

--------- ----
Ii! --&"::::§'i!:

Order Number
GC26-4267-1

MVS/Extended Architecture
Data Facility Product
Version 2: Customization

Data Facility Product
5665-XA2

Licensed
Program

Version 2
Release 3.0

Second Edition (June 1987)

This edition replaces and makes obsolete the previous edition, GC26-4267-O. This
publication was formerly entitled Interactive Storage Management Facility Customizotion
Guide.

This edition applies to Version 2 Release 3.0 of MVS/Extended Architecture Data
Facility Product, Licensed Program 5665-XA2, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the
preface. Specific changes are indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent publication of the page affected. Editorial changes
that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of mM systems, consult the latest IBM Syslem/370, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to mM products, programs, or services do not imply that
IBM intends to make these available in all countries in which mM operates. Any
reference to an mM licensed program in this publication is not intended to state or imply
that only mM's program may be used. Any functionally equivalent program may be used
instead.

Requests for mM publications should be made to your mM representative or to the mM
branch office serving your locality. IT you request pUblications from the address given
below, your order will be delayed because publications are not stocked there.

A form for readers' comments is provided at the back of this pUblication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. mM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1986, 1987

Preface

Purpose

Organization

The purpose of this manual is to provide one book with both guidance and reference
information for customization in the Data Facility Product (DFP) for Version 2. The
areas where DFP can be customized include all of the exit locations and replaceable
modules and the interactive storage management facility (ISMF) display panels.

This manual is intended for the programmers at an installation who are responsible for
providing exit routines and modules that extend or replace mM-supplied function.
The guidance information provided in this manual can be used by administrators who
wish to centralize customization at their installations.

This manual contains the following sections:

• Chapter 1, "Introduction" on page 1 briefly describes customization by
definition, and the customization facilities available in DFP.

• Chapter 2, "VSAM User-Written Exit Routines" on page 5 provides guidance
and reference information for coding VSAM user exit routines.

• Chapter 3, "DCB Macro Specified User-Written Exit Routines" on page 29
provides guidance and reference information for coding DCB user exit routines.

• Chapter 4, "User Exit Routines Specified with Utilities" on page 59 provides
guidance and reference information for coding user exit routines as part of utility
programs.

• Chapter 5, "Data Management Installation Exit Routines" on page 67 provides
guidance and reference information for replacing installation-level modules within
DFP

• Chapter 6, "EXCP Appendages" on page 91 provides guidance and reference
information for creating EXCP appendages.

• Chapter 7, "Tape Label Processing Installation Exit Routines" on page 101
provides guidance and reference information for coding tape label processing
modules.

• Chapter 8, "Interactive Storage Management Facility (ISMF)" on page 145
describes how to customize ISMF.

• Appendix A, "Example of an OPEN Installation Exit Module" on page 171
describes a sample replaceable module for IFGOEXOB.

• Appendix B, "Status Information Following an Input/Output Operation" on
page 183 includes information on the data event control block, event control
block, and register and status codes following I/O operations for non-VSAM data
sets.

Appendix C, "ISMF Command Table Format" on page 195.

• Appendix 0, "ISMF Line Operator Table Format" on page 197.

Preface iii

Prerequisite Knowledge

To use this book, you should have a programming background that includes:

• Assembler language

• Job control language

• Standard program linkage conventions

• Data management access methods and macro instructions

• Access method services commands

• VSAM macro instructions

• Interactive System Productivity Facility (ISPF) dialog manager

Required Publications

You should be familiar with the information presented in the following publications:

• MVS/Extended Architecture VSAM Administration: Macro Instruction Reference,
GC26-4152, describes the macro instructions that are used with VSAM
programs.

• MVS/Extended Architecture Integrated Catalog Administration: Access Method
Services Reference, GC26-4135, or MVS/Extended Architecture VSAM Catalog
Administration: Access Method Services Reference, GC26-4136, describes the
access method services commands that are used with VSAM.

• MVS/Extended Architecture Catalog Administration Guide, GC26-4138, describes
the administration of tasks for catalogs and how to use the access method services
commands to manipulate catalogs, and the objects cataloged in them.

• MVS/Extended Architecture JCL User's Guide, GC28-1351, and MVS/Extended
Architecture JCL Reference, GC28-1352, describes the JCL parameters referred
to in this publication and describes dynamic allocation.

• MVS/Extended Architecture Message Library: System Messages, Volumes 1 and 2,
GC28-13 76 and GC28-13 77, provides a complete listing of the messages issued
byMVS/XA.

• MVS/Extended Architecture Data Administration Guide, GC26-4140, describes
the administration of tasks for non-VSAM data sets and how to use the macro
instructions to manipulate the data sets.

• MVS/Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4141, describes the macro instructions that are used with non-VSAM data
sets.

• MVS/Extended Architecture System-Data Administration, GC26-4149, describes
how to modify and extend the data management capabilities of the operating
system.

• MVS/Extended Architecture Interactive Storage Management Facility User's Guide,
GC26-4266, describes how to use the interactive storage management facility.

• Interactive System Productivity Facility Dialog Management Services, SC34-2137,
describes how to use the dialog management services.

iv Data Facility Product Version 2: Customization

Related Publications

Within the text, references are made to the publications listed in the table below:

Short Title Publication Title Order Number

Access Method MVS / Extended Architecture GC26-4135
Services Reference Integrated Catalog Administration:

Access Method Services Reference

MVS / Extended Architecture GC26-4136
VSAM Catalog Administration:
Access Method Services Reference

Catalog MVS / Extended Architecture GC26-4138
Administration Catalog Administration G~ide
Guide

Checkpoint/ MVS / Extended Architecture GC26-4139
Restart User's Checkpoint/Restart User's Guide
Guide

Data MVS / Extended Architecture Data GC26-4140
Administration Administration Guide
Guide

Data MVS / Extended Architecture Data GC26-4141
Administration: Administration: Macro Instruction
Macro Instruction Reference
Reference

Data Areas-JES2 MVS / Extended Architecture Data LYB8-1191
Areas-JES2

Data Areas-JES3 MVS / Extended Architecture Data LYB8-1195
Areas-JES3

Data Facility MVS / Extended Architecture Data GC26-4146
Product: Master Facility Product Version 2: Master
Index Index

Data Facility MVS / Extended Architecture Data GC26-4147
Product: Planning Facility Product Version 2:
Guide Planning Guide

Debugging MVS / Extended Architecture
Handbook System Programming Library:

Debugging Handbook
Volume 1 LC28-11641
Volume 2 LC28-1165
Volume 3 LC28-1166
Volume 4 LC28-1167
Volume 5 LC28-1168

Note:

All five volumes may be ordered under one order number, LBOF-I015.

Preface V

SbortTIde Pub6cation TIde Order Number

DFDSS: User's Data Facility Data Set Services: SC26-412S
Guide and User's Guide and Reference
Reference

Initialization and MVS / Extended Architecture GC28-1149
Tuning System Programming Library:

Initialization and Tuning

ISMFUser's MVS / Extended Architecture GC26-4266
Guide Interactive Storage Management

Facility User's Guide

ISPF Dialog Interactive System Productivity SC34-2137
Management Facility Dialog Management
Services Services

JCL User's Guide MVS / Extended Architecture JCL GC28-13S1
User's Guide

JCL Reference MVS / Extended Architecture JCL GC28-13S2
Reference

Magnetic Tape MVS / Extended Architecture GC26-414S
Labels and File Magnetic Tape Labels and File
Structure Structure Administration

RACF General OS/VS2 MVS Resource Access GC28-0722
Information Control Facility (RACF): General
Manual Information Manual

Service Aids MVS / Extended Architecture GC28-11S9
System Programming Library:
Service Aids

System-Data MVS / Extended Architecture GC26-4149
Administration System-Data Administration

System Macros MVS / Extended Architecture GC28-11S0
and Facilities System Programming Library: and

System Macros and Facilities GC28-11S1
Volumes 1 and 2

Installation: MVS / Extended Architecture GC26-4148
System Generation Installation: System Generation

System Messages MVS / Extended Architecture GC28-1376
Message Library: System Messages and
Volumes 1 and 2 GC28-1377

System MVS / Extended Architecture GC28-11S2
Modifications System Programming Library:

System Modifications

TSOCommand OS/VS2 TSO Command GC28-0646
Language Language Reference with SD23-0259
Reference MVS/Extended Architecture

supplement

vi Data Facility Product Version 2: Customization

Short 11tIe PublIcation ntle Order Number

TSO Terminal MVS/Extended Architecture TSO GC28-1274
User's Guide Terminal User's Guide

Utilities MVS/ Extended Architecture Data GC26-4150
Administration: Utilities

UserBxits MVS/ Extended Architecture GC28-1147
System Programming Library:
User Exits ..

VSAM MVS/ Extended Architecture GC26-4152
Administration: VSAM Administration: Macro
Macro Instruction Instruction Reference
Reference

31-Bit Addressing MVS/ Extended Architecture GC28-1158
System Programming Library:
31-Bit Addressing

Preface m

Summary of Changes

Release 3.0, June 1987

Change of Title and Content

This manual was formerly entitled Interactive Storage Management Facility
Customization Guide.

The content of the manual now encompasses aU of Version 2 DFP customization
facilities, including ISMF. The exits and replaceable modules documented in a
number of DFP books have been consolidated into this manual. Customization
information was extracted from the foUowing manuals:

Data Administration Guide
Data Administration: Macro Instruction Reference
Data Administration: Utilities
Interactive Storage Management Facility Customization Guide
Magnetic Tape Labels and File Structure Administration
System-Data Administration
VSAM Administration Guide

New Programming Support

A new entry has been added to the DCB exit list (EXLST) to retrieve allocation
information for users of the RDJFCB macro.

DADSM extends its new 31-bit virtual address support to its exit modules. Thus,
each new exit module may reside above or below 16 Mb virtual, may return to
DADSM in any addressing mode, and will be entered in its stated addressing mode.
(See "DADSM Preprocessing and Postprocessing Exit Routines" on page 68 and
"DADSM (SCRATCH and RENAME) Installation Exit Modules" on page 74.)

The new ISMF feature, volume application, provides a volume list from which you can
perform a number of administrative tasks. With ISMF volume application, you can
now:

• Construct, tailor, and manipulate the volume list.

• Monitor allocated space to determine how to use it most effectively.

• Reduce fragmentation on a volume with DFDSS.

• Use line operators previously supported for Data Set Applications such as
COMPRESS, DUMP, COPY, RELEASE, and RESTORE.

• Invoke a TSO CLIST against a volume.

Summary of Changes ix

Contents

Chapter 1. Introduction•.•...•. I
What is Customization? ... 1

Types of Customization .. 1
Customization in the MVS/XA System 1
Customization in DFP ... 2

Considerations in Deciding to Customize DFP 2
Why Customize? ... 2
Programming Considerations 3
Programming Languages ... 3
Restrictions and Limitations 3

Where Can You Customize in DFP? 3
User Exit Locations ... 3
Replaceable Modules•............ 4
Tailoring ISMF ... 4

Chapter 2. VSAM User-Written Exit Routines •••••••••••••••••••••••••••• 5
General Guidance .. S

Programming Considerations• 6
Returning to Your Main Program 7

EODAD Exit Routine to Process End-of-Data 8
Description .. 8
Register Contents ... 8
Programming Considerations 8

EXCEPTIONEXIT Exit Routine 9
Description .. 9
Register Contents ... 9
Programming Considerations 9

JRNAD Exit Routine to Journalize Transactions 10
Description ... 10
Register Contents. .. 10
Programming Considerations 10

LERAD Exit Routine to Analyze Logical Errors 19
Description ... 19
Register Contents .. 19
Programming Considerations 20

SYNAD Exit Routine to Analyze Physical Errors 20
Description ... 20
Register Contents .. 20
Programming Considerations 21
Example of a SYNAD User-Written Exit Routine 22

UPAD Exit Routine for User Processing 24
Description ... 24
Register Contents .. 24
Programming Considerations 24

User-Security-Verification Routine (USVR) 26

Chapter 3. DCB Macro Specified User-Written Exit Routines •.••••••••••••• 29
General Guidance ... 29

Programming Considerations 30
EODAD End-of-Data-Set Exit Routine 30

Description ... 30

Contents xi

Register Contents .. 30
Programming Considerations 31

SYNAD Synchronous Error Routine Exit 31
Description ... 31
Register Contents .. 31
Programming Considerations 32

EXLST Exit List .. 34
Register Contents for Exits from EXLST 36

Allocation Retrieval List .. 37
DCB Abend Exit ... 37

Recovery Requirements ... 41
DCB Open Exit .. 43
EOV Defer Nonstandard Input Trailer Label Exit 43
EOV Block Count Exit ... 44
EOV Exit for Physical Sequential Data Sets 44
FCB Image Exit .. 45
JFCB Exit ... 46
JFCBE Exit ... 47
Open/Close/EOV Standard User Label Exit. 47
Open/EOV Nonspecific Tape Volume Mount Exit 51

Convention for Saving and Restoring General Registers 53
Open/EOV Volume Security and Verification Exit 53

Convention for Saving and Restoring General Registers 56
QSAM Parallel Input Exit ... 56
User Totaling for BSAM and QSAM 56

Chapter 4. User Exit Routines Specified with Utilities •••••..•.••••••••••••• 59
General Guidance :.. 59

Register Contents at Entry to Routines from Utility Programs 60
Programming Considerations 60
Returning from an Exit Routine 60
Parameters Passed to Label Processing Routines 63
Parameters Passed to Non-Label Processing Routines 63

Processing User Labels ... 64
Processing User Labels as Data Set Descriptors 65
Exiting to a User's Totaling Routine 66
Processing User Labels as Data 66

Chapter 5. Data Management InstaDatioD Exit Routines •••••••.•••••••••••• 67
General Guidance ... 67

Programming Considerations 68
DADSM Preprocessing and Postprocessing Exit Routines 68

The Exit Modules .. 68
The Exit Environment .. 68
When IGGPREOO Gets Control 69
Rejecting a DADSM Request.. 69
Rejecting a DADSM Scratch Request 70
Data that DADSM Passes to the Exits 70
Passing a Model Format-l DSCB 72
When IGGPOSTO Gets Control 72
System Control Blocks .. 72
Registers at Entry to DADSM Exits 73
Registers at Return from DADSM exits 73
Return Codes from DADSM Exits. 74

CATALOG and DADSM Installation Exit Modules. 74
CATALOG Installation Exit Module 74

xii Data Facility Product Version 2: Customization

DADSM (SCRATCH and RENAME) Installation Exit Modules. 74
DASD Calculation Services (DCS) Installation Exits 75

Data That DCS Passes to the Exits 75
Registers at Entry to the DCS Exits 76
Registers at Return from the DCS Exits 76
IGBDCSXl (DCS Precalculation Installation Exit) 76
IGBDCSX2 (DCS Postcalculation Installation Exit) 77

Data Management Abend Installation Exit (IFG01991) 77
Data That OPEN/EOY Passes to the Exit 78
Registers at Entry to the Data Management ABEND Exit 79
Registers at Return from the Data Management ABEND Exit 79
Return Codes from the Data Management ABEND Exit 79

DCB OPEN Installation Exit (IFGOEXOB) 80
The Exit Module .. 80
The Exit Environment .. 80
Open Processing before the DCB OPEN Exit Gets Control 80
Open Processing after the DCB OPEN Exit Gets Control 81
Getting Control from Open 81
Data That Open Passes to the Exit 81
Defaulting the DCB Buffer Number .. 83
Modifying the JFCB .. 83
Registers at Entry to the DCB OPEN Exit 84
Registers at Return from the DCB OPEN Exit 84
Return Codes From the DCB OPEN Exit 84

Open/EOY Installation Exit for Format-l DSCB Not Found (IFGOEXOA) 85
Data That OPEN/EOY Passes to the Exit 85
Registers at Entry to the Format-l DSCB Not Found Exit 86
Registers at Return from the Format-1 DSCB Not Found Exit 86
Return Codes from the Format-l DSCB Not Found Exit 86

IDA TMSTP Datestamp Routine 87
Register Contents at Entry to IDATMSTP 87
Programming Considerations 88

Chapter 6. EXCP Appendages •••....•.•••.••••••.••.••••.••.•••..••• 91
General Guidance ... 91

Making Your Appendages Part of the System 93
The Authorized Appendage List (IEAAPPOO) 93

Abnormal-End (ABE) Appendage 95
Channel-End (CHE) Appendage 96
End-of-Extent (EOE) Appendage 97
Program-Controlled Interruption (PCI) Appendage 97
Start-I/O (SIO) Appendage ... 98

Chapter 7. Tape Label Processing InstaDatiOD Exit Routines •••••••.•••••••. 101
General Guidance .. 101

Programming Considerations 102
Nonstandard Labels .. 102

Processing Tapes with Nonstandard Labels 104
Input Header Label Routines 105
Input Trailer Label Routines 105
Output Header Label Routines 106
Restart Label Processing Routine 107
Output Trailer Label Routines 108

Writing Nonstandard Label Processing Routines 108
Programming Conventions 108
Program Functions .. 109

Contents xiii

Inserting Nonstandard Label Routines Into the Control Program 120
Automatic Volume Recognition (A VR) Nonstandard Label Processing Routine 120

Entry Conditions ... 121
Conventions ... 121
Inserting A VR Nonstandard Label Routines into the Control Program 121

Volume Verification and Dynamic Device Reconfiguration 121
Volume Label Verification and Volume Label Editor Routines 122

Verification of First Record 123
Volume Label Editor Routines 126

Programming Conventions 128
Program Functions .. 129
Inserting Your Label Editor Routines into the Control Program 137

ISO/ ANSI/FIPS Version 3 Installation Exits 138
WTOR Installation Exit .. 138
Label Validation Exit .. 139
Label Validation Suppression Exit 140
Volume Access Exit ... 140
File Access Exit .. 141
Installation-Written Exit Routines 141
Exit Parameter List~IECIEPRM 141
UCB Tape Class Extension-IECUCBCX 143
UCB Tape Class Extension Data Area. 144

Chapter 8. Interactive Storage Management Facility (ISMF) ••••••••••.•.••• 145
General Guidance .. 145

Restrictions to Customizing 145
The Parts ofISMF That You Can Customize 145
Finding the Libraries You Want to Customize 146
Making Changes and Testing Them 147

Customizing Panels ... 148
Modifying Panel Definition 148
Restrictions ... 148
Finding the Panel You Want to Change 148
Testing the Changes ;.................................. 149
Changing Initial Priming Values on Data Entry Panels 149
Changing Default Values for Data Entry Panels 150
Restricting Values for Specific Input Fields 151
Removing Fields .. 153
Changing the Format .. 153
Modifying Text ... 154
Adding Fields .. 154
Creating Panels .. 155

Modifying Fields on the List Panel 156
Where Do You Make the Changes? 156
Special Considerations .. 157
Customizing Messages .. 158

Modifying ISMF Messages 158
Restrictions ... 158
Finding the Message You Want to Change 158
Making the Change ... 159
Creating New Messages .. 159

Customizing Job Skeletons ... 159
Restrictions ... 159
Finding the Skeleton You Want to Change 160
Making the Changes ... 160

Customizing Tables .. 165

xiv Data Facility Product Version 2: Customization

Customizing the ISPF Command Tables 166
Restrictions ... 166
Finding the Table You Want to Change 166
Making the Changes ... 166

Customizing the ISMF Command and Line Operator Tables 167
Restrictions ... 167
Finding the Tables .. 167
Making the Changes. .. 168

Customizing the ISMF CLIST 169
Restrictions ... 169
Finding the CLIST .. 169
Making the Changes ... 169

Appendix A. Example of an OPEN InstaUation Exit Module •••.••••.••••••• 171
Processing in IFGOEXOB .. 171
Requesting Partial Release ... 171
Updating the Secondary Space Data 171

Appendix B. Status Information Following an Input/Output Operation •••••••• 183
Data Event Control Block ... 183
Event Control Block .. 184

Appendix C. ISMF Command Table Format 195
DGTMCT AP .. 195

Appendix D. ISMF Line Operator Table Format •••••••.••••••••••••••••• 197
DGTMLPAP .. 197

Appendix E. Exit Testing Tecludques 199
Protecting the System From Exit Errors 199
Taking Dumps ... 200

Issuing the ABEND Macro in an Exit 200
Setting CVTSDUMP .. 200
Issuing the SDUMP Macro 200
Using the Console DUMP Command 200

Issuing Messages ... 200

Appendix F. User Interfaces .••.•••••.••••.•••••.••••••.•••••••••••• 201
Messages ... 201

System Messages ... 201
Messages from Other Programs 202
Exit Messages .. 202

Documenting Your Exit For Users 203

GIOSt8.I"Y' ••••••••••.•• 205
Abbreviations and Acronyms 205
Terms and Expressions ... 210

Index •..•.•..•.•••..•.•..•..•.•..•.•..•.•••••••.•..•••.••...••. 219

Contents XV

Figures

1. VSAM User-Written Exit Routines 5
2. Contents of Registers at Entry to EODAD Exit Routine 8
3. Contents of Registers at Entry to EXCEPTIONEXIT Routine 9
4. Contents of Registers at Entry to JRNAD Exit Routine 10
5. Example of a JRNAD Exit 12
6. Contents of Parameter List built by VSAM for the JRNAD Exit 14
7. Contents of Registers at Entry to LERAD Exit Routine 19
8. Contents of Registers at Entry to SYNAD Exit Routine 21
9. Example of a SYNAD Exit Routine 23

10. Contents of Registers at Entry to UPAD Exit Routine :....... 24
11. Parameter List Passed to UP AD Routine 25
12. Communication with User-Security-Verification Routine 27
13. DCB Exit Routines ... 29
14. Register Contents for DCB-Specified ISAM SYNAD Routine 34
15. DCB Exit List Format and Contents 34
16. Parameter List Passed to DCB Abend Exit Routine 38
17. Conditions for Which Recovery Can Be Attempted 39
18. Recovery Work Area ... 42
19. System Response to Block Count Exit Return Code ,. 44
20. Defining an FCB Image for a 3211 46
21. Parameter List Passed to User Label Exit Routine 48
22. System Response to a User Label Exit Routine Return Code 49
23. IECOENTE Macro Parameter List 52
24. IECOEVSE Macro Parameter List 55
25. User-Exit Routines Specified in Utilities 59
26. Register Contents at Entry to Utility Exit Routines 60
27. Return Codes That Must Be Issued by User Exit Routines. 61
28. Parameter Lists for Non-Label Processing Exit Routines 64
29. System Action at OPEN, EOV, or CLOSE Time 65
30. User Totaling Routine Return Codes 66
31. Data Management Replaceable Modules 67
32. Format of DADSM Preprocessing and Postprocessing Exit Parameter List 70
33. Format of the DCS Precalculation and Postcalculation Exit Parameter List 75
34. Format of the Parameter List OAIXL 78
35. Format of DCB OPEN Installation Exit Parameter List (OIEXL) 82
36. Communication with the Datestamp Routine 88
37. EXCP Appendages ... 91
38. Contents of Registers at Entry to EXCP Appendages 92
39. Entry Points, Returns, and Available Work Registers for Appendages 93
40. Tape Label Processing Modules 101
41. Examples of Tape Organizations with Nonstandard Labels 103
42. Status of Control Information and Pointers 110
43. Format of Combined Work and Control Block Area 111
44. Status of Control Information and Pointers from the Control Program's

Restart Routine ... 112
45. General Flow of a Nonstandard Label Processing Routine after Receiving

Control from the Open Routine 113
46. General Flow of a Nonstandard Label Processing Routine after Receiving

Control from the Close Routine 114
47. General Flow of a Nonstandard Label Processing Routine after Receiving

Control from the EOV Routine 115

Figures xvii

48. General Flow of a Nonstandard Label Processing Routine after Receiving
Control from the Restart Routine 118

49. Verification of First Record When Standard Labels Are Specified 124
50. Verification of First Record When Nonstandard Labels Are Specified. .. 125
51. Verification of First Record When Unlabeled Tape Is Specified 126
52. Editor Routine Entry Conditions from the EOV Routine 130
53. General Flow of an Editor Routine after Receiving Control from the Open

Routine ... 132
54. General Flow of an Editor Routine after Receiving Control from the EOV

Routine ... 133
55. ISO/ ANSI/FIPS Version 3 Exit Parameter List. 142
56. DDNAMEs for the Panel, Message, Skeleton, and Table Libraries 147
57. DDNAMEs for the Load and CLIST Libraries " . .. 147
58. Displaying the Panel ID 148
59. Entry Panel for Delete 149
60. Values in the INIT Section of the Delete Entry Panel. 150
61. ISMF Default Values for the Delete Entry Panel 150
62. Page 1 of the Data Set Selection Entry Panel 151
63. Validity Checking on the Data Set Selection Entry Panel 152
64. Original Version of the List Panel " 155
65. Adding Date and Time to the List Panel 155
66. List Panel Customized to Show Date and Time 155
67. ISMF Data Set List Panel 156
68. Column 10 of Member DGTDS08. 157
69. Column 10 of Member DGTDS08 After Customization. 158
70. Identifying the Message Number 158
71. Changing the Short and Long Messages 159
72. Original Job Skeleton for the Copy Line Operator 161
73. Original Job Stream for the Copy Line Operator 162
74. New Skeleton to Imbed in the Job Skeleton for Copy 163
75. Original Skeleton with Added Imbed 164
76. Job Stream Generated from the Tailored Skeleton 165
77. Using Command Table Utility to Update ISPF Tables 166
78. Member Names for Line Operator and Command Tables 167
79. Member Names for Profile Application Command Tables 168
80. Control Statement in the ISMF CLIST 169
81. Changing the Control Statement 170
82. Data Event Control Block 183
83. Exception Code Bits-BISAM 184
84. Exception Code Bits-QISAM 186
85. Exception Code Bits-BDAM 188
86. Register Contents on Entry to SYNAD Routine-QISAM 189
87. Register Contents on Entry to SYNAD Routine-BISAM 190
88. Register Contents on Entry to SYNAD Routine-BDAM, BP AM, BSAM,

and QSAM .. 191
89. Status Indicators for the SYNAD Routine-BDAM, BP AM, BSAM, and

QSAM ... 192
90. Status Indicators in the ECB 193

xviii Data Facility Product Version 2: Customization

Chapter 1. Introduction

What is Customization?

Customization consists of actions to enhance or extend a program to a greater extent
than is provided by standard system-supplied options. MVS/XA is an operating
system that consists of MVS/SP, MVS/XA OFP, and other products. Both MVS/SP
and OFP provide exit facilities for user customization.

Types of Customization

There are several types of customization:

Your installation takes advantage of customization functions by supplying a new
module to be installed as part of the system. Such modules fall into one of the
following categories:

The module replaces an ffiM-supplied module that performs no useful
function except to give a return code. Such ffiM-supplied modules are
sometimes called dummy modules. Examples are the OADSM exit routines.
If they are not replaced, no extra function is performed.
The module replaces an ffiM-supplied module that alrea4y performs a useful
function. An example is the data management abend installation exit
(IFG0199I). If such modules are not replaced, they will perform certain
functions.
ffiM does not supply a module that performs the function. Examples are the
nonstandard tape label processing modules. If they are not supplied, the
function cannot be used.

The modules described above must be reentrant and refreshable. They are
installed during system installation by using the system modification program
(SMP) or by link editing the module into the appropriate library.

• The application programmer or system programmer changes certain messages and
default values within the interactive storage management facility (ISMF).

The application program requests certain functions and supplies the exit routines
to perform these functions. Examples are the access method functions described
in Chapter 3, "OCB Macro Specified User-Written Exit Routines" on page 29
and Chapter 2, "VSAM User-Written Exit Routines" on page 5. The
installation may supply standard modules to implement these functions but the
individual application program must request the appropriate module. These
modules do not have to be reentrant.

Customization in the MVS/XA System

When installing the MVS/XA system, initialization parameters provide a means of
tailoring or tuning the system for your particular installation requirements. How you
tune MVS/XA may affect your customizing of MVS/SP and OFP. For more
information about initialization parameters, see Initialization and Tuning.

User exits provided by MVS/SP are documented in User Exits.

Customization at a system level is also described in System Modifications.

Chapter 1. Introduction 1

Customization in DFP

Customization in OFP can be separated into two levels: one that affects the entire
installation's processing and another that is limited to individual application program
processing.

Installation Level Customization

Replacing a System-Level Module
By definition, a replaceable module is a system-level module you are
allowed to change. Your modifications can alter processing for your
entire installation. If you choose to install system-wide processing
changes, you must consider how processing affects all users of the OFP
component affected.

Customizing ISMF
You can modify the form and content of the ISMF displays.
Customizing ISMF can be a system-wi<le application. Changes you
make to ISMF libraries affect all users of ISMF.

Application Program Customization

User exit locations provide a means of customizing DFP within an application
program. User-written routines can be specific to one application, or can be
standardized to be used in many of your application programs. To standardize exits
used frequently, you can maintain a library of proven exits that can be used in
application programs.

You can also customize ISMF displays for your own use. Other ISMF users would
not be affected. Customizing ISMF this way would be limited to your individual
applications.

Considerations in Deciding to Customize DFP

Why Customize'1

Your installation may decide to customize OFP to

• Enforce your installation standards

• Intercept errors for analysis and additional processing

• Add specialized tape label processing

• Tailor I/O processing

• Extend security controls

• Change or bypass processing

When your installation decides what areas need customization to meet the
requirements of your installation, you must consider the impact of your proposed
modification. Is it going to be something that will affect all users of a component or
function, or is it something that should be handled in the individual application
program? Replacing system-level modules affects your entire installation. In
conjunction with customizing OFP, you should examine the customization features
available at the system level as briefly described in "Customization in the MVS/XA
System" on page 1.

2 Data Facility Product Version 2: Customization

Programming Considerations

Most requirements for coding vary depending on the part of DFP you are
customizing. In general, be aware of the following:

• 31-bit addressing: You should refer to 31-Bit Addressing and the individual exit
routine descriptions. Some exits do not support this function.

• Use only valid interfaces. H it is not documented, it generally is not a valid
interface.

• Upon entering your exit routine, save all registers and restore them before
returning to your calling routine. Register 15 is an exception. In many cases you
must supply a return code in register 15 upon returning to your main program or
DFP processing.

• H you replace a module, make sure you thoroughly test it before making it
available to your installation.

• Your routine should be reentrant so that it is able to handle concurrent requests.

• Keep an unmodified copy of any replaceable modules or ISMF libraries you
choose to modify.

Programming Languages

This document assumes you understand assembler language, ISPF dialog management
language, and JCL. The examples are coded in assembler language and your routines
may be coded in assembler language. ISMF examples use the ISPF dialog
management language and JCL.

Restrictions and Limitations

DFP is a licensed program and can be modified for your own use only .. mM provides
support and maintenance only for unmodified mM-supplied modules and unmodified
ISMF libraries.

Where Can You Customize in DFP7

User Exit Locations

In DFP, user exit locations are provided as part of macros and commands where you
can specify the name and/or address of your user-written exit routine. The DCB
macro, VSAM macros, and some access methods services commands contain
parameters in which you specify the address or name of your exit routine. Some data
set utility programs also provide user exit locations for modifYing data set processing.

User exits are available at various points in data set processing such as:

• End-of-data
• I/O errors
• Logical errors
• Non-VSAM abend conditions
• Waiting for I/O completion
• At open, close, and end-of-volume

Chapter 1. Introduction 3

Replaceable Modules

Tailoring ISMF

The chapters describing user exits are:

• Chapter 2, "VSAM User-Written Exit Routines" on page 5
• Chapter 3, "DCB Macro Specified User-Written Exit Routines" on page 29
• Chapter 4, "User Exit Routines Specified with Utilities" on page 59

Available user exits are summarized in the general guidance sections of each chapter.

In this manual, replaceable modules refers to mM supplied modules you can modify
or replace with your own. This category also applies to EXCP appendages, dummy
modules and tape label processing modules.

Replaceable modules are available at various stages of processing such as:

• Before and after direct access device storage management (DADSM) processing
• At open for VSAM datestamp processing
• At open of a DCB
• At open, close, and end-of-volume abend conditions
• Before and after DASD calculation services
• I/O operations (appendages)
• At open, close and end-of-volume for additional tape label processing

Replaceable modules are described in the following chapters:

• Chapter 5, "Data Management Installation Exit Routines" on page 67
• Chapter 6, "EXCP Appendages" on page 91
• Chapter 7, "Tape Label Processing Installation Exit Routines" on page 101

A list of modules available is included in the guidance section of each chapter.

Because ISMF was partially written using the procedures described in ISPF Dialog
Management Services, it can be modified using the similar techniques. You can tailor
ISMF panels, messages, job skeletons, command tables, nonexecutable CSECTs and
the CLIST. Customizing ISMF is described in Chapter 8, "Interactive Storage
Management Facility (ISMF)" on page 145.

4 Data Facility Product Version 2: Customization

Chapter 2. VSAM User-Written Exit Routines

General Guidance

VSAM user-written routines may be supplied to:

• Analyze logical errors

• Analyze physical errors

• Perform end-of-data processing

• Record transactions made against a data set

• Perform special user processing

• Perform user-security verification

VSAM user-written exit routines are identified by macro parameters in access
methods services commands and in the EXLST VSAM macro.

You use the EXLST VSAM macro to create an exit list. EXLST parameters
EODAD, JRNAD, LERAD, SYNAD and UPAD are used to specify the addresses of
your user-written routines. Only the exits marked active are executed. For more
information on the EXLST macro see VSAM Macro Instruction Reference.

You can use access methods services commands to specify the addresses of
user-written routines to perform exception processing and user-security verification
processing. For more information on exits from access methods services commands
see Access Methods Services Reference.

The exit locations available from VSAM are outlined in the following table.

Exit Routine When Available Where Specified

End-of -data-set When no more sequential records EODAD
or blocks are available parameter of

EXLSTmacro

Exception exit After an uncorrectable EXCEPTIONEXIT
input/output error parameter on

access methods
services
commands

Journalize After an input/output completion JRNAD
transactions against or error, change to buffer parameter of
a data set contents, shared or nonshared EXLSTmacro

request, program issues GET,
PUT, ERASE, shift in data in a
control interval

Figure 1 (Part 1 of 2). VSAM User-Written Exit Routines

Chapter 2. VSAM User-Written Exit Routines 5

Exit Routine When AvaiJable

Analyze logical After an uncorrectable logical
errors error

Error analysis After an uncorrectable
input/output error

User processing WAIT for I/O completion or for a
serially reusable request

User security When opening a VSAM data set
verification

Figure 1 (Part 2 of 2). VSAM User-Written Exit Routines

Programming Considerations

Information

Where Speclfied

LERAD
parameter of
EXLSTmacro

SYNAD
parameter of
EXLSTmacro

UP AD parameter
of EXLST macro

AUTHORIZATION
parameter on
access methods
services
commands

To code VSAM user exit routines you should be familiar with the contents and have
available the following DFP manuals:

VSAM Administration Guide

VSAM Macro Instruction Reference

Access Methods Services Reference

Coding Guidance

In general, you should observe these guidelines in coding your routine:

• Code your routine reentrant

• Save and restore registers (see individual routines for other requirements)

• Be aware of registers used by the VSAM request macros

• ~e aware of the addressing mode (24 bit or 31 bit) your exit routine will receive
control in

• Determine if VSAM or your program should load the exit routine

If the exit routine is used by a program that is doing asynchronous processing with
multiple request parameter lists or, if the exit routine is used by more than one data
set, it must be coded so that it can handle an entry made before the previous entry's
processing is completed. Saving and restoring registers in the exit routine or by other
routines called by the exit routine is best accomplished by coding the exit routine
reentrant; another way is to develop a technique for associating a unique save area
with each request parameter list (RPL).

If the LERAD, EODAD, or SYNAD exit routine reuses the RPL passed to it, you
should be aware that:

6 Data Facility Product Version 2: Customization

• Recursion occurs (that is, the exit routine is called again) if the request that issues
the reused RPL results in the same exception condition that caused the exit
routine to be entered originally.

• The original feedback code is replaced with the feedback code that indicates the
status of the latest request issued against the RPL. If the exit routine returns to
VSAM, VSAM (when it returns to the user's program) sets register 15 to also
indicate the status of the latest request.

A user exit that is loaded by VSAM will be invoked in the addressing mode specified
when the module was link edited. A user exit that is not loaded by VSAM will receive
control in the same addressing mode as the caller of VSAM.

Your exit routine can be loaded within your program or by using the JOBLm or
STEPLm with the DD statement to point to the library location of your exit routine.

Returning to Your Main Program

Five exit routines can be entered when your main program issues a VSAM request
macro (GET, PUT, POINT, and ERASE) and the macro has not completed:
LERAD, SYNAD, EODAD, UPAD, or the exception exit routine. Entering the
LERAD, SYNAD, EODAD, or exception exit indicates that the macro failed to
complete successfully. When your exit routine completes its processing, it can return
to your main program in one of two ways:

1. The exit routine can return to VSAM (via the return address in register 14);
VSAM then returns to your program at the instruction following the VSAM
request macro that failed to complete successfully. This is the easier way to
return to your program.

2. The exit routine can determine the appropriate return point in your program, then
branch directly to that point. Note that, when VSAM enters your exit routine,
none of the registers contains the address of the instruction following the failing
macro.

You are required" to use this method to return to your program if, during the error
recovery and correction process, your exit routine issued a GET, PUT, POINT, or
ERASE macro that refers to the RPL referred to by the failing VSAM macro.
(That is, the RPL parameter list has been reissued by the exit routine.) In this
case, VSAM has lost track of its reentry point to your main program. If the exit
routine returns to VSAM, VSAM issues an error return code.

If your error recovery and correction process needs to reissue the failing VSAM
macro against the RPL in order to retry the failing request or to correct it:

• Your exit routine can correct the RPL (using MODCB), then set a switch to
indicate to your main program that the RPL is now ready to retry. When your
exit routine completes processing, it can return to VSAM (via register 14), which
returns to your main program. Your main program can then test the switch and
reissue the VSAM macro and RPL.

• Your exit routine can issue a GENCB macro to build an RPL, and then copy the
RPL (for the failing VSAM macro) into the newly built RPL. At this point, your
exit routine can issue VSAM macros against the newly built RPL. When your exit
routine completes processing, it can return to VSAM (via register 14), which
returns to your main program.

Chapter 2. VSAM User-Written Exit Routines 7

EODAD Exit Routine to Process End-of-Data

Description

Register Contents

VSAM exits to an EODAD routine when an attempt is made to sequentially retrieve
or point to a record beyond the last record in the data set (one with the highest key
for keyed access and the one with the highest RBA for addressed access). VSAM
doesn't take the exit for direct requests that specify a record beyond the end. If the
EODAD exit isn't used, the condition is considered a logical error (FDBK code
X' 04') and can be handled by the LERAD routine, if one is supplied (see "LERAD
Exit Routine to Analyze Logical Errors" on page 19).

Figure 2 gives the contents of the registers when VSAM exits to the EODAD routine.

Reg. Contents

o Unpredictable.

1 Address of the RPL that defines the request that occasioned VSAM's
reaching the end of the data set. The register must contain this address if
you return to VSAM.

2-13 Unpredictable. Register 13, by convention, contains the address of your
processing program's 72-byte save area, which must not be used as a save
area by the EODAD routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the EODAD routine.

Figure 2. Contents of Registers at Entry to EODAD Exit Routine

Programming Considerations

The typical actions of an EODAD routine are to:

• Examine RPL for information you need, for example, type of data set
• Issue completion messages
• Close the data set
• Terminate processing without returning to VSAM.

If the routine returns to VSAM and another GET request is issued for access to the
data set, VSAM exits to the LERAD routine.

If a processing program retrieves records sequentially with a request defined by a
chain of RPLs, the EODAD routine must determine whether the end of the data set
was reached for the first RPL in the chain. If not, then one or more records have
been retrieved but not yet processed by the processing program.

The type of data set whose end was reached can be determined by examining the RPL
for the address of the access method control block that connects the program to the
data set and testing its attribute characteristics.

8 Data Facility Product Version 2: Customization

If the exit routine issues GENCB. MODCB. SHOWCB. or TESTCB and returns to
VSAM. it must provide a save area and restore registers 13 and 14. which are used by
these macros.

When your EODAD routine completes processing. return to your main program as
described in "Returning to Your Main Program" on page 7.

EXCEPTIONEXIT Exit Routine

Description

Register Contents

You can provide an exception exit routine to monitor I/O errors associated with a
data set. You specify the name of your routine via the access method services
DEFINE command using the EXCEPTIONEXIT parameter to specify the name of
your user-written exit routine.

The following table gives the contents of the registers when VSAM exits to the
EXCEPTIONEXIT.

Reg. Contents

o Unpredictable.

1 Address of the RPL that contains a feedback
return code and the address of a message area. if any.

2-13 Unpredictable. Register 13. by convention. contains
the address of your processing program's 72-byte save
area. which must not be used by the routine if it returns
control to VSAM.

14 Return address to VSAM.

15 Entry address to the exception exit routine.

Figure 3. Contents of Registers at Entry to EXCEPTIONEXIT Routine

Programming Considerations

The exception exit is taken for the same errors as a SYNAD exit. If you have both an
active SYNAD routine and an EXCEPTIONEXIT routine. the exception exit routine
is processed first.

The exception exit is associated with the attributes of the data set (specified by the
DEFINE) and is loaded on every call. Your exit must reside in the LINKLIB and the
exit cannot be called when VSAM is in cross-memory mode.

When your exception exit routine completes processing. return to your main program
as described in "Returning to Your Main Program" on page 7.

For information about how exception exits are established. changed, or nullified, see
Access Method Services Reference.

Chapter 2. VSAM User-Written Exit Routines 9

JRNAD Exit Routine to Journalize Transactions

Description

Register Contents

A JRNAD exit routine can be provided to record transactions against a data set, to
keep track of changes in the RBAs of records, and to monitor control interval splits.
It is only available for VSAM shared resource buffering. For shared resources, you
can use a JRNAD exit routine to deny a request for a control interval split. VSAM
takes the JRNAD exit each time one of the following occurs:

• The processing program issues a GET, PUT, or ERASE

• Data is shifted right or left in a control interval or is moved to another control
interval to accommodate a record's being deleted, inserted, shortened, or
lengthened

• An I/O error occurs

• An I/O completion occurs

• A shared or nonshared request is received

• The buffer contents are to be changed

Figure 4 gives the contents of the registers when VSAM exits to the JRNAD routine.

Reg. Contents

o Unpredictable.

1 Address of a parameter list built by VSAM.

2-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the JRNAD routine.

Figure 4. Contents of Registers at Entry to JRNAD Exit Routine

Programming Considerations

If the JRNAD is taken for I/O errors, a journal exit may zero out, or otherwise alter,
the physical-error return code, so that a series of operations may continue to
completion, even though one or more of the operations failed.

10 Data Facility Product Version 2: Customization

The contents of the parameter list built by VSAM, pointed to by register 1, can be
examined by the JRNAD exit routine which is described in Figure 6 on page 14.

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB, it must restore
register 14, which is used by these macros, before it returns to VSAM.

If the exit routine uses register 1, it must restore it with the parameter list address
before returning to VSAM. (The routine must return for completion of the request
that caused VSAM to exit.)

The JRNAD exit must be indicated as active before the data set for which the exit is
to be used is opened, and the exit must not be made inactive during processing. If you
define more than one access method control block for a data set and want to have a
JRNAD routine, the first ACB you open for the data set must specify the exit list that
identifies the routine.

Journalizing Transactions

For journalizing transactions (when VSAM exits because of a GET, PUT, or
ERASE), you can use the SHOWCB macro to display information in the request
parameter list about the record that was retrieved, stored, or deleted
(FIELDS=(AREA,KEYLEN,RBA,RECLEN), for example). You can also use the
TESTCB macro to find out whether a GET or a PUT was for update
(OPTCD=UPD).

If your JRNAD routine only journals transactions, it should ignore reason X'OC' and
return to VSAM; conversely, it should ignore reasons X'OO', X'04', and X'08' if it
records only RBA changes.

Recording RBA Changes

For recording RBA changes, you must calculate how many records there are in the
data being shifted or moved, so you can keep track of the new RBA for each. If all
the records are the same length, you calculate the number by dividing the record
length into the number of bytes of data being shifted. If record length varies, you can
calculate the number by using a table that not only identifies the records (by
associating a record's key with its RBA), but also gives their length.

You should provide a routine to keep track of RBA changes caused by control interval
and control area splits. RBA changes that occur by way of keyed access to a
key-sequenced data set must also be recorded if you intend to process the data set
later by direct-addressed access.

Control Interval Splits

Some control interval splits involve data being moved to two new control intervals,
and control area splits normally involve many control intervals' contents being moved.
In these cases, VSAM exits to the JRNAD routine for each separate movement of
data to a new control interval.

You may also want to use the JRNAD exit to maintain shared or exclusive control
over certain data or index control intervals; and in some cases, in your exit routine
you may reject the request for certain processing of the control intervals. For
example, if you used this exit to maintain information about a data set in a shared
environment, you might reject a request for a control interval or control area split
because the split might adversely affect other users of the data set.

Chapter 2. VSAM User-Written Exit Routines 11

Figure 5 is a skeleton program USERPROG with a user exit routine USEREXIT. It
demonstrates the use of the JRNAD exit routine to cancel a request for a control
interval or control area split.

USERPROG CSECT
SAVE(R14,R12) Standard entry code

NOCANCEL

DIRACB

BLDVRP BUFFERS=(512(3», Build resource pool
KEYLEN=4,
STRNO=4.
TYPE=LSR.
SHRPOOl=l,
RMODE31=All

OPEN (DIRACB) Logically connect KSDSI

x
X
X
X
X

PUT RPL=DIRRPl This PUT causes the exit routine USEREXIT
to be taken with an exit code X'50' if
there is a CI or CA split

lTR R15,R15
BZ NOCANCEl

Check return code from PUT
Retcode = 0 if USEREXIT did not cancel

CI/CA spl it
= 8 if cancel was issued, assuming

that we know a CI or CA split
occurred

Process the cancel situation

Process the noncancel situation

CLOSE (DIRACB) Disconnect KSDSI
DLVRP TYPE=lSR.SHRPOOL=l Delete the resource pool

RETURN Return to caller.

ACB AM=VSAM.
DDNAME=KSDSI.
BUFND=3,
BUFNI=2,
MACRF=(KEY,DON,SEQ.DIR.OUT,LSR).
SHRPOOL=l.
EXLST=EXITlST

X
X
X
X
X
X

Figure 5 (Part 1 of 2). Example of a JRNAD Exit

12 Data Facility Product Version 2: Customization

*
DIRRPL

*
DATAREC
KEYNO
EXITLST
JRNADDR

RPL AM=VSAM,
ACB=DIRACB,
AREA=DATAREC,
AREALEN=128,
ARG=KEYNO,
KEYLEN=4,
OPTCD=(KEY,DIR,FWD,SYN,NUP,WAITX),
RECLEN=128

DC CL128'DATA RECORD TO BE PUT TO KSDSl'
DC F'O' Search key argument for RPL
EXLST AM=VSAM,JRNAD=(JRNADDR,A,L)
DC CL8'USEREXIT' Name of user exit routine
END End of USERPROG

x
X
X
X
X
X
X

USEREXIT CSECT On entry to this exit routine, Rl points
to the JRNAD parameter list and R14 points
back to VSAM.

EXIT

CLI 20(Rl) ,X' 50'
BNE EXIT
MVI2I(RI),X'8C'

BR R14

END

Nonstandard entry code -- need not save
the registers at caller's save area and,
since user exit routines are reentrant for
most applications, save Rl and R14 at some
registers only if Rl and R14 are to be
destroyed

USEREXIT called because of CI/CA split?
No. Return to VSAM
Tell VSAM that user wants to cancel split

Nonstandard exit code -- restore Rl and
R14 from save registers
Return to VSAM which returns to USERPROG
if cancel is specified
End of USEREXIT

Figure 5 (Part 2 of 2). Example of a JRNAD Exit

Parameter List

The parameter list built by VSAM contains reason codes to indicate why the exit was
taken, and also locations where you can specify return codes for VSAM to take or not
take an action upon returning from your routine. The information provided in the
parameter list varys depending on the reason the exit was taken. Figure 6 shows the
contents of the parameter list.

The parameter list will reside in the same area as the VSAM control blocks, either
above or below the 16M line. For example, if the VSAM data set was opened and the
ACB stated RMODE31=CB, the exit parameter list will reside above the 16M line.
To access a parameter list that resides above the 16M line, you will need to use 31-bit
addressing.

Chapter 2. VSAM User-Written Exit Routines 13

Offset

O(X'O')

4(X'4')

Bytes Description

4 Address of the RPL that defines the request that caused VSAM
to exit to the routine.

4 Address of a 5-byte field that identifies the data set being
processed. This field has the format:

4 bytes

1 byte

Address of the access method control block
specified by the RPL that defines the request
occasioned by the JRNAD exit.

Indication of whether the data set is the data
(X '01') or the index (X' 02') component.

Figure 6 (Part 1 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

14 Data Facility Product Version 2: Customization

Offset

8(X I 8')

Bytes Descripdon

4 Variable, depends on the reason indicator at offset 20:

Offset 20 Contents at offset 8

X 'OC I The RBA of the flI'St byte of data that is being
shifted or moved.

X' 20' The RBA of the beginning of the control area
about to be split.

X'24' The address of the I/O buffer into which data was
going to be read.

X128 ' The address of the I/O buffer from which data was
going to be written.

X ' 2C' The address of the I/O buffer that contains the
control interval contents that are about to be
written.

X 130' Address of the buffer control block (BUPC) that
points to the buffer into which data is about to be
read under exclusive control.

X' 34' Address of BUPC that points to the buffer into
which data is about to be read under shared
control.

X138 '

X'3C'

X I 40'

X'44'

X '48'

X I 4C'

Address of BUPC that points to the buffer which is
to be acquired in exclusive control. The buffer is
already in the buffer pool.

Address of the BUPC that points to the buffer
which is to be built in the buffer pool in exclusive
control.

Address of BUPC which points to the buffer whose
exclusive control has just been released.

Address of BUPC which points to the buffer whose
contents have been made invalid.

Address of the BUPC which points to the buffer
into which the READ operation has just been
completed.

Address of the BUPC which points to the buffer
from which the WRITE operation has just been
completed.

Figure 6 (Part 2 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

Chapter 2. VSAM User-Written Exit Routines 15

Offset Bytes Description

12(X'C') 4 Variable, depends on the reason indicator at offset 20:

Offset 20 Contents at offset 12

X' OC' The number of bytes of data that is being shifted or
moved (this number doesn't include free space, if
any, or control information--except for a control
area split, when the whole contents of a control
interval are moved to a new control interval.)

X'20' Unpredictable.

X'24' Unpredictable.

X '28' Bits 0 through 31 correspond with transaction IDs
o through 31. Bits set to 1 indicate that the buffer
that was being written when the error occurred was
modified by the corresponding transactions. You
can set additional bits to 1 to tell VSAM to keep
the contents of the buffer until the corresponding
transactions have modified the buffer.

X'2C' The size of the control interval whose contents are
about to be written.

X'30' Size of the buffer into which data is about to be
read under exclusive control.

X'34'

X'38'

X'3C'

X'48'

X'4C'

Size of the buffer which is about to be read into
shared status.

Size of the buffer which is to be acquired in
exclusive control. The buffer is already in the
buffer pool.

Size of the buffer which is to be built in the buffer
pool in exclusive control.

Size of the buffer into which the READ operation
has just been completed.

Size of the buffer from which the WRITE
operation has just been completed.

Figure 6 (Part 3 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

16 Data Facility Product Version 2: Customization

Offset Bytes Description

16(X'10') 4 Variable, depends on the reason indicator at offset 20:

Offset 20 Contents at offset 16

X' OC' The RBA of the first byte to which data is being
shifted or moved.

X' 20' The RBA of the last byte in the control area about
to be split.

X'24' The fourth byte contains the physical error code
from the RPL FDBK field. You use this fullword to
communicate with VSAM. Setting it to 0 indicates
that VSAM is to ignore the error, bypass error
processing, and let the processing program
continue. Leaving it nonzero indicates that VSAM
is to continue as usual: terminate the request that
occasioned the error and proceed with error
processing, including exiting to a physical error
analysis routine.

X'28' Same as for X'24'.

X' 2C' The RBA of the control interval whose contents are
about to be written.

X' 48' The RBA of the control interval into which the
READ operation has just been completed.

X' 4C' The RBA of the control interval from which the
WRITE operation has just been completed.

Figure 6 (Part 4 of 6). Contents of Parameter Ust built by VSAM for the JRNAD Exit

Chapter 2. VSAM User-Written Exit Routines 17

Offset Bytes Description

20(X'14') I Indication of the reason VSAM exited to the JRNAD routine:

X'OO' GET request.

X'04' PUT request.

X'OS' ERASE request.

X'OC' RBAchange.

X'IO' Read spanned record segment.

X'l4' Write spanned record segment.

X'IS' Reserved.

X'IC' Reserved.

The following codes are for shared resources only:

X'20'

X'24'

X'2S'

X'2C'

X'30'

X'34'

X'3S'

X'3C'

X'40'

X'44'

X'4S'

X'4C'

X'SO'

X'S4'-X'PP'

Control area split.

Input error.

Output error.

Buffer write.

A data or index control interval is about
to be read in exclusive control.

A data or index control interval is about
to be read in shared status.

Acquire exclusive control of a control
interval already in the buffer pool.

Build a new control interval for the data set
and hold it in exclusive control.

Exclusive control of the indicated control
interval already has been released.

Contents of the indicated control interval
have been made invalid.

Read completed.

Write completed.

Control interval or control area split.

Reserved.

Figure 6 (part S of 6). Contents of Parameter List bullt by VSAM for the JRNAD Exit

18 Data Facility Product Version 2: Customization

Offset Bytes Description

21(X'IS') 1 JRNAD exit code set by the JRNAD exit routine. Indication
of action to be taken by VSAM after resuming control from
JRNAD (for shared resources only):

X'80'

X'84'

X'88'

X'8C'

Do not write control interval.

Treat I/O error as no error.

Do not read control interval.

Cancel the request for control interval or control
area split.

Figure 6 (Part 6 of 6). Contents of Parameter List built by VSAM for the JRNAD Exit

LERAD Exit Routine to Analyze Logical Errors

Description

Register Contents

A LERAD exit routine should examine the feedback field in the request parameter list
to determine what logical error occurred. What the routine does after determining the
error depends on your knowledge of the kinds of things in the processing program
that may have caused the error.

Figure 7 gives the contents of the registers when VSAM exits to the LERAD exit
routine.

Note: A LERAD exit is not taken for RPLFDBK 64(40) because a PLH is not
available for register saving.

Reg. Contents

o Unpredictable.

1 Address of the RPL that contains the
feedback field the routine should examine.
The register must contain this address if you return to VSAM.

2-13 Unpredictable. Register 13, by convention, contains
the address of your processing program's 72-byte save
area, which must not be used as a save area by the
LERAD routine if the routine returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the LERAD routine.
The register doesn't contain the logical-error indicator.

Figure 7. Contents of Registers at Entry to LERAD Exit Routine

Chapter 2. VSAM User-Written Exit Routines 19

Programming Considerations

The typical actions of a LERAD routine are:

1. Examine the feedback field in the RPL to determine what error occurred
2. Determine what action to take based on error
3. Close the data set
4. Issue completion messages
5. Terminate processing and exit VSAM or return to VSAM.

If the LERAD exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must restore registers 1, 13, and 14, which are used by these
macros. It must also provide two save areas; one, whose address should be loaded
into register 13 before the GENCB, MODCB, SHOWCB, or TESTCB is issued, and
the second, to separately store registers 1, 13, and 14.

If the error cannot be corrected, close the data set and either terminate processing or
return to VSAM.

If a logical error occurs and no LERAD exit routine is provided (or the LERAD exit
is inactive), VSAM returns codes in register 15 and in the feedback field of the RPL
to identify the error.

When your LERAD exit routine completes processing. return to your main program
as described in "Returning to Your Main Program" on page 7.

SVNAD Exit Routine to Analyze Physical Errors

Description

Register Contents

VSAM exits to a SYNAD routine if a physical error occurs when you request access
to data. It also exits to a SYNAD routine when you close a data set if a physical error
occurs while VSAM is writing the contents of a buffer out to direct-access storage.

Figure 8 on page 21 gives the contents of the registers when VSAM exits to the
SYNAD routine.

20 Data Facility Product Version 2: Customization

Reg. Contents

o Unpredictable.

1 Address of the RPL that contains a feedback
return code and the address of a message area, if any.
If you issued a request macro, the RPL is the one
pointed to by the macro; if you issued an OPEN, CLOSE,
or cause an end-of-volume to be done, the RPL was built
by VSAM to process an internal request. Register 1
must contain this address if the SYNAD routine returns
toVSAM.

2-13 Unpredictable. Register 13, by convention, contains
the address of your processing program's 72-byte save
area, which must not be used by the SYNAD routine if it
returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the SYNAD routine.

Figure 8. Contents of Registers at Entry to SYNAD Exit Routine

Programming Considerations

A SYNAD routine should typically:

• Examine the feedback field in the request parameter list to identify the type of
physical error that occurred.

• Get the address of the message area, if any, from the request parameter list, to
examine the message for detailed information about the error

• Recover data if possible
• Print error messages if uncorrectable error
• Close data set
• Terminate processing

The main problem with a physical error is the possible loss of data. You should try to
recover your data before continuing to process. Input operations (ACB
MACRF=IN) are generally less serious than output or update operations
(MACRF=OUT), because your request was not attempting to alter the contents of
the data set.

If the routine cannot correct an error, it might print the physical-error message, close
the data set, and terminate the program. If the error occurred while VSAM was
closing the data set, and if another error occurs after the exit routine issues a CLOSE
macro, VSAM doesn't exit to the routine a second time.

If the SYNAD routine returns to VSAM, whether the error was corrected or not,
VSAM drops the request and returns to your processing program at the instruction
following the last executed instruction. Register 15 is reset to indicate that there was
an error, and the feedback field in the RPL identifies it.

Physical errors affect positioning. If a GET was issued that would have positioned
VSAM for a subsequent sequential GET and an error occurs, VSAM is positioned at

Chapter 2. VSAM User-Written Exit Routines 21

the control interval next in key (RPL OPTCD=KEY) or in entry (OPTCD=ADR)
sequence after the control interval involved in the error. The processing program can
therefore ignore the error and proceed with sequential processing. With direct
processing. the likelihood of reencountering the control interval involved in the error
depends on your application.

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and returns to
VSAM, it must provide a save area and restore registers 13 and 14, which are used by
these macros.

See "Example of a SYNAD User-Written Exit Routine" for the format of a
physical-error message that can be written by the SYNAD routine.

When your SYNAD exit routine completes processing, return to your main program as
described in "Returning to Your Main Program" on page 7.

If a physical error occurs and no SYNAD routine is provided (or the SYNAD exit is
inactive), VSAM returns codes in register 15 and in the feedback field of the RPL to
identify the error. For a description of these return codes, see VSAM Administration:
Macro Instruction Reference.

Example of a SVNAD User-Written Exit Routine

The example in Figure 9 on page 23 demonstrates a user-written exit routine. It is a
SYNAD exit routine that examines the FDBK field of the RPL checking for the type
of physical error that caused the exit. After the checking, special processing may be
performed as necessary. The routine returns to VSAM after printing an appropriate
error message on SYSPRINT.

22 Data Facility Product Version 2: Customization

ACBl ACB EXlST=EXITS

EXITS EXlST SYNAO=PHYERR

RPll RPl ACB=ACBl,
MSGAREA=PERRMSG.
MSGlEN=128

PHYERR USING *.15

*

lA 13,SAVE

SHOWCB RPl=RPll.

*

PUT

BR

ERRCOOE DC

PERRMSG OS

OS

ERRMSG OS

PRTOCB OCB

SAVE OS

SAVREG OS

FIElOS=FOBK.
AREA=ERRCODE,
lENGTH=4

PRTOCB,ERRMSG

14

F'O'

OX1l28

X1l2

Xl1l6

18F

3F

This routine is nonreentrant.

Register 15 is entry address.

Save caller's register
O. 13, 14).

Point to routine's save area.

If register l=address of RPll,
then error did not occur for a
CLOSE.

Show type of physical error.

Examine error, perform special
processing.

Print physical error message.

Restore caller's registers
O. 13, 14).

Return to VSAM.

RPl reason code from SHOWCB.

Physical error message.

Pad for unprintable part.

Printable format part of
message.

QSAM OCB.

SYNAD routine's save area.

Save registers 1. 13. 14.

Figure 9. Example of a SYNAD Exit Routine

Chapter 2. VSAM User-Written Exit Routines 23

UPAD Exit Routine for User Processing

Description

Register Contents

You can perform special processing during a VSAM request with the UP AD exit
routine. For example, VSAM takes the UPAD exit immediately prior to issuing a
WAIT for I/O completion or for a seriaUy reusable resource. VSAM exits to the
UPAD routine when the request's RPL specifies OPTCD=(SYN, WAITX) and the
ACB specifies MACRF=LSR or MACRF=GSR, or MACRF=ICI.

If you are executing in cross-memory mode, you must have a UP AD routine.
Cross-memory mode is described in VSAM Administration Guide.

Figure 10 shows the register contents passed by VSAM when the UP AD exit routine
is entered.

Reg. Contents

o Unpredictable.

1 Address of a parameter list built by VSAM.

2-12 Unpredictable.

13 Reserved.

14 Return address to VSAM.

15 Entry address of the UP AD routine.

Figure 10. Contents of Registers at Entry to UPAD Exit Routine

Programming Considerations

The UP AD exit routine must be active before the data set is opened. The exit must
not be made inactive during processing. If the UPAD exit is desired and many ACBs
are used for processing the data set, the first ACB that is opened must specify the exit
list that identifies the UP AD exit routine.

The contents of the parameter list built by VSAM, pointed to by register 1, can be
examined by the UPAD exit routine (see Figure 11).

24 Data Facility Product Version 2: Customization

Offset

O(X'O')

4(X'4')

8(X'8')

Bytes Description

4 Address of the RPL.

4 Address of a 5-byte data set identifier. The first four bytes of
the identifier are the ACB address; the last byte identifies the
component; data (X'Ol '), or index (X'02').

4 Address of the request's ECB.

12(X'OC') 4 Post flag or cross-memory action flag (see cross-memory
mode).

16(X'10') 4 Reserved.

20(X'14') 1 Reason code:

X'OO' VSAM is about to wait.

X' 04' VSAM ready to resume request processing.

X'08' -X'FC' Reserved.

Figure 11. Parameter List Passed to UP AD Routine

If the UPAD exit routine modifies register 14 (for example, by issuing a TESTCB),
the routine must restore register 14 before returning to VSAM. If register 1 is used,
the UP AD exit routine must restore it with the parameter list address before returning
toVSAM.

The UP AD routine must return to VSAM under the same TCB from which it was
called for completion of the request that caused VSAM to exit. The UPAD exit
routine cannot use register 13 as a save area pointer without first obtaining its own
save area.

The UP AD exit routine, when taken prior to aWAIT during LSR or GSR processing,
might issue other VSAM requests to obtain better processing overlap (similar to
asynchronous processing). However, the UPAD routine must not issue any
synchronous VSAM requests that do not specify W AITX, because a started request
might issue a WAIT for a resource owned by a starting request.

If the UP AD routine starts requests that specify W AITX, the UP AD routine must be
reentrant. After multiple requests have been started, they should be synchronized by
waiting for one ECB out of a group of ECBs to be posted complete rather than
waiting for a specific ECB or for many ECBs to be posted complete. (Posting of
some ECBs in the list might be dependent upon the resumption of some of the other
requests that entered the UPAD routine.)

If you are not in cross-memory mode and the UP AD routine returns with a nonzero
code, VSAM will cause a POST to be issued.

Chapter 2. VSAM User-Written Exit Routines 2S

Cross-Memory Mode

If you are executing in cross-memory mode, you must have a UP AD routine. When
posting of an event is required, the UPAD routine is given control (reason code 4).

When VSAM regains control from a UPAD exit that was taken for reason code 4,
VSAM tests the return code at offset 12 in the parameter list. If it is nonzero and the
request is in cross-memory mode, VSAM indicates a logical error rather than
attempting to issue a POST. (POST would cause an abend if issued in cross-memory
mode.)

Your UP AD routine must resume the request that caused the exit to be taken and set
the appropriate return code in the parameter list before returning to VSAM.

User-Security-Verification Routine (USVR)

If you use VSAM password protection, you may also have your own routine to check
a requestor's authority. Your routine is invoked from OPEN, rather than via an exit
list. VSAM transfers control to your routine, which must reside in SYSl.LINKLm,
when a requester gives a correct password other than the master password.

Through the access method services DEFINE command with the AUTHORIZATION
parameter you may identify your user-security-verification routine (USVR) and
associate as many as 256 bytes of your own security information with each data set to
be protected. The user security-authorization record (USAR) is made available to the
user-security-verification routine when the routine gets control. You may restrict
access to the data set as you choose; for example, you may require that the owner of a
data set give ID when defining the data set and then aUow only the owner to gain
access to the data set.

If the user-security-verification routine is being used by more than one task at a time,
you must code the user-security-verification routine reentrant or develop another
method for handling simultaneous entries.

When your user-security-verification routine completes processing, it must return (in
register 15) to VSAM with a return code of 0 for authority granted or not 0 for
authority witheld in register 15.

Figure 12 on page 27 gives the contents of the registers when VSAM gives control to
the user-security-verification routine.

26 Data Facility Product Version 2: Customization

Reg. Contents

o Unpredictable.

1 Address of a parameter list with the following format:

44 bytes

8 bytes

8 bytes

8 bytes

2 bytes

Name of the data set for which authority to
process is to be verified (the name you
specified when you defined it with access
method services).

Prompting code (or O's).

Owner identification (or O's).

The password that the requester gave (it has
been verified by VSAM).

Length of the user-security-authorization
routine (in binary).

The user-security-authorization.

2-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the user-seeurity-verification routine.
When the routine returns to VSAM, it indicates by the
following codes in register 15 whether the requester
has been authorized to gain access to the data set:

o Authority granted.

not 0 Authority withheld.

Figure 12. Communication with User-Security-Verification Routine

Chapter 2. VSAM User-Written Exit Routines 17

Chapter 3. DCB Macro Specified User-Written Exit Routines

General Guidance

The DCB macro can be used to identify the location of:

• A routine that performs end-of-data procedures

• A routine that supplements the operating system's error recovery routine

• A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro or you can complete the DCB
fields before opening the data set. Figure 13 summarizes the exits that you can
specify either explicitly in the DCB, or implicitly by specifying the address of an exit
list in the DCB.

Exit Routine When Available Where Specified

End-of -data-set When no more sequential records EODAD parameter
or blocks are available

Error analysis After an uncorrectable SYNAD parameter
input/output error

Allocation retrieval When issuing an RDJFCB macro EXLST parameter and
list instruction exit list

Block count After unequal block count EXLST parameter and
comparison by end-of-volume exit list
routine

DCBabend When an abend condition occurs EXLST parameter and
in OPEN, CLOSE, or exit list
end-of-volume routine.

DCBopen When opening a data set EXLST parameter and
exit list

End-of -volume When changing volumes EXLST parameter and
exit list

FCB image When opening a data set or EXLST parameter and
issuing a SETPRT macro exit list

JFCB When opening a data set with EXLST parameter and
TYPE=J and reading the]FCB exit list

Standard user label When opening, closing, or EXLST parameter and
(physical sequential reaching the end of a data set, and exit list
or direct when changing volumes
organization)

Figure 13 (Part 1 of 2). DCB Exit Routines

Chapter 3. DCB Macro Specified User-Written Exit Routines 29

Exit Routine When Available Where Specified

JFCB extension When opening a data set for the EXLST parameter and
(JFCBE) 3800 exit list

Open/EOV When a scratch tape is requested EXLST parameter and
nonspecific tape during OPEN or EOV routines exit list
volume mount

Open/EOV volume When a scratch tape is requested EXLST parameter and
security/verification during OPEN or EOV routines exit list

QSAM parallel Opening a data set EXLST parameter and
processing exit list

User totaling (for When creating or processing a EXLST parameter and
BSAM and QSAM) data set with user labels exit list

Figure 13 (Part 2 of 2). DCB Exit Routines

Programming Considerations

Because OPEN/CLOSE/EOV enqueues on SYSZTIOT, functions that require
SYSZTIOT cannot be executed in the OPEN/CLOSE/EOV exit routines. Some of
these functions are LOCATE, OBTAIN, SCRATCH, CATALOG, and so forth.

EODAD End-of-Data-Set Exit Routine

Description

Register Contents

The EODAD parameter of the DCB macro specifies the address of your
end-of -data-set routine, which may pedorm any final processing on an input data set.
This routine is entered when an FEOV macro is issued or when a CHECK or GET
macro is issued and there are no more records or blocks to be retrieved. (This allows
you to issue WRITE macros before an FEOV macro is issued.) (On a READ request,
this routine is entered when you issue a CHECK macro to check for completion of the
read operation. For a BSAM data set that is opened for UPDAT, this routine is
entered at the end of each volume.

When control is passed to the EODAD routine, the registers contain the following
information:

Register

0-1

2-13

14

Contents

Reserved

Contents before execution of CHECK, GET, or FEOV macro
instruction

Address of the instruction after the last issued GET, CHECK, or FEOV
macro

15 Reserved

30 Data Facility Product Version 2: Customization

Programming Considerations

The EODAD routine is not a subroutine, but rather a continuation of the routine that
issued the CHECK, GET, or FEOV macro. After it is in your EODAD routine, you
can continue normal processing, such as repositioning and resuming processing of the .
data set, closing the data set, or processing another data set.

For BSAM, you must fust reposition the data set that reached end-of-data if you want
to issue a BSP, READ, or WRITE macro. You can reposition your data set by issuing
a CLOSE TYPE=T macro instruction. If a READ macro is issued before the data set
is repositioned, unpredictable results will occur.

For BP AM, you may reposition the data set by issuing a FIND or POINT macro.
(CLOSE TYPE=T with BPAM results in no operation performed.)

For QISAM, you can continue processing the input data set that reached end-of-data
by fust issuing an ESETL macro to end the sequential retrieval, then issuing a SETL
macro to set the lower limit of sequential retrieval. You can then issue GET macros
to the data set.

Your task will be abnormally ended under either of the following conditions:

• No exit routine is provided.

• A GET macro is issued in the EODAD routine to the DCB that caused this
routine to be entered (unless the access method is QISAM).

SYNAD Synchronous Error Routine Exit

Description

Register Contents

The SYNAD parameter of the DCB macro specifies the address of an error routine
that is to be given control when an input/output error occurs. This routine can be
used to analyze exceptional conditions or uncorrectable errors. The block being read
or written can be accepted or skipped, or processing can be terminated.

If an input/output error occurs during data transmission, standard error recovery
procedures, provided by the operating system, try to correct the error before returning
control to your program. An uncorrectable error usually causes an abnormal
termination of the task. However, if you specify in the DCB macro the address of an
error analysis routine (called a SYNAD routine), that routine can try to correct the
error and prevent an abnormal termination. The routine is given control when the
application program issues the next access method macro after the system has
detected an uncorrectable error.

For a description of the register contents on entry to your SYNAD routine, see
Appendix B, "Status Information Following an Input/Output Operation" on
page 183.

Chapter 3. DCB Macro Specified User-Written Exit Routines 31

Programming Considerations

You can write a SYNAD routine to determine the cause and type of error that
occurred by examining:

The contents of the general registers

o The data event control block (see Appendix B, "Status Information Following
an Input/Output Operation" on page 183)

The exceptional condition code

The standard status and sense indicators

You can use the SYNADAF macro to perform this analysis automatically. This macro
produces an error message that can be printed by a later PUT or WRITE macro.

After completing the analysis, you can return control to the operating system or close
the data set. If you close the data set, note that you may not use the temporary close
(CLOSE TYPE=T) option in the SYNAD routine. To continue processing the same
data set, you must first return control to the control program by a RETURN macro.
The control program then transfers control to your processing program, subject to the
conditions described below. Never attempt to reread or rewrite the record, because
the system has already attempted to recover from the error.

When you are using GET and PUT to process a sequential data set, the operating
system provides three automatic error options (EROPT) to be used if there is no
SYNAD routine or if you want to return control to your program from the SYNAD
routine:

ACC-accept the erroneous block

• SKP-skip the erroneous block

o ABE-abnormally terminate the task

These options are applicable only to data errors, because control errors result in
abnormal termination of the task. Data errors affect only the validity of a block of
data. Control errors affect information or operations necessary for continued
processing of the data set. These options are not applicable to output errors, except
output errors on the printer. If the EROPT and SYNAD fields are not completed,
ABE is assumed.

If a control error or a physical I/O error is encountered for a SYSIN or SYSOUT
dataset, the EROPT options will be ignored and the task will be abnormally
terminated.

You should not use the FEOV macro against the data set for which the SYNAD
routine was entered, within the SYNAD routine.

Because EROPT applies to a physical block of data, and not to a logical record, use of
SKP or ACC may result in incorrect assembly of spanned records.

When you use READ and WRITE macros, errors are detected when you issue a
CHECK macro. If you are processing a direct or sequential data set and you return to
the control program from your SYNAD routine, the operating system assumes that
you have accepted the bad record. If you are creating a direct data set and you return
to the control program from your SYNAD routine, your task is abnormally
terminated. In the case of processing a direct data set, the return should be made to

32 Data Facility Product Version 2: Customization

the control program via register 14 to make a control block (the lOB) available for
reuse in a later READ or WRITE macro.

Your SYNAD routine can end by branching to another routine in your program, such
as a routine that closes the data set. It can also end by returning control to the control
program, which then returns control to the next sequential instruction (after the
macro) in your program. If your routine returns control, the conventions for saving
and restoring register contents are as follows:

• The SYNAD routine must preserve the contents of registers 13 and 14. If
required by the logic of your program, the routine must also preserve the contents
of registers 2 through 12. On return to your program, the contents of registers 2
through 12 will be the same as on return to the control program from the SYNAD
routine.

• The SYNAD routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the routine saves and restores
register contents, it must provide its own save area.

• If the SYNAD routine caUs another routine or issues supervisor or data
management macros, it must provide its own save area or issue a SYNADAF
macro. The SYNADAF macro provides a save area for its own use, and then
makes this area available to the SYNAD routine. Such a save area must be
removed from the save area chain by a SYNADRLS macro before control is
returned to the control program.

If the error analysis routine receives control from the close routine when indexed
sequential data sets are being created (the DCB is opened for QISAM load mode), bit
3 of the 10BFLAGS field in the load mode buffer control table (IOBBCT) is set to 1.
The DCBWKPT6 field in the DCB contains an address of a list of work area pointers
(ISL VPTRS). The pointer to the IOBBCT is at offset 8 in this list as shown in the
following diagram:

DCB
Work Area
Pointers

l ... _____ """ilV 8: USLVPTOS'

2481 -r DCBWKPT6 A (lOBBCTI '--____ ---J

IOBBCT

IOBFlAGS

If the error analysis routine receives control from the CLOSE routine when indexed
sequential data sets are being processed using QISAM scan mode, bit 2 of the DCB
field DCBEXCD2 is set to 1.

Figure 14 gives the contents of registers 0 and 1 when a SYNAD routine specified in
a DCB gets control while indexed sequential data sets are being processed.

Chapter 3. DCB Macro Specified User-Written Exit Routines 33

EXLST Exit List

Register

o

1

BISAM

Address of the
DECB

Address of the
DECB

QISAM

0, or, for a sequence check, the address of a field
containing the higher key involved in the check

o

Figure 14. Register Contents for DCB-Specified ISAM SYNAD Routine

For information on QISAM error conditions and the meaning they have when the
ISAM interface to VSAM is being used, see VSAM Administration Guide.

The EXLST parameter of the DCB macro specifies the address of a list that may
contain the addresses of special processing routines, a forms control buffer (FCB)
image, a user totaling area, an area for a copy of the JFCB, and an allocation retrieval
list. An exit list must be created if user label, data control block, end-of-volume,
block count, JFCBE, or DCB abend exits are used, or if a PDAB macro or FCB
image is defined in the processing program.

The exit list is built of 4-byte entries that must be aligned on fuUword boundaries.
Each exit list entry is identified by a code in the high-order byte. and the address of
the routine. image, or area is specified in the 3 low-order bytes. Codes and addresses
for the exit list entries are shown in Figure 15.

Hex
Entry Type Code 3-Byte Address-Purpose

Inactive entry 00 Ignore the entry; it is not
active.

Input header label exit 01 Process a user input header
label.

Output header label exit 02 Create a user output header
label.

Input trailer label exit 03 Process a user input trailer
label.

Output trailer label exit 04 Create a user output trailer
label.

Data control block exit 05 Take a data control block
exit.

End-of-volume exit 06 Take an end-of-volume exit.

JFCB exit 07 JFCB address for RDJFCB
and OPEN TYPE=J SVCs.

08 Reserved.

09 Reserved.

Figure 15 (Part 1 of 3). DCB Exit List Format and Contents

34 Data Facility Product Version 2: Customization

Hex
Entry Type Code 3-Byte AddreA-Purpose

User totaling area OA Address of beginning of
user's totaling area.

Block count exit OB Take a block-count-unequal
exit.

Defer input trailer label OC Defer processing of a user
input trailer label from
end-of-data until closing.

Defer nonstandard input OD Defer processing a
trailer label nonstandard input trailer

label on magnetic tape unit
from end-of-data until
closing (no exit routine
address).

OE-OF Reserved.

FCBimage 10 Define an FCB image.

DCB abend exit 11 Examine the abend condition
and select one of several
options.

QSAM parallel input 12 Address of the PDAB for
which this DCB is a member.

Allocation retrieval list 13 Retrieve allocation
information for one or more
data sets with the RDJFCB
macro.

14 Reserved.

JFCBEexit 15 Take an exit during OPEN to
allow user to examine
JCL=specified setup
requirements for a 3800
printer.

16 Reserved.

OPEN/EOV nonspecific 17 Option to specify a tape
tape volume mount volume serial number.

OPEN/EOV volume 18 Verify a tape volume and
security/verification some security checks.

19-7F Reserved.

Figure 15 (Part 2 of 3). DCB Exit List Format and Contents

Chapter 3. DCB Macro Specified User-Written Exit Routines 3S

Hex
Entry Type Code 3-Byte Address-Purpose

Last entry 80 Treat this entry as the last
entry in the list. This code
can be specified with any of
the above but must always
be specified with the last
entry.

Figure 15 (Part 3 of 3). DCB Exit List Format and Contents

You can activate or deactivate any entry in the list by placing the required code in the
high-order byte. Care must be taken, however, not to destroy the last entry
indication. The operating system routines scan the list from top to bottom, and the
first active entry found with the proper code is selected.

You can shorten the list during execution by setting the high-order bit to 1, and
extend it by setting the high-order bit to O.

Register Contents for Exits from EXLST

When control is passed to an exit routine, the registers contain the following
information:

Register

o
1

2-13

14

15

Contents

Variable; see exit routine description.

The 3 low-order bytes contain the address of the DCB currently being
processed, except when the user-label exits (X'OI '-X'04'), user totaling
exit (X 'OA '), DCB abend exit (X' 11 '), nonspecific tape volume mount
exit (X' 17'), or the tape volume security/verification exit (X' 18') is
taken, when register 1 contains the address of a parameter list. The
contents of the parameter list are described in the explanation of each
exit routine.

Contents before execution of the macro.

Return address (must not be altered by the exit routine).

Address of exit routine entry point.

The conventions for saving and restoring register contents are as follows:

• The exit routine must preserve the contents of register 14. It need not preserve
the contents of other registers. The control program restores the contents of
registers 2 to 13 before returning control to your program.

• The exit routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the exit routine calls another
routine or issues supervisor or data management macros, it must provide the
address of a new save area in register 13.

• The exit routine must not issue an access method macro that refers to the DCB
for which the exit routine was called, unless otherwise specified in the individual
exit routine descriptions that follow.

36 Data Facility Product Version 2: Customization

Allocation Retrieval List

DeB Abend Exit

The RDJFCB macro uses the DCB exit list entry with code X' 13' to retrieve
allocation information (JFCBs and volume serial numbers). When you issue
RDJFCB, the JFCBs for the specified data sets, including concatenated data sets, and
their volume serial numbers are placed in the area located at the address specified in
the allocation retrieval list. The DCB exit list entry contains the address of the
allocation retrieval list. For more information on RDJFCB see System-Data
Administration.

Programming conventions

The allocation retrieval list must be below the 16M line, but the allocation return area
can be above the 16M line.

When you are finished obtaining information from the retrieval areas, free the storage
with a FREEMAIN macro.

You can use the IHAARL macro to generate and map the allocation retrieval list. For
more information on the llIAARL macro see System-Data Administration.

Restrictions

When OPEN TYPE=J is issued, the X'13' exit caDDot be used. The JFCB exit at
X'07' can be used instead (see "JFCB Exit" on page 46).

The DeB abend exit is provided to give you some options regarding the action you
want the system to take when a condition arises that may result in abnannal
termination of your task. This exit can be taken any time an abend condition arises
during the process of opening, closing, or handling an end-of-volume condition for a
DCB associated with your task.

When an abend condition arises, a write-to-programmer message about the abend is
issued and your DeB abend exit is given control, provided there is an active DCB
abend exit routine address in the DeB being processed. If STOW called the
end-of-volume routines to get secondary space to write an end-of-file mark for a
partitioned data set, or if the DeB being processed is for an indexed sequential data
set, the DeB abend exit routine will not be given control if an abend condition occurs.
The contents of the registers when your exit routine is entered are the same as for
other DCB exit list routines, except that the 3 low-order bytes of register 1 contain
the address of the parameter list described in Figure 16 on page 38. Your abend exit
routine can choose one of four options:

• To immediately terminate your task

• To delay the abend until all the DCBs in the same OPEN or CLOSE macro are
opened or closed

• To ignore the abend condition and continue processing without making reference
to the DCB on which the abend condition was encountered, or

• To try to recover from the error.

Not all of these options are available for each abend condition. Your DCB abend exit
routine must determine which option is available by examining the contents of the

Chapter 3. DCB Macro Specified User-Written Exit Routines 37

Displacement

o

4

8

12

option mask byte (byte 3) of the parameter list. The address of the parameter list is
passed in register 1. Figure 16 shows the contents of the parameter list and the
possible settings of the option mask when your routine receives control. (All
information in the parameter list is in binary.)

Bit Meaning

0 Reserved for System Use

1-3 Reserved for Future Use

4 OK to Recover

5 OK to Ignore

6 OK to Delav

7 Reserved for Future Use

Fullword Boundarv

System Completion Code' I Return Code Option Mask

DCB Address

Open/Close/End-of·Volume Work Area Address

00 Recovery Work Area Address

'In the first 12 bits.

Figure 16. Parameter List Passed to DCB Abend Exit Routine

When your DeB abend exit routine returns control to the system control program
(this can be done using the RETURN macro), the option mask byte must contain the
setting that specifies the action you want to take. These actions and the
corresponding settings of the option mask byte are:

38 Data Facility Product Version 2: Customization

Decimal
Value Action

o Abnormally terminate the task immediately.

4 Ignore the ahend condition.

8 Delay the abend until the other DCBs being processed concurrently are
opened or closed.

12 Make an attempt to recover.

You must inspect bits 4,5, and 6 of the option mask byte (byte 3 of the parameter
list) to determine which options are available. If a bit is set to 1, the corresponding
option is available. Indicate your choice by inserting the appropriate value in byte 3
of the parameter list, overlaying the bits you inspected. If you use a value that
specifies an option that is not available, the abend is issued immediately.

If the contents of bits 4, 5, and 6 of the option mask are 0, you must not change the
option mask. This unchanged option mask will result in a request for an immediate
abend.

If bit 5 of the option mask is set to 1, you can ignore the abend by placing a value of 4
in byte 3 of the parameter list. Processing on the current DCB stops. If you
subsequently attempt to use this DCB, the results are unpredictable. If you ignore an
error in end-of-volume, control is returned to your program at the point that caused
the end-of-volume condition (unless the end-of-volume routines were called by the
close routines). If the end-of-volume routines were called by the close routines, an
ABEND macro will be issued even though the ignore option was selected.

If bit 6 of the option mask is set to 1, you can delay the abend by placing a value of 8
in byte 3 of the parameter list. All other DCBs waiting for OPEN or CLOSE
processing will be processed before the ahend is issued. For end-of-volume, however,
you can't delay the abend because the end-of-volume routine never has more than one
DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to recover. Place a value of 12
in byte 3 of the parameter list and provide information for the recovery attempt.
Figure 17 lists the abend conditions for which recovery can he attempted. For ahend
conditions that can be ignored or delayed, see System Messages.

System
Completion Return
Code Code Description of Error

117 X'38' An I/O error occurred during
execution of a read block ID command
issued to establish tape position.

X'3C' DeB block count did not agree with
the calculated block count.

Figure 17 (Part 1 of 3). Conditions for Which Recovery Can Be Attempted

Chapter 3. DCB Macro Specified User-Written Exit Routines 39

System
Completion Return
Code Code Description of Error

137 X'24' A specific volume serial number was
specified for the second or subsequent
volume of an output data set on
magnetic tape. During EOV
processing, it was discovered that the
expiration date (from the HDR1 label
of the first data set currently on the
specified volume) had not passed.
When requested to specify whether the
volume could be used in spite of the
expiration date, the operator did not
replyU.

214 X'OC' An I/O error occurred during
execution of a read block ID command
issued to establish tape position.

237 X'04' Block count in DCB does not agree
with block count in trailer label.

X'OC' DCB block count did not agree with
the calculated block count.

413 X'18' Data set was opened for input and no
volume serial number was specified.

X'24' LABEL=(n) was specified, where n
was greater than 1 and vol=Ser was not
specified for a tape data set.

613 X'08' I/O error occurred during reading of
tape label.

X'OC' Invalid tape label was read.

X'10' 1/ 0 error occurred during writing of
tape label.

X'14' I/O error occurred during writing of
tape label.

713 X'04' A data set on magnetic tape was
opened for INOUT, but the volume
contained a data set whose expiration
date had not been reached and the
operator denied permission.

717 X'lO' I/O error occurred during reading of
trailer label 1 to update block count in
DCB.

Figure 17 (Part 2 of 3). Conditions for Which Recovery Can Be Attempted

40 Data Facility Product Version 2: Customization

System
Completion Return
Code Code Description of Error

737 X'28' The BOV DA module was passed an
error return code in register 15 after
issuing the IEFSSREQ macro
instruction. This indicates the
subsystem (mS3) discovered a
functional or logical error that it could
not process.

813 X'04' Data set name on header label does not
match data set name on DD statement.

Figure 17 (Part 3 of 3). Conditions for Which Recovery Can Be Attempted

Recovery Requirements

For most types of recoverable errors, you should supply a recovery work area (see
Figure 18 on page 42) with a new volume serial number for each volume associated
with an error. If no new volumes are supplied for such errors, recovery will be
attempted with the existing volumes, but the likelihood of successful recovery is
greatly reduced .

. If you request recovery for system completion code 117, return code 3C, or system
completion code 214, return code OC, or system completion code 237, return code
OC, you do not need to supply new volumes or a work area. The condition that
caused the abend is disagreement between the DCB block count and the calculated
count from the hardware. To permit recovery, this disagreement is ignored and the
value in the DCB will be used.

If you request recovery for system completion code 237, return code 04, you don't
need to supply new volumes or a work area. The condition that caused the abend is
the disagreement between the block count in the DCB and that in the trailer label. To
permit recovery, this disagreement is ignored.

If you request recovery for system completion code 717, return code 10, you don't
need to supply new volumes or a work area. The abend is caused by an I/O error
during updating of the DCB block count. To permit recovery. the block count is not
updated. Consequently, an abnormal termination with system completion code 237,
return code 04. may result when you try to read from the tape after recovery. You
may attempt recovery from the abend with system completion code 237, return code
04, as explained in the preceding paragraph.

System completion codes and their associated return codes are described in System
Codes.

Chapter 3. DCB Macro Specified User-Written Exit Routines 41

Bit

o

1

2·7

Meaning

Free This Work Area

Volume Serial Numbers Are
Provided

Reserved for Future Use

Halfword Boundary
Displacement

o

4

Length of This Work Area

Number of
New Volumes

Option Byte Subpool Number

8

I New Volume Serial Numbers (6 bytes each)
~------------~

,...'"

T T
Figure 18. Recovery Work Area

The work area that you supply for the recovery attempt must begin on a halfword
boundary and can contain the information described in Figure 18. Place a pointer to
the work area in the last 3 bytes of the parameter list pointed to by register 1 and
described in Figure 16 on page 38.

If you acquire the storage for the work area by using the GETMAIN macro, you can
request that it be freed by a FREEMAIN macro after aU information has been
extracted from it. Set the high-order bit of the option byte in the work area to 1 and
place the number of the subpool from which the work area was requested in byte 3 of
the recovery work area.

Only one recovery attempt per data set is allowed during OPEN, CLOSE, or
end-of-volume processing. If a recovery attempt is unsuccessful, you may not request
another recovery. The second time through the exit routine you may request only one
of the other options (if allowed): Issue the abend immediately, ignore the abend, or
delay the abend. If at any time you select an option that is not allowed, the abend is
issued immediately.

Note that, if recovery is successful, you still receive an abend message on your listing.
This message refers to the abend that would have been issued if the recovery had not
been successful.

42 Data Facility Product Version 2: Customization

DeB Open Exit

Abend Installation Exit

The abend installation exit gives you an additional option for handling error situations
that result in an abend. This exit is taken any time an abend condition occurs during
the process of opening, closing, or handling an end-of-volume condition for a DCB.
An mM-supplied installation exit will give you the option to retry tape positioning
when you receive a 613 system completion code, return code 08 or OC. (For
additional information about the abend installation exit, see "Data Management
Abend Installation Exit (IFGOI99I)" on page 77.

You can specify in an exit list the address of a routine that completes or modifies a
DCB and does any additional processing required before the data set is completely
open. The routine is entered during the opening process after the JFCB has been
used to supply information for the DCB. The routine can determine data set
characteristics by examining fields completed from the data set labels. When your
DCB exit routine receives control, the 3 low-order bytes of register 1 will contain the
address of the DCB currently being processed.

As with label processing routines, the contents of register 14 must be preserved and
restored if any macros are used in the routine. Control is returned to the operating
system by a RETURN macro; no return code is required.

This exit is mutually exclusive with the JFCBE exit. H you need both the JFCBE and
data control block OPEN exits, you must use the JFCBE exit to pass control to your
routines.

The DCB OPEN exit is intended for modifying or updating the DCB. System
functions should not be attempted in this exit prior to returning to OPEN processing;
in particular, dynamic allocation, OPEN, CLOSE, EOV, and DADSM functions
should not be invoked because of an existing OPEN enqueue on the SYSZTIOT
resources.

EOV Defer Nonstandard Input Trailer Label Exit

In an exit list, you can specify a code that indicates that you want to defer
nonstandard input trailer label processing from end-of-data until the data set is closed.
The address portion of the entry is not used by the operating system.

An end-of-volume condition exists in several situations. Two examples are: (1) when
the system reads a filemark or a tapemark at the end of a volume of a multivolume
data set but that volume is not the last, and (2) when the system reads a filemark or a
tapemark at the end of a data set. The first situation is referred to here as an
end-of-volume condition, and the second as an end-of-data condition, although it, too,
can occur at the end of a volume.

For an end-of-volume (EOV) condition, the EOV routine passes control to your
nonstandard input trailer label routine, whether or not this exit code is specified. For
an end-of-data condition when this exit code is specified, the EOV routine does not
pass control to your nonstandard input trailer label routine. Instead, the close routine
passes control to your end-of-data routine.

Chapter 3. DCB Macro Specified User-Written Exit Routines 43

EOV Block Count Exit
You can specify in an exit list the address of a routine that will allow you to
abnormally terminate the task or continue processing when the end-of-volume routine
finds an unequal block count condition. When you are using standard labeled input
tapes, the block count in the trailer label is compared by the end-of-volume routine
with the block count in the DCB. The count in the trailer label reflects the number of
blocks written when the data set was created. The number of blocks read when the
tape is used as input is contained in the DCBBLKCT field of the DCB.

The routine is entered during end-of-volume processing. The trailer label block count
is passed in register O. You may gain access to the count field in the DCB by using
the address passed in register 1 plus the proper displacement, as explained in
Debugging Handbook. If the block count in the DCB differs from that in the trailer
label when no exit routine is provided, the task is abnormally terminated. The routine
must terminate with a RETURN macro and a return code that indicates what action is
to be taken by the operating system, as shown in Figure 19. As with other exit
routines, the contents of register 14 must be saved and restored if any macros are
used.

Return Code

o (X'OO')

4 (X'04')

System Action

The task is to be abnormally terminated.

Normal processing is to be resumed.

Figure 19. System Response to Block Count Exit Return Code

E.OV Exit for Physical Sequential Data Sets

You can specify in an exit list the address of a routine that is entered when
end-of-volume is reached in processing of a physical sequential data set.

When you concatenate data sets with unlike attributes, no BOY exits are taken.

When the end-of-volume routine is entered, register 0 contains 0 unless user totaling
was specified. If you specified user totaling in the DCB macro (by coding
OPTCD=T) or in the DD statement for an output data set, register 0 contains the
address of the user totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed. If the volume is
a reel of magnetic tape, the tape is positioned after the tapemark that precedes the
beginning of the data.

You can use the end-of-volume (BOY) exit routine to take a checkpoint by issuing
the CHKPT macro, which is discussed in Checkpoint/Restart. If a checkpointed job
step terminates abnormally, it can be restarted from the BOV checkpoint. When the
job step is restarted, the volume is mounted and positioned as upon entry to the
routine. Restart becomes impossible if changes are made to the link pack area (LPA)
library between the time the checkpoint is taken and the time the job step is restarted.
When the step is restarted, pointers to end-of-volume modules must be the same as
when the checkpoint was taken.

44 Data Facility Product Version 2: Customization

FeB Image Exit

The end-of-volume exit routine returns control in the same manner as the data control
block exit routine. The contents of register 14 must be preserved and restored if any
macros are used in the routine. Control is returned to the operating system by a
RETURN macro; no return code is required.

You can specify in an exit list the address of a forms control buffer (FCB) image.
This FCB image can be loaded into the forms control buffer of the printer control
unit. The FCB controls the movement of forms in printers that do not use a carriage
control tape.

Multiple exit list entries in the exit list can define FCBs. The OPEN and SETPRT
routines search the exit list for requested FCBs before searching SYSl.IMAGELm.

The first 4 bytes of the FCB image contain the image identifier. To load the FCB,
this image identifier is specified in the FCB parameter of the DD statement, by the
SETPRT macro, or by the system operator in response to message IEC127D or
IEC129D.

For an mM 3203, 3211, 3262, 4245, or 4248 Printer, the image identifier is followed
by the FCB image described in System-Data Administration. For a 3800 FCB image,
see IBM 3800 Printing Subsystem Programmer's Guide. For a 3800 Model 3 FCB
image, see IBM 3800 Model 3 Printing Subsystem Programmer's Guide.

You can use an exit list to define an FCB image only when writing to an online
printer. Figure 20 on page 46 illustrates one way the exit list can be used to define
an FCB image.

Chapter 3. DCB Macro Specified User-Written Exit Routines 45

JFCB Exit

DCB .. ,EXLST=EXLIST

EXLIST OS OF
DC X'10' Flag code for FCB image
DC AL3(FCBIMG) Address of FCB image
DC X'SOOOOOOO' End of EXLST and a null entry

FCBIMG DC CL4'IMGl' FCB identifier
DC X'OO' FCB is not a default
DC ALl(67) Length of FCB
DC X'90' Offset print line

* 16 line character positions to the right

//ddname
/*

DC X'OO' Spacing is 6 lines per inch
DC 5X'OO' Lines 2-6, no channel codes
DC X'OI' Line 7, channell
DC 6X'OO' Lines 8-13. no channel codes
DC X'02' Line (or Lines) 14, channel 2
DC 5X'OO' Line (or Lines) 15-19. no channel codes
DC X'03' Line (or Lines) 20. channel 3
DC 9X'OO' Line (or Lines) 21-29. no channel codes
DC X'04' Line (or Lines) 30. channel 4
DC 19X'OO' Line (or Lines) 31-49. no channel codes
DC X'05' Line (or Lines) 50. channel 5
DC X'06' Line (or Lines) 51. channel 6
DC X'07' Line (or Lines) 52. channel 7
DC X'OS' Line (or Lines) 53. channel 8
DC X'Og' Line (or Lines) 54, channel 9
DC X'OA' Line (or Lines) 55, channel 10
DC X'OB' Line (or Lines) 56, channel 11
DC X'OC' Line (or Lines) 57. channel 12
DC 8X'OO' Line (or Lines) 58-65. no channel codes
DC X'10' End of FCB image

END
DO UNIT=3211,FCB=(IMGl.VERIFY)

Figure 20. Defining an FCB Image for a 3211

The JFCB exit is used with the RDJFCB macro and OPEN TYPE=J. The RDJFCB
macro uses the address specified in the DCB exit list entry at X' 07' to place a copy of
the JFCB for each DCB specified by the RDJFCB macro.

The area is 176 bytes and must begin on a fullword boundary. It must be located in
the user's region. Users running in 31-bit addressing mode must ensure that this area
is located below 16 megabytes virtual. The DCB may be either open or closed when
the RDJFCB macro is executed.

If RDJFCB fails while processing a DCB associated with your RDJFCB request, your
task is abnormally terminated. You cannot use the DCB abend exit to recover from a
failure of the RDJFCB macro. For more information about the RDJFCB macro see
System-Data Administration.

46 Data Facility Product Version 2: Customization

JFCBE Exit
JCL-specified setup requirements for the mM 3800 Printing Subsystem cause a JFCB
extension (JFCBE) to be created to reflect those specifications. A JFCBE exists if
BURST, MODIFY, CHARS, FLASH, or any copy group is coded on the DD
statement. The JFCBE exit can be used to examine or modify those specifications in
the JFCBE. The address of the routine should be placed in an exit list. (The device
allocated does not have to be a 3800.) This exit is taken during OPEN processing and
is mutually exclusive with the data control block exit. If you need both the JFCBE
and data control block exits, you must use the JFCBE exit to pass control to your
routines.

With a 3800, when you issue the SETPRT macro to a SYSOUT data set, the JFCBE
is further updated from the information in the SETPRT parameter list.

When control is passed to your exit routine, the contents of register 1 will be the
address of the DCB being processed.

The area pointed to by register 0 will also contain the 4-byte FCB identification that
is obtained from the JFCB. The FCB identification is placed in the 4 bytes following
the 176-byte JFCBE. If the FCB operand was not coded on the DD statement, this
FCB field will be binary zeros.

If your copy of the JFCBE is modified during an exit routine, you should indicate this
fact by turning on bit JFCBEOPN (X'80' in JFCBFLAG) in the JFCBE copy. On
return to OPEN, this bit indicates whether the system copy is to be updated. The
4-byte FCB identification in your area will be used to update the JFCB regardless of
the bit setting. Checkpoint/restart also interrogates this bit to determine which
version of the JFCBE will be used at restart time. If this bit is not on, the JFCBE
generated by the restart JCL will be used.

Open/Close/EOV Standard User Label Exit

When you create a data set with physical sequential or direct organization, you can
provide routines to create your own data set labels. You can also provide routines to
verify these labels when you use the data set as input. Each label is 80 characters
long, with the first 4 characters UHLl.UHL2 UHL8 for a header label or
UTLl,UTL2, ... ,UTL8 for a trailer label. User labels are not allowed on indexed
sequential data sets.

The physical location of the labels on the data set depends on the data set
organization. For direct (BDAM) data sets. user labels are placed on a separate user
label track in the first volume. User label exits are taken only during execution of the
OPEN and CLOSE routines. Thus you may create or examine as many as eight user
header labels only during execution of OPEN and as many as eight trailer labels only
during execution of CLOSE. Because the trailer labels are on the same track as the
header labels. the first volume of the data set must be mounted when the data set is
closed.

For physical sequential (BSAM or QSAM) data sets. you may create or examine as
many as eight header labels and eight trailer labels on each volume of the data set.
For ASCII tape data sets. you may create an unlimited number of user header and
trailer labels. The user label exits are taken during OPEN. close, and end-of-volume
processing.

Chapter 3. DCB Macro Specified User-Written Exit Routines 47

To create or verify labels, you must specify the addresses of your label exit routines in
an exit list as shown in Figure 15 on page 34. Thus you may have separate routines
for creating or verifying header and trailer label groups. Care must be taken if a
magnetic tape is read backward, because the trailer label group is processed as header
labels and the header label group is processed as trailer labels.

When your routine receives control, the contents of register 0 are unpredictable.
Register 1 contains the address of a parameter list. The contents of registers 2 to 13
are the same as when the macro instruction was issued. However, if your program
does not issue the CLOSE macro, or abnormally ends before issuing CLOSE, the
CLOSE macro will be issued by the control program, with control-program
information in these registers.

The parameter list pointed to by register 1 is a 16-byte area aligned on a fullword
boundary. Figure 21 shows the contents of the area.

o
Address of aO-byte label buffer area

4
Address 01 DeB being processed

8
Address of status information

12
Address 01 user totaling image area

Figure 21. Parameter List Passed to User Label Exit Routine

The first address in the parameter list points to an 80-byte label buffer area. For
input, the control program reads a user label into this area before passing control to
the label routine. For output, the user label exit routine builds labels in this area and
returns to the control program, which writes the label. When an input trailer label
routine receives control, the EOF flag (high-order byte of the second entry in the
parameter list) is set as follows:

Bit 0 = 0: Entered at end-of-volume
Bit 0 = 1: Entered at end-of-file
Bits 1-7: Reserved

When a user label exit routine receives control after an uncorrectable I/O error has
occurred, the third entry of the parameter list contains the address of the standard
status information. The error flag (high-order byte of the third entry in the parameter
list) is set as follows:

Bit 0 = 1: Uncorrectable I/O error
Bit 1 = 1: Error occurred during writing of updated label
Bits 2-7: Reserved

48 Data Facility Product Version 2: Customization

The fourth entry in the parameter list is the address of the user totaling image area.
This image area is the entry in the user totaling save area that corresponds to the last
record physically written on the volume. (The image area is discussed further under
"User Totaling for BSAM and QSAM" on page 56.)

Each routine must create or verify one label of a header or trailer label group, place a
return code in register IS, and return control to the operating system. The operating
system responds to the return code as shown in Pigure 22.

You can create user labels only for data sets on magnetic tape volumes with mM
standard labels or ISO/ANSI/PIPS labels and for data sets on direct access volumes.
When you specify both user labels and mM standard labels in a DD statement by
specifying LABEL= (,SUL) and there is an active entry in the exit list, a label exit is
always taken. Thus, a label exit is taken even when an input data set does not contain
user labels, or when no user label track has been allocated for writing labels on a
direct access volume. In either case, the appropriate exit routine is entered with the
buffer area address parameter set to O. On return from the exit routine, normal
processing is resumed; no return code is necessary.

Routine Type

Input header or
trailer label

Output header or
trailer label

RetumCode

o (X'OO')

4 (X'04')

81 (X'08')

121 (X'Oe')

o (X'OO')

4 (X'04')

8 (X'08')

System Response

Normal processing is resumed. If there
are any remaining labels in the label
group, they are ignored.
The next user label is read into the label
buffer area and control is returned to
the exit routine. If there are no more
labels in the label group, normal
processing is resumed.
The label is written from the label buffer
area and normal processing is resumed.
The label is written from the label area,
the next label is read into the label
buffer area, and control is returned to
the label processing routine. If there are
no more labels, processing is resumed.
Normal processing is resumed; no label
is written from the label buffer area.
User label is written from the label
buffer area. Normal processing is
resumed.
User label is written from the label
buffer area. If fewer than eight labels
have been created, control is returned to
the exit routine, which then creates the
next label. If eight labels have been
created, normal processing is resumed.

Figure 22. System Response to a User Label Exit Routine Return Code

Chapter 3. DCB Macro Specified User-Written Exit Routines 49

Note to Figure 22:

Your input label routines can return these codes only when you are processing a
physical sequential data set opened for UPDAT or a direct data set opened for
OUTPUT or UPDAT. These return codes aUow you to verify the existing labels,
update them if necessary, then request that the system write the updated labels.

Label exits are not taken for system output (SYSOUT) data sets, or for data sets on
volumes that do not have standard labels. For other data sets, exits are taken as
foUows:

• When an input data set is opened, the input header label exit 01 is taken. If the
data set is on tape being opened for RDBACK, user trailer labels will be
processed.

• When an output data set is opened, the output header label exit 02 is taken.
However, if the data set already exists and DISP=MOD is coded in the DD
statement, the input trailer label exit 03 is taken to process any existing trailer
labels. If the input trailer label exit 03 does not exist, then the deferred input
trailer label exit OC is taken if it exists; otherwise, no label exit is taken. For tape,
these trailer labels will be overwritten by the new output data or by EOV or close
processing when writing new standard trailer labels. For direct access devices,
these trailer labels will still exist unless rewritten by EOV or close processing in an
output trailer label exit.

• When an input data set reaches end-of-volume, the input trailer label exit 03 is
taken. If the data set is on tape opened for RDBACK, header labels will be
processed. The input trailer label exit 03 is not taken if you issue an FEOV
macro. If a defer input trailer label exit OC is present, and an input trailer label
exit 03 is not present, the OC exit is taken. After switching volumes, the input
header label exit 01 is taken. If the data set is on tape opened for RDBACK,
trailer labels will be processed.

• When an output data set reaches end-of-volume, the output trailer label exit 04 is
taken. After switching volumes, output header label exit 02 is taken.

• When an input data set reaches end-of-data, the input trailer label exit 03 is taken
before the EODAD exit, unless the DCB exit list contains a defer input trailer
label exit OC.

• When an input data set is closed, no exit is taken unless the data set was
previously read to end-of-data and the defer input trailer label exit OC is present.
If so, the defer input trailer label exit OC is taken to process trailer labels, or ~ the
tape is opened for RDBACK, header labels.

• When an output data set is closed, the output trailer label exit 04 is taken.

To process records in reverse order, a data set on magnetic tape can be read
backward. When you read backward, header label exits are taken to .process trailer
labels, and trailer label exits are taken to process header labels. The system presents
labels from a label group in ascending order by label number, which is the order in
which the labels were created. If necessary, an exit routine can determine label type
(UHL or UTL) and number by examining the fIrst four characters of each label.
Tapes with mM standard labels and direct access devices can have as many as eight
user labels. Tapes with ISO/ANSI/PIPS labels can have an unlimited number of user
labels.

SO Data Facility Product Version 2: Cuslomization

H an uncorrectable error occurs during reading or writing of a user label. the system
passes control to the appropriate exit routine. with the third word of the parameter list
flagged and pointing to status information.

After an input error. the exit routine must return control with an appropriate return
code (0 or 4). No return code is required after an output error. H an output error
occurs while the system is opening a data set. the data set is not opened (DCB is
flagged) and control is returned to your program. H an output error occurs at any
other time. the system attempts to resume normal processing.

Open/EOV Nonspecific Tape Volume Mount Exit
This user exit gives you the option of identifying a specific tape volume to be
requested in place of a nonspecific (scratch) tape volume. A X' 17' in the DCB exit
list (EXLST) activates this exit. . (See "EXLST Exit List" on page 34 for more
information about EXLST.) This exit. which supports only mM standard labeled
tapes. was designed to be used with the Open/BOY volume security and verification
user exit. However. this exit can be used by itself.

Open or end-of-volume (EOV) calls this exit when either must issue mount message
mC50lA or EIC50lE to request a scratch tape volume. Open issues the mount
message if you specify the DEFER parameter with the UNIT option. and you either
didn't specify a volume serial number in the DD statement or you specified
'VOL=SER=SCRTCH'. EOV always calls this exit for a scratch tape volume
request.

This user exit gets control in the key and state of the program that issued the OPEN
or EOV. and no locks are held. After you are in control. you must provide a return
code in register IS.

Return Code

00 (X'OO')

04 (X'04')

Meaning

Continue with the scratch tape request as if this exit had not
been called.
Replace the scratch tape request with a specific volume serial
number. Do this by loading the address of a 6-byte volume
serial number into register O.

Note: A value other than 0 or 4 in register 15 is treated as a O.

H OPEN or EOV finds that the volume pointed to by register 0 is being used either by
this or by another job (an active ENQ on this volume). it takes this exit again and
continues to do so until you either specify another volume serial number or request a
scratch volume. H the volume you specify is available but is rejected by OPEN or
EOV for some reason (I/O errors. expiration date. password check. and so forth). this
exit is not taken again.

Chapter 3. DCB Macro Specified User-Written Exit Routines 51

When this exit gets control, register 1 points to the parameter list described by the
IECOENTE macro. Figure 23 shows this parameter list.

+ OENTID OS
+ OENTFLG OS
+ OENTOEOV EQU
+ OENTNTRY EQU
+ OENTOPTN OS
+ OENTMASK EQU
+ OENTRSVD OS
+ OENTDCBA OS
+ OENTVSRA DS
+ OENTJFCB DS
+ OENTLENG EQU
+ OENTREGS DS
+ OENTAREA EQU

CL4
X
X'SO'
X'Ol'
X
X'OF'
XL2
A
A
A
*-&L
6F
*-OENTE

PLIST ID ('OENT')
FLAG BYTES
O=OPEN, l=EOV
O=lST ENTRY ,1=SUBSEQUENT ENTRY
OPEN OPTION (OUTPUT/INPUT/ ...)
TO MASK OFF UNNECESSARY BITS
RESERVED
ADDRESS OF USER DCB
ADDRESS OF VOLSER
ADDRESS OF O/C/E COpy OF JFCB
PLIST LENGTH
REGISTER SAVE AREA
MACRO LENGTH

Figure 23. IECOENTE Macro Parameter List

OENTOEOV
set to 0 if OPEN called this exit; set to 1 if EOV called this exit.

OENTNTRY
set to 1 if this is not the first time this exit was called because the requested
tape volume is being used by this or any other job.

OENTOPTN
contains the OPEN options from the DCB parameter list (OUTPUT, INPUT,
OUTIN, INOUT, and so forth). For EOV processing, the options byte in the
DCB parameter list indicates how EOV is processing this volume. For example,
if you open a tape volume for INOUT and EOV is called during an input
operation on this tape volume, the DCB parameter list and OENTOPTN are set
to indicate INPUT.

OENTVSRA
points to the last volume serial number you requested in this exit but was in use
either by this or another job. OENTVSRA is set to 0 the first time this exit is
called.

OENTJFCB
points to the OPEN or EOV copy of the JPCB. The high order bit is always
on, indicating that this is the end of the parameter list.

OENTREGS
starts the register save area used by OPEN or EOV. Do not use this save area
in this user exit.

52 Data Facility Product Version 2: Customization

Convention for Saving and Restoring General Registers

When this user exit is entered, the general registers contain:

Register

o
1
2-13

14

15

Contents

Variable
Address of the parameter list for this exit
Contents of the registers before the OPEN or EOV was
issued
Return address (you must preserve the contents of this
register in this user exit)
Entry point address to this user exit

You do not have to preserve the contents of any register other than register 14. The
operating system restores the contents of registers 2 through 13 before it returns to
OPEN or EOV and before it returns control to the original calling program.

Do not use the save area pointed to by register 13; the operating system uses it. If
you call another routine, or issue a supervisor or data management macro in this user
exit, you must provide the address of a new save area in register 13.

Open/EOV Volume Security and Verification Exit

This user exit lets you verify that the volume that is currently mounted is the one you
want. You can also use it to bypass the OPEN or EOV expiration date, password,
and data set name security checks. A X' 18' in the DCB exit list (EXLST) activates
this exit. (See "EXLST Exit List" on page 34 for more information about EXLST.)
This exit, which supports mM standard label tapes, was designed to be used with the
OPEN/EOV nonspecific tape volume mount user exit. (See "Open/EOV
Nonspecific Tape Volume Mount Exit" on page 51 for more information about that
user exit.) However, this exit can be used by itself.

Note: This exit is available only for APF-authorized programs.

This user exit gets control in the key and state of the program that issued the OPEN
or EOV request, and no locks are held. After you are in control, you must provide a
return code in register 15.

Return Code

00 (X'OO')

Meaning

Use this tape volume. Return to OPEN or EOV as if this exit
had not been called.

Chapter 3. DCB Macro Specified User-Written Exit Routines S3

Return Code Meaning

04 (X'04') Reject this volume and:

OS (X'OS')

12 (X'OC')

16 (X'10')

Output

If the data set is the first data set on the volume,
request a scratch tape. This causes OPEN or EOV to
issue demount message IEC502E for the rejected
tape volume, and mount message IEC501A for a
scratch tape volume. If the nonspecific tape volume
mount exit is active, it is called.

If the data set is other than the first one on the
volume, process this return code as if it were return
code OS.

• Input

- Treat this return code as if it were return code OS.

Abnormally terminate OPEN or EOV unconditionally; no
scratch tape request is issued.

Open abnormally terminates with a 913-34 abend code, and
EOV terminates with a 937-29 abend code.

Use this volume without checking the data set's expiration
date, but check its password and name. If the expiration date
of the current data set is in effect, the new data set can still
write over it.

Use this volume. A conflict with the password, label
expiration date, or data set name does not prevent the new
data set from writing over the current data set if it is the first
one on the volume. To write over other than the first data set,
the new data set must have the same level of security
protection as the current data set.

When this exit gets control, register 1 points to the parameter list described by the
IECOEVSE macro. The parameter list is shown in Figure 24 on page 55.

S4 Data Facility Product Version 2: Customization

+ OEVSIO OS
+ OEVSFLG OS
+ OEVSEOV EQU
+ OEVSFILE EQU

*
+ OEVSOPTN OS
+ OEVSMASK EQU
+ OEVSRSVD OS
+ OEVSDCBA OS
+ OEVSVSRA OS
+ OEVSHDRI OS
+ OEVSJFCB OS
+ OEVSLENG EQU
+ OEVSREGS os
+ OEVSAREA EQU

CL4
X
x'ao'
X'Ol'

X
X'OF'
XL2
A
A
A
A
*-&L
6F
*-OEVSE

10 FIELD = OEVS
FLAGS BYTE
O=OPEN. 1 =EOV
O=IST FILE. I=SUBSEQ FILE
BITS 1 THROUGH 6 RESERVED
OPEN OPTION (OUTPUT/INPUT/ ...)
MASK
RESERVED
ADDRESS OF USER DCB
ADDRESS OF 6-BYTE VOLSER
ADDRESS OF HDRI/EOFI
ADDRESS OF O/C/E COpy OF JFCB
PLIST LENGTH
REGISTER SAVE AREA
MACRO LENGTH

Figure 24. IECOEVSE Macro Parameter List

OEVSFLG
a flag field containing two flags.

OEVSEOV is set to 0 if OPEN called this exit; set to 1 if EOV called this exit.

OEVSFILE is set to 0 if the first data set on the volume is to be written; set to
1 if this is not the first data set on the volume to be written. This bit is always 0
for INPUT processing.

OEVSOPTN
a I-byte field containing the OPEN options from the DCB parameter list
(OUTPUT, INPUT, INOUT, and so forth). For EOV processing, this byte
indicates how EOV is processing this volume. For example, if you opened a
tape volume for OUTIN and EOV is called during an output operation on the
tape volume, the DCB parameter list and OEVSOPTN are set to indicate
OUTPUT.

OEVSVSRA
a pointer to the current volume serial number that OPEN or EOV is processing.

OEVSHDRI
a pointer to a HDRllabel, if one exists; or an EOFllabel, if you are creating
other than the first data set on this volume.

OEVSJFCB
a pointer to the OPEN, CLOSE, or EOV copy of the JFCB. The high-order bit
is always on, indicating that this is the end of the parameter list.

OEVSREGS
a register save area used by OPEN or EOV. Do not use this save area in this
user exit.

Chapter 3. DCB Macro Specified User-Written Exit Routines SS

Convention for Saving and Restoring General Registers

When this user exit is entered, the general registers contain:

Register

o
1
2-13

14

15

Contents

Variable
Address of the parameter list for this exit.
Contents of the registers before the OPEN or EOV was
issued
Return address (you must preserve the contents of this
register in this user exit)
Entry point address to this user exit

You do not have to preserve the contents of any register other than register 14. The
operating system restores the contents of registers 2 through 13 before it returns to
OPEN or EOV and before it returns control to the original calling program.

Do not use the save area pointed to by register 13; the operating system uses it. If
you call another routine or issue a supervisor or data management macro in this user
exit, you must provide the address of a new save area in register 13.

QSAM Parallel Input Exit

QSAM parallel input processing may be used to process two or more input data sets
concurrently, such as sorting or merging several data sets at the same time.

A request for parallel input processing is indicated by including the address of a
parallel data access block (PDAB) in the DCB exit list. The address must be on a
fullword boundary with the first byte of the entry containing X' 12' or, if it is the last
entry, X'92'. For more information on parallel input processing, see Data
Administration Guide.

User Totaling for BSAM and QSAM

When creating or processing a data set with user labels, you may develop control
totals for each volume of the data set and store this information in your user labels.
For example, a control total that was accumulated as the data set was created can be
stored in your user label and later compared with a total accumulated during
processing of the volume. User totaling helps you by synchronizing the control data
you create with records physically written on a volume. For an output data set
without user labels, you can also develop a control total that will be available to your
end-of -volume routine.

To request user totaling, you must specify OPTCD=T in the DCB macro instruction
or in the DCB parameter of the DD statement. The area in which you collect the
control data (the user totaling area) must be identified to the control program by an
entry of X'OA' in the DCB exit list. OPTCD=T cannot be specified for SYSIN or
SYSOUT data sets.

The user totaling area, an area in storage that you provide, must begin on a halfword
boundary and be large enough to contain your accumulated data plus a 2-byte length
field. The length field must be the first 2 bytes of the area and specify the length of
the complete area. A data set for which you have specified user totaling (OPTCD=T)
will not be opened if either the totaling area length or the address in the exit list is 0,
or if there is no X'OA' entry in the exit list.

56 Data Facility Product Version 2: Customization

The control program establishes a user totaling save area, where the control program
preserves an image of your totaling area, when an I/O operation is scheduled. When
the output user label exits are taken, the address of the save area entry (user totaling
image area) corresponding to the last record physically written on a volume is passed
to you in the fourth entry of the user label parameter list. (This parameter list is
described in "Open/Close/EOV Standard User Label Exit" on page 47.) When an
end-of-volume exit is taken for an output data set and user totaling has been
specified, the address of the user totaling image area is in register O.

When using user totaling for an output data set, that is, when creating the data set,
you must update your control data in your totaling area before issuing a PUT or a
WRITE macro. The control program places an image of your totaling area in the user
totaling save area when an I/O operation is scheduled. A pointer to the save area
entry (user totaling image area) corresponding to the last record physically written on
the volume, is passed to you in your label processing routine. Thus you can include
the control total in your user labels. When subsequently using this data set for input,
you can collect the same information as you read each record and compare this total
with the one previously stored in the user trailer label. H you have stored the total
from the preceding volume in the user header label of the current volume, you can
process each volume of a multivolume data set independently and still maintain this
system of control.

When variable-length records are specified with the totaling function for user labels,
special considerations are necessary. Because the control program determines
whether a variable-length record will fit in a buffer after a PUT or a WRITE has been
issued, the total you have accumulated may include one more record than is really
written on the volume. For variable-length spanned records, the accumulated total
will include the control data from the volume-spanning record although only a
segment of the record is on that volume. However, when you process such a data set,
the volume-spanning record or the first record on the next volume will not be
available to you until after the volume switch and user label processing are completed.
Thus the totaling information in the user label may not agree with that developed
during processing of the volume.

One way you can resolve this situation is to maintain, when you are creating a data
set, control data pertaining to each of the last two records and include both totals in
your user labels. Then the total related to the last complete record on the volume and
the volume-spanning record or the first record on the next volume would be available
to your user label routines. During subsequent processing of the data set, your user
label routines can determine if there is agreement between the generated information
and one of the two totals previously saved.

When the totaling function for user labels is selected with DASD devices and
secondary space is specified, the total accumulated may be one less than the actual
written.

Chapter 3. DCB Macro Specified User-Written Exit Routines 57

Chapter 4. User Exit Routines Specified with Utilities

General Guidance

Exits can be specified with various utilities to:

• Modify physical records

• Handle I/O errors

• Process user input/output header and trailer labels

For more information about utilities see Utilities.

The exits are specified in a parameter of the EXITS statement in the various utilities.
The exits available from utility programs are listed in Figure 25.

Exit Routine When Available Where Specified

Modify physical After the physical record is read DATA parameter
records before and before any editing is ofIEBGENER
processing by performed
IEBGENER

Input header or When the data set is opened for INHDR/INTLR
trailer label input (header) or closed (trailer) parameters of

IEBCOMPR,
IEBPTPCH,
IEBGENER

Output header or When the data set is opened for OunIDR/OUTLR
trailer label output (header) or closed (trailer) parameters of

IEBCOMPR,
IEBGENER

Totaling Prior to IEBGENER writing of TOTAL
each physical record (sequential parameter of
data sets only) IEBGENER

I/O error When permanent error occurs in IOERROR
IEBGENER parameter of

IEBGENER

Error detected by After unequal comparison ERROR
IEBCOMPR parameter of

IEBCOMPR

Build output record Prior to IEBGENER writing of a KEY of
key record IEBGENER

Figure 25 (Part 1 of 2). User-Exit Routines Specified in Utilities

Chapter 4. User Exit Routines Specified with Utilities S9

Exit Routine When Available Where Specified

Process logical Before input records are PRECOMP
records of input processed by IEBCOMPR parameter of
data sets before IEBCOMPR
compared

Process IEBPTPCH Before logical record is processed INREC/OUTREC
input/ output (INREC) or before logical record parameter of
records is written (OUTREC) IEBPTPCH

Analyze or modify After output record is CREATE
IEBDG output constructed, but before it is parameter of
record placed in the output data set IEBDG

Figure 25 (Part 2 of 2). User-Exit Routines Specified in Utilities

Register Contents at Entry to Routines from Utility Programs

Reg. Contents

1 Address of the parameter list

13 Address of the register save area. The save area must not be used
by user label processing routines.

14 Return address to utility

15 Entry address to the exit routine.

Figure 26. Register Contents at Entry to Utility Exit Routines

Programming Considerations

The exit routine must reside in either the job library or link library.

Returning from an Exit Routine

An exit routine returns control to the utility program by means of the RETURN
macro instruction in the exit routine. Registers 1 through 14 must be restored before
control is returned to the utility program.

The format of the RETURN macro instruction is:

I (/abe~ I RETURN I (r,r)]
(,RC=n I (15)]

60 Data Facility Product Version 2: Customization

where:

(r,r)

RC=

specifies the range of registers, from 0 to 15, to be reloaded by the utility
program from the register save area. For example, (14,12) indicates that all
registers except register 13 are to be restored. If this parameter is omitted, the
registers are considered properly restored by the exit routine.

specifies a decimal return code in register 15. If RC is omitted, register 15 is
loaded as specified by (r,r).

RC values can be coded:

n

(15)

specifies a return code to be placed in the 12 low order bits of register
15.

specifies that general register 15 already contains a valid return code.

The user's label processing routine must return a code in register 15 as shown in
Figure 27 unless:

• The buffer address was set to zero before entry to the label processing routine. In
this case, the system resumes normal processing regardless of the return code.

• The user's label processing routine was entered after an uncorrectable output
error occurred. In this case the system attempts to resume normal processing.

Figure 27 shows the return codes that can be issued to utility programs by user exit
routines. Slightly different return codes are used for the UPDATE=INPLACE option
of the IEBUPDTE program. (See Utilities for more information).

Return
Type of Exit Code Action

Input Header or 0 The system resumes normal
Trailer Label processing. If there are more labels in

the label group, they are ignored.

4 The next user label is read into the
label buffer area and control is
returned to the user's routine. If there
are no more labels, normal processing
is resumed.

16 The utility program is terminated on
request of the user routine.

Output Header or 0 The system resumes normal
Trailer Label processing. No label is written from

the label buffer area.

Figure 27 (Part 1 of 3). Return Codes That Must Be Issued by User Exit Routines .

Chapter 4. User Exit Routines Specified with Utilities 61

Return
Type of Exit Code Action

4 The user label is written from the label
buffer area. The system then resumes
normal processing.

8 The user label is written from the label
buffer area. H fewer than eight labels
have been created, the user's routine
again receives control so that it can
create another user label. Height
labels have been created, the system
resumes normal processing.

16 The utility program is terminated on
request of the user routine.

Totaling Exits 0 Processing continues, but no further
exits are taken.

4 Normal operation continues.

8 Processing ceases, except for EOD
processing on output data set (user
label processing).

16 Utility program is terminated.

AU other exits 0-11 (Set to Return code is compared to highest
(except next multiple previous return code; the higher is
IEBPTPCH's exit of four) saved and the other discarded. At the
OUTREC) normal end of job, the highest return

code is passed to the calling processor.

12 or 16 Utility program is terminated and this
return code is passed to the calling
processor.

ERROR 0 Record is not placed in the error data
set. Processing continues with the
next record.

4 Record is placed in the error data set
(SYSUT3).

8 Record is not placed in error data set
but is processed as a valid record (sent
to OUTREC and SYSUT2 if
specified).

16 Utility program is terminated.

OUTREC 4 Record is not placed in normal output
(IEBPTPCH) data set.

12 or 16 Utility program is terminated.

Figure 27 (Part 2 of 3). Return Codes That Must Be Issued by User Exit Routines

62 Data Facility Product Version 2: Customization

Return
Type of Exit Code Action

Any other Record is placed in normal output data
number set (SYSUT2).

Figure 27 (Part 3 of 3). Return Codes That Must Be Issued by User Exit Routines

Parameters Passed to Label Processing Routines

The parameters passed to a user's label processing routine are addresses of: the
80-byte label buffer, the DeB being processed, the status information if an
uncorrectable input/output error occurs, and the totaling area.

The 80-byte label buffer contains an image of the user label when an input label is
being processed. When an output label is being processed, the buffer contains no
significant information at entry to the user's label processing routine. When the utility
program has been requested to generate labels, the user's label processing routine
must construct a label in the label buffer.

If standard user labels (SUL) are specified on the DD statement for a data set, but the
data set has no user labels, the system still takes the specified exits to the appropriate
user's routine. In such a case, the user's input label processing routine is entered with
the buffer address parameter set to zero.

The format and content of the DCB are presented in Data Administration: Macro
Instruction Reference.

Bit 0 of flag 1 in the DCB-address parameter is set to a value of 0 except when:

• Volume trailer or header labels are being processed at volume switch time.

• The trailer labels of a MOD data set are being processed (when the data set is
opened).

If an uncorrectable input/output error occurs while reading or writing a user label, the
appropriate label processing routine is entered with bit 0 of flag 2 in the status
information address parameter set on. The three low order bytes of this parameter
contain the address of standard status information as supplied for SYNAD routines.
(The SYNAD routine is not entered.)

Parameters Passed to Non-Label Processing Routines

Figure 28 shows the programs from which exits can be taken to non-label processing
routines, the names of the exits, and the parameters available for each exit routine.

Chapter 4. User Exit Routines Specified with Utilities 63

Program Exit Parameters

IEBGENER KEY Address at which key is to be placed (record
follows key); address of DCB.

DATA Address of SYSUTI record; address of DCB.
Address of DECB; cause of the error and

IOERROR address of DCB. (Address in lower order
three bytes and cause of error in high order.
byte.)

IEBCOMPR ERROR Address of DCB for SYSUT1; address of
DCB for SYSUT2.1

PRECOMP Address of SYSUTI record; length of
SYSUTI record, address of SYSUT2 record;
length of SYSUT2 record.

IEBPTPCH INREC Address of input record; length of the input
record.

OUTREC Address of output record; length of the output
record.

Figure 28. Parameter Lists for Non-Label Processing Exit Routines

Note to Figure 18:

The IOBAD pointer in the DCB points to a location that contains the address of
the corresponding data event control block (DECB) for these records. The
format of the DECB is illustrated in Appendix B, "Status Information
Following an Input/Output Operation" on page 183.

Processing User Labels

User labels can be processed by IEBCOMPR, IEBGENER, IEBPTPCH, IEBUPDTE,
and IEHMOVE. In some cases, user-label processing is automatically performed; in
other cases, you must indicate the processing to be performed. In general, user label
support allows the utility program user to:

• Process user labels as data set descriptors.

• Process user labels as data.

• Total the processed records prior to each WRITE command (IEBGENER and
IEBUPDTE only).

For either of the first two options, the user must specify standard labels (SUL) on the
DD statement that defines each data set for which user-label processing is desired.
For totaling routines, OPTCD=T must be specified on the DD statement.

The user cannot update labels by means of the IEBUPDTE program. This function
must be performed by a user's label processing routines. IEBUPDTE will, however,
allow you to create labels on the output data set from data supplied in the input
stream. (See Utilities for more information on the IEBUPDTE program.)

IEHMOVE does not allow exits to user routines and does not recognize options
concerning the processing of user labels as data. IEHMOVE always moves or copies
user labels directly to a new data set. See Utilities for more information about
IEHMOVE.

64 Data Facility Product Version 2: Customization

Volume switch labels of a multivolume data set cannot be processed by IEHMOVE,
IEBGENER, or IEBUPOTE. Volume switch labels are therefore lost when these
utilities create output data sets. To ensure that volume switch labels are retained,
process multivolume data sets one volume at a time.

Processing User Labels as Data Set Descriptors

When user labels are to be processed as data set descriptors, one of the user's label
processing routines receives control for each user label of the specified type. The
user's routine can include, exclude, or modify the user label. Processing of user labels
as data set descriptors is indicated on an EXITS statement with keyword parameters
that name the label processing routine to be used.

The EXIT keyword parameters indicate that a user routine should receive control
each time the OPEN, EOV, or CLOSE routine encounters a user label of the type
specified.

Figure 29 illustrates the action of the system at OPEN, EOV, or CLOSE time. When
OPEN, EOV, or CLOSE recognizes a user label and when SUL has been specified on
the 00 statement for the data set, control is passed to the utility program. Then, if an
exit has been specified for this type of label, the utility program passes control to the
user routine. The user's routine processes the label and returns control, along with ~
return code, to the utility program. The utility program then returns control to OPEN,
EOV, or CLOSE.

This cycle is repeated up to eight times, depending upon the number of user labels in
the group and the return codes supplied by the user's routine.

OPEN/EOV/CLOSE

1 It

UTI LlTY program

2 3

User's label
processing
routine

Figure 29. System Action at OPEN, EOV, or CLOSE Time

Chapter 4. User Exit Routines Specified with Utilities 65

Exiting to a User's Totaling Routine

When an exit is taken to a user's totaling routine, an output record is passed to the
user's routine just before the record is written. The flI'St halfword of the totaling area
pointed to by the parameter contains the length of the totaling area, and should not be
used by the user's routine. If the user has specified user label exits, this totaling area
(or an image of this area) is pointed to by the parameter list passed to the appropriate
user label routine.

An output record is defined as a physical record (block), except when IEBGENER is
used to process and reformat a data set that contains spanned records.

The code returned by the user's totaling routine determines system response as shown
in Figure 30.

Codes

00 (X'OO')

04 (X'04')

08 (X'08')

16 (X'10')

Meaning

Processing is to continue, but no further exits
are to be taken.

Normal processing is to continue.

Processing is to terminate, except for EOD processing on the output
data set (user label processing).

Processing is to be terminated.

Figure 30. User Totaling Routine Return Codes

Processing User Labels as Data

When user labels are processed as data, the group of user labels, as well as the data
set, is subject to the normal processing done by the utility program. The user can
have labels printed or punched by IEBPTPCH, compared by IEBCOMPR, or copied
by IEBGENER.

To specify that user labels are to be processed as data, include a LABELS statement
in the job step that is to process user labels as data.

There is no direct relationship between the LABELS statement and the EXITS
statement. Either or both can appear in the control statement stream for an execution
of a utility program. If there are user label-processing routines, however, their return
codes may influence the processing of the labels as data. In addition, a user's output
label-processing routine can override the action of a LABELS statement because it
receives control before each output label is written. At this time, the label created by
the utility as a result of the LABELS statement is in the label buffer, and the user's
routine can modify it.

66 Data Facility Product Version 2: Customization

Chapter 5. Data Management Installation Exit Routines

General Guidance

This chapter discusses how installation-written exit modules can:

• Take control before and after direct access device storage management
(DADSM) processing

• Take control during Open for a DCB

• Determine whether a missing data set control block (such as for a data set that
has been moved to another volume) can be restored to a volume

• Recover from errors that may occur during the opening, closing, or handling of an
end-of-volume condition for a data set associated with the user's task

• Bypass, limit, or override system-calculated values that assist you in selecting
optimum DASD data set block size/CI size.

• Bypass or change datestamp processing for VSAM.

• Perform special processing before or after SVC 26, 29, or 30.

The data management replaceable modules are listed in Figure 3 i.

Module Name Description When Available

IFGOEXOA Open/EOV installation exit Format;-l DSCB not
found or tape
end-of -volume

IFGOEXOB DCB open installation exit Atopen

IFGOl991 Data management abend open, close, end of
installation exit volume abnormal

conditions

IGBDCSXl precalculation and postcalculation DASD calculation
IGBDCSX2 exit services

IGGPREOO DADSM preprocessing and DADSM functions
IGGPOSTO postprocessing exit allocate, extend,

scratch, partial release
and rename.

IDATMSTP Datestamp processing in VSAM During VSAM OPEN

IGG026DU Catalog pre-initialization exit Before or after
module CATALOG (SVC 26)

IGG029DM DADSM SCRATCH failure exit SCRATCH (SVC 29),
module after error return code

of 4 or 8

Figure 31 (Part 1 of 2). Data Management Replaceable Modules

Chapter 5. Data Management Installation Exit Routines 67

Module Name Description When AvaUable

IGG029DU DADSM SCRATCH Before or after
pre-initialization exit module SCRATCH (SVC 29)

IGG030DU DADSM RENAME Before or after
pre-initialization exit module RENAME (SVC 30)

Figure 31 (Part 2 of 2). Data Management Replaceable Modules

Programming Considerations

The data management replaceable modules you decide to replace must be named the
same as the mM-supplied modules.

In general, the data management replaceable module you replace must

• Handle multiple requests (reentrant)

• Reside in SYS1.LPALIB (or link edit into LINKLm)

• Save and restore registers

Limitations and Restrictions

Be aware of the impact other products have on the modifications you install. For
example, RACF takes control at the same time as some of the installation exit
modules. There may be contention for resources.

DADSM Preprocessing and Postprocessing Exit Routines

The Exit Modules

The Exit Environment

DADSM allows an installation-written preprocessing module (exit routine) to take
control before DADSM processing, and an installation-written postprocessing module
after DADSM processing. DADSM uses an exit parameter list to communicate with
these exit routines. This parameter list is obtained from storage below the 16M line.
The format of the parameter list is shown in Figure 32 on page 70.

All DADSM functions (allocate, extend, scratch, partial release, and rename) have a
common preprocessing exit routine and a common postprocessing exit routine that the
installation exit routine can replace. These exit routines enable you to gain control
before and after DADSM processing. The preprocessing exit routine module is
IGGPREOO; the postprocessing exit routine module is IGGPOSTO. Each is used by
all the DADSM functions just mentioned. The modules reside in SYS1.LPALm. You
can use System Modification Program (SMP) to replace the mM-supplied exit routine
modules with an installation exit routine you write.

The exit routines are given control in supervisor state and protect key zero with no
locks held. The exit routines may execute in either 24-bit or 31-bit addressing mode.
H they execute in 24-bit mode, be aware of the following requirement:

The scheduler work area (SWA), which contains the JFCB, may reside above
the 16M line. In this case, the mXPTRl field, which contains the JFCB address
for allocate, extend, and partial release, will be a 31-bit address. When your exit

68 Data Facility Product Version 2: Customization

routine is called for allocate, extend, or partial release and the JPCB resides
above the 16M line, it must be in 31-bit addressing mode before using the
IEXPTR 1 field in the exit parameter list.

The exit routines must be reentrant. DADSM or the program that invokes DADSM
(by issuing enqueue, reserve, and so forth) will have acquired the system resources
needed to serialize system functions. These enqueues may prevent other system
services from completing successfully. In particular, exit routines must not issue
dynamic allocation, OPEN, CLOSE, EOV, LOCATE, and other DADSM functions
because they issue an enqueue on the SYSZTIOT resource. If the exit routines
require access to an installation data set, the control blocks required to access that
data set (DCB, DEB) should be built during system initialization (IPL/NIP).

The type and number of resources held by DADSM depend upon the DADSM
function and the exit taken. For example, on entry to the installation preprocessing
exit (IGGPREOO), DADSM holds an enqueue on the VTOC and a reserve on the
device for the subject volume of a SCRATCH, RENAME, or partial release function.
DADSM releases these resources before the installation postprocessing exit
(IGGPOSTO) takes control.

You must anticipate system resource contention when services are requested from an
exit routine. For example, RACF services issue an enqueue on the RACF data set or
a reserve on that data set's volume. This contention can cause system performance
problems or an interlock condition.

When IGGPREOO Gets Control

The preprocessing exit routine, IGGPREOO, is given control before the first VTOC
update and after the initial validity check is successful. Input to IGGPREOO is a
parameter list, mapped by macro IECIEXPL, that contains addresses of input data
and a function code that identifies the DADSM function. IGGPREOO is given control
once for each volume in the volume list supplied to scratch and rename: A field in the
parameter list, IEXRSVWD, may be used to pass data from the preprocessing exit
routine to the postprocessing exit routine.

A zero return code from IGGPREOO indicates the DADSM function may proceed.

Rejecting a DADSM Request

A preprocessing exit routine may reject a DADSM request, in which case an I/O error
return code is generated for all functions except allocate and extend. A return code of
4 or 8 from IGGPREOO to allocate causes allocate to return X'B4' or X'BO',
respectively, to its caller in register 15. Scheduler allocation treats a X'B4' as a
conditional rejection of the allocate request only for the volume being processed. If
the allocate request is not for a specific volume, another volume may be chosen and
the allocate function retried. Scheduler allocation treats a X'BO' return code from
allocate as an unconditional rejection of the allocate request. If the allocate request is
rejected, the preprocessing exit routine can put a reason code in the parameter list
field, IEXREASN, and the code will be returned by allocate to its caller, together with
the X'BO' or X'B4' return code in register 15. The reason code will appear in the
JCL error message if the allocate request is not retried. A nonzero return code from
IGGPREOO to extend will cause extend to return an error return code of X'FFFF
FFEC' to its caller. If the caller is end-of-volume, an E37-0C abend will be issued.

Chapter 5. Data Management Installation Exit Routines 69

Rejecting a DADSM Scratch Request

In the integrated catalog facility environment, VSAM will delete the VVR entry flfSt
and then call DADSM to continue with the scratch of the format-l DSCB. If a
preprocessing exit routine rejects the DADSM request, the format-1 DSCBs will
remain while the VVR entry no longer exists. This results in a broken catalog. It is
the user's responsibility to ensure that preprocessing exits do Dot reject a DADSM
scratch request for a VSAM data set.

Data that DADSM Passes to the Exits

The format of the parameter list (IEPL) is shown in Figure 32.

Name Offset

IEXID OO(X'OO')
IEXLENG O4(X'04')
IEXFUNC OS(X'OS')
IEXALL
IEXEXT
IEXSCR
IEXPR
IEXREN
IEXPREL
IEXVEXT

IEXEXTCD 06(X'06')

IEXFLAG 07(X'07')
IEXENQ
IEXVlO
IEXMF1

•
IEXREASN 08(X'08')
•

Bytes Description

4 EBCDIC "IEPL"
1 Length of parameter list
1 DADSM function code:

X'OI '-Allocate
X'02'-Extend
X '03' -Scratch
X'04'-Partial release
X'OS'-Rename
X'06'-PARTREL Partial release
X '07' -Extend (VSAM caller without
DEB parameter)1

1 Extend code

1
1
.1
.. 1

• •. xxxxx
2
2

X '01' Extend data set on current
volume
X'02' Extend an OS catalog on
current volume
X '04' Extend data set on new
volume
X' 81' Extend VSAM data space on
current volume
Flag byte
VTOC is enqueued upon entry.
VlO data set
IEXFMTI points to DXIFMTID of
a partial format-l DSCB (partial
DSCB passed as input to allocate,
and not JFCB is not available).
Reserved
Installation reject reason code
Reserved

Figure 32 (Part 1 of 3). Format of DADSM Preprocessing and Postprocessing Exit
Parameter Ust

1 H IEXVEXT is on, you must ensure that your installation exit modules do not attempt to use
the IEXPTR2 field (DEB address is undefmed for this extend function).

70 Data Facility Product Version 2: Customization

Name Offset Bytes Description

IEXUCB 12(X'OC') 4 Address of UCB. The UCB address
is not available to the pre-exit for
VIO allocation.

IEXPTR12 16(X' 10') 4 Address of the following:

• JPCB (allocate. extend, partial
release)

• Data set name (P ARTREL
partial release)

• Scratch/rename input parameter
list (in user storage)

IEXPTR2 20(14) 4 Address of the following:

• DSAB list (ISAM allocate)
• DEB (extend on old volume)
• DCB (partial release)
• Partial DCB (P ARTREL partial

release) DCBFDAD and
DCBDEBA are defined, the
associated DEB has been
constructed; DEBDSCBA,
DEBNMEXT, and the
DEBDASD segment(s) are
defined. DEBDVMOD is not
defined.

• Current volume list entry
(scratch/rename)

IEXDSN 24(X'18') 4 Address of the data set name
IEXFMTI 28(X'IC') 4 Address of the 96-byte data portion

of format-l DSCB (preexit for
scratch; pre- and postexit for partial
release and rename; postexit for
allocate). May be supplied by preexit
of allocate. and extend on new
volume. to serve as a model if
IEXMFI and IEXVIO are zero.

IEXFMT2 32(X'20') 4 Address of format-2 DSCB. (ISAM
allocate post exit.)

IEXRSVOO 36(X'24') 4 Reserved
IEXEXTBL 40(X'28') 4 Address of DADSM table (pre- and

postexit for scratch and partial
release; postexit for allocate and
extend). For VIO allocate postexit,
this is the address of DSIEXTI in
the virtual PMl DSCB.

IEXDCC 44(X'2C') 4 DADSM completion code (postexit)

Figure 32 (Part 2 of 3). Format of DADSM Preprocessing and Postprocessing Exit
Parameter List

Chapter 5. Data Management Installation Exit Routines 71

Name Offset

IEXRSVWD 48(X'30')

Bytes

4

Description

Reserved word for use by installation
exit.

Figure 32 (Part 3 of 3). Format of DADSM Preprocessing and Postprocessing Exit
Parameter List

Passing a Model Format-1 OSCB

The preprocessing exit for allocate and extend on a new volume may return, in the
parameter list field IEXFMTl, the address of the data portion of a model format-l
DSCB, starting with field DSlFMTID. The DSCB will be moved to the allocate or
extend work area before building the format-l DSCB. The only fields that may be
nonzero in the area are the DSlREFD (the data-last-referenced field) and fields
currently unused. Failure to zero out all fields, except for DSlREFD and all currently
unused fields in the model format-l DSCB, can result in the abnormal termination of
the task or lead to unpredictable results. All other fields will be initialized by allocate
or extend.

IEXFMTl may not be supplied by IGGPREOO for a VIO allocate request (indicated
by flag, IEXVIO, set to one), or, if a partial DSCB instead of a JFCB has been
supplied to allocate (indicated by flag, IEXMFl, set to one). In the latter case,
IEXFMTl is passed to IGGPREOO initialized to the address of the DSlFMTID field
of the partial format-l DSCB (supplied to allocate by its caller) in the allocate work
area, and DSlREFD may be initialized by IGGPREOO. If extend was successful,
IEXFMTl is zeroed out prior to taking the postexit, IGGPOSTO.

When IGGPOSTO Gets Control

The postprocessing exit module, IGGPOSTO, is given control after a DADSM
function has been completed or attempted. IGGPOSTO is given control if IGGPREOO
was given control, whether the DADSM function was successful or not. IGGPOSTO
is not given control if IGGPREOO was not given control, or if the DADSM function
terminated abnormally. IGGPREOO may establish a recovery routine, if required, to
clean up system resources. The DADSM recovery routine does not give IGGPOSTO
control. Input to IGGPOSTO is the same parameter list passed to IGGPREOO. No
return codes from IGGPOSTO are defined.

System Control Blocks

The DADSM installation exit parameter list contains the addresses of system control
blocks. The mapping macros of those control blocks are listed below, together with
the name of the system library on which they reside. One of the macros,
ICV ARXNT, is only supplied with the optional material.

2 When the scheduler work area (SWA) resides above the 16M line, you may have to modify
installation exit module references to the IEXPTRI field. See "The Exit Environment" on
page 68 for details.

72 Data Facility Product Version 2: Customization

Macro Control Block Locadon

DCBD DCB SYS1.MACLIB
ICVARXNT Extent Table Optional material
IECIEXPL DADSM insta1lation SYS1.MACLIB

exit parameter Jist
IECPDSCB Partial DSCB SYSl.MACLIB
IECSDSLl DSCB SYSl.AMOOOEN
IEFJFCBN JFCB SYS1.AMODGEN
IEFTIOTI TIOT SYS1.AMODGEN
IEFUCBOB UCB SYS1.AMODGEN
IEZDEB DEB SYS1.MACLIB
IHADSAB DSAB SYS1.MACLIB

There is no mapping macro for the SCRATCH/RENAME parameter Jist or the
associated volume Jist.

For extend and partial release, the address of the JFCB passed to the user exit points
to a copy of the real JFCB. Updating the copied JFCB will not result in a
corresponding change to the real JFCB.

For PARTREL partial release, the DCB and DEB (see Figure 32 on page 70) have
been constructed for internal DADSM processing only.

During the X '02' extend of a VSAM data set, the exit is passed the address of a
dummy DEB. This DEB does not contain any extent information. Extent
information can be found in the catalog entry.

Registers at Entry to DADSM Exits

At entry to your exit routine, register contents are as follows:

Register Contents

1 Address of the exit parameter Jist

13 Address of an 18-word save area

14 Return address to DADSM

15 Address of your exit routine

Registers at Return from DADSM exits

When you return to DADSM, register contents must be as follows:

Register Contents

0-14 Same as on entry to your exit routine

15 A return code from IGGPREOO

Chapter S. Data Management Installation Exit Routines 73

Return Codes from DADSM Exits

No return codes are defined for IGGPOSTO. The IGGPREOO return codes and their
meanings are as follows:

Code Meaning

OO(X'OO') Indicates that you want the DADSM request to be processed

04(X'04') Indicates that no DADSM request for the current volume is to be
processed

08(X'08') Indicates that you do not want the DADSM request to be processed

CATALOG and DADSM Installation Exit Modules

The prologs of the IBM-provided exit modules provide detailed requirements for
coding your own versions. Your replacement modules must follow all the
characteristics and programming conventions for SVC routines. For information on
these characteristics and conventions. see Supervisor Services and Macro Instructions.
You may replace these modules in SYS1.AOSDO prior to system generation, or you
may replace them in SYSl.LPALIB after system generation.

The stage I system generation macro SGIEC4DM in SYSl.AGENLIB and the
appropriate link edit step of the STAGE I system generation output are other sources
of information about replacing the modules with your own versions.

You may apply PTFs to CATALOG. SCRATCH. or RENAME with SMP without
modifying your own versions of IGG026DU. IGG029DM. IGG029DU. and
IGG030DU.

CATALOG Installation Exit Module

The load module for CATALOG (SVC 26) contains module IGG026DU. The
IBM-provided IGG026DU module receives control from SVC 26 and immediately
passes control to module IGCOOO2F without performing any processing.

If you require special processing either before or after SVC 26. replace the
IBM-provided module with your own module. Keep in mind that it must receive
control in 31-bit addressing mode and pass control to IGCOOO2F in 31-bit addressing
mode.

DADSM (SCRATCH and RENAME) Installation Exit Modules

The load modules for DADSM SCRATCH (SVC 29) and DADSM RENAME (SVC
30) contain modules IGG029DU and IGG030DU. respectively. The IBM-provided
IGG029DU module receives control from SVC 29 and immediately passes control to
module IGC0002I without performing any processing. The IBM-provided IGG030DU
module receives control from SVC 30 and immediately passes control to module
IGC()0030 without performing any processing.

The load module for DADSM SCRATCH (SVC 29) also contains the module
IGG029DM. The IBM-p'rovided IGG029DM module receives control from
IGG0290D when an error return code of either 4 or 8 is indicated. and immediately

74 Data Facility Product Version 2: Customization

passes control to the location pointed to by register 14 without perfonning any
processing.

If you require special processing either before or after SVC 29 or 30, replace the
appropriate ffiM-provided module(s) with your own module(s). IGG029DU,
IGG030DU, and IGG029DM may request control and pass control in either 24-bit or
31-bit addressing mode. The modules may reside either above or below 16Mb virtual.
If you have replaced them, you may wish to change them to benefit fully from 31-bit
addressing support. For example, if your parameter list resides above the 16M line,
but your replacement modules are not defined as AMODE 31, DADSM copies the
parameter list, incurring additional overhead.

DASD Calculation Services (DCS) Installation Exits

DASD calculation services (DCS) retrieves DASD data set information, performs
calculations, and returns statistics to the caller of DCS. DCS provides data set
information primarily for display by ISMF (Interactive Storage Management Facility).
The values returned are designated in kilobytes (Kb) or bytes rather than cylinders or
tracks, to eliminate device dependency.

DCS allows for two installation-written exit modules, the precalculation exit
(IGBDCSXl) and the postcalculation exit (IGBDCSX2), to provide flexibility in
selecting the optimum block size/CI size. Because the access methods restrict
maximum block size to 32760, if an exit module returns an override or limit greater
than this, DCS sets the block size to 32760. DCS also verifies that exit-supplied CI
size override values do not violate VSAM restrictions.

The DCS installation exit routines receive control and execute in the calling program's
key and system state (problem/supervisor). The exit CSECTs are linked together with
the Common Filter Services, Device Information Services, and DASD Calculation
Services CSECTs into a single load module. They must be programmed to run in
31-bit mode and must reside above the 16Mb line. DCS provides lK bytes of
working storage for each of the exits. SYS1,SAMPLffi contains sample precalculation
and postcalculation exit routines to document usage and provide models for you.

Data That DeS Passes to the Exits

The IGBDCSIE macro maps the DCS pre/postcalculation exit parameter list. At
entry to the exits, register 1 points to a field containing the address of the parameter
list. See Figure 33.

Name Offset Bytes Description

DCSIEPL DCS exit parameter list
DCSIEDSN OO(X'OO') 44 Data set name
DCSIEDSO 44(X'2C') 4 Data set organization
DCSIEKP 48(X'30') 4 Key position
DCSIELRL 52(X'34') 4 Logical record length (average record

length if VSAM)

Figure 33 (Part 1 of 2). Format of the DCS Precalculation and Postcalculation Exit
Parameter List

Chapter 5. Data Management Installation Exit Routines 75

Name Offset Bytes Description

DCSIETC 56(X'38') 4 Track capacity
DCSIEBUF 60(X'3C') 4 Buffer space
DCSIESTG 64(X'40') 4 Exit workspace address
DCSIEKL 68(X'44') 2 Key length
DCSIEBS 70(X'46') 2 Block size (current physical block

size if VSAM)
DCSIECOB 72(X'48') 2 Calculated optimum block size
DCSIEVSN 74(X'4A') 6 Volume serial number

Figure 33 (Part 2 of 2). Format of the DCS Preca1culation and Postca1cu1ation Exit
Parameter List

Registers at Entry to the DCS Exits

At entry to your exit routine, register contents are as follows:

Register

1

13

14

15

Contents

Pointer to the address of the exit parameter list

Address of an 18-word save area

Return address to DCS

Address of your exit routine

Registers at Return from the DCS Exits

When you return to DCS, register contents must be as follows:

Register

o

1-14

15

Contents

Dependent upon which exit is returning and the return code in register
15.

Same as on entry to your exit routine

A return code from the exit routine

IGBDCSX1 (DCS Precalculation Installation Exit)

This installation exit routine gains control before DCS calculates the statistics you
requested. You can use it to either bypass or limit the DCS-calculated optimum
blocksize/CI size. See "Registers at Entry to the DCS Exits" and "Data That DCS
Passes to the Exits" on page 75.

76 Data Facility Product Version 2: Customization

Return Codes from the Precalculation Exit

The precalculation installation exit must pass a return code back to DCS in register
15. The return codes and their meanings are as follows:

Code Meaning

OO(X'OO') Indicates that DCS can proceed normally

04(X'04') Indicates that DCS can proceed, using the unsigned value in register 0 as
the maximum possible value.

08(X'08') Indicates that DCS should bypass calculating statistics and use the
blocksize/CIsize provided in register O.

IGBDCSX2 (DCS Postcalculation Installation Exit)

This installation exit routine gains control after DCS calculates the statistics you
requested. You can use it to override the DCS-calculated optimum blocksize/~I size
with a value of your own. See "Registers at Entry to the DCS Exits" on page 76 and
"Data That DCS Passes to the Exits" on page 75.

Return Codes from the Postcalculation Exit

The postcalculation installation exit must pass a return code back to DCS in register
15. The return codes and their meanings are as follows:

Code Meaning

OO(X'OO') Indicates that the exit accepts the calculated block size/CI size.

08(X'08') Indicates that the exit wants to override the DCS-ca1culated block
size/CI size with the value specified in register O.

Data Management Abend Installation Exit (lFG01991)

The abend installation exit provides the ability to recover from abnormal conditions
that may occur during the opening, closing, or handling of an end-of-volume condition
for a non-VSAM data set associated with the user's task.

When an abnormal condition occurs, control passes to the DCB abend user exit
routine if one is provided, and processing continues as specified in the DCB abend
user exit routine. (The DCB abend user exit routine gives you some options regarding
the actions you want the system to take when a condition arises that may result in
abnormal termination of your task. For additional information about the DCB abend
user exit routine, see "DCB Abend Exit" on page 37) However, if the DCB abend
user exit routine is not specified, or if it specifies immediate abnormal termination of
the task, the system passes control to the abend installation exit. If a DCB abend user
exit routine is not provided, control immediately passes to the abend installation exit.

Chapter S. Data Management Installation Exit Routines 77

IBM supplies an installation exit module, IFGOI99I, in SYS1.LPALm, that handles
abend situations caused by tape positioning errors. IFG0199I allows you to retry tape
positioning when you receive a system completion code 613 with return code 08 or
OC. To perform recovery actions for data management abend situations (other than
those caused by tape positioning errors), you can replace installation exit module
IFG0199I by modifying the source code supplied in SYS1.SAMPLm. IFG0199I
receives control in protection key zero, supervisor state. IFG0199I checks the system
completion code and the return code to determine whether the abend situation is the
result of a tape positioning error. If the system completion code is other than 613
with return code 08 or OC, control returns to the calling module with return code 0,
indicating that the abend should continue. Otherwise, IFG0199I checks the counter
in the 4-byte work area to determine whether one attempt to reposition the tape has
been made. If no attempt to reposition the tape has been made, IFG0199I issues a
return code of 4, indicating that positioning should be retried. If one attempt to
reposition the tape has been made, IFG0199I issues message IEC613A to the
operator to determine whether to attempt repositioning. If the operator specifies that
tape positioning is to be attempted again, a return code of 4 is set, indicating that
OPEN is to rewind the tape and attempt positioning. If the operator specifies that
tape positioning is not to be retried, control is returned to the calling module with a 0
return code.

Data That OPEN/EOV Passes to the Exit

The format of the parameter list (OAIXL) is shown in Figure 34.

Word Boundary

+0(00)

+4(04)

+8(08)

+12(OC)

+16(10)

+20(14)

+24(18)

+28(lC)

User Prot Key I Option Flags I Reserved I
Address of the protected copy of the DeB

Address of the user's DeB related to the

Address of the ueB related to the abend

Address of the JFCB related to the abend

Address of the TIOT entry related

Abend code - Example '6130000C'

4-byte installation work area

1(01) Option flags:

Bits

o indicates whether the DCB abend
user exit was taken

On exit was taken
Off exit was not taken

1 indicates whether to rewind the
tape volume

On rewind the tape volume
Off do not rewind the tape volume

Figure 34. Format of the Parameter Ust OAIXL

78 Data Facility Product Version 2: Customization

to the

Reserved

abend

abend

Registers at Entry to the Data Management ABEND Exit

At entry to the exit routine, register contents are as follows:

Register

1

13

14

15

Contents

Address of the parameter list (OAIXL)

Address of an IS-word save area

Return address to OPEN/EOV

Address of the entry point to IFG01991

Registers at Return from the Data Management ABEND Exit

When you return to OPEN/EOV, register contents must be as follows:

Register

2-12

15

Contents

Same as on entry to the exit

A return code from the exit

Return Codes from the Data Management ABEND Exit

The data management ABEND exit must pass a return code back to OPEN/EOV as
follows:

Code Meaning

OO(X'OO') Continue with the abend in process.

04(X'04') If the bit 1 option flag is on, rewind the tape volume, set the UCBFSCT
and UCBFSEQ fields in the UCB to zero, and try to recover from the
abend.

If the bit 1 option flag is off, try to recover from the abend.

For abend codes for which the installation is allowed to try to recover, see "DCB
Abend Exit" on page 37

Modifying the IBM-Supplied Installation Exit Module: Because the
IBM-supplied installation exit module handles only a particular abend situation, you
may want to modify the source code of that module to perform corrective actions for
other abend situations.

You can obtain a copy of the source code from SYS 1.SAMPLIB for modification,
using the editing function that is available to you. After you have modified the source
code,link edit it into SYS1.LPALIB. The source program is written in Assembler
language and uses only macros in SYS1.MACLm. If you replace the sUl?plied

Chapter 5. Data Management InstaUation Exit Routines 79

installation module, the exit module you supply must have the entry point name
IFGOt991 and it must be reenterable.

DeB OPEN Installation Exit (IFGOEXOB)

The Exit Module

The Exit Environment

The OPEN exit enables an installation-written module to gain control during Open for
a DCB. OPEN uses an exit parameter list to communicate with exit module. The
format of the parameter list is shown in Figure 35 on page 82.

OPEN has an exit module that the installation can replace. The module name is
IFGOEXOB and it is part of load module IGCOOOlI. IGCOOOlI resides in
SYSl.LPALffi. You can use System Modification Program (SMP) to replace the
ffiM-supplied exit module with an installation exit you write.

IFGOEXOB is given control in supervisor state and protect key zero with no locks
held. System enqueues will have been issued to serialize system functions. These
enqueues may prevent other system services from being invoked. In particular,
dynamic allocation, OPEN, CLOSE, EOV, and DADSM functions should not be
invoked because of an enqueue on the SYSZTIOT resource. H the exit requires
access to an installation data set, the control blocks required to access that data set
(DCB, DEB) should be built during system initialization (IPL/NIP). RACF macros
may be invoked from the exit.

Open Processing before the DCB OPEN Exit Gets Control

The exit module, IFGOEXOB, is given control whenever OPEN processes a DCB.
The exit is taken after the following functions have been performed for the DCB.

• DASD data sets

Volume mounted

Format-t, -2, and -3 DSCBs read

Forward merge from format-l DSCB to JFCB

• Tape data sets

Volume mounted

Header labels verified

Forward merge from header labels to JFCB

• AU data sets

Forward merge from JFCB to DCB

User DCB OPEN installation exit (if any) taken

RACF or password verification processing

80 Data Facility Product Version 2: Customization

Open Processing after the DCB OPEN Exit Gets Control

The following functions have not yet been performed at the time the exit is given
control for the DCB.

• Reverse merge from DCB to JFCB (not all fields are merged)

• Reverse merge from]FCB to format-l DSCB for DASD data sets (not all fields
are merged)

• Header labels written (for output tape data set)

• Access-method-dependent processing (obtain buffers, GETMAIN, and build
lOBs and DEB)

WriteJFCB

Write format-l DSCB

Getting Control from Open

The exit is given control for each DCB being opened, even when two or more DCBs
are being opened in parallel with one invocation of OPEN.

The exit is given control from OPEN (SVC 19) and OPEN TYPE=] (SVC 22). The
exit is given control from end-of-volume (EOV; SVC 55) and from
force-end-of-volume (FEOV; SVC 31) when a concatenation of two sequential data
sets with unlike attributes is being processed. In this case, EOV gives control to
CLOSE, which gives control to OPEN. The exit is not given control from EOV when
a concatenation of two sequential data sets with like attributes is being processed. In
this case, EOV does not give control to CLOSE and OPEN. A request by the user
program for concatenation with unlike attributes is shown in the DCB by flag
DCBOFPPC (bit 4; mask X'08') in field DCBOFLGS being set to one.

Data That Open Passes to the Exit

The parameter list mapped by macro IECOIEXL is supplied to the installation exit. It
contains data and the addresses of control blocks that may be of interest to the exit.

The format of the parameter list is shown in Figure 35.

Chapter 5. Data Management Installation Exit Routines 81

Name Offset Bytes Description

OIEXL OO(X'OO') 0 DCB Open installation exit
parameter list

OIEXOOPT OO(X'OO') 1 Open option (last 4 bits)
OIEXRSVD 1111 X'FO' first 4 bits reserved
OIEXOOUT 1111 15 output
OIEXOOIN 0111 7 outin
OIEXOUPD 0100 4 update
OIEXOINO 0011 3 inout
OIEXORDB 0001 1 read backward
OIEXOINP 0000 o input
OIEXUKEY OICX'Ol') 1 User protect key-key of

user DCB
OIEXLTH 02(X'02') 2 Length of OIEXL
OIEXUDCB 04(X'04') 4 Address of user DCB in user

protect key (OIEXUKEY)
OIEXPDCB OS(X'OS') 4 Address of protected copy of

DCB used by OPEN
OIEXJFCB 12(X'12') 4 Address of JFCB
OIEXDSCB 16(X'16') 4 Address of data portion of

format-1 DSCB
OIEXTIOT 20(X'20') 4 Address of TIOT entry
OIEXUCB 24(X'24') 4 Address of UCB

Figure 35. Format of DCB OPEN Installation Exit Parameter List (OIEXL)

Note that two DCB addresses are supplied. OPEN maintains a protected copy of the
user DCB. You can use OPEN's copy of the DCB to test the DCB fields. If you
modify your copy of the DCB, OPEN updates its protected copy when it regains
control from the exit. The protect key of the user DCB is supplied in the exit
parameter list. You must use this key to either get information from or modify the
user DCB.

Be sure you determine the type of DCB and device passed to the exit before testing
access-method or device-dependent fields in the DCB. The sample exit shown in
Appendix A, "Example of an OPEN Installation Exit Module" on page 171 gives an
example of isolating a QSAM DCB being opened to a DASD or tape device.

The JFCB address supplied to the exit points to a copy of the]FCB that is in the
OPEN work area. There may be other JFCBs associated with the OPEN if ISAM or
concatenated partitioned data sets are being opened.

In the case of BDAM, ISAM, and concatenated partitioned data sets, the UCB, whose
address is supplied to the exit, may not be the only UCB associated with the DCB
being opened. The UCB should not be modified.

The TIOT address supplied is of a TIOT entry (TIOENTRY label in the IEFTIOT1
macro). In the cases of ISAM and concatenated partitioned data sets. other TIOT
entries may be associated with the DCB being opened. If concatenation of unlike
attributes is being processed, the TIOT entry may have a blank DDNAME field.

The format-1 DSCB passed to the exit is in the OPEN work area. The address is that
of the field DS1FMTID. There may be format-2 and -3 DSCBs associated with the
format-1 DSCB. There may be other format-1 through -3 DSCBs associated with the
DCB being opened in the cases of ISAM, BDAM, and concatenated partitioned data
sets. If the OPEN is to the VTOC, a format-4 DSCB address is passed to the exit;

82 Data Facility Product Version 2: Customization

this can be determined by testing field DSIFMTID for a value of X'F4', or the data
set name in the JFCBDSNM field of 44X' 04' .

Defaulting the DCB Buffer Number

Modifying the JFCB

If a value has not yet been supplied, the exit may be used to supply an
installation-determined value for DCBBUFNO (number of buffers) for QSAM DCBs.

A sample exit program that does this is shown in Appendix A, "Example of an
OPEN Installation Exit Module" on page 171.

You should not override a nonzero value in DCBBUFNO for QSAM DCBs without
knowing what dependency the user program has on that value. When a buffer pool
control block address is in the DCB field DCBBUFCA, you cannot override
DCBBUFNO; this indicates that buffers have been acquired before OPEN. If no
buffer pool control block address exists, DCBBUFCA is set to one (not zero)

You should not override a zero value in DCBBUFNO for BSAM DCBs when
DCBBUFCA is set to one without knowing what dependency the user program has
on these values. If the user program does not want OPEN to acquire buffer storage
space, it indicates this by setting DCBBUFNO to zero and DCBBUFCA to one. If
the user program wants OPEN to acquire buffer storage space, it can override
DCBBUFNO with a nonzero value. The user program is then responsible for freeing
that space after closing the DCB.

Whenever the JFCB is modified, code 4 should be returned to OPEN. This will cause
OPEN to rewrite the JFCB. The JFCB should not be modified if the user program has
set JFCNWRIT (bit 4) in byte JFCBTSDM because it indicates the JFCB should not
be written.

A sample exit program that modifies the JFCB is shown in Appendix A, "Example
of an OPEN Installation Exit Module" on page 171.

Requesting Partial Release

An example of modifying the JFCB in OPEN's work area to request partial release is
shown in Appendix A, "Example of an OPEN Installation Exit Module" on
page 171. It sets the following bits to I, indicating a partial release request:
JFCRLSE (bits 0 and 1; mask X'CO') in byte JFCBINDI. This should be done only
for DASD physical-sequential or partitioned data sets opened for OUTPUT or
OUTIN and processed by either (1) EXCP with a 5-word device-dependent section
present in the DCB, (2) BSAM, or (3) QSAM.

Care should be taken in modifying the JFCB release bits. For example, a data set that
is opened for output many times, writing varying amounts of data each time, may have
to extend after each OPEN, resulting in many small extents and, perhaps, reaching the
16-extent limit. This could result in a B37 abend.

Care should also be taken in setting the JFCBSPAC bits to define the space quantity
units when the partial release flag, JFCBRLSE, is also s.et on. A cylinder allocated
extent may be released on a track boundary when JFCBSPAC does not indicate
cylinder units or average block length units with ROUND specified. This will cause
the cylinder boundary extent to become a track boundary extent, thereby losing the
performance advantage of cylinder boundary extents. Zeroing the release indicator
and increasing secondary allocation quantity (for example, when the data set has

Chapter 5. Data Management Installation Exit Routines 83

extended a large number of times) may prevent such a B37 abend. Setting the release
indicator could result in more space being made available to other users sharing the
volume.

Updating the Secondary Space Data

The JFCB may also be modified by updating the secondary space data. Byte
JFCBCTRI contains the space request type coded in the DO statement or merged
from the format-l DSCB. Field JFCBSQTY contains the amount of secondary space
(in either tracks, cylinders, or average block units). Field JFCBPQTY contains the
amount of primary space (in either tracks, cylinders, or average block units).

Setting the contiguous bit (JFCONTIG) to zero may prevent an out-of-space abend
where there is enough space, but not enough contiguous space, to satisfy a request to
extend the data set.

Registers at Entry to the DCB OPEN Exit

At entry to the exit, register contents are as follows:

Register

1

13

14

15

Contents

Address of the DCB OPEN installation exit parameter list

Address of an 18-word save area

Return address to OPEN

Address of the entry point to IFGOEXOB

Registers at Return from the DCB OPEN Exit

When you return to OPEN, register contents must be as follows:

Register

0-14

15

Contents

Same as on entry to the exit

A return code from IFGOEXOB

Return Codes From the DCB OPEN Exit

The DCB OPEN exit must pass a return code back to OPEN in register 15. The
return codes and their meanings are as follows:

Code Meaning

OO(X'OO') Indicates that the JFCB has not been modified

04(X'04') Indicates that the JFCB has been modified

84 Data Facility Product Version 2: Customization

Open/EOV Installation Exit for Format-1 DSCB Not Found (lFGOEXOA)

The function of the format-l DSCB-not-found installation exit in OPEN and EOV is
to determine whether a missing DSCB (such as a data set that has been migrated to
another volume) can be restored to the volume. If your exit module restores the
DSCB, it indicates this when it returns control to the control program. The exit
module, IFGOEXOA, is given control whenever OPEN or EOV fails to find a
format-l DSCB on a volume. There is an mM-supplied exit module, IFGOEXOA, in
SYS l.LP ALm. If you want to use your own exit module, you must replace
IFGOEXOA. Your exit module must have an entry point name of IFGOEXOA. If you
do not write your own exit module, processing continues normally because the
mM-supplied exit returns a zero return code.

The exit is taken even under conditions under which abnormal termination ordinarily
would not occur. Two examples of these conditions follow:

1. When you have specified DISP=MOD and error recovery processing is taking
place because the last volume specified in the JFCB does not contain the DSCB,
but an earlier volume does. For this case, if your return code from IFGOEXOA is
o or if your return code is 4 and the DSCB has not been restored, OPEN and
EOV search the other volumes for the DSCB after the exit is taken.

2. Another condition occurs during EOV output when space has not yet been
allocated on the new volume. Space is allocated after the exit is taken if your
return code from IFGOEXOA is 0 or if your return code is 4 and the DSCB has
not been restored.

When a DSCB is not found, IFGOEXOA is given control as follows:

• In system protect key 5 (data management key).

• In supervisor state.

• The system resource represented by the SYSZTIOT major name is enqueued for
shared control. (This ENQ prevents the exit from invoking system functions such
as SCRATCH, RENAME, dynamic allocation, or LOCATE.)

Data That OPEN/EOV Passes to the Exit

The parameter list pointed to by register 1 consists of two fullwords. The first
. fullword contains the address of the UCB of the volume for which the format-l
DSCB was not found. The second fullword contains the address of the 44-byte data
set name, left justified, and padded with blanks. Bit zero of the second fullword is set
to one, indicating the last word in the parameter list.

The data set name must not be modified by the exit. The parameter list, save area,
and data set name are in protect key 5 virtual storage, which is not fetch protected.
IFGOEXOA must be reenterable. All work areas obtained through GETMAIN must
be released through FREEMAIN.

Chapter 5. Data Management Installation Exit Routines 85

Registers at Entry to the Format-' OSeB Not Found Exit

At entry to your exit routine, register contents are as follows:

Register

o

1

2-12

13

14

15

Contents

If X'OO', entry was from OPEN (single volume data set).
If X'OC', entry was from OPEN (multivolume data set).
If X'OF', entry was from EOV.

Address of the parameter list

Unpredictable

Address of an 18-word save area

Return address to OPEN/EOV

Address of entry point to IFGOEXOA

Registers at Return from the Format-' OSCB Not Found Exit

When you return to OPEN/EOV, register contents must be as follows:

Register

2-12

15

Contents

Same as on entry to the exit

A return code from the exit

Return Codes from the Format-' OSCB Not Found Exit

The format-l DSCB not found exit must pass a return code back to OPEN/EOVas
follows:

Code Meaning

OO(X'OO') Processing continues normally. This return code is given if the exit does
not restore the DSCB. The mM-supplied exit module always gives return
code O.

04(X'04') The volume is searched one more time by OPEN or EOV for the DSCB.
This return code is given if IFGOEXOA restores the DSCB to the volume.
If the DSCB is again not found, IFGOEXOA is not given control and
processing continues normally.

08(X'08') The task is abnormally terminated without attempting to determine if
DISP=MOD error recovery or allocation on the new volume should
occur. This return code is given if IFGOEXOA encounters an error and
you do not want to continue processing.

86 Data Facility Product Version 2: Customization

You should have IFGOEXOA establish its own error recovery environment (for
example, through an ESTAE), intercept any indeterminate errors, and return to the
control program with return code 8. Problem determination is the responsibility of
your exit module. A write-to-programmer (WTO with routing code 11) or a TPUT (if
a TSO region) may be used to issue an informative message.

During a parallel OPEN when two or more DCBs are being opened at the same time
and two of the DCBs are opening the same data set, the DSCB may be missing. If
IFGOEXOA is called for the first of the two DCBs and restores the DSCB, the
channel program attempting to read the DSCB for the second DCB may have been
executed before the restoration of the DSCB was complete. IFGOEXOA is then
called for the second DCB, even though the DSCB has already been restored. Return
from IFGOEXOA with a return code 4 is appropriate in this case.

IFGOEXOA is not given control when you are processing a VSAM data set with an
ACB; however, it is given control when you are processing a VSAM data space with a
DCB. IFGOEXOA is bypassed if the format-4 DSCB is not found on a volume, even
if the OPEN is to the VTOC data set name (data set name of 44 bytes of X'04').

IDATMSTP Datestamp Routine

The datestamp control module (IDATMSTP) is provided as a dummy module that
causes datestamp processing to be skipped. It sets a return code of 0 that causes
VSAM to skip processing of the last-referenced date (DSIREFD) in the format-l
DSCB for VSAM data sets cataloged under the integrated catalog facility.

Register Contents at Entry to IDATMSTP

Figure 36 on page 88 shows the contents of the registers when VSAM gives control
to IDATMSTP.

Chapter 5. Data Management Installation Exit Routines 87

Reg. Contents

o Unpredictable.

1 Address of a parameter list that contains the
following addresses of the offset:

o Data set name.

4 List of five volume serial numbers that contain the data set.

S Address of a I-byte indicator set to X'D'
to indicate the data set
is a base data component.

2-12 Unpredictable.

13 Save area address.

14 Return address in VSAM OPEN.

15 Entry address to IDATMSTP.

When IDATMSTP returns to VSAM OPEN, the desired datestamp
option is indicated in register "1 5:

o No datestamp processing.

4 Datestamp processing desired; updated indicator (DSIIND02)
maintained.

Figure 36. Communication with the Datestamp Routine

Programming Considerations

. IDATMSTP is packaged as a single load module.

It is entered in 31-bit addressing mode and must return in 31-bit addressing mode.
IDATMSTP may be replaced with another module you select that sets a return code
of 4 and causes datestamp processing on all specified data sets.

Products or installations which replace the VSAM version of IDA TMSTP with their
own module must link edit their version into LP ALIB as a separate load module
named IDATMSTP.

Your module can include code to cause checking of some or all the base cluster data
components of VSAM data sets cataloged in an integrated catalog facility catalog for
periodic migration to other storage media and maintenance of the updated indicator.

88 Data Facility Product Version 2: C~mization

Parameters Passed to IDATMSTP

Parameters passed to the IDATMSTP module may reside above 16 megabytes.

IDA TMSTP is passed the addresses of the data set name, first 5 volume serial
numbers, and a character 'D' which indicates that the object is a data component of a
data set cataloged in an integrated catalog facility catalog. This information is
available to your module and can be used to further qualify which data sets should
have datestamp processing.

Requesting Datestamp Processing

If you modify the IDA TMSTP module to perform datestamp checking (return code 4
in register 15), VSAM datestamp processing is performed if the following conditions
are met:

• The data set is the data component of a base cluster.

The data set is being opened for other than input, (which causes the DSIIND02
field in the format-l DSCB to be changed).

• The field DSIREFD in the format-l DSCB is not equal to zero and is earlier than
today's date.

Note: It is your responsibility to set DSIREFD to a nonzero value when you want
OPEN to do datestamp processing.

Returning to VSAM

When IDATMSTP returns to VSAM OPEN, your routine must indicate the datestamp
option in register 15 (see Figure 36 on page 88).

Chapter 5. Data Management Installation Exit Routines 89

Chapter 6. EXCP Appendages

General Guidance

An appendage is a programmer-written routine that provides additional control over
I/O operations. By using appendages, you can examine the status of I/O operations
and determine the actions to be taken for various conditions. An appendage may
receive control when one of the following occurs:

• EXCPSVC

• Program-controlled interrupt

End of extent

• Channel end

• Abnormal end

EXCP appendages are shown in Figure 37.

Appendage Description

ABE Abnormal-end

CHE Channel-end

EOE End-of-extent

When Available

Abnormal conditions

Channel-end, unit
exception,
wrong-length record

Address in I/O block
outside allocated
extent limits

PCI Program-controlled interruption When one or more
PCI bits are on in a
channel program

SIO Start-I/O EXCP processor right
before translating
channel program

Figure 37. EXCP Appendages

Chapter 6. EXCP Appendages 91

Appendages get control in supervisor state, receiving the following pointers from the
EXCP processor (see Figure 38).

Reg. Contents

1 Points to the request queue element for the channel program

2 Points to the input/output block (lOB)

3 Points to the data extent block (DEB)

4 Points to the data control block (DCB)

6 Points to the seek address if control is given to
an end-of-extent (EOE) appendage

7 Points to the unit control block (UCB)

13 Points to a 16-word area you can use to save input
registers or data

14 Points to th~ location in the EXCP processor where control
is to be returned after execution of an appendage. When returning
control to the EXCP processor, you may use displacements from the
return address in register 14. Allowable displacements are
summarized in Figure 39, and described later for each
appendage.

15 Points to the entry point of the appendage

Figure 38. Contents of Registers at Entry to EXCP Appendages

The processing done by appendages is subject to these requirements and restrictions:

• Register 9, if used, must be set to binary zeros before control is returned to the
system. All other registers, except those indicated in the descriptions of each
appendage, must be saved and restored if you use them. Figure 39 summarizes
register conventions.

• No SVC instructions or instructions that change the status of the system (for
example, WTO, LPSW, or any privileged instructions) can be issued.

• Loops that test for the completion of I/O operations must not be used.

• Storage used by the I/O supervisor or EXCP processor must not be altered.

The types of appendages are described in the following sections, with explanations of
when they are created, how they return control to the system, and which registers they
may use without saving and restoring their contents.

Note: All user-specified appendages are given control in 24-bit addressing mode and
must return in the same mode.

92 Data Facility Product Version 2: Customization

Appendage
Entry
Point

EOE Reg 15

SIO Reg 15

PCI Reg 15

CUE Reg 15

ABE Reg 15

Returns

Reg 14 + 0
Reg 14 + 4
Reg 14 + 8

Reg 14 + 0
Reg 14 + 4

Reg 14 + 0

Reg 14 + 0
Reg 14 + 4
Reg 14 + 8
Reg 14 + 12

Reg 14 + 0
Reg 14 + 4
Reg 14 + 8
Reg 14 + 12

Return
Skip
Try Again

Normal
Skip

Normal

Normal
Skip
Re-EXCP
By-Pass

Normal
Skip
Re-EXCP
By-Pass

AvaiJable Work
Registers

Reg. 10, 11, 12, and 13

Reg. 10, 11, and 13

Reg. 10, 11, 12, and 13

Reg. 10, 11, 12, and 13

Reg. 10, 11, 12, and 13

Figure 39. Entry Points, Returns, and Available Work Registers for Appendages

Note to Figure 39: Certain register conventions for passing parameters from
appendages to the EXCP processor must be followed. These conventions are
described in the individual appendage descriptions.

Making Your Appendages Part of the System

Before your appendages can be executed, they must become members of either the
SYSl.LPALffi or SYSl.SVCLffi data set. There are two ways to put appendages
into SYS1.LPALffi or SYS1.SVCLffi: They can be included at system generation
using the DATASET macro instruction (a full explanation appears in Installation:
System Generation), or they can be link edited into SYS1.LPALm or SYS1.SVCLm
after the system has been generated. Each appendage must have an 8-character
member name, the first six characters being IGG019 and the last two being anything
in the range from WA to Z9. Note, however, if your program runs in a V=R address
space and uses a PCI appendage, the PCI appendage and any appendage that the PCI
appendage refers to must be placed in either SYS1.SVCLm or the fixed link pack
area (LPA). For information on providing a list of programs to be fixed in storage,
see Initialization and Tuning.

The Authorized Appendage List (lEAAPPOO)

If an "unauthorized" program opens a DCB to be used with an EXCP macro
instruction, the names of any appendages associated with the DCB must be listed in
the IEAAPPOO member of SYS1.PARMLm. (An "unauthorized" program is one
that runs in a protection key greater than 7 and has not been marked as authorized by
the Authorized Program Facility.)

If your appendages were put in SYS1.LPALffi or SYS1.SVCLffi at system
generation, their names are automatically put in IEAAPPOO. If your appendages were
added to SYSl.LPALm or SYSl.SVCLm after system generation, you can add
IEAAPPOO to SYS I.P ARMLffi and put the names of the appendages in it in one job
step with the IEBUPDTE utility.

Chapter 6. EXCP Appendages 93

Here is an example of JCL statements and IEBUPDTE input that will add IEAAPPOO
to SYS1.PARMLIB and put the names of one BOB appendage. two SIO appendages.
two CHE appendages. and one ABB appendage in IEAAPPOO:

II JOB
II EXEC
IISYSPRINT DO
IISYSUT2 DO
IISYSIN DO
.1 ADD
EOEAPP WA,
SIOAPP XI,X2,
CHEAPP Z3,Z4,
ABEAPP Z2
1*

PGM=IEBUPDTE
SYSOUT=A
DSN=SYSI.PARMLIB,DISP=OLD
*
NAME=IEAAPPOO,LIST=ALL

Note the following about the IEBUPDTE input:

• The type of appendage is identified by six characters that begin in column 1.
BOBAPP identifies an EOB appendage. SIOAPP an SIO appendage. CHEAPP a
CHE appendage. and ABBAPP an ABE appendage. (The PCI appendage
identifier. PCIAPP •. is not shown. because the example does not add a PCI
appendage name to IEAAPPOO.)

• Only the last two characters in an appendage's name are specified. beginning in
column 8.

• Each statement that identifies one or more appendage names ends in a comma.
except the last statement.

You can also use IEBUPDTE to add appendage names later or to delete appendage
names. Here is an example of JCL statements and IEBUPDTE input that adds the
names of a PCI and an ABE appendage to the IEAAPPOO appendage list that was
created in the preceding example. and deletes the name of an SIO appendage from
that list:

II
II
IISYSPRINT
IISYSUT2
IISYSIN
.1
PCIAPP Yl,
EOEAPP WA,
SIOAPP XI,X2,
CHEAPP Z3,Z4,
ABEAPP Z2,Z4
1*

JOB.
EXEC
DO
DO
00
REPL

PGM"'IEBUPOTE
SYSOUT"'A
OSN"'SYSl.PARMLIB,OISP=OLO
*
NAME"'IEAPPOO,LIST=ALL

Note the following about the IEBUPDTE input:

• The command to IEBUPDTE in this case is REPL (replace).

• All the appendage names that are to remain in IEAAPPOO are repeated.

• IGG019Z4 is both a CHE and an ABE appendage.

94 Data Facility Product Version 2: Customization

Abnormal-End (ABE) Appendage

This appendage may be entered on abnormal conditions, such as unit check, unit
exception, wrong-length indication, program check, protection check, channel data
check, channel control check, interface control check, chaining check, out-of-extent
error, and intercept condition (that is, device end error). It may also be entered when
an EXCP is issued for a request queue element that has already been purged.

1. When this appendage is entered because of a unit exception or wrong-length
record indication or both, IOBECBCC is set to X' 41'. For further information
on these conditions, see "Channel-End (CUE) Appendage" on page 96.

2. When the appendage is entered because of an out-of-extent error, the
IOBECBCC is set to X' 42' .

3. When this appendage is entered with IOBECBCC set to X'4B', it is because of:

a. The tape error recovery procedure (ERP) encountering an unexpected load
point, or

b. The tape error recovery procedure (ERP) fmding zeros in the command
address field of the CSW.

4. When the appendage is first entered because of an intercept condition, the
IOBECBCC is set to X' 7E'. If it is then determined that the error condition is
permanent, the appendage will be entered a second time with the IOBECBCC set
to X'44'. The intercept condition signals that an error was detected at device
end after channel end on the previous request

5. When the appendage is entered because of an EXCP being issued to an already
purged request queue element, this request will enter the ABE appendage with the
IOBECBCC set to X'48'. This applies only to related requests.

6. If the appendage is entered with IOBECBCC set to X'7F', it may be because of
a unit check, program check, protection check, channel data check, channel
control check, interface control check, or chaining check. If the IOBECBCC is
X '7F' , it is the fIrSt detection of an error in the associated channel program. If
the IOBEX flag (bit S of the IOBFLAG1) is on, the 10BECBCC field will
contain a X'41', X'42', X'48', X'4B', or X'4F', indicating a permanent I/O
error.

To determine if an error is permanent, you should check the 10BECBCC field of the
lOB. To determine the type of error, check the channel status word field and the
sense information in the lOB. However, when the IOBECBCC is X'42', X'48', or
X'4F', these fields are not applicable. For X'44', the CSW is applicable, but the
sense is valid only if the unit check bit is set.

If you use the return address in register 14 to return control to the system, the channel
program is posted complete, and its request element is made available. You may use
the following optional return addresses:

• Contents of register 14 plus 4: The channel program is not posted complete, but
its request element is made available. You may post the channel program by
using the calling sequence described under the SIO (start-I/O) appendage.

• Contents of register 14 plus 8: The channel program is not posted complete, and
its request element is placed back on the request queue so that the request can be
retried. Reinitialize the IOBFLAG1, IOBFLAG2, and IOBFLAG3 fields of the
input/output block and set the IOBERRCT field to zero. As an added
precaution, clear the 10BSENSO, IOBSENS1, and IOBCSW fields.

Chapter 6. EXCP Appendages 9S

• Contents of register 14 plus 12: The channel program is not posted complete, and
its request element is not made available. (This return must be used if, and only
if, the appendage has passed the ROE to the exit effector for use in scheduling an
asynchronous routine.)

You may use registers 10 through 13 in an ABE appendage without saving and
restoring their contents.

Channel-End (CHE) Appendage

This appendage is entered when a channel end (CE), unit exception (UE) with or
without channel end or when channel end with wrong-length record (WLR) occurs
without any other abnormal-end conditions.

If you use the return address in register 14 to return control to the EXCP processor,
the channel program is posted complete, and its request element is made available. In
the case of unit exception or wrong-length record, the error recovery procedure is
performed before the channel program is posted complete, and the IOBEX flag
(X'04') in IOBFLAGI is set on. The CSW status may be obtained from the
IOBCSW field.

If the appendage takes care of the wrong-length record or unit exception or both, it
may turn off the IOBEX (X'04') flag in IOBFLAGI and return normally. The event
will then be posted complete (completion code X'7F' under normal conditions, taken
from the high-order byte of the IOBECBCC field). If the appendage returns
normally without resetting the IOBEX flag to zero, the request will be routed to the
associated device error recovery procedure (ERP), and the ABE (abnormal-end)
appendage will then be entered with the completion code in IOBECBCC set to X'41'
if the ERP could not correct the error. (See Step 1 of "Abnormal-End (ABE)
Appendage" on page 95.)

You may use the following optional return addresses:

• Contents of register 14 plus 4: The channel program is not posted complete, but
its request element is made available. You may post the channel program by
using the calling sequence described under the SIO (start-I/O) appendage. This
is especially useful if you want to post an ECB other than the ECB in the
input/output block.

• Contents of register 14 plus 8: The channel program is not posted complete, and
its request element is placed back on the request queue so that the I/O operation
can be retried. For correct reexecution of the channel program, you must
reinitialize the IOBFLAG1, IOBFLAG2, and IOBFLAG3 fields of the
input/output block and set the "Error Counts" field to zero. As an added
precaution, the IOBSENSO, IOBSENS1, and IOBCSW fields should be cleared.

• Contents of register 14 plus 12: The channel program is not posted complete, and
its request element is not made available. (This return must be used if, and only
if, the appendage has passed the ROE to the exit effector for use in scheduling an
asynchronous routine. For information on the exit effector, see System Macros
and Facilities.

You may use registers 10 through 13 in a CHE appendage without saving and
restoring their contents.

96 Data Facility Product Version 2: Customization

End-of-Extent (EOE) Appendage

This appendage is entered when the seek address specified in the input/output block
is outside the allocated extent limits indicated in the data extent block.

If you use the return address in register 14 to return control to the system, the ABE
appendage is entered. An end-of-extent error code (X'42') is placed in the "ECB
code" field of the input/output block for subsequent posting in the ECB.

You may use the following optional return addresses:

• Contents of register 14 plus 4: The channel program is posted complete; its
request element is returned to the available queue.

• Contents of register 14 plus 8: The request is tried again.

You may use registers 10 through 13 in an EOE appendage without saving and
restoring their contents.

Note: If an end-of-cylinder or file-protect condition occurs, the EXCP processor
updates the seek address to the next higher cylinder or track address and reexecutes
the request. If the new seek address is within the data set's extent, the request is
executed; if the new seek address is not within the data set's extent, the EOE
appendage is entered. If you want to try the request in the next extent, you must
move the new seek address to the location pointed to by register 6.

If a file protect is caused by a full seek (command code=07) embedded within a
channel program, the request is flagged as a permanent error, and the ABE appendage
is entered.

Program-Controlled Interruption (PCI) Appendage

This appendage is entered at least once if the channel finds one or more PCI bits on in
a channel program. It may be entered as many times as the channel finds PCI bits on.
Before the appendage is entered, the contents of the subchannel status word are
placed in the "channel status word" field of the input/output block.

A PCI appendage is reentered if an error recovery procedure is retrying a channel
program in which a PCI bit is on. The lOB error flag is set when the error recovery
procedure is in control (IOBFLAG 1 = X'20'). (For special PCI conditions
encountered with command retry, see "Channel Programming Considerations,"
System-Data Administration.)

To post the channel program from a PCI appendage, the procedure described for the
SIO appendage is used if the step is running ADDRSPC= VIRT or an authorized
program is running V =R. If the step is running ADDRSPC=REAL and an
authorized program issued the EXCP request or if SVC 114(EXCPVR) was issued,
the PCI appendage uses real storage addresses, and the following procedure is used to
post the channel program from the PCI appendage.

1. Put the completion code in register 10 and place X'80' in the high-order byte to
indicate the key is in register 0 (step 5).

2. Put X'80' in the high-order byte of register 11 and the address of the ECB in the
low-order bytes.

Chapter 6. EXCP Appendages 97

3. Put X'80' in the high-order byte of register 12 and the address of a BR 14
instruction in the low-order bytes. This BR 14 must be in storage addressable
from any address space (for example. CVTBRET) and must be in storage
addressable by 24 bits. Note that only registers 9 and 14 are restored when you
use this option.

4. Put the address of the ASCB in register 13.

The next two paragraphs describe how to obtain the ASCB address and are
followed by sample instructions to illustrate the procedure.

Get the SRB address associated with the I/O operation from the RQE field.
RQESRB (the RQE address was in register 1 when the appendage was given
control). Get the 10SB address from SRBPARM. From that 10SB. get the
identifier field. 10SASID. Multiply 10SASID by 4.

Get the pointer to the ASVT (address space vector table) found at CVTASVT.
The address of the ASCB can be found in the ASVT. using the field
ASVTENTY -4 indexed by the value calculated in the above paragraph.

USING RQE,l
L Y,RQESRB
USING SRBSECT,Y
LH Y,SRBPARM
USING IOSB,Y
LH Y,IOSASID
SLA y,2
L X,16
USING CVT,X
L X,CVTASVT
USING ASVT,X
L 13,ASVTENTY-4(Y)

Note: X and Y are work registers.

5. Put the requestor's key in register O.

6. Put the address of the post routine (found at CVTOPTOI in the communications
vector table) in register 15.

7. Go to the post routine using BALR 14.15. Upon return, only registers 9 and 14
are valid. For more information on the POST routine. see Supervisor Services and
Macro Instructions.

This procedure can be used even if the PCI appendage uses virtual storage addresses.
but performance may be slightly slower.

To return control to the EXCP processor for normal interruption processing. use the
return address in register 14.

Start-I/O (SIO) Appendage"

Unless an error recovery procedure is in control. the EXCP processor passes control
to the SIO appendage just before the EXCP processor translates your channel
program.

Optional return vectors give the I/O requestor the following choices:

Reg. 14 + 0
Normal return. Normal channel program translation and initiation of I/O.

98 Data Facility Product Version 2: Customization

Reg. 14 + 4
Skip the I/O operation. The channel program is not posted complete. but the
request queue element is made available. You may post the channel program as
follows:

1. Save necessary registers.

2. Put the address of the post routine (found at CVTOPTOI in the
communications vector table) in register 15.

3. Place the BCB address from the lOB in register 11.

4. Set the completion code in register 10. These are the four bytes of an
BCB.

5. Go to the post routine pointed to by the CVT. using BALR 14.15.

Chapter 6. EXCP Appendages 99

Chapter 7. Tape Label Processing Installation Exit Routines

General Guidance

This chapter discusses installation-written replaceable modules for specialized tape
processing. With replaceable modules you can:

• Create and process non-standard tape labels.

• Edit labels when versions, label types, density, or volume serial number conflicts
are detected.

• Control volume access, file access and label validation for ISO/ ANSI/FIPS
Version 3 volumes.

• Selectively convert non-Version 3 volumes to Version 3 volumes.

The replaceable modules available for tape label processing are listed in Figure 40.

Module Name Description When Available

NSLOHDRI Nonstandard label processing Atopen/EOV
NSLEHDRI routines for input headers

NSLOHDRO Nonstandard label processing Atopen/EOV
NSLEHDRO routines for output headers

NSLETRLI Nonstandard label processing Atopen
routine for input trailers

NSLETRLO Nonstandard label processing At EOV /close
NSLCTRLO routines for output trailers

NSLRHDRI Nonstandard label processing At restart from a
routine for restarting after a checkpoint
checkpoint

IEFXVNSL Automatic volume recognition When A VR cannot
(A VR) nonstandard label identify the first
processing record on a magnetic

tape volume as a
standard label

NSLREPOS Volume verification using the When DDR is used for
dynamic device reconfiguration nonstandard labels
(DDR) option for nonstandard
label processing

OMODVOLI Volume label editor routines for Atopen/EOV
EMODVOLl openandEOV

IFG0193G ISO / ANSI/FIPS Version 3 label At open/EOV; file
installation exits for volume access: after
access, file access, label positioning to a
validation, and label valid requested data set
suppression

Figure 40 (Part I of 2). Tape Label Processing Modules

Chapter 7. Tape Label Processing Installation Exit Routines 101

Module Name Description When Available

IEECVXIT ISO/ANSI/PIPS Version 3 label Label version conflict
WTOR installation exit

Figure 40 (Part 2 of 2). Tape Label Processing Modules

Programming Considerations

In general, your replaceable module must:

• Follow the naming conventions for the particular module you are replacing

• Save and restore registers

• Reside in SYS1.LP ALm

Nonstandard Labels

Nonstandard labels do not conform to the mM or ISO/ANSI/PIPS standard label
formats. They are labels which you design, and you provide routines to write and
process them. There are no requirements as to the length, format, contents, and
number of nonstandard labels, except that the first record on a BCD, EBCDIC, or
ISCII/ ASCII tape cannot be a standard volume label.

Figure 41 on page 103 shows some examples of how you can organize tape volumes
with nonstandard labels. Other variations are possible. Because your routines do the
positioning, there are no special requirements for multivolume or multiple data set
organizations. All labels and tapemarks are written by your routines. If an operating
system access method is used to retrieve the data, tapemarks should precede and
follow the data set to indicate the end-of-data-set condition for forward and backward
read operations.

102 Data Facility Product Version 2: Customization

Example 1 .. No Tapemarks

Nonstandard
Label

: ~ Nonstandard I
Datal--;et __ ~_Labe_1 _--&.....-_---")

Example 2·· Tapemarks Delimiting the Data Set

~ ___ ~_~_n_~_a_nd_a_~ ____ ~_T_M-L _____________ D~';:~S_M ____________ ~I_T_M~I ____ ~_~_n_~_a_nda __ r_d __ ~ ________ -J1

Example 3 .. Tapemarks Delimiting the Labels and the Data Set • • , ,

TM Nonstandard TM Oat a SM TM Nonstaradard TM
)

Label Label

~ ~ ,

1. No Tapemarks: This type of organization can be created by your nonstandard label processing routines, and reed with the E XCP technique.
It should not be used with an operating system access method because there is no tapemark to signal end-of-data.

2. Tapemarks Delimiting the Data Set: This is the recommended organization. The tapemarks are written by your nonstandard label processing
rout ones. When the tape is read by an operating system access method, the tapemark follOwing the data set signals end-of-data for forward
read operations, and the tapemark preceding the data set signals end-of-data for backward read operations.

3. Tapemarks Delimiting the Labels and the Data Set: This is an expansion of the preceding organization. The additional tapemarks that
precede and follow the labels are not handled by the operating system. They are written and used by your nonstandard label processing
routones.

Figure 41. Examples of Tape Organizations with Nonstandard Labels

Chapter 7. Tape Label Processing Installation Exit Routines 103

If you want to use nonstandard labels for tape volumes you must:

1. Create nonstandard label processing routines for input header trailer labels, input
trailer labels, output header labels, and output trailer labels.

2. Insert your routines into the link pack area (LPA) library (SYSl.LPALIB).

3. Code NSL in the LABEL parameter of the DD statement at execution time.

This section explains how your nonstandard label processing routines work with the
operating system control program, how to write your routines, and how to insert your
routines into the operating system.

Processing Tapes with Nonstandard Labels

Your appropriate nonstandard label processing routine is selected, brought into virtual
storage, and executed when a data set is opened or closed, when an end-of-volume or
end-of-data-set condition occurs, or for repositioning a volume when a job step is
restarted from a checkpoint. When your routine has completed its processing, it must
return control to data management's open, close, EOV, or restart routine, which then
continues its normal processing. For input, the EOV routine handles both
end-of-volume and end-of-data-set conditions. For output, the EOV routine handles
the end-of-volume condition, and the close routine handles the end-of-data-set
condition.

Your routines must provide for reading labels, processing labels, writing labels, writing
tapemarks, identifying volumes, and positioning volumes. Your nonstandard label
processing routines are responsible for setting the UCB file sequence (UCBFSEQ)
and UCB file count (UCBFSCT) fields, based upon the user's processing. The
control program assumes that a tape with nonstandard labels is properly positioned
upon completion of a nonstandard label processing routine.

If you want the control program to maintain a block count, your header label routines
that receive control from open or EOV must properly initiaHze the block count field
of the DCB. During EOV processing in BSAM and QSAM, the DCBIOBA field of
the DCB points to an lOB. The DCBBLKCT field must be decreased by the value in
the IOBINCAM field of that lOB. If chained scheduling is being used, the block
count in the DCB is correct and need not be decreased.

When processing is completed, the control program handles volume disposition in
accordance with the parameters of the DD statement. Your nonstandard label
processing routines are responsible for any positioning specified by the OPEN or
CLOSE macro instructions. If you need to process a data set more than once in a job,
or if you want to handle multiple data set volumes, your routines must control the
positioning. If you handle volume disposition in your nonstandard label processing
routines, you must issue volume disposition messages to the console operator. Data
management checks to see if your routine has handled disposition, and it bypasses
disposition and message handling if volume disposition is verified. Be extremely
careful when verifying a tape under one processing technique and then accessing the
tape under a second technique (for example, changing from NSL to NL with a verified
tape).

Following paragraphs explain the flow of control between the control program and
each type of nonstandard label processing routine. Information on tape positioning
and volume identification is also provided.

104 Data Facility Product Version 2: Customization

Support for RACF protection of tape volumes may be a part of nonstandard label
processing routines.

Input Header Label Routines

When nonstandard labels are specified, the control program checks the input tape to
make sure that the first record is not a standard volume label. If the first record
contains the identifier VOLt in the first 4 bytes, is recorded in EBCDIC, and is 80
bytes long, or it is recorded in ISCn/ ASCn and is 80 bytes or more in length, the
tape is rejected by a message from the control program directing the operator to
demount the current volume and mount the correct volume. The various error
conditions that can occur during verification of the first record are explained under
"Volume Label Verification and Volume Label Editor Routines" on page 122.

When it is determined that the tape does not contain a standard volume label, the
open or EOY routine gives control to your routine for processing input header labels.
Control comes from the open routine for the first or only volume of a data set, or for
a concatenated data set with unlike characteristics. (Data sets with like characteristics
can be processed correctly using the same data control block (DCB), input/output
block (lOB), and channel program. Any exception in processing makes the data sets
unlike.) Control comes from the EOV routine for the second and subsequent volumes
of a data set, or for a concatenated data set with like characteristics. When your
routine receives control, the tape has been rewound; the tape is positioned at the
interrecord gap preceding the nonstandard label.

Note: If the control program finds that the tape volume has been previously verified
in the job, the tape has not been rewound.

If your routine determines that the wrong volume is mounted, you must place a 1 in
the high-order bit position of the UCBDMCT field of the unit control block (UCB),
and return control to the control program. The control program then issues a message
directing the operator to mount the correct volume. When the volume is mounted, the
control program again checks the initial label on the tape before giving control to your
routine.

Before returning control to the control program, your input header label routine must
position the tape at the appropriate data set:

• For forward read operations, position the tape at the interrecord gap that
precedes the initial record of the data set.

• For backward read operations, position the tape after the last record of the data
set.

Input Trailer Label Routines

When a tapemark is encountered on an input tape, data management's EOY routine
gives control to your routine for processing input trailer labels, with two exceptions.
The EOV routine does not give control to your input trailer label routine when:

•

•

The FEOV macro instruction is used to force an end-of-volume condition.

At the end of the data set, the data control block (DCB) exit list indicates
deferred nonstandard input trailer label processing.

Chapter 7. Tape Label Processing Installation Exit Routines lOS

When your routine receives control, the tape is already positioned for label
processing:

• For forward read operations, the tape has been positioned immediately after the
tapemark at the end of the data set.

• For backward read operations, the tape has been positioned immediately before
the tapemark at the beginning of the data set.

Your routine need not reposition the tape before returning control to the control
program.

H additional volumes are specified in the job file control block (JFCB), the control
program uses the next-specified volume serial number and performs volume switching.
(You specify the volume serial numbers in forward sequence, regardless of whether
the tapes are to be read forward or backward.) H the new volume is not already
mounted, the control program issues a mount message to the operator. The new
volume is then processed by the EOV routine and your input header label processing
routine.

H another volume is not specified in the JFCB, the control program gives control to
your end-of-data-set (EODAD) routine that is specified in the data control block
(DCB). Subsequently, the processing program or the operating system closes the data
set. When an input data set is closed, your output trailer label routine is given control.
This allows you to position the tape if necessary. When an end-of-data-set condition
occurs and the data control block (DCB) exit list (EXLST) indicates deferred
nonstandard input trailer label processing, the close routine passes control to your
input trailer label routine before passing control to your output trailer label routine.
The DCB exit Ust is described in "EXLST Exit List" on page 34.

Output Header Label Routines

When nonstandard labels are specified for output, the control program checks the
tape to make sure that the existing first record is not a standard volume label. H the
first record is 80 bytes in length and contains the identifier VOLI in the first 4 bytes,
the tape is not accepted, as is. H an mM standard label exists, it is overwritten with
an mM tapemark, if possible. Han ISO/ANSI/PIPS standard label exists, the
console operator must confirm that it can be destroyed. The various error conditions
that can occur during verification of the first record are explained under "Volume
Label Verification and Volume Label Editor Routines" on page 122.

When the control program ensures that the first record on the tape is not a standard
volume label, the open or EOV routine gives control to your routine for processing
output header labels. Control comes from the open routine for the first or only
volume of a data set. Control comes from the EOV routine for the second and
subsequent volumes of a data set. When your routine receives control, the tape has
been positioned at the interrecord gap preceding the nonstandard label (the tape has
been rewound). However, the tape has not been rewound if the control program
found that this volume has been previously verified during the job.

H your routine determines that the wrong volume is mounted, you must place a 1 in
the high-order bit position of the UCBDMCT field of the unit control block (UCB)
and return control to the control program. The control program then issues a message
directing the operator to mount the correct volume. When the new volume is
mounted, the control program again checks the initial label on the tape before giving
control to your routine.

106 Data Facility Product Version 2: Customization

The volume serial number in the UCBVOLI field of the UCB and the volume serial
number in the JFCB must be the same as on entry unless a request is being made for a
nonspecific volume. The control program recognizes a nonspecific request by the
volume serial number requested in the JFCB being blank or SCRTCH. In this case,
UCBVOLI will be set to Lxxxxx, where xxxxx is a 5-digit decimal number. This
volume serial number is generated by the control program. It may be replaced in your
NSL routine by the volume serial number present in the volume label read from the
tape, or the volume serial number of the volume label written on the tape.

When control is returned to the control program from NSLOHDRO or NSLEHDRO
for a nonspecific request (as defmed in the preceding paragraph) and the UCBVOLI
field of the UCB has been modified, the control program will ENQ on the volume
serial number to effect volume integrity and will place the volume serial number in the
JFCB or JFCB extension. If some other technique than that just described is used to
support nonspecific requests, the NSL routine must update the JFCB and ENQ on the
volume serial number (system ENQ; major name; SYSZVOLS; minor name: 6-byte
volume serial number; exclusive ENQ). If the result of the control program's ENQ is
that the resource is unavailable (either the current task previously obtained the
resource or some other task holds the resource), the volume will be rejected.

Your routine need not reposition the tape before returning control to the control
program.

When tapes are first received at your installation, they should be initialized with a
tapemark or other record. If a blank tape is mounted for an output data set, it is read
through and removed from its reel when the control program looks for an existing
standard volume label.

Restart Label Processing Routine

If you restart at checkpoints and use tapes with nonstandard labels, you must provide
a routine to process nonstandard labels at restart time. You need only a routine to
check existing header labels. You do not need separate routines for input and output,
because output tapes will contain the header labels that were written when the data
sets were opened (before checkpoint).

At restart time, the control program checks the tape to make sure that the first record
is not a standard volume label. If the first record is 80 bytes long and contains the
identifier VOLI in the first 4 bytes, the tape is rejected by a message from the control
program directing the operator to mount the correct tape.

When it is determined that the tape does not contain a standard volume label, the
control program's restart routine gives control to your routine for processing
nonstandard labels. When your routine receives control, the tape has been positioned
at the interrecord gap preceding the nonstandard label (the tape has been rewound).

If your routine determines that the wrong volume is mounted, you must place a I in
the high-order bit position of the UCBDMCT field of the unit control block (UCB),
and return control to the control program. The control program then issues a message
directing the operator to mount the correct volume. When the new volume is
mounted, the control program again checks the initial label on the tape before giving
control to your routine.

Before returning control to the control program, your routine must position the tape at
the interrecord gap that precedes the initial record of the appropriate data set. This
applies to both forward and backward read operations. The control program then
uses the block count shown in the DCB to reposition the tape at the appropriate

Chapter 7. Tape Label Processing Installation Exit Routines 107

record within the data set. This positioning is always performed in a forward
direction. If the block count is zero or a negative number, the control program does
no positioning. (If you want the control program to reposition the tape, your normal
header label routines--open and EOY-must properly initialize the block count field
of the DCB. The block count field of the DCB must not be altered at restart time.)

Output Trailer Label Routines

Your routine for writing output trailer labels receives control from data management's
EOY or close routines. The EOY routine handles end-of-volume conditions
(reflective strip or FEOY macro instruction). The close routine handles
end-of-data-set conditions (CLOSE macro instruction). When your routine receives
control, the tape has been positioned at the interrecord gap following the last data set
record that was written.

Your routine need not reposition the tape before returning control to the control
program.

Your output trailer label routine is also given control when input data sets are closed.
This allows you to position the tapes if necessary.

Data Recovery

Recovery routines are given control when an error occurs during open, close, and
end-of-volume processing. One of the purposes of these routines is to provide data
recoverability in case of an error that results in abnormal termination of your task.
Data recoverability is provided in conjunction with your output trailer label routines
by writing a tapemark after the last data written to the tape. The tapemark serves to
indicate the end of the output data set, so that you can save the records written before
the error occurred. The tapemark will only be written if an unrecoverable error
occurs before your output trailer label routines have received control. If the error
occurs during or after the execution of your trailer label routines, no tape mark will be
written.

Writing Nonstandard Label Processing Routines

The following paragraphs describe conventions, requirements, and techniques for
writing your nonstandard label processing routines.

Programming Conventions

The programming conventions to be observed when writing your routines are:

• Size of the routine: Nonstandard label processing routines are not limited in size.

• Design of the routine: Nonstandard label processing routines must be read-only.
You cannot store into the routine, nor can you use macro instructions that store
into the routine.

• Register usage: When your routine receives control, it must save the contents of
registers 2 through 14 (in your own work area). Before returning control, your
routine must restore the contents of these registers.

• Entry point of the routine: The entry point of the routine must be the first byte of
the load module and must be on a doubleword boundary.

• Exit from the routine: You must use the XCTL macro instruction (E-form) to exit
from your routine and return control to a specific control program module. These

108 Data Facility Product Version 2: Customization

Program Functions

modules differ depending on the control program routine from which control was
received and the type of label processing being performed. Module names are
shown below for each control program routine and for each type of label
processing routine.

Label Processing Control Program Control Program
Routine Routine Module Name
Input Header Open IGG0190B

EOY IGGOSSOD
Input Trailer EOY IGGOSSOB
Output Header Open IGG0190R

EOY IGGOSSOH
Output Trailer EOY IGGOSSOF

Close IGG0200B
Restart Header Restart IGCOKOSB

Work areas: You must use the GETMAIN macro instruction to obtain virtual
storage for all your work areas, including areas used to read in or create a label.
You must use the FREEMAIN macro instruction to release this virtual storage.

In processing nonstandard labels, you must perform many of the functions that the
control program performs in processing standard labels. All input/output operations,
such as reading labels, writing labels, and positioning volumes, must be performed by
using the EXCP (execute channel program) macro instruction. The use of EXCP
normally requires that you build several control blocks in your work area. However,
you can save coding effort and virtual storage space by using control blocks already
established by the control program.

• When your routine receives control from the open or close routine, the status of
control information and pointers is as shown in Figure 42 on page 110.

• When your routine receives control from the EOY routine, register 2 contains the
address of a DCB, and register 4 contains the address of a combined work and
control block area. The format of this area is shown in Figure 43 on page 111.

• When your routine receives control from the restart routine, register 9 contains
the address of a restart table entry. The table entry contains the address of a
control block area. This status is as shown in Figure 44 on page 112.

• The nonstandard label routines receive control in protect key zero.

• The DCB is copied into protected storage during open/ close/EOY processing.
During open and close processing, register 5 points to a parameter list that
contains the address of the DCB in protected storage. During EOY processing,
register 2 points to the DCB in protected storage. The address of the user's DCB
is in the combined work and control block area at the label DXUDCBAD. If you
want to change the DCB, both copies, the user's DCB and the DCB in protected
storage, must receive the same change.

Chapter 7. Tape Label Processing Installation Exit Routines 109

I
~

I Register 5

..
I

.. ~ .~

Register 6

* This copy of the DCB is in protected storage.

* * DXUDCBAD is the address of the user's DCB.

Data Control Block·

Data Control Block·

Data Control Block·

Data Control Block-

Work and Control
Block Area

OXUOCBAO-- __ --J

Work and Control
Block Area

OXUOCBAO··

Work and Control
Block Area

OXUOCBAO"

Work and Control
Block Area

OXUOCBAO-·

Register 5 contains the starting address of a list of DCB addresses. Each DCB specified in the OPEN or
CLOSE macro instruction has a 4-byte entry in the list. The DCBs to which the entries point are in the
problem program. The list may also include one or more ACB addresses. The list, the DCBs, and any ACBs
will reside below the 16 M line.

For each DCB specified in the OPEN or CLOSE macro instruction, a combined work and control block area is
built. Register 6 contains the starting address of a table that contains an address for each work and control
block area. The addresses of the areas are contained in the low-order 3 bytes of 8-byte entries. The list of
8-byte entries begins 32 bytes from the starting address of the table. The format of the combined work and
control block area is shown in Figure 43.

Figure 42. Status of Control Information and Pointers

110 Data Facility Product Version 2: Customization

Work Area
C100 byte.,

Job File Control Block CJFCB'
1176 bytH'

Event Control Block CECB)-(4 byte.)

Input Output Block IIOB)
C40 bY'H'

Abbreviated Date Elltent Block COEB)
C44 byte.)

Abbreviated OCB· C4 by tea'

Channel Commend Word. CCCW)
148 by tea'

Open/Clole/EOV
Internal Field.

C140 bytes for Open/Close
192 bytes 'or EOV,

Each of the fields within the work and control block area can be addressed by your nonstandard label
processing routines. The IECDSECT macro instruction defines the symbolic names of all these fields. (The
macro definition and how to add it to the macro library are described in System-Data Administration.) Code
this macro instruction (with a null operand field and immediately preceded by a DSECT statement) in the list
of constants for each of your nonstandard label processing routines. Using the starting address of the work
area as a base, you are able to address any field symbolically.

When your nonstandard label processing routine receives control from the close or EOV routine, some of the
information shown in the work area DEB is not the same as contained in the actual DEB. If you need actual
DEB information at these times, you can get the address of the DEB from the DCBDEBAD field in the DCB.

Figure 43. Format of Combined Work and Control Block Area

Chapter 7. Tape Label Processing Installation Exit Routines 111

-
I - I Reg 9 Table Entrv Work and

Control Block
Area

Register 9 contains the starting address of a 48-byte table entry. Five bytes from the
starting address of this table entry, a 3-byte field (TABSEGAD) contains the starting
address of a work and control block area that is associated with the data set.

Figure 44. Status of Control Information and Pointers from the Control Program's Restart
Routine

General flowcharts of nonstandard label processing routines are shown in Figure 45
on page 113, Figure 46 on page 114, Figure 47 on page 115, and Figure 48 on
page 118. These flowcharts suggest the logic that you could use in your routines.
The logic is shown separately for routines receiving control from the open, close,
EOV, or restart routines of the control program. Each block in the flowcharts is
numbered, and the number corresponds to an item in the list of explanations that
follows.

112 Data Facility Product Version 2: Customization

• Yes Process
Label

Set Bit • In UCB
to 1

e
Restore

Re91sters

Adjust
for Next
DCB

Release
CD

Virtual
Storage

Figure 45. General Flow of a Nonstandard Label Processing Routine after Receiving Control from the Open Routine

Chapter 7. Tape Label Processing Installation Exit Routines 113

•
~ Obtain Restore

Virtual Regist"..-
Storage

Sov .. • Rel_e t»
Registers Virtual

Sterage

B

No

A

e
S"t Up Set Up
CCW CCW

c e
Adjust Creote
ror Next label
DCB

•

Figure 46. General Flow of a Nonstandard Label Processing Routine after Receiving Control from the Close Routine

114 Data Facility Product Version 2: Customization

Entry from 0
Control Program

Obtain • Virtual
Storage

Sove • Register>

Set Bit • in UCB
toO

Determine CD
Type of I/O
Operation

• Set Up
CCW

•
Yes

,.--............ -.,1)
Set Bit
in UCB
to I

Process
Label

Restore
Registen

Release
Virtual
Storage

•
.,

•

>-,-N:::::O ___ ~ A

Figure 47. General Flow of a Nonstandard Label Processing Routine after Receiving Control
from the EOV Routine

Explanation of Logic Blocks-Figures 45, 46, and 47

1 The entry is in the form of an XCTL macro instruction issued by the control
program.

1 Use the GETMAIN macro instruction to obtain virtual storage.

3 Use the store multiple (STM) instruction.

4 To locate the address of the data control block (DCB), use the contents of
register 5. To determine if the DCB is to be processed, test bits 6 and 7 of the
DCBOFLGS field of the DCB; if these bits are 1, the DCB is to be processed.
(The symbolic names of aU fields in the DCB are defined by the DCBD macro

Chapter 7. Tape Label Processing Installation Exit Routines 115

instruction.) The user's DCB is pointed to by the DXUDCBAD field on the
combined work and control block area.

If a DCB in the CLOSE parameter list is not open at entry to CLOSE, it will not
be processed, and its entry in the where-to-go table will be all zeros.

S To determine if a tape data set is being processed, test the UCB3TAPE field of
the unit control block (UCB); this bit is 1 for a tape data set. The symbolic
names of all fields in the UCB are defined by the IEFUCBOB macro instruction.
The address of the UCB is contained in the DXDEBUCB field of the data extent
block (DEB) as defmed by the IECDSECf macro instruction. (The
IEFUCBOB and IECDSECT macro definitions and how to add them to the
macro library are described in System-Data Administration.)

6 To determine if nonstandard labels have been specified, test the JFCBLTYP
field of the job file control block (JFCB); this field contains a hexadecimal 04
when nonstandard labels have been specified.

7 The final DCB entry in the list of DCB addresses contains a 1 in its high-order
bit position.

8

9

Add 4 to the contents of register 5; add 8 to the contents of register 6.

Set the high-order bit to 0 in the UCBDMCT field of the UCB.

10 To detennine the type of I/O operation specified in the OPEN macro
instruction, check the bit configuration of the high-order byte of the DCB entry
in the list of DCB addresses. The bit configuration for each type of I/O
operation is shown below. (The high-order 4 bits correspond to the disposition
of the data set; the low-order 4 bits correspond to the I/O operation itself. For
example, the bit configuration xOllOOOO indicates a data set opened for input
whose disposition is LEAVE.)

o 1 1 3 4 S 6 7 Bits

x 0 0 1 x x x x REREAD
x 0 1 1 x x x x LEAVE
x 0 0 0 x x x x Neither REREAD nor LEAVE
x x x x 0 0 0 0 INPUT
x x x x 1 1 1 1 OUTPUT
x x x x 1 1 1 0 EXTEND
x x x x 0 1 1 1 OUTIN
x x x x 0 1 1 0 OUTINX
x x x x 0 1 0 0 UPDAT
x x x x 0 0 1 1 INOUT
x x x x 0 0 0 1 RDBACK

11 To determine the mode of the data set, test the high-order bit of the
DCBOFLGS field of the DCB. If this bit is I, the data set mode is output; if this
bit is 0, the data set mode is input. (The symbolic names of all fields in the DCB
are defined by the DCBD macro instruction.)

11 You may want to position the tape if you have closed an input data set before all
data has been read.

116 Data Facility Product Version 2: Customization

13 Move your CCW into the channel program area of the control program's work
area. (The symbolic name of the first entry in the channel program area is
DXCCW.) You can use the first six entries.

14 Issue an EXCP macro instruction specifying the address of the control program's
lOB. (The symbolic name of the lOB is DXIOB.)

15 Techniques used to check for correct volume differ depending on the label
formats used in the installation.

16 Label processing routines differ by label format.

17 If a write operation is required, this block can be used.

18 Issue an EXCP macro instruction specifying the address of the control program's
lOB. (The symbolic name of the lOB is DXIOB.)

If the command is a rewind, set the rewind-issued bit in the UCB (UCBWGT
field, bit 3) before issuing the EXCP.

If the command is a rewind-unload, set the unit-not-ready bit in the UCB
(UCBFLl field, bit 1) and zero out the UCB volume serial number field
(UCBVOLI) after the channel program is complete.

19 Set the high-order bit to 1 in the UCBDMCT field of the UCB.

:%0 Use the load multiple (LM) instruction.

Z1 Use the FREEMAIN macro instruction to free the work area obtained in step 2.

ZZ Use the XCTL macro instruction, specifying the appropriate operand.

The following coding sequence illustrates an exit from your routine during open
or close operations. Register 4 contains the address of the control program's
open/ close work area.

USING
LR

LM
FREEMAIN
BALR
USING
MVC

LA
XCTL

MOD NAME DC

IECDSECT,4
I,SAVEBASE

2,14,REGSAVE
R,lV=size,A=(I)
15,0
*,15
0(8.6) .MODNAME

put work area pointer in
register 1 for FREEMAIN
restore caller registers

use 15 as temporary base

module name to
open/close area

15.DXCCWI2 use open work area
EPLOC=(6).SF=(E.(15))
C I IGGxxxxx I

The following coding sequence illustrates an exit from your routine during
end-of-volume operations. Register 4 contains the address of the control
program's EOV work area.

USING
LR

LM
FREEMAIN
BALR
USING
MVC
LA
LA
XCTL

MOD NAME DC

IECDSECT,4
I,SAVEBASE

2,14,REGSAVE
R,LV=size,A=(l)
15,0
* ,15

put work area pointer in
register 1 for FREEMAIN
restore caller registers

use 15 as temporary base

DXXMODNM,MODNAME module name to EOV area
15,DXCCWI2 use EOV work area
5,DXXMODNM address of module name
EPLOC=(5),SF=(E,(15))
C I IGG055xx'

Chapter 7. Tape Label Processing Installation Exit Routines 117

•
• Obtai"

Virtual
Storage

e
Sov.
Regi.t ...

e
Set Up CCWa"d
DEB Mode Set Byte

Ve.

Ves

,....-----1-----.0
Set Bit in
UCB to I

•
Relto'e Re9ilte ..

..
R.leol.
Virtual
Storage

•

• S.t Bit in
Table Entry A
tal

•
Procel. label A

Figure 48. General Flow of a Nonstandard Label Processing Routine after Receiving Control
from the Restart Routine

118 Data Facility Product Version 2: Customization

Explanation of Logic Blocks-Figure 48

t The entry is in the form of an XCTL macro instruction issued by the control
program.

2 Use the GETMAIN macro instruction to obtain virtual storage.

3 Use the store multiple (STM) instruction.

4 Move your CCW into the channel program area of the control program's work
area. (The symbolic name of the first entry in the channel program area is
RSCCW1.)

The device modifier byte, RSDEBMOD, in the DEB portion of the restart work
area, is provided by the control program and will contain the mode-set command
for the data portion of the tape. If the nonstandard labels at your installation are
recorded in a mode different than the data, your NSL routine must set the device
modifier byte (RSDEBMOD) to the density and recording technique of the
labels. (See "Tape Characteristics" in Magnetic Tape Labels and File Structure.)

S Issue an EXCP macro instruction specifying the address of the control program's
lOB. (The symbolic name of the lOB is RSIOB.)

6 Determine if an uncorrectable I/O error occurred. This can be any type of error
that you do not want to accept.

7 Set the high-order bit to 1 in the TABTPLBL field of the table entry.

8 Techniques used to check for correct volume differ depending on the label
formats used in the installation. The volume serial number for the mounted
volume is shown in the UCB.

t Perform any necessary label processing and tape positioning.

to Set the high-order bit to 1 in the UCBDMCT field of the UCB.

tt Use the load multiple (LM) instruction.

t2 Use the FREEMAIN macro instruction to free the work area obtained in step 2.

t3 Use the XCTL macro instruction. The following coding sequence illustrates an
exit from your routine.

LR I,SAVEBASE put work area pOinter in
register 1 for FREEMAIN

LM 2.14.REGSAVE restore caller registers
FREEMAIN R.LV=size.A=(l)
BALR 15.0 use 15 as temporary base
USING * .15
L 1,4(.9) put pOinter to restart

work area into register 1
(see Figure 12)

MVC 12S(S.I).MODNAME put module name in
restart work area

LA 15 t120(,1) set up XCTL
parameter pointers

LA 5,12S(,1) set up xcn
parameter pOinters

XCTL EPLOC=(5),SF=(E,(15»
MODNAME DC C I IGCOK05B I

Chapter 7. Tape Label Processing Installation Exit Routines 11'

Inserting Nonstandard Label Routines Into the Control Program

Because they are type 4 SVC routines. nonstandard label processing routines must be
included in the control program as part of LP ALm. This is done during the system
generation process. (The routines may also be inserted after system generation by
link editing them into LP ALm. This procedure is similar to replacing volume label
editor routines, which is described in "Volume Label Verification and Volume Label
Editor Routines" on page 122. The routines may also be added after system
generation by using the SVCUPDTE macro. For information on the SVCUPDTE
macro. see System Macros and Facilities.)

Before your routines can be inserted into the control program, each load module must
be a member of a cataloged, partitioned data set. You must name this data set with
the SYSI prefix (for example, SYS1.name).

To insert your load modules into the SVC library during system generation, you use
the SVCLm macro instruction. With this macro instruction, you must specify the
name of the partitioned data set and the names of members to be included in the SVC
library. Member names for the first load module of each type of label processing
routine are listed below., Member names for additional load modules must begin with
the letters NSL or IGC. The format and specifications of the SVCLm macro
instruction are in System Generation Reference.

Nonstandard Label Control Program Member
Processing Routine Routine Name
Input Header Open NSLOHDRI

EOV NSLEHDRI
Output Header Open NSLOHDRO

EOV NSLEHDRO
Input Trailer EOV NSLETRLI
Output Trailer EOV NSLETRLO

Close NSLCTRLO
Restart Header Restart NSLRHDRI

Automatic Volume Recognition (AVR) Nonstandard Label Processing Routine

To enable the A VR option to process nonstandard magnetic tape labels, you must
write a routine to supply A VR with information concerning the nonstandard labels.
This routine is inserted in the control program in place of an mM-supplied routine
that causes A VR to reject tape volumes that do not have standard labels. The
information returned to A VR by your routine consists of a validity indication (for
example, the label read is valid) and the location within the nonstandard label of the
volume serial number field. Specifically. your routine must:

1. Determine if the label under consideration is a valid. nonstandard label as defined
by your installation.

2. Set general register 15 to zero if a valid label is detected, or to nonzero if the label
is not recognizable. (A nonzero return causes A VR to unload the tape volume
and issue an error message.)

3. When a valid label is detected, place the location of the volume serial number
field within the label in an area provided by A VR. (The label, or the first part of
it, is read into an 80-byte work area by A VR before your routine receives control;
the location is defined within this work area. Also before your routine receives

120 Data Facility Product Version 2: Customization

Entry Conditions

Conventions

control, A VR positions the tape at the interrecord gap after the nonstandard
label.)

4. Return control to A VR. Register 14 contains the return address. (The SA VB
and RETURN macro instructions may be used in your routine.)

Your label processing routine receives control when the A VR routine cannot identify
the first record on a magnetic tape volume as a standard label. The various error
conditions that can occur during verification of the first record are explained under
"Volume Label Verification and Volume Label Editor Routines" on page 122.

When your routine receives control, the A VR routine has placed the nonstandard
label in an 80-byte work area, and general register 1 contains the address of a 2-word
area whose contents are as follows:

Word I The address of the beginning byte of the 80-byte work area

Word 2 The address of a I-word area where your routine stores the beginning
address of the volume serial number field within the nonstandard label

The format of your installation's nonstandard label(s) must provide for a 6-byte
volume serial number field within the first 80 bytes of the label. Otherwise, the
volume serial number will not be read into the 80-byte internal work area. This does
not restrict the overall nonstandard label format from being more, or less, than 80
bytes in length.

The name of your routine must be IEFXVNSL.

Inserting AVR Nonstandard Label Routines into the Control Program

You may replace the mM-supplied routine IEFXVNSL with your routine by link
editing your assembled routine into the SYS1.AOSB3 data set prior to system
generation, or you may replace the mM-supplied routine after system generation by
link editing your assembled routine into the control program module. The module is
IEFXV A VR and the object deck step is as follows:

INCLUDE
ALIAS
ENTRY
NAME

Object Deck

SYSLMOD
IEFXVOOI
IEFXVOOI
IEFXVAVR

Volume Verification and Dynamic Device Reconfiguration

If you use nonstandard tape labels and you want to use the dynamic device
reconfiguration (DDR) option, you must perform your own volume verification. Note
that you must be able to perform your verification within the first 48 bytes of any
record in your nonstandard label.

Before system generation time, code a routine named NSLREPOS and link edit it into
a cataloged partitioned data set. Then, identify the member of the partitioned data set

Chapter 7. Tape Label Processing Installation Exit Routines 121

that contains NSLREPOS in the LP ALIB system generation macro instruction. Link
edit NSLREPOS into the LP ALm after system generation.

When your NSLREPOS routine receives control from the DDR tape reposition
routine, register 2 contains a pointer to an XCTL list (built by DDR) in IORMSCOM.
This list contains the module name to which you transfer control when you return
control to DDR. Register 5 points to a buffer (SVRBEXSA) containing the first 48
bytes of a record of your label. The serial number of the volume against which
verification is made is in the STREVOLI field of the UCB. Register 7 contains the
UCB address.

Before returning control, your routine should put one of the following hexadecimal
codes into register 0:

Code Expbmation

o (X'OO') Volume verification is complete. Because a tapemark follows this
label, the tape reposition routine must position the tape to that
tapemark and clear the block count it has accumulated before it begins
repositioning.

4 (X'04') The NSLREPOS routine needs more information for volume
verification. When the tape reposition routine receives this code, it
reads the first 48 characters of the next record into the buffer and
returns control to NSLREPOS.

8 (X'08') The wrong volume has been mounted. When the tape reposition
routine receives this code, it sends a message to the operator
explaining that the wrong volume has been mounted.

12 (X'OC') Volume verification is complete. Since no tapemark follows this label,
the tape reposition routine repositions the volume, using the block
count it has accumulated.

16 (X 'I 0') Volume verification is complete. Because the tapemark following the
label has already been reached, the tape reposition routine clears the
block count it has accumulated and repositions the volume.

If NSLREPOS uses any registers other than register 0 or 14, the routine must save the
registers in subpool 245 (using a GETMAIN macro) and store them in its own area
before returning control to the tape reposition routine. When your NSLREPOS
routine returns control to DDR, the foUowing sequence should be used:

LR 15,2
XCTL SF=(E,(15»

Volume Label Verification and Volume Label Editor Routines

If you specify that an input or output tape has a standard label, the operating system
checks for the standard volume label at the beginning of the tape. For
ISO/ ANSI/FIPS tapes, the system checks for the correct version. If you specify that
the tape has nonstandard labels or no labels, the system attempts to verify that the
first record is not a standard volume label.

Because of conflicting label types or conflicting tape characteristics, various error
conditions can occur during this verification of the first record. Under some error
conditions, the tape is accepted for use. Under other error conditions, the tape is not
accepted and the system issues another mount message. For certain other error
conditions, the system gives control to a volume label editor routine; your installation

122 Data Facility Product Version 2: Customization

can use routines supplied by mM or it can supply its own routines. The mM-supplied
volume label editor routines determine the discrepancies between the requested tape
and the mounted tape and, if necessary, pass control to the appropriate data
management routine to create or destroy labels, as required. Installation-supplied
routines can perform other functions.

Verification of First Record

The system reads the first record on the tape in accordance with the following criteria:

• H a single-density 9-track tape unit is used, the record is read in the density (800
bpi, 1600 bpi, or 62S0 bpi) of the unit. H the record cannot be read, a unit check
occurs.

• H a dual-density 9-track tape unit is used, the record is read in its existing density,
provided that density is available on the unit. H the density is not available, a unit
check occurs. H the record is a 7-track record, a unit check occurs.

• If a 7-track tape unit is used, the first record is read in the density specified by the
user and in the translate on, even parity mode. H the record is in another density
or mode, or is a 9-track record, a unit check occurs. ISO and ANSI do not specify
support of 7-track tape for information interchange.

• H an 18-track tape unit is used, the record is read in the density of the unit. H the
record cannot be read, a unit check occurs. ISO and ANSI standards do not
include a specification of 18-track magnetic tape for information interchange.

As previously explained, various error conditions can occur during the system's
verification of the initial record on a tape. The system actions resulting from these
error conditions are shown in Figures 49, SO, and S1. Figure 49 on page 124 shows
the actions when standard labels are specified; Figure 50 on page 125 shows the
actions when nonstandard labels are specified; Figure 51 on page 126 shows the
actions when no labels are specified.

Chapter 7. Tape Label Processing Installation Exit Routines 123

YES

NOTE 1

VOL LABEL
EDITOR RTN
(DENSITY CHECK)

NOTE 1

VOL LABEL
EDITOR RTN
(LABEL CHECKI

NOTE 1: OMOOVOL1 OR EMOOVOL1.

Figure 49. Verification of First Record When Standard Labels Are Specified

124 Data Facility Product Version 2: Customization

NSL SPECIFIED

TO USER'S NSL
ROUTINE

YES

NO

NOTE 1

VOL LABEL
EOITOR RTN
ILABEL CHECK I

NOTE 1

VOL LABEL
EDITOR RTN
(DENSITY CHECKI

TO USER'S NSL
ROUTINE

NOTE 1: OMODVOL1 OR EMODVOL1.

Figure 50. Verification of First Record When Nonstandard Labels Are Specified

Chapter 7. Tape Label Processing Installation Exit Routines 125

NCOR 8LP
SPECIFIED

ACCEPT TAPE

NOTE I

VOL LABEL
EDITOR RTN
ILA8EL CHECKI

ISSUE MOUNT
MESSAGE

NOTE 1: OMODVOL1OR EMODVOL1.

DESTROY LA8EL
>-......;..~., • WRITE TAPE

MARK

Figure 51. Verification of First Record When Unlabeled Tape Is Specified

Volume Label Editor Routines

When data sets are written on tape, data management's open or EOV routine may
detect conflicts between:

• The label type specified by the user and the actual label type on the mounted
output volume (OUTPUT or OUTIN).

• The recording density specified by the user and the actual density of the output
volume (OUTPUT, OUTIN, or INOUT) mounted on a dual-density tape unit.

• The volume serial number specified by the user and the actual volume serial
number on the mounted output volume (OUTPUT or OUTIN).

• The existing label version on the mounted output volume and ISO/ANSI/PIPS
Version 3.

126 Data Facility Product Version 2: Customization

When such conflicts occur, control is given to the volume label editor routines. The
mM-supplied editor routines determine whether the data management routines can
resolve the conflict.

H the volume label editor routines accept a conflict while opening to the f11'St data set
on an ISO/ANSI/PIPS Version 3 volume, the system will enter RACF, check the
expiration date, and enter the fUe access exit before requesting permission from the
operator to create a new VOLllabel (the volume access exit is entered prior to label
conflict processing).

H a nonspecific volume request is made for a standard labeled tape, but the mounted
volume does not have a standard label, data management issues a message to the
operator requesting that the volume serial number and owner information be supplied
or, optionally, that the use of this tape volume be refused.

Note: H a specific volume request is made and the label format of the mounted
volume does not match the format specified in the processing program, data
management will reject the tape and issue a message to mount another volume.
However, if a specific volume request is made for an SL tape and the mounted tape is
unlabeled, data management gives the operator the option of labeling or rejecting the
tape.

H a nonspecific volume request is made for a nonstandard labeled or unlabeled tape,
but the mounted volume has a standard label, data management gives the operator the
option to allow or refuse the use of the tape under the following conditions:

• The file sequence number is not greater than 1.

• The expiration date has passed, or the operator has allowed the use of the tape.

• The volume is not password protected nor is it RACF protected and the accessor
is ALTER authorized.

H the preceding conditions are not met, data management rejects the tape and issues a
mount message. Data management follows the same procedure if the conditions are
met, but the operator refuses the use of the tape.

H the operator accepts the tape, data management destroys the volume label by
overlaying it with a tapemark and deletes the RACF defInition of the volume if it was
found to be RACF defined and the user is ALTER authorized.

Note: Even if the password is known, a password-protected tape that is not RACF
defmed is not converted to NL or NSL.

For dual-density tapes with standard labels, data management rewrites the labels in
the density specified when an output request is made to the first data set on a volume.
When an output request is made to other than the first data set, the labels are
rewritten in the density specified in the existing labels.

For tapes with ISO/ANSI/PIPS labels, data management rewrites the VOLI label
only in the case of a density conflict.

H the existing ISO/ANSI/PIPS label is not Version 3 during an output request to the
f11'St data set on the volume, the volume label editor routines offer an option that
allows the label to be rewritten to conform to Version 3 standards. The WTOR
installation exit may be used to provide label information for the new Version 3 label
instead of requiring the operator to supply it via a WTOR message (see "Appendix D.
Version 3 Installation Exits"). H a version conflict is detected for an output request

Chapter 7. Tape Label Processing Installation Exit Routines 127

to other than the first data set, the volume is unconditionally rejected by open/BOY
after issuing an IEC512I LBL STD "VRSN" error message.

You can replace the ffiM-supplied editor routines with installation routines that
resolve the conflict to your own specifications. Your editor routines can resolve label
and density conflicts by writing labels, by overwriting labels with a tapemark, and by
performing write operations to set the correct density on a dual-density tape device.
Or, your editor routines can reset the appropriate system control blocks (in effect,
change the program specifications) to agree with the label type and/or density of the
currently mounted volume. Or, you may desire a combination of these actions,
including demounting of the volume under certain conditions. You may include all of
these possible actions in the design of your editor routines.

There are two mM-supplied editor routines. One gets control from the open routine
for handling the first or only volume of a data set. The other gets control from the
BOV routine for handling the second and subsequent volumes of a multivolume data
set. You can replace either or both of these routines.

The remainder of this section provides the information necessary for writing editor
routines and inserting them into the control program.

Programming Conventions

Your editor routines must conform to the same general programming conventions as
the nonstandard label processing routines discussed under "Programming
Conventions" on page 108, for size, design, register usage, entry points, and work
areas. As discussed under "Nonstandard Labels" on page 102, you must use the
BXCP macro instruction to perform needed input/output operations.

You must name the first (or only) module of your routines as follows:

OMODVOL1 The editor routine associated with open

BMODVOL1 The editor routine associated with BOV

If your editor routines consist of more than one load module, names for the additional
modules must begin with the prefix OMODVOL for the open routine, or BMODVOL
for the BOV routine. Transfer between the modules must be by name.

Note: With an mM 3480 Magnetic Tape Subsystem, the open and BOV routines
normally use BXCP appendages when processing labels. For the duration of the open
or BOV, they normally save labels in virtual storage buffers to improve performance
by avoiding an unnecessary change of direction on the tape. The BXCP appendages
simulate most types of channel programs that read. For channel programs that they
do not simulate, they move the tape to the point where your routine expects the tape
to be and then allow the channel program to execute. They are designed to do
simulation so as to appear to have no effect except to improve performance.

If your routine does I/O, it should use the DeB that is in the work area. The DEB
appendage vector table should not be substituted or modified.

128 Data Facility Product Version 2: Customization

Program Functions

Figure 52 on page 130 presents the five conditions under which the open or EOV
routines transfer control to your editor routines. Each condition suggests a general
action that your routine could take to permit processing of the current volume to
continue. The first two conditions (density checks) arise only when the tape volume
is mounted on a dual-density tape device.

General flowcharts of editor routines are shown in Figure 53 on page 132 and
Figure 54 on page 133. These flowcharts suggest the logic that you could use in
your routines. The logic is shown separately for routines that receive control from the
open or EOV routine of the control program. Each block in the flowcharts is
numbered, and the number corresponds to an item in the list of explanations that
follows. Other items to note are:

• The logic in the flowcharts is oriented toward resolving the label and density
conflicts by altering the characteristics of the mounted volume.

• Figure 54 on page 133 (the EOV editor routine) does not contain logic blocks
corresponding to blocks 5, 18. and 19 in Figure 53 on page 132 (the open editor
routine). These blocks represent functions that you must program only when
receiving control from the open routine. You must test all the DeBs defined by
the OPEN macro instruction before returning control to the open routine. When
you receive control from the EOV routine, there is only one DCB to process.

• H your installation does not support expiration date and protection checking on
nonstandard label volumes, and does not desire to maintain such checking on
standard label volumes, you need not implement the functions of logic blocks 6
through 14 in the flowcharts.

• The DCB is copied into protected storage during Open/Close/EOV processing.
During open and close processing, register 7 points to a parameter list that
contains the addresses of the DCB in protected storage. During EOV processing,
register 2 points to the DCB in protected storage. The address of the user's DCB
is in the Open/Close/EOV work area at the label DXUDCBAD. H the DCB is
to be changed, both copies must receive the same change.

Chapter 7. Tape Label Processing Installation Exit Routines 129

Mounted
Volume

Program Character- Transfer Possible Editor
Specification istics Conditions Routine Action

ALor SL- ALlorSL Density Overwrite the standard label
9-track tape Check2 with a standard label. The

first write from load point
sets the recording density on
a dual-density device. (See
Figure 53 or 54-blocks
15B, 16, and explanation.)

NSV-800bpi NSL or NL Density Write a tapemark to set
or 1600 Check2 density. The program
bpi density specification NSL will cause

control to be given to your
nonstandard label routines
after return to Open or
BOY. (See
Figure 53-blocks 15, 15B,
and 16. IT your installation
supports protection and
retention date checking on
NSL volumes, see block 6.)

SLor AL NSLor Label Check6 Write a standard volume
NLs label. (See

Figure 53-blocks 15, 15A,
and 16. IT your installation
supports protection and
retention date checking on
NSL volumes, see block 6.)

NLorNSL SL4 0r ALI Label Check Overwrite standard label
with tapemark, for example,
cancel. (See
Figure 53-blocks 15, 15A,
and 16.) Depending on
whether NL or NSL is
specified by the program,
open or BOY will either
position tape (NL) or
transfer control to your non-
standard label routines
(NSL).

Figure 52 (Part 1 of 2). Editor Routine Entry Conditions from the EOV Routine

130 Data Facility Product Version 2: Customization

Mounted
Volume

Program Character- Transfer Possible Editor
Specification istics Conditions Routine Action

AL SL Label Check Overwrite an mM standard
label with a Version 3
VOL 1 label.

SL ALl Label Check Overwrite ISO/ ANSI/FIPS
label with an mM standard
label.

AL ALl Compatibility Overwrite an ISCn/ ASCn
Conflict label with a Version 3 label

(first file output only).

Figure 52 (Part 2 of 2). Editor Routine Entry Conditions from the EOV Routine

Legend:

AL ISO / ANSI/FIPS standard volume label
SL mM standard volume label
NSL Nonstandard volume label
NL No volume label

Notes:

The open and EOV routines position the tape at load point before transferring
control to the editor routines.

2 ISO / ANSI/FIPS standard labeled tape cannot be overwritten witliout the
permission of the console operator.

3 Dual-density devices only.

4 If NL is specified, no density check is performed. For NL volumes, tape is
positioned at load point and recording density is set by the first write command.

S If the volume is mounted on a dual-density device, a density condition may also
exist. It will be corrected by the write operation.

6 When SL is specified, a label check may also indicate that the system could not
recognize the first record because of a unit check condition.

Chapter 7. Tape Label Processing Installation Exit Routines 131

Obtain
Virtual
Storage

ESlabhsh
Add abilily
of Control
Information

o

•

Rewind ond
Unload
Current
Volume

luue
Mount

Message

Test Bits 1-2
in

A

Write 0

Standard
Volume Label
01 Tapemork

Zero UC8
Vol Ser No. and
Set Mount
Switch "ON"

Increment
the Poi nfer to
the No.t DCB

Figure 53. General Flow of an Editor Routine after Receiving Control from the Open Routine

132 Data Facility Product Version 2: Customization

Get Lobel Type
From
JFCBLTYP
Field

Virtuol
Storage

Return to
Control Program

Enlry From
Conlrol Program

o

r---'----, •
Obtain
Virtuel
Sloroge

.----'----.0
Establish
Addressabihly
01 Control
Informarion

A

T e.' Bits 1-2
in
JFCBMASK+S

Rewind and
Unlood C u"enl
Volume

Write a
Slondord
Volume L"bel
or Topemark

Zero UCB Vol
Ser No. and Sel
Mounl Swilch
"ON"

Restore
Re-gisters
Insert X'OJ'
in Reg 8

Re/ea.e
Virtual
Storage

Return to
Control Progrom

•

e

~

•

Gel Label T YP"
From
JFCBLTYP
t'ield

Figure 54. General Flow of an Editor Routine after Receiving Control from the EOV Routine

Chapter 7. Tape Label Processing Installation Exit Routines 133

Explanation of Logic Blocks--Figures 53 and 54

1 Your exception routine receives control by means of an IECRES macro
instruction issued by the open or EOY routines of the control program.

2 Use the GETMAIN macro instruction. The virtual storage you obtain must
contain all your work areas, including those used to read in a label or write a
label.

3 Use the store multiple (STM) instruction.

4 Figure 42 on page 110 provides the information you need to establish
addressability of the DCB address list and work and control block area for each
DCB defined by the OPEN macro instruction.

When you receive control from the EOY routine, general register 2 contains the
address of the DCB for the data set, and general register 4 contains the address
of the work and control block area associated with the DCB.

The IECDSECT macro instruction (described in System-Data Administration)
symbolically defines the fields of the work and control block area (see Figure 43
on page 111).

You will also need to address the unit control block (UCB) for the device on
which the tape volume is mounted. The address of the UCB may be obtained
from the DXDEBUCB field of the data extent block defined by the IECDSECf
macro instruction. The IEFUCBOB macro instruction (described in
System-Data Administration) defines the fields of the unit control block.

5 Bit configurations in the byte addressed by JFCBMASK+5 indicate whether
label checks or density checks have occurred, and, in the case of a label check,
the condition that caused the check. At this point, you test bits 0 and 3. If
either bit is set to 1, processing is required. However, if bits 6 and 7 of
DCBOFLGS are set to 0, you should discontinue processing. When bit 6 (lock
bit) is 0, the control program cannot open the DCB. When bit 7 (busy bit) is 0,
the DCB is already being processed or is already open.

The field JFCBMASK is defined by the IECDSECT macro instruction. Bit
settings in the byte at JFCBMASK + 5 are defined as:

Bits Setting

o 1

1 1

Meaning

Label check has occurred.

Standard label (SL or AL) specified; no
label! nonstandard label on mounted volume.

Note: If JFCBAL (AL label requested) is set and
UCCBBSTR is set in the UCB (ISCII/ ASCII tape
is mounted), an ISO/ANSI/PIPS version conflict
has occurred, and a valid Version 3 volume label
must be created.

134 Data Facility Product Version 2: Customization

Bits Setting

2 1

3 1

Meaning

No label (NL) or nonstandard label (NSL)
specified; standard label (AL or SL) on mounted
volume.

Density check has occurred.

4-7 Reserved for possible future use.

6 H your installation supports a protection and retention date scheme involving
nonstandard labels, and/or you want to maintain retention date and protection
checking on standard labels, you must incorporate code in your editor routines to
check for protection and retention date expiration.

H checking is desired, you must, at this point, read the first record and determine
the label type.

To perform the I/O operation, move your CCWs into the channel program field
of the work and control block area. The symbolic name for the first entry in this
field is DXCCW. Then issue an EXCP macro instruction specifying the address
of the control program's input/output block (lOB). The symbolic name for the
lOB is DXIOB. These fields (DXCCW, DXIOB) are defined by the
ffiCDSECT macro instruction.

Note: There are 12 CCW locations in the DXCCW field. You can only use the
first six locations.

7 To check the retention date and/or protection fields in a standard label, you
must read the data set header 1 record into a work area. The format of the
nonstandard label defined by your installation determines how you access the
protection and retention date fields in the nonstandard label. Step 6 provides
directions for handling the I/O operation.

8 Write a message to the operator that the volume is protected and to determine if
it is to be used.

9 Repeat step 7 above.

10 Write a message to the operator that the expiration date for the mounted volume
has not elapsed and to determine if it is to be used.

11 If the volume is to be used, continue processing to resolve label or density
conditions.

12 Rewind and unload the currently mounted volume. Step 6 provides directions
for handling the I/O operation. When you issue the rewind and unload
command, you must turn on the UCB not-ready bit (UCBFL2) after the ECB
has been posted. If you want the open/EOV mount verification routines to
handle the mounting/demounting on volume verification, set bit 4 (X'08') of
JFCBMASK+S in the open/EOV work area and go to block 22 to return to
open/EOV. Subsequent volume level errors will cause the label editor routines
to be reentered.

13 Write a message to the operator requesting demounting of the current volume
and mounting of a new volume. The device name (in EBCDIC) may be
obtained from the UCBNAME field of the unit control block. Step 6 provides
directions for handling the I/O operation.

14 If a new volume is to be mounted, repeat step 6.

Chapter 7. Tape Label Processing Installation Exit Routines 135

15 Test bit 3 of the byte at JFCBMASK+5. If set to I, control was received as a
result of a density check.

Test bit 0 of the byte at JFCBMASK+5. If set to I, control was received as the
result of a label check.

a If control was received as the result of a label check, test bits 1 and 2 of the
byte at JFCBMASK+5. See step 5.

b If control is received as the result of a density check, use the JFCBL TYP
field in the job file control block (JFCB) to ascertain the type of label
specified in the program. A hexadecimal 04 indicates a nonstandard label
(NSL) has been specified; a hexadecimal 02 indicates that a standard label
has been specified.

16 When correcting a density check or label check condition, and a nonstandard
label (NSL) or no label (NL) is specified by the program, you must write some
kind of record on the tape that will be interpreted by the open or EOV routines
as a nonstandard label or no label; for example, it does not contain VOLI in the
first four bytes of the record. The easiest way to do this is to write a tapemark.
Upon return to open or EOV and reverification of the label, the specification for
label type and density will have been met. Open or EOV will transfer control to
your nonstandard label routines if NSL is specified, or position the tape for
writing if NL has been specified.

You must supply information for the label identifier, the label number, and the
volume serial number fields, and record the balance of the label as blanks.

You enter VOL in the label identifier field, a 1 in the label number field, and a
6-character serial number in the volume serial number field.

Note: To ensure that two or more tape volumes carrying the same serial number
are not produced, write to the operator at this point for assignment of a serial
number.

Data set header labels 1 and 2 are constructed by the open or EOV routine after
control is returned to them.

Note: At this point, you can change the control block settings to conform to the
characteristics of the tape volume mounted (that is, reset the label type field in
the JFCB to conform with the type of label on the volume mounted and change
the density field in the DCB to the density of the tape mounted).

17 The symbolic name for the volume serial number field in the unit control block is
UCBVOLI. The mount switch is the high-order bit of the field named
UCBDMCT in the unit control block. These fields are defined by the
IEFUCBOB macro instruction. Perform an exclusive OR (XC) operation on the
UCBVOLI field with itself and perform an OR (01) operation on the
UCBDMCT field with X'80'. This will cause the mount verification routines to
bypass further label processing and reverify the tape without an intervening
demount.

18 When receiving control from the open routine, you must process the entire DCB
list. The last entry in the list can be recognized by a 1 in bit 0 of the first byte in
the entry.

19 You increase the pointer to the DCB address list by 4 bytes. You must also
increase the pointer to the work and control block area for each DCB. You
increase this pointer by 8 bytes.

136 Data Facility Product Version 2: Customization

20 Use the load multiple (LM) instruction.

21 Use the FREEMAIN macro instruction.

22 Return control to the open or EOV routine by means of an mCRES macro
instruction, specifying the module to be given control as follows:

Return From To Module

OMODVOL1 IGG0190A (Open)

EMODVOL1 IGG0550P (EOV)

Note: Open and EOV will rewind the volume upon receiving control from
OMODVOL1 or EMODVOLl.

Return is via the XCTL macro instruction (E-form). See Figure 48 on
page 118 and "Explanation of Logic Blocks- Figure 26" on page 115.

Inserting Your Label Editor Routines into the Control Program

You will be replacing the IBM-supplied modules OMODVOL1 and/or EMODVOLl
with your routines. Use the replace function of SMP or link edit your editor routines
into SYS l.LP ALIB after system generation.

The setup for making the linkage editor run is shown below.

//jobname
//stepname
//SYSPRINT
//SYSUTl
//SYSLMOO
//SYSLIN

JOB
EXEC
00
00
00
00

[parameters]
PGM=HEWLH096[.PARM='LET.RENT •... ']
SYSOUT=A
UNIT=SYSDA,SPACE=(parameters)
OSNAME=SYSl.LPALIB.DISP=OLD
*

Object Deck for Open

.
ENTRY OMODVOll
ALIAS IFG0193C
NAME OMOOVOLl(R)

Object Deck for EOV

.
ENTRY EMOOVOll
ALIAS IFG0553C
NAME EMOOVOLl(R)
/*

Note: Your modules will be placed into the LPA the next time an IPL with a CLPA
is done. You must have requested space for the LP ALIB directory entries for the
additional modules when the library was allocated.

Chapter 7. Tape Label Processing Installation Exit Routines 137

ISO/ ANSI/FIPS Version 3 Installation Exits
Four installation exits are provided, as defaults, for ISO/ ANSI/FIPS Version 3
volumes:

• Volume access,

• File access,

• Label validation, and

• Label validation suppression.

A fifth installation exit, WTOR, can be written (or modified, if one has already been
written) by your installation to convert ISO/ ANSI/FIPS non-Version 3 to Version 3
labels (see "WTOR Installation Exit").

All the default installation exit routines are supplied in a module containing a single
CSECT (IFGOI93G, alias IFG0553G), in SYS1.LPALm. A copy of the source code
for the module is contained in member ANSIEXIT of SYS1.SAMPLm.

The default routines, except the validation suppression exit, reject the volume. They
execute in a privileged (supervisor) state and can be modified or replaced to perform
I/O (such as overwriting a labeI), change system control blocks, and mount or
demount volumes. The return code from the exits may be modified to request
continued processing. However, results are unpredictable in cases in which the label
validation exit is entered and it has not been modified to also correct certain errors.
The prolog of the source code for the exits, in SYS1.SAMPLm, gives additional
details on modifying the exits.

A parameter list, mapped by the macro IECIEPRM, is passed to the exit routines.
The same parameter list is passed to the RACF installation exits if a volume is RACF
protected and the VOLI access code is A through Z. However, whereas return codes
from the Version 3 exits are returned in the IECIEXRC field of the parameter list,
return codes from the RACF exits are returned in register 15 (return codes from the
Version 3 and RACF exits are not the same). Neither the Version 3 nor RACF
installation exits should alter any of the parameter list fields, except IECIEXRC or
IECIEUSR. For information about RACF installation exits, see RA CF Installation
Reference Manual.

An important extension to the parameter list is the UCB tape class extension. It
contains such items as the volume access code (UCBCXACC), owner identification
(UCBCXOWN), and ISO/ ANSI/FIPS version (UCBCXVER). The address of the
appropriate UCB tape class extension is maintained in the parameter list.

WTOR Installation Exit

For ISO/ ANSI/FIPS tape volumes, MVS/XA Data Facility Product supports output
only to ISO/ANSI/PIPS Version 3 and input from either ISO/ ANSI/FIPS Version 1
or Version 3. If a label version conflict is detected during an output request to the
first data set on a volume, the WTOR message "IEC704A C" is issued to the
installation operator to obtain information for rewriting the volume label as a Version
3 label. If your installation does not want the operator to have to provide the
necessary label information (volume serial number, owner identification, and volume
access code), it may use the WTOR installation exit to intercept message "IEC704A
C" and provide this information.

138 Data Facility Product Version 2: Customization

Label Validation Exit

The name of the WTOR installation exit routine is IEBCVXIT. For information on
how to use the linkage editor to include module IEBCVXIT in the control program,
see System Modifications. WTOR message "IEC704A CIt is described in System
Messages.

The label validation exit is entered during open/BOY if an invalid label condition is
detected, and label validation has not been suppressed. Invalid conditions include
unsupported characters, incorrect field alignment, unsupported values (for example,
RECFM=U, block size greater than 2048, or a zero generation number), invalid label
sequence, asymmetrical labels. invalid expiration-date sequence. and duplicate data set
names.

Input to the exit will be the address of the exit parameter list containing the type of
exit being executed. the type of error detected,location of the error, and an address
for the label in error.

Bxcept for duplicate data set name checking. label validation occurs only at tape load
point (beginning-of-volume label group) and at the requested data set position
(beginning-of-data-set label group); only duplicate name checking occurs during
positioning to the requested data set.

Trailer labels produced by the system are not validated during close or BOV for the
old volume. Thus. an input data set read in a forward direction is processed during
close/BOY even if it is followed by an invalid trailer label; however. later. if the same
data set is read backward. the invalid label will be detected during open or EOV for
the new volume and cause the label validation exit to be entered.

Because modifications to an existing data set can result in nonsymmetrical trailer
labels. the following open options will cause the label validation exit to be entered:

• Open for MOD (OLD OUTPUT/OUTIN). INOUT. EXTEND. or OUTINX.

• Open for an EXCP DCB (OUTPUT/OUTIN) that does not contain at least a
4-word device dependent area for maintaining a block count.

Note: If you have generalized library subroutine programs that specify the INOUT
option. but you are using a tape for input only. you can avoid entering the exit by
coding LABBL=(,AL .. IN) on the JCL DD statement.

The label validation exit can either continue processing a volume or reject it, issuing
one of the following return codes:

Return
Code

X'OO'

X'04'

Meaning

Continue processing volume

Reject volume (set by the mM-supplied exit)

To identify the invalid condition, an IECS12I LBL STD message is issued to the
operator. For a rejected volume. an abend code message is also issued.

Entry to the label validation exit is tracked in the UCB. This serves as an audit trail if
the exit forces continuation for an invalid condition but the condition causes an abend
in subsequent processing.

Chapter 7. Tape Label Processing Installation Exit Routines 139

Note: The system does not rewrite labels after return from the label validation exit.
Therefore, if a label is to be corrected, it must be done by an installation-written label
validation exit. If certain errors are not corrected, they will cause unpredictable
results when the volume is processed by a return code of zero from the label
validation exit. These errors include:

• Incorrect sequencing

• Unsupported characters

• Incorrect field alignment

Certain unsupported values (RECFM=U, block size greater than 2048, and a
zero generation number will be processed as expected by the system)

If an error is corrected by a return code of zero from the label validation exit, the
resulting volume may not meet the specifications of Version 3 standards, and will
therefore require agreements between interchange parties.

Label Validation Suppression Exit

Volume Access Exit

The validation suppression exit allows the option of suppressing label validation. It is
entered during open/EOV if volume security checking has been suppressed
(JSCBPASS is on), if the volume label accessibility field contains an ASCn space
character, or if RACF accepts a volume and the accessibility field does not contain an
uppercase letter from A through Z.

Label validation can also be suppressed by the volume access exit.

Note that, if you suppress label validation, the resulting volume may not meet the
specifications of Version 3 standards, and therefore would require agreements
between interchange parties.

The volume access exit is entered during open/EOV if a volume is not RACF
protected and the accessibility field in the volume label contains an ASCn uppercase
letter from A through Z. The exit is bypassed if volume security checking has been
suppressed (as indicated in the Program Properties Table).

The exit can accept or reject the volume and can suppress label validation, issuing one
of the following return codes:

Return
Code

X'OO'

X'04'

Meaning

Use volume

Reject volume (set by mM-supplied exit)

Label validation is suppressed by setting the high-order bit of the return code in the
field named CONTROL in the source module ANSIEXIT (for example, a return code
of 80 would indicate to use the volume and suppress validation). This bit is acted on
every time the exit returns to the system.

Note that the volume access exit is complementary to the label validation suppression
exit, in that it is entered only when the latter exit is not.

140 Data Facility Product Version 2: Customization

File Access Exit

The file access exit is entered after positioning to a requested data set if the
accessibility field in the HDR1labei contains an ASCII uppercase letter from A
through Z and the volume is not RACF protected. Likewise, the exit is entered when
a data set will be written to an output volume if the first character of the JCL
ACCODE keyword is A through Z.

The exit can either accept the data set or reject the volume, issuing one of the
following return codes:

Return
Code

X'OO'

X'04'

Meaning

Use data set

Reject volume (set by ffiM-supplied exit)

The file access exit can reject a volume that was accepted earlier by the volume access
exit.

Installation-Written Exit Routines

If you replace any of the mM-suppJied exit routines with your own routines, observe
the programming conventions described under "Programming Conventions" on
page 108, except that return must be via a BR 14 instruction.

Your routines should not alter any fields in the exit parameter list, except the return
code (IECIEXRC) and the field reserved for user data (IECIEUSR).

In addition, your routines cannot use the DCB parameter list to process any DCB
other than the current entry, because the DCBs are not synchronized during Version
3 exit processing.

It is necessary to MODESET to key 0 in order to alter protected control blocks (such
as the UCB). The original key at entry should always be restored immediately after
any alterations to key 0 storage are complete; this will minimize risk of inadvertent
data destruction.

Exit Parameter List-IECIEPRM

The parameters passed to a Version 3 installation exit during label processing will vary
slightly between different types of exits. These differences, when they exist, are
noted in the "Exit Type" column in Figure 55 on page 142. The parameter list is
passed to the exit as an address in general purpose register 1; it is 32 bytes in length
and is mapped by macro IECIEPRM beginning at DSECT IECIEPRM. This macro is
available only in assembler language. Parameter fields not available to a particular
exit will be set to zeroes). The only fields allowed to be altered by an exit are the
return code (IECIEXRC) and the user area (IECIEUSR); changing any other field
will have an unpredictable effect on system processing. A flag in the parameter list
indicates which type of exit was entered.

Chapter 7. Tape Label Processing Installation Exit Routines 141

Field Exit
Offset Name Length Contents Type c-.ts

+0 IECIEID 4 C'APRM' all Parameter list identifier
+4 IECIESIZ 4 X'20' all Length of IECIEPRM

IECIESZ = 32 all Comparand for size
+8 4. X'OO' all Reserved
+12 IECIEFL1 1 flags all Exit flags

IECIEVAL = X'80' VAL Entry is Validity Check
IECIEVAE = X'40' VAE Entry is Volume Access
IECIEFAE :: X'20' FAE Entry is File Access
IECIEVSP = X'10' VSP Entry is Validation Suppression
IECIEWRT = X'08' all Label will be written

("WRITE MODE")
IECIEEOV = X'04' all EOV in process

+13 IECIEERR 1 flags VAL Validation error type
IECIEVRS = X'80' N/A Version compatibility conflict

(Note 1)
IECIEUNK = X'40' VAL Unsupported/unknown value
IECIEADJ = X'20' VAL Invalid field alignment
IECIESEQ = X'10' VAL Label sequence error
IECIEDUP = X'08' VAL Duplicate file name
IECIECHR = X'04' VAL Invalid character type
IECIEXPR = X'02' VAL Invalid expiration date
IECIESYM = X'Ol' VAL Symmetry conflict (Note 5)

+14 IECIEPOS 1 X 'offset' VAL Starting character position in
in label examined (Note 2)

+15 IECIEXRC 1 X'04' all Return code from exit processing
(Note 3)

IECIESUP :: X'80' VAE, Suppress label validation
VSP (Note 8)

IECIERCO :: X'OO' all Accept volume
IECIERC4 :: X'04' all Reject volume (ignored for VSP

Exit)
+16 IECIEJAC 1 C'access code' FAE User-requested file

accessibility code (Note 7)
+17 rsvd 2 0 all Reserved for future use
+19 IECIEDCB 1 flags all Copy of open parmlist options

(4 low-order bits)
IECIEOUT :: X'02' all Bit on for OUTPUT,OUTIN
IECIEIN :: X'OE' all Bits off for INPUT,RDBK

+20 IECIElBL 4 A(address) all Address of label being processed
(Note 4)

+24 IECIEUCB 4 A(address) all Address of UCB for volume from
VOL1. label (Note 6)

+28 IECIEUSR 4 0 all Use~ area (maintained across
exits)

+32 IECIEND 0 0 End of exit parameter list

FAE :: File Access Exit
VAE = Volume Access Exit
VAL:: Label Validation Exit
VSP = Validation Suppression Exit

Figure 55. ISO/ANSI/PIPS Version 3 Exit Parameter List

Notes to Figure 55:

1. "Version" error is set for the O/C/E message routine for internal use, and the
volume is unconditionally rejected.

142 Data Facility Product Version 2: Customization

2. The first character position is offset 0, the second position is offset 1, and so
forth.

3. A return code of 4 is set by the IBM-supplied exits. This will cause a volume to be
rejected. The exception is the validation suppression exit, which always sets a
return code of zero in the IBM-supplied exits (although the system will always
unconditionally accept a volume after execution of the validation suppression exit).
IECIEXRC is ignored by open/EOV when control is returning from RACF.

4. For volume access exit and file access exit, the label area contains the accessibility
code from tape. When the label area is not available to the exit, IECIELBL will
be zero. Data in the label that is not available to an exit will be indicated by
binary zeros. The volume accessibility code is always available in the UCB tape
class extension at UCBCXACC (for ISO/ANSI/PIPS) when an
ISO / ANSI/PIPS volume has been opened and not demounted.

5. A symmetry conflict results from a condition that will produce nonmatching or
asymmetrical labels framing a file, and/or inconsistent file structure.

6. The UCB tape class extension for ISO/ ANSI/FIPS volumes will contain the
VOL 1 label standard version number, the VOLI owner identification, and the
VOLI accessibility code. The extension can be addressed by the following
sequence:

L Rx,UCBEXTPT(,UCBREG)
L Rx,UCBCLEXT(,Rx)
USING IECUCBCX,Rx

COMMON EXTENSION
CLASS EXTENSION
IECUCBCX MAPPING

The base UCB may be useful to access the serial number for the mounted volume
(in UCBVOLI).

7. The file accessibility code in IECIEJAC is only valid when "Write Mode"
(IECIEWRT) is set during the file access exit. This code comes from ACCODE
(A-Z) or LABEL (password, "1" or "3") parameters from the user job step
(blank, if none). The value in IECIEJAC, when IECIEWRT is set, will be
written (if valid) as the accessibility code in the file label when the exit returns.

8. IECIESUP will be recognized any time the volume access exit returns to the
system, when RACF returns to the system after it was passed the parameter list,
or when the validation suppression exit returns to the system.

UCB Tape Class Extension-IECUCBCX

The tape class extension area generated for a UCB is addressed by UCBCLEXT in
the UCB common extension (created at system generation time). The pointer will be
zero when no class extension exists. The tape class extension will contain zeros at
IPL, and will be set to zeros whenever the volume label is about to be verified and
processed for accessibility (as in open, or as in "next volume" for EOV). The main
purpose of the class extension is to hold volume label data across opens when there is
no intervening volume label reverification (as would be the case after CLOSE
LEA VB and another OPEN in the same job step). The tape class extension area is
mapped by the UCBCX DSECT in the IECUCBCX macro.

Chapter 7. Tape Label Processing Installation Exit Routines 143

UCB Tape Class Extension Data Area

OFFSm TYPE l.EJfGTtt ME

o (0) STRUCTURE 56 UCBCX

o (0) CHARACTER 8 UCBCXPRE

o (0) CHARACTER 4 UCBCXIO

4 (4) UNSIGNED 2
6 (6) UNSIGNED 2 UCBCXLEN

DESCRIPTIOI

UCB TAPE CLASS EXTENSION

TAPE CLASS EXT PFIX

10 :: UCBT

RESERVED
LENGTH FIELD

cc===c;c===c=c=========e:::::==
ANSI SECTION

8 (8) CHARACTER 20 UCBCXANS ANSI PORTION OF EXTENSION

8 (8) CHARACTER 1 UCBCXACC VOLI ACCESS CODE FROM LABEL
==c===================::=::::===============:::===:============================
THE UCB EXIT FLAGS (UCBCXFLl) ARE SET WITH AN AUDIT TRAIL
FOR ANSI EXIT ACTIVITY DURING VOLUME VERIFICATION.

9 (9) BITSTRING 1 UCBCXFLI FLAG BYTE
1... UCBCXVAL VALIDATION EXIT ENTERED
.1.. ..•. UCBCXSUP SUPPRESS LBL VALIDATION CHECK

10 (A) CHARACTER I UCBCXVER VOLI LABEL-STANDARD VERSION
11 (B) BITSTRING 1 UCBCXFL2 3480 FLAG BYTE

1... UCBCXKP CHKPNT ('C') IN EOF2
.1.. UCBCXSCI PASSWD REQ'D R/W IN EOFI
•• 1. UCBCXSC3 PASSWO REQ'D WR ONLY IN EOFI

12 (C) CHARACTER 14 UCBCXOWN
26 (IA) CHARACTER 2 UCBCXSEQ

VOLl OWNER IDENTIFICATION
EOFI FILE SEQUENCE NUMBER

=================:===================================:=ec======================
3480 SECTION

28 (IC) CHARACTER 28 UCBCLXE

28 (IC) CHARACTER 16 UCBCXENV

28 (IC) UNSIGNED
30 (IE) UNSIGNED

32 (20) UNSIGNED
34 (22) UNSIGNED

36 (24) UNSIGNED
38 (26) UNSIGNED
41 (29) UNSIGNED

44 (2C) CHARACTER

48 (30) CHARACTER

52 (34) CHARACTER

2 UCBCXERG
2 UCBCXCLN

2 UCBCXRD
2 UCBCXRDB

2 UCBCXWR
3 UCBCXMBR
3 UCBCXMBW

4 UCBCXBLK

4 UCBCXTUS

4 UCBCXRS3

3480 PORTION OF EXTENSION

3480 ENVIRONMENTAL DATA

NO. OF ERASE GAPS
NO. OF CLEANER ACTIONS

READ FWD DATA CHECKS
READ BKWD DATA CHECKS

WRITE DATA CHECKS
, OF BYTES READ/4K
, OF BYTES WRITTEN/4K

BLOCKID SAVE AREA

SERIAL NO. OF TAPE DRIVE

RESERVED

Note: The UCB exit flags (UCBCXFLl) are set with an audit trail for Version 3 exit
activity during volume verification.·

144 Data Facility Product Version 2: Customization

Chapter 8. Interactive Storage Management Facility (lSMF)

General Guidance

ISMF helps you manage data and storage interactively. It is designed to use the space
management and backup/recovery functions provided by Data Facility Hierarchical
Storage Manager (DFHSM) and Data Facility Data Set Services (DFDSS) to perform a
variety of tasks. As an ISPF application, ISMF has a structure that is modeled after
ISPF. Because ISMF was written using the procedures described in ISPF Dialog
Management Services, it can be modified using the same techniques.

Restrictions to Customizing

Before we talk about what you can change about ISMF, there are three guidelines you
should keep in mind:

1. Before you change anything you should make a backup copy of ISMF. Keep this
unmodified version of the product for diagnostic purposes. IBM support and
maintenance is provided for onJy the unmodified version of ISMF.

2. Do not delete or rename any of the parts of ISMF. Deleting or renaming a part
could severely impact processing, or cause ISMF to fail.

3. ISMF is copyrighted. Under the IBM licensing agreement you may modify ISMF
for your own use. You may not modify it for commercial use.

Other restrictions apply to the individual parts. These are presented with the detailed
descriptions of how to modify each part on pages 148 through 170.

The Parts of ISMF That You Can Customize

ISMF allows you to customize the following parts:

Panels
Messages
Job skeletons
Command tables
Nonexecutable CSECTs
CLIST

They are shipped in individual libraries. The changes you can make to each library
are discussed on page 145.

The Panel Library

ISMF allows you to make the following changes to the panel library:

Change the initial priming values that ISMF ships
Change the default values for data entry panels
Provide additional restrictions to values entered for certain fields on panels
Remove fields from functional panels
Change the format of the panel

Chapter 8. Interactive Storage Management Facility (ISMF) 145

Modify existing functional panel text and help text
Add new fields to panels
Add new panels

The Message Library

In the message library you can modify existing messages and add new messages.

The Skeleton Library

In the skeleton library you can modify the job skeletons for ISMF commands and line
operators.

The Table Library

In the table library you can modify the ISPF command tables.

The Load Library

In the load library you can modify the ISMF command and line operator tables. The
tables are contained in nonexecutable CSECTs in the load library.

The CLIST Library

In the CUST library you can modify the options on the CUST CONTROL statement.

Finding the Libraries You Want to Customize

If you are currently running ISMF you can use the procedures described in this section
to find the ISMF libraries you want to customize. If you are not running ISMF, and
you need information about linking to the correct libraries, these books will help you:

• MVS/XA Installation: System Generation
• Data Facility Data Set Services/Interactive Storage Management Facility

Installation Planning Guide
• Data Facility Hierarchical Storage Manager. Version 2.2.1 with the Interactive

Storage Management Facility

Once you are linked to ISMF, the method you use to find the ISMF libraries depends
on the library you want to modify.

146 Data Facility Product Version 2: Customization

Panel. Message. Skeleton. and Table Libraries: To find the right libraries for
panels, messages, skeletons, and tables, use the TSO LISTALC STATUS command to
determine the data set name associated with the DDNAME for the library. The
DDNAMEs ISMF uses are listed in Figure 56.

Library DDNAME

Panel ISPPLm

Message ISPMLIB

Skeleton ISPSLm

Table ISPTLm3

ISYfABL4

Figure 56. DDNAMEs for the Panel, Message, Skeleton, and Table Ubraries

Load and CLiST Library: The placement of the load library and the CLIST library
is determined by the way ISMF is installed. The CLIST library DDNAME is
SYSPROC. The load library may be given a DDNAME ISPLLIB or STEPLIB, or it may
be made a part of the link pack area or the system link library. Figure 57 lists the
DDNAME for the CLIST library and location or DDNAME for the load library.

Library

Load

CLIST

Location

ISPLLm or STEPLIB or
System link library or
Link pack area

SYSPROC or ISPCLm

Figure 57. DDNAMEs for the Load and CLIST Libraries

Making Changes and Testing Them

The best way to make and test changes in any of the ISMF libraries is to copy the
member you want to modify from the ISMF library into a personal library. Add your
library to the beginning of the existing concatenation that you or your installation
uses. This ensures that you can safely make changes without impacting the other
libraries in the concatenation. Once you've tested the changes, you can then change
the concatenation to make the modified part available to a larger group of people,
your department for example. If you want the change to be used by the entire
installation, you can copy the member from your personal library back into the ISMF
library. For members of the panel, message, skeleton, table, and CLIST libraries you
can note the changes in the comment section at the beginnjng of the modified
member. Remember to keep an unmodified copy for service and maintenance.

3 Input table library.

4 Output table library

Chapter 8. Interactive Storage Management Facility (ISMF) t 47

Note: The load library is an exception. The methods you can use to modify the static
text and ISMF tables in the load library are discussed in "Customizing the ISMF
Command and Line Operator Tables" on page 167.

Customizing Panels

This chapter describes how to customize panels. It explains the changes you can
make in the panel library . There are several restrictions to keep in mind both as you
plan the way you want to customize panels, and as you use the procedures described
in this chapter. They are listed at the beginning of each section.

Modifying Panel Definition

Restrictions

1. If you decide to change the initial priming values or default values on data entry
panels, the new values must be set to run through the same verification code as
the values supplied by ISMF. Otherwise, you may pass a value that is invalid.

2. If you remove a field from a panel by removing it from the)BODY section of the
panel, you need to supply an acceptable value for it in the)PROC section.

3. You can add new fields to existing panels, or create new panels, but ISMF won't
have reference to them.

4. You can't move input fields from one panel to another.

5. You can change the format of most ISMF panels. However, whether you are
performing a data set or volume application, if you decide to modify the FILTER
Entry Panel or the SORT Entry Panel you should look carefully at the validity
checking in the)PROC section. The checking on these panels is done from left to
right; changing the order of the input fields on these panels might impact the
processing of values entered on the panels.

6. ISPF can display screens with a maximum of 24 lines. So, even if you use
terminals that can display larger panels, you should be careful not to increase the
number of lines in the)BODY section beyond 24. If the)BODY section is larger
than 24 lines, the panel display will fail.

7. ISMF entry panels are designed to display default values if the user blanks out any
of the fields on the panel. Because of the cursor positioning, you should preserve
the order of the statements in the)PROC section that control the default
redisplay. The)PROC section of each entry panel contains comments that
identify the statements that should be kept in order.

Finding the Panel You Want to Change

Most of the changes you can make to ISMF panels are done in the panel library. The
member name for an individual panel in the library is the panel ID that appears in the
upper left hand comer of the panel when you use the ISPF PANELID command (see
Figure 58).

DGTDDDSI
COMMAND """>

DATA SET SELECTION ENTRY PANEL

Figure 58. Displaying the Panel ID

148 Data Facility Product Version 2: Customization

Testing the Changes

There are three ways to test the customizing you do on panels:

1. Invoke ISPF in test mode

This will cause ISPF to refetch the panel when you display it after you've made
changes.

2. Test your changes using the ISPF Dialog Test option

This will cause ISPF to refetch the panel when you display it after you've made
changes.

3. Make your changes and then exit and reinvoke ISPF

When you invoke ISMF the modified panel will be displayed.

Changing Initial Priming Values on Data Entry Panels

The initial priming values for data entry panels are controUed by the)INIT section of
each panel, with the exception of the profile entry panels. When you invoke a panel,
ISPF executes the)INIT section before displaying the panel. The statements in the
)INIT section look at the value stored in the application profile pool (APP) for each
field on the panel. IT the value in the APP is blank, ISPF substitutes the value from the
)INIT section of the panel. Because the initial priming values for the profile entry
panels are already stored in the)APP, they cannot be changed.

To change the priming values for a particular panel, you change the statements in the
)INIT section of that panel. For example, Figure 59 is the Delete Entry Panel as it is
initiaUy displayed.

DGTDDDL2

COMMAND ===>
OELETE ENTRY PANEL

OPTIONALLY SPECIFY ONE OR MORE TO UNCATALOG
DATA SET: USER2. TEMP. TEMP

SCRATCH DATA SET ===> Y

CLEAR DATA SET WITH ZEROES ===> Y

DELETE EVEN IF UNEXPIRED ===> N

OATA SET PASSWORD ",,=>

USE ENTER TO PERFORM DELETE;

(y or N)

(Y or N)

(Y or N)

(if password protected)

USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT.

Figure 59. Entry Panel for Delete

Figure 60 on page 150 shows the priming values from the)INIT section of the panel.
For example,

IF (&FDDLSCDS = ") &FDDLSCDS = lye

Chapter 8. Interactive Storage Management Facility (ISMF) 149

states that if the value for SCRATCH DATA SET is blank in the APP, ISMF will
substitute a Y when the)INIT section is executed before the panel is displayed. If you
want that field to be primed with an N, you can change the statement to read

IF (&FOOLSCDS = ") &FOOLSCDS = 'N'

)I NIT
&ZHINDEX = DGTHIXOO
.HELP = DGTHDL02
&DGTMHELP = DGTHDL02

.ZVARS = '(FDDLSCDS FDDLCDWZ FDDLDEIU)'

IF (&FDDLSCDS = "
IF (&FDDLCDWZ = "
IF (&FDDLDEIU = "
&FDDLDSPW = "

.CURSOR = &FDDLFLDP

.CSRPOS = &FDDLCPOS

&FDDLSCDS = 'V'
&FDDLCDWZ = 'V'
&FDDLDEIU = 'N'

Figure 60. Values in the INIT Section of the Delete Entry Panel

Changing Default Values for Data Entry Panels

When you blank out fields on a data entry panel, ISMF will supply the defaults. The
defaults come from the statements in the)PROC section of each entry panel.
Figure 61 shows the default values in the)PROC section of the Delete Entry Panel.

)REINIT
'REFRESH(*)
)PROC

/***/
r ~
/* Default values for variables left blank */
r ~
/***/

&DDDL2RD = 'N'
IF (&FDDLCDWZ = " &FDDLCDWZ c 'V'

&DDDL2RD = 'y'
IF (&FDDLDEIU c " &FDDLDEIU = 'N'

&DDDL2RD = 'V'
/* The following two statements MUST remain together to ensure */
/* correct cursor positioning on the re-display of the panel. */

IF (&FDDLSCDS = ") &FDDLSCDS = 'y'
&DDDL2RD = 'y'

IF (&DDDL2RD = 'y')
.MSG = DGTUV091

Figure 61. ISMF Default Values for the Delete Entry Panel

If you want to change the value ISMF displays when you blank out a specific field, you
can change the statement that corresponds to that field in the)PROC section of the
panel. To ensure that the cursor is positioned in the correct place when the panel is
redisplayed, be sure to preserve the order of the statements that are identified by the
comments in the)PROC section.

150 Data Facility Product Version 2: Customization

Restricting Values for Specific Input Fields

The)PROC section also checks each value entered on a panel to make sure that it is
valid. Figure 62 is the first page of the Data Set Selection Entry Panel. Figure 63 on
page 152 shows the validity checking that ISMF does for the values entered on this
panel.

DGTDDDSI

COMMAND ===>
DATA SET SELECTION ENTRY PANEL Page 1 of 3

TO GENERATE A DATA SET LIST, SPECIFY:

DATA SET NAME ===> **

SELECT SOURCE OF GENERATED LIST ===> 2

GENERATE LIST FROM VTOC
VOLUME SERIAL NUMBER ===>

2 GENERATE LIST FROM CATALOG
CATALOG NAME ===>

CATALOG PASSWORD ===>
VOLUME SERIAL NUMBER ccc>
ACQUIRE DATA FROM VOLUME ===> Y
ACQUIRE DATA IF DFHSM MIGRATED ===> N

(fully or partially qualified)

(l or 2)

(fully or partially specified)

(if password protected)
(fully or partially specified)
(y or N)
(y or N)

USE ENTER TO PERFORM SELECTION; USE DOWN COMMAND TO VIEW NEXT SELECTION PANEL;
USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT.

Figure 62. Page 1 of the Data Set Selection Entry Panel

Chapter 8. Interactive Storage Management Facility (ISMF) 151

/***/
/* */
/* Check input variables for illegal values. */
/* */
/* If SELECT SOURCE OF GENERATED LIST is 1 then VOLUME SERIAL NUM- */
/* BER must be specified. Note that VOLUME SERIAL cannot be *. */
r ~
/* If SELECT SOURCE OF GENERATED LIST is 2 then the following things*/
/* must be checked: */
/* */
/* 1. If DATA SET NAME IS '*' or ,**, then the CATALOG NAME must */
/* be specified. */
/* 2. ACQUIRE DATA FROM VOLUME must be specified. (y or N) */
/* 3. ACQUIRE DATA IF DFHSM MIGRATED must be specified. (y or N) */
/* 4. Note that CATALOG NAME must be a valid dsn but it cannot */
/* be a member of a pds. */
/* */
/***/

VER (&FDDSDSNM NB)
VER (&FDDSSSGL ~B LIST 1 2)

IF (&FDDSSSGL = 'I')
VER (FDDDSVSNl NB)
IF (&FDDSVSNl = '*')

VER (&FDDSVSNl LIST " MSG=DGTUV019)

IF (&FDDSSSGL = '2')

&DSNCKl = TRUNC(&FDDSDSNM.'.'
IF (&DSNCK1 = "'*'."'**'."'*"'."'**"')

VER (&FDDSCTLN NB)

IF (&ZPREFIX = ")
IF (&DSNCKl = '*'.'**')

VER (&FDDSCTLN NB)

VER (&FDDSADFV NB LIST Y N MSG=DGTUV005)
VER (&FDDSADHM NB LIST Y N MSG=DGTUV005)

)END

Figure 63. Validity Checking on the Data Set Selection Entry Panel

If you want to further restrict valid values for any of the fields on the panel. you can
add your own statements to the part of the)PROC section that does validity checking.
For example, to prevent users from accessing the system residence volume, you could
add a statement that makes '******' an invalid entry for the VOLUME SERIAL
NUMBER field. The format of the statement would be

IF (&FDDSVSNl = '******')
VER (&FDDSVSNl LIST " MSG=XXXXXXXX)

The message ID, XXXXXXXX, is a message you have added explaining the restriction. In
this case the user will not be able to generate a data set list until the value in the
VOLUME SERIAL NUMBER field is valid. For more information on creating
messages, see "Customizing Messages" on page 158, and ISPF Dialog Management
Services.

152 Data Facility Product Version 2: Customization

Removing Fields

Changing the Format

You can remove a field from a panel by deleting it from the)BODY section of the
coding for the panel. However, you should keep in mind that there may be more work
involved than simply deleting the field. When you plan to remove a field you should
look carefully at the)INIT and)PROC sections of the panel to see how that field is
referenced. To accommodate changes you make to the body of the panel, you may
need to modify the statements for defaulting in the)1NlT and)PROC sections, and the
verification code in the)PROC section. For example, to remove the CATALOG
NAME field from the Data Set Selection Entry Panel, you would look at the code from
the panel that applies to CATALOG NAME:

1. The initial default value supplied by the)1NlT section

2. The default supplied by the)PROC section if the user enters a blank

3. The verification code that corresponds to the field

Since ISMF does not ship a default for CATALOG NAME in the APP, and both of the
default statements supply a blank,

IF (&FDDSCTlN = ") &FDDSCTlN = "

you do not need to modify either of the default statements to remove the field.

However, you do need to change the verification code. The code that applies to the
CATALOG NAME field is

IF (&FDDSSSGl = '2')

&DSNCKI = TRUNC(&FDDSDSNM.'.'
IF (&DSNCKI = "' *' • ' II **' • II '* II , • II '** II ,)

VER (&FDDSCTlN NB)

IF (&ZPREFIX = ")
IF (&DSNCKI c '*'.'**')

VER (&FDDSCTlN NB)

H option 2 is specified for SELECT SOURCE OF GENERATED UST (the variable
&FDDSSSGL) and the data set name (the variable &DSNCKl) is either quoted with an
asterisk as the high level qualifier ('* .LOAD'), or a quoted double asterisk ('**'), the
code checks to ensure that a catalog name has been supplied. Thus to remove the
CATALOG NAME field from the panel you need to change the verification code. The
new code should refer to a message that explains that for a list that is generated from
the catalog, '*' and '**' are not valid ways of specifying the data set name:

IF (&DSNCKI = "'*'."'**'."'*"'."'**"')
.MSG = XXX XXX XX

You can change the format of a panel by changing the position of the fields. H you do
there are several things to keep in mind:

Field length

Each field has its own length. Wben you move a field you need to make sure that you
don't change the length. This will ensure that none of the fields on the panel is
truncated.

Chapter 8. Interactive Storage Management Facility (ISMF) 153

Modifying Text

Adding Fields

Attribute characters

Each field starts with an attribute character and ends with another attribute character.
or the end of the line. When you move a field you need to identify the attribute
characters and decide whether to modify them to accommodate the change.

Autoskip

The panels are coded to use autoskip to move from one input field to the next. If you
move a field. you may need to adjust the attribute characters that control autoskip.

Input fields

Many of the input fields are grouped together because they supply related
information. or because they are dependent on each other. If you move a field. you
may need to move some of the fields around it to preserve the structure and logic of
the panel.

Validity Checking

The logic of the Validity checking in the)PROC section generally matches the order of
the fields on the panel; the checking is done from top to bottom. When you move a
field. you should make sure the validity checking parallels the new order.

Double lines for input fields

Both the FILTER Entry Panel and the Data Set Selection Entry panel have fields that
allow input on two lines (DATA SET ORGANIZATION. DEVICE TYPE. and RECORD
FORMAT). If you move these fields around. you need to move both lines.

Number of lines in the)BODV section

ISPF can display screens with a maximum of 24 lines. So. even if you use terminals
that can display larger panels. you should be careful not to increase the number of
lines in the)BODY section beyond 24. If the)BODY section is larger.than 24 lines.
panel display will fail.

You can modify text on any of the functional panels or help panels by editing the
)BODY section. Remember that the attribute character to the left and right of the text
you are working with controls the field length. spacing. indentation. and centering.

When you add a field. you need to look at the)A TTR section of the panel and pick an
attribute character to make the new field consistent with the rest of the panel. For
example. you could use the ISPF ZTIME and ZDA TE system variables to display the
current time and date on the Data Set List panel. Figure 64 on page 155 shows the
)A TTR section and the original coding for the top of list panel. Figure 65 on
page 155 shows the coding for the added fields. The next time we invoke the list
panel. it will display the current date and time. Figure 66 on page 155 is the
customized list panel as it is displayed.

154 Data Facility Product Version 2: Customization

Creating Panels

* AREA(DYNAMIC) EXTEND(OFF) SCROLL(OFF)
, TYPE(INPUT) INTENS(NON)
$ TVPE(INPUT) INTENS(HIGH) JUST(RIGHT)
¢ TYPE(OUTPUT) INTENS(LOW) SKIP(ON) JUST(ASIS)
- TYPE(OUTPUT) INTENS(HIGH) SKIP(ON) JUST(ASIS) CAPS(OFF)
+ TYPE(TEXT) INTENS(HIGH) SKIP(ON)
, TYPE(TEXT) INTENS(LOW) SKIP(ON)

)BODY
+ DATA SET LIST
+COMMAND ===>_ZCMD
+
'ENTER LINE OPERATORS BELOW:

Figure 64. Original Version of the List Panel

* AREA(DYNAMIC) EXTEND(OFF) SCROLL(OFF)
, TVPE(INPUT) INTENS(NON)
$ TYPE(INPUT) INTENS(HIGH) JUST(RIGHT)
¢ TYPE(OUTPUT) INTENS(LOW) SKIP(ON) JUST(ASIS)

#&FDDSENTR
&FDDSDCOL

- TYPE(OUTPUT) INTENS(HIGH) SKIP(ON) JUST(ASIS) CAPS(OFF)
+ TYPE(TEXT) INTENS(HIGH) SKIP(ON)
TYPE(TEXT) INTENS(LOW) SKIP(ON)

)BODY
+
+COMMAND =~=> ZCMD
#DATE:¢ZDATE -
'TIME: ¢ZTI ME

DATA SET LIST

Figure 65. Adding Date and Time to the List Panel

DATA SET LIST

#&FDDSENTR
I&FDDSDCOL

+SCROLL ===>_ZAMT+

COMMAND ===>
Date: 85/11/02
Time: 12 :08

SCROLL ===> HALF
Entries 1-9 of 9
Data Columns 3-7 of 21

Figure 66. List Panel Customized to Show Date and Time

You can use the panel definition procedures described in ISPF Dialog Manager
Services to add your own panels to those provided by ISMF. When you add panels
you should consider:

Variables

Make sure that the variable names you assign do not conflict with existing names,
unless the function that uses the new panel runs from a different ISPF function pool.

Consistency

For ease-of-use and to prevent errors, make your new panels consistent with ISMF
style. Use the same format and operational characteristics. For example, input fields
on ISMF panels are denoted by a white or intensified arrow to the left of the field. To
avoid confusion, input fields on panels you add should look the same. Or, for
example, if you add a functional panel, the ENTER key should execute the function.

Chapter 8. Interactive Storage Management Facility (ISMF) 1 SS

Modifying Fields on the List Panel

You may now modify the following fields on ISMF's List Panel:

• Column Headings.

• "Entries" line in the fixed area located in the upper right comer of the ISMF List
Panel. See Figure 67.

• "Data Columns" line in the fixed area.

• "BO'ITOM OF DATA" line located at the end of the list.

DATA SET LIST
COMMAND """>

ENTER lINE OPERATORS BELOW:

LINE SEC
OPERATOR DATA SET NAME AllOC

---(1)---- ------------(2)------------ --(8)--
USER2.ClIST.ClIST 94
USER2.ISMF.ISPPlIB 94
USER2.ISPF.PROFIlE 94

---------- ------ ----------- BOTTOM OF DATA

USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT.

Figure 67. ISMF Data Set List Panel

Where Do You Make the Changes?

OS
ORG
(9)
PO
PO
PO

SCROll """> PAGE
Entries 1-3 of 3
Data Columns 8-11 of 21

REC RECORD
FMT lENGTH

(10)- -(11)-
VB 255
FB 80
FB 80

----------- ------

You can modify the following members of the message library to change the column
headings:

For Data Sets

DGTDS05
DGTDS06
DGTDS07
DGTDS08
DGTDS09
DGTDSIO
DGTDSll

For Volumes

DGTVA05
DGTVA06
DGTVA07
DGTVA08
DGTVA09

The statements in the fixed area can be modified from the member, DGTFOOO, of the
message library.

The "BO'ITOM OF DATA" line can be modified from the member, DGTLDDSl, of
the panel library for data set applications. For volume applications, the line can be
modified from the member, DGTLVVAl, of the panel library.

156 Data Facility Product Version 2: Customization

Note: When ISMF is installed the message library name is SYS1.DGTMLIB, and the
panel library is called SYS1.DGTPLffi.

Special Considerations

• You should make a copy of the library you modify because the next time a link
edit or maintenance is performed on the member you have changed, your
modification will be lost.

• When editing ISMF libraries, do not change the NUM field in the profile and do
not issue the RENUM editing command.

• You can change the wording, but you can't change the order of the columns or
the characters to the left or right of the headings. Also, you can't add or delete
columns.

• The widths of the first two columns are fixed, so any textual changes you make
will not alter the size of the fields.

• You can modify the lengths as well as the text of the third through the last column
headings. Be sure to update the lengths associated with the text you lengthen.

/**
/* Column 10: REC FMT
/* Lenath : 5
/**
DGTDSOBO '5'
, REC '

DGTDSOBI
, FMT '

DGTDSOB2
, (0)-'

Figure 68. Column 10 of Member DGTDS08.

If, for example, you would like to change column 10 to say RECORD FORMAT
instead of REC FMT, simply:

1. Access member DGTDS08 of the MESSAGE library (see Figure 68).

2. Enter PROFILE on the command line and verify that NUMBER is set OFF.

3. Replace' REC ' with 'RECORD' and replace' FMT ' with 'FORMAT'.

4. Replace the decimal length '5' with '6' (the new length).

5. Pad the tag with dashes. In other words, '(10)-' would become '-(10)-'.

6. Compare your results to Figure 69 on page 158.

Note: Although you should not shorten the column headings, you can expand the
headings for the third through the last columns up to 35 characters.

• If you change the headings on the List Entry Panel, you should also change the
corresponding fields and text on the Selection Entry Panel, the SORT Entry
Panel, and the FILTER Entry Panel. You should also change the help panels and
messages that support these entry panels and the list panel.

Chapter 8. Interactive Storage Management Facility (ISMF) 157

/**
/* Column 10: RECORD FORMAT
/* Lenath : 6
/**
DGTDS080 ' 6 '
'RECORD'

DGTDS081
'FORMAT'

DGTDS082
'-(10)-'

Figure 69. Column 10 of Member DGTDS08 After Customization.

Custo~izing Messages

This chapter explains how to modify ISMF messages and how to add your own
messages. It is divided into two sections, "Modifying ISMF Messages," and
"Creating New Messages" on page 159.

Modifying ISMF Messages

Restrictions

1. Do not change the names of any of the variables contained in ISMF messages.

2. Do not change the message number.

3. Short messages cannot exceed 24 characters.

4. Long messages cannot exceed 78 characters.

5. Message text can be entered in upper and lower case, but the other fields in the
message-the message number, variables, keywords, and the,help panel ID-must
be in uppercase.

6. When you change the text of a message you should change the corresponding
message help panel.

Finding the Message You Want to Change

To find the message you want to change you need to know the message number. The
message number is listed at the top of each message help panel (see Figure 70).

HELP-----------------------------ISMF MESSAGE------------------------------HELP
COMMAND ===>

MESSAGE NUMBER: DGTMD006

SHORT MESSAGE: DFHSM LEVEL UNKNOWN

LONG MESSAGE: DFHSM LINE OPERATORS MAY FAIL - DFHSM V2 R2.1 OR LATER
NEEDED

Figure 70. Identifying the Message Number

Related ISMF short and long messages are stored together in members of the message
library. To determine where the message you want to change is stored, truncate the

158 Data Facility Product Version 2: Customization

Making the Change

last digit of the message number. This will give you the member name. Thus, the
message DGTMD006 is stored in DGTMDOO with other messages that begin with
DGTMDOO.

Once you have identified the member the message is stored in, you are ready to make
the change. Modify the message and save your changes. Then modify the message
help panel that is pointed to by .HELP. For example, to change message DGTMDOO6,
you would edit the message itself in member DGTMDOO and the related text in the
message help panel DGTMMD06. Figure 71 shows the entry in the message library
for DGTMD006. The .HELP field is highlighted.

DGTMDD06 'DFHSM LEVEL UNKNOWN' .HELP= DGTMMD06 .ALARMc YES
'DFHSM LINE OPERATORS MAY FAIL - DFHSM V2 R2.1 OR LATER NEEDED

DGTMD007 'DFDSS LEVEL UNKNOWN' .HELP= DGTMMD07 .ALARM= YES
'DFDSS LIST COMMANDS AND LINE OPERATORS MAY FAIL - DFDSS V2 R2 DR LATER NEEDED

DGTMDD08 'ISMF FAILED' .HELP= DGTMMD08 .ALARM= YES
'UNABLE TO INITIALIZE ISMF CONTROL BLOCKS

DGTMD009 'ISMF FAILED' .HELP= DGTMMD09 .ALARM= YES
'UNABLE TO DISPLAY ISMF PRIMARY OPTION MENU

Figure 71. Changing the Short and Long Messages

Creating New Messages

You can use the procedures for message definition described in ISPF Dialog
Management Services to add your messages to those provided by ISMF. 'When you add
messages you should consider:

Message numbers

Make sure that the message numbers you assign do not duplicate existing ones.

Consistency

ISMF uses short and long messages, and message help panels to identify errors. If you
add short messages you should add the supporting long messages and message help
panels. The style of the message help panels should be consistent with ISMF panels.

Customizing Job Skeletons

Restrictions

This chapter explains how to tailor the job skeletons that ISMF uses to generate the
job streams used by DFDSS.

1. You can remove variables from the skeletons, but you should make sure that a
variable you remove from one part of a skeleton isn't needed by some other part.

2. Do not change any of the variable names in the skeletons. ISMF code is
dependent on these names.

3. If you add variables, make sure that the names you use do not duplicate existing
ones.

Chapter 8. Interactive Storage Management Facility (ISMF) 159

Finding the Skeleton You Want to Change

Making the Changes

The ISMF skeletons for DFDSS line operators and list commands are kept in the
skeleton library. ISMF members begin with DOTK. The remaining characters in the
name identify the line operator or command. Thus the member DGTKCYOl contains
the job skeleton for the COpy line operator.

There are several ways to customize the ISMF skeletons for DFDSS jobs:

• You can add statements to imbed skeletons of your own.

• You can modify the variables in the skeletons to override the input that the
skeletons get from the values entered on the data entry and job submission
panels.

• You can add pre and post processing steps to the job stream.

Figure 72 on page 161 shows part of the original job skeleton for the Data Set
Application COpy line operator. Figure 73 on page 162 shows the job stream that is
generated from this skeleton. In the example that follows we will tailor the job
skeleton by adding a statement to imbed our own skeleton in the ISMF skeleton. The
new skeleton adds a step before the DFDSS execute statement. The added step
notifies the library controller that a copy job is being submitted. The information sent
to the controller includes the name of the line operator, the name of the data set being
copied, and the name of the user submitting the job.

160 Data Facility Product Version 2: Customization

)CM ***
)CM **
)CM $MOD(DGTKCY01): **
)CM **
)CM (C) COPYRIGHT IBM CORPORATION 1986 **
)CM **
)CM DATE OF LAST CHANGE: **
)CM **
)CM DESCRIPTIVE NAME: ISMF DATA SET APPLICATION: DFDSS COpy LINE **
)CM OPERATOR FILE TAILORING SKELETON **
)CM **
)CM STATUS: RELEASE 1 LEVEL 0 **
)~ -
)CM PERSON RESPONSIBLE = PRGRMA **
)CM **
)CM FUNCTION: **
)CM **
)CM THIS IS THE FILE TAILORING SKELETON WHICH CREATES THE **
)CM BACKGROUND JCL JOBSTREAM FOR THE ISMF DATA SET APPLICATION **
)CM DFDSS COpy LINE OPERATOR. **
)CM **
)CM PROCESSOR: ISPF **
)CM **
)CM CHANGE ACTIVITY: LO **
)CM $LO=ISMFRELl,JAE2211 •• PRGRMA: **
)CM **
)CM ***
)CM ***
)CM SET TABS TO COLUMNS 12 AND 18 (EXCLAMATION IS TAB CHARACTER).
)CM ***
)fB 12 18
)CM ***
)CM OBTAIN THE JOB STATEMENTS
)CM ***
) 1M DGTKSUJB
)CM ***
)CM OBTAIN THE EXECUTE STATEMENTS
)CM ***
) 1M DGTKSUEX

Figure 72. Original Job Skeleton for the Copy Line Operator

Chapter 8. Interactive Storage Management Facility (ISMF) 161

IIUSER20N JOB 1,'ABC-USER20'
II NOTIFY=USER20',
II MSGCLASS=A,MSGLEVEL=(1.).TIME=(O.59)
11*
11*
11*
11*
1/*
11*
IISTEP 1 EXEC PGM=ADRDSSU,PARM='UTILMSG=YES.TYPRUN=SCAN'.
II REGION=2048K
11*
11*
11*
IISYSPRINT DO
IIOUTVOLl DO
IISYSIN DO

SYSOUT=*
VOL=SER=ABCOOl.UNIT=3380,DISP=SHR

COpy DATASET(-

1*

INCLUDE(-
USER20.CLIST.CLIST -
» -

OUTDDNAME(-
OUTVOLI

CATALOG -
PERCENTUTILIZED(-

90 -
) -

RENAMEUNCONDITIONAL(USER20.CLIST.CLIST -
USER20.CLIST.COPY.EXAMPLE) -

TOLERATE(IOERROR) -
WAIT(2.2)

Figure 73. Original Job Stream for the Copy line Operator

There are several steps involved in customizing the job skeleton for COPY. We begin
by creating the skeleton we want to imbed. The new skeleton is shown in Figure 74
on page 163. It contains the statements that will send a note to the library controller
when the job is submitted.

162 Data Facility Product Version 2: Customization

)CM ***
)CM ~

)CM $MOO(U20STPIA): **
)CM **
)CM DATE OF LAST CHANGE: 11/02/86 **
)CM **
)CM DESCRIPTIVE NAME: THIS IS AN EXAMPLE OF A USER FILE TAILORING **
)CM SKELETON FOR THE ISMF CUSTOMIZATION GUIDE. **
)CM IT IS A FILE TAILORING SKELETON FOR A JCL **
)CM STEP TO NET NOTIFY THE ABC LIBRARY CONTROLLER **
)CM **
)CM STATUS: RELEASE 1 LEVEL 0 **
)CM **
)CM PERSON RESPONSIBLE = ABC-USER20 **
)CM **
)CM FUNCTION: **
)CM **
)CM THIS IS THE FILE TAILORING SKELETON WHICH CREATES THE **
)CM JCL STATEMENTS USED IN THE BACKGROUND JCL JOB STREAM. **
)CM IT CREATES STEPIA, A NET NOTIFY FOR THE LIBRARY CONTROLLER. **
)CM **
)CM PROCESSOR: ISPF **
)CM **
)CM CHANGE ACTIVITY: NONE **
)CM **
)CM ***
)CM ***
)CM *** SET TABS FOR COLUMNS 12 AND 18 (TAB CHAR IS EXCLAMATION POINT)
)CM *** ALSO USE A TAB IN COLUMN 66
)CM ***
)TB 12 18 66
)CM ***
)CM *** SET UP STEP STATEMENTS
)CM ***
11*
11***
11* NET NOTIFY ABC LIBRARY CONTROLLER OF COPYI*
11* DATA SET: &FDCYDSNM.I*
11* USER: &ZUSER.I*
11***
11*
IISTEPIA EXEC PGT=DRMNOTFY,
IIIPARM='CONTROLLER,&ZUSER.,COPY,&FDCYDSNM.'
IISTEPLIB 00 DSN=ABC.ISMF.LOAD,DISP=SHR
11*

Figure 74. New Skeleton to Imbed in the Job Skeleton for Copy

Next we imbed the name of this skeleton, U20STPIA, in the original skeleton.
Figure 75 on page 164 shows the original skeleton with an added imbed statement
for the new skeleton.

Chapter 8. Interactive Storage Management Facility (ISMF) 163

)CM ***
)CM **
)CM $MOD(DGTKCY01): **
)CM **
)CM (C) COPYRIGHT IBM CORPORATION 1986 **
)CM **
)CM DATE OF LAST CHANGE: 11/02/86, U20 **
)eM **
)CM DESCRIPTIVE NAME: ISMF DATA SET APPLICATION: DFDSS COpy LINE **
)CM OPERATOR FILE TAILORING SKELETON **
)CM **
)CM STATUS: RELEASE 1 LEVEL 0 **
)~ **
)CM PERSON RESPONSIBLE = PRGRMA **
)CM **
)CM FUNCTION: **
)CM -
)CM THIS IS THE FILE TAILORING SKELETON WHICH CREATES THE **
)CM BACKGROUND JCL JOBSTREAM FOR THE ISMF DATA SET APPLICATION **
)CM DFDSS COPY LINE OPERATOR. **
)CM **
)CM MODIFICATIONS: **
)CM
)CM THIS FILE TAILORING SKELETON WILL NOW INSERT STEPIA BEFORE **
)CM THE IBM DFDSS EXECUTE STEP. STEPIA WILL PLACE A NOTE **
)CM FILE ON THE NET FOR THE ABC LIBRARY CONTROLLER **
)CM **
)CM PROCESSOR: ISPF **
)CM **
)CM CHANGE ACTIVITY: LO **
)CM $LO=ISMFRELl,JAE2211"PRGRMA: **
)CM **
)CM ***
)CM ***
)CM SET ,TABS TO COLUMNS 12 AND 18 (EXCLAMATION IS TAB CHARACTER).
)CM ***
)TB 12 18
)CM ***
)CM OBTAIN THE JOB STATEMENTS
)CM ***
) 1M DGTKSUJB
)CM ***
)CM GENERATE STEPIA TO NET NOTIFY ABC LIBRARY CONTROLLER
)CM ***
)IM U20STPIA
)eM ***-****************
)CM OBTAIN THE EXECUTE STATEMENTS
)CM ***
)1M DGTKSUEX

Figure 75. Original Skeleton with Added Imbed

The job stream that is generated from the tailored skeleton is shown in Figure 76 on
page 165. It includes the new step to notify the controller.

164 Data Facility Product Version 2: Customization

IIUSER20M JOB l,'ABC-USER20'
II NOTIFY=USER20',
II MSGCLASS=A,MSGLEVEL=(l,),TIME=(O,59)
11*
11*
11*
11*
11*
11**
11* NET NOTIFY ABC LIBRARY CONTROLLER OF COPY *
11* DATA SET: USER20.TEMP.DATASET *
11* USER: USER20 *
11**
11*
IISTEPIA EXEC PGM=DRMNOTFY,
II PARM='CONTROLLER,USER20,COPY,USER20.TEMP.DATASET'
IISTEPLIB DO DSN=ABC.ISMF.LOAD,DISP=SHR
11*
11*
11*
IISTEP 1 EXEC PGM=ADRDSSU,PARM='UTILMSG=YES.TYPRUN=SCAN'.
II REGION=2048K
//*
11*
11*
IISYSPRINT DO
IIOUTVOLl DO
IISYSIN DO

SYSOUT=*
VOL=SER=ABCOOl.UNIT=3380.DISP=SHR

COPY DATASET(-

1*

INCLUDE(-
USER20.TEMP.OATASET -
» -

OUTDDNAME (-
OUTVOLl

CATALOG -
PERCENTUTILIZEO(-

90 -
) -

RENAMEUNCONDITIONAL(USER20.TEMP.OATASET -
USER20.CLIST.COPY.EXAMPLE) -

TOLERATE(IOERROR) -
WAIT(2.2)

Figure 76. Job Stream Generated from the Tailored Skeleton

Customizing Tables

This section describes how to customize command tables. It is divided into two
sections, "Customizing the ISPF Command Tables" on page 166 and "Customizing
the ISMF Command and Line Operator Tables" on page 167. The first explains the
additions you can make to the ISPF command tables in the table library. The second
explains the changes and additions you can make to the ISMF command and line
operator tables in the load library. Restrictions to customizing the tables are listed at
the beginning of each section.

Chapter 8. Interactive Storage Management Facility (ISMF) t 65

Customizing the ISPF Command Tables

Restrictions

1. Do not delete any of the entries in the command tables
2. Do not delete any of the tables

Finding the Table You Want to Change

Making the Changes

The ISPF command tables are kept in the table library. The tables you can change
have a name that ends in CMDS.

You can make changes to the table library using the ISPF command table utility
(option 3.9). Figure 77 is an example of a table displayed using option 3.9.

VERB T ACTION
DESCRIPTION

"" CLEAR 0 PASSTHRU

"" COMPRESS 0 PASSTHRU

"" COpy 0 PASSTHRU

"" DOWN 0 PASSTHRU

II II DUMP 0 PASSTHRU
, , .. FILTER 0 PASSTHRU

"" FIND 0 PASSTHRU

"" LEFT 0 PASSTHRU

"" PROFILE 0 PASSTHRU

, , " RELEASE 0 PASSTHRU

"" RESHOW 0 PASSTHRU

Figure 77. Using Command Table Utility to Update ISPF Tables

The command table utility reads the table from ISP1LIB and writes it out to ISPT ABL.
If you use the utility to update a command table, you should make sure that both
libraries use the same data set for the table you want to change. When you add a
command to the ISPF command tables, you should also add it to the ISMF tables. The
method you use to do this is described in "Customizing the ISMF Command and Line
Operator Tables" on page 167.

Controlling Truncation

Truncation is determined by the ZCTfRUNC and the ZTACT fields in the command
table. All ISMF commands in the ISPF table are set with a truncation of 0 and an
action of PASSTHRU. This passes the entire command to the ISMF dialog for
resolution. When you add a command, you should coordinate the truncation Value
you specify with the values specified for the existing commands in the ISPF tables, the
system tables, and the tables for ISMF commands. For more information on the
structure of ISPF command tables, and how to alter them, see ISPF Diag/og
Management Services.

166 Data Facility Product Version 2: Customization

Customizing the ISMF Command and Line Operator Tables

Restrictions

Finding the Tables

1. Do not change the name of the command or line operator. You can, however,
change the name of the routine that gets control.

2. You can replace one of the empty command or line operator tables that ISMF
ships with a table of your own, but your table should use the same format as the
ISMF tables. See Appendix C, "ISMF Command Table Format" on page 195
and Appendix D, "ISMF Line Operator Table Format" on page 197 for the
format of the tables. The control block, DGTMCTAP contains the format for the
command tables; DGTMLPAP contains the format for the line operator tables. If
new commands are added to the tables, ISMF will recognize them.

The ISMF tables for line operators and commands are kept in the load library. They
are grouped by function. Figure 78 lists the Data Set and Volume Appfication
member names for DFP /ISMF and DFDSS/ISMF line operators and commands, and
for DFHSM/ISMF line operators.

Data Set Volume Function
Member Member

DGTICTDI DGTICTVI DFP /ISMF commands

DGTICTD2 DFDSS/ISMF commands

DGTICTV2 blank

DCTICTD3 DCTICTV3 blank

DGTICTD4 DGTICTV4 blank

DGTICTD5 DGTICTV5 blank

DGTICTD6 DGTICTV6 blank

DGTICTD7 DGTICTV7 blank

DGTICTD8 DGTICTV8 blank

DGTILPDI DGTILPVI DFP /ISMF line operators

DGTILPD2 DFHSM/ISMF line operators

DGTILPD3 DGlTLPV2 DFDSS/ISMF line operators

DGTILPV3 blank

DGTILPD4 DGTILPV4 blank

DGTILPD5 DGlTLPV5 blank

DGTILPD6 DGTILPV6 blank

DGlTLPD7 DGTILPV7 blank

DGTILPD8 DGTILPV8 blank

Figure 78. Member Names for Line Operator and Command Tables

Figure 79 fists the member names for the profile application command tables. The
tables are used for both data set and volume appfications.

Chapter 8. Interactive Storage Management Facility (ISMF) t 67

Making the Changes

Member Name Function

DGTICTPI DFP /ISMF commands

DGTICTP2 DFDSS/ISMF commands

DCTICTP3 blank

DGTICTP4 blank

DGTICTP5 blank

DGITCTP6 blank

DGTICTP7 blank

DGTICTP8 blank

Figure 79. Member Names for Profile Application Command Tables

There are two ways to change the ISMF tables for line operators and commands. You
can add new entries to the existing tables or to one of the blank tables ISMF ships. H
you add entries to the ISMF tables, you should also update the ISPF command table.

Whenever a new command is added to an application in ISMF, it must be added to
the command table for all applications in ISMF, not only for the application affected.

Modifying the Existing Tables

Because the tables are stored in the load library, you cannot edit them directly.

If you want to make extensive changes:

1. Create your own table following the format that ISMF uses. See
Appendix D, "ISMF Line Operator Table Format" on page 197 for the format
of the line operator tables.

2. Enter the line operators along with the ISMF entries in the new table.

3. Link edit the new table under the original member name. This will overlay the
original table with your new table.

If you want to make minor changes: you can SUPERZAP the member that
contains the table you want to change. However, the next time a link edit or
maintenance is performed on the member, the change will be lost. For information on
how to use SUPERZAP, see Service Aids.

Using One of the Blank Tables

ISMF ships 30 blank tables in the load library: 19 overlay command tables and 11
overlay line operator tables. You can use the line operator tables to add your own
entries. Figure 78 on page 167 and Figure 79 on page 167 list the member names
for the blank tables. To make entries in one of the blank tables:

1. Create a table following the format that ISMF uses.

2. Enter the new line operators in the table. For new commands, set the
CT AP ACMD bit to 1. Also, be sure to update the count value in CT APCNT to

168 Data Facility Product Version 2: Customization

reflect the number of entries in the table. See Appendix C, "ISMF Command
Table Format" on page 195.

3. Link edit the table using the member name for the blank table that you want to
overlay.

Customizing the ISM F CLiST

Restrictions

Finding the CLiST

Making the Changes

This chapter explains how to change the CONTROL statement on the ISMF CUST.

Do not alter the CUST itself. Changes to the logic may create problems with job
submission. For example, jobs may be submitted incorrectly, or not submitted at all.
Logging of submission may fail, or it may be incorrect. Changing the CUST could
also cause incorrect feedback for job submission. If you wish to modify the job
streams, you can do so by tailoring the job skeletons. The method you use to do this
is described in "Customizing Job Skeletons" on page 159. It is easier than changing
the CUST, and less error prone.

The CUST is stored in the CUST library. The member name is DGTQSUOI.

You can change the CONTROL statement that ISMF ships with the CLIST using any of
the operands for CONTROL listed in TSO Command LAnguage Reference. Figure 80
shows the CONTROL statement in the ISMF CUST. It is located at the beginning of
the data set, immediately after the comment section.

r *
r *
/* PROCESSOR: ISPF *
r *
/* CHANGE ACTIVITY: LEVEL 0 *
/* SLO=ISMFREL,JAE2211"PRGRMA: * r *
/**
CONTROL NOFLUSH
/**
/* BEGIN CLIST MAINLINE *
/**

Figure 80. Control Statement in the ISMF CUST

Chapter 8. Interactive Storage Management Facility (ISMF) 169

To change the CONTROL statement you need to edit the DGTQSUOI member in the
CLIST library. For example, you could add the LIST operand as shown in Figure 81.

/* *
~ *
/* PROCESSOR: ISPF *
~ *
/* CHANGE ACTIVITY: LEVEL 0 *
/* $LO=ISMFREL.JAE2211 •• PRGRMA: *
~ *
/**
CONTROL NOFLUSH LIST
/**
/* BEGIN CLIST MAINLINE *
/**

Figure 81. Changing the Control Statement

170 Data Facility Product Version 2: Customization

Appendix A. Example of an OPEN Installation Exit Module

Processing in I FGOEXOB

The following program listing is a sample of IFGOEXOB. The four subroutines
(BUFNO, SCREEN, RLSE, and SQTY) show examples of the kind of processing that
can be done in your installation's version of IFGOEXOB.

The BUFNO subroutine defaults the number of buffers for QSAM DCBs
(DCBBUFNO) if the value is zero when the exit is given control. The block size in
the DCB (DCBBLKSI) is used, together with a fixed amount of storage (64K bytes in
the example) to determine a buffer number. A buffer number is limited to a fixed
value (32 in the example). Storage quantity and maximum buffer number are
contained in two tables, DAMAX and TPMAX, that are used for DASD devices and
tape devices, respectively. Storage quantity is expressed in units of 1024 (1K) bytes.
The values in the DAMAX and TPMAX tables can be altered by your installation.

The SCREEN subroutine determines those cases in which the succeeding subroutines,
RLSE and SQTY, should be executed. DASD sequential and partitioned data sets
being processed by BSAM or QSAM and opened for OUTPUT or OUTIN are
selected. The VTOC data set and data sets starting with 'SYS1.' (system data sets)
are excluded. An installation may want to make further selection tests.

Requesting .Partial Release

The RLSE subroutine sets on the partial release indicators in the JFCB if the number
of extents in the data set is less than a fixed value (8 in the example). It sets off the
partial release indicators in the JFCB if the number of extents in the data set is equal
or greater than a fixed value (8 in the example). Partitioned data sets are not
processed, because they may be opened many times to write one new member for
each OPEN/CLOSE.

Updating the Secondary Space Data

The SQTY subroutine provides a default secondary space quantity if none is specified.
The default is one half of the primary space quantity if it is greater than one. If the
primary quantity is zero, secondary is set to a fixed default number of tracks (5 in the
example). If the primary quantity is one, secondary is set to the same fixed default
(5); note that, in this case, the secondary quantity is in units of tracks, cylinders, or
average blocks, depending on the unit of the primary quantity.

If the secondary space quantity is not zero, the SQTY subroutine tests the number of
extents in the data set. If the number of extents is equal to or greater than a fixed
value (10 in the example), then the secondary quantity is increased by 50% if it is
greater than 1. It is set to a default quantity (S in the example) if the secondary
quantity is one; note that, in this case, the secondary quantity is in units of tracks,
cylinders, or average blocks, depending on that of the primary quantity.

Appendix A. Example of an OPEN Installation Exit Module 171

IFGOEXOB CSECT

* *
* FUNCTION = *
* FOUR SAMPLE ROUTINES ARE SUPPLIED. *
* *
* BUFNO - DEFAULT DCBBUFNO *
* DCBBUFNO (NUMBER OF BUFFERS) IS DEFAULTED FOR *
* OPENS TO PHYSICAL SEQUENTIAL AND PARTITIONED DATA SETS *
* ON DASD AND TAPE USING QSAM. FOR WHICH DCBBUFNO IS ZERO. *
* DCBBUFNO FOR SYSIN. SYSOUT. TERMINAL. AND DUMMY DATA SETS *
* IS SET TO THE EQUATE. INOUTBNO. OR THE VALUE IN THE *
* FULLWORD. INOUTBN. *
* *
* DCBBUFNO IS SET TO THE NUMBER OF DCBBLKSZ BUFFERS WHICH *
* FIT IN A GIVEN AMOUNT OF STORAGE. THE AMOUNT OF STORAGE IS *
* DEFINED BY THE EQUATES. DAMXK AND TPMXK (OR THE FULLWORDS *
* AT LABELS. DAMAXK AND TPMAXK), FOR DASD AND *
* TAPE. RESPECTIVELY. THE EQUATES DEFINE THE AMOUNT OF *
* STORAGE FOR BUFFERS IN UNITS OF 1024 (IF DAMXK IS 32. THEN *
* THE AMOUNT OF STORAGE IS 32K. OR 32768). *
* DAMXK OR TPMXK TIMES 1024 IS DIVIDED BY DCBBLKSI TO *
* DETERMINE THE NUMBER OF BUFFERS TO DEFAULT. *
* *
* THE EQUATES. DAMXBNO AND TPMXBNO, OR THE FULLWORDS *
* AT LABELS. DAMAXBNO AND TPMAXBNO, *
* DEFINE THE MAXIMUM NUMBER OF BUFFERS TO BE *
* DEFAULTED FOR DASD AND TAPE IF THE CALCULATION, ABOVE, *
* RESULTS IN A LARGER NUMBER. *
* *
* SCREEN - SCREEN OUT CASES FOR RLSE. SQTY *
* *
* RLSE· - SET OR ZERO PARTIAL RELEASE *
* THIS ROUTINE SETS PARTIAL RELEASE FOR DASD PS (NOT PO) DATA *
* SETS BEING OPENED FOR OUTPUT OR OUTIN. *
* *
* PARTIAL RELEASE IS SET ON IF THE NUMBER OF EXTENTS IS LESS *
* THAN A QUANTITY DEFINED BY THE EQUATE, RLSE1. OR THE BYTE, *
* EXTRLSEl. *
* *
* PARTIAL RELEASE IS SET OFF IF THE NUMBER OF EXTENTS IS NOT *
* LESS THAN A QUANTITY DEFINED BY THE EQUATE, RLSEO, OR THE *
* BYTE, EXTRLSEO. *
* *
* SQTY - SET OR UPDATE SECONDARY SPACE QUANTITY *
* THIS ROUTINE UPDATES THE SECONDARY SPACE *
* QUANTITY FOR DASD PS OR PO DATA SETS BEING *
* OPENED FOR OUTPUT OR OUTIN. *
* *
* IF THE SECONDARY QUANTITY IS NOT ZERO. *
* AND IF THE NUMBER OF EXTENTS IN THE DATA SET IS *
* AT LEAST EQUAL TO THE QUANTITY IN THE EQUATE, EXTSQT (OR *
* THE BYTE AT LABEL, EXTSQTY). THEN: *
* 1. IF THE SECONDARY QUANTITY IS GREATER THAN ONE, *
* SECONDARY QUANTITY IS INCREASED BY ONE HALF *
* (50%) • *

172 Data Facility Product Version 2: Customization

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

2. IF THE SECONDARY QUANTITY IS ONE,
SECONDARY QUANTITY IS SET TO THE VALUE IN THE FULLWORD
AT LABEL, SQTYDFLT (EQUAL TO THE EQUATE, SQTYDFL).

IF THE SECONDARY QUANTITY IS NOT ZERO,
AND IF THE NUMBER OF EXTENTS IN THE DATA SET IS
LESS THAN THE QUANTITY IN THE EQUATE, EXTSQT (OR
THE BYTE AT LABEL, EXTSQTY), SECONDARY QUANTITY
IS LEFT UNCHANGED.

* •
•
•
* •
* •
•
•

IF SECONDARY QUANTITY IS ZERO, IT IS SET TO ONE HALF •
OF PRIMARY QUANTITY IF PRIMARY IS NOT ZERO OR ONE. •
IF PRIMARY QUANTITY IS ZERO, THE SPACE TYPE IS SET TO TRACKS,·
AND SECONDARY QUANTITY IS SET TO THE VALUE IN THE FULL WORD •
AT LABEL SQTYDFLT (EQUAL TO THE EQUATE, SQTYDFL). •
IF PRIMARY QUANTITY IS ONE, SECONDARY QUANTITY IS SET TO •
VALUE IN THE FULLWORD AT LABEL SQTYDFLT (EQUAL TO THE *
EQUATE, SQTYDFL). •

• NOTES = SEE BELOW •
•
*
*
*
*
*
* •

•
•
•
•
•
•
•
•
•
•
•
•
*
*
*
* •
•
•
•
•
•
•
•
•

DEPENDENCIES =
CLASS ONE CHARACTER CODE. THE EBCDIC CHARACTER CODE
WAS USED FOR ASSEMBLY. THE MODULE MUST BE REASSEMBLED
IF A DIFFERENT CHARACTER SET IS USED FOR EXECUTION.

RESTRICTIONS = NONE

REGISTER CONVENTIONS =
RI OIEXL ADDRESS
R2 DCB ADDRESS
R3 UCB ADDRESS
R4 DCB BLOCK SIZE
R5 ADDRESS OF TPMAX OR DAMAX TABLES
R6 EVEN REGISTER OF EVEN/ODD PAIR
R7 ODD REGISTER OF EVEN/ODD PAIR
R8 TIOT ENTRY ADDRESS
R8 JFCB ADDRESS
RIO FORMAT I DSCB ADDRESS
Ril SAVE RETURN CODE
R13 SAVE AREA ADDRESS
R14 RETURN ADDRESS
R15 BASE REGISTER

PATCH LABEL = PATCH

• MODULE TYPE = CONTROL (OPEN, CLOSE, EOV DATA MANAGEMENT)
•
•
•
* •
•
•
•
•

PROCESSOR = ASSEMBLER XF

MODULE SIZE = SEE EXTERNAL SYMBOL DICTIONARY

ATTRIBUTES = REENTRANT, REFRESHABLE,READ-ONLY, ENABLED,
PRIVILEGED, SUPERVISOR STATE, KEY ZERO,
LINK PACK AREA RESIDENT/PAGEABLE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* •
*
* •
*
*
*
*
*
*
*
*
*

Appendix A. Example of an OPEN Installation Exit Module t 73

* ENTRY POINT = IFGOEXOB
*
*
-*

*
*
*
*

PURPOSE :: SEE FUNCTION

LINKAGE =
FROM IFG0196L:

BALR 14,15

* INPUT = STANDARD LINKAGE CONVENTIONS
*
* OUTPUT ::
*

DCBBUFNO DEFAULTED
PARTIAL RELEASE SET OR RESET
CONTIGUOUS FLAG SET TO ZERO
SECONDARY SPACE REQUEST MODIFIED

*
*
*
*
*
*

RETURN CODE IN REGISTER 15
o IF JFCB NOT MODIFIED
4 IF JFCB MODIFIED

* EXIT-NORMAL ::
* BR 14
*
* EXIT-ERROR ::
* NONE
*
* EXTERNAL REFERENCES = SEE BELOW
*
*
*
*
*
*
*

ROUTINES = NONE

DATA AREAS = NONE

CONTROL BLOCK = NONE

* TABLES :: NONE
*
* MACROS = MODESET, IECOIEXL, DCBD, IEFUCBOB, IEFTIOTl, IEFJFCBN,
* IECSDSLI
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

174 Data Facility Product Version 2: Customization

*
*
*

REGISTER EQUATES

Rl EQU 1 OIEXL PARAMETER LIST ADDRESS
RDCB EQU 2 DCB ADDRESS
RUCB EQU 3 UCB ADDRESS
RBKSIZ EQU 4 DCB BLOCK SIZE
RMAX EQU 5 ADDRESS OF TPMAX OR DAMAX
REVEN EQU 6 EVEN REGISTER OF EVEN/ODD PAIR
RODD EQU 7 000 REGISTER OF EVEN/ODD PAIR. HAS *

DCBBUFNO DEFAULT
RTIOT EQU 8 TIOT ENTRY ADDRESS
RJFCB EQU 9 JFCB ADDRESS
RDSCB EQU 10 FORMAT 1 DSCB ADDRESS
RINCODE EQU 11 INTERNAL RETURN CODE
R12 EQU 12
RSAVE EQU 13 SAVE AREA ADDRESS
RET EQU 14 RETURN ADDRESS
RCODE EQU 15 BASE REGISTER/RETURN CODE ON EXIT

*
* RETURN CODE
*

MODJFCB EQU 4 RETURN CODE IF JFCB MODIFIED

USING IFGOEXOB.RCODE

*
*
*

START OF SAMPLE PROGRAM

***.

+
AFTRIDI

+AFTRIDI
+

B AFTRIDI
DC C'IFGOEXOB JDM1137 &SYSDATE'
DC C'IFGOEXOB JDM1137 05/01/81'
SAVE (14.12) SAVE REGISTERS
DS OH
STM 14.12.12(13)
XR RINCODE.RINCODE
USING OIEXL.Rl
BAL RET.BUFNO
BAL RET.SCREEN

SAVE REGISTERS
ZERO RETURN CODE
PARAMETER LIST
DEFAULT BUFNO
SCREEN OUT CASES WHERE RLSE. *
AND SQTY SHOULD NOT BE CALLED

BAL RET.RLSE SET PARTIAL RELEASE
BAL RET.SQTY SET SECONDARY QUANTITY

EXIT EQU * RETURN TO CALLER

+
+
+

* RETURN TO CALLER

LR RCODE.RINCODE
RETURN (14.12).RC=(15)
L 14.12(13.0)
LM 0.12.20(13)
BR 14

BUFNO EQU *

RESTORE REGISTER
RESTORE REGISTER 14
RESTORE THE REGISTERS
RETURN

DEFAULT DCB BUFNO

Appendix A. Example of an OPEN Installation Exit Module 175

*
* DEFINE DEFAULT VALUES
* DAMXK: NUMBER OF K (1024) OF BUFFERS FOR DASD
* TPMXK: NUMBER OF K (1024) OF BUFFERS FOR TAPE
* DAMXBNO : MAXIMUM NUMBER OF BUFFERS FOR DASD
* TPMXBNO : MAXIMUM NUMBER OF BUFFERS FOR TAPE
* NOTE THAT DAMXBNO AND TPMXBNO MUST NOT BE GREATER THAN 255
*

DAMXK EQU
TPMXK EQU

64K BUFFERS FOR DASD
64K BUFFERS FOR TAPE
32 BUFFERS MAXIMUM FOR DASD
32 BUFFERS MAXIMUM FOR TAPE

DAMXBNO EQU
TPMXBNO EQU
INOUTBNO EQU

64
64
32
32
1 DCBBUFNO DEFAULT FOR SYSIN, SYSOUT, *

AND DO DUMMY
ONEK EQU 10 SHIFT ARGUMENT TO MULTIPLY BY 1024

B AFTRID2
DC CLS'BUFNO'

AFTRID2 BCR O,RET
BUFNO ROUTINE ID
NOP RETURN

L RDCB,OIEXPDCB PROTECTED COpy OF DCB
USING DCBD,RDCB

*
*

DO NOT PROCESS EXCP, BSAM, DSORG NOT PS OR PO,
DCBBUFNO SPECIFIED

TM DCBMACFl,DCBMRECP EXCP DCB?
BO RETBUFNO RETURN IF EXCP
TM DCBMACFl,DCBMRRD READ MACRO
BO RETBUFNO RETURN IF READ-NOT QSAM
TM DCBMACF2,DCBMRWRT WRITE MACRO
BO RETBUFNO RETURN IF WRITE-NOT QSAM
TM DCBDSRGl,DCBDSGPS+DCBDSGPO PS OR PO
BZ PETBUFNO EXIT IF NOT PS OR PO
CLI uCBBUFNO,O IS DCBBUFNO SPECIFIED
BNE RETBUFNO RETURN IF DCBBUFNO SPECIFIED

* DEFAULT DCBBUFNO TO 1 FOR SYSIN, SYSOUT, TERMINAL, DUMMY

L RTIOT,OIEXTIOT
USING TIOENTRY,RTIOT
L RODD,INOUTBN

TIOT ENTRY ADDRESS

BUFNO DEFAULT FOR SYSIN/SYSOUT/
DO DUMMY

TM TIOELINK,TIOESSDS+TIOTTERM SYSIN/SYSOUT OR TERMINAL
BNZ STORE BRANCH IF SYSIN OR SYSOUT OR TERMINAL
L RJFCB,OIEXJFCB JFCB ADDRESS
USING INFMJFCB,RJFCB
CLC JFCBDSNM(L'NULLFILE),NULLFILE DUMMY DATA SET
BE STORE BRANCH IF DUMMY

* EXIT IF NO UCB ADDRESS OR BLOCK SIZE NOT POSITIVE

L RUCB,OIEXUCB
LTR RUCB,RUCB
BZ RETBUFNO
LH RBKSIZ,DCBBLKSI
LTR RBKSIZ,RBKSIZ
BNP RETBUFNO

UCB ADDRESS
ANY UCB?
EXIT IF NO UCB
DCB BLOCK SIZE
ANY BLOCK SIZE?
RETURN IF NO BLOCK SIZE

176 Data Facility Product Version 2: Customization

*

* GET TAPE OR DASD MAX TABLE

USING UCBOB,RUCB
TM UCBTBYT3,UCB3DACC DASD UCB?
LA RMAX,DAMAX MAX TABLE FOR DASD
BO CALC BRANCH IF DASD
TM UCBTBYT3,UCB3TAPE TAPE UCB?
LA RMAX,TPMAX MAX TABLE FOR TAPE
BZ RETBUFNO RETURN IF NOT DASD OR TAPE

CALC EQU * DEFAULT DCBBUFNO

* CALCULATE DEFAULT BUFFER NUMBER

USING MAX,RMAX
XR REVEN,REVEN ZERO EVEN REG
L RODD,MAXBUF MAXIMUM STORAGE FOR BUFFERS
SLL RODD,ONEK SHIFT TO MULTIPLY BY 1024
DR REVEN,RBKSIZ DIVIDE MAS BUFFER SPACE BY BKSI
C RODD,MAXBNO ARE THERE TOO MANY BUFFERS?
BNH STORE USE CALCULATION IF NOT TOO LARGE
L RODD,MAXBNO USE MAXIMUM NUMBER OF BUFFERS

STORE EQU * DEFAULT DCBBUFNO FOR USER/COPY DCB
STC RODD,DCBBUFNO PUT IN PROTECTED COpy OF DCB
L RDCB,OIEXUDCB USER DCB
XR REVEN,REVEN MODESET USES REG 6 = REVEN
MODESET KEYADDR=OIEXUKEY,WORKREG=6 GET IN USER KEY

+* /* MACDATE Y-3 77277 @ZA26071*/
+* /*
+
+

IC 6,OIEXUKEY
SPKA 0(6)
STC RODD,DCBBUFNO
MODESET EXTKEY=ZERO

+* /* MACDATE Y-3 77277
+* /*

GET KEY FROM SAVE LOCATION
SET PSW KEY

PUT IN USER DCB
BACK TO KEY ZERO

+ SPKA O{O) SET PSW KEY
RETBUFNO EQU * RETURN FROM BUFNO

BR RET RETURN

@ZA26071*/

INOUTBN DC A{INOUTBNO) SYSIN/SYSOUT/DUMMY BUFNO DEFAULT

*
*
*

MAX TABLE FOR TAPE

OS
DC

TPMAX OS
TPMAXK DC

TPMAXBNO DC

OF
CLS'TPMAX'
OF
A{TPMXK)

A{TPMXBNO)

TPMAX ID

MAXIMUM SIZE FOR BUFFERS IN UNITS
OF 1024
MAXIMUM NUMBER OF BUFFERS

*

Appendix A. Example of an OPEN Installation Exit Module 177

*
*
*

MAX TABLE FOR DASD

DAMAX
DAMAXK

OS
DC
OS
DC

DAMAXBNO DC
SCREEN EQU

OF
CL8'DAMAX'
OF
A(DAMXK)

A(DAMXBNO)
*

DAMAX ID

MAXIMUM SIZE FOR BUFFERS IN UNITS
OF 1024
MAXIMUM NUMBER OF BUFFERS
SCREEN OUT CASES WHERE RLSE.
AND SQTY SHOULD NOT EXECUTE

*
*
*
*
*
*
*
*
*
*
*
*

DO NOT PROCESS IF
SYSIN/SYSOUT/TERMINAL
DO DUMMY
USER ASKS JFCB NOT BE RE-WRITTEN
SYSTEM DATA SET ('SYSl.XXX')
NON-DASD UCB
NOT A FORMAT 1 DSCB
EXCP DCB
DSORG IN DCB IS NEITHER PS NOR PO
DSORG IN DSCB IS NEITHER PS NOR PO
NEITHER PUT NOR WRITE MACRO CODED IN DCB
OPEN FOR OTHER THAN OUTPUT OR OUTIN

B AFTRID3
DC CL8'SCREEN' SCREEN ROUTINE 10

AFTRID3 L RTIOT.OIEXTIOT TIOT ENTRY ADDRESS
TM TIOELINK,TIOESSDS+TIOTTERM SYSIN/SYSOUT OR TERMINAL
BNZ EXIT EXIT IF SYSIN OR SYSOUT OR TERMINAL
L RJFCB,OIEXJFCB JFCB ADDRESS
CLC JFCBDSNM(L'NULLFILE),NULLFILE DUMMY DATA SET
BE EXIT EXIT IF DUMMY
CLC SYS1.JFCBDSNM SYSl.XXX DATA SET
BE EXIT EXIT IF SYSTEM DATA SET
TM JFCBTSDM,JFCNWRIT DON'T MODIFY JFCB
BO EXIT EXIT IF YES
L RUCB.OIEXUCB UCB ADDRESS
LTR RUCB,RUCB ANY UCB?
BZ EXIT EXIT IF NO UCB
TM UCBTBYT3,UCB3DACC DASD UCB?
BNO EXIT EXIT IF NOT DASD
L RDSCB.OIEXDSCB FORMAT 1 DSCB ADDRESS
USING DSIFMTID.RDSCB
CLI DSIFMTID,C'l' IS THIS A FORMAT 1 DSCB
BNE EXIT EXIT IF NOT
L RDCB,OIEXPDCB PROTECTED DCB ADDRESS
TM DCBMACFl,DCBMRECP EXCP DCB?
BO EXIT EXIT IF EXCP
TM DCBDSRG1.DCBDSGPS+DCBDSGPO PS OR PO DCB
BZ EXIT EXIT IF NOT PS OR PO
NC DSIDSORG.DSIDSORG IS DSORG SPECIFIED
BZ TSTMACRF TRUST DCB IF NOT SPECIFIED
TM DSIDSORG,DSIDSGPS+DSIDSGPO IS DATA SET PS OR PO
BZ EXIT EXIT IF NOT PS OR PO

178 Data Facility Product Version 2: Customization

*

*

TSTMACRF EQU * TEST MACRF IN DCB
PUT MACRO TM DCBMACF2,DCBMRPUT

BO TSTOOPT
TM DCBMACF2,DCBMRWRT
BZ EXIT

TEST OPEN OPTION
WRITE MACRO

TSTOOPT EQU *
EXIT IF NOT WRITE
TEST OPEN OPTION
OPEN FOR OUTPUT
BRANCH IF YES
OPEN FOR OUTI N
EXIT IF NO

TM OIEXOOPT,OIEXOOUT
BO SCREENOK
TM OIEXOOPT,OIEXOOIN
BNO EXIT

SCREENOK EQU *
BR RET RETURN TO CALL RLSE, SQTY

RLSE EQU * SET PARTIAL RELEASE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

DEFINE DEFAULT VALUES
RLSEO = NUMBER OF EXTENTS. IF THE DATA SET HAS THIS

NUMBER OF EXTENTS OR MORE, THEN PARTIAL RELEASE
WILL NOT BE ALLOWED.

RLSE1 = NUMBER OF EXTENTS. IF THE DATA SET HAS LESS THAN
THIS NUMBER OF EXTENTS, PARTIAL RELEASE IS
REQUIRED.

NOTE THAT RLSEO MUST NOT BE GREATER THAN RLSE1

SETTING RLSEO TO 17 OR GREATER WILL CAUSE THIS ROUTINE TO
NEVER PREVENT A REQUEST FOR PARTIAL RELEASE

SETTING RLSE1 TO 0 WILL CAUSE THIS ROUTINE TO
NEVER FORCE A REQUEST FOR PARTIAL RELEASE

RLSEO EQU S SET RELEASE BIT TO ZERO IF NUMBER OF *

EXTENTS EQUAL OR GREATER THAN THIS
RLSE1 EQU S SET RELEASE BIT TO ONE IF NUMBER OF *

EXTENTS LESS THAN THIS
B AFTRID4
DC CLS'RLSE' RLSE ROUTINE ID

AFTRID4 BCR O,RET NOP RETURN
L RDSCB,OIEXDSCB FORMAT 1 DSCB ADDRESS
1M DS1DSORG,DS1DSGPO IS DATA SET PARTITIONED
BO TSTRLSE DO NOT SET RELEASE FOR PARTITIONED
CLC DSINOEPV,EXTRLSE1 FEW ENOUGH TO SET RELEASE
BNL TSTRLSE BRANCH IF NOT
L RJFCB,OIEXJFCB
01 JFCBINDl.JFCRLSE SET RELEASE
LA RINCODE.MODJFCB JFCB MODIFIED
B RETRLSE RETURN

TSTRLSE CLC DSINOEPV.EXTRLSEO ENOUGH TO ZERO RELEASE
BL RETRLSE BRANCH IF NO
NI JFCBINDl.255-JFCRLSE ZERO RELEASE
LA RINCODE.MODJFCB JFCB MODIFIED

RETRLSE EQU * RETURN FROM RLSE
BR RET RETURN
DC CL8'RLSECONS' RLSE CONSTANTS ID
DS OH

EXTRLSE1 DC ALl(RLSE1) IF FEWER THAN THIS NUMBER OF EXTENTS.*
PARTIAL RELEASE WILL BE SET

EXTRLSEO DC All (RLSEO) IF THIS NUMBER OR MORE EXTENTS. *
PARTIAL RELEASE WILL BE ZEROED

SQTY EQU * SET SECONDARY QUANTITY

Appendix A. Example of an OPEN InstaUation Exit Module t 79

*
* DEFINE DEFAULT VALUES
* SQTYDFL = DEFAULT SECONDARY QUANTITY. THIS QUANTITY IS
* SET IF THE SECONDARY QUANTITY IS ZERO AND THE
* PRIMARY QUANTITY IS ZERO OR ONE. IT IS USED
* IF SECONDARY QUANTITY IS ONE, AND THE NUMBER OF
* EXTENTS IS EQUAL OR GREATER TO EXTSQT.
* EXTSQT = NUMBER OF EXTENTS. IF THE DATA SET HAS THIS MANY
* EXTENTS OR MORE, THEN INCREASE SECONDARY QUANTITY.
*

SQTYDFL EQU 5 DEFAULT SECONDARY QUANTITY
EXTSQT EQU 10 IF DATA SET HAS THIS MANY EXTENTS, *

THEN INCREASE SECONDARY QUANTITY
B AFTRID6
DC CL8'SQTY ' SQTY ROUTINE ID

AFTRID6 BCR O,RET NOP RETURN
L RJFCB ,0IEXJFCB JFCB ADDRESS
NC JFCBSQTY,JFCBSQTY ANY SECONDARY QUANTITY
BZ TSTPRIM TEST PRIMARY IF NOT
L RDSCB,OIEXDSCB FORMAT 1 DSCB ADDRESS
CLC DSINOEPV,EXTSQTY ENOUGH TO ADD TO SECONDARY QTY
BL RETSQTY BRANCH IF NOT
XR RODD,RODD
ICM RODD,7,JFCBSQTY GET SECONDARY QUANTITY
LR REVEN,RODD SAVE IN REVEN
SRL REVEN,l HALVE SECONDARY QUANTITY
LTR REVEN,REVEN IS SECONDARY ONE
BZ SETDFLT DEFAULT SECONDARY IF ONE
AR RODD,REVEN 150% OF SECONDARY
B STSQTY

TSTPRIM EQU * SECONDARY QUANTITY IS ZERO
NC JFCBPQTY,JFCBPQTY IS PRIMARY QUANTITY ZERO
BZ DFLTSQTY DEFAULT SECONDARY
XR RODD,RODD
ICM RODD,7,JFCBPQTY
SRL ROOD ,1 HALVE PRIMARY
LTR ROOD ,ROOD IS PRIMARY ONE
BNZ STSQTY BRANCH IF NOT

SETDFLT EQU * USE QUANTITY IN SQTYDFLT
L RODD,SQTYDFLT DEFAULT SECONDARY
B STSQTY STORE SECONDARY

DFLTSQTY EQU * PRIMARY AND SECONDARY ZERO
L RODD,SQTYDFLT GET DEFAULT SECONDARY
TM JFCBCTRI,JFCBSPAC
BNZ STSQTY
CLI DSIEXTl,X'OI' TRACK EXTENT
BE DFLTTRK YES -- SET TRACKS
CLI DSIEXTl,X'81, CYL EXTENT
BNE RETSQTY NO -- RETURN
01 JFCBCTRI,JFCBCYL SET CYLINDER UNITS
B STSQTY

180 Data Facility Product Version 2: Customization

DFLTTRK EQU
01

STSQTY EQU
STCM
LA

RETSQTY EQU
BR
DS
DC

SQTYDFLT DC
DC

EXTSQTY DC

*
JFCBCTRI,JFCBTRK
*
RODD,7 ,J FCBSQTY
RINCODE ,MODJFCB
*
RET
OF
CL8'SQTYCONS'
ACSQTYDFU
ALlCO)
ALlCEXTSQT)

SET TRACK UNITS
MAKE TRACK REQUEST
STORE SECONDARY QTY

JFCB MODIFIED
RETURN FROM SQTY
RETURN

SQTY ROUTINE CONSTANTS 10
DEFAULT SECONDARY QUANTITY
NOTE ONE BYTE OF ZERO BEFORE EXTSQTY
IF DATA SET HAS THIS MANY EXTENTS,
THEN ADD TO SECONDARY QUANTITY

*

*
*
*

CONSTANTS / PATCH AREA

NULLFILE DC C'NULLFILE' DD DUMMY DATA SET NAME
SYSI DC C'SYSl.' START OF SYSTEM DATA SET NAMES

OS OF
PATCH DC C'IFGOEXOB PATCH AREA'

DC XL50'OO'

*
*
*

MAX TABLE MAPPING DSECT (MAPS TPMAX OR DAMAX)

MAX DSECT
MAXBUF DS A MAXIMUM SIZE FOR BUFFERS
MAXBNO DS A MAXIMUM NUMBER OF BUFFERS

*
*
*
*

DCB OPEN INSTALLATION EXIT PARAMETER LIST
- THE IECOIEXL MACRO IS IN SYSl.MACLIB

IECOIEXL

******** THE MACRO EXPANSION IS NOT SHOWN

*
* DCB - THE DCBD MACRO IS IN SYS1.MACLIB
*

DCBD DSORG=PS,DEVD=DA
******** THE MACRO EXPANSION IS NOT SHOWN

* * UCB - THE IEFUCBOB MACRO IS IN SYSl.AMODGEN
*

UCB DSECT

IEFUCBOB LIST=YES

Appendix A. Example of an OPEN Installation Exit Module 181

******** THE MACRO EXPANSION IS NOT SHOWN

*
* TIOT - THE IEFTIOTI MACRO IS IN SYSl.AMODGEN
*

TIOT

DSECT
IEFTIOTl
THE MACRO EXPANSION IS NOT SHOWN

*
*
*

JFCB - THE IEFJFCBN MACRO IS IN SYSl.AMODGEN

JFCB OSECT

IEFJFCBN LIST=YES
******** THE MACRO EXPANSION IS NOT SHOWN

*
*
*

FORMAT 1 OSCB - THE IECSOSLI MACRO IS IN SYSl.AMOOGEN

FlOSCB

OSECT
IECSOSLI (1)
THE MACRO EXPANSION IS NOT SHOWN
END

182 Data Facility Product Version 2: Customization

Appendix B. Status Infonnation Following an Input/Output Operation

Following an input/output operation with a DCB, the control program makes certain
status information available to the problem program; This information is a 2-byte
exception code, or a 16-byte field of standard status indicators, or both.

Exception codes are provided in the data control block (QISAM), or in the data event
control block (BISAM and BDAM). The data event control block is described below,
and the exception code Ues within the block as shown in the illustration for the data
event control block. If a DCBD macro instruction is coded, the exception code in a
data control block can be addressed as two I-byte fields, DCBEXCDI and
DCBEXCD2. The exception codes can be interpreted by referring to Figure 83,
Figure 84, and Figure 85.

Status indicators are available only to the error analysis routine designated by the
SYNAD entry in the data control block. A pointer to the status indicators is provided
either in the data event control block (BSAM, BPAM, and BDAM), or in register 0
(QISAM and QSAM). The contents of registers on entry to the SYNAD exit routine
are shown in Figure 86 on page 189, Figure 87 on page 190, and Figure 88 on
page 191; the status indicators are shown in Figure 89 on page 192.

Data Event Control Block

A data event control block is constructed as part of the expansion of READ and
WRITE macro instructions and is used to pass parameters to the control program,
help control the read or write operation, and receive indications of the success or
failure of the operation. The data event control block is named by the ltEAD or
WRITE macro instruction, begins on a fullword boundary, and contains the
information shown in Figure 82.

Offset from DECB Field Contents
Address (Bytes) BSAM and BPAM BISAM BDAM
0 ECB ECB ECBt
+4 Type Type Type
+6 Length Length Length
+8 DCBaddress DCBaddress DCB address
+12 Area address Area address Area address
+16 lOB address Logical record lOB address

address
+20 Key address Key address
+24 Exception code Block address

(2 bytes)
+28 Next address

Figure 82. Data Event Control Block

The control program returns exception codes in bytes + 1 and +2 of the ECB.

Appendix B. Status Information Following an Input/Output Operation 183

Event Control Block
The event control block (BCB) is used by the control program to test for completion
of the read or write operation. The BCB is located in the first word of the DECB.

The type, length, data control block address, area address, key address, block address,
and next address information is taken from the operands of the macro instruction and
placed in the DBCB for use by the control program. For BISAM, exception codes are
returned by the control program after the corresponding WAIT or CHECK macro
instruction is issued, as indicated in Figure 83. For BDAM, BSAM, BPAM, and
QSAM, the control program provides a pointer to the lOB containing the status
indicators shown in Figure 89 on page 192.

Exception
Code Bit
inDECB
o
1
2
3
4
5
6
7
8-15

READ
X
X

X
X
X
X

WRITE
TypeK
X
TypeKN
TypeK
X
X

TypeKN

Figure 83. Exception Code Bits-BISAM

Condition if On
Record not found
Record length check
Space not found
Invalid request
Uncorrectable I/O error
Unreachable block
Overflow record1

Duplicate record
Reserved for control program use

The SYNAD exit routine is entered only if the CHECK macro is issued after the
READ macro, and bit 0, 4, 5, or 7 is also on.

Notes to Figure 83:

Record Not Found: This condition is reported if the logical record with the specified
key is not found in the data set, if the specified key is higher than the highest key in
the highest level index, or if the record is not in either the prime area or the overflow
area of the data set.

Record Length Check: This condition is reported, for READ and update WRITE
macro instructions, if an overriding length is specified and (1) the record format is
blocked, (2) the record format is unblocked but the overriding length is greater than
the length known to the control program, or (3) the record is fixed length and the
overriding length does not agree with the length known to the control program. This
condition is reported for the add WRITE macro instruction if an overriding length is
specified.

When blocked records are being updated, the control program must find the high key
in the block in order to write the block. (The high key is not necessarily the same as
the key supplied by the problem program.) The high key is needed for writing
because the control unit for direct access devices permits writing only if a sear~h on
equal is satisfied; this search can be satisfied only with the high key in the block. If
the user were permitted to specify an overriding length shorter than the block length,
the high key might not be read; then, a subsequent write request could not be
satisfied. In addition, failure to write a high key during update would make a
subsequent update impossible.

184 Data Facility Product Version 2: Customization

Space Not Found for Adding a Record: This condition is reported if no room
exists in either the appropriate cylinder overflow area or the independent overflow
area when a new record is to be added to the data set. The data set is not changed in
any way in this situation.

Invalid Request: This condition is reported for either of two reasons. First, if byte
2S of the data event control block indicates that this request is an update WRITE
macro instruction corresponding to a READ (for update) macro instruction, but the
input/output block (lOB) for the READ is not found in the update queue. This
condition could be caused by the problem program altering the contents of byte 2S of
the data event control block. Second, if a READ or WRITE macro instruction
specifies dynamic buffering (that is, 'S' in the area address operand) but the
DCBMACRF field of the data control block does not specify dynamic buffering.

Uncorrectablelnput/Output Error: This condition is reported if the control
program's error recovery procedures encounter an uncorrectable error in transferring
data.

Unreachable Block: This condition is reported if an uncorrectable input/output
error occurs while searching the indexes or following an overflow chain. It is also
posted if the data field of an index record contains an improper address (that is, points
to the wrong cylinder or track or is an invalid address).

Overflow Record: This condition is reported if the record just read is an overflow
record. (See the section on direct retrieval and update of an indexed sequential data
set in Data Administration Guide for considerations during BISAM updating.)

Duplicate Record Presented for Inclusion in the Data Set: This condition is
reported if the new record to be added has the same key as a record in the data set.
However, if the delete option was specified and the record in the data set is marked
for deletion, this condition is not reported. Instead, the new record replaces the
existing record.

If the record format is blocked and the relative key position is zero, the new record
cannot replace an existing record that is of equal key and is marked for deletion.

Appendix B. Status Information Following an Input/Output Operation 185

Exception Code Code Set by
Field Bit CLOSE GET PUT PUTX SETL Condition if On
DCBEXCDI 0 TypeK Record Not Found

1 Type I Invalid actual address for lower limit
2 X Space not found for adding a record
3 X Invalid request
4 X Uncorrectable input error
5 X X X Uncorrectable output error
6 X X Block could not be reached (input)
7 X X Block could not be reached (update)

DCBEXCD2 0 X Sequence check
1 X Duplicate record
2 X Data control block closed when error routine

entered
3 X Overflow record1

4 X Incorrect record length
5-7 Reserved for future use

Figure 84. Exception Code Bits-QISAM

The SYNAD exit routine is entered only if bit 4,5,6, or 7 of DCBEXCDI is
also on.

Notes to Figure 84:

Record Not Found: This condition is reported if the logical record with the specified
key is not found in the data set, if the specified key is higher than the highest key in
the highest level index, or if the record is not in either the prime area or the overflow
area of the data set.

Invalid Actual Address for Lower Limit: This condition is reported if the specified
lower limit address is outside the space allocated to the data set.

Space Not Found for Adding a Record: This condition is reported if the space
allocated to the data set is already ftlled. In locate mode, a buffer segment address is
not provided. In move mode, data is not moved.

Invalid Request: This condition is reported if (1) the data set is already being
referred to sequentially by the problem program, (2) the buffer cannot contain the
key and the data, or (3) the specified type is not also specified in the DCBMACRF
field of the data control block.

Uncorrectable Input Error: This condition is reported if the control program's error
recovery procedures encounter an uncorrectable error when transferring a block from
secondary storage to an input buffer. The buffer address is placed in register 1, and
the SYNAD exit routine is given control when a GET macro instruction is issued for
the first logical record.

Uncorrectable Output Error: This condition is reported if the control program's
error recovery procedures encounter an uncorrectable error when transferring a block
from an output buffer to secondary storage. H the error is encountered during 'closing
of the data control block, bit 2 of DCBEXCD2 is set to 1 and the SYNAD exit
routine is given control immediately. Otherwise, control program action depends on
whether load mode or scan mode is being used.

186 Data Facility Product Version 2: Customization

If a data set is being created (load mode), the SYNAD exit routine is given control
when the next PUT or CLOSE macro instruction is issued. In the case of a failure to
write a data block, register 1 contains the address of the output buffer, and register 0
contains the address of a work area containing the first 16 bytes of the lOB; for other
errors, the contents of register 1 are meaningless. After appropriate analysis, the
SYNAD exit routine should close the data set or end the job step. If records are to be
subsequently added to the data set using the queued indexed sequential access method
(QISAM), the job step should be terminated by issuing an abend macro instruction.
(Abend closes all open data sets. However, an ISAM data set is only partially closed,
and it can be reopened in a later job to add additional records by using QISAM).
Subsequent execution of a PUT macro instruction would cause reentry to the SYNAD
exit routine, because an attempt to continue loading the data set would produce
unpredictable results.

If a data set is being processed (scan mode), the address of the output buffer in error
is placed in register I, the address of a work area containing the f11'St 16 bytes of the
lOB is placed in register 0, and the SYNAD exit routine is given control when the
next GET macro instruction is issued. Buffer scheduling is suspended until the next
GET macro instruction is reissued.

Block Could Not Be Reached (Input): This condition is reported if the control
program's error recovery procedures encounter an uncorrectable error in searching an
index or overflow chain. The SYNAD exit routine is given control when a GET
macro instruction is issued for the first logical record of the unreachable block.

Block Could Not Be Reached (Update): This condition is reported if the control
program's error recovery procedures encounter an uncorrectable error in searching an
index or overflow chain.

If the error is encountered during closing of the data control block, bit 2 of
DCBEXCD2 is set to 1 and the SYNAD exit routine is given control immediately.
Otherwise, the SYNAD exit routine is given control when the next GET macro
instruction is issued.

Sequence Check: This condition is reported if a PUT macro instruction refers to a
record whose key has a smaller numeric value than the key of the record previously
referred to by a PUT macro instruction. The SYNAD exit routine is given control
immediately; the record is not transferred to secondary storage.

Duplicate Record: This condition is reported if a PUT macro instruction refers to a
record whose key duplicates that of the record previously referred to by a PUT macro
instruction. The SYNAD exit routine is given control immediately; the record is not
transferred to secondary storage.

Data Control Block Closed When Error Routine Entered: This condition is
reported if the control program's error recovery procedures encounter an
uncorrectable output error during closing of the data control block. Bit 5 or 7 of
DCBEXCDI is set to I, and the SYNAD exit routine is immediately given control.
After appropriate analysis, the SYNAD routine must branch to the address in return
register 14 so that the control program can finish closing the data control block.

Overflow Record: This condition is reported if the input record is an overflow
record.

Incorrect Record Length: This condition is reported if the length of the record as
specified in the record-descriptor word (RDW) is larger than the value in the
DCBLRECL field of the data control block.

Appendix B. Status Information Following an Input/Output Operation 187

Exception
Code Bit READ WRITE Condition if On
0 X X Record not found
1 X X Record length check
2 X Space not found
3 X X Invalid request-see bits 9-15
4 X X Uncorrectable I/O error
5 X X End of data
6 X X Uncorrectable error
7 X Not read with exclusive control
8 Not used
9 X WRITE to input data set
10 X X Extended search with DCBLIMCT=O
11 X X Block or track requested was outside data set
12 X Tried to write capacity record
13 X X Specified key as search argument when

KEYLEN =0 or no key address supplied
14 X X Request for options not in data control block
15 X Attempt to add fixed-length record with key

beginning with hexadecimal FF

Figure 85. Exception Code Bits-BDAM

Notes to Figure 85:

Record Not Found: This condition is reported if the search argument is not found in
the data set.

Record Length Check: This condition occurs for READ and WRITE (update) and
WRITE (add). For WRITE (update) variable-length records only, the length in the
BDW does not match the length of the record to be updated. For all remaining
READ and WRITE (update) conditions, the BLKSIZE, when S is specified in the
READ or WRITE macro, or the length given with these macros does not agree with
the actual length of the record. For WRITE (add), fixed-length records, the
BLKSIZE, when S is specified in the WRITE macro, or the length give with this
macro does not agree with the actual length of the record. For WRITE (add), all
other conditions, no error can occur.

Space Not Found for Adding a Record: This condition occurs if either there is no
dummy record when adding an F-format record, or there is no space available when
adding a V- or U-format record.

Invalid Request: Occurs whenever one of the following bits is set to one:

Bit Meaning

9 A WRITE was attempted for an input data set.

10 An extended search was requested, but LIMCTwas zero.

11 The relative block or relative track requested was not in the data set.

12 Writing a capacity record (RO) was attempted.

13 A READ or WRITE with key was attempted, but either KEYLEN equaled zero
or the key address was not supplied.

188 Data Facility Product Version 2: Customization

14 The READ or WRITE macro request options conflict with the OPTCO or
MACRF parameters.

15 A WRITE (add) with fixed length was attempted with the key beginning with
X'FF'.

Uncorrectable Input/Output Error: This condition is reported if the control
program's error recovery procedures encounter an uncorrectable error in transferring
data between real and secondary storage.

End of Data: This only occurs as a result of a READ (type DI, DIP, or DIX) when
the record requested is an end-of-data record.

Uncorrectable error: Same conditions as for bit 4.

Not Read with Exclusive Control: A WRITE, type DIX or DKX, has occurred for
which there is no previous corresponding READ with exclusive control.

Register Bits MeaoiDg

0 0 Bit 0= 1 indicates that bits 8-31 hold the address
of the key in error (only set for a sequence error).
If bit 0= I-address of key that is out of sequence.
If bit O=O-address of a work area.

1-7 Not used.

8-31 Address of a work area containing the fll'St 16
bytes of the lOB (after an uncorrectable
input/output error caused by a GET, PUT, or
PUTX macro instruction; original contents
destroyed in other cases). If the error condition
was detected before I/O was started, register 0
contains all zeros.

1 0-7 Not used.

8-31 Address of the buffer containing the error record
(after an uncorrectable input/output error caused
by a GET, PUT, or PUTX macro instruction while
attempting to read or write a data record; in other
cases, this register contains 0).

2-13 0-31 Contents that existed before the macro instruction
was issued.

14 0-7 Not used.

Figure 86 (Part 1 of 2). Register Contents on Entry to SYNAD Routine-QISAM

Appendix B. Status Information Following an Input/Output Operation 189

Register

15

Bits Meaning

8-31 Return address. This address is either an address
in the control program's close routine (bit 2 of
DCBEXCD2 is on), or the address of the
instruction following the expansion of the macro
instruction that caused the SYNAD exit routine to
be given control (bit 2 of DCBEXCD2 is off).

0-7 Not used.

8-31 Address of the SYNAD exit routine.

Figure 86 (Part 2 of 2). Register Contents on Entry to SYNAD Routine-QISAM

Register Bits Meaning

0 0-7 Not used.

8-31 Address of the fll'st lOB sense byte. (Sense
information is valid only when associated
with a unit check condition.)

1 0-7 Not used.

8-31 Address of the DECB.

2-13 0-31 Contents that existed before the macro
instruction was issued.

14 0-7 Not used.

8-31 Return address.

15 0-7 Not used.

8-31 Address of the SYNAD exit routine.

Figure 87. Register Contents on Entry to SYNAD Routine-BISAM

190 Data Facility Product Version 2: Customization

Register Bits MeaniDg

0 0-7 Value to be added to the status indicator's
address to provide the address of the first
CCW (QSAM only).

8-31 Address of the associated data event control
block for BDAM, BP AM, and BSAM;
address of the status indicators shown in
Figure 89 on page 192 for QSAM.

1 0 Bit is on for error caused by input operation.

1 Bit is on for error caused by output
operation.

2 Bit is on for error caused by BSP, CNTRL,
or POINT macro instruction (BPAM AND
BSAMonly).

3 Bit is on if error occurred during update of
existing record or if error did not prevent
reading of the record. Bit is off if error
occurred during creation of a new record or
if error prevented reading of the record.

4 Bit is on if the request was invalid. The
status indicators pointed to in the data event
control block are not present (BDAM,
BPAM, and BSAM only).

5 Bit is on if an invalid character was found in
paper tape conversion (BSAM and QSAM
only).

6 Bit is on for a hardware error (BDAM
only).

7 Bit is on if no space was found for the
record (BDAM only).

8-31 Address of the associated data control
block.

2-13 0-31 Contents that existed before the macro
instruction was issued.

14 0-7 Not used.

8-31 Return address.

15 0-7 Not used.

Figure 88 (Part 1 of 2). Register Contents on Entry to SYNAD Routioe-BDAM. BP AM,
BSAM, and QSAM

Appendix B. Status Information Following an Input/Output Operation 191

Register Bits Meaning

8-31 Address of the error analysis routine.

Figure 88 (Part 2 of 2). Register Contents on Entry to SYNAD Routine-BDAM, BPAM,
BSAM, and QSAM

Offset FrOil
108 Address

Byte Bft

+2 0
1
2
3
4
5
6,7

+3 0-7

Meanfng

Conrnand reject
Intervention required
Bus-out check
Equipment check
Data check
Overrun
Device-dependent information.
see the appropriate device
manual
Device-dependent information.
see the appropriate device
manual

lae

Sense byte 1

Sense byte 2

The following bytes make up the low-order seven bytes of
the channel status word:

+9

+12

+13

o
1
2
3
4
5
6

7

o
1
2
3
4
5
6
7

Command address

Attention
Status modifier
Control unit end
Busy
Channel end
Device end
Unit check-must be on for
sense bytes to be meaningful
Unit exception

Program-controlled interrupt
Incorrect length
Program check
Protection check
Channel data check
Channel control check
Interface control check
Chaining check

+14 Count field (2 bytes)

Status byte 1
(Unit)

Status byte 2
(Channel)

Figure 89. Status Indicators for the SYNAD Routine-BDAM, BPAM, BSAM, and QSAM

Note: If the sense bytes are X'lOFE', the control program has set them to this
invalid combination because sense bytes could not be obtairied from the device
because of recurrence of unit checks.

192 Data Facility Product Version 2: Customization

The event control block is used for communication between the various components
of the system and between problem programs and the system. An event control block
is the subject of WAIT and POST macro instructions (see Figure 90).

Bytes and Hex.
Offset Alfgn.ent Code Bft Dfg. Descriptfon

00

1

00

1

3

10xx xxxx

01xx xxxx

0111 1111 7F

0100 0001 41

0100 0010 42

0100 0011 43

0100 0100 44

0100 1000 48

W-Waiting for completion of an event.

Contains the address of the RB
issuing the WAIT macro if the ECB
has the WAIT bit on. Once the event
has completed and the ECB is posted,
the C bit is set with other bits in
byte 0 and these 3 bytes (1-3) are
zero, for all access methods
except BDAM. Exception codes are
returned in bytes 1 and 2 of the
ECB for BDAM.

C-The event has completed.

One of the following completion codes
will appear at the completion of a
channel program:

Access Methods other than BlM

Channel program has terminated without
error. (CSW contents useful.)

Channel program has terminated with
permanent error. (CSW contents useful.)

Channel program has terminated because
a direct access extent address has been
violated. (CSW contents do not apply.)

I/O abend condition occurred
while loading the error recovery
routine. (CSW contents do
not apply.)

Channel program has been intercepted
because of permanent error associated
with device end for previous request.
You may reissue the intercepted
request. (CSW contents do not apply.)

Request element for channel program
has been made available after it has
been purged. (CSW contents do not apply.)

Figure 90 (Part 1 of 2), Status Indicators in the BCB

Appendix B. Status Information FoRowing an Input/Output Operation 193

Bytes and Hex.
Offset Alfgn.ent Code Bit Dig. Description

0100 1011 4B One of the following errors occurred
during tape error recovery processing:

0100 1111 4F

0101 0000 50

• The CSW command address in
the lOB was zeros.

• An unexpected load point was
encountered. (CSW contents do not
apply in either case.)

Error recovery routines have been
entered because of direct access error
but are unable to read home addresses
or record O. (CSW contents do not apply.)

Channel program terminated with error.
Input block was a DOS-embedded checkpoint
record. (CSW contents do not apply.)

Figure 90 (part 2 of 2). Status Indicators in the ECB

194 Data Facility Product Version 2: Customization

Appendix C. ISMF Command Table Fonnat

DGTMCTAP
CTAP
Offsets Type Length Name Description
===========:::=:=::=:=========:=:::=================::===e===:======:=====:

COMMAND TABLE - APPLICATION TABLE (CTAP)
=====:::==::==::=======:::=:==:::==:=====:=::=======:===========c==========

0 (0) CHARACTER * CTAP
0 (0) CHARACTER B CTAPMAIN
0 (0) CHARACTER 4 CTAPVID VISUAL ID: 'CTAP'
4 (4) FIXED 2 CTAPLEN LENGTH OF CTAP
6 (6) FIXED 2 CTAPCNT # OF COMMAND ENTRIES
8 (8) CHARACTER 28 CTAPENT(*)
8 (8) CHARACTER 8 CTAPNAME COMMAND NAME

16 (10) FIXED 1 CTAPTRUN MIN. # OF CHARACTERS USED IN
TRUNCATION

17 (11) B ITSTRING 1 CTAPFLAG FLAG FIELD
1 ..• CTAPST COMMAND STATUS
.1 .. CTAPIMED IMMEDIATE COMMAND
.. 1. CTAPLIST LIST COMMAND
•.. 1 CTAPACMD ALTERNATE COMMAND
.... 1111 CTAPRSVD RESERVED

18 (12) CHARACTER 8 CTAPRTNM COMMAND ROUTINE NAME
26 (lA) CHARACTER 8 CTAPTENM CMD TERMINATION ROUTINE
34 (22) BITSTRING 2 * FILL UP END OF WORD

Constants
Length Type Value Name Description
==========:===================:::=:=============:=================~========

END OF COMMAND TABLE - APPLICATION TABLE (CTAP) DEFINE
COMMAND STATUS BITS

==========:=:========:========:=::::===========:==============:::=::=======
BIT
BIT

1
1

CMDENABL
CMDDSABL

COMMAND STATUS IS ENABLE
COMMAND STATUS IS DISABL

Appendix C. ISMF Command Table Format 195

Appendix D. ISMF Line Operator Table Fonnat

DGTMLPAP
LPAP
Offsets Type Length Name Description
==========ccc===========c===:==

LINE OPERATOR TABLE - APPLICATION TABLE (LPAP)
=ccce==:::==========:==:====:======

0 (0) CHARACTER * LPAP
0 (0) CHARACTER 8 LPAPMAIN
0 (0) CHARACTER 4 LPAPVID VISUAL ID: 'LPAP'
4 (4) FIXED 2 LPAPLEN LENGTH OF LPAP
6 (6) FIXED 2 LPAPCNT # OF LINE OPERATORS
8 (8) CHARACTER 28 LPAPENT(*)
8 (8) CHARACTER 8 LPAPLONM LINE OPERATOR NAME

16 (10) FIXED 1 LPAPTRUN MIN. # OF CHARACTERS USED IN
TRUNCATION

17 (11) CHARACTER 3 * RESERVED, UNUSED
20 (14) CHARACTER 8 LPAPRTNM LINE OP ROUTINE NAME
28 (lC) CHARACTER 8 LPAPTENM TERMINATION ROUTINE

Appendix D. ISMF Line Operator Table Format 197

Appendix E. Exit Testing Techniques

Several techniques can be employed to make your exit testing safer and easier. They
include methods for protecting the system from errors in the exit, facilities for taking
dumps in order to get debugging information or to find out what information is
available in system data areas, and ways to issue messages from the exit.

Protecting the System From Exit Errors

Three problems need to be addressed:

1. How to avoid the need for frequent IPLs during testing, since the exits reside in
the Link Pack Area

2. How to prevent overwriting of vital storage, since exits run in protect key zero

3. How to limit the scope of the exit so that testing can proceed with minimal impact
on other work in the system

You can at least partially resolve these problems by:

1. Writing a "front end" to the exit and placing the "front end" in a modified Link
Pack Area library

2. Placing the "real" exit code in another library such as SYS1.LINKLIB

If these two things are done, the "front end" can be a fairly innocuous bit of code
which limits the scope of the exit by testing for specific jobnames, for example, and
then gives control to the "real" exit code outside the Link Pack Area. The "front
end," once coded and tested, is unlikely to need changes very often. The "real" exit is
now in another library, where it can be changed without the need for an IPL in order
to effect the change. This technique removes the need for reentrant code in the "real"
exit during testing. since it will be loaded for each invocation. You will have to run
additional tests later with the "real" exit in the Link Pack Area in order to test that
exits are truly reentrant. Running an exit from outside the LP A is unlikely to be
desirable except in a testing environment. since there is overhead involved in loading
the exit each time it is entered.

Another safety feature of this way of testing exits is that use of the "front end" can be
eliminated by an IPL without the MLP A parameter. just in case something is wrong
with the "front end."

Once the exit is in production mode. protection against unexpected problems can also
be implemented by having the exit check the contents of the CVTUSER field (CVT
+ 204 decimal). If the contents are zero (the normal case if CVTUSER is not being
used by your installation). the exit should proceed. If not. it should return to the caller
without taking further action (except to set register 15 to zero). When the exit is being
used and an unexpected error is encountered. the contents of CVTUSER should be
set to a non-zero value with console alter/display. This will cause the exit code to be
temporarily disabled. Remember that a re-IPL will cause CVTUSER to become zero
again, reactivating the exit.

Appendix E. Exit Testing Techniques 199

Taking Dumps

While testing your exit you are likely to need to take a dump at some time in order to
debug or to examine data areas to determine where to look for information your exit
requires. The items below are advice you can follow when taking dumps.

Issuing the ABEND Macro in an Exit

Setting CVTSDUMP

If an ABEND is issued explicitly from a preprocessing exit entered for Allocate, you
will get message IEF197I SYSTEM ERROR DURING ALLOCATION. The job
attempting the allocation will be faDed with a JCL error and a dump will not be taken.
So issuing ABEND alone is not a good way of getting the information you need.

The CVTSDUMP flag in the CVT can be set on to cause dumps to SYS1.DUMP to
be taken when ABEND is issued from a DADSM function (this includes the exits).
This flag is at offset 272 in the CVT, and can be set on via the console alter/display
functions. If you are testing under Virtual Machine/370, use the CP DISPLAY and
STORE commands.

Issuing the SDUMP Macro

Dumps can be taken from exits via the SDUMP macro (see OS/VS2 SPL:
Supervisor, GC28-1046). As an alternative approach to using the CVTSDUMP
procedure described above, this method eliminates the need to modify storage to
cause the dump to be taken.

Using the Console DUMP Command

Issuing Messages

By issuing a WTOR from the exit and letting the exit wait for the reply, you can
suspend the exit's processing at any point and take a console dump to SYS1.DUMP
using the DUMP operator command.

To check that your exit is functioning correctly, especially during the early stages of
testing, you may want to issue messages giving the status of processing at that point.
For example, you can issue a message early in the exit giving the reason for entry
(Allocate, Extend, Scratch, Partial Release, or Rename). If you use WTO with a
routecode of 11 (sometimes called 'Write to Programmer'), the message will appear
on the output of the job that issued the DADSM request. Other possible uses for the
messages are to indicate that certain data areas have been found successfully and to
display selected contents of data areas.

Once the exit testing reaches the stage where large numbers of jobs are being handled
by the exit, you should remove the code which produces these messages. Large
numbers of messages will consume system message buffers, and the text will add to
the user's output unnecessarily. Of course there will still be cases where exception
messages may be required - these are discussed later in the section "Exit Messages"
onpage 202.

200 Data Facility Product Version 2: Customization

Appendix F. User Interfaces

Messages

System Messages

The way you design and implement the interface between your DADSM exits and the
users of your system will have a big influence on the degree of acceptance you get.
Remember that users may view the results of your hard work as a nuisance I You have
probably introduced new restrictions on the way they do things, so you will have to
'sell' the idea to them by pointing out how, for example, controlling space usage will
protect them from themselves and each other. Once you have sold the users on the
idea, you should make things as easy as possible for them by providing clear messages
and good documentation.

There are three sources of messages associated with DADSM exits:

1. The system, due to errors or return codes produced by the exits

2. Programs which use DADSM functions, which may now get new return codes
fromDADSM

3. The exits themselves, which can issue messages directly

Here are some of the messages which the system may issue when DADSM exits have
been implemented:

• IEF197I SYSTEM ERROR DURING ALLOCATION-This message may
appear if the exit abends while entered for an Allocate request.

• IEC223I with module IGGPREOO indicated-This message may appear if a
program check occurs in the exit during an Allocate request.

• IEF274I jjj sss ddn SPACE REQUEST REJECTED BY INSTALLATION
EXIT, REASON CODE nnnn-This new message is produced when the exit has
rejected an Allocate request without allowing retry on other volumes (register 15
= 8, as set by the exit). The reason code is the code placed in the installation
reject reason code field of the exit parameter list (IEXREASN) by the exit before
returning to DADSM.

• IEF275I jjj sss ddn SPACE REQUEST CANNOT BE SATISFIED,
INSTALLATION EXIT REASON CODE nnnn-This new message is produced
when the exit has rejected an Allocate request and allowed retry on other
volumes, but the request could not be satisfied (register 15 = 4, as set by the
exit). The reason code is the code placed in the installation reject reason code
field of the exit parameter list (IEXREASN) by the exit before returning to
DADSM.

Appendix F. User Interfaces 20t

Messages from Other Programs

Exit Messages

Utility programs may provide in their messages non-zero return codes received from
DADSM. Here is a summary of the new return codes associated with the use of the
exits:

• Allocate

- X'BO' - Installation exit rejected the request, no further volumes attempted
- X'B4' - Installation exit rejected the request; try another volume

• Extend

- -20 - Installation exit rejected the request (yes, this is a 'minus 20')

• Scratch

- 4 - Installation exit rejected the request (in addition to the previous meanings
for this return code)

• Partial Release

- 16 - Installation exit rejected the request (in addition to the previous
meanings for this return code)

• Rename

4 - Installation exit rejected the request (in addition to the previous meanings
for this return code)

If the main purpose of your exit is to reject selectively Allocate requests, you should
set instaUation reject reason codes in the exit parameter list and allow the IEF274I
and IEF27SI messages or the corresponding dynamic allocation reason codes
(X'47BO' and X'47B4') to appear, rather than producing your own messages from the
exit. The reason is that it may be better to have a message or code that is documented
in a standard publication and then document the reject reason codes locally than to
have a totally new message. At least the user can look up the IEF messages in the
Messages manual and get some idea of why the job failed. If you do produce your
own message, try to make the contents self-explanatory so that separate
documentation is not necessary.

There may be some cases where it is a good idea to provide additional information.
For example, if you use a RACF scheme that includes running space totals, you may
want to produce a message containing the current running space total value when you
reject a job which asked for space which would have made its total too high. Then the
user has some basis on which to make a decision - perhaps to resubmit the job and ask
for less space on that DD statement. If your installation has someone who monitors
I/O-related messages, you may want to produce a warning message when a running
space total is getting close to being exceeded. There is probably not much point in
putting this message on the user's listing unless that user is the only one whose space
is being accumulated against that identifier. A warning message sent to the
appropriate routing code would alert a space manager that a space shortage problem
may be imminent.

202 Data Facility Product Version 2: Customization

Documenting Your Exit For Users
The need to provide documentation for your users gives you an opportunity to
pubUcize your space control poUcies. The following Ust contains some ideas on what
should be included in a space control plan, and these same planning elements can be
carried forward as headings for sections of your documentation:

1. The need for space control

2. Space usage standards

3. How usage standards will be enforced

4. Space conservation hints

In addition, you may want to have a separate section which summarizes the new
messages and any installation reject reason codes that you have implemented.

Again--clear, convincing documentation is importantl Without it the users may see
your exits as an obstacle to getting their work done, instead of an effort to provide an
equitable space management scheme which will ultimately benefit them.

Appendix F. User Interfaces 203

Glossary

The following terms are defined as they are used in this
book. If you do not find the term you are looking for, see
the index or the IBM Vocabulary for Data Processing.
Telecommunications. and Office Systems, GC20-1699.

Abbreviations and Acronyms

A. ANSI control code (value of RECFM)

ABE. abnormal end (value of EROPT)

ABE. Abnormal-End Appendage, an appendage of
EXCP

ABEND. abnormal end (macro instruction)

ACB. access method control block

ACC. accept erroneous block (value of EROPT)

ADDR. addressed processing or addressed

ADR. same as ADDR

AIX. alternate index

AL. American National Standard Labels

ANSI. American National Standards Institute

AP AR. authorized program analysis report. A report of a
problem caused by a suspected defect in a current
unaltered release of a program.

ASCB. address-space control block

ASCII. American National Standard Code for
Information Interchange

ASI. asynchronous interrupt

AUL. American National Standard user labels (value of
LABEL)

B. blocked records (value of RECFM)

BDAM. basic direct access method

BDW. block descriptor word

BISAM. basic indexed sequential access method

BLKSIZE. blocksize (operand of DCB)

BP AM. basic partitioned access method

BPL bytes per inch

BSAM. basic sequential access method

BSP. backspace one block (macro instruction)

BUFC. buffer control block

BUFCB. buffer pool control block (operand of DCB)

BUFL. buffer length (operand of DCB)

BUFNO. buffer number (operand of DCB)

BUFOFF. buffer offset (length of ASCII block prefIX by
which the buffer is offset; operand of DCB)

C. close

CA. control area

CCW. channel command word

CI. control interval. Also used as an abbreviation for
compatibility interface.

CONTIG. contiguous space allocation (value of SPACE)

CNTRL. control (macro instruction)

CSECf. control section

CSW. channel status word

crAP. ISMF Command Table-Application Table

CV AF. common VTOC access facility

CVOL. control volume.

CVT. communication vector table

D. format-D (ISCII/ ASCII variable-length) records
(value of RECFM)

DA. direct access (value of DEVD or DSORG)

DADSM. direct-access device space management

DASD. direct access storage device. A device in which
the access time is effectively independent of the location
of data.

DB. ISCII/ ASCII variable-length, blocked records (value
ofRECFM)

Glossary 20S

DBS. ISCII/ ASCII variable-length, blocked spanned
records (value of RECFM)

DCB. data control block (control block name or macro
instruction or parameter on DD statement)

DCBD. data control block dummy section (macro
instruction)

DCS. DASD calculation services. A subcomponent of
DFP common services. DCS retrieves and calculates data
set information for both VSAM and non-VSAM data sets
based on the user's input request.

DD. data definition(statement)

DDNAME. data definition name

DEB. data extent block

DECB. data event control block

DEQ. An Assembler language macro instruction used to
remove control of one or more serially reusable resources
from the active task. It can also be used to determine
whether control of the resource is currently assigned to or
requested for the active task.

DEVD. device-dependent (operand of DCB)

DFDSS. data facility data set services

DFP. Data Facility Product.

DIR. direct processing

DISP. data set disposition (parameter of DD statement)

DS. ISCII/ ASCII variable-length, spanned records
(value of RECFM)

DSAB. data set association block

DSCB. data set control block

DSDR. data set descriptor record

DSECf. dummy section

DSL. DEB save list

DSNAME. data set name

DSORG. data set organization (operand of DCB)

EBCDIC. extended binary-coded decimal interchange
code

ECD. event control block

ENQ. An Assembler language macro instruction that
requests the control program to assign control of one or

206 Data Facility Product Version 2: Customization

more serially reusable resources to the active task. It is
also used to determine the status of a resource; that is,
whether it is immediately available or in use, and whether
control has been previously requested for the active task in
another ENQ macro instruction.

EOB. end of block

EOD. end of data

EODAD. end of data set exit routine address (operand of
DCB)

EOF. end of file

EOM. end of module

EOV. end of volume

EP. external procedure entry point

EROPT. error options (operand of DCB)

ERP. error recovery procedure

ESETL. end sequential retrieval (QISAM macro
instruction)

EST AE. extended specify task abnormal exit. A task
recovery routine that provides recovery for those programs
that run enabled, unlocked, and in task mode.

EXCD. exceptional conditions

EXCP. execute channel program (macro instruction)

EXLST. exit list (operand of DCB)

F. fixed-length records (value of RECFM)

FR. fixed-length, blocked records (value of RECFM)

FRS. fixed-length, blocked, standard records (value of
RECFM)

FRT. fIXed-length, blocked records with track overflow
option (value of RECFM)

FCD. forms control buffer

FEOV. force end-of-volume (macro instruction)

FIPS. Federal Information Processing Standard

FREEMAIN. An Assembler language macro instruction
that releases one area of main storage that had previously
been allocated to the job step as a result of a GETMAIN
macro instruction.

FS. fixed-length, standard records (value of RECFM)

GEN. generic key search

GETMAIN. An Assembler language macro instruction
that is used to allocate an area of main storage for use by
the job step task.

GL. GET macro, locate mode (value of MACRF)

GM. GET macro, move mode (value of MACRF)

GSR. global shared resources. (See shared resources.)

GTF. generalized trace facility. A service aid that traces
selected system events.

H. DOS tapes with embedded checkpoint records
(parameter of OPTCD)

HA. home address

ICF catalog. integrated catalog facility catalog

ID. identifier. Also used as an abbreviation for
identification.

n. ISAM Intedace

nCB. ISAM intedace control block

INOUT. input then output (operand of OPEN)

I/O. input/output

lOB. input/output block

lOS. I/O supervisor

IPL. initial program load

IS. indexed sequential (value of DSORG)

ISAM. indexed sequential access method

Iscn. International Standard Code for Information
Interchange

ISMF. interactive storage management facility

ISO. International Organization for Standardization

ISU. indexed sequential unmovable (value of DSORG)

I/O. input/output

JCL. job control language

JFCB. job file control block

JFCBE. job file control block extension for 3800 printer

JSCB. job step control block

K. 1024 decimal (a kilobyte=1024 bytes).

KEYLEN. key length (operand of DCB)

LINK. An Assembler language macro instruction that
causes control to be passed to a specified entry point. The
linkage relationship established is the same as that created
by a BAL instruction.

LP A. link pack area

LP ALIB. link pack area library

LPAP. ISMF Line Operator Table-Application Table

LRECL. logical record length (operand of DCB)

LRI. logical record intedace

LSR. local shared resources. (See shared resources.)

M. machine control code (value of RECFM)

MACR. macro reference

MACRF. macro instruction form (operand of DCB)

MBBCCHHR. absolute disk address. A pattern of
characters that, without further modification, identifies a
unique DASD storage location.

MOD. modify data set (value of DISP)

MOD. module

MSS. Mass Storage System

MVS. Multiple Virtual Systems

D. integer number

NCP. number of channel programs (operand of DCB)

NIP. nucleus initialization program

NL. no label (value of LABEL)

NSI. next sequential instruction

NSL. nonstandard label (value of LABEL)

NUP. no update

O. open

OFLG. open flags

OPTCD. optional services code (operand of DCB)

OS CVOL. operating system control volume

OS/VS. operating system/virtual storage

OUTIN. output then input (operand of OPEN)

Glossary 207

O/C/EOV. open/close/end of volume

PCI. program-controlled interruption

PDAB. parallel data access block

PDS. partitioned data set

PDSCB. partial data set control block

PL. PUT macro, locate mode (value of MACRF)

PLH. placeholder list

PM. PUT macro, move mode (value of MACRF)

PO. partitioned organization (value of DSORG)

POU. partitioned organization unmovable (value of
DSORG)

PRo pseudo register

PROC. procedure

PS. physical sequential (value of DSORG)

PSL. page save list

PSU. physical sequential unmovable (value of DSORG)

PSW. program status word. An area in storage used to
indicate the order in which instructions are executed, and
to hold and indicate the status of the system.

PfF. program temporary fix. A temporary solution or
bypass of a problem diagnosed by IBM Support Center as
the result of a defect in a current unaltered release of the
program.

QISAM. queued indexed sequential access method

QSAM. queued sequential access method

RACF. Resource Access Control Facility

RB. request block

RBA. relative byte address. The displacement of a data
record or a control interval from the beginning of the data
set to which it belongs; independent of the manner in
which the data set is stored.

ROBACK. read backward (operand of OPEN)

ROW. record descriptor word

RECFM. record format (operand of DCB)

RETURN. An Assembler language macro instruction that
is used to return control to the calling CSECT, and to
signal normal termination of the returning CSECT.

208 Data Facility Product Version 2: Customization

RISE. release unused space (DD statement)

Rn. general-purpose register n

RPL. request parameter list

RPLE. request parameter list extension

RPS. rotational position sensing

RRDS. relative record data set

RlN. routine

RO. record zero. (Track capacity record on a DASD
device)

S. standard format records (value of RECFM)

SAM. sequential access method

SAMB. sequential access method block

SAVE. An Assembler language macro instruction that
causes the contents of the specified registers to be stored
in the save area at the address contained in register 13.

seRA. catalog recovery area in system storage

SCRATCH. An Assembler language macro instruction
that points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that
a data set be deleted

SEQ. sequential or sequential processing

SER. volume serial number (value of VOLUME)

SElL set lower limit of sequential retrieval (QISAM
macro instruction)

SF. sequential forward (operand of READ or WRITE)

SIO. start I/O

SK. skip to a printer channel (operand of CNTRL)

SKP. skip erroneous block (value of EROPT)

SKP. skip sequential or skip sequential processing

SL. IBM standard labels (value of LABEL)

SMF. system management facilities

SMP. System Modification Program.

SMP/E. System Modification Program/Extended.

SP. space lines on a printer (operand of CNTRL)

SRA. sphere record area

SRB. service request block

SS. select stacker on card reader (operand of CNTRL)

SfRNO. number of RPL strings

SUL. mM standard and user labels (value of LABEL)

SVC. supervisor call instruction

SVCLIB. supervisor call library

SVRB. supervisor request block. A system control block
containing program status information and general register
contents.

SVT. supervisor vector table

SW A. scheduler work area. Also used as an abbreviation
for segment work area.

SYNAD. synchronous error routine address (operand of
DCB)

SYscrLG. the data set name of the CVOL Catalog.

SYSDUMP. system dump

SYSIN. system input stream

SYSOUT. system output stream

T. track overflow option (value of RECFM);
user-totaling(value of OPTCD)

TCB. task control block

nOT. task I/O table

TSO. time sharing option

TI'R. relative track and record address on a direct-access
device, where IT represents two hexadecimal digits
specifying the track relative to the beginning of the data
set, and R is one hexadecimal digit specifying the record
on that track.

U. undefmed length records (value of RECFM)

VCB. unit control block. A data area used by MVS/XA
for device allocation and for controlling input/output
(I/O) operations.

UHL. user header label

UPD. update mode (or data modify)

VSVR. user security-verification routine

U1L. user trailer label

V. format-V (variable-length) records (value of
RECFM)

VB. variable-length, blocked records (value of RECFM)

VBS. variable-length, blocked, spanned records (value of
RECFM)

VICE. volume index control entry.The first entry in the
volume index. The VICE describes the volume index and
controls space allocation in SYSCTLG.

VIO. virtual I/O

VIR. VTOC index record

VIXM. VTOC index map

VMDS. VTOC map of DSCBs

VRP. VSAM resource pool

VS. variable-length, spanned records

VSAM. virtual storage access method

VSI. VSAM shared information

VSL. virtual subarea list (same as PFL or PFPL)

VSM. virtual storage manager

VSRT. VSAM shared resource table

VTAM. virtual telecommunications access method

VTOC. volume table of contents

VVDS. VSAM volume data set

VVR. VSAM volume record

WAIT. An Assembler language macro instruction that
informs the control program that the issuing program
cannot continue until a specific event, represented by an
event control block, has occurred.

WTO. write to operator

WTOR. write to operator with reply

XCTL. transfer control. An Assembler language macro
that causes control to be passed to a specified entry point.

Glossary 209

Terms and Expressions

absolute address. A pattern of characters that, without
further modification, identifies a unique DASD storage
location. The format is MBBCCHHR

access method control block. A control block that links an
application program to VSAM or ACF/VTAM.

access method services. A multifunction service program
that is used to define VSAM data sets and allocate space
for them, convert indexed-sequential data sets to
key-sequenced data sets, modify data set attributes in the
catalog, reorganize data sets, facilitate data portability
between operating systems, create backup copies of data
sets, help make inaccessible data sets accessible, list the
records of data sets and catalogs, define and build
alternate indexes, and convert OS CVOLs and VSAM
catalogs to integrated catalog facility catalogs.

acquire. To allocate space on a staging drive and to stage
data from an MSS cartridge to the staging drive.

actual extent. An area in the DEB containing data that
describes the space occupied by an extent of a data set.
BDAM module IGG0193A builds one actual extent for
each extent in the data set.

adcon. Address constant

addressed-direct access. The retrieval or storage of a data
record identified by its RBA, independent of the record's
location relative to the previously retrieved or stored
record. (See also keyed-direct access, addressed
sequential access, and keyed-sequential access.)

addressed-sequential address. The retrieval or storage of a
data record in its entry sequence relative to the previously
retrieved or stored record. (See also keyed-sequential
access, addressed-direct access, and keyed-direct access.)

alias. An alternative name for a data set. In a CVOL
catalog, only the high-level name of a fully qualified data
set name may have an alias.

allocated space. All space allocated (on a device) to a
dataset.

allocated used space. The amount of allocated space that
is in use.

alternate index. A collection of index entries organized by
the alternate keys of its associated base data records. It
provides an alternate means of locating records in the data
component of a cluster on which the alternate index is
based.

alternate index cluster. The data and index components of
an alternate index.

210 Data Facility Product Version 2: Customization

alternate key. One or more consecutive characters taken
from a data record and used to build an alternate index or
to locate one or more base data records via an alternate
index. (See also generic key, key, and key field.)

application. As used in this pUblication, the use to which
an access method is put or the end result that it serves;
contrasted to the internal operation of the access method.

authorized program facllity. A facility that permits the
identification of programs that are authorized to use
restricted functions.

base cluster. A key-sequenced or entry-sequenced data
set over which one or more alternate indexes are built.

base RBA. The RBA stored in the header of an index
record that is used to calculate the RBAs of data or index
control intervals governed by the index record.

blkref field. A field the user specifies in a program and
that contains either the relative or the actual address of
the record the user wants access to. If it is the relative
address, the BDAM address conversion routines convert it
to an actual address (MBBCCHHR). The actual address
is then placed in the IOBSEEK field of the lOB so that the
channel program can use the address to fmd a block. The
address of the blkref field is in the block address operand
of the READ or WRITE macro.

block position feedback. A user-specified option that
causes the system to put the actual or relative address of
the block just read or written into the area specified in the
block address operand of the READ or WRITE macro.
The format of the address will be MBBCCHHR if
feedback was not specified in the DCB macro; otherwise,
the format will be the same as the addressing scheme in
the DCB macro.

block unused. For non-VSAM data sets, block unused
represents the amount of space (returned in kilobytes)
that would be saved if the optimal block size were used
instead of the the current block size. For VSAM data set,
block unused represents the amount of space (returned in
kilobytes) that would be saved if the optimal CI (control
interval) size were used instead of the current CI size.

buffer pooL A continuous area of virtual storage divided
into buffers.

candidate volume. A direct-access storage volume that has
been defined in a VSAM catalog as a VSAM volume;
VSAM can automatically allocate space on this volume, as
needed.

capaclty record. The first block (block 0) on each track of
a data set. It contains the ID of the last block on the track
and the number of usable bytes remaining on the track.

catalog. (See master catalog and user catalog.)

catalog recovery area. An entry-sequenced file that exists
on each volume owned by a recoverable catalog, including
the catalog itself. The CRA contains records that are
duplicates of the catalog entries describing the volume and
the files it contains.

cataloged data set. In a CVOL Catalog, a data set that is
represented in an index or hierarchy of indexes that
provides the means for locating the data set.

chained RPL. (See RPL string.)

duster. A named structure consisting of a group of
related components (for example, a data component with
its index component). A cluster may consist of a single
component. (See also base cluster and alternate index
cluster.)

coUating sequence. An ordering assigned to a set of items,
such that any two sets in that assigned order can be
collated.

compendium. A compendium gathers together and
presents in concise form all the essential facts and details
about a VSAM functional unit.

component. A named, cataloged collection of stored
records. A component, the lowest member of the
hierarchy of data structures that can be cataloged,
contains no named subsets.

control area. A group of control intervals used as a unit
for formatting a data set before adding records to it. Also,
in a key-sequenced data set, the set of control intervals
pointed to by a sequence-set index record; used by VSAM
for distributing free space and for placing a sequence-set
index record adjacent to its data.

control area spUt. The movement of the contents of some
of the control intervals in a control area to a newly created
control area, to facilitate the insertion or lengthening of a
data record when there are no remaining free control
intervals in the original control area.

control interval. A fixed-length area of auxiliary storage
space in which VSAM stores records. It is the unit of
information transmitted to or from auxiliary storage by
VSAM.

control interval access. The retrieval or storage of the
contents of a control interval.

control interval definition field. In VSAM, the 4-byte
control information field at the end of a control interval
that gives the displacement from the beginning of the
control interval to free space and the length of the free
space. If the length is 0, the displacement is to the
beginning of the control information.

control interval spUt. The movement of some of the stored
records in a control interval to a free control interval, to

facilitate the insertion or lengthening of a record that
won't fit in the original control interval.

control volume. A volume that contains one or more
indexes of the catalog.

cross memory. A synchronous method of communication
between address spaces.

CVOL catalog. The collection of all data set indexes
maintained by CVOL catalog management.

data record. A collection of items of information from the
standpoint of its use in an application, as a user supplies it
to VSAM for storage.

data set. The major unit of data storage and retrieval in
the operating system, consisting of data in a prescribed
arrangement and described by control information to
which the system has access. As used in this publication, a
collection of fixed- or variable-length records in auxiliary
storage, arranged by VSAM in key sequence or in entry
sequence. (See also key-sequenced data set and
entry-sequenced data set.)

data set appUcation. ISMF is used to construct a list of
data sets. Using this list, you can perform tasks against an
individual data set or a group of data sets. These tasks
include editing, browsing, recovering unused space,
copying, migrating, deleting, backing up, and restoring
data sets.

data set name. An identifier that clearly names a data set.

dequeue. To remove a request for a resource from a list
of requests.

direct access. The retrieval or storage of data by a
reference to its location in a data set rather than relative to
the previously retrieved or stored data. (See also
addressed-direct access and keyed-direct access.)

direct access storage device. A device in which the access
time is effectively independent of the location of the data.

distributed free space. Space reserved within the control
intervals of a key-sequenced data set for inserting new
records into the data set in key sequence; also, whole
control intervals reserved in a control area for the same
purpose.

dummy record. A record, created when BSAM builds a
BDAM data set containing format F records, whose
purpose is to provide space in which new records can be
added to the data set after it is created. The fIrSt byte in
the key field of the dummy record contains X'FF', and the
fIrSt byte in the data field has a value indicating the
position of the dummy record on the track (the R in
MBBCCHHR).

dynamic buffering. A user-specified option that requests
that the system handle acquisition, assignment, and release
of buffers.

Glossary 211

enqueue. To build a list of requests for a named resource.

entry. A logical record of a catalog.

entry sequence. The order in which data records are
physically arranged (according to ascending RBA) in
a.uxiliary storage, without respect to their contents.
(Contrast with key sequence.)

entry-sequenced data set. A data set whose records are
loaded without respect to their contents, and whose RBAs
(:annot change. Records are retrieved and stored by
nddressed access, and new records are added at the end of
the data set.

exclusive control.

" When specified by the user, exclusive control requests
that the system prevent the data block about to be
read from being modified by other requests. When
requested by the user, exclusive control is specified in
a READ macro and released in a WRITE or RELEX
macro.

When a WRITE-add request is about to be processed,
the system automatically gets exclusive control of
either the data set or the track (all other WRITE-add
requests). The purpose of getting exclusive control is
the same in both of these cases: to prevent multiple
WRITE-add requests from updating the same dummy
record or writing over the same available space on a
track.

exclusive control fist. An area of storage containing the
UCB address and actual address of resources under
exclusive control, and the addresses of the first and last
lOBs for requests waiting to get exclusive control of that
resource.

Ext Proc. external procedure

extended search. A user-specified option that requests
that the system search for the specified block or a place in
which to add a new block, starting with the first block on
the track containing the block address operand specified in
the request macro, and continuing either for as many
tracks or blocks (rounded up to a complete track) as are
specified in the request macro, or until the search ends
successfully.

Extended search is only applicable if relative addressing is
being used.

extent. A continuous area of space on a direct-access
device occupied by or reserved for a data set or part of a
data set.

external procedure. A procedure that can be called by any
other VSAM procedure; a procedure whose name is in the
module's (assembler listing) "external symbol dictionary."

field. In a record or a control block, a specified area used
for a particular category of data or control information.

212 Data Facility Product Version 2: Customization

free control Interval pointer list. In a sequence-set index
record, a vertical pointer that gives the location of a free
control interval in the control area governed by the record.

free space. Space reserved within the control intervals of
a key-sequenced data set for inserting new records into the
data set in key sequence; also, whole control intervals
reserved in a control area for the same purpose.

generation. One member of a generation data group.

generation data group. A collection of data sets that are
kept in chronological order; each data set is called a
generation data set.

generation Index. An index of the CVOL Catalog that
identifies the generations of a generation data group.

generic key. A high-order portion of a key, containing
characters that identify those records that are significant
for a certain application. For example, it might be
desirable to retrieve all records whose keys begin with the
generic key AB, regardless of the full key values.

global shared resources. An option for sharing I/O
buffers, I/O-related control blocks, and channel programs
among VSAM data sets in a resource pool that serves all
address spaces in the system.

global storage. Virtual storage that is not part of a user's
private address space.

header, Index record. In an index record, the 24-byte field
at the beginning of the record that contains control
information about the record.

header entry. In a parameter list of GENCB, MODCB,
SHOWCB, or TESTCB, the entry that identifies the type
of request and control block and gives other general
information about the request.

high-level name. The first component of a qualified data
set name. This name is found in a volume index of the
CVOL catalog.

horizontal extension. An extension record pointed to by a
catalog record's extension field. (See also vertical
extension.)

horizontal pointer. In the header of an index record, the
RBA of the index record in the same level as this one that
contains keys next in ascending sequence after the keys in
this one.

index. As used in this publication, an ordered collection
of pairs, each consisting of a key and a pointer, used by
VSAM to sequence and locate the records of a
key-sequenced data set.

index entry. A key and a pointer paired together, where
the key is the highest key (in compressed form) entered in

an index record or contained in a data record in a control
interval, and the pointer gives the location of that index
record or control interval.

index leveL A set of index records that order and give the
location of all the control intervals in the next lower level
or in the data set that it controls.

Index record. A collection of index entries that are
retrieved and stored as a group. (Contrast to data record.)

Index record header. In an index record, the 24-byte field
at the beginning of the record that contains control
information about the record.

Index reptication. The use of an entire track of direct
access storage to contain as many copies of a single index
record as possible; reduces rotational delay.

index set. The set of index levels above the sequence set.
The index set and the sequence set together comprise the
index.

index upgrade. The process of reflecting changes made to
a base cluster in its associated alternate indexes.

Integrated catalog facility. The name of the catalog
associated with the Data Facility Product program
product.

Interactive storage management facility. The interactive
storage management facility helps you manage data and
storage interactively. It is designed to use the space
management and backup/recovery functions provided by
DFHSM and DFDSS to perform a variety of tasks.

internal procedure. A procedure that can be called only
by other procedures within the

ISAM Interface. A set of routines that allow a processing
program coded to use ISAM (indexed sequential access
method) to gain access to a key-sequenced data set.

job catalog. A catalog made available for a job by means
of the JOBCAT DD statement.

job control language. A problem-oriented language
designed to express statements in a job that are used to
identify the job or describe its requirements to an
operating system.

job step catalog. A catalog made available for a job by
means of the STEPCAT DD statement.

key. One or more characters within an item of data that
are used to identify it or control its use. As used in this
publication, one or more consecutive characters taken
from a data record, used to identify the record and
establish its order with respect to other records. (See also
key field and generic key.)

key field. A field located in the same position in each
record of a data set, whose contents are used for the key
ofa record.

key sequence. The collating sequence of data records,
determined by the value of the key field in each of the
data records. May be the same as, or different from, the
entry sequence of the records.

key-sequenced data set. A VSAM me (data set) whose
records are loaded in key sequence and controlled by an
index. Records are retrieved and stored by keyed access or
by addressed access, and new records are inserted in key
sequence by means of distributed free space. Relative byte
addresses of records can change because of control
interval or control area splits.

keyed-direct access. The retrieval or storage of a data
record by use of either an index that relates the record's
key to its relative location in the data set or a relative
record number, independent of the record's location
relative to the previously retrieved or stored record. (See
also addressed-direct access, keyed-sequential access, and
addressed-sequential access.)

keyed-sequential access. The retrieval or storage of a data
record in its key or relative record sequence relative to the
previously retrieved or stored record, as defined by the
sequence set of an index. (See also addressed-sequential
access, keyed-direct access, and addressed-direct access.)

leveL A conceptual relationship between indexes of the
CVOL catalog. The index corresponding to the simple
name of a data set is said to be the lowest level; the rust
component of a qualifier name is said to correspond to the
highest-level index.

level number. For the index of a key-sequenced data set,
a binary number in the header of an index record that
indicates the index level to which the record belongs.

linear data set (LDS). A named linear string of data,
stored in such a way that it can be retrieved or Updated in
4096 byte units. An LOS object is essentially a VSAM
entry-sequenced data set that is processed as a control
interval. However, unlike a control interval, an LOS
contains data only, that is, it contains no record definition
fields (ROFs) or control interval definition fields (CIOFs).

local shared resources. An option for sharing I/O buffers,
I/O-related control blocks, and channel programs among
VSAM data sets in a resource pool that serves one
partition or address space.

local storage. Virtual storage in a user's private address
space.

locate. Pertains to functions that do not change the status
of a catalog; that is, read-only operations are performed.

mass sequential iDsertiOD. A technique VSAM uses for
keyed sequential insertion of two or more records in

Glossary 213

sequence into a collating position in a data set: more
efficient than inserting each record directly.

mass storage volume. Two data cartridges in the mM
3850 Mass Storage System that contain information
equivalent to what could be stored on a direct-access
storage volume.

master catalog. A catalog that contains extensive data set
and volume information that VSAM requires to locate
data sets, to allocate and deallocate storage space, to
verify the authorization of a program or operator to gain
access to a data set, and to accumulate usage statistics for
data sets.

memory. As used in this book, a synonym for the private
address space in virtual storage.

module. The unit of code that is link edited. A program
module has at least one procedure, and may have many.

must-complete. An indication to the operating system
that the event must be performed without interruption or
waiting.

next address feedback. A user-specified option that
causes the system to put the relative address (TIR) of the
next data or capacity record into the area specified in the
next address operand of the READ or WRITE macro. (If
the type operand in the READ or WRITE macro
terminated with an R, the address of the next data record
is returned; if it terminated with an RU, the address of the
next data or capacity record is returned, whichever occurs
first.)

Next address feedback is only applicable for operations
involving format VS records.

nonlocate. Pertains to functions that change the status of
a catalog; that is, write operations are performed.

operating system. Software that controls the execution of
programs; an operating system may provide services such
as resource allocation, scheduling, input/output control,
and data management.

optimal block size. For non-VSAM data sets, optimal
block size represents the block size that would result in
the greatest space utilization on a device, taking into
consideration record length and device characteristics.

optimal CI size. For VSAM data sets, optimal CI size
represents the control interval size that would result in the
greatest space utilization on a device.

password. A unique string of characters stored in a
catalog that a program, a computer operator, or a terminal
user must supply to meet security requirements before a
program gains access to a data set.

214 Data Facility Product Version 2: Customization

path. A named, logical entity composed of one or more
clusters (an alternate index and its base cluster, for
example).

PDS directory. The portion of a partitioned data set that
provides a means of locating any of the members of the
data set.

period. A group of tracks in which the [11'st track does not
begin with an overflow block, and the last track does not
contain a block that overflows to another track.

physical record. A physical unit or recording on a
medium. For example, the physical unit between address
markers on a disk. .

pointer. An address or other indication of location. For
example, an RBA is a pointer that gives the relative
location of a data record or a control interval in the data
set to which it belongs.

preformat channel program. A channel program that·
writes a new format F record to an already existing data
set.

prime index. The index component of a key-sequenced
data set that has one or more alternate indexes. (See also
index and alternate index.)

prime key. (See key.)

procedure. A functional unit of VSAM code that is
entered only at one entry point and exits at the end of the
procedure (the last line of the procedure's code). The
procedure can call (transfer control, with a return to the
procedure expected) other procedures within the module
(internal calls) and can call other procedures in other
VSAM modules (external calls). (See also internal
procedure and external procedure.)

processing program. Any program that is not a control
program; synonymous with problem program.

quaHfied name. A data set name consisting of a string of
names separated by periods; for example,
"TREE. FRUIT. APPLE" is a qualified name.

qualifier. Each component name in a qualified name
other than the rightmost name. For example, "TREE" and
"FRUIT" are qualifiers in "TREE.FRUIT.APPLE."

queued sequential access method. An extended version of
the basic sequential access method (BSAM). When this
method is used, a queue is formed of input data blocks
that are awaiting processing or output data blocks that
have been processed and are awaiting transfer to auxiliary
storage or to an output device.

random access. (See direct access.)

record. (See index record, data record.)

record definition field. A field stored as part of a stored
record segment; it contains the control information
required to manage stored record segments within a
control interval.

relative address. The position of a block in a data set
relative to the rll'st block of a data set. The relative
address can be a relative track number or relative block
number. See "relative track address" and "relative block
address."

relative block address. A 3-byte binary number that
indicates the position of a block in relation to the first
block of a data set. The first block of a data set always has
a relative block address of O.

relative byte address. The displacement (expressed as a
fullword binary integer) of a data record or a control
interval from the beginning of the data set to which it
belongs; independent of the manner in which the data set
is stored.

relative extent. An area in the DEB containing the
number of blocks in each extent and the number of blocks
in each track (if track overflow is not in effect) of a data
set. Module IGG0193A builds the relative extent area
when relative block addressing is specified in the
processing program.

relative record data set. A data set whose records are
loaded into fixed-length slots.

relative record number. A number that identifies not only
the slot, or data space, in a relative record data set but also
the record occupying the slot. Used as the key for keyed
access to a relative record data set.

relative track address. A 3-byte binary number in the
form Tm where:

replication. (See index replication.)

request parameter Hst. A control block that contains the
information needed to process an I/O request.

resource. Any facility of the computing system or
operating system required by a job or task, including main
storage, input/output devices, the central processing unit,
data sets, and control processing systems. systems.

resource pool, VSAM. (See VSAM resource pool.)

reusable data set. A VSAM data set that can be reused as
a work fIle, regardless of its old contents. Must not be a
base cluster.

ripple. Moving data from one block of a chain to the
next, due to modification of data in a preceding block.

RPL string. A set of chained RPLs (the set may contain
one or more RPLs) used to gain access to a VSAM data

set by action macros (GET, PUT, etc). Two or more RPL
strings may be used for concurrent direct or sequential
requests made from a processing program or its subtasks.

search argument. The field of a data block that contains
information identifying the block as unique from any other
block in the data set. Can be either the key field or the
block ID in the count field. This term is also used to
describe the string of keywords containing software failure
symptom keywords.

search limit. The track following the last track that should
actually be searched in a data set. The search limit is
calculated and put in the 10BUPLIM field of the lOB
when the DCB specifies the extended search option.

security. (See data security.)

segment. The portion of a spanned record contained
within a control interval. (See also spanned record.)

sequence checking. The process of verifying the order of
a set of records relative to some field's collating sequence.

sequence set. The lowest level of the index of a
key-sequenced data set; it gives the locations of the
control intervals in the data set and orders them by the
key sequence of the data records they contain. The
sequence set and the index set together comprise the
index.

sequential access. The retrieval or storage of a data record
in either its entry sequence, its key sequence, or its relative
record number sequence, relative to the previously
retrieved or stored record. (See also addressed-sequential
access and keyed-sequential access.)

sequential access method. An access method for storing or
retrieving data blocks in a continuous sequence, using
either a sequential access or a direct access device.

shared resources. A set of functions that permit the
sharing of a pool of I/O-related control blocks, channel
programs, and buffers among several VSAM data sets
open at the same time.

simple name. The rightmost component of a qualified
name. For example, "APPLE" is the simple name in
"TREE.FRUIT.APPLE." The simple name corresponds to
the lowest index level in the CVOL Catalog for the data
set name.

SIO appendage. Start I/O appendage

skip-sequential access. Keyed-sequential retrieval or
storage of records here and there throughout a data set,
skipping automatically to the desired record or collating
position for insertion: VSAM scans the sequence set to
find a record or a collating position. Valid for processing
in ascending sequences only.

Glossary 215

slot. For a relative record data set, the data area
addressed by a relative record number which may contain
a record or be empty.

spanned record. A logical record whose length exceeds
control interval length, and as a result, crosses, or spans,
one or more control interval boundaries within a single
control area.

sphere. The collection of base cluster, alternate indexes,
and upgrade alternate indexes opened to process one or
more paths related to the same Base Information Block
(BIB).

step catalog. A catalog made available for a step by
means of the STEPCAT DD statement.

stored record. A data record, together with its control
information, as stored in auxiliary storage.

string. The part of a control block structure built around
a placeholder (PLH) that enables VSAM to keep track of
one position in the data set that the control block structure
describes.

terminal monitor program. In TSO, a program that accepts
. and interprets commands from the terminal, and causes
the appropriate command processors to be scheduled and
executed.

time sbaring option. An optional configuration of the
operating system that provides conversational time sharing
from remote stations.

track overflow. A user-specified option that will allow a
format F record whose space requirements exceed the
space remaining on the track to be partially written on that
track and completed on the next track.

tracks unused. For data sets specifying cylinder
allocation, tracks unused represents the number of unused
tracks (returned in kilobytes) over all cylinders allocated.

tnmsaction m. A number associated with each of, several
request parameter lists that defme requests belonging to
the same data transaction.

true oame. In a CVOL Catalog, the high-level qualifier to
which an alias is related.

uncatalog. To remove the catalog entry of a data set from
a catalog.

update chanDeI program. A channel program that reads or
writes data for purposes other than adding a new block to
an existing data set.

update number. For a spanned record, a binary number in
the second RDF of a record segment that indicates how
many times the segments of a spanned record should be
equal. An inequality indicates a possible error.

216 Data Facility Product Version 2: Customization

upgrade set. All the alternate indexes that VSAM has
been instructed to update whenever there is a change to
the data component of the base cluster.

user buffering. The use of a work area in the processing
program's address space for an I/O buffer; VSAM
transmits the contents of a control interval between the
work area and direct access storage without intermediary
buffering.

user catalog. An optional catalog used in the same way as
the master catalog and pointed to by the master catalog.
It also lessens the contention for the master catalog and
facilitates volume portability.

vertical extension. An extension record pointed to by a
set-of-fields pointer in the object's base catalog record or
its horizontal extension. (See aw base catalog record and
horizontal extension.)

vertical pointer. A pointer in an index record of a given
level that gives the'location of an index record in the next
lower level or the location of a control interval in the data
set controlled by the index.

'rirtuaI storage access method. An access method for direct
or sequential processing of fIXed and variable-length
records on direct access devices. The records in a VSAM
data set or file can be organized in logical sequence by a
key field (key sequence), in the physical sequence in
which they are written on the data set or file (entry
sequence), or by relative record number.

'rirtuaI telecommunications access method. A set of
programs that control communication between terminals
and application programs running under VSE, OS/VSl,
andOS/VS2.

volume applleation. ISMF is used to construct a list of
volumes. Using the list, you can perform tasks against an
individual volume. These tasks include consolidating or
recovering unused space, copying, backing up, and
restoring volumes.

volume index. The highest level of index in the CVOL
Catalog structure. Entries in the volume index point to all
lower indexes and simple names.

VSAM catalog. virtual storage access method catalog

VSAM resource pooL A virtual storage area that is used
to share I/O buffers, I/O-related control blocks, and
channel programs among VSAM data sets. A resource
pool is local or global; it serves tasks in one partition or
address space or tasks in all address spaces in the system.

VSAM shared Information. Blocks that are used for
cross-system sharing.

WIUTE-add request. A request to write a new block to
the data set.

WRJI'E-release request. A WRITE-update request that
specifies exclusive control should be released for the
record about to be written.

WRJI'E-update request. A request to write an already
existing block: to the data set.

WRJI'E-vaIfdIty check. A user-specified option that
causes the system to verify the accuracy of any
information written by the channel program.

Glossary 217

Index

A
abbreviations 205-209
ABE appendage 95-96
ABE error option 32
abend exit 37-42
abend installation exit 43
abnormal termination

abend installation exit 43
ACC error option 32
acronyms 205-209
adding fields to ISMF panels 154
allocation retrieval list 35,37
altering DADSM processing 68-74
ANSI standard labels

Version 3
installation exits 138

volume label
verification of 123-137

appendages
ABE (abnormal end) 95-96
CHE (channel end) 96
entry points 92
EOE (end of extent) 97
listing in SYS l.P AR.MLIB 93
naming convention 94
PCI (program controlled interruption) 97-98
programming restrictions 92
returns 92
SIO (start I/O) 98-99

assigning volume serial numbers
system assignments 106-107

authorized appendage list 93-94
automatic error options

SeeEROPT
A VR (automatic volume recognition)

with nonstandard labels 120-121

B
BDAM data set

See also basic access technique
user labels 36

blank tape
nonstandard labels, output 107 -108

block
data event control 183
event control 183, 193

block count
with nonstandard labels 104,107-108

block count exit routine 44
BP AM data set

EODAD routine 31
restriction with

DCB abend exit routine 37
BSAM (basic sequential access method)

defaulting buffer number 83
BSAM data set

EODAD routine 31
how EODAD routine is entered 31
user labels 47
user totaling 56-57

BSPmacro
restriction in EODAD routine 31

BUFNO operand (DCB macro)
defaulting in OPEN installation exit

example (QSAM) 171-182

C
catalog

installation exit module 74
cataloged data sets

with nonstandard labels 120
catalogs

dummy module 68
CCW (channel command word)

locations
for nonstandard labels 117
for volume label editor 135

chained scheduling
restriction with

SKP option 32
channel program area

for nonstandard labels 117
for volume label editor 135

channel programs
appendages used with 91

CHE appendage 96
CHECK macro

return of exception codes 184-192
to enter EODAD routine 30
use with SYNAD routine 32

checking volume labels 122-137
checkpoint/restart

check of JFCBFLAG 47
restriction for LPALIB 44

CHKPTmacro
use in end-of-volume exit routine 44

CLIST
modifying the CONTROL statement 169
restrictions to customizing 169
where it is stored 169

CLIST library
what you can customize 146
where it is stored 146

CLOSE macro
for nonstandard labels 104, 106, 108, 109
in EODAD routine 31
restriction with SYNAD 32

close routine
for nonstandard labels 104,106,108-117

closing an input data set
with nonstandard labels 108-119

closing an output data set
with nonstandard labels 108-120

Index 219

codes
exception 184-192

concatenation
data sets

with nonstandard labels 105
condition, exception 183-192
conflict in label version on output 138
construct

a DECB (data event control block) 183
contents of registers on entry to

SYNAD 189-192
control blocks

data event 183
event 193

CREATE parameter
available from IEBDG 59

creating a volume label
nonstandard volume labels 102

creating panels 155

D
DADSM

postprocessing exit
when given control 72

pre/postprocessing exits 68-74
data passed from DADSM 70
format-l DSCB passed by IGGPRBOO 72
operating environment 68
parameter list (IEPL) 70
register contents 73
rejecting a DADSM request 69
return codes from IGGPRBOO 74
system control block addresses 72

preprocessing exit
altering DADSM processing 68-74
when given control 69

data area, UCB tape class extension 144
data control block

SeeDCB
data management

ABEND insta1lation exit 77-80
modifying 79
parameter list (OAIXL) 78
register contents 79
return codes 79

DATA parameter
available from IEBGENER 59

data set protection
with volume label editor 134-137

datestamp routine
See IDATMSTP

DCB (data control block)
abendexit

description 37-39
when avaHable 29
where specifted 29

allocation retrieval list

220 Data Facility Product Version 2: Customization

description 37
DCBEXCDI field 183
DCBEXCD2 field 183
end-of-data routine

exit
with nonstandard labels 104-106,108

description 43
when available 29
where specified 29

DCB abend exit 37-39
DCB OPEN installation exit 80-84

description 80
example 171-182
example, defaulting buffer number

(QSAM) 171-182
example, requesting partial release 171-182
example, updating secondary space data 171-182
operating environment 80
parameter list (OIIDCL) 82
register contents 84
return codes 84
when executed 80-81

DCS (DASD calculation services)
exit routines 75-77

overview 75
parameter list (DCSIEPL) 75-76
register contents 76

postcalculation exit
overview 77
return codes 77

precalculation exit
overview 76
return codes 77

DCSlEPL (DCS pre/postcalculation exit parameter
list) 75-76

DDR (dynamic device reconfiguration) option 121
DECB (data event control block)

description 183
exception code 183-192

default values on panels 150
defaulting buffer number

forBSAM 83
forQSAM 83
in OPEN installation exit

example for QSAM 171-182
defer nonstandard input traDer label exit 43
deferred user traDer label processing

with nonstandard labels 105
defining an FCB image 45, 46
definitions 210-217
density

volume label verification 123-128,129-137
device name 135
DISP operand

fortape 50
DSCB (data set control block)

format-1 not found user exit 85
dynamic device reconfiguration (DDR) option 121

E
ECB (event control block) 183, 193
editor, volume label

entry conditions 122-128, 129
explained 122-137
flowcharts of 132
module names 128

EMODVOLI 128-137
end of data set

with nonstandard labels 104-106, 108
end of volume

with nonstandard labels 104-106, 108
end-of-data

exit routine 8
end-of -sequential retrieval

See ESETL
end-of -volume

exit routine 44
routines, relationship with DCB abend exit 37,39
when EODAD routine entered 30-31

entry
to SYNAD exit routine 183

EODAD (end-of-data) routine
for nonstandard labels 104-106, 108
specifications 30, 31

EODADexit 8
EOE appendage 97
EOVmacro

and Format-1 DSCB not found 85
EOVroutine

for nonstandard labels 104-106,108
volume label editor routine 122-137

EROPT (automatic error options) operand (DCB
macro) 32

error
analysis routine (SYNAD) 31-33
options, automatic 32
uncorrectable 31

error analysis, I/O
exception codes

BDAM 187
BISAM 184
QISAM 186

register contents
BDAM 191
BISAM 190
BPAM 191
BSAM 191
QISAM 189
QSAM 191

status indicators
BDAM 192
BPAM 192
BSAM 192
QISAM 183
QSAM 192

error conditions 122-126
ERROR parameter

available from mBCOMPR 59
errors

analyzing

logical 19
physical 20

ESETL (end-of-sequential retrieval) macro
in EODAD routine 31

examples
of OPEN installation exit module 171-182

exception code 183-192
exception exit routine 9
EXCEPTIONEXIT exit routine

contents of registers 9
EXCP (execute channel program)

ABE appendage 95-96
channel programs

appendage entry points 92
appendage programming restrictions 92
appendage register usage 91
appendage returns 92
appendages used with 91
authorized appendage list 93
including appendages in the system 93

CHE appendage 96
EOE appendage 97
PCI appendage 97-98
SIO appendage 98-99

EXCP appendages
contents of registers at entry 92

exit list 34-36
exit routine

allocation retrieval list 37
block count 44
conventions 36
DCB (data control block) 43
DCB abend 37-42
defer nonstandard input trailer label 43
end-of-data 30, 31 •
end-of-volume 44
EODAD 8
example 22
exception exit 9
FCBimage 45
identified by DCB 29
ISO/ANSI/PIPS Version 3 138
JFCBE 47
JRNAD 10
LERAD 19
list 34-36
QSAM parallel input 56
register contents on entry 36
return codes 61
returning from 7, 60
standard user label 47-51
SYNAD 20
synchronous error (SYNAD) 31-33
totaling 66
UPAD 24
user totaling 56
user written 5, 23

EXLST operand (DCB macro) 30, 34
expiration date

with volume label editor 134-137
expressions 210-217

Index 221

F
FCB (forms control buffer)

image
exit 45
identification in JFCBE 47

FEOVmacro
restriction with trailer label exit 50
to enter EODAD routine 30
with nonstandard labels 105,108

file access exit 141
FIND macro

in EODAD routine 31
first record, verification of

for nonstandard labels 105-107, 120-122
volume label editor 123-137

format
of DADSM pre/postprocessing exit parameter

list 70
of DCS pre/postcalculation exit parameter

list 75-76
of OIEXL (OPEN installation exit parameter

list) 82
format-l DSCB not found

installation exit (IFGOEXOA) 85-87
parameter list 85
register contents 86
return codes 86

forms control buffer
SeeFCB

G
GET macro

in EODAD routine 30
restriction with spanned records to enter EODAD

routine 30
glossary 205-217

H
header label

user 47,51

IDATMSTP datestamp routine
contents of registers at entry 88
description 87

IEAAPPOO, authorized appendage list 93
IEBCOMPR

ERROR parameter 59
INHDR/INTLR parameter 59
OUTHDR/OUTLR parameter 59
PRECOMP parameter 59

IEBDG
CREATE parameter 59

IEBGENER
DATA parameter 59
INHDR/INTLR parameter 59
IOERROR parameter 59
KEY parameter 59
OUTHDR/OUTLR parameter 59

222 Data Facility Product Version 2: Customization

TOTAL parameter 59
IEBPTPCH

INHDR/INTLR parameter 59
INREC/OUTREC parameter 59

IEBUPDTE program
SYS1.PARMLm

use in listing appendages in 93-94
IECDSECT macro

for nonstandard labels 116
for volume label editor 134-137

IECIEPRM parameter list 141
IECOENTE macro

nonspecific tape volume mount exit 52
IECOEVSE
IECRES macro 134, 137
IECUCBCX macro 143
IEC704A C message 138
IEFUCBOB macro

for nonstandard labels 116
for volume label editor 134

IEFXV A VR module 121
IEFXVNSL routine 121
IEPL (DADSM pre/postprocessing exit parameter

list) 70
IGGOK05B lQ9
IGGOl90A 137
IGG0190B 109
IGG0190R 109
IGG0200B 109
IGG0550B 109
IGG0550D 109
IGG0550F 109
IGG0550H 109
IGG0550P 137
indexed sequential data set

SYNAD routine 33
indicators, status 192
INHDR/INTLR parameter

available from IEBCOMPR 59
available from IEBGENER 59
available from IEBPTPCH 59

input data sets
with nonstandard labels 104-106

input header label routine 105
input trailer label routine 105
input/output operations

status indicators 192
INREC/OUTREC parameter

available from IEBPTPCH 59
installation exit module

automatic volume recognition nonstandard tape
label 120

CATALOG 74
DADSM postprocessing 68
DADSM preprocessing 68
DADSM RENAME 74
DADSM SCRATCH 74
DASD calculation services 75
data management

general guidance 67
data management ABEND 77
DCBOPEN 80

dynamic device reconfiguration 121
IDA TMSTP datestamp 87
ISO/ANSI/PIPS Version 3

file access 141
label validation 139
label validation suppression 140
volume access 140
WTOR 138

nonstandard tape labels 102, 108
open/EOV for format-l DSCB not found 85
tape label processing

general guidance 101
volume label editor 126
volume label verification 122
volume verification 121

installation exit, WTOR 138
lOB, relationship with SYNAD routine for BDAM 33

SYNAD routine 33
IOERROR parameter

available from IEBGENER 59
ISMF command tables

See tables
ISMF line operator tables

See tables
ISO/ANSI/PIPS label conversion on output 138
ISPF command tables

See tables

J
JFCB (job file control block)

modifying 83
JFCBE (job file control block extension)

exit 47
JFCBFLAG 47
job file control block

read 46
job file control block extension (JFCBE)

exit 47
job skeletons

example of modifying 160
finding 159
modifying 160
restrictions to customizing 159

journalizing transactions 10
JRNAD exit 10

contents of registers 10

K
KEY parameter

available from IEBGENER 59

L
label editor routines 122-137
label exits 47-51
LABEL parameter in DD statement

specifying standard labels 49
label processing routine

parameters 63
label validation exit 139
label version conflict on output 138

LEA VB parameter
for nonstandard labels 116

LERAD exit routine
contents of registers at entry 19

libraries 145-146
CUST 146
load 146
message 146
panel 145
skeleton 146
table 146
where they are stored 146

link pack area
library

restriction for checkpoint 44
load library

what you can customize 146
where it is stored 146

load mode
QISAM

in SYNAD routine 33
logical errors 19
LPALm

M

label editor routines 137
nonstandard label routines 104,120
restriction for checkpoint 44
volume verification routines 122

macros, data management
EOV

and Format-l DSCB not found 85
OPEN

and Format-l DSCB not found 85
magnetic tape volumes

labels
user 47-51

message IEC704A C 138
message library

what you can customize 146
where it is stored 146

messages
creating 159
finding 158
modifying 159
restrictions to customizing 158

modifying
fields on the data set list panel

special considerations 157
fields on the list panel 156

where to make changes 156
JFCB

in OPEN installation exit 83
module names

for nonstandard label routines 109, 120-121
for volume label editor 128, 137

mount switch (UCBDMCT)
nonstandard labels

bit value for incorrect volume 105-107
use in label processing routines 116-119

volume label editor 136
multiple data sets

Index 223

with nonstandard labels 102
multiple volumes

with nonstandard labels 102, 106

N
non-label processing routine

parameters 63
nonspecific tape volume mount exit 51-53

general register rules 53
IECOENTE macro parameter list 52
return codes 51

how specified 51
nonstandard label processing routines

flowcharts of 113-115, 118
for AVR 120-121
in control program 120
types of 104-108
writing of 108-122

nonstandard labels component support
processing of 104-108

NSL subparameter 104
NSLCTRLO member 120
NSLEHDRI member 120
NSLEHDRO member 120
NSLETRLI member 120
NSLETRLO member 120
NSLOHDRI member 120
NSLOHDRO member 120
NSLREPOS routine 122
NSLRHDRI'member 120

o
OAIXL (data management ABEND installation exit

parameter list) 78
OJEXL (OPEN installation exit parameter list) 82
OMODVOLl 128, 137
OPEN macro

and Format-l DSCB not found 85
getting control from 81

open processing
after IFGOEXOB gets control 81
and OPEN installation exit 80
before IFGOEXOB gets control 80

Open routine
for nonstandard labels 104-106
volume. label editor routine 126-129

OPEN/EOV volume security/verification exit 53-56
general register rules 56
IECOEVSE 54
return codes 53

how specified 54
opening an input data set

with nonstandard labels 105-106
opening an output data set

with nonstandard labels 106
OPTCD operand (DCB macro)

request user totaling (OPTCD=T) 56
OPTCD=T (user totaling) 56

224 Data Facility Product Version 2: Customization

OUTHDR/OUTLR parameter
available from IEBCOMPR 59
available from IEBGENER 59

output data set
with nonstandard labels 106-108

output header label routine 106-107
output trailer label routine 108

p
panel library

what you can customize 145
where it is stored 146

panels
adding fields 154
creating new 155
default values 150
rmding 148
modifying fields on the data set list

special considerations 157
modifying fields on the list 156

where to make changes 156
modifying text 154
priming values 149
removing fields 152
restricting values for input fields 150
restrictions to customizing 148
testing changes 148

parallel data access block (PDAB) 56
parallel input processing 56
parameter list

contents of 38
use of by allocation retrieval list 37
use of by DCB abend exit routine 37-39

partial release via JFCB modification 83
in OPEN installation exit

example 171-182
PCI appendage 97-98
PDAB (parallel data access block) 56
physical errors 20
POINT macro

in EODAD routine 31
positioning tapes

with nonstandard labels 104-108
PRECOMP parameter

available from IEBCOMPR 59
priming values on panels 149
program, describing the processing 42

Q
QISAM data set

See also ISAM
EODAD routine 31
SYNAD routine 31-33

QSAM (queued sequential access method)
See also queued access technique
defaulting buffer number 83
user labels 47
user totaling 56-57

R
RACF

ANSI standard labels
verification of first record 124, 127

mM standard labels
verification of first record 124, 127

nonstandard labels
processing tapes with 105
verification of rust record 125, 127

unlabeled tape, verification of first record 126, 127
with volume label editor routines 127

ROBACK operand (OPEN macro)
label exit routine 50

ROBACK parameter
with nonstandard labels 105, 116

READ macro
in SYNAD routine 32
restriction in EODAD routine 31
to enter EODAD routine 30

register
contents at return from DCB OPEN exit 84
contents on entry to

SYNAD exit routine 189-192
conventions for appendages 92
usage by I/O supervisor 92

removing fields from panels 152
RENAME macro

dummy module 68
installation exit module 74

replaceable module
CATALOG 74
DADSM postprocessing 68
DADSM preprocessing 68
DADSM RENAME 74
DADSM SCRATCH 74
DASD calculation services 75
data management

general guidance 67
data management ABEND 77
DCBOPEN 80
IDATMSTP datestamp 87
open/EOV for format-l DSCB not found 85

requesting partial release via JFCB modification 83
restart end-of-volume exit routine 44
restart routine

with nonstandard labels 107-108, 118
restricting values for input fields on panels 150
restrictions

on chained scheduling with
SKP option 32

on user label exit routines 47-51
return codes

from DADSM exits 74
from data management ABEND exit 79
from DCB OPEN exit 84
from DCS exits 77
from format-l DSCB not found exit 86
totaling routine 66
user exit routine 61
with block count exit 44
with user labels 49

RETURN macro

format 60
relationship in SYNAD routine 32

returning
from an exit routine 60

s
save area

user totaling 57
secondary

space data
updating in OPEN installation exit 84
updating in OPEN installation exit,

example 171-182
security of data 26

verification routine 26
SETLmacro

in EODAD routine 31
SETPRT routine 45
seven-track feature

lack of ANSI support for 123
SIO appendage 98-99
skeleton library

what you can customize 146
where it is stored 146

skeletons
See job skeletons

SKP option 32
status

following an I/O operation 183
indicators 192

status indicators 193
STOW macro

restriction with DCB abend exit 37
SUPERZAP

to modify ISMF tables 168
SVC library

with nonstandard labels 120
with volume label editor 137

SYNAD exit routine
analyzing physical errors 20
contents of registers 21
example 22
exception codes

BDAM 187
BISAM 184
QISAM 186

register contents
BDAM 191
BISAM 190
BPAM 191
BSAM 191
QISAM 189
QSAM 191

status indicators
BDAM 192
BPAM 192
BSAM 192
QSAM 192

SYNAD routine
description 31-33

SYNADAF macro
use in SYNAD routine 33

Index 225

SYNADRLS macro
use in SYNAD routine 33

SYSIN data set
restriction with

user totaling 56
SYSOUT data set

restriction with
label exits 50
user totaling 56

system control blocks 72
system generation

for nonstandard label routines 120-121
SYS1.IMAGELm data set

search of 45

T
table library

what you can customize 146
where it is stored 146

tables
ISMF command and line operator tables 167

rmding 167
modifying 168
restrictions to customizing 167

ISPF command tables 166
controlling truncation 166
finding 166
modifying 166
restrictions to customizing 166

tape label prOcessing
installation exit modules 101
writing nonstandard label processing routines 108

tape reposition routine 121
tapemarks

with nonstandard labels -103, 105-108
terms 210-217
testing changes 147
text on panels, modifying 154
TOTAL parameter

available from IEBGENER 59
totaling area, user totaling exit routine 56-57
totaling routine 66

return codes 66
trailer labels

user 47,51
transactions, journalizing 10
truncation of commands and line operators' 166

U
UCB tape class extension 143
UCB tape class extension data area 144
UCBCX DSECT 143
UHL (user header label) 47-51
unit check 123
unlabeled tapes

with RACF processing 127
UP AD exit routine for user processing 24
UPDAT option

See also update mode
EODAD routine entered for BSAM 30

updating secondary space data

226 Data Facility Product Version 2: Customization

in OPEN installation exit 84
example 171-182

USAR (user-security-authorization record) 26
user header label (UHL) 47-51
user label exit routine

description 47-51
exit list entry 48
restriction for data sets on volumes without standard

labels 50
restriction for SYSOUT data sets 50
with read backward 48, 50

user labels
processing 64

asdata 66
as data set descriptors 65

user totaling exit routine
description 56-57
exit list entry 56
how specified 56
image area address 57
relationship with end-of-volume exit 44
restricted to BSAM, QSAM 56
save area 57
totaling area 56-57
variable-length and spanned records 57

user trailer label (UTL) 47-51
user-seeurity-authorization record

SeeUSAR
user-written exit routine, example 22
USVR (user-security-verification routine) 26
utility program exits

available from IEBCOMPR
ERROR parameter 59
INHDR/INTLR parameter 59
OUTIIDR/OUTLR parameter 59
PRECOMP parameter 59

available from IEBDG
CREATE parameter 59

available from IEBGENER
DATA parameter 59
INHDR/INTLR parameter 59
IOERROR parameter 59
KEY parameter 59
OUTIIDR/OUTLR parameter 59
TOTAL parameter 59

available from IEBPTPCH
INHDR/INTLR parameter 59
INREC/OUTREC parameter 59

UTL (user trailer label) 47-51

V
validation suppression exit 140
variable-length record (format-V)

special considerations. with user totaling 57
verification routine, user-security

SeeUSVR
volume access exit 140
volume label

ANSI standard
verification of 123-137

ffiMstandard

verification of 122-137
volume label editor routines 122-137
volume organization

nonstandard labels 103
volume serial number

volume label editor 126,136
with nonstandard labels 106-107,120-122

volume switching
with nonstandard labels 106

volume verification
See also volume serial number
done by system 122-126
done by user 126-137

w
work area

for nonstandard label routines 109-121
WRITE macro

in EODAD routine 31
in SYNAD rOutine 32

WTOR iDstaDation exit 138
WTOR message IEC704A C 138

Numerics
3800 Printer

JFCBB exit for 47

Index 227

DC:
0" .. VI
a.
.,.::J
::J :=
ilia> u ..
c a.
B I
VI ::J

-a;
S.!!
U)Q.

s
o
Z

MVS/Extended Architecture
Data Facility Product
Version 2: Customization
GC26·4267·'

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, Its organization, or subject matter,
with the understanding that IBM mey use or distribute whatever informetion you supply in any way it believes appropriate
without Incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your ordar will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistanca in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here: ____________ _

Chapter/Section _____________________________________ _

Pege No. _____________ _

Comments:

If you want a reply, please complete the following information.
Neme ____________________________ _ Phone No. (__) __________ _

Company ___ __

Address

Thank you for your cooperation. No postege stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre·
sentatlve will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the titl e page.!

GC26-4267-1

Reader's Comment Form

Fold and tape

Fold and tape

--:..------ - ------- -. ---- -- --------
-~-.-(!)

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO_ 40 ARMONK, N_Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

PI ease do not staple

II " I

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

s:
<
~
m
x
" III
::J
Co
III
Co

»
i=l
::r
~.
o ...
c: .,
III

o
I» ...
I»

" I»
£1.
~.

-0 .,
o
Co
c:
o ...
<
III
~ o·
::J
I\J

(")
c:
en g
3
N·
I» ... o·
::J

" CD
z
?
en w
9
w .-e

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00009
	00011
	00012
	00013
	00014
	00015
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	091
	092
	093
	094
	095
	096
	097
	098
	099
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	197
	199
	200
	201
	202
	203
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	219
	220
	221
	222
	223
	224
	225
	226
	227
	replyA
	replyB
	xback

