter specifies the channel and unit number of 
the 3211. 

• By omitting the FOLD parameter, the default FOLD value N is 
selected, specifying that lowercase letters are not to be 
printed as uppercase letters when the lowercase print train 
is not available. 

ICAPRTBL Program 21 



ICAPRTBL EXAMPLE 3 

ICAPRTBL EXAMPLE 4 

• The FCB parameter specifies the standard FCB image id (STD) 
to be loaded into the FCB buffer from standard image tables 
provided by the utility. 

In this example, a 3203-5 UCS image (AN by default) and a 
standard FCB image (STD2 by default) are loaded into the UCS and 
FCB buffers. 

JOB 
DFN DEVT=3203-5,ADDR=002 
END 

The DFN statement is discussed below: 

• The DEVT parameter specifies the device type as 3203-5. 

• The ADDR parameter specifies the channel and unit number of 
the 3203-5. 

• By omitting the FOLD parameter, the default FOLD value N is 
selected, specifying that lowercase letters are not to be 
printed as uppercase letters when the lowercase print train 
is not available. 

• By omitting both a UCS statement and the UCS parameter, the 
default 3203-5 UCS image (AN) is loaded into the UCB buffer 
from standard image tables provided by the utility. 

• By omitting both an FCB statement and the FCB parameter, the 
default FCB image (STD2) is loaded into the FCB buffer from 
standard image tables provided by the utility. 

In this example, a 3203-5 UCS image (AN by default) and a 
provided FCB image are loaded, respectively, into the UCS and 
FCB buffers. 

JOB 3203-5 USER FCB 
USER FCB FORMEND=88,LPI=8,LNCH=((4,l),(12,2), 

(20,3),(28,4),(36,5),(44,6),(52,7), 
(60,8),(68,10),(76,11),(84,12),(88,9» 

DFN FOLD=Y, 
FCB=STD, 
ADDR=003, 
DEVT=3203-5 

END 

The control statements are discussed below: 

• The JOB statement includes user comments on the action 
taken. 

72 

C 
C 

C 
C 
C 

• The FCB statement specifies the values to be loaded into the 

rr-'" 10 

forms control buffer. FORMEND=88 and LPI=8 indicate that (./~ 
there will be 88 lines per page, 8 lines per inch. Note 
that the specification of the FCB parameter on the DFN 
statement is overridden by the FCB statement specification. 

22 MVS/XA Data Administration: Utilities 



( 

• 

• 

The DEVT parameter of the DFN statement specifies the device 
type as 3203-5. 

The ADDR parameter specifies the channel and unit number of 
the 3203-5. 

• The FOLD=Y parameter specifies that lowercase letters are to 
be printed as uppercase letters when the lowercase print 
train is not available. 

• By omitting both a UCS statement and the UCS parameter of 
the DFN statement, the default 3203-5 UCS image (AN) is 
loaded from standard image tables provided by the utility. 

ICAPRTBL Program 23 



IEBcoMpR' pROGRAM 

IEBCOMPR is a data set utility used to compare two sequential or 
two partitioned data sets at the logical record level to verify 
a backup copy. Fixed, variable, or undefined records from 
blocked or unblocked data sets or members can also be compared. 

Two sequential data sets are considered equal, that is, are 
considered to be identical, if: 

• The data sets contain the same number of records, and 

• Corresponding records and keys are identical. 

Two partitioned data sets are considered equal if: 

• Corresponding members contain the same number of records. 

• Note lists are in the same position within corresponding 
members. 

• Corresponding records and keys are identical. 

• Corresponding directory user data fields are equal. 

If all these conditions are not met for a specific type of data 
set, an unequal comparison results. If records are unequal, the 
record and block numbers, the names of the DD statements that 
define the data sets, and the unequal records are listed in a 
message data set. Ten successive unequal comparisons terminate 
the job step, unless a user routine is provided to handle error 
conditions. 

Partitioned data sets can be compared only if all the names in 
one or both of the directories have counterpart entries in the 
other directory. The comparison is made on members identified 
by these entries and corresponding user data. 

Figure 12 shows the directories of two partitioned data sets. 
Directory 2 contains corresponding entries for all the names in 
Directory 1; therefore, the data sets can be compared. 

Directory 1 
ABCDGL 

Figure 12. 

Directory 2 
ABCDEFGH 
I J K L 

Partitioned Directories Whose Data Sets Can Be 
Compared Using IEBCOMPR 

Figure 13 on page 25 shows the directories of two partitioned 
data sets. Each directory contains a name that has no 
corresponding entry in the other directory; therefore, the data 
sets cannot be compared, and the job step is terminated. 

User exits are provided for optional user routines to process 

,1~ 
\' 

"'-j 

user labels, handle error conditions, and modify source records. C.···.~. 
See Appendix A, "Exit Routine Linkage" on page 422, for a 
discussion of the linkage conventions to be followed when user 
routines are used. 

24 Mvs/xA Data Administration: Utili ties 



INPUT AND OUTPUT 

( 
RETURN CODES 

CONTROL 

Directory 1 Directory 2 
ABCFHIJ ABFGHIJ 

Figure 13. Partitioned Directories Whose Data Sets Cannot Be 
Compared Using IEBCOMPR 

IEBCOMPR uses the following input: 

• Two sequential or two partitioned data sets to be compared. 

• A control data set that contains utility control statements. 
This data set is required if the input data sets are 
partitioned or if user routines are used. 

IEBCOMPR produces as output a message data set that contains 
informational messages (for example, the contents of utility 
control statements), the results of comparisons, and error 
messages. 

IEBCOMPR returns a code in register 15 to indicate the results 
of program execution. The return codes and their meanings are 
listed in Figure 14. 

Codes Meaning 

00 (00 hex) Successful completion. 

OS (OS) 

12 (OC) 

An unequal comparison. Processing continues. 

An unrecoverable error exists. The job step is 
terminated. 

16 (10) A user routine passed a return code of 16 to 
IEBCOMPR. The job step is terminated. 

Figure 14. IEBCOMPR Return Codes 

IEBCOMPR is controlled by job control statements and utility 
control statements. The job control statements are required to 
execute or invoke IEBCOMPR and to define the data sets that are 
used and produced by IEBCOMPR. The utility control statements 
are used to indicate the input data set organization (that is, 
sequential or partitioned), to identify any user routines that 
may be provided, and to indicate whether user labels are to be 
treated as data. 

IEBCOMPR Program 25 



JOB CONTROL STATEMENTS 

Figure 15 shows the job control statements for IEBCOMPR. 

One or both of the input data sets can be passed from a 
preceding job step. 

Input data sets residing on different device types can be 
compared. Input data sets with a sequential organization 
written at different densities can also be compared. 

Statement 

JOB 

EXEC 

SVSPRINT DD 

SVSUTl DD 

SVSUT2 DD 

SVSIN DD 

Use 

Initiates the job. 

Specifies the program name (PGM=IEBCOMPR) or, if 
the job control statements reside in a procedure 
library, the procedure name. 

Defines a sequential message data set, which can 
be written to a system output device, a tape 
volume, or a direct access volume. 

Defines an input data set to be compared. 

Defines an input data set to be compared. 

Defines the control data set or specifies DUMMY if 
the input data sets are sequential and no user 
routines are provided. The control data set 
normally resides in the input stream; however, it 
can be defined as a member within a library of 
partitioned members. 

Figure 15. Job Control Statements for IEBCOMPR 

The SYSPRINT DD statement must be present for each use of 
IEBCOMPR. The block size specified in the SYSPRINT DD statement 
must be a multiple of 121. 

The SYSIN DD statement is required. The block size specified in 
theSYSIN DD statement must be a multiple of 80. 

The logical record lengths of the input data sets 
identical; otherwise, unequal comparisons result. 
sizes of the input data sets can differ; however, 
must be multiples of the logical record length. 

must be 
The block 

block sizes 

26 MVS/XA Data Administration: Utilities 

--- ------ ._-- --------------~------

,.( '\ 
I. '-,J 



( 

(, 

UTILITY CONTROL STATEMENTS 

COMPARE statement 

EXITS Statement 

The utility control statements used to control IEBCOMPR are 
given in Figure 16. 

statement Use 

COMPARE Indicates the organization of a data set. 

EXITS Identifies user exit routines to be used. 

LABELS Indicates whether user labels are to be treated as 
data by IEBCOMPR. 

Figure 16. IEBCOMPR Utility Control Statements 

Continuation requirements for utility control statements are 
described in "Continuing Utility Control statements" on page 5. 

The COMPARE statement is used to indicate the organization of 
data sets to be compared. 

The COMPARE statement, if included, must be the first utility 
control statement. COMPARE is required if the EXITS or LABELS 
statement is used or if the input data sets are partitioned data 
sets. 

The format of the COMPARE statement is: 

I [lil.b.ll J COf1PARE TYPORG={PSIPO) 

The EXITS statement is used to identify any user exit routines 
to be used. If a user exit routine is used, the EXITS statement 
is required. If more than one valid EXITS statement is 
included, all but the last EXITS statement are ignored. For a 
discussion of the processing of user labels as data set 
descriptors, see Appendix C, "Processing User Labels" on 
page 426. 

The format of the EXITS statement is: 

[ls!.b.e.l J EXITS [INHDR=routinenameJ 

[,INTLR=routinename] 

[,ERROR=roytinenameJ 

[,PRECOMP=~QYliDeDam~J 

IEBCOMPR Program 27 



LABELS Statement 

Parameters 

DATA 

ERROR 

INHDR 

The LABELS statement specifies whether user labels are to be 
treated as data by IEBCOMPR. For a discussion of this option, 
refer to Appendix C, "Processing User Labels" on page 426. 

The format of the LABELS statement is: 

I[~l LABELS [DATA={YESINOIALLIONLY)l 

Note: LABELS DATA=NO must be specified to make IBM standard/ 
user label (SUL) exits inactive when input/output data sets with 
nonstandard labels (NSL) are to be processed. 

If more than one valid LABELS statement is included, all but the 
last LABELS statement are ignored. 

Applicable 
Control 
Statements Description oT Parameters 

LABELS 

EXITS 

EXITS 

DATA={YESINOIALLIONLY) 

YES 

NO 

ALL 

ONLY 

specifies whether user labels are to be treated 
as data. The values that can be coded are: 

specifies that any user labels that are not 
rejected by a user's label processing routine 
are to be treated as data. Processing of labels 
as data stops in compliance with standard return 
codes. YES is the default. 

specifies that user labels are not to be treated 
as data. 

specifies that all user labels are to be treated 
as data. A return code of 16 causes IEBCOMPR to 
complete processing of the remainder of the 
group of user labels and to terminate the job 
step. 

specifies that only user header labels are to be 
treated as data. User header labels are 
processed as data regardless of any return code. 
The job terminates upon return from the OPEN 
routine. 

ERROR=roytinename 
specifies the name of the routine that is to 
receive control after each unequal comparison 
for error handling. If this parameter is 
omitted and ten consecutive unequal comparisons 
occur while IEBCOMPR is comparing sequential 
data sets, processing is terminated; if the 
input data sets are partitioned, processing 
continues with the next member. 

INHDR=roytinename 
specifies the name of the routine that processes 
user input header labels. 

28 MVS/XA Data Administration: Utilities 

___________ ~ _______________ _L __________________________________________ ___ 

rf'-'\ 
~j 



(-

( 

c 

Applicable 
Control 

Parameters statements Description of Parameters 

INTLR EXITS INTLR=coutinename 
specifies the name of the routine that processes 
user input trailer labels. 

PRECOMP EXITS PRECOMP=routinename 
specifies the name of the routine that processes 
logical records (physical blocks in the case of 
variable spanned (VS) or variable blocked 
spanned (VBS) records longer than 32K bytes) 
from either or both of the input data sets 
before they are compared. 

TYPORG COMPARE TYPORG={PSIPO} 
specifies the organization of the input data 
sets. The values that can be coded are: 

PS 
specifies that the input data sets are 
sequential data sets. This is the defaul t. 

PO 
speci fies that the input data sets are 
parti tioned data sets. 

IEBCOMPR EXAMPLES 

Operation 

COMPARE 

COMPARE 

COMPARE 

COMPARE 

COMPARE 

The examples in Figure 17 illustrate some of the uses of 
IEBCOMPR. The numbers in the "Example" column refer to examples 
that follow. 

Examples that use disk or tape in place of actual device numbers 
must be changed before use. See "DASD and Tape Device Support" 
on page 3 for valid device number notation. 

Data Set 
Organization Devices Comments Example 

Sequential 9-track No user routines. Blocked 1 
Tape input. 

Sequential 7-track No user routines. Blocked 2 
Tape input. 

Sequential 7-track User routines. Blocked input. 3 
Tape and Different density tapes. 
9-track 
Tape 

Sequential Card No user routines. Blocked 4 
Reader, input. 
9-track 
Tape 

Parti tioned Disk No user routines. Blocked 5 
input. 

Figure 17 (Part 1 of 2). IEBCOMPR Example Directory 

IEBCOMPR Program 29 



Data set 
Operation Organization Devices Comments Example 

COPY Sequential 9-track No user routines. Blocked 6 
(using Tape input. Two job steps; data 
IEBCOPy) sets are passed to second job 
and step. 
COMPARE 

COpy Parti tioned Disk User routine. Blocked input. 7 
(using Two job steps; data sets are 
IEBCOPY) passed to second job step. 
and 
COMPARE 

Figure 17 (Part 2 of 2). IEBCOMPR Example Directory 

IEBCOMPR EXAMPLE 1 

In this example, two sequential data sets that reside on 9-track 
tape volumes are to be compared. 

//TAPETAPE 
// 
//SYSPRINT 
//SYSUTl 
// 
// 
//SYSUT2 
// 
// 
//SYSIN 
nE 

JOB 
EXEC PGM=IEBCOMPR 
DD SYSOUT=A 
DD UNIT=tape,lABEL=(,NL), 

DCB=(RECFM=FB,LRECl=80,BlKSIZE=2000), 
DISP=(OLD,KEEP),VOlUME=SER=OOl234 

DD UNIT=tape,LABEL=(,Nl),DISP=(OlD,KEEP), 
DCB=(RECFM=FB,LRECL=80,BLKSIZE=l040), 
VOLUME=SER=00l235 

DD DUMMY 

Because no user routines are used and the input data sets have a 
sequential organization, utility control statements are not 
necessary. 

The job control statements are discussed below: 

• SYSUTl DD defines an input data set, which resides on an 
unlabeled, 9-track tape volume. 

• SYSUT2 DD defines an input data set, which resides on an 
unlabeled, 9-track tape volume. 

• SYSIN DD defines a dummy data set. 

30 MVS/XA Data Administration: Utilities 

_____________ .f" .. 



IEBCOMPR EXAMPLE 2 

(-

IEBCOMPR EXAMPLE 3 

In this example, two sequential data sets that reside on 7-track 
tape volumes are compared. 

//TAPETAPE 
// 
//SYSPRINT 
//SYSUTl 
// 
// 
//SYSUT2 
// 
// 

JOB 
EXEC PGM=IEBCOMPR 
DD SYSOUT=A 
DD DSNAME=SET1,LABEL=(2,SUL),DISP=(OLD,KEEP), 

VOL=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80, 
BLKSIZE=2000,TRTCH=C),UNIT=3400 

DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP), 
VOL=SER=001235,DCB=(DEN=2,RECFM=FB,LRECL=80, 
BLKSIZE=2000,TRTCH=C),UNIT=3400 

//SYSIN DD * COMPARE 
LABELS 
LABELS 

TYPORG=PS 
DATA=ONLY 
DATA=ONLY 

The control statements are discussed below: 

• SYSUTI DD defines an input data set, SET1, which resides on 
a labeled, 7-track tape volume. The blocked data set was 
originally written at a density of 800 bits per inch (DEN=2) 
with the data converter on (TRTCH=C). 

• SYSUT2 DD defines an input data set, SET2, which is the 
first or only data set on a labeled, 7-track tape volume. 
The blocked data set was originally written at a density of 
800 bits per inch (DEN=2) with the data converter on 
GTRTCH=C) . 

• SYSIN DD defines the control data set, which follows in the 
input stream. 

• COMPARE TYPORG=PS specifies that the input data sets are 
sequentially organized. 

• LABELS DATA=ONLY specifies that user header labels are to be 
treated as data and compared. All other labels on the tape 
are ignored. 

In this example, two sequential data sets written at different 
densities on different tape units are compared. 

//TAPETAPE 
// 
//SYSPRINT 
//SYSUTl 
// 
// 
//SYSUT2 
// 
// 

JOB 
EXEC PGM=IEBCOMPR 
DD SYSOUT=A 
DD DSNAME=SETI,LABEL=(,SUL),DISP=(OLD,KEEP), 

VOL=SER=001234,DCB=(DEN=1,RECFM=FB,LRECL=80, 
BLKSIZE=320,TRTCH=C),UNIT=3400 

DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP), 
DCB=(RECFM=FB,LRECL=80,BLKSIZE=640), 
UNIT=tape,VOLUME=SER=OQ1235 

//SYSIN DD * 

/* 

COMPARE 
EXITS 

LABELS 

TYPORG=PS 
INHDR=HDRS,INTlR=TLRS 
DATA=NO 

IEBCOMPR Program 31 



IEBCOMPR EXAMPLE 4 

The control statements are discussed below: 

• SYSUTl DD defines an input data set, SETl, which is the 
first or only data set on a labeled, 7-track tape volume. 
The blocked data set was originally written at a density of 
556 bits per inch (DEN=2) with the data converter on 
<TRTCH=C) . 

• SYSUT2 DD defines an input data set, SET2, which is the 
first or only blocked data set on a labeled tape volume. In 
this example, assume SYSUT2 is on a 9-track tape drive. 

• SYSIN DD defines the control data set, which follows in the 
input stream. 

• COMPARE TYPORG=PS specifies that the input data sets are 
sequentially organized. 

• EXITS identifies the names of routines to be used to process 
user input header labels and trailer labels. 

• LABELS DATA=NO specifies that the user input header and 
trailer labels for each data set are not to be compared. 

In this example, two sequential data sets (card input and tape 
input) are compared. 

IICARDTAPE 
II 
IISYSPRINT 
IISYSIN 
IISYSUT2 
II 
II 
IISYSUTl 

JOB 
EXEC PGM=IEBCOMPR 
DD SYSOUT=A 
DD Dut1MY 
DD UNIT=tape,VOLUME=SER=OOl234,LABEL=(,NL), 

DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000), 
DISP=(OLD,KEEP) 

DD DATA 

(input card data set) 

1* 

The control statements are discussed below: 

• SYSIN DD defines a dummy control data set. Because no user 
routines are provided and the input data sets are 
sequential, utility control statements are not necessary. 

• SYSUT2 DD defines an input data set, which resides on an 
unlabeled, 9-track tape volume. 

• SYSUTl DD defines an input data set (card input). 

32 MVS/XA Data Administration: utilities 

c 



IEBCOMPR EXAMPLE 5 

IEBCOMPR EXAMPLE 6 

In this example, two partitioned data sets are compared. 

//DISKDISK 
// 
//SYSPRINT 
//SYSUTl 
// 
// 
//SYSUT2 
// 
// 

JOB 
EXEC PGM=IEBCOMPR 
DD SYSOUT=A 
DD DSNAME=PDSSETl,UNIT=disk,DISP=SHR, 

DCB=(RECFM=FB,lRECl=80,BlKSIZE=2000), 
VOlUME=SER=111112 

DD DSNAME=PDSSET2,UNIT=disk,DISP=SHR, 
DCB=(RECFM=FB,lRECl=80,BlKSIZE=2000), 
VOlUME=SER=111113 

//SYSIN DD * COMPARE TYPORG=PO 

The control statements are discussed below: 

• SYSUTI DD defines an input partitioned data set, PDSSETI. 
The blocked data set resides on a disk volume. 

• SYSUT2 DD defines an input partitioned data set, PDSSET2. 
The blocked data set resides on a disk volume. 

• SYSIN DD defines the control data set, which follows in the 
input stream. 

• COMPARE TYPORG=PO indicates that the input data sets are 
pa rti ti oned. 

In this example, a sequential data set is copied and compared in 
two job steps. 

//TAPETAPE 
//STEPA 
//SYSPRINT 
//SYSUTl 
// 
// 
// 
// 
//SYSUT2 
// 
// 
// 
//SYSIN 
/* 
//STEPB 
//SYSPRINT 
//SYSUTl 
//SYSUT2 
//SYSIN 
/* 

JOB 
EXEC PGM=IEBCOPY 
DD SYSOUT=A 
DD DSN=COPYSETl,UNIT=tape, 

DISP=(OlD,PASS), 
DCB=(RECFM=FB,lRECl=80,BlKSIZE=640), 
lABEl=(,Sl), 
VOlUME=SER=001234 

DD DSNAME=COPYSET2,DISP=(,PASS),lABEl=(,Sl), 
DCB=(RECFM=FB,lRECl=80,BlKSIZE=640), 
UNIT=tape, 
VOlUME=SER=001235 

DD DUf1MY 

EXEC PGM=IEBCOMPR 
DD SYSOUT=A 
DD DSNAME=*.STEPA.SYSUTl,DISP=(OlD,KEEP) 
DD DSNAME=*.STEPA.SYSUT2,DISP=(OlD,KEEP) 
DD DUMMY 

IEBCOMPR Program 33 



IEBCOMPR EXAMPLE 7 

The first job step copies the data set and passes the original 
and copied data sets to the second job step. The second job 
step compares the two data sets. 

The control statements for the IEBCOMPR job step are discussed 
below: 

• SYSUTl DD defines an input data set passed from the 
preceding job step (COPYSETl>. The data set resides on a 
labeled, 9-track tape volume. 

• SYSUTZ DD defines an input data set passed from the 
preceding job step (COPYSETZ). The data set, which was 
created in the preceding job step, resides on a labeled, 
9-track tape volume. 

• SYSIN DD defines a dummy control data set. Because the 
input is sequential and no user exits are provided, no 
utility control statements are required. 

In this example, a partitioned data set is copied and compared 
in two job steps. 

The example follows: 

//DISKDISK JOB 
//STEPA EXEC PGM=IEBCOPY 
//SYSPRINT DD SYSOUT=A 
//SYSUTI DD DSNAME=OLDSET,UNIT=disk,DISP=SHR, 
// VOLUME=SER=lllllZ, 
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=640) 
//SYSUTZ DD DSNAME=NEWMEMS,UNIT=disk,DISP=(,PASS), 
// VOLUME=SER=11ll13,SPACE=(TRK,(S,S,S», 
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=640) 
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(l» 
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(l» 
//SYSIN. DD)( 

COPY OUTDD=SYSUTZ,INDD=SYSUTI 
SELECT MEMBER=(A,B,D,E,F) 

/)( 
//STEPB EXEC PGM=IEBCOMPR 
//SYSPRINT DD SYSOUT=A 
//SYSUTI DD DSNAME=OLDSET,DISP=(OLD,KEEP) 
//SYSUTZ DD DSNAME=NEWMEMS,DISP=(OLD,KEEP) 
//SYSIN DD)( 

COMPARE TYPORG=PO 
EXITS ERROR=SEEERROR 

The first job step copies the data set and passes the original 
and copied data sets to the second job step. The second job 
step compares the two data sets. 

The control statements for the IEBCOMPR job step are discussed 
below: 

• SYSUTI DD defines a blocked input data set (OLDSET) that is 
passed from the preceding job step. The data set resides on 
a disk volume. 

r-·" 
:.' \ . I 
\~ 

• SYSUTZ DD defines a blocked input data set (NEWMEMS) that is 
passed from the precedi ng job step. The data set resi des on (."./." 
a disk volume. /' 

34 MVS/XA Data Administration: Utilities 

~~~~~-----~---.------


(

c

•

•

SYSUT3 and SYSUT4 define temporary system data sets to be
used for work files during IEBCOPY. These are not passed to
IEBCOMPR.

SYSIN DD defines the control data set, which follows in the
input stream.

• COMPARE TYPORG=PO specifies partitioned organization.

• EXITS specifies that a user error routine, SEEERROR, is to
be used.

Because the input data set names are not identical, the data
sets can be retrieved by their data set names.

IEBCOMPR Program 35

IEBCOPY PROGRAM

IEBCOPY is a data set utility used to copy one or more
partitioned data sets or to merge partitioned data sets. A
partitioned data set that is copied to a sequential data set is
said to be unloaded. The sequential data set created by an
unload operation can be copied to any direct access storage
device. When one or more data sets created by an unload
operation are used to re-create a partitioned data set, this is
called a load operation. Specific members of a partitioned or
unloaded data set can be selected for, or excluded from, a copy,
unload, or load process.

IEBCOPY can be used to:

• Create a backup copy of a partitioned data set.

• COpy one or more data sets per copy operation.

• COpy one partitioned data set to a sequential data set
(unload).

• Copy one or more data sets created by an unload operation to
any direct access device (load).

• Select members from a data set to be copied, unloaded, or
loaded.

• Replace identically named members on data sets (except when
unloading) .

• Replace selected data set members.

• Rename selected members .

• Exclude members from a data set to be copied, unloaded, or
loaded.

• Compress partitioned data sets in place (except when the
data set is an unloaded data set).

• Merge data sets (except when unloading).

• Re-create a data set that has exhausted its primary,
secondary, or directory space allocation.

• Alter load modules in place.

• COpy and reblock load modules.

In addition, IEBCOPY automatically lists the number of unused
directory blocks and the number of unused tracks available for
member records in the output partitioned data set. If lIST=NO
is coded (see "COPY Statement" on page 49), the names of copied,
unloaded, or loaded members listed by the input data set are
suppressed.

Note: If the partitioned data set that is to be compressed is a
null data set or if the data set has already been compressed,
IEBCOPY will not produce a listing.

36 MVS/XA Data Administration: Utilities

--- -----------------

CREATING A BACKUP COPY

COPYING DATA SETS

IEBCOPY can be used to create a backup copy of a partitioned
data set by copying (unloading) it to a sequential data set. A
partitioned data set can be totally or partially unloaded to any
tape volume or direct access device supported by BSAM. A data
set is unloaded when physical sequential organization space
allocation is specified for the output data set on a direct
access device or when the output data set is a tape volume. To
unload more than one partitioned data set to the same volume in
one execution of IEBCOPY, multiple copy operations must be used
and multiple sequential data sets must be allocated on the same
volume.

A data set with a physical sequential organization resulting
from an unload operation can, in turn, be copied. No output
tape file will be created if the input is a null file.

IEBCOPY can be used to copy a partitioned data set, totally or
in part, from one direct access volume to another. In addition,
a data set can be copied to its own volume, provided its data
set name is changed. If the data set name is not changed, the
data set is compressed in place.

Note that copied members are not reordered; members are copied
in the order in which they exist on the original data set. If
the members are to be reordered, IEHMOVE can be used for the
copy operation (see "IEHMOVE Program" on page 340).

COPYING OR LOADING UNLOADED DATA SETS

Data sets can be copied or loaded, totally or in part, from one
or more direct access volumes or tape volumes to a single direct
access volume. To copy or load more than one input partitioned
data set, specify more than one input data set with the COpy
statement. The input data sets are copied or loaded in the
order in which they are specified.

SELECTING MEMBERS TO BE COPIED, UNLOADED, OR LOADED

Members can be selected from one or more input data sets.
Selected members can be copied, unloaded, or loaded from the
input data sets specified on the INDD statement preceding a
SELECT statement.

Selected members are searched for in a low-to-high (a-to-z)
collating sequence, regardless of the order in which they are
specified; however, they are copied in the same physical
sequence in which they appear on the input partitioned data set.

After a member of a data set has been found, no search is made
for it on any subsequent input data set. Similarly, when all
the selected members are found, the copy or load step is
terminated even though all of the input data sets may not have
been searched. For example, if members A and B are specified
and A is found on the first of three input data sets, it is not
searched for again; if B is found on the second input data set,
the copy or load operation is successfully terminated after the
second input data set has been processed, although both A and B
may also exist on the third input data set.

However, if the first member name is not found on the first
input data set, the search for that member stops and the first
data set is searched for the second member. This process
continues until the first input data set has been searched for
all specified members. All the members that were found on the
input data set are then processed for copying, unloading, or
loading to the output data set. This process is repeated for

IEBCOPY Program 37

the second input data set (except that the members that were
found on the first input data set are not searched for again).

Note: Only one data set can be processed if an unload operation O'~'\
is to be performed. Multiple unload operations are allowed for .
each job step; multiple INDD statements are n2! allowed for each
unload operation.

Copying Members That Have Alias Names

When copying members that have alias names, note the following:

• When the main member and its alias names are copied, they
exist on the output partitioned data set in the same
relationship they had on the input partitioned data set.

• When members with alias names are copied using the SELECT or
EXCLUDE member option, those alias names that are to be
selected or excluded must be explicitly named.

The rules for replacing or renaming members apply to both
aliases and members; no distinction is made between them.
However, the replace (R) option (on the SELECT statement) does
not apply to an unload operation.

REPLACING IDENTICALLY NAMED MEMBERS

In many copy and load operations, the output partitioned data
set may contain members that have names identical to the names
of the input partitioned data set members to be copied or
loaded. When this occurs, you may specify that the identically
named members are to be copied from the input partitioned data
set to replace existing members.

The replace option allows an input member to override an
existing member on the output partitioned data set with the same
name. The pointer in the output partitioned data set directory
is changed to point to the copied or loaded member.

If the replace option is not specified, input members are not
copied when they have the same name as a member on the output
partitioned data set.

The replace option can be specified on the data set or member
level. This level is specified on a utility control statement.

When replace (R) is specified on the data set level with a COpy
or INDD statement, the input data is processed as follows:

• In a full copy or load process, all members on an input
partitioned data set are copied to an output partitioned
data set; members whose names already exist on the output
partitioned data set are replaced by the members copied or
loaded from the input partitioned data set.

• In a selective copy or load process, all selected input
members will be copied to the output data set, replacing any
identically named output data set members.

• In an exclusive copy process, all nonexcluded members on
input partitioned data sets are copied or loaded to an
output partitioned data set, replacing those duplicate named
members on the output partitioned data set.

When replace is specified on the member level (specified as R on
a SELECT statement), only selected members for which replace is
specified are copied or loaded, and identically named members on
the output partitioned data set are replaced.

There are differences between full, selective, and exclusive (... ~
copy or load processing. These differences should be remembered /
when specifying the replace option and all the output data sets

38 MVS/XA Data Administration: Utilities

(-

(

c

contain member names common to some or all the input partitioned
data sets being copied or loaded. These differences are:

• When a full copy or load is performed, the output
partitioned data set contains the replacing members that
were on the last input partitioned data set copied.

• When a selective copy or load is performed, the output
partitioned data set contains the selected replacing members
that were fQyng on the earliest input partitioned data set
searched. After a selected member is found, it is not
searched for again; therefore, after it is found, a selected
member is copied or loaded. If the same member exists on
another input partitioned data set, it is not searched for,
and hence, not copied or loaded.

• When an exclusive copy or load is performed, the output
partitioned data set contains all members, except those
specified for exclusion, that were on the last input
partitioned data set copied or loaded.

REPLACING SELECTED MEMBERS

When members are being selected for copying or loading, you may
specify the replace (R) option on either the data set or the
member level.

If the replace option is specified on the data set level, all
selected members found on the designated input data sets replace
identically named members on the output partitioned data set.
This is limited by the fact that after a selected member is
found it is not searched for again.

If the replace option is specified on the member level, the
specified members on the input data set replace identically
named members on the output partitioned data set. After a
member is found, it is not searched for again. (See "Replacing
Identically Named Members" on page 38.)

RENAMING SELECTED MEMBERS

Selected members on input data sets can be copied and renamed on
the output data set; the input and output data sets must not be
the same. However, in the case of a copy or load operation, if
the new name is identical to a member name on the output data
set, the input member is not copied or loaded unless the replace
option is also specified. See "SELECT Statement" on page 53 for
information on renaming selected members.

Renaming is not physically done to the input data set directory
entry. The output data set directory, however, will contain the
new name.

EXCLUDING MEMBERS FROM A COPY OPERATION

Members from one or more input data sets can be excluded from a
copy, unload, or load operation. The excluded member is
searched for on every input data set in the copy, unload, or
load operation and is always omitted. Members are excluded from
the input data sets named on an INDD statement that precedes the
EXCLUDE statement. (See "COPY Statement~ on page 49 and
"EXCLUDE Statement" on page 54.)

The replace option can be specified on the data set level in an
exclusive copy or load, in which case, nonexcluded members on
the input data set replace identically named members on the
output data set. See "Replacing Identically Named Members" on
page 38 for more information on the replace option.

IEBCOPY Program 39

COMPRESSING A DATA SET

MERGING DATA SETS

A compressed data set is one that does not contain embedded,
unused space. After copying or loading one or more input
partitioned data sets to a ~ output partitioned data set (by
means of a selective, exclusive, or full copy or load that does
not involve replacing members), the output partitioned data set
contains no embedded, unused space.

To make unused space available, either the entire data set must
be scratched or it must be compressed in place. A compressed
version can be created by specifying the same data set for both
the input and output parameters in a full copy step. A backup
copy of the partitioned data set to be compressed in place
should be kept until successful completion of an in-place
compression is indicated (by an end~of-job message and a return
code of 00).

An in-place compression does not release extents assigned to the
data set. Inclusion, exclusion, or renaming of selected members
cannot be done during the compression of a partitioned data set.

When the same ddname is specified for the INDD and OUTDD
keywords (see "COPY Statement" on page 49) and the DD statement
specifies a block size different from the block size specified
in the DSCB, the DSCB block size is overridden; however, no
physical reblocking or deblocking is performed by IEBCOPY. For
information on reblocking load modules, see "Copying and
Reblocking Load Modules" on page 41.

A merged data set is one to which an additional member is copied
or loaded. It is created by copying or loading the additional
members to an existing output partitioned data set; the merge
operation (the ordering of the output partitioned data set's
directory) is automatically performed by IEBCOPY.

If there is a question about whether or not enough directory
blocks are allocated to the output partitioned data set to which
an input data set is being merged, the output partitioned data
set should be re-created with additional directory space prior
to the merge operation.

RE-CREATING A DATA SET

A data set can be re-created by copying or loading it and
allocating a larger amount of space than was allocated for the
original data set. This application of IEBCOPY is especially
useful if insufficient directory space was allocated to a data
set. Space cannot be allocated in this manner for an existing
partitioned data set into which members are being merged.

ALTERING LOAD MODULES IN PLACE

IEBCOPY can be used to alter load modules in place.
Alter-in-place reads modules written by earlier runs of the
linkage editor and inserts new relocation dictionary (RLD) and
segment text block counts. For modules created by a program
other than the linkage editor or copied by a program other than
IEBCOPY, alter-in-place can replace erroneous RlD or segment
text block counts by correcting PDS directory entries, control
records, and the note list. For more information, see
"Inserting RLD Counts" on page 42.

Only members of a partitioned data set may be altered.

For the procedure used to invoke the alter-in-place function,
see "ALTERMOD Statement" on page 51.

40 MVS/XA Data Administration: Utilities

c

COPYING AND REB LOCKING LOAD MODULES

IEBCOPY can be used to copy and reblock load modules in a data
set library. Copy/reblock copies a sequential (unloaded) data
set or selected members from a partitioned data set onto a new
or existing output partitioned data set. The text records, RLD,
and control records (and the note list, for overlay load
modules) are rebuilt; all other records are copied unchanged.
For a description of how the RLD count is inserted, see
"Inserting RLD Counts" on page 42.

The reblock function allows you to specify:

• A maximum block size for compatibility with other systems or
programs

• A minimum block size to specify the smallest block that
should be written on the end of a track

The load modules will be blocked so that they can be link-edited
again and/or loaded by the loader.

Load libraries may be copied to devices with a larger or smaller
block size than the input block size.

IEBCOPY will determine the amount of space remaining on a track
before assigning a new block size. If this amount is smaller
than the output block size, IEBCOPY will attempt to determine
whether a smaller block can be written to use the remaining
space on the track.

The maximum block size produced by the COPYMOD function is 32760
bytes.

For the procedure used to copy and reblock load modules, see
"COPYMOD Statement" on page 52.

LOAD MODULE REQUIREMENTS

IEBCOPY requires that the members of the input data set that are
to be altered or copied/reblocked must qualify as load modules;
that is, they must possess characteristics such that they can be
loaded by the system's program fetch routine or link-edited
again by the linkage editor. Members that are not recognized as
load modules will be unaffected by the alter-in-place or
copy/reblock operation.

Load modules in scatter-load format and modules that were
link-edited with the noneditable (NE) attribute cannot be
reblocked or altered in place. For more information on module
format and attributes, see Linkage Editor and Loader User's
Guide.

Load modules in page-aligned format are altered (if ALTERMOD is
specified) and copied and altered (if COPYMOD is specified), but
are not reblocked.

The PDS directory entry for a load module must meet the
following requirements:

1. The entry must be at least 34 bytes long (standard length
for entries is only 12 bytes).

2. Bytes 26 and 27 must contain the length of the first text
record, and this length must be equal to the length
specified by the first control record.

Any record in a load module that precedes the first control
record must be one of the following:

• A symbol record (SYM)

• A composite external symbol dictionary record (CESD)

IEBCOPY Program 41

INSERTING RLD COUNTS

• An external symbol dictionary record (ESD)

• A scatter/translation record (STT)

• A CSECT identification record (IDR)

RLD and control records must be:

• An RLD record: '0000 xxIO'B in byte 1,

• A control record: '0000 xxOI'B in byte 1,

• An RLD and control record: 'DODO xxII'B in byte 1, or

• The length specified by the value in bytes 5 and 6 plus the
value in bytes 7 and 8 plus 16. Control records must
contain the length of the following text record in bytes 15
and 16.

The sequence of records following a control or RLD/control
record must be:

• Text, End-of-Module/End-of-Segment,

• Text, RLD, End-of-Module/End-of-Segment,

• Text, RLD/controI,

•
•

Text, RLD, (RLD,

Text, RLD, (RLD,

.), End-of-Module/End-of-Segment, or

.), RLD/controi.

For modules link-edited in overlay format, a note list record
follows the last text or RLD record of the load module.

Each block of text in a load module is preceded by a control
record and may be followed by one or more RLD and/or control
records. These records are variable length, with a maximum of
256 bytes. They may contain only RLD data or only control data
or both RLD and control data.

The term "number" or "count" of RLD records is used to mean the
number of these records that follow a block of text in a module
library.

The system's program fetch routine executes fewer channel
programs if the number of these records following a block of
text is known. During an ALTERMOD or COPYMOD operation, the
number of RLD records following each block of text is inserted
into the control record that immediately precedes that block of
text. In addition, the number of RLD records that follow the
first block of text for a load module is inserted into the PDS
directory entry for that module.

The linkage editor also inserts RLD counts in the control
records and in the PDS directory entries.

OVERLAY LOAD MODULES

A load module in overlay format contains a note list record that
is used to locate the overlay segments within the module. The
system's program fetch routine may load these segments faster if
the number of text blocks contained in each segment is known.
This number, known as the segment text block count, is kept in
the N byte of the note list TTRN entries. For more information
on note lists, see Catalog Administration Guide.

Some older versions of the linkage editor did not insert the (-'"
segment text block counts in the overlay note list. The~/

42 MVS/XA Data Administration: utilities

(

INPUT AND OUTPUT

RETURN CODES

ALTERMOD and COPYMOD functions may be used to in~ert ~hese
counts in overlay modules.

During an ALTERMOD operation on an overlay load module, the RLD
and segment text block counts are updated, if necessary. During
a COPYMOD operation, overlay load modules are reblocked, the RLD
counts are inserted, and the note list is rebuilt with segment
text block counts.

The linkage editor may also be used to insert RLD and segment
text block counts in overlay load modules.

IEBCOPY uses the following input:

• An input data set that contains the members to be copied,
loaded, merged, altered, reblocked, or unloaded to a
sequential data set

• A control data set that contains utility control statements.
The control data set is required for a copy, unload, load,
or merge operation

IEBCOPY does not support VIO (virtual I/O) data sets.

IEBCOPY produces the following output:

• An output data set, which contains the copied, merged,
altered, reblocked, unloaded, or loaded data. The output
data set is either a new data set (from a copy,reblock,
load, or unload) or an old data set (from a merge,
compress-in-place, copy, alter, or load).

• A message data set, which contains informational messages
(for example, the names of copied, unloaded, or loaded
members) and error messages, if applicable.

• Spill data sets, which are temporary data sets used to
provide space when not enough virtual storage is available
for the input and/or output partitioned data set
directories. These data sets are opened only when needed.

IEBCOPY returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed in Figure 18.

Codes

00 (00 hex)

O~ (04)

OS (OS)

Figure 18.

Meaning

Successful completion.

A condition exists from which recovery may be
possible.

An unrecoverable error exists.
terminated.

IEBCOPY Return Codes

. ,
The job step J.S

•

IEBCOPY Program 43

CONTROL

IEBCOPY is controlled by job control statements and utility
control statements.

JOB CONTROL STATEMENTS

Figure 19 on page 45 shows the job control statements for
IEBCOPY.

PARM Information on the EXEC statement

The EXEC statement for IEBCOPY can contain PARM information that
is used to define the number of bytes used as a buffer. The
PARM parameter can be coded:

PARM='SIZE=nnnnnnnn[K],

The nnnnnnnn can be replaced by 1 to 8 decimal digits. The K
causes the nnnnnnnn to be multiplied by 1024 bytes.

If PARM is not specified, or a value below the minimum buffer
size is specified, IEBCOPY defaults to the minimum. Minimum
buffer size is twice the maximum of the input or output block
size or four times the input or output track capacity, whichever
is larger.

The maximum buffer size that can be specified is equal to the
size of the storage remaining in the storage area gotten when
IEBCOPY issues a conditional one-megabyte storage request
(GETMAIN) for work areas and buffers. If the value specified in
PARM exceeds this maximum, IEBCOPY defaults to the maximum.

A request for too much buffer storage may result in increased
system paging because of a lack of available system page frames.
This will degrade overall system performance.

SVSPRINT DD statement

The SYSPRINT DD statement is required and must define a data set
with fixed blocked or fixed records. The block size for the
SYSPRINT data set must be a multiple of 121. Any blocking
factor may be specified, with a maximum allowable block size of
32760 bytes.

44 MVS/XA Data Administration: Utilities

C· '~\
"

(-

c

statement

JOB

EXEC

Use

Initiates the job.

Specifies the program name (PGM=IEBCOPY) or, if the
job control statements reside in the procedure
library, the procedure name. This statement can
include optional PARM information to define the
size of the buffer to be used; see "PARM
Information on the EXEC Statement."

SYSPRINT DD Defines the sequential message data set used for
listing statements and messages. This data set can
be written to a system output device, a tape
volume, or a direct access volume.

anynamel DD Defines an input partitioned data set. These DD
statements can describe partitioned data sets on
direct access devices or sequential data sets,
created as a result of unload operations, on tape
or direct access devices. The data set can be
defined by a data set name, as a cataloged data
set, or as a data set passed from a previous job
step.

anyname2 DD Defines an output partitioned data set. These DD
statements can describe partitioned data sets on
direct access devices or sequential data sets,
created as a result of unload operations, on tape
or direct access devices.

SYSUT3 DD Defines a spill data set on a direct access device.
SYSUT3 is used when there is no space in virtual
storage for some or all of the ~~ input
partitioned data set's directory entries. SYSUT3
may also be used when not enough space is available
in virtual storage for retaining information during
table sorting.

SYSUT4 DD Defines a spill data set on a direct access device.
SYSUT4 is used when there is no space in virtual
storage for the current output partitioned data
set's merged directory and the output partitioned
data set is not new.

SYSIN DD Defines the control data set. The control data set
normally resides in the input stream; however, it
can reside on a system input device, a tape volume,
or a direct access volume.

Figure 19. Job Control Statements for IEBCOPY

anynamel and anyname2 DD statements

DD statements are required for input and output data sets.
There must be "one DD statement for each unique data set used for
input and one DD statement for each unique data set used for
output in the job step. For an unload operation, only one input
data set may be specified for each output data set.

Data sets used as input data sets in one copy operation can be
used as output data sets in another copy operation, and vice
versa.

Input data sets cannot be concatenated. The maximum block size
for input data sets to be unloaded is 32760.

IEBCOPY Program 45

SYSIN DD statement .

The SYSIN DD statement is required and must define a data set
with fixed block or fixed records. The block size for the SYSIN
data set must be a multiple of 80. Any blocking factor may be
specified, with a maximum allowable block size of 32760 bytes.

IEBCOPY UNLOADED DATA SET BLOCK SIZE

The block size for unloaded data sets is determined by the
following steps:

1. The minimum block size for the unloaded data set is
calculated as being equal to the larger of:

• 284 bytes, or

• 20 bytes + the block size and key length of the input
data set.

2. If a user-supplied block size was specified, and it is
larger than 284 bytes, it will be passed to step 3.
Otherwise, the minimum size is passed.

A PDS that has been unloaded with a user-supplied block size
can be loaded back with only the COPY function.

3. The block size value passed from step 2 is then compared
with the largest block size acceptable to the output device.
If the output device capacity is smaller than the block size
passed in step 2, the unloaded data set block size is set to
the maximum allowed for the output device.

4.

5.

The logical record length (lRECl) is then set to the minimum
block size calculated in step 1 minus 4 bytes.

The block size is stored in the first control record
(COPYR1) and used at load time. Block size of the unloaded
data set must not be changed before the data set is loaded.
Be sure to specify the desired block size at unload time if
it is other than that taken by default as indicated above.

For unload and load operations, requests are handled in the same
way as for a copy operation.

Fixed or variable records can be reblocked. Reblocking or
deblocking is done if the block size of the input partitioned
data set is not equal to the block size of the output
partitioned data set.

An unloaded partitioned data set will have a variable spanned
record format. When an unloaded data set is subsequently
loaded, the output data set will have the same characteristics
it had before the unload operation, unless specified differently
by you.

Figure 20 on page 47 shows how input record formats can be
changed. In addition, any record format can be changed to the
undefined format (in terms of its description in the DSCB).

46 MVS/XA Data Administration: Utilities

/:" "\
i

",---I

c

(

Space Allocation

(-

(:

Input

Fixed

Fixed-Blocked

Variable

Variable-Blocked

output

Fixed-Blocked

Fixed

Variable-Blocked

Variable

Figure 20. Changing Input Record Format Using IEBCOPY

System data sets should not be compressed in place unless the
subject partitioned data set is made nonsharable. The libraries
in which IEBCOPY resides (SYSI.LINKLIB and SYSl.SVCLIB) must not
be compressed by IEBCOPY unless IEBCOPY is first transferred to
a JOBUB.

Sometimes it is necessary to allocate space on spill data sets
(SYSUT3 and SYSUT4). The space to be allocated for SYSUT3
depends on the number of members to be copied or loaded. The
space to be allocated for SYSUT4 depends on the number of
directory blocks to be written to the output data set.

To conserve space on the direct access volume, an initial
quantity and a secondary quantity for space allocation may be
used, as shown in the following SPACE parameter;

SPACE=(c,(x,y))

The c value should be a block length of 80 for SYSUT3 and of 2S6
for SYSUT4. The x value is the number of blocks in the primary
allocation, and the y value is the number of blocks in the
secondary allocation.

For SYSUT3, x + lSy must be equal to or greater than the number
of members in the largest input partitioned data set in the copy
operation, multiplied by 1.OS.

For SYSUT4, x + l5y must be equal to or greater than the number
of blocks allocated to the largest output partitioned data set
directory in the IEBCOPY job step.

For example, if there are 700 members on the largest input
partitioned data set, space could be allocated for SYSUT3 as
follows;

SPACE=(80,(60,4S))

However, the total amount of space required for SYSUT3 in the
worst case is used only if needed. If space is allocated in
this manner for SYSUT4, you must specify in the SYSUT4 DD
statement;

DCB= (KEYL EN=8)

IEBCOPY ignores all other DCB information specified for SYSUT3
and/or SYSUT4. Multivolume SYSUT3 and SYSUT4 data sets are not
supported.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

IEBCOPY Program 47

Restrictions

Refer to Data Administration Guide for more information on
estimating data set space allocations.

• IEBCOPY must run from an authorized library because of
special storage key requirements for IEBCOPY I/O appendages.

• Variable block spanned format data sets are not supported.

• VIO is not supported by IEBCOPY for SYSUT4, nor for
partitioned input or output data sets.

• When merging into or compressing system libraries, do not
specify DISP=SHR. The results of a merge into or compress
of the current SYSI.LINKLIB or SYSI.SVCLIB would be
unpredictable.

• Load modules having the downward compatible (DC) linkage
editor attribute will be reblocked to a maximum block size
of 1024 (IK) when encountered during COPYMOD processing,
regardless of the number specified on the MINBLK and MAXBLK
parameters.

• IEBCOPY does its own buffering; therefore, coding the BUFNO
parameter in the DCB will cause a JCL error.

• Reblocking or deblocking using the COPY statement cannot be
done if either the input or the output data set has
undefined format records, keyed records, track overflow
records, note lists, or user TTRNs, or if compress-in-place
is specified. Load modules, with undefined record formats,
may be reblocked using the COPYMOD statement.

The compress-in-place function cannot be performed for the
following:

• Unloaded data sets

• Data sets with tr,ack overflow records

• Data sets with keyed records

• Data sets for which reblocking is specified in the DCB
parameter

• Unmovable data sets

Note: If IEBCOPY creates a copied library (partitioned data
set) whose block size is smaller than the logical record length
of the original library, a return code of 4 is issued, with
message IEBI75I. If IEBCOPY is used later to compress-in-place
the output library, the operation will fail and this library
will be unusable.

UTILITY CONTROL STATEMENTS

IEBCOPY is controlled by the utility control statements in
Figure 21 on page 49.

48 MVS/XA Data Administration: Utilities

rr-\
\~--'/

c

(

COPY Statement

C.'/
..

statement Use

COPY Indicates the beginning of a COPY operation.

ALTERMOD Indicates the beginning of an ALTERMOn operation.

COPYMOD Indicates the beginning of a copn10n operation.

SELECT Specifies which members in the input data set are
to be copied.

EXCLUDE Specifies members in the input data set to be
excluded from the copy step.

Figure 21. IEBCOPY utility Control Statements

In addition, when INDD, a COPY statement parameter, appears on a
card other than the COPY statement, it is referred to as an INDD
statement; it can function as a control statement in this
context.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

The COPY statement is required to initiate one or more IEBCOPY
copy, unload, or load operations. Any number of operations can
follow a single COpy statement; any number of COPY statements
can appear within a single job step.

IEBCOPY uses a copy operation/copy step concept. l A copy
operation starts with a COpy, COPYMOD, or ALTERMOD statement,
and continues until another COPY, COPYMOD, or ALTERMOD statement
is found, or the end of the control data set is found. Within
each copy operation, one or more copy steps are present. Any
INDD statement directly following a SELECT or EXCLUDE statement
marks the beginning of the next copy step and the end of the
preceding copy step within the copy operation. If such an INDD
statement cannot be found in the copy operation, then the copy
operation consists of only one copy step.

Figure 22 on page 50 shows the copy operation/copy step concept.
Two copy operations are shown in the figure: the first begins
with the statement containing the name COPOPER1, and the second
begins with the statement containing the name COPOPER2.

1 Also applies to an unload or load operation or step.

IEBCOPY Program 49

First Copy Operation

STEP 1 COPOPERI COPY OUTDD=AA,INDD=ZZ
INDD=(BB,CC)
INDD=DD
INDD=EE

SELECT MEMBER=(MEMA,MEMB)
SELECT MEMBER=MEf.1C

STEP 2 INDD=GG
INDD=HH

EXCLUDE MEMBER=(MEMD,MEMH)

Second Copy Operation

STEP 1 COPOPER2 COPY OUTDD=YY,I=(MM,PP),LIST=NO
SELECT MEMBER=MEMB

STEP 2 INDD=KK
INDD=CLL,NN)

/3E

Figure 22. Multiple Copy Operations within a Job Step

There are two copy steps within the first copy operation shown
in Figure 22: the first begins with the COPY statement and
continues through the two SELECT statements; the second begins
with the first INDD statement following the two SELECT
statements and continues through the EXCLUDE statement preceding
the second COPY statement. There are two copy steps within the
second copy operation: the first begins with the COpy statement
and continues through the SELECT statement; the second begins
with the INDD statement immediately following the SELECT
statement and ends with the same /3E (delimiter) statement that
ended the copy operation. -

The format of the COPY statement is:

[~l COPY OUTDD=ddname

INDD=[(lddnamel[,ddname2l

[,(ddname3,R)][, •••][)]

[,LIST=NO]

The control statement operation and keyword parameters can be
abbreviated to their initial letters; for example, COPY can be
abbreviated to C and OUTDD can be abbreviated to O.

If there are no keywords other than OUTDD on the COPY card,
compatibility with the previous version of the data set is
implied. In this case, comments may not be placed on this card.

The OUTDD and INDD keyword parameters on COPY statements name DD
statements that define data sets to be copied, unloaded, or
loaded. The INDD parameter names the DD statement that
identifies the input data set; the OUTDD parameter names the DD
statement that identifies the output data set.

50 MVS/XA Data Administration: Utilities

;(~
1; ; '0./

(-

ALTERMOD statement

Only one INDO and one OUTDO keyword may be placed on a single
card. OUTOD must appear on the COPY statement. When INDD
appears on a separate card, no other operands may be specified
on that card. If INDO appears on a separate card, it is not
preceded by a comma.

The characteristics of the input and output data sets depend on
the operation to be performed, as follows:

• If a data set is to be copied, the input and output data
sets must both be partitioned data sets.

• If a data set is to be loaded, the input data set may be
either partitioned or sequential; the output data set must
be parti tioned.

• If a data set is to be unloaded, the input data set must be
either a partitioned data set or a sequential data set that
was created as a result of a previous unload operation. The
output data set may reside on either a direct access or tape
volume. If the output data set is to reside on a direct
access volume, the organization of the data set must be
specified as sequential. To specify sequential organization
for a direct access data set, specify the SPACE parameter,
omitting the directory or index value.

If more than one ddname is specified, the input partitioned data
sets are processed in the same sequence as that in which the
ddnames are specified.

A COPY statement must precede a SELECT or EXCLUDE statement when
members are selected for or excluded from a copy, unload, or
load step. In addition, if an input ddname is specified on a
separate INDD statement, it must follow the COPY statement and
precede the SELECT or EXCLUDE statement to which it applies. If
one or more INDO statements are immediately followed by the /*
card or another COPY or COPYMOO or ALTERMOD statement, a full
copy, unload, or load is invoked onto the most recent previously
specified output partitioned data set.

A full copy, unload, or load is invoked only by specifying
different input and output ddnames; that is, by omitting the
SELECT or EXCLUDE statement from the copy step.

The compress-in-place function is valid for partitioned data
sets. Compress-in-place is normally invoked by specifying the
same ddname for both the OUTDD and INDD parameters of a COPY
statement. If multiple entries are made on the INDD statement,
a compress-in-place will occur if one of the input ddnames is
the same as the ddname specified by the OUTOO parameter of the
COPY statement, provided that SELECT or EXCLUDE is not
specified.

When a compression is invoked by specifying the same ddname for
the INDO and OUTDO parameters, and the DD statement specifies a
block size that differs from the block size specified in the
DSCB, the DSCB block size is overridden; however, no physical
reblocking or deblocking is done by IEBCOPY.

The ALTERMOD statement is required to alter load modules in
place. The function is designed to read modules that were
written by earlier versions of the linkage editor and to insert
RLD and segment text block counts. It can be used to alter
modules that may have erroneous RLD counts--for example, modules
that were created by a program other than the linkage editor or
copied by a program other than IEBCOPY.

For overlay load modules, the ALTERMOD function can also be used
to insert or correct segment text block counts in the overlay
note list.

IEBCOPY Program 51

COPYMOD statement

PDS directory entries, control records, and note list records
may be modified. If the control records or note list records
are already correct, they will not be rewritten.

Members that are not recognized as load modules will not be
altered.

Load modules in scatter-load format and modules that were
link-edited with the noneditable (NE) attribute will not be
altered.

The alter-in-place function may be performed multiple times for
the same load module or module library. Altering has no
cumulative effect.

The format of the ALTERMOD statement is:

ALTERMOD OUTDD=ddname

[,LIST=NO]

OUTDD specifies the partitioned data set that is to be altered.

The replace (R) and RENAME functions of IEBCOPY cannot be
specified in the same step with ALTERMOD.

The COPYMOD statement is required to copy, reblock, and alter
modules in a library. When copying load modules, the selected
members will be copied from the input data set(s) to the output
data set. The output data set may be new or it may be an
existing load library to which members are to be added. The
output data set must be a partitioned data set, and it cannot
also be an input data set (reblock-in-place is not permitted).

The input data set(s) may be partitioned, or may be a sequential
data set created by unloading a partitioned data set with the
COPY function. However, if the sequential data set was created
with a user-supplied block size, it cannot be used as an input
to COPYMOD.

The text records and the RLD/control records will be rebuilt;
the note list records of overlay load modules will also be
rebuilt. Other records such as SYM and CESD records will be
copied unchanged.

Load modules in scatter-load format and modules that were
link-edited with the noneditable (NE) attribute will be copied,
but not reblocked or altered (that is, as if the member were
specified with a COPY statement). Members that are not
recognized as load modules will be copied, but not reblocked or
altered.

Load modules in page-aligned format are copied and altered, but
not reblocked.

Load modules that have the downward compatible (DC) linkage
editor attribute are reblocked to a maximum block size of 1024
(lK) regardless of the value specified on the MINBLK or MAXBLK
parameter.

Note that modules that are not reblocked by COPYMOD, such as
modules marked with the noneditable attribute, cannot be copied
to a device that has a track size smaller than the input block
size. They may, however, be link-edited again with a smaller
block size.

52 MVS/XA Data Administration: Utilities

,;(... ~"

Ii...»

SELECT Statement

The replace (R) function may be specified with input ddnames
and/or member names to cause like-named modules to be replaced,
or it may be omitted to prevent the copying of like-named
modules.

The rename function may be invoked to specify a new name for the
selected member. For more information, see "SELECT Statement."

The format of the COPYMOD statement is:

[~] COPYMOD OUTDD=ddname

,INDD=[(lddnamel[,ddname2]
[,(ddname3,R)][, ••• l[)]

[,MAXBLK=!nnnnnlnnK)]

[,MINBLK=!nnnnnlnnK)]

[,LIST=NO]

INDD specifies the partitioned or sequential (unloaded) data set
from which load modules are to be read. OUTDD specifies the
partitioned data set to which load modules are to be copied.
MAXBLK specifies the maximum block size for text records in the
output data set. MINBLK specifies the minimum block size for
text records at the end of a track in the output data set. (See
the discussions of MAXBLK and MINBLK on pages 56 and 57.)

The SELECT statement specifies members (or modules, in the case
of ALTERMOD or COPYMOD) to be selected from input data sets to
be altered, copied, loaded, or unloaded to an output data set.
This statement is also used to rename and/or replace selected
members on the output data set. More than one SELECT statement
may be used in succession, in which case the second and
subsequent statements are treated as a continuation of the
first.

The SELECT statement must follow either a COpy statement that
includes an INDD parameter, a COPYMOD statement, or one or more
INDD statements. A SELECT statement cannot appear with an
EXCLUDE statement in the same copy, unload, or load step, and it
cannot be used with a compress-in-place function.

When a selected member is found on an input data set, it is not
searched for again, regardless of whether the member is copied,
unloaded, or loaded. A selected member will not replace an
identically named member on the output partitioned data set
unless the replace option is specified on either the data set or
member level. (For a description of replacing identically named
members, see "Replacing Identically Named Members" on page 38
and "Replacing Selected Members" on page 39.) In addition,
unless the replace option is specified, a renamed member will
not replace a member on the output partitioned data set that has
the same new name as the renamed member.

The replace (R) and rename. (newname) options cannot be specified
with ALTERMOD.

The format of the SELECT statement is:

IEBCOPY Program 53

I

EXCLUDE Statement

[~] SELECT MEMBER= {[(]~[,~][, •••][)]I

({(~,newname[,R])[, •••]1

(~,newname)[, •••]1

(~"R)[, •••][)lJ

where:

MEMBER=
specifies the members to be selected from the input data
set. The values that can be coded are:

specifies the name of a member that is to be selected
in a copy step. Each member name specified within one
copy step must be unique; that is. duplicate names
cannot be specified as either old names. or new names.
or both. under any circumstances.

newname

R

specifies a new name for a selected member. The
member is copied. unloaded. or loaded to the output
partitioned data set using its new name. If the name
already appears on the output partitioned data set.
the member is not copied unless replacement (R) is
also specified. newname cannot be specified with
ALTERMOD.

specifies that the input member is to replace any .c

identically named member that exists on the output
partitioned data set. The replace option is not valid
for an unload operation. R cannot be specified with
ALTERMOD.

The control statement operation and keyword parameters can be
abbreviated to their initial letters; for example. SELECT can be
abbreviated to S and MEMBER can be abbreviated to M.

To rename a member. the old member name is specified in the
SELECT statement. followed by the new name and. optionally. the
R parameter. When this option is specified. the old member name
and new member name must be enclosed in parentheses. When any
option within parentheses is specified anywhere in the MEMBER
field. the entire field. exclusive of the MEMBER keyword. must
be enclosed in a second set of parentheses.

The EXCLUDE statement specifies members to be excluded from the
copy. unload. or load step. Unlike the selective
copy/alter/un1oad/load. an exclusive copy/alter/unload/load
causes all members (or modules, in the case of ALTERMOD or
COPYMOD) specified on each EXCLUDE statement to be omitted from
the operation.

More than one EXCLUDE statement may be used in succession. in
which case the second and subsequent statements are treated as a
continuation of the first. The EXCLUDE statement must follow
either a COPY statement that includes an INDD parameter. an
ALTERMOD or COPYMOD statement, or one or more INDD statements.
An EXCLUDE statement cannot appear with a SELECT statement in
the same copy, unload, or load step; however. both may be used .(.'-_-/"'.
following a COPY statement for a copy or load operation. The
EXCLUDE statement cannot be used with a compress-in-place
function.

S4 MVS/XA Data Administration: Utilities

(

Parameters

INDD

LIST

C-
., .. '

The format of the EXCLUDE statement is:

EXCLUDE MEMBER=[(]membernamel[,membernam~] ••• [)]

The control statement operation and keyword parameters can be
abbreviated to their initial letters; EXCLUDE can be abbreviated
to E and MEMBER can be abbreviated to M.

If neither SELECT nor EXCLUDE is specified, the entire data set
is copied (a "full copy").

Applicable
Control
statements

COpy
COPYMOD

COPY
COPYMOD
ALTERMOn

Description of Parameters

INDD=[(]ddnamel[,ddname2][,(ddname3,R)]
[, ...][)]

specifies the names of the input partitioned
data sets. INDD may, optionally, be placed on a
separate line following a COPYMOD or COPY
statement containing the OUTDD parameter,
another INDD statement, a SELECT statement, or
an EXCLUDE statement. These values can be
coded:

ddname

R

LIST=NO

specifies the ddname, which is specified on
a DD statement, of an input data set. In
the case of COPYMOD, this is the name of a
load module. For an unload operation, only
one ddname may be specified per COPY
statement. If more than one ddname is
specified for a copy or load operation, the
input data sets are processed in the same
sequence as the ddnames are specified.

specifies that all members to be copied or
loaded from this input data set are to
replace any identically named members on
the output partitioned data set. (In
addition, members whose names are not on
the output partitioned data set are copied
or loaded as usual.) When this option is
specified with the INDD parameter, it does
not have to appear with the MEMBER
parameter (discussed in "SELECT Statement"
on page 53) in a selective copy operation.
When this option is specified, the ddname
and the R parameter must be enclosed in
parentheses; if it is specified with more
than one ddname in INDD, the entire field,
exclusive of the INDD parameter, must be
enclosed in a second pair of parentheses.

specifies that the names of copied members are
not to be listed on SYSPRINT ~t the end of each
input data set.

Default: The names of copied members are listed.

IEBCOPY Program 55

Parameters

MAXBLK

MEMBER

MEMBER

Applicable
Control
statements

COPYMOD

SELECT

EXCLUDE

Description of Parameters

MAXBLK=!nnnnnlnoK}
specifies the maximum block size for records in
the output partitioned data set. MAXBLK is
normally used to specify a smaller block size
than the default, in order to make the records
in the data set compatible with other systems or
programs.

nnnnn is specified as a decimal number; K
indicates that the no value is to be multiplied
by 1024 bytes.

MAXBLK may be specified with or without MINBLK.

Default: The track size for the output device
or 32760, whichever is smaller. If a value
greater than 32760 or less than 4K (4096) is
specified, the default is used.

MEMBER=! [(In.ru!l~.u ,~J [, •••] [111
(!(~,newname[,R.l)[, •••]1
(namel,newname)[, ••• JI
(~"R)[, •••]}))

specifies the members to be selected from the
input data set. The values that can be coded
for SELECT are:

specifies the name of a member that is to
be selected in a copy step. Each member
name specified within one copy step must be
unique; that is, duplicate names cannot be
specified as either old names, or new
names, or both, under any circumstances.
If no member name is specified, the entire
data set is included in the operation.

newname

R

specifies a new name for a selected member.
The member is copied, unloaded, or loaded
to the output partitioned data set using
its new name. If the name already appears
on the output partitioned data set, the
member is not copied unless replacement (R)
is also specified.

specifies that the input member is to
replace any identically named member that
exists on the output partitioned data set.
The replace option is not valid for an
unload or alter operation.

MEMBER=[(]membernamel[,membername2] ••• [lJ
specifies members on the input data set that are
not to be copied, unloaded, or loaded to the
output data set. The members are not deleted
from the input data set unless the entire data
set is deleted. (This can be done by specifying
DISP=DELETE in the operand field of the input DD
job control statement.) Each member name
specified within one copy step must be unique.

S6 MVS/XA Data Administration: Utilities

c

c

Parameters

MINBLK

OUTDD

Applicable
Control
statements

COPYMOD

COPY
COPYMOD
ALTERMOD

Description of Parameters

MINBLI<={ nnnon I nnlO
specifies the minimum block size for records in
the output partitioned data set. MINBLK
specifies the smallest block that should be
written on the end of a track.

A small (or default) MINBLK value will provide
the most efficient DASD track utilization and
program fetch performance for the module. A
large value may use more DASD space and result
in fewer records being written.

The MINBLK keyword is provided for compatibility
with earlier DFP releases in which a larger,
less-than-track-size MINBLK value could enhance
program fetch performance for the module. Under
normal circumstances, MINBLK should not be
specified.

nnnnll is specified as a decimal number; K
indicates that the nn value is to be multiplied
by 1024 bytes.

MINBLK may be specified with or without MAXBLK.

Default: lK (1024). If a value greater than
MAXBlK is specified, MINBlK is set to the MAXBlK
value actually used (whether specified or
defaulted). If a value less than lK is
specified, MINBlK is set to lK.

OUTDD= ddlJ.;a~
specifies the name of the output partitioned
data set. One ddname is required for each copy,
unload, or load operation; the ddname used must
be specified on a DD statement.

When the COPY or COPYMOD or ALTERMOD statement
is used, OUTDD must be specified.

IEBCOPY EXAMPLES

The following examples illustrate some of the uses of IEBCOPY.
Figure 23 on page 58 can be used as a quick-reference guide to
IEBCOPY examples. The numbers in the "Example" column refer to
examples that follow.

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

IEBCOPY Program 57

Operation Device

COpy Disk

COpy Disk

COpy Disk

COpy Disk

COpy Disk

comments

Full Copy. The input and output data sets are
pa rti ti oned.

Multiple input partitioned data sets.
Fixed-blocked and fixed-record formats.

All members are to be copied. Identically
named members on the output data set are to be
replaced. The input and output data sets are
pa rti ti oned.

Selected members are to be copied.
Variable-blocked data set is to be created.
Record formats are variable-blocked and
variable. The input and output data sets are
parti tioned.

Selected members are to be copied. One member
is to replace an identically named member on
the output data set. The input and output
data sets are partitioned.

~-----------4~---------r---copY

COpy

COpy .

Unload and
Compress
in-place

COPY and
Compress
in-place

COpy

COpy

Unload

Load

Unload,
Load, and
COPY

Alter in
Place

Disk

Disk

Disk

Disk and
Tape

Disk

Disks

Disks

Disk and
Tape

Tape and
Disk

Disk and
Tape

Disk

Selected members are to be copied. Members
found on the first input data set replace
identically named members on the output data
set. The input and output data sets are
partitioned.

Selected members are to be copied. Two
members are to be renamed. One renamed member
is to replace an identically named member on
the output data set. The input and output
data sets are partitioned.

Exclusive COpy. Fixed-blocked and
fixed-record formats. The input and output
data sets are partitioned.

Copy a partitioned data set to tape (unload)
and compress-in-place if the first step is
successful.

Full copy to be followed by a
compress-in-place of the output data set.
Replace specified for one input data set. The
input and output data sets are partitioned.

Multiple copy operations. The input and
output data sets are partitioned.

Multiple copy operations.

A partitioned data set is to be unloaded to
tape.

An unloaded data set is to be loaded to disk.

Selected members are to be unloaded, loaded,
and copied. The input data set is
partitioned; the output data set is
sequential.

Selected members are to be altered in place.

Figure 23 (Part I of 2), IEBCOPY Example Directory

58 MVS/XA Data Administration: Utilities

Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Operation Device Comments Example

Copy, Disk Selected members are copied to a new data set, 17
alter, and altered, and reblocked to various sizes.
reblock

Copy, Disk and All members copied to tapei library scratched; 18
alter, and Tape members copied back to library, altered, and
reblock reblocked.

Figure 23 (Part 2 of 2). IEBCOPY Example Directory

(

IEBCOPY Program 59

IEBCOPY EXAMPLE 1

In this example, a partitioned data set (DATASETS) is copied
from one disk volume to another. Figure 24 shows the input and
output data sets before and after processing.

Input

DATASET5

Output
o ATASET4

Before copy After processing
operation DATASET5

Figure 24. Copying a Partitioned Data Set--Full COpy

60 MVS/XA Data Administration: Utilities

c

(

IEBCOPY EXAMPLE 2

c

The example follows.

//COPY
//JOBSTEP
//SYSPRINT
//INOUT4
//
//INOUT5
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER
/'lE

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASET4,UNIT=3380,VOL=SER=lII112,

DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))
DD OSNAME=OATASET5,UNIT=3380,VOL=SER=llI113,

OISP=SHR
OD UNIT=SYSOA,SPACE=(TRK,(I))
DD UNIT=SYSDA,SPACE=(TRK,(I))
DD *
COPY OUTDD=INOUT4,INDD=INOUT5

The control statements are discussed below:

• INOUT4 DD defines a new partitioned data set (DATASET4) that
is to be kept after the copy operation. Five tracks are
allocated for the data set on a 3380 volume. Two blocks are
allocated for directory entries.

• INOUT5 DD defines a partitioned data set CDATASET5), that
resides on a 3380 volume and contains two members CA and C).

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COpy statement.

• COPY indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. The OUTDO parameter specifies INOUT4 as the 00
statement for the output data set (DATASET4); the INDO
parameter specifies INOUT5 as the 00 statement for the input
data set. After the copy operation is finished, the output
data set (DATASET4) will contain the same members that are
on the input data set (DATASET5); however, there will be no
embedded, unused space on DATASET4.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, members are copied from three input partitioned
data sets (DATASETI, DATASET5, and DATASET6) to an existing
output partitioned data set (OATASET2). The sequence in which
the control statements occur controls the manner and sequence in
which partitioned data sets are processed. Figure 25 on page 62
shows the input and output data sets before and after
processing.

IEBCOPY Program 61

Input

Output
DATASET2

Before copy
operation

DATASET1

After processi ng
DATASET1

DATASET6

After processi ng
DATASET6

DATASET5

After Processing
DATASET5

Figure 25. Copying from Three Input Partitioned Data Sets

62 MVS/XA Data Administration: Utilities

c

The example follows.

//COPY
//JOBSTEP
//SYSPRINT
//INOUTl
//
//INOUT5
//
//INOUT2
//
//INOUT6
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER

/*

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASETI,UNIT=3380,VOL=SER=111112,

DISP=SHR
DD DSNAME=DATASET5,UNIT=3380,VOL=SER=111114,

DISP=OLD
DD DSNAME=DATASET2,UNIT=3380,VOL=SER=111115,

DISP=(OLD,KEEP)
DD DSNAME=DATASET6,UNIT=3380,VOL=SER=111117,

DISP=(OLD,DELETE)
DO UNIT=SYSOA,SPACE=(TRK,(l»)
DO UNIT=SYSDA,SPACE=(TRK,(I»
DD *
COPY OUTDD=INOUT2

INDD=INOUTl
INDD=INOUT6
INDO=INOUT5

The control statements are discussed below:

• INOUTI DD defines a partitioned data set (DATASETI). This
data set, which resides on a 3380 volume, contains three
members (A, B, and F) in fixed format with a logical record
length of 80 bytes and a block size of 80 bytes.

• INOUTS DO defines a partitioned data set (OATASET5), which
resides on a 3380 volume. This data set contains two
members (A and C) in fixed blocked format with a logical
record length of 80 bytes and a block size of 160 bytes.

• INOUT2 DD defines a partitioned data set (DATASET2), which
resides on a 3380 volume. This data set contains two
members (C and E) in fixed-block format. The members have a
logical record length of 80 bytes and a block size of 240
bytes.

• INOUT6 OD defines a partitioned data set (DATASET6), which
resides on a 3380 volume. This data set contains three
members (B, C, and D) in fixed-block format with a logical
record length of 80 bytes and a block size of 400 bytes.
This data set is to be deleted when processing is completed.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DO defines the control data set, which follows in the
input stream. The data set contains a COPY statement and
three INDD statements.

• COPY indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. The OUTDD parameter specifies !NOUT2 as the DD
statement for the output data set (DATASET2).

•

•

The first INOD statement specifies INOUTI as the DD
statement for the first input data set (DATASET1) to be
processed. All members (A, B, and F) are copied to the
output data set (DATASET2).

The second INDD statement specifies INOUT6 as the DD
statement for the second input data set (DATASET6) to be
processed. Processing occurs as follows: (1) members Band

IEBCOPY Program 63

i

'I
IEBCOPY EXAMPLE 3

C, which already exist on DATASET2, are not copied to the
output data set (DATASET2), (2) member D is copied to the 1'-\
output data set (DATASET2), and (3) all members on DATASET6 ~ •
are lost when the data set is deleted. ~_J

• The third INDD statement specifies INOUT5 as the DD
statement for the third input data set (DATASET5) to be
processed. No members are copied to the output data set
(DATASET2) because all exist on DATASET2.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, members are copied from an input partition~d
data set (DATASET6) to an existing output partitioned data ~et
(DATASET2). In addition, all copied members replace identically
named members on the output partitioned data set.

Figure 26 on page 65 shows the input and output data sets before
and after processing.

64 MVS/XA Data Administration: Utilities

Input

Output
DATASET2

Old member
C not pointed
at after
processing

DATASET6

Copy replacing
member C

Before copy After processi ng
operation DATASET6

Figure 26. Copy Operation with "Replace" Specified on the Data
Set Level

IEBCOPY Program 65

IEBCOPY EXAMPLE 4

The example follows.

//COPY
//JOBSTEP
//SYSPRINT
//INOUT2
//
//INOUT6
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER

/*

JOB
EXEC PGM=IEDCOPY
DD SYSOUT=A
DD DSNAME=DATASET2,UNIT=3380,VOL=SER=111113,

DISP=OLD
DD DSNAME=DATASET6,UNIT=3380,VOL=SER=111117,

DISP=(OLD,KEEP)
DD UNIT=SYSDA,SPACE=(TRK,Cl»
DD UNIT=SYSDA,SPACE=(TRK,Cl»
DD *
COPY OUTDD=INOUT2

INDD=C(INOUT6,R»

The control statements are discussed below:

• INOUT2 DD defines a partitioned data set CDATASET2), which
resides on a 3380 volume. This data set contains two
members (C and E).

• INOUT6 DD defines a partitioned data set (DATASET6), which
resides on a 3380 volume. This data set contains three
members (D, C, and D).

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

•

•

SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
INDD statement.

• COpy indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. The OUTDD parameter specifies INOUT2 as the DD
statement for the output data set (DATASET2).

• INDD specifies INOUT6 as the DD statement for the input data
set (DATASET6). Members D, C, and D are copied to the
output data set (DATASET2). The pointer in the output data
set directory is changed to point to the new (copied) member
C; thus, the space occupied by the old member C is embedded
unused space. Member C is copied, even though the output
data set already contains a member named "C", because the
replace option is specified for all identically named
members on the input data set; that is, the replace option
is specified on the data set level.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, five members (A, C, D, E, and G) are selected
from two input partitioned data sets (DATASET6 and DATASET2)
copied to a new output partitioned data set (DATASET4).
Figure 27 on page 67 shows the input and output data sets before
and after processing.

66 MVS/XA Data Administration: Utilities

Input

Output
DATASET4

Before copy
operation

DATASET6

Member 0 is
selected first

After processing
DATASET6

DATASET2

After processi ng
DATASET2

Figure 27. Copying Selected Members with Reblocking and
Deblocking

IEBCOPY Program 67

IICOPY
I/JOBSTEP
I/SYSPRINT
//INOUT2
1/
I/INOUT6
1/
I/INOUT4
1/
//
I/SYSUT3
//SYSUT4
//SYSIN
COPYOPER

1*

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASET2.UNIT=3380,VOL=SER=lllll4,

DISP=(OLD.DELETE)
DD DSNAME=DATASET6.UNIT=3380,VOL=SER=lllll7,

DISP=(OLD,KEEP)
DD DSNAME=DATASET4,UNIT=3380,VOL=SER=lllll6.

DISP=(NEW,KEEP),SPACE=(TRK,(5,,2»,
DCB=(RECFM=VB,LRECL=96,BLKSIZE=300)

DD UNIT=SYSDA,SPACE=(TRK,(l»)
DD UNIT=SYSDA,SPACE=(TRK,(l»)
DD *
COpy

SELECT

OUTDD=INOUT4
INDD=INOUT6
INDD=INOUT2
MEMBER=(C,D,E,A,G)

The control statements are discussed below:

• INOUT2 DD defines a partitioned data set (DATASET2), which
resides on a 3380 volume. This data set contains two
members (C AND E) in variable-blocked format with a logical
record length of 96 bytes and a block size of 500 bytes.
This data set is to be deleted when processing is completed.

• INOUT6 DD defines a partitioned data set (DATASET6), which
resides on a 3380 volume. This data set contains three
members (B, C, and D) in variable-blocked format with a
logical record length of 96 bytes and a block size of 100
bytes.

• INOUT4 DD defines a partitioned data set (DATASET4). This
data set is new and is to be kept after the copy operation.
Five tracks are a~located for the data set on a 3380 volume.
Two blocks are allocated for directory entries. In
addition, records are to be copied to this data set in
variable-block format with a logical record length of 96
bytes and a block size of 300 bytes.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COpy statement, two
INDD statements, and a SELECT statement.

• COPY indicates the start of the copy operation. The use of
a SELECT statement causes a selective copy. The OUTDD
parameter specifies INOUT4 as the DD statement for the
output data set (DATASET4).

• The first INDD statement specifies INOUT6 as the DD
statement for the first input data set (DATASET6) to be
processed. The members specified on the SELECT statement
are searched for. The found members (C and D) are copied to
the output data set (DATASET4) in the order in which they
reside on the input data set, that is, in TTR (track record)
order. In this case, member D is copied first, and then
member C is copied.

rr'''.
~J

• The second INDD statement specifies INOUT2 as the DD (. --/'-,
statement for the second input data set (DATASET2) to be
processed. The members specified on the SELECT statement
and not found on the first input data set are searched for.

68 MVS/XA Data Administration: Utilities

,---,,---------~--------------------

IEBCOPY EXAMPLE 5

c

•

The found member (E) is copied onto the output data set
(DATASET4). All members on DATASET2 are lost when the data
set is deleted.

SELECT specifies the members to be selected from the input
data sets (DATASET6 and DATASET2) to be copied to the output
data set (DATASET4).

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, two members (A and B) are selected from two
input partitioned data sets (DATASET5 and DATASET6) copied to an
existing output partitioned data set (DATASETI). Member B
replaces an identically named member that already exists on the
output data set. Figure 28 on page 70 shows the input and
output data sets before and after processing.

//COPY
//JOBSTEP
//SYSPRINT
//INOUTl
//
//INOUT6
//
//INOUT5
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASETI,UNIT=3380,VOL=SER=lllll2,

DISP={OLD,KEEP)
DD DSNAME=DATASET6,UNIT=3380,VOL=SER=lllll5,

DISP=OLD
DD DSNAME=DATASET5,UNIT=3380,VOL=SER=lllll6,

DISP={OLD,KEEP)
DD UNIT=SYSDA,SPACE={TRK,{l»
DD UNIT=SYSDA,SPACE=(TRK,(l»
DD * COpy

SELECT

OUTDD=INOUTl
INDD=INOUT5,INOUT6
MEMBER=«B"R),A)

The control statements are discussed below:

• INOUTl DD defines a partitioned data set (DATASETl). This
data set resides on a 3380 volume and contains three members
(A, B, and F).

• INOUT6 DD defines a partitioned data set (DATASET6). This
data set resides on a 3380 volume and contains three members
(B, C, and D).

• INOUT5 DD defines a partitioned data set (DATASETS). This
data set resides on a 3380 volume and contains two members
(A and C).

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, an
INDD statement, and a SELECT statement.

• COPY indicates the start of the copy operation. The use of
a SELECT statement causes a selective copy. The OUTDD
parameter specifies INOUTl as the DD statement for the
output data set (DATASETl).

IEBCOPY Program 69

Input
DATASET5

DATASET6

•
Output
DATASET1

COpy replacing
member B

Before copy
operation

After processing
DATASET5

After processing
DATASET6

Figure 28. Selective COpy with "Replace" Specified on the
Member Level

• INDD specifies INOUT5 as the DD statement for the first
input data set (DATASET5) to be processed and INOUT6 as the
DD statement for the second input data set (DATASET6) to be
processed. Processing occurs as follows: (1) selected
members are searched for on DATASET5, (2) member A is found,
but is not copied to the output data set because it already
exists on DATASETl and th~ replace option is not specified,
(3) selected members not found on DATASET5 are searched for
on DATASET6, and (4) member B is found and copied to the
output data set (DATASET1), even though a member named B
already exists on the output data set, because the replace
option is specified for member B on the ~ember level. The
pointer in the output data set directory is changed to point

70 MVS/XA Data Administration: Utilities

c

~-~--~----~~~~. -~~----~~-~~------~-- -----~-~-~.-----~--~-------. ---------~----

(

IEBCOPY EXAMPLE 6

•

to the new (copied) member B; thus, the space occupied by
the old member B is unused.

SELECT specifies the members to be selected from the input
data sets (DATASET5 and DATASET6) to be copied to the output
data set (DATASETl).

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, two members (A and B) are selected from two
input partitioned data sets (DATASET5 and DATASET6) copied to an
existing output partitioned data set (DATASETl). All members
found on DATASET5 replace identically named members on DATASETI.
Figure 29 on page 72 shows the input and output data sets before
and after processing.

IEBCOPY Program 71

Input

Output

DATASET1

Before copy
operation

DATASET5

After processing
DATASET5

Copy replacing
member A

DATASET6

After processing
DATASET6

Figure 29. Selective Copy with "Replace" Specified on the Data Set Level

72 MVS/XA Data Administration: Utilities

~ ',-
:"0_)

c

------,---------------------- -,------, --

--------------------_ .. _------

//COPY
//JOBSTEP
//SYSPRINT
//INOUTl
//
//INOUT5
//
//INOUT6
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASETl,UNIT=3380,VOL=SER=111112,

DISP=(OLD,KEEP)
DD DSNAME=DATASET5,UNIT=3380,VOL=SER=111114,

DISP=(OLD,DELETE)
DD DSNAME=DATASET6,UNIT=3380,VOL=SER=111115,

DISP=(OLD,KEEP)
DD UNIT=SYSDA,SPACE=(TRK,(l))
DD UNIT=SYSDA,SPACE=(TRK,(l))
DD *
COpy

SELECT

OUTDD=INOUTl
INDD=«INOUT5,R),INOUT6)
MEMBER=(A,B)

The control statements are discussed below:

• INOUTI DD defines a partitioned data set (DATASETl). This
data set resides on a 3380 volume and contains three members
(A, B, and F).

• INOUT5 DD defines a partitioned data set (DATASET5). This
data set contains two members (A and C) and resides on a
3380 volume. This data set is to be deleted when processing
is completed.

•

•

INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on
a 3380 volume.

SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement, an
INDD statement, and a SELECT statement.

• COPY indicates the start of the copy operation. The
presence of a SELECT. statement causes a selective copy. The
OUTDD operand specifies INOUTI as the DD statement for the
output data set (DATASETl).

• INDD specifies INOUT5 as the DD statement for the first
input data set (DATASET5) to be processed and INOUT6 as the
statement for the second input data set (DATASET6) to be
processed. Processing occurs as follows: (1) selected
members are searched for on DATASET5, (2) member A is found
and copied to the output data set (DATASETl) because the
replace option was specified on the data set level for
DATASET5, (3) member B, which was not found on DATASET5 is
searched for and found on DATASET6, (4) member B is not
copied because DATASETI already contains a member called
member B and the replace option is not specified for
DATASET6. The pointer in the output data set directory is
changed to point to the new (copied) member Ai thus, the
space occupied by the old member A is unused.

• SELECT specifies the members to be selected from the input
data sets (DATASET5 and DATASET6) to be copied to the output
data set (DATASETl).

IEBCOPY Program 73

---------- --

IEBCOPY EXAMPLE 7

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, four members (A, B, C, and D) are selected from
an input partitioned data set (DATASET6) copied to an existing
outpu·t partitioned data set (DATASET3). Member B is renamed H;
member C is renamed J;and member D is renamed K. In addition,
member C (renamed J) replaces the identically named member (J)
on the output partitioned data set. Figure 30 on page 75 shows
the input and output data sets before and after processing.

74 MVS/XA Data Administrationl Utilities

/ "
1\,_,)

('- Input

DATASET6

C-·_--
--

Output

DATASET3

Member J replaced by
renamed Member J

Before copy After processing
operation DATASET6

Figure 30. Renaming Selected Members Using IEBCOPY

Member C copied;
renamed J;
replaced identically
named member (Jl.
Member 0 copied;
renamed K.

IEBCOPY Program 75

IICOPY
IIJOBSTEP
IISYSPRINT
IIINOUT3
II
IIINOUT6
II
IISYSUT3
IISYSUT4
IISYSIN
COPYOPER

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASET3,UNIT=disk,VOL=SER=111114,

DISP=(OLD,KEEP)
DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111117,

DISP=(OLD,DELETE)
DD UNIT=SYSDA,SPACE=(TRK,(l»
DD UNIT=SYSDA,SPACE=(TRK,(l»
DD *
COpy OUTDD=INOUT3,INDD=INOUT6
SELECT MEMBER=«B,H),(C,J,R),A,(D,K»

The control statements are discussed below:

• INOUTS DD defines a partitioned data set CDATASETS). This
data set contains four members CD, G, H, and J) and resides
on a disk volume.

• INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on
a disk volume. DATASET6 is to be deleted when processing is
completed; thus, all members on this data set are lost.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DO defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DO defines the control data set, which follows in the
input stream. The data set contains a COPY statement, an
INDD statement, and a SElECT statement.

• COPY indicates the start of the copy operation. The
presence of a SELECT statement causes a selective copy. The
OUTDD parameter specifies INOUT3 as the DD statement for the
output data set (OATASET3).

• INDD specifies INOUT6 as the DD statement for the input data
set (DATASET6). Processing occurs, as follows:

1. Selected members are searched for on DATASET6.

2. Member B is found, but is not copied to DATASET3 because
its intended new name CH) is identical to the name of a
member (H), which already exists on the output data set,
and replace is not specified.

S. Member C is found and copied to the output data set
(DATASET3), although its new name (J) is identical to
the name of a member (J), which already exists on the
output data set, because the replace option is specified
for the renamed member.

4. Member D is copied onto the output data set (DATASETS)
because its new name (K) does not already exist there.

• SELECT specifies the members to be selected from the input
data set (OATASET6) to be copied to the output data set
(DATASETS).

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available;
therefore, the SYSUT3 and SYSUT4 DD statements should always
appear in the job stream.

76 MVS/XA Data Administration: Utilities

" "\ r
\ I

""-/

{ ."
'"' \

./

('

1'-,'""
~/

IEBCOPY EXAMPLE 8

In this example, five members (A, B, C, J, and L) are excluded
from the copy operation when each of the input partitioned data
sets (DATASETl, DATASET3, and DATASET6) is processed. In
addition, replace is specified for the last input partitioned
data set (DATASET6) to be processed; thus, with the exception of
the members specified on the EXCLUDE statement, all members on
DATASET6 will replace any identically named members on the
output partitioned data set (DATASET4). Figure 31 on page 78
shows the input and output data sets before and after
processing.

//COPY
//JOBSTEP
//SYSPRINT
//INOUTl
//
//INOUT3
//
//INOUT4
//

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASETl,UNIT=disk,VOL=SER=111112,

DISP=(OLD,KEEP)
DD DSNAME=DATASET3,UNIT=disk,VOL=SER=111114,

DISP=OLD
DD DSNAME=DATASET4,UNIT=disk,VOL=SER=111115,

DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2»,
DCB=(LRECL=100,RECFM=FB,BLKSIZE=400)

DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111116,
DISP=OLD

DD
DD
DD

UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»
3E

//
//INOUT6
//
//SYSUT3
//SYSUT4
//SYSIN
COPYOPER COPY OUTDD=INOUT4,

INDD=INOUTl,INOUT3,(INOUT6,R)
EXCLUDE MEMBER=(A,J,B,L,C)

/3E

The control statements are discussed below:

• INOUTI DD defines a partitioned data set (DATASETl). This
data set contains three members (A, B, and F) and resides on
a disk volume. The record format is fixed-blocked with a
logical record length of 100 bytes and a block size of 400
bytes.

• INOUT3 DD defines a partitioned data set (DATASET3), which
resides on a disk volume. This data set contains four
members (D, G, H, and J) in fixed-block format with a
logical record length of 100 bytes and a block size of 600
bytes.

• INOUT4 DD defines a new partitioned data set (DATASET4).
Three tracks are allocated for the copied members on a disk
volume. Two blocks are allocated for directory entries. In
addition, records are to be copied to this data set in
fixed-blocked format with a logical record length of 100
bytes and a block size of 400 bytes.

• INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) in fixed
format. The records have a logical record length of 100
bytes and a block size of 100 bytes. This data set resides
on a disk volume.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

•

•

SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
EXCLUDE statement.

IEBCOPY Program 77

Input

Output
DATASET4

Before copy
operation

DATASET1

After processi ng
DATASET1

DATASET3

After processi ng
DATASET3

DATASET6

Copy replacing
member D

After processing
DATASET6

~"'\
I

\'leJ

Figure 31. Exclusive Copy with "Replace" Specified for One Input Partitioned Data
Set

• COPY indicates the start of the copy operation. The
presence of an EXCLUDE statement causes an exclusive copy.
The OUTDD parameter specifies INOUT4 as the DD statement for
the output data set (DATASET4). The INDD parameter
specifies INOUTI as the DD statement for the first input
data set (DATASET1) to be processed. INOUT3 as the DD
statement for the second input data set (DATASET3) to be
processed. and INOUT6 as the DD statement for the last input
data set (DATASET6) to be processed. Processing occurs. as
follows:

1. Member F. which is not named on the EXCLUDE statement. r!'\
is copied from DATASETI. ~

78 MVS/XA Data Administration: utilities

IEBCOPY EXAMPLE 9

2. Members D, G,and H, which are not named on the EXCLUDE
statement, are copied from DATASET3.

3. Member D is copied from DATASET6 because the replace
option is specified for nonexcluded members.

The pointer in the output data set directory is changed to
point at the new (copied) member D; thus, the space occupied
by the old member D (copied from DATASET3) is unused.

• EXCLUDE specifies the members to be excluded from the copy
operation. The named members are excluded from all of the
input partitioned data sets specified in the copy operation.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

In this example, a partitioned data set is unloaded to a tape
volume to create a backup copy of the data set. If this step is
successful, the partitioned data set is to be compressed in
place.

//SAVE
//STEPI
//SYSPRINT
//INPDS
//
//BACKUP
//
//SYSUT3
//
//SYSIN

PA.
//STEP2
//
//SYSPRINT
//COMPDS
//
//SYSUT3
//
//SYSUT4
//
//SYSIN

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=PARTPDS,UNIT=disk,VOL=SER=PCPOOl,

DISP=OLD
DD DSNAME=SAVDATA,UNIT=tape,VOL=SER=TAPE03,

DISP=CNEW,KEEP),LABEL=C,SL)
DD DSNAME=TEMPl,UNIT=disk,VOL=SER=llllll,

DISP=CNEW,DELETE),SPACE=(80,(60,45»
DD *
COPY OUTDD=BACKUP,INDD=INPDS

EXEC PGM=IEBCOPY,COND=CO,NE),
PARM=rSIZE=99999999Kr

DD SYSOUT=A
DD DSNAME=PARTPDS,UNIT=disk,DISP=OLD,

VOL=SER=PCPOOI
DD DSNAME=TEMPA,UNIT=disk,VOL=SER=llllll,

DISP=(NEW,DELETE),SPACE=(80,(60,45»
DD DSNAME=TEMPB,UNIT=disk,VOL=SER=llllll,

SPACE=(256,Cl5,l»,DCB=KEYLEN=8
DD *
COPY QUTDD=COMPDS,INDD=COMPDS

The control statements are discussed below:

• INPDS DD defines a partitioned data set (PARTPDS) that
resides on a disk volume and is assumed to have 700 members.
The number of members is used to calculate the space
allocation on SYSUT3.

• BACKUP DD defines a sequential data set to hold PARTPDS in
unloaded form. Block size information can optionally be
added; this data set must be NEW.

• SYSUT3 DD defines the temporary spill data set.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement.

IEBCOPY Program 79

IEBCOPY EXAMPLE 10

• COpy marks the beginning of the unload operation; the
absence of an EXCLUDE or SELECT statement causes the entire
partitioned data set (INDD=INPDS) to be unloaded to a
sequential data set (OUTDD=BACKUP).

• The second EXEC statement marks the beginning of the
compress-in-place operation. The SIZE parameter indicates
that the buffers are to be as large as possible. The COND
parameter indicates that the compress-in-place is to be
performed only if the unload operation was successful.

• COMPDS DD defines a partitioned data set (PARTPDS) that
contains 700 members and resides on a disk volume.

• SYSUT3 DD defines the temporary spill data set to be used if
there is not enough space in main storage for the input data
set's directory entries. TEMPA contains one 80-character
record for each member.

• SYSUT4 DD defines the temporary spill data set to be used if
there is not enough space in main storage for the output
partitioned data set's directory blocks. TEMPB contains one
256-character record for each directory block.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement.

• COPY marks the beginning of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full
copy. Because the same DD statement is specified for both
the INDD and OUTDD operands, the data set is compressed in
place.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream. However, the SYSUT4 data set is never used for an
unload operation.

For an unload operation, only one INDD data set may be specified
for one OUTDD data set.

In this example, two input partitioned data sets (DATASET5 and
DATASET6) are copied to an existing output partitioned data set
(DATASETl). In addition, all members on DATASET6 are copied;
members on the output data set that have the same names as the
copied members are replaced. After DATASET6 is processed, the
output data set (DATASETl) is compressed in place. Figure 32 on
page 81 shows the input and output data sets before and after
processing.

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASETl,UNIT=3380,VOL=SER=111112,

DISP=(OLD,KEEP)
DD DSNAME=DATASET5,UNIT=3380,VOL=SER=111114,

DISP=OLD
DD DSNAME=DATASET6,UNIT=3380,VOL=SER=111115,

DISP=(OLD,KEEP)
DD
DD
DD

UNIT=SYSDA,SPACE=(TRK,(l»
UNIT=SYSDA,SPACE=(TRK,(l»

*

IICOPY
IIJOBSTEP
IISYSPRINT
IIINOUTl
II
IIINOUT5
II
IIINOUT6
II
IISYSUT3
IISYSUT4
IISYSIN
COPYOPER COPY OUTDD=INOUTl

INDD=INOUT5,(INOUT6,R),INOUTl

80 MVS/XA Data Administrationl Utilities

f-'"
'~,,/

(-

c

Input

Output
DATASET1

Before copy
operation

Figure 32.

DATASET5

•

After processi ng
DATASET5

DATASET6

All members
copied;
members B
and C replace
old identically
named members

After processi n9
DATASET6

DATASET1

•

After compressing
in place

Compress-in-Place Following Full COpy with "Replace" Specified

IEBCOPY Program 81

•
The control statements are discussed below:

INOUTI DD defines a partitioned data set (DATASETl). This
data set contains three members (A, B, and F) and resides on
a 3380 volume.

• INOUTS DD defines a partitioned data set (DATASETS). This
data set contains two members (A and C) and resides on a
3380 volume.

• INOUT6 DD defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on
a 3380 volume.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporarY spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement and an
INDD statement.

• COPY indicates the start of the copy operation.
operand specifies INOUTI as the DD statement for
data set (DATASETl). The absence of a SELECT or
statement causes a default to a full copy.

The OUTDD
the output
EXCLUDE

• INDD specifies INOUTS as the DD statement for the first
input data set (DATASETS) to be processed. It then
specifies INOUT6 as the DD statement for the second input
data set (DATASET6) to be processed; in addition, the
replace option is specified for all members copied from
DATASET6. Finally, it specifies INOUTI as the DD statement
for the last input data set (DATASETI) to be processed; this
causes a compress-in-place of DATASETI because it is also
specified as the output data set. Processing occurs, as
follows:

1. Member A is not copied from DATASETS onto the output
data set (DATASETI), because it already exists on
DATASETI and the replace option was not specified for
DATASETS.

2. Member C is copied from DATASETS to the output data set
(DATASETl), occupying the first available space.

3. All members are copied from DATASET6 to the output data
set (DATASETl), immediately following the last member.
Members Band C are copied even though the output data
set already contains members with the same, names
because the replace option is specified on the data set
level.

The pointers in the output data set directory are changed to
point to the new members Band C; thus, the space occupied
by the old members Band C is unused. The members currently
on DATASETI are compressed in place, thereby eliminating
embedded unused space.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

82 MVS/XA Data Administration: Utilities

;.(--"

~j

IEBCOPY EXAMPLE 11

c

In this example, members are selected, excluded, and copied from
input partitioned data sets onto an output partitioned data set.
This example is designed to illustrate multiple copy operations.
Figure 33 on page 84 shows the input and output data sets before
and after processing.

The example follows.

IEBCOPY Program 83

Compress-in-Place Operation

Input

Output

DATASETA

Before copy
operation

DATASETA

After compressing
in place

DATASETB

After processing
DATASETB

Figure 33 (Part I of 2). Multiple Copy Operations/Copy steps

84 MVS/XA Data Administration: Utilities

r(~,

"l . ../

(-

Multiple Copy Steps

Input

Output

Before copy
operation

DATASETD

After processing
DATASETD

DATASETC

Member ML
is copied, renamed
MD, and replaces
the old member
MD

After processing
DATASETC

DATASETE

After processing
DATASETE

Figure 33 (Part 2 of 2). Multiple COpy Operations/Copy Steps

IEBCOPY Program 85

•

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASETA,UNIT=disk,VOL=SER=111113.

DISP=OLD
DD DSNAME=DATASETB.UNIT=disk.VOL=SER=111115.

DISP=(OLD,KEEP)
DD DSNAME=DATASETC,UNIT=disk.VOL=SER=111114.

DISP=(OLD,KEEP)
DD DSNAME=DATASETD,UNIT=disk.VOL=SER=111116.

DISP=OLD
DD DSNAME=DATASETE.UNIT=disk.VOL=SER=111117.

DISP=OLD
DD OSNAME=DATASETX,UNIT=disk,VOL=SER=111112.

OD
DD
DD

OISP=(NEW,KEEP),SPACE=(TRK.(3.l.2»
UNIT=SYSDA.SPACE=(TRK,(l»
UNIT=SYSDA.SPACE=(TRK,(l»

*

//COPY
//JOBSTEP
//SYSPRINT
//INOUTA
//
//INOUTB
//
//INOUTC
//
//INOUTD
//
//INOUTE
//
//INOUTX
//
//SYSUT3
//SYSUT4
//SYSIN
COPERSTl COPY

COpy
O=INOUTX,I=INOUTA
OUTDD=INOUTA.INDD=INOUTA
INDD=INOUTB

COPY O=INOUTA
INDD=INOUTD

EXCLUDE MEMBER=MM
INDD=INOUTC

/*

SELECT MEMBER=((ML.MD,R»
INDD=INOUTE

The control statements are discussed below:

INOUTA DO defines a partitioned data (DATASETA). This data
set contains seven members (MA. MB. MC. MD. ME. MF. and MG)
and resides on a disk volume.

• INOUTB DD defines a partitioned data set (DATASETB). This
data set resides on a disk volume and contains two members
(MA and MJ).

• INOUTC DD defines a partitioned data set (DATASETC), that
resides on a disk volume. The data set contains four
members (MF. ML. MM. and MN).

• INOUTD DD defines a partitioned data set (DATASETD). This
data set resides on a disk volume and contains two members
(MM and MP).

• INOUTE DO defines a partitioned data set (DATASETE). This
data set contains four members (MD. ME. MF. and MT) and
resides on a disk volume.

• INOUTX DD defines a partitioned data set (DATASETX). This
data set is new and is to be kept after the copy operation.
Three tracks are allocated for the data set on a disk
volume. Two blocks are allocated for directory entries.

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

•

•

SYSIN DD defines the control data set. which follows in the
input stream. The data set contains two COpy statements.
several INDD statements. a SELECT statement. and an EXCLUDE
statement.

The first COPY statement indicates the start of the first
copy operation. This copy operation is done to create a

86 MVS/XA Data Administration: Utilities

1"- ~".
(
'~j'

(.

IEBCOPY EXAMPLE 12

c/

•

backup copy of DATASETA, which is compressed in place in the
second copy operation.

The second COPY statement indicates the start of another
copy operation. The absence of a SELECT or EXCLUDE
statement causes a default to a full copy; however, the same
DD statement, INOUTA, is specified for both the INDD and
OUTDD parameters, causing a compress-in-place of the
specified data set.

The output data set is compressed in place first to save
space because it is known that it contains embedded, unused
space.

INDD specifies INOUTB as the DD statement for the input data
set (DATASETB) to be copied. Only member MJ is copied,
because member MA already exists on the output data set.

• The third COPY statement indicates the start of the third
copy operation. The OUTDD parameter specifies INOUTA as the
DD statement for the output data set (DATASETA). This copy
operation contains more than one copy step.

The first INDD statement specifies INOUTD as the DD
statement for the first input data set (DATASETD) to be
processed. Only member MP is copied to the output data set
(DATASETA) because member MM is specified on the EXCLUDE
statement. EXCLUDE specifies the member to be excluded from
the first copy step within this copy operation.

The second INDD statement marks the beginning of the second
copy step for this copy operation and specifies INOUTC as
the DD statement for the second input data set (DATASETC) to
be processed. Member ML is searched for, found, and copied
to the output data set (DATASETA). Member ML is copied even
though its new name (MD) is identical to the name of a
member (MD) that already exists on the output data set,
because the replace option is specified for the renamed
member.

SELECT specifies the member to be selected from the input
data set (DATASETC) to be copied to the output partitioned
data set.

The third INDD statement marks the beginning of the third
copy step for this copy operation and specifies INOUTE as
the DD statement for the last data set (DATASETE) to be
copied. Only member MT is copied, because the other members
already exist on the output data set. Because the INDD
statement is not followed by an EXCLUDE or SELECT statement,
a full copy is performed.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage available; therefore,
it is suggested that the SYSUT3 and SYSUT4 DD statements always
appear in the job stream.

The output data set is compressed in place first to save space
because it is known that it contains embedded, unused space.

In this example, members are selected, excluded, and copied from
input partitioned data sets to an output partitioned data set.
This example is designed to illustrate multiple copy operations.
Figure 34 on page 88 shows the input and output data sets before
and after processing.

The example follows.

IEBCOPY Program 87

First copy operation
Input

Output
o ATAS ETA

Before copy
operation

DATASETE

•

After processi n9
DATASETE

..

DATASETC

After processi n9
DATASETC

Figure 34 (Part 1 of 3), Multiple Copy Operations/Copy Steps within a Job Step

88 MVS/XA Data Administration: Utilities

(Second copy operation

Input

(' Output
DATASETB

Before copy
operation

DATASETD

After processing
DATASETD

Old
member

DATASETC

Copy replacing
member MM

After compressing
DATASETC

DATASETB

•

After compressing
in place

Figure 34 (Part 2 of 3). Multiple Copy Operations/Copy steps within a Job Step

IEBCOPY Program 89

Third copy operation

Input

Output

DATASETD

Before copy
operation

Old
member

Figure 34 (Part 3 of 3),

DATASETB

After processing
DATASETB

Copy replacing
member MM

Multiple Copy Operations/Copy Steps within a Job step

90 MVS/XA Data Administration: Utilities

(
•

//COPY
//JOBSTEP
//SYSPRINT
//INOUTA
//
//INOUTB
//
//INOUTC
//
//INOUTD
//
//INOUTE
//
//SYSUT3
//SYSUT4
//SYSIN

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=DATASETA,UNIT=disk,VOL=SER=111113,

DISP=OLD
DD DSNAME=DATASETB,VOL=SER=111115,UNIT=disk,

DISP=(OLD,KEEP)
DD DSNAME=DATASETC,VOL=SER=111114,UNIT=disk,

DISP=(OLD,KEEP)
DD DSNAME=DATASETD,VOL=SER=111116,DISP=OLD,

UNIT=disk
DD DSNAME=DATASETE,VOL=SER=111117,DISP=OLD,

UNIT=disk
DD
DD
DD

UNIT=SYSDA,SPACE=(TRK,(I»
UNIT=SYSDA,SPACE=(TRK,(I»

* COPY OUTDD=INOUTA
INDD=INOUTE

SELECT MEMBER=(MA,MJ)
INDD=INOUTC

EXCLUDE MEMBER=(MM,MN)
COPY O=INOUTB,INDD=INOUTD

I=«INOUTC,R),INOUTB)
COPY O=INOUTD,I=«INOUTB,R»

SELECT MEMBER=MM

The control statements are discussed below:

INOUTA DD defines a partitioned data set (DATASETA). This
data set contains three members (MA, MB, and MD) and resides
on a disk volume.

• INOUTB DD defines a partitioned data set (DATASETB). This
data set resides on a disk volume and contains two members
(MA and MJ).

• INOUTC DD defines a partitioned data set (DATASETC), that
resides on a disk volume. This data set contains four
members (MF, ML, MM, and MN).

• INOUTD DD defines a partitioned data set (DATASETD). This
data set resides on a disk volume and contains two members
(MM and MP).

• INOUTE DD defines a partitioned data set (DATASETE), that
resides on a disk volume. This data set contains three
members (MA, MJ and MK).

• SYSUT3 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSUT4 DD defines a temporary spill data set. One track is
allocated on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains three COPY statements,
two SELECT statements, one EXCLUDE statement, and several
INDD statements.

• The first COPY statement indicates the start of a copy
operation. The OUTDD operand specifies INOUTA as the DD
statement for the output data set (DATASETA).

IEBCOPY Program 91

The first INDD statement specifies INOUTE as the DD
statement for the first input data set (DATASETE) to be
processed. Processing occurs, as follows:

1. Member MA is searched for and found, but is not copied
because the replace option is not specified.

2. Member MJ is searched for, found, and copied to the
output data set. Members are not searched for again
after they are found.

SELECT specifies the members (MA and MJ) to be selected from
the input data set (DATASETE) to be copied.

The second INDD statement marks the end of the first copy
step and the beginning of the second copy step within the
first copy operation. It specifies INOUTC as the DD
statement for the second input data set (DATASETC) to be
processed. Members MF and ML, which are not named on the
EXCLUDE statement, are copied because neither exists on the
output data set. EXCLUDE specifies the members (MM and MN)
to be excluded from the second copy operation.

• The second COpy statement indicates the start of another
copy operation. The absence of a SELECT or EXCLUDE
statement causes a default to a full copy. The 0 (OUTDD)
parameter specifies INOUTB as the output data set
(DATASETB). The INDD parameter specifies INOUTD as the
first input data set (DATASETD) to be processed. Members MP
and MM are copied to the output data set.

INDDCI) specifies INOUTC as the DD statement for the second
input data set (DATASETC) and INOUTB as the DD statement for
the third input data set (DATASETB) to be processed.
Members MF, ML, MM, and MN are copied from DATASETC. Member
MM is copied, although it already exists on the output ~
partitioned data sets, because the replace option is
specified. (The pointer in the output data set directory is ""_./
changed to point to the new (copied) member MM; thus the
space occupied by the replaced member MM is embedded, unused
space.) Because DATASETB is also the data set specified in
the OUTDD parameter, a compress-in-place takes place, and
thus the embedded, unused space is removed.

• The third COPY statement indicates the start of another copy
operation. The 0 (OUTDD) parameter specifies INOUTD as the
DD statement for the output data set (DATASETD). The I
(INDD) parameter specifies INOUTB as the nn statement for
the input data set (DATASETB).

SELECT specifies the member (MM) to be selected from the
input partitioned data set (DATASETB) to be copied. The
replace option is specified on the data set level.

The temporary spill data sets mayor may not be opened,
depending on the amount of virtual storage avai)able; therefore,
the SYSUT3 and SYSUT4 DD statements should always appear in the
job stream.

92 MVS/XA Data Administration: Utilities

.(.... " { ,

Il./

IEBCOPY EXAMPLE 13

In this example, a partitioned data set (SYSl.LINKLIB) is
unloaded to a tape volume.

//UNLOAD
//STEPl
//SYSPRINT
//INPDS
//
//OUTTAPE
//
//SYSUT3
//
//SYSIN

JOB
EXEC PGM=IEBCOPY,PARM='SIZE=lOOK'
DD SYSOUT=A
DD DSNAME=SYSl.LINKLIB,UNIT=disk,DISP=SHR,

VOL=SER=666666
DD DSNAME=LINKLIB,UNIT=tape,VQL=SER=TAPEOO,

LABEL=(,SL),DISP=(NEW,KEEP)
DD DSNAME=TEMPl,UNIT=disk,VOL=SER=llllll,

DISP=(NEW,DELETE),SPACE=(80,(60,4S»
DD * COpy OUTDD=OUTTAPE

INDD=INPDS
/*

The control statements are discussed below:

• EXEC specifies the execution of IEBCOPY. The PARM parameter
specifies the size of the input/output buffer to be used
(lOOK) .

• INPDS DD defines a partitioned data set (SYSl.LINKLIB),
which resides on a disk volume. This data set is assumed to
have 700 members; the number of members is used to calculate
the space allocation for SYSUT3.

• OUTTAPE DD defines a sequential data set to which
SYSl.LINKLIB is to be unloaded. The unloaded data set is
named LINKLIB. If a tape volume is used, it can be IBM
standard labeled or unlabeled.

• SYSUT3 DD defines a temporary spill data set on a disk
volume. This data set is used if there is not enough space
in virtual storage for the input partitioned data set's
directory entries. This data set mayor may not be opened,
depending on the amount of virtual storage available;
therefore, it is suggested that the statement all-Jays appear
in the job stream.

• SYSIN DO defines the control data set, which follows in the
input stream. The data set contains a COPY and INDD
statement.

• COpy indicates the start of an unload operation because the
OUTDD parame,ter refers to OUTTAPE DD, which specifies a
sequential obtput data set. Because no EXCLUDE or SELECT
statement is specified, the entire data set is unloaded.

• INDD refers to INPDS DD, which defines the input partitioned
data set to be unloaded. Note that, for an unload
operation, only one INDD data set may be specified for each
QUTDD data set.

The SYSUT4 data set is never used for an unload operation. The
SYSUT3 data set for an unload operation is used under the same
conditions as it is used for a copy operation.

If too much space is allocated with the SIZE option of the PARM
parameter on the EXEC statement, the paging process slows down
because the buffer areas are fixed.

IEBCQPY Program 93

IEBCOPY EXAMPLE 14

IEBCOPY EXAMPLE lS

In this example, a sequential data set created by an IEBCOPY
unload operation is loaded. '~,j

IILOAD
lIST EPA
IISYSPRINT
IISEQIN
II
I/INOUT4
II
IISYSUT3
II
IISYSIN

JOB
EXEC PGM=IEBCOPY,PARM='SIZE=65536'
DD SYSOUT=A
DD DSNAME=UNLOADSET,UNIT=tape,LABEL=(,SL),

VOL=SER=TAPEOI,DISP=OLD
DD DSNAME=DATASET4,UNIT=disk,VOL=SER=2222222,

DISP=CNEW,KEEP1,SPACE=CCYL,CIO,5,IOl)
DD DSN=TEMPI,UNIT=disk,VOL=SER=IIIIII,

DISP=(NEW,DELETE1,SPACE=(80,(15,1»
DD *

COPY OUTDD=INOUT4,INDD=SEQIN
1*

The control statements are discussed below:

• EXEC specifies the execution of IEBCOPY. The PARM parameter
allocates 2 tracks on a disk volume. If less space is
specified, 2 tracks are allocated because this is the
minimum required by IEBCOPY when the unloaded data set's
block size does not exceed the track capacity.

• SEQIN DD defines a sequential data set that was previously
unloaded by IEBCOPY. The data set contains 28 members in
sequential organization.

• INOUT4 DD defines a partitioned data set on a disk volume.
This data set is to be kept after the load operation. Ten
cylinders are allocated for the data set; ten blocks are
allocated for directory entries.

• SYSUT3 DD defines a temporary spill data set on a disk
volume. This data set is used if there is not enough space
in main storage for the input data set's directory entries.
This data set mayor may not be opened, depending on the
amount of main storage available; therefore, it is suggested
that the statement always appear in the job stream. The
space allocated for this data set is based on the number of
members in the input data set (in this case, 28).

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains a COPY statement.

• COPY indicates the start of a load operation because the
INDD parameter refers to SEQIN DD, which defines a
sequential data set, and OUTDD refers to INOUT4 DD, which
defines a direct access volume.

Because the output data set in this example is new, the SYSUT4
data set is not needed. SYSUT4 should be specified, however,
when the output data set is old.

In this example, members are selected, excluded, unloaded,
loaded, and copied. Processing will occur, as follows: (1)
unload, excluding members, (2) unload, selecting members, and
(3) load and copy to merge members.

94 MVS/XA Data Administration I Utilities

-----------~-

(,

•

//COPY
//STEP
//SYSPRINT
//PDSI
//
//PDS2
//
//SEQI
//
//SEQ2
//
//NEWUP
//
//MERGE
//
//SYSUT3
//
//SYSUT4
//
//
//SYSIN

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=ACCDUNTA,UNIT=3380,VDL=SER=333333,

DISP=OLD
DD DSNAME=ACCDUNTB,UNIT=3380,VOL=SER=333333,

DISP=OLD
DD DSNAME=SAVAC,UNIT=3380,VOL=SER=333333,

DISP=(NEW,KEEP),SPACE=(CYL,(5,2»
DD DSNAME=SAVACB,UNIT=tape,VOL=SER=TOI91I,

DISP=(NEW,KEEP),LABEL=(,SL)
DD DSNAME=NEWACC,UNIT=tape,VOL=SER=TOI219,

DISP=OLD,LABEL=(,SL)
DD DSNAME=ACCUPDAT,UNIT=3380,VOL=SER=222222,

DISP=DLD .
DD DSNAME=TEMPI,VOL=SER=666666,UNIT=3380,

DISP=(NEW,DELETE),SPACE=(80,(I,I»
DD DSNAME=TEMP2,VOL=SER=666666,UNIT=3380,

DISP=(NEW,DELETE),
SPACE=(256,(I,I»,DCB=(KEYLEN=8)

DD *
COPY
EXCLUDE
COPY
SELECT
COPY
EXCLUDE

OUTDD=SEQI,INDD=PDSI
MEMBER=(D,C)
OUTDD=SEQ2,INDD=PDS2
MEMBER=(A,K)
OUTDD=MERGE,INDD=«NEWUP,R),PDSI,PDS2)
MEMBER=A

The control statements are discussed below:

PDSI DD defines a partitioned data set called ACCOUNTA that
contains six members (A, B, C, D, E, and F) and resides on a
3380 volume.

• PDS2 DD defines a partitioned data set called ACCOUNTB that
contains three members (A, K, and L) and resides on a 3380
volume.

• SEQI DD defines a new sequential data set called SAVAC on a
3380 volume.

• SEQ2 DD defines a new sequential data set called SAVACB on a
tape volume. The tape has IBM standard labels.

• NEWUP DD defines an old sequential data set called NEWACC
that is the unloaded form of a partitioned data set that
contains eight members (A, B, C, D, M, N, A, and Pl. It
resides on a tape volume.

• MERGE DD defines a partitioned data set called ACCUPDAT that
contains six members (A, B, C, D, Q, and R) and resides on a
3380 volume.

• SYSUT3 DD defines a temporary spill data set on a 3380
volume.

• SYSUT4 DD defines a temporary spill data set on a 3380
volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The first COPY statement indicates the start of the first
unload operation. (The input data set is partitioned; the
output data set is sequential.)

IEBCOPY Program 95

IEBCOPY EXAMPLE 16

• The first EXCLUDE statement specifies that members D and C
are to be excluded from the unload operation specified by
the preceding COPY statement.

• The second COPY statement indicates the start of the second
unload operation. (The input data set is partitioned; the
output data set is sequential.)

• The SELECT statement specifies that members A and K are to
be included in the unload operation specified by the
preceding COPY statement.

• The third COPY statement indicates the start of the copy and
load operations. The replace option is specified for the
NEWUP data set; therefore, members in this data set replace
identically named members on the output data set. The first
INDD data set is an unloaded data set that is to be loaded.
The second and third INDD data sets are partitioned data
sets that are to be copied. (The input data sets are
sequential and partitioned; the output data set is
parti tioned.)

• The second EXCLUDE statement specifies that member A is
excluded from the copy and load operation specified in the
preceding COpy statement.

In this example, all members of data set MODLIBJ, members MODX,
MODY, and MODZ of data set MODLIBK, and all members of data set
MODLIBL except MYMACRO and MYJCL are altered in place.

//ALTERONE JOB
//STEPA EXEC PGM~IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(S,l»
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(S,l»
/ILIBJ DD DSNAME=MODLIBJ,DISP=(OLD,KEEP)
I/LIBK DD DSNAME=MODLIBK,DISP=(OLD,KEEP)
//LIBL DD DSNAME=MODLIBL,DISP=(OLD,KEEP)
IISYSIN DD *

ALTERMOD OUTDD=LIBJ
ALTERMOD OUTDD=LIBK,LIST=NO
SELECT MEMBER=(MODX,MODY,MODZ)
ALTERMOD OUTDD=LIBL
EXCLUDE MEMBER=(MYMACRO,MYJCL)

The control statements are discussed below.

•

•

•

•

2

LIBJ DD defines the partitioned data set MODLIBJ, which has
been previously created and cataloged. 2

LIBK DD defines the partitioned data set MODLIBK, which has
been previously created and cataloged. 2

LIBL DD defines the partitioned data set MODLIBL, which has
been previously created and cataloged. 2

SYSIN DD defines the control data set, which follows in the
input stream.

For data sets that have not been previously cataloged, you
must also specify UNIT and VOL=SER information on the DD
statement.

96 MVS/XA Data Administration: Utilities

(_.'" :,j\

IEBCOPY EXAMPLE 17

•

•

The first ALTERMOD statement specifies that the entire data
set defined in LIBJ is to be altered in place.

The second ALTERMOD statement plus the following SELECT
statement indicates that members MODX, MODY, and MODZ are to
be altered in place. The remainder of MODLIBK is unchanged.

• The third ALTERMOD statement plus the following EXCLUDE
statement indicates that all of MODLIBL is to be altered in
place except the members called MYMACRO and MYJCL. These
members remain unchanged.

In this example, members MOD7, MOD8, and MOD9 of data set
MODLIBL are copied to data set MODLIBM, altered, and reblocked
to the default size. All members of data set MODLIBN except
NEWMACRO and NEWJCL are copied to data set MODLIBP, altered, and
reblocked to 10K bytes; blocks as small as 2K bytes may be
written to improve utilization of disk space.

//COPYRBLK JOB
//STEPA EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(S,l»
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(S,l»
//LIBL DD DSNAME=MODLIBL,DISP=(OLD,KEEP)
//LIBM DD DSNAME=MODLIBM,DISP=(OLD,KEEP)
//LIBN DD DSNAME=MODLIBN,DISP=(OLD,KEEP)
//LIBP DD DSNAME=MODLIBP,DISP=(OLD,KEEP)
//SYSIN DD *

COPYMOD INDD=LIBL,OUTDD=LIBM
SELECT MEMBER=(MOD7,MOD8,MOD9)
COPYMOD INDD=LIBN,OUTDD=LIBP,MAXBLK=lOK,

MINBLK=2K,LIST=NO
EXCLUDE MEMBER=(NEWMACRO,NEWJCL)

72

X

The control statements are discussed below.

• LIBL DD defines the partitioned data set MODLIBL, which has
been previously created and cataloged. 3

• LIBM DD defines the partitioned data set MODLIBM, which has
been previously created and cataloged. 3

• LIBN DD defines the partitioned data set MODLIBN, which has
been previously created and cataloged. 3

• LIBP DD defines the partitioned data set MODLIBP, which has
been previously created and cataloged. 3

• SYSIN DD defines the control data set, which follows in the
input stream.

• The COPYMOD statement indicates that the members listed in
the following SELECT statement (MOD7,MOD8,MOD9) are to be
copied from MODLIBL to MODLIBM, altered, and reblocked.

• The second COPYMOD statement indicates that the MODLIBN data
set (except for NEWMACRO and NEWJCL, which are specified in

For data sets that have not been previously cataloged, you
must also specify UNIT and VOL=SER information on the DD
statement.

IEBCOPY Program 97

IEBCOPY EXAMPLE 18

the following EXCLUDE statement) is copied to MODLIBP,
altered, and reblocked to 10K bytes.

In this example, all members of data set MODLIBY are copied to
tape COPYLIBY in STEPI. MODLIBY is scratched (but not
uncataloged) in STEP2. In STEP3, all members are copied back to
data set MODLIBY, reblocked to the default size, and altered.
The net result is that the data set MODLIBY is compressed,
altered, and reblocked.

//COPYTWO
//STEPI
//SYSPRINT
//SYSUT3
//SYSUT4
//LIBY
//
//TAPEA
//
//SYSIN

COpy
/*

JOB
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD UNIT=SYSDA,SPACE=(TRK,(S,l»
DD UNIT=SYSDA,SPACE=(TRK,(S,I»
DD DSNAME=MODLIBY,DISP=(OLD),

UNIT=3380,VOL=SER=338001
DD DSNAME=COPYLIBY,DISP=(NEW,PASS),

UNIT=tape,VOL=SER=717000,LABEL=(,NL)
DD *

INDD=LIBY,OUTDD=TAPEA

//STEP2 EXEC PGM=IEHPROGM,COND=(O,NE,STEP1)
//SYSPRINT DD SYSOUT=A
//LIBY DD DSNAME=MODLIBY,DISP=(OLD),
// UNIT=3380,VOL=SER=338001
//SYSIN DD *

SCRATCH DSNAME=MODLIBY,VOL=3380=338001
/*
//STEP3 EXEC PGM=IEBCOPY,COND=(O,NE,STEP1)
//SYSPRINT DD SYSOUT=A
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(S,l»
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(S,l»
//LIBY DD DSNAME=MODLIBY,DISP=(NEW,KEEP),
// UNIT=3380,VOL=SER=338001,
// SPACE=(TRK)(2,I,S)
//TAPEA DD DSNAME=COPYLIBY,DISP=(OLD,KEEP),
// UNIT=tape,VOL=SER=717000,LABEL=(,NL)
//SYSIN DD *

COPYMOD INDD=TAPEA,OUTDD=LIBY

The control statements are discussed below.

• STEPI marks the beginning of the IEBCOPY job step.

• LIBY DD defines the partitioned data set MODLIBY, which has
also been previously defined.

• TAPEA DD defines the tape data set COPYLIBY.

• The COPY statement makes a backup copy of MODLIBY and places
it in the data set COPYLIBY.

• STEP2 marks the beginning of the IEHPROGM job step. If
STEPI fails, STEP2 will not be executed.

• The SCRATCH statement scratches the old data set MODLIBY but
does not remove it from the catalog.

•

•

STEP3 marks the beginning of the second IEBCOPY job step.
STEP3 will not be executed if STEPI fails.

The COPYMOD statement copies all members back to MODLIBY,
alters their RLD counts, and reblocks them. The new MODLIBY
will be compressed, but will not necessarily occupy the same

98 MVS/XA Data Administration: Utilities

space on the disk as it did before being scratched and
reallocated.

IEBCOPY Program 99

IEBDG pROGRAM

TYPES OF PATTERNS

IEBDG is a data set utility used to provide a pattern of test
data to be used as a programming debugging aid.

An output data set, containing records of any format, can be
created through the use of utility control statements, with or
without input data. An optional user exit passes control to a
user routine to monitor each output record before it is written.
Sequential, ISAM, and partitioned data sets can be used for
input or output.

You can code utility control statements to generate a pattern of
data that can be analyzed quickly for predictable results.

When you define the contents of a field, the following must be
decided:

• Which type of pattern (IBM-supplied or user-supplied) is to
be placed initiallY in the defined field.

• What action, if any, is to be performed to alter the
contents of the field after it is selected for each output
record.

IBM-SUPPLIED PATTERNS

IBM supplies seven patterns:

• Alphameric

• Alphabetic

• Zoned decimal

• Packed decimal

• Binary number

• Collating sequence

• Random number

You may choose one of them when defining the contents of a
field. All patterns, except the binary and random number
patterns, repeat in a given field, provided that the defined
field length is sufficient to permit repetition. For example,
the alphabetic pattern is:

ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG ...

Figure 35 on page 101 shows the IBM-supplied patterns.

100 MVS/XA Data Administration: Utilities

,,'" (~' ,

\~J

\. I ~ .. /"

(

(

Expressed in Expressed in
Type Hexadecimal Printable Characters

Alphameric Cl C2 ... E9, FO ... F9 AB ... Z, O ... 9

Alphabetic Cl C2 ... E9 AB ... Z

Zoned Decimal FOFO ... F9F9 00 ... 99

Packed Decimal 0000 ... 001C Not applicable
(Positive pattern)
0000 ... 001D
(Negative pattern)

Binary Number 00000001, etc. Not applicable
(Positive pattern)
FFFFFFFF, etc.
(Negative pattern)

Collating Sequence 40 ... F9 b¢.«+I&!$*);--/,:C>?: r="
A ... Z 0 ... 9

Random Number Random hexadecimal digits Not applicable

Figure 3S. IBM-Supplied Test Date Patterns

A packed decimal or binary number is right-aligned in the
defined field.

You can specify a starting character when defining an
alphameric, alphabetic, or collating-sequence field. For
example, a 10-byte alphabetic field for which "H" is specified
as the starting character would appear as:

HIJKLMNOPQ

The same 10-byte alphabetic field with no specified starting
character would appear as:

ABCDEFGHIJ

You can specify a mathematical sign when defining a packed
decimal or binary field. If no sign is specified, the field is
assumed to be positive.

USER-SPECIFIED PICTURES

Instead of selecting an IBM-supplied pattern, you may want to
specify a picture to be placed in the defined field. You can
provide:

• An EBCDIC character string
• A decimal number to be converted to packed decimal by IEBDG
• A decimal number to be converted to binary by IEBDG

When you supply a picture, a picture length must be specified
that is equal to or less than the specified field length. An
EBCDIC picture is left-aligned in a defined field; a decimal
number that is converted to packed decimal or to binary is
right-aligned in a defined field.

You can initially load (fill) a defined field with either an
EBCDIC character or a hexadecimal digit. For example, the
10-byte picture "BADCFEHGJI" is to be placed in a IS-byte field.
An EBCDIC "2" is to be used to pad the field. The result is
BADCFEHGJI22222. (If no fill character is provided, the
remaining bytes contain binary zeros.) Remember that the fill
character, if specified, is written in each byte of the defined
field prior to the inclusion of an IBM-supplied pattern or
user-supplied picture.

IEBDG Program 101

MODIFICATION OF SELECTED FIELDS

IEBDG can be used to change the contents of a field in a
specified manner. One of the following actions can be selected
to change a field after its inclusion in each applicable output
record:

• Ripple

• Shift left

• Shift right

• Truncate left

• Truncate right

• Fixed

• Roll

• Wave

Figure 36 shows the effects of each of the actions on a 6-byte
alphabetic field. Note that the roll and wave actions are
applicable only when a user pattern is supplied. In addition,
the result of a ripple action depends on which type of pattern
(IBM-supplied or user-supplied) is present.

Ripple-user- Ripple-IBM-
supplied picture supplied format Shitt left Shift right

ABCDEF ABCDEF ABCDEF ABCDEF

BCDEFA BCDEFG BCDEF ABCDE

CDEFAB CDEFGH CDEF ABCD

DEFABC DEFGHI DEF ABC

EFABCD ·E F G H I J E F AB

FABCDE FGHIJK F A

ABCDEF GHIJKL ABCDEF ABCDEF

BCDEFA HIJKLM BCDEF ABCDE

Roll-user- Wave-user-
Truncate left Truncate right Fixed supplied picture supplied picture

ABCDEF ABCDEF ABCDEF AAA AAA

BCDEF ABCDE ABCDEF AAA AAA

CDEF ABCD ABCDEF AAA AAA

DEF ABC ABCDEF AAA AAA

E F AB ABCDEF AAA AAA

F A ABCDEF AAA AAA
ABCDEF ABCDEF ABCDEF AAA AAA

BCDEF ABCDE ABCDEF AAA AAA

Figure 36. IEBDG Actions

If no action is selected, or if the specified action is not
compatible with the format, the fixed action is assumed by
IEBDG.

102 MVS/XA Data Administration: Utilities

INPUT AND OUTPUT

(~

RETURN CODES

(-

CONTROL

IEBDG uses the following input:

• An input data set that contains records to be used in the
construction of an output data set or partitioned data set
member. The input data sets are optional; that is, output
records can be created entirely from utility control
statements.

• A control data set that contains any number of sets of
utility control statements.

IEBDG produces the following output:

• An output data set that is the result of the IEBDG
operation. One output data set is created by each set of
utility control statements included in the job step.

• A message data set that contains informational messages, the
contents of applicable utility control statements, and any
error messages.

Input and output data sets may be sequential, indexed sequential
(ISAM), or partitioned data set members. BDAM and VSAM are not
supported.

IEBDG returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed in Figure 37.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) A user routine returned a code of 16 to IEBDG. The
job step is terminated at the user's request.

OS (OS) An error occurred while processing a set of utility
control statements. No data is generated following
the error. Processing continues normally with the
next set of utility control statements, if any.

12 (OC) An error occurred while processing an input or
output data set. The job step is terminated.

16 (10) An error occurred from which recovery is not
possible. The job step is terminated.

Figure 37. IEBDG Return Codes

IEBDG is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke IEBDG and define the data sets used and
produced by IEBDG. Utility control statements are used to
control the functions of the program and to define the contents
of the output records.

IEBDG Program 103

I

I

JOB CONTROL STATEMENTS

Figure 38 shows the job control statements for IEBDG.

Both input and output data sets can contain fixed. variable. or
undefined records.

Statement

JOB

EXEC

Use

Initiates the job.

Specifies the program name (PGM=IEBDG) or. if the
job control statements reside in a procedure
library. the procedure name. Additional
information can be specified; see "PARM Information
on the EXEC Statement" on page 105.

SYSPRINT DD Defines a sequential message data set. The data
set can be written on a system output device. a
tape volume. or a DASD volume.

SYSIN DD Defines the control data set. which contains the
utility control statements and, optionally. input
records. The data set normally resides in the
input stream; however. it can be defined as a
sequential data set or as a member of a partitioned
data set.

('~

,~~'

seqinset DD Defines an optional sequential or ISAM data set
used as input to IEBDG. The data set can reside on
a tape volume or on a DASD volume. Any number of
these statements (each having a ddname different
from all other ddnames in the job step) can be
included in the job step. Each DD statement is
subsequently referred to by a DSD utility control ./ \
statement. ',-. ./

parinset DD Defines an optional input partitioned data set
member residing on a DASD volume. Any number of
these statements (each having a ddname different
from aIr other ddnames in the job step) can be
included in the job step. The DD statement is
subsequently referred to by a DSD utility control
statement.

seqout DD Defines an output (test) sequential or ISAM data
set. Any number of these DD statements can be
included per job step; however. only one statement
is applicable per set of utility control
statements.

parout DD Defines an optional output partitioned data set
member to be created and placed on a DASD volume.
Any number of these DD statements (each DD
statement referring to the same or to a different
data set) can be included per job step; however.
only one statement is applicable per set of utility
control statements.

Figure 38. Job Control Statements for IEBDG

If the input or output data set has an indexed sequential (ISAM)
organization (DSORG=IS). the DSORG subparameter must be included
in the DCB subparameters. If members of a partitioned data set
are used. DSORG=PO or DSORG=PS may be coded. If the DSORG
subparameter is not coded. DSORG=PS is assumed.

104 MVS/XA Data Administration: Utilities

For an ISAM data set, the key length must be specified in the
DCB.

Refer to Data Administration Guide for information on estimating
space allocations.

PARM Information on the EXEC statement

The EXEC statement can include an optional PARM parameter to
specify the number of lines to be printed between headings in
the message data set, coded as follows:

PARM=LINECT=nnnn

The nnnn is a 4-digit decimal number that specifies the number
of lines (0000 to 9999) to be printed per page of output
listing.

If PARM is omitted, 58 lines are printed between headings
(unless a channel 12 punch is encountered in the carriage
control tape, in which case a skip to channel 1 is performed and
a heading is printed).

If IEBDG is invoked, the line-count option can be passed in a
parameter list that is referred to by a subparameter of the LINK
or ATTACH macro instruction. In addition, a page count can be
passed in a 6-byte parameter list that is referred to by a
subparameter of the LINK or ATTACH macro instruction. For a
discussion of linkage conventions, refer to "Invoking Utility
Programs from a Problem Program" on page 12.

SYSPRINT DD statement

SYSIN DD statement

If the SYSPRINT DD statement is omitted, no messages are
written. The block size for the SYSPRINT data set must be a
multiple of 121. Any blocking factor can be specified.

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

seq inset DD statement

The "seqinset" DD statement can be entered:

//seqinset DD DSNAME=setname,UNIT=xxxx,DISP=(OLD,KEEP),
// VOLUME=SER=xxxxxx,LABEL=(... , ...),
// DCB=(applicable subparameters)

The LABEL parameter is included only for a magnetic tape volume.
If the input data set has an indexed sequential organization,
DSORG=IS should be coded in the DCB parameter.

IEBDG Program 105

par inset DD statement

seqout DD statement

parout DD statement

The "parinset" DD statement can be entered:

Ilparinset DD DSNAME=setnameCmembername),UNIT=xxxx,
II DISP~COLD,KEEP),VOLUME=SER=xxxxxx,
II DCB=(applicable subparameters)

The "seqout" DD statement can be entered:

Ilseqout DD DSNAME=setname, UNIT=xxxx,
II DISP=(,KEEP),VOLUME=SER=xxxxxx,
II DCB=(applicable subparameters)

The LABEL parameter is included for magnetic tape; the SPACE
parameter is included for DASD.

The "parout" DD statement can be entered:

Ilparout DD
II
II
II

DSNAME=setnameCmembername),UNIT=xxxx,
DISP=C,KEEP),VOLUME=SER=xxxxxx,DCB=(applicable
DCB=Capplicable subparameters),
SPACE=Capplicable subparameter)

The SPACE parameter is included on the parout DD statement when
creating the first member to be placed in a partitioned data
set.

The partitioned data set defined by "parout" is a new member and
has a new directory entry. No information is copied from the
previous directory.

106 MVS/XA Data Administration: utilities

;f-"
i \ ~ '.

\,~j

(... ".
/

i

I

(

UTILITY CONTROL STATEMENTS

DSD Statement

IEBDG is controlled by the following utility control statements:

Statement Use

DSD Specifies the ddnames of the input and output data
sets. One DSD statement must be included for each
set of utility control statements.

FD Defines the contents and lengths of fields to be
used in creating output records.

CREATE Defines the contents of output records.

REPEAT Specifies the number of times a CREATE statement or
a group of CREATE statements are to be used in
generating output records.

END Marks the end of a set of IEBDG utility control
statements.

Figure 39. IEBDG Utility Control Statements

Any number of sets of control statements can appear in a single
job step. Each set defines one data set.

General continuation requirements for utility control statements
are described in "Continuing Utility Control Statements" on
page 5.

FD or CREATE utility control statements that contain a PICTURE
parameter and are to be continued must have a nonblank character
in column 72. The continuation must begin in column 4 on the
next statement.

The DSD statement marks the beginning of a set of utility
control statements and specifies the data sets that IEBDG is to
use as input. The DSD statement can be used to specify one
output data set and any number of input data sets for each
application of IEBDG.

The format of the DSD statement is:

DSD OUTPUT: (dd::m:)
[,INPUT=(ddname, •••)]

The ddname SYSIN must not be coded in the INPUT parameter.

Each parameter should appear no more than once on any DSD
statement.

IEBDG Program 107

FD statement

The FD statement defines the contents and length of a field that
will be used subsequently by a CREATE statement (or statements)
to form output records. A defined field within the input
logical record may be selected for use in the output records if
it is referred to, by name, by a subsequent CREATE statement.

Figure 40 shows how fields defined in FD statements are placed
in buffer areas so that subsequent CREATE statements can assign
selected fields to specific output records.

FD Statements-define fields

Defines field 1

Contents are placed in buffers
so that subsequent CREATE
statements can selectively
create output records.

CREATE Statement
creates output
record from
selected fields

Defines field 5

Figure 40. Defining and Selecting Fields for Output Records
Using IEBDG

108 MVS/XA Data Administration: Utilities

(

(' . ..

. /

Figure 41 shows how the FD statement is used to specify a field
in an input record to be used in output records. The left-hand
side of the figure shows that a field in the input record
beginning at byte 50 is selected for use in the output record.
The right-hand side of the figure shows that the field is to be
placed at byte 20 in the output record.

I nput record

Figure 41. Field Selected from the Input Record for Use in the
Output Record

The format of the FD statement is:

[ls.Q.gll FD NAME=~

,LENGTH=length-in-bytes

[,STARTLOC=starting-byte-locationl

[,FILL={'character'IX'2-hex-digits'll

[,FORMAT=pattern[,CHARACTER=characterll

,PICTURE=length,{'character-string'l

P'decimal-number'l

B'decimal-number'll

[,SIGN=ri.9.nl

[, ACTION=acti on 1

[, INDEX=number[,CYCLE=numberl [,RANGE=number 11

[,INPUT=ddnamel

[,FROMLOC=oumbecl

Some of the FD keywords do not apply when certain patterns or
pictures are selected by you; for example, the INDEX, CYCLE,
RANGE, and SIGN parameters are used only with numeric fields.
Figure 42 on page 110 shows which IEBDG keywords can be used
with the applicable pattern or picture chosen by you. Each
keyword should appear no more than once on any FD statement.

IEBDG Program 109

I

I

CREATE statement

FORMAT/PICTURE Value Compatible Parameters

FORMAT=AL (alphabetic) ACTION=SL (shift left)
FORMAT=AN (alphameric) ACTION=SR (shift right)
FORMAT=CO (collating seq.) ACTION=TL (truncate left)

ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)

FORMAT=ZD (zoned decimal) INDEX=x
FORMAT=PD (packed decimal) CYCLE=x
FORMAT=BI (binary) RANGE=x

SIGN=x 1

PICTURE=P'n' (packed decimal> INDEX=x
PICTURE=B'n' (binary) CYCLE=x

RANGE=x
SIGN=x 1

PICTURE='string' (EBCDIC) ACTION=SL (shift left)
ACTION=SR (shift right)
ACTION=TL (truncate left)
ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)
ACTION=WV (wave)
ACTION=RO (roll)

Figure 42. Compatible IEBDG Operations

Note to Figure 42:

1 Zoned decimal numbers (ZD) do not include a sign.

The CREATE statement defines the contents of a record (or
records) to be made available to a user routine or to be written
directly as an output record (or records).

The format of the CREATE statement is:

[~l CREATE [QUANTITY=nymberl

[,FILL={'character'IX'2-hex-digits')l

[,INPUT=ddnameISYSIN[(~)ll

[,PICTURE=length,startloc{,'character-string'l

,P'decimal-nymber'l

,B'decimal-nymber')l

[,NAME=~I(namel,namen ...)1

(~(COPY=numberlnamel,namen ...), •••)l

[,EXIT=~QY!iD~Damel

After processing each potential output record, the user routine
should provide a return code in register 15 to instruct IEBDG

(~

how to handle the output record. The user codes are listed 1("""
below.

/

110 MVS/XA Data Administration: Utilities

(-

Codes Meaning

00 (00 hex) The record is to be written.

04 (04) The record is not to be written. The skipped
record is not to be counted as a generated output
record; processing is to continue as though a
record were written. If skips are requested
through user exits and input records are supplied,
each skip causes an additional input record to be
processed in the generation of output records. For
example, if a CREATE statement specifies that 10
output records are to be generated and a user exit
indicates that two records are to be skipped, 12
input records are processed.

12 (OC) The processing of the remainder of this set of
utility control statements is to be bypassed.
Processing is to continue with the next DSD
statement.

16 (10) All processing is to halt.

Figure 43. IEBDG User Exit Return Codes

When an exit routine is loaded and you return control to IEBDG,
register 1 contains the address of the first byte of the output
record. Each keyword should appear no more than once on any
CREATE statement.

Figure 44 shows the addition of field X to two different
records. In record 1, field X is the first field referred to by
the CREATE statement; therefore, field X begins in the first
byte of the output record. In record 2, two fields, field A and
field B, have already been referred to by a CREATE statement;
field X, the next field referred to, begins immediately after
field B. Field X does not have a special starting location in
this example.

Record 1

21 r-----

Record 2

Figure 44. Default Placement of Fields within an Output Record
Using IEBDG

You can also indicate that a numeric field is to be modified
after it has been referred to n times by a CREATE statement or
statements, that is, after n cycles, a modification is to be
made. A modification will add a user-specified number to a
field.

The CREATE statement constructs an output record by referring to
previously defined fields by name and/or by providing a picture

IEBDG Program III

to be placed in the record. You can generate multiple records
with a single CREATE statement.

When defining a picture in a CREATE statement, you must specify
its length and starting location in the output record. The
specified length must be equal to the number of specified EBCDIC
or numeric characters. (When a specified decimal number is
converted to packed decimal or binary, it is automaticallY
right-aligned.)

Figure 45 shows three ways in which output records can be
created from utility control statements.

1. Fields only

3. Picture only

(CREATE

Output record

Picture

Figure 45. Creating Output Records with utility Control
Statements

As an alternative to creating output records from utility
control statements alone, you can provide input records, which
can be modified and written as output records. Input records
can be provided directly in the input stream, or in a separate
data set. Only one input data set can be read for each CREATE
statement.

As previously mentioned, the CREATE statement is responsible for
the construction of an output record. An output record is
constructed in the following order:

1. A fill character, specified or default (binary zero), is
initially loaded into each byte of the output record.

2. If the INPUT operand is specified on the CREATE statement,
and not on an FD statement, the input records are
left-aligned in the corresponding output record.

3. If the INPUT operand specifies a ddname in any FD statement,
only the fields described by the FD statementCs) are placed
in the output record.

4. FD fields, if any, are placed in the output record in the
order of the appearance of their names in the CREATE
statement.

112 MVS/XA Data Administration: Utilities

If('\
~/

REPEAT statement

c

5. A CREATE statement picture, if any, is placed in the output
record.

IEBDG provides a user exit so you can provide your own routine
to analyze or further modify a newly constructed recordbefo're
it is placed in the output data set. See Appendix A, "Exit
Routine Linkage" on page 422 for information on linking to a
user exit routine.

A set of utility control statements contains one DSD statement,
any number of FD, CREATE, and REPEAT statements, and one END
statement when the INPUT parameter is omitted from the FD card.

When selecting fields from an input record (FD INPUT=ddname),
the field must be defined by an FD statement within each set of
utility control statements. In that case, defined fields for
field selection are not usable across sets of utility control
statements; such an FD card may be duplicated and used in more
than one set of utility control statements within the job step.

The REPEAT statement specifies the number of times a CREATE
statement or group of CREATE statements is to be used
repetitively in the generation of output records. The REPEAT
statement precedes the CREATE statements to which it applies.

Figure 46 shows a group of five CREATE statements repeated n
times.

CREATE 11)
CREATE 12)
CREATE 13)
CREATE 14)
CREATE 15)

CREATE Il'
CREATE 12.
cR~ATE 13)
CREATE 14)
CREATE (5)

• · ·
CREATE 11)
CREATE 12)
CREATE 13)
CREATE 14)
CREATE (5)

Figure 46. Repetition Caused by the REPEAT Statement Using
IEBDG

The format of the REPEAT statement is:

REPEAT QUANTITV=number[,CREATE=number]

IEBDG Program 113

I

I

END statement

Parameters

ACTION

The END statement is used to mark the end of a set of utility
control statements. Each set of control statements can pertain
to any number of input data sets but only to a single output
data set.

The format of the END statement is:

I [ls.b.!U.] END

Applicable
Control
statements Description of Parameters

FD ACTION=action
specifies how the contents of a defined field
are to be altered (if at all) after the field's
inclusion in an output record. These values can
be coded:

FX

RO

RP

SL

SR

TL

TR

specifies that the contents of a defined
field are to remain fixed after the field's
inclusion in an output record.

specifies that the contents of a defined
field are to be rolled after the field's
inclusion in an output record. The picture
is incremented to the left by one byte for
each output record, until the first
nonblank character of the picture is in
field byte 1. At that time, the character
string is reset to its original picture
position.

RO can be used only for a user-defined
field. For RO to be effective, the picture
length must be less than the field length.

specifies that the contents of a defined
field are to be rippled after the field's
inclusion in an output record.

specifies that the contents of a defined
field are to be shifted left after the
field's inclusion in an output record.

specifies that the contents of a defined
field are to be shifted right after the
field's inclusion in an output record.

specifies that the contents of a defined
field are to be truncated left after the
field's inclusion in an output record.

specifies that the contents of a defined
field are to be truncated right after the
field's inclusion in an output record.

114 MVS/XA Data Administration: Utilities

",.-
f

(~-

Parameters

Applicable
Control
statements

ACTION FD
(continued) (continued)

CREATE

EXIT

FILL

REPEAT

CREATE

CREATE
FD

Description of Parameters

wv
specifies that the contents of a defined
field are to be waved after the field's
inclusion in an output record. The picture
is incremented to the left by one byte for
each output record, until the first
nonblank character of the picture is in
field byte 1. At this time, the character
string is reset to its original picture
position.

WV can be used only for a user-defined
field. For WV to be effective, the picture
length must be less than the field length.

Default: FX

See Figure 42 on page 110 for system actions
compatible with FORMAT and PICTURE values. See
Figure 36 on page 102 for examples of IEBDG
ACTION patterns.

CREATE=number
specifies the number of following CREATE
statements to be included in the group.

Default: Only the first CREATE statement is
repeated.

EXIT=routinename
specifies the name of the user routine that is
to receive control from IEBDG before writing
each output record.

FILL={'character'IX'2-hex-digits')
specifies a value that is to be placed in each
byte of the output record before any other
operation in the construction of record. These
values can be coded:

'character'
specifies an EBCDIC character that is to be
placed in each byte of the output record.

X'2-hex-digits'
specifies 2 hexadecimal digits (for
example, FILL=X'40', or FILL=X'FF') to be
placed in each byte of the output record.

Default: Binary zeros are placed in the output
record.

IEBDG Program 115

i

Parameters

FORMAT

FROMLOC

APplicable
Control
statements

FD

FD

Description of Parameters

FORMAT=pattern[,CHARACTER=characterJ
specifies an IBM-supplied pattern that is to be
placed in the defined field. FORMAT must not be
used when PICTURE is used. The values that can
be coded are:

pattern
specifies the IBM-supplied patterns, as
follows:

AL

AN

BI

CO

PD

RA

ZD

specifies an alphabetic pattern.

specifies an alphameric pattern.

specifies a binary pattern.

specifies a collating sequence
pattern.

specifies a packed decimal pattern.

specifies a random binary pattern.

specifies a zoned decimal pattern.

CHARACTER=characte~
specifies the starting character of a
field. See "IBM-Supplied Patterns" on
page 100 for details on starting
characters.

FROMLOC=num~
specifies the location of the selected field
within the input logical record. The number
represents the position in the input record.
If, for example. FROMLOC=lO is coded, the
specified field begins at the tenth byte; if
FROMLOC=l is coded, the specified field begins
at the first byte. (For variable-length
records, significant data begins on the first
byte after the 4-byte length descriptor.)

When retrieving data sets with RECFM=F or FB,
and RKP>O. the record consists of the key plus
the data with embedded key. To copy the entire
record, the output DCB=LRECL has to be input
LRECL + KEYLEN. If only the data (which
includes the embedded key) is to be copied. the
FROMLOC must point to start of the data, that
is, FROMLOC=keylength.

Default: The start of the input record.

116 MVS/XA Data Administration: Utilities

(
Parameters

INDEX

INPUT

Applicable
Control
statements

FD

DSD

FD

Description of Parameters

INDEX=number[,CYCLE=numberl[,RANGE=numberl
specifies a decimal number to be added to this
field whenever a specified number of records
have been written. INDEX is valid only with
FORMATs lD, PD, BI, or PICTURES Pin', B'n'.
Additional values can be coded:

CYCLE=number
specifies a number of output records (to be
written as output or made available to an
exit routine) that are treated as a group
by the INDEX keyword. Whenever this field
has been used in the construction of the
specified number of records, it is modified
as specified in the INDEX parameter. For
example, if CYCLE=3 is coded, output
records might appear as III 222 333 444
etc. This parameter can be coded only when
INDEX is coded.

RANGE=number
specifies an absolute value which the
contents of this field can never exceed.
If an index operation attempts to exceed
the specified absolute value, the contents
of the field as of the previous index
operation are used.

Default: No indexing is performed. If CYCLE is
omitted and INDEX is coded, a CYCLE value of 1
is assumed; that is, the field is indexed after
each inclusion in a potential output record.

INPUT=(ddname, •••)
specifies the ddname of a DD statement defining
a data set used as input to the program. Any
number of data sets can be included as
input-that is, any number of ddnames referring
to corresponding DD statements can be coded.
Whenever ddnames are included on a continuation
card, they must begin in column 4.

The ddname SYSIN must not be coded as the INPUT
parameter on the DSD control statement. Each
ddname should not appear more than once on any
control statement.

INPUT=ddname
specifies the ddname of a DD statement defining
a data set used as input for field selection.
Only a portion of the record described by the FD
statement will be placed in the output record.
If the record format of the output data set
indicates variable-length records, the position
within the output record will depend upon where
the last insert into the output record was made
unless STARTLOC is specified.

The ddname SYSIN must not be coded as the INPUT
parameter on the FD control statement. Each
ddname should not appear more than once on any
control statement.

A corresponding ddname must also be specified in
the associated CREATE statement in order to have
the input record(s) read.

IEBDG Program 117

Parameters

Applicable
Control
statements

INPUT CREATE
(continued)

LENGTH FD

Description of Parameters

INPUT=ddnameISYSIN[(~)]
defines an input data set whose records are to
be used in the construction of output records.
If INPUT is coded, QUANTITY should also be
coded, unless the remainder of the input records
are all to be processed by this CREATE
statement. If INPUT is specified in an FD
statement referenced by this CREATE statement,
there must be a corresponding ddname specified
in the CREATE statement in order to get the
input recordCs) read. These values can be
coded:

ddname
specifies the ddname of a DD statement
defining an input data set.

SYSIN[~]
specifies that the SYSIN data set (input
stream) contains records (other than
utility control statements) to be used in
the construction of output records. If
SYSIN is coded, the input records follow
this CREATE statement (unless the CREATE
statement is in a REPEAT group, in which
case the input records follow the last
CREATE statement of the group). ~ can
be any combination of from 1 to 4 EBCDIC
characters. If ~ is coded, the input
records are delimited by a record
containing EBCDIC characters beginning in
column 1.

When INPUT=SYSIN with no cccc value, the
input records are delimited from any
additional utility control statements by a
record containing $$$E in columns 1 through
4.

LENGTH=length-in-bytes
specifies the length in bytes of the defined
field. For variable records, 4 bytes of length
descriptor must be added.

For ACTION=RP or WV, the length is limited to
16383 bytes. For ACTION=RO, the length is
limited to 10922 bytes.

118 MVS/XA Data Administration: Utilities

~.~

(J

(Parameters

NAME

f
OUTPUT

(-

-

Applicable
Control
statements

FD

CREATE

DSD

Description of Parameters

NAME=~
specifies the name of the field defined by this
FD statement.

NAME=~I(~,~ •••)I(~,(COPY=
nymber,~,~ •••) •••)

specifies the name or names of previously
defined fields to be included in the applicable
output records. If both NAME and PICTURE are
omitted, the fill character specified in the
CREATE statement appears in each byte of the
applicable output record. These values can be
coded:

(~, ...)
specifies the name or names of a field or
fields to be included in the applicable
output record(s). Each field (previously
defined in the named FD statement) is
included in an output record in the order
in which its name is encountered in the
CREATE statement.

COPY=number
indicates that all fields named in the
inner parentheses (maximum of 20) are to be
treated as a group and included the
specified number of times in each output
record produced by this CREATE statement.
Any number of sets of inner parentheses can
be included with NAME. Within each set of
inner parentheses, COpy must appear before
the name of any field.

OUTPUT=(ddname)
specifies the ddname of the DD statement
defining the output data set.

IEBDG Program 119

Parameters

PICTURE

Applicable
Control
statements

FD
CREATE

Description of Parameters

PICTURE=length[,startloc][,'character-string'l
,P'decimal-number'I,B'decimal-number')

specifies the length, starting byte (CREATE
only), and the contents of a user-supplied
picture. For FD, PICTURE must not be used when
FORMAT is used. If both PICTURE and NAME are
omitted, the fill character specified in the
CREATE statement appears in each byte of
applicable output records. These values can be
coded:

length
specifies the number of bytes that the
picture will occupy_ length must be equal
to or less than the LENGTH parameter value
in the FD statement.

startloc (CREATE only)
specifies a starting byte (within any
applicable output record) in which the
picture is to begin.

'character-string'
specifies an EBCDIC character string that
is to be placed in the applicable
record(s). The character string is
left-aligned at the defined starting byte.
A characte~ string may be broken in column
71, a nonblank character in column 72 is

~-~

~J

required, and it must be continued in :~
column 4 of the next statement. The number
of characters within the quotation marks
must equal the number specified in the
length subparameter (for FD statements).

P 'decimal-num~'
specifies a decimal number that is to be
converted to packed decimal and
right-aligned (within the boundaries of the
defined length and starting byte) in the
output records or defined field. The
number of characters within the quotation
marks must equal the number specified in
the length subparameter (for FD
statements).

B 'decimal-number'
specifies a decimal number that is to be
converted to binary and right-aligned
(within the boundaries of the defined
length and starting byte) in the output
records or defined field. The number of
characters within the quotation marks must
equal the number specified in the length
subparameter (for FD statements).

(-~ (, ,J

120 MVS/XA Data Administration: Utilities

Parameters

QUANTITY

SIGN

STARTLOC

(
"-.i

' .. ,.'

Applicable
Control
statements

CREATE

REPEAT

FD

FD

Description of Parameters

QUANTITY=number
specifies the number of records that this CREATE
statement is to generate; the contents of each
record are specified by the other parameters.
If both QUANTITY and INPUT are coded, and the
quantity specified is greater than the number of
records in the input data set, the number of
records created is equal to the number of input
records to be processed plus the generated data
up to the specified number.

Default: If QUANTITY is omitted and INPUT is not
specified, only one output record is created.
If QUANTITY is omitted and INPUT is specified,
the number of records created is equal to the
number of records in the input data set.

If both QUANTITY and INPUT are coded, but the
QUANTITY is less than the number of records in
the input data set, then only the number of
records specified by QUANTITY are written to the
output data set.

QUANTITY=nu.mber
specifies the number of times the defined group
of CREATE statements is to be used repetitively.
This number cannot exceed 65,535.

SIGN=a.i9.n
specifies a mathematical sign (+ or -), to be
used when defining a packed decimal or binary
field.

Default: Positive (+).

STARTLOC=starting-byte-location
specifies a starting location (within all output
records using this field) in which a field is to
begin. For example, if the first byte of an
output record is chosen as the starting
location, the keyword is coded STARTLOC=l; if
the tenth byte is chosen, STARTLOC=lO is coded,
etc.

Default: The field will begin in the first
available byte of the output record (determined
by the order of specified field names in the
applicable CREATE statement). For variable
records, the starting location is the first byte
after the length descriptor.

IEBDG Program 121

IEBDG EXAMPLES

Operation

Place binary zeros

The following examples illustrate some of the uses of IEBDG.
Figure 47 can be used as a quick-reference guide to IEBDG
examples. The numbers in the "Example" column refer to examples
that follow.

Data Set
Organization Device Comments Example

Sequential 9-track Blocked input and 1
in selected fields. Tape output.

Ripple alphabetic Sequential 9-track Blocked input and 2
pattern Tape, output.

Disk

Create output Sequential Disk Blocked output. 3
records from uti li ty
control statements

Modify records from Partitioned, Disk Reblocking is 4
partitioned members Sequential performed. Each block
and input stream of output records

contains ten modified
partitioned input
records and two input
stream records.

Create parti tioned Partitioned Disk Blocked output. One 5
members for utility set of utility control
control statements statements per member.

Roll and wave Sequential Disk Output records are 6
user-supplied created from utility
patterns control statements.

Create indexed Sequential, Disk Output records are 7
sequential data set Indexed Tape created by augmenting
using field Sequential selected input fields
selection and data with generated data.
generation

Figure 47. IEBDG Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

IEBDG EXAMPLE 1

In this example, binary zeros are placed in two fields of 100
records copied from a sequential data set. After the operation,
each record in the copied data set (OUTSET) contains binary
zeros in locations 20 through 29 and 50 through 59.

122 MVS/XA Data Administration: Utilities

(

(

IEBDG EXAMPLE 2

//CLEAROUT
//
//SYSPRINT
//SEQIN
//
//
//
//SEQOUT
//
//
//
//SYSIN

DSD
FD

JOB
EXEC PGM=IEBDG
DD SYSOUT=A
DD DSNAME=INSET.UNIT=tape.DISP=(OLD.KEEP).

DCB=(RECFM=FB.LRECL=80.BLKSIZE=800).
LABEL=(.NLl.
VOLUME=SER=222222

DD DSNAME=OUTSET.UNIT=tape.VOLUME=SER=222333.
DCB=(RECFM=FB.LRECL=80.BLKSIZE=800).
DISP=(.KEEP).
LABEL=(.NLl

DD *
OUTPUT=(SEQOUT),INPUT=(SEQIN)

FD
CREATE
END

NAME=FIELDl.LENGTH=10.STARTLOC=20
NAME=FIELD2.LENGTH=10.STARTlOC=50
QUANTITY=100.INPUT=SEQIN.NAME=(FIELDl.FIELD2)

The control statements are discussed below:

• SEQIN DD defines a sequential input data set (INSET). The
data set was originally written on a unlabeled tape volume.

• SEQOUT DD defines the test data set (OUTSET). The output
records are identical to the input records. except for
locations 20 through 29 and 50 through 59. which contain
binary zeros at the completion of the operation.

•

•

SYSIN DD defines the control data. set. which follows in the
input stream.

DSD marks the beginning of a set of utility control
statements and refers to the DD statements defining the
input and output data sets.

• The first FD statement defines an 80-byte field of input
data.

• The first and second FD statements create two 10-byte fields
(FIELDI and FIELD2) that contain binary zeros. The fields
are to begin in the 20th and 50th bytes of each output
record.

• CREATE constructs 100 output records in which the contents
of previously defined fields (FIELDI. FIELD2) are placed in
their respective starting locations in each of the output
records. Input records from data set INSET are used as the
basis of the output records.

• END signals the end of a set of utility control statements.

In this example. a 10-byte alphabetic pattern is rippled. At
the end of the job step the first output record contains
"ABCDEFGHIJ." followed by data in location 11 through 80 from
the input record; the second record contains "BCDEFGHIJK"
followed by data in locations 11 through 80. etc.

IEBDG Program 123

IEBDG EXAMPLE 3

72
IIRIPPLE JOB
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IISEQIN DD DSNAME=INSET,DISP=(OLD,KEEP),VOL=SER=222222,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
II UNIT=tape
IISEQOUT DD DSNAME=OUTSET,UNIT=disk,VOLUME=SER=IIIIII,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
II DISP=(,KEEP),
II SPACE=(TRK,(IO,IO»
IISYSIN DD *

DSD OUTPUT=(SEQOUT),INPUT=(SEQIN)
FD NAME=FIELDI,INPUT=SEQIN,LENGTH=80
FD NAME=FIELD2,LENGTH=10,FORMAT=AL,ACTION=RP, C

STARTLOC=1
CREATE QUANTITY=100,INPUT=SEQIN,NAME=(FIELDl,FIELD2)
END

The control statements are discussed below:

• SEQIN DD defines an input sequential data set (INSET), The
data set was originally written on a 9-track, standard
labeled tape volume.

• SEQOUT DD defines the test output data set (OUTSET). Ten
tracks of primary space and ten tracks of secondary space
are allocated for the sequential data set on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statements defining the
input and output data sets.

• The FD statements create a 10-byte field in which the
pattern ABCDEFGHIJ is initially placed. The data is rippled
after each output record is written.

• CREATE constructs 100 output records in which the contents
of a previously defined field (FIELDl) are included. The
CREATE statement uses input records from data set INSET as
the basis of the output records.

• END signals the end of a set of utility control statements.

In this example, output records are created entirely from
utility control statements. Three fields are created and used
in the construction of the output records. In two of the
fields, alphabetic data is truncated; the other field is a
numeric field that is incremented (indexed) by one after each
output record is written. Figure 48 on page 125 shows the
contents of the output records at the end of the job step.

124 MVS/XA Data Administration: Utilities

---~~---~~~-

,[""

Q_/

(-

(--

(""-.'

"_.7

Field 1 Field 2 Field 3 (packed decimal)

1 31 61 71 80

ABCDEFGHIJKlMNOPORSTUVWXYZABCD ABCDE FGH IJK lMNOPQRSTUVWX YZABCD FF ... FF 123 ... 90

BCDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKlMNOPQRSTUVWXYZABC FF ... FF 123 ... 91

CDEFGHIJKlMNOPQRSTUVWXYZABCD ABCDE F G H IJ K lMNOPORSTUVWX YZAB FF ... FF 123 ... 92

DEFGHIJKlMNOPQRSTUVWXYZABCD ABCDEFGHIJKlMNOPQRSTUVWXYZA FF , .. FF 123 ... 93

EFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKlMNOPORSTUVWXYZ FF ... FF 123 ... 94

Figure 48. Output Records at Job Step Completion

72
//UTlYONlY JOB
// EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//SEQOUT DD DSNAME=OUTSET,UNIT=disk,DISP=(,KEEP),
// DCB=(RECFM=FB,lRECl=80,BlKSIZE=800),
// SPACE=(TRK,(lO,lO)),
// VOlUME=SER=llllll
//SYSIN DD DATA

DSD DUTPUT=(SEQOUT)
FD NAME=FIElDl,lENGTH=30,STARTlOC=l,FORMAT=Al,ACTION=Tl
FD NAME=FIElD2,lENGTH=30,STARTlOC=31,FORMAT=Al,ACTION=TR
FD NAME=FIElD3,lENGTH=10,STARTlOC=71,PICTURE=10, C

P'1234567890',INDEX=1
CREATE QUANTITY=100,NAME=(FIElDl,FIElD2,FIElD3),FIll=X'FF'
END

The control statements are discussed below:

• SEQOUT DD defines the test output data set. Ten tracks of
primary space and ten tracks of secondary space are
allocated for the sequential data set on a disk volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
output data set.

• FD defines the contents of three fields to be used in the
construction of output records. The first field contains 30
bytes of alphabetic data to be truncated left after each
output record is written. The second field contains 30
bytes of alphabetic data to be truncated right after each
output record is written. The third field is a 10-byte
field containing a packed decimal number (1234567890) to be
increased by one after each record is written.

• CREATE constructs 100 output records in which the contents
of previously defined fields (FIElDl, FIElD2, and FIElD3)
are included. Note that after each record is written,
FIElDl and FIElD2 are restored to full width.

• END signals the end of a set of utility control statements.

IEBDG Program 125

IEBDG EXAMPLE 4

Input

Department 21

Department 21
I nput record 1
Input record 2

Department 21

Department 21
Input record 3
Input record 4

Department 21

Department 21
I nput record 19
Input record 20

Department 21

Department 21
I nput record 21
I nput record 22

Figure 49.

In this example, two partitioned members and input records from
the input stream are used as the basis of a partitioned output
member. Each block of 12 output records contains 10 modified
records from an input partitioned member and two records from
the input stream. Figure 49 shows the contents of the output
partitioned member at the end of the job step.

Output Records

(Rightmost 67 bytes of INSET1 (MEMBA) record 1) 1 st block of 12
• • • • • • • •

(Rightmost 67 bytes of INSET1 (MEMBA) record 10) 10
from input stream 11
from input stream 12

(Rightmost 67 bytes of INSET1 (MEMBA) record 11) 2nd block of 12
• • • • • • • •

(Rightmost 67 bytes of I NSET1 (MEMBA) record 20) 10
from input stream 11
from input stream 12

• • • •
(Rightmost 67 bytes of INSET1 (MEMBA) record 91) 10th block of 12

• • • • • • • •
(Rightmost 67 bytes of INSET1 (MEMBA) record 100) 10
from input stream 11
from input stream 12

(Rightmost 67 bytes of INSET2 (MEMBA) record 1) 11th block of 12
• • • • • • • •

(Rightmost 67 bytes of INSET2 (MEMBA) record 10) 10
from input stream 11
from input stream 12

• • • •

Output Partitioned Member at Job Step Completion

126 MVS/XA Data Administration; Utilities

(f'"
~"/

r

(//MIX
//
//SYSPRINT
//PARINI
//
//
//PARIN2
//
//
//PAROUT
//
//
//SYSIN

DSD
FD
REPEAT
CREATE
CREATE

JOB
EXEC PGM=IEBDG
DD SYSOUT=A
DD DSNAME=INSET1(MEMBA),UNIT=disk,DISP=OLD,

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),
VOLUME=SER=llllll

DD DSNAME=INSET2(MEMBA),UNIT=disk,DISP=OLD,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PS),
VOLUME=SER=222222

DD DSNAME=PARSET(MEMBA),UNIT=disk,DISP=(,KEEP),
VOLUME=SER=333333,SPACE=(TRK,(10,10,S»,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PO)

DD DATA
OUTPUT=(PAROUT),INPUT=(PARIN1,PARIN2)
NAME=FIELD1,LENGTH=13,PICTURE=13,'DEPARTMENT 21'
QUANTITY=10,CREATE=2
QUANTITY=10,INPUT=PARIN1,NAME=FIELDl
QUANTITY=2,INPUT=SYSIN

(input records 1 through 20)

$$$E
REPEAT
CREATE
CREATE

QUANTITY=10,CREATE=2
QUANTITY=10,INPUT=PARIN2,NAME=FIELDl
QUANTITY=2,INPUT=SYSIN

(input records 21 through 40)

$$$E
END

The control statements are discussed below:

• PARINI DD defines one of the input partitioned members.

• PARIN 2 DD defines the second of the input partitioned
members. (Note that the members are from different
partitioned data sets.)

• PAROUT DD defines the output partitioned member. This
example assumes that the partitioned data set does not exist
prior to the job step; that is, this DD statement allocates
space for the partitioned data set.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statements defining the
input and output data sets.

• FD creates a 13-byte field in which the picture "DEPARTMENT
21" is placed.

• The first REPEAT statement indicates that the following
group of two CREATE statements is to be repeated 10 times.

• The first CREATE statement creates 10 output records. Each
output record is constructed from an input record (from
partitioned data set INSET1) and from previously defined
FIELDI.

• The second CREATE statement indicates that two records are
to be constructed from input records included next in the
input stream.

IEBDG Program 127

IEBDG EXAMPLE 5

• The $$$E record separates the input records from the REPEAT
statement. The next REPEAT statement group is identical to
the preceding group, except that records from a different
partitioned member are used as input.

• END signals the end of a set of utility control statements.

In this example, output records are created from three sets of
utility control statements and written in three partitioned data
set members. Four fields are created and used in the
construction of the output records. In two of the fields
(FIELDl and FIELD3), alphabetic data is shifted. FIELD2 is
fixed zoned decimal and FIELD4 is fix~d alphameric. Figure 50
shows the partitioned data set members at the end of the job
step.

MEMBA
Field 1 Field 3 Field 2 Binary zeros
1 31 51 71 80

ABCDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORST 0000000000000001 fill

BCDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORS 0000000000000001 fill

CDEFGHIJKLMNOPORSTU.VWXYZABCD ABCDEFGHIJKLMNOPOR 0000000000000001 fill

DEFGHIJKi ''''''PORSTUVWXYZABCI'_ ABCDEFGHIJK MNOPO ()()()()(II'~1 .Jill -
MEMBS
Field 3 Field 3 Field 3 Field 2

1 21 41 61 80

ABCDEFGHIJKLMNOPORST ABCDEFGHIJKLMNOPORST .ABCDEFGHIJKLMNOPORST 0000000000000001

ABCDEFGHIJKLMNOPORS ABCDEFGHIJKLMNOPORS ABCDEFGHIJKLMNOPORS 00000000000000000001

ABCDEFGHIJLKMNOPOR ABCDEFGHIJKlMNOPOR ABCDEFGHIJKLMNOPOR 00000000000000000001
ABCDEFGHIJKlMNOPO ABCDEFGHIJKLMW'lPO ABClll'c:r,HI Ifl "·'''PO ooonnoooo

MEMBC
Field 4 Field 1 Binary zeros

1 31 61 BO

ABCDEFGHIJKLMNOPORSTUVWXYZ0123 ABCDEFGHIJKLMNOPORSTUVWXYZABCD fill

ABCDE FGHIJKlMNOPORSTUVWXYZ0123 BCDEFGHIJKLMNOPORSTUVWXYZABCD fill

ABCDEFGHIJKlMNOPORSTUVWXYZ0123 CDEFGHIJKLMNOPORSTUVWXYZABCD fill

ABCDE FG H I.IK LMNOPORSTU~WY YZ0123 DEFGHIJKI "'\!OPOB."T··'.!J!JXY.7~""" fill

Figure 50. Partitioned Data Set Members at Job Step Completion

The control statements are discussed below:

• PAROUT1 DD defines the first member (MEMBA) of the
partitioned output data set. This example assumes that the
partitioned data set does not exist prior to this job step;
that is, this DD statement allocates space for the data set.

• PAROUT2 and PAROUT3 DD define the second and third members,
respectively, of the output partitioned data set. Note that
each DD statement specifies DISP=OLD and UNIT=AFF=PAROUT1.

• SYSIN DD defines the control data set that follows in the
input stream.

•

•

DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
member applicable to that set of utility control statements.

FD defines the contents of a field that is used in the
subsequent construction of output records.

128 MVS/XA Data Administration: Utilities

IEBDG EXAMPLE 6

FIELD1 FIELD2

AAAAA BBBBB A
AAAAA BBBBB

AAAAA BBBBB
AAAAA BBBBB

AAAAA BBBBB A
AAAAA BBBBB

AAAAA BBBBB
AAAAA BBBBB

AAAAA BBBBB A
AAAAA BBBBB

•

//UTSTS JOB
//
//SYSPRINT
//PAROUTl
//

EXEC PGM=IEBDG
DD SYSOUT=A

//
//

DD DSNAME=PARSET(MEMBA),UNIT=disk,
DISP=(,KEEP),
VOLUME=SER=IIIIII,SPACE=(TRK,(IO,IO,5»,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS)

//PAROUT2 DD
//
//
//
//PAROUT3 DD
//
//
//

DSNAME=PARSET(MEMBB),UNIT=AFF=PAROUTl,
DCB=(RECFM=FB,lRECL=80,BLKSIZE=800,DSORG=PS),
DISP=OLD,
VOLUME=SER=111111
DSNAME=PARSET(MEMBC),UNIT=AFF=PAROUTl,
DCB=(RECFM=FB,lRECL=80,BLKSIZE=800,DSORG=PS),
DISP=OLD,
VOlUME=SER=111111

//SYSIN
DSD
FD

DD DATA

FD
FD
FD
CREATE
END
DSD
CREATE
END
DSD
CREATE
END

OUTPUT=(PAROUTl)
NAME=FIELDl,LENGTH=30,FORMAT=AL,ACTION=SL
NAME=FIELD2,LENGTH=20,FORMAT=ZD
NAME=FIELD3,LENGTH=20,FORMAT=AL,ACTION=SR
NAME=FIELD4,LENGTH=30,FORMAT=AN
QUANTITY=4,NAME=(FIElDI,FIELD3,FIELD2)

OUTPUT=(PAROUT2)
QUANTITY=4,NAME=(FIElD2,(COPY=3,FIELD3»

OUTPUT=(PAROUT3)
QUANTITY=4,NAME=(FIELD4,FIElDI)

CREATE constructs four records from combinations of
previously defined fields.

• END signals the end of a set of utility control statements.

In this example, 10 fields containing user-supplied EBCDIC
pictures are used in the construction of output records. After
a record is written, each field is rolled or waved, as specified
in the applicable FD statement. Figure 51 shows the contents of
the output records at the end of the job step.

FIELD3 FIELD4 FIELD5 FIELDS FIELD7 FIELDS FIELD9 FIELD10

AA BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

A AA BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

AA BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

A AA BB B AAA CCCCC DODD C CC DO . 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

AA .BB B AAA CCCCC DODD C CC DO 0 CCC
A AA BB B AAA CCCCC DODD C CC DO 0 CCC

Figure 51. Contents of Output Records at Job Step Completion

IEBDG Program 129

I

72
//ROLLWAVE
//
//SYSPRINT
//OUTSET
//

JOB
EXEC PGM=IEBDG
DD SYSOUT=A
DD DSNAME=SEQSET,UNIT=disk,DISP=(,KEEP),

VOLUME=SER=SAMP,SPACE=(TRK,(lO,lO)),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) //

//SYSIN
DSD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
CREATE

END
/3E

DD *
OUTPUT=(OUTSEn
NAME=FIELDl,LENGTH=8,PICTURE=8,' AAAAA',ACTION=RO
NAME=FIELD2,LENGTH=8,PICTURE=8,'BBBBB ',ACTION=RO
NAME=FIELD3,LENGTH=8,PICTURE=8,'A AA ',ACTION=RO
NAME=FIELD4,LENGTH=8,PICTURE=8,' BB B',ACTION=RO
NAME=FIELD5,LENGTH=8,PICTURE=8,' AAA ',ACTION=RO
NAME=FIELD6,LENGTH=8,PICTURE=8,' CCCCC',ACTION=WV
NAME=FIELD7,LENGTH=8,PICTURE=8,' DDDD ',ACTION=WV
NAME=FIELD8,LENGTH=8,PICTURE=8,' C CC ',ACTION=WV
NAME=FIELD9,LENGTH=8,PICTURE=8,' DD D',ACTION=WV
NAME=FIELDlO,LENGTH=8,PICTURE=8,' CCC ',ACTION=WV
QUANTITY=300,NAME=(FIELDl,FIELD2,FIELD3, C

FIELD4,FIELD5,FIELD6,FIELD7,FIELD8, C
FIELD9,FIELDlO)

The control statements are discussed below:

• OUTSET DD defines the output sequential data set on a disk
volume. Ten tracks of primary space and 10 tracks of
secondary space are allocated to the data set.

• SYSIN DD defines the control data set that follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
output data set.

• FD defines a field to be used in the subsequent construction
of output records. The direction and frequency of the
initial roll or wave depend on the location of data in the
field.

• CREATE constructs 300 records from the contents of the
previously defined fields.

• END signals the end of a set of utility control statements.

130 MVS/XA Data Administration: Utilities

,..-" "'''\

~")

IEBDG EXAMPLE 7

In this example, the first 10 bytes of the output record contain
data generated in zoned decimal format. This field serves as
the key field for the output record in the output indexed
sequential data set. The key field is increased (indexed) by
one for each record. The input sequential data set provides an
additional SO-byte field to complete the output record.

72
//CREATEIS JOB
//BEGIN EXEC PGM=IEBDG
//TAPEIN DD DCB=(BLKSIZE=80,LRECL=80,RECFM=F),
// DISP=(OLD,KEEP),UNIT=disk,
// LABEL=(,SL),
// DSNAME=TAPEIT,VOL=SER=MASTER
//DISKOUT DD DCB=(BLKSIZE=270,LRECL=90,RECFM=FB,DSORG=IS,
// NTM=2,OPTCD=MY,RKP=0,KEYLEN=10,CYLOFL=1),
// UNIT=disk,SPACE=(CYL,l),
// DISP=(NEW,KEEP),
// VOL=SER=llllll,DSNAME=CREATIS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DSD OUTPUT=(DISKOUT),INPUT=(TAPEIN)
FD NAME=DATAFD,LENGTH=80,FROMLOC=1, C

STARTLOC=ll,INPUT=TAPEIN
FD NAME=KEYFD,LENGTH=lO,STARTLOC=l, FORMAT=ZD,INDEX=l
CREATE INPUT=TAPEIN,NAME=(KEYFD,DATAFD)
END

/*

The control statements are discussed below:

• TAPEIN DD defines the sequential input data set.

• DISKOUT DD defines the indexed sequential output data set.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DSD marks the beginning of a set of utility control
statements and refers to the DD statement defining the
output data set.

• FD defines a field that will be used in the subsequent
construction of output records. The first FD statement in
this example defines and locates an 80-byte field of input
data. The data is field selected from one of the input
logical records and placed at start location 11 of the
output logical record. The second FD statement defines and
locates the 10-byte key field.

• CREATE constructs a 90-byte output record by referring to
the previously defined fields.

• END signals the end of a set of utility control statements.

IEBDG Program 131

IEBEDIT PROGRAM

INPUT AND OUTPUT

RETURN CODES

IEBEDIT is a data set utility used to create
containing a selection of jobs or job steps.
data sets defined on tape volumes and direct
be used as input streams for job processing.

an output data set
At a later time,

access devices can

IEBEDIT creates an output job stream by editing and selectively
copying a job stream provided as input. The program can copy:

• An entire job or jobs, including JOB statements and any
associated JOBLIB or JOBCAT statements, and JES2 or JES3
control statements.

• Selected job steps, including the JOB statement, JES2 or
JES3 control statements following the JOB statement, and any
associated JOBLIB or JOBCAT statements.

All selected JOB statements, JES2 or JES3 control statements,
JOBLIB or JOBCAT statements, jobs, or job steps are placed in
the output data set in the same order as they exist in the input
data set. A JES2 or JES3 control statement or a JOBLIB or
JOBCAT statement is copied only if it follows a selected JOB
statement. .

When IEBEDIT encounters a selected job step containing an input
record having the characters " .. *" (period, period, asterisk) in
columns 1 through 3, the program automatically converts that
record to a termination statement (/* statement) and places it
in the output data set.

A "/*nonblank" indicates a JES2 or JES3 control statement.

IEBEDIT uses the following input:

• An input data set, which is a sequential data set consisting
of a job stream. The input data set is used as source data
in creating an output sequential data set.

• A control data set, which contains utility control
statements that are used to specify the organization of jobs
and job steps in the output data set.

IEBEDIT produces the following output:

• An output data set, which is a sequential data set
consisting of a resultant job stream.

• A message data set, which is a sequential data set that
contains applicable control statements, error messages, if
applicable, and, optionally, the output data set.

IEBEDIT returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed in Figure 52 on page 133.

132 MVS/XA Data Administration: Utilities

(

(

c

CONTROL

Codes Meaning

00 (00 hex) Successful completion.

04 (04) An error occurred. The output data set may not be
usable as a job stream. Processing continues.

08 (08) An unrecoverable error occurred while attempting to
process the input, output, or control data set.
The job step is terminated.

Figure 52. IEBEDIT Return Codes

IEBEDIT is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke the program and to define the data sets used
and produced by the program. The utility control statements are
used to control the functions of the program.

JOB CONTROL STATEMENTS

Figure 53 shows the job control statements for IEBEDIT.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBEDIT) or, if the
job control statements reside in a procedure
library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a direct access volume.

SYSUTl DD Defines a sequential input data set on a card
reader, tape volume, or direct access device.

SYSUT2 DD Defines a sequential output data set on a card
punch, printer, tape volume, or direct access
device.

SYSIN DD Defines the control data set. The data set normally
is included in the input stream; however, it can be
defined as a member of a procedure library or as a
sequential data set existing somewhere other than
in the input stream.

Figure 53. Job Control Statements for IEBEDIT

Notes to Figure 53:

1. The block size for the SYSPRINT data set must be a multiple
of 121. If not, the job step is terminated with a return
code of 8. The block size for the SYSIN, SYSUT1, and SYSUT2
data sets must be a multiple of 80. Any blocking factor can
be specified for these record sizes.

IEBEDIT Program 133

----------------_._-

2. Any JES2 or JES3 control statement or JOBLIB DD statement
that follows a selected JOB statement is automaticallY
copied to the output data set. f
JES2 or JES3 control statements preceding the JOB statement \l.._/
are assumed to belong to the previous job. JES2 or JES3
control statements preceding the first JOB statement are
included only if a total copy is requested.

JES2 or JES3 control statements within a DD DATA stream are
included only if a delimiter other than "/*" is coded in the
DD DATA card. For a description of coding another
delimiter, see the publication J&l. If another delimiter is
not coded, the first two characters of the JES2 or JES3
control statement will act as a delimiter to DD DATA.

UTILITY CONTROL STATEMENT

EDIT Statement

IEBEDIT uses only one utility control statement, EDIT.
Continuation requirements for the statement are described in
"Continuing utility Control Statements" on page 5.

The EDIT statement indicates which step or steps of a specified
job in the input data set are to be included in the output data
set. Any number of EDIT statements can be included in an
operation, thus including selected jobs in the output data set.

EDIT statements must be included in the same order as the input
jobs that they represent. If no EDIT statement is present in
the control data set, the entire input data set is copied.

The format of the EDIT statement is:

[l.9.hlll EDIT [START=jobnamel

[,TYPE=POSITIONIINCLUDEIEXCLUDEl

[,STEPNAME=(~[,name-namel), ••• l

[,NOPRINTl

134 MVS/XA Data Administration: Utilities

(

(

(-.
~

Parameters

NOPRINT

START

STEPNAME

Applicable
Control
statements

EDIT

EDIT

EDIT

Description of Parameters

NOPRINT
specifies that the message data set is not to
include a listing of the output data set.

Default: The resultant output is listed in the
message data set.

START=jobname
specifies the name of the input job to which the
EDIT statement applies. (Each EDIT statement
must apply to a separate job.> If START is
specified without TYPE and STEPNAME, the JOB
statement and all job steps for the specified
job are included in the output.

Default: If START is omitted and only one EDIT
statement is provided, the first job encountered
in the input data set is processed. If START is
omitted from an EDIT statement other than the
first statement, processing continues with the
next JOB statement found in the input data set.

STEPNAME=(name[,name-name]), •••
specifies the first job step to be placed in the
output data set when coded with TYPE=POSITION.
Job steps preceding this step are not copied to
the output data set.

namg can be specified as a single job step name
or a sequential range of names, separated by a
hyphen: name-n~. If more than one value is
specified for name, the entire STEPNAME field
must be enclosed in parentheses.

When coded with TYPE=INCLUDE or TYPE=EXCLUDE,
STEPNAME specifies the names of job steps that
are to be included in or excluded from the
operation. For example,
STEPNAME=(STEPA,STEPF-STEPL,STEPZ) indicates
that job steps STEPA, STEPF through STEPL, and
STEPZ are to be included in or excluded from the
operation.

Default: If STEPNAME
input job whose name
statement is copied.
specified, the first
processed.

is omitted, the entire
is specified on the EDIT
If no job name is

job encountered is

IEBEDIT Program 135

Parameters

TYPE

Applicable
Control
statements

EDIT

Description of Parameters

TVPE=POSITIONIINCLUDEIEXCLUDE
specifies the contents of the output data set.
These values can be coded:

POSITION
specifies that the output is to consist of
a JOB statement, the job step specified in
the STEPNAME parameter, and all steps that
follow it. All job steps preceding the
specified step are omitted from the
operation. POSITION is the default.

INCLUDE
specifies that the output data set is to
contain a JOB statement and all job steps
specified in the STEPNAME parameter.

EXCLUDE
specifies that the output data set is to
contain a JOB statement and all job steps
belonging to the job except those steps
specified in the STEPNAME parameter.

IEBEDIT EXAMPLES

The following examples show some of the uses of IEBEDIT.
Figure 54 can be used as a quick~reference guide to these
examples. The numbers in the "Example" column refer to the
examples that follow.

operation Devices Comments Example

COPY 9-track Tape The input data set 1
contains three jobs.
One job is to be
copied.

COPY 7-track Tape The output data set is 2
the second data set on
the volume. One job
step is to be copied
from each of three
jobs.

COPY Disk and Include a job step from 3
9-track Tape one job and exclude a

job step from another
job.

COPY Disk Latter portion of a job 4
stream is to be copied.

COPY 9-track Tape All records in the 5
input data set are to
be copied. The " .. *"
record is converted to
a "/* " statement in
the output data set.

Figure 54 (Part 1 of 2). IEBEDIT Example Directory

136 MVS/XA Data Administration: Utilities

(f---\
,- I
\-~J;

IEBEDIT EXAMPLE 1

(~

IEBEDIT EXAMPLE 2

(-

Operation Devices Comments Example

COPY 9-track Tape The input contains a 6
JES2 or JES3 control
statement and a new
delimiter.

Figure 54 (Part 2 of 2). IEBEDIT Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In this example, one job (JOBA), including all of its job steps
(A, B, C, and D), is copied into the output data set. The input
data set contains three jobs: JOBA, which has four job steps;
JOBB, which has three job steps; and JOBC, which has two job
steps.

//EDITl
//
//SYSPRINT
//SYSUTl
//SYSUT2
//
//
//SYSIN

JOB
EXEC PGM=IEBEDIT
DD SYSOUT=A
DD UNIT=tape,DISP=(OLD,KEEP),VOL=SER=OOI234
DD UNIT=tape,DISP=(NEW,KEEP),VOL=SER=001235,

DCB=(RECFM=F,LRECL=80,BLKSIZE=80),
DSNAME=OUTTAPE

DD *
EDIT START=JOBA

The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set resides
on a standard labeled tape volume (001234).

• SYSUT2 DD defines the output data set, called OUTTAPE. The
data set is to reside as the first data set on a standard
labeled tape volume (001235).

• SYSIN DD defines the control data set, which follows in the
input stream.

• EDIT indicates that JOBA is to be copied in its entirety.

This example copies one job step from each of three jobs. The
input data set contains three jobs: JOBA, which includes STEPA,
STEPB, STEPC, and STEPD; JOBB, which includes STEPE, STEPF, and
STEPG; and JOBC, which includes STEPH and STEPJ.

IEBEDIT Program 137

IEBEDIT EXAMPLE 3

----- ---------

IIEDIT2 JOB #'
II EXEC PGM=IEBEDIT C)
IISYSPRINT DD SYSOUT=A ,---
IISYSUTI DD DISP=(OLD,KEEP),VOLUME=SER=001234,
II UNIT=tape
IISYSUT2 DD DSN=OUTSTRM,UNIT=tape,DISP=(NEW,KEEP),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),
II LABEL=(2,SL)
IISYSIN DD 3(

EDIT START=JOBA,TYPE=INCLUDE,STEPNAME=(STEPC,STEPD)
EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=STEPE
EDIT START=JOBC,TYPE=INCLUDE,STEPNAME=STEPJ

13(

The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set resides
on a standard labeled tape volume (001234).

• SYSUT2 DD defines the output data set, OUTSTRM. The data
set is to reside as the second data set on a standard
labeled tape volume (001235).

• SYSIN DD defines the control data set, which follows in the
input stream.

• The EDIT statements copy the JOB statements and job steps
described as follows:

1. The JOB statement and steps STEPC and STEPD for JOBA.

2. The JOB statement and STEPE for JOBB.

3. The JOB statement and STEPJ for JOBC.

This example includes a job step from one job and excludes a job
step from another job. The input data set contains three jobs:
JOBA, which includes STEPA, STEPB, STEPC, and STEPDj JOBB, which
includes STEPE, STEPF, and STEPGj and JOBC, which includes STEPH
and STEPJ.

IIEDIT3
II
IISYSPRINT
IISYSUTl
II
IISYSUT2
II
II

JOB
EXEC PGM=IEBEDIT
DD SYSOUT=A
DD DSNAME=INSET,UNIT=disk,DISP=(OLD,KEEP),

VOLUME=SER=llllll
DD DSNAME=OUTTAPE,UNIT=tape,LABEL(,NL),

DCB=(DEN=2,RECFM=F,LRECL=80,BLKSIZE=80),
DISP=(,KEEP)

IISYSIN DD 3(

13(

EDIT
EDIT

START=JOBB,TYPE=INCLUDE,STEPNAME=(STEPF-STEPG)
START=JOBC,TYPE=EXCLUDE,STEPNAME=STEPJ

()

138 MVS/XA Data Administration: Utilities

(

IEBEDIT EXAMPLE 4

(

(
~

-.

The control statements are discussed below:

• SYSUTI DD defines the input data set, INSET. The data set
resides on a disk volume (111111).

• SYSUT2 DD defines the output data set, OUTTAPE. The data
set is to reside as the first or only data set on an
unlabeled (800 bits per inch) tape volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The EDIT statements copy JOB statements and job steps as
described below:

1. The JOB statement and steps STEPF and STEPG for JOBB.

2. The JOB statement and STEPH, excluding STEPJ, for JOBC.

This example copies the JOBA JOB statement, the job step STEPF,
and all the steps that follow it. The input data set contains
one job (JOBA), which includes STEPA, STEPB, ... STEPL. Job
steps STEPA through STEPE are not included in the output data
set.

//EDIT4
//
//SYSPRINT
//SYSUTI
//
//
//SYSUT2
//
//
//
//
//SYSIN

JOB
EXEC PGM=IEBEDIT
DD SYSOUT=A
DD DSNAME=INSTREAM,UNIT=disk,

DISP=(OLD,KEEP),
VOLUME=SER=llllll

DD DSNAME=OUTSTREM,UNIT=disk,
DISP=(,KEEP),
DCB=(RECFM=F,LRECl=80,BlKSIZE=80),
VOLUME=SER=222222,
SPACE=(TRK,2)

DD *
EDIT START=JOBA,TYPE=POSITION,STEPNAME=STEPF

The control statements are discussed below:

• SYSUTI DD defines the input data set, called INSTREAM. The
data set resides on a disk volume (111111).

• SYSUT2 DD defines the output data set, called OUTSTREAM.
The data set is to reside on a disk volume (222222). Two
tracks are allocated for the output data set.

• SYSIN DD defines the control data set, which follows in the
input stream.

• EDIT copies the JOBA JOB statement and job steps STEPF
through STEPl.

IEBEDIT Program 139

IEBEDIT EXAMPLE 5

This example copies the entire input (SYSUT1) data set. The
record containing the characters " .. *" in columns 1 through 3 is
converted to a "/* " statement in the output data set.

//EDIT5
//
//SYSPRINT
//SYSUT2
//
//
//
//SYSIN
//SYSUTl
//BLDGDGIX
//
//SYSPRINT
//DDI
//SYSIN

JOB
EXEC PGM=IEBEDIT
DD SYSOUT=A
DD DSNAME=OUTTAPE,UNIT=tape,

VOlUME=SER=001234,
DCB=(RECFM=F,LRECl=80,BlKSIZE=80),
DISP=(NEW,KEEP)

DD
DD
JOB

DUMMY
DATA

EXEC PGM=IEHPROGM
DD SYSOUT=A
DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
DD *

BLDG INDEX=A.B.C,ENTRIES=lO,EMPTY
.. *
/*

The control statements are discussed below:

• SYSUT2 DD defines the output data set, called OUTTAPE. The
data set is to reside as the first data set on a tape volume
(001234).

• SYSIN DD defines a dummy control data set .

• SYSUTI DD defines the input data set. which follows in the
input stream. The job is terminated when the termination
statement (/*b) is encountered. (SYSUTI therefore includes
the BLDGDGIX JOB statement, EXEC statement, SYSPRINT, DD1,
and SYSIN DD statements.)

140 MVS/XA Data Administration: Utilities

IEBEDIT EXAMPLE 6

This example copies the entire input (SYSUT1) data set,
including the JES2 control statement, because a new delimiter
(JPl has been coded. Otherwise, the "/*" the JES2 control
statement would have terminated the input.

//EDIT6 JOB
//STEPA EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=TAPEOUT,UNIT=tape,
// VOl=SER=001234,lABEl=(,Sl),
// DCB=(RECFM=FB,lRECl=80,BlKSIZE=800),
// DISP=(NEW,KEEP)
//SYSIN DD DUMMY
//SYSUTI DD DATA,OlM=JP
//lISTVTOC JOB 091550,BlUE
/*MESSAGE JOB NEEDS VOLUME 338000
//FSTEP EXEC PGM=IEHlIST
//SYSPRINT DO SYSOUT=A
//002 OD UNIT=disk,VOl=SER=llllll,OISP=OlD
//SYSIN DO *

lISTVTOC FORMAT,VOl=disk=111111

The control statements are discussed below:

•

•

SYSUT2 DO defines the output data set, called TAPEOUT. The
data set will be the first data set on a standard label tape
volume (001234).

SYSIN OD defines a dummy control data set.

• SYSUTI OD defines the input data set, which follows in the
input stream. The DlM parameter defines characters JP to
act as a delimiter for the input data.

• IEBEDIT copies the JOB statement through the "/*" statement
(including the lISTVTOC and MESSAGE job statements, FSTEP
EXEC statement, and SYSPRINT, D02 and SYSIN DD statements).

IEBEDIT Program 141

IEBGENER pROGRAM

IEBGENER is a data set utility that can be used to:

• Create a backup copy of a sequential data set or a
partitioned member.

• Produce a partitioned data set or member from a sequential
input data set.

• Expand an existing partitioned data set by creating
partitioned members and merging them into the data set that
is to be expanded.

• Produce an edited sequential or partitioned data set.

• Reb10ck or change the logical record length of a data set.

• Copy user labels on sequential output data sets. CRefer to
Appendix C, "Processing User Labels" on page 426.)

• Provide optional editing facilities and exits for user
routines that process labels, manipulate input data, create
keys, and handle permanent input/output errors. Refer to
Appendix A, "Exit Routine Linkage" on page 422, for a
discussion of linkage conventions that are applicable when
user routines are provided.

CREATING A BACKUP COpy

4\
~o»

A backup copy of a sequential data set or partitioned member can '- ')'
be produced by copying the data set or member to any
IBM-supported output device. For example, a copy can be made
from tape to tape, from DASD to tape, etc.

A data set that resides on a direct access volume can be copied
to its own volume, provided that its data set name is changed.
A partitioned data set cannot reside on a magnetic tape volume.

PRODUCING A PARTITIONED DATA SET FROM SEQUENTIAL INPUT

Through the use of utility control statements, you can logically
divide a sequential data set into record groups and assign
member names to the record groups. IEBGENER places the newly
created members in a partitioned output data set.

A partitioned data set cannot be produced if an input or output
data set contains spanned records.

Figure 55 on page 143 shows how a partitioned data set is
produced from a sequential data set used as input. The left
side of the figure shows the sequential data set. Utility
control statements are used to divide the sequential data set
into record groups and to provide a member name for each record
group. The right side of the figure shows the partitioned data
set produced from the sequential input.

142 MVS/XA Data Administration: Utilities

Utility control
statement names
first member

Utility control
statement identified
last record

Utility control
statement names
new member

Utility control
statement identifies
last record

Utility control
statement names
new member

Sequential
input

..------, Record

LASTREC n

group
1

Record
group
n

Partitioned
output

LASTREC 1

LASTREC 2

LASTREC n

Figure 55. Creating a Partitioned Data Set from Sequential
Input Using IEBGENER

EXPANDING A PARTITIONED DATA SET

An expanded data set is a data set into which an additional
member or members have been merged. IEBGENER creates the
members from sequential input and places them in the data set
being expanded. The merge operation--the ordering of the
partitioned directory--is automatically performed by the
program.

Figure 56 on page 144 shows how sequential input is converted
into members that are merged into an existing partitioned data
set. The left side of the figure shows the sequential input
that is to be merged with the partitioned data set shown in the
middle of the figure. Utility control statements are used to
divide the sequential data set into record groups and to provide
a member name for each record group. The right side of the
figure shows the expanded partitioned data set. Note that
members B. D. and F from the sequential data set were placed in
available space and that they are sequentially ordered in the
partitioned directory.

IEBGENER Program 143

Utility control
statements define
reC'ord groups
name members

Sequential
input

Member
B

o

Existing
data set

Expanded
data set

Figure 56. Expanding a Partitioned Data Set Using IEBGENER

PRODUCING AN EDITED DATA SET

IEBGENER can be used to produce an edited sequential or
partitioned data set. Through the use of utility control
statements. you can specify editing information that applies to
a record. a group of records. selected groups of records. or an
entire data set.

An edited data set can be produced by:

• Rearranging or omitting defined data fields within a record.

• Supplying literal information as replacement data.

• Converting data from packed decimal to unpacked decimal
mode, unpacked decimal to packed decimal mode, or BCD4 to
EBCDIC mode. For more information on converting from BCD to
EBCDIC, see Data Administration Gyide.

Figure 57 on page 145 shows part of an edited sequential data
set. The left side of the figure shows the data set before
editing is performed. Utility control statements are used to
identify the record groups to be edited and to supply editing
information. In this figure, literal replacement information is
supplied for information within a defined field. (Data is
rearranged, omitted, or converted in the same manner.) The BBBB
field in each record in the record group is to be replaced by

Used here to mean the standard H character set of Binary
Coded Decimal.

144 MVS/XA Data Administration: Utilities

(
CCCC. The right side of the figure shows the data set after
edi ting.

Utility control statement.

Defines record group, contains
literal replacement data (CCCC).
Applies to all records within
the group.

»
»
»
»

Record
1

Record
2

Record
n

Record
group ..

»
»
»
»

I
»
»
»

»
»
~

p-j --
»
»
»
»

Figure 57. Editing a Sequential Data Set Using IEBGENER

IEBGENER cannot be used to edit a data set if the input and
output data sets consist of variable spanned (VS) or variable
blocked spanned (VBS) records and have equal block sizes and
logical record lengths. In these cases, any utility control
statements that specify editing are ignored. That is, for each
physical record read from the input data set, the utility writes
an unedited physical record on the output data set.

REB LOCKING OR CHANGING LOGICAL RECORD LENGTH

INPUT AND OUTPUT

IEBGENER can be used to produce a reblocked output data set
containing either fixed-length or variable-length records. In
addition, as long as both input and output RECFM are not V or
VB, the program can produce an output data set having a logical
record length that differs from the input logical record length.

IEBGENER uses the following input:

• An input data set, which contains the data that is to be
copied, edited, converted into a partitioned data set, or
converted into members to be merged into an existing data
set. The input is either a sequential data set or a member
of a partitioned data set.

• A control data set, which contains utility control
statements. The control data set is required if editing is
to be performed or if the output data set is to be a
partitioned data set.

IEBGENER Program 145

RETURN CODES

90NTROL

IEBGENER produces the following output:

• An output data set, which can be either sequential or
partitioned. The output data set can be either a new data
set (created during the current job step) or an existing
partitioned data set that was expanded. If a partitioned
data set is created, it is a new member with a new directory
entry. None of the information is copied from the previous
directory entry.

• A message data set, which contains informational messages
(for example, the contents of utility control statements)
and any error messages.

• Message IEC507D will be issued twice when adding data or
members to an existing data set which has an unexpired
expiration date. This occurs because the input and output
data sets are opened twice.

IEBGENER returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed in Figure 58.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) Probable successful completion. A warning message
is written.

OS (OS)

12 (OC)

Processing was terminated after you requested
processing of user header labels only.

An unrecoverable error exists. The job step is
terminated.

16 (10) A user routine passed a return code of 16 to
IEBGENER. The job step is terminated.

Figure 58. IEBGENER Return Codes

IEBGENER is controlled by job control statements and utility
control statements. The job control statements execute or
invoke IEBGENER and define the data sets that are used and
produced by the program. The utility control statements control
the functions of IEBGENER.

JOB CONTROL STATEMENTS

Figure 59 on page 147 shows the job control statements for
IEBGENER.

146 MVS/XA Data Administration: utilities

(

I EXEC statement

c

statement

JOB

Use

Initiates the job.

EXEC Specifies the program name (PGM=IEBGENER) or, if
the job control statements reside in a procedure
library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a DASD volume.

SYSUTl DD Defines the input data set. It can define a
sequential data set or a member of a partitioned
data set.

SYSUT2 DD Defines the output data set. It can define a
sequential data set, a member of a partitioned data
set, or a partitioned data set.

SYSIN DD Defines the control data set, or specifies DUMMY
when the output is sequential and no editing is
specified. The control data set normally resides
in the input stream; however, it can be defined as
a member in a partitioned data set.

Figure 59. Job Control Statements for IEBGENER

The EXEC statement is required for each use of IEBGENER.

Before you run IEBGENER you may need to calculate the region
size (in virtual storage) needed to run the program. You would
then specify this value in the REGION parameter.

Using multiple buffers for IEBGENER increases the amount of
virtual storage needed to run the program. You may need to
change, or add, the REGION parameter for the additional storage
to avoid 80A abends.

The default for the number of buffers is five. You can override
this by specifying DCBBUFNO or DCBNCP on the SYSUTI or SYSUT2 DD
statement.

You can calculate the region size by using the following
formula:

region size = 5DK + (2 + SYSUTI BUFNO)*(SYSUTI BlKSIZE) +
(2 + SYSUT2 BUFNO)*(SYSUT2 BlKSIZE)

If you do not use BUFNO in your JCl, use the default value of 5.

The following information, taken from "IEBGENER Example 3" on
page 159, shows how to calculate the region size needed:

SYSUTI BUFNO = 20
SYSUTI BlKSIZE = 2K
SYSUT2 BUFNO = Not specified, default is used
SYSUT2 BlKSIZE = 32K

region size = 5DK + (2 + 20)*(2K) +
(2 + 5)*(32K)

Therefore, region size = 3l8K (that is, REGION=3l8K).

IEBGENER Program 147

SVSPRINT DD statement

SVSUTl DD statement

SVSUT2 DD statement

The SYSPRINT DD statement is required for each use of IEBGENER.
The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified for this record size.

The input data set for IEBGENER, as specified in SYSUT1, can
contain fixed, variable, undefined, or variable spanned records.
Concatenated data sets with unlike attributes are not allowed as
input to IEBGENER. For information on concatenated data sets,
see Data Administration Guide.

// cards (JCl statements) cannot be included in the SYSUTI data
set unless SYSUTI DD DATA is specified.

Block size must be specified for the input data set in one of
two ways:

• With the BlKSIZE parameter in the DD statement

• In the DCB information on the tape label.

The default RECFM is U for the input data set. RECFM must be
specified if the data set is new, undefined, a dummy data set,
or a data set from a card punch.

The input lRECl must be specified when the record format is FB,
VS, or VBS, or when the data set is new, a dummy data set, or a
data set from a card punch. In all other cases, a default lRECl
is generated by IEBGENER.

A partitioned data set cannot be produced if an input data set
contains spanned records.

If both the SYSUTI and the SYSUT2 DD statements specify standard
user labels (SUl), IEBGENER copies user labels from SYSUTI to
SYSUT2. See Appendix C, "Processing User labels" on page 426,
for a discussion of the available options for user label
processing.

The output data set for IEBGENER, as specified in SYSUT2, can
contain fixed, variable, undefined, or variable spanned records
(except partitioned output data sets, which cannot contain
variable spanned records). These records can be reblocked by
the specification of a new maximum block length on the SYSUT2 DD
statement. During reblocking, if the output data set resides on
a direct access volume:

• For fixed-length or variable-length records, keys can be
retained only by using the appropriate user exit.

• For variable spanned records, keys can never be retained.

If the output data set is on a card punch or a printer, you must
specify DCB information on the SYSUT2 DD statement. DCB
parameters in a SYSUT2 DD statement defining an expanded
partitioned data set must be compatible with the specifications
made when the data set was originally created.

When RECFM, BlKSIZE, and lRECl are not specified in the JCl for
the output data set, values for each are copied from the input
data set's DSCB.

The output block size must always be specified when the logical
record length and record format (except for U) are specified.

148 MVS/XA Data Administration: Utilities

r1~.'\

~o~J

(-

SYSIN DD Statement

The default RECFM is U for the output data set. RECFM must be
specified when a data set is new, a dummy data set, or a data
set from a card punch or printer.

The output LRECL must be specified when editing is to be
performed and the record format is FB, VS, or VBS. LRECL must
also be specified when the data set is new, a dummy data set, or
a data set from a card punch or printer. In all other cases, a
default LRECL value is generated by IEBGENER.

If the logical record length of the output data set differs from
that of the input data set, all positions in the output records
must undergo editing to justify the new logical record length.

A partitioned data set cannot be produced if an input or output
data set contains spanned records.

IEBGENER cannot produce an output data set having a logical
record length that differs from the input logical record length
if both input and output RECFM are V or VB.

IEBGENERwill terminate with an unpredictable message or abend
code if OISP=OLO is specified on a SYSUT2 OD statement making a
specific volume request for a nonexistent data set.

The SYSIN DO statement is required for each use of IEBGENER.
The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified for this block size.

UTILITY CONTROL STATEMENTS

IEBGENER is controlled by utility control statements. The
statements and the order in which they must appear are listed in
Figure 60.

Statement Use

GENERATE Indicates the number of member names and alias names,
record identifiers, literals, and editing information
contained in the control data set.

EXITS Indicates that user routines are provided.

LABELS Specifies user-label processing.

MEMBER Specifies the member name and alias of a member of a
partitioned data set to be created.

RECORD Defines a record group to be processed and supplies
editing information.

Figure 60. IEBGENER Utility Control Statements

The control statements are included in the control data set as
required. If no utility control statements are included in the
control data set, the entire input data set is copied
sequentially.

When the output is to be sequential and editing is to be
performed, one GENERATE statement and as many RECORD statements
as required are used. If user exits are provided, an EXITS
statement is used.

When the output is to be partitioned, one GENERATE statement,
one MEMBER statement per output member, and RECORD statements,

IEBGENER Program 149

GENERATE statement

EXITS Statement

as required, are used. If user exits are provided, an EXITS
statement is used.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.
A nonblank character continuation mark in column 72 is optional
for IEBGENER.

The GENERATE statement is required when: (1) output is to be
partitioned, (2) editing is to be performed, or (3) user
routines are provided and/or label processing is specified. The
GENERATE statement must appear before any other IEBGENER utility
statements. If it contains errors or is inconsistent with other
statements, IEBGENER is terminated.

The format of the GENERATE statement is:

[.l..s..Qgl] GENERATE [MAXNAME=,n]

[,MAXFLDS=,n]

[,MAXGPS=n]

[, MAXLITS=,n]

(/
I,,_j

The EXITS statement is used to identify exit routines supplied ~
by the user. Linkages to and from exit routines are discussed
in Appendix A, "Exit Routine Linkage" on page 422.

For a detailed discussion of the processing of user labels as
data set descriptors, and for a discussion of user label
totaling, refer to Appendix C, "Processing User Labels" on
page 426.

The format of the EXITS statement is:

[l.s.b.!U.] EXITS [INHDR=routinenamel

[,OUTHDR=roytinename]

[,INTLR=roytinename]

[,OUTTLR=roytinename]

[,KEV=roytinenamel

[,DATA=roytinenamel

[,IOERROR=roytinenamel

[,TOTAL=(rQy!iD~Dgm~,~)l

150 MVS/XA Data Administration: Utilities

-------------------- -------------------

LABELS Statement

MEMBER Statement

RECORD Statement

(,

The LABELS statement specifies whether or not user labels are to
be treated as data by IEBGENER. For a detailed discussion of
this option. refer to Appendix C. "Processing User Labels" on
page 426.

The LABELS statement is used when you want to specify that: (1)
no user labels are to be copied to the output data set. (2) user
labels are to be copied to the output data set from records in
the data portion of the SYSIN data set. or (3) user labels are
to be copied to the output data set after they are modified by
the user's label processing routines. If more than one valid
LABELS statement is included. all but the last LABELS statement
are ignored.

The format of the LABELS statement is:

I [l.s.blll LABELS [DATA=~INOIALLIONLVIINPUTl

LABELS DATA=NO must be specified to make standard user labels
(SUL) exits inactive when input/output data sets with
nonstandard labels (NSL) are to be processed.

The MEMBER statement is used when the output data set is to be
partitioned. One MEMBER statement must be included for each
member to be created by IEBGENER. The MEMBER statement provides
the name and alias names of a new member.

All RECORD statements following a MEMBER statement pertain to
the member named in that MEMBER statement. If no MEMBER
statements are included. the output data set is organized
sequentially.

The format of the MEMBER statement is:

I[~] MEMBER

The RECORD statement is used to define a record group and to
supply editing information. A record group consists of records
that are to be processed identically.

The RECORD statement is used when: (1) the output is to be
partitioned. (2) editing is to be performed. or (3) user labels
for the output data set are to be created from records in the
data portion of the SYSIN data set. The RECORD statement
defines a record group by identifying the last record of the
group with a literal name.

If no RECORD statement is used. the entire input data set or
member is processed without editing. More than one RECORD
statement may appear in the control statement stream for
IEBGENER.

Within a RECORD statement. one IDENT parameter can be used to
define the record group; one or more FIELD parameters can be
used to supply the editing information applicable to the record
group; and one LABELS parameter can be used to indicate that
this statement is followed immediately by output label records.

IEBGENER Program 151

Parameters

DATA

The format of the RECORD statement is:

[l.s!.!:!ll] RECORD [IDENT=(length,'~',input-location)]

[,FIELD=([length]
[,in£yt-locationl'literal']
[,conversion]
[,output-location])]

[,LABELS=n]

Note that the variables on the FIELD parameter are positional;
that is, if any of the options are not coded, the associated
comma preceding that variable must be coded.

Applicable
Control
statements

EXITS

LABELS

Description of Parameters

DATA=routinename
specifies the name of the routine that modifies
the physical record (logical record for VS or
VBS type records) before it is processed by
IEBGENER.

DATA=YESINOIALLIONLYIINPUT
specifies whether user labels are to be treated
as data by IEBGENER. These values can be coded:

YES

NO

ALL

ONLY

specifies that any user labels that are not
rejected by a user's label processing
routine are to be treated as data.
Processing of labels as data ends in
compliance with standard return codes. YES
is the default.

specifies that user labels are not to be
treated as data. In order to make standard
user label (SUL) exits inactive, NO must be
specified when processing input/output data
sets with nonstandard labels (NSL).

specifies that all user labels in the group
currently being processed are to be treated
as data. A return code of 16 causes
IEBGENER to complete processing the
remainder of the group of user labels and
to terminate the job step.

specifies that only user header labels are
to be treated as data. User header labels
are processed as data regardless of any
return code. The job terminates upon
return from the OPEN routine.

INPUT
specifies that user labels for the output
data set are supplied as SO-byte input
records in the data portion of SYSIN. The
number of input records that should be
treated as user labels must be identified
by a RECORD statement.

152 MVS/XA Data Administration: utilities

/'<.
({~~)

c£ "
~

(-.
Parameters

FIELD

Applicable
Control
statements

RECORD

Description of Parameters

FIELD:([length],[iDput-locationl'literal'],
[conyersion],[outpyt-locationl)

specifies field-processing and editing
information. Only the contents of specified
fields in the input record are copied to the
output record; that is, any field in the output
record that is not specified will contain
meaningless information.

Note that the variables on the FIELD parameter
are positional; if any of the options are not
coded, the associated comma preceding that
variable must be coded.

The values that can be coded are:

length
specifies the length (in bytes) of the
input field or literal to be processed. If
length is not specified, a length of 80
bytes is assumed. If a literal is to be
processed, a length of 40 bytes or less
must be specified. The length cannot
exceed 8 decimal characters.

inpyt-location
specifies the starting byte of the field to
be processed. inpyt-location should be
coded as a decimal number.

Default: Byte 1 is assumed.

'literal'
specifies a literal (maximum length of 40
bytes) to be placed in the specified output
location. If a literal contains
apostrophes, each apostrophe must be
written as two consecutive apostrophes.

conversion
specifies a 2-byte code that indicates the
type of conversion to be performed on this
field. If no conversion is specified, the
field is moved to the output area without
change. The values that can be coded are:

PZ

ZP

HE

specifies that data (packed decimal)
is to be converted to unpacked decimal
data. Unpacking of the low-order
digit and sign may result in an
alphabetic character.

specifies that data (unpacked decimal)
is to be converted to packed decimal
data.

specifies that data (H-set BCD) is to
be converted to EBCDIC.

IEBGENER Program 153

Parameters

Applicable
Control
statements

FIELD RECORD
(continued) (continued)

Description of Parameters

conversion (continued)
If conversion is specified in FIELD, the
following restrictions apply:

• PZ-type (packed-to-unpacked) conversion is
impossible for packed decimal records longer
than 16K bytes.

• For ZP-type (unpacked-to-packed) conversion,
the normal 32K-byte maximum applies.

• When the ZP parameter is specified, the
conversion is performed in place. The
original unpacked field is replaced by the
new packed field. Therefore, the ZP
parameter must be omitted from subsequent
references to that field. If the field is
needed in its original unpacked form, it
must be referenced prior to the use of the
ZP parameter.

If conversion is specified in the FIELD
parameter, the length of the output record can
be calculated for each conversion specification.
When L is equal to the length of the input
record, the calculation is made, as follows:

• For a PZ (packed-to-unpacked) specification,
2L-l.

• For a ZP (unpacked-to-packed) specification,
(L/2) + C. If L is an odd number, C is 1/2;
if L is an even number, C is 1.

• For an (H-set BCD to EBCDIC) specification,
L.

oytput-l oca ti on
specifies the starting location of this field in
the output records. outpyt-Iocation should be
coded as a decimal number.

The default location is byte 1.

If both output header labels and output trailer
labels are to be contained in the SYSIN data set, you
must include one RECORD statement (including the
LABELS parameter), indicating the number of input
records to be treated as user header labels and
another RECORD statement (also including the LABELS
parameter) for user trailer labels. Tne first such
RECORD statement indicates the number of user header
labels; the second indicates the number of user
trailer labels. If only output trailer labels are
included in the SYSIN data set, a RECORD statement
must be included to indicate that there are no output
header labels in the SYSIN data set (LABELS=O). This
statement must precede the RECORD LABELS=n statement
which signals the start of trailer label input
records.

For a detailed discussion of the LABELS option, refer
to Appendix C, "Processing User Labels" on page 426.

154 MVS/XA Data Administration: Utilities

(-",)
,j

(Parameters

IDENT

(

INHDR

INTLR

IOERROR

KEY

(
~.

/

Applicable
Control
statements

RECORD

EXITS

EXITS

EXITS

EXITS

Description of Parameters

IDENT=(~ib,'name',input-10cation)
identifies the last record of the input group to
which the FIELD parameters of MEMBER statement
applies. If the RECORD statement is not
followed by additional RECORD or MEMBER
statements, IDENT also defines the last record
to be processed.

These values can be coded:

length
specifies the length (in bytes) of the
identifying name. The length cannot exceed
eight decimal characters.

I~I

specifies the exact literal that identifies
the last input record of a record group.
I~' must be coded within single
apostrophes.

Default: If no match for I~' is found,
the remainder of the input data is
considered to be in one record group;
subsequent RECORD and MEMBER statements are
ignored.

inpyt-10cation
specifies the starting byte of the field
that contains the identifying name in the
input records. inpyt-location should be
coded as a decimal number.

Default: If IDENT is omitted, the remainder of
the input data is considered to be in one record
group; subsequent RECORD and MEMBER statements
are ignored.

INHDR=routinename
specifies the name of the routine that processes
user input header labels.

INTLR=routinename
specifies the name of the routine that processes
user input trailer labels.

IOERROR=routinename
specifies the name of the routine that handles
permanent input/output error conditions.

KEY=routinename
specifies the name of the routine that creates
the output record key. (This routine does not
receive control when a data set consisting of
variable spanned (VS) or variable blocked
spanned (VBS) type records is processed because
no processing of keys is permitted for this type
of data.)

IEBGENER Program 155

Parameters

LABELS

MAXFLDS

MAXGPS

MAXLITS

MAXNAME

NAME

OUTHDR

OUTTLR

Applicable
Control
statements

RECORD

GENERATE

GENERATE

GENERATE

GENERATE

MEMBER

EXITS

EXITS

Description of Parameters

LABELS=n
is an optional parameter that indicates the
number of records in the SYSIN data set to be
treated as user labels. The number n, which is
a number from 0 to 8, must specify the exact
number of label records that follow the RECORD
statement. If this parameter is included,
DATA=INPUT must be coded on a LABELS statement
before it in the input stream.

MAXFLDS=n
specifies a number, from I to 4095, that is no
less than the total number of FIELD parameters
appearing in subsequent RECORD statements.
MAXFLDS is required if there are any FIELD
parameters in subsequent RECORD statements.

MAXGPS=n
specifies a number, from I to 2730, that is no
less than the total number of IDENT parameters
appearing in subsequent RECORD statements.
MAXGPS is required if there are any IDENT
parameters in subsequent RECORD statements.

MAXLITS=n
specifies a number, from 1 to 32767, that is no
less than the total number of characters
contained in the FIELD literals of subsequent
RECORD statements. MAXLITS is required if the
FIELD parameters of subsequent RECORD statements
contain literals. MAXLITS does not apply to
literals used in IDENT parameters.

MAXNAME=n
specifies a number, from 1 to 3276, that is no
less than the total number of member names and
aliases appearing in subsequent MEMBER
statements. MAX NAME is required if there are
one or more MEMBER statements.

NAME=(~[,~l •••)
specifies a member name followed by a list of
its aliases. Names of multiple members and
their aliases should be coded as follows:
((name1,alias1),(name2,a1ias2), ...) If only one
name appears in the statement, it need not be
enclosed in parentheses.

OUTHDR=routinename
specifies the name of the routine that creates
user output header labels. OUTHDR is ignored if
the output data set is partitioned.

OUTTLR=routinename
specifies the name of the routine that processes
user output trailer labels. OUTTLR is ignored
if the output data set is partitioned.

c
156 MVS/XA Data Administration: Utilities

--------------------_ _- -

(

Ci

Applicable
Control

Parameters statements Description of Parameters

TOTAL EXITS TOTAL=(routinenqmg~~)
specifies that a user exit routine is to be
provided prior to writing each record. The
keyword OPTCD=T must be specified for the SYSUT2
DD statement. TOTAL is valid only when IEBGENER
is used to process sequential data sets. These
values must be coded:

coyt;i,nename
specifies the name of the user-supplied
totaling routine.

~
specifies the number of bytes needed to
contain totals. counters. pointers, etc.
~ should be coded as a decimal number.

IEBGENER EXAMPLES

Operation

COPY

COPY-with
edi ting

COpy and
reblock

COPY-with
edi ting

COPY-with
editing

PRINT

CONVERT

COPY-with
editing

The examples that follow illustrate some of the uses of
IEBGENER. Figure 61 can be used as a quick-reference guide to
IEBGENER examples. The numbers in the "Example" column refer to
the examples that follow.

Data Set
Organization Device Comments Example

Sequential Card Reader and Blocked output. 1
Tape

Sequential Card Reader and Blocked output. 2
Tape

Sequential Disk and Tape Makes blocked tape 3
copy from disk;
explicit buffer
request.

Sequential Card Reader and Blocked output. Input 4
Tape includes //cards.

Sequential Card Reader and Blocked output. Input 5
Disk includes // cards.

Sequential Card Reader and Input includes // 6
Printer cards. System output

device is a printer.

Sequential Tape and Disk Blocked output. Three 7
input. members are to be
Pa rti ti oned created.
output

Sequential Disk Blocked output. Two 8
members are to be
merged into existing
data set.

Figure 61 (Part 1 of 2). IEBGENER Example Directory

IEBGENER Program 157

Data set
Operation Organization Device Comments Example

COPY-with Sequential Tape Blocked output. Data 9
editing set edited as one

record group.

COPY-with Sequential Disk Blocked output. New 10
editing record length

specified for output
data set. Two record
groups specified.

COPY-with Sequential Tape Blocked output. Data 11
editing set edited as one

record group.

Figure 61 (Part 2 of 2). IEBGENER Example Directory

IEBGENER EXAMPLE 1

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In this example, a card-input, sequential data set is copied to
a 9-track tape volume.

The example follows:

//CDTOTAPE
//
//SYSPRINT
//SYSIN
//SYSUT2
//
//
//SYSUTl

JOB
EXEC PGM=IEBGENER
DD SYSOUT=A
DD DUMMY
DD DSNAME=OUTSET,UNIT=tape,LABEL=(,SL),

DISP=(,KEEP),VOLUME=SER=001234,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

DD 3(

(input card data set)

/*

The job control statements are discussed below:

• SYSIN DD defines a dummy data set. No editing is performed;
therefore, no utility control statements are needed.

• SYSUT2 DD defines the output data set, OUTSET. The data set
is written to a tape volume with IBM standard labels. The
data set is to reside as the first (or only) data set on the
volume.

• SYSUTl DD defines the card-input data set. The data set
contains no // or /* cards.

158 MVS/XA Data Administration: Utilities

/' -"-,

~,)

IEBGENER EXAMPLE 2

(-

I IEBGENER EXAMPLE 3

In this example, a card-input, sequential data set is to be
copied to a tape volume. The control data set is a member of a
partitioned data set.

//CDTOTAPE
//
//SYSPRINT
//SYSIN
//
//
//SYSUT2
//
//
//SYSUTl

JOB
EXEC PGM=IEBGENER
DD SYSOUT=A
DD DSNAME=CNTRLIBYCSTMNTS),UNIT=disk,

DISP=(OLD,KEEP),VOLUME=SER=111112,
DCB=(RECFM=F,LRECL=80,BLKSIZE=80)

DD DSNAME=OUTSET,UNIT=tape,LABEL=(,SL),
DCB=CRECFM=FB,LRECL=80,BLKSIZE=2000),
DISP=(,KEEP),VOLUME=SER=OOI234

DD *
(input card data set)

/*

The job control statements are discussed below:

• SYSIN DD defines the control data set, which contains the
utility control statements. The control statements reside
as a member, STMNTS, in a partitioned data set called
CNTRLIBY.

• SYSUT2 DD defines the output data set, OUTSET. The data set
is written as the first data set on the tape volume.

• SYSUTI DD defines the card-input data set. Because SYSUTI
has not been specified as DATA, the data set can contain no
// cards.

In this example, a blocked copy on tape is made from an
unblocked sequential disk file. Because the disk data set has a
relatively small block size, the number of buffers explicitly
requested is larger than the default of five. This improves
performance by permitting more overlap of reading the SYSUTI
data set with writing the SYSUT2 data set.

//COPYJOB
//
//SYSPRINT
//SYSIN
//SYSUTl
//
//
//SYSUT2
//
//

JOB
EXEC PGM=IEBGENER,REGION=318K
DD SYSOUT=A
DD DUMMY
DD DSNAME=X.FILE,UNIT=3380,

DISP=OLD,VOL=SER=XI3380,
DCB=(BUFNO=20,RECFM=FB,LRECL=2000,BLKSIZE=2000

DD DSNAME=X.FILE.TAPEVER,UNIT=3480,
DISP=(NEW,KEEP),
DCB=(RECFM=FB,LRECL=2000,BLKSIZE=320JO)

The job control statements are discussed below:

•

•

The EXEC statement names the IEBGENER program and specifies
the virtual storage region size required. (Calculation of
region size is described in "EXEC Statement" on page 147.)

The SYSPRINT DD statement directs messages to SYSOUT class
A.

IEBGENER Program 159

IEBGENER EXAMPLE 4

•

•

The SYSIN DD statement is a dummy, indicating no utility
control statements are to be used, and thus no editing is
performed.

The SYSUTl DD statement identifies an input disk file.
Normally, the DCB RECFM, LRECL, and BLKSIZE information
should not be specified in the DD statement for an existing
disk file because the information exists in the data set
label in the VTOCi it is specified in this example to
illustrate the contrast with the output data set. The unit
and volume serial information could be omitted if the data
set were cataloged. The DCB information specifies BUFNO=20
to allow up to twenty blocks to be read with each rotation
of the disk, assuming the disk track will hold that many
blocks.

• The SYSUT2 DD statement identifies the output tape data set
and specifies a block size of 32K bytes. Because BLKSIZE is
specified for the DCB, RECFM and LRECL must also be
specified explicitly; otherwise they will default to the
IEBGENER program defaults instead of being copied from the
SYSUTl DD statement. The default of five buffers should be
enough to keep pace with the input. The tape is to be
dismounted at the termination of this job step.

In this example, a card-input, sequential data set is copied to
a tape volume. The input contains cards that have slashes (//)
in columns land 2. The control data set is a member of a
partitioned data set.

//CDTOTAPE
//
//SYSPRINT
//SYSIN
//
//SYSUT2
//
//
//SYSUTl

JOB
EXEC PGM=IEBGENER
DD SYSOUT=A
DD DSNAME=CNTRLIBY(STMNTS),UNIT=disk,

DISP=(OLD,KEEP),VOLUME=SER=lllll2
DD DSNAME=OUTSET,UNIT=tape,LABEL=(2,SL),

VOLUME=SER=OOl234,DCB=(RECFM=FB,LRECL=80,
BLKSIZE=2000),DISP=(,KEEP)

DD DATA

(input card data set, including // cards)

The job control statements are discussed below:

• SYSIN DD defines the data set containing the utility control
statements. The statements reside as a member, STMNTS, in a
partitioned data set called CNTRLIBY.

• SYSUT2 DD defines the copied sequential data set (output),
called OUTSET. The data set is written as the second data
set on the specified tape volume.

• SYSUTl DD defines the card-input data set. The data set is
to be edited as specified in the utility control statements
(not shown). The input data set contains // cards.

160 MVS/XA Data Administration: Utilities

c

IEBGENER EXAMPLE 5
(-

IEBGENER EXAMPLE 6

In this example, a card-input, sequential data set is copied to
a disk volume. The input data set contains // cards.

//CDTODISK
//
//SYSPRINT
//SYSIN
//
//SYSUT2
//
//
//SYSUTl

JOB
EXEC PGM=IEBGENER
DD SYSOUT=A
DD DSNAME=CNTRLIBY(STMNTS),UNIT=disk,

DISP=(OLD,KEEP),VOLUME=SER=111112
DD DSNAME=OUTSET,UNIT=disk,VOLUME=SER=111113,

DISP=(,KEEP),SPACE=(TRK,(lO,lO»,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

DD DATA

(input card data set, including // cards)

The job control statements are discussed below:

• SYSIN DD defines the control data set, which contains the
utility control statements. The control statements reside
as a member, STMNTS, in a partitioned data set.

• SYSUT2 DD defines the output data set. Ten tracks of
primary storage space and ten tracks of secondary space are
allocated for the data set on a disk volume.

• SYSUTI DD defines the card-input data set. The data set is
to be edited as specified in the utility control statements
(not shown).

In this example, the content of a card data set is printed. The
printed output is left-aligned, with one 80-byte record
appearing on each line of printed output.

//CDTOPTR JOB
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSQUT=A
//SYSIN DD DUMMY
//SYSUT2 DD SYSOUT=A,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSUTI DD DATA
(input card data set, including // cards)
/*

The job control statements are discussed below:

• SYSIN DD defines a dummy data set. No editing is performed;
therefore, no utility control statements are required.

• SYSUT2 DD indicates that the output is to be written on the
system output device (printer). Carriage control can be
specified by changing the RECFM=F subparameter to RECFM=FA.

• SYSUTI DD defines the input card data set. The input data
set contains // cards.

IEBGENER Program 161

IEBGENER EXAMPLE 7

In this example, a partitioned data set (consisting of three
members) is created from sequential input.

JOB IITAPEDISK
II
//SYSPRINT
IISYSUTl
II
IISYSUT2
II

EXEC PGM=IEBGENER
DD SYSOUT=A
DD DSNAME=INSET,UNIT=tape,LABEL=(,SL),

DISP=(OLD,KEEP),VOLUME=SER=OOI234
DD DSNAME=NEWSET,UNIT=disk,DISP=(,KEEP),

II
IISYSIN DD

GENERATE
MEt1BER

GROUPI RECORD
MEMBER

GROUP2 RECORD
MEMBER

VOLUME=SER=lIII12,SPACE=(TRK,(lO,5,5)),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

* MAXNAME=3,MAXGPS=2
NAME=MEMBERl
IDENT=(8,'FIRSTMEM',l)
NAME=t1EMBER2
IDENT=(8,'SECNDMEM',I)
NAME=MEMBER3

The control statements are discussed below:

• SYSUTI DD defines the input data set (INSET). The data set
is the first data set on a tape volume.

• SYSUT2 DD defines the output partitioned data set (NEWSET).
The data set is to be placed on a disk volume. Ten tracks
of primary space, five tracks of secondary space, and five
blocks (256 bytes each) of directory space are allocated to
allow for future expansion of the data set. The output
records are blocked to reduce the space required by the data
s!:!t.

• SYSIN DD defines the control data set, which follows in the
input stream. The utility control statements are used to
create members from sequential input data; the statements do
not specify any editing.

• GENERATE indicates that: (1) three member names are
included in subsequent MEMBER statements and (2) the IDENT
parameter appears twice in subsequent RECORD statements.

• The first MEMBER statement assigns a member name (MEMBER1)
to the first member.

• The first RECORD statement (GROUPl) identifies the last
record to be placed in the first member. The name of this
record (FIRSTMEM) appears in bytes 1 through 8 of the input
record.

• The remaining MEMBER and RECORD statements define the second
and third members. Note that, as there is no RECORD
statement associated with the third MEMBER statement, the
remainder of the input file will be loaded as the third
member.

162 MVS/XA Data Administrationl utilities

~\

IEBGENER EXAMPLE 8

(

(

(

In this example, sequential input is converted into two
partitioned members. The newly created members are merged into
an existing partitioned data set. User labels on the input data
set are passed to the user exit routine.

JOB //DISKTODK
//
//SYSPRINT
//SYSUTI
//

EXEC PGM=IEBGENER
DD SYSOUT=A
DD DSNAME=INSET,UNIT=disk,DISP=(OLD,KEEP),

VOLUME=SER=111112,
LABEL=(,SUL) //

//SYSUT2
//

DD DSNAME=EXISTSET,UNIT=disk,DISP=(MOD,KEEP),
VOLUME=SER=111113

//SYSIN DD
GENERATE

EXITS
MEMBER

GROUPI RECORD
MEMBER

* MAXNAME=3,MAXGPS=1
INHDR=ROUTI,INTLR=ROUT2
NAME=(MEMX,ALIASX)
IDENT=(8,'FIRSTMEM',I)
NAME=MEMY

The control statements are discussed below:

• SYSUTI DD defines the input data set (INSET). The input
data set, which resides on a disk volume, has standard and
user labels.

•

•

SYSUT2 DD defines the output partitioned data set
(EXISTSET). The members created during this job step are
merged into the partitioned data set.

SYSIN DD defines the control data set, which follows in the
input stream. The utility control statements are used to
create members from sequential input data; the statements do
not specify any editing.

• GENERATE indicates that: (1) a maximum of three names and
aliases are included in subsequent MEMBER statements and (2)
one IDENT parameter appears in a subsequent RECORD
statement.

• EXITS defines the user routines that are to process user
labels.

• The first MEMBER statement assigns a member name (MEMX) and
an alias (ALIASX) to the first member.

• The first RECORD statement (GROUPI) identifies the last
record to be placed in the first member. The name of this
record (FIRSTMEM) appears in bytes 1 through 8 of the input
record.

• The second MEMBER statement assigns a member name (MEMY) to
the second member. The remainder of the input data set is
included in this member.

IEBGENER Program 163

IEBGENER EXAMPLE 9

In this example, a sequential input data set is edited and
copied.

/ITAPETAPE JOB
/1 EXEC PGM=IEBGENER
/ISYSPRINT DD SYSOUT=A
//SYSUTI DD DSNAME=OLDSET,UNIT=tape,DISP=(OLD,KEEP),
// VOLUME=SER=00I234,LABEL=(3,SL)
//SYSUT2 DD DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
// VOLUME=SER=00I23S,LABEL=(,SL)
I/SYSIN DD *

GENERATE MAXFLDS=3,MAXLITS=II

72

RECORD FIELD=(IO,'**********'"I), C
FIELD=(S,I,HE,II),FIELD=(I,'='"I6)

EXITS INHDR=ROUTI,OUTTLR=ROUT2
LABELS DATA=INPUT
RECORD LABELS=2

(first header label record)
(second header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

The control statements are discussed below:

• SYSUTI DD defines the sequential input data set (OLDSET).
The data set was originally written as the third data set on
a tape volume.

• SYSUT2 DD defines the sequential output data set (NEWSET).
The data set is written as the first data set on a tape
volume. The output records are blocked to reduce the space
required by the data set and to reduce the access time
required when the data set is subsequently referred to. The
data set is passed to a subsequent job step.

• SYSIN DD defines the control data set, which follows in the
input stream.

• GENERATE indicates that: (1) a maximum of three FIELD
parameters is included in subsequent RECORD statements and
(2) a maximum of 11 literal characters are included in
subsequent FIELD parameters.

• The first RECORD statement controls the editing, as follows:
(1) asterisks are placed in positions 1 through 10, (2)
bytes 1 through S of the input record are converted from
H-set BCD to EBCDIC mode and moved to positions 11 through
IS, and (3) an equal sign is placed in byte 16.

• EXITS indicates that the specified user routines require
control when SYSUTI is opened and when SYSUT2 is closed.

• LABELS indicates that labels are included in the input
stream.

• The second RECORD statement indicates that the next two
records from SYSIN should be written out as user header
labels on SYSUT2.

164 MVS/XA Data Administration: Utilities

;~\
I' "--j

(

IEBGENER EXAMPLE 10

(

• The third RECORD statement indicates that the next two
records from SYSIN should be written as user trailer labels
on SYSUT2.

This example shows the relationship between the RECORD LABELS
statement, the LABELS statement, and the EXITS statement.
IEBGENER attempts to write a first and second label trailer as
user labels at close time of SYSUT2 before returning control to
the system; the user routine, ROUT2, can review these records
and change them, if necessary.

In this example, a sequential input data set is edited and
copied.

//DISKDISK JOB
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUTI DD DSNAME=OLDSET,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=llIlI2
//SYSUT2 DD DSNAME=NEWSET,UNIT=disk,DISP=(NEW,KEEP),
// VOLUME=SER=lIIlI3,DCB=(RECFM=FB,LRECL=80,
// BLKSIZE=640),SPACE=(TRK,(20,10»
//SYSIN DD *

GENERATE MAXFLDS=4,MAXGPS=1
EXITS IOERROR=ERRORRT

72

GROUPI RECORD IDENT=(8,'FIRSTGRP',1), C
FIELD=(2I,80,,60),FIELD=(59,1,,1)

GROUP2 RECORD FIELD=(11,90,,70),FIELD=(69,I,,1)
/*

The control statements are discussed below:

• SYSUTI DD defines the input data set (OLDSET).

• SYSUT2 DD defines the output data set (NEWSET). Twenty
tracks of primary storage space and ten tracks of secondary
storage space are allocated for the data set on a disk
volume. The logical record length of the output records is
80 bytes, and the output is blocked.

• SYSIN DD defines the control data set, which follows in the
input stream.

• GENERATE indicates that: (1) a maximum of four FIELD
parameters are included in subsequent RECORD statements and
(2) one IDENT parameter appears in a subsequent RECORD
statement.

• EXITS identifies the user routine that handles input/output
errors.

• The first RECORD statement (GROUPl) controls the editing of
the first record group, as follows: (1) FIRSTGRP, which
appears in bytes 1 through 8 of an input record, is defined
as being the last record in the first group of records and
(2) bytes 80 through 100 of each input record are moved into
positions 60 through 80 of each corresponding output record.
(This example implies that bytes 60 through 79 of the input
records in the first record group are no longer required;
thus, the logical record length is shortened by 20 bytes.)
The remaining bytes within each input record are transferred
directly to the output records, specified in the second
FIELD parameter.

IEBGENER Program 165

IEBGENER EXAMPLE 11

• The second RECORD statement (GROUP2) indicates that the
remainder of the input records are to be processed as the
second record group. Bytes 90 through 100 of each input
record are moved into positions 70 through 80 of the output
records. (This example implies that bytes 70 through 89 of
the input records from group 2 are no longer required; thus,
the logical record length is shortened by 20 bytes.) The
remaining bytes within each input record are transferred
directly to the output records, specified in the second
FIELD parameter.

If the logical record length of the output data set differs from
that of the input data set (as in this example), all positions
in the output records must undergo editing to justify the new
logical record length.

In the example, a sequential input data set is edited and
copied.

//TAPETAPE
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//
//

JOB
EXEC PGM=IEBGENER
DD SYSOUT=A
DD DSNAME=OLDSET,UNIT=tape,DISP=(OLD,KEEP),

VOLUME=SER=001234,LABEL=(3,SUL)
DD DSNAME=NEHSET,UNIT=tape,DISP=(NEH,PASS),

VOLUME=SER=001235,LABEL=(,SUL),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

//SYSIN DD * GENERATE
RECORD

MAXFLDS=3,MAXLITS=11
FIELD=(lO, '**********',,1),
FIELD=(5,1,HE,11),FIELD=(1,'=',,16)

LABELS DATA=INPUT
RECORD LABELS=3

(first header label record)
(second header label record)
(third header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

The control statements are discussed below:

72

C

• SYSUTI DD defines the input data set (OLDSET). The data set
is the third data set on a tape volume.

• SYSUT2 DD defines the output data set (NEHSET). The data
set is written as the first or only data set on a tape
volume. The output records are blocked to reduce the space
required by the data set and to reduce the access time
required when the data set is subsequently referred to. The
data set is passed to a subsequent job step.

• SYSIN DD defines the control data set, which follows in the
input stream.

•

rf·· "\
",,--j

GENERATE indicates that: (1) a maximum of three FIELD
parameters are included in subsequent RECORD statements
(2) a maximum of 11 literal characters are included in
subsequent FIELD parameters.

'f ., and (. .
~j

166 MVS/XA Data Administration: Utilities

-- ._-----------

(

(

• The first RECORD statement controls the editing, as follows:
(1) asterisks are placed in positions 1 through 10, (2)
bytes 1 through 5 of the input record are converted from
H-set BCD to EBCDIC mode and moved to positions 11 through
15, and (3) an equal sign is placed in byte 16.

• LABELS indicates that label records are included in the
input stream.

• The second RECORD statement indicates that three 80-byte
records (cards), to be written as user labels on the output
data set, immediately follow.

• The third RECORD statement indicates that the following
cards are to be treated as trailer labels.

IEBGENER Program 167

IEBIMAGE pROGRAM

GENERAL INFORMATION

IEBIMAGE is a data set utility that creates and maintains the
following types .of IBM 3800 Printing Subsystem and IBM 4248
Printer modules and stores them in a library:

• Forms control buffer modules for the 3800 and 4248 that
specify controls for the vertical line spacing and anyone
of 12 channel codes per line.

• Copy modification modules for the 3800 that specify data
that is to be printed on every page for specified copies of
the output data set.

• Character arrangement table modules for the 3800 that
translate the input data into printable characters and
identify the associated character set(s) and graphic
character modification moduleCs).

• Graphic character modification modules for the 3800 that
contain the scan patterns of user-designed characters and/or
characters from IBM-supplied modules.

• Library character set modules for the 38DO that contain the
scan patterns of IBM-supplied character sets and/or
user-defined character sets.

The IEBIMAGE program creates and maintains all modules required
for use on the 3800 Model 1 and Model 3 printers. The program
default is to build these modules in the 3800 Model 1 format;
however, 3800 Model 3 compatibility can be specified with
IEBIMAGE utility control statements.

IEBIMAGE can also be used to create and maintain FCB modules for X
the 4248 printer.

3262 Model 5 Printer

The 4248 FCB modules' created by IEBIMAGE are compatible with the
3262 Model 5 Printer; however, the 3262 Model 5 does not support
variable printer speeds or the horizontal copy feature of the
4248. Unless otherwise stated, where a reference to the 4248
printer is used in this chapter, the 3262 Model 5 can be
substi tuted.

End of 3262 Model 5 Printer

STORAGE REQUIREMENTS

For IEBIMAGE

The IEBIMAGE utility program is IBM-supplied and requires
pageable virtual storage in which to operate. The storage
needed by IEBIMAGE is given by the formula:

Storage requirements (in bytes) = 44K+4B+H

B The largest block size in the job step, rounded to the
next highest multiple of 2K. If the format specified ..
for the data set is VS, and LRECL is less than 32K, then rl '\
B is the .maximum logical record length, rounded to the 1\ ..
next highest multiple of 2K. ._./

168 MVS/XA Data Administration: Utilities I

I

1

(

For SYS1.IMAGELIB

(

H

K

The size of the largest member to be loaded from
SYS1.IMAGELIB, rounded to the next highest multiple of
2K.

1024 bytes.

The auxiliary storage requirement in tracks for SYS1.IMAGELIB
is:

Number of tracks = (A+B)/T

A The number of 1403 UCS images, 3211 UCS images, 3211 FCB
images, 3525 data protection images, 3890 SCI programs,
3800 FCB modules, 4248 FCB images, 3262 Model 5 FCB
images, and 3800 character arrangement tables (both
IBM-supplied and user-defined images or modules, as
applicable) .

If the appropriate printer is in the system, IBM
supplies twelve 1403 UCS images, five 3211 UCS images,
four 3211 FCB images, one 3800 FCB image, one 4245 UCS
image table, one 4248 UCS image table, and fourteen 3800
character arrangement tables. According to the TABLE
parameter coded on the DATAMGT system generation macro,
IBM supplies the following number of additional
character arrangement tables:

• 5 if T3211 is specified

• 13 if T1403 is specified

• 10 if TOCR is speci fi ed

• 3 if TKAT is specified

• 3 if TFMT is specified

If TABLE = ALL is coded, add all the above numbers. If
ALL, T3211, or T1403 is coded, add two more tables for
the GRAFSPC1 and GRF2SPCl graphic character modification
modules.

Note that IBM supplies no 4245 or 4248 UCS images in
SYSI.IMAGELIB. The 4245 and 4248 printers load their
own UCS images into the UCS buffer at power-on time.
IBM does supply 4245 and 4248 FCB images, which may be
used. For more information on printer-supplied UCS or
FCB images, see System-Data Administration.

B (V+600)/1500 for each 3800 graphic character
modification module and library character set module,
each 3800 copy modification module, 4245 UCS image
table, 4248 UCS image table, and each 3890 SCI program
that is more than approximately 600 bytes. V is the
virtual storage requirement in bytes for each module.
The virtual storage requirements for the IBM-supplied
3800 graphic character modification module containing
the World Trade National Use Graphics are 32420 bytes
for Modell and 55952 bytes for Model 3. The virtual
storage requirements for the IBM-supplied 3800 library
character sets for the Model 1 are 4680 bytes and 8064
bytes for the Model 3.

T The approximate number of members per track, depending
on type of volume. Because of the overhead bytes and
blocks in a load module, the difference in space
requirements for an 80-byte module and a 400-byte module
is small. These constants assume an average member of 8
blocks, including a file mark, with a total data length
of 800 bytes. For example, on a 3380 with 523 bytes of
block overhead, the assumed average is 4984 bytes. If a

IEBIMAGE Program 169

different average member data length and average number
of blocks per member are anticipated, these constants
should reflect the actual number of members per track. ("--\
To determine the number of members per track, divide the ~_)
average member length, including block overhead, into
the track capacity for the device. (Track capacity for
DASD is discussed in Data Administration: Macro
Instruction Reference.)

T = 6 for a 2305-2
7 for a 3330 or a 3330-11
4 for a 3340 or 3344
8 for a 3350
8 for a 3375
9 for a 3380 Models AE4 and BE4
9 for a 3380 Models AD4 and BD4

The result, (A+B)/T, is the track requirement.

The number of directory blocks for SYS1.IMAGELIB is given by the
formula:

Number of directory blocks = (A+C+D)/6

A As calculated to determine the track requirement, above.

C The number of modules used to calculate B, when
calculating the track requirement.

D The number of aliases. The IBM-supplied 1403 UCS images
have four aliases and the IBM-supplied 3211 UCS images
have six aliases. If they will not be used, these
aliases can be scratched after system generation.

MAINTAINING THE SVS1.IMAGELIB DATA SET

You will normally maintain SYS1.IMAGELIB using several programs ~ ~
in conjunction with IEBIMAGE. For example, you may find it
necessary to rename or delete modules or to compress or list the
entire contents of the data set. Utility programs such as
IEBCOPY, IEBPTPCH, IEHlIST, IEHMOVE, and IEHPROGM (as described
in this book) and HMASPZAP or AMASPZAP (as described in Service
~) should be used to help maintain SYS1.IMAGELIB.

If you use programs other than IEBIMAGE for maintenance, you
must specify the full module name. The module's full name
consists of a 4-character prefix followed by its 1- to
4-character user-assigned name. It is thus a 5- to 8-character
member name in the form:

FCB2~, which identifies an FCB module that may be used
with a 3203, 3211, 3262 Model 5, 4248, or 4245 printer.
Note that the 4248 accepts FCBs that will also work with a
3203, 3211, 3262 Model 5, or 4245 printer.

FCB3~, which identifies a 3800 FCB module

FCB4~, which identifies an FCB module that may be used
with a 4248 or 3262 Model 5 printer

MOD1~, which identifies a 3800 copy modification module

XTB1~, which identifies a 3800 character arrangement
table module

GRAF~, which identifies a graphic character modification
module for a 3800 Model 1

GRF2~, which identifies a graphic character modification
module for a 3800 Model 3

LCS1nn, which identifies a library character set module for
a 3800 Model 1

170 MVS/XA Data Administration: Utilities

LCS2nn, which identifies a library character set module for
a 3800 Model 3

where:

is the 1- to 4-character user-assigned name of the module.

no
is the 2-character user-assigned ID of the module.

Alias names are not supported by IEBIMAGE, so you should be
careful if you use them. For example, if you change a module by
specifying its alias name, the alias name becomes the main name
of the new module, and the old module is no longer accessible
via the alias but is still accessible via its original main
name.

GENERAL MODULE STRUCTURE

Each module contains eight bytes of header information preceding
the data. For the 3800 printing subsystem, the general module
header is shown in Figure 62.

Length (in hexadecimal) of module, excluding the
8 bytes of header information

Reserved - (X'OOOO')

A 1- to 4-character identification of the module,
left-justified (excluding the system-assigned prefix)

Figure 62. 3800 General Module Header

Header information for the 4248 printer FCB module is shown,
with the module format, in Figure 64 on page 174.

The SETPRT SVC uses the name to:

• Identify the module in the image library

• Store the name in the UCB extension

The SETPRT SVC uses the length to:

• Obtain sufficient storage for the moqule

• Build channel programs to load the data into the printer

IEBIMAGE Program 171

NAMING CONVENTIONS FOR MODULES

USING IEBIMAGE

Each module placed in a library by the IEBIMAGE utility has a
4-character system-assigned prefix as the first part of its
name. These prefixes are:

FCB3 for 3800 forms control buffer modules

FCB4 for 3262 Model 5 and 4248 forms control buffer modules

MODI for 3800 copy modification modules

XTBI for 3800 character arrangement table modules

GRAF for graphic character modification modules for a 3800
Model 1

GRF2 for graphic character modification modules for a 3800
Model 3

LCSI for library character set modules for a 3800 Model 1

LCS2 for library character set modules for a 3800 Model 3

You can assign a 1- to 4-character identifier (name) to the
module you create by using the NAME control statement in the
operation group you use to build the module. If the module is a
library character set, the ID assigned to it must be exactly two
characters. Each of those characters must be within the range 0
through 9, and A through F; the second character must represent
an odd hexadecimal digit. However, the combinations X'7F' and
X'FF' are not allowed. Except for library character set
modules, this identifier is used in the JCL, the SETPRT
parameter, or the character arrangement table to identify the
module to be loaded.

While IEBIMAGE refers only to the 1- to 4-character name or the
2-character ID (the suffix) that is appended to the prefix, the
full name must be used when using other utilities (such as
IEBPTPCH or IEHPROGM).

CREATING A FORMS CONTROL BUFFER MODULE

The forms control buffer (FCB) module is of variable length and
contains vertical line spacing information (6, 8, or 12 lines
per inch for the 3800 Modell; 6 or 8 lines per inch for the
4248; and 6, 8, 10, or 12 lines per inch for the 3800 Model 3).
The FCB module can also identify one of 12 carriage-control
channel codes for each line. For the 4248 printer, the module
also contains information on the horizontal copy feature and the
printer speed.

The FCB module is created and stored in an image library, using
the FCB and NAME utility control statements of the IEBIMAGE
program. For the 4248 FCB module, the INCLUDE and OPTION
statements can also be coded to indicate that an existing FCB
module (prefix FCB2 or FCB4) is to be used as a model.

For the 3800, IBM supplies one default FCB image in
SYSl.IMAGElIB, called FCB3STDl. For the 4248, although the last
FCB image loaded is reloaded by the printer at power-on time,
IBM supplies two FCB images that may also be used by printers
other than the 4248. For the 3262 Model 5, a default FCB image
is also supplied.

172 MVS/XA Data Administration: Utilities

--------~------------------------~ ---- ------

(-

3800 FCB Module structure

The FeB data following the header information is a series of
I-byte line control codes for each physical line of the form.
There are 18 to 144 of these bytes. depending on the length of
the form.

Each byte is a bit pattern describing one of 12 channel codes
for vertical forms positioning and one of four lines-per-inch
codes for vertical line spacing. The structure of the 3800 FeB
module is shown in Figure 63.

Reserved Channel Code
(Oil)

Binary Hex Channel

0000 0 - (null)

Line Spacing (LPI) 0001 I I
00 = 6 LPI 0010 2 2
01 = 8 LPI 0011 3 3
10 = 10 LPI 0100 4 4

11 '" 12 LPI 0101 S S
OliO 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12

Figure 63. 3800 FeB Module Structure

• The top and bottom 1/2 inch of each page are unprintable.
and the bytes corresponding to these positions must be void
of any channel codes. Three bytes of binary zeros are
supplied by the IEBIMAGE utility for the top and bottom 1/2
inch.

• The total number of lines defined
equal to the length of the form.
defined must start 1/2 inch below
from the bottom of the form.

4248 FCB Module structure

in the module must be
The printable lines
the top and stop 1/2 inch

The FeB data following the header information consists of at
least five bytes: a flag byte (X'7E'). a control byte
(containing information about the horizontal copy feature and
printer speed). an offset byte. one or more FeB data bytes
(similar to the 3800 data byte for each physical line of the
form). and an end-of-sheet byte (X'FE'). The format of the 4248
FeB module is shown in Figure 64 on page 174.

IEBIMAGE Program 173

Header .
'" ...

1 0 I 1 2 I 3 I 4 I 5 l-eIE
End of sheet (X'FE')

Data Byte

Offset Byte

Control Byte

Flag Byte (X'7E')

-Length (in hexadecimal) of
module, excluding the 3
'bytes of header information

Flag Byte: X'OO' = Non-default image
X'BO' = Default image

Figure 64. 4248 FCB Module structure

The control byte is a bit pattern describing whether the
horizontal copy feature is active and what printer speed is to
be set when the FCB is loaded into the buffer. The structure of
the control byte is shown in Figure 65.

BitPattem

1011 2131 4 516 71
t Stacker Drop Rate1,2

Printer Speed (PSPEED)2
00 = Unchanged
01 = Low (2200 LPM)
10 = Medium (3000 LPM)
11 = High (3600 LPM)

Horizontal Copy Feature2
o = Deactivate
1 = Activate

Stacker Level Control 1 ,2

Reserved (X'O')
Figure 65. 4248 FCB Module Control Byte

Notes to Figure 65:

1 IEBIMAGE sets these bits to zero. For more information on
the stacker drop rate and stacker level control bits, see
the appropriate hardware manual for your printer.

Z If the module is used by a 3262 Model 5 printer, these bits
are ignored.

The offset byte follows the control byte and is set either to
zero or to the print position of the horizontal copy (2 through
168).

174 MVS/XA Data Administration: Utilities

- --~-~--------~-~~~~~-

(f"\

~_/

FeB Module Listing

The data byte is a bit pattern similar to that produced for the
3800 printing subsystem. Each data byte describes one of 12
channel codes for vertical forms positioning and one of the
allowed lines-per-inch codes for vertical line spacing. The
structure of the data byte is shown in Figure 66.

Bit Pattern

Channel Code

Binary Hex Channel

0000 0 - (null)

Line Spacing (LPI) 0001 1 1

0000 = No change 0010 2 2

0110 = 6 LPI 0011 3 3

1000 = 8 LPI 0100 4 4
0101 5 5
0110 6 6
0111 7 7

1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12

Figure 66. 4248 FeB Module Data Byte

The total number of lines defined in the module must be equal to
the length of the form.

Figure 67 on page 176 shows the IEBIMAGE listing of a 3800 FeB
module. The notes that follow the figure describe the encircled
numbers in the figure.

For the 4248 FeB module, the IEBIMAGE listing also includes the
horizontal copy feature, printer speed setting, and default
settings.

IEBIMAGE Program 175

PRINT
PRINT
PRINT
PRINT
PRINT
FRINT
PRINT
PRINT
PR!NT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRItIT
PRINT
PRINT
PRINT
PRINT
PRINT
, nIT

LINE ~ A~ LINES n. INCH • HAS CH_EL
LItlE 2 AT 8 LINES PER INCH
LINE 3 AT 8 LINES PER ItltH
LINE 4 AT 12 LINES PER ItltH
LINE 5 AT 12 LINES PER INCH
LINE 6 AT 12 LINES PER INCH
LINE 7 AT 12 LINES PER INCH
LINE 8 AT 12 LINES PER IUCH
LINE 9 AT 12 LINES PER mCH
LINE 10 AT 12 LINES PER ItICH
LINE 11 AT 12 LINES PER INCH
LINE 12 AT 12 LINES PER INCH
LItlE 13 AT 12 LINES PER ItICH
LINE 14 AT 12 LINES PER mCH
LINE 15 AT 12 LINES PER INCH
LINE 16 AT 12 LINES PER INCH
LINE 17 AT 12 LINES PER INCH
LINE 18 AT 12 LmES PER INCH
LINE 19 AT 12 LINES PER INCH.
LINE 20 AT 12 LWES PER ItlCH
LINE 21 AT 12 LINES PER ItICH
LINE 22 AT 12 LINES PER INCH
LINE 23 AT 12 LINES PER INCH
LItlE 24 AT 12 LINES .,r-
LINE 25 AT 12 1"-
LINE 26 AT •
LINE 27
LIN" •

•
•

d;R INCH
_ .. !'IES PER ItiCH

.. I. LINES PER ItItH
AT 12 LINES PER INCH

~. 98 AT 12 LINES PER INCH
PRIl'li LItlE 99 AT 12 LItIES PER ItICH

1 COOE.

PRINT LINE 100 AT 12 LItlES PER INCH - HAS CHANNEL 12 COOE.
PRItIT LItlE 101 AT 12 LINES PER INCH
PRINT LItlE 102 AT 12 LINES PER ItlCH
PRINT LINE 103 AT 12 LttlES FER IUCH
PRINT LINE 104 AT 12 LINES FER ItlCH
PRINT LINE 105 AT 12 LINES PER INCH
PRINT LINE 106 AT 12 LItIES PER INCH
FRINT LINE 107 AT 12 LINES PER INCH
PRINT LINE 108 AT 12 LINES PER ItICH
PRINT LINE 109 AT 12 LItlES PER IUCH
PRINT LINE 110 AT 12 LItlES PER ItltH
PRINT LINE 111 AT 12 LINES PER IUCH
PRINT LINE 112 AT 12 LINES PER ItfCH
PRINT LINE 113 AT 12 LIliES PER ItICH
PRINT LINE 114 AT 12 LItIES PER ItICH
PRINT LINE 115 AT 12 LItlES PER ItlCH
PRItIT LINE 116 AT 12 LItlES FER ItItH
PRINT LINE 117 AT 12 LINES PER ItICH
PRINT LINE 118 AT 12 LINES PER IIICH

Figure 67. IEBIMAGE Listing of a Forms Control Buffer Module

176 MVS/XA Data Administrationl Utilities

,4-\
\~J

(... ". I,:

../

(.

(y

Notes to Figu~e 67:

1. The line number. Each line of the form is listed in this
way.

2. The vertical spacing of the line, in lines per inch.

3. The channel code, printed for each line that includes a
channel code.

CREATING A COPY MODIFICATION MODULE

The 3800 copy modification module contains predefined data for
modifying some or all copies of an output data set. Segments of
the module contain predefined text, its position on each page of
the output data set, and the copy or copies the text applies to.

The copy modification module is created and stored in an image
library, using the INCLUDE, OPTION, COPYMOD, and NAME utility
control statements of IEBIMAGE.

The INCLUDE statement identifies a module that is to be copied
and used as a basis for the newly created module. The OPTION
statement with the OVERRUN parameter allows you to suppress the
printing of line overrun condition messages for those vertical
line spacings that are not applicable to the job. The OPTION
statement with the DEVICE parameter specifies 3800 Model 3
compatibility mode processing. The COPYMOD statement is used to
describe the contents of one of the new module's segments. The
NAME statement is used to identify the new module and to
indicate whether it is new or is to replace an existing module
with the same name.

COPYMOD Module st~uctu~e

The copy modification data following the header information is a
series of segments. Each segment is of variable length and is
composed of the components shown in Figure 68.

Segment I Segment 2

IAIBlclDIEIFI TEXT IAIBlclDIEIFI TEXT 1
t Modifying text

Number of bytes of text

Starting print position
Number of lines to be modified

Starting line number
Number of copies to be modified

Startin co g py number

Figure 68. COpy Modification Module Structure

A, B, C, D, E, and F are each I-byte fields.

• If the module contains more than one segment, the starting
copy number must be equal to or greater than the starting
copy number in the previous segment.

• Any string of the same character within the text may be
compressed into 3 bytes. The first such byte is X'FF', the
second byte is the number of compressed characters, and the
third byte is the data code for the character.

IEBIMAGE Program 177

• The size of the module is limited to 8192 bytes of data and
8 bytes of header information.

COPYMOD Module Listing

SEGMENT

1

2

3

cb

INITIAL
COPY NO.

1

2

2

Figure 69 shows the listing of three segments of a copy
modification module. This listing shows only the positioning of
the modifying text. To print out the text itself, you can use
the IEBPTPCH utility program or the AMASPZAP service aid. The
numbered notes that follow the figure describe the items marked
with the encircled numbers.

CD--MODIHANK

NUMBER OF INITIAL NUMBER OF INITIAL NUMBER OF
COPIES LINE NO. LINES PRINT POS. CHARACTERS

4 58 1 35 18

1 1 1 50 7.3

1 75 10

~ "v' ~
Figure 69. IEBIMAGE Listing of Three Segments of a Copy Modification Module

Notes to Figure 69:

In this example, each note refers to the module's third segment.

1. The name of the copy modification module as it exists in the
SYSl.IMAGELIB data set's directory (including the 4-byte
system-assigned prefix).

2. The segment number of the modification segment.

3. This segment applies only to the second copy of the output
data set.

4. The text of the segment is located on lines 34, 35, and 36.

5. The text on each line starts at the 75th character, and
occupies 10 character spaces.

CREATING A CHARACTER ARRANGEMENT TABLE MODULE

The 3800 character arrangement table module is fixed length and
consists of three sections:

• System control information, which contains the module's name
and length.

• The translate table, which contains 256 one-byte translate
table entries, corresponding to the 8-bit data codes (X'OO'
through X'FF'). A translate table entry can identify one of
64 character positions in anyone of four writable character
generation modules (WCGMs) except the last position in the
fourth WCGM (WCGM 3), which would be addressed by X'FF'.

/1\

"'"c_,)

\''---.

The code X'FF' is reserved to indicate an unprintable e.·· .. ~
character. When an entry of X'FF' is detected by the
printer as a result of attempting to translate an invalid
8-bit data code, the printer prints a blank and sets the

178 MVS/XA Data Administration: Utilities

•

data-check indicator on (unless the block-data-check option
is in effect).

Identifiers, which identify the character sets and the
graphic character modification modules associated with the
character arrangement table.

For the 3800 Model I or Model 3, if the character set identifier
is even, the character set is accessed from the printer's
flexible disk. If the identifier is odd, the character set is
retrieved from the image library.

The character arrangement table is created using the INCLUDE,
TABLE, and NAME utility control statements. The INCLUDE
statement identifies an existing character arrangement table
that is to be copied and used as a basis for the new module.
The TABLE statement describes the new or modified module's
contents. The NAME statement identifies the character
arrangement table and indicates whether it is new or is to
replace an existing module with the same name.

The OPTION statement with the DEVICE=3800M3 parameter should be
specified when printing an existing character arrangement table
for a 3800 Model 3. This is to ensure that the system assigns
the correct prefix to the graphic modification module name
associated with the character arrangement table.

For information on IBM-supplied character arrangement tables and
character sets, see IBM 3800 Printing Subsystem Programmer's
~.

Note: The character arrangement table you select may n2!
include all the characters in a character set. The character
arrangement table corresponds to a print train, which is
sometimes a subset of one or more complete character sets. When
the character set is loaded, all characters of the set (up to
64) are loaded into the printer's WCGM; only those characters
that are referred to by a translate table can be printed.

TABLE Module structure

The character arrangement table data following the header
information is composed of the following components:

• A 256-byte translate table

• Four 2-byte fields for codes identifying character sets and
their WCGM sequence numbers

• Four 4-byte fields for graphic character modification module
names

The translate table consists of 256 one-byte entries, each
pointing to one of 64 positions within one of four WCGMs:

• Bits 0 and I of each translate table byte refer to one of
four WCGMs and bits 2 through 7 point to one of 64 addresses
(0-63) within the WCGM. If SETPRT loads a character set
into a WCGM other than the WCGM called for, SETPRT, using a
copy of the translate table, alters bits 0 and I of each
non-X'FF' byte of the translate table to correspond with the
WCGM loaded. Figure 70 on page 180 describes the structure
of the character arrangement table module.

IEBIMAGE Program 179

These 6 bits reference one of 64
addresses (0-63) in the WCGM.

OO=W(,GMO
OI=WCGMI
\O=WCGM2
II=WCGM3

Figure 70. Character Arrangement Table Module Structure

• A byte value of X'FF' indicates an invalid character, prints
as a blank, and gives a data check. The data check is
suppressed if the block data check option is selected.

• One translate table can address multiple WCGMs, and multiple
translate tables can address one WCGM. The translate tables
supplied by IBM address either one or two WCGMs.

The next two components provide the linkage to character sets
and graphic character modification modules. They consist of
four 2-byte fields containing character set IDs with their
corresponding WCGM sequence numbers, followed by four
4-character names of graphic character modification modules.
The format is as follows:

• Each CGMID is a I-byte character set ID containing two
hexadecimal digits that refer to a library character set (as
listed in IBM 3800 Printing Subsystem Programmer's Guide).
Each WCGMNO refers to the corresponding WCGM sequence (X'OO'
to X'03'). Each name is the 4-character name of a graphic
character modification module.

CGMIDO WCGMNOO CGMIDl WCGMNOI

CGMID2 WCGMN02 CGMID3 WCGMN03

Namel

Name2

Name3

Name4

• Most of the standard character arrangement tables do not
need graphic character modification. The names are blank
(X'40's) if no modules are referred to.

• The CGMIDX and the WCGMNOX are both X'OO' when there are no
character sets referred to after the first one.

180 MVS/XA Data Administration: Utilities

/or ''\

_~)

" C·""··

TABLE Module Listing

ox

IX

:X
3X

itX

5X

IIX

7X

ex

9X

AX

BX

ex

ox

Figure 71 shows the listing of a character arrangement table
module. The numbered notes that follow the figure describe the
items marked with the encircled numbers.

XTB1T11T~
XO Xl X2 X5 XII

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

o 00 • • • • • •

o 10 • • • • • •

o 20 a 21 • • • • •

• • • • • • •
• 1 01 1 02 1 03 1 Oit 1 05 1 06

• 1 11 1 12 1 13 1 1,. 1 15 1 16

1 3A 1 10 1 22 1 23 1 2,. 1 25 1 211

1 30 1 31 1 32 1 33 1 3,. 1 35 1 36

X7 XB X9 Xl

• • • •
• • • •
• • • •
• • • •
• • • 0 OA

• • • a 1A

• • • •
• • • 0 3A

1 07 1 08 1 09 •

1 17 1 18 1 19 •

27 28 1 29 •

1 37 1 38 1 39 •

• o 01 0 ~2 0 03 0 0,. 0 05 0 06 0 07

• o 11 0 12 0 13 0 1,. 0 15 0 16 0 17

XB XC XD XE XF

• • • • •
• • • • •
• • • • •
• • • • •

o OB 0 OC 0 00 0 OE V OF

o 1B 0 1C 0 10 0 1E 0 1F

o 2B 0 2C 0 20 0 2E 0 2F

03B 03C 030 03E 03F

1 00 1 OC 1 3C 1 3B 1 lA

1 10 0 2A 1 3D OE 1 OF

1 2l 1 2C 1 OA 1 2E 1 OB

1 2D 1 2B 1 lB 1 21 1 lC

• • • • •
• • • • •

EX • • 0 22 0 23 0 2,. 0 25 0 26 0 27 • • •
FX 0 30 0 31 0 32 0 33 0 3it 0 35 0 36 0 37 • • •

e~ IDENTIFICATION ORDER 0 1 Z 3

-C~ IDENTIFICATION 8F 1~. •

OR'"," ... ,,""' " \f"~ "m
Figure 71. IEBIMAGE Listing of a Character Arrangement Table Module

Notes to Figure 71:

1.

2.

The name of the character arrangement table module, as it
exists in the image library's directory (including the
4-byte system-assigned prefix).

The I-byte identifier of an IBM-supplied character set (in
this example, the Text 1 and Text 2 character sets, whose
identifiers are X'8F' and X'll').

All character sets in SYSl.IMAGELIB or a user-specified
image library are represented by odd-numbered identifiers.
For a 3800 Model 3, if the character set identifier
specified is even-numbered, it is increased by one at print
time and the character set with that identifier is loaded.

IEBIMAGE Program 181

3. The sequence number of the WCGM that is to contain the
character set indicated below it (in this example, the
second WCGM, whose identifier is 1).

4. The sequence number of the WCGM that contains the scan
pattern for the 8-bit data code that locates this translate
table entry.

5. Your 8-bit data code X'B9' transmitted to the 3800 Model 3
addresses this, the B9 location in the translate table,
where the value X'39' in turn is the index into the WCGM
that contains the scan pattern to be used (in this example,
the Text 2 superscript 9).

6. An asterisk is shown in the listing for each translate table
entry that contains X'FF'. This indicates that the 8-bit
data code that addresses this location does not have a
graphic defined for it and is therefore unprintable.

7. An asterisk in the list of character set identifiers
indicates that no character set is specified to use the
corresponding WCGM. If you specify 7F or FF as a character
set identifier (to allow accessing a WCGM without loading
it), a 7F or FF prints here.

8. The name of a graphic character modification module, as the
name exists in the library's directory (including the
system-assigned prefix).

When you specify a graphic character modification module to
be associated with a character arrangement table, you must
specify the OPTION statement with the DEVICE parameter (for
the 3800 Model 3) to ensure that the system assigns the
correct prefix (GRF2) to the graphic character modification
module name.

CREATING A GRAPHIC CHARACTER MODIFICATION MODULE

The 3800 graphic character modification module is variable
length and contains up to 64 segments. Each segment contains
the 1 byte (for the 3800 Modell) or 6 bytes (for the 3800 Model
3) of descriptive information and the 72-byte (for the 3800
Modell) or 120-byte (for the 3800 Model 3) scan pattern of a
graphic character.

The graphic character modification module is created using the
IEBIMAGE program's INCLUDE, GRAPHIC, OPTION and NAME utility
control statements.

The INCLUDE statement identifies an existing graphic character
modification module that is to be copied and used as a basis for
the new module.

To create graphic character modification modules in the format
of the 3800 Model 3 compatibility mode module, the OPTION
statement with the DEVICE parameter is required.

A GRAPHIC statement, when followed by one or more data
statements, defines a user-designed character. A GRAPHIC
statement can also select a character segment from another
graphic character modification module. Each GRAPHIC statement
causes a segment to be created for inclusion in the new module.

The NAME statement identifies the new module and indicates that
the module is to be added to the library or is to replace an
existing module of the same name. More than one GRAPHIC
statement can be coded between the INCLUDE and NAME statements,
and all such GRAPHIC statements apply to the same graphic
character modification module.

182 MVS/XA Data Administration: Utilities

----------------~------.-~-~--~-

(

(

GRAPHIC Module structure

The graphic character modification data following the header
information is a series of 73-byte segments for the 3800 Model 1
and l26-byte segments for the 3800 Model 3. A maximum of 64
such segments is allowed in a module. The module structure is
shown in Figure 72.

101 II 21314-s16

-Reserved

12s1

...... 120 bytes of coding that represent
the 24 bits of each of the 40 raster
scan lines

-- Number of total scan lines in pattern set to 40

-Set to zero

- Width of the character: 24 pels = 10 pitch

- Translate table code 20 pels = 12 pitch
16 pels = IS pitch

Figure 72. Graphic Character Modification Module Structure

When a graphic character is to be modified, the 3800 uses the
translate table code to index into the translate table. The
contents found at that location (a I-byte WCGM code) determine
the WCGM location into which the scan pattern and character data
are to be placed.

FOR THE 3800 MODEL 1: The 72-byte graphic definition that makes
up the scan pattern and system data for one character is divided
into twenty-four 3-byte groups. Each 3-byte group represents a
horizontal row of eighteen I-bit elements (plus parity
information) .

FOR THE 3800 MODEL 3: The l20-byte graphic definition that
makes up the scan pattern for one character is divided into
forty 3-byte groups. Each 3-byte group represents a horizontal
row of twenty-four I-bit elements.

GRAPHIC Module Listing

Figure 73 on page 184 shows an extract from a listing of a
graphic character modification module. This extract contains the
listing of two segments of the module. Each of the notes
following the figure describes the item in the figure that is
marked with the encircled number.

IEBIMAGE Program 183

1 •
2
3 •
4 •
5 •
6
7
8
9 •

10
11.
12 •
13
14 •
15
16
17
18
19
20
~1
~2
23
~4 •
25
26
27
28
~9

30
31
32
33 •
34 •
35 •
36 •
37
38 •
39 •
40 •

••••••• .. " "
••••• ".*

••••
'I"". ." .. ."". _
.w

• ••••
•••••

*.WII. • •••
.....................
............
........ Ii ••

'I" ••
* •••

.11 ... *
'I ••••

SEGHENT 005
ASSIGtI'IENT C4 PITCH 10

123456789012345678901234
1 •
2 •
3 •
4 •
5 •
6 •
7 •
8 •
9 •

10 •
11.
12 •
13 •
14 •
15 •
16 •
17 •
18 •
19 •
20 •
21.
22 •
23 •
24 •
25 •
26 •
27 •
28 •
29 •
30 •
31 •
32 •
33 •
34.
35 •
36.
37 •
38 •
39 •
40 •

. _ __.._._. -_
•••• • ••• -.... ._ .. .-..-.. -.-.- ... _-._. ._ ... _* ••••••••••• -.............

Figure 73. IEBIMAGE listing of Two Segments of a Graphic
Character Modification Module

Notes to Figure 73:

1. The segment number of the character segment within the
module.

2. The 8-bit data code for the character.

3. The pitch of the character.

4. The scan pattern for the character. A dollar sign ($) is
printed instead of an asterisk if the bit specified is out
of the pitch range.

184 MVS/XA ,Data Administr~tion: Utilities

, 7'

(

CREATING A LIBRARY CHARACTER SET MODULE

The 3800 library character set module is a fixed-length module
made up of 64 segments. Each segment contains the 73 bytes (for
the 3800 Modell) or 126 bytes (for the 3800 Model 3) of
information including the scan pattern of a graphic character
and a code (00-3F) that identifies the WCGM location into which
the scan pattern is to be loaded.

The library character set module is created using the INCLUDE,
CHARSET, and NAME control statements.

The INCLUDE statement identifies an existing module.

The OPTION statement with the DEVICE parameter is required to
create library character set modules in the 3800 Model 3
compatibility mode module format.

A CHARSET statement, when followed by one or more data
statements, defines a user-designed character. A CHARSET
statement can also select a character segment from another
library character set or from a graphic character modification
module.

The NAME statement specifies the ID of the character set being
created and indicates if it is to replace an existing module.
More than one CHARSET statement can be coded between the INCLUDE
and NAME statements; all such CHARSET statements apply to the
same library character set module.

CHARSET Module Structure

The library character set data following the header information
is a series of 73-byte segments for the 3800 Modell and
l26-byte segments for the 3800 Model 3. Each module contains 64
segments. For each segment left undefined in a library
character set module, IEBIMAGE inserts the graphic symbol for an
undefined character. The structure of a library character set
module is shown in Figure 74.

101 112 1 314-516

lR~'~
125J

-120 bytes of coding that represent
the 24 bits of each of the 40 raster
scan lines

...... Number of total scan lines in pattern set to 40
...... Set to zcro

~ Width of the character: 24 pels = 10 pitch

"- WCGM location of
graphic character

20 pels = 12 pitch
16 pels = 15 pitch

Figure 74. Library Character Set Module structure

A library character set is loaded directly into a WCGM. SETPRT
uses the 6-bit code contained in the first byte of each 73-byte
segment (for the 3800 Modell) or l26-byte segment (for the 3800
Model 3) as the address of the WCGM location into which the
remaining 72 bytes (for the 3800 Modell) or 125 bytes (for the
3800 Model 3) are loaded.

IEBIMAGE Program 185

FOR THE 3800 MODEL 1: The 73-byte graphic definition that makes
up the scan pattern for one character is divided into
twenty-four 3-byte groups. Each 3-byte group represents a
horizontal row of eighteen I-bit elements.

FOR THE 3800 MODEL 3: The l26-byte graphic definition that
makes up the scan pattern for one character is divided into
forty 3-byte groups. Each 3-byte group represents a horizontal
row of twenty-four I-bit elements.

CHARSET Module Listing

Figure 75 shows an extract from a listing of a library character
set module. This extract contains the listing of two segments
of the library character set. The numbered notes that follow
the figure describe the items marked with the encircled numbers.

StGtl[NT 007
ASSIGtlt1ENT 06 PITCH 10

1214S676901~14S676901~14
I · 2 · 1 · '+
5 · 6
7 · 8 •••••••••••
9 · ••••••• II ••• 1f

10 * ''''''''.!i 111111 * ••
11 *.IIIi".*
12 *II.*~ •• 111
13 *.IIWItIl.".
14 · *"."'''''.10''
IS **11* *.".
16 · *lIltll II.WII
17 · ."*11 .".*
18 · **1111 *111111 •• **.
19 · * •• * 1I11~"."II'I1t

::"0 .*1111 lI'O"'''l';j~*

21 *"VlfII~ •• IIltlilf · ::1 ."IIII .. IIIIII W'
~4 · *"I1I1I1""II_~II!i

::5 **IIIt.II*II!!.""*
~6 · *11* 1I1t1l*
27 · * •• It II"".
~8· • *1111. * ltll.* ••
29 · *.It* *''*1(.11.1111.
10 · *11** *II"'II*.~""
11
3~ · 13 · 14
15
16 · 17
10
19 · 40 ·

LC., ~ ~ ,

SEGMENT \006
ASSIGI::1ENT 07 PITCH 10

1~14S676901~J4S676901214
I
2
1 · 4 · 5 · 6 · •••
7 ••••••
8 · * •••••••• *.11 •••••
9 · •••• '''"1 •• ** If II "II.

10 · .K.".II.III1"IIII.IIW*1I
11 · * •• 0111. *.111111
12 · IflUlllt *N
11 · .lili. .11 X It
14 · * •• * *1t •••• 1f
IS Oili* **.III1It**

.

16 · *111"1 *11*101111."* •
1I.1I.*''''!i1f .? 17 *lIM*

16 · *~II* *'1'0111* *.1I1f
19 · .1t1O. *1I.1i1l IU,·II.. •
::0 · *"If" * •• 1I1! IIVV.
::1 · 1I"~IiI"'IIJI. .IINIt •• 111111 It II 1111 .NIoIf
::3 · .~.lI~lIl111 *"~II

::4 · *."V~II" 111110 *
::5 111111110(* 1111"*
::6 *lIl1l1 .. .11."11
::7 *1I~l(1t *l(lIlI""

26 • •• III1I1I1N •• II* •• ~ ••
::9 · .IIM" •• ".l"; •• 'Ullit

30 · .IIM"~III1IiIlIl~MMW* ••
31 · *111111 "I!
3;: .11 ..
13
3:,
35
36 · 37 · 33
19 · 40 ·

Figure 75. IEBIMAGE listing of Two Segments of a Library
Character Set

186 MVS/XA Data Administration: Utilities

.r'\
\.e I
"L/

(.

INPUT AND OUTPUT

RETURN CODES

Notes to Figure 75:

1.

2.

3.

4.

5.

The name of the library character set module, including the
4-byte system-assigned prefix.

The segment number of the character segment within the
module.

The 6-bit code for the WCGM location.

The pitch of the character.

The scan pattern for the character. A dollar sign ($) is
printed instead of an asterisk if the bit specified is out
of the pitch range.

IEBIMAGE uses the following input:

• A control data set that contains utility control statements

• Source statements produced by the Character Conversion Aid

IEBIMAGE produces the following output:

• A new module or modules for use with the 3800 Model I and
Model 3 printers, 3262 Model 5 printer, or the 4248 printer,
to be stored in an image library. These may be of one of
the following types:

Forms control buffer modules (3800 or 4248)

COpy modification modules (3800 only)

Character arrangement table modules (3800 only)

Graphic character modification modules (3800 only)

Library character set modules (3800 only)

Note that, in building a 4248 FCB module, either a 4248
(prefix FCB4) or a 3211 (prefix FCB2) format FCB may be
used. IEBIMAGE prefixes the name with FCB4 first; then, if
no module exists with that name, the prefix is changed to
FCB2.

• An output data set listing for each new module which
includes:

Module identification

Utility control statements used in the job

Module contents

Messages and return codes

IEBIMAGE returns a code in register 15 that represents the most
severe error condition encountered during the program execution.
This return code is also printed in the output listing. The
codes are described in Figure 76 on page 188.

IEBIMAGE Program 187

CONTROL

Codes

00 (00 hex)

04 (04)

08 (08)

12 (OC)

16 (10)

20 (14)

24 (18)

Figure 76.

Meaning

Successful completion; operation(s) performed as
requested.

Operation(s) performed; investigate messages for
exceptional circumstances.

Operation(s) not performed; investigate messages.

Severe exception; processing may end.

Catastrophic exception; the job step is terminated.

SYSPRINT data set could not be opened; the job step
is terminated.

User parameter list invalid; the job step is
terminated.

IEBIMAGE Return Codes

IEBIMAGE is controlled by job control statements and utility
control statements.

JOB CONTROL STATEMENTS

Figure 77 shows the job control statements for IEBIMAGE.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBIMAGE) or, if
the job control statements reside in the procedure
library, the procedure name. No PARM parameters
can be specified.

SYSPRINT DD Defines the sequential message data set used for
listing statements and messages on the system
output device.

SYSUT1 DD Defines the library data set (SYSI.IMAGELIB or a
user-defined library).

SYSIN DD Defines the control data set, which normally
resides in the input stream.

Figure 77. Job Control Statements for IEBIMAGE

188 MVS/XA Data Administration: Utilities

------------~ ~---~~~~-- -

Sf SPRINT DD statement

SYSUTl DD statement

SYSIN DD statement

Block size for the SYSPRINT data set should be 121 or a multiple
of 121. Any blocking factor can be specified. The first
character of each 121-byte output record is an ANSI control
character.

To ensure that the library data set is not updated by other jobs
while the IEBIMAGE job is running, DISP=OLD should be specified
on the SYSUTI DD statement.

Note that the system will only attempt to locate modules in
SYSl.IMAGELIB if the device is a 3800 printer.

Block size for the SYSIN data set should be 80 or a multiple of
80. Any blocking factor can be specified.

UTILITY CONTROL STATEMENTS

IEBIMAGE is controlled by the following utility control
statements listed in Figure 78.

Continuation requirements for utility control statements are
discussed in "Continuing Utility Control Statements" on page 5.

statement Use

FCB Creates a 3800 or 4248 forms control buffer module and
stores it in an image library.

COPYMOD Creates a 3800 copy modification module and stores it
in an image library.

TABLE Creates a 3800 character arrangement table module and
stores it in an image library.

GRAPHIC Creates a 3800 graphic character modification module
and stores it in an image library.

CHARSET Creates a 3800 library character set module and stores
it in an image library.

INCLUDE Identifies an existing image library module to be
copied and used as a basis for the new module.

NAME Specifies the name of a new or existing library
module.

OPTION Specifies optional 3800 Model 3 or 4248 printer
compatibility, or COPYMOD overrun lines per inch for
an IEBIMAGE job.

Figure 78. Utility Control Statements for IEBIMAGE

IEBIMAGE Program 189

Operation Groups

FeB STATEMENT

IEBIMAGE utility control statements are grouped together to tt-"
create or print a library module. Each group of statements is \., •
called an operation group. Your job's input stream can include '--~/
many operation groups. The operation groups (shown below
without operands) that can be coded are:

• To create or print an FCB module:

[OPTION]
[INCLUDE]
FCB
NAME

Note: It is not possible to print a 4248 FCB module without
coding some valid operation on the FCB statement.

• To create or print a copy modification module:

[INCLUDE]
[OPTION]
COPYMOD
[additional COPYMOD statements]
NAME

• To create or print a character arrangement table module:

[INCLUDE]
[OPTION]
TABLE
NAME

• To create or print a graphic character modification module:

[INCLUDE]
[OPTION]
{GRAPHICIGRAPHIC, followed immediately by
data statements}
[additional GRAPHIC statements]
NAME

• To create or print a library character set module:

[INCLUDE]
[OPTION]
{CHARSETICHARSET, followed immediately by
data statements}
[additional CHARSET statements]
NAME

To print a module, you need only supply the function statement
(that is, FCB, COPYMOD, TABLE, GRAPHIC, or CHARSET) with no
operands specified, followed by the NAME statement naming the
module. However, it is not possible to print a 4248 FCB module
without coding some valid operation on the FCB statement.

The FCB statement specifies the contents of a forms control
buffer (FCB) module for the 3800, 3262 Model 5, or 4248 printer:
spacing codes (lines per inch), channel codes (simulated
carriage-control channel punches), and the size of the form.
For the 4248 printer, the FCB statement also specifies print
position for the horizontal copy feature and printer speed, and
whether the FCB image is to be used as a default.

The FCB statement must always be followed by a NAME statement,
and can only be preceded by an INCLUDE statement if DEVICE=4248
is specified on an OPTION statement.

An FCB statement with no operands specified, followed by a NAME
statement that identifies a 3800 FCB module in the image

190 MVS/XA Data Administration: Utilities

---------------------~--.--- ----

(

COPYMOD STATEMENT

(

c

library, causes the module to be formatted and printed. 3262
Model 5 and 4248 FCB modules cannot be printed by the FCB
statement unless a valid operation is performed on them. To
build an FCB module, you code the FCB statement with at least
one operand. The format of a printed FCB module is shown in
"FCB Module Listing" on page 175.

The format of the FCB statement is:

[~] FCB [LPI=((l[,n])[,(l[,n]) •••])]

[,CH~=(ling[,ling ••• l)[,CH~=(~ •••) •••]l

[,SIZE=lengthl

[, LINES=lines]

[,COPYP=positionl

- [,PSPEED=£LIMIHINll

[,DEFAULT=£YESIHQ1]

The COPYP, PSPEED, and DEFAULT parameters are valid only for a
4248 FCB module (not for the 3800 or 3262 Model 5).

A copy modification module consists of header information,
followed by one or more modification segments. The header
information contains the module's name and length. Each
modification segment contains the text to be printed, identifies
the copy (or copies) the text applies to, and specifies the
position of the text on each page of the copy.

A COPYMOD statement specifies the contents of one of the
modification segments of a copy modification module. More than
one COPYMOD statement can be coded in an operation group; all
COPYMOD statements so coded apply to the same copy modification
module.

IEBIMAGE analyzes the modification segments specified for a copy
modification module to anticipate line overrun conditions that
might occur when the module is used in the printer. A line
overrun condition occurs when the modification of a line is not
completed in time to print that line. The time available for
copy modification varies with the vertical line spacing (lines
per inch) at which the printer is being operated.

When IEBIMAGE builds a copy modification module from your
specifications, the program calculates an estimate of the time
the modification will require during the planned printing. If
the modification can be done in the time available for printing
a line at 12 LPI (lines per inch), it can also be done at 6 or 8
LPI (for the Modell), or 6, 8, or 10 LPI (for the Model 3).
(Note that 6, 8, 10, and 12 LPI are the only print densities
available on the 3800 Model 3 printer.) However, if the copy
modification module being built is too complex to be done in the
time available for printing a line at 6 LPI, it certainly cannot
be done at 8, 10 (for the Model 3 only), or 12 LPI. (Note that
at 10 and 12 LPI there is much less time available for printing
a line than at 6 LPI.)

When IEBIMAGE determines that a copy modification module is
likely to cause an overrun if it is used when printing at a
specified number of lines per inch, the program produces a
warning message to that effect. If the warning applies to 6
LPI, the overrun condition is also applicable to 8, 10 (for the
Model 3 only), and 12 LPI. If the warning applies to 8 LPI, the

IEBIMAGE Program 191

TABLE STATEMENT

condition is also applicable for 10 (for the Model 3 only) and
12 LPI. If the warning applies to 10 LPI, the condition also
applies to 12 LPI.

If you are planning to use a particular copy modification module
only while printing at 6 LPI, you can request suppression of the
unwanted warning messages for 8, 10 (for the Model 3 only), and
12 LPI by specifying the OPTION statement with 6 as the value of
the OVERRUN parameter. If you are planning to print only at 8
LPI, you can use the OPTION statement with OVERRUN = 8 to
request suppression of the unwanted warning messages for 10 (for
the Model 3 only) and 12 LPI. For more information on coding
OVERRUN, see "Using OVERRUN" on page 196. For information about
using your copy modification module, see IBM 3800 Printing
Subsystem Programmer's Guide. The copy modification text can be
printed using the same character size or style, or one different
from the size or style used to print the data in the output data
set.

The COPYMOD statement must always be followed by a NAME
statement or another COPYMOD statement and can be preceded by an
INCLUDE statement. When more than one COPYMOD statement is
coded, IEBIMAGE sorts the statements into order by line number
within copy number. A COPYMOD statement with no operands
specified, followed by a NAME statement that identifies a copy
modification module, is used to format and print the module.
The format of the printed module is shown under "COPYMOD Module
Listing" on page 178.

The format of the COPYMOD statement, when used to create a copy
modification module's segment, is:

[~] COPYMOD COPIES=(starting-copy[,copies]),

LINES=(starting-line[,~J),

POS=position,

TEXT=(([s]!,'~')[,([s]!,'~')

The TABLE statement is used to build a character arrangement
table module. When a character arrangement table is built by
IEBIMAGE and an INCLUDE statement is specified, the contents of
the copied character arrangement table are used as a basis for
the new character arrangement table. If an INCLUDE statement is
not specified, each translate table entry in the new character
arrangement table module is initialized to X'FF', the graphic
character modification module name fields are set with blanks
(X'40'), and the first character set identifier is set to X'83'
(which is the Gothic 10-pitch set). The remaining identifiers
are set to X'OO'.

After the character arrangement table is initialized, IEBIMAGE
modifies the table with data specified in the TABLE statement:
character set identifiers, names of graphic character
modification modules, and specified translate table entries.
The character arrangement table, when built, must contain a
reference to at least one printable character. Only one TABLE
statement can be specified for each operation group. The TABLE
statement can be preceded by an INCLUDE statement and an OPTION
statement and must always be followed by a NAME statement.

o,'\.\

A TABLE statement with no operands specified, followed by a NAME If,-__ \ __
statement that identifies a character arrangement table module ~ __
in the library, causes the module to be formatted and printed.
The TABLE statement should be preceded by an OPTION statement

192 MVS/XA Data Administration: Utilities

(-

GRAPHIC STATEMENT

(0

with the DEVICE=3800M3 parameter for a 3800 Model 3. The format
of the printed character arrangement table module is shown under
"TABLE Module listing" on page 181.

The format of the TABLE statement is:

[.lsl.b.cl] TABLE [CGllID=(~[,~ •••])]

[,GCMLIST={(~[,~ ••])IDELETE1]

[, Lac= ((xl od , {c1 od, setno] I EEl])

The GRAPHIC statement specifies the contents of one or more of
the character segments of a graphic character modification
module. A graphic character modification module consists of
header information followed by from 1 to 64 character segments.
Each character segment contains

• The character's 8-bit data code, its scan pattern, and its
pitch (for the 3800 Modell)

• Six bytes of descriptive information and the l20-byte scan
pattern (for the 3800 Model 3)

By using the INCLUDE statement, you can copy an entire module,
minus any segments deleted using the DElSEG keyword. In
addition, you can select character segments from any module
named with the GCM keyword on the GRAPHIC statement. The
GRAPHIC statement can also specify the scan pattern and
characteristics for a new character.

The GRAPHIC statement must always be followed by a NAME
statement, another GRAPHIC statement, or one or more data
statements. The OPTION statement with the DEVICE parameter must
precede the GRAPHIC statement to create a graphic character
modification module in the 3800 Model 3 compatibility mode
module format. The GRAPHIC statement can be preceded by an
INCLUDE statement. More than one GRAPHIC statement can be coded
in the operation group. The operation group can include GRAPHIC
statements that select characters from existing modules and
GRAPHIC statements that create new characters. The GRAPHIC
statement, preceded by an INCLUDE statement, can be used to
delete one or more segments from the copy of an existing module
to create a new module.

A GRAPHIC statement with no operands specified, followed by a
NAME statement that identifies a graphic character modification
module, is used to format and print the module. When you
specify a graphic character modification module to be printed
for a 3800 Model 3, you must specify the OPTION statement with
the DEVICE parameter to ensure that the system assigns the
correct prefix (GRF2) to the graphic character modification
module name.

The format of the GRAPHIC statement, when it is used to select a
character segment from another graphic character modification
module, is:

[.l.s!.bll] GRAPHIC [REF=((~[,~])[,(~[,xl2£]) ••])

[, GCM=name]

IEBIMAGE Program 193

CHARSET STATEMENT

The format of the GRAPHIC statement, when it is used to specify
the scan pattern and characteristics of a newly-created
character, is:

GRAPHIC

data statements

The CHARSET statement specifies the contents of one or more of
the character segments of a library character set module. A
library character set module consists of header information
followed by 64 character segments. Each character segment
contains the character's 6-bit code for a WCGM location, its
scan pattern, and its pitch. You can use the INCLUDE statement
to copy an entire module, minus any segments deleted using the
DELSEG keyword. In addition, you can use the CHARSET statement
to select character segments from any module named with a
library character set ID or the GCM keyword. The CHARSET
statement can also specify the scan pattern and characteristics
for a new character.

The CHARSET statement must always be followed by a NAME
statement, another CHARSET statement, or one or more data
statements. The CHARSET statement must be preceded by an OPTION
statement with the DEVICE parameter to create library character
set modules in the 3800 Model 3 compatibility mode module
format. The CHARSET statement can be preceded by an INCLUDE
statement. More than one CHARSET statement can be coded in the
operation group. The operation group can include CHARSET
statements that select characters from existing modules and
CHARSET statements that create new characters. The CHARSET
statement, preceded by an INCLUDE statement, can be used to
delete one or more segments from the copy of an existing module
to create a new module.

A CHARSET statement with no operands specified, followed by a
NAME statement that identifies a library character set module,
is used to format and print the module.

The format of the CHARSET statement, when it is used to select a
character segment from another module, is:

[~] CHARSET [REF=((~,~)[,(~,~) •••])

[,(GCM=~IID=~)]]

The format of the CHARSET statement, when it is used to specify
the scan pattern and characteristics of a newly-created
cha ra cter, is:

I [J.aIW.]
CHARSET

data statements

194 MVS/XA Data Administration: Utilities

;'-", , . ,

\,--/,

INCLUDE STATEMENT

NAME STATEMENT

OPTION STATEMENT

When an IEBIMAGE operation group is used to create a new module,
the INCLUDE statement can identify an existing image library
module to be copied and used as a basis for the new module.
When the operation group is used to update an image library
module, the INCLUDE statement identifies the module to be
referred to and must be specified.

The format of the INCLUDE statement is:

[~] INCLUDE mggyl~ name

[,DELSEG=(~[,~ •••])]

• When the INCLUDE statement is coded in an operation group,
it must precede any FCB, COPYMOD, TABLE, GRAPHIC, or CHARSET
statements.

• Only one INCLUDE statement should be coded for each
operation group. If more than one is coded, only the last
is used; the others are ignored.

• You can code an INCLUDE statement for an FCB module only if
the DEVICE=4248 parameter is specified on the OPTION
statement. Either 3211 format or 4248 format FCBs may be
included. IEBIMAGE attempts to locate the 4248 format FCB
first; if it is not found, IEBIMAGE looks for the 3211
format.

• You cannot copy a 3800 FCB module with INCLUDE.

The NAME statement can name a new library module to be built by
the IEBIMAGE program. The NAME statement can also specify the
name of an existing library module. The NAME statement is
required, and must be the last statement in each operation
group.

The format of the NAME statement is:

I [.ls.1W,] I NAME mgdule name[(R)]

To create library character set modules and graphic character
modification modules in a form usable on the 3800 Model 3, the
OPTION statement with the DEVICE=3800M3 parameter is required.
The OPTION statement with the DEVICE=3800M3 parameter is
optional when creating copy modification modules and character
arrangement table modules.

To create a forms control buffer module for the 3262 Model 5 or
4248 printer, the OPTION statement with the DEVICE=4248
parameter is required. DEVICE=4248 cannot be used to create any
module other than an FCB.

The OPTION statement with the OVERRUN parameter is used o~ly in
a COPYMOD operation group and can be placed before or after any
INCLUDE statement for the group. The value in the OVERRUN
parameter specifies the greatest line density for which you want
the overrun warning message IEBA33I to be printed. See "Using

IEBIMAGE Program 195

Using OVERRUN

Notes

Note(O)l

Note(1) 2

Note(1)2

Note(2)3

Note(2)3

Note(3)4

Note(3) 4

Note(3)4

Note(3)4

OVERRUN" for information about overrun conditions and
suppression of overrun warning messages.

The format of the OPTION statement is:

[~l OPTION [OVERRUN={OI618110IlZll

[DEVICE={3800M314248ll

When two parameters are specified, they may be listed in any
order and separated by a comma.

An effective use of the OPTION statement with the OVERRUN
parameter would be to determine the greatest print-line density
(6, 8, 10, 12) at which the copy modification module will be
used, then specify that density in the OVERRUN parameter to
eliminate the warning messages for higher line densities.

The OPTION statement applies only to the operation group that
follows it. If used, the OPTION statement must be specified for
each operation group in the job input stream.

Figure 79 shows the listing of segments of a copy modification
module where an overrun warning was in order. Even if the
OPTION statement specifies OVERRUN=O and the overrun warning
message is not printed, a note is printed to the left of each
segment description for which an overrun is possible.

Initial Number Initial Number Initial Number
Copy of Line of Print of

Segment Number Copies Number Lines Position Characters

1 1 200 10 96 10 180

2 2 200 10 96 11 180

3 3 200 10 96 12 180

4 4 200 10 96 10 180

5 5 200 10 96 11 180

6 6 200 10 96 12 180

7 7 200 10 96 10 180

8 8 200 10 96 11 180

9 9 200 10 96 12 180

"\
\.l.",," ,,)

Figure 79. IEBIMAGE Listing of a Copy Modification Module with Overrun Notes

Notes to Figure 79:

indicates that you might have a copy modification overrun if
your are printing at 12 LPI.

2 indicates that you might have a copy modification overrun if
you are printing at 8 LPI.

3 indicates that you might have a copy modification overrun if ,r~
you are printing at 8 or 12 LPI. ~~~

196 MVS/XA Data Administration: Utilities

Parameters

ASSIGN

4 indicates that you might have a copy modification overrun if
you are printing at 6, 8, or 12 LPI; in other words, you
might have an overrun at any LPI.

Factors used in determining a line overrun condition are:

• Number of modifications per line

• Number of segments per module

Combining COPYMOD segments reduces the possibility of a line
overrun condition.

For the algorithm for calculating when a copy modification
module might cause a line overrun condition, see Reference
Manual for the IBM 3800 Printing Subsystem.

Applicable
Control
statements

CHARSET

Description of Parameters

ASSIGN=(cl~[,~])
identifies a newly-created character and its
characteristics. The ASSIGN parameter specifies
the new character's 6-bit code and its pitch.
When IEBIMAGE detects the ASSIGN parameter, the
program assumes that all following statements,
until a statement without the characters SEQ= in
columns 25 through 28 is encountered, are data
statements that specify the character's scan
pattern.

E.i.Wl

specifies the character's 6-bit code for a
WCGM location and can be any value between
X'OO' and X'3F'. ~oc is required when
ASSIGN is coded.

specifies the character's horizontal size
and is one of the following decimal
numbers: 10, 12, or 15. If ~~ is not
specified, the default is 10.

At least one data statement must follow a
CHARSET statement containing the ASSIGN
parameter.

IEBIMAGE Program 197

Parameters

ASSIGN

CGMID

Applicable
Control
statements

GRAPHIC

TABLE

Description of Parameters

ASSIGN=(~[,2ii£b])
identifies a newly-created character and its
characteristics. The ASSIGN parameter specifies
the new character's 8-bit data code and its
pitch. When IEBIMAGE detects the ASSIGN
parameter, it assumes that all following
statements, until a statement without the
characters SEQ= in columns 25 through 28 is
encountered, are data statements that specify
the character's scan pattern.

~

specifies the character's 8-bit data code,
and can be any value between X'OO' and
X'FF'. You should ensure that ~
identifies a translate table entry that
points to a character position in a WCGM
(that is, the translate table entry doesn't
contain X'FF'). The ~ is required when
ASSIGN is coded.

specifies the character's horizontal size
and is one of the decimal numbers 10, 12,
or 15. If ~ is not specified, the
default is 10.

At least one data statement must follow a
GRAPHIC statement containing the ASSIGN
parameter.

CGMID=(setO[,~ •••])
identifies the character sets that are to be
used with the character arrangement table. (The
IBM-supplied character sets are described in l]M
3800 Printing Subsystem Programmer's Guide.)
When CGMID is specified, all character set
identifiers are changed. If only one character
set is specified, the other three identifiers
are set to X'OO'.

is a I-byte identifier of a character set.
Up to four character set identifiers can be
specified; setO identifies the character
set that is to be loaded into the first
writable character generation module
(WCGM); setl is loaded into the second
WCGM; etc. You should ensure that the
character set identifiers are specified in
the proper sequence, so that they are
coordinated with the translate table
entries.

For the character set identifiers, see IBM 3800
Printing Subsystem Programmer's Guide.

198 MVS/XA Data Administration: Utilities

,If'\
\" I
"-,/

Parameters

CHX

(

Applicable
Control
statements

FCB

Description of Parameters

CHX=(~[,~ ••• l)
specifies the channel code (or codes) and the
line number (or numbers) to be skipped to when
that code is specified.

CHX
specifies a channel code, where X is a
decimal integer from 1 to 12.

specifies the line number of the print line
to be skipped to, and is expressed as a
decimal integer. The first printable line
on the page is line number 1.

The value of ling cannot be larger than the
line number of the last printable line on
the form.

Only one channel code can be specified for a
print line. However, more than one print line
can contain the same channel code.

Conventions:

• Channel 1 is used to identify the first
printable line on the form. The job entry
subsystem and the CLOSE routines for direct
allocation to the 3800 with BSAM or QSAM
require a channel 1 code even when the data
being printed contains no skip to channell.

• Channel 9 is used to identify a special
line. To avoid I/O interrupts that are
caused by use of channel 9, count lines to
determine the line position.

• Channel 12 is used to identify the last
print line on the form to be used. To avoid
I/O interrupts that are caused by use of
channel 12, count lines to determine the
page size.

• Use of an FCB that lacks a channel code to
terminate a skip operation causes a data
check at the printer when the corresponding
skip is issued. This data check cannot be
blocked.

If INCLUDE is specified, values for CH~ may be
taken from the included FCB module. See the
discussion under module name.

IEBIMAGE Program 199

Parameters

COPIES

COPYP

Applicable
Control
Statements

COPYMOD

FCB

Description of Parameters

COPIES=(starting-copy[,copies])
specifies the starting copy number and the total
number of copies to be modified.

starting-copy
specifies the starting copy number and is
expressed as a decimal integer from I to
255. The starting-copy value is required.

copies
specifies the number of copies that are to
contain the modifying text and is expressed
as a decimal integer from I to 255. When
copies is not specified, the default is I
copy.

The sum of starting-copy and copies cannot
exceed 256 (255 for JES3).

COPYP=positioD
specifies the position (the number of character
spaces from the left margin) at which the
horizontal copy is to begin printing.

positioD
is a decimal number, from 2 to 168, which
indicates where the horizontal copy
printing will start. If your 4248 printer
has only 132 print positions, the maximum
number you should specify here is 132.

If COPYP=O is coded, any COPYP value
previously set in an included FCB module is
overridden, and the horizontal copy feature
is turned off. You may not specify
COPYP=I.

If INCLUDE is specified, and the included FCB
module is formatted for a 4248 printer only, the
default is the COPYP value for the included FCB
module. Otherwise, if no COPYP value is
specified, the default value is O.

COPYP is not valid for 3800 FCB modules; it is
ignored for 3262 Model 5 FCB modules.

The COPYP value specified affects the maximum
amount of data that may be sent to the printer.
Channel programs that are executed with the
horizontal copy feature activated must set the
suppress incorrect length (SIL) bit and have a
data length that does not exceed the size of
either one half the number of print positions or
the smaller of the two copy areas.

200 MVS/XA Data Administrationl Utilities

,,4"'\
i, I

,-j

."" " \

Parameters

gatg
statements

DEFAULT

DELETE

DELSEG

Applicable
Control
statements

GRAPHIC
CHARSET

FCB

TABLE

INCLUDE

Description of Parameters

data statements
describe the design of the character as it is
represented on a character design form. For
details of how to design a character and how to
use the character design form, see laM 3800
Printing Subsystem Programmer's Guide. Each
data statement represents a line on the design
form. Each nonblank line on the design form
must be represented with a data statement; a
blank line can also be represented with a data
statement. You can code up to 24 (for 3800
Modell) or 40 (for 3800 Model 3) data
statements to describe the new character's
pattern. On each statement, columns 1 through
18 (for Modell) or 24 (for Model 3) can contain
nonblank grid positions when the character is
10-pitch. Any nonblank character can be punched
in each column that represents a nonblank grid
position. Columns 1 through 15 (for Modell) or
20 (for Model 3) can contain nonblank grid
positions when the character is 12-pitch.
Columns 1 through 15 (for Modell) or 1 through
16 (for Model 3) can contain nonblank grid
positions when the character is IS-pitch.

DEFAULT={YESINO)
specifies whether this 4248 FCB image is to be
treated as the default image by OPEN processing.
Default images are used by the system for jobs
that do not request a specific image.

If a job does not request a specific FCB image,
and the current image is not a default, the
operator will be prompted for an FCB image at
OPEN time.

If INCLUDE is used to copy a 4248 FCB module
that was originally specified as a default
image, the new module will also be considered a
default image unless DEFAULT=NO is now
specified.

DEFAULT is not valid for 3800 FCB images.

DELETE
specifies that all graphic character
modification module name fields are to be set to
blanks.

DELSEG=(~gno[,segno ••• J)
specifies the segments of the copied module that
are to be deleted when the module is copied.
Segment numbers can be specified in any order.
In this parameter, segment 1 is used to refer to
the first segment of the module. When you code
the DELSEG parameter, you should use a current
listing of the module's contents to ensure that
you are correctly identifying the unwanted
segments.

You can code the DELSEG parameter only when the
named module is a copy modification module, a
graphic character modification module, or a
library character set module.

IEBIMAGE Program 201

Parameters

DEVICE

GCM

GCMLIST

Applicable
Control
statements

OPTION

CHARSET
GRAPHIC

TABLE

Description of Parameters

DEVICE={3800M314248)
specifies printer compatibility mode module
formats and processing considerations.

3800M3

4248

specifies 3800 Model 3 compatibility.

specifies that the module created or
modified with the FCB statement should be
formatted for the 3262 Model 5 or 4248
printer. See Figure 64 on page 174 for the
format of the 4248 FCB module.

If the DEVICE parameter is omitted, modules are
created for the 3800 Modell.

GCM=~
can be coded when the REF parameter is coded and
identifies the graphic character modification
module that contains the character segments
referred to by the REF parameter.

specifies the 1- to 4-character
user-specified name of the graphic
character modification module.

If GCM is coded, REF must also be coded. GCM
should not be coded with ID.

When neither GCM nor ID is coded, the segments
are copied from the IBM-supplied World Trade
National Use Graphics graphic character
modification module.

GCMLIST=(~[,~ •••])
names up to four graphic character modification
modules to be associated with the character
arrangement table. When GCMLIST is specified,
all graphic character modification module name
fields are changed (if only one module name is
specified, the other three name fields are set
to blanks).

is the 1- to 4-character name of the
graphic character modification module. Up
to four module names can be specified. The
name is put into the character arrangement
table, whether or not a graphic character
modification module currently exists with
that name. However, if the module doesn't
exist, IEBIMAGE issues a warning message to
you. The character arrangement table
should not be used unless all graphic
character modification modules it refers to
are stored in an image library.

202 MVS/XA Data Administration: Utilities

Parameters

ID

LINES

LINES

Applicable
Control
statements

CHARSET

COPYMOD

FCB

Description of Parameters

ID=~
can be coded when the REF parameter is coded and
identifies a library character set that contains
the character segments referred to by the REF
parameter.

specifies the 2-hexadecimal-digit ID of the
library character set module. The second
digit must be odd. and '7F' and 'FF' are
not allowed.

ID should not be coded with GCM.

When neither ID nor GCM has been coded. the
segments are copied from the IBM-supplied World
Trade National Use Graphics graphic character
modification module.

LINES=(starting-line[,~l)
specifies the starting line number. and the
total number of lines to be modified.

starting-line

~

specifies the starting line number. and is
expressed as a decimal integer from 1 to
132. The starting-line value is required.

specifies the number of lines that are to
contain the modification segment's text,
and is expressed as a decimal integer from
1 to 132. When lines is not specified, the
default is 1 line.

The sum of starting-line and lines cannot exceed
133. If the sum exceeds the number of lines
specified for the form size (see the "FCB
statement"). the modifying text is not printed
on lines past the end of the form.

LINES=~
specifies the total number of lines to be
contained in an FCB module.

li..D..e.:i
is the decimal number. from 1 to 256, which
indicates the number of lines on the page.

When the LINES. SIZE. and LPI parameters are
specified in the FCB statement. each parameter
value is checked against the others to ensure
that there are no conflicting page-length
specifications.

When LINES is not specified. the form length
defaults to the value of LPI multiplied by the
value of SIZE. in inches. If no SIZE parameter
is specified. LINES defaults to 11 times the
value of LPI.

If INCLUDE is specified, the value for LINES may
be taken from the included FCB module. See the
discussion under modyle name.

IEBIMAGE Program 203

Parameters

LOC

Applicable
Control
statements

TABLE

Description of Parameters

LOC=((~[,{~[,~] Iffl] 1
[,(xloc ••• l ••• ll
specifies values for some or all of the 256
translate table entries. Each translate table
entry identifies one of 64 character positions
within one of the WCGMs.

is an index into the translate table, and
is specified as a hexadecimal value from
X'OO' to X'FF'i ~ identifies a translate
table entry, not the contents of the entry.

identifies one of the 64 character
positions within a WCGM, and is specified
as a hexadecimal value between X'OO' and
X'3F'. ~ and ~ specify the contents
of the translate table entry located by
~. When ~ is not specified, the
default is X'FF', an invalid character.
You can specify the same £l2£ and ~
values for more than one ~.

~
identifies one of the WCGMs, and is
specified as a decimal integer from 0 to 3.
~ and ~ specify the contents of the
translate table entry located by ~.
When ~ is not specified, the default is
O. The ~ cannot be specified unless
~ is also specified. You can specify
the same £l2£ and ~ values for more
than one ~.

If '\
let. .:
'-J

204 MVS/XA Data Administration: utilities

-------- - ------ - _._-,- ---

Pal'ametel's

LPI

(

Applicable
Contl'ol
statements

FCB

Descl'iption of Pal'ametel's

LPI=((1[,n])[,(1[,n]) •••])
specifies the number of lines per inch and the
number of lines to be printed at that line
spacing.

1

n

specifies the number of lines per inch, and
can be 6, 8, or 12 (for the 3800 Modell);
6 or 8 (for the 3262 Model 5 or 4248); or
6, 8, 10, or 12 (for the 3800 Model 3).

specifies the number of lines at a line
spacing of 1. When the printer uses
common-use paper sizes, n is a decimal
value from 1 to 60 when 1 is 6; from 1 to
80 when 1 is 8; from 1 to 100 when 1 is 10;
and from 1 to 120 when 1 is 12.

When the printer uses ISO paper sizes, n is
a value from 1 to 66 when 1 is 6; from 1 to
88 when 1 is 8; from 1 to 110 when 1 is 10;
or from 1 to 132 when 1 is 12. For the
paper sizes, see IBM 3800 Printing
Sybsystem Programmer's Guide.

It is your responsibility to ensure that the
total number of lines specified results in a
length that is a multiple of 1/2 inch.

The total number of lines cannot result in a
value that exceeds the usable length of the
form. For the 3800, do not specify coding for
the top and bottom 1/2 inch of the form;
IEBIMAGE does this for you.

When the SIZE, LINES, and LPI parameters are
specified in the FCB statement, each parameter
value is checked against the others to ensure
that there are no conflicting page-length
specifications. For example, SIZE=35 specifies
a 3-1/2 inch length; acceptable LPI values for
the 3800 cannot define more than the printable
2-1/2 in~hes of this length.

When you specify more than one (lLQ) pair, 1
must be specified for each pair and n must be
specified for each pair except the last.

When you specify 12 lines per inch, use one of
the condensed character sets. If other
character sets are printed at 12 lines per inch,
the tops or bottoms of the characters may not
print.

IEBIMAGE Program 205

Pa.rameters

Applicable
Control
statements

LPI FCB
(continued)

modyle
~

OVERRUN

INCLUDE
NAME

OPTION

Description of Parameters

When only 1 is specified, or when 1 is the last
parameter in the LPI list, all remaining lines on the
page are at 1 lines per inch.

When LPI is not specified, all lines on the page are
at 6 lines per inch.

If the total number of lines specified is less than
the maximum number that can be specified, the
remaining lines default to 6 lines per inch.

If INCLUDE is specified, the value for LPI may be
taken from the included FCB module. See the
discussion under module name.

modyle name
names or identifies a library module. The
module name is 1 to 4 alphameric and national
($, #, and @) characters, in any order, or, for
a library character set module, a 2-character ID
that represents two hexadecimal digits (0-9,
A-F), the second digit being odd. Note that 7F
and FF cannot be used.

For a 3800 INCLUDE operation, the named module
must be the same type as the module being
created.

However, for the 4248 printer, if the named FCB
module is not found to exist with the prefix
FCB4, an existing 3211 FCB module (prefix FCB2)
with the same module name will be used. In this
case, the values specified for the LINES, SIZE,
CH~, and LPI parameters on the FCB statement
will default to the values previously specified
in the included module if the new values are not
compatible with the 3211 printer. If the 3211
module was a default image, the 4248 module will
also be a default image unless the DEFAULT
parameter is specified as NO.

OVERRUN=£OI6181101111
specifies the greatest number of lines per inch
for which message IEBA33I is to be printed for a
COPYMOD operation. For example, OVERRUN=8
allows the message for 6 and 8 lines per inch,
but suppresses it for 10 and 12 lines per inch.
Specifying OVERRUN=O suppresses message IEBA33I
for every case. If you specify OVERRUN=12, none
will be suppressed.

OVERRUN=lO is valid only for the 3800 Model 3.

If the OPTION statement is omitted, the OVERRUN
parameter default value is 12, and messages are
not suppressed. If the OVERRUN parameter is
omitted, the default value is also 12.

If the parameter specification is invalid (for
instance, if OVERRUN=16 is specified), the
entire operation group does not complete
successfully.

For details of using the OVERRUN parameter with
COPYMOD, see "Using OVERRUN" on page 196.

206 MVS/XA Data Administration: Utilities

------- -~_ .. __ .

/\
('_~)

Parameters

POS

PSPEED

(.

(R)

Applicable
Control
statements

COPYMOD

FCB

NAME

Description of Parameters

POS=position
specifies the starting print position (the
number of character positions from the left
margin) of the modifying text.

position
specifies the starting print position and
is expressed as an integer from I to 204.
See the restriction noted for the TEXT
parameter below.

The maximum number of characters that can fit in
a print line depends on the pitch of each
character and the width of the form.

For the maximum number of characters that can
fit in a print line for each form width, see llM
3800 Printing Subsystem Programmer's Gyide.

PSPEED=(LIMIHIN)

(Rl

specifies the print speed for the 4248 printer.
Note that printer speed affects the quality of
printing; LOW speed provides the best quality.

L 01" LOW

M 01"

H 01"

N 01"

sets the printer speed to 2200 lines per
minute (LPM).

MEDIUM
sets the printer speed to 3000 LPM.

HIGH
sets the printer speed to 3600 LPM.

NO CHANGE
indicates that the current printer speed
should remain unchanged.

If INCLUDE is specified, and the included module
is formatted for a 4248 printer only, the
default is the PSPEED value for the included FCB
module. Otherwise, the default is NOCHANGE (~r
N). .

PSPEED is not valid for 3800 FCB modules.
PSPEED is ignored for 3262 Model 5 FCB modules.

indicates that this module is to be replaced by
a new module with the same name, if it exists.
(R) must be coded in parentheses.

IEBIMAGE Program 207

Parameters

REF

Applicable
Control
statements

CHARSET

Description of Parameters

REF=((~,~)[,(~,£lQ£) •••])
identifies one or more character segments within
an existing graphic character modification
module or library character set module. If the
reference is to a GCM, the scan pattern and
pitch of the character referred to are used, and
a 6-bit WCGM location code is assigned. If the
reference is to a character in a library
character set, the entire segment, including the
6-bit WCGM location code, is used, unless the
~ subparameter is specified for that segment.
The REF parameter cannot be used to change a
character's pitch or scan pattern.

~
is the segment number, a decimal integer
between I and 999. When a character
segment is copied from the IBM-supplied
World Trade National Use Graphics graphic
character modification module, ~ can be
greater than 64. When the character
segment is copied from a graphic character
modification or library character set
module built with the IEBIMAGE program,
~ is a number from I to 64.

specifies a 6-bit code that points to a
WCGM location, and can be any value between
X'OO' and X'3F'. When a library character
set segment is referred to, if ~ is not
specified, the character's 6-bit code
remains unchanged when the segment is
copied. If a graphic character modification
segment is referred to, ~ must be
specified.

The REF parameter can be coded in a CHARSET
statement that includes the ASSIGN parameter.

208 MVS.lXA Data A,dministrationl Utilities

;(---\

(~_/

j

Parameters

REF

SEQ

Applicable
Control
statements

GRAPHIC

CHARSET
GRAPHIC

Description of Parameters

REF=((segno[,~loc])[,(segno[,xloc]) •••])
identifies one or more character segments within
an existing graphic character modification
module. Each character segment contains the
scan pattern for a character and the 6 bytes of
descriptive information (used to locate its
translate table entry). The 6 bytes of
descriptive information can be respecified with
the xloc subparameter. The REF parameter cannot
be used to change a character's pitch or scan
pattern.

~
is the segment number, a decimal integer
between land 999. When a character
segment is copied from the IBM-supplied
World Trade National Use Graphics graphic
character modification module, ~gnQ can be
greater·than 64. When the character
segment is copied from a graphic character
modification module built with the IEBIMAGE
program, ~ is a number from 1 to 64.

specifies an 8-bit data code for the
character, and can be any value between
X'OO' and X'FF'. You should ensure that
~loc identifies a translate table entry
that points to a character position in the
WCGM (that is, the translate table entry
doesn't contain X'FF'). If ~~ is not
specified, the character's 8-bit data code
remains unchanged when the segment is
copied.

The REF parameter can be coded in a GRAPHIC
statement that includes the ASSIGN parameter.

SEQ=.!l.!1
specifies the sequence number that must appear
in columns 25 through 30 of the data statement
and identifies the line as a data statement; .!l.!1
specifies a line number (corresponding to a line
on the character design form) and is a 2-digit
decimal number from 01 to 40.

IEBIMAGE Program 209

Parameters

SIZE

Applicable
Control
statements

FCB

Description of Parameters

SIZE=length
specifies the vertical length of the form, in
10ths of an inch. See IBM 3800 Printing
Subsystem Programmer's Gyide for the allowable
lengths for the 3800. The complete length of
the form is specified (for example, with the
3800, SIZE=110 for an II-inch form) even though
the amount of. space available for printing is
reduced by the 1/2-inch top and bottom areas
where no printing occurs.

When the SIZE, LINES, and LPI keywords are
specified in the FCB statement, each parameter
value is checked against the others to ensure
that there are no conflicting page-length
specifications. For example, SIZE=35 specifies
a 3-1/2 inch length; acceptable LPI values for
the 3800 cannot define more than the printable
2-1/2 inches of this length.

When SIZE is not specified, the form length
defaults to the value specified in LINES. If
LINES is not specified, SIZE is assumed to be 11
inches (110).

If INCLUDE is specified, the value for SIZE may
be taken from the included FCB module. See the
discussion under module name.

'-,.. j

210 MVS/XA Data Administration: Utilities

----_. ---- ---

(•. -.

""

(-

(

Parameters

TEXT

Applicable
Control
statements

COPYMOD

Description of Parameters

TEXT=(([~]±,'~')[,([g]±,'~') •••])
specifies the modifying text. The text is
positioned on the form based on the LINES and
POS parameters and replaces the output data
set's text in those positions.

specifies a duplication factor (that is,
the number of times the text is to be
repeated). The d is expressed as a decimal
integer from 1 to 204. If d is not
specified, the default is 1.

specifies the form in which the text is
entered: C for character, or X for
hexadecimal. The t is required.

specifies the text and is enclosed in
single quotation marks.

If the text type is C, you can specify any
valid character. Blanks are valid
characters. A single quotation mark is
coded as two single quotation marks. You
are not allowed to specify a character that
results in a X'FF'. If the text type is X,
the text is coded in increments of two
characters that specify values between
X'OO' and X'FE'. You are not allowed to
specify X'FF'.

The sum of the starting print position (see the
POS parameter) and the total number of text
characters cannot exceed 205. If the width of
the form is less than the amount of space
required for the text (based on character pitch,
starting position, and number of characters),
characters are not printed past the right margin
of the form.

If a text character specifies a character whose
translate table entry contains X'FF', the
printer sets the Data Check error indicator when
the copy modification module is loaded. This
error indicator can be blocked.

IEBIMAGE Program 211

IEBIMAGE EXAMPLES

Module
Created

FCB

FCB

FCB

FCB

FCB

FCB

FCB

COPYMOD

COPYMOD

TABLE

TABLE

TABLE

TABLE

GRAPHIC

GRAPHIC

GRAPHIC

The following examples illustrate some of the uses of IEBIMAGE.
Figure 80 can be used as a quick-reference guide to the examples
that follow.

In most cases, examples for the 3800 Model 3 can be changed to
3800 Model 1 examples by deleting the OPTION DEVICE=3800M3
statement and specifying the OVERRUN parameter equal to a number
other than 10. See the parameter charts for restrictions on the
LPI parameter and on data statements.

Printer Comments Example

3800 Model 1 11-inch form 1

3800 Model 1 5-1/2 inch form, replaces existing 2
SYS1.IMAGELIB member. Multiple
channel codes specified.

3800 Model 1 3-1/2 inch form, replaces existing 3
SYS1.IMAGELIB member. Varied vertical
spacing.

3800 Model 1 7-inch form, varied vertical spacing. 4

3800 Model 1 12-inch ISO form. Replaces 5
IBM-supplied module.

3800 Model 3 7-1/2 inch ISO form. Varied vertical 6
spacing.

4248 11-inch form, based on existing 6A
module. New print speed and copy
position specified.

3800 Model 1 4 modification segments. 7

3800 Model 3 Existing module used as basis for new 8
module. OVERRUN specified.

3800 Model 3 IBM-supplied module modified to 9
include another character.

3800 Model 3 Existing module used as basis for new 10
module. Pitch changed.

3800 Model I Existing module used as basis for new 11
module. Includes user-designed
characters of GRAPHIC module.

3800 Model 3 Existing module used as basis for new 12
module. New module deletes all
GRAPHIC references and resets
translation table entries.

3800 Model 1 Entire IBM-supplied module printed. 13

3800 Model 3 Segments copied from IBM-supplied 14
module.

3800 Model 3 New module contains a user-designed 15
character. Existing character
arrangement (TABLE) modified to
include new character.

Figure 80 (Part 1 of 2). IEBIMAGE Example Directory

212 MVS/XA Data Administration: Utilities

r1~ '-,
''t~j

(

(,

Module
Created Printer Comments Example

GRAPHIC 3800 Model 1 Segments copied from existing module. 16
User-designed character created.

GRAPHIC 3800 Model 3 New GRAPHIC module contains a 17
user-designed character. Existing
character arrangement <TABLE) modified
to include new character. COPYMOD
created to print new character.
Result tested.

CHARSET 3800 Model 1 Entire library character set with scan 18
patterns printed.

CHARSET 3800 Model 3 Segments copied from IBM-supplied 19
GRAPHIC module.

CHARSET 3800 Model 3 New module contains a user-designed 20
character. Existing character
arrangement <TABLE) modified to
include new character.

CHARSET 3800 Model 1 Segments copied from existing module. 21
User-designed character created.

Figure 80 (Part 2 of 2). IEBIMAGE Example Directory

EXAMPLE 1: BUILDING A NEW 3800 FORMS CONTROL BUFFER MODULE

3800 Model 1

In this example, the vertical spacing and channel codes for an
II-inch form are specified, and the module is added to the
SYSl.IMAGELIB data set as a new member.

//FCBMODI JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD 3(

FCB CHl=1,CH12=80,LPI=8
NAME IJ

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• CHl=1 specifies channell code for line 1, allowing for
positioning at line 1.

•

•

CH12=80 specifies channel 12 code for line 80, allowing for
positioning at line 80 and a unit exception indication at
line 80 (the last printable line on the page.)

LPI=8 specifies that the entire form is to be at a vertical
spacing of 8 lines per inch. Because the SIZE parameter is
omitted, the form length defaults to 11 inches. Because

IEBIMAGE Program 213

•

there are 10 inches of printable space in an II-inch form,
80 lines are printed at 8 lines per inch.

The name of the new FCB module is IJ; it is stored as a
member of the SYSl.IMAGELIB data set.

EXAMPLE 2: REPLACING A 3800 FORMS CONTROL BUFFER MODULE

3800 Model 1

In this example, the size and channel codes for a 5-1/2 inch
form are specified, and the module is added to the SYSl.IMAGELIB
data set as a replacement for an existing member. The new
module is added to the end of the data set; the name in the data
set's directory is updated so that it points to the new module;
the old module can no longer be accessed through the data set's
directory.

IIFCBMOD2 JOB
.11 EXEC PGM=IEBIMAGE
IISYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

FCB CHl=(l,7,13,20),CH12=26,SIZE=55
NAME S55(R)

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• CHl=(l,7,13,20) specifies channell code for printable line
I, line 7, line 13, and line 20.

• CH12=26 specifies channel 12 code for printable line 26.

• SIZE=55 specifies the length of the form as 55 tenths of an
inch, or 5-1/2 inches.

• Because the LPI parameter is omitted, the vertical spacing
defaults to 6 lines per inch. Because there are 4-1/2
inches of printable lines in a 5-1/2 inch form. there are 27
print lines on this form.

• The name of the FCB module is S55. and it repla,ces an
existing FCB module of the same name. The new FCB module is
stored as a member of the SYSl.IMAGELIB data set.

EXAMPLE 3: REPLACING A 3800 FORMS CONTROL BUFFER MODULE

3800 Model 1

In this example, the vertical spacing, channel codes, and size
for a form are specified. and the module is added to the
SYSl.IMAGELIB data set as a replacement for an existing member.
The new module is added to the end of the data set; the name in
the data set's directory is updated so that it points to the new
module; the old module can no longer be accessed through the
data set's directory.

214 MVS/XA Data Administration: Utilities

-------------- -.~ -

'f\
'~

(

(-

//FCBMOD3
//
//SYSUTl
//SYSPRINT
//SYSIN

JOB
EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGELIB,DISP=OLD
DD SYSOUT=A
DD 3{

FCB CHl=I,CH2=4,CH5=II,SIZE=35,
LPI=((6,2),(8,3),(6,4),(8,9»

NAME HL(R)
/3{

The control statements are discussed below.

72

x

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• CHl=1 specifies channell code for printable line 1.

• CH2=4 specifies channel 2 code for line 4.

• CH5=11 specifies channel 5 code for line 11.

• LPI=((6,2),(8,3),(6,4),(8,9» specifies vertical spacing for
the first 18 printable lines in the form:

(6,2) specifies lines 1 through 2 are at a vertical
spacing of 6 lines per inch, and take up 2/6 inch.

(8,3) specifies lines 3 through 5 are at a vertical
spacing of 8 lines per inch, and take up 3/8 inch.

(6,4) specifies lines 6 through 9 are at a vertical
spacing of 6 lines per inch, and take up 4/6 inch.

(8,9) specifies lines 10 through 18 are at a vertical
spacing of 8 lines per inch, and take up 1-1/8 inch.

• SIZE=35 specifies the length of the form as 35 tenths of an
inch, or 3-1/2 inches. Because there are 2-1/2 inches of
printable space on a 3-1/2 inch form, and because the LPI
parameter specifies vertical spacing for 2-1/2 inches of
lines, the vertical spacing of all lines in the form is
accounted for.

• The name of the FCB module is HLj it replaces an existing
module of the same name. The new FCB module is stored as a
member of the SYSl.IMAGELIB data set.

EXAMPLE 4: BUILDING A NEW 3800 FORMS CONTROL BUFFER MODULE

3800 Model 1

In this example, the vertical spacing, channel codes, and length
of a form are specified, and the module is added to the
SYSl.IMAGELIB data set as a new member.

IEBIMAGE Program 215

/IFCBMOD4
/1
/ISYSUTl
/ISYSPRINT
/ISYSIN

JOB
EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGElIB,DISP=OlD
DD SYSOUT=A
DD 3E

FCB CHl=1,CH6=33,SIZE=70,
lPI=((8,32),(l2,2»

NAME TGT
/3E

72

X

The control statements are discussed below.

• The SYSUTl DD statement includes DISP=OlD to ensure that no
other job can modify the data set while this job is
executing.

• CHl=l specifies channell code for printable line 1.

• CH6=33 specifies channel 6 code for line 33.

• lPI=((8,32),(12,2» specifies that the first 32 printable
lines of the form are to be at a vertical spacing of 8 lines
per inch, and the next 2 printable lines are to be at a
vertical spacing of 12 lines per inch.

• SIZE=70 specifies that the length of the form is 70 tenths
of an inch, or 7 inches. Because there are 6 inches of
printable lines in a 7-inch form and the lPI parameter
specifies 32 lines at 8 lines per inch, or 4 inches, and 2
lines at 12 lines per inch, or 1/6 inch, the vertical
spacing for the remaining 1-5/6 inches defaults to 6 lines
per inch.

Therefore, the form consists of lines 1 through 32 at 8
lines per inch, lines 33 through 34 at 12 lines per inch,
and lines 35 through 45 at 6 lines per inch, with channel
codes at line 1 and line 33.

• The name of the new FCB module is TGTi it is stored as a
member of the SYSl.IMAGElIB data set.

EXAMPLE 5: REPLACING THE 3800 FORMS CONTROL BUFFER MODULE STD3

3800 Model 1

In this example, an FCB module is defined that uses ISO paper
sizes, replacing the IBM-supplied module named STD3. This must
be done before the dump-formatting routines that print
high-density dumps can print them at 8 lines per inch on that
printer.

IIFCBMOD5 JOB
1/ EXEC PGM=IEBIMAGE
I/SYSUTI DD DSNAME=SYSl.IMAGElIB,DISP=OlD
//SYSPRINT DD SYSOUT=A
I/SYSIN DD 3E

13E

FCB CHl=1,CH12=88,lPI=(8,88),SIZE=120
NAME STD3(R)

216 MVS/XA Data Administration: Utilities

If "
_~

(

(,

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• CHl=l specifies channell code for printable line 1; CH12=88
specifies channel 12 code for line 88.

• LPI=(8,88) specifies that all 88 printable lines of the form
are to be at a vertical spacing of 8 lines per inch.

• SIZE=120 specifies that the length of the form is 120 tenths
of an inch, or 12 inches, which is the longest ISO paper
size.

• The name of the new FCB module is STD3i it is to replace the
existing module of that same name on SYSl.IMAGELIB.

EXAMPLE 6: BUILDING A NEW 3800 FORMS CONTROL BUFFER MODULE FOR ADDITIONAL ISO PAPER
SIZES

3800 Model 3

In this example, an FCB module is defined that uses ISO paper
sizes and has the ISO Paper Sizes Additional Feature installed.

//FCBMOD6
//
//SYSUTl
//SYSPRINT
//SYSIN

JOB
EXEC PGM=IEBIMAGE
DD ~SNAME=SYSl.IMAGELIB,DISP=OLD
DD SYSOUT=A
DD *

FCB CHl=1,CH12=74,SIZE=75,
LPI=«10,35),(12,4),(lO,35),(6,l))

NAME ARU

The control statements are discussed below.

72

X

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• CHl=l specifies channell code for line I, allowing for
positioning at line 1.

• CH12=74 specifies channel 12 code for line 74, allowing for
positioning at line 74 and a unit exception indication at
line 74 (the last printable line on the page.)

• LPI=(CIO,35),(12,4),(10,35),(6,1)) specifies vertical
spacing for the entire printable area on the form. The last
printable line on the form must have vertical spacing of 6
lines per inch.

• SIZE=75 specifies the length of the form as 75 tenths of an
inch, or 7-1/2 inches, although the printable area is 7-1/3
inches.

• The name of the new FCB module is ARUi it is stored as a
member of the SYSl.IMAGELIB data set.

IEBIMAGE Program 217

EXAMPLE 6A: BUILDING A 4248 FORMS CONTROL BUFFER MODULE

In this example, a new 4248 default FCB module is built using an
existing FCB module as a model. The new module, NEW1, is added
to SYS1.IMAGELIB as a new member. The existing module, 'OLD1,
remains unchanged. OLDI may be a 4248 FCB called FCB40LD1, or
it may be a 3211 FCB called FCB20LDI. (If both modules existed,
FCB40LDl would be used.)

//FCBMOD7 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=4248
INCLUDE OLDI
FCB COPYP=67,PSPEED=M,DEFAULT=YES
NAME NEWI

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=4248 on the OPTION statement specifies that this
module is to be created for the 4248 printer.

• The INCLUDE statement specifies that a copy of the existing
module OLDI is to be used as a basis for the new module,
NEW!.

• COPYP=67 indicates that the horizontal copy feature should
be activated, and that horizontal copies should begin
printing in the 67th print position from the left margin.
This setting overrides any COPYP value previously set in
module OLDI; it applies to module NEWI, but does not change
the value set in OLDI.

Note that the value 67 divides a 132-hammer printer into two
equal copy areas for two equally-sized horizontal copies.
With COPYP=67, a maximum of 66 bytes can be sent to the
printer.

• PSPEED=M indicates that the printer speed should be set to
medium (3000 LPM). This setting overrides any PSPEED value
previously set in module OLDI; it applies to module NEWI,
but does not change the value set in OLDI.

• DEFAULT=YES indicates that this module, NEWI, should become
a default FCB module for this installation.

• Because these parameters are not specified, the values of
LINES, SIZE, LPI, and CHX default to the values which
already exist in module OLDI.

• The NAME statement indicates that this module should be
called NEWI.

218 MVS/XA Data Administration: Utilities

(

EXAMPLE 7: BUILDING A NEW COpy MODIFICATION MODULE

3800 Model 1

In this example, a copy modification module that contains four
modification segments is built. The module is added to the
SYSl.IMAGELIB data set as a new member.

//COPMODI JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
COPYI COPYMOD COPIES=(l,l),

LINES=(1,1),POS=50,
TEXT=(C,'CONTROLLER"S COPY')

COPY2A COPYMOD COPIES=(2,1),
LINES=(1,1),POS=50,
TEXT=(C,'SHIPPING MANAGER"S COPY')

COPY2B COPYMOD COPIES=(2,1),
LINES=(34,3),POS=75,
TEXT=ClOC,' ')

COPYALL COPYMOD COPIES=(1,4),
LINES=(58,1),POS=35,
TEXT=((C,'***'),(C,'CONFIDENTIAL'),
(3X, '5C' »

NAME RTOl

72

x
X

X
X

X
X

X
X
X

The control statements are discussed below.

• The SYSUTl DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The COPYl COPYMOD statement specifies text that applies to
each page of the first copy of the output data set:

LINES=(l,l) and POS=50 specify that the text is to be on the
first printable line of each page, starting at the 50th
print position from the left.

The TEXT parameter identifies each page of the copy as being
the "Controller's COpy."

• The COPY2A COPYMOD statement specifies text that applies to
each page of the second copy of the output data set. The
text is to be on the first line of each page, at the 50th
print position from the left, with each page of the copy
being the "Shipping Manager's Copy."

• The COPY2B COPYMOD statement specifies that part of the
second copy'S output data set text is to be blanked out, so
that the first, third, and subsequent copies contain
information that is not printed on the second copy. The
blank area is to be on lines 34, 35, and 36, beginning at
the 75th print position from the left. The text on lines
34, 35, and 36, between print positions 75 and 84, is to be
blank (that is, the character specified between the TEXT
parameter's single quotation marks is a blank).

• The COPYALL COPYMOD statement specifies text that applies to
the first four copies of the output data set. This example
assumes that no more than four copies are printed each time
the job that produces the output data set is executed. The
text is to be on the 58th line on each page, at the 35th

IEBIMAGE Program 219

print position from the left. The legend
"***CONFIDENTIAL***" is to be on each page of the copy.
Note that the text can be coded in both character and
hexadecimal format.

• The name of the copy modification module is RTOl; it is
stored as a member of the SYSl.IMAGELIB data set.

EXAMPLE 8: BUILDING A NEW COPY MODIFICATION MODULE FROM AN EXISTING COPY

3800 Model 3

In this example, a copy of an existing copy modification module,
RTOl, is used as the basis for a new copy modification module.
The new module is added to the SYSl.IMAGELIB data set as a new
member. The existing module, RTOl, remains unchanged and
available for use.

//COPMOD2 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE RTOl,DELSEG=l
OPTION OVERRUN=8,DEVICE=3800M3
COPYMOD COPIES=(2,3),

NAME AP

LINES=(S2,6),POS=100,
TEXT=(X,'4040404040404040SCSC')

The control statements are discussed below.

72

X
X

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the copy
modification module named RTOI is used as a basis for the
new module, and that the first modification segment of RTOI
is to be deleted from the copy.

• OVERRUN=8 in the OPTION statement specifies that the
IEBIMAGE program is to print a warning message if the copy
modification could cause a line overrun condition when
printing at 6 and 8 lines per inch. The program is also to
suppress any warning messages that apply to printing at 10
and 12 lines per inch. DEVICE=3800M3 in the OPTION
statement specifies 3800 Model 3 compatibility mode
processing.

• The COPYMOD statement specifies text that applies to each
page of the second, third, and fourth copies of the output
data set:

LINES=(S2,6) and POS=lOO specify that the text is to be on
the S2nd line and repeated for the S3rd through 57th lines
of each page, starting at the 100th print position from the
left.

The TEXT statement specifies the text in hexadecimal form: c--\
eight blanks followed by two asterisks (in this example, the
assumption is made that X'40' prints as a blank and that
X'SC' prints as an asterisk; in actual practice, the
character arrangement table used with the copy modification

220 MVS/XA Data Administration: Utilities

------------------- ---------- -------

(

(

•

module might translate X'40' and X'SC' to other printable
characters) .

The name of the new copy modification module is AP; it is
stored as a member of the SYSI.IMAGELIB data set.

EXAMPLE 9: ADDING A NEW CHARACTER TO A CHARACTER ARRANGEMENT TABLE MODULE

3800 Model 3

In this example, an IBM-supplied character arrangement table
module is modified to include another character, and then added
to the SYSI.IMAGELIB data set as a replacement for the
IBM-supplied module.

//CHARMODI JOB
// EXEC PGM=IEBIMAGE
//SYSUTl DD DSNAME=SYSl.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE GFIO
OPTION DEVICE=3800M3
TABLE LOC=CC2A,2A),C6A,2AJ,CAA,2A),CEA,2A»
NAME GF10CR)

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the character
arrangement table named GF10 is to be used as a basis for
the new module.

• The OPTION statement with the DEVICE parameter specifies
3800 Model 3 compatibility mode processing.

• The TABLE statement specifies updated information for four
translate table entriesl X'2A', X'6A', X'AA', and X'EA'.
(These four locations are unused in the IBM-supplied GFIO
table.) Each of the four translate table entries is to
point to the '2A' (43rd character) position in the first
WCGM, which contains the scan pattern for a lozenge.

• The name of the character arrangement table is GFIO, and it
is stored as a new module in the SYSI.IMAGELIB data set.
The data set's directory is updated so that the name GFlO
points to the new module; the old GFlO module can no longer
be accessed through the data set's directory.

IEBIMAGE Program 221

EXAMPLE 10: BUILDING A NEW CHARACTER ARRANGEMENT TABLE MODULE FROM AN EXISTING COPY

3800 Model 3

In this example, an existing character arrangement table module
is copied and used as a basis for a new module. The new
character arrangement table is identical to the old one, except
that it uses the Gothic IS-pitch character set instead of Gothic
10-pitch.

IICHARMOD2 JOB
II EXEC PGM=IEBIMAGE
IISYSUTI DD DSNAME=SYSI.IMAGELIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD 3(

INCLUDE All
OPTION DEVICE=3800M3
TABLE CGMID=87
NAME AllS

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the character
arrangement table named All is to be used as a basis for the ~
new module. The All character arrangement table translates
8-bit data codes to printable characters in the Gothic , _/
10-pitch character set.

• The OPTION statement with the DEVICE parameter specifies
3800 Model 3 compatibility mode processing.

• The TABLE statement specifies a new character set
identifier, X'87', which is the identifier for the Gothic
IS-pitch character set. No other changes are made to the
character arrangement table. The new table calls for
characters in the Gothic IS-pitch character set.

• The name of the new character arrangement table is AIlS; it
is stored as a member of the SYSI.IMAGELIB data set.

EXAMPLE 11: BUILDING GRAPHIC CHARACTERS IN A CHARACTER ARRANGEMENT TABLE MODULE

3800 Model 1

In this example, an existing character arrangement table module
is copied and used as the basis for a new module that will
include user-designed characters of a graphic character
modification module. The new module is then added to the
SYSI.IMAGELIB data set.

222 MVS/XA Data Administration. Utilities

(

72
//CHARMOD3 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE ONB
TABLE GCMLIST=ONBl,

LOC=((6F,2F,1),(7C,3C,1),(6A,2A,O»
NAME ONBl

The control statements are discussed below.

x

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the character
arrangement table named DNB is to be used as a basis for the
new module. ONB refers to two WCGMs.

• The TABLE statement identifies a graphic character
modification module and stipulates the translate table
entries for each of its segments:

GCMLIST=ONBI identifies the graphic character modification
module named DNBI. The LOC parameter specifies the
translate table entry location, character position, and WCGM
number for each segment of the module:

The first segment corresponds to the 8-bit data code
X'6F'. The segments' scan pattern is to be loaded at
character position X'2F' (that is, the 48th character
position) in the second WCGM.

The second segment corresponds to the 8-bit data code
X'7C'. The segment's scan pattern is to be loaded at
character position X'3C' (that is, the 6lst character
position) in the second WCGM.

The third segment corresponds to the 8-bit data code
X'6A'. The segment's scan pattern is to be loaded at
character position X'2A' (that is, the 43rd character
position) in the first WCGM.

• The name of the new character arrangement table is ONBl; it
is stored as a new module in the SYSI.IMAGELIB data set.

EXAMPLE 12: DELETING GRAPHIC REFERENCES FROM A CHARACTER ARRANGEMENT TABLE MODULE

3800 Model 3

In this example, an existing character arrangement table module
is copied and used as a basis for a new one. The new character
arrangement table deletes references to all graphic character
modification modules and resets the translate table entries that
were used to point to character positions for the segments of a
graphic character modification module.

IEBIMAGE Program 223

~---~----.----------- ..

IICHARMOD4 JOB
II EXEC PGM=IEBIMAGE
IISYSUTl DD DSNAME=SYSl.IMAGELIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

INCLUDE ZYL
OPTION DEVICE=3800M3
TABLE GCMLIST=DELETE,LOC=((6A),(6B))
NAME ZYLA

1*

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the character
arrangement table named ZYL is to be used as a basis for the
new module.

• The OPTION statement with the DEVICE parameter specifies
3800 Model 3 compatibility mode processing.

• The TABLE statement deletes references to graphic character
modification modules and resets two translate table entries:

GCMLIST=DELETE specifies that all names of graphic character
modification modules included with the module when the ZYL
character arrangement table was copied are to be reset to
blanks (X'40'). ~

The LOC parameter identifies two locations in the translate /
table, X'6A' and X'6B', that are to be set to X'FF' (the
default value when no character position or WCGM values are
specified).

• The name of the new character arrangement table is ZYLA; it
is stored as a member of the SYSI.IMAGELIB data set.

EXAMPLE 13: LISTING THE WORLD TRADE NATIONAL USE GRAPHICS GRAPHIC CHARACTER
MODIFICATION MODULE

3800 Model 1

In this example, each segment of the IBM-supplied graphic
character modification module containing the World Trade
National Use Graphics is printed. Each segment is unique,
although the scan patterns for some segments are identical to
other segment's scan patterns with only the a-bit data code
being different.

IIGRAFMODI JOB
II EXEC PGM=IEBIMAGE
IISYSUTl DD DSNAME=SYSl.IMAGELIB,DISP=SHR
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

GRAPHIC
NAME *

1*

224 MVS/XA Data Administration: Utilities

------- ----------~

The control statements are discussed below.

• DISP=SHR is coded because the library is not being updated.

• The World Trade National Use Graphics graphic character
modification module is identified with the pseudonym of "*".
The scan pattern of each of the characters in the module is
printed.

EXAMPLE 14: BUILDING A GRAPHIC CHARACTER MODIFICATION MODULE FROM THE WORLD TRADE
GRAFt10D

3800 Model 3

In this example, a graphic character modification module is
built. Its characters are segments copied from the World Trade
National Use Graphics graphic character modification module.
(See the IBM 3800 Printing Subsystem Programmer's Guide for the
EBCDIC assignments for the characters.) The new module is
stored in the SYSI.IMAGELIB system data set.

72
//GRAFMOD2 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSQUT=A
/ISYSIN DD *

OPTION DEVICE=3800M3
GRAPHIC REF=«24),(25),(26),(27),(28),

(31),(33),(35),(38),(40))
NAME CSTW

The control statements are discussed below.

X

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3
compatibility mode module format.

• By not specifying the GCM keyword, the GRAPHIC statement
identifies the World Trade National Use Graphics graphic
character modification module. Ten of its segments are to
be copied and used with the new module.

• The name of the graphic character modification module is
CSTWi it is stored as a new module in the SYS1.IMAGELIB data
set.

IEBIMAGE Program 225

EXAMPLE 15: BUILDING A NEW GRAPHIC CHARACTER MODIFICATION MODULE AND MODIFYING A
CHARACTER ARRANGEI1ENT TABLE TO USE IT .

3800 Model 3

In this example, a graphic character modification module is
built. The module contains one user-designed character, a
reverse 'E', whose 8-bit data code is designated as X'EO' and
whose pitch is 10. An existing character arrangement table is
then modified to include the reverse E.

IIGRAFMOD3
II
IISYSUTl
IISYSPRINT
IISYSIN

JOB
EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGELIB,OISP=OLD
DO SYSOUT=A
DO *

1*

OPTION DEVICE=3800M3
GRAPHIC ASSIGN=(EO,lO)

XXXXXXXXXXXXXXX SEQ=lO
XXXXXXXXXXXXXXX SEQ=ll
XXXXXXXXXXXXXXX SEQ=12

XXXX SEQ=13
XXXX SEQ=14
XXX X SEQ=15
XXXX SEQ=16
XXXX SEQ=17
XXXX SEQ=18
XXXX SEQ=19

XXXXXXXXXXXXX SEQ=20
XXXXXXXXXXXXX SEQ=21
XXXXXXXXXXXXX SEQ=22

XXXX SEQ=23
XXXX SEQ=24
XXXX SEQ=25
XXXX SEQ=26
XXXX SEQ=27
XXXX SEQ=28
XXXX SEQ=29

XXXXXXXXXXXXXXX SEQ=30
XXXXXXXXXXXXXXX SEQ=31
XXXXXXXXXXXXXXX SEQ=32
NAME BODE
INCLUDE GSlO
OPTION OEVICE=3800M3
TABLE CGMIO=(83,FF),

NAME

GCMLIST=BODE,
LOC=(EO,03,l)

REIO

The control statements are discussed below.

x
X

• The SYSUTI OD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=3800M3 in the OPTION statement preceding the GRAPHIC
statement specifies 3800 Model 3 compatibility mode
processing.

• The GRAPHIC statement's ASSIGN parameter establishes the
8-bit data code, X'EO', and the width, lO-pitch, for the
user-designed character. The data statements that follow C ·~···~.
the GRAPHIC statement describe The character's scan pattern.

226 MVS/XA Data Administration: Utilities

•

•

The name of the graphic character modification module is
BODE, and it is stored as a new module in the SYS1.IMAGELIB
data set.

The INCLUDE statement specifies that a copy of the GSIO
character arrangement table is to be used as the basis for
the new table.

• The TABLE statement specifies the addition of the reverse E
to that copy of the GSlO table.

CGMID=(83,FF) specifies the character set identifier X'83'
for the Gothic-lO set (which is the set already used by the
GSlO table) and specifies X'FF' as a character set
identifier to allow accessing of the second WCGM without
loading it.

GCMLIST=BODE identifies the graphic character/modification
module containing the reverse E for inclusion in the table.

LOC=(EO,03,l) specifies that the reverse E, which has been
assigned the 8-bit data code X'EO', is to be loaded into
position X'03' in the second WCGM. Because this second WCGM
is otherwise unused, any position in it could have been used
for the reverse E.

• The new character arrangement table is named RElO; it is
stored as a new module in the SYSl.IMAGELIB data set.

EXAMPLE 16: BUILDING A GRAPHIC CHARACTER MODIFICATION MODULE FROM MULTIPLE SOURCES

3800 Model 1

In this example, a graphic character modification module is
created. Its contents come from three different sources: nine
segments are copied from an existing module with the INCLUDE
statement; the GRAPHIC statement is used to select another
segment to be copied; the GRAPHIC statement is also used to
establish characteristics for a user-designed character. The
new graphic character modification module, when built, is added
to the SYSl.IMAGELIB.

//GRAFMOD4 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE CSTW,DELSEG=3
GRAPHIC REF=(l,6A),GCM=BODE,ASSIGN=9A
******** SEQ=06

********** SEQ=07
**** **** SEQ=08
*** *** SEQ=09
*** **** SEQ=lO
*** ****** SEQ=ll
*** ****** SEQ=12
*** **** SEQ=l3
*** **** SEQ=l4
*** *** SEQ=l5
*** *** SEQ=l6
*** **** **** SEQ=l7
*** ******* SEQ=l8
*** ***** SEQ=l9

NAME JPCK
/*

IEBIMAGE Program 227

The control statements are discus~ed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the graphic
character modification module named CSTW is to be included
with the new module. All segments of CSTW. except the third
segment (as a result of DELSEG=3). are to be copied into the
new module and become the module's first through ninth
modification segments.

• The GRAPHIC statement specifies the module's tenth and
eleventh segments:

REF=(1.6A) and GCM=BODE specify that the 10th segment of the
new module is to be obtained by copying the first segment
from the graphic character modification module named BODE.
In addition. the segment's a-bit data code is to be changed
so that its character is identified with the code X'6A'.

ASSIGN=9A specifies that the new module's 11th segment is a
user-designed character whose a-bit data code is X'9A' and
whose width is IO-pitch (the default when no pitch value is
specified). The GRAPHIC statement is followed by data
statements that specify the character's scan pattern.

• The name of the graphic character modification module is
JPCK. it is stored as a new module in the SYSI.IMAGELIB data
set.

EXAMPLE 17: DEFINING AND USING A CHARACTER IN A GRAPHIC CHARACTER MODIFICATION
MODULE

3800 Model 3

In this example. a graphic character modification module
containing a user-designed character is built. Next. a format
character arrangement table is modified to include that new
character. Then. a copy modification module is created to print
the new character enclosed in a box of format characters.
Finally. the result is tested to allow comparison of the output
with the input.

228 MVS/XA Data Administration: Utilities

---------------" .. _----

\.

,1
"t.j

JOB
EXEC PGM=IEBIMAGE

//CHAR
//BUIlO
//SYSUTl
//SYSPRINT
//SYSIN

DO OSNAME=SYSl.IMAGElIB,OISP=OlD
00 SYSQUT=A
DO *

OPTION OEVICE=3800M3
STEPl GRAPHIC ASSIGN=5C
XXX XXX SEQ=Ol
XXX XXX SEQ=02
XXX XXX SEQ=03
XXX XXX SEQ=04
XXXXXXXXXXXXXXXXXXXXXXX SEQ=05
XXXXXXXXXXXXXXXXXXXXXXX SEQ=06
XXXXXXXXXXXXXXXXXXXXXXX SEQ=07
XXX XXX SEQ=08
XXX XXX SEQ=09
XXX XXX SEQ=lO
XXX XXX SEQ=ll

XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXX XXX XXX
XXX XXX XXX
XXX XXX xxx
XXX XXX XXX
XXXX XXXXX XXXX

XXXX XXXXXXX XXXX
XXXXXXXXXXXXXXXXXXX

XXXXX XXXXXX

XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX

XXXXXXX
XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX
XXXXXXX

XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX

NAME AIBM

SEQ=l2
SEQ=l3
SEQ=l4
SEQ=l5
SEQ=l6
SEQ=l7
SEQ=18
SEQ=19
SEQ=20
SEQ=21
SEQ=22
SEQ=23
SEQ=24
SEQ=25
SEQ=26
SEQ=27
SEQ=28
SEQ=29
SEQ=30
SEQ=31
SEQ=32
SEQ=33
SEQ=34
SEQ=35
SEQ=36
SEQ=37
SEQ=38
SEQ=39
SEQ=40

IEBIMAGE Program 229

STEP2

STEP3

1*

OPTION DEVICE=3800M3
INCLUDE FMlO
TABLE GCMLIST=AIBM,LOC=(5C,2C)
NAME BIBM
OPTION DEVICE=3800M3
COPYMOD COPIES=l,LINES=58,POS=5,

TEXT=(C, 'W6X')
COPYMOD COPIES=l,LINES=59,POS=5,

TEXT=(C, '7*7')
COPYMOD COPIES=l,LINES=60,POS=5,

TEXT=(X,'E9F6E8')
NAME CIBM

liT EST
IISYSUTl
IISYSPRINT
II

EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGELIB,DISP=OLD
DD SYSOUT=A,CHARS=(GFlO,BIBM),

MODIFY=(CIBM,l)
IISYSIN DD

OPTION
GRAPHIC
NAME

* DEVICE=3800M3

AIBM

72

x
X

X

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The GRAPHIC statement's ASSIGN parameter specifies that the
8-bit data code for the user-designed character is X'5C' and
the width is 10-pitch (the default when no pitch is
specified). The GRAPHIC statement is followed by data
statements that specify the character's scan pattern for
vertical line spacing of 6 lines per inch.

• The name of the graphic character modification module is
AIBM, and it is stored as a new module in SYSI.IMAGELIB.

• At STEP2, the INCLUDE statement specifies that a copy of the
FMIO character arrangement table is to be used as a basis
for the new module.

• The TABLE statement identifies the graphic character
modification module named AIBM, created in the previous
step. The TABLE statement's LOC parameter specifies the
translate table entry location (the character's 8-bit data
code) of X'5C' and the position (X'2C') where that character
is to be loaded into the WCGM.

• The name of the new character arrangement table, which is
added to SYSl.IMAGELIB, is BIBM.

•

•

At STEP3, the three COPYMOD statements specify text that is
to be placed on lines 58, 59, and 60 of the first copy of
the output data set, starting at print position 5 on each
line. When used with the BlUM character arrangement table,
the characters W, 6, and X print as a top left corner,
horizontal line segment, and top right corner, all in line
weight 3. The characters 7, *, and 7 print as a weight-3
vertical line segment on both sides of the user-designed
character built at STEPI (the asterisk has the EBCDIC
assignment 5C, which addresses that character). The
hexadecimal E9, F6, and E8 complete the line-weight-3 Format
box around the character.

The name of the copy modification module is CIBM; it is
stored as a new module on SYSl.IMAGELIB.

230 MVS/XA Data Administration: Utilities

C··.\· .,

(.

• At TEST, the EXEC statement calls for another execution of
the IEBIMAGE program to test the modules just created. On
the SYSPRINT DD statement the BIBM character arrangement
table is the second of two specified, and the CIBM copy
modification module is specified with a table reference
character of 1, to use that BIBM table.

• The GRAPHIC statement with no operand specified calls for
printing of the module, AIBM, specified with the NAME
statement that follows it. Each page of the output listing
for this IEBIMAGE run has the following modification printed
in the lower left corner:

• The OPTION statement with the DEVICE parameter at STEPl,
STEP2, and STEP3 specifies 3800 Model 3 compatibility mode
module format and processing considerations.

EXAMPLE 18: LISTING A LIBRARY CHARACTER SET MODULE

3800 Model 1

In this example, each segment of a library character set is
printed. The scan pattern of each of the characters in the
module is printed.

//LIBMODI JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

CHARSET
NAME 83

The control statements are discussed below.

• NAME specifies the name of the library character set (83).

EXAMPLE 19: BUILDING A LIBRARY CHARACTER SET MODULE

3800 Model 3

In this example, a library character set module is built. Its
characters are segments copied from the World Trade National Use
Graphics graphic character modification module. For the listing
of all the segments of that module, (see IBM 3800 Printing
Subsystem Programmer's Guide. The EBCDIC assignments for the
characters are replaced by WCGM-location codes.) The new module
is stored in the SYSl.IMAGELIB system data set.

IEBIMAGE Program 231

72
//LIBMOD2
//
//SYSUTl
//SYSPRINT
//SYSIN

OPTION
CHARSET

NAME

JOB
EXEC PGM=IEBIMAGE
DD DSNAME=SYSl.IMAGELIB,DISP=OLD
DD SYSOUT=A
DD *

DEVICE=3800M3
REF=((24,01),(25,02),(26,03),(27,04),(28,05),

(31,06),(33,07),(35,08),(38,09),(40,OA»
73

The control statements are discussed below.

X

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3
compatibility mode module format.

• By not specifying the GCM keyword or a library character set
ID, the CHARSET statement identifies the World Trade
National Use Graphics graphic character modification module.
Ten of its segments are to be copied and used with the new
module. For example, the 24th segment is to be copied and
assigned the WCGM location 01. See the REF parameter
(24,01).

• The name of the library character set module is 73, and it
is stored as a new module in the SYSl.IMAGELIB data set.

EXAMPLE 20: BUILDING A LIBRARY CHARACTER SET MODULE AND MODIFYING A CHARACTER
ARRANGEMENT TABLE TO USE IT

3800 Model 3

In this example, a library character set module is built. The
module contains one user-designed character, a reverse 'E',
whose 6-bit WCGM-location code is designated as X'03', and whose
pitch is 10. An existing character arrangement table is then
modified to include the reverse E.

232 MVS/XA Data Administrationl Utilities

.-----------~---~-.-- .--- _._-----

(

//LIBMOD3 JOB
// EXEC PGM=IEBIMAGE
//SYSUTI DD DSNAME=SYSI.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/3E

OPTION DEVICE=3800M3
CHARSET ASSIGN=(03,10)
XXXXXXXXXXXXXXX SEQ=lO
XXXXXXXXXXXXXXX SEQ=ll
XXXXXXXXXXXXXXX SEQ=12

XXXX SEQ=13
XXXX SEQ=14
XXXX SEQ=15
XXXX SEQ=16
XXXX SEQ=17
XXXX SEQ=18
XXXX SEQ=19

XXXXXXXXXXXXX SEQ=20
XXXXXXXXXXXXX SEQ=21
XXXXXXXXXXXXX SEQ=22

XXXX SEQ=23
XXXX SEQ=24
XXXX SEQ=25
XXX X SEQ=26
XXXX SEQ=27
XXXX SEQ=28
XXXX SEQ=29

XXXXXXXXXXXXXXX SEQ=30
XXXXXXXXXXXXXXX SEQ=31
XXXXXXXXXXXXXXX SEQ=32
NAME 73
INCLUDE GSIO
OPTION DEVICE=3800M3
TABLE CGMID=(83,73),LOC=(EO,03,1)
NAME REIO

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3
compatibility mode module format and processing
considerations.

• The CHARSET statement's ASSIGN parameter establishes the
6-bit WCGM-Iocation code, X'03', and the width, 10-pitch,
for the user-designed character. The data statements that
follow the CHARSET statement describe the character's scan
pattern.

• The name of the library character set module is 73, and it
is stored as a new module in the SYSI.IMAGELIB data set.

• The INCLUDE statement specifies that a copy of the G510
character arrangement table is to be used as the basis for
the new table.

IEBIMAGE Program 233

• The TABLE statement specifies the addition of the library
character set containing the reverse E to that copy of the
GSIO table.

CGMID=(83,73) specifies the character set identifier X'83'
for the Gothic-IO set (which is the set already used by the
GSIO table) and specifies X'73' as a character set
identifier to allow loading of the second WCGM with the
library character set 73.

LOC=(EO,03,1) specifies that the reverse E, which has been
assigned the WCGM location 03 in the second WCGM, is to be
referenced by the EBCDIC code X'EO'.

• The new character arrangement table is named REIO; it is
stored as a new module in the SYSI.IMAGELIB data set.

EXAMPLE 21: BUILDING A LIBRARY CHARACTER SET MODULE FROM MULTIPLE SOURCES

3800 Model 1

In this example, a library character set module is created. Its
contents come from three different sources: 62 segments are
copied from an existing module with the INCLUDE statement; the
CHARSET statement is used to select another segment to be
copied; a second CHARSET statement is used to establish
characteristics for a user-designed character. The new library
character set module, when built, is added to the SYSl.IMAGELIB.

IILIBMOD4 JOB
II EXEC PGM=IEBIMAGE
IISYSUTl DD DSNAME=SYSl.IMAGELIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

INCLUDE 33,DELSEG=(3,4)
CHARSET REF=(l,02),GCM=BODE,ASSIGN=03
******** SEQ=06

********** SEQ=07
**** **** SEQ=08
*** *** SEQ=09
*** **** SEQ=lO
*** ****** SEQ=ll
*** ****** SEQ=l2
*** **** SEQ=l3
*** **** SEQ=l4
*** *** SEQ=l5
*** *** SEQ=l6
*** **** **** SEQ=17
*** ******* SEQ=l8
*** ***** SEQ=l9

NAME 53

234 MVS/XA Data Administration: Utilities

~~
\./

(

("

..

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no
other job can modify the data set while this job is
executing.

• The INCLUDE statement specifies that a copy of the library
character set module named 33 is to be included with the new
module. All segments of 33, except the third and fourth
segments (as a result of DELSEG=3,4), are to be copied into
the new module and become the basis for the new module.

• The CHARSET statement specifies the module's third and
fourth segments:

REF=(I,02) and GCM=BODE specify that the third segment of
the new module is to be obtained by copying the first
segment from the graphic character modification module named
BODE. The segment's 6-bit WCGM-Iocation code is to be set
so that its character is identified with the code X'02'.

ASSIGN=03 specifies that the new module's fourth segment is
a user-designed character whose 6-bit WCGM-Iocation code is
X'03' and whose width is IO-pitch (the default when no pitch
value is specified). The CHARSET statement is followed by
data statements that specify the character's scan pattern.

• The name of the library character set module is 53, it is
stored as a new module in the SYSI.IMAGELIB data set.

IEBIMAGE Program 235

IEBISAM pROGRAM

IEBISAM can be used to:

• Copy an indexed sequential (ISAM) data set directly from one
DASD volume to another.

• Creat~ a backup (transportable) copy of an ISAM data set by
copying (unloading) it into a sequential data set on a DASD
or magnetic tape volume.

• Create an ISAM data set from an unloaded data set. The
sequential (unloaded) data set is in a form that can be
subsequently loaded. that is. it can be converted back into
an ISAM data set.

• Print an ISAM data set.

COPYING AN ISAM DATA SET

IEBISAM can be used to copy an indexed sequential (ISAM) data
set directly from one DASD volume to another. When the data set
is copied. the records marked for deletion are only deleted if
the DELETE parameter was specified in the OPTCD (optional
control program service) field. Those records that are
contained in the overflow area of the original data set are
moved into the primary area of the copied data set. Control
information characteristics such as BLKSIZE and OPTCD can be
overridden by new specifications. Caution should be used,
however, when overriding these characteristics (see "Overriding
DCB Control Information" on page 237).

CREATING A SEQUENTIAL BACKUP COPY

An unloaded sequential data set can be created to serve as a
backup or transportable copy of source data from an ISAM data
set. Records marked for deletion within the ISAM data set are
automatically deleted when the unloaded data set is created.
When the data set is subsequently loaded--reconstructed into an
ISAM data set--records that were contained in the overflow area
assigned to the original data set are moved sequentially into
the primary area.

An unloaded data set consists of 80-byte logical records. The
data set contains:

• Fixed records from an ISAM data set

• Control information used in the subsequent loading of the
data set

Control information consists of characteristics that were
assigned to the ISAM data set. These characteristics are:

• Optional control program service (OPTCD)
• Record format (RECFM)
• Logical record length (LRECL)
• Block size (BLKSIZE)
• Relative key position (RKP)
• Number of tracks in master index (NTM)
• Key length (KEYLEN)
• Number of overflow tracks on each cylinder (CYLOFL)

236 MVS/XA Data Administration: Utilities

.,<' .. ~

\" ./
"'< .. J

(

(

(

OVERRIDING DCB CONTROL INFORMATION

When a load operation is specified, control information
characteristics can be overridden by specifications in the DCB
parameter of the SYSUT2 DD statement (refer to "Job Control
statements" on page 240 for a discussion of the SYSUT2 DD
statement). Caution should be used, however, because checks are
made to ensure that:

1. Record format is the same as that of the original indexed
sequential data set (either fixed (F) or variable (V)
length).

2. Logical record length is greater than or equal to that of
the original ISAM data set when the RECFM is variable (V) or
variable blocked (VB).

3. For fixed records, the block size is equal to or a multiple
of the logical record length of the records in the original
indexed sequential data set. For variable records, ~he
block size is equal to or greater than the logical record
length plus four.

4. Relative key position is equal to or less than the logical
record length minus the key length. Following are relative
key position considerations:

5.

• If the RECFM is V or VB, the relative key position
should be at least 4.

• If the DELETE parameter was specified in the OPTCD field
and the RECFM is F or fixed blocked (FB), the relative
key position should be at least 1.

• If the DELETE parameter was specified in the OPTCD field
and the RECFM is V or VB, the relative key position
should be at least 5.

The key length is less than or equal to 255 bytes.

6. For a fixed unblocked data set with RKP=O, the LRECL value
is the length of the data portion, not, as in all other
cases, the data portion and key length. When changing an
RKP=O data set RECFM from fixed unblocked and to fixed
blocked, the new LRECL must be equal to the old LRECL plus
the old key length.

If either RKP or KEYLEN is overridden, it might not be
possible to reconstruct the data set.

The number of 80-byte logical records in an unloaded data
set can be approximated by the following formula:

x = nCy+2) + 158
78

where x is the number of 80-byte logical records created, n
is the number of records in the ISAM data set, and y is the
length of a fixed record or the average length of variable
records.

Figure 81 on page 238 shows the format of an unloaded data
set for the first three 100-byte records of an ISAM data
set. Each is preceded by 2 bytes (bb) that indicate the
number of bytes in that record. (The last record is
followed by 2 bytes containing binary zeros to identify the
last logical record in the unloaded data set.) The
characteristics of the ISAM data set are contained in the
first two logical records of the unloaded data set. Data
from the ISAM data set begins in the third logical record.
Each logical record in the unloaded data set contains a
binary sequence number (aa) in the first 2 bytes of the
record.

IEBISAM Program 237

7. For variable records, all records in the data set must have
a length equal to or greater than RKP plus KEYLEN.

Ioor----~----------80bytes---------------t·1

a a blbl Characteristics
a a Characteristics
a a blbl 76 bytes of data
• a 24 bytes of data 1bTb\ 62 bytes of data
a a 48 bytes of data Iblbl 28 bytas of data

• a 72 bytes of data Iblbl

Figure 81. An Unloaded Data Set Created Using IEBISAM

CREATING AN ISAM DATA SET FROM AN UNLOADED DATA SET

An ISAM data set can be created from an unloaded version of an
ISAM data set. When the unloaded data set is loaded, those
records that were contained in the overflow area assigned to the
original ISAM data set are moved sequentially into the primary
area of the loaded ISAM data set.

PRINTING THE LOGICAL RECORDS OF AN ISAM DATA SET

The records of an ISAM data set can be printed or stored as a •
sequential data set for subsequent printing. Each input record
is placed in a buffer from which it is printed or placed in a
sequential data set. When the DELETE parameter is specified in
the OPTCD field, each input record not marked for deletion is
also placed in a buffer from which it is printed or placed in a
sequential data set. Each printed record is converted to
hexadecimal unless specified otherwise by you.

IEBISAM provides user exits so you can include user-written
routines to:

• Modify records before printing.

• Select records for printing or terminate the printing
operation after a certain number of records have been
printed.

• Convert the format of a record to be printed.

• Provide a record heading for each record if the record
length is at least 18 bytes.

If no user routines are provided, each record is identified in
sequential order on the printout.

Exit routines must be included in either the job library or the
link library.

When a user routine is supplied for a print operation, IEBISAM
issues a LOAD macro instruction. A BALR 14,15 instruction is
used to give control to the user's routine. When the user's
routine receives control, register 0 contains a pointer to a
record heading buffer; register 1 contains a pointer to an input
record buffer. (You must save registers 2 through 14 when
control is given to the user routine.)

238 MVS/XA Data Administration: Utilities

I

/

(,
...... ../

(

INPUT AND OUTPUT

(-

The input record buffer has a length equal to that of the input
logical record.

Figure 82 shows the record heading buffer.

You return control to IEBISAM by issuing a RETURN macro
instruction (via register 14) or by using a BR 14 instruction
after restoring registers 2 through 14.

A user routine must place a return code in register 15 before
returning control to IEBISAM. The possible return codes and
their meanings are listed in Figure 83.

Reyoster 0

Available to the user -..

I-------Totallength; line length of applicable printer-------

Register 1

t'",,-,·
1""'-------Total length; input logical record length (LRECL)------

Figure 82. Record Heading Buffer Used by IEBISAM

Codes Meaning

00 (00 hex) Buffers are to be printed. The operation
continues.

04 (04)

OS (OS)

12 (OC)

Buffers are to be printed. The operation is
terminated. the operation is terminated.

This input record is not to be printed. Processing
continues.

This input record is not to be printed. The
operation is terminated.

Figure 83. IEBISAM User Exit Return Codes

IEBISAM uses an input data set (the organization of the input
data set depends on the operation to be performed) as follows:

• If a data set is copied, unloaded, or printed in logical
sequence, the input is an ISAM data set.

• If a data set is loaded, the input is an unloaded version of
an ISAM data set.

IEBISAM Program 239

RETURN CODES

CONTROL

IEBISAM produces as output:

• An output data.~t, which is the result of the IEBISAM
operation

• A message data set, which contains information messages and
any error messages

IEBISAM returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed Figure 84.

Codes

00 (00 hex)

04 (04)

OS (OS)

12 (OC)

16 (10)

Figure 84.

Meaning

Successful completion.

A return code of 04 or 12 was passed to IEBISAM by
the user routine.

An error condition occurred that caused termination
of the operation.

A return code other than 00, 04,.08, or 12 was
passed to IEBISAM from a user routine. The job
step is terminated.

An error condition caused termination of the
operation.

IEBISAM Return Codes

IEBISAM is controlled by job control statements only. No
utility control statements are required.

JOB CONTROL STATEMENTS

Figure 85 shows the job control statements for IEBISAM.

Statement Usa

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBISAM).
Additional information is required on the EXEC
statement to control the execution of IEBISAM; see
"PARM Information on the EXEC Statement," below.

SVSUT1 DD Defines the input data set.

SVSUT2 DD Defines the output data set.

SVSPRINT DD Defines a sequential message data set, which can be
written to a system output device, a tape volume,
or a direct access device.

Figure 85. Job Control Statements for IEBISAM
I,) (... "",

--- . ,~

240 MVS/XA Data Administration: Util~tie$

(

(

If the block size of the SYSPRINT data set is not a multiple of
121, a default value of 121 is taken (no error message is
issued, and no condition code is set).

PARM Information on the EXEC statement

The PARM parameter on the EXEC statement is used to control the
execution of IEBISAM.

The format of the PARM parameter is:

EXEC PARM={COPYIUNLOADILOADIPRINTL[,Nl)

[,EXIT=routinenamel

Exit routines must be included in either the job library or the
link library.

For a COpy operation, the SYSUT2 DD statement must include a
primary space allocation that is sufficient to accommodate
records that were contained in overflow areas in the original
ISAM data set. New overflow areas can be specified when the
data set is copied.

For an UNLOAD operation, specifications that are implied by
default or included in the DeB parameter of the SYSUT2 nn
statement (for example, tape density) must be considered when
the data set is subsequently loaded. If a block size is
specified in the DCB parameter of the SYSUT2 DD statement, it
must be a multiple of 80 bytes.

For a LOAD operation, if the input data set resides on an
unlabeled tape, the SYSUTl DD statement must specify a BLKSIZE
that is a multiple of 80 bytes. Specifications that are implied
by default or included in the DCB parameter of the SYSUTl DD
statement must be consistent with specifications that were
implied or included in the DCB parameter of the SYSUT2 DD
statement used for the UNLOAD operation. The SYSUT2 DD
statement must include a primary space allocation that is
sufficient to accommodate records that were contained in
overflow areas in the original ISAM data set. If new overflow
areas are desired, they must be specified when the data set is
loaded.

For a PRINTL operation, if the device defined by the SYSUT2 DD
statement is a printer, the specified BLKSIZE must be equal to
or less than the physical printer size; that is 121, 133, or 145
bytes. If BLKSIZE is not specified, 121 bytes is assumed.
LRECL (or BLKSIZE when no LRECL was specified) must be between
55 and 255 bytes.

If a user routine is supplied for a PRINTL operation, IEBISAM
issues a LOAD macro instruction to make the user routine
available. A BALR 14,15 instruction is subsequently used to
give control to the routine. When the user routine receives
control, register 0 contains a pointer to a record heading
buffer; register 1 contains a pointer to an input record buffer.

IEBISAM Program 241

Parameters

PARM

Applicable
Control
statements

EXEC

Description of Parameters

PARM=(COPY I UNLOAD I LOADIPRINTL[,Nl)
[,EXIT=routinenamel

The PARM values have the following meaning:

• COPY specifies a copy operation.

• UNLOAD specifies an unload operation. This is
the default.

• LOAD specifies a load operation.

• PRINTL specifies a print operation in which each
record is converted to hexadecimal before
printing. The N is an optional value that
specifies that records are not to be converted to
hexadecimal before printing.

• EXIT is an optional value that specifies the name
of the exit routine that is to receive control
before each record is printed.

See "PARM Information on the EXEC Statement" on
page 241 for values that must be coded with the PARM
parameter.

IEBISAM EXAMPLES

Operation

COPY

UNLOAD

UNLOAD

LOAD

PRINTl

The following examples illustrate some of the uses of IEBISAM.
Figure 86 can be used as a quick-reference guide to IEBISAM
exam~les. The numbers in the "Example" column point to the
examples that follow.

Data Set
Organization Device Comments Example

ISAM Disks Unblocked input; blocked 1
output. Prime area and
index separation.

ISAM, Disk and Blocked output. 2
Sequential 9-track Tape

ISAM, Disk and Blocked output. Data set 3
Sequential 7-track Tape written as second data set

on input volume.

Sequential, 9-track Tape Input data set is second 4
ISAM and Disk data set on tape volume.

ISAM, Disk and Blocked input. Output not 5
Sequential System Printer converted.

Figure 86. IEBISAM Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

242 MVS/XA Data Administration: Utilities

t ____ _ -------------

IEBISAM EXAMPLE 1

(-

(

IEBISAM EXAMPLE 2

(.

In this example, an ISAM data set is copied from two DASD
volumes. The output data is blocked.

//CPY
//
//SYSPRINT
//SYSUTl
//
//
//
//SYSUT2
//
//
//
//
//
//
//
/3E

JOB
EXEC PGM=IEBISAM,PARM=COPY
DD SYSOUT=A
DD DSNAME=ISAMOl,VOLUME=SER=C222222,333333),

DISP=COlD,DELETE),UNIT=Cdisk,2),
DCB=CDSORG=IS,LRECL=500,
BLKSIZE=500,RECFM=F,RKP=4)

DD DSNAME=ISAM02CINDEX),UNIT=disk,
DISP=CNEW,KEEP),VOLUME=SER=444444,
DCB=CDSORG=IS,BLKSIZE=lOOO,RECFM=FB),
SPACE=CCYL,(2»

DD DSNAME=ISAM02CPRIME),UNIT=Cdisk,2),
DCB=CDSORG=IS,BlKSIZE=lOOO,RECFM=FB),
SPACE=CCYL,ClO»,
VOLUME=SER=C444444,555555),DISP=CNEW,KEEP)

The job control statements are discussed below:

• EXEC specifies the program name CIEBISAM) and the COPY
operation.

• SYSUTl DD defines an ISAM input data set, ISAMOl, which
resides on two disk volumes.

•

•

SYSUT2 DD defines the output data set index area, ISAM02;
the index and prime areas are separated.

The second SYSUT2 DD defines the output data set prime area.
Ten cylinders are allocated for the prime area on each of
the two disk volumes.

In this example, an ISAM input data set is converted into a
sequential data set; the output is placed on a 9-track tape
volume.

//STEPl
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//
//
/3E

JOB
EXEC PGM=IEBISAM,PARM=UNLOAD
DD SYSQUT=A
DD DSNAME=INDSEQ,UNIT=disk,DISP=COLD,KEEP),

VOLUME=SER=lllll2
DD DSNAME=UNLDSET,UNIT=tape,LABEL=C,SLl,

DISP=(,KEEP),VOLUME=SER=001234,
DCB=CRECFM=FB,LRECl=80,BlKSIZE=640)

IEBISAM Program 243

IEBISAM EXAMPLE 3

IEBISAM EXAMPLE 4

The job control statements are discussed below:

• EXEC specifies the program name (IEBISAM) and the UNLOAD
operation.

• SYSUTI DD defines the ISAM input data set, INDSEQ, which
resides on a disk volume.

• SYSUT2 DD defines the unloaded output data set, UNLDSET.
The data set consists of fixed blocked records, and is to
reside as the first or only data set on a 9-track tape
volume.

In this example, ISAM input is converted into a sequential data
set and placed on a 7-track, tape volume.

//STEPA
//
//SYSPRINT
//SYSUTI
//
//SYSUT2
//
//
//
/*

JOB
EXEC PGM=IEBISAM,PARM=UNLOAD
DD SYSOUT=A
DD DSNAME=INDSEQ,UNIT=disk,DISP=(OLD,KEEP),

VOLUME=SER=111112
DD DSNAME=UNLDSET,UNIT=2400-2,LABEL=(2,SL),

VOLUME=SER=001234,DCB=(DEN=2,
RECFM=FB,LRECL=80,BLKSIZE=1040,TRTCH=C),
DISP=(,KEEP)

The job control statements are discussed below:

• EXEC specifies the program name (IEBISAM) and the UNLOAD
operation.

• SYSUTI DD defines the input data set, INDSEQ, which is an
indexed sequential data set. The data set resides on a disk
volume.

• SYSUT2 DD defines the unloaded output data set, UNLDSET.
The data set consists of fixed blocked records, and is to
reside as the second data set on a 7-track tape volume. The
data set is written at a density of 800 bits per inch
(DEN=2).

In this example, an unloaded data set is converted to the form
of the original ISAM data set.

//STEPA
//
//SYSPRINT
//SYSUTI
//
//SYSUT2
//
//
/*

JOB
EXEC PGM=IEBISAM,PARM=LOAD
DD SYSOUT=A
DD DSNAME=UNLDSET,UNIT=tape,LABEL=(2,SL),

DISP=(OLD,KEEP),VOLUME=SER=001234
DD DSNAME=INDSEQ,DISP=(,KEEP),DCB=(DSORG=IS),

SPACE=(CYL,(1»,VDLUME=SER=111112,
UNIT=disk

244 MVS/XA Data Administration: Utilities

IEBISAM EXAMPLE 5

(

The job control statements are discussed below:

• EXEC specifies the program name (IEBISAM) and the LOAD
operation.

• SYSUTl DD defines the input data set, UNLDSET, which is a
sequential (unloaded) data set. The data set is the second
data set on a tape volume.

• SYSUT2 DD defines the output data set, INDSEQ which is an
ISAM data set. One cylinder of space is allocated for the
data set on a disk volume.

In this example, the logical records of an ISAM data set are
printed on a system output device.

//PRINT
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
/:IE

JOB
EXEC PGM=IEBISAM,PARM='PRINTL,N'
DD SYSOUT=A
DD DSNAME=ISAM03,UNIT=disk,DISP=OLD,

VOLUME=SER=222222
DD SYSOUT=A

The job control statements are discussed below:

• EXEC sPecifies the program name (IEBISAM) and the PRINTL
operation. The output records are not converted to
hexadecimal prior to printing. (N is specified).

• SYSUTl DD defines the input data set, ISAM03, which resides
on a disk volume.

• SYSUT2 DD defines the output data set (in this case, the
system printer). A logical record length (LRECL) of 121
bytes is assumed.

IEBISAM Program 245

IEBPTPCH pROGRAM

IEBPTPCH is a data set utility used to print or punch all, or
selected portions, of a sequential or partitioned data set.
Records can be printed or punched Ito meet either standard
specifications or user specifications. ,

The standard specifications are:

• Each logical output record begins on a new printed line or
punched card.

• Each printed line consists of groups of 8 characters
separated by 2 blanks. Each punched card contains up to 80
contiguous bytes of information.

• Characters that cannot be printed appear as blanks.

• When the input is blocked, each logical output record is
delimited by "*" and each block is delimited by "**."

User formats can be specified, provided that no output record
exceeds the capability of the output device.

IEBPTPCH provides optional editing facilities and exits for user
routines that can be used to process labels or manipulate input
or output records.

IEBPTPCH can be used to print or punch:

• A sequential or partitioned data set in its entirety

• Selected members from a partitioned data set

• Selected records from a sequential or partitioned data set

• The directory of a partitioned data set

• An edited version of a sequential or partitioned data set

PRINTING OR PUNCHING AN ENTIRE DATA SET

IEBPTPCH can be used to print or punch a sequential data set or
a partitioned data set in its entirety. Data to be printed or
punched ca~be either hexadecimal or a character representation
of valid alp~americ bit configurations. For a print operation,
packed decim~l data should be converted to unpacked decimal or
hexadecimal 10de to ensure that all characters are printable.

For a standa~d print operation, each logical record is printed
in groups Of~ieight characters. Each set of eight characters is
separated fr m the next by two blanks. Up to 96 data characters
can be incl ded on a printed line. (An edited output can be
produced t~ omit the blank delimiters and print up to 144
character~.per line.)

Data from a logical input record is punched in contiguous
columns in the punched card(s) representing that record.
Sequence numbers can be created and placed in columns 73 through
80 of the punched cards.

246 MVS/XA Data Administration: Utilities

PRINTING OR PUNCHING SELECTED MEMBERS

IEBPTPCH can be used to print or punch selected members of a
partitioned data set. Utility control statements are used to
specify members to be printed or punched.

PRINTING OR PUNCHING SELECTED RECORDS

IEBPTPCH can be used to print or punch selected records from a
sequential or partitioned data set. Utility control statements
can be used to specify:

• The termination of a print or punch operation after a
specified number of records has been printed or punched.

• The printing or punching of every nib record.

• The starting of a print or punch operation after a specified
number of records.

PRINTING OR PUNCHING A PARTITIONED DIRECTORY

IEBPTPCH can be used to print or punch the contents of a
partitioned directory. Each directory block is printed in
groups of eight characters. If the directory is printed in
hexadecimal representation, the first four printed characters of
each directory block indicate the total number of used bytes in
that block. For details of the format of the directory, see
Debugging Handbook.

Data from a directory block is punched in contiguous columns in
the punched cards representing that block.

(! PRINTING OR PUNCHING AN EDITED DATA SET

INPUT AND OUTPUT

IEBPTPCH can be used to print or punch an edited version of a
sequential or a partitioned data set. Utility control
statements can be used to specify editing information that
applies to a record, a group of records, selected groups of
records, or an entire member or data set.

An edited data set is produced by:

• Rearranging or omitting defined data fields within a record

• Converting data from packed decimal to unpacked decimal or
from alphameric to hexadecimal representation

IEBPTPCH uses the following input:

• An input data set, which contains the data that is printed
or punched. The input data set can be either sequential or
partitioned.

• A control data set, which contains utility control
statements. The control data set is required for each use
of IEBPTPCH.

IEBPTPCH produces the following output:

•

•

An output data set, which is the printed or punched data
set. I

V

A message data set, which contains informational messages
(for example, the contents of the control statements) and
any error messages.

IEBPTPCH Program 247

REtURN CODES

CONTROL

,~.~, IEBPTPCH returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are ~_~
listed in Figure 87.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) Either a physical sequential data set is empty or a
partitioned data set has no members.

OS (OS) A member specified for printing or punching does
not exist in the input data set. Processing
continues with the next member.

12 (OC) An unrecoverable error occurred or a user routine
passed a return code of 12 to IEBPTPCH. The job
step is terminated.

16 (10) A user routine passed a return code of 16 to
IEBPTPCH. The job step is terminated.

Figure 87. IEBPTPCH Return Codes

IEBPTPCH is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke the IEBPTPCH program and to define the data
sets that are used and produced by the program. The utility
control statements are used to control the functions of
IEBPTPCH.

JOB CONTROL STATEMENTS

Figure 88 shows the job control statements for IEBPTPCH.

Statement Use

JOB Initiates the job step.

EXEC Specifies the program name (PGM=IEBPTPCH) or, if
the job control statements reside in a procedure
library, the procedure name.

SVSPRINT DD Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a direct access device.

SVSUT1 DD Defines a sequential or partitioned input data set.

SVSUT2 DD Defines the output (print or punch) data set.

SVSIN DD Defines the control data set. The control data set
normally resides in the input stream; however, it
can be defined as a member in a partitioned data
set.

Figure 88. Job Control Statements for IEBPTPCH

248 MVS/XA Data Administration: Utilities

(•. -~. . .
.~

SYSPRINT DD statement

SYSUTl DD statement

SYSUT2 DD statement

SYSIN DD statement

The SYSPRINT DO statement is required for each use of IEBPTPCH.
The RECFM is always FDA, the LRECL is always 121. Output can be
blocked by specifying a block size that is a multiple of 121 on
the SYSPRINT DD statement. The default block size is 121.

The SYSUTI DD statement is required for each use of IEBPTPCH.
The RECFM (except for undefined records), BLKSIZE, and LRECL
(except for undefined and fixed unblocked records) must be
present on the DD statement, in the DSCB, or on the tape label.

The input data set can contain fixed, variable, undefined, or
variable spanned records. Variable spanned records are
permitted only when the input is sequential.

A partitioned directory to be printed or punched must be defined
as a sequential data set (TYPORG=PS). You must specify RECFM=U,
BLKSIZE=256, and LRECL=256 on the SYSUTl DO statement.

The SYSUT2 OD statement is required every time IEBPTPCH is used.
The RECFM is always FBA or FBM. The LRECL parameter, or, if no
logical record length is specified, the BLKSIZE parameter,
specifies the number of characters to be written per printed
line or per punched card (this count includes a control
character). The number of characters specified must be in the
range of 2 through 145. The default values for edited output
lines are 121 characters per printed line and 81 characters per
punched card.

The SYSUT2 data set can be blocked by specifying both the LRECL
and the BLKSIZE parameters, in which case, block size must be a
multiple of logical record length.

Both the output data set and the message data set can be written
to the system output device if it is a printer.

If the logical record length of the input records is such that
the output would exceed the output record length, IEBPTPCH
divides the record into multiple lines or cards in the case of
standard printed output, standard punched output, or when the
PREFORM parameter is specified. For nonstandard output, or if
the PREFORM parameter is not specified, only part of the input
record is printed or punched (maximums determined by the
specific characteristics of your output device).

The SYSIN DD statement is required for each use of IEBPTPCH.
The RECFM is always FB, the LRECL is always 80. Any blocking
factor that is a multiple of 80 can be specified for the
BLKSIZE. The default block size is 80.

UTILITY CONTROL STATEMENTS

IEBPTPCH is controlled by utility control statements. The
control statements in Figure 89 on page 250 are shown in the
order in which they must appear.

Control statements are included in the control data set, as
required. Any number of MEMBER and RECORD statements can be
included in a job step.

IEBPTPCH Program 249

PRINT Statement

A nonblank character in column 72 is optional for IEBPTPCH
continuation statements. Continuation requirements for utility
control statements are described in "Continuing Utility Control I<'~
StatemerHslI on page 5. \"/

statement

PRINT

PUNCH

TITLE

EXITS

MEMBER

RECORD

LABELS

Figure 89.

Use
Specifies that the data is printed.

Specifies that the data is punched.

S~ecifies that a title is to precede the printed
or punched data.

Specifies that user exit routines are provided.

Specifies that the input is a partitioned data
set and that a selected member is printed or
punched.

Specifies whether editing is performed, that is,
records are to be printed or punched to your
specifications.

Specifies whether user labels are treated as
data.

IEBPTPCH Utility Control Statements

The PRINT statement is used to initiate the IEBPTPCH PRINT
operation. If used, PRINT must be the first statement in the
control data set.

The format of the PRINT statement is:

[l.s.b.!Ul PRINT [PREFORM=AIMl

[,TVPORG=fjiIPOl

[,TOTCONV=XEIPZl

[, CNTRL=n III

[,STRTAFT=nl

[,STOPAFT=nl

[,SKIP=nl

[,MAXNAME=nl

[,MAXFLDS=nl

[,MAXGPS=nl

[,MAXLITS=nl

[,INITPG=nl

[,MAXLINE=n]

250 MVS/XA Data Administration: Utilities

(I
PUNCH statement

TITLE statement

Note: If you specify PREFORM, any additional PRINT operands and
all other control statements are ignored; exceptions are syntax
checking, the LABELS statement, and the TYPORG operand.

The PUNCH statement initiates the IEBPTPCH PUNCH operation. If
you use the PUNCH statement, it must be the first statement in
the control data set.

The format of the PUNCH statement is:

[~] PUNCH [PREFORM=AIM]

[,TVPORG=~IPO]

[,TOTCONV=XEIPZ]

[,CNTRL=nll]

[,STRTAFT=n]

[,STOPAFT=nl

[,SKIP=n]

[,MAXNAME=n]

[, MAXFLDS=nl

[,~AXGPS=n]

[, MAXLITS=n]

[,CDSEQ=nl

[,CDINCR=n]

Note: If PREFORM is specified, any additional PUNCH operands
and all other control statements are ignored; exceptions are
syntax checking, the LABELS statement, and the TYPORG operand.

The TITLE statement is used to request title and subtitle
records. Two TITLE statements can be included for each use of
IEBPTPCH. A first TITLE statement defines the title, and a
second defines the subtitle. The TITLE statement, if included,
follows the PRINT or PUNCH statement in the control data set.

The format of the TITLE statement is:

I [ls.Q.eJ.] TITLE ITEM=('~'[,outpyt-location])

The literal coded for 'title' is not affected by the TOTCONV
parameter.

IEBPTPCH Program 251

EXITS Statement

MEMBER Statement

RECORD Statement

The EXITS statement is used to identify exit routines supplied
by the user. Exits to label processing routines are ignored if
the input data set is partitioned. Linkage to and from user
routines are discussed in Appendix A, "Exit Routine Linkage" on
page 422.

The EXITS statement, if included, must immediately follow any
TITLE statement or follow the PRINT or PUNCH statement.

The format of the EXITS statement is:

[.lAb.gll EXITS [INHDR=roytinename]

[,INTLR=roytinename]

[,INREC=roytinename]

[,OUTREC=cou±inename]

The MEMBER statement is used to identify members to be printed
or punched. All RECORD statements that follow a MEMBER
statement pertain to the member indicated in that MEMBER
statement only. When RECORD and MEMBER statements are used, at
least one MEMBER statement must precede the first RECORD
statement. If no RECORD statement is used, the member is
processed to standard specifications.

If no MEMBER statement appears, and a partitioned data set is
being processed, all members of the data set are printed or
punched. Any number of MEMBER statements can be included in a
job step.

If a MEMBER statement is present in the input stream, MAXNAME
must be specified in a PRINT or PUNCH statement.

The format of the MEMBER statement is:

MEMBER NAME={membernamelaliasnamel

The RECORD statement is used to define a group of records,
called a record group, that is printed or punched to your
specifications. A record group consists of any number of
records to be edited identically.

If no RECORD statements appear, the entire data set, or named
member, is printed or punched to standard specifications. If a
RECORD statement is used, all data following the record group it
defines (within a partitioned member or within an entire
sequential data set) must be defined with other RECORD
statements. Any number of RECORD statements can be included in
a job step.

A RECORD statement referring to a partitioned data set for which
no members have been named need contain only FIELD parameters.
These are applied to the records in all members of the data set.

252 MVS/XA Data Administration: Utilities

,.(-\.

',,~

c

LA!ELS state .. eht

(,

if a FtElD para'meter is included in the RECORD statement,
MAXFLOS must be specified in the PRINT or PUNCH statement.

If an IDENT parameter is included in the RECORD statement,
MAXGPS and MAXLITS must be specified in the PRINT or PUNCH
statement.

lhe format of the RECORD statement is:

t~J RECORD tlbENT=(length,'~',input-location)l

t,FIELD=C!ength
['iOPl!t-lo$';~]
[; conversiQn
[,ou~pu~-lQca~ioD])]

The LA~ElS st~tement specifies whether user labels are to be
treated as data. For a detailed discussion of this option,
refer to Appendix C, "Processing User Labels" on page 426.

LABELS DATA=NO must be specified to make standard user label
(SUl) exits inactive wheri an input data set with nonstandard
labels (NSL) is processed.

If m~re than on~ .• ~lid LABELS statement is included, all but the
last LABELS stat.ment are ignored.

the fo~mat of the LABELS statement is:

[.lA!uU.] LA8!LS tCONV=PZIXEl

[,DAT~=YESINOIALLIONLY]

IEBPTPCH Program 253

Parameters

CDINCR

CDSEQ

CNTRL

CONV

Applicable
Control
statements

PUNCH

PUNCH

PRINT

PUNCH

LABELS

Description of Parameters

CDINCR=n
specifies the increment to be used in generating
sequence numbers.

Default: 10 is the increment value.

CDSEQ=n
specifies the initial sequence number of a deck
of punched cards. This value must be contained
in columns 73 through 80. Sequence numbering is
initialized for each member of a partitioned
data set. If the value of n is zero, 00000000
is the starting sequence number.

Default: Cards are not numbered.

CNTRL=nll
specifies a control character for the output
device that indicates line spacing, as follows:
1 indicates single spacing (the default), 2
indicates double spacing, and 3 indicates triple
spacing.

specifies a control character for the output
device that is used to select the stacker, as
follows: 1 indicates the first stacker (the
default), 2 indicates the second stacker, and 3
indicates the third stacker, if any.

CONV=PZIXE
specifies a 2-byte code that indicates the type
of conversion to be performed on this field
before it is printed or punched. The values
that can be coded are:

PZ

XE

specifies that data (packed decimal) is
converted to unpacked decimal data. The
converted portion of the input record
(length L) occupies 2L - 1 output
characters when punching, and 2L output
characters when printing.

specifies that data (alphameric) is
converted to hexadecimal data. The
converted portion of the input record
(length L) occupies 2L output characters.

Default: The field is moved to the output area
without change.

254 MVS/XA Data Administration: Utilities

5---\
\,~j

t-" " ,
\) i

.-/

(C

(

(."

~"

Parameters

DATA

Applicable
Control
Statements

LABELS

Description of Parameters

DATA=Y-ESINOIALLIONLY
specifies whether user labels are to be treated
as data. The values that can be coded are:

YES

NO

ALL

ONLY

specifies that any user labels that are not
rejected by a user's label processing
routine are to be treated as data.
Processing of labels as data stops in
compliance with standard return codes. YES
is the default.

specifies that user labels are not to be
treated as data. NO must be specified when
processing input/output data sets with
nonstandard labels (NSL) in order to make
standard user label (SUL) exits inactive.

specifies that all user labels are to be
treated as data. A return code of 16
causes the utility to complete the
processing of the remainder of the group of
user labels and to terminate the job step.

specifies that only user header labels are
to be treated as data. User header labels
are processed as data regardless of any
return code. The job terminates upon
return from the OPEN routine.

IEBPTPCH Program 255

Parameters

FIELD

Applicable
Control
statements

RECORD

Description of Parameters

FIELD=(lengtb,[input-location],[conversion],
[output-location])[,FIELD= •••• l
specifies field-processing and editing
information.

Note that the variables on the FIELD parameter
are positional; that is, if any of the options
are not coded, the associated comma preceding
that variable must be coded.

These values can be ~oded:

length
specifies the length (in bytes) of the
input field to be processed. The length
must be equal to or less than the initial
input LRECL.

inpyt-location
specifies the starting byte of the input
field to be processed. The sum of the
length and the input location must be equal
to or less than the input LRECL plus one.

Default: Byte 1 is assumed.

conversion
specifies a 2-byte code that indicates the
type of conversion to be performed on this
field before it is printed or punched. The
values that can be coded are:

PZ

XE

specifies that data (packed decimal)
is converted to unpacked decimal data.
The converted portion of the input
record (length L) occupies 2L - 1
output characters when punching, and
2L output characters when printing.

specifies that data (alphameric) is
converted to hexadecimal data. The
converted portion of the input record
(length L) occupies 2L output
characters.

Default: The field is moved to the output
area without change.

256 MVS/XA Data Administration: Utilities

('\

\."j

c

Parameters

Applicable
Control
statements

FIELD RECORD
(continued)

IDENT RECORD

INHDR EXITS

Description of Parameters

oytput-l oca ti on
specifies the starting location of this field in
the output records. Unspecified fields in the
output records appear as blanks in the printed
or punched output. Data that exceeds the SYSUT2
printer or punch size is not printed or punched.
The specified fields may not exceed the logical
output record length minus one. When specifying
one or more FIELDs, the sum of all lengths and
all extra characters needed for conversions must
be equal to or less than the output LRECL minus
one.

Default: Byte I is assumed.

If a FIELD parameter 1S included in the RECORD
statement, MAXFLDS must be specified in the PRINT or
PUNCH statement.

IDENT=(length,'name',input-locationl
identifies the last record of the record group
to which the FIELD parameters apply. The values
that can be coded are:

length
specifies the length (in bytes) of the
field that contains the identifying name in
the input records. The length cannot
exceed 8 bytes.

r~r

specifies the exact literal, enclosed in
apostrophes, that identifies the last
record of a record group. If the literal
contains apostrophes, each must be written
as two consecutive apostrophes.

input-location
specifies the starting location of the
field that contains the identifying name in
the input records.

The sum of the length and the input location
must be equal to or less than the input LRECL
plus one.

Default: If IDENT is omitted and STOPAFT is not
included with the PRINT or PUNCH statement,
record processing halts after the last record in
the data set. If IDENT is omitted and STOPAFT
is included with the PRINT or PUNCH statement,
record processing halts when the STOPAFT count
is satisfied or after the last record of the
data set is processed, whichever occurs first.

If an IDENT parameter is included in the RECORD
statement, MAXGPS and MAXLITS must be specified
in the PRINT or PUNCH statement.

INHDR=routinename
specifies the name of the routine that processes
user input header labels.

IEBPTPCH Program 257

Parameters

INITPG

INREC

INTLR

ITEM

MAXFLDS

MAXGPS

MAXLINE

Applicable
Control
statements

PRINT

EXITS

EXITS

TITlE

PRINT
PUNCH

PRINT
PUNCH

PRINT

Description of Parameters

INITPG=n
specifies the initial page number; the pages are
numbered sequentially thereafter. The INITPG
parameter must not exceed a value of 9999.

Default: Pa ge I

INREC=routinename
specifies the name of the routine that
manipulates each logical record (or physical
block in the case of VS or VBS records longer
than 32K bytes) before it is processed.

INTLR=routinename
specifies the name of the routine that processes
user input trailer labels.

ITEM=('~'['Qutpyt-location])[,ITEM •••]
specifies title or subtitle information. The
values that can be coded are:
, li..:t.l.§ ,

specifies the title or subtitle literal
(maximum length of 40 bytes), enclosed in
apostrophes. If the literal contains
apostrophes, each apostrophe must be
written as two consecutive apostrophes.

output-location

MAXFLDS=n

specifies the starting position at which
the literal for this item is placed in the
output record. When used with
output-location, the specified title's ~ ~
length plus output-location may not exceed
the output logical record length minus one.

Default: Byte I is assumed.

specifies a number no less than the total number
of FIELD parameters appearing in subsequent
RECORD statements. The value must not exceed
32767.

If MAXFLDS is omitted when there is a FIELD
parameter present, the print or punch request is
terminated.

MAXGPS=n
specifies a number no less than the total number
of IDENT parameters appearing in subsequent
RECORD statements. The value must not exceed
32767.

If MAXGPS is omitted when there is an IDENT
parameter present, the print or punch request is
terminated.

MAXLINE=n
specifies the maximum number of lines to a
printed page. Spaces, titles, and subtitles are
included in this number.

Default: 60 lines per page.

258 MVS/XA Data Administration: Utilities

Applicable
Control

Parameters statements Description of Parameters

MAXLITS PRINT MAXLlTS=n
PUNCH specifies a number no less than the total number

of characters contained in the IDENT literals of
subsequent RECORD statements. The value must
not exceed 32767.

,
If MAXLITS is omitted when there is a literal
present. the print or punch request is
terminated.

MAXNAME PRINT MAXNAME=n
PUNCH specifies a number no less than the total number

of member names and aliases appeari.ng in
subsequent MEMBER statements. The value must
not exceed 32767.

If MAXNAME is omitted when there is a MEMBER
statement present. the print or punch request is
terminated.

NAME MEMBER NAME={membernamelaliasnamel
specifies a member to be printed or punched.
The values that can be coded are:

membername
specifies a member by its member name.

aliasname
specifies a member by its alias name.

If a MEMBER statement is present in the input
stream. MAXNAME must be specified in a PRINT or
PUNCH statement.

OUTREC EXITS OUTREC=roytinenam§
specifies the name of the routine that
manipulates each logical record (or physical
block in the case of VS or VBS records longer.
than 32K bytes) before it is printed or punched.

(

IEBPTPCH Program 259

Parameters

PREFORM

SKIP

Applicable
Control
statements

PRINT
PUNCH

PRINT
PUNCH

Description of Parameters

PREFORM=AIM
specifies that a control character is provided
as the first character of each record to be
printed or punched. The control characters are
used to control the spacing, number of lines per
page, page ejection, and selecting a stacker.
That is, the output has been previously
formatted, and the "standard specifications" are
superseded. If an error occurs, the print/punch
operation is terminated. If PREFORM is coded,
any additional PRINT or PUNCH operands and all
other control statements are ignored; exceptions
are syntax checking, the LABELS statement, and
the TVPORG operand. PREFORM must not be used for
printing or punching data sets with VS or VBS
records longer than 32K bytes. These values are
coded as follows:

A

M

SKIP=n

specifies that an ASA control character is
provided as the first character of each
record to be printed or punched. If the
input record length exceeds the output
record length, the utility uses the ASA
character for printing the first line, with
a single space character on all subsequent
lines of the record (for PRINT), or
duplicates the ASA character on each output
card of the record (for PUNCH).

specifies that a machine-code control
character is provided as the first
character of each record to be printed or
punched. If the input record length
exceeds the output record length, the
utility prints all lines of the record with
a 'print-skip-one-line character until the
last line of the record, which will contain
the actual character provided as input (for
PRINT), or duplicates the machine control
character on each output card of the record
(for PUNCH).

specifies that every nth record (or physical
block in the case of VS or VBS records longer
than 32K bytes) is printed or punched.

Default: Successive logical records are printed
or punched.

260 MVS/XA Data Administration: Utilities

Parameters

STOPAFT

STRTAFT

TOTCONV

(

Applicable
Control
statements

PRINT
PUNCH

PRINT
PUNCH

PRINT
PUNCH

Description of Parameters

STOPAFT=n
specifies, for sequential data sets, the number
of logical records (or physical blocks in the
case of VS or VBS records longer than 32K bytes)
to be printed or punched. For partitioned data
sets, this specifies the number of logical
records (or physical blocks in the case of VS or
VBS records longer than 32K bytes) to be printed
or punched in each member to be processed. The
n value must not exceed 32767. If STOPAFT is
specified and the IDENT parameter of the RECORD
statement is also specified, the operation is
terminated when the STOPAFT count is satisfied
or at the end of the first record group,
whichever occurs first.

STRTAFT=n
specifies, for sequential data sets, the number
of logical records (physical blocks in the case
of variable spanned (VS) or variable block
spanned (VBS) type records longer than 32K
bytes) to be skipped before printing or punching
begins. For partitioned data sets, STRTAFT=n
specifies the number of logical records to be
skipped in each member before printing or
punching begins. The n value must not exceed
32767. If STRTAFT is specified and RECORD
statements are present, the first RECORD
statement of a member describes the format of
the first logical record to be printed or
punched.

TOTCONV=XEIPZ
specifies the representation of data to be
printed or punched. TOTCONV can be overridden
by any user specifications (RECORD statements)
that pertain to the same data. These values are
coded as follows:

XE

PZ

specifies that data is punched in
2-character-per-byte hexadecimal
representation (for example, C3 40 F4 F6).
If XE is not specified, data is punched in
I-character per byte alphameric
representation. The above example would
appear as C 46.

The converted portion of the input record
(length L) occupies 2L output characters.

specifies that data (packed decimal mode)
is converted to unpacked decimal mode.
IEBPTPCH does not check for packed decimal
mode.

The converted portion of the input record
(length L) occupies 2L-l output characters
when punching, and 2L output characters

I

Default: If TOTCONV is omitted, data is not
converted.

IEBPTPCH Program 261

Applicable
Control

Parameters statements Description of Parameters

TYPORG PRINT . TVPORG=E.SIPO
PUNCH specifies the organization of the input data

set. These values are coded as follows:

PS
specifies that the input data set is
organized sequentially. This is the
default .

PO
specifies that the input data set is
partitioned.

262 MVS/XA Data Administration: Utilities

----- .--~--.-~--... ------

(

IEBPTPCH EXAMPLES

Operation

PRINT

PUNCH

PRINT

PRINT

PRINT

PUNCH

PRINT

PUNCH

PRINT

PRINT

The following examples illustrate some of the uses of IEBPTPCH.
Figure 90 can be used as a quick-reference guide to IEBPTPCH
examples. The numbers in the "Example" column refer to the
examples that follow:

Data Set
Organization Devices Comments Example

Sequential 9-track Tape and Standard format. 1
System Printer Conversion to

hexadecimal.

Sequential 7-track Tape and Standard format. 2
Card Reader Conversion to

hexadecimal.

Parti tioned Disk and System Standard format. 3
Printer Conversion to

hexadecimal. Ten
records from each member
are printed.

Parti tioned Disk and System Standard format. 4
Printer Conversion to

hexadecimal. Two
members are printed.

Sequential 9-track Tape and User-specified format. 5
System Printer Input data set is the

second data set on the
volume.

Sequential Disk and Card User-specified format. 6
Reader Punch Sequence numbers are

assigned and punched.

Sequential, Disk and System Standard format. 7
Parti tioned Printer Conver.sion to

hexadecimal.

Sequential Card Reader and Standard format. 8
Card Read Punch Control data set is a

member in a cataloged
partitioned data set.

Sequential Disk and System User-specified format. 9
Printer User routines are

provided. Processing
ends after the third
record group is printed
or STOPAFT is satisfied.

Sequential 9-track Tape and SYSOUT format. SYSOUT 10
System Printer data set is on tape

volume.

Figure 90. IEBPTPCH Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

IEBPTPCH Program 263

IEBPTPCH EXAMPLE 1

IEBPTPCH EXAMPLE 2

//PRINT
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

PRINT
TITlE

~. , .\"

JOB
EXEC PGM::< I S,'P,lPCH
DD SYSOUT:4IA

."; (

DD uNn=t, ape, lAl)El=(, Nl), VO,lUMf, =, S~R#OQ,l2"34'
PISP=' OLD, Kf.EP) ,DCa- (itECfM=U" BlK.SIZ~=?.oOO)

DD SYSOUT=A, " ,
DD ~

TOTCONV:;XE
ITEt1=('PRlIiT SEQ D,ATA SET WITH CONY TO HEX' ,lO)

". ",' ., > _.',,'

The control statements ~~~ ~~sc~,sed ~,19w.

• SYSUTl DD defines the input dcit, .e~ on • tape vt;lhlme. The
data set contains I,/I1defineq records} no recorc;l ;islar,$Hilr"
than 2,000 byte~.

• SYSUT2 DD defines the output data set. The data set is
written to the system output device (pripter "!?SiUrn~d). Each
printed line contains gr0IolPS (8 Oharacters eaQhlof
hexadecimal :il'lforlJlj;ltion . Each inpl!lt recprd begiQ' a ne\!l
line of pr:i.nt.d\llu~pl,l~. Tna sizE! of th" tnPllt"r$c,i-d ilnd
the carriage width determine how many hn~s, of, .,r~,nted
output are requirecf Per il1Put record. "

•

•

•

SYSIN DD defin~s the con~rol dat,set) ~hi,h ~oll~ws in the
input stream. The cohtrol data set con:t:~:ins the 'PRINT ancf
TITLE statements. ' '" ~

PRINT initiate,li' th,.- print OPJi~rcl'ltion anQ sP~cif~es conversion
from alphameric,to hex~decimal r.pre~entatior. \

TITLE specifies a title to be pl,ced be,!i"nF'lj,n~j.!l cQlumn 10
of the printecf qutPl,lt. The title is not c~n~e~t.d to
hexadecimal.

In this example, a uqyentiid data set ~s p4.~he~iPc9rding to
standard speci ficat;'on •. ", lh. punched output i$conY$HedtQ
hexadecimal. '" "

//PUNCHSET
//
//SYSPRINT
//SYSUTl
//
//

.",: ~. v ••• 1' > -..t. ")., .. ,
JOB
EXEC ~GM=l~»PTPCH ' , "
DD SYSOl,lT=A "" :'
DD , n,',SNAMEdNSET, IJNIT=tape" VO~UMIi", SE, 1\f0,Q, ,t,234,

lABEL =e. NL), DISP= (OLO. K~~P) ~,J)Ci~{,~" CfJ1;;FB,
lRECl=aO,)lKsIZE=2000) ":"

//SYSUT2 DD SYSOUr~a ' i
//SYSIN DD

PUNCH
TITLE

*' TOTCONV=XE .
If EM;: ('Pl,INCH SEQ PAT A SET·t4IJH. CQtN+O~EX" 10)

\

264 MVS/XA Data Administration: Utilit~e.

(-

IEBPTPCH EXAMPLE 3

(

The control statements are discussed below:

• SYSUTl DD defines the input data set, called INSET, on a
tape volume. The data set contains 80-byte, fixed blocked
records.

• SYSUT2 DD defines the system output class (punch is
assumed). Each record from the input data set is
represented by two punched cards.

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PUNCH and
TITLE statements.

• PUNCH initiates the punch operation and specifies conversion
from alphameric to hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10.
The title is not converted to hexadecimal.

In this example, a partitioned data set (ten records from each
member) is printed according to standard specifications. The
printed output is converted to hexadecimal.

JOB
EXEC PGM=IEBPTPCH
DD SYSOUT=A

//PRINTPDS
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

DO OSNAME=PDS,UNIT=disk,DISP=(OLO,KEEP),
VOLUME=SER=111112

DO
00

PRINT
TITLE

SYSOUT=A

* TOTCONV=XE,TYPORG=PO,STOPAFT=lO
ITEM=('PRINT PDS - 10 RECS EACH MEM',20)

The control statements are discussed below:

• SYSUTI 00 defines the input data set, called POS, on a disk
volume.

• SYSUT2 00 defines the output data set on the system output
device (printer assumed). Each printed line contains groups
(8 characters each) of hexadecimal information. Each input
record begins a new line of printed output. The size of the
input record and the carriage width determine how many lines
of printed output are required per input record.

• SYSIN DO defines the control data set, which follows in the
input stream. The control data set contains the PRINT and
TITLE statements.

• PRINT initiates the print operation, specifies conversion
from alphameric to hexadecimal representation, indicates
that the input data set is partitioned, and specifies that
10 records from each member are to be printed.

• TITLE specifies a title to be placed beginning in column 20
of the printed output. The title is not converted to
hexadecimal.

IEBPTPCH Program 265

"~-.---"--" ~-------~-- --------

IEBPTPCH EXAMPLE 4

In this example, two partitioned members are printed according
to standard specifications. The printed output is converted to
hexadecimal.

JOB IIPRNTMEMS
II
IISYSPRINT
IISYSUTl
II
IISYSUT2
IISYSIN

EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD DSNAME=PDS,DISP=(OLD,KEEP),VOLUME=SER=111112,

UNIT=disk
DD
DD

PRINT
TITLE

MEMBER
MEMBER

SYSOUT=A

* TYPORG=PO,TOTCONV=XE,MAXNAME=2
ITEM=('PRINT TWO MEMBS WITH CONV TO HEX',10)
NAME=MEMBERI
NAt'lE=MEMBER2

The control statements are discussed below:

• SYSUTI DD defines the input data set, called PDS, on a disk
volume.

• SYSUT2 DD defines the output data set on the system output
device (printer assumed). Each printed line contains groups
(8 characters each) of hexadecimal information. Each input
record begins a new line of printed output. The size of the
input record and the carriage width determine how many lines
of printed output are required per input record.

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains PRINT, TITLE,
and MEMBER statements.

• PRINT initiates the print operation, indicates that the
input data set is partitioned, specifies conversion from
alphameric to hexadecimal representation, and indicates that
two MEMBER statements appear in the control data set
(MAXNAME=2).

• TITLE specifies a title to be placed beginning in column 10
of the printed output. The title is not converted to
hexadecimal.

• MEMBER specifies the member names of the members to be
printed (MEMBERI and MEMBER2).

266 MVS/XA Data Administration: Utilities

--- ---_ .. -----

IEBPTPCH EXAMPLE 5

IEBPTPCH EXAMPLE 6

(

In this example, a sequential data set is printed according to
user specifications.

JOB //PTNONSTD
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD DSNAME=SEQSET,UNIT=tape,LABEL=(2,SUL),

DISP=(OLD,KEEP),VOLUME=SER=001234
SYSOUT=A DD

DD
PRINT
EXITS

RECORD
LABELS

* MAXFLDS=1
INHDR=HDRIN,INTLR=TRLIN
FIELO=(80)
OATA=YES

The control statements are discussed below:

• SYSUTI DO defines the input data set, called SEQSET, which
is the second data set on a tape volume.

• SYSUT2 DD defines the output data set on the system output
device (printer assumed). Each printed line contains 80
contiguous characters (one record) of information.

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PRINT,
EXITS, RECORD, and LABELS statements.

• PRINT initiates the print operation and indicates that one
FIELD parameter is included in a subsequent RECORD statement
(MAXFLDS=l) .

• EXITS indicates that exits will be taken to user header
label and trailer label processing routines when these
labels are encountered on the SYSUTI data set.

• RECORD indicates that each input record is processed in its
entirety (80 bytes). Each input record is printed in·
columns I through 80 on the printer.

• LABELS specifies that user header and trailer labels are
printed according to the return code issued by the user
exits.

In this example, a sequential data set is punched according to
user specifications.

JOB //PHSEQNO
//
//SYSPRINT
//SYSUTl
//

EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD DSNAME=SEQSET,UNIT=disk,LABEL=(,SUL),

//
//SYSUT2
//SYSIN

DD
DD

PUNCH
RECORD
LABELS

VOLUME=SER=111112,DISP=(OLD,KEEP),
DCB=(RECFM=FB,lRECL=80,BLKSIZE=2000)
SYSOUT=B

* MAXFLDS=I,CDSEQ=OOOOOOOO,CDINCR=20
FIELD=(72)
DATA=YES

IEBPTPCH Program 267

IEBPTPCH EXAMPLE 7

The control statements are discussed below:

• SYSUTI DO defines the input data set, called SEQSET, which
resides on a disk volume. The data set contains 80-byte,
fixed blocked records.

• SYSUT2 DO defines the system output class (punch is
assumed). That portion of each record from the input data
set defined by the FIELD parameter is represented by one
punched card.

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PUNCH,
RECORD, and LABELS statements.

• PUNCH initiates the punch operation, indicates that one
FIELD parameter is included in a subsequent RECORD statement
(MAXFLDS=I), and assigns a sequence number for the first
punched card (00000000) and an increment value for
successive sequence numbers (20). Sequence numbers are
placed in columns 73 through 80 of the output records.

• RECORD indicates that bytes
records are to be punched.
records are replaced by the
output card deck.

I through 72 of the input
Bytes 73 through 80 of the input
new sequence numbers in the

• LABELS specifies that user header labels and user trailer
labels are punched.

Labels cannot be edited; they are always moved to the first 80
bytes of the output buffer. No sequence numbers are present on
the cards containing user header and user trailer records.

In this example, the directory of a partitioned data set is
printed. The printed output is converted to hexadecimal.

IIPRINTDIR
II
IISYSPRINT
IISYSUTl
II
IISYSUT2
IISYSIN

PRINT
TITLE
TITLE

LABELS
1*

JOB
EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD DSNAME=PDS,UNIT=disk,VOLUME=SER=111112,

DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=256)
DD SYSOUT=A
DD *
TYPORG=PS, TOTCONV=XE
ITEM=('PRINT PARTITIONED DIRECTORY OF PDS',IO)
ITEM=('FIRST TWO BYTES SHOW NUM OF USED BYTES'.IO)
DATA=NO

The control statements are discussed below:

• SYSUTI DO defines the input data set (the partitioned
directory), which resides on a disk volume.

• SYSUT2 DD defines the output data set on the system output
device (printer assumed). Each printed line contains groups
(8 characters each) of hexadecimal information. Each input
record begins a new line of printed output. The size of the
input record and the carriage width determine how many lines
of printed output are required per input record.

• SYSIN DD defines the control data set. which follows in the
input stream. The data set contains the PRINT, TITLE, and
LABELS statements.

268 MVS/XA Data Administration: Utilities

---------------------_._-----

", .. ~'\

L

(-

IEBPTPCH EXAMPLE 8

(-

(

• PRINT initiates the print operation, indicates that the
partitioned directory is organized sequentially, and
specifies conversion from alphameric to hexadecimal
representation.

• The first TITLE statement specifies a title, which is not
converted to hexadecimal.

• The second TITLE statement specifies a subtitle, which is
also not converted to hexadecimal.

• lABELS specifies that no user labels are printed.

Note: Not all of the bytes in a directory block need contain
data pertaining to the partitioned data set; unused bytes are
sometimes used by the operating system as temporary work areas.
With conversion to hexadecimal representation, the first four
characters of printed output indicate how many bytes of the
256-byte block pertain to the partitioned data set. Any unused
bytes occur in the latter portion of the directory block; they
are not interspersed with the used bytes.

In this example, a card deck containing valid punch card code or
BCD is duplicated.

//PUNCH JOB
EXEC PGM=IEBPTPCH
DO SYSQUT=A

//
//SYSPRINT
//SYSIN
//SYSUT2
//SYSUTl

DO OSNAME=PDSlIB(PNCHSTMT),DISP=(OlD,KEEP)
DO SYSOUT=B
DO DATA

(input card data set including // cards)
/3E

The control statements are discussed below:

• SYSIN DD defines the control data set. The control data set
contains a PUNCH statement and is defined as a member of the
partitioned data set PDSlIB. (The data set is cataloged.)
The RECFM must be FB and the lRECl must be 80.

• SYSUT2 OD defines the system output class (punch is
assumed) .

• SYSUTI DD defines the input card data set, which follows in
the input stream.

IEBPTPCH Program 269

IEBPTPCH EXAMPLE 9

I n this exampl e, three reco rd groups are pri nted. A user r--\
routine is provided to manipulate output records before they are ~/
printed.

72
//PRINT JOB
// EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSDUT=A
//SYSUTl DD DSNAME=SEQDS,UNIT=disk,DISP=(OLD,KEEP),
// LABEL=(,SUL),VOLUME=SER=111112
//SYSUT2 DD SYSDUT=A
//SYSIN DD 3E

PRINT MAXFLDS=9,MAXGPS=9,MAXLITS=23,STOPAFT=32767
TITLE ITEM=('TIMECONV-DEPT D06'), C

ITEM=('JANlO-17',80)
EXITS OUTREC=NEWTIME,INHDR=HDRS,INTLR=TLRS
RECORD IDEtH=(6, '498414',1), C

FIELD=(8,1,,10),FIELD=(30,9,XE,20)
RECORD IDENT=(2,'**',39), C

FIELD=(8,1,,10),FIELD=(30,9,XE,20)
RECORD IDENT=(6,'4984l4',1), C

FIELD=(8,l"lO),FIELD=(30,9,XE,20)
LABELS CONV=XE, DATA=ALL

/3E

The control statements are discussed below:

•

•

SYSUTI DD defines the input data set, called SEQDS. The
data set resides on a disk volume.

SYSUT2 DD defines the output data set on the system output
device (printer assumed).

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PRINT,
TITLE, EXITS, RECORD, and LABELS statements.

• The PRINT statement:

1. Initializes the priht operation.

2. Indicates that not more than nine FIELD parameters are
included in subsequent RECORD statements (MAXFLDS=9).

3. Indicates that not more than nine IDENT parameters are
included in subsequent RECORD statements (MAXGPS=9).

4. Indicates that not more than 23 literal characters are
included in subsequent IDENT parameters (MAXLITS=23).

5. Indicates that processing is terminated after 32767
records are processed or after the third record group is
processed, whichever comes first. Because MAXLINE is
omitted, 60 lines are printed on each page.

• TITLE specifies two titles, to be printed on one line. The
titles are not converted to hexadecimal.

• EXITS specifies the name of a user routine (NEWTIME), which
is used to manipulate output records before they are
printed.

• The first RECORD statement defines the first record group to
be processed and indicates where information from the input
records is placed in the output records. Bytes 1 through 8
of the input records appear in columns 10 through 17 of the
printed output, and bytes 9 through 38 are printed in

270 MVS/XA Data Administration: Utilities

IEBPTPCH EXAMPLE 10

<-

•

hexadecimal representation and placed in columns 20 through
79.

The second RECORD statement defines the second group to be
processed. The parameter in the IDENT operand specifies
that an input record containing the two characters ** in
positions 39 and 40 is the last record edited according to
the FIELD operand in this RECORD statement. The FIELD
operand specifies that bytes 1 through 8 of the input
records are placed in columns 10 through 17 of the printed
output, and bytes 9 through 38 are printed in hexadecimal
representation and appear in columns 20 through 79.

• The third and last RECORD statement is equal to the first
RECORD statement. An input record that meets the parameter
in the IDENT operand ends processing, unless the STOPAFT
parameter in the PRINT statement has not already done so.

• LABELS specifies that all user header or trailer labels are
to be printed regardless of any return code, except 16,
issued by the user's exit routine. It also indicates that
the labels are converted from alphameric to hexadecimal
representation (CONV=XE).

In this example, the input is a SYSOUT (sequential) data set,
which was previously written as the second data set of a
standard label tape. It is printed in SYSOUT format.

//PTSYSOUT
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

PRINT

JOB
EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD UNIT=tape,LABEL=(2,SL),DSNAME=LISTING,

DISP=(OLD,KEEP),VOL=SER=001234
DD SYSOUT=A
DD *

PREFORM=A

The control statements are discussed below:

• SYSUTI DD defines the input data set, which was previously
written as the second data set of a standard label tape.
The data set has been assigned the name LISTING.

• SYSUT2 DD defines the output data set on the system output
device (printer assumed).

• SYSIN DD defines the control data set, which follows in the
input stream. The control data set contains the PRINT
statement.

• The PRINT statement initiates the print operation and
indicates that an ASA control character is provided as the
first character of each record to be printed (PREFORM=A).

IEBPTPCH Program 271

IEBUPDTE pROGRAM

IEBUPDTE is a data set utility used to incorporate IBM and
user-generated source language modifications into sequential or
partitioned data sets. Exits are provided for user routines
that process user header and trailer labels.

IEBUPDTE can be used to:

• Create and update data set libraries

• Modify existing partitioned members or sequential data sets

• Change the organization of a data set from sequential to
partitioned or vice versa

CREATING AND UPDATING DATA SET LIBRARIES

IEBUPDTE can be used to create a library of partitioned members
consisting of no more than 80-byte logical records. In
addition, members can be added directly to an existing library,
provided that the original space allocations are sufficient to
incorporate the new members. In this manner, a cataloged
procedure can be placed in a procedure library, or a set of job
or utility control statements can be placed as a member in a
partitioned library.

MODIFYING AN EXISTING DATA SET

IEBUPDTE can be used to modify an existing partitioned or
sequential data set. Logical records can be replaced, deleted,
renumbered, or added to the member or data set.

A sequential data set residing on a tape volume can be used to
create a new master (that is, a modified copy) of the data set.
A sequential data se~ residing on a direct access device can be
modified either by creating a new master or by modifying the
data set directly on the volume on which it resides.

A partitioned data set can be modified either by creating a new
master or by modifying the data set directly on the volume on
which it resides.

CHANGING DATA SET ORGANIZATION

INPUT AND OUTPUT

IEBUPDTE can be used to change the organization of a data set
from sequential to partitioned, or to change a single member of
a partitioned data set to a sequential data set. If only a
member is changed, the remainder of the original data set
remains unchanged. In addition, logical records can be
replaced, deleted, renumbered, or added to the member or data
set.

\

IEBUPDTE uses the following input:

• An input data set (also called the old master data set),
which is modified or used as source data for a new master.
The input data set is either a sequential data set or a
member of a partitioned data set.

• A control data set, which contains utility control
statements and, if applicable, input data. The data set is
required for each use of IEBUPDTE.

272 MVS/XA Data Administration: Utilities

(

RETURN CODES

CONTROL

(

IEBUPDTE produces the following output:

• An output data set, which is the result of the IEBUPDTE
operation. The data set can be either sequential or
partitioned. It can be either a new data set (that ~s,
created during the present job step) or an existing data
set, modified during the present job step.

• A message data set, which contains the utility program
identification, control statements used in the job step,
modification made to the input data set, and diagnostic
messages, if applicable. The message data set is
sequential.

IEBUPDTE returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed in Figure 91.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) A control statement is coded incorrectly or used
erroneously. If either the input or output is
sequential, the job step is terminated. If both
are partitioned, the program continues processing
with the next function to be performed.

12 (OC)

16 (10)

An unrecoverable error exists. The job step is
terminated.

A label processing code of 16 was received from a
user's label processing routine. The job step is
terminated.

Figure 91. IEBUPDTE Return Codes

IEBUPDTE is controlled by job control statements and utility
control statements. The job control statements are required to
execute or invoke IEBUPDTE and to define the data sets that are
used and produced by the program. The utility control
statements are used to control the functions of IEBUPDTE and, in
certain cases, to supply new or replacement data.

IEBUPDTE Program 273

JOB CONTROL STATEMENTS

Figure 92 shows the job control statements for IEBUPDTE.

Statement

JOB

EXEC

SYSPRINT DD

SYSUTl DD

SYSUT2 DD

Use

Initiates the job.

Specifies the program name (PGM=IEBUPDTE), or, if
the job control statements reside in a procedure
library, the procedure name. Additional
information can be specified in the PARM
parameter of the EXEC statement.

Defines a sequential message data set. The data
set can be written to a system output device, a
tape volume, or a direct access volume.

Defines the input (old master) data set. It can
define a sequential data set on a card reader, a
tape volume, or a direct access volume. Or, it
can define a partitioned data set on a direct
access volume.

Defines the output data set. It can define a
sequential data set on a card punch, a printer, a
tape volume, or a direct access device. It can
define a partitioned data set on a direct access
device.

SYSIN DD Defines the control data set. The control data
set normally resides in the input stream;
however, it can be defined as a member of a
partitioned data set.

Figure 92. Job Control Statements for IEBUPDTE

PARM Information on the EXEC Statement

Additional information can be coded in the PARM parameter of the
EXEC statement, as follows:

IEXEC

Following are the PARM values:

• NEW, which specifies that the input consists solely of the
control data set. An input data set does not exist and is
not defined if NEW is specified.

• MOD, which specifies that the input consists of both the
control data set and the input data set. If neither NEW nor
MOD is coded, MOD is assumed.

• i.nillf.r:, which specifies the name of the routine that
processes the user header label on the volume containing the
control data set.

• inil£, which specifies the name of the routine that
processes the user trailer label on the volume containing
the control data set.

274 MVS/XA Data Administration: Utilities

-"' --"---------------------~"---------------------

SVSPRINT DD statement

SVSUTl DD statement

SVSUT2 DD statement

The message data set has a logical record length of 121 bytes,
and consists of fixed length, blocked or unblocked records with
an American National Standards Institute (ANSI) control
character in the first byte of each record. The input and
output data sets have a logical record length of 80 bytes or
less. and consist of standard fixed-blocked (RECFM=FB) or
unblocked records. The control data set contains 80-byte,
blocked or unblocked records.

If the SYSUTI and SYSUT2 DO statements define the same
sequential data set (BDAM only), only those operations that add
data to the end of the existing data set can 'be made. In these
cases:

• The PARM parameter of the EXEC statement must imply or
specify MOD. (See "PARM Information on the EXEC Statement"
on page 274.)

• The DISP parameter of the SYSUTI DO statement must specify
OLD.

If SYSUTI and SYSUT2 define the same partitioned data set, new
extents resulting from updates on SYSUT2 are not retrievable in
SYSUTl.

The input and output data sets contain blocked or unblocked
logical records with record lengths of up to 80 bytes. The
input and output data sets may have different block sizes as
long as they are multiples of the logical record length.

If an ADD operation is specified with PARM=NEW in the EXEC
statement, the SYSUTI DO statement need not be coded.

If the SYSUTI DO statement defines a sequential data set on
tape, the file sequence number of that data set must be included
in the LABEL keyword (unless the data set is the first or only
data set on the volume).

Space must be allocated for an output data set (SYSUT2 DO
statement) that is to reside on a direct access device, unless
the data set is an existing data set.

The SYSUT2 DD statement must not specify a DUMMY data set.

When adding a member to an existing partitioned data set using
an ADD function statement, any DCB parameters specified on the
SYSUTI and SYSUT2 DD statements (or the SYSUT2 DO statement if
that is the only one specified) must be the same as the DCB
parameters already existing for the data set.

If the SYSUTI and SYSUT2 DD statements define the same
sequential data set (BDAM only), only those operations that add
data to the end of the existing data set can be made. In these
cases:

• The PARM parameter of the EXEC statement must imply or
specify MOD. (See "PARM Information on the EXEC Statement"
on page 274.)

• The DISP parameter of the SYSUT2 DD statement must specify
MOD.

If SYSUTI and SYSUT2 define the same partitioned data set, new
extents resulting from updates on SYSUT2 are not retrievable in
SYSUTl.

IEBUPDTE Program 275

SYSIN DD statement

The output data set can have a blocking factor that is different
from the input data set; however, if insufficient space is
allocated for reblocked records, the update request is
terminated.

The input and output data sets contain blocked or unblocked
logical records with record lengths of up to 80 bytes. The
input and output data sets may have different block sizes as
long as they are multiples of the logical record length.

If an UPDATE=INPLACE operation is specified, the SYSUT2 DD
statement should not be coded.

If both the SYSUTI and SYSUT2 DD statements specify standard
user labels (SUL), IEBUPDTE copies user labels from SYSUTI to
SYSUT2.

If the SYSUTI and SYSUT2 DD statements define the same
partitioned data set, the old master data set can be updated
without creating a new master data set; in this case, a copy of
the updated member or members is written within the extent of
the space originally allocated to the old master data set.
Subsequent referrals to the updated member(s) will point to the
newly written member(s). The member names themselves should not
appear on the DD statements; they should be referred to only
through IEBUPDTE control statements. The old directory entry
for each member is not copied.

The SYSIN DD statement is required for each use of IEBUPDTE.

UTILITY CONTROL STATEMENTS

Figure 93 shows the utility control statements used to control
IEBUPDTE.

statement Use

Function Initiates an IEBUPDTE operation (ADD, CHANGE,
REPL, REPRO).

Detail Used with the function statement for special
applications.

Data A logical record of data to be used as a new or
replacement record in the output data set.

LABEL Indicates that the following data statements are
to be treated as user labels.

ALIAS Assigns aliases.

ENDUP Terminates IEBUPDTE.

Figure 93. IEBUPDTE Utility Control Statements

Note: Unlike other utility control statements, all IEBUPDTE
utility control statements (including the NUMBER and DELETE
detail statements, but not including data statements) must begin
with a "./" (period, slash) in columns 1 and 2.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

276 MVS/XA Data Administration: Utilities

~~

~J

\
)

c

Function statement

(

(

The function statement (ADD, CHANGE, REPL, or REPRO) is used to
initiate an IEBUPDTE operation. At least one function statement
must be provided for each member or data set to be processed.

A member or a data set can be added directly to an old master
data set if the space originally allocated to the old master is
sufficient to incorporate that new member or data set. ADD
specifies that a member or a data set is added to an old master
data set. If a member is added and the member name already
exists in the old master data set, processing is terminated.
If, however, PARI1=NEW is specified on the EXEC statement, the
member is replaced. For a sequential output master data set,
PARM=NEW must always be specified on the EXEC statement. At
least one blank must precede and follow ADD.

When a member replaces an identically named member on the old
master data set or a member is changed and rewritten on the old
master, the alias (if any) of the original member still refers
to the original member. However, if an identical alias is
specified for the newly written member, the original alias entry
in the directory is changed to refer to the newly written
member.

REPL specifies that a member of a data set is being entered in
its entirety as a replacement for a sequential data set or for a
member of the old master data set. The member name must already
exist in the old master data set. At least one blank must
precede and follow REPL. CHANGE specifies that modifications
are to be made to an existing member or data set. Use of the
CHANGE function statement without a NUMBER or DELETE detail
statement, or a data statement causes an error condition. At
least one blank space must precede and follow CHANGE. REPRO
specifies that a member or a data set is copied in its entirety
to a new master data set. At least one blank must precede and
follow REPRO.

Members are logically deleted from a copy of a library by being
omitted from a series of REPRO function statements within the
same job step.

One sequential data set can be copied in a given job step. A
sequential data set is logically deleted from a new volume by
being omitted from a series of job steps which copy only the
desired data sets to the new volume. If the NEW subparameter is
coded in the EXEC statement, only the ADD function statement is
permitted.

IEBUPDTE Program 277

The format of the function statement is:

Function Restrictions

{ADDICHANGEIREPLIREPRO)

[LIST=ALLl

[, SEQFLD=s!dl1 (ddl , ddl)]

[,NE~'I=PO I PSl

[,MEMBER=ccccccccl

[,COLUMN=n.nll.]

[,UPDATE=lNPLACE]

[,INHDR=cccccccc]

[,INTLR=cccccccc]

[,OUTHDR=ccccccccl

[,OUTTLR=cccccccc]

[,TOTAL=(roytinename,~)]

[,NAME=cccccccc]

[,LEVEL=bbl

[,SOURCE=~]

[,SSI=hhhhhhhhl

When UPDATE=INPLACE is specified:

• The SYSUT2 DD statement is not coded.

• The PARM parameter of the EXEC statement must imply or
speci fy MOD.

• The NUMBER detail statement can be used to specify a
renumbering operation.

• Data statements can be used to specify replacement
information only.

• One CHANGE function statement and one UPDATE=INPLACE
parameter are permitted per job step.

• No functions other than replacement, renumbering, and header
label modification (via the LABEL statement) can be
specified.

• Unless the entire data set is renumbered, only replaced
records are listed.

• System status information cannot be changed.

When REPRO is specified:

• The ADD statement can be used in the same job step only if
both SYSUTI and SYSUT2 are partitioned data sets; otherwise,
unpredictable results can occur.

278 MVS/XA Data Administration: Utilities

c

(

(

Within an existing logical record, the data in the field defined
by the COLUMN parameter is replaced by data from a subsequent
data statement, as follows:

1. IEBUPDTE matches a sequence number of a data statement with
a sequence number of an existing logical record. In this
manner. the COLUMN specification is applied to a specific
logical record.

2. The information in the field within the data statement
replaces the information in the field within the existing
logical record. For example, COLUMN=40 indicates that
columns 40 through 80 (assuming 80-byte logical records) of
a subsequent data statement are to be used as replacement
data for columns 40 through 80 of a logical record
identified by a matching sequence number. (A sequence
number in an existing logical record or data statement need
not be within the defined field.)

The COLUMN specification applies to the entire function, with
the exception of:

• Logical records deleted by a subsequent DELETE detail
statement.

• Subsequent data statements not having a matching sequence
number for an existing logical record.

• Data statements containing information to be inserted in the
place of a deleted logical record or records.

Figure 94 shows the use of NEW, MEMBER, and NAME parameters for
different input and output data set organizations.

Input Data set
Organization

Partitioned

None

Output Data Set
Organization

Partitioned

Partitioned
(New)

Parameter Combinations

With an ADD function
statement, use NAME to
specify the name of the
member to be placed in the
partitioned data set
defined by the SYSUT2 DD
statement. If an
additional name is
required, an ALIAS
statement can also be
used.

With a CHANGE, REPL, or
REPRO function statement,
use NAME to specify the
name of the member within
the partitioned data set
defined by the SYSUT1 DD
statement. If a different
or additional name is
desired for the member in
the partitioned data set
defined by the SYSUT2 DD
statement, use an ALIAS
statement also.

With each ADD function
statement, use NAME to
assign a name for each
member to be placed in the
partitioned data set.

Figure 94 (Part 1 of 2). NEW, MEMBER, and NAME Parameters

IEBUPDTE Program 279

Detail statement

Input Data set
Organization

Partitioned

Sequential

output Data set
Organization

Sequential

Partitioned

Parameter Combinations

With any function
statement, use NAME to
specify the name of the
member in the partitioned
data set defined by the
SYSUTI DD statement. Use
NEW=PS to specify the
change in organization
from partitioned to
sequential. (The name and
file sequence number, if
any, assigned to the
output master data set are
specified in the SYSUT2 DD
statement.)

With applicable function
statement, use MEMBER to
assign a name to the
member to be placed in the
partitioned data set
defined by the SYSUT2 DD
statement. Use NEW=PO to
specify the change in
organization from
sequential to partitioned.

Figure 94 (Part 2 of 2). NEW. MEMBER, and NAME Parameters

A detail statement is used with a function statement for certain
applications, such as deleting or renumbering selected logical
records. The NUMBER detail statement specifies, when coded with
a CHANGE function statement, that the sequence number of one or
more logical records is changed. It specifies, when coded with
an ADD or REPL function statement, the sequence numbers to be
assigned to the records within new or replacement members or
data sets. When used with an ADD or REPL function statement, no
more than one NUMBER detail statement is permitted for each ADD
or REPL function statement. If NUMBER is coded, it must be
preceded and followed by at least one blank.

The DELETE detail statement specifies, when coded with a CHANGE
function statement. that one or more logical records are to be
deleted from a member or data set. If DELETE is coded. it must
be preceded and followed by at least one blank.

Logical records cannot be deleted in part; that is, a COLUMN
parameter specification in a function statement is not
applicable to records that are to be deleted. Each specific
sequence number is handled only once in any single operation.

280 MVS/XA Data Administration: Utilities

--------_._---

/''\
\ '

"l/'

(

Detail Restrictions

(-

The format of a detail statement is:

./[~ {NUMBERIDELETE1[SEQ1=~cccccccIALL]

[,SEQ2=cccccccc]

[,NEW1=cccccccc]

[,INCR=cccccccc]

[,INSERT=YESl

When INSERT=YES is coded:

• The SEQl parameter specifies the existing logical record
after which the insertion is made. SEQl=ALL cannot be
coded.

• The SEQ2 parameter need not be coded.

• The NEWl parameter assigns a sequence number to the first
logical record to be inserted. If the parameter is
alphameric, the SEQFlD=(ddl,ddl) parameter should be coded
on the function statement.

• The INCR parameter is used to renumber as much as is
necessary of the member or data set from the point of the
first insertion; the member or data set is renumbered until
an existing logical record is found whose sequence number is
equal to or greater than the next sequence number to be
assigned. If no such logical record is found, the entire
member or data set is renumbered.

• Additional NUMBER detail statements, if any, must specify
INSERT=YES. If a prior numbering operation renumbers the
logical record specified in the SEQl parameter of a
subsequent NUMBER detail statement, any NEWl or INCR
parameter specifications in the latter NUMBER detail
statement are overridden. The prior increment value is used
to assign the next successive sequence numbers. If a prior
numbering operation does not renumber the logical record
specified in the SEQl parameter of a subsequent NUMBER
detail statement, the latter statement must contain NEWl and
INCR specifications.

• The block of data statements to be inserted must contain
blank sequence numbers.

• The insert operation is terminated when a function
statement, a detail statement, an end-of-file indication, or
a data statement containing a sequence number is
encountered.

• The SEQl, SEQ2, and NEWl parameters (with the exception of
SEQl=ALl) specify eight (maximum) alphameric characters.
The INCR parameter specifies eight (maximum) numeric
characters. Only the significant part of a numeric sequence
number need be coded; for example, SEQl=OOOOOOI0 can be
shortened to SEQl=lO. If, however, the numbers are
alphameric, the alphabetic characters must be specified; for
example, SEQl=OOABCOlO can be shortened to SEQl=ABCOlO.

IEBUPDTE Program 281

Data statement

LABEL statement

A data statement is used with a function statement, or with a
function statement and a detail statement. It contains a
logical record used as replacement data for an existing logical
record, or new data to be incorporated in the output master data
set. .

Each data statement contains one logical record, which begins in
the first column of the data statement. The length of the
logical record is equal to the logical record length (LRECL)
specified for the output master data set. Each logical record
contains a sequence number to determine where the data is placed
in the output master data set (except when INSERT=YES is
specified).

When used with a CHANGE function statement, a data statement
contains new or replacement data, as follows:

• If the sequence number in the data statement is identical to
a sequence number in an existing logical record, the data
statement replaces the existing logical record in the output
master data set.

• If no corresponding sequence number is found within the
existing records, the data statement is inserted in the
proper collating sequence within the output master data set.
(For proper execution of this funct{on, all records in the
old master data set must have a sequence number.)

• If a data statement with a sequence number is used and
INSERT=YES was specified, the insert operation is
terminated. IEBUPDTE will continue processing if this
sequence number is at least equal to the next old master
record (record following the referred to sequence record).

When used with an ADD or REPL function statement, a data
statement contains new data to be placed in the output master
data set.

Sequence numbers within the old master data set are assumed to
be in ascending order. No validity checking of sequence numbers
is performed for data statements or existing records.

Sequence numbers in data statements must be in the same relative
position as sequence numbers in existing logical records.
(Sequence numbers include leading zeros and are assumed to be in
columns 73 through 80; if the numbers are in columns other than
these, the length and relative position must be specified in a
SEQFLD parameter within a preceding function statement.)

The LABEL statement indicates that the following data statements
(called label data statements) are to be treated as user labels.
These new user labels are placed on the output data set. The
next function statement indicates to IEBUPDTE that the last
label data statement of the group has been read.

282 MVS/XA Data Administration: Utilities

The format of the LABEL statement is:

~Dill_a_nL_~_] __ ~_L_A_B_E_L __ ~~

There can be no more than two LABEL statements per execution of
IEBUPDTE. There can be no more than eight label data statements
following any LABEL statement. The first 4 bytes of each
80-byte label data statement must contain "UHLn" or "UTLn",
where n is 1 through 8, for input header or input trailer labels
respectively, to conform to IBM standards for user labels.
Otherwise, data management will overlay the data with the proper
four characters.

When IEBUPDTE encounters a LABEL statement, it reads up to eight
data statements and saves them for processing by user output
label routines. If there are no such routines, the saved
records are written by OPEN or CLOSE as user labels on the
output data set. If there are user output label processing
routines, IEBUPDTE passes a parameter list to the output label
routines. (This parameter list is described fully in
Appendix A, "Exit Routine Linkage" on page 422.) The label
buffer contains a label data record which the user routine can
process before the record is written as a label. If the user
routine specifies (via return codes to IEBUPDTE) more entries
than there are label data records, the label buffer will contain
meaningless information for the remaining entries to the user
routine.

The position of the LABEL statement in the SYSIN data set,
relative to any function statements, indicates the type of user
label that follows the LABEL statement:

• To cre~te output header labels, place the LABEL statement
and its~ssociated label data statements before any function
statements in the input stream. A function statement, other
than LABEL, must follow the last label data statement of the
group.

• To create output trailer labels, place the LABEL statement
and its associated label data statements after any function
statements in the input stream, but before the ENDUP
statement. The ENDUP statement is not optional in this
case. It must follow the last label data statement of the
group if IEBUPDTE is to create output trailer labels.

When UPDATE=INPLACE is specified in a function statement, user
input header labels can be updated by user routines, but input
trailer and output labels cannot be updated by user routines.
User labels cannot be added or deleted. User input header
labels are made available to user routines by the label buffer
address in the parameter list. (See Appendix C, "Processing
User Labels" on page 426, for a complete discussion of the
linkage between utility programs and user label processing
routines.) The return codes when UPDATE=INPLACE is used differ
slightly from th~ standard codes discussed in Appendix C, as
indicated in Figure 95 on page 284.

IEBUPDTE Program 283

ALIAS Statement

Codes Meaning

00 (00 hex) The system resumes normal processing; any
additional user labels are ignored.

04 (04) The system does not write the label. The next user
label is read into the label buffer area and
control is returned to the user's routine. If
there are no more user labels, the system resumes
normal processing.

OS (OS) The system writes the user labels from the label
buffer area and resumes normal processing.

12 (OC) The system writes the user label from the label
buffer area, then reads the next input label into
the label buffer area and returns control to the
label processing routine. If there are no more
user labels, the system resumes normal processing.

Figure 95. UPDATE=INPLACE Return Codes

If you want to examine the replaced labels from the old master
data set, you must:

1. Specify an update of the old master by coding the
UPDATE=INPLACE parameter in a function statement.

2. Include a LABEL statement in the input data set for either
header or trailer labels.

3. Specify a corresponding user label routine.

If the above conditions are met, fourth and fifth parameter
words will be added to the standard parameter list. The fourth
parameter word is not now used; the fifth contains a pointer to
the replaced label from the old master. In this case, the
number of labels supplied in the SYSIN data set must not exceed
the number of labels on the old master data set. If you
specify, via return codes, more entries to the user's header
label routine than there are labels in the input stream, the
first parameter will point to the current header label on the
old master data set for the remaining entries. In this case,
the fifth parameter is meaningless.

The ALIAS statement is used to create or retain an alias in an
output (partitioned) directory. The ALIAS statement can be used
with any of the function statements. Multiple aliases can be
assigned to each member, up to a maximum of 16 aliases.

If an ALIAS statement specifies a name that already exists on
the data set, the original TTR (track record) of that directory
entry will be destroyed.

ALIAS must be preceded and followed by at least one blank. If
ALIAS statements are used, they must follow the data statements,
if any, in the input stream.

The format of the ALIAS statement is:

I·/[~] I ALIAS NAME=cccccccc

284 MVS/XA Data Administration: Utilities

;(... ".
'\.j

ENDUP statement

Parameters

./

(- COLUMN

INCR

INHDR

INSERT

(

An ENDUP statement is used to indicate the end of SYSIN input to
this job step. If there is no other preceding delimiter
statement, it serves as an end-of-data indication. The ENDUP
statement follows the last group of SYSIN control statements.

ENDUP must be preceded and followed by at least one blank. The
ENDUP statement must follow the last label data statement if
IEBUPDTE is used to create output trailer labels.

The format of the ENDUP statement is:

Applicable
Control
statements

ADD
REPL
CHANGE
REPRO
NUr1BER
DELETE
LABEL
ALIAS
ENDUP

CHANGE

NUMBER

ADD
REPL
CHANGE
REPRO

CHANGE
NUMBER

ENDUP

Description of Parameters

is required for each utility control statement
and must appear in columns 1 and 2.

CO LUt-1N=nn 1.1
specifies, in decimal, the starting column of a
data field within a logical record image. The
field extends to the end of the image. Within
an existing logical record, the data in the
defined field is replaced by data from a
subsequent data statement. See "Function
Restrictions" on page 278 for restrictions on
COLUMN.

INCR=cccccccc
specifies an increment value used for assigning
successive sequence numbers to new or
replacement logical records, or specifies an
increment value used for renumbering existing
logical records.

INHDR=cccccccc
specifies the name of the user routine that
handles any user input (SYSUTI) header labels.
This parameter is valid only when a sequential
data set is being processed.

INSERT=VES
specifies the insertion of a block of logical
records. The records, which are data statements
containing blank sequence numbers, are numbered
and inserted in the output master data set.
INSERT is valid only when coded with both a
CHANGE function statement and a NUMBER detail
statement. SEQ1, NEW1, and INCR are required on
the first NUMBER detail statement. See "Detail
Restrictions" on page 281 for more information
on INSERT=YES.

IEBUPDTE Program 285

Parameters

INTLR

label

LEVEL

LIST

MEMBER

NAME

Applicable
Control
statements

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO
NUMBER
DELETE
LABEL
ALIAS
ENDUP

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

ADD
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO
ALIAS

--- --- -----

Description of Parameters

INTLR=cccccccc

l.e.Qd

specifies the name of the user routine that
handles any user input (SYSUTl) trailer labels.
INTLR is valid only when a sequential data set
is being p~ocessed, but not when UPDATE=INPLACE
is coded.

specifies an optional label for the statement
that begins in column 3 and extends no further
than column 10.

LEVEL=hb
specifies the change (update) level in
hexadecimal (OO-FF). The level number is
recorded in the directory entry of the output
member. This parameter is valid only when a
member of a partitioned data set is being
processed. LEVEL has no effect when SSI is
specified.

LIST=ALL
specifies that the SYSPRINT data set is to
contain the entire updated member or data set
and the control statements used in its creation.

Default: For old data sets, if LIST is omitted.
the SYSPRINT data set contains modifications and
control statements only. If UPDATE was
specified, the entire updated member is listed
only when renumbering has been done. For new
data sets, the entire member or data set and the
control statements used in its creation are
always written to the S.YSPRINT data set.

MEMBER=cccccccc
specifies a name to be assigned to the member
placed in the partitioned data set defined by
the SYSUT2 DD statement. MEMBER is used only
when SYSUTl defines a sequential data set,
SYSUT2 defines a partitioned data set. and
NEW=PO is specified. Refer to Figure 94 on
page 279 for the use of MEMBER with NEW.

For the ALIAS statement:

NAME=cccccccc
specifies a 1- to 8-character alias name.

For all other statements:

NAME=cccccccc
indicates the name of the member placed into the
partitioned data set. The member name need not
be specified in the DD statement itself. NAME
must be provided to identify each input member.
Refer to Figure 94 on page 279 for the use of
NAME with NEW. This parameter is valid only
when. a member of a partitioned data se~ is being
processed. c

286 MVS/XA Data Administration: Utilities

Parameters

NEW

NEWI

aUTHOR

OUTTLR

Applicable
Control
statements

ADD
CHANGE
REPRO

NUMBER

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Parameters

NEW=POIPS
specifies the organization of the old master
data set and the organization of the updated
output. NEW should not be specified unless the
organization of the new master data set is
different from the organization of the old
master. NEW can only be coded on the first
control card. Refer to Figure 94 on page 279
for the use of NEW with NAME and MEMBER. These
values can be coded:

PO

PS

specifies that the old master data set is a
sequential data set, and that the updated
output is to become a member of a
partitioned data set.

specifies that the old master data set is a
partitioned data set, and that a member of
that data set is to be converted into a
sequential data set.

NEW1=cccccccc
specifies the first sequence number assigned to
new or replacement data, or specifies the first
sequence number assigned in a renumbering
operation. A value specified in NEWI must be
greater than a value specified in SEQI (unless
SEQI=ALL is specified, in which case this rule
does not apply).

OUTHDR=cccccccc
specifies the name of the user routine that
handles any user output (SYSUT2) header labels.
aUTHOR is valid only when a sequential data set
is being processed, but not when UPDATE=INPLACE
is coded.

OUTTLR=cccccccc
specifies the name of the user routine that
handles any user output (SYSUT2) trailer labels.
OUTTLR is valid only when a sequential data set
is being processed, but not when UPDATE=INPLACE
is coded.

IEBUPDTE Program 287

Parameters

SEQI

SEQ2

Applicable
Control
statements

NUMBER
DELETE

NUMBER
DELETE

Description of Parameters

SEQ1=cccccccclALL
specifies records to be renumbered, deleted, or
assigned sequence numbers. These values can be
coded:

cccccccc

ALL

specifies the sequence number of the first
logical record to be renumbered or deleted.
This value is not coded in a NUMBER detail
statement that is used with an ADD or REPL
fu~ction statement. When this value is
used in an insert operation, it specifies
the existing logical record after which an
insert is to be made. It must not equal
the number of a statement just replaced or
added. Refer to the INSERT parameter for
additional discussion.

specifies a renumbering operation for the
entire member or data set. ALL is used
only when a CHANGE function statement and a
NUMBER detail statement a~e used. ALL must
be coded if sequence numbers are to be
assigned to existing logical records having
blank sequence numbers. If All is not
coded, all existing logical records having
blank sequence numbers. copied directly to
the output master data set. When ALL is
coded: (1) SEQ2 need not be coded and (2)
one NUMBER detail statement is permitted
per function statement. Refer to the
INSERT parameter for additional discussion.

SEQ2=cccccccc
specifies the sequence number of the last
logical, record to be renumbered or deleted.
SEQ2 is required on all DELETE detail
statements. If only one record is to be
deleted, the SEQI and SEQ2 specifications must
be identical. SEQ2 is not coded in a NUMBER
detail statement that is used with an ADD or
REPL function statement.

288 MVS/XA Data Administration: Utilities

.{ '''',
~)

('
Parameters

SEQFLD

SOURCE

SS!

Applicable
Control
statements

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Parameters

SEQFLD=pd~l(gdl,dd~)
ddl specifies, in decimal, the starting column
(up to column 80) and length (8 or less) of
sequence numbers within existing logical records
and subsequent data statements. Note that the
starting column specification (dd) plus the
length (1) cannot exceed the logical record
length (LRECL) plus 1. Sequence numbers on
incoming data statements and existing logical
records must be padded to the left with enough
zeros to fill the length of the sequence field.

(ddl,ddll

SOURCE=2S:

may be used when an alphameric sequence
number generation is required. The first
gdl specifies the sequence number columns
as above. The second ddl specifies, in
decimal, the starting column (up to column
80) and length (8 or less) of the numeric
portion of the sequence numbers in
subsequent NUMBER statements. This
information is used to determine which
portion of the sequence number specified by
the NEWI parameter may be increased and
which portiones) should be copied to
generate a new sequence number for inserted
or renumbered records.

The numeric columns must fall within the
sequence number columns specified (or
defaulted) by the first Qg1.

Default: 738 is assumed, that is, an 8-byte
sequence number beginning in column 73.
Therefore, if existing logical records and
subsequent data statements have sequence
numbers in columns 73 through 80, this
keyword need not be coded.

specifies user modifications when the 2S: value is
0, or IBM modifications when the 2S: value is 1.
The source is recorded in the directory entry of
the output member. This parameter is valid only
when a member of a partitioned data set is being
processed. SOURCE has no effect when SSI is
speci fied.

SSI=hhhhhhhh
specifies eight hexadecimal characters of system
status information (S5I) to be placed in the
directory of the new master data set as four
packed decimal bytes of user data. This
parameter is valid only when a member of a
partitioned data set is being processed. S5!
overrides any LEVEL or SOURCE parameter given on
the same function statement.

IEBUPDTE Program 289

Parameters

TOTAL

UPDATE

Applicable
Control
statements

ADD
REPL
CHANGE
REPRO

CHANGE

Description of Parameters

TOTAL=(routinename.sizeJ
specifies that exits to a user's routine are to
be provided prior to writing each record. This
parameter is valid only when a sequential data
set is being processed. These values are coded:

routine~
specifies the name of the user's totaling
routine.

specifies the number of bytes required for
the user's data. The size should not
exceed 32K, nor be less than 2 bytes. In
addition, the keyword OPTCD=T must be
specified for the SYSUT2 (output) DD
statement. Refer to Appendix A, "Exit
Routine Linkage" on page 422 for a
discussion of linkage conventions for user
routines.

UPDATE=INPLACE
specifies that the old master data set is to be
updated within the space it actually occupies.
The old master data set must reside on a direct
access device. UPDATE=INPLACE is valid only
when coded with CHANGE. No other function
statements (ADD, REPL, REPRO) may be in the same
job step. See "Function Restrictions" on
page 278 for restrictions on using
UPDATE=INPLACE. See "LABEL Statement" on
page 282 for information on updating user input
header labels.

IEBUPDTE EXAMPLES

Operation

ADD and
REPL

The following examples illustrate some of the uses of IEBUPDTE.
Figure 96 can be used as a quick-reference guide to IEBUPDTE
examples. The numbers in the "Example" column point to examples
that follow. .

Data Set
Organization Device Comments Example

Pa rti ti oned Disk SYSUTl and SYSUT2 DD I
statements define the same
data set. A JCL procedure
residing in the control data
set is stored as a new
member of a procedure
library (PROCLIB). Another
JCL procedure, also in the
IEBUPDTE control data set,
is to replace an existing
member in PROCLIB.

Figure 96 (Part 1 of 2). IEBUPDTE Example Directory

290 MVS/XA Data Administration: Utilities

\~.7"'/

(

(/

Data set
Operation Organization Device Comments Example

CREATE a Pa rti ti oned Disk Input data is in the control 2
parti tioned data set. Output
library partitioned data set is to

contain three members.

CREATE a Parti tioned Disk Input from control data set 3
partitioned and from existing
data set partitioned data set.

Output partitioned data set
is to contain three members.

UPDATE Partitioned Disk Input data set is considered 4
INPLACE and to be the output data set as
renumber well; therefore, no SYSUT2

DD statement is required.

CREATE and Pa rti ti oned, Disk and Sequential master is created 5
DELETE Sequential Tape from partitioned disk input.

Selected records are to be
deleted. Blocked output.

CREATE, Sequential, Tape and Partitioned data set is 6
DELETE, and Partitioned Disk created from sequential
UPDATE input. Records are to be

deleted and updated.
Sequence numbers in columns
other than 73 through 80.
One member is placed in the
output data set.

INSERT Parti tioned Disk Block of ldgical records is 7
inserted into an existing
member. SYSUTI and SYSUT2
DD statements define the
same data set.

INSERT Parti tioned Disk Two blocks of logical 8
records are to be inserted
into an existing member.
SYSUTI and SYSUT2 DD
statements define the same
data set. Sequence numbers
are alphameric.

CREATE Sequential Card Sequential dataset with 9
Reader and user labels is to be created
Disk from card input.

COpy Sequential Disk Sequential data set is 10
copied from one direct
access volume to another;
user labels can be processed
by exit routines.

CREATE Parti tioned Disk Create a new generation. 11

Figure 96 (Part 2 of 2). IEBUPDTE Example Directory

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

IEBUPDTE Program 291

IEBUPDTE EXAMPLE 1

In this example, two procedures are to be placed in the
cataloged procedure library, SYSI.PROClIB. The example assumes
that the two procedures can be accommodated within the space
originally allocated to the procedure library.

IIUPDATE JOB
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTI DD DSNAME=SYSI.PROClIB,DISP=OlD
IISYSUT2 DD DSNAME=SYSl.PROClIB,DISP=OlD
IISYSIN DD DATA
.1 ADD lIST=All,NAME=ERASE,lEVEl=Ol,SOURCE=O
.1 NUMBER NEWl=lO,INCR=lO
IIERASE EXEC PGM=IEBUPDTE
IIDDI DD UNIT=disk,DISP=(OlD,KEEP),VOlUME=SER=llllll
IISYSPRINT DD SYSOUT=A
.1 REPl lIST=All,NAME=lISTPROC
.1 NUMBER NEWI=IO,INCR=lO
IllIST EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUTI DD DISP=SHR,
II DSN=SYSl.PROClIB(8MEMBER)
IISYSUT2 DD SYSOUT=A,
II DCB=(RECFM=F,BlKSIZE=80)
IISYSIN DD DATA
(Data statements)
.I ENDUP
1*

The control statements are discussed below:

• SYSUTI and SYSUT2 DD define the SYSl.PROClIB data set, which
is assumed to be cataloged.

• SYSIN DD defines·the control data set, which follows in the
input stream. The data set contains the utility control
statements and the data to be placed in the procedure
library.

• The ADD function statement indicates that records (data
statements) in the control data set are to be placed in the
output. The newly created procedure, ERASE, is listed in
the message data set.

The ADD function will not take place if a member named ERASE
already exists in the new master data set referenced by
SYSUT2.

• The first NUMBER detail statement indicates that the new and
replacement procedures are to be assigned sequence numbers.
The first record of each procedure is assigned sequence
number 10; the next record is assigned sequence number 20,
and so on.

• The REPl function statement indicates that records (data
statements) in the control data set are to replace an
already existing member. The member is stored in the new
master data set referenced by SYSUT2. The REPl function
will take place only if a member named lISTPROC already
exists in the old master data set referenced by SYSUTI ..

• The ERASE EXEC statement marks the beginning of the first
new procedure.

• The REPl function statement indicates that records (data
statements) in the control data set are to replace an
already existing member. The member is stored in the new

292 MVS/XA Data Administration: Utilities

(

IEBUPDTE EXAMPLE 2

•

•

•

master data set referenced by SYSUT2. The REPL function
will only take place if a member named LISTPROC already
exists in the old master data set referenced by SYSUTI.

The second NUMBER detail statement is a duplicate of the
first.

The LIST EXEC statement marks the beginning of the second
new procedure.

The ENDUP statement marks the end of the SYSIN DD input
data.

In this example, a three-member partitioned library is created.
The input data is contained solely in the control data set.

//UPDATE
//
//SYSPRINT
//SYSUT2
//
//
//SYSIN
./

JOB
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=OUTLIB,UNIT=disk,DISP=(NEW,KEEP),

VOLUME=SER=lllll2,SPACE=(TRK,(SO"lO)),
DCB=(RECFM=F,LRECL=80,BLKSIZE=80)

DD DATA
ADD NAME=MEMBl,LEVEL=OO,SOURCE=O,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

ADD NAME=MEMB2,LEVEL=00,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

./ ADD NAME=MEMB3,LEVEL=OO,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

./ ENDUP
/*

The control statements are discussed below:

• SYSUT2 DD defines the new partitioned master, OUTLIB.
Enough space is allocated to allow for subsequent
modifications without creating a new master data set.

• SYSIN DD defines the control data set, which follows in the
input stream. The data set contains the utility control
statements and the data to be placed as three members in the
output partitioned data set.

• The ADD function statements indicate that subsequent data
statements are to be placed as members in the output
partitioned data set. Each ADD function statement specifies
a member name for subsequent data and indicates that the
member and control statement is listed in the message data
set.

• The data statements contain the data to be placed in each
output partitioned data set.

• ENDUP signals the end of control data set input.

Because sequence numbers (other than blank numbers) are included
within the data statements, no NUMBER detail statements are
included in the example.

IEBUPDTE Program 293

IEBUPDTE EXAMPLE 3

In this example, a three-member partitioned data set (NEWMClIB)
is created. The data set will contain:

• Two members (ATTACH and DETACH) copied from an existing
partitioned data set (SYSl.MAClIB).

• A new member (EXIT), which is contained in the control data
set.

//UPDATE JOB
// EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD
//SYSUTl DD
//SYSUT2 DD
//
//
//SYSIN
./
./
./
./

DD
REPRO
REPRO

ADD
NUMBER

SYSOUT=A
DSNAME=SYSl.MAClIB,DISP=SHR,UNIT=disk
DSNAME=NEWMClIB,VOlUME=SER=111112,UNIT=disk,
DISP=(NEW,KEEP),SPACE=(TRK,(lOO"lO»,
DCB=(RECFM=F,lRECl=80,BlKSIZE=80)
DATA .

NAME=ATTACH,lEVEl=OO,SOURCE=l,lIST=All
NAME=DETACH,lEVEl=OO,SOURCE=l,lIST=All
NAME=EXIT,lEVEl=OO,SOURCE=l,lIST=All
NEWl=lO .. }NCR=l 00

(Data records for EXIT member)

./ ENDUP
/*

The control statements are discussed below:

• SYSUTI DD defines the input partitioned data set
SYSl.MAClIB, which is assumed to be cataloged.

• SYSUT2 DD defines the output partitioned data set NEWMClIB.
Enough space is allocated to allow for subsequent
modifications without creating a new master data set.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The REPRO function statements identify the existing input
members (ATTACH and DETACH) to be copied onto the output
data set. These members are also listed in the message data
set (because lIST=All is specified).

• The ADD function statement indicates that records
(subsequent data statements) are to be placed as members in
the output partitioned data set, called EXIT. The data
statements are to be listed in the message data set.

• The NUMBER detail statement assigns sequence numbers to the
data statements. (The data statements contain blank
sequence numbers in columns 73 through 80.) The first
record of the output member is assigned sequence number 10i
subsequent record numbers are increased by 100.

• ENDUP signals the end of SYSIN data.

Note that the three named input members (ATTACH, DETACH, and
EXIT) do not have to be specified in the order of their
collating sequence in the old master.

294 MVS/XA Data Administration: Utilities

/('-~\

\ .
,,,~

..

IEBUPDTE EXAMPLE 4

In this example, a member (MODMEMB) is updated within the space
it actually occupies. Two existing logical records are
replaced, and the entire member is renumbered.

//UPDATE JOB
//
//SYSPRINT
//SYSUTl

EXEC PGM=IEBUPDTE,PARM=MOD
DD SYSOUT=A
DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),

//
//SYSIN DD
./ CHANGE
,/ NUMBER

VOLUME=SER=111112

* NAME=MODMEMB,LIST=ALL,UPDATE=INPLACE
SEQl=ALL,NEWl=10,INCR=5

(Data statement 1, sequence number 00000020)
(Data statement 2, sequence number 00000035)

The control statements are discussed below:

• SYSUTI DD defines the partitioned data set that is updated
in place. (Note that the member name need not be specified
in the DD statement.)

• SYSIN DD defines the control data set, which follows in the
input stream.

• The CHANGE function statement indicates the name of the
member to be updated (MODMEMB) and specifies the
UPDATE=INPLACE operation. The entire member is listed in
the message data set. Note that, as renumbering is being
done, and since UPDATE=INPLACE was specified, the listing
would have been provided even if the LIST=ALL parameter had
not been specified. See the LIST parameter for more
information.

• The NUMBER detail statement indicates that the entire member
is to be renumbered, and specifies the first sequence number
to be assigned and the increment value (5) for successive
sequence numbers.

• The data statements replace existing logical records having
sequence numbers of 20 and 35.

IEBUPDTE Program 295

IEBUPDTE EXAMPLE 5

In this example, a new master sequential data set is created f'\
from partitioned input and selected logical records are deleted. \~

IIUPDATE
II
IISYSPRINT
IISYSUTl
II
IISYSUT2
II
II

JOB
EXEC PGM=IEBUPDTE,PARM=MOD
DD SYSOUT=A
DD DSNAME=PARTDS,UNIT=disk,DISP=(OLD,KEEP),

VOLUME=SER=111112
DD DSNAME=SEQDS,UNIT=tape,LABEL=(2,SL),

DISP=(,KEEP),VOLUME=SER=001234,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

IISYSIN DD
.1 CHANGE

* .
NEW=PS,NAME=OLDMEMBl

(Data statement 1, sequence number 00000123)

.1 DELETE SEQl=223,SEQ2=246

(Data statement 2, sequence number 00000224)

The control statements are discussed below:

• SYSUT1 DD defines the input partitioned data set PARTDS,
which resides on a disk volume.

•

•

SYSUT2 DD defines the output sequential data set, SEQDS .
The data set is written as the second data set on a tape
volume.

SYSIN DD defines the control data set, which follows in the
input stream.

• CHANGE identifies the input member (OLDMEMBl) and indicates
that the output is a sequential data set (NEW=PS).

• The first data statement replaces the logical record whose
sequence number is identical to the sequence number in the
data statement (00000123). If no such logical record
exists, the data statement is incorporated in the proper
sequence within the output data set.

• The DELETE detail statement deletes logical records having
sequence numbers from 223 through 246, inclusive.

• The second data statement is inserted in the proper sequence
in the output data set, because no logical record with the
sequence number 224 exists (it was deleted in the previous
statement) .

Note that only one member can be used as input when converting
to sequential organization.

(.... ")
.,/

296 MVS/XA Data Administration: Utilities

IEBUPDTE EXAMPLE &

In this example, a member of a partitioned data set is created
from sequential input and existing logical records are updated.

72
//UPDATE JOB
// EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSDUT=A
//SYSUTI DD DSNAME=OLDSEQDS,UNIT=tape,
// DISP=(OLD,KEEP),VOLUME=SER=001234
//SYSUT2 DD DSNAME=NENPART,UNIT=disk,DISP=(,KEEP),
// VOLUME=SER=111112,SPACE=(TRK,(10,5,5)),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD 3(;

./ CHANGE NEN=PO,MEMBER=PARMEMl,LEVEL=Ol, C

./ SEQFLD=605,COLUMN=40,SOURCE=0

(Data statement 1, sequence number 00020)

./ DELETE SEQl=220,SEQ2=250

(Data statement 2, sequence number 00230)
(Data statement 3, sequence number 00260)

./ ALIAS NAME=MEMBI
/3(;

The control statements are discussed below:

•

•

SYSUTI DD defines the input sequential data set (OLDSEQDS).
The data set resides on a tape volume.

SYSUT2 DD defines the output partitioned data set (NENPART).
Enough space is allocated to provide for members that might
be added in the future.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The CHANGE function statement identifies the output member
(PARMEMl) and indicates that a conversion from sequential
input to partitioned output is made. The SEQFLD parameter
indicates that a 5-byte sequence number is located in
columns 60 through 64 of each data statement. The COLUMN=40
parameter specifies the starting column of a field (within
subsequent data statements) from which replacement
information is obtained. SOURCE=O indicates that the
replacement information is provided by you.

• The first data statement is used as replacement data.
Columns 40 through 80 of the statement replace columns 40
through 80 of the corresponding logical record. If no such
logical record exists, the entire card image is inserted in
the output data set member.

• The DELETE detail statement deletes all of the logical
records having sequence numbers from 220 through 250.

• The second data statement, whose sequence number falls
within the range specified in the DELETE detail statement
above, is incorporated in its entirety in the output data
set member.

• The third data statement, which is beyond the range of the
DELETE detail statement, is treated in the same manner as
the first data statement.

IEBUPDTE Program 297

IEBUPDTE EXAMPLE 7

ALIAS assigns the alias name MEMBI to the output data set
member PARf1EMl.

In this example, a block of three logical records is inserted
into an existing member, and the updated member is placed in the
existing partitioned data set.

//UPDATE
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//

JOB
EXEC PGM=IEBUPDTE,PARM=MOD
DD SYSOUT=A
DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),

VOLUME=SER=111112
DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),

VOLUME=SER=111112
//SYSIN DD * ./ CHANGE NAME=RENU~,LIST=ALL,LEVEL=Ol,SOURCE=O
./ NUMBER SEQl=15,NEWl=20,INCR=5,INSERT=YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

The control statements are discussed below:

• SYSUTI and SYSUT2 DD define the partitioned data set (PDS).

• SYSIN DD defines the control data set, which follows in the
input stream.

• The CHANGE function statement identifies the input member
RENUM. The entire member is listed in the message data set.

• The NUMBER detail statement specif~es the insert operation
and controls the renumbering operation as described below.

• The data statements are the logical records to be inserted.
(Sequence numbers are assigned when the data statements are
inserted.)

In this example, the existing logical records have sequence
numbers 10, 15, 20, 25, and 30. Sequence numbers are assigned
by the NUMBER detail statement, as follows:

1. Data statement 1 is assigned sequence number 20 (NEWl=20)
and inserted after existing logical record 15 (SEQl=15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and
30 (INCR=5) and are inserted after data statement 1.

3. Existing logical records 20, 25, and 30 are assigned
sequence numbers 35, 40, and 45, respectively.

Figure 97 shows existing sequence numbers, data statements
inserted, and the resultant new sequence numbers.

298 MVS/XA Data Administration: Utilities

IEBUPDTE EXAMPLE 8

Sequence Numbers and
Data Statements
Inserted

10
15
Data statement 1
Data statement 2
Data statement 3
20
25
30

New Sequence Numbers

10
15
20
25
30
35
40
45

Figure 97. Example of Reordered Sequence Numbers

In this example, two blocks (three logical records per block)
are inserted into an existing member, and the member is placed
in the existing partitioned data set. A portion of the output
member is also renumbered.

//UPDATE JOB
//
//SYSPRINT
//SYSUTl

EXEC PGM=IEBUPDTE,PARM=MOD
DD SYSOUT=A

72

//
//SYSUT2

DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
VOLUME=SER=111112

//
DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),

VOLUME=SER=111112
//SYSIN DD
./ CHANGE
./
./

(Data
(Data
(Data

./

(Data
(Data
(Data
(Data

/3E

NUMBER

statement
statement
statement

NUMBER

statement
statement
statement
statement

3E
NAME=RENUM,LIST=ALL,LEVEL=Ol,SOURCE=O,

SEQFLD=(765,783)
SEQl=AA015,NEWl=AA020,INCR=5,INSERT=YES

1)
2)
3)

SEQl=AA030,INSERT=YES

4)
5)
6)
7, sequence number AA035)

The control statements are discussed below:

• SYSUTI and SYSUT2 DD define the partitioned data set PDS.

C

• SYSIN DD defines the control data set, which follows in the
input stream.

• The CHANGE function statement identifies the input member
RENUM. The entire member is listed in the message data set.

• The NUMBER detail statements specify the insert operations
(INSERT=YES) and control the renumbering operation as
described below.

IEBUPDTE Program 299

• Data statements 1, 2, 3, and 4, 5, 6 are the blocks of
logical records to be inserted. Because they contain blank
sequence numbers. sequence numbers are assigned when the
data statements are inserted.

• Data statement 7, because it contains a sequence number,
terminates the insert operation. The sequence number is
identical to the number on the next record in the old master
data set; consequently, data statement 7 will replace the
equally numbered old master record in the output data set.

The existing logical records in this example have sequence
numbers AAOIO, AA015. AA020, AA025, AA030. AA035, AA040. AA045,
AAOSO, BBOIO, and BB015. The insert and renumbering operations
are performed as follows:

1. Data statement 1 is assigned sequence number AA020
(NEWl=AA020) and inserted after existing logical record
AA015 (SEQl=AAOlS).

2. Data statements 2 and 3 are assigned sequence numbers AA02S
and AA030 (INCR=S) and are inserted after data statement 1.

3. Existing logical records AA020, AA02S, and AA030 are
assigned sequence numbers AA035, AA040, and AA04S.
respectively.

4. Data statement 4 is assigned sequence number AAOSO and
inserted. (The SEQl=AA030 specification in the second
NUMBER statement places this data statement after existing
logical record AA030, which has become logical record
AA045.)

5. Data statements 5 and 6 are assigned sequence numbers AA055
and AA060 and are inserted after data statement 4.

6. Existing logical record AA035 is replaced by data statement
7, which is assigned sequence number AA065. ,)

7. The remaining logical records in the member are renumbered
until logical record BBOIO is encountered. Because this
record has a sequence number higher than the next number to
be assigned, the renumbering operation is terminated.

300 MVS/XA Data Administration: Utilities

(-

(

Figure 98 shows existing sequence numbers, data statements
inserted, and the new sequence numbers. Note that the sequence
numbers are alphameric.

Sequence Numbers and
Data statements
Inserted

AAOIO
AA015
Data statement 1
Data statement 2
Data statement 3
AA020
AA025
AA030
Data statement 4
Data statement 5
Data statement 6
Data statement 7
AA035
AA040
AA045
AA050
BBOIO
BB015

New Sequence Numbers

AAOIO
AA015
AA020
AA025
AA030
AA035
AA040
AA045
AA050
AA055
AA060
AA065
AA065
AA070
AA070
AA075
BBOIO
BB015

Figure 98. Reordered Sequence Numbers

IEBUPDTE Program 301

IEBUPDTE EXAMPLE 9

In this example, IEBUPDTE is used to create a sequential data (~'\
set from card input. User header and trailer labels, also from \'~J
the input stream, are placed on this sequential data set.

IILABEL
IICREATION
IISYSPRINT
IISYSUT2
II
II

JOB
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=LABEL,VOLUME=SER=123456,UNIT=disk,

DISP=(NEW,KEEP),LABEL=(,SUL),
SPACE=(TRK,(15,3))

DD * IISYSIN
.1 LABEL

(First header label)

(Last header label)

.I ADD LIST=ALL,OUTHDR=ROUTINEl,OUTTLR=ROUTINE2

(First input data record)

(Last input data record)

.I LABEL

(First trailer label)

CLast trailer label)

.I ENDUP
1*

The control statements are discussed below:

• SYSUT2 DD defines and allocates space for the output
sequential data set, called LABEL, which resides on a disk
volume.

• SYSIN DD defines the control data set, which follows in the
input stream. (This control data set includes the
sequential input data set and the user labels, which are on
cards.)

• The first LABEL statement identifies the SO-byte card images
in the input stream which will become user header labels.
(They can be modified by the user's header-label processing
routine specified on the ADD function statement.)

• The ADD function statement indicates that the data
statements that follow are placed in the output data set.
The newly created data set is listed in the message data
set. User output header and output trailer routines are to
be given control prior to the writing of header and trailer
labels.

• The second LABEL statement identifies the SO-byte card
images in the input stream which will become user trailer
labels. (They can be modified by the user's trailer-label
processing routine specified on the ADD function statement.)

• ENDUP signals the end of the control data set.

302 MVS/XA Data Administration: Utilities

IEBUPDTE EXAMPLE 10

(

(

IEBUPDTE EXAMPLE 11

In this example, IEBUPDTE is used to copy a sequential data set
from one DASD volume to another. User labels are processed by
user exit routines.

//LABElS
//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//
//
//SYSIN
//
/*

JOB
EXEC PGM=IEBUPDTE,PARM=(MOD"MMMMMM)
DD SYSOUT=A
DD DSNAME=OlDMAST,DISP=OlD,lABEl=(,SUl),

VOLUME=SER=llllll,UNIT=disk
DD DSNAME=NEWMAST,DISP=(NEW,KEEP),lABEl=(,SUl),

UNIT=disk,VOlUME=SER=XB182,
SPACE=(TRK,(5,lO»

DD DSNAME=INPUT,DISP=OlD,lABEl=(,SUL),
VOlUME=SER=222222,UNIT=disk

The control statements are discussed below:

• SYSUTl DD defines the input sequential data set, called
OlDMAST, which resides on a disk volume.

• SYSUT2 DD defines the output sequential data set, called
NEWMAST, which will reside on a disk volume.

• SYSIN DD defines the control data set. The contents of this
disk-resident data set in this example are:

./
,/
./

REPRO

ENDUP

LIST=AlL,INHDR=SSSSSS,INTLR=TTTTTT,
OUTHDR=XXXXXX,OUTTlR=YYYYYY

C

• The REPRO function statement indicates that the existing
input sequential data set is copied to the output data set.
This output data set is listed on the message data set. The
user's label processing routines are to be given control
when header or trailer labels are encountered on either the
input or the output data set.

• ENDUP indicates the end of the control data set.

In this example, a partitioned generation data set consisting of
three members is used as source data in the creation of a new
generation data set. IEBUPDTE is also used to add a fourth
member to the three source members and to number the new member.
The resultant data set is cataloged as a new generation data
set.

IEBUPDTE Program 303

//NEWGDS
//
//SYSPRINT
//SYSUTl
//SYSUT2
//
//
//SYSIN
,/ REPRO
,/ REPRO
,/ REPRO
,/ ADD
,/ NUMBER

JOB
EXEC PGM=IEBUPDTE,PARM=MOD
DD SYSOUT=A
DD DSNAME=A.B.C(O),DISP=OlD
DD DSNAME=A.B.C(+l),DISP=(,CATlG),UNIT=disk,

VOlUME=SER=llllll,SPACE=(TRK,(lOO,lO,lO»,
DCB=(RECFM=FB,lRECl=80,BlKSIZE=800)

DD DATA
NAME=MEMl,lEVEl=OO,SOURCE=O,lIST=All
NAME=MEM2,lEVEl=OO,SOURCE=0,lIST=All
NAME=MEM3,lEVEl=00,SOURCE=0,lIST=All
NAME=MEM4,lEVEl=OO,SOURCE=0,lIST=All
NEWl=lO,INCR=5

(data cards comprising MEM4)

./ ENDUP
/*

The control statements are discussed below:

• SYSUTl DD defines the latest generation data set, which is
used as source data.

• SYSUT2 DD defines the new generation data set, which is
created from the source generation data set and from an
additional member included as input and data.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The REPRO function statements reproduce the named source
members in the output generation data set.

• The ADD function statement specifies that the data cards
following the input stream be included as MEM4.

• The NUMBER detail statement indicates that the new member is
to have sequence numbers assigned in columns 73 through 80.
The first record is assigned sequence number 10. The
sequence number of each successive record is increased by 5.

• ENDUP signals the end of input card data.

This example assumes that a model data set control block (DSCB)
exists on the catalog volume on which the generation data group
index was built.

304 MVS/XA Data Administration I Utilities

(.. "
.. J

IEHATLAS PROGIl8M

INPUT AND OUTPUT

IEHATLAS is a system utility used with direct access devices
when a defective track is indicated by a data check or missing
address marker condition.

IEHATLAS can be used to locate and assign an alternate track to
replace the defective track. Usable data records on the
defective track are retrieved and transferred to the alternate
track. A replacement for the bad record is created from data
supplied by the user and placed on the alternate track.

In a simple application, IEHATLAS is used as a separate job
after an abnormal termination of a problem program. Input data
necessary for execution of IEHATLAS--the address of the
defective track and replacement records--may be obtained from
the dump and from backup data.

A more complex use of IEHATLAS may involve the preparation of a
user's SYNAD routine, which reconstructs the necessary input
data and invokes IEHATLAS dynamically.

When IEHATLAS is invoked, it attempts to write on the defective
track. If the subsequent read-back check indicates that the
attempt was successful, a message is issued on the SYSOUT
device. If not, a supervisor call routine (SVC 86) is entered
automatically.

The SVC routine locates and assigns an alternate track. (If a
defective track already has an alternate and an error occurs on
that alternate, the SVC routine assigns the next available
alternate.) All of the valid data records on the defective
track are retrieved and transferred to the alternate track. The
input record is written on the alternate track in the correct
position to recover from the previous error.

When a READ error occurs and a complete recovery is desired, see
DFDSS: User's Guide and Reference for information on how to
produce a listing of error data on a track. Using this data,
the input data record for IEHATLAS can be created. The replace
function can then be performed by executing IEHATLAS.

IEHATLAS supports all current DASD, as listed under "DASD and
Tape Device Support" on page 3, except the MSS staging packs and
virtual volumes.

IEHATLAS uses the following input:

• A description of the count field of the invalid record on a
defective track, specifying the cylinder, track, record,
key, and data length (in hexadecimal notation).

• An indication if WRITE special is needed.

• A valid copy (in hexadecimal notation) of the bad record.

IEHATLAS produces as output:

• A message, issued on the SYSOUT device, containing the
user's control information, the input record, and
diagnostics.

• The input record, written on either the original (defective)
track or on an alternate track containing the usable data
taken from the defective track.

IEHATLAS Program 305

RETURN CODES

• The return parameter list (specifying a maximum of three
error record numbers in hexadecimal when an unrecoverable
error occurs).

IEHATLAS returns a return code in register 15 when processing
stops. See Figure 99.

Codes Meaning

00 (00 hex) Successful completion; IEHATLAS has assigned the
data to an alternate track.

04 (04) The device does not have software-assignable
alternate tracks.

08 (08) All the alternate tracks for the device have been
assigned.

12 (OC) The requested main storage space is not available.

16 (10) There was an 1/0 error in the alternate track
assignment after N attempts at assignment (where
N=lOY. of the assignable alternate tracks for this
device) .

20 (14) The error is a condition other than a data check or
missing address marker.

24 (18) There is an error in the Format 4 DSCB that
prevents IEHATLAS from reading it.

28 (lC)

32 (20)

36 (24)

40 (28)

The user-specified error record is the Format 4
DSCB, which IEHATLAS cannot handle because the
alternate track information is unreliable.

IEHATLAS cannot handle the error found in the count
field of the last record on the track.

There are errors in the home address or in record
zero.

IEHATLAS found one or more errors in record(s) and
assigned an alternate track:

1. There was an error on an end-of-file record,

2. IEHATLAS encountered an error in the count
field,

3. There were errors in more than three count
fields.

48 (30) IEHATLAS found no errors on the track specified and
so assigned no alternate track.

52 (34) Because of an 1/0 error, IEHATLAS cannot reexecute
the user's channel program successfully.

56 (38) The system does not support track overflow.

60 (3C) The track address provided does not belong to the
indicated data set.

Figure 99. IEHATLAS Return Codes

306 MVS/XA Data Administration: Utilities

/

(

(

CONTROL

IEHATLAS is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke IEHATLAS and to define the data sets used and
produced by IEHATLAS.

A utility control statement is used to specify whether the bad
record is part of the volume table of contents. It is also used
to indicate whether or not the WRITE special CCW command is to
be used for track overflow records.

JOB CONTROL STATEMENTS

Figure 100 shows the job control statements for IEHATLAS.

Statement

JOB

EXEC

SVSPRINT DD

SVSUTl DD

SVSIN DD

Use

Initiates the job.

Specifies the program name (PGM=IEHATLAS) or, if
the job control statements reside in a procedure
library, the procedure name.

Defines a sequential data set that contains the
output messages issued by IEHATLAS.

Defines the data set that contains the bad
record.

Defines the control data set, which contains the
utility control statement and a copy of the
corrected version of the bad record.

Figure 100. Job Control Statements for IEHATLAS

The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified.

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

DISP=SHR must not be coded on the SYSUTI DD statement.

IEHATLAS Program 307

UTILITY CONTROL STATEMENTS

Figure 101 shows the utility control statements for IEHATLAS. /[\

TRACK Statement

VTOC Statement

Statement Use

TRACK Specifies that an alternate track is to be
assigned for a track that does not contain VTaC
records.

VTOC Specifies that an alternate track is to be
assigned for a track that contains VTac records.

Figure 101. Utility Control Statements for IEHATLAS

Input data (consisting of the hexadecimal replacement record)
begins in column 1 immediately following the utility control
data. Input data may continue through column 80. As many cards
as necessary may be used to contain the replacement record. All
columns (1 through 80) are used on the additional cards.

IEHATLAS is designed to replace an error record with a copy of
that record. It cannot be used to replace a record with another
of a different key and/or data length.

An end-of-file record cannot be changed; therefore, input for
key and/or data fields is ignored.

Continuation requirements for the utility control statements are
described in "Continuing Utility Control Statements" on page 5.

The TRACK statement is used to identify a defective track that
does not contain VTaC records (that is, the defective record is
not included in the ~olume table of contents).

The TRACK statement must not begin in column 1.

The format of the TRACK statement is:

TRACK=bbbbcccchhhhrrkkdddd[S]

The VTOC statement is used to identify a defective track that
contains VTaC records (that is, the defective record is included
in the volume table of contents).

The VTDC statement must not begin in column 1.

The format of the VTaC statement is:

VTOC=bbbbcccchhhhrrkkdddd

308 MVS/XA Data Administration: Utilities

'\..../

()

Applicable
Control

Parameters statements Description of Parameters

bbbb TRACK ~
VTDC This number must be all zeros.

cccc TRACK ~
VTDC is the hexadecimal number of the cylinder in

which the defective track was found.

dddd TRACK rukid
VTDC is the hexadecimal data length of the bad

record. (When a WRITE special command is used,
dddd is the length of the record segment.) dds!Q
must not exceed the data length specified in the
count field of the defective record.

hhhh TRACK hhhh
VTDC is the defective track number, in hexadecimal.

rrkk TRACK .r:r.JsJs.
VTDC is the record number and key length for the bad

record, in hexadecimal. kk must not exceed the
key length specified in the count field of the
defective record.

S TRACK S
is an optional byte of EBCDIC information that
specifies that the WRITE special command is to
be used (when the last record on the track
overflows and must be completed elsewhere).

IEHATLAS EXAMPLES

The following examples illustrate some of the uses of IEHATLAS.
Figure 102 can be used as a quick-reference guide to IEHATLAS
examples. The numbers in the "Example" column point to examples
that follow.

Operation Comments Example

Get Alternate Write special is included because 1
Track of a track overflow condition.

Get Alternate Alternate track assigned for a bad 2
Track end-of-file record.

Get Alternate Alternate track assigned for a bad 3
Track VTac record.

Get Alternate Replace defective record zero. 4
Track

Figure 102. IEHATLAS Example Directory

Examples that use disk in place of actual device numbers must be
changed before use. See "DASD and Tape Device Support" on
page 3 for valid device number notation.

IEHATLAS Program 309

IEHATLAS EXAMPLE 1

IEHATLAS EXAMPLE 2

In this example, the data set defined by SYSUTI contains the bad [\
record. An alternate track on the specified unit and volume is \..)
assigned to replace the defective track. Valid records from the" .
defective track are copied to the alternate track and the
replacement record (from SYSIN) is also written to the alternate
track.

//JOBATLAS JOB
//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
//SYSUTI DD DSNAME=NEWSET,UNIT=disk,VOLUME=SER=333333,
// DISP=OLD
//SYSIN DD *

TRACK=00000002000422020006S
F3FIC2C2FOFOOOOO

The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages
can be written (in this case, the system printer).

• SYSUTI DD defines the data set (NEWSET) that contains the
bad record.

• SYSIN DD defines the control data set, which follows in the
input stream.

• TRACK specifies the cylinder and track number for the
defective track, and the record number, key length, and data
length of the bad record. In this example, the input record ',
is to be placed on cylinder 2 (cccc=0002), track 4
(hhhh=0004), record 22 (rr=22)j it has a key length of 2
(kk=02) with a logical record (data) length of 6
(dddd=0006). The WRITE special (S) character is used
because there is a track overflow condition.

In this example, an alternate track is assigned for a bad
end-of-file record.

// JOBATLAS JOB
//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
//SYSUTI DD DSNAME=EOFSET,UNIT=disk,VOLUME=SER=333333,
// DISP=OLD
//SYSIN DD *

TRACK=OOOOOOOI000003000000

The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages
can be written (in this case, the system printer).

•

•

SYSUTI DD defines the data set (EDFSET) that contains the
bad record.

SYSIN DD defines the control data set, which follows in the
input stream.

c
310 MVS/XA Data Administration: Utilities

(

(

IEHATLAS EXAMPLE 3

//JOBATLAS JOB

• TRACK defines an end-of-file record on cylinder 1, track 0,
record 3. Input data other than the utility control
statement is not required.

Note that end-of-file is always indicated on DASD by the kk and
dddd fields of a record's count field being zeros.

In this example, an alternate track is assigned for a bad volume
table of contents record.

//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
//SYSUTI DD UNIT=disk,VOLUME=SER=338000,DISP=OLD
//SYSIN DD *

VTOC=000000000005022C0060
D6C2DIC5C3E340
40404040FIF3F3F8FOFOF000014401360000000100
000040008000000FOOOF00033333333333333333310DDDOOOOOIOOOOOAOOOOOOOAOOOOOOOOOOOOOO
00
/*

IEHATLAS EXAMPLE 4

The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages
can be written (in this case, the system printer).

• SYSUTI DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which follows in the
input stream.

• VTOC defines the location of the bad VTOC record as track 5
of cylinder O. The record number is 2 with a key length of
44 (hexadecimal '2C'). Data length of the bad record is 96.

The input record in this example is a typical hexadecimal record
as defined by the VTOC statement. The input record contains 140
bytes (data length = 96, key length = 44).

In this example, the replacement record is record O.

//JOBATLAS JOB
//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
//SYSUTI DD DSNAME=NEWSET,UNIT=disk,VOLUME=SER=333333,
// DISP=OLD
//SYSIN DD *

TRACK=00000002000400000008
0000000000000000

IEHATLAS Program 311

The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages
can be written (in this case, the system printer).

• SYSUTl DD defines the data set (NEWSET) that contains the
bad record.

• SYSIN DD defines the control data set, which follows in the
input stream.

• TRACK specifies the cylinder and track number for the
defective track, and the record number, key length, and data
length of the bad record. In this example, the input record
is to be placed on cylinder 2, track 4, record OJ it has a
key length of 0 with a data length of 8.

• The input record in this example is a typical hexadecimal
record as defined by a TRACK statement. The input record
contains eight bytes (data length=8, key length=O).

312 MVS/XA Data Administrationl Utilities

1 .. (···"'.
11

~

IEHINITT PROGRAM

(

IEHINITT is a system utility used to place IBM volume label sets
written in EBCDIC (BCD for 7-track), or ISO/ANSI/FIPS volume
label sets written in ISCII/ASCII (International Standard Code
for Information Interchange/American Standard Code for
Information Interchange) onto any number of magnetic tapes
mounted on one or more tape units. Because IEHINITT can
overwrite previously labeled tapes regardless of expiration date
and security protection, IEHINITT should be moved into an
authorized password-protected private library and deleted from
SYSI. LINKLIB.

Each volume label set created by the program contains:

• A standard volume label with a user-specified serial number,
owner identification, and a blank security byte.

•

ISO/ANSI/FIPS labels may contain an access code other than
an ISCII/ASCII space by using the ACCESS keyword. The
format of the ISO/ANSI/FIPS label is constructed for Version
3 of the label standard.

A complete description of IBM standard volume labels and
ISO/ANSI/FIPS Version 3 volume labels can be found in
Magnetic Tape Labels and File Structure Administration.

An aO-byte dummy header label. For IBM standard labels,
this record consists of HDRI followed by zeros. For
ISQ/ANSI/FIPS labels, this record consists of HDRl followed
by zeros in the remaining positions, with the exception of

Position 54, which will contain an ISCII/ASCII space

A III in the file section, file sequence, and generation
number fields

A leading space in the creation and expiration date
fields;

A system code of IIBMZLAI, followed by 13 spaces, and
which identifies the operating system creating the
label.

• A tapemark.

When a labeled tape is subsequently used as a receiving volume:

1. The tapemark created by IEHINITT is overwritten.

2. The dummy HDRI record created by IEHINITT is filled in with
operating system data and device-dependent information.

3. A HDR2 record, containing data set characteristics, is
created.

4. User header labels are written if exits to use~ label
routines are provided.

5. A tapemark is written.

6. Data is placed on the receiving volume.

IEHINITT Program 313

Note for ISO/ANSI/FIPS Tape labels

There is no accessibility code checking done during IEHINITT
processing, other than checking for uppercase A through Z in the
ACCESS keyword. Therefore, it is possible to create a tape with
a volume access code that the receiving operating system will
not recognize. In such a situation, the tape would have to be
reinitialized to contain an acceptable access code.

If an ISO/ANSI/FIPS volume is initialized only with IEHINITT,
the labels produced do not frame an empty (null) data set as
required for interchange. In order to produce label symmetry
described by the ISO/ANSI/FIPS standards, at least a minimal
open/close sequence must be executed. For example, a volume
initialized previously with IEHINITT will result in label
symmetry if the data set utility IEBGENER is used before the
volume leaves the system for interchange, as follows:

//STEP1
//SYSUTl
//SYSUT2
//
//SYSIN

EXEC
DD
DD

DD

PGM=IEBGENER
DUMMY,DCB=(RECFM=F,BlKSIZE=80,lRECl=80)
DSN=DUMMY,UNIT=(tape"DEFER),lABEl=(,Al),
DCB=(RECFM=F,BlKSIZE=80,lRECl=80)
DUMMY

End of Note for ISO/ANSI/FIPS Tape labels

Figure 103 shows an IBM standard label group after a volume is
used to receive data. For a discussion of volume labels, see
Data Administration Guide.

Ini tial volume label

HDR1

HDR2

User header labels
(optional up to 8)

Tapemark

Data

Figure 103. IBM Standard label Group after Volume Receives Data

PLACING A STANDARD LABEL SET ON MAGNETIC TAPE

IEHINITT can be used to write BCD labels on 7-track tape volumes
and EBCDIC or ISCII/ASCII (ISO/ANSI/FIPS format) labels on
9-track tape volumes. Any number of 7-track and/or 9-track tape
volumes can be labeled in a single execution of IEHINITT.

Tape volumes are labeled in sequential order by specifying a (,~,
serial number to be written on the first tape volume. The ~/
serial number is increased by 1 for each successive tape volume.

314 MVS/XA Data Administration: Utilities

(

(' INPUT AND OUTPUT

RETURN CODES

(

If only one tape volume is to be labeled, the specified serial
number can be either numeric or alphameric. If more than one
volume is to be labeled, each serial number must be specified as
six numeric characters.

You can provide additional information, for example:

• owner name

• rewind or unload specifications

• format (ISO/ANSI/FIPS)

• access code (A through Z if an "AL" tape is to be written)

You must supply all tapes to be labeled, and must include with
each job request explicit instructions to the operator about
where each tape is to be mounted.

IEHINITT writes 7-track tape labels in even parity (translator
on, converter off).

Previously labeled tapes can be overwritten with new labels
regardless of expiration date and security protection.

Note that if a system MOUNT command has been issued for a tape
before an IEHINITT job has started, that job will fail.

If any errors are encountered while attempting to label a tape,
the tape is left unlabeled. IEHINITT attempts to label any
tapes remaining to be processed.

For information on creating routines to write standard or
nonstand~rd labels, see Magnetic Tape Labels and File Structure
Administration.

IEHINITT uses as input a control data set that contains the
utility control statements.

IEHINITT produces an output data set that contains:

• Utility program identification

• Initial volume label information for each successfully
labeled tape volume

• Contents of utility control statements

• Any error messages

IEHINITT returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed in Figure 104 on page 316.

IEHINITT Program 315

CONTROL

Codes Meaning

00 (00 hex) Successful completion. A message data set was
created.

04 (04) Successful completion. No message data set was
defined by the user.

OS (OS) IEHINITT completed its operation, but error
conditions were encountered during processing.
A message data set was created.

12 (OC) IEHINITT completed its operation, but error
conditions were encountered during processing.
No message data set was defined by the user.

16 (10) IEHINITT terminated operation because of error
conditions encountered while attempting to read
the control data set. A message data set was
created if defined by the user.

Figure 104. IEHINITT Return Codes

IEHINITT is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke IEHINITT and to define data sets used and
produced by IEHINITT. The utility control statement is used to

tf'\
Ie
''\."j

specify applicable label information. ~

JOB CONTROL STATEMENTS

Figure 105 shows the job control statements for IEHINITT.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHINITT) or, if
the job control statements reside in a procedure
library, the procedure name. The EXEC statement
can include additional PARM information; see "PARM
Information on the EXEC Statement" on page 317.

SVSPRINT DD Defines a sequential output data set.

anyname DD Defines a tape unit to be used in a labeling
operation; more than one tape unit can be
identified.

SVSIN DD Defines the control data set. The control data set
normally resides in the input stream; however, it
can be defined as a member of a partitioned data
set or as a sequential data set outside the input
stream.

Figure 105. IEHINITT Job Control Statements

316 MVS/XA Data Administration: Utilities

------'-----'~'~-'~'----

(

(

PARM Information on the EXEC statement

The EXEC statement can include PARM information that specifies
the number of lines to be printed between headings in the
message data set, as follows:

PARM='LINECNT=nn'

If PARM is omitted, 60 lines are printed between headings.

If IEHINITT is invoked, the line count option can be passed in a
parameter list that is referred to by the optionaddr
subparameter of the LINK or ATTACH macro instruction. In
addition, a page count can be passed in a 6-byte parameter list
that is referred to by the hdingaddr subparameter of the LINK or
ATTACH macro instruction. For a discussion of linkage
conventions, refer to "Invoking Utility Programs from a Problem
Program" on page 12.

SYSPRINT DD statement

anyname DD statement

SYSIN DD statement

The SYSPRINT data set must have a logical record length of 121
bytes. It must consist of fixed-length records with an ISO/ANSI
control character in the first byte of each record. Any
blocking factor can be specified.

The "anyname" DD statement is entered:

//anyname DD DCB=DEN=x,UNIT=(xxxx,n,DEFER)

The DEN parameter specifies the density at which the labels are
written. The UNIT parameter specifies the device type, number
of units to be used for the labeling operation, and deferred
mounting. See the publication J£l for more information on the
DEN and UNIT parameters.

The name "anyname" must be identical to a name specified in a
utility control statement to relate the specified unites) to the
utility control statement.

The SYSIN data set must have a logical record length of 80. Any
blocking factor can be specified.

UTILITY CONTROL STATEMENT

IEHINITT uses the utility control statement INITT to provide
control information for a labeling operation.

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

IEHINITT Program 317

INITT statement

The INITT statement provides control information for the
IEHINITT program.

Any number of INITT utility control statements can be included
for a given execution of the program. An identically named DD
statement must exist for a utility control statement in the job
step.

Figure 106 shows a printout of a message data set including the
INITT statement and initial volume label information. In this
example, one INITT statement was used to place serial numbers
001122 and 001123 on two SL tape volumes. VOLlOOl122 and
VOLlOOl123 are interpreted as follows:

• VOLI indicates that an initial volume label was successfully
written to a tape volume.

• 001122 and 001123 are the serial numbers that were written
onto the volumes.

• A blank space following the serial number represents the
Volume Security field, which is not used during
OPEN/CLOSE/EOV processing on an SL tape.

No errors occurred during processing.

SYSTEM SUPPORT UTILITIES IEHINITT
72

ALL INITT SER=001122,NUMBTAPE=2,OWNER='P.T.BROWN', X
DISP=REWIND

VOL100ll22 P.T.BROWN
VOL1001123 P.T.BROWN

Figure 106. Printout of INITT Statement Specifications and
Initial Volume Label Information

The format of the INITT statement is:

ddcsmlil INITT SER=xxxxxx

,DISP={REWINDIUNLOAD}

[,OWNER='cccccccccc[~J'J

[, NUMBTAPE=n I1J

E,LABTYPE=ALJ

E , ACCESS=.!<. J

318 MVS/XA Data Administration: Utilities

Parameters

ACCESS

DISP

(
LABTYPE

ddname

NUMBTAPE

Applicable
Control
statements

INITT

INITT

INITT

INITT

INITT

Description of Parameters

ACCESS=.s;,
specifies the ISQ/ANSI/FIPS volume accessibility
code. Valid values for .s;, are uppercase A
through Z only. The default value is a blank
character, indicating unlimited access to the
volume. You cannot specify a blank character
for the access code.

The Volume Access installation exit routine in
MVS must be modified to allow subsequent use of
the volume if ACCESS is specified. For further
information about volume accessibility and
ISQ/ANSI/FIPS installation exits, see Magnetic
Tape labels and File Structyre Administration.

ACCESS is invalid unless lABTYPE=Al has also
been specified.

DISP={REWINDI~Q8nJ
specifies whether a tape is to be rewound or
rewound and unloaded. These values can be
coded:

REWIND
specifies that a tape is to be rewound (but
not unloaded) after the label has been
written.

UNLOAD

LABTVPE=AL

specifies that a tape is to be rewound and
unloaded after the label has been written.
This is the default.

specifies that an ISCII/ASCII volume label
written in ISQ/ANSI/FIPS Version 3 format is to
be created. Labels written in ISQ/ANSI/FIPS
cannot be put on a 7-track tape volume:

Default: The tape is written in EBCDIC for
9-track tape volumes and in BCD for 7-track tape
volumes.

ddname
specifies the name that is identical to the
ddname in the name field of the DD statement
defining a tape unites). This name must begin
in column 1.

NUMBTAPE=n 11
specifies the number of tapes to be labeled
according to the specifications made in this
control statement. The value n represents a
number from 1 to 255. If more than one tape is
specified, the volume serial number of the first
tape must be numeric.

IEHINITT Program 319

Parameters

OWNER

SER

Applicable
Control
statements

INITT

INITT

Description of Parameters

OWNER='cccccccccc[~J'
specifies the owner's name or similar
identification. The information is specified as
character constants, and can be up to 10 bytes
in length for EBCDIC and BCD volume labels, or
up to 14 bytes in length for volume labels
written in ISCII/ASCII. The delimiting
apostrophes must be present if blanks, commas,
apostrophes, equal signs, or other special
characters (except periods or hyphens) are
included. The set of valid ISO/ANSI 'a' type
characters for ISCII/ASCII tapes is as follows:
upper case A-Z, numeric 0-9, and special
characters !"%&'()*+,-./:;<=>1

If an apostrophe is included within the OWNER
name field, it must be written as two
consecutive apostrophes.

SER=xxxxxx
specifies the volume serial number of the first
or only tape to be labeled. For IBM standard
labeled (SL) tapes, the serial number cannot
contain blanks, commas, apostrophes, equal
signs, or special characters other than periods
or hyphens. ISO/ANSI/FIPS labeled tapes (AL)
may contain any valid ISO/ANSI 'a' type
character as described under the OWNER keyword.
However, if any nonalphameric character
(including a period or a hyphen) is present,
delimiting apostrophes must be included.

You cannot use a blank as the first character in
a volume serial number.

A specified serial number is increased by one
for each additional tape to be labeled. (Serial
number 999999 is increased to 000000.) When
processing multiple tapes, the volume serial
number must be all numeric.

320 MVS/XA Data Administration: Utilities

(If
(~j

~INITT EXAMPLES

(

(

IEHINITT EXAMPLE 1

The following examples illustrate some of the uses of IEHINITT.
Figure 107 can be used as a quick-reference guide to IEHINITT
examples. The numbers in the "Example" column refer to examples
that follow.

Operation

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

comments

Three 9-track tapes are to be
labeled.

A 9-track tape is to be labeled.

Two groups of 9-track tape volumes
are to be labeled.

9-track tape volumes are to be
labeled. Sequence numbers are to be
incremented by 10.

Three 9-track tape volumes are to be
labeled. An alphameric label is to
be placed on a tape volume; numeric
labels are placed on the remaining
two tape volumes.

Two 9-track tape volumes are to be
labeled. The first volume is labeled
at a density of 6250 bpi; the second
at a density of 1600 bpi.

A 9-track tape volume is labeled in
ISO/ANSI/FIPS format with a nonblank
access code.

Figure 107. IEHINITT Example Directory

Example

1

2

3

4

5

6

7

Examples that use tape in place of actual device numbers must be
changed before use. See "DASD and Tape Device Support" on
page 3 for valid device number notation.

In this example, serial numbers 001234, 001235, and 001236 are
placed on three tape volumes; the labels are written in EBCDIC
at 800 bits per inch. Each volume labeled is mounted, when it
is required, on a single 9-track tape unit.

JOB
EXEC PGM=IEHINITT
DD SYSOUT=A
DD DCB=DEN=2,UNIT=(tape,I,DEFER)
DD *

//LABELl
//
//SYSPRINT
//LABEL
//SYSIN
LABEL INITT SER=001234,NUMBTAPE=3
ne

The control statements are discussed below:

• LABEL DD defines the tape unit used in the labeling
operation.

• SYSIN DD defines the control data set, which follows in the
input stream.

IEHINITT Program 321

I~HINITT EXAMPLE 2

IEHINITT EXAMPLE 3

• LABEL INITT specifies the number of tapes to be labeled (3),
beginning with 001234.

In this example, serial number 001001 is placed on one
ISQ/ANSI/FIPS tape volume; the label is written at 800 bits per
inch. The volume labeled is mounted, when it is required, on a
9-track tape unit.

JOB
EXEC PGM=IEHINITT
DD SYSOUT=A
DD DCB=DEN=2.UNIT=(tape,l,DEFER)

IILABEL2
II
IISYSPRINT
IIASCIIlAB
IISYSIN
ASCIILAB
1*

DD *
INITT SER=OOlOOl.OWNER='SAM A. BROWN'.LABTYPE=AL

The control statements are discussed below:

• ASCIILAB DD defines the tape volume to be used in the
labeling operation.

• SYSIN DD defines the control data set. which follows in the
input stream.

• ASCIIlAB INITT specifies the serial number. owner ID and
label type for the volume.

In this example. two groups of serial numbers (001234. 001235. ~-
001236. and 001334. 001335, 001336) are placed on six tape
volumes. The labels are written in EBCDIC at 800 bits per inch.
Each volume labeled is mounted. when it is required. on a single
9-track tape unit.

JOB
EXEC PGM=IEHINITT
DD SYSOUT=A
DD DCB=DEN=2.UNIT=(tape.l.DEFER)
DD *

IILABEl3
II
IISYSPRINT
IllABEl
IISYSIN
LABEL
LABEL

INITT SER=001234.NUMBTAPE=3
INITT SER=001334.NUMBTAPE=3

1*

The control statements are discussed below:

• LABEL DD defines the tape unit to be used in the labeling
operation.

• SYSIN DD defines the control data set. which follows in the
input stream.

• LABEL INITT defines the two groups of serial numbers to be
put on six tape volumes.

322 MVS/XA Data Administration: Utilities

IEHINITT EXAMPLE 4
(-

IEHINITT EXAMPLE 5

In this example, serial numbers 001234, 001244, 001254, 001264,
001274, etc., are placed on eight tape volumes. The labels are
written in EBCDIC at 800 bits per inch. Each volume labeled is
mounted, when it is required, on one of four 9-track tape units.

JOB
EXEC PGM=IEHINITT
DD SYSOUT=A
DD DCB=DEN=2,UNIT=(tape,4,DEFER)
DD *

//LABEL4
//
//SYSPRINT
//LABEL
//SYSIN
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL

INITT SER=001234
INITT SER=001244
INITT SER=001254
INITT SER=001264
INITT SER=001274
INITT SER=001284
INITT SER=001294
INITT SER=001304

ne

The control statements are discussed below:

• LABEL DD defines the tape unit used in the labeling
operation.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The LABEL INITT statements define the tapes to be labeled by
volume serial number.

In this example, serial number TAPEI is placed on a tape volume,
and serial numbers 001234 and 001235 are placed on two tape
volumes. The labels are written in EBCDIC at 800 and 1600 bits
per inch, respectively.

JOB
EXEC PGM=IEHINITT
DD SYSOUT=A
DD DCB=DEN=2,UNIT=(tape,I,DEFER)
DD DCB=DEN=3,UNIT=(tape,I,DEFER)
DD *

//LABEL5
//
//SYSPRINT
//LABELl
//LABEL2
//SYSIN
LABEll
LABEL2

INITT SER=TAPEI
INITT SER=001234,NUMBTAPE=2

/*

The control statements are discussed below:

• LABELl DD and LABEL2 DD define two tape volumes to be used
in the labeling operation.

• SYSIN DD defines the control data set, which follows in the
input stream.

• LABELl INITT places the serial number TAPEI on the tape
volume defined in LABELl DD. LABEL2 INITT places the serial
numbers 001234 and 001235 on the tape volume defined in
LABEL2 DD.

IEHINITT Program 323

IEHINITT EXAMPLE 6

IEHINITT EXAMPLE 7

In this example, the serial number 006250 is written in EBCDIC
on a tape volume at a density of 6250 bpi, and the serial number
001600 is written in EBCDIC on a second volume at a density of
1600 bpi.

JOB
EXEC PGM=IEHINITT
DD SYSQUT=A
DD DCB=DEN=4,UNIT=(tape,l,DEFER)
DD DCB=DEN=3,UNIT=(tape,l,DEFER)
DD *

//lABEl6
//
//SYSPRINT
//DDFIRST
//DDSECOND
//SYSIN
DDFIRST
DDSECOND
/*

INITT SER=006250
INITT SER=001600

The control statements are discussed below:

• DDFIRST DD defines the first tape volume to be used.

• DDSECOND DD defines the second tape volume to be used.

• SYSIN DD defines the control data set, which follows in the
input stream.

• DDFIRST INITT writes the serial number 006250 on the volume
defined in DDFIRST DD. DDSECOND INITT writes the serial
number 001600 on the volume defined in DDSECOND DD.

In this example, an ISO/ANSI/FIPS (Al) labeled tape is created
with a nonblank access code. The volume serial number is
TAPE01.

//lABEl7 JOB
//STEPOl EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//lABEl DD UNIT=(tape,l,DEFER),DCB=DEN=4
//SYSIN DD *
LABEL INITT SER=TAPE01,OWNER=TAPOWNER,lABTYPE=Al,ACCESS=A
/*

The control statements are discussed below.

• lABEL DD defines the device on which the tape is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The INITT statement creates an ISO/ANSI/FIPS label for the
tape with volume serial number TAPEOl, owned by TAPOWNER.
The ACCESS code is specified as "A", and the MVS operating
system that receives this volume must be able to recognize
the "A" in order for the volume to be accepted.

324 MVS/XA Data Administration: Utilities

r
~J

(

(

(

IEHLIST pROGRAM

IEHlIST is a system utility used to list entries in an as CVOl,
entries in the directory of one or more partitioned data sets,
or entries in an indexed or nonindexed volume table of contents.
Any number of listings can be requested in a single execution of
the program.

LISTING OS CVOL ENTRIES

IEHlIST lists alIOS CVOl entries that are part of the structure
of a fully qualified, data set name. Figure 108 shows an index
structure for which IEHlIST lists fully qualified names A.B.D.W,
A.B.D.X, A.B.E.Y, and A.B.E.Z. Because A.C.F does not represent
a cataloged data set (that is, the lowest level of qualification
has been deleted), it is not a fully qualified name, and it is
not listed.

o

I
w

,
X

B

,
y

E

A

I

I
z

c

F

Figure 108. Index Structure--listed by IEHlIST

IEHlIST will list only OS CVOls (SYSCTlG data sets). To list
integrated catalog facility or VSAM catalogs, use access method
services. For more information, see Access Method Services
Reference.

LISTING A PARTITIONED DATA SET DIRECTORY

IEHlIST can list up to ten partitioned data set directories at a
time. A partitioned directory is composed of variable-length
records blocked into 256-byte blocks. Each directory block can
contain one or more entries that reflect member (and/or alias)
names and other attributes of the partitioned members. IEHlIST
can list these blocks in edited and unedited format.

IEHlIST Program 325

Figure 109 shows a directory block as it exists in storage.

.... --- --- .,.----- -- - - - ----------'" ,/ }

\ , Member A T TTR I User data II Member B I TTR I User ...
If Member C I TTR -I

"
I Data User data Member n

(~

.... -- -----------------------

r
Figure 109. Sample Directory Block

I--"

r--

f-"'

)
I

Edited Format

Optionally, IEHlIST provides the following information, which is
obtained from the applicable partitioned data set directory,
when an edited format is requested:

•
•
•
•
•
•
•
•
•
• •

Member name
Entry point
Relative address of start of member
Relative address of start of text
Contiguous virtual storage requirements
length of first block of text
Origin of first block of text
System status indicators
linkage editor attributes
APF authorization required
Other information

Figure 110 shows an edited entry for a partitioned member
(IEANUC01). The entry is shown as it is listed by the IEHlIST
program.

OTHER INFORMATION INDEX
SCATTER FORMAT SCTR=SCATTER/TRANSLATION TABLE TTR IN HEX, LEN OF SCTR LIST IN DEC, LEN OF TRANS TABLE IN DEC,

ESDID OF FIRST TEXT RCD IN DEC, ESDID OF CSECT CONTAINING ENTRY POINT IN DEC

OVERLAY FORMAT ONLY=NOTE LIST RCD TTR IN HEX, NUMBER OF ENTRIES IN NOTE LIST RCD IN DEC

ALIAS NAMES ALIAS MEMBER NAMES WILL BE FOLLOWED BY AN ASTERISK IN THE PDS FORMAT LISTING

ATTRIBUTE INDEX

BIT ON OFF BIT ON OFF BIT ON OFF BIT ON OFF

a RENT NOT RENT 4 OL NOT OL 8 NOT DC DC 12 NOT EDIT EDIT
1 REUS NOT REUS 5 SCTR BLOCK 9 ZERO ORG NOT ZERO 13 SYMS NO SYMS
2 ONLY NOT ONLY 6 EXEC NOT EXEC 10 EP ZERO NOT ZERO 14 F LEVEL E LEVEL
3 TEST NOT TEST 7 1 TXT MULTI RCD 11 NO RLD RLD 15 REFR NOT REFR

MEMBER ENTRY ATTR REL ADDR-HEX CONTIG LEN 1ST ORG 1ST SST VS AUTH OTHER
NAME PT-HEX HEX BEGIN 1ST TXT STOR-DEC TXT-DEC TXT-HEX INFO ATTR REQ INFORMATION

IEANUC01 000000 06E2 000004 00020F 000166248 0927 ABSENT 880000 NO SCTR=OOOOOO,
00484,01084,32,32

OF THE 00002 DIRECTORY BLOCKS ALLOCATED TO THIS PDS, 00001 ARE(IS} COMPLETELY UNUSED

Figure 110. Edited Partitioned Directory Entry

r
'~

Before printing the directory entries on the first page, an C·~--
index is printed explaining the asterisk (*), if any, following
a member name, the attributes (fields 3 and 10), and other
information (field 12). Under OTHER INFORMATION INDEX, scatter

326 MVS/XA Data Administration: Utilities

(-

and overlay format data is described positionally as it appears
in the listing; under the ATTRIBUTE INDEX, the meaning of each
attribute bit is explained.

Each directory entry occupies one printed line, except when the
member name is an alias and the main member name and associated
entry point appear in the user data field. When this occurs,
two lines are used and every alias is followed by an asterisk.
If the main member is renamed, the old member name will still be
in the alias directory entry and consequently printed on the
second line.

The FORMAT option of the LISTPDS statement applies only to a
partitioned data set whose members have been created by the
linkage editor (that is, the directory entries are at least 34
bytes long). If a directory entry is less than 34 bytes, a
message is issued and the entry is printed in unedited format;
if the entry is longer than 34 bytes, it is assumed that it is
created by the linkage editor.

Unedited (Dump) Format

You may choose the unedited format. If this is the case,
IEHLIST lists each member separately.

Figure 111 shows how the information in Figure 109 on page 326
is listed.

Note: A listing organized as shown in Figure 111 can also be
obtained by using IEBPTPCH (see "IEBPTPCH Program" on page 246).

MEMB A

MEMB B

MEMB C

MEMB n

TTR

TTR

TTR

TTR

USER DATA

USER DATA

USER DATA

USER DATA

Figure 111. Sample Partitioned Directory Listing

To correctly interpret user data information, you must know the
format of the partitioned entry. The formats of directory
entries are discussed in Debugging Handbook.

LISTING A VOLUME TABLE OF CONTENTS

IEHLIST can be used to list, partially or completely, entries in
a specified volume table of contents (VTOC), whether indexed or
nonindexed. The program lists the contents of selected data set
control blocks (DSCBs) in edited or unedited form.

For more information on indexed VTOCs, including a description
of the VPSM, VIXM and VMDS, see System-Data Administration.

IEHLIST Program 327

Edited Format

Two edited formats are available.

FIRST EDITED FORMAT: The first edited format is a comprehensive
listing of the DSCBs in the VTOC. It provides the status and
attributes of the volume, and describes in depth the data sets
residing on the volume. This listing includes:

• logical record length and block size
• Initial and secondary allocations
• Upper and lower limits of extents
• Alternate track information
• Available space information, including totals of unallocated

cylinders, unallocated tracks, and unallocated (Format 0)
DSCBs

• Option codes (printed as two hexadecimal digits)
• Record formats

A VTOC consists of as many as seven types of DSCBs that contain
information about the data sets residing on the volume:

• Identifier DSCB--Format 1

• Index DSCB--Format 2

• Extension DSCB--Format 3

• VTDC DSCB--Format 4

• Free Space DSCB--Format 5

• Shared Extent DSCB--Format 6

• Free VTDC DSCB--Format 0

The first DSCB in a VTDC (and on your listing) is always a VTDC
(Format 4) DSCB. It defines the scope of the VTDC itself; that
is, it contains information about the VTDC and the volume rather
than the data sets referenced by the VTDC.

The DSCB is followed by the Free Space (Format 5) DSCB. which
describes the space available on the volume for allocation to
other data sets. More than one Format 5 DSCB may be required to
describe the available space on a volume because each Format 5
DSCB describes up to 26 extents.

The Format 4 and Format 5 DSCBs are followed. in any order, by
Format 1. 2. 3. or 6 DSCBs.

Each Identifier (Format 1) DSCB contains information about a
particular data set or VSAM data space residing on the volume.
This type of DSCB describes the characteristics and up to three
extents of the data set.

For data sets having indexed sequential organization. additional
characteristics are specified in an Index (Format 2) DSCB
pointed to by the Identifier (Format 1) DSCB.

Additional extents are described in an Extension (Format 3) DSCB
pointed to by the Identifier (Format 1) DSCB or in the Index
(Format 2) DSCB for an ISAM data set.

A Shared Extent (Format 6) DSCB is used for shared-cylinder
allocation. It describes the extent of space (one or more
contiguous cylinders) that is being shared by two or more data
sets. The Shared Extent (Format 6) DSCB is pointed to by the
VTDC (Format 4) DSCB. Subsequent Format 6 DSCBs are pointed to
by the previous Format 6 DSCB. Though shared extent data sets
cannot be created by MVS/XA. they ar'e supported if previously
created.

A Free VTDC Record (Format 0) DSCB. which indicates space
available for another DSCB, is not listed by IEHlIST. They are

328 MVS/XA Data Administration: Utilities

/'--\
',,=)

c

(~

l40-byte records, consisting of binary zeros, that are
overwritten with Format 1, 2, or 3 DSCBs when a new data set is
allocated, with Format 5 DSCBs when space is released, or with
Format 3 DSCBs when a Format 1 or Format 2 must be extended.

Indexed VTOCs: For indexed VTOCs, there are two types of
formatted listings. These types are specified using the
INDEXDSN parameter.

If INDEXDSN is omitted, the listing contains:

• A statement of the number of levels in the index, if
enabled.

• A formatted Format 4 DSCB.

• Formatted data set entries in alphameric order (Format 1
DSCB physical-sequential order if the index is disabled)

• Formatted VPSM freespace information.

• Totals of unallocated cylinders, unallocated tracks,
unallocated (Format 0) DSCBs, and unallocated VIRs

If INDEXDSN=name is specified, the listing contains, in addition
to the items above:

• A formatted VPSM. VMDS. and VIXM.

• Allocated VIERs. formatted and listed by level and key
sequence within level (in physical-sequential order if the
index is disabled).

• If the VTOC index is disabled, a statement is included to
this effect.

Note: For a sample of the first edited format illustrating how
each DSCB will appear in the listing, see Appendix D, "IEHLIST
VTOC Listing" on page 427.

SECOND EDITED FORMAT: The second edited format is an
abbreviated description of the data sets. It is provided by
default when no format is specifically requested. It provides
the following information:

• Data set name
• Creation date (yyyy.ddd)
• Expiration date (yyyy.ddd)
• Password indication
• Organization of the data set
• Extent(s)
• Volume serial number

The last line in the listing indicates how much space remains in
the VTDC.

For nonindexed VTDCs. data set entries are listed in
physical-sequential order. Totals of unallocated cylinders,
unallocated tracks, and unallocated (Format 0) DSCBs are also
listed.

For indexed VTDCs. this listing contains:

• A statement of the number of levels in the index.

• Data set entries listed in alphameric order.

• Totals of unallocated cylinders. unallocated tracks.
unallocated (Format 0) DSCBs, and unallocated VIRs.

IEHLIST Program 329

Unedited (Dump) Format

INPUT AND OUTPUT

[\
This option produces a complete hexadecimal listing of the DSCBs (.)
in the VTOC. The listing is in an unedited dump form, requiring ~
you to know the various formats of applicable DSCBs. The VTOC
overlay for IEHLIST listings of VTOCs in dump format (form
number GX24-5l00) is useful in identifying the fields of the
DSCBs.

For nonindexed VTOCs, this listing contains:

• DSCBs dumped, in physical-sequential order.

• Totals of unallocated cylinders, unallocated tracks, and
unallocated (Format 0) DSCBs.

For indexed VTOCs there are two types of dump listings. These
types are specified using the INDEXDSN parameter.

If INDEXDSN is omitted, the listing contains:

• DSCBs dumped in physical-sequential order (one token Format
5 DSCB is identified).

• A dump of the VPSM.

• Totals of unallocated cylinders, unallocated tracks,
unallocated (Format 0) DSCBs, and unallocated VIRs.

If INDEXDSN=~ is specified, the listing contains, in addition
to the items above:

• Dumps of the VIXM and the VMDS.

• A dump of all allocated VIERs dumped in hierarchic order.
All VIERs at the highest level are dumped, starting with the
VIER with the lowest high key; next, all VIERs at the next
lower level are dumped, starting with the VIER with the ,
lowest high key. The listing continues in this manner until
all VI\ERs at level 1 are dumped.

If the VTOC index is disabled, both allocated and
unallocated VIERs are dumped in physical-sequential order.

• If the VTOC index is disabled, a statement is included to
this effect.

For a discussion of the various formats that data set control
blocks can assume, see Debygging Handbook.

IEHLIST uses the following input:

• One or more source data sets that contain the data to be
listed. The input data set(s) can be:

A VTOC,
A partitioned data set,
An OS CVOL (SYSCTLG).

• A control data set, that contains utility control statements
that are used to control the functions of IEHLIST.

IEHLIST produces as output a message data set that contains the
result of the IEHLIST operations. The message data set includes
the listed data and any error messages.

(j

330 MVS/XA Data Administration: Utilities

(

(

(

RETURN CODES

CONTROL

IEHLIST returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed in Figure 112.

Codes Meaning

00 (00 hex) Successful completion.

OS (OS) An error condition caused a specified request to be
ignored. Processing continues.

12 (OC) A permanent input/output error occurred. The job
is terminated.

16 (10) An unrecoverable error occurred while reading the
data set. The job is terminated.

Figure 112. IEHLIST Return Codes

IEHLIST is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke IEHLIST and to define the data sets used and
produced by IEHLIST.

Utility control statements are used to control the functions of
the program and to define those data sets or volumes to be
modified.

JOB CONTROL STATEMENTS

Figure 113 on page 332 shows the job control statements for
IEHLIST.

IEHLIST Program 331

-- -- .. _-----

statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHLIST) or, if
the job control statements reside in a procedure
library, the procedure name. Additional PARM
information can be specified to control the
number of lines printed per page. See "PARM
Information on the EXEC Statement" on page 332.

SYSPRINT DD Defines a sequential message data set.

anynamel DD Defines a permanently mounted volume.

anyname2 DD Defines a mountable device type. This can be
specified more than once as long as each
"anyname" is unique.

SYSIN DD Defines the control data set. The control data
set normally follows the job control language in
the input stream; however, it can be defined as
an unblocked sequential data set or member of a
procedure library.

Figure 113. IEHLIST Job Control Statements

With the exception of the SYSIN and SYSPRINT DD statements, all
DD statements in this table are used as device allocation
statements, rather than as true data definition statements. The
maximum number of these allocated devices cannot exceed 256 per
job step.

Concatenated DD statements are allowed only for SYSIN.

Because IEHLIST modifies the internal control blocks created by
device allocation DD statements, IEHLIST job control statements
must not include the DSNAME parameter. (All data sets are
defined explicitly or implicitly by utility control statements.)

IEHLIST cannot support empty space calculations for OS CVOL data
sets allocated in blocks when the block sizes are approximately
the same or larger than the track size. The empty block
calculation gives only approximate indications of available
space. When IEHLIST cannot supply an approximate number, the
"Unable to Calculate" message is issued.

IEHLIST specifications do not allow for protection of the object
being listed. If another program updates a block of the data
set just prior to IEHLIST reading the data set, a message
(IEHI05I or IEHI08I) may be issued and the output produced by
IEHLIST may be incorrect. If this happens, rerun the job.

PARM Information on the EXEC statement

Additional information can be specified in the PARM parameter of
the EXEC statement to control the number of lines printed per
page. The PARM parameter can be coded:

PARM='LINECNT=~'

332 MVS/XA Data Administration: Utilities

c

(

(

(

The LINECNT parameter speci ties the number of lines, 2QS,
printed per page; 2QS is a decimal number from 01 through
LIHECNT is not specified, 58 lines are printed per page.
PARM field cannot contain embedded blanks, zeros, or any
PARM keywords if LINECNT is specified.

to be
99. If

The
other

SYSPRINT DD statement

The block size for SYSPRINT must be a multiple of 121. Any
blocking factor can be specified for this block size.

anynamel DD statement

An "anynamel" DD statement must be included for each permanently
mounted volume referred to in the job step. (The system
residence volume is considered to be a permanently mounted
volume.)

The "anynamel" DD statement can be entered:

//anynamel DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME=SER parameters define the device type and
volume serial number. The DISP=OLD specification prevents the
inadvertent deletion of the data set. (This statement has been
arbitrarily assigned the ddname DDI in the IEHLIST examples.)

anyname2 DD statement

SYSIN DD statement

An "anyname2" DD statement must be included for each mountable
device to be used in the job step.

When deferred mounting is required, the "anyname2" DD statement
can be entered:

//anyname2 DD UNIT=(xxxx"DEFER),VOLUME={PRIVATE, ...),DISP=OLD

(This statement is arbitrarily assigned the ddname DD2 in the
IEHLIST examples.)

When IEHLIST is dynamically invoked in a job step by another
program, the DD statements defining mountable devices for
IEHLIST must precede DD statements required by the other
program.

Unit affinity cannot be used on DD statements defining mountable
devices.

For information on defining mountable devices, see
Appendix B, "DD Statements for Defining Mountable Devices" on
page 423.

The block size for SYSIN must be a multiple of 80. Any blocking
factor can be specified for this block size.

UTILITY CONTROL STATEMENTS

Figure 114 on page 334 shows the utility control statements for
IEHLIST.

IEHLIST Program 333

LISTCTLG statement

LISTPDS statement

statement

LISTCTLG

Use

Requests a listing of all or part of an OS CVOL
(SYSCTLG) .

LISTPDS Requests a directory listing of one or more
partitioned data sets.

LISTVTOC Requests a listing of all or part of a volume
table of contents.

Figure 114. IEHLIST Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

The LISTCTLG statement is used to request a listing of either
the entire OS CVOL or a specified portion of the OS CVOL
(SYSCTLG data set). The listing includes the fully qualified
name of each applicable cataloged data set and the serial number
of the volume on which it resides. Empty index levels are not
listed.

The format of the LISTCTLG statement is:

[~l LISTCTLG [VOL=device=seriall

[,NODE=n.e.m.gl

The LISTPDS statement is used to request a directory listing of
one or more partitioned data sets that reside on the same
volume.

Before printing the directory entries on the first page, an
index is printed explaining the attributes (fields 3 and 10) and
other information (field 12). OTHER INFORMATION INDEX explains
scatter and overlay format data as it appears in the listing;
ATTRIBUTE INDEX explains each attribute bit.

The FORMAT option of the LISTPDS statement may be used only on a
partitioned data set whose members have been created by the
linkage editor. Members that have not been created by the
linkage editor cause their directory entries to be listed in
unedited (DUMP) format.

The format of the LISTPDS statement is:

[~l LISTPDS DSNAME=(~[,~l •••)

[,VOL=deyice=seriall

[, J2l.U.1f I FORMAT]

334 MVS/XA Data Administration: Utilities

~------~-~----

(1""'1

~.)

(

LISTVTOC statement

Parameters

DATE

DSNAME

The LISTVTOC statement is used to request a partial or complete
listing of the entries in a specified volume table of contents.

If you are using IEHLIST to list both the VTOC and the index
data set of an indexed VTOC, refer to "Listing a Volume Table of
Contents" on page 327.

The format of the LISTVTOC statement is:

[.li!..IllU.l

Applicable
Control
statements

LISTVTOC

LISTPDS

LISTVTOC

LISTVTOC [DUMP I FORMATl

[,INDEXDSN=SYS1.VTOCIX.~1

[,DATE=[~ldddvvvv)]

[,VOL=device=seriall

[,DSNAME=(~[,~] •••)]

Description of Parameters

DATE=Q.d.9yy
specifies that each entry that expires before
this date is to be flagged with an asterisk (*)
after the entry name in the listing. This
parameter applies only to the abbreviated edited
format. The date is represented by ddd, the day
of the year, and VV, the last two digits of the
year.

DATE=dddvvvv
specifies that each entry that expires before
this date is to be flagged with an asterisk (*)
after the entry name in the listing. This
parameter applies only to the abbreviated edited
format. The date is represented by ddd, the day
of the year, and VVYY, the year from 1900 to
2155. If the specified VVYY value is outside
these bounds, message IEH103I (INVALID CONTROL
STATEMENT) will be issued.

Default: No asterisks appear in the listing.

DSNAME=(~[,name] •••)
specifies the fully qualified names of the
partitioned data sets whose directories are to
be listed. A maximum of 10 names is allowed.
If the list consists of only a single name, the
parentheses can be omitted.

DSNAME=(~[,~] •••)
specifies the fully qualified names of the data
sets whose entries are to be listed. A maximum
of 10 names is allowed. If the list consists of
only a single name, the parentheses can be
omitted.

IEHLIST Program 335

Parameters

DUMP

FORMAT

INDEXDSN

NODE

VOL

Applicable
Control
statements

LISTPDS
LISTVTOC

LISTPDS

LISTVTOC

LISTVTOC

LISTCTLG

lISTCTLG
LISTPDS
LISTVTOC

Description of Parameters

DUMP
specifies that the listing is to be in unedited.
hexadecimal form.

Default: If both DUMP and FORMAT are omitted. an
abbreviated edited format is generated for
LISTVTOC. For LISTPDS. DUMP is the default
used.

FORMAT
specifies that the listing is to be edited for
each directory entry.

The FORMAT option of the LISTPDS statement may
be used only on a partitioned data set whose
members have been created by the linkage editor.
Members that have not been created by the
linkage editor cause their directory entries to
be listed in unedited (DUMP) format.

FORMAT
specifies that a comprehensive edited listing is
to be generated.

Default: If both FORMAT and DUMP are omitted. an
abbreviated edited format is generated for
LISTVTOC. For LISTPDS. DUMP is the default
used.

INDEXDSN=SYS1.VTOCIX.~
specifies that index information is to be
listed. in addition to the VTOC. ~ is any
third level qualifier. DUMP or FORMAT must be
specified if INDEXDSN is specified. For more
information on indexed VTOCs. refer to "Listing
a Volume Table of Contents" on page 327.

NODE=~
specifies a qualified name. All data set
entries whose names are qualified by this name
are listed. The OS CVOl must be defined in the
integrated catalog facility or VSAM master
catalog as: SYSTCTLG.VYYYYYY. where YYYYYY is
the serial number of the as CVOL. For details.
see Catalog Administration Guide.

Default: All data set entries are listed.

VOL=device=serial
specifies the device type and volume serial
number of the volume on which the OS CVOl. PDS
directory. or VTOC resides.

For lISTPDS. if the partitioned data set is not
on the system residence volume, the VOL
parameter is required.

Default: For LISTCTlG. the OS CVOl is assumed to
reside on the system residence volume.

336 MVS/XA Data Administration: Utilities

--- ------- -

"
\

'\

IEHLIST EXAMPLES

(--

IEHLIST EXAMPLE 1

(

The following examples illustrate some of the uses of IEHLIST.
Figure 115 can be used as a quick-reference guide to IEHLIST
examples. The numbers in the "Example" column refer to examples
that follow.

Operation Devices Comments Example

L ISTCTLG Disk and Source OS CVOL is to 1
system output be listed on the
device system output device.

LISTCTLG Disk system Three OS CVOLs and 2
residence part of a fourth are
device and to be listed on the
system output system output device.
device

LISTPDS Disk and Three partitioned 3
system output directories are to be
device listed on the system

output device.

LISTVTOC Disk and Volume table of 4
system output contents is to be
device listed in edited form;

selected data set
control blocks are
listed in unedited
form.

Figure 115. IEHLIST Example Directory

Examples that use disk in place of actual device numbers must be
changed before use. See "DASD and Tape Device Support" on
page 3 for valid device number notation.

In this example, an OS CVOL named SYSCTLG, residing on a disk
volume (111111), is listed.

The example follows:

//CATLIST JOB
// EXEC PGM=IEHLISi
//SYSPRINT DD SYSOUT=A
//DD2 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//SYSIN DD '*

LISTCTLG VOL=disk=llllll

The control statements are discussed below:

• DD2 DD defines a mountable device on which the volume
containing the source as CVOL is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• LISTCTLG defines the source volume and specifies the list
operation.

IEHLIST Program 337

IEHLIST EXAMPLE 2

IEHLIST EXAMPLE 3

In this example, an OS CVOl residing on the system residence (~-
volume, two as CVOls residing on disk volumes, and a portion of, '
an as CVOl residing on another volume, are listed. =/

//CATlIST JOB
j/
//SYSPRINT
//DDI
/IDD2

EXEC PGM=IEHlIST
DD SYSOUT=A

//

DD UNIT=diskB,VOlUME=SER=IIIIII,DISP=OlD
DD UNIT=(diskA"DEFER),DISP=OlD,

VOlUME=(PRIVATE"SER=(222222»
/ISYSIN DD * lISTCTlG

lISTCTlG
lISTCTlG
lISTCTLG

VOl=diskA=333333
VOL=diskA=444444
VOL=diskA=555555,NODE=A.B.C

The control statements are discussed below:

• DDI DD defines a system residence device. (The first OS
CVOL to be listed resides on the system residence volume.)

• DD2 DD defines a mountable device on which each diskA volume
is mounted as it is required by the program.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The first lISTCTlG statement indicates that the OS CVOl
residing on the system residence volume is to be listed.

• The second and third LISTCTlG statements identify two diskA
disk volumes containing OS CVOls to be listed.

• The fourth lISTCTlG statement identifies a diskA volume
containing an OS CVOl that is to be partially listed. All
data set entries whose beginning qualifiers are "A.B.C" are
listed.

In this example, a partitioned data set directory existing on
the system residence volume is listed. In addition, two
partitioned data set directories existing on another disk volume
are listed.

IllISTPDIR JOB
/1 EXEC PGM=IEHlIST
/ISYSPRINT DD SYSOUT=A
/IDDI DD UNIT=diskB,VOlUME=SER=IIIIII,DISP=OlD
/IDD2 DD UNIT=diskA,VOLUME=SER=222222,DISP=OlD
/ISYSIN DD *

lISTPDS DSNAME=PARSETI
LISTPDS DSNAME=(PARTI,PART2),VOl=diskA=222222

338 MVS/XA Data Administration: utilities

IEHLIST EXAMPLE 4

(-

(

The control statements are discussed below:

•
•

DDl DD defines the system residence device.

DD2 DD defines a mountable device on which a disk volume
(222222) is to be mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The first LISTPDS statement indicates that the partitioned
data set directory belonging to data set PARSETl is to be
listed. This data set exists on the system residence
volume.

• The second LISTPDS statement indicates that partitioned data
set directories belonging to data sets PARTl and PART2 are
to be listed. These data sets exist on a disk volume
(222222).

In this example, a nonindexed volume table of contents is listed
in the first edited format. The edited listing is supplemented
by an unedited listing of selected data set control blocks.

/ /VTOCLIST JOB
// EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//DD2 DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
//SYSIN DD *

LISTVTOC FORMAT,VOL=disk=llllll
LISTVTOC DUMP,VOL=disk=llllll,DSNAME=(SETl,SET2,SET3)

The control statements are discussed below:

• DD2 DD defines a mountable device on which the volume
containing the specified volume table of contents is to be
mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• The first LISTVTOC statement indicates that the volume table
of contents on the specified disk volume is to be listed in
edited form.

• The second LISTVTOC statement indicates that the data set
control blocks representing data sets SETl. SET2, and SET3
are to be listed in unedited form.

IEHLIST Program 339

IEHMOYE PROGRAM

IEHMOVE is a system utility used to move or copy logical
collections of operating system data.

IEHMOVE can be used to move or copy:

• A non-VSAM, non-ISAM data set residing on from one to five
volumes.

• A group of non-V SAM data sets cataloged in an as CVOL,
integrated catalog facility or VSAM catalog.

• An entire as CVOL or portions of an as CVOL.

• A volume of data sets.

• BDAM data sets with variable-spanned records.

A move operation differs from a copy operation in that a move
operation scratches source data if the data set resides on a
DASD source volume and the expiration date has occurred, while a
copy operation leaves source data intact. In addition, for
cataloged data sets, a move operation updates the as CVOL to
refer to the moved version (unless otherwise specified), while a
copy operation leaves the os CVOL unchanged.

The scope of a basic move or copy operation can be enlarged by:

• Including or excluding data sets from a move or copy
operation

• Merging members from two or more partitioned data sets

• Including or excluding selected members

• Renaming moved or copied members

• Replacing selected members

When moving or copying a data set group or a volume containing
password-protected data sets, you must provide the password each
time a data set is opened or scratched.

IEHMOVE always moves or copies any user labels associated with
an input data set. IEHMOVE does not take exits to a user's
label processing routines.

A move or copy operation results in: (1) a moved or copied data
set, (2) no action, or (3) an unloaded5 version of the source
data set. These results depend upon the compatibility of the
source and receiving volumes with respect to:

• Size of the volumes

• Allocation of space on the receiving volume

• Data set organization (sequential, partitioned, or BDAM)

• Movability of the source data set

5 If IEHMOVE is unable to successfully move or copy specified
data, an attempt is made to reorganize the data and place it
on the specified output device. The reorganized data
(called an unloaded data set) is a sequential data set
consisting of 80-byte blocked records that contain the
source data and control information for subsequently
reconstructing the source data as it originally existed.

340 MVS/XA Data Administration: Utilities

(

VOLUME SIZE COMPATIBILITY

Two volumes are compatible with respect to size if:

1. The source record size does not exceed the receiving track
size, or

2. The receiving volume supports the track overflow feature and
the output is to be written with track overflow. (Refer to
"Job Control Language for the Track Overflow Feature" on
page 357 for notes on the track overflow feature.)

When using BDAM data set organization, two volumes are
compatible with respect to size if the source track capacity
does not exceed the receiving track capacity. BDAM data sets
moved or copied to a smaller device type or tape are unloaded.
If you wish to load an unloaded data set, it must be lo_dad to
the same device type from which it was originally unloaded.

Figure 116 shows the results of move and copy operations when
the receiving volume is a DASD volume that is compatible in size
with the source volume. The organization of the source data set
is shown along with the characteristics of the receiving volume.

Receiving Volume Sequential Partitioned BDAM
Characteristics Data Sets Data sets Data Sets

Space allocated Moved or Moved or Moved or
by IEHMOVE copied copied copied
(movable data)

Space allocated Moved or Moved or No
by IEHr10VE copied copied action
(unmovable data)

Space previously Moved or Moved or No
allocated, as copied copied action
yet unused

Space previously No action Moved or No
allocated, copied action
partially used (merged)

Figure 116. Move and Copy Operations--DASD Receiving Volume
with Size Compatible with Source Volume

Figure 117 shows the results of move and copy operations when
the receiving volume is a DASD volume that is not compatible in
size with the source volume. The organization of the source
data set is shown along with the characteristics of the
receiving volume.

Receiving Volume Sequential Partitioned BDAM
Characteristics Data Sets Data Sets Data Sets

Space allocated Unloaded Unloaded Unloaded
by IEHMOVE

Space previously Unloaded Unloaded No
allocated, as action
yet unused

Space previously No action No action No
allocated, action
partially used

Figure 117. Move and Copy Operations--DASD Receiving Volume
with Size Incompatible with Source Volume

IEHMOVE Program 341

I
I

SPACE ALLOCATION

Figure 118 on page 342 shows the results of move and copy
operations when the receiving volume is not a DASD volume. The
organization of the source data set is shown with the
characteristics of the receiving volume.

Receiving Volume
Characteristics Sequential Partitioned EDAM

Movable data Moved or Unloaded Unloaded
copied

Unmovable data Unloaded Unloaded No
action

Figure 118. Move and Copy Operations--Non-DASD Receiving Volume

Space can be allocated for a data set on a rece1v1ng volume
either by you (through the use of DD statements in a prior job
step) or by IEHMOVE in the IEHMOVE job step. If the source data
is unmovable (that is, if it contains location-dependent code),
you should allocate space on the receiving volume using absolute
track allocation to ensure that the data set is placed in the
same relative location on the receiving volume as it was on the
source volume. Unmovable data can be moved or copied if space
is allocated by IEHMOVE, but the data may not be in the same
location on the receiving volume as it was on the source volume.
When data sets are to be moved or copied between unlike DASD
devices, a secondary allocation should be made to ensure that
ample space is available on the receiving volume.

Space for a new data set should not be allocated by you when a
BDAM data set is to be moved or copied, not unloaded, because
IEHMOVE cannot determine if the new data set is empty.

If IEHMOVE performs the space allocation for a new data set, the
space requirement information of the old data set (if available)
is used. This space requirement information is obtained from
the DSCB of the source data set. if it is on a DASD volume, or
from the control information in the case of an unloaded data
set.

If space requirement information is available, IEHMOVE uses this
information to derive an allocation of space for the receiving
volume, taking into account the differences in device
characteristics, such as track capacity and overhead factors.
However, when data sets with variable or undefined record
formats are being moved or copied between unlike DASD devices,
no assumption can be made about the space that each individual
record needs on the receiving device.

In general, when variable or undefined record formats are to be
moved or copied, IEHMOVE attempts to allocate sufficient space.
This might cause too much space to be allocated under the
following circumstances:

• When moving or copying from a device with a relatively large
block overhead to a device with a smaller block overhead,
the blocks being small in relation to the block size.

• When moving or copying from a device with a relatively small
block overhead to a device with a larger block overhead, the
blocks being large in relation to the block size.

BDAM data sets with variable or undefined record formats always
have the same amount of space allocated by IEHMOVE. This
practice preserves any relative track addressing system that
might exist within the data sets.

342 MVS/XA Data Administration: Utilities

-------- --------------

(~

(

(

If a sequential dataset, which is not an unloaded data set, on
a non-DASD volume is to be moved or copied to a DASD volume, and
space attributes are not available through a previous
allocation, IEHMOVE makes a default space allocation. The
default allocation consists of a primary allocation of 72,500
bytes of DASD storage (data and gaps) and up to 15 secondary
allocations of 36,250 bytes each.

Space cannot be previously allocated for a partitioned data set
that is to be unloaded unless the SPACE parameter in the DD
statement making the allocation implies sequential organization.
BDAM data sets should not be previously allocated because
IEHMOVE cannot determine whether they are empty or not.

If a move or copy operation is unsuccessful, the source data
remains intact.

If a move or copy operation is unsuccessful and space was
allocated by IEHMOVE, all data associated with that operation is
scratched from the receiving DASD volume. If the receiving
volume was tape, it will contain a partial data set.

If a move or copy operation is unsuccessful and space was
previously allocated, no data is scratched from the receiving
volume. If, for example, IEHMOVE moved 104 members of a
lOS-member partitioned data set and encountered an input/output
error while moving the 105th member:

• The entire partitioned data set is scratched from the
receiving volume if space was allocated by IEHMOVE.

• No data is scratched from the receiving volume if space was
previously allocated. In this case, after determining the
nature of the error, you need move only the 105th member
into the receiving partitioned data set.

If a data set that has only user trailer labels is to be moved
from a tape volume to a DASD volume, space must be previously
allocated on the DASD volume to ensure that a track is reserved
to receive the user labels.

REB LOCKING DATA SETS

Data sets with fixed or variable records can be reblocked to a
different block size by previously allocating the desired block
size on the receiving volume. No reblocking can be performed
when loading or unloading. Also, no reblocking can be performed
on data sets with variable spanned or variable blocked spanned
records.

When moving or copying data sets with undefined record format
and reblocking to a smaller block size (that is, transferring
records to a device with a track capacity smaller than the track
capacity of the original device), you must make the block size
for the receiving volume equal to or larger than the size of the
largest record in the data set being moved or copied.

When copying data sets with undefined record format to a device
with a larger track capacity, IEHMOVE will not reblock the
output data set to a larger block size. IEHMOVE simply copies
the source data set to the target data set.

However, if the target data set is preallocated with a larger
block size than the source data set, the data set becomes
unusable because the source block size is used during the copy.

Blocked format data sets that do not contain user data TTRNs or
keys can be reblocked or unblocked by including the proper
keyword subparameters in the DCB operand of the DD statement
used to previously allocate space for the data set. The new
blocking factor must be a multiple of the logical record length
originally assigned to the data set. For a discussion of user
data TTRNs, see Data Administration Gyide.

IEHMOVE Program 343

USING IEHMOVE WITH RACF

If the Resource Access Control Facility (RACF) is active, the
following considerations apply:

• You must have valid RACF authorization to access any
RACF-defined data sets with IEHMOVE. ALTER authorization is
required to access the source data set for s MOVE function,
as the source data set is scratched. When moving a volume
or group of data sets, you must have adequate access
authorization to all of the RACF-protected data sets on the
volume or in the group.

• If you have the RACF ADSP attribute and IEHMOVE is to
allocate space for the receiving data set, that data set
will be automatically defined to RACF. If the data set does
not have your userid as the first level qualifier, at least
one of the following conditions must be met:

•

You specify MOVE or COPY with RENAME so that the first
level qualifier is the correct userid

The data set being moved or copied is a group data set
and You are connected to the group with CREATE authority

You have the OPERATION attribute

If COPYAUTH is specified and the input data set is
RACF-protected (whether or not you have the ADSP attribute)
and the output data set is not preallocated, then the
receiving data set of a MOVE or COPY operation is given a
copy of the input data set's RACF protection and access list
during allocation, governed by the same restrictions
described above for defining a data set for a user with the
ADSP attribute. You must have ALTER access authorization to
the input data set to either MOVE or COPY using COPYAUTH.

MOVING OR COPYING A DATA SET

IEHMOVE can be used to move or copy sequential, partitioned, and
BDAM data sets, as fo~lows:

• A sequential data set can be:

1. Moved from one DASD volume or non-DASD volume to another
(or to the same volume provided that it is a DASD
volume), or

2. C~pied from one volume to another (or to the same volume
provided that the data set name is changed and the
receiving volume is a DASD volu~e).

• A partitioned data set can be:

1. Moved from one DASD volume to another (or to the same
volume), or

2. Copied from one DASD volume to another (or to the same
volume provided that the data set name is changed).

• A BDAM data set can be moved or copied from one DASD volume
to another provided that the receiving device type is the
same device type or larger, and that the record size does
not exceed 32K bytes.

344 MVS/XA Data Administration: Utilities

SEQUENTIAL DATA SETS

(

Figure 119 shows basic and optional move and copy operations for
sequential data sets.

Operation Basic Actions Optional Actions

Move Move the data set. Prevent automatic
Sequential For DASD, scratch the cataloging of the

source data. For moved data set.
non-VSAM cataloged Rename the moved data
data sets, update the set.
appropriate catalog to
refer to the moved
data set.

Copy Copy the data set. Delete the catalog or
Sequential The source data set is OS CVOL entry for the

not scratched. The source data set.
catalog is not updated Catalog the copied
to refer to the copied data set on the
data set. receiving volume.

Rename the copied data
set.

Figure 119. Moving and Copying Sequential Data Sets

When moving or copying sequential data sets on DASD. IEHMOVE
execution time can be reduced by using multiple BSAM buffers for
input and output.

The minimum number of buffers required for enhanced IEHMOVE copy
performance is 4: two for input and two for output. The size of
an input buffer is computed as: (INPUT BLOCKSIZE + KEY LENGTH) +
DECB LENGTH + 4. The size of an output buffer is computed as:
(OUTPUT BLOCKSIZE + KEY LENGTH) + DECB LENGTH + 4 + 16.

The maximum number of input buffers used by IEHMOVE is two times
the number of buffers that will fit in the input track size.
The maximum number of output buffers used by IEHMOVE is two
times the number of buffers that will fit in the output track
size.

If space for the minimum of four buffers is not available, a
single buffer is used and message IEH476I is issued.

You can code the JCL REGION parameter in the JOB or EXEC
statement to control buffer storage allocation. For details on
how to code the REGION parameter, see ~.

Message IEH477I, describing the number and size of your buffers,
will be issued each time multiple BSAM buffers are used. If you
do not specify your region size to achieve the maximum number of
buffers, the last line of the message will indicate the amount
by which the value of the REGION parameter should be increased
in order to obtain the maximum number of buffers.

The execution time of an IEHMOVE move or copy operation will
vary with the number of buffers available. the size of the data
sets, and the block size.

IEHMOVE Program 345

PARTITIONED DATA SETS

Figure 120 shows basic and optional move and copy operations for
partitioned data sets.

Operation Basic Actions

Move Move the data set.
Partitioned Scratch the source

data. For non-VSAM
cataloged data sets,
update the appropriate
catalog to refer to
the moved data set.

COpy Copy the data set.
Partitioned The source data is not

scratched. The
catalog is not updated
to refer to the copied
data set.

optional Actions

Prevent automatic
cataloging of the
moved data set.
Rename the moved data
set. Reallocate
directory space. (Not
possible if the space
was not allocated by
IEHMOVE during this
move function.)
Perform a merge
operation using
members from two or
more data sets. Move
only selected members.
Replace members.
Unload the data set.

Delete the catalog or
OS CVOL entry for the
source data set.
Catalog the copied
data set. Rename the
copied data set.
Reallocate directory
space. (Not possible
if the space
previously allocated
is partially used.)
Perform a merge
operation using
members from two or
more data sets. Copy
only selected members.
Replace members.
Unload the data set.

Figure 120. Moving and Copying Partitioned Data Sets

IEHMOVE moves or copies partitioned members in the order in
which they appear in the partitioned directory. That is, moved
or copied members are placed in collating sequence on the
receiving volume.

Figure 121 on page 347 shows a copied partitioned data set. The
members are copied in the order in which they appear in the
partitioned directory. The IEBCOPY utility program (see
"IEBCOPV Program" on page 36) can be used to copy data sets
whose members are not to be collated.

346 MVS/XA Data Administration: Utilities

(

(-

(~

Source data set Copied data set

Figure 121. Partitioned Data Set Before and After an IEHMOVE
Copy Operation

Members that are merged into an existing data set are placed. in
collating sequence. after the last member in the existing data
set. If the target data set contains a member with the same
name as the data set to be moved. the member will not be
moved/copied unless the REPLACE statement is coded.

Figure 122 shows members from one data set merged into an
existing data set. Members Band F are copied in collating
sequence.

Existing data set
prior to merge

Figure 122.

Existing data set
after merge

Sou rce data set

Merging Two Data Sets Using IEHMOVE

Figure 123 on page 348 shows how members from two data sets are
merged into an existing data set. Members from additional data
sets can be merged in a like manner. Members F, B, D, and E
from the source data sets are copied in collating sequence.

IEHMOVE Program 347

BDAM DATA SETS

Existing data set
prior to merge

Sou rce data sets

Note: New members
are placed in collating
sequence after existing
members

Figure 123. Merging Three Data Sets Us~ng IEHMOVE

When moving or copying a BDAM data set from one device to
another device of the same type, relative track and relative
block integrity are maintained.

When moving or copying a BDAM data set to a larger device,
relative track integrity is maintained for data sets with
variable or undefined record formats; relative block integrity
is maintained for data sets with fixed reco~d formats.

When moving or copying a BDAM data set to a smaller device or a
tape, the data set is unloaded. An unloaded data set is loaded
only when it is moved or copied to the same device type from
which it was unloaded.

MULTIVOLUME DATA SETS

IEHMOVE can be used to move or copy multivolume data sets. To
move or copy a multivolume data set, specify the complete volume
list in the VOL=SER param~ter on the DD statement. A maximum of
5 volumes can be specified. To move or copy a data set that
resides on more than one tape volume, specify the volume serial
numbers of all the tape volumes and the sequence numbers of the
data set on the tape volumes in the utility control statement.
(You can specify the sequence number even if the data set to be
moved or copied is the only data set on a volume.) To move or
copy a data set to more than one tape volume, specify the volume

348 MVS/XA Data Administration: Utilities

UNLOADED DATA SETS

UNMOVABLE DATA SETS

serial numbers of all the receiving volumes in the utility
control statement.

If IEHMOVE is unable to successfully move or copy specified
data. an attempt is made to reorganize the data and place it on
the specified output device. The reorganized data (called an
unloaded data set) is a sequential data set consisting of
80-byte blocked records that contain the source data and control
information for subsequently reconstructing the source data as
it originally existed.

When an unloaded data set is moved or copied (via IEHMOVE) to a
device that will support the data in its true form. the data is
automatically reconstructed. For example. if you attempt to
move a partitioned data set to a tape volume. the data is
unloaded to that volume. You can re-create the data set merely
by moving the unloaded data set to a DASD volume.

A data set with the unmovable attribute can be moved or copied
from one DASD volume to another or to the same volume provided
that space has been previously allocated on the receiving
volume. Change the name of the data set if move or copy is to
be done to the same volume. SVClIB can be moved or copied to
another location on the system residence volume. provided that
space has been previously allocated on that volume. The
IEHPROGM utility program (see "IEHPROGM Program" on page 385)
must be used immediately after such a move operation to rename
the moved version SYSl.SVClIB; If the operation was a 'copy'.
IEHPROGM must be used to scratch the old version and to rename
the copied version.

MOVING OR COPYING A GROUp OF CATALOGED DATA SETS

IEHMOVE can be used to move or copy a group of non-V SAM data
sets that are cataloged in integrated catalog facility or VSAM
catalogs and whose names are qualified by one or more identical
names. For example. a group of data sets qualified by the name
A.B can include data sets named A.B.D and A.B.E. but could not
include data sets named A.C.D or A.D.F.

If you specify that the data set group is cataloged in an OS
CVOl. two additional options are available. First. additional
data sets not belonging to the specified data set group can be
included in the move or copy operation. Second, data sets
belonging to the group can be excluded from the requested
operation.

Before copying/moving a DSGROUP that is cataloged in an OS CVOl,
the volume containing the OS CVOl must be defined in the
integrated catalog facility or VSAM master catalog. For details
on how this is done, see Catalog Administration Guide.

If a group of data sets is moved or copied to magnetic tape. the
data sets must be retrieved one by one by data set name and
file-sequence number. or by file-sequence number for unlabeled
or nonstandard labeled tapes.

Access method services can be used to determine the structure of
integrated catalog facility or VSAM catalogs. For more
information, see Access Method Services Reference.

Figure 124 shows basic and optional move and copy operations for
a group of non-VSAM cataloged data sets.

IEHMOVE Program 349

Operation

Move group
of
non-VSAM
cataloged
data sets

Copy group
of
non-VSAM
cataloged
data sets

Basic Actions

Move the data set
group (excluding
password-protected
data sets) to the
specified volumes.
Scratch the source
data sets (BDAM only).
Merging is not done.

Copy the data set
group (excluding
password-protected
data sets). Source
data sets are not
scratched. Merging is
not done.

Optional Actions

Prevent updating of
the appropriate
catalog. Include
password-protected
data sets in the
operation. Unload
data sets. If a data
set group is cataloged
in an OS CVOL, you may
INCLUDE or EXCLUDE
data sets during the
operation.

Include
password-protected
data sets in the
operation. Delete
catalog entries for
the source data sets.
Catalog the copied
data sets on the
receiving volumes.
Unload a data set or
sets. If a data set
group is cataloged in
an OS CVOL, you may
INCLUDE or EXCLUDE
data sets during the
operation.

Figure 124. Moving and Copying a Group of Non-VSAM Cataloged
Data Sets

MOVING .OR COPYING AN OS CVOL

IEHMOVE can be used to move or copy an OS CVOL or portions of an
OS CVOL without copying the data sets represented by the
cataloged entries. If the OS CVOL is in an unloaded form, all
entries are moved or copied. The SYSCTLG (system catalog) data
set need not be defined on the receiving volume before the
operation. If, however, SYSCTLG was defined before the
operation, the. data set organization must not have been
specified in the DCB field. Moved or copied entries are merged
with any existing entries on the receiving volume. The
receiving volume must be a DASD volume unless the OS CVOL is to
be unloaded.

If an OS CVOL is copied, it remains unchanged. If it is moved,
the moved entries are uncataloged from the source CVOL.
(However, empty GDG names and partial indexes are left in the
source CVOL.) If the entire CVOL is moved, the old CVOL is
scratched.

350 MVS/XA Data Administration: Utilities

Figure 125 shows basic and optional move and copy operations for
the as CVOL.

Operation Basic Actions Optional Actions

Move as Move entries from the Exclude selected
CVOL as CVOL to the entries from

specified DASD volume. operation. Move an
Uncatalog all entries unloaded version of
moved from the source the os CVOL. Unload
CVOL. Scratch the the os CVOL.
source CVOl if the
entire CVOl is moved.

Copy as COpy entries from the Exclude selected
CVOL as CVOl to the entries from the

speci fi ed DASD. The operation. COpy an
source OS CVOl is not unloaded version of
scratched. the as CVOL. Unload

the os CVOL.

Figure 125. Moving and Copying the as CVOL

Before copying or moving an OS CVOL, both the volume containing
the as CVOl and the volume to which the as CVOL is to be moved
must be defined in the integrated catalog facility or VSAM
master catalog.

MOVING OR COPYING A VOLUME OF DATA SETS

IEHMOVE can be used to move or copy the data sets of an entire
DASD volume to another volume or volumes. A move operation
differs from a copy operation in that the move operation
scratches source data sets, while the copy operation does not.
For both operations, any cataloged entries associated with the
source data sets remain unchanged. The IEHPROGM utility program
can be used to delete as CVOL entries for all of the cataloged
data sets and recatalog them according to their new location.
(See "IEHPROGM Program" on page 385.)

If the source volume contains a SYSCTlG data set, that data set
is the last to be moved or copied onto the receiving volume.

If a volume of data sets is moved or copied to tape, sequential
data sets are 'moved'; partitioned and BDAM data sets are
'unloaded'. The data sets must be retrieved one by one by data
set name and file-sequence number, or by file-sequence number
for unlabeled or nonstandard labeled tapes.

When copying a volume of data sets, you have the option of
cataloging all source data sets in a SYSCTlG data set on a
receiving volume. However, if a SYSCTLG data set exists on the
source volume, error messages indicating that an inconsistent
index structure exists are generated when the source SYSCTlG
entries are merged into the SYSCTlG data set on the receiving
volume.

The move-volume feature does not merge partitioned data sets.
If a data set on the volume to be moved has a name identical to
a data set name on the receiving volume, the data set is not
moved or merged onto the receiving volume.

The copy-volume feature does merge partitioned data sets. If a
data set on the volume to be copied has a name identical to a
data set name on the receiving volume, the data set is copied
and merged onto the receiving volume.

IEHMOVE Program 351

Figure 126 shows basic and optional move and copy operations for
a volume of data sets.

Operation Basic Actions optional Actions

Move a Move all data sets not Include
volume of protected by a password-protected
data sets password to the data sets in the

speci fi ed DASD operation. Unload the
volumes. Scratch the data sets.
source data sets for
DASD volumes. The OS
CVOl is not updated.

COpy a Copy all data sets not Include
volume of protected by a password-protected
data sets password to the data sets in the

specified DASD volume. operation. Catalog
The source data sets all copied data sets
are not scratched. in the OS CVOl.

Unload the data sets.

Figure 126. Moving and Copying a Volume of Data Sets

MOVING OR COPYING BDAM DATA SETS WITH VARIABLE-SPANNED RECORDS

IEHMOVE can be used to move or copy BDAM data sets with variable
spanned records from one DASD volume to a compatible DASD
volume, provided that the record size does not exceed 32K bytes.
(See "Volume Size Compatibility" on page 341 for information on
volume compatibility.)

Because a BDAM data set can reside on one to five volumes (all
of which must be mounted during any move or copy operation), it
is possible for the data set to span volumes. However, single
variable-spanned records are contained on one volume.

Relative track integrity is preserved in a move or copy
operation for spanned records. Moved or copied BDAM data sets
occupy the same relative number of tracks that they occupied on
the source device.

If a BDAM data set is unloaded (moved or copied to a smaller
device or tape), it must be loaded back to the same device type
from which it was originally unloaded.

When moving or copying variable-spanned records to a larger
device, record segments are combined and respanned if necessary.
Because the remaining track space is available for new records,
variable-spanned records are unloaded before being moved or
copied back to a smaller device.

If you wish to create a BDAM data set without using data
management BDAM macros, all data management specifications must
be followed. Special attention must be given to data management
specifications for RO track capacity record content, segment
descriptor words, and the BFTEK=R parameter. For more
information on using data management specifications, see ~
Administration Gyide.

When moving or copying a multivolume data set, the secondary
allocation for BDAM data sets should be at least two tracks.
(See the "WRITE" macro in Data Administration: Macro Instruction
Reference.)

352 MVS/XA Data Administration: Utilities

INPUT AND OUTPUT

(-

RETURN CODES

(

CONTROL

(

IEHMOVE uses the following input:

• One or more data sets, which contain the data to be moved,
copied, or merged into an output data set.

• A control data set, which contains utility control
statements that are used to control the functions of the
program.

• A work data set, which is a work area used by IEHMOVE.

IEHMOVE does not support VIO (virtual input/output) data sets.

IEHMOVE produces the following output:

• An output data set, which is the result of the move, copy,
or merge operation.

• A message data set, which contains informational messages
(for example, the names of moved or copied data sets) and
error messages, if applicable.

IEHMOVE returns a code in register 15 to indicate the results of
program execution. The return codes and their meanings are
listed below.

Code Meaning

00 (00 hex) Successful completion.

04 (04) A specified function was not completely successful.

OS (OS)

12 (OC)

Processing continues.

A condition exists from which recovery is possible.
Processing continues. .

An unrecoverable error exists. The job step is
terminated.

16 (10) It is impossible to OPEN the SYSIN or SYSPRINT data
set. The job step is terminated.

Figure 127. IEHMOVE Return Codes

IEHMOVE is controlled by job control statements and utility
control statements. The job control statements are used to
execute or invoke the program, define the devices and volumes
used and produced by IEHMOVE, and prevent data sets from being
deleted inadvertently.

Utility control statements are used to control the functions of
the program and to define those data sets or volumes that are to
be used.

IEHMOVE supports 3-byte UCB addresses and does not use device
allocation tables. The maximum number of UCBs allowed under
MVS/XA is 4096.

IEHMOVE Program 353

JOB CONTROL STATEMENTS

Figure 128 shows the job control statements for IEHMOVE.

Statement

JOB

EXEC

SYSPRINT DD

SYSUTl DD

anynamel DD

anyname2 DD

tape DD

SYSIN DD

Use

Initiates the job.

Specifies the program name (PGM=IEHMOVE) or, if
the job control statements reside in a procedure
library, the procedure name. This statement can
include optional PARM information; see "PARM
Information on the EXEC Statement."

Defines a sequential message data set. The data
set can be written onto a system output device, a
magnetic tape volume, or a direct access volume.

Defines a volume on which three work data sets
required by IEHMOVE are allocated.

Defines a permanently mounted DASD volume. (The
system residence volume is considered to be a
permanently mounted volume.) This statement is
required.

Defines a mountable device type. At least one
anyname2 DD statement is required. Multiple
statements must have unique names.

Defines a mountable tape device.

Defines the control data set. The data set,
which contains utility control statements,
usually follows the job control statements in the
input stream; however, it can be defined either
as a sequential data set or as a member of a
procedure library.

Figure 128. IEHMOVE Job Control Statements

With the exception of the SYSIN and SYSPRINT DD statements, all
DD statements in this table are used as device allocation
statements, rather than as true data definition statements. The
maximum number of these allocated devices cannot exceed 256 per
job step.

PARM Information on the EXEC Statement

The EXEC statement for IEHMOVE can contain PARM information that
is used by the program to allocate additional work space and/or
control line density on output listings. The EXEC statement can
be coded, as follows:

EXEC PGM=IEHMOVE[,PARM='POWER=n'
[,'LINECNT=~'ll

The POWER=n parameter is used to request that the normal amount
of space allocated for work areas be increased n times (1 to
999). The POWER parameter is used when 750 or more members are
being moved or copied. The progression for the value of n is:

• POWER=2 when 750 to 1500 members are to be moved or copied.

354 MVS/XA Data Administration: Utilities

(

• POWER=3 when 1501 to 2250 members are to be moved or copied.

• POWER=4 when 2251 to 3000 members are to be moved or copied.

If POWER=2, the work space requirement on the SYSUTI volume is
two times the basic requirement; if POWER=3, work space
requirement is three times the basic requirement, etc. For
example, if POWER=2, three areas of 26, 26, and 52 contiguous
tracks on a 3380 must be available.

When moving or copying an OS CVOL, the value of the POWER
parameter can be calculated, as follows:

n=(lOD + V + 20G)/4000

where D is the total number of data sets, aliases, and
generation data set entries (which is the number of data set
names printed by the IEHLIST utility program when the LISTCTLG
statement is specified); V is the total number of volumes used
by these data sets (which is the number of lines printed by the
IEHLIST utility program when the LISTCTLG statement is
specified); and G is the number of generation data sets.
Approximate values can be used:

• POWER=2 when 350 to 700 data sets are cataloged.

• POWER=3 when 701 to 1,050 data sets are cataloged.

• POWER=4 when 1,051 to 1,400 data sets are cataloged.

The LINECNT=xx parameter specifies the number of lines per page
in the listing of the SYSPRINT data set; xx is a two-digit
number in the range 04 through 99.

For more information on PARM values, see Supervisor Services and
Macro Instructions.

SVSPRINT DD statement

SVSUTl DD statement

The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified.

The SYSUTI DD statement must be coded:

//SYSUTI DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume
serial number. The DISP=OLD specification prevents the
inadvertent deletion of a data set.

At least three utility work areas of 13, 13, and 26 contiguous
tracks, respectively, must be available for work space on the
volume defined by the SYSUTI DD statement. (This figure is
based on a 3380 being the work volume. If a direct access
device other than a 3380 is used, an equivalent amount of space
must be available.)

Note: IEHMOVE uses nonstandard data set names to allocate its
work data sets. The names start with one or more asterisks.
These work data sets are deleted at completion of the requested
functions.

However, if IEHMOVE does not terminate normally (abend, system
crash, etc.), these work data sets remain on the DASD volume and
cannot be deleted with any IBM utility. You must delete them by
executing an IEFBR14 job and specifying their data set name(s)
in single quotes with DISP=(OLD,DELETE).

IEHMOVE Program 355

anynamel DD statement

One anynamel DD statement must be included for each permanently ~
mounted volume referred to in the job step.

The anynamel DD statement should be coded:

//anynamel DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

In the anynamel DD statement, the UNIT and VOLUME parameters
define the device type and volume serial number. The DISP=OLD
specification prevents the inadvertent deletion of a data set.

When unloading a data set
data set name (DSN=) must
data set to be unloaded.
can only be loaded to the
unloaded.

from one DASD volume to another, the
be coded on the DD statement for the
An unloaded data set on a DASD volume
same device type from which it was

(The anynamel DD statement is arbitrarily assigned the ddname
DDl in the IEHMOVE examples.)

anyname2 DD statement

One anyname2 DD statement must be included for each mountable
device to be used in the job step. Multiple anyname2 DD
statements must have unique names.

When IEHMOVE is dynamically invoked in a job step containing
another program, the DD statements defining mountable devices
for IEHMOVE must be included in the job stream prior to DD
statements defining data sets required by the other program.

The anyname2 DD statement should be coded:

//anyname2 DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume
serial number. The DISP=OLD specification prevents the
inadvertent deletion of a data set.

When unloading a data set
data set name COSN=) must
data set to be unloaded.
can only be loaded to the
unloaded.

from one DASD volume to another, the
be coded on the 00 statement for the
An unloaded data set on a DASD volume
same device type from which it was

(The anyname2 DO statement is arbitrarily assigned the ddname
DD2 in the IEHMOVE examples.)

When the number of volumes to be processed is greater than the
number of devices defined by DD statements, there must be an
indication (in the applicable DD statements) that multiple
volumes are to be processed. This indication can be in the form
of deferred mounting, as follows:

//anyname2 DD UNIT=Cxxxx"DEFER),VOLUME=CPRIVATE, ...),
// DISP=(... ,KEEP)

See Appendix B, "DD Statements for Defining Mountable Devices"
on page 423 for information on defining mountable devices. (DD
statements defining additional mountable device types are
assigned names DD3, 004, etc., in the IEHMOVE examples.) Unit
affinity cannot be used on DD statements defining mountable
devices.

A merge operation requires that one DD statement defining a
mountable device be present for each source volume containing
data to be included in the merge operation.

356 MVS/XA Data Administration: Utilities

c

(

tape DD statement

SVSIN DD statement

The tape DD statement can be coded:

//tape DD DSNAME=xxxxxxxx, UNIT=xxxx, VOLUME=SER=xxxxxx,
// OISP=(... ,KEEP),LABEL=(... , ...),DCB=(TRTCH=C,DEN=x)

When unloading a data set
data set name (DSN=) must
data set to be unloaded.
can only be loaded to the
unloaded.

from one DASD volume to another, the
be coded on the DO statement for the
An unloaded data set on a DASD volume
same device type from which it was

A utility control statement parameter refers to the tape DD
statement for label and mode information.

The date on which a data set is moved or copied to a magnetic
tape volume is automatically recorded in the HDRl record of a
standard tape label if a TODD parameter is specified in a
utility control statement. An expiration date can be specified
by including the EXPDT or RETPD subparameters of the LABEL
keyword in the DO statement referred to by a TODD parameter.

A sequence number, for a data set on a tape volume, or a
specific device address (for example, unit address 190), must be
specified on a utility control statement instead of a reference
to a DO statement. To move or copy a data set from or to a tape
volume containing more than one data set, specify the sequence
number of the data set in the utility control statement. To
move or copy a data set from or to a specific device, specify
the unit address (rather than a group name or device type) in
the utility control statement. To copy to a unit record or
unlabeled tape volume, specify any standard name or number in
the utility control statement.

The tape DD statement can be used to communicate DCB attributes
of data sets residing on tape volumes that do not have standard
labels to IEHMOVE. If no DCB attributes are specified, an
undefined record format and a block size of 2560 are assumed.
However, in order to recognize unloaded data sets on an
unlabeled tape volume, the DCB attributes must be specified as
follows:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800).

IEHMOVE automaticallY calculates and allocates the amount of
space needed for the work areas. No SPACE parameter, therefore,
should be coded in the SYSUTI DD statement. If, in the PARM
field of the EXEC statement, POWER=3 is specified, the work
space requirement is three times the basic requirements, etc.

Prior space allocations can be made by specifying a dummy
execution of the IEHPROGM utility program before the execution
of IEHMOVE.

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

Job Control Language for the Track Overflow Feature

A data set containing track overflow records can be moved or
copied if the source volume and the receiving volume are mounted
on DASD that support the track overflow feature. (For BDAM data
sets, the source and receiving devices must be the same device
type.)

A data set that was written without track overflow can be moved
or copied with or without track overflow or vice versa if the
following conditions are met:

IEHMOVE Program 357

•

•

Space was allocated for the data set prior to the request
for a move or copy operation.

The DD statement used for that allocation included the
subparameter to specify the changed track overflow value and
all other desired values. (The RECFM specifications
assigned when the data set was originally created are
overridden by the RECFM subparameter in this DD statement.)

If space has not been allocated, or if RECFM was not specified
when space was allocated, the data set is moved or copied in
accordance with RECFM specifications that were made when the
data set was originally created. This track overflow attribute
is not retained for a sequential data set that is moved or
copied to a device other than a DASD.

UTILITY CONTROL STATEMENTS

IEHMOVE is controlled by the utility control statements shown in
Figure 129.

Statement

MOVE DSNAME

COPY DSNAME

MOVE DSGROUP

COPY DSGROUP

MOVE PDS

COPY PDS

MOVE VOLUME

Use

Moves a data set.

Copies a data set.

Moves a group of non-VSAM cataloged data sets.

Copies a group of non-VSAM cataloged data sets.

Moves a partitioned data set.

Copies a partitioned data set.

Moves a volume of data sets.

COPY VOLUME Copies a volume of data sets.

MOVE CATALOG Moves as CVOL entries.

COPY CATALOG Copies as CVOL entries.

Figure 129. IEHMOVE Utility Control Statements

In addition, there are four sybordinate control statements that
can be used to modify the effect of a MOVE DSGROUP, COPY
DSGROUP, MOVE PDS, COPY PDS, MOVE CATALOG, or COPY CATALOG
operation. The subordinate control statements are:

• INCLUDE statement. which is used to enlarge the scope of a
MOVE DSGROUP (with CVOL), COpy DSGROUP (with CVOL), MOVE
PDS, or COPY PDS statement by including a member or data set
not explicitly included by the statement it modifies.

• EXCLUDE statement, which is used with a MOVE DSGROUP (with
CVOL), COPY DSGROUP (with CVOL), MOVE PDS, COPY PDS, MOVE
CATALOG, or COPY CATALOG statement to exclude data set(s), a
member or as CVOL entry(ies) from a move or copy operation.

•

•

REPLACE statement, which is used with a MOVE PDS or COPY PDS
statement to exclude a member from a move or copy operation
and to replace it with a member from another partitioned
data set.

SELECT statement, which is used with MOVE PDS or COPY PDS
statements to select members to be moved or copied and,
optionally, to rename the specified members.

358 MVS/XA Data Administration: Utilities

-------------------_. __ ._----

.. <c j

'.(.. , (. .
"-./

(

(

(

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

IEHMOVE Program 359

MOVE DSNAME statement

The MOVE DSNAME statement is used to move a data set. The
source data set is scratched.

If the data set is cataloged (in an OS CVOl, integrated catalog
facility or VSAM catalog), the catalog is automaticallY updated
unless UNCATlG/FROM is specified.

The format of the MOVE DSNAME statement is:

[.l.s!..b.!ll J MOVE DSNAME=D..9..Dl.e.

,TO=device=l.i.rl

[,{FROM=deyice=~ICVOL=deyice=serial)]

[,UNCATLGl

[,RENAME=D..9..Dl.e.l

[,FROMDD=ddname]

[, TODD= ddna me]

[,UNLOAD]

[,COPYAUTHl
.<'\

COPY DSNAME Statement

The COPY DSNAME statement is used to copy a data set.

The source data set, if cataloged, remains cataloged unless
UNCATLG or CATlG is specified without the RENAME and FROM
parameters.

The format of the COPY DSNAME statement is:

[.l.s!..b.!ll 1 COPY DSNAME=D..9..Dl.e.

,TO=deyice=~

[,{FROM=deyice=~ICVOL=deyice=serial)l

[,UNCATLGl

[,CATLGl

[,RENAME=D..9..Dl.e.]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

360 MVS/XA Data Administration: Utilities

'\
\

({ .. '\
.j

(

(-

MOVE DSGROUP statement

The MOVE DSGROUP statement is used to move groups of data sets
whose names are partially qualified by one or more identical
names. The data sets may be cataloged on several catalogs (OS
CVOL, integrated catalog facility or VSAM). Source data sets
are scratched. Data set groups to be moved must reside on DASD
volumes. Only data sets that could be moved by MOVE DSNAME or
MOVE PDS can be moved by MOVE DSGROUP. Alias entries in
integrated catalog facility or VSAM catalogs for the data sets
are lost and can be replaced with access method services. For
more information, see Access Method Services Reference.

INCLUDE and EXCLUDE statements, discussed later in this chapter,
can be used to add to or delete data sets from the group, if
CVOL is specified.

MOVE DSGROUP operations cause the catalog to be updated
automatically unless UNCATLG is specified.

The format of the MOVE DSGROUP statement is:

[ls..b.!lll MOVE DSGROUP[=~l

, TO=device=.li.§.1

[,CVOL=device=seriall

[,PASSHORDl

[,UNCATLGl

[,TODD=ddnamel

[,UNLOAD]

[,COPYAUTH]

COpy DSGROUP statement

The COPY DSGROUP statement is used to copy groups of data sets
whose names are partially qualified by one or more identical
names. The data sets may be cataloged on several catalogs (OS
CVOL, integrated catalog facility or VSAM). Only data sets that
can be copied with COPY DSNAME or COPY PDS can be copied with
COPY DSGROUP. Data set groups to be copied must reside on DASD
volumes.

INCLUDE and EXCLUDE statements, discussed later in this chapter,
can be used to add to or delete data sets from the group, if
CVOL is specified.

The source data sets remain cataloged unless UNCATLG or CATLG is
specified without the RENAME and FROM parameters.

IEHMOVE Program 361

MOVE PDS statement

The format of the COPY DSGROUP statement is:

[~] COpy DSGROUPt=name]

,TO=device=~

[,CVOL=device=seriall

[,PASSWORD]

[,UNCATLG]

[,CATLGl

E,TODD=ddname]

[,UNLOADl

[,COPYAUTH]

The MOVE PDS statement is used to move partitioned data sets.
When used in conjunction with INCLUDE, EXCLUDE, REPLACE, or
SELECT statements, the MOVE PDS statement can be used to merge
selected members of several partitioned data sets or to delete
members.

If IEHMOVE is used to allocate space for an output partitioned
data set, the MOVE PDS statement can be used to expand a
partitioned directory.

If the receiving volume contains a partitioned data set with the
same name, the two data sets are merged. The source data set is
scratched.

MOVE PDS causes the appropriate catalog to be updated
automatically unless UNCATlG/FROM is specified.

The format of the MOVE PDS statement is:

[~] MOVE PDS=~

,TO=device=seriall~

[,{FROM=device=serialICVOL=device=serialll

[,EXPAND=nn]

[,UNCATLGl

[,RENAME=~l

[,FROMDD=ddnamel

[,TODD=ddnamel

[,UNLOADl

[,COPYAUTHl

362 MVS/XA Data Administration: Utilities

t"
~_/

COPY PDS statement

The COPY PDS statement is used to copy partitioned data sets.
When used in conjunction with INCLUDE, EXCLUDE, REPLACE, or
SELECT statements, the COpy PDS statement can be used to merge
selected members of several partitioned data sets or to delete
members.

If IEHMOVE is used to allocate space for an output partitioned
data set, the COpy PDS statement can be used to expand a
partitioned directory.

If the receiving volume already contains a partitioned data set
with the same name, the two are merged.

The source partitioned data set remains cataloged unless UNCATLG
or CATLG is specified without the RENAME and FROM parameters.

The format of the COpy PDS statement is:

[~] COpy PDS=~

,TO=device=seriallli§!

[,(FROM=deyice=seriaIICVOL=device=serial)]

[,EXPAND=nn]

[,UNCATLG]

[,CATLG]

[,RENAME=~]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

MOVE CATALOG statement

The MOVE CATALOG statement is used to move the entries of an as
CVOL (SYSCTLG data set) without moving the data sets associated
with those entries. Certain entries can be excluded from the
operation by means of the EXCLUDE statement. If the receiving
volume already contains an as CVOL, the source as CVOL entries
are merged with it.

IEHMOVE Program 363

The format of the MOVE CATALOG statement is:

[~] MOVE CATALOG[=~]

TO=device=seri~ll~

[,(FROM=deyice=serlalICVOL=device=serial)]

[,FROMDD=ddname]

[,TODD=ddname]

[,UN'LOAD]

[,COPYAUTH]

COPY CATALOG statement

The COPY CATALOG statement is used to copy the entries of an OS
CVOL (SYSCTLG data set) without copying the data sets associated
with those entries. Certain entries can be excluded from a copy
operation with the EXCLUDE statement. If the. receiving volume
already contains an OS CVOL, the source OS CVOL is merged with
it.

The format of the COPY CATALOG statement is:

[~] COPY CATALOG[=~]

,TO=deyice=seriallli5!

[,(FROM=device=serialICVOL=deyice=seria1)]

[,FROMDD=ddname]

h TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

MOVE VOLUME statement

The MOVE VOLUME statement is used to move all the data sets
residing on a specified volume. Any catalog entries associated
with the data sets remain unchanged. Data sets to be moved must
reside on DASD volumes.

364 MVS/XA Data Administration: Utilities

(~
The format of the MOVE VOLUME statement is:

[l.ab.!Ul MOVE VOLUME=device=serial

,TO=device=~

[, PASS\'IORD 1

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

COPY VOLUME statement

INCLUDE statement

The COPY VOLUME statement is used to
residing on a specified volume. Any
with the data sets remain unchanged.
must reside on DASD volumes.

copy all the data sets
catalog entries associated

Data sets to be copied

If CATLG and CVOL are specified, error messages indicating that
an inconsistent index structure exists are issued when the
source SYSCTLG data set entries are merged into the as CVOL on
the receiving volume. (Because the SYSCTlG data set is the last
to be copied, only those entries representing cataloged data
sets not residing on the source volume are copied into a
receiving volume's SYSCTLG data set; entries representing all
data sets residing on the source volume have already been made
in the receiving SYSCTLG data set.)

The format of the COPY VOLUME statement is:

[~l COPY VOLUME=device=serial

,TO=device=~

[, PASS\~ORD 1

[,CATLG]

[,TODD=ddnamel

[,UNLOAD]

[,COPYAUTHl

The INCLUDE statement is used to enlarge the scope of MOVE
DSGROUP, COPY DSGROUP, MOVE PDS, or COPY PDS statements by
including a member or a data set not explicitly defined in those
statements. The INCLUDE statement follows the MOVE or COPY
statement whose function it modifies. The record
characteristics of the included partitioned data sets must be
compatible with those of the other partitioned data sets being
moved or copied. Any number of INCLUDE statements can modify a
MOVE or COPY statement. For a partitioned data set, the INCLUDE
statement is invalid when data is unloaded or when unloaded data
is moved or copied. For DSGROUP operations, INCLUDE is invalid
unless CVOL has been specified on the MOVE/COPY DSGROUP control
statement.

IEHMOVE Program 365

.- -------------- --. __ ._._------- -

EXCLUDE statement

SELECT statement

The format of the INCLUDE statement is:

[~] INCLUDE DSNAME=.ll5l.!lJ.g

[,MEMBER=membernamel

[,{FROM=d~vic~=li§!ICVOL=d~vi~~=serial)]

The EXCLUDE statement is used to restrict the scope of MOVE
DSGROUP, COpy DSGROUP, MOVE PDS, COPY PDS, MOVE CATALOG, or COpy
CATALOG statements by excluding a specific portion of data
defined in those statements.

Partitioned data set members excluded from a MOVE PDS operation
cannot be recovered (the source data set is scratched). Any
number of EXCLUDE statements can modify a MOVE PDS or COPY PDS
statement.

Source data sets or OS CVOL entries excluded from a MOVE DSGROUP
or MOVE CATALOG operation remain available. Only one EXCLUDE
statement can modify a MOVE DSGROUP, COPY DSGROUP, MOVE CATALOG,
or COPY CATALOG statement. The EXCLUDE statement is invalid
when data is unloaded or when unloaded data is moved or copied.
The EXCLUDE statement is invalid for a DSGROUP operation unless
CVOL is specified on the MOVE/COPY DSGROUP control statement.

The format of the EXCLUDE statement is:

I[~l EXCLUDE {DSGROUP=namgI MEMBER=membername)

The SELECT statement is used with the MOVE PDS or COPY PDS
statement to select members to be moved or copied, and to
optionally rename these members. The SELECT statement cannot be
used with either the EXCLUDE or REPLACE statement to modify the
same MOVE PDS or COPY PDS statement. The SELECT statement is
invalid when data is unloaded or when unloaded data is moved or
copied. Because the source data set is scratched, members not
selected in a MOVE PDS operation cannot be recovered.

The format of the SELECT statement is:

[l..£.b.lil SELECT {MEMBER=(namg[,.ll5l.!lJ.gl •••)1

MEMBER=((namg'Dewn9m~)['(~'DewDame)J •••)

366 MVS/XA Data Administration: Utilities

''C)

(

REPLACE statement

Pal'ametel's

CATALOG

CATLG

The REPLACE statement is used with a MOVE PDS or COPY PDS
statement to exclude a member from the operation and replace it
with a member from another partitioned data set. The new member
must have the same name as the old member and must possess
compatible record characteristics. Any number of REPLACE
statements can modify a MOVE PDS or COpy PDS statement. The
REPLACE statement is invalid when data is unloaded or when
unloaded data is moved or copied.

The format of the REPLACE statement is:

[lE..b.!ti]

Applicable
Contl'ol
statements

REPLACE DSNAME=~

,MEMBER=~

[,CFROM=g~vi~~=~~~i91ICVOL=g~vic~=~~~i91l]

Descl'iption of Pal'ametel's

MOVE CATALOG CATALOG[=~]
COPY CATALOG specifies the OS CVOL entries to be moved or

copied. If ~ is not coded, all entries in
the OS CVOL are moved or copied. If ~ is
coded, alIOS CVOL entries whose names are
qualified by this name are moved or copied. If
the name is a fully qualified data set name,
(for example, AAA.BBB.CC), only the OS CVOL
entry that corresponds to that data set is moved
or copied.

COPY DSNAME
COPY DSGROUP
COPY PDS
COPY VOLUME

CATLG
specifies that the copied data set(s) is Care)
to be cataloged as described below.

1. If the CVOL parameter is omitted, the
cataloging is done in the integrated catalog
facility or VSAM master/JOBCAT/STEPCAT
catalog.

2. If the RENAME and FROM parameters are
omitted, the source data setCs) entry is
deleted from the appropriate catalog to
permit the copied data setCs) to be
recataloged.

3. If the CVOL parameter is specified, the
cataloging is done in the OS CVOL on the
receiving DASD volume. If an OS CVOL does
not exist on the receiving DASD volume, one
is created.

IEHMOVE Program 367

Parameters

COPYAUTH

CVOL

DSGROUP

Applicable
Control
statements

MOVE DSNAME
COpy DSNAME
MOVE DSGROUP
COPY DSGROUP
MOVE PDS
COPY PDS
MOVE CATALOG
COPY CATALOG
MOVE VOLUME
COPY VOLUME

MOVE DSNAME
COPY DSNAME
MOVE PDS
COPY PDS
INCLUDE
REPLACE

Description of Parameters

COPYAUTH
specifies that the receiving data set is to be
given the same access list as the input data
set, if the input data set is RACF protected and
the output data set is not preallocated.

CVOL=device=serial
specifies the device type and serial number of
the OS CVOL on which the search for the data set
is to begin. If the CVOL or FROM parameter is
omitted, the data set is assumed to be cataloged
in the integrated catalog facility or VSAM
master/JOBCAT/STEPCAT catalog.

FROM and CVOL should never appear in the same
utility control statement.

MOVE DSGROUP CVOL=deyice=serial
COPY DSGROUP specifies the device type and serial number of

the OS CVOL on which the search for the data
setes) is to begin. If the CVOL parameter is
omitted, the data setes) is assumed to be
cataloged in the integrated catalog facility or
VSAM master/JOBCAT/STEPCAT catalog.

MOVE CATALOG CVOL=device=serial
COPY CATALOG specifies the device type and serial number of

the volume from which the SYSCTLG data set is to , Ji

be moved or copied. If the CVOL or FROM
parameter is omitted, the SYSCTLG data set to be
moved or copied is assumed to reside on the
system r.esidence volume.

FROM and CVOL should never appear in the same
utility control statement.

MOVE DSGROUP DSGROUP=~
COPY DSGROUP specifies the cataloged data setes) to be moved

or copied. If ~ is a fully qualified data
set name, only that data set is not moved or
copied. If ~ is one or more qualifiers, but
not fully qualified, all data sets whose names
are qualified by ~ are moved or copied. If
~ is omitted, all data sets whose names are
found in the searched catalog are moved or
copied.

EXCLUDE DSGROUP=name
Specifies the cataloged data setes) or the
catalog entryCies) to be excluded in a MOVE/COPY
DSGROUP or CATALOG operation. If used in
conjunction with MOVE/COPY DSGROUP, all
cataloged data sets whose names are qualified by
name are excluded from the operation. If used
in conjunction with MOVE/COPY CATALOG, all
catalog entries whose names are qualified by
~ are excluded from the operation.

The CVOl parameter must be specified if a
MOVE/COPY DSGROUP operation is being performed. c

368 MVS/XA Data Administration: Utilities

(- Parameters

DSNAME

EXPAND

(-

(

Applicable
Control
statements

MOVE DSNAME
COPY DSNAME

INCLUDE

REPLACE

MOVE PDS
COPY PDS

Description of Parameters

DSNAME=n.s.m.g
specifies the fully qualified name of the data
set to be moved or copied.

DSNAME=~
specifies the fully qualified name of a data
set. If used in conjunction with MOVE/COPY
DSGROUP, the named data set is included in the
group. If used in conjunction with MOVE/COPY
PDS, either the named partitioned data set or a
member of it (if the MEMBER parameter is
specified) is included in the operation.

DSNAME=~
specifies the fully qualified name of the
partitioned data set that contains the
replacement member.

EXPAND=n.n
specifies the decimal number (up to 99) of
256-byte records to be added to the directory of
the specified partitioned data set. For COPY,
EXPAND cannot be specified if space is
previously allocated. For MOVE, EXPAND will be
ignored if space is previously allocated.

IEHMOVE Program 369

Parameters

FROM

FROMDD

Applicable
Control
Statements

MOVE DSNAME
COPY DSNAME
MOVE PDS
COPY PDS
INCLUDE
REPLACE
MOVE CATALOG
COpy CATALOG

MOVE DSNAME
COpy DSNAME
MOVE PDS
COPY PDS
MOVE CATALOG
COPY CATALOG

Description of Parameters

FROM=device=listlserial
specifies the unit address or device type and
serial number(s) of the volume(s) on which the
data set resides if it is not cataloged. If the
data set is cataloged, FROM should not be
speci fi~d.

When FROM is to refer to a specific device, code
the unit address in the device parameter, in
place of device type.

The serial subparameter applies to PDS and
CATALOG operations. The ~ subparameter
applies to DSNAME operations, but may also be
used when referring to an unloaded PDS residing
on more than one DASD or tape volume, and when
referring to an unloaded OS CVOL residing on
more than one tape volume.

When FROM is used in conjunction with a MOVE,
DSNAME/PDS operation, the catalog will not be
updated. When FROM is used in conjunction with
a MOVE/COPY CATALOG operation, it specifies
where an unloaded version of the OS CVOL
resides.

When FROM refers to a tape device and the data
set to be retrieved is not the first on the
volume, the serial subparameter must be enclosed
in parentheses and the volume serial number must
be followed by the data set sequence number and
separated from it by a comma, as follows:

FROM=device=(serial,seqnumber)

If FROM or CVOL parameter is omitted from a
MOVE/COPY DSNAME/PDS, INCLUDE or REPLACE
operation, the data set is assumed to be
cataloged in the integrated catalog facility or
VSAM master/JOBCAT/STEPCAT catalog. If the FROM
or CVOL parameter is omitted from a MOVE/COPY
CATALOG operation, the SYSCTLG data set to be
moved or copied is assumed to reside on the
system residence volume.

FROM and CVOL should never be specified on the
same utility control statement.

FROMDD=ddname
specifies the name of the DD statement from
which DCB and LABEL information (except data set
sequence number), for input data sets on tape
volumes, can be obtained. When FROMDD is used
in conjunction with a MOVE/COPY PDS/CATALOG
operation, the tape data set must be an unloaded
version of a partitioned data set or an unloaded
version of an OS CVOL. The FROMDD operand can
be omitted, provided the data set has standard
labels and resides on a 9-track tape volume.

370 MVS/XA Data Administration: Utilities

Parameters

MEMBER

PASSWORD

(
PDS

RENAME

TO

(

Applicable
Control
statements

INCLUDE
REPLACE

EXCLUDE

SELECT

MOVE DSGROUP
COPY DSGROUP
MOVE VOLUME
COpy VOLUME

MOVE PDS
COpy PDS

MOVE DSNAME
COPY DSNAME
MOVE PDS
COpy PDS

MOVE DSNAME
COPY DSNAME
MOVE DSGROUP
COPY DSGROUP
MOVE VOLUME
COpy VOLUME
MOVE PDS
COPY PDS
MOVE CATALOG
COPY CATALOG

Description of Parameters

MEMBER=membername
specifies the name of one member in the
partitioned data set named in the DSNAME
parameter on the INCLUDE/REPLACE statement.
When coded on an INCLUDE statement, the named
member is merged with the partitioned data set
being moved or copied. When coded on a REPLACE
statement, the member replaces an equally named
member in the partitioned data set being moved
or copied. Regardless of the operation, neither
the partitioned data set containing the named
member nor the member is scratched.

MEMBER=membername
specifies the name of a member to be excluded
from a MOVE/COPY PDS operation

MEMBER={~I(~[,namg] ••• ll((name,newnamel
[,(name,newnamel] ••• l)
specifies the names of the members to be moved
or copied by a MOVE/COPY PDS operation, and,
optionally, new names to be assigned to the
members.

PASSWORD
specifies that password protected data sets are
included in the operation. This is not VSAM
password protection, but the as password scheme.

Default; Only data sets that are not protected
are copied or moved.

PDS=~
specifies the fully qualified name (that is, the
name with all its qualifiers, if any) of the
partitioned data set to be moved or copied.

RENAME=~
specifies that the data set is to be renamed,
and indicates the new name.

TO=device=.l..i.rl
specifies the device type and volume serial
number of the volume or volumes to which the
specified group d~ data sets is to be moved or
copied.

TO=deyice=seriall~
specifies the device type and volume serial
number of the volume to which the partitioned
data set or as CVOL entry is to be moved or
copied. The li§! parameter may be used when
unloading a partitioned data set that must span
tape volumes.

IEHMOVE Program 371

Parameters

TODD

UNCATLG

UNLOAD

VOLUME

Applicable
Control
statements

MOVE DSNAME
COPY DSNAME
MOVE DSGROUP
COPY DSGROUP
MOVE PDS
COPY PDS
MOVE VOLUME
COPY VOLUME
MOVE CATALOG
COpy CATALOG

MOVE DSNAME
COpy DSNAME
MOVE DSGROUP
COPY DSGROUP
MOVE PDS
COpy PDS

MOVE DSNAME
COPY DSNAME
MOVE DSGROUP
COPY DSGROUP
MOVE PDS
COPY PDS
MOVE VOLUME
COPY VOLUr1E
~1OVE CATALOG
COPY CATALOG

MOVE VOLUME
COpy VOLUME

Description of Parameters

TODD=ddnam~
specifies the name of a DD statement from which
DCB (except RECFM, BLKSIZE and LRECL) and LABEL
(except data set sequence number) information
for output data sets on tape volumes can be
obtained.

When TODD
MOVE/COPY
describes
used when
volumes.
if coded,

is used in conjunction with a
DSNAME/DSGROUP/VOLUME operation, it
the mode and label information to be
creating output data sets on tape
RECFM, BLKSIZE, and LRECL information,
is ignored.

When UNLOAD is specified, or when TODD is used
in conjunction with a MOVE/COPY PDS/CATALOG
operation, it describes the mode and label
information to be used when creating unloaded
versions of data sets on tape volumes. RECFM,
BLKSIZE, and LRECL information, if coded, must
specify (RECFM=FB, BLKSIZE=800, LRECL=80).

TODD must be specified in the control statement
when an expiration data (EXPDT) or retention
period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track
tapes with standard labels and default density
for the unit type specified.

UNCATLG
specifies that the catalog entry pertaining to
the source partitioned data set is to be
removed. This parameter should be used only if
the source data set is cataloged. If the volume
is identified by FROM, UNCATLG is ignored.
Alias entries in integrated catalog facility or
VSAM catalogs for the source data sets are lost
and can be replaced with access method services
if the data sets are later cataloged. For more
information, see Access Method Services
Reference. For a MOVE operation, UNCATLG
inhibits cataloging of the output data set.

UNLOAD
specifies that the data set is to be unloaded to
the receiving volume(s).

VOLUME=device=serial
specifies the device type and volume serial
number of the source volume.

372 MVS/XA Data Administration: Utilities

(-

IEHMOVE EXAMPLES

Operation

MOVE

COPY

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

COPY

COPY

MOVE

MOVE

The following examples illustrate some of the uses of IEHMOVE.
Figure 130 can be used as a quick-reference guide to IEHMOVE
examples. The numbers in the "Example" column refer to the
examples that follow.

Data set
Organization Device Comments Example

Sequential Disk Source volume is 1
demounted after job
completion. Two
mountable disks.

Sequential Disk Three cataloged 2
sequential data sets
are copied. The
disks are mountable.

Pa rti ti oned Disk A partitioned data 3
set is moved; a
member from another
PDS is merged with
it.

Volume Disk A volume of data 4
sets is moved to a
disk volume.

Pa rtiti oned Disk A data set is moved 5
to a volume on which
space was previously
allocated.

Parti tioned Disk Three data sets are 6
moved and unloaded
to a volume on which
space was previously
allocated.

Sequential Disk and Tape A sequential data 7
set is unloaded to
an unlabeled 9-track
tape volume.

Sequential Disk and Tape Unloaded data sets 8
are loaded from a
single volume.

Sequential Disk and Tape Data sets are copied 9
from separate source
volumes.

Pa rti ti oned Tape and Disk Unloaded data sets 10
are loaded from
unlabeled tape to a
specific device.

Data Set Group Disk Data set group is 11
moved.

OS CVOL Disk SYSCTLG data set (OS 12
CVOl) is moved from
one volume to
another. Source OS
CVOL is scratched.

Figure 130 (Part 1 of 2). IEHMOVE Example Directory

IEHMOVE program 373

Data set
Operation Organization Device comments Example

MOVE OS CVOL Disk Selected OS CVOL 13
entries are moved
from one OS CVOL to
another.

Figure 130 (Part 2 of 2). IEHMOVE Example Directory

IEHMOVE EXAMPLE 1

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In this example. three sequential data sets (SEQSETI. SEQSET2.
and SEQSET3) are moved from a disk volume to three separate disk
volumes. Each of the three receiving volumes is mounted when it
is required by IEHMOVE. The source data sets are not cataloged.
Space is allocated by IEHMOVE.

//MOVEDS
//
//SYSPRINT
//SYSUTl
//DDI
//DD2
//
//DD3
//
//SYSIN

MOVE
MOVE
MOVE

JOB
EXEC PGM=IEHMOVE
DD SYSOUT=A
DD UNIT=disk.VOLUME=SER=333333.DISP=OLD
DD UNIT=disk.VOLUME=SER=llllll.DISP=OLD
DD UNIT=(disk •• DEFER).DISP=OLD.

VOLUME=(PRIVATE •• SER=(222222»
DD VOLUME=(PRIVATE.RETAIN.SER=(444444».

UNIT=disk.DISP=OLD
DD *

DSNAME=SEQSETl.TO=disk=222222.FROM=disk=444444
DSNAME=SEQSET2.TO=disk=222333.FROM=disk=444444
DSNAME=SEQSET3.TO=disk=222444.FROM=disk=444444

The control statements are discussed below:

• SYSUTI DD defines the disk device that is to contain the
work data set.

• DDI DD defines the system residence device.

• DD2 DD defines the mountable device on which the receiving
volumes will be mounted as they are required.

• DD3 DD defines a mountable device on which the source volume
is mounted. Because the RETAIN subparameter is included.
the volume remains mounted until the job has completed.

• SYSIN DD defines the control data set. which follows in the
input stream.

• MOVE moves the source data sets to volumes 222222. 222333.
and 222444. respectively. The source data sets are
scratched.

374 MVS/XA Data Administration: Utilities

()

IEHMOVE EXAMPLE 2

IEHMOVE EXAMPLE 3

In this example, three cataloged data sets are copied to a disk
volume. Space is allocated by IEHMOVE. The catalog is not
updated. The source data sets are not scratched.

//COPYPDS
//
//SYSPRINT
//SYSUTl
//DDI
//DD2
//DD3
//SYSIN

JOB
EXEC PGM=IEHMOVE
DD SYSOUT=A
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
DD *

COPY DSNAME=SEQSETI,TO=disk=333333
COPY DSNAME=SEQSET3,TO=disk=333333
COPY DSNAME=SEQSET4,TO=disk=333333

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work
data set.

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which the source volume
is mounted.

•

•

DD3 DD defines a mountable device on which the receiving
volume is mounted.

SYSIN DD defines the control data set, which follows in the
input stream.

• COPY copies the source data sets onto volume 333333.

In this example, a partitioned data set (PARTSETl) is moved to a
disk volume. In addition, a member (PARMEM3) from another
partitioned data set (PARTSET2) is merged with the source
members on the receiving volume. The source partitioned data
set (PARTSETl) is scratched. Space is allocated by IEHMOVE.

//MOVEPDS
//
//SYSPRINT
//SYSUTl
//DDI
//DD2
//DD3
//DD4
//SYSIN

MOVE
INCLUDE

/*

JOB
EXEC PGM=IEHMOVE
DD SYSOUT=A
DD UNIT=disk,VOLUME=SER=333000,DISP=OLD
DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
DD UNIT=disk,VOLUME=SER=222111,DISP=OLD
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=222333,DISP=OLD
DD *

PDS=PARTSETI,TO=disk=222333,FROM=disk=222111
DSNAME=PARTSET2,MEMBER=PARMEM3,FROM=disk=222222

The control statements are discussed below:

• SYSUTl DD defines the disk volume that is to contain the
work data set.

IEHMOVE Program 375

IEHMOVE EXAMPLE 4

• DDI DD defines the system residence device.

• The DD2, DD3, and DD4 DD statements define mountable devices
that are to contain the two source volumes and the receiving
volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE defines the source partitioned data set, the volume
that contains it, and its receiving volume.

• INCLUDE includes a member from a second partitioned data set
in the operation.

In this example, a volume of data sets is moved to a disk
volume. All data sets that are successfully moved are scratched
from the source volume; however, any catalog entries pertaining
to those data sets are not changed. Space is allocated by
IEHMOVE. The work data set is deleted when the job step is
completed.

//MOVEVOL
//
//SYSPRINT
//SYSUTl
//DDI
//DD2
//DD3
//SYSIN

JOB
EXEC PGM=IEHMOVE
DD SYSQUT=A
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=IIIIII,DISP=OLD
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
DD *

MOVE VOLUME=disk=333333,TO=disk=222222,PASSWORD

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work
data set. The work data set is removed from the receiving
volume when the job step is completed.

• DDl DD defines the system residence device.

• DD2 DD defines the mountable device on which the receiving
volume is mounted.

• DD3 DD defines a mountable device on which the source volume
is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE specifies a move operation for a volume of data sets
and defines the source and receiving volumes. This
statement also indicates that password-protected data sets
are included in the operation.

376 MVS/XA Data Administration: Utilities

IEHMOVE EXAMPLE 5

In this example, a partitioned data set is moved to a disk
volume on which space has been previously allocated for the data
set. The source data set is scratched. The work data set is
deleted when the job step is completed.

//ALLOCATE
//
//SETl
//
//
//
//SYSPRINT
//SYSUTl
//DDI
//DD2
//DD3
//SYSIN

JOB
EXEC PGM=IEFBRI4
DD DSNAME=PDSSETI,UNIT=disk,DISP=(NEW,KEEP),

VOLUME=SER=222222,SPACE=(TRK,(IOO,IO,IO»,
DCB=(RECFM=FB,LRECl=80,BlKSIZE=2000)

EXEC PGM=IEHMOVE
DD SYSQUT=A
DD UNIT=disk,VOlUME=SER=222222,DISP=OlD
DD UNIT=disk,VOlUME=SER=llllll,DISP=OlD
DD UNIT=disk,VOlUME=SER=222222,DISP=OlD
DD UNIT=disk,VOlUME=SER=333333,DISP=OlD
DD *

MOVE PDS=PDSSETI,TO=disk=222222,FROM=disk=333333

The IEFBR14 job step is used to allocate space for data set
PDSSETI on a disk volume.

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work
data set. The data set is removed at the completion of the
program.

• DDI DD defines the system residence device.

• DD2 DD defines the device on which the receiving volume is
to be mounted.

• DD3 DD defines a mountable device on which the source volume
is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE specifies a move operation for the partitioned data set
PDSSETI and defines the source and receiving volumes.

IEHMOVE Program 377

IEHMOVE EXAMPLE 6

In this example, three partitioned data sets are moved from
three separate source volumes to a disk volume. The source data
set PDSSET3 is unloaded. (The record size exceeds the track
capacity of the receiving volume.) The work data set is deleted
when the job step is completed.

//AllOCATE JOB
// EXEC PGM=IEFBRl4
//SETl DD DSNAME=PDSSETl,UNIT=disk,DISP=(NEW,KEEP),
// VOlUME=SER=222222,SPACE=(TRK,(SO,lO,S»,
// DCB=(RECFM=FB,lRECl=80,BlKSIZE=l600)
//SET2 DD DSNAME=PDSSET2,UNIT=disk,DISP=(NEW,KEEP),
/1 VOlUME=SER=222222,SPACE=(TRK,(25,5,5»,
// DCB=(RECFM=F,lRECl=80,BlKSIZE=80)
/ISET3 DD DSNAME=PDSSET3,UNIT=disk,DISP=(NEW,KEEP),
// VOlUME=SER=222222,SPACE=(TRK,(25,5»,
// DCB=(RECFM=U,BlKSIZE=SOOO)
// EXEC PGM=IEHMOVE
/ISYSPRINT DD SYSOUT=A
/ISYSUTl DD UNIT=disk,VOlUME=SER=222222,DISP=OlD
/IDDl DD UNIT=disk,VOlUME=SER=llllll,DISP=OlD
/IDD2 DD UNIT=(disk"DEFER),DISP=OlD,
/1 VOlUME=(PRIVATE"SER=(333333»
/IDD3 DD UNIT=disk,VOlUME=SER=222222,DISP=OlD
/ISYSIN DD *

MOVE PDS=PDSSETl,TO=disk=222222,FROM=disk=333333
MOVE PDS=PDSSET2,TO=disk=222222,FROM=disk=222222
MOVE PDS=PDSSET3,TO=disk=222222, C

FROM =disk=444444,UNlOAD

The IEFBRl4 job step is used to allocate space for the
partitioned data sets PDSSETl, PDSSET2, and PDSSET3 on the
receiving volume. The SPACE parameter in the SET3 DD statement
allocates space for a sequential data set. This is necessary to
successfully unload the partitioned data set PDSSET3.

For a discussion of estimating space allocations, see ~
Administration Guide.

The DCB attributes of PDSSET3 are:

DCB=(RECFM=U,BlKSIZE=SOOO)

The unloaded attributes are:

DCB=(RECFM=FB,lRECl=80,BlKSIZE=800)

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work
data set.

• DDI DD defines the system residence device.

• DD2 DD defines a mountable device on which the source
volumes are mounted as they are required.

• DD3 DD defines a mountable device on which the receiving
volume is mounted.

•

•

SYSIN DD defines the control data set, which follows in the
input stream.

MOVE specifies move operations for the partitioned data sets
and defines the source and receiving volumes for each data
set.

378 MVS/XA Data Administration: utilities

~-.---~----------

/ "\

()

IEHMOVE EXAMPLE 7
(-

(

In this example, a sequential data set is unloaded onto a
9-track, unlabeled tape volume (800 bits per inch). The work
data set resides on the source volume and is deleted when the
job step is completed.

//UNLOAD JOB
// EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUTI DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DDl DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
//DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//TAPEOUT DD UNIT=tape,VOLUME=SER=SCRTCH,DISP=OLD,
// DCB=(DEN=2,RECFM=FB,LRECL=80,BLKSIZE=800),
// LABEL=(,NL)
//SYSIN DD *

72

MOVE DSNAME=SEQSETl,TO=tape=SCRTCH, C
FROM=disk=222222,TODD=TAPEOUT

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work
data set.

• DDI DD defines the system residence device.

•

•

DD2 DD defines a mountable device on which the source volume
is mounted.

TAPEOUT DD defines a mountable device on which the receiving
tape volume is mounted. This statement also provides label
and mode information.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE moves the sequential data set SEQSETI from a disk
volume to the receiving tape volume. The data set is
unloaded. The TODD parameter in this statement refers to
the TAPEOUT DD statement for label and mode information.

IEHMOVE Program 379

IEHMOVE EXAMPLE 8

In this example. three unloaded sequential data sets are loaded
from a labeled. 7-track tape volume (556 bits per inch) to a
disk volume. Space is allocated by IEHMOVE. The example
assumes that the disk volume is capable of supporting the data
sets in their original forms.

//LOAD
//
//SYSPRINT
//SYSUTl
//DDl
//DD2
//TAPESETS
//
//
//SYSIN

JOB
EXEC PGM=IEHMOVE
DD SYSOUT=A
DD UNIT=disk.VOLUME=SER=222222.DISP=OLD
DD UNIT=disk.VOLUME=SER=llllll.DISP=OLD
DD UNIT=disk.VOLUME=SER=222222.DISP=OLD
DD UIHT=3420,

VOLUME=SER=OOl234.DISP=OLD.
LABEL=(l.SL).DCB=(DEN=l.TRTCH=C)

DD *
MOVE DSNAME=UNLDSETl.TO=disk=222222.

MOVE

MOVE

FROM=3420=(OOl234.1).FROMDD=TAPESETS
DSNAME=UNLDSET2.TO=disk=222222.

FROM=3420=(OOl234.2).FROMDD=TAPESETS
DSNAME=UNLDSET3.TO=disk=222222.

FROM=3420=(001234.3).FROMDD=TAPESETS

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work
data set.

• DDI DD defines the system residence device .

• DD2 DD defines a mountable device on which the receiving
volume is mounted.

72

C

C

C

• TAPESETS DD defines a mountable device on which the source
tape volume is mounted. DCB information is provided in this
statement.

• SYSIN DD defines the control data set. which follows in the
input stream.

• MOVE moves the unloaded data sets to the receiving volume.

To move a data set from a tape volume that contains more than
one data set. you must specify the sequence number of the data
set in the ~ field of the FROM parameter on the utility
control statement.

380 MVS/XA Data Administration: Utilities

/f---''\,

o

IEHMOVE EXAMPLE 9

IEHMOVE EXAMPLE 10

(

In this example, two sequential data sets are copied from
separate source volumes to a disk volume. Space is allocated by
IEHMOVE. Only one 9-track tape unit is available for the
operation.

//DEFER
//
//SYSPRINT
//SYSUTl
//DDI
//DD2
//TAPEI
//TAPE2
//SYSIN

JOB
EXEC PGM=IEHMOVE
DD SYSOUT=A
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD VOLUME=SER=001234,UNIT=t~pe,DISP=OLD
DD VOLUME=SER=001235,UNIT=t~pe,DISP=OLD

DD *
COpy DSNAME=SEQSET1,TO=disk=222222,

COpy
FROM=3400=(OOI234,2),FROMDD=TAPEI

DSNAME=SEQSET9,TO=disk=222222,
FROM=3400=(OOI235,4),FROMDD=TAPE2

72

C

C

The control statements are discussed below:

• SYSUTI DD defines the volume that is to contain the work
data set.

• DDI DD defines the system residence device.

•

•

DD2 DD defines a mountable device on which the receiving
volume is mounted.

TAPEI DD defines a mountable device on which the first
volume to be processed is mounted. The source data set is
the second data set on the volume.

• TAPE2 DD defin'es a mountable device on which the second
volume to be processed is mounted when it is required. The
source data set is the fourth data set on the volume.

• SYSIN DD defines the control data set, which follows in the
input stream.

• COPY copies the second file of tape 001234 and the fourth
file of tape 001235 to the receiving volume.

To copy a data set from a tape volume that contains more than
one data set, you must specify the sequence number of the data
set in the list field of the FROM parameter on the utility
control statement.

In this example, three unloaded partitioned data sets residing
on an unlabeled tape volume mounted on device 282 are copied to
a 3380 volume mounted on device 191.

IEHMOVE Program 381

IEHMOVE EXAMPLE 11

72
IILOAD JOB
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUTl DD UNIT=l9l,VOLUME=SER=338000,DISP=OLD
IIDDl DD UNIT=l9l,VOLUME=SER=338000,DISP=OLD
I/TAPEl DD UNIT=282,VOLUME=SER=NLTAPE,DISP=OLD,
II LABEL=(,NU,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
IISYSIN DD * COpy PDS=DSETl,FROM=282=(NLTAPE,l), X

TO=l9l=338000,FROMDD=TAPEl
COPY PDS=DSET2,FROM=282=(NLTAPE,2), X

TO=l9l=338000,FROMDD=TAPEI
COPY PDS=DSET3,FROM=282=(NLTAPE,3), X

TO=19l=338000,FROMDD=TAPEI
1*

The control statements are discussed below:

• SYSUTl DD defines the work data set.

• DDI DD defines the receiving volume.

• TAPEI DD defines the source data sets. They are, in the
order in which they reside on the volume, DSETI, DSET2, and
DSET3 .

• SYSIN DD defines the control data set, which follows in the
input stream.

• COPY copies the unloaded partitioned data sets from the
unlabeled tape to the receiving volume.

To copy data sets from an unlabeled tape, you must place a dummy
label in the .li.§1 field of the FROM parameter of the utility
control statement. Following this dummy label, the sequence
number of the data set must also be included in the same field.
The unit address must appear in the device field of the FROM or
TO parameter whenever you want to move ·from or copy to a
specific device.

In this example, the cataloged data set group A.B.C--which
comprises data set A.B.C.X, A.B.C.Y, and A.B.C.Z--is moved from
two disk volumes onto a third volume. Space is allocated by
IEHMOVE. The catalog is updated to refer to the receiving
volume. The source data sets are scratched.

IIMOVEDSG
II
IISYSPRINT
IISYSUTl
IIDDl
IIDD2
IIDD3
IIDD4
IISYSIN

JOB
EXEC PGM=IEHMOVE
DD SYSOUT=A
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
DD UNIT=disk,VOLUME=SER=444444,DISP=OLD
DD *

MOVE DSGROUP=A.B.C,TO=disk=222222

382 MVS/XA Data Administration: Utilities

-----------------------------~ -----

;:\.
" ./

5'"
It.j

(

IEHMOVE EXAMPLE 12

(

(

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work
data set.

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving
volume is mounted.

• DD3 DD defines a mountable device on which one of the source
volumes is mounted.

• DD4 DD defines a mountable device on which one of the source
volumes is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE moves the specified data sets to volume 222222.

This example can be used to produce the same result without the
use of the DD4 DD statement, using one less mountable disk
device. With DD3 and DD4, both of the source volumes are
mounted at the start of the job. With DD3 only, the 333333
volume is mounted at the start of the job. After the 333333
volume is processed, the utility requests that the operator
mount the 444444 volume. In this case, the DD3 statement is
coded:

//DD3 DD UNIT=(disk"DEFER),DISP=OLD,VOLUME=(PRIVATE"
// SER=(333333))

In this example, the SYSCTLG data set is moved from a mountable
disk volume to another mountable disk volume. Space is
allocated by IEHMOVE. The source OS CVOL is scratched from the
first disk volume.

//MOVECATI
//
//SYSPRINT
//SYSUTI
//DDI
//DD2
//SYSIN

JOB
EXEC PGM=IEHMOVE,PARM='POWER=3'
DD SYSDUT=A
DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD *

MOVE CATALOG,TO=disk=222222,CVOL=disk=111111

IEHMOVE Program 383

IEHMOVE EXAMPLE 13

(

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work
data set.

• DDI DD defines the mountable device on which the source
volume is mounted.

• DD2 DD defines the mountable device on which the receiving
volume is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE specifies the move operation and defines the source and
receiving volumes.

See "PARM Information on the EXEC Statement" on page 354 for a
description of the POWER PARM.

In this example, the OS CVOL entries for data set group
A.B.C--which comprises the entries A.B.C.X, A.B.C.Y, and
A.B.C.Z--are moved from a SYSCTLG data set to a mountable disk
volume. If no OS CVOL exists on the receiving disk volume, one
is created; if an OS CVOL does exist, the specified entries are
merged into it. Moved entries are uncataloged from the source
CVOL. The work data set is deleted when the job step is
completed.

IIMOVECAT2
II
IISYSPRINT
IISYSUTl
IIDDI
IIDD2
IISYSIN

JOB
EXEC PGM=IEHMOVE
DD SYSOUT=A
DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
DD UNIT=disk,VOLUME=SER=IIIIII,DISP=OlD
DD UNIT=disk,VOLUME=SER=222222,DISP=OlD
DD *

MOVE CATALOG=A.B.C,TO=disk=222222,CVOl=disk=111111

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work
data set. (Because IEHMOVE deletes the work data set at the
completion of the program, it can be contained on the
receiving volume, provided there is space for it.)

• DDI DD defines the mountable device on which the source
volume is mounted.

• DD2 DD defines the mountable device on which the receiving
volume is mounted.

• SYSIN DD defines the control data set, which follows in the
input stream.

• MOVE specifies a move operation for selected entries and
defines the source and receiving volumes.

384 MVS/XA Data Administration: Utilities

(- IEHPROGM PROGRAM

IEHPROGM is a system utility used to modify system control data
and to maintain data sets at an organizational level. IEHPROGM
should only be used by those programmers locally authorized to
do so.

IEHPROGM can be used to:

• Scratch a data set or a member.

• Rename a data set or a member.

• Catalog or remove catalog entries for a non-VSAM data set in
an OS CVOL.

• Build or delete an index or alias in an OS CVOL (SYSCTLG
data set).

• Connect or release two OS CVOLs.

• Build and maintain a generation data group index in an OS
CVOL.

• Maintain data set passwords.

SCRATCHING A DATA SET OR MEMBER

IEHPROGM can be used to scratch the following from a DASD volume
or volumes:

• Sequential, ISAM, partitioned, or BDAM data sets

• Members of a partitioned data set

• Password-protected data sets

• Data sets named by the operating system

A data set is considered scratched when its data set control
block is removed from the volume table of contents (VTOC) of the
volume on which it resides; its space is made available for
reallocation.

A member is considered scratched when its name is removed from
the directory of the partitioned data set in which it is
contained. The space occupied by a scratched member is not
available for reallocation until the partitioned data set is
scratched or compressed. (When scratching a member of a
partitioned data set, all aliases of that member should also be
removed from the directory.)

IEHPROGM will not scratch the data set containing the index for
an indexed VTOC.

If RACF is active, ALTER authorization is required to scratch a
RACF-defined data set, and UPDATE authorization is required to
scratch a member of a partitioned data set.

IEHPROGM Program 385

RENAMING A DATA SET OR MEMBER

IEHPROGM can be used to rename a data set or member that resides
on a DASD volume. In addition, the program can be used to
change any member aliases.

If RACF is active, ALTER authorization is required to rename a
data set. UPDATE authorization is required to rename a member
of a partitioned data set.

CATALOGING A DATA SET IN AN OS CVOL

IEHPROGM can be used to catalog a non-V SAM sequential, ISAM,
partitioned, or BDAM data set in an OS CVOL or an integrated
catalog facility catalog. The program catalogs a data set by
generating an entry, containing the data set name and associated
volume information, in the index of the OS CVOL. A valid TTR
pointer is not placed in the DSCB until the first time the data
set is referenced.

The catalog function is used to catalog a non-VSAM data set in
an OS CVOL that was not cataloged when it was created.

IEHPROGM can also delete OS CVOL, or integrated catalog facility
catalog, entries for a non-VSAM data set by removing the data
set name and associated volume information from the OS CVOL or
the integrated catalog facility catalog.

The cataloging function of IEHPROGM differs from a DISP=(,CATLG)
specification in a DD statement in that the DISP=(,CATLG)
specification cannot catalog a data set on a volume other than
the system residence volume unless the system residence volume
is properly connected to the other volume. (See "Connecting or
Releasing Two OS CVOLs" on page 388.)

The "uncataloging" function of IEHPROGM differs from a
DISP=(... ,UNCATLG) specification in a DD statement in that the
DISP=(... ,UNCATLG) specification cannot remove an entry from the
SYSCTLG data set on a volume other than the system residence
volume unless the two volumes are properly connected.

You should not use the IEHPROGM CATLG/UNCATLG functions in place
of DISP=(,CATLG) or DISP=(,UNCATLG) in a multi-step job. If a
data set is to be "uncataloged" during termination of a step,
use DISP=(OLD,UNCATLG).

BUILDING OR DELETING AN INDEX IN AN OS CVOL

IEHPROGM can be used to build a new index in an OS CVOL or to
delete an existing index. In building an index, the program
automatically creates as many higher level indexes as are
necessary to complete the specified structure.

IEHPROGM can be used to delete one or more indexes from an index
structure; however, an index cannot be deleted if it contains
any entries. That is, it cannot be deleted if it refers to a
lower level index or if it is part of a structure indicating the
fully qualified name of an OS CVOL cataloged data set.

Figure 131 on page 387 shows an index structure before and after
a build operation. The left portion of the figure shows two
data sets cataloged in an OS CVOL, A.Y.YY and A.B.X.XX, before
the build operation. The right-hand portion of the figure shows
the index structure after the build operation, which was used to
build index A.R.C.D.E. Note in the left portion of the figure
that index levels C and D do not exist before the build
operation. These levels are automatically created when the
level E index is built.

When the levelE index is subsequently deleted, the level C and
D indexes are not automatically deleted by the program. To
delete these index levels~ delete: A.B.C.D.E, A.B.C.D, and

386 MVS/XA Data Administration: utilities

(
A.B.C, in that order. The level B index cannot be deleted
because data set A.B.X.XX and the X level index are dependent
upon the level B index.

Before build operation After build operation

Figure 131. Index Structure Before and After an IEHPROGM Build
Operation

BUILDING OR DELETING AN INDEX ALIAS IN AN OS CVOL

IEHPROGM can be used to assign an alternative name (alias) to
the highest level index of an OS CVOl or to delete an OS CVOl
index alias previously assigned. An alias cannot, however, be
assigned to the highest level of a generation data group index.

Figure 132 shows an alias, XX, that is assigned to index A (a
high level index). The cataloged data set A.B.C can be referred
to as either A.B.C or XX.B.C.

Figure 132. Building an Index Alias Using IEHPROGM

IEHPROGM Program 387

CONNECTING OR RELEASING TWO OS CVOLS

IEHPROGM can be used to connect an as CVOL to a second as CVOL
by placing an entry into a high level index on the first as
CVOL. The entry contains an index name and the volume serial
number and device type of the second as CVOL. The program can
subsequently release the as CVOLs by removing the entry from the
high level index. If two OS CVOLs are connected:

• The SYSCTLG data set must be created on the second volume
for cataloging of data sets having the same high level index
as the connected index.

• A high level index can only be connected to one second as
CVOL, but chaining is possible from a second to a third OS
CVOL, etc.

Before any as CVOL can be accessed by the system, it must be
defined in the integrated catalog facility or VSAM master
catalog. For details on how this is done, see Catalog
Administration Gyide.

Figure 133 shows how one as CVOL can be connected to a second as
CVOL. Any subsequent index search for index X on the first
control volume is carried to the second control volume.

First OS CVOL Connected OS CVOL

Figure 133. Connecting an as CVOL to a Second as CVOL Using
IEHPROGM

The index name of each high level index existing on the second
os CVOL must be present in the first as CVOLj when a new high
level index is placed on a second as CVOL, the first as CVOL
should be connected to the second as CVOL.

Figure 134 on page 389 shows three OS CVOLs connected to one as
CVOL. All volumes are accessible through high level indexes X,
y, and Z.

388 MVS/XA Data Administration: Utilities

'. /
"':_/

1stCVOL

Figure 134. Connecting Three OS CVOLs Using IEHPROGM

BUILDING AND MAINTAINING A GENERATION DATA GROUP INDEX IN AN OS CVOL

IEHPROGM can be used to build an index structure in an OS CVOL
for a generation data group and to define what action should De
taken when the index overflows.

The lowest level index in the structure can contain up to 255
entries for successive generations of a data set. If the index
overflows, the oldest entry is removed from the index, unless
otherwise specified (in which case, all entries are removed).
If desired, the program can be used to scratch all generation
data sets whose entries are removed from the index.

Figure 135 on page 390 shows the index structure created for
generation data group A.B.C. In this example, provision is made
for up to five subsequent entries in the lowest level index.

IEHPROGM Program 389

Figure 135. Building a Generation Data Group Index Using
IEHPROGM

Before a generation data group can be cataloged as such on an OS
CVOL, a generation data group index must exist. Otherwise, a
generation data set is cataloged as an individual data set,
rather than as a generation.

When creating and cataloging a generation data set on an OS
CVOL, you must provide the necessary DCB information. For a
discussion of how DCB attributes are provided for a generation
data group, see Data Administration Guide.

MAINTAINING DATA SET PASSWORDS

IEHPROGM can be used to maintain non-V SAM password entries in
the PASSWORD data set and to alter the protection status of DASD
data sets in the data set control block (DSCB). For a complete
description of data set passwords and the PASSWORD data set, see
System-Data Administration and Data Administration Guide.

A data set can have one of three types of password protection,
as indicated in the DSCB for DASD data sets and in the tape
label for tape data sets. See Debugging Handbook for the format
of the DSCB. For a description of tape labels, see Magnetic
Tape Labels and File Structure Administration.

The possible types of data set password protection are:

• No protection, which means that no passwords are required to
read or write the data set.

• Read/write protection, which means that a password is
required to read or write the data set.

• Read-without-password protection, which means that a
password is required only to write the data set; the data
set can be read without a password.

If a system data set is password protected and a problem occurs
on the data set, maintenance personnel must be provided with the
password in order to access the data set and resolve the
problem.

A data set can have one or more passwords assigned to it; each
password has an entry in the PASSWORD data set. A password
assigned to a data set can allow read and write access, or only
read access to the data set.

Figure 136 on page 391 shows the relationship between the
protection status of data set ABC and the type of access allowed

390 MVS/XA Data Administration: Utilities

Protection status of data
set ABC-contained in
its DSCB or tape label

No
password
protection

by the passwords assigned to the data set. Passwords ABLE and
BAKER are assigned to data set ABC. If no password protection
is set in the DSCB or tape label, data set ABC can be read or
written without a password. If read/write protection is set in
the DSCB or tape label, data set ABC can be read with either
password ABLE or BAKER and can be written with password ABLE.
If read-without-password protection is set in the DSCB or tape
label, data set ABC can be read without a password and can be
written with password ABLE; password BAKER is never needed.

The kind of protection pointed
at allows data set ABC to be:

14111111 Read or written on with
no password

Read with

System
residence
volume=-_----___

r~~~~----------l-"lIlIlIslp;as:sw;;or~d~B~A~K:E:RII Read/Write
protection Password BAKER

Read-without
password
protection

Figure 136.

for data Sr,)t ABC
a Iiows read a'ccess

Password ABLE

1cEI1B •• iIII------!B for data set ABC
allows read/write

Relationship between the Protection Status of a Data Set and Its
Passwords

Before IEHPROGM is used to maintain data set passwords, the
PASSWORD data set must reside on the system residence volume.
IEHPROGM can then be used to:

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

• Delete an entry from the PASSWORD data set.

• Provide a list of information from an entry in the PASSWORD
data set.

Each entry in the PASSWORD data set contains the name of the
protected data set, the password, the protection mode of the
password, an access counter, and 77 bytes of optional user data.
The protection mode of the password defines the type of access
allowed by the password and whether the password is a control
password or secondary password. The initial password, added to
the PASSWORD data set for a particular data set, is marked in
the entry as the control password for that data set. The second
and subsequent passwords added for the same data set are marked
as secondary passwords.

For DASD data sets, IEHPROGM updates the protection status in
the DSCB when a control password entry is added, replaced, or
deleted. This permits setting and resetting the protection
status of an existing DASD data set at the same time its
passwords are added, replaced, or deleted. IEHPROGM
automatically alters the protection status of a data set in the
DSCB if the following conditions are met:

IEHPROGM Program 391

•

•

The control password for the data set is being added,
replaced, or deleted.

The data set is online.

• The volume on which the data set resides is specified on the
utility control statement, or the data set is cataloged.

• The data set is not allocated within the IEHPROGM job.

For tape data sets, IEHPROGM cannot update the protection status
in the tape label when a password entry is added, replaced, or
deleted. Protection status in a tape label must be set with
JeL. ~

Passwords to be added, replaced, deleted, or listed can be
specified on utility control statements or can be entered by the
console operator. IEHPROGM issues a message to the console
operator when a password on a utility control statement is
either missing or invalid. The message contains the job name,
step name, and .utility control statement name and identifies the
particular password that is missing or invalid. Two invalid
passwords are allowed per password entry on each utility control
statement before the request is ignored; a total of five invalid
passwords is allowed for the password entries on all the utility
control statements in a job step before the step is canceled.

Adding Data set Passwords

When a password is added for a data set, an entry is created in
the PASSWORD data set with the specified data set name, password
name, protection mode of the password (read/write or rea~ only),
and the optional 77 characters of user-supplied data. T~e
access counter in the entry is set to zero.

The control password for a data set must always be specified to
add, replace, or delete secondary passwords. The control ~ /
password should not be specified, however, to list information
from a secondary password entry.

Secondary passwords can be assigned to a data set to restrict
some users to readin~ the data set or to record the number of
times certain users access the data set. The access counter in
each password entry provides a count of the number of times the
password was used to successfully open the data set.

If a control password for an online DASD data set is added, the
protection status of the data set (read/write or
read-without-password) is set in the DSCB.

Replacing Data set Passwords

Any of the following information may be replaced in a password
entry: the password, protection mode (read/write or read only)
of the password, and the 77 characters of user data. The
protection status of a data set can be changed by replacing the
control entry for the data set.

If ~he control entry of an online DASD data set is replaced, the
DSCB is also reset to indicate any change in the protection
status of the data set. Therefore, you should ensure that the
volume is online when changing the protection status of a DASD
data set.

392 MVS/XA Data Administration: Utilities

(-

(

Deleting Data set Passwords

When a control password entry is deleted from the PASSWORD data
set, all secondary password entries for that data set are also
deleted. However, when a secondary entry is deleted, no other
password entries are deleted.

If the control password entry is deleted for an online DASD data
set, the protection status of the data set in the DSCB is also
changed to indicate no protection. When deleting a control
password for a DASD data set, the user should ensure that the
volume is online. If the volume is not online, the password
entry is removed, but data set protection is still indicated in
the DSCB; the data set cannot be accessed unless another
password is added for that data set.

If the control password entry is deleted for a tape data set,
the tape volume cannot be accessed unless another password is
added for that data set.

The delete function ,should be used to delete all the password
entries for a scratched data set to make the space available for
new entries.

Listing Password Entries

INPUT AND OUTPUT

A list of information from any entry in the PASSWORD data set
can be obta~ned in the SYSPRINT data set by providing the
password for that entry. The list includes: the number of
times the password has been used to successfully open the data
set; the type of password (control password or secondary
password) and type of access allowed by the password (read/write
or read-only); and the user data in the entry. Figure 137 shows
a sample list of information printed from a password entry.

DECIMAL ACCESS COUNT= 000025
PROTECT MODE BYTE= SECONDARY, READ ONLY
USER DATA FIELD= ASSIGNED TO J. BROWN

Figure 137. Listing of a Password Entry

IEHPROGM uses the following input:

• One or more data sets containing system control data to be
modified.

• A control data set that contains utility control statements
used to control the functions of the program.

IEHPROGM produces the following output:

• A modified object data set or volume(s).

• A message data set that contains error messages and
information from the PASSWORD data set.

IEHPROGM Program 393

RETURN CODES

CONTROL

IEHPROGM returns a code in register 15 to indicate the results
of program execution. The return codes and their meanings are
listed in Figure 138.

Codes Meaning

00 (00 hex) Successful completion.

04 (04) A syntax error was found in the name field of the
control statement or in the PARM field in the EXEC
statement. Processing continues.

OS (OS) A request for a specific operation was ignored
because of an invalid control statement or an
otherwise invalid request. The operation is not
performed.

12 (OC) An input/output error was detected when trying to
read from or write to SYSPRINT, SYSIN or the VTOC.
The job step is terminated.

16 (lO) An unrecoverable error exists. The job step is
terminated.

Figure 138. IEHPROGM Return Codes

IEHPROGM is controlled by job control statements and utility
control statements.

Job control statements are used to:

• Execute or invoke the program.

• Define the control data set.

• Define volumes and/or devices to be used during the course
of program execution.

• Prevent data sets from being deleted inadvertently.

• Prevent volumes from being demounted before they have been
completely processed by the program.

• Suppress listing of utility control statements.

Utility control statements are used to control the functions of
the program and to define those data sets or volumes that are to
be modified.

IEHPROGM supports 3-byte UCB addresses and does not use device
allocation tables. The maximum number of UCBs allowed under
MVS/XA is 4096.

394 MVS/XA Data Administration: Utilities

1'-\
~-;

(

JOB CONTROL STATEMENTS

Figure 139 shows the job control statements for IEHPROGM.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHPROGM) or, if
the job control statements reside in a procedure
library, the procedure name. Additional PARM
information can be specified to control the number
of lines per page on the output listing and to
suppress printing of utility control statements.
See "PARM Information on the EXEC Statement."

SYSPRINT DD Defines a sequential message data set.

anynamel DD Defines a permanently mounted volume. (The system
residence volume is considered to be a permanently
mounted volume.)

anyname2 DD Defines a mountable device type.

SYSIN DD Defines the control data set. The control data set
normally follows the job control statements in the
input stream; however, it can be defined as a
member of a procedure library.

Figure 139. IEHPROGM Job Control Statements

With the exception of the SYSIN and SYSPRINT DD statements, all
DD statements in Figure 139 are used as device allocation
statements, rather than as true data definition statements. The
maximum number of these allocated devices cannot exceed 256 per
job step.

Because IEHPROGM modifies the internal control blocks created by
device allocation DD statements, the DSNAME parameter, if
supplied, will be ignored by IEHPROGM. (All data sets are
defined explicitly or implicitly by utility control statements.)

Note: Unpredictable results may occur in multitasking
environments where dynamic allocation/deal location of devices,
by other tasks, causes changes in the TIOT during IEHPROGM
execution.

PARM Information on the EXEC Statement

Additional information can be specified in the PARM parameter of
the EXEC statement to control the number of lines per page on
the output listing and to suppress printing of utility control
statements. The EXEC statement can be coded:

PGM=IEHPROGM[,PARM=[LINECNT=~,l
[fBlNIINOPRINTll

The LINECNT parameter specifies the number of lines per page in
the listing of the SYSPRINT data set; xx is a 2-digit number,
from 01 through 99. If LINECNT is omitted, or if an error is
encountered in the LINECNT parameter, the number of lines per
page will be 45.

IEHPROGM Program 395

---- ""-""-""

The PRINT value specifies that the utility control statements
are to be written to the SYSPRINT data set. If neither PRINT
nor NOPRINT is coded, PRINT is assumed.

The NOPRINT value specifies that utility control statements are
not to be written to the SYSPRINT data set. Suppressing
printing of utility control statements assures that passwords
assigned to data sets remain confidential. However, suppressing
printing may make it difficult to interpret error messages,
because the relevant utility control statement is not printed
before the message.

SYSPRINT DD statement

The block size for the SYSPRINT data set must be a multiple of
121. Any blocking factor can be specified.

anynamel DD statement

One anynamel DD statement must be included for each permanently
mounted volume referred to in the job step.

The anynamel DO statement can be entered:

Ilanynamel DO UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume
serial number. The DISP=OLD specification prevents the
inadvertent deletion of a data set. (The anynamel DD statement
is arbitrarily assigned the ddname DDl in the IEHPROGM
examples.)

anyname2 DD statement

One anyname2 DD statement must be included for each mountable
device to be used in the job step. Multiple statements may be
coded as long as each anyname is unique.

The anyname2 DD statement can be coded in the following ways:

IIanyname2 DD VOLUME=SER=xxxxxx,UNIT=xxxx,DISP=OLD

IIanyname2 DO VOLUME=(PRIVATE,SER=xxxxxx),
II UNIT=(xxxx"DEFER),DISP=OLD

The second example can be used to specify deferred mounting when
a large number of magnetic tapes or DASD volumes are to be
processed in one application of the program.

The UNIT and VOLUME parameters define the device type and volume
serial number. The DISP=OLD specification prevents the
inadvertent deletion of a data set. Unit affinity cannot. be
used on DD statements defining mountable devices. (The anyname2
DD statement is arbitrarily assigned the ddname 002 in the
IEHPROGM examples.)

When IEHPROGM is dynamically invoked in a job step containing a
program other than IEHPROGM, the DD statements defining
mountable devices must be included in the job stream prior to DD
statements defining data sets required by the other program.

For instructions on defining mountable volumes, see
Appendix B, "DD Statements for Defining Mountable Devices" on
page 423.

396 MVS/XA Data Administration: Utilities

(

(,

SYSIN DD statement

The block size for the SYSIN data set must be a multiple of 80.
Any blocking factor can be specified.

UTILITY CONTROL STATEMENTS

SCRATCH Statement

Figure 140 shows the utility control statements for IEHPROGM.

Statement

SCRATCH

RENAME

CATLG

UNCATLG

BLDX

DLTX

BLDA

DLTA

CONNECT

RELEASE

BLDG

ADD

REPLACE

DELETEP

LIST

Figure 140.

Use

Scratches a data set or a member from a DASD volume.

Changes the name or alias of a data set or member
residing on a DASD volume.

Generates an entry in the index of an OS CVOL.

Removes an entry from the lowest level index of an
OS CVOL.

Creates a new index in the OS CVOL (SYSCTLG data
set) .

Removes a low level index from an OS CVOL.

Assigns an alias to an index at the highest level of
an OS CVOL.

Deletes an alias previously assigned to an index at
the highest level of an OS CVOL.

Connects two OS CVOLs together using a high level
index name.

Removes a high level index name from one OS CVOL
that served as a connector or pointer to a second OS
CVOL.

Builds an index in an OS CVOL for a generation data
group and defines what action should be taken when
the index overflows.

Adds a password entry in the PASSWORD data set.

Replaces information in a password entry.

Deletes an entry in the PASSWORD data set.

Formats and lists information from a password entry.

IEHPROGM Utility Control Statements

Continuation requirements for utility control statements are
described in "Continuing Utility Control Statements" on page 5.

The SCRATCH statement is used to scratch a data set or member
from a DASD volume. A data set or member is scratched only from
the volume(s) designated in the SCRATCH statement. This
function does not delete OS CVOL entries for scratched data
sets.

A SCRATCH operation will not be executed if the data set or
volume is being used by a program executing concurrently.
"DISP=OLD" on the DD statement only prevents the inadvertent

IEHPROGM Program 397

RENAME statement

CATLG statement

deletion of a data set. It does not ensure exclusive use of the
data set during execution of the job step.

For multivolume data sets, all volumes specified must be online.

The format of the SCRATCH statement is showm below.

[.lstrull] SCRATCH {VTOCIDSNAME=~)

pVOL=device=(~)

[,PURGE]

[,MEMBER=~]

[, SYS]

The RENAME statement is used to change the true name or alias of
a data set or member residing on a DASD volume. The name is
changed only on the designated volume(s). The rename operation
does not update the as CVOL.

A RENAME operation will not be executed if the data set or
volume is being used by a program executing concurrently.

For multivolume data sets, all volumes specified must be online.

If you do not code the MEMBER parameter, the entire data set is
renamed.

The format of the RENAME statement is:

[~] RENAME DSNAME=llil.IDjl

,VOL=device=(~)

, NE~/NAf1E=~

[,MEMBER=~]

The CATLG statement is used to generate a non-V SAM entry in the
index of an as CVOL. If additional levels of indexes are
required in the as CVOL, this function automaticallY creates
them.

When cataloging generation data sets and the index becomes full,
see "BLDG (Build Generation Data Group Index) Statement" on
page 401 for the action to be taken.

To catalog VSAM data sets in an integrated catalog facility or
VSAM catalog, see Catalog Administration Gyide and Access Method
Services Reference.

When device is represented by a group name (for example, SYSDA)
instead of a generic name (for example, 3350 or 3400) in the VOL (.... \;J:
parameter, the catalog operation does not enter the device type
code in the as CVOL. Instead, it places a unique entry in the
device type field of the as CVOL. The allocation of the device

398 MVS/XA Data Administration: utilities

UNCATLG statement

for this entry may not be satisfactory to you. The generic name
should be used if the group name was generated for one or more
device types. When the system is subsequently generated, this
entry may no longer be valid; that is, entries for all such
group names should be deleted and then the group names should be
recataloged after a subsequent generation of the system.

When cataloging data sets residing on tape, specify the volume
serial number and the data set sequence number as follows:

VOL=device=(serial,~, •••)

If a data set is created on a 9-track dual density tape unit
(3400-6), the data set can be cataloged with a device
specification of 3400-3 for an 1600 bits per inch tape or 3400-5
for a 6250 bits per inch tape. If a device specification of
3400-6 is made when the data set is cataloged, any subsequent
retrieval of that data set is made on a dual density unit.

The format of the CATLG statement is:

[.l.sJ;uUl CATLG DSNAME=~

,VOL=deyice=(~)I(serial,~)

[,CVOL=dgyi~e=~gcigll
~

The UNCATLG statement is used to remove a non-V SAM entry from
the index of the OS CVOL. If the entry removed was the last
entry in the index, that index and all higher, unneeded,
indexes, with the exception of the highest-level index, are
removed from the OS CVOL.

The format of the UNCATLG statement is:

[~l UNCATLG DSNAME=name

[,CVOL=devi~g=~ecigll

BLDX (Build Index) statement

The BLDX statement is used to create a new index in an OS CVOL.
If the creation of an index requires that higher level indexes
be created, this function automatically creates them.

The format of the BLDX statement is:

BLDX INDEX=~

t,CVOL=devicg=seciall

IEHPROGM Program 399

-~--------.--.. ~-- ------- - ------ .. _---._--------

DLTX (Delete Index) statement

The DlTX statement is used to remove an index from an OS CVOl.
Only an index that has no entries can be removed.

Because this function does not delete higher level indexes, it
must be used repetitively to delete an entire structure. For
example, to delete a generation data group index structure
A.B.C.names, you must code the following sequence of statements:

DlTX INDEX=A.B.C

DlTX INDEX=A.B

DlTX INDEX=A

The format of the DlTX statement is:

DLTX INDEX=~

[~CVOL=deyice=seriall

BLDA (Build Index Alias) statement

The BlDA statement is used to assign an alias to an index at the
highest level of an OS CVOl.

The format of the BlDA statement is:

[.ls..blil BLDA INDEX=LLame

~ALIAS=~

[,CVOL=g~yi~~=~~ciall

DLTA (Delete Index Alias) statement

The DlTA statement is used to delete an alias previously
assigned to an index at the highest level of an OS CVOl.

The format of the DlTA statement is:

DLTA ALIAS=~

[~CVOL=deyice=seciall

400 MVS/XA Data Administration: Utilities

'\
)

C,·: 'j

(

CONNECT statement

The CONNECT statement is used to place an entry in the high
level index of an OS CVOL. The entry identifies a second OS
CVOL by its device type and volume serial number. In addition,
it contains an index name identifying the index to be searched
for (during subsequent index searches) on the second OS CVOL.

This function does not create an index on the second OS CVOL.

The CONNECT statement does not create a SYSCTLG data set on the
connected control volume. Before cataloging the first data set
on a connected control volume, you must define a SYSCTLG data
set on that volume. This can be done with the following DD
statement:

//ddname DD DSNAME=SYSCTLG,UNIT=xxxx,DISP=(,KEEP1,
// SPACE=(CYL,ll,VOLUME=SER=xxxxxx

If a job requires an auxiliary control volume to complete a
catalog search, you need not have the auxiliary control volume
mounted before the job is begun. (You do not have to remember
the volume on which a particular data set is cataloged.) The
system directs the operator to mount an auxiliary control volume
if it is needed.

Before any OS CVOL can be accessed by the system, it must be
defined in the integrated catalog facility or VSAM master
catalog. For details, see Catalog Administration Guide.

The format of the CONNECT statement is:

[labell CONNECT ItJDEX=name

,VOL=device=serial

[,CVOL=device=~erial]

RELEASE (Disconnect) Statement

The RELEASE statement is used to remove an entry from the high
level index of an OS CVOL. This disconnects, in effect, a
second OS CVOL from the first OS CVOL. The RELEASE statement
does not delete an index from the second OS CVOL.

The format of the RELEASE statement is:

[~] RELEASE INDEX=lli!.Jll.g

[,CVOL=device=?erial]

BLDG (Build Generation Data Group Index) Statement

The BLDG statement is used to build an index for a generation
data group, and to define what action should be taken when the
index overflows.

To delete a generation data group index structure, use the "DLTX
(Delete Index) Statement" on page 400.

IEHPROGM Program 401

The format of the BLDG statement is:

[l.slQlil BLDG INDEX=.n9..!l!..f,i

,ENTRIES=n

[,CVOL=deyice=seriall

[, EI1PTVl

[,DELETEl

ADD (Add a Password) statement

The ADD statement is used to add a password entry in the
PASSWORD data set. When the control entry for an online DASD
data set is added, the indicated protection status of the data
set is set in the DSCB; when a secondary entry is added, the
protection status in the DSCB is not changed.

The format of the ADD statement is:

[.ls..b.tll ADD DSNAME=.n9..!l!..f,i

[,PASWORD2=new-passwordl

[,CPASWORD=control-passwordl

[,TVPE=~l

[,VOL=device=(~)l

[,DATA='us~~-qg~g'l

REPLACE (Replace a Password) statement

The REPLACE statement is used to replace any or all of the
following information in a password entry: the password name,
protection mode (read/write or read only) of the password, and
user data. When the control entry for an online DASD data set
is replaced, the protection status of the data set is changed in
the DSCB if necessary; when a secondary entry is replaced, the
protection status in the DSCB is not changed.

The format of the REPLACE statement is:

[l.slQli] REPLACE DSNAME=.n9..!l!..f,i

[,PASWORD1=cyrrent-pgsswordl

[,PASWORD2=new-pgssworql

[,CPASWORD=control-passworql

[,TVPE=~l

[,VOL=deyice=(~)l

[,DATA='y~er-qg~g'l

402 MVS/XA Data Administration: Utilities

(

(-

DELETEP (Delete a Password) statement

The DELETEP statement is used to delete an entry in the PASSWORD
data set. If a control entry is deleted, all the secondary
entries for that data set are also deleted. If a secondary
entry is deleted, only that entry is deleted. When the control
entry for an online DASD data set is deleted, the protection
status in the DSCB is set to indicate that the data set is no
longer protected.

The format of the DELETEP statement is:

[~J DELETEP DSNAME=~

[,PASWORD1=current-passwordJ

[,CPASWORD=control-passwordJ

[,VOL=de~ice=(~)J

LIST (List Information from a Password) Statement

Parameters

ALIAS

CPA SWORD

The LIST statement is used to format and print information from
a password entry.

The format of the LIST statement is:

I [lBh.olJ LIST DSNAME=~

,PASWORD1=current-password

Applicable
Control
statements Description of Parameters

BLDA ALIAS=lli!..Dl..e
DLTA specifies an unqualified name to be assigned as

the alias or to be deleted from the index. The
name must not exceed 8 characters.

ADD CPASWORD=coDirQl-pa~swocd
specifies the control password for the data set.
CPASWORD must be specified unless this is the
first password assigned to the data set, in
which case PASWORD2 specifies the password to be
added.

DELETEP CPASWORD=control-passwocd
REPLACE CPASWORD must be specified unless the control

entry is being changed or deleted, in which case
PASWORDI specifies the control password.

IEHPROGM Program 403

Parameters

CVOL

DATA

DELETE

DSNAME

Applicable
Control
statements

CATLG
UNCATLG
BLDX
DLTX
BLDA
DLTA
CONNECT
RELEASE
BLDG

ADD
REPLACE

BLDG

SCRATCH
RENAME
CATLG
UNCATLG
ADD
REPLACE
DELETEP
LIST

Description of Parameters

CVOL=device=seriql
For CATLG, UNCATLG, BLDX, DLTX and BLDG, CVOL
specifies the OS CVOL on which the search for
the index (entry, for UNCATLG) is to begin.

For BLDA and DLTA, CVOL specifies the OS CVOL on
which the entry is to be made or deleted.

For CONNECT and RELEASE, CVOL specifies
specifies the device type and volume serial
number of the first OS CVOL.

If CVOL is omitted:

For CATLG and UNCATLG, the search begins with
the integrated catalog facility or VSAM
master/JOBCAT/STEPCAT catalog.

For BLDX, DLTX, BLDA, DLTA, CONNECT, RELEASE and
BLDG, the system attempts to locate the proper
(the first, for CONNECT) OS CVOL by checking the
integrated catalog facility or VSAM master
catalog for an OS CVOL pointer alias name equal
to the high level index specified in the INDEX
(ALIAS, for DLTA) parameter.

The OS CVOL must be defined in the integrated
catalog facility or VSAM master catalog as:
SYSCTLG.Vserial, where serial must equal the
serial number of the CVOL. For more
information, see Catalog Administration Gyide.

Default: The search begins with the integrated
catalog facility or VSAM master catalog (or
JOBCAT/STEPCAT, if specified).

DATA='user-data'
specifies the user data to be placed in the
password entry. The user data has a maximum
length of 77 bytes and must be enclosed in
apostrophes. Any other apostrophes contained
within the user data must be entered as two
single apostrophes.

If DATA is omitted from an ADD operation, 77
blanks are used. If DATA is omitted from a
REPLACE operation, current user data is not
changed.

DELETE
specifies that generation data sets are
scratched after their entries are removed from
the index.

DSNAME=~
specifies the fully qualified name of the data
set to be either scratched or renamed; the fully
qualified name of the partitioned data set that
contains the member to be scratched or renamed;
the fully qualified name of the data set to be
cataloged or uncataloged; or the fully qualified
name of the data set whose password entry is to
be added, replaced, deleted, or listed. The
qualified name must not exceed 44 characters,
including delimiters.

404 MVS/XA Data Administration: Utilities

Parameters

EMPTY

ENTRIES

INDEX

MEMBER

NEWNAME

PASWORDI

Applicable
Control
statements

BLDG

BLDG

BLDG

BLDX
DLTX

BLDA

CONNECT
RELEASE

SCRATCH
RENAME

RENAME

REPLACE
DELETEP
LIST

Description of Parameters

EMPTY
specifies that all entries be removed from the
generation data group index when it overflows.
This deletes all index entries for all of the
generation data sets.

Default: The entries with the largest
generation numbers will be maintained in the
catalog when the generation data group index
overflows.

ENTRIES=.!.1
specifies the number of entries to be contained
in the generation data group index; .!.1 must not
exceed 255.

INDEX=name
specifies the 1- to 35-character qualified name
of the generation data group index.

INDEX=~
specifies the qualified name of the index to be
created or deleted. The qualified name must not
exceed 44 characters, including delimiters.

INDEX=name
specifies the unqualified name of the index to
which an alias name is to be assigned. The
unqualified name must not exceed 8 characters.

INDEX=name
specifies the unqualified index name to be
entered or removed from the high level index on
the first OS CVOL. The unqualified name must
not exceed 8 characters.

MEMBER=nam,.g
specifies a member name or alias of a member (in
the named data set) to be renamed or removed
from the directory of a partitioned data set.
This name is not validity-checked because all
members must be accessible, whether the name is
valid or not.

Default: The entire data set or volume of data
sets specified by name is changed or scratched.

NEWNANE=name
specifies the new fully qualified name or alias
name for the data set or the new member.

PASWORD1=current-password
specifies the password in the entry to be
listed, changed, or deleted.

Default: The operator is prompted for the
current password.

IEHPROGM Program 405

Parameters

PASWORD2

PURGE

SYS

Applicable
Control
statements

ADD
REPLACE

SCRATCH

SCRATCH

Description of Parameters

PAS\<JORD2=new-password

PURGE

SVS

specifies the new password to be added or
assigned to the entry. If the password is not
to be changed, the current password must also be
specified as the new password. The password can
consist of 1 to 8 alphameric characters.

Default: The operator is prompted for a new
password.

specifies that each data set specified by DSNAME
or VTOC be scratched, even if its expiration
date has not elapsed.

Default: The specified data sets are scratched
only if their expiration dates have elapsed.

limits the action of SCRATCH VTOC so that only
system data sets are erased. System data sets
have names beginning with
"AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA." or
"SYSnnnnn.T" with "F," "V," or "A" in position
19. These are names assigned to the data sets
by the operating system.

If the name of the data set to be scratched
begins with SYS, it is likely to be a temporary
data set which was not erased at normal step or
job termination; nnnnn is the date the data set
was created in dddyy format.

SYS does not scratch data sets that are system
libraries, such as SYS1.LINKLIB.

The SYS parameter is valid only when VTOC is
specified.

406 MVS/XA Data Administration: Utilities

/' ,
\ "".

Parameters

TYPE

(-

Applicable
Control
statements

ADD
REPLACE

Description of Parameters

TVPE=code
specifies the protection code of the password
and, if a control password entry is to be
changed for or assigned to a BDAM online data
set, specifies the protection status of the data
set. The values that can be specified for code
are:

1

2

3

specifies that the password is to allow
both read and write access to the data set;
if a control password is being assigned or
changed, read/write protection is set ~n
the DSCB.

specifies that the password is to allow
only read access to the data set; if
control password is being assigned or
changed, read/write protection is set in
the DSCB.

specifies that the password is to allow
both read and write access to the data set;
if a control password is being assigned or
changed, read-without-password protection
is set in the DSCB.

Default: For ADD, if this parameter is
omitted, the new password is assigned the
same protection code as the control
password for the data set. If a control
password is being "added," TYPE=3 is the
default. For REPLACE, the protection is
not changed.

IEHPROGM Program 407

Parameters

VOL

VTOC

Applicable
Control
statements

CONNECT

ADD
REPLACE
DELETEP
SCRATCH
RENAME

CATLG

SCRATCH

Description of Parameters

VOL=device=seriql
specifies the device type and serial number of
the second as CVOL. This information is placed
in the high level index of the first OS CVOL.

VOL=device=(li§±)
specifies the device type and serial number(s)
of the volume(s), limited to 50, that contain
the data set(s). If only one serial number is
listed in ~, it need not be enclosed in
parentheses.

For ADD, REPLACE and DELETEP, if omitted, the
protection status in the DSCB is not set or
changed, unless the data set is cataloged and
online. This parameter is not necessary for
secondary password entries, or if the desired
protection status in the DSCB is already set or
is not to be changed by ADD or REPLACE.

For SCRATCH and RENAME, if VTOC or MEMBER is
specified, VOL cannot specify more than one
volume. Caution should be used when specifying
VTOC if VOL specifies the system residence
volume.

VOL=device=(li3±)I(serial,~)
specifies the device type, serial numbers, and
data set sequence numbers (for tape volumes) of
the volumes (up to 50) that contain the data
sets to be cataloged in the OS CVOL.

o

\
The volume serial numbers must appear in the , J
same order in which they were originally

VTOC

encountered (in DD statements within the input
stream) when the data set was created.

~ is valid only for data sets which reside
on tape.

specifies that all data sets on the designated
volume be scratched, with the following
exceptions:

• a data set that is protected by a password

• a data set whose expiration date has not
passed

• a data set that contains the index for an
indexed VTOC

Password-protected data sets are scratched if
the correct password is provided.

The effect of VTOC is modified when it is used
with PURGE or SYS.

408 MVS/XA Data Administration: Utilities

(

IEHpROGM EXAMPLES

Mount

The following examples illustrate some of the uses of IEHPROGM.
Figure 141 can be used as a quick-reference guide to IEHPROGM
examples. The numbers in the "Example" column point to the
examples that follow.

Operation Volumes Comments Example

SCRATCH Disk VTOC is scratched. 1

SCRATCH Disk Two data sets are scratched and their entries 2
UNCATLG removed from the OS CVOL.

RENAME, Disks A data set is renamed on two mountable devices; 3
UNCATLG the old data set name is removed from the OS
CATLG CVOL. The data set is cataloged under its new

name.

UNCATLG Disk Index structures for three generation data sets 4
are deleted from the OS CVOL.

RENM1E Disk A data set is renamed. The old passwords are 5
DELETEP, deleted and new passwords are assigned.
and ADD

LIST and Disk A password entry is listed. Protection mode 6
REPLACE and status are changed, and user data is added.

RENAME Disk A member of a partitioned data set is renamed. 7

CAllG and Disk One OS CVOL is connected to another. 8
CONNECT

BLDG, Disk A generation data group index is built; three 9
RENAME and data sets are renamed and entered in the index.
CATLG

BLDG Disk A new generation data group index is built and 10
updated through JCL. A model DSCB is created.
New generations are added.

Figure 141. IEHPROGM Example Directory

IEHPROGM EXAMPLE 1

Examples that use disk or tape in place of actual device numbers
must be changed before use. See "DASD and Tape Device Support"
on page 3 for valid device number notation.

In the following example, all data sets are scratched from the
volume table of contents of a mountable volume. Because the
system residence volume is not referred to, no DDI DD statement
is necessary in the job stream.

//SCRVTOC JOB
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//SYSIN DD 3E

SCRATCH VTOC,VOL=disk=222222, SYS
/3E

IEHPROGM Program 409

IEHPROGM EXAMPLE 2

IEHPROGM EXAMPLE 3

The SCRATCH statement, used in this example, indicates that all
data sets (including those system data sets beginning with
AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA) whose expiration dates have r-.~
expired are scratched from the specified volume. ~.J

In this example, two data sets are scratched: SETI is scratched
on volume 222222, and A.B.C.D.E is scratched on volume 222222.
Both data sets are uncataloged.

IISCRDSETS JOB
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDDl DD UNIT=disk,VOlUME=SER=llllll,DISP=OlD
IIDD2 DD UNIT=disk,DISP=OlD,VOlUME=SER=222222
IISYSIN DD *

1*

SCRATCH DSNAME=SETl,VOl=disk=222222
UNCATlG DSNAME=SETI
SCRATCH DSNAME=A.B.C.D.E,VOl=disk=222222
UNCATlG DSNAME=A.B.C.D.E

The utility control statements are discussed below:

• The first SCRATCH statement specifies that SETl, which
resides on volume 222222, is scratched.

• The first UNCATlG statement specifies that SETI is
uncataloged.

• The second SCRATCH statement specifies that A.B.C.D.E, which
resides on volume 222222, is scratched.

• The second UNCATlG statement specifies that A.B.C.D.E is
uncataloged.

In this example, the name of a data set is changed on two
mountable volumes. The old data set name is removed from the OS
CVOl and the data set is cataloged under its new data set name.

IIRENAMEDS
II
IISYSPRINT
IIDDI
IIDD2
II
IISYSIN

1*

RENAME

UNCATlG
CATlG

JOB
EXEC PGM=IEHPROGM
DD SYSOUT=A
DD VOlUME=SER=IIIIII,UNIT=disk,DISP=OlD
DD UNIT=(disk"DEFER),DISP=OlD,

VOlUME=(PRIVATE,SER=(222222,333333»
DD *
DSNAME=A.B.C,NEWNAME=NEWSET,

VOl=disk=(222222,333333)
DSNAME=A.B.C
DSNAME=NEWSET,VOl=disk=(222222,333333)

The control statements are discussed below:

• RENAME specifies that data set A.B.C, which resides on
volumes 222222 and 333333, is to be renamed NEWSET.

72

C

410 MVS/XA Data Administration: Utilities

I

I

(

(

IEHPROGM EXAMPLE 4

IEHPROGM EXAMPLE 5

•
•

UNCATLG specifies that data set A.B.C is uncataloged.

CATLG specifies that NEWSET, which resides on volumes 222222
and 333333, is cataloged in the OS CVOL.

In this example, three data sets--A.B.C.D.E.F.SETl,
A.B.C.G.H.SET2, and A.B.I.J.K.SET3--are uncataloged.

//DLTSTRUC JOB
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DDI DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
//SYSIN DD *

UNCATLG DSNAME=A.B.C.D.E.F.SETI
UNCATLG DSNAME=A.B.C.G.H.SET2
UNCATLG DSNAME=A.B.I.J.K.SET3

The control statements are discussed below:

• The UNCATLG statements specify that data sets
A.B.C.D.E.F.SET1, A.B.C.G.H.SET2, and A.B.I.J.K.SET3 are
uncataloged.

In this example, a data set is renamed. The data set passwords
assigned to the old data set name are deleted. Then two
passwords are assigned to the new data set name.

If the data set is not cataloged, a message is issued indicating
that the LOCATE macro instruction failed.

//ADDPASS JOB
// EXEC PGM=IEHPROGM,PARM='NOPRINT'
//SYSPRINT DD SYSOUT=A
//DDI DD VDLUME=(PRIVATE,SER=222222),DISP=OLD,
// UNIT=(disk"DEFER)
//SYSIN DD *

RENAME DSNAME=OLD,VOL=disk=222222,NEWNAME=NEW
DELETEP DSNAME=OLD,PASWDRD1=KEY

72

ADD DSNAME=NEW,PASWDRD2=KEY,TYPE=1, C
DATA='SECDNDARY IS READ'

ADD DSNAME=NEW,PASWDRD2=READ,CPASWORD=KEY,TYPE=2, C
DATA='ASSIGNED TO J. DOE'

The utility control statements are discussed below:

• RENAME specifies that the data set called OLD is renamed
NEW. The operator is required to supply a password to
rename the old data set.

• DELETEP specifies that the entry for the password KEY is
deleted. Because KEY is a control password in this example,
all the password entries for the data set name are deleted.
The VOL parameter is not needed because the protection
status of the data set as set in the DSCB is not to be
changed; read/write protection is presently set in the DSCB,

IEHPROGM Program 411

IEHPROGM EXAMPLE &

IEHPROGM EXAMPLE 7

and read/write protection is desired when the passwords are
reassigned under the new data set name.

• The ADD statements specify that entries are added for
passwords KEY and READ. KEY becomes the control password
and allows both read and write access to the data set. READ
becomes a secondary password and allows only read access to
the data set. The VOL parameter is not needed, because the
protection status of the data set is still set in the DSCB.

In this example, information from a password entry is listed.
Then the protection mode of the password, the protection status
of the data set, and the user data are changed.

//REPLPASS

//SYSPRINT
//DDI
//DD2
//
//SYSIN

LIST
REPLACE

JOB
EXEC PGM=IEHPROGM,PARM='NOPRINT'
DD SYSOUT=A
DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
DD VOLUME=(PRIVATE,SER=(222222,333333)),

UNIT=(disk"DEFER),DISP=OLD
DD *

DSNAME=A.B.C,PASHORDI=ABLE
DSNAME=A.B.C,PASHORD1=ABLE,

PASHORD2=ABLE,TYPE=3,
VOL=disk=(222222,333333),
DATA='NO SECONDARIES; ASSIGNED TO DEPT 31'

The utility control statements are discussed below:

72

C
C
C

• LIST specifies that the access counter, protection mode, and
user data from the entry for password ABLE are listed.
Listing the entry permits the content of the access counter
to be recorded before the counter is reset to zero by the
REPLACE statement.

• REPLACE specifies that the protection mode of password ABLE
is to be changed to allow both read and write access and
that the protection status of the data set is changed to
write-only protection. The VOL parameter is required
because the protection status of the data set is changed and
the data set, in this example, is not cataloged. Because
this is a control password, the CPASHORO parameter is not
required.

In this example, a member of a partitioned data set is renamed.

//REN
//
//SYSPRINT
//001
//SYSIN

RENAME

/*

JOB
EXEC PGM=IEHPROGM
DD SYSOUT=A
DD VOL=SER=222222,DISP=OLD,UNIT=disk
DO *
VOL=disk=222222,DSNAME=DATASET,NEHNAME=BC,

MEMBER=ABC

72

C

412 MVS/XA Data Administration: Utilities

\

IEHPROGM EXAMPLE 8

IEHPROGM EXAMPLE 9

(

The control statements are discussed below:

• DDI DD defines a permanently mounted volume.

• SYSIN DD defines the input data set, which follows in the
input stream.

• RENAME specifies that member ABC in the partitioned data set
DATASET, which resides on a disk volume, is renamed BC.

In this example, a new OS CVOl (SYSCTlG data set) is defined and
connected to an ~xisting OS CVOl. A data set is then cataloged
in the new OS CVOl.

//lNKX JOB
//STEPI EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//NEWCVOl DD DSN~SYSCTlG,UNIT=disk,VOl=SER=222222,
// DISP=(,KEEP),SPACE=(TRK,(lO,l»
//DDI DD UNIT=disk,VOl=SER=111111,DISP=SHR
//SYSIN DD *

CATlG DSNAME=SYSCTlG.V222222,VOl=disk=222222
CONNECT INDEX=AA,VOl=disk=222222
CATlG DSNAME=AA.BB,VOl=disk=PACK14

This example assumes that the OS CVOl on volume 111111 was
previously defined in the integrated catalog facility or VSAM
master catalog with an OS CVOl pointer, and "AA" was defined in
the integrated catalog facility or VSAM master catalog as an
alias of the OS CVOl pointer. For details on how this is done,
see Catalog Administration Guide.

The utility control statements are discussed below:

• NEWCVOl DD allocates space for the new OS CVOl.

• The first CATlG statement establishes an OS CVOl pointer in
the integrated catalog facility or VSAM master catalog for
the new OS CVOl.

• The CONNECT statement causes the new OS CVOl (on volume
222222) to be connected to the old OS CVOl (on volume
111111), such that any catalog management requests coming to
the old OS CVOl having a high level index name of AA will be
routed to the new OS CVOl.

• The second CATlG statement will cause the data set AA.BB to
be cataloged in the new OS CVOl on volume 222222. Since
this is the first request to update the new OS CVOl, this
will cause the new OS CVOl to be formatted before the
catalog entry is made.

In this example, a generation data group index for generation
data group A.B.C is built in an as CVOl. Three existing
noncataloged, nongeneration data sets are renamed; the renamed
data sets are entered as generations in the generation data
group index.

IEHPROGM Program 413

IEHPROGM EXAMPLE 10

72
IIBLDINDEX JOB
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSDUT=A
IIDDl DD UNIT=disk,VOLUME=SER=llllll,DISP=OLD
IIDD2 DD UNIT=(disk"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222»
IISYSIN DD 3(0

BLDG INDEX=A.B.C,ENTRIES=lO,CVOL=disk=llllll
RENAME DSNAME=DATASETl,VOL=disk=222222,

NEWNAME=A.B.C.GOOOlVOO
RENAME DSNAME=DATASET2,VOL=disk=222222,

NEWNAME=A.B.C.GOOO2VOO
RENAME DSNAME=DATASET3,VOL=disk=222222,

NEWNAME=A.B.C.GOOO3VOO
CATLG DSNAME=A.B.C.GOOOlVOO,VOL=disk=222222,

CVOL=disk=llllll
CATLG DSNAME=A.B.C.GOO02VOO,VOL=disk=222222,

CVOL=disk=llllll
CATLG DSNAME=A.B.C.GOO03VOO,VOL=disk-222222,

CVOL=disk=llllll
1*

The control statements are discussed below:

• DDl DD defines the volume on which the SYSCTLG data set
resides.

• BLDG specifies the generation group name
provision for ten entries in the index.
generation is uncataloged when the index
generations are scratched.

A.B.C and makes
The oldest
becomes full. No

• The RENAME statements rename three nongeneration data sets
residing on a disk volume.

• The CATLG statements enter the renamed data sets in the

C

C

C

C

C

C

generation data group index and catalog them in the OS CVOL.

Because the DCB parameters were supplied when the nongeneration
data sets were created, no DCB parameters are now specified;
therefore, no model DSCB is required. See Example 10 for
information on how to create a model DSCB.

In this example, an IEHPROGM job step, STEPA, creates a model
DSCB and builds a generation data group index. STEP B, an
IEBGENER job step, creates and catalogs a sequential generation
data set from data in the input stream. STEP C, an IEBGENER job
step, creates and catalogs a second generation with new DCB
attributes.

This example assumes that the OS CVOL with serial number 111111
was previously defined in the integrated catalog facility or
VSAM master catalog with an OS CVOL pointer, and "A" was defined
in the integrated catalog facility or VSAM master catalog as an
alias of the OS CVOL pointer. For details on how this is done,
see Catalog Administration Guide.

414 MVS/XA Data Administration: Utilities

tf\
0

/ \.

)

(."\
(... ,

(-

//BLDINDX
//STEPA
//SYSPRINT
//BLDDSCB
//

JOB
EXEC PGM=IEHPROGM
DD SYSOUT=A
DD DSNAME=A.B.C,DISP=(,KEEP),SPACE=(TRK,(O»,

DCB=(LRECL=80,RECFM=FB,BLKSIZE=800),
VOLUME=SER=llllll,UNIT=disk //

//SYSIN DD *
BLDG INDEX=A.B.C,ENTRIES=IO,EMPTY,DELETE

/*
//STEPB
//SYSPRINT
//SYSIN
//SYSUT2
//
//SYSUTl

EXEC PGM=IEBGENER
DD SYSOUT=A
DD DUt·1MY
DD DSNAME=A.B.C(+ll,UNIT=disk,DISP=(,CATLG),

VOLUME=SER=222222,SPACE=(TRK,20)
DD DATA

(input data)

EXEC PGM=IEBGENER
DD SYSOUT=A
DD DUMMY

//STEPC
//SYSPRINT
//SYSIN
//SYSUT2
//
//
//SYSUTl

DD DSNAME=A.B.C(+I),UNIT=disk,DISP=(,CATLG),
DCB=(LRECL=80,RECFM=FB,BLKSIZE=1600),
VOLUME=SER=222222,SPACE=(TRK,20)

DD DATA

(input data)

/*

The control statements are discussed below:

STEPA:

• BLDDSCB DD creates a model DSCB on the OS CVOL volume.

• SYSIN DD indicates that the control data set follows in
the input stream.

• BLDG specifies the generation data group name A.B.C and
makes provision for ten entries in the group. When the
index is filled, it is emptied, and all of the
generations are deleted.

STEPB:

• SYSUT2 DD defines an output sequential generation data
set. The generation data set is assigned the absolute
generation and version number GOOOIVOO in the index.

• SYSUTI DD defines the input data set, which follows in
the input stream.

STEPC:

• SYSUT2 DD defines a second output sequential generation
data set. The generation data set is assigned the
absolute generation and version number G0002VOO in the
index. The specified DCB attributes override those
initially specified in the model DSCB. The DCB
attributes specified when the model DSCB was created
remain unchanged; that is, those attributes are
applicable when you catalog a succeeding generation
unless you specify overriding attributes at that time.

• SYSUTI defines the input data set, which follows in the
job stream.

IEHPROGM Program 415

Any subsequent job that causes the deletion of the generations
should include DD statements defining the devices on which the
volumes containing those generations are to be mounted. The as
CVOL entry is deleted for each generation for which no DD
statement is included at that time, but the generation itself is
not deleted.

After the generation data group is emptied, the new generations
continue to be assigned generation numbers according to the last
generation number assigned before the empty operation. To reset
the numbering operation (that is, to reset to GOOOOVOO or
GOOOlVOO), it is necessary to delete the catalog entries for all
the old generation data sets and then rename and recatalog,
beginning with GOOOOVOO.

416 MVS/XA Data Administration: Utilities

' -- -.//

(~,' IEHSTATR PROGRAM

(....
)

(~

IFHSTATR is a system utility that formats and prints information
from Type 21 SMF (system management facilities) records. These
records provide error statistics by volume (ESV) data.

Figure 142 below and Figure 143 on page 418 show the formats of
the type 21 records.

TOTAL RECORD LENGTH (48) DESCRIPTOR

SYSTEM RECORD TIME OF DAY
INDICATOR TYPE (21)

TIME OF DAY (CONTINUED) CURRENT DATE

CURRENT DATE (CONTINUED) SYSTEM IDENTIFICATION

SYSTEM IDENTIFICATION LENGTH OF REST OF RECORD
INCLUDING THIS FIELD (30)

VOLUME SERIAL NUMBER

VOLUME SERIAL NO. (CONT) CHANNEL UNIT ADDRESS

UCB TYPE

TEMPORARY READ TEMPORARY WRITE START 1/0s
ERRORS ERRORS

PERMANENT READ PERMANENT WRITE NOISE BLOCKS ERASE GAPS
ERRORS ERRORS

ERASE GAPS CLEANER ACTIONS TAPE DENSITY
(CONTINUED)

BLOCK SIZE RESERVED

Figure 142. SMF Type 21 (ESV) Record Format (48 bytes)

IFHSTATR Program 417

TOTAL RECORD LENGTH (62) DESCRIPTOR

SYSTEM RECORD TIME OF DAY
INDICATOR TYPE (21)

TIME OF DAY (CONTINUED) CURRENT DATE

CURRENT DATE (CONTINUED) SYSTEM IDENTIFICATION

SYSTEM IDENTIFICATION LENGTH OF REST OF RECORD
INCLUDING THIS FIELD (44)

VOLUME SERIAL NUMBER

VOLUME SERIAL NO. (CONT) CHANNEL UNIT ADDRESS

UCB TYPE

TEMPORARY READ TEMPORARY WRITE START 1/0s
ERRORS ERRORS

PERMANENT READ PERMANENT WRITE NOISE BLOCKS ERASE GAPS
ERRORS ERRORS

ERASE GAPS CLEANER ACTIONS TAPE DENSITY
(CONTINUED)

BLOCK SIZE DCBOFLAG T/U SERIAL

TAPE UNIT SERIAL (CONTINUED) TEMPORARY READ FORWARD ERRORS

TEMPORARY READ BACKWARD ERRORS TEMPORARY WRITE ERRORS

NUMBER OF 4K BYTES READ NUMBER OF 4K

BYTES WRITTEN

Figure 143. SMF Type 21 (ESV) Record Format (62 Bytes)

I ASSESSING THE QUALITY OF TAPES IN A LIBRARY

The statistics gathered by SMF in ESV records can be very useful
for assessing the quality of a tape library. IFHSTATR prints ESV
records in date/time sequence. You may find it useful to sort
ESV records into volume serial number sequence, device address
sequence, or into error occurrence sequence to help analyze the
condition of the library.

The IFHSTATR report helps to identify deteriorating media
(tapes); occasionally, poor performance from a particular tape
drive can also be identified. The TAPE UNIT SERIAL may be used
to identify the tape drive that wrote the tape.

An ESV record is written to the SMF data set via SVC 91:

1. When a volume is demounted

2. When a volume is demounted via DDR

3. When a tape drive is VARIED off-line

4. When an EOD command is issued

5. When EREP is run

418 MVS/XA Data Administration: Utilities

l-~
J

,-'\,

j

(.-,1

'I

(:

INPUT AND OUTPUT

VOLUME TIME DEY TIU
SERIAL DATE Of DAY ADR SER

Because an ESV record may be written at other than demount time,
more than one record may be written during the time a volume is
mounted. Therefore, the number of records for a volume should
not be used to determine the number of mounts or uses of a
volume.

IFHSTATR uses, as input, ESV records that contain error and
usage information about magnetic tape volumes. If no ESV records
are found, a message is written to the output data set. If the
ESV record is not 48 or 62 bytes long, an INVALID TYPE 21 RECORD
message is printed.

ESV records should be retrieved from the IFASMDMP tape or from
SYS1.MAN (on tape). ESV can also be retrieved directly from
SYS1.MANX or SYS1.MANY (on direct access storage device);
however, IFHSTATR does not clear the SYS1.MANX (or SYS1.MANY)
data set or make it available for additional records.

IFHSTATR produces an output data set which contains information
selected from ESV records. The output takes the form of 121-byte
unblocked records, with an American National Standards Institute
(ANSI) control character in the first byte of each record.

Figure 144 shows a sample of printed output from IFHSTATR.

MAGNETIC TAPE ERROR STATI STiCS BY VOLUME 8!>/123

BLOCK TAPE TEMP TEMP TEMP PM PRM NO I SE ERASE CLEAN USAGE MBYTES MBYTES
MODE SIZE DENS READ READB WR ITE RD WRT BLOCK GAPS ACTS SIO READ WRITTEN ----- INVALTIiTYPl"Tf""RlCiiRD -- -- ---- ---

T3"200 851" 08:0lI:22 180 00000 OUT MIA MfA I MIA 2 3 II , 6 7 8 N/A MIA
T34201 85'" 12:01:59 281 56789 OUT 80 1600 I MIA 2 3 II 5 6 7 8 MIA NIA
T34202 85111 12:02: 18 28C 67890 RB 32768 6250 255 N/A 255 255 255 255 65535 65535 65535 N/A N/A
T3Q800 851" 12:03:21 480 78901 RB 80 MIA 1 2 3 4 5 MIA 6 7 8 9 10
T34801 8"" 12:04:21 480 89012 Rf 65535 N/A 65535 65535 65535 255 255 MIA 65535 65535 65535 65535 65535 ... -_ .. .
• •
• T342000 IS A 3420 WITH SMALL NUMBER Of ERRORS WITH BLOCKSIZE/DENSITY NOT AVAILABLE *
• T342001 IS A 3420 WITH SMALL NUHBER OF ERRORS * : m:gg~ :: : ~m ~:~:·=L~U:U=~~=E~FO~R~~=~RS :
• T34800 1 I S A 31180 WITH MAX I MUM NUMBER OF ERRORS *
• * ..
Figure 144.

LEGEND

Sample Output from IFHSTATR

TIME OF DAY

DEV ADR

T/U SER

MODEl

BLOCKSIZEl

TAPE DENSl

TEMP READ

The time the ESV record was written.

The device address of the tape drive on which
the tape was mounted

Serial number of the tape drive that wrote the
tape, which is obtained from the tape label for
input tapes if available.

The OPEN flag bits for the data set being
accessed.

•
•
•

OUT =
RF =
RB =

OPENED for OUTPUT
OPENED for INPUT forward
OPENED for INPUT read backward

The block size in the last data set accessed.

The recording density of the tape.

Number of read data checks that were
successfully retried.

IFHSTATR Program 419

CONTROL

TEMP READBZ

TEMP WRITE

PERM RD

PERM WRT

NOISE BLOCK

ERASE GAPS

CLEAN ACTS

Number of read data checks on read backward
commands that were successfully retried.

Number of write data checks that were
successfully retried.

Number of read data checks that were not
successfully retried.

Number of write data checks that were not
successfully retried.

(NRZI only) Number of read data checks that had
the number of bytes read less than 12.

Number of times an erase gap command was issued
during error recovery. An erase gap command is
issued prior to a retry of a write data check.

Number of times that1 during read data check
recoverY1 the tape was moved over the cleaner
blade. This will normally be done after every
fourth retry of the original read command.

USAGE SIO Number of channel programs completed (channel
programs started by ERP are not counted).
Because a channel program has any number of
CCW'S1 this may not be the count of the reads
or writes. '

MBVTES READZ Megabytes read.

MBVTES ~/RITTENZ Megabytes wri Hen.

1 Data originates in the nCB and may not be available.
2 Buffered tape units only

IFHSTATR is controlled 'by job control statements. Utility
control statements are not used.

JOB CONTROL STATEMENTS

Figure 145 shows the job control statements for IFHSTATR.
Figure 146 on page 421 shows an example of the JCL used to
produce output.

statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IFHSTATR).

SVSUTl DD Defines the input data set and the device on which
it resides. The DSNAME, UNIT 1 VOLUME 1 LABEL, DCB,
and DISP parameters should be included

SVSUT2 DD Defines the sequential data set on which the
output is written.

Figure 145. IFHSTATR Job Control Statements

420 MVS/XA Data Administration: utilities

("\)
./

(I //REPORT JOB
// EXEC PGM=IFHSTATR
//SYSUT1 DD UNIT=2400,DSNAME=SYS1.MAN,LABEL=(,SL),
// VOL=SER=volid,DISP=OLD
//SYSUT2 DD SYSOUT=A
/*

Figure 146. IFHSTATR Example

The output data set can reside on any output device supported by
BSAM.

Note: The input LRECL and BLKSIZE parameters are not specified
by IFHSTATR. This information is taken from the DCB parameter
on the SYSUT1 DD statement or from the tape label.

IFHSTATR Program 421

APPENDIX A. EXIT ROUTINE LINKAGE

Utility programs can be linked to user-supplied exit routines
for additional processing.

Figure 147 shows the programs from which exits can be taken to
non-label processing routines, the names of the exits, and the
parameters available for each exit routine.

Program Exit Parameters

IEBGENER KEY Address at which key is to be placed
(record follows key); address of DCB.

DATA Address of SYSUTl record; address of
DCB.

IOERROR Address of DECB; cause of the error and
address of DCB. (Address in lower
order three bytes and cause of error in
high order byte.)

IEBCOMPR ERROR Address of DCB for SYSUTl; address of
DCB for SYSUT2. 1

PRECOMP Address of SYSUTl record; length of
SYSUTl record, address of SYSUT2
record; length of SYSUT2 record.

IEBPTPCH INREC Address of input record; length of the
input record.

OUTREC Address of output record; length of the
output record.

o

/ '\
Figure 147. Parameter Lists for Non-Label Processing Exit ~

Routines

Note to Figure 147:

1 The IOBAD pointer in the DCB points to a location that
contains the address of the corresponding data event control
block (DECB) for these records. The format of the DECB is
illustrated as part of the BSAM READ macro instruction in
Data Administration: Macro Instryction Reference.

For detailed information about these and other exit routines
available, see the Data Facility Prodyct: Cystomization manual.

422 MVS/XA Data Administration: Utilities

(

(

APPENDIX B. DD STATEMENTS FOR DEFINING MOUNTABLE DEVICES

When defining mountable devices to be used by system utility
programs IEHPROGM, IEHMOVE, or IEHLIST, you must consider the
implications of the DD statements used to define those devices.

DD statement parameters must ensure that no one else has access
to either the volume or the data set. In any case, caution
should be used when altering volumes that are permanently
resident or reserved.

Under normal conditions, a mountable device ~hould not be shared
with another job step; that is, if a utility program is used to
update a volume on a mountable device, the volume being updated
must remain mounted until the operation is completed.

Following are ways to ensure that mountable devices are not
shared:

• Specify DEFER in a DD statement defining a mountable device.

• Specify a volume count in the VOLUME parameter of a DD
statement that is greater than the number of mountable
devices to be allocated.

• Specify PRIVATE in a DD statement defining a mountable
device.

For a detailed discussion. see the pUblication ~.

DD STATEMENT EXAMPLES

DD EXAMPLE 1

In the following examples of DD statements, an IBM DASD is
indicated as the mountable device. Alternative parameters are
stacked.

Examples that use disk in place of actual device numbers must be
changed before use. See "DASD and Tape Device Support" on
page 3 for valid device number notation.

This DD statement makes a specific request for a private,
nonsharable volume or volumes to be mounted on a single device.

//DDl
//
//

DD UNIT=(disk"DEFER),DISP=(,KEEP),
VOLUME=(PRIVATE,SER=(l23456)),
SPACE=(CYL,(l,l))

A utility program causes a mount message to be issued for a
specific volume when the volume is required for processing by
the program. You should supply the operator with the clearly
marked volume or volumes to be mounted during the job step.

This DD statement ensures that the volume integrity of a
mountable volume is maintained. If only one volume is to be
processed, it is mounted at the start of the job step and
demounted at the end of the step. If additional volumes are
processed, they are mounted and demounted when needed by the
utility program. The last volume to be processed is demounted
at the end of the job step.

Appendix B. DD Statements for Defining Mountable Devices 423

DD EXAMPLE 2

DD EXAMPLE 3

DD EXAMPLE 4

This DD statement makes a request for a private, nonsharable
volume.

//DD2 DD UNIT=(disk"DEFER),VOLUME=PRIVATE,DISP=(NEW,KEEP),
// SPACE=(CYL,(l,I»

The results of this statement are identical to those shown in DD
Example 1.

If a specific unit is requested and the volume serial number is
not given in the DD statement, you must be certain that either:
(1) the desired volume is already mounted on that unit, or (2) a
volume is not mounted, causing the system to issue a mount
message.

This statement can be used only if you are certain that a
removable volume, rather than a fixed volume, will be allocated
by the scheduler. If there is any chance that a fixed volume
will be allocated, this statement must not be used.

This DD statement makes a specific request for a private,
sharable volume to be mounted on a device.

//DDI DD UNIT=disk~VOLUME=(PRIVATE,SER=(121212»,DISP=OLD

This DD statement does not ensure that volume integrity is
maintained. It should be used with extreme caution in a
multiprogramming environment because there is the possibility
that a job step running concurrently might make a specific
request for the volume, use the volume, and demount it.

This DD statement makes a specific request for a public,
nonsharable volume to be mounted on a device.

//DD3 DD UNIT=(disk"DEFER),VOLUME=SER=789012,DISP=OLD

If the volume is already mounted, it is used. The volume
remains mounted at the end of the job step, and is not demounted
until another job step requires the device on which the volume
is mounted.

This DD statement ensures that volume integrity is maintained
between jobs; two or more such statements in a single job can
allocate the same device.

424 MVS/XA Data Administration: Utilities

DD EXAMPLE 5

(.

This DD statement makes a specific request for a public,
sharable volume to be mounted on a device.

//DDI DD UNIT=disk,VOLUME=SER=65432l,DISP=OLD

If the volume is already mounted, it is used. The volume
remains mounted at the end of the job step, and is not demounted
until another job step requires the device on which the volume
is mounted. (This DD statement can also be used to define
permanently resident devices.)

This DD statement does not ensure that the volume integrity of a
mountable volume is maintained. It should be used with extreme
caution in a multiprogramming environment because there is the
possibility that a job step running concurrently might use the
device.

Appendix B. DD Statements for Defining Mountable Devices 425

APPENDIX C, PROCESSING USER LABELS

User labels can be processed by IEBCOMPR, IEBGENER, IEBPTPCH,
IEBUPDTE, and IEHMOVE. In some cases, user-label processing is
automatically performed; in other cases, you must indicate the
processing to be performed. In general, user label support
allows the utility program user to:

• Process user labels as data set descriptors.

• Process user labels as data.

• Total the processed records prior to each WRITE command
(IEBGENER and IEBUPDTE only).

For either of the first two options, you must specify standard
labels (SUL) on the DD statement that defines each data set for
which user-label processing is desired. For totaling routines,
OPTCD=T must be specified on the DD statement.

You cannot update labels by means of the IEBUPDTE program. This
function must be performed by a user's label processing
routines. IEBUPDTE will, however, allow you to create labels on
the output data set from data supplied in the input stream. See
"LABEL Statement" on page 282 of the chapter "IEBUPDTE Program."

IEHMOVE does not allow exits to user routines and does not
recognize options concerning the processing of user labels as
data. IEHMOVE always moves or copies user labels directly to a
new data set. See "IEHMOVE Program" on page 340.

Volume switch labels of a multivolume data set cannot be

(-''\

'-~

processed by IEHMOVE, IEBGENER, or IEBUPDTE. Volume switch "
labels are therefore lost when these utilities create output ,J

data sets. To ensure that volume switch labels are retained, ,/
process multivolume data sets one volume at a time.

When user labels are to be processed as data set descriptors,
one of the user's label processing routines receives control for
each user label of the specified type. The user's routine can
include, exclude, or modify the user label. Processing of user
labels as data set descriptors is indicated on an EXITS
statement with keyword parameters that name the label processing
routine to be used.

The EXIT keyword parameters indicate that a user routine should
receive control each time the OPEN, EOV, or CLOSE routine
encounters a user label of the type specified.

For detailed information about these and other exit routines
available, see the Data Facility Product: Customization manual.

426 MVS/XA Data Administration: Utilities

I

(-
APPENDIX D. IEHLIST VTOC LISTING

Figure 148 shows a sample output produced by IEHLIST. This
sample printout of a volume table of contents illustrates how
each DSCB will appear on the listing. In many cases, however,
the VTOC will not contain all the fields shown.

A detailed explanation of the fields in the listing follows the
figure.

SYSTEMS SUPPORT UTILITIES---IEHLIST

DATE: 1986.093 TIME: 12.31.23
CONTENTS OF VToe ON VOL EXAMPL

FORMAT 4 DSC~ NO AVAIL~MAX DSCB ~MAX DIRECT NO AVAIL NEXT ALT
VI DSCBS PER TRK BLK PER TRK ALT TRK TRK(C-H)
00 189 S3 46 15 1110 0

FORMAT 6
(C-H-R)

FORMAT 5 DSCB
TRK FULL

ADDR CYLS

A = NUMBER OF TRKS IN ADDITIOH TO FULL CYLS IN THE EXTENT
TRK FULL TRK FULL TRK FULL

A ADDR CYlS A ADDR CYLS A ADDR CYLS A
10 0 5 22 3 8 165 1159 0

DSCB(C-H-R) 5 2

PAGE

LAST FMT 1 VTOC EXTENT
DSCB(C-H-R)~LOW(C-H) HIGH(C-H)
S 0 1 5 0 5 14

TRK FULL
ADDR CYLS A

TRK FULL
ADDR CYLS

THIS DSCB
(C-H-R)
5 0

A

---------------DATA SET HAME---------------- SER ND SEQNO DATE.CRE DATE.EXP DATE. REF EXT DSORG RECFM OPTCD BlKSIZE
EXAMPLE.OF.COMBINED.FORMATS.OHE.AND.TWO EXAMPL 1 1986.092 1999.365 1986.092 1 IS F 00 100

LRECL KEYLEN INITIAL ALLOC 2ND ALLOC~LAST BLK PTR(T-R-L) USED PDS BYTES FMT 2 DR 3(C-H-R)/DSCB(C-H-R)
100 4 ABSTR 0 5 0 3 5 0 4

EXTENTS NO LOW(C-H) HIGHCC-H)
o 6 0 10 14

2MINDCM-B-C-H)/3MIHDCM-B-C-H)/L2MENCC-H-R)/L3MINCC-H-R)/CYLADCM-B-C-H)/ADLINCM-B-C-H)/ADHINCM-B-C-H)/HOBYT/ HOTRK
o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 14 0 0 0 0 1 0 10 14 70 0

LTRADCC-H-R)/LCYADCC-H-R)/LMSADCC-H-R)/LPRADCM-B-C-H-R) /HOLEV /CYLOV/ TAGDT/ PRCTR / OVRCT/ RORGI/PTRDSCC-H-R)
6 0 3 10 14 1 0 0 0 1 0 6 1 12 1 0 20 0 0

----UHABLE TO CALCULATE EMPTY SPACE.

---------------DATA SET NAME---------------- SER NO SEQNO DATE.CRE DATE.EXP DATE. REF EXT DSORG RECFM OPTCD BLKSIZE·
EXAMPLE.OF.COMBINED.FORMATS.ONE.AHD.THREE EXAMPL 1 1986.092 2001.001 1986.092 16 PS V 00 3504

LRECL KEYLEN INITIAL ALLOC 2ND AllOC/LAST BlK PTRCT-R-L) USED PDS BYTES FMT 2 OR 3CC-H-R)/DSCB(C-H-R)
3500 TRKS 1 15 1 1723 . 5 0 6 5 0 7

EXTENTS NO LOW(C-H) HIGH(C-H) NO lOW(C-H) HIGH(t-H)
0 0 1 0 1 1 0 2 0 2
3 0 .. 0 4 4 0 5 0 5
6 0 7 0 7 7 0 8 0 8
9 1 0 1 0 10 1 1 1 1

12 1 3 1 3 13 1 4 1 ..
15 1 6 1 6

----ON THE ABOVE DATA SET.THERE ARE

THERE ARE 1762 EMPTY CYLINDERS PLUS 13 EMPTY TRACKS ON THIS VOLUME
THERE ARE 789 BLANK DSCBS IN THE VToe ON THIS VOLUME

NO LOW(C-H)
2 0 3
5 0 6
8 0 9

11 1 2
lit 1 5

EMPTY TRACK(S).

HIGH(t-H)
o 3
o 6
o 9
1 2
1 5

Figure 148. Sample Output of IEHLIST--Vo1ume Table of Contents

Appendix D. IEHLIST VTOC Listing 427

EXPLANATION OF FIELDS IN IEHLIST FORMATTED VTOC LISTING

Field Explanation

DATA SET Maximum length 44 bytes
NAME

SER NO Serial number of volume containing the data set. Maximum
length 6 bytes. (The serial number may vary if the volume has
been renamed since the data set was written.)

SEQNO Order of this volume relative to the first volume containing
the data set. (SEQ NO will be equal to 1, unless this is a
multivolume data set.)

DATE.CRE Creation date for the data set, in the Julian form yyyy.ddd,
where ddd is the day and yyyy is the year from 1900 to 2155.

DATE.EXP Expiration date for the data set, in the Julian form yyyy.ddd,
where ddd is the day and yyyy is the year from 1900 to 2155.

DATE. REF Last referenced date for the data set, in the Julian form
yyyy.ddd where ddd is the day and yyyy is the year from 1900
to 2155.

EXT Number of extents (sections) the data set has on this volume.

DSORG Data set organization (by access method) :

• DA Direct (BDAM)

• IS Indexed Sequential (ISAM, QISAM, BISAM)

• PO Partitioned (BPAM)

• PS Physical Sequential (SAM, QSAM, BSAM)

The following condition may also appear after any of the above
organizations:

• U Unmovable (location-dependent)

RECFM Record format:

• F Fixed length

• V Variable length

• D ISCII/ASCII variable length

• U Undefined length

The following options may also be specified:

• B Blocked records

• S Spanned records

• T Track overflow permitted

• A ANSI control characters

• M Machine control characters

OPTCD Option code (as supplied in the DCB used to create the data
set) . This I-byte code is given in hexadecimal characters.
See the DS10PTCD field in the DSCBl data area in Debugging
I::IS1CgboQis., Volume 2.

428 MVS/XA Data Administrationl Utilities

/' '\

","-,--,_.'/

Field Explanation

BLKSIZE Block size, in bytes, up to 32760 or device maximum.

• For fixed-length records, block size is set.

• For variable or undefined-length records, maximum block
size is indicated.

• Format V unblocked records have a block size 4 greater
than the LRECL value.

LRECL Logical record length, in bytes, up to 32760 for non-spanned
and 32756 for spanned records.

• For fixed-length records, LRECL is the actual record
length.

• For variable-length records, LRECL is the maximum length
permitted by the device.

• For undefined-length records, LRECL is zero.

KEYLEN Byte length (1-255) of the key of the data records in this
data set. 0 indicates that no key exists.

INITIAL Describes the space attribute that was used for allocating all
ALLOC data set extents.

• TRKS Tracks

• BLKS Blocks

• CYLS Cylinders

• ABSTR Absolute tracks (absolute addresses)

2ND ALLOC Secondary allocation quantity. If zero, the data set is
limited to its primary allocated extent; otherwise, it can
expand as necessary into a maximum of 15 more extents, each of
which is this number of blocks, tracks, or cylinders in size.

LAST BLK PTR Points to the last block written in a sequential or
(l-R-L) partitioned data set. The first number is the track, relative

to the beginning of the data set. The second number is the
block on that track. The last number is the number of bytes
remaining on the track following that block. If this field is
blank, no previous blocks were written.

USED PDS In a partitioned data set in which the last directory block is
BYTES being used, this value will be the number of bytes consumed in

that 256-byte block. If no value appears here, the PDS has
not yet reached the last directory block.

FMT 2 OR 3 Two addresses are possible here, each pointing to a data set
(C-H-R)/DSCB control block CDSCB) in the VTOC. The
(C-H-R) cylinder-headCtrack)-record address on the right always

appears and points to the DSCB whose partial contents you are
now looking at: the Format 1 DSCB.

There may also be a Format 2 or Format 3 DSCB associated with
it. The Format 3 address will be present only for data sets
that have exceeded three extents, such that a Format 3 DSCB
must be used to contain information about the additional
extents. For ISAM data sets, which cannot exceed one extent,
the address on the left will point to a Format 2 DSCB.

Appendix D. IEHLIST VTOC Listing 429

Field Explanation

EXTENT NO The cylinder and head (track) address of each extent. The
LOW (C-H) first extent (number 0) will reflect the primary allocation
HIGH (C-H) quantity, with each secondary extent being equal in size to

the secondary allocation quantity.

The following fields apply to ISAM data sets only.

Field Explanation

2MIND Address of the first track of the second-level master index
(M-B-C-H) (if present). The last two fields, C and H, are the cylinder

and head (track) address.

3MIND Address of the first track of the third-level master index (if
(M-B-C-H) prese~t). The last two fields, C and H, are the cylinder and

head ~track) address.

L2MIN Address of the last active index entry in the second-level
(C-H-R) master index, by cylinder, head (track), and record number.

L3MIN Address of the last active index entry in the third-level
master index, by cylinder, head (track), and record number.

CYLAD Address of the first track of the cylinder index. The last
(M-B-C-H) two fields, C and H, are the cylinder and head (track)

address.

ADLIN Address of the first track of the lowest-level master index.
(M-B-C-H) The last two fields, C and H, are the cylinder and head

(track) address.
,/ "-.,

ADHIN Address of the first track of the highest-level master index.
(M-B-C-H) The last two fields, C and H, are the cylinder and head

(track) address.

NOBYT Number of bytes needed to hold the highest-level index in main
storage.

NOTRK Number of tracks occupied'by the highest-level index.

LTRAD Address of the last normal entry in the track index on the
(C-H-R) cylinder containing the last prime data record of the data

set, by cylinder, head (track), and record number.

LCYAD Address of the last index entry in the cylinder index, by
(C-H-R) cylinder, head (track) , and record number.

LMSAD Address of the last index entry in the master index, by
(C-H-R) cylinder, head (track), and record number.

LPRAD Address of the last record in the prime data area. The last
(M-B-C-H-R) three fields, C, H, and R, are the cylinder, head (track), and

record numbers.

NOLEV Number of index levels.

CYLOV Number of tracks reserved for cylinder overflow area on each
cylinder.

TAGDT The user-supplied number of records tagged for deletion. This
field is merged to and from the DCB for BISAM, QSAM scan mode,
and resume-load.

PRCTR Number of records in the prime data area.

430 MVS/XA Data Administration: Utilities

(- Field Explanation

OVRCT Number of records in the overflow area.

RORGI Number of cylinder overflow areas that are full.

PTRDS Pointer to Format 3 DSCB if a continuation is needed to
(C-H-R) describe this data set. C, H, and R are the cylinder, head

(track) , and record numbers.

(

(

APpendix D. IEHLIST VTOC Listing 431

ACCESS parameter
INITT statement 319

ACTION parameter
FD statement 114

actions
IEBDG program 102

ADD statement
CPA SWORD parameter 403
DATA parameter 404
DSNAME parameter 404
IEBUPDTE program 277
IEHPROGM program 402
INHDR parameter 285
INTLR parameter 286
LEVEL parameter 286
LIST parameter 286
MEMBER parameter 286
NAME parameter 286
NEW parameter 287
OUTHDR parameter 287
OUTTLR parameter 287
PASWORD2 parameter 406
SEQFLD parameter 289
SOURCE parameter 289
SSI parameter 289
TOTAL parameter 290
TYPE parameter 407
VOL parameter 408

adding data set passwords 392
ADDR parameter

DFN statement 19
ADHIN field in formatted VTOC
listing 430

ADLIN field in formatted VTOC
listing 430

alias name
changing member 386
IEBCOPY program 38
in partitioned directory 284

ALIAS parameter
BLDA statement 403
DLTA statement 403

ALIAS statement
IEBUPDTE program 284
NAME parameter 286

altering
load modules 40

ALTERMOD statement
IEBCOPY program 51
LIST parameter 55
OUTDD parameter 57

ANSI volume access security
ACCESS parameter 319

anyname DD statement
IEHINITT program 317

anynamel DD statement
IEBCOPY program 45
IEHLIST program 333
IEHMOVE program 356
IEHPROGM program 396

anyname2 DD statement
IEBCOPY program 45

432 MVS/XA Data Administration: Utilities

IEHLIST program 333
IEHMOVE program 356
IEHPROGM program 396

APF (Authorized Program Facility) 12
assessing tape quality in library 418
ASSIGN parameter

CHARSET statement 197
GRAPHIC statement 198

ATTACH macro
format, to invoke utility

programs 12
invoking utility programs with 12

Authorized Program Facility (APF) 12

backup copy
creating 142, 236

example 79
IEBCOPY program 37

verifying
IEBCOMPR program 24

bbbb parameter
TRACK statement 309
VTOC statement 309

BDAt~ data set
cataloging in an OS CVOL 386
copying 348
moving 348
scratching 385
with variable-spanned records

copying 352
moving 352

BLDA statement
ALIAS parameter 403
CVOl parameter 404
IEHPROGM program 400
INDEX parameter 405

BLDG statement
CVOL parameter 404
DELETE parameter 404
EMPTY parameter 405
ENTRIES parameter 405
IEHPROGM program 401
INDEX parameter 405

BLDX statement
eVOL parameter 404
IEHPROGM program 399
INDEX parameter 405

BLKSIZE field in formatted VTOe
listing 429

block size
unloaded data set 46

buffer size
IEBCOPY program 44
IEHMOVE program 345

buffers
record heading 239

building an index
in an OS CVOL 386

building an index alias
in an OS eVOL 387

(..

card input
copying to tape

examples 158-161
printing

example 161
punching

example 269
CATALOG parameter

COPY CATALOG statement 367
MOVE CATALOG statement 367

cataloged data sets
copying qualifying 349
moving qualifying 349

cataloging
data sets in an OS CVOL 386

CATLG parameter
COPY DSGROUP statement 367
COpy DSNAME statement 367
COPY PDS statement 367
COPY VOLUME statement 367

CATLG statement
CVOL parameter 404
DSNAME parameter 404
IEHPROGM program 398
VOL parameter 408

cccc parameter
TRACK statement 309
VTOC statement 309

CDINCR parameter
PUNCH statement 254

CDSEQ parameter
PUNCH statement 254

CGMID parameter
TABLE statement 198

CHANGE statement
COLUMN parameter 285
IEBUPDTE program 277
INHDR parameter 285
INSERT parameter 285
INTLR parameter 286
LEVEL parameter 286
LIST parameter 286
MEMBER parameter 286
NAME parameter 286
NEW parameter 287
OUTHDR parameter 287
OUTTLR parameter 287
SEQFLD parameter 289
SOURCE parameter 289
SSI parameter 289
TOTAL parameter 290
UPDATE parameter 290

changing data set organization 272
channel codes

conventions for channell, channel 9,
channel 12 199

identified in FCB module 172
specifying in FCB statement 199

character arrangement table module 168
creating 178, 192
examples of building and
modifying 221-224

structure 179
character arrangement table module
listing 181

CHARSET module listing, IEBIMAGE
program 186

CHARSET module structure
for 3800 Model 1 186
for 3800 Model 3 186

CHARSET statement
ASSIGN parameter 197
GCM parameter 202
ID parameter 203
IEBIMAGE program 194
REF parameter 208
SEQ parameter 209

CHx parameter
FCB statement 199

CNTRL parameter
PRINT statement 254
PUNCH statement 254

coding
utility control statement

COLUMN parameter
CHANGE statement 285

comments
utility control statement

COMPARE statement
IEBCOMPR program 27
TYPORG parameter 29

comparing
partitioned data sets 24

examples 33-35
sequential data sets 24

examples 30-32
compatibility of volume size

IEHMOVE program 341
compressing a data set 40
CONNECT statement

CVOL parameter 404
IEHPROGM program 401
INDEX parameter 405
VOL parameter 408

connecting two OS CVOLs 388
continuing

utility control statement
control characters

PREFORM parameter 260
control statements 4
controlling

ICAPRTBL program 16
IEBCOMPR program 25
IEBCOPY program 44
IEBDG program 103
IEBEDIT program 133
IEBGENER program 146
IEBIMAGE program 188
IEBISAM program 240
IEBPTPCH program 248
IEBUPDTE program 273
IEHATLAS program 307
IEHINITT program 316
IEHLIST program 331
IEHMOVE program 353
IEHPROGM program 394
IFHSTATR program 420

CONV pa rameter
LABELS statement 254

conversion
FIELD parameter 154

converting
fields 254

COPIES parameter
COPYMOD statement 200

COPY CATALOG statement
CATALOG parameter 367
COPYAUTH parameter 368
CVOL parameter 368
FROM parameter 370
FROMDD parameter 370
IEHMOVE program 364
TO parameter 371
TODD parameter 372

5

5

5

Index 433

UNLOAD parameter 372
COPY DSGROUP statement

CATLG parameter 367
COPYAUTH parameter 368
CVOL parameter 368
DSGROUP parameter 368
IEHMOVE program 361
PASSWORD parameter 371
TO parameter 371
TODD parameter 372
UNCATLG parameter 372
UNLOAD parameter 372

COPY DSNAME statement
CATLG parameter 367
COPYAUTH parameter 368
CVOL parameter 368
DSNAME parameter 369
FROM parameter 370
FROMDD parameter 370
IEHMOVE program 360
RENAME parameter 371
TO parameter 371
TODD parameter 372
UNCATLG parameter 372
UNLOAD parameter 372

copy modification module 168
creating 177, 191
examples of building 218-221
IEBIMAGE listing

with overrun notes 196
copy operation

excluding members 39
COPY PDS statement

CATLG parameter 367
COPYAUTH parameter 368
CVOL parameter 368
EXPAND parameter 369
FROM parameter 370
FROMDD parameter 370
IEHMOVE program 363
PDS parameter 371
RENAME parameter 371
TO parameter 371
TODD parameter 372
UNCATLG parameter 372
UNLOAD parameter 372

COPY statement
IEBCOPY program 49
INDD parameter 55
LIST parameter 55
OUTDD parameter 57

COPY VOLUME statement
CATLG parameter 367
COPYAUTH parameter 368
IEHMOVE program 365
PASSWORD parameter 371
TO parameter 371
TODD parameter 372
UNLOAD parameter 372
VOLUME parameter 372

COPYAUTH parameter
COPY CATALOG statement 368
COPY DSGROUP statement 368
COPY DSNAME statement 368
COPY PDS statement 368
COPY VOLUME statement 368
MOVE CATALOG statement 368
MOVE DSGROUP statement 368
MOVE DSNAME statement 368
MOVE PDS statement 368
MOVE VOLUME statement 368

copying
BDAM data sets 348

with variable-spanned records 352

434 MVS/XA Data Administration: Utilities

data sets 344
examples 140-141

entire volume of data sets 351
ISAM data set 236

example 243
job statements and steps

examples 137-139
load modules 41
member with an alias 38
multivolume data sets 348
OS CVOL 350
partitioned data sets 346

examples 60
IEBCOPY program 36, 37

qualifying cataloged data sets 349
sequential data sets 345

examples 158-161
unloaded data sets 349
unmovable data sets 349

copying or loading unloaded data sets
IEBCOPY program 37

COPYMOD module listing, IEBIMAGE
program 178

COPYMOD module structure, IEBIMAGE
program 177

COPYMOD statement
COPIES parameter
I EBCOPY program
IEBIMAGE listing
notes 211

200
52
with overrun

IEBIMAGE program 191
INDD parameter 55
LINES parameter 203
LIST parameter 55
MAXBLK parameter 56
MINBLK parameter 57
OUTDD parameter 57
POS parameter 207
TEXT parameter 211

COPYP parameter
FCB statement 200

CPASWORD parameter
ADD statement 403
DELETEP statement 403
REPLACE statement 403

CREATE parameter
REPEAT statement 115

CREATE statement
EXIT parameter 115
FILL parameter 115
IEBDG program 110
INPUT parameter 118
NAME parameter 119
PICTURE parameter 120
QUANTITY parameter 121

creating data set libraries 272
CVOL parameter

BLDA statement 404
BLDG statement 404
BLDX statement 404
CATLG statement 404
CONNECT statement 404
COPY CATALOG statement 368
COPY DSGROUP statement 368
COPY DSNAME statement 368
COpy PDS statement 368
DLTA statement 404
DLTX statement 404
INCLUDE statement 368
MOVE CATALOG statement 368
MOVE DSGROUP statement 368
MOVE DSNAME statement 368
MOVE PDS statement 368
RELEASE statement 404

o

REPLACE statement 368
UNCATLG statement 404

CYCLE parameter
FD statement 117

CYLAD field in formatted VTaC
listing 430

CYLOV field in formatted VTaC
listing 430

data check
unblockable 199

DATA parameter
ADD statement 404
EXITS statement 152
LABELS statement 28, 152, 255
REPLACE statement 404

data set
comparing 24
copying 344
edited 144
merging

example 94
moving 344
printing 246
punching 246
re-creating 40
space allocation

IEHMOVE program 342
data set libraries

creating 272
updating 272

DATA SET NAME field in formatted VTDC
listing 428

data set organization
changing 272

data set passwords
maintaining 390

data set utility programs
summary 1

data sets
reblocking 343

data statements
for user-designed characters 201
IEBUPDTE program 282

DATE parameter
LISTVTDC statement 335

DATE.CRE field in formatted VTDC
listing 428

DATE.EXP field in formatted VTaC
listing 428

DATE. REF field in formatted VTaC
listing 428

DCB control information
overriding 237

DD statement for defining mountable
device

examples 423
dddd parameter

TRACK statement 309
VTOC statement 309

ddname parameter
INITT statement 319

ddnameaddr subparameter
PARAM parameter

ATTACH macro 13
LINK macro 13

DDNMELST 13
debugging aid

IEBDG program 100

DEFAULT parameter
FCB statement 201

defective track
replacing 305

examples 310-312
DELETE parameter

BLDG statement 404
TABLE statement 201

DELETE statement
IEBUPDTE program 280
SEQI parameter 288
SEQ2 parameter 288

DELETEP statement
CPASWORD parameter 403
DSNAME parameter 404
IEHPROGM program 403
PASWORDI parameter 405
VOL parameter 408

386
alias

deleting an index
in an OS CVOL

deleting an index
in an OS CVOL

deleting data set
DELSEG parameter

387
passwords 393

INCLUDE statement 201
detail statement

IEBUPDTE program 280
restrictions 281

DEVICE parameter
OPTION statement 202

device support 3
device variable 6
device, mountable

DD statement for defining
DEVT parameter

DFN statement 19
DFN statement

ADDR parameter 19
DEVT parameter 19
FCB parameter 19
FOLD parameter 19
ICAPRTBL program 17
UCS parameter 20

DISP parameter
INITT statement 319

DLTA statement
ALIAS parameter 403
CVOL parameter 404
IEHPROGM program 400

DLTX statement
CVOL parameter 404
IEHPROGM program 400
INDEX parameter 405

DSD statement
IEBDG program 107
INPUT parameter 117
OUTPUT parameter 119

DSGROUP parameter
COpy DSGROUP statement 368
EXCLUDE statement 368
MOVE DSGROUP statement 368

DSNAME parameter
ADD statement 404
CATLG statement 404
COPY DSNAME statement 369
DELETEP statement 404
INCLUDE statement 369
LIST statement 404
LISTPDS statement 335
LISTVTDC statement 335
MOVE DSNAME statement 369
RENAME statement 404
REPLACE statement 369, 404
SCRATCH statement 404

423

Index 435

UNCATLG statement 404
DSORG field in formatted VTOC
listing 428

DUMP parameter
LISTPDS statement 336
LISTVTOC statement 336

dynamic invocation 12

EDIT statement
IEBEDIT program 134
NOPRINT parameter 135
START parameter 135
STEPNAME parameter 135
TYPE parameter 136

edi ted data set
creating 144
printing 247
punching 247

EHMOVE program
data set space allocation 342

EMPTY parameter
BLDG statement 405

END statement
ICAPRTBL program 18
IEBDG program 114
user-information parameter 20

ENDUP statement
IEBUPDTE program 285

ENTRIES parameter
BLDG statement 405

EP parameter
ATTACH macro 12
LINK macro 12

ERP (error recovery program) 419
ERROR parameter

EXITS statement 28
ESV (error statistics by volume)
data 417

evaluating tape quality in library 418
examples

DD statement for defining mountable
devices 423

ICAPRTBL program 20
IEBCOMPR program 29
IEBCOPY program 57
IEBDG program 122
IEBEDIT program 136
IEBGENER program 157
IEBIMAGE program 212
IEBISAM program 242
IEBPTPCH program 263
IEBUPDTE program 290
IEHATLAS program 309
IEHINITT program 321
IEHLIST program 337
IEHMOVE program 373
IEHPROGM program 409
IFHSTATR program 420

EXCLUDE parameter
EDIT statement 136

EXCLUDE statement
DSGROUP parameter 368
IEBCOPY program 54
IEHMOVE program 366
MEMBER parameter 56, 371

excluding members
copy operation 39

exclusive copy or load processing 38
EXEC statement

436 MVS/XA Data Administration: Utilities

IEBCOMPR program 26
IEBCOPY program 45
IEBDG program 104
IEBEDIT program 133
IEBGENER program 147
IEBIMAGE program 188
IEBISAM program 240
IEBPTPCH program 248
IEBUPDTE program 274
IEHATLAS program 307
IEHINITT program 316
IEHLIST program 332
IEHMOVE program 354
IEHPROGM program 395
IFHSTATR program 420

EXIT parameter
CREATE statement 115

exit routine
identifying 150
IEBPTPCH program 252
linkage 422

EXITS statement
DATA parameter 152
ERROR parameter 28
IEBCOMPR program 27
IEBGENER program 150
IEBPTPCH program 252
INHDR parameter 28, 155, 257
INREC parameter 258
INTLR parameter 29, 155, 258
IOERROR parameter 155
KEY parameter 155
OUTHDR parameter 156
OUTREC parameter 259
OUTTLR parameter 156
PRECOMP parameter 29
TOTAL parameter 157

EXPAND parameter
COPY PDS statement 369
MOVE PDS statement 369

EXT field in formatted VTOC listing 428
EXTENT NO LOW (C-H) HIGH (C-H) field in
formatted VTOC listing 430

FCB (forms control buffer)
loading 18

FCB (forms control buffer) module 168
creating 172, 190
examples of building 213-218
IEBIMAGE listing 175

FCB parameter
DFN statement 19

FCB statement
CHx parameter 199
COPYP parameter 200
DEFAULT parameter 201
FORMEND parameter 19
ICAPRTBL program 18
IEBIMAGE program 190
LINES parameter 203
LNCH parameter 19
LPI parameter 19, 205
PSPEED parameter 207
SIZE parameter 210

FD statement
ACTION parameter 114
FILL parameter 115
FORMAT parameter 116
FROMLOC parameter 116

IEBDG program 108
INDEX parameter 117
INPUT parameter 117
LENGTH parameter 118
NAME parameter 119
PICTURE parameter 120
SIGN parameter 121
STARTLOC parameter 121

field
altering contents

IEBDG program 114
changing the contents

IEBDG program 102
converting 254
defining the contents

IEBDG program 100, 108
editing information 256

FIELD parameter
RECORD statement 153-154, 256

FILL parameter
CREATE statement 115
FD statement 115

fixed action 114
FMT 2 OR 3 DSCB field in formatted VTOC
listing 429

FOLD parameter
DFN statement 19

FORMAT parameter
FD statement 116
LISTPDS statement 336
LISTVTOC statement 336

formatted VTOC listing
ADHIN field 430
ADLIN field 430
BLKSIZE field 429
CYLAD field 430
CYLOV field 430
DATA SET NAME field 428
DATE.CRE field 428
DATE.EXP field 428
DATE. REF field 428
DSORG field 428
EXT field 428
EXTENT NO LOH (C-H) HIGH (C-H)
field 430

FMT 2 OR 3 DSCB field 429
IEHLIST program 428
INITIAL ALLOC field 429
KEYLEN field 429
LAST BLK PTR field 429
LCYAD field 430
LMSAD field 430
LPRAD field 430
LRECL field 429
LTRAD field 430
L2MIN field 430
L3MIN field 430
NOBYTE field 430
NOLEV field 430
NOTRK field 430
OPTCD field 428
OVRCT field 431
PRCTR field 430
PTRDS field 431
RECFM field 428
RORG1 field 431
SEQNO field 428
SFR NO field 428
T,;i:..T 4'::.'ald 430
USl~ ~ BYTES field 429
2MIND field 430
2ND ALLOC field 429
3MIND field 430

FORMEND parameter

FCB statement 19
forms control buffer (FCB)

loading 18
forms control buffer module

See FCB module
FROM parameter

COPY CATALOG statement 370
COPY DSNAME statement 370
COpy PDS statement 370
INCLUDE statement 370
MOVE CATALOG statement 370
MOVE DSNAME statement 370
MOVE PDS statement 370
REPLACE statement 370

FROMDD parameter
COPY CATALOG statement 370
COpy DSNAME statement 370
COPY PDS statement 370
MOVE CATALOG statement 370
MOVE DSNAME statement 370
MOVE PDS statement 370

FROMLOC parameter
FD statement 116

full copy or load processing 38
function statement

IEBUPDTE program 277
restrictions 278

functions, utility program
guide to 8-11

GCM parameter
CHARSET statement 202
GRAPHIC statement 202

GCMLIST parameter
TABLE statement 202

GENERATE statement
IEBGENER program 150
MAXFLDS parameter 156
MAXGPS parameter 156
MAXLITS parameter 156
MAXNAME parameter 156

generating output records 113
generation data group index

building and maintaining in an as
CVOL 389

graphic character modification
module 168

creating 193
examples of building and
listing 224-231

IEBIMAGE listing 183
structure 183

graphic character modification module
structure

for 3800 Model 1 183
for 3800 Model 3 183

graphic character modification module,
creating 182

GRAPHIC module listing
IEBIMAGE program 183

GRAPHIC module structure
for 3800 Model 3 183

GRAPHIC module structure for
3800 Model 1 183

GRAPHIC module structure, IEBDG
program 183

GRAPHIC statement
ASSIGN parameter 198
GCM parameter 202

Index 437

IEBIMAGE program 193
REF parameter 209
SEQ parameter 209

hdingaddr subparameter
PARAM parameter

ATTACH macro 13
LINK macro 13

HDNGLIST 13
hhhh parameter

TRACK statement 309
VTOC statement 309

ICAPRTBL program
description 15
examples 20
executing 15
input and output 16
loading FCB (forms control
buffer) 18

loading universal character set
buffer 18

parameters 19
utility control statements 17

DFN 17
END 18
FCB 18
JOB 17
UCS 18

wait state codes 15
ID parameter

CHARSET statement 203
IDENT parameter

RECORD statement 155, 257
IEBCOMPR program

comparing data sets 24
description 24
examples 29
EXEC statement 26
input and output 25
job control statements 26
JOB statement 26
pa rameters 28
return codes 25
SYSIN DD statement 26
SYSPRINT DD statement 26
SYSUTI DD statement 26
SYSUT2 DD statement 26
utility control statements 27

CONPARE 27
EXITS 27
LABELS 28

verifying a backup copy 24
IEBCOPY program

altering load modules in place 40
anynamel DD statement 45
anyname2 DD statement 45
buffer size 44
compressing a data set 40
copying and reblocking load

modules 41
copying members with aliases 38
copying or loading unloaded data
sets 37

438 MVS/XA Data Administration: Utilities

creating a copy modification
module 177

creating backup copy 37
description 36
examples 57
excluding members 39
input and output 43
inserting RLD (relocation dictionary)
counts 42

job control statements 44
load operation 36
merging partitioned data sets 40
overlay load modules 42
parameters 55
PARM parameter (EXEC statement) 44
re-creating a data set 40
renaming selected members 39
replacing identically named

members 38
replacing selected members 39
requirements for load modules 41
restrictions 48
return codes 43
selecting members to be copied 37
selecting members to be loaded or

unloaded 37
space allocation 47
SYSIN DD statement 46
SYSPRINT DD statement 44
unload operation 36
unloaded data set block size 46
utility control statements 48

ALTERMOD 51
COpy 49
COPYMOD
EXCLUDE
SELECT

I EBDG program

52,
54

53

creating graphic character
modification module 182

defining fields 100
description 100
examples 122
GRAPHIC module structure 183
IBM supplied patterns 100
input and output 103
job control statements 104
modifying fields 102
parameters 114
parinset DD statement 106
PARM parameter (EXEC statement) 105
parout DD statement 106
return codes 103
seqout DD statement 106
sequinset DD statement 105
SYSIN DD statement 105
SYSPRINT DD statement 105
TABLE module listing 181
user-specified pictures 101
utility control statements 107

CREATE 110
DSD 107
END 114
FD 108
REPEAT 113

I EBEDIT program
description 132
examples 136
EXEC statement 133
input and output 132
job control statements 133
JOB statement 133
parameters 134
return codes 132

(

SYSIN DD statement 133
SYSPRINT DD statement 133
SYSUT1 DD statement 133
SYSUT2 DD statement 133
utility control statements 134

EDIT 134
IEBGENER program

creating an edited data set 144
creating backup copy 142
creating partitioned data sets 142
description 142
examples 157
EXEC statement 147
expanding partitioned data sets 143
input and output 145
job control statements 146
JOB statement 147
parameters 152
reblocking or changing logical record
length 145

region size calculation 147
return codes 146
SYSIN DD statement 147, 149
SYSPRINT DD statement 148
SYSPRINT statement 147
SYSUT1 DD statement 147, 148
SYSUT2 DD statement 147, 148
utility control statements 149

EXITS 150
GENERATE 150
LABELS 151
MEMBER 151
RECORD 151

IEBIMAGE program
CHARSET module listing 186
COPYMOD module listing 178
COPYMOD module structure 177
creating an FCB (forms control
buffer) module 172

creating character arrangement table
module 178

creating library character set
module 185

description 168
examples 212
FCB module listing 175
GRAPHIC module listing 183
input and output 187
job control statements 188
module naming conventions 172
operation groups 190
pa rameters 197
printer models supported by 168
return codes 187
storage requirements 168

SYS1.IMAGELIB data set 169
structure of CHARSET module 185

for 3800 Model 1 186
for 3800 Model 3 186

structure of modules 171
SYSIN DD statement 189
SYSPRINT DD statement 189
SYSUT1 DD statement 189
SYS1.IMAGELIB data set 170
TABLE module structure 179
utility control statements 189

CHARSET 194
COPYMOD 191
FCB 190
GRAPHIC 193
INCLUDE 195
NAME 195
OPTION 195
TABLE 192

3800 FCB (forms control buffer)
module structure 173

4248 FCB (forms control buffer)
module structure 173

IEBISAM program
copying an ISAM data set 236
creating a sequential backup

copy 236
creating an ISAM data set from an

unloaded data set 238
description 236
examples 242
EXEC statement 240
input and output 239
job control statements 240
JOB statement 240
overriding DCB control
information 237

parameters 241
PARM parameter (EXEC statement) 241
printing logical records of ISAM data
set 238

return codes 240
SYSPRINT DD statement 240
SYSUT1 DD statement 240
SYSUT2 DD statement 240

IEBPTPCH program
description 246
examples 263
input and output 247
job control statements 248
parameters 254
printing a data set 246
printing or punching edited data
set 247

printing or punching partitioned
directory 247

printing or punching selected
members 247

printing or punching selected
records 247

punching a data set 246
return codes 248
SYSIN DD statement 249
SYSPRINT DD statement 249
SYSUT1 DD statement 249
SYSUT2 DD statement 249
utility control statements 249

EXITS 252
LABELS 253
~lEMBER 252
PRINT 250
PUNCH 251
RECORD 252
TITLE 251

IEBUPDTE program
changing data set organization 272
creating and updating data set
libraries 272

data statement 282
description 272
detail statement 280
examples 290
EXEC statement 274
function statement 277
input and output 272
job control statements 274
JOB statement 274
modifying an existing data set 272
parameters 285
PARM parameter (EXEC statement) 274
return codes 273

UPDATE parameter 283
SYSIN DD statement 276

Index 439

SYSPRINT DD statement 275
SYSUTI DD statement 275
SYSUT2 DD statement 275
utility control statements 276

ADD 277
ALIAS 284
CHANGE 277
DELETE 280
ENDUP 285
lABEL 282
NUMBER 280
REPl 277
REPRO 277

IEHATlAS program
description 305
examples 309
EXEC statement 307
input and output 305
job control statements 307
JOB statement 307
parameters 309
return codes 306
SYSIN DD statement 307
SYSPRINT DD statement 307
SYSUTI DD statement 307
utility control statements 308

TRACK 308
VTOC 308

IEHINITT program
anyname DD statement 317
description 313
examples 321
input and output 315
job control statements 316
parameters 318
PARM parameter (EXEC statement) 317
placing a standard label set on

magnetic tape 314
return codes 315
SYSIN DD statement 317
SYSPRINT DD statement 317
utility control statements 317

INITT 318
IEHLIST program

anynamel DD statement 333
anyname2 DD statement 333
description 325
examples 337
formatted VTOC listing

fields explained 428
input and output 330
job control statements 331
listing indexed VTOC (volume table of
contents) 329

listing OS CVOl entries 325
listing partitioned data set
directory 325

dump format 327
edited format 326
unedited format 327

listing VTOC (volume table of
contents) 327

dump format 330
edited format 328
unedited format 330

parameters 335
PARM parameter (EXEC statement) 332
return codes 331
sample output - volume table of

contents 427
sample VTOC listing 427
SYSIN DD statement 333
SYSPRINT DD statement 333
utility control statements 333

440 MVS/XA Data Administration: Utilities

LISTCTlG
LISTPDS
lISTVTOC

IEHMOVE program

334
334

335

anynamel DD statement 356
anyname2 DD statement 356
copying or moving BDAM data sets 348
copying or moving BDAM data sets with
variable-spanned records 352

copying or moving entire volume of
data sets 351

copying or moving multivolume data
sets 348

copying or moving OS CVOl 350
copying or moving partitioned data
sets 346

copying or moving qualifying
cataloged data sets 349

copying or moving sequential data
sets 345

copying or moving unloaded data
sets 349

copying or moving unmovable datu
sets 349

description 340
examples 373
input and output 353
JCl for track overflow
job control statements
moving or copying data
parameters 367

feature
354

set 344

357

PARM parameter (EXEC statement) 354
RACF protection 344
reblocking data sets 343
return codes 353
SYSIN DD statement 357
SYSPRINT DD statement 355
SYSUTI DD statement 355
tape DD statement 357
utility control statements 358

COPY CATALOG 364
COPY DSGROUP 361
COPY DSNAME 360
COPY PDS 363
COPY VOLUME 365
EXCLUDE 366
INCLUDE 365
MOVE CATALOG 363
MOVE DSGROUP 361
MOVE DSNAME 360
MOVE PDS 362
MOVE VOLUME 364
REPLACE 367
SELECT 366

volume size compatibility 341
IEHPROGM program

adding data set passwords 392
anynamel DD statement 396
anyname2 DD statement 396
building and maintaining generation
data group index in OS CVOL 389

building or deleting index alias in
OS CVOL 387

building or deleting index in OS
CVOL 386

cataloging data set in OS CVOl 386
connecting or releasing two OS

CVOLs 388
deleting data set passwords 393
description 385
examples 409
input and output 393
job control statements 395
listing password entries 393

',-<-j

(

(

(

maintaining data set passwords 390
parameters 403
PARM parameter (EXEC statement) 395
renaming a data set or member 386
replacing data set passwords 392
return codes 394
scratching data sets or members 385
SYSIN DD statement 397
SYSPRINT DD statement 396
utility control statements 397

ADD 402
BLDA 400
BLDG 401
BLDX 399
CATLG 398
CONNECT 401
DELETEP 403
DLTA 400
DLTX 400
LIST 403
RELEASE 401
RENAME 398
REPLACE 402
SCRATCH 397
UNCATLG 399

IFASMFDP tape 418
IFHSTATR program

assessing quality of tapes in
library 418

description 417
example 420
EXEC statement 420
input and output 419
job control statements 420
JOB statement 420
sample printed output 419
SYSUT1 DD statement 420
SYSUT2 DD statement 420

image library
system 170

INCLUDE parameter
EDIT statement 136

INCLUDE statement
CVOl parameter 368
DELSEG parameter 201
DSNAME parameter 369
FROM parameter 370
IEBIMAGE program 195
IEHMOVE program 365
MEMBER parameter 371
module name 206

including modules to be copied 195
INCR parameter

NUMBER statement 285
INDD parameter

COPY statement 55
COPYMOD statement 55

independent utility programs
summary 2

index alias, as CVOl
building 387
deleting 387

INDEX parameter
BlDA statement 405
BLDG statement 405
BLDX statement 405
CONNECT statement 405
DlTX statement 405
FD s~atement 117
RELEASE statement 405

index, generation data group
building and maintaining in an OS

CVOL 389
index, as CVOl

building 386
deleting 386

INDEXDSN parameter
lISTVTOC statement 336

indexed VTOC (volume table of contents)
listing 329

INHDR parameter
ADD statement 285
CHANGE statement 285
EXITS statement 28, 155, 257
REPl statement 285
REPRO statement 285

INITIAL ALlOC field in formatted VTOC
listing 429

initial volume label information 318
INITPG parameter

PRINT statement 258
INITT statement

ACCESS parameter 319
ddname parameter 319
DISP parameter 319
IEHINITT program 318
LABTYPE parameter 319
NUMBTAPE parameter 319
OWNER parameter 320
SER parameter 320

input and output
ICAPRTBL program 16
IEBCOMPR program 25
IEBCOPY program 43
IEBDG program 103
IEBEDIT program 132
IEBGENER program 145
IEBIMAGE program 187
IEBISAM program 239
IEBPTPCH program 247
IEBUPDTE program 272
IEHATLAS program 305
IEHINITT program 315
IEHLIST program 330
IEHMOVE program 353
IEHPROGM program 393
IFHSTATR program 419

INPUT parameter
CREATE statement 118
DSD statement 117
FD statement 117

INREC parameter
EXITS statement 258

INSERT parameter
CHANGE statement 285
NUMBER statement 285
restrictions 281

installation considerations 6
INTlR parameter

ADD statement 286
CHANGE statement 286
EXITS statement 29, 155, 258
REPL statement 286
REPRO statement 286

invoking utility programs
from a problem program 12

IOERROR parameter
EXITS statement 155

ISAM data set
cataloging in an as CVOl 386
converting to sequential data set

examples 243
copying 236

example 243
creating from an unloaded data
set 238

from unloaded data set
example 244

Index 441

printing logical records
example 245

printing logical records from 238
scratching 385

ITEM parameter
TITLE statement 258

JCL
for track overflow feature 357

JES2 or JES3 control statements 134
IEBEDIT program 133

job control language (JCL)
for track overflow feature 357

job control statements 4
IEBCOMPR program 26
IEBCOPY program 44
IEBDG program 104
IEBEDIT program 133
IEBGENER program 146
IEBIMAGE program 188
IEBISAM program 240
IEBPTPCH program 248
IEBUPDTE program 274
IEHATLAS program 307
IEHINITT program 316
IEHLIST program 331
IEHMOVE program 354
IEHPROGM program 395
IFHSTATR program 420

JOB statement
ICAPRTBL program 17
IEBCOMPR program 26
IEBCOPY program 45
IEBDG program 104
IEBEOIT program 133
IEBGENER program 147
IEBIMAGE program 188
IEBISAM program 240
IEDPTPCH program 248
IEBUPDTE program 274
IEHATLAS program 307
IEHINITT program 316
IEHLIST program 332
IEHMOVE program 354
IEHPROGM program 395
IFHSTATR program 420

job step
copying to output data set

example 137
output data set 135

KEY parameter
EXITS statement 155

KEYLEN field in formatted VTOC
listing 429

keyword variable 6
keyword=device=list 6

442 MVS/XA Data Administration: Utilities

label
utility control statement 4

LABEL statement
IEBUPDTE program 282

LABELS parameter
RECORD statement 156

LABELS statement
CONV parameter 254
DATA parameter 28, 152, 255
IEBCOMPR program 28
IEBGENER program 151
IEBPTPCH program 253

LABTYPE parameter
INITT statement 319

LAST BLK PTR field in formatted VTOC
listing 429 .

LCYAD field in formatted VTDC
listing 430

LENGTH parameter
FD statement 118

LEVEL parameter
ADD statement 286
CHANGE statement 286
REPL statement 286
REPRO statement 286

library character set module,
creating 185

library character set modules 168
creating 194
examples of building and
listing 231-235

IEBIMAGE listing 186
structure 185

line overrun conditions 191, 195, 196,
206

LINECNT parameter
IEHMOVE program 354

LINES parameter
COPYMOD statement 203
FCB statement 203

LINK macro
format, to invoke utility

programs 12
invoking utility programs with 12
parameter lists 13

linking to an exit routine 422
LIST parameter

ADD statement 286
ALTERMOD statement 55
CHANGE statement 286
COPY statement 55
COPYMOD statement 55
REPL statement 286
REPRO statement 286

LIST statement
DSNAME parameter 404
IEHPROGM program 403
PASWORDI parameter 405

list variable 6
LISTCTLG statement

IEHLIST program 334
NODE parameter 336
VOL parameter 336

listing a VTOC 327
edited format 328
sample output by IEHLIST program

listing indexed VTOC 329
listing OS CVOL entries 325, 334

examples 337

(-
listing partitioned data set
directory 325

example 338
listing partitioned data set directory
entries 334

listing password entries 393
listing VTOC entries 335

example 339
lISTPDS statement

DSNAME parameter 335
DUMP parameter 336
FORMAT parameter 336
IEHlIST program 334
VOL parameter 336

lISTVTOC statement
DATE parameter 335
DSNAME parameter 335
DUMP parameter 336
FORMAT parameter 336
IEHLIST program 335
INDEXDSN parameter 336
VOL parameter 336

lMSAD field in formatted VTOC
listing 430

LNCH parameter
FCB statement 19

load module
altering in place 40
requirements for IEBCOPY 41

load operation
example 94
re-creating partitioned data sets 36

loading
FCB (forms control buffer) 18
images to buffers

examples 21-23
universal character set buffer 18

loading or copying unloaded data sets
IEBCOPY program 37

lOC parameter
TABLE statement 204

logical record length
changing 145

logical records
ISAM data set

example 245
printing from an ISAM data set 238

LPI parameter
FCB statement 19, 205

lPRAD field in formatted VTOC
listing 430

lRECL field in formatted VTOC
listing 429

lTRAD field in formatted VTOC
listing 430

l2MIN field in formatted VTOC
listing 430

l3MIN field in formatted VTOC
listing 430

maintaining data set passwords 390
MAXBlK parameter

COPYMOD statement 56
MAXFLDS parameter

GENERATE statement 156
PRINT statement 258
PUNCH statement 258

MAXGPS parameter
GENERATE statement 156

PRINT statement 258
PUNCH statement 258

MAXLINE parameter
PRINT statement 258

MAXLITS parameter
GENERATE statement 156
PRINT statement 259
PUNCH statement 259

MAXNAME parameter
GENERATE statement 156
PRINT statement 259
PUNCH statement 259

MEMBER parameter
ADD statement 286
CHANGE statement 286
EXCLUDE statement 56, 371
INCLUDE statement 371
RENAME statement 405
REPL statement 286
REPLACE statement 371
REPRO statement 286
SCRATCH statement 405
SELECT statement 56, 371

MEMBER statement
IEBGENER program 151
IEBPTPCH program 252
NAME parameter 156, 259

merging
partitioned data sets

IEBCOPY program 36, 40
MINBLK parameter

COPYMOD statement 57
modifying a sequential or partitioned

data set 272
module

naming conventions 172
structure 171

module names
specifying in INCLUDE statement 206
specifying in NAME statement 206

modules
altering in place 40
copying and reblocking 41
requirements for IEBCOPY 41

mountable device
defining 423

MOVE CATALOG statement
CATALOG parameter 367
COPYAUTH parameter 368
CVOL parameter 368
FROM parameter 370
FROMDD parameter 370
IEHMOVE program 363
TO parameter 371
TODD parameter 372
UNLOAD parameter 372

MOVE DSGROUP statement
COPYAUTH parameter 368
CVOl parameter 368
DSGROUP parameter 368
IEHMOVE program 361
PASSWORD parameter 371
TO parameter 371
TODD parameter 372
UNCATLG parameter 372
UNLOAD parameter 372

MOVE OS NAME statement
COPYAUTH parameter 368
CVOl parameter 368
DSNAME parameter 369
FROM parameter 370
FROMDD parameter 370
IEHMOVE program 360
RENAME parameter 371

Index 443

TO parameter 371
TODD parameter 372
UNCATLG parameter 372
UNLOAD parameter 372

MOVE PDS statement
COPYAUTH parameter 368
CVOL parameter 368
EXPAND parameter 369
FROM parameter 370
FROMDD parameter 370
IEHMOVE program 362
PDS parameter 371
RENAME parameter 371
TO par'ameter 371
TODD parameter 372
UNCATLG parameter 372
UNLOAD parameter 372

MOVE VOLUME statement
COPYAUTH parameter 368
IEHMOVE program 364
PASSWORD parameter 371
TO parameter 371
TODD parameter 372
UNLOAD parameter 372
VOLUME parameter 372

moving
BDAM data sets 348

with variable-spanned records 352
data sets 344
entire volume of data sets 351
multivolume data sets 348
OS CVOL 350
partitioned data sets 346
qualifying cataloged data sets 349
sequential data sets 345
unloaded data sets 349
unmovable data sets 349

multiple copy operations
examples 83-92

multivolume data set
copying 348
moving 348

NAME pa rameter
ADD statement 286
ALIAS statement 286
CHANGE statement 286
CREATE statement 119
FD statement 119
MEMBER statement 156, 259
REPL statement 286
REPRO statement 286

NAME statement
IEBIMAGE program 195
module name 206
R parameter 207

naming a new library module 195
naming conventions for modules

IEBIMAGE program 172
NEW parameter

ADD statement 287
CHANGE statement 287
REPL statement 287
REPRO statement 287

NEWNAME parameter
RENAME statement 405

NEWI parameter
NUMBER statement 287

444 MVS/XA Data Administration: Utilities

NOBYTE field in formatted VTOC
listing 430

NODE parameter
LISTCTLG statement 336

NOLEV field in formatted VTOC
listing 430

NOPRINT parameter
EDIT statement 135

notation conventions 5
NOTRK field in formatted VTOC
listing 430

NUMBER statement
IEBUPDTE program 280
INCR parameter 285
INSERT parameter 285
NEWI parameter 287
SEQI parameter 288
SEQ2 parameter 288

NUMBTAPE parameter
INITT statement 319

operands
utility control statements 4

operation
utility control statement 4

operation groups
IEBIMAGE program 190

OPTCD field in formatted VTOC
listing 428

OPTION statement
DEVICE parameter 202
IEBIMAGE program 195
OVERRUN parameter 196, 206

optionaddr subparameter
PARAM parameter

ATTACH macro 12
LINK macro 12

OPTLIST 12
as CVOL

building an index 386
building an index alias 387
building and maintaining generation
data group index 389

cataloging data sets in 386
connecting or releasing 388
copying 350
deleting an index 386
deleting an index alias 387
listing entries 325, 334

examples 337
moving 350

OUTDD parameter
ALTERMOD statement 57
COpy statement 57
COPYMOD statement 57

OUTHDR parameter
ADD statement 287
CHANGE statement 287
EXITS statement 156
REPL statement 287
REPRO statement 287

output data set
contents 136
creating 132
reblocking 145

output data sets
including job steps 134

OUTPUT parameter
DSD statement 119

(
output partitioned member

example 126
output records

creating
example 124, 128

example 131
generating 113

OUTREC parameter
EXITS statement 259

OUTTLR parameter
ADD statement 287
CHANGE statement 287
EXITS statement 156
REPL statement 287
REPRO statement 287

overlay load modules
IEBCOPY program 42

OVERRUN parameter
OPTION statement 196, 206

OVRCT field in formatted VTOC
listing 431

OWNER parameter
INITT statement 320

page margins 210
PARAM parameter

ATTACH macro 12
LINK macro 12

parinset DD statement
IEBDG program 106

PARM parameter (EXEC statement)
IEBCOPY program 44
IEBDG program 105
IEBIMAGE program 242
IEBISAM program 241
IEBUPDTE program 274
IEHINITT program 317
IEHLIST program 332
IEHMOVE program 354
IEHPROGM program 395

parout DD statement
IEBDG program 106

partitioned data set
cataloging in an OS CVOL 386
changing to sequential 272
comparing 24

examples 33-35
compressing 40
copying 346

examples 60, 80
IEBCOPY program 36, 37

copying members
examples 61

creating
from sequential input 142

creating a backup copy
example 79

creating a library 272
creating from sequential input

examples 162-163
expanding 143
incorporating source language

modi fications
IBM-provided 272
user-generated 272

merging
IEBCOPY program 36, 40

modifying 272
moving 346

multiple copy operations
examples 83-92

printing
example 265-266

renaming members 39
replacing identically named

members 38
replacing selected members 39
scratching 385
selected members

printing 247
punching 247

unloading
example 93

partitioned data set directory
comparing data sets 24
listing 325

dump format 327
edited format 326
unedited format 327

listing entries 334
example 338

printing 247
example 268

punching 247
partitioned output 151
PASSWORD data set

listing entries 393
PASSWORD parameter

COPY DSGROUP statement 371
COPY VOLUME statement 371
MOVE DSGROUP statement 371
MOVE VOLUME statement 371

password-protected data set
scratching 385

passwords
data set

adding 392
deleting 393
replacing 392

listing entries 393
passwords, maintaining

data set 390
PASWORDI parameter

DELETEP statement 405
LIST statement 405
REPLACE statement 405

PASWORD2 parameter
ADD statement 406
REPLACE statement 406

patterns of test data
IBM supplied 100, 116

PDS parameter
COPY PDS statement 371
MOVE PDS statement 371

PICTURE parameter
CREATE statement 120
FD statement 120

pictures, user-specified 101
example 129

POS parameter
COPYMOD statement 207

POSITION parameter
EDIT statement 136

POWER parameter
IEHMOVE program 354

PRCTR field in formatted VTOC
listing 430

PRECOMP parameter
EXITS statement 29

PREFORM parameter
PRINT statement 260
PUNCH statement 260

PRINT statement

Index 445

CNTRL parameter 254
IEBPTPCH program 250
INITPG parameter 258
MAXFLDS parameter 258
MAXGPS parameter 258
MAXLINE parameter 258
MAXlITS parameter 259
MAXNAME parameter 259
PREFORM parameter 260
SKIP parameter 260
STOPAFT parameter 261
STRTAFT parameter 261
TOTCONV parameter 261
TYPORG parameter 262

printing
data set 246
logical records

ISAM data set 238
partitioned data set

example 265-266
partitioned data set directory 247

example 268
sequential data set

examples 264. 267
printing a data set 246
printing edited data set 247
printing selected members

partitioned data set 247
printing selected records 247
PSPEED parameter

FCB statement 207
PTRDS field in formatted VTOC
listing 431

PUNCH statement
CDINCR parameter 254
CDSEQ parameter 254
CNTRL parameter 254
IEBPTPCH program 251
MAXFLDS parameter 258
MAXGPS parameter 258
MAXLITS parameter 259
MAXNAME parameter 259
PREFORM parameter 260
SKIP parameter 260
STOPAFT parameter 261
STRTAFT parameter 261
TOTCONV parameter 261
TYPORG parameter 262

punching
data set 246
partitioned data set directory 247
sequential data set

examples 264. 267
punching a data set 246
punching edited data set 247
punching selected members

partitioned data set 247
punching selected records 247
PURGE parameter

SCRATCH statement 406

QUANTITY parameter
CREATE statement 121
REPEAT statement 121

446 MVS/XA Data Administration: Utilities

R parameter
NAME statement 207

RACF protection
IEHMOVE program 344

RANGE parameter
FD statement 117

re-creating a data set 40
reb10cking

data sets 343
load modules 41
output data set 145

RECFM field in formatted VTOC
listing 428

record
defining contents 110
quantity 121

record format
changing 46

record group
defining 151. 252
dividing sequential data sets 142
printing

example 270
record heading buffer 239
RECORD statement

FIELD parameter 153-154. 256
IDENT parameter 155. 257
IEBGENER program 151
IEBPTPCH program 252
LABELS parameter 156

REF pa rameter
CHARSET statement 208
GRAPHIC statement 209

referencing aids
special 7

RELEASE statement
CVOL parameter 404
IEHPROGM program 401
INDEX parameter 405

releasing two OS CVOLs 388
relocation dictionary

inserting counts 42
RENAME parameter

COPY DSNAME statement 371
COPY PDS statement 371
MOVE DSNAME statement 371
MOVE PDS statement 371

RENAME statement
DSNAME parameter 404
IEHPROGM program 398
MEMBER parameter 405
NEWNAME parameter 405
VOL parameter 408

renaming
data sets 386
members 386

renaming members
selected 39

REPEAT statement
CREATE parameter 115
IEBDG program 113
QUANTITY parameter 121

REPL statement
IEBUPDTE program 277
INHDR parameter 285
INTLR parameter 286
LEVEL parameter 286
LIST parameter 286
MEMBER parameter 286
NAME parameter 286

(~

NEW parameter 287
OUTHDR parameter 287
OUTTLR parameter 287
SEQFLD parameter 289
SOURCE parameter 289
SSI parameter 289
TOTAL parameter 290

REPLACE statement
CPASWORD parameter 403
CVOL parameter 368
DATA parameter 404
DSNAME parameter 369. 404
FROM parameter 370
IEHMOVE program 367
IEHPROGM program 402
MEMBER parameter 371
PASWORDI parameter 405
PASWORD2 parameter 406
TYPE parameter 407
VOL parameter 408

replacing data set passwords 392
replacing members

identically named 38
selected 39

REPRO statement
IEBUPDTE program 277
INHDR parameter 285
INTLR parameter 286
LEVEL parameter 286
LIST parameter 286
MEMBER parameter 286
NAME parameter 286
NEW parameter 287
OUTHDR parameter 287
OUTTLR parameter 287
SEQFLD parameter 289
SOURCE parameter 289
SSI parameter 229
TOTAL parameter 290

restrictions
detail statement 281
function statement 278
IEBCOPY program 48

restrictions. general
utility programs 5

return codes
IEBCOMPR program 25
IEBCOPY program 43
IEBDG program 103
IEBDG user exit routine 110
IEBEDIT program 132
IEBGENER program 146
IEBIMAGE program 187
IEBISAM program 240
IEBISAM user exit routine 239
IEBPTPCH program 248
IEBUPDTE program 273

UPDATE parameter 283
IEHATLAS program 306
IEHINITT program 315
IEHLIST program 331
IEHMOVE program 353
IEHPROGM program 394

ripple action 114
example 123

RLD (relocation dictionary)
inserting counts 42

roll action 114
RORGI field in formatted VTOC
listing 431

rrkk parameter
TRACK statement 309
VTOC statement 309

S parameter
TRACK statement 309

SCRATCH statement
DSNAME parameter 404
IEHPROGM program 397
MEMBER parameter 405
PURGE parameter 406
SYS parameter 406
VOL parameter 408
VTOC parameter 408

scratching
BDAM data sets 385
data sets named by the operating
system 385

ISAM data sets 385
members of partitioned data sets 385
password-protected data sets 385
sequential data sets 385

SELECT statement
IEBCOPY program 53
IEHMOVE program 366
MEMBER parameter 56. 371

selecting members to be copied 37
selecting members to be loaded or

unloaded 37
selective copy or load processing 38
SEQ parameter

CHARSET statement 209
GRAPHIC statement 209

SEQFLD parameter
ADD statement 289
CHANGE statement 289
REPL statement 289
REPRO statement 289

SEQNO field in formatted VTOC
listing 428

seqout DD statement
IEBDG program 106

sequential data set
as backup copy 236
cataloging in an OS CVOL 386
changing to partitioned 272
comparing 24

examples 30-32
copying 345

examples 158-161
defining fields

example 122
editing and copying

examples 164-167
from ISAM data set

examples 243
incorporating source language
modifications

IBM-provided 272
user-generated 272

loading
example 94

modifying 272
moving 345
printing

examples 264. 267
punching

examples 264. 267
scratching 385

sequinset DD statement
IEBDG program 105

SEQI parameter

Index 447

DELETE statement 288
NUMBER statement 288

SEQ2 parameter
DELETE statement 288
NUMBER statement 288

SER NO field in formatted VTOe
listing 428

SER parameter
INITT statement 320

SETPRT SVC instruction 171
shift left action 114
shift right action 114
SIGN parameter

FD statement 121
SIO usage count 420
SIZE parameter

FCB statement 210
SKIP parameter

PRINT statement 260
PUNCH statement 260

SMF (system management facilities)
type 21 records

format 417
SOURCE parameter

ADD statement 289
CHANGE statement 289
REPL statement 289
REPRO statement 289

space allocation
data set

IEHMOVE program 342
IEBCOPY program 47

special referencing aids 7
SSI parameter

ADD statement 289
CHANGE statement 289
REPL statement 289
REPRO statement 289

standard label set
placing on magnetic tape 314

START parameter
EDIT statement 135

STARTLOC parameter
FD statement 121

STEPNAME parameter
EDIT statement 135

STOPAFT parameter
PRINT statement 261
PUNCH statement 261

storage requirements
IEBIMAGE program 168
SYS1.IMAGELIB data set 169

STRTAFT parameter
PRINT statement 261
PUNCH statement 261

SYNAD exit routine 419
SYS parameter

SCRATCH statement 406
SYSCTLG data set

defining 401
SYSIN DD statement

IEBCOMPR program 26
IEBCOPY program 46
IEBDG program 105
IEBEDIT program 133
IEBGENER program 147, 149
IEBIMAGE program 189
IEBPTPCH program 249
IEBUPDTE program 276
IEHATLAS program 307
IEHINITT program 317
IEHLIST program 333
IEHMOVE program 357
IEHPROGM program 397

448 MVS/XA Data Administration: Utilities

SYSOUT data set
printing

example 271
SYSPRINT DD statement

IEBCOMPR program 26
IEBCOPY program 44
IEBDG program 105
IEBEDIT program 133
IEBGENER program 148
IEBIMAGE program 189
IEBISAM program 240
IEBPTPCH program 249
IEBUPDTE program 275
IEHATLAS program 307
IEHINITT program 317
IEHLIST program 333
IEHMOVE program 355
IEHPROGM program 396

SYSPRINT statement
IEBGENER program 147

system utility programs
summary 1

SYSUTI DD statement
IEBCOMPR program 26
IEBEDIT program 133
IEBGENER program 147, 148
IEBIMAGE program 189
IEBISAM program 240
IEBPTPCH program 249
IEBUPDTE program 275
IEHATLAS program 307
IEHMOVE program 355
IFHSTATR program 420

SYSUT2 DD statement
IEBCOMPR program 26
IEBEDIT program 133
IEBGENER program 147, 148
IEBISAM program 240
IEBPTPCH program 249
IEBUPDTE program 275
IFHSTATR program 420

SYSl.IMAGELIB data set
maintaining 170
storage requirements 169

SYSl.MAN tape 418
SYS1.MANX data set 419
SYSl.MANY data set 419
SYSl.VTOCIX data set 336

TABLE module listing
IEBDG program 181

TABLE module structure, IEBIMAGE
program 179

TABLE statement
CGMID parameter 198
DELETE parameter 201
GCMLIST parameter 202
IEBIMAGE program 192
LOC parameter 204

TAGDT field in formatted VTDe
listing 430

tape DD statement
IEHMOVE program 357

tape labels 313
creating

examples 321-324
tapes

assessing quality in library 418
TEXT parameter

(..

COPYMOD statement 211
TITL E statement

IEBPTPCH program 251
ITEM parameter 258

TO parameter
COPY CATALOG statement 371
COPY DSGROUP statement 371
COPY DSNAME statement 371
COPY PDS statement 371
COPY VOLUME statement 371
MOVE CATALOG statement 371
MOVE DSGROUP statement 371
MOVE DSNAME statement 371
MOVE PDS statement 371
MOVE VOLUME statement 371

TODD parameter
COPY CATALOG statement 372
COPY DSGROUP statement 372
COPY DSNAME statement 372
COPY PDS statement 372
COPY VOLUME statement 372
MOVE CATALOG statement 372
MOVE DSGROUP statement 372
MOVE DSNAME statement 372
MOVE PDS statement 372
MOVE VOLUME statement 372

TOTAL parameter
ADD statement 290
CHANGE statement 290
EXITS statement 157
REPL statement 290
REPRO statement 290

TOTCONV parameter
PRINT statement 261
PUNCH statement 261

track
assigning an alternate 305

examples 310-312
replacing defective 305

track overflow feature
JCL for 357

TRACK statement
bbbb parameter 309
cccc parameter 309
dddd parameter 309
hhhh parameter 309
IEHATLAS program 308
rrkk parameter 309
S parameter 309

translate table
structure in module 179

truncate left action 114
truncate right action 114
TYPE parameter

ADD statement 407
EDIT statement 136
REPLACE statement 407

TYPORG parameter
COMPARE statement 29
PRINT statement 262
PUNCH statement 262

ucs-image parameter
UCS statement 20

UCS parameter
DFN statement 20

UCS statement
ICAPRTBL program 18
ucs-image parameter 20

UNCATLG parameter
COPY DSGROUP statement 372
COPY DSNAME statement 372
COPY PDS statement 372
MOVE DSGROUP statement 372
MOVE DSNAME statement 372
MOVE PDS statement 372

UNCATLG statement
CVOL parameter 404
DSNAME parameter 404
IEHPROGM program 399

universal character set buffer
loading 18

unload operation
creating sequential data sets 36
example 93

UNLOAD parameter
COPY CATALOG statement 372
COPY DSGROUP statement 372
COPY DSNAME statement 372
COPY PDS statement 372
COpy VOLUME statement 372
MOVE CATALOG statement 372
MOVE DSGROUP statement 372
MOVE DSNAME statement 372
MOVE PDS statement 372
MOVE VOLUME statement 372

unloaded data set 340
converting to ISAM data set

example 244
copying 349
mov1ng 349

unmovable data set
copying 349
mov1ng 349

UPDATE parameter
CHANGE statement 290
restrictions 278

updating data set libraries 272
USED PDS BYTES field in formatted VTOC
listing 429

user-information
END statement
JOB statement

user labels 152

parameter
20
20

processing 151, 426
as data set descriptors 426

treated as data 255
user-specified pictures 101, 120

example 129
utility control statements 4

coding 5
continuing 5

utility control statements (ICAPRTBL)
DFN 17
END 18
FCB 18
JOB 17
UCS 18

utility control statements (IEBCOMPR)
COMPARE 27
EXITS 27
LABELS 28

utility control statements (IEBCOPY)
ALTERMOD 51
COPY 49
COPYMOD 52
EXCLUDE 54
SELECT 53

utility control statements (IEBDG)
CREATE 110
DSD 107
END 114
FD 108

Index 449

REPEAT 113
utility control statements (IEBEDIT)

EDIT 134
utility control statements (IEBGENER)

EXITS 150
GENERATE 150
LABELS 151
f1EMBER 151
RECORD 151

utility control statements (IEBIMAGE)
CHARSET 194
COPYMOD 191
FCB 190
GRAPHIC 193
INCLUDE 195
NAME 195
OPTION 195
TABLE 192

utility control statements (IEBPTPCH)
EXITS 252
LABElS 253
MEMBER 252
PRINT 250
PUNCH 251
RECORD 252
TITlE 251

utility control statements (IEBUPDTE)
ADD 277
ALIAS 284
CHANGE 277
DElETE 280
ENDUP 285
LABEL 282
NUMBER 280
REPL 277
REPRO 277

utility control statements (IEHATLAS)
TRACK 308
VTOC 308

utility control statements (IEHINITT)
INITT 318

utility control statements (IEHLIST)
LISTCTlG 334
LISTPDS 334
LISTVTOC 335

utility control statements (IEHMOVE)
COpy CATALOG 364
COPY DSGROUP 361
COPY DSNAME 360
COPY PDS 363
COPY VOLUME 365
EXCLUDE 366
INCLUDE 365
MOVE CATALOG 363
MOVE DSGROUP 361
MOVE DSNAME 360
MOVE PDS 362
MOVE VOLUME 364
REPLACE 367
SELECT 366

utility control statements (IEHPROGM)
ADD 402
BLDA 400
BLDG 401
BLDX 399
CATlG 398
CONNECT 401
DELETEP 403
DLTA 400
DLTX 400
LIST 403

450 MVS/XA Data Administration: Utilities

RElEASE 401
RENAME 398
REPLACE 402
SCRATCH 397
UNCATlG 399

utility program functions
guide to 8-11

utility programs
. introduction 1

invoking from a problem program 12
notational conventions 5
restrictions, general 5
selecting 3

variable-spanned records
copying BDAM data sets with 352
moving BDAM data sets with 352

verifying a backup copy
IEBCOMPR program 24

vertical line spacing
IEBIMAGE program 172

VL parameter
ATTACH macro 13
LINK macro 13

VOL parameter
ADD statement 408
CATLG statement 408
CONNECT statement 408
DELETEP statement 408
LISTCTLG statement 336
LISTPDS statement 336
LISTVTOC statement 336
RENAME statement 408
REPLACE statement 408
SCRATCH statement 408

volume
copying all data sets from 351
moving all data sets from 351

volume label set
placing on magnetic tape 313

VOLUME parameter
COPY VOLUME statement 372
MOVE VOLUME statement 372

volume size compatibility
IEHMOVE program 341

volume table of contents
See VTOC

VTOC (volume table of contents)
listing 327

dump format 330
edited format 328
unedited format 330

listing entries 335
example 339

sample output by IEHLIST program 427
VTOC listing, formatted

See formatted VTOC listing
VTOC parameter

SCRATCH statement 408
VTOC statement

bbbb parameter 309
cccc parameter 309
dddd parameter 309
hhhh parameter 309
IEHATLAS program 308
rrkk parameter 309 (-)

(

(

wait state codes
ICAPRTBL program 15

wave action 115

Numerics

2MIND field in formatted VTOC
listing 430

2ND ALLOC field in formatted VTOC
listing 429

3MIND field in formatted VTOC
listing 430

3800 FCB (forms control buffer) module
structure 173

3800 Modell, GRAPHIC module structure
for 183

3800 Model 3, GRAPHIC module structure
for 183

3800 Printing Subsystem Model 3 195
4248 FCB (forms control buffer) module
structure 173

4248 printer 195

Index 451

~
o

Z

MVSjXA Data Administration: Utilities
GC26-4150-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of
publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

If you wish a reply, give your name, company, mailing address, and telephone number.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ----------

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)
Thank you for your cooperation.

GC26-4150-1

Reader's Comment Form

Fold and tape

Fold and tape

--...- ------ - ------- -. ---- - - -------------,-
®

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

III
Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fo.ld and tape

s::
<
C/)
X »
0
III
III

» c.
3
::l
iii'
III ... o·
::l

C
.. "

~.

;:j: ,,/
(ii'

'"
'TI

iii'
Z
?
C/)
w
0 w
~

"tl ...
5'
<'D
C.

::l

C
en
;t>
G)
(")
I\J
0'>
.j:.

U1
IT'

..... ". .. .

GC26-4150-01

-.

