
Program Product

(

c

GC28-IIS0-4
File No. S370-36

MVS/Extended Architecture
System Programming
Library: System Macros
and Facilities .
Volume 1

MVS/System Product:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

--...- .------ --------- -. ---- -- --------------,,-

Fifth Edition (September, 1989)

This is a major revision of, and obsoletes GC28-1150-3 and Technical Newsletter GN28-1901. See the
Summary of Amendments following the Contents for a summary of the changes made to this manual.
Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the
change.

This edition applies to Version 2 Release 2 of MVS/System Product program number 5665-291 or 5740-XC6
and to all subsequent releases until otherwise indicated in new editions or Technical Newsletters. Changes
are made periodically to the information herein; before using this publication, in connection with the
operation of IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that
are applicable and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM product in this publication is not
intended to state or imply that only IBM's product may be used. Any functionally equivalent product may
be used instead. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building
921-2, PO Box 950, Poughkeepsie, New York 12602. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1989
All Rights Reserved

()

c'

(-

('"

.'

Preface

This two-volume publication describes supervisor and scheduler facilities that the system
programmer can use. In this publication, a system programmer is defined as a programmer
whose programs run in supervisor state, system key 0-7 or access APF-authorized libraries. The
publication included the macro instructions and parameters used to obtain the functions.

Volume I contains descriptions of the supervisor and scheduler services available to a system
programmer. Most of the services described are supervisor services; however, the scheduler
functions available through the use of the DYNALLOC macro instruction are also described.
Volume I includes a description of the DYNALLOC macro instruction. Some of the topics
discussed in Volume I are also discussed in Supervisor Services and Macro Instructions; however
in Volume 1, these topics are extended to include functions that are restricted to system
programmers or used primarily by system programmers.

Volume 2, GC28-1151, contains the formats and descriptions of the supervisor macro
instructions. Volume 2 provides system programmers with the information necessary to code
the macro instructions. Each macro instruction is completely described, in Volume 2, but
restrictions, requirements, and environmental considerations for the effective use of each macro
is explained in Volume 1.

Trademarks
The following are trademarks of International Business Machines Corporation.

• MVS/ESA™
• MVS/DFp™
• MVS/SP™
• MVS/XA™

Related Publications
A Structured Approach to Describing and Searching Problems, SC34-2129

The Considerations of Physical Security in a Computer Environment, G520-2700

Data Security Controls and Procedures - A Philosophy for DP Installations, G320-5649

MVS/ESA CheckpOint/Restart User's Guide, SC26-4503

MVS/ESA Data Administration: Macro Instruction Reference, SC26-4506

MVS/ESA Data Facility Product Version 3: Diagnosis Reference, LY27-9551

MVS/ESA Linkage Editor and Loader User's Guide, SC26-4510

MVSjESA System-Data Administration, SC26-4515

MVS/ESA VSAM Administration Guide, SC26-4518

MVS/Extended Architecture Checkpoint/Restart User's Guide, GC26-4139

MVSjExtended Architecture Data Administration: Macro Instruction Reference, GC26-4141

MVS/Extended Architecture Data Facility Product Version 2: Diagnosis Reference,
LY27-9530

MVSjExtended Architecture Debugging Handbook Volume 1, LC28-1164

© Copyright IBM Corp. 1982, 1989 Preface iii

I

MVS/Extended Architecture Debugging Handbook Volume 2, LC28-1165

MVS/Extended Architecture Debugging Handbook Volume 3, LC28-1166

MVS/Extended Architecture Debugging Handbook Volume 4, LC28-1167

MVS/Extended Architecture Debugging Handbook Volume 5, LC28-1168

MVS/Extended Architecture Debugging Handbook Volume 6, LC28-1169

MVS/Extended Architecture Diagnostic Techniques, LY28-1199

MVS/Extended Architecture Interactive Problem Control System Planning and
Customization, GC28-1406

MVS/Extended Architecture Interactive Problem Control System User's Guide and Reference,
GC28-1297

MVS/Extended Architecture Job Control Language User's Guide, GC28-1351

MVS/Extended Architecture Job Control Language Reference, GC28-1352

MVS/Extended Architecture Linkage Editor and Loader User's Guide, GC26-4143

MVS/Extended Architecture Message Library: System Messages Volume 1, GC28-1376

MVS/Extended Architecture Message Library: System Messages Volume 2, GC28-1377

MVS/Extended Architecture Operations: System Commands, GC28-1206

MVS/Extended Architecture Planning: Global Resource Serialization, GC28-1062

MVS/Extended Architecture Supervisor Services and Macro Instructions, GC28-1154

MVS/Extended Architecture System-Data Administration, GC26-4149

MVS/Extended Architecture System Initialization Logic, LY28-1200

MVS/Extended Architecture System Logic Library: Allocation/Unallocation, LY28-1615

MVS/Extended Architecture System Programming Library: Initialization and Tuning,
GC28-1149

MVS/Extended Architecture System Programming Library: Service Aids, GC28-1159

MVS/Extended Architecture System Programming Library: System Macros and Facilities
Volume 2, Ge28-lI51

MVS/Extended Architecture System Programming Library: System Modifications,
GC28-1152

MVS/Extended Architecture System Programming Library: User Exits, GC28-lI47

MVS/Extended Architecture System Programming Library: 31-Bit Addressing, GC28-lI58

MVS/Extended Architecture VSAM Administration Guide, GC26-4151

OS/VS Mass Storage System Extensions Messages, SH35-0041

Resource Access Control Facility (RACF): General Information Manual, GC28-0722

Security Assessment Questionnaire, GX20-2381

System Programming Library: RACF, SC28-1343

TSO Extensions Version 2 Programming Guide, SC28-1874

TSO Extensions Version 2 Programming Services, SC28-1875

TSO Extensions Version 2 System Programming Command Reference, SC28-1878

370-Extended Architecture: Principles of Operation, SA22-7085

iv SPL: System Macros and Facilities Volume 1

(

(

Notes:

1. All references to RACF in this publication indicate the program product Resource Access
Control Facility (5740-XXH).

2. All references to Assembler H in this publication indicate the program product Assembler
H Version 2 (5668-962).

3. All references to RMF in this publication indicate the program product Resources
Measurement Facility (5665-274)

Preface V

vi SPL: System Macros and Facilities Volume 1

Contents

Introduction I-I

Subtask Creation and Control 1-3
Creating a New Task (ATTACH) 1-4

Changing the Defaults of ATTACH 1-4
Issuing an Internal START or REPLY Command (MGCR) 1-6
Communicating with a Problem Program (EXTRACT, QED IT) 1-7

Providing an EXTRACT Answer Area 1-11
Changing the Priority of a Task (CHAP) 1-12

Program Management 1-13
Residency and Addressing Mode of Programs 1-13

Placement of Modules in Storage 1-13
Addressing Mode 1-14

Specifying Where the Module is to be Loaded (LOAD) 1-14
Synchronous Exits (SYNCH) 1-15
Using Checkpoint/Restart 1-15
Using Re-entrant Modules 1-16

Serialization 1-17
When Resource Serialization Is Needed· 1-17

Serialization Requirements 1-17
Locking 1-18

(
Categories of Locks 1-18
Types of Locks 1-19
Classes of Locks 1-21
Locking Hierarchy 1-22
CML Lock Considerations 1-23
Obtaining, Releasing, and Testing Locks (SETLOCK) 1-24
Altering the Dispatching Queue (INTSECT) 1-25

Using the Must-Complete Function (ENQ/DEQ) 1-25
Characteristics of the Must-Complete Function 1-25
Programming Notes 1-26

Limiting Global Resource Serialization Requests 1-26
Shared Direct Access Storage Devices (Shared DASD) 1-27

Devices that Can be Shared 1-27
Volume/Device Status 1-28
System Configuration 1-28
Volume Handling 1-28
Macro Instructions Used with Shared DASD (RESERVE, EXTRACT) 1-29

Indicating Event Completion (POST) 1-35
Cross Memory POST 1-35
Bypassing the POST Routine 1-35
Waiting for Event Completion (EVENTS) 1-36

Writing POST Exit Routines 1-36
Identifying and Deleting Exit Routines 1-37
Initializing Extended ECBs and ECB Extensions 1-37

POST Interface with Exit Routines 1-38
Re-entry to POST from a POST Exit 1-39
Example of Using a POST Exit Function 1-39

Branch Entry to the POST Service Routine 1-40
Branch Entry to the WAIT Service Routine 1-42

© Copyright IBM Corp. 1982, 1989 Contents vii

Suspension and Resumption of Request Blocks 1-42
Waiting for an Event to Complete (SUSPEND) 1-43
Resuming Execution of a Suspended Request Block (RESUME) 1-45
Transferring Control for SRB Processin~ (TCTL) 1-46
Using the BRANCH=YES Option ofCA.LLDISP (CALLDISP) 1-47

Reporting System Characteristics 1-49
Collecting Information About Resources and Their Requestors (GQSCAN) 1-49
Using the SRM Reporting Interface to Measure Subsystem Activity 1-53
Reporting Software. Error Symptoms (SYMREC) 1-54

Writing Applications That Use SYMREC 1-54
The Format of the Symptom Record 1-56
Symptom Strings - SDB Format 1-57
Using EREP and IPCS to Format Symptom Record Reports 1~57

Programming Notes.for SYMREC Applications 1-58
Obtaining Accumulated Processor Time 1-64

Communication 1-65
Interprocessor Communication 1-65

Service Classes 1-65
Status Indicators 1-66

Writing and Deleting Messages (WTO, WTOR, DOM, and WTL) 1-68
Routing the Message 1-68
Writing a Multiple-Line Message 1-69
Embedding Label Lines in a Multiline Message 1-70
Using the Authorized Parameters ofWTO and WTOR 1-70
Deleting Messages Already Written 1-71
Identifying Messages to be Deleted 1-71
Limiting the Extent of Message Deletion 1-71
Writing to the System Log 1-72

Inter-Address Space Communication 1-72
Asynchronous Address Space Communication 1-73
Synchronous Inter-Address Space Communication 1-78
Designing a PC Routine 1-95
Recovery Considerations 1-97

Virtual Storage Management 1-99
Allocating and Freeing Virtual Storage (GETMAIN, FREEMAIN) 1-100

The BRANCH Parameter 1-100
The KEY Parameter 1-101

Using Cell Pool Services (CPOOL) 1-101
Using Storage Subpools 1-102
Obtaining Information about the Allocation of Virtual Storage 1-105

Using the VSMLIST Work Area 1-105
Accessing the Scheduler Work Area 1-113

Using the IEFQMREQ and the SWAREQ Macros 1-114
The SW AREQ Macro 1-114
How to invoke SWAREQ 1-115
The IEFQMREQ Macro 1-117
How to Invoke IEFQMREQ 1-118

Real Storage Management 1-121
Fixing/Freeing Virtual Storage Contents 1-122
PGFIX/PGFREE Completion Considerations 1-123
Input to Page Services 1-124

Virtual Subarea List (VSL) 1-124

viii SPL: System Macros and Facilities Volume 1

Page Service List (PSL) 1-124
Short Page Service List (SSL) 1-124

Branch Entry to the PGSER Routine 1-125
Branch Entry to MVS/370 Page Services 1-126

Cross Memory Mode 1-126
Non-Cross Memory Mode 1-127

The Nucleus 1-129
Linking to Routines in the DAT-OFF Nucleus (DATOFF) 1-129

Using System Provided DAT-OFF Routines (DATOFF) 1-129
Writing User DAT-OFF Routines 1-132

Obtaining Information about CSECTs in the DAT-ON Nucleus (NUCLKUP) 1-133

Norinal and Abnormal Program Termination 1-135
Recovery Termination Manager 1-135

Invoking the Recovery Termination Manager 1-136
Processing Program Interruptions (SPIE, ESPIE) 1-138

Interruption Types 1-138
Intercepting System Errors 1-139

Using the SLIP Command 1-140
Obtaining an SVC Dump During Slip Processing 1-140
Bypassing Dump Suppression 1-140

System Trace Facilities 1-141
Performing Branch Tracing 1-141
Performing Address Space Tracing 1-141
Performing Explicit Tracing (PTRACE) 1-141

Dumping Virtual Storage 1-142
Using the IPCS Macro Instructions 1-142
Using the SDUMP Macro Instruction 1-143
Obtaining an SVC Dump 1-146
Obtaining a Summary Dump 1-147
Suppressing SDUMPs and SYSMDUMPs 1-149
Using Dump Data Sets 1-150
Using the Dumping Services Commands 1-150

Canceling and Restarting the DUMPSRV Address Space 1-151
Getting More Than One SYSMDUMP 1-151

Providing Recovery Routines 1-152

(
Providing Information for Dump Analysis and Elimination 1-153
Selecting a Recovery Routine 1-153
System Environment 1-154
ESTAE-Type Recovery Routines 1-162
Using the FESTAE Macro Instruction 1-164
Special Considerations 1-164
Recovery Routine Guidelines 1-176

Uses of Resource Managers 1-183

Protecting the System 1-185
System Integrity 1-185 ,

Documentation on System Integrity 1-185
Installation Responsibility 1-185
Elimination of Potential Integrity Exposures 1-185

Using the Authorized Program Facility (APF) 1-189
APF Authorization 1-189
Using APF 1-191
Authorization Results Under Various Conditions 1-193

Guidelines for Using APF 1-194

Contents ix

Resource Access Control Facility (RACF) 1-194
Defining a Resource to RACF (RACDEF) 1-194
Identifying a RACF-Defined User (RACINIT) 1-195
Checking RACF Authorization (RACHECK and FRACHECK) 1-195
Retrieving and Encrypting Data (RACXTRT) 1-195
Building In-Storage Profiles (RACLIST) 1-195
RACSTAT Macro Instruction 1-196

Protecting the Vector Facility 1-196
System Authorization Facility (SAF) 1-196

MVS Router 1-196
Interface to the MVS Router (RACROUTE) 1-199

Changing System Status (MODESET) 1-200
Generating an SVC 1-200
Generating Inline Code 1-200

Protecting Low Storage (PROTPSA) 1-201

Exit Routines 1-203
Using Asynchronous Exit Routines 1-203

Stage 1 Initialization 1-203
Stage 2 Scheduling 1-205
Stage 3 Execution 1-205

Establishing a Timer Disabled Interrupt Exit 1-206
DIE Characteristics 1-207
Timer Queue Element Control 1-209

User-Written sve Routines 1-211
Writing SVC Routines 1-211

Programming Conventions for SVC Routines 1-212
Inserting SVC Routines Into the Control Program 1-216

Modifying the SVC Table at Execution Time (SVeUPDTE) 1-217
Subsystem SVC Screening 1-218

ueB Scan Services 1-221
Invoking 10SVSUCB 1-221

Input to 10SVSUCB 1-221
Limiting the UCB Scan 1-222
Output from IOSVSUCB 1-223
Example Usjng 10SVSUCB 1-224

Obtaining Information from the Input/Output Supervisor (lOS) 1-226

Dynamic Allocation 1-227
Introduction to SVC 99 Functions 1-228
Concepts Needed to Understand SVC 99 Processing

Processing Control Features 1-229
Functions Available Through SVC 99 1-231

Dynamic Allocation. 1-231
Dynamic Unallocation 1-233
Dynamic Concatenation 1-235
Dynamic Deconcatenation 1-236
Dynamic Information Retrieval 1-236

Installation Options For SVC 99 Functions 1-237
Space and Unit Defaults 1-237
Mounting Volumes and Bringing Devices Online
Installation Input Validation Routine for SVC 99

Requesting sve 99 Functions 1-241

X SPL: System Macros and Facilities Volume 1

1-229

1-238
1-239

c

c

Programming Considerations When Using SVC 99 1-241
SVC 99 Parameter List 1-243

Request Block Pointer 1-244
Request Block 1-244
Request Block Extension 1-246
Text Pointers 1-248
Text Units 1-249

Detailed Review of Dsname Allocation Processing 1-249
Checking for Environmental Conflicts 1-250
Using an Existing Allocation 1-250
Using a New Allocation 1-252
Considerations When Requesting Dsname Allocation 1-253
Processing Messages from Dynamic Allocation 1-254

SVC 99 Return Codes 1-259
Information Reason Codes 1-259
Error Reason Codes 1-261

SVC 99 Text Units, by Function 1-267
Dsname Allocation Text Units 1-270
DCB Attribute Text Units 1-289
Non-JCL Dynamic Allocation Functions 1-299
Dynamic Unallocation Text Units 1-303
Dynamic Concatenation Text Units 1-305
Dynamic Deconcatenation Text Unit 1-306
Text Units for Removing the In-Use Attribute Based on Task-ID 1-307
Ddname Allocation Text Units 1-307
Dynamic Information Retrieval Text Units 1-309

Example of a Dynamic Allocation Request 1-315

(Index X-I

(

C·'
, .,/

Contents xi

f
"",0/

xii SPL: System Macros and Facilities Volume I

(-

(-

Figures

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
II.
12.
13.
14.
15.
16.
17.
18.
19.
20.
2l.
22.
23.
24.
25.
26.
27.
28.
29.
30.
3l.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
5l.
52.

Setting Up the Buffer for MGCR 1-6
EXTRACT ECB, CIB Pointers, and Token 1-7
Command Input Buffer Contents 1-7
Example Using the EXTRACT and QED IT Macros 1-9
EXTRACT Answer Area Fields 1-11
Assembler Definition of AMODE/RMODE 1-13
Summary of Locking Characteristics 1-19
Requests for Shared/Exclusive Locks 1-20
Valid Volume Characteristic and Device Status Combinations
Example of an Interlock Environment 1-30
Example of Subroutine Issuing RESERVE and DEQ 1-34
Bypassing the POST Routine 1-36
ECB Extension (ECBE) 1-37
Extended ECB 1-38
Data Areas Post Exit Example 1-39
POST Function and Branch Entry Points 1-40
POST Branch Entry Input 1-41
POST Branch Entry Output 1-41
GQSCAN Results with STEP, SYSTEM, SYSTEMS, or ALL
GQSCAN Results with LOCAL or GLOBAL 1-51
EBCDIC Characters Printed or Displayed on an MCS Console
PC Number Indexing Linkage and Entry Tables 1-84
Authorization and Linkage Macro Instructions 1-86
PC/PT Linkage Conventions 1-88
Declared Storage For Cross Memory Examples 1-89
Entry Table Descriptions for Examples 1-90
Linkage Table and Entry Table Connection 1-92
Linkage and Entry Tables for a Global Service 1-94
Characteristics of a Non-Space Switch PC Routine 1-96
Characteristics of a Space Switch PC Routine 1-96
Characteristics of the Valid Storage Subpools 1-103
MVSjXA Virtual Storage Map 1-104
Format of the VSMLIST Work Area 1-105
Description of VSMLIST Work Area 1-106
Allocated Storage Information for Subpools in a Specified Area
Format of Subpool Descriptor 1-109
Format of Allocated Block Descriptor 1-109
Allocated Storage Information for the Private Area 1-110
Allocated Storage Information for a Subpool List 1-110
Format of Free Space Descriptor 1-111
Unallocated Storage Information for CSA and PVT Subpools
Format of Region Descriptor 1-113
Format of Unallocated Block Descriptor 1-113
Format ofa SWA Control Block 1-113
DAT-OFF Routines Available to Users
Virtual Storage Map of DAT-ON Nucleus
Key Fields in the SDW A 1-160
EST AE Environment 1-163
Routing Control to Recovery Routines
Assigning Authorization via SETCODE
Authorization Rules 1-193

1-129
1-133

1-171
1-193

Asynchronous Exit Data Area Configuration 1-204

© Copyright IBM Corp. 1982, 1989

1-28

1-51

1-68

1-108

1-112

Figures xiii

53. Programming Conventions for SVC Routines 1-213
54. Parameter List for the UCB Scan Routine (IOSVSUCB) 1-221
55. Device Classes 1-222
56. Example of the UCB Scan Routine (IOSVSUCB) 1-224
57. JCL DD Statement Facilities not Supported by Dynamic Allocation 1-232
58. Structure of the SVC 99 Parameter List 1-244
59. SVC 99 Return Codes 1-259
60. Class 2 Error Reason Codes (Unavailable System Resource) 1-262
61. Class 3 Error Reason Codes (Invalid Parameter List) 1-263
62. Class 4 Error Reason Codes (Environmental Error) 1-264
63. Class 7 Error Reason Codes (System Routine Error) 1-266
64. Verb Code 01 (Dsname Allocation) - Text Unit Keys, Mnemonics, and

Functions 1-268
65. Verb Code 01 (DCB Attributes) - Text Unit Keys, Mnemonics, and Functions 1-288
66. Verb Code 01 (Non-JCL Dsname Functions) - Text Unit Keys, Mnemonics, and

Functions 1-299
67. Verb Code 02 (Dynamic Unallocation) - Text Unit Keys, Mnemonics, and

Functions 1-303
68. Verb Code 03 (Dynamic Concatenation) - Text Unit Keys, Mnemonics, and

Functions 1-305
69. Verb Code 04 (Dynamic Deconcatenation) - Text Unit Key, Mnemonic" and

Function 1-306
70. Verb Code 05 (Remove-In-Use Processing Based on Task-ID) - Text Unit Keys,

Mnemonics, and Functions 1-306
71. Verb Code 06 (Ddname Allocation) - Text Unit Keys, Mnemonics, and

Functions 1-307
72. Verb Code 07 (Dynamic Information Retrieval) - Text Unit Keys, Mnemonics, and

Functions 1-308
73. Example of a Dynamic Allocation Request 1-316
74. Parameter List Resulting From Dynamic Allocation Example 1-317

xiv SPL: System Macros and FacilitiesVolume 1

(-

(-

Summary of Amendments

Summary of Amendments
for GC28-1150-4
MVS/System Product Version 2 Release 2.3

This major revision contains changes to support MVS/System Product Version 2 Release 2.3.
Changes include:

• MVS/XA support for MVS/Data Facility Product Version 3 Release 1.0, which introduces
the storage management subsystem (SMS). SMS provides new function for data and
storage management.

In this book, "with SMS" indicates information that applies when SMS is installed and
active; "without SMS" indicates SMS is not installed or is not active.

• Changes to the dynamic allocation service.

Maintenance changes and other documentation enhancements include:

• Addition of documentation related to the TIMEUSED macro.

• Re-write of section on "Inter-Address Space Communication".

• Re-write of section on "Managing SWA Control Blocks",now called "Accessing the
Scheduler Work Area".

• Changed information related to using the SDUMP macro instruction and obtaining a
summary dump.

• Changed information related to using the LOAD macro instruction.

• Addition of a section on "Protecting the Vector Facility".

• Changed information related to the extended ECB.

• Other minor technical and editorial changes throughout.

Summary of Amendments
for GC28-1150-3
MVS/System Product Version 2 Release 2

This major revision describes how to use the SYMREC macro, which is new. It also describes
changes to the DATOFF, DOM, VSMLOC, WTO, and WTOR macros, and changes that
affect:

• The use of address space by PC/AUTR.
• User-written SVC routines.
• The allocation default module (IEF AB445).
• Dumps obtained via SDUMP.
• The jobstep DD limit.

© Copyright IBM Corp. 1982,1989 Summary of Amendments XV

Summary of Amendments
for GC28-U50-2
MVS/System Product Version 2 Release 1.3

This major revision contains information about the· new macro, IOSINFO, in support of System
Product Version 2 Release 1.3 and minor technical and editorial changes.

xvi SPL: System Macros and Facilities Volume 1

(

(

Introduction

The system facilities described in this publication include both supervisor and scheduler services.
The supervisor services provide the resources that your programs need while assuring that as
many of these resources as possible are being used at a given time. The scheduler services
described in this publication are the scheduler functions that are available through the use of
the dynamic allocation macro instruction (DYNALLOq. Knowing the conventions and
characteristics of the system facilities will help you to design more efficient programs.

Volume 1 describes those supervisor services that should be restricted in use to systems
programmers and installation-approved personnel. If a particular topic includes a description
of a macro instruction, the macro instruction is given in parentheses after the topic heading.
Volume 1 includes a description of the DYNALLOC macro instruction. The supervisor macros
and parameters are described in Volume 2. The topics described in Volume 1 are:

Subtask Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
other tasks for execution time. This topic includes information about task creation, using an
internal START, and communication with a problem program.

Program Management: You can use the supervisor to aid communication between segments of a
program. This· topic includes information about the residency and addressing mode of a
module, loading a module, synchronous exits, checkpoint/restart, and re-entrant modules.

Serialization: Portions of some tasks depend on the completion of events in other tasks, which
requires planned task synchronization. Planning is also required when more than one program
uses a serially reusable resource. Locking, the must-complete function, shared direct access
storage devices, waiting for an event to complete, and indicating event completion are discussed
in this topic.

Reporting System Characteristics: Collecting information about resources and their requestors
and using the SRM and SYMREC reporting interfaces are described in this topic.

Communication: This topic is divided into four distinct and different types of communication.
These are:

• Interprocessor communication available through the use of the SIGP instruction

• Communication with the operator available through the use of the WTO, WTOR, and
DOM macro instructions

• Asynchronous inter-address space communication available through the use of the
SCHEDULE macro instruction

• Synchronous inter-address space communication available through the use of cross memory
facilities

Virtual Storage Management: Virtual storage allows you to write large programs without the
need for complex overlay structures. This topic describes how to allocate and free virtual
storage. It also includes descriptions of the VSM functions, available through the use of the
VSMLIST, VSMLOC, and VSMREGN macro instructions, and a description of managing
SW A control blocks.

© Copyright IBM Corp. 1982, 1989 Introduction 1-1

Real Storage Management: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page size blocks. The
services provided allow you to release virtual storage contents, load virtual storage areas into tf""'
real storage, and page out virtual storage areas from real storage. \'\....,)/

The Nucleus: This topic includes descriptions of the functions available through the use of the
DATOFF and NUCLKUP macro instructions.

Normal and Abnormal Program Termination: The supervisor provides facilities for writing exit
routines to handle specific types of interruptions. It is not likely, however, that you will be able
to write routines to handle all types of abnormal conditions. The supervisor therefore provides
for termination of your program when you request it by issuing an ABEND macro instruction
or when the control program detects a condition that will degrade the system or destroy data.
This topic describes the recovery termination manager, system trace facilities, recovery routines,
the use of the SPIEjESPIE macro instructions to process program interruptions, the use of the
SLIP command to intercept errors, and the use of the SDUMP macro to obtain a dump of
virtual storage.

Protecting the System: This topic includes the maintenance of system integrity, the use of the
authorized programming facility, the use of the resource access control facility, changing system
status, and protecting low storage.

Exit Routines: Two types of exit routines are described in this topic. They are asynchronous
exit routines and timer disabled interrupt exits.

User-Written SVC Routines: This topic contains information needed to write SVC routines. It
includes the characteristics of the SVC routines, program conventions for SVC routines, and
ways to insert SVC routines into the control program.

UCB Scan Services: This topic describes the function of the UCB scan routine (IOSVSUCB).
This routine allows you to scan each unit control block (UCB) in the system or in a specified
device class.

Dynamic Allocation (SVC 99) Services: This topic describes the functions provided by dynamic
allocation (SVC 99). A description of the parameter list used to request SVC 99 functions, the
SVC 99 return codes, error codes, and information codes are included.

1-2 SPL: System Macros and Facilities Volume I

,<,'"

''''-.)

(

Subtask Creation and Control

The control program creates a task when it initiates execution of the job step; this task is the
job step task. You can create additional tasks in your program. If you do not, however, the
job step task is the only task in a job being executed. The benefits of a multiprogramming
environment are still available even with only one task in the job step; work is still being
performed for other jobs when your task is waiting for an event, such as an input operation, to
occur.

The advantage in creating additional tasks within the job step is that more of your tasks are
competing for control than the single job step task. When a wait condition occurs in one of
your tasks, it is not necessarily a task from some other job that gets control; it might be one of
your tasks, a portion of your job.

The general rule is that you should choose parallel execution of a job step (that is, more than
one task in a job step) only when a significant amount of overlap between two or more tasks
can be achieved. Both the amount of time the control program takes to establish and control
additional tasks and your increased effort to coordinate the tasks and provide for
communications between them must be taken into account.

Most of the information concerning subtask creation and control appears in Supervisor Services
and Macro Instructions. This chapter continues discussion in the following areas:

• Task creation (ATTACH macro instruction)
• Issuing an internal START command (MGCR macro instruction)
• Communicating with a problem program (EXTRACT and QEDIT macro instructions)
• Changing the priority of a task (CHAP macro instruction)

© Copyright IBM Corp. 1982, 1989 Subtask Creation and Control 1-3

Creating a New Task (ATTACH)
The ATTACH macro instruction causes the control program to create a new task. The 0
complete use of the macro instruction is described in Supervisor Services and Macro Instructions.

The macro instruction has parameters that provide the authorized user (protection key 0-7 or
supervisor state) flexibility in using the macro instruction's services. If authorized tasks do not
specify a particular parameter, the default value for that parameter is assigned. These defaults
include:

• JSTCB = NO -- the attached task is a task in the present job step.

• SM = PROB -- the new task is to run in problem program mode.

• SV AREA = YES -- a save area is needed for the new task.

• KEY = PROP -- the protection key of the newly created task is to be the same as the task
using ATTACH.

• DISP = YES -- the subtask is to be dispatchable.

• TID = 0 -- the task identifier of the new task is O.

• JSCB -- omission of this parameter specifies that the job step control block of the attaching
task is also used for the new task.

• NSHSPV and NSHSPL -- omission of these parameters specifies that subpools 236 and
237, if they exist, are to be shared with the subtask.

• RSAPF = NO -- The APF authorization of the step is to be unchanged.

Changing the Defaults of All ACH
Rather than accepting the default values, (assuming the task is authorized), you can extend the
facilities of the ATTACH macro instruction by coding the following values:

• JSTCB = YES -- the attached task is a new job step task. In this case, the address of the
TCB of the newly created task is placed in the TCBJSTCB field of the attached TCB. The
initiator attaches the first load module of a job as a job step task. For such an attach, the
program manager does not search the job library of the attaching task.

Also, only under a job step task can a system program (system key or supervisor state)
attach a load module from a non-system library.

In order to attach a job step task, the attaching task (and any of its subtasks) must be job
step tasks. If one of these conditions is not met, the new task will not be created.

• SM = SUPV -- the system is to run in supervisor mode when executing the attached task.

Supervisor state is a requirement for issuing privileged instructions (for example, LPSW).
You can specify supervisor mode via this parameter or via the MODESET macro
instruction.

• SV AREA = NO -- the new task does not need a save area.

The save area is obtained from the user's region. Because it might not always be desirable
to have a save area (for example, the user's region might not be defined at the time of a
system ATTACH), this parameter can be used to specify that no save area is to be created.

• KEY = ZERO -- the protection key of the newly created task is zero.

Protection key zero allows the new task to reference any defined storage and pass all
validity checks.

1-4 SPL: System Macros and Facilities Volume 1

c

(-

(

C,'"
."

• DISP = NO -- the subtask is to be nondispatchable.

This parameter causes the primary nondispatchability bit TCBANDSP to be turned on in
the new TCB. As a result, the new TCB will not be dispatched. Thus, specifying
DISP = NO allows the originating task to alter the new TCB. The new task remains
nondispatchable until the originating task issues the STATUS macro instruction with the
RESET option to reset TCBANDSP.

Note: STATUS START TCB will not make the new TCB dispatchable.

• TID = task id -- the task identifier specified is to be placed in the TCBTID field of the
attached task.

The task identifier can be set to identify critical system tasks. Other uses of this parameter
are not recommended.

• JSCB = job step control block address -- the address specified for the JSCB is to be used for
the new task.

This parameter sets the TCBJSCB to the address of a job step control block. This action,
normally associated with the creation of a job step task, is not required by ATTACH.

• NSHSPV = subpool number and NSHSPL = subpoollist address -- subpools 236 and 237
are not to be shared with the new task.

Subpools 236 and 237 are known as the scheduler work area (SW A). This parameter
allows the scheduler to control these subpools.

• RSAPF = YES -- reset the step APF authorization.

This parameter allows a system program that is not running APF authorized to ATTACH
a subtask and have the APF authorization for the step reset according to the attributes of
the subtask. The subtask must be attached while in the problem program state and must be
in a non-system key. For more information on this parameter see "Authorization Results
Under Various Conditions" in the "Protecting the System" section.

Subtask Creation and Control 1-5

Issuing an Internal START or REPLY Command (MGCR)
A program can issue an internal START or REPLY command using the MGCR macro 1----'
instruction and can pass 31 bits of information, called a token, to the program being started (in "-./'
the case of the START command). An internal REPLY command is available to reply to a
WTOR message. Before issuing the MGCR macro instruction, initialize a buffer for the
command and the token, if any, as follows: ,

1 byte 1 byte 2 bytes variable length 4 bytes

flags 1 length flags2 text 31 bit token
right justified

You must also set register 0 to zero before issuing the MGCR macro ins~ruction.

flags 1
If bit 0 of the flagsl byte is one, the flags2 field must contain meaningful information. Bits
1-7 of flags I must be zero.

length
The length field contains the length of the buffer in bytes, up to but not including the token
field.

flags2

, text

If a token is present, flags2 must be set to X'0800', otherwise, it must be set to X'OOOO'.

The text field contains the START or REPLY command followed by operands and,
optionally, comments.

token
This field contains any desired information to be communicated to the started program.
Token is meaningful only for the START command.

Figure 1 shows how the buffer is set up.

The IEZMGCR mapping macro, in SYSl.MACLIB, is available to map the buffer.

*
MGCRMAC

MGCRDATA
FLGI
LGTH
FLG2
TXT
TOKEN

SR REGS,REGS

MGCR MGRCDATA

EQU *
DC X'8S'

INDICATE SYSTEM ISSUED
COMMAND

DC ALI (TOKEN-MGCRDATA)
DC x'sass'
DC C'S IMS ***ANY COMMENTS***'
DC AL4(ECB) ECB ADDR

Figure 1. Setting Up the Buffer for MGCR

1-6sPL: System- Macros and Facilities Volume 1

(

(

c:

Communicating with a Problem Program (EXTRACT, QEDIT)
The operator can pass information to the started program by issuing a STOP or a MODIFY
command. In order to accept these commands, the program must be set up in the following
manner.

The program must issue the EXTRACT macro instruction to obtain a pointer to the
communications ECB and a pointer to the first command input buffer (CIB) on the CIB chain
for the task. The ECB is posted whenever a STOP or a MODIFY command is issued. The
EXTRACT macro instruction is written as follows, and returns what is indicated in Figure 2.

EXTRACT answer area,FIELDS=COMM

Answer area

Address of the

communication area

Figure 2. EXTRACT ECB, CIB Pointers, and Token

o
4

8

ECS address

CIS address

token For internal START

commands only -
otherwise zero.

The CIB contains the information specified on the STOP, START, or MODIFY command, as
shown in Figure 3. If the job was started from the console, the EXTRACT macro instruction
will point to the START CIB. If the job was not started from the console, the address of the
first CIB will be zero.

o

4

8

12

16

Address af next CIB

Verb CIB Reserved
code length

Reserved Address
Space ID

Console Reserved Length of
ID data field

Variable length data
specified on the command

Verb code X'04' START
X'40' STOP
X'44' MODIFY

Figure 3. Command Input Buffer Contents

Subtask Creation and Control 1-7

If the address of the START CIB is present, use the QED IT macro instruction to free this CIB
after any parameters passed in the START command have been examined. The QEDIT macro
instruction is written as follows:

QEDIT ORIGIN=address of painter to CIB,BLOCK=address of CIB

Notes:

1. The address of the pointer to the CIB is the contents of the answer area plus 4 bytes, as
shown in Figure 2.

2. The address of the CIB must be the exact address returned by EXTRACT, not an address
generated from copying the CIB to another location.

The CIB counter should then be set to allow CIBs to be chained and MODIFY commands to
be accepted for the job. This is also accomplished by using the QEDIT macro instruction:

QEDIT ORIGIN=address of pointer to CIB,CIBCTR=n

The value of n is any integer value from 0 to 255. If n is set to zero, no MODIFY commands
are accepted for the job. However, STOP commands are accepted for the job regardless of the
value set for CIBCTR. "-

Note: When using the address or addresses returned from the EXTRACT macro as input to
the QEDIT macro, you must establish addressability via the IEZCOM mapping macro, in
SYSl.MACLIB, based on the address returned by the EXTRACT.

For the duration of the job, your program can wait on or check the communications ECB at
any time to see if a command has been entered for the program. Check the verb code in the
CIB to determine whether a STOP or a MODIFY command has been entered. After
processing the data in the CIB, issue a QEDIT macro instruction to free the CIB.

The communications ECB is cleared by QEDIT when no more CIBs remain. Care should be
taken if multiple subtasks are examining these fields. Any CIBs not freed by the task are
unchained by the system when the task is terminated. The area addressed by the pointer
obtained by the EXTRACT macro instruction, the communications ECB, and all CIBs are in
protected storage and may not be altered.

1-8 SPL: System Macrosanq facilities Volume I

'''-.

c

(

<.

(

The program in Figure 4 follows the procedure outlined in the preceding p~ragraphs. It shows
how you can code the EXTRACT and QEDIT macros to accept MODIFY and STOP
commands.

QEDITEX CSECT

..
BALR 12,0
USING *,12

PROGRAM ...
... ADDRESSABILITY

.. INITIALIZATION PROCESSING - DELETE START CIB

*
.. OBTAIN ADDRESS OF CIB

*
LA 5,ANSRAREA
EXTRACT (5),FIELDS = COMM

..
L 5,ANSRAREA
USING COMLIST,5
L 3,COMCIBPT

. LTR 3,3
BZ SETCOUNT
USING CIBNEXT,3 ..

ADDRESS OF RESPONSE AREA FOR QEDIT
OBTAIN ADDRESS OF THE
COMMUNICATIONS AREA FOR THE
CURRENT TASK

LOAD ADDRESS OF COMMUNICATIONS AREA
ESTABLISH ADDRESSABILITY TO IEZCOM
OBTAIN ADDRESS OF CIB
WAS A CIB ADDRESS RETURNED?
NO, CONTINUE INITIALIZATION
ESTABLISH ADDRESSABILITY TO IEZCIB

* MOVE DATA FROM CIB TO WORKING STORAGE
*

..

LH
BCTR
EX

4,CIBDATLN
4,0
4,DATAMOVE

OBTAIN LENGTH OF DATA FIELD
DECREASE LENGTH BY ONE
MOVE DATA TO WORKING STORAGE

.. FREE THE START CIB, IF PRESENT

*
CLI CIBVERB,CIBSTART FIRST CIB FOR START COMMAND?
BNE SETCOUNT NO, CONTINUE INITIALIZATION
QEDIT ORIGIN=COMCIBPT,BLOCK=(3) YES, FREE IT
LTR 15,15 CHECK RETURN CODE
BZ SETCOUNT IF RETURN CODE IS ZERO, THE CIB

WAS FREED, CONTINUE
WTO 'START CIB NOT FREED' IF RETURN CODE IS NOT ZERO,

NOTIFY THE OPERATOR THAT
THE CIB WAS NOT FREED

Figure 4 (Part 1 of 2). Example Using the EXTRACT and QED IT Macros

X
X

X

X
X

Subtask Creation and Control 1-9

...

... SET THE LIMIT ON MODIFY COMMANDS

...
SETCOUNT EQU ...

QEDIT ORIGIN = COMCIBPT,CIBCTR = 2 SET LIMIT TO 2
...
... COMMAND PROCESSING LOOP
...
... CHECK THE COMMUNICATIONS ECB
...
WAIT

...

...

...

EQU
L
WAIT

L

...
4,COMECBPT
ECB=(4)

3,COMCIBPT

... TEST FOR MODIFY COMMAND CIB

... ,

...

CLI
BNE

CIBVERB,CIBMODFY
TSTSTOP

... PROCESS THE MODIFY COMMAND ..

... FREE THE MODIFY CIB ..

OBTAIN ADDRESS OF COMMUNICATIONS ECB
WAIT FOR STOP OR MODIFY COMMAND
NOTE: QEDIT CLEARS THE POSTED ECB
WHEN THE LAST CIB IS FREED
OBTAIN ADDRESS OF CIB

IS IT FOR A MODIFY COMMAND?
NO, GO TEST FOR STOP

QEDIT ORIGIN = COMCIBPT,BLOCK = (3) FREE IT
B WAIT WAIT FOR NEXT COMMAND

...

... TEST FOR STOP COMMAND CIB

...
TSTSTOP

...

EQU
CLI
BNE

..
CIBVERB,CIBSTOP
ERROR)

... PROCESS THE STOP COMMAND

...

... FREE THE STOP CIB

...

IS IT FOR A STOP COMMAND?
NO, GO PROCESS AS ERROR

QEDIT ORIGIN = COMCIBPT,BLOCK = (3) FREE THE CIB
B WAIT WAIT FOR NEXT COMMAND

...

... ERROR HANDLER FOR UNRECOGNIZED CIB TYPE

...
ERROR 1 EQU ...
...
... CONSTANTS AND DATA AREAS
...

DS
DATAAREA DS
ANSRAREA DS
DATAMOVE MVC

DSECT
IEZCOM
DSECT
IEZCIB
END

OF
4F WORK AREA FOR CIB DATA
F ANSWER AREA FOR EXTRACT MACRO
DATAAREA(O),CIBDATA MOVE DATA FROM CIB TO DATAAREA

MAPPING MACRO FOR COMMUNICATION AREA

MAPPING MACRO FOR CIB

Figure 4 (Part 2 of 2). Example Using the EXTRACT and QEDIT Macros

1-10 ,SPL: System Macros and Facilities Volume 1

(-'" ,., - ,

, .-r/

("-

(-

Providing an EXTRACT Answer Area
The EXTRACT macro instruction provides TCB information for either the active task or one
of its subtasks. Figure 5 shows the order in which the information from the requested fields is
returned. If the information from a field is not requested, the associated fullword is omitted.

Answer Area Address

GRS 00 Address

FRS 00 Address

Reserved 00 00 00 I 00

AETX Address

PRI 00 00 Value I Value

CMC 00 Completion Code

TIOT Address

COMM 00 Address

T50 00 Address

PSB Address

TJID 00 00 Value

ASID 00 00 Value

1 Byte + 1 Byte + 1 Byte + 1 Byte

Note: See the syntax of the EXTRACT macro instruction in Volume 2 for a description of these fields.

Figure 5. EXTRACT Answer Area Fields

You must provide an answer area consisting of contiguous fullwords, one for each of the codes
specified in the FIELDS parameter, with the exception of ALL. If ALL is specified, you must
provide a 7-word area to accommodate the GRS, FRS, reserved, AETX, PRI, CMC, and TIOT
fields. The ALL code does not include the COMM, TSO, PSB, TJID, and ASID fields.

Most of the addresses are returned in the low-order three bytes of the fullword, and the
high-order byte is set to zero; the fields for AETX, TIOT, and PSB could have a nonzero first
byte. Fields for which no addresses or values are specified in the task control block are set to
zero.

For example, if you code FIELDS = (TIOT,GRS,PRI,TSO,PSB,TJID) you must provide a
6-fullword answer area, and the extracted information appears in the same relative order as
shown in Figure 5. (That is, GRS is returned in the first word, PRI in the second word, TIOT
in the third word, and so forth.)

If FIELDS = (ALL,TSO,PSB,COMM,ASID) is coded, you need an ll-fullword answer area,
and the extracted information appears in the answer area in the relative order shown above.

Subta:sk Creation. and· Control, 1-1,1 .

Changing the Priority of a Task (CHAP)
Programs should not use priority or precedence as a serialization mechanism because they
become sensitive to changes in the system's dispatching algorithms. For example, the CHAP (-
macro instruction does not ensure that tasks are dispatched in the expected order, due to '--'"
dispatching on more than one processor. Also, the PRIORITY and DPRTY JCL parameters
cannot be used to accomplish serialization. First, the system resources manager might change
the dispatching priority of a task or job, allowing it to execute before a task with a previously
higher priority. Second, because tasks can execute on more than one processor, tasks of
different priority might be executed on more than one processor simultaneously.

/-

C··--"''' , .

1-12 SPL: System Macros and Facilities Volume 1

(

(

-* -.--.~, ... '., .. --...:.-. -',.

Program Management

You can specify whether you want a program loaded into storage above or below the 16
megabytes line and if you want a program loaded at a specific address. This information along
with a description of synchronous exits, the use of checkpoint restart, and the use of re-entrant
modules, is described in this chapter.

Load module structures, methods of passing control between programs, and the use of
associated macro instructions are described in Supervisor Services and Macro Instructions.

Residency and Addressing Mode of Programs
The control program ensures that each load module is loaded above or below 16 megabytes
(Mb) as appropriate and that it is invoked in the correct addressing mode (24-bit or 31-bit).
The placement of the module above or below 16 megabytes depends on the residency mode
(RMODE) that you define for the module. Whether a module executes in 24-bit or 31-bit
addressing mode depends on the addressing mode (AMODE) that you define for the module.

When a program is executing in 24-bit addressing mode, the system treats both instruction and
data addresses as 24-bit addresses. This allows programs executing in 24-bit addressing mode
to address 16 megabytes (16,777,216 bytes) of storage. Similarly, when a program is executing
in 31-bit addressing mode, the system treats both instructions and data addresses as 31-bit
addresses. This allows a program executing in 31-bit addressing mode to address 2 gigabytes
(2,147,483,648 bytes or 128x16 megabytes) of storage. SPL: 31-Bit Addressing provides
detailed information concerning the AMODE and RMODE of modules.

You can define the residency mode and the addressing mode of a program in the source code.
Figure 6 shows an example of the definition of the AMODE and RMODE attributes in the
source code. This example defines the addressing mode of the load module as 31 and the
residence mode of the load module as 24. Therefore, the program will receive control in 31-bit
addressing mode and will reside below 16 megabytes in 24-bit addressable storage.

SAMPLE
SAMPLE
SAMPLE

CSECT
AMODE
RMODE

31
24

Figure 6. Assembler Definition of AMODE/RMODE

The assembler places the AMODE and RMODE in the output object module for use by the
linkage editor. The linkage editor passes this information on to the control program through
the directory entry for the partitioned data set that contains the load module. You can also
specify the AMODEjRMODE attributes of a load module by using linkage editor control
cards. See Linkage Editor for information concerning these control cards.

Placement of Modules in Storage
The control program uses the RMODE attribute from the directory entry for the module to
load the program above or below 16 megabytes. The RMODE attribute can have one of the
following values:

24-specifies that the program must reside in 24-bit addressable storage
ANY-specifies that the program can reside anywhere in virtual storage

© Copyright IBM Corp. 1982, 1989 Program Management 1-13

Addressing Mode
The AMODE attribute, located in the directory entry for the module, specifies the addressing
mode of the module. Bit 32 of the program status word (PSW) indicates the addressing mode (r
of the program that is executing. MVSjXA supports programs that execute in either 24-bit or '-_0
31-bit addressing mode.

The AMODE attribute can have one of the following values:

24-specifies that the program is to receive control in 24-bit addressing mode

31-specifies that the program is to receive control in 31-bit addressing mode

ANY-specifies that the program is to receive control in either 24-bit or 31-bit addressing
mode

Information about the addressing mode as it applies to macro instructions can be found in
Volume 2 under the topic "Addressing Mode and the Macro Instructions"

Specifying Where the Module is to be Loaded (LOAD)
When a program in supervisor state uses the LOAD macro to bring a copy of the load module
into virtual storage, it can use one of three parameters to specify where the control program is
to load the module:

• Use the ADDR parameter to load a module in an APF-authorized library at a specified
address. You must first allocate storage for the module in your key.

• Use the ADRNAPF parameter to load a module in an unauthorized library at a specified
address. You must first allocate storage for the module in your key.

• Use the GLOBAL parameter on LOAD to load the module into either fixed or pageab1e
CSA.

- GLOBAL = (yES,P) or GLOBAL=YES requests storage in the CSA.
- GLOBAL = (yES,F) requests storage in fixed CSA.

When you use GLOBAL = YES, you can use the EOM parameter to specify when the
control program is to delete the module. EOM = YES (the default) requests deletion at task
termination. EOM = NO requests deletion at address space termination.

If you do not use ADDR, ADRNAPF, or GLOBAL=YES (that is, you use GLOBAL=NO or
take the default), the control program loads the module in subpool 251, with one exception. If
the module is reentrant, the library is authorized, and you are not running under TSO test, the
control program places the module in subpool 252. Subpool 251 is fetch protected and has a
storage key equal to your PSW key. Subpool 252 is not fetch protected and has storage key O.

When a program is in problem state, the control program brings the copy of the load module in
subpool 251, with one exception. If the module is reentrant, the library is authorized, and you
are not running under TSO test, the control program places the module in subpool 252.

1-14 SPL: System Macros and Facilities Volume 1

i.e -~-

\ " ",-j

c

Synchronous Exits (SYNCH)
In general, the SYNCH macro instruction is used when a control program in supervisor state
gives temporary control to Ii processing program routine (not necessarily running in supervisor
state) where the processing program is expected to return control to the supervisor state control
program. This facility should be used only by system programmers or other
installation-approved personnel. The program to which control is given must be in virtual
storage when the macro instruction is issued. To ensure that a program receives control with a
program key mask (PKM) consistent with its key, SYNCH processing forms the PKM using
the default key in the TCB along with the key specified by the KEYADDR parameter. If the
KEYMASK parameter is coded, the PKM formed thus far is ORed with the specified keymask.

When the processing program returns control, the supervisor state bit, the PSW key bits, the
system mask bits, and the program mask bits of the program status word are restored to the
settings they had before execution of the SYNCH macro instruction.

The SYNCH macro instruction is similar to the BALR instruction in that you can use register
15 for the entry point address.

SYNCH processing does not save or restore registers when control is returned to the caller
unless RESTORE = YES is specified. If you specify RESTORE = NO explicitly or by default,
the register contents are unpredictable. When an authorized program uses SYNCH to invoke
an exit in an unauthorized program, the general registers returned from the exit might not
contain expected data or correct addresses. Therefore, the authorized program must save the
registers in a protected save area and then restore them, or validate the contents of the returned
registers, or code RESTORE = YES.

Label processing as a result of an OPEN macro instruction is an example of the use of the
SYNCH macro instruction. Label processing might proceed to a point at which a user's
processing program indicates that it wants or needs private processing. The control program's
open routine would then issue a SYNCH macro instruction giving the address of the subroutine
required for the user's private label processing.

Using Checkpoint/Restart
When issuing checkpoints and then restarting a task, the restarted task must request control of
all resources required to continue processing. Resources are not automatically returned to the
task upon restart.

You can use the checkpoint/restart facility with the following restrictions:

• A routine that is restricted from issuing SVCs (for example, a routine running in SRB,
disabled, or cross memory mode) is also restricted from establishing checkpoints because
programmer-designated checkpoints require the use of the checkpoint SVC.

• An exit routine other than the end-of-volume exit routine cannot request a checkpoint.

• A routine invoked by a program call (PC) cannot request checkpoints because the system
environment might be different at the time of the restart from what it was at the time of the
checkpoint. This could lead to unpredictable results on the return linkage (PT).

• A routine with a PC LINK STACK request outstanding cannot establish a checkpoint.

• Routines that use both PCjAUTH facilities and checkpoint/restart must reestablish their
PCjAUTH environment at restart time. In addition, they must not use any PCjAUTH data
(for example, a PC number) that was obtained before the restart.

Program Management 1-15

• Subsystems that use the TCB subsystem affinity service cannot issue checkpoints. This is
because the subsystem affinity table (SSA T) index values might change from one system
initialization to another.

For additional information concerning the restrictions and use of the checkpoint/restart facility
see Checkpoint/Restart U serfs Guide.

Using Re-entrant Modules
When link editing modules as re-entrant, be sure that all the modules and the macro
instructions they call are re-entrant. In a multiprocessing system this is important because:

• Two tasks in the same address space making use of the module might cause the module to
be executed simultaneously on two different processors.

• Asynchronous appendages can operate on one processor simultaneously with an associated
task on another processor.

• Enabled recovery routines can execute on any processor, not necessarily on the one on
which the error was detected.

The CSECTs must be unchanged during execution or their critical sections must be explicitly
serialized. The general method for ensuring re-entrance of macro instructions is to use the
LIST and EXECUTE forms of the macro instructions with a dynamically acquired parameter
list.

1-16 SPL: System Macros and Facilities Volume 1

c

(

(

(- -

(

Serialization

Planning is required when more than one program uses a serially reusable resource. A serially
reusable resource is a resource that can be used by another program after the current use has
been concluded; that is, a resource that should not be used or modified by more than one
program within a given span of processing. Planning is also required when portions of some
tasks depend on the completion of events in other tasks.

This chapter discusses some of the services available to control resources, and thus to help you
plan ahead for a more efficient installation. The services discussed include:

• Locking (SET LOCK macro instruction)
• Must-complete function (ENQ and DEQ macro instructions)
• Shared DASD (RESERVE and EXTRACT macro instructions)
• Event completion (POST, SPOST, and EVENTS macro instructions)

Global resource serialization (ENQ, DEQ, RESERVE, or GQSCAN macro instructions) is
another form of serialization available to an installation. This topic appears in Supervisor
Services and Macro Instructions and Planning: Global Resource Serialization.

When Resource Serialization Is Needed
Resource serialization is used to prevent a program from altering the content or status of a
resource while another program is using that resource or is dependent on the content or status
of that resource remaining unchanged for a given span of processing. For example, resource
serialization prevents a program from issuing an SVC and changing the content of a control
block while another SVC is using that control block.

Serialization Requirements
It is necessary to determine and keep track of resources that must be serialized and the routines
that access such resources. The only safe method of serialization is one of the following:
ENQ/DEQ, WAITjPOST/EVENTS, SUSPEND/RESUME, locking at the TCB level, CS
(compare and swap instruction), CDS (compare double and swap instruction), and TS (test and
set instruction). Such forms of serialization are required in the following cases:

• Scanning of the command input buffer (CIB) chain. You could use the QEDIT macro
instruction to manipulate the CIB chain.

• Using data in subpools shared between tasks.

• Using data referenced by more than one task. (For example, attached tasks can execute at
the same time as the attaching task on different processors.)

• Referencing system control block fields that dynamically change after IPL. The
serialization technique in this case must match that used by the system. (See the Debugging
Handbook for information concerning the serialization requirements for a particular system
control block.) Also, bits within a byte all require the same serialization technique.

• Accessing of data sets shared between tasks in the same address space, if the tasks update
the data and if the access method is not VSAM or BDAM.

• Referencing any common data between an EST AE exit and asynchronous exits, if EST AE
with ASYNCH = YES is issued.

© Copyright IBM Corp. 1982, 1989 Serialization 1-17

Locking
A locking mechanism serializes access to resources. This locking technique is only effective, 0
however, if all programs that depend on a resource use the same locking mechanism. Each type V
of serially reusable resource is assigned a lock. The lock manager controls a hierarchical
locking structure with multiple types of locks to synchronize the use of serially reusable
resources. The lock manager also handles all functions related to the locks. These functions
include obtaining or releasing locks and checking the status of a particular lock on a processor.
Use of the lock manager is restricted to key 0 programs running in supervisor state. This
prevents unauthorized problem programs from interfering with the system serialization process.

Categories of Locks
There are two categories of locks:

• Global locks -- protect serially reusable resources related to more than one address space.
(For example, a unit control block is protected by a global lock because it relates to the
entire system. Also, a system-related GETMAIN for a global subpool requires a global
lock.)

• Local locks -- protect the resources assigned to a particular address space. When the local
lock is held for an address space, the owner of the lock has the right to manipulate the
queues and control blocks associated with that address space. (For example, an address
space-related GETMAIN for a user subpool requires a local lock.)

All of the locks described in Figure 7, with the exception of the LOCAL and CML locks, are
global locks. These global locks provide system-wide services or use control information in the
common area and must serialize across address spaces. The local level locks, on the other
hand, do not serialize across address spaces, but serialize functions executing within the address
space. Figure 7 summarizes the characteristics of MVSjXA locks.

1-18 SPL: System Macros and Facilities Volume 1

(-

(~

lock global local spin suspend single multiple shared!
(class) exclusive

RSMGL X X X
VSMFIX X X X
ASM X X X
ASMGL X X X
RSMST X X X
RSMCM X X X
RSMXM X X X
RSMAD X X X
RSM X X X X
VSMPAG X X X
DISP X X X
SALLOC X X X
IOSYNCH X X X
IOSUCB X X X
SRM X X X
TRACE X X X X

CPU X X X

CMS X X X
CMSEQDQ X X X
CMSSMF X X X

CML X X X
LOCAL X X X

Note: The CPU lock has no real hierarchy except that once a user obtains it, the user cannot obtain a suspend
lock; a user can obtain the CPU lock while holding any spin lock. The CPU lock could be considered a pseudo
spin lock. It could also be considered multiple because there is one per processor and any number of requestors
can hold it at the same time.

Figure 7. Summary of Locking Characteristics

Types of Locks
The type of lock determines what happens when a function on one processor in an MP system
makes an unconditional request for a lock that is held by another unit of work on another
processor. There are two major types of locks: spin and suspend. Shared/exclusive locks are a
category of spin locks. The CPU lock is in a category by itself but could be considered a
pseudo spin lock. Descriptions of these types of locks follow:

• Spin locks -- prevent the requesting function on one processor from doing any work until
the lock is freed on another processor. The lock manager enters a loop that keeps testing
the lock until it is released on the owning processor. As soon as the lock is free, the lock
manager spinning on the requesting processor attempts to obtain the lock for the requesting
function. As long as a spin lock (except for shared/exclusive locks and the CPU lock) is
held by a function executing on a processor, the ID of that processor is in the lockword.
Once the lock is released by the owning function, the lockword is cleared.

Shared/exclusive locks--serialize the reading or updating of a global resource. More
than one processor can own a shared/exclusive lock as shared at one time; only one
processor can own a shared/exclusive lock as exclusive at one time.

Code executing under a shared/exclusive lock is physically disabled. Figure 8
summarizes the results of an unconditional request for a shared/exclusive lock that
another processor holds. In general, the lock manager gives processors spinning for
exclusive ownership of a shared/exclusive lock priority over processors spinning for
shared ownership.

Serialization 1-19

Note: The contents of the lockword for a shared/exclusive lock is different from the
contents of a spin lockword. In particular, the shared/exclusive lockword does not
contain a logical processor ID. For more information about the contents of the
lockword for a shared/exclusive lock, see Diagnostic Techniques.

Type of Request How Held by
Owning Processor

Results

Shared Shared Obtain shared ownership.

Shared Exclusive Spin on the lock until the exclusive owner releases it.

Exclusive Shared Spin on lock until all shared owners release it.
Set the exclusive-pending-request bit in the lockword.

Exclusive Exclusive Spin on lock until the exclusive owner releases it.
Set the exclusive-pending-request bit in the lockword.

Figure 8. Requests for Shared/Exclusive Locks

CPU lock--provides system recognized (legal) disablement for units of work (requestors) "
on a processor level. System recognized (legal) disablement is defined as holding a spin
lock or having a super bit set in the PSASUPER field of the PSA. While a requestor
holds the CPU lock, the requestor is physically disabled for I/O and external
interruptions.

Multiple units of work on the same processor can own the CPU lock. The CPU
lockword (in the PSA) contains the cumulative count of requestors who hold the CPU
lock. Obtaining the CPU lock increases the ownership count of the CPU lock by 1;
releasing the CPU lock decreases the ownership count by 1.

Note: The CPU lockword does not contain a processor ID. See Diagnostic Techniques
for additional details about the CPU lockword; see Figure 7 for a description of the
"hierarchy" of the CPU lock and its other attributes.

• Suspend locks -- prevent the requesting program from doing work until the lock is
available, but allow the processor to continue doing other work. The requestor is
suspended and other work may be dispatched on that processor. Upon release of the lock,
the suspended requestor is given control with the lock or is redispatched to retry the lock
obtain.

Examples of Lock Types
All of the locks described in Figure 7 with the exception of the CPU, LOCAL, cross memory
local (CML), and cross memory services (CMS) locks, are spin locks. The CPU lock can be
considered a pseudo spin lock. The LOCAL, CML, CMS, CMSSMF, and CMSEQDQ locks
are suspend locks. Their owners receive control enabled and can be interrupted to run higher
priority work. If there is another request for the lock while it is held, the requestor is
suspended and other work is dispatched. The local lockword contains the ID of the processor
on which its owner is dispatched or an indication that the owner is suspended or interrupted.
The CMS lockword contains the ASCB address of the locally locked address space that owns
the lock. Special IDs are placed in the local lockword whenever the owner of the local lock is
not currently executing on a processor because of an interruption or suspension. See Diagnostic
Techniques for a description of the contents of a local suspend lockword.

Note: CML (cross memory local) lock means the local lock of an address space other than the
home address space. LOCAL lock means the local lock of the home address space. When
written in lower case, local lock means any local-level lock, either the LOCAL or a CML lock.

1-20 SPL: System Macros and Facilities Volume 1

(

The CMS lock is an enabled global lock for the following reasons:

• Because disabled page faults are not allowed in the system, some global functions need a
lock that does not require the functions to fix all their code and control blocks.

• Some functions require significant amounts of time under the lock and could impact the
responsiveness of the system. By running these functions enabled under the lock,
responsiveness is retained at the expense of some increased contention for the lock.

The other global locks are disabled spin locks because the functions that run under the locks
are of short duration and cannot tolerate interruptions. The cost in system overhead to
perform the status saving necessary to accept interruptions and allow switching would offset the
gain in responsiveness. Also, the more frequently used functions (for example, lOS interruption
handler, dispatcher, and storage manager) perform interruption handling and task switching,
and have to remain disabled.

If a lock is unconditionally requested, the lock is unconditionally obtained. If the lock is
conditionally requested, the requestor is given the lock if it is available; if the lock is
unavailable, control is returned to the caller without the lock. (See the COND and UNCOND
parameters on the SET LOCK macro instruction.)

Classes of Locks
There are two classes of locks:

• Single locks -- Only one lock exists at a given level of the locking hierarchy. Because there
is one lock at a given level, SETLOCK requests for single locks cannot specify the ADDR
keyword parameter.

• Multiple locks (commonly referred to as class locks) -- More than one lockword exists at a
given level of the locking hierarchy. Because of this, SETLOCK requests for multiple locks
must specify the ADDR keyword parameter.

The locks provided in MVSjXA in hierarchical order are:

• RSMGL (real storage management global lock) -- serializes access to all RSM global
queues and resources.

• VSMFIX (virtual storage management lock) -- serializes the common area subpools
(subpools 226, 227, 228, 231, 239, 241, and 245).

• ASM (auxiliary storage management lock) -- serializes ASM resources on an address space
level.

• ASMGL (auxiliary storage management global lock) -- serializes ASM resources on a
global level.

• RSMST (real storage management steal lock) -- serializes RSM control blocks on an
address space level when it is not known which address space locks are currently held.

• RSMCM (real storage management common lock) -- serializes RSM resources in the
common area (such as page table entries, the pageable-frame queue, and the fixed-frame
queue).

• RSMXM (real storage management cross memory lock) -- serializes RSM control blocks on
an address space level when serialization to a second address space is necessary.

• RSMAD (real storage management address space lock) -- serializes RSM control blocks on
an address space level.

• RSM (real storage management lock) -- serializes RSM execution and RSM resources.

Serialization 1-21

,------,,-----------

• VSMPAG (virtual storage management lock) -- serializes the use of common VSM work
area for pageable subpools.

• DISP (global dispatcher lock) -- serializes the use of resources such as address space vector
table (ASVT) updating and changes to the address space control block (ASCB) dispatching
queue.

• SALLOC (space allocation lock) -- serializes the external receiving routines that enable a
processor for either an emergency signal or a malfunction alert.

• IOSYNCH (lOS synchronization lock) -- serializes global lOS functions by means of an
IOSYNCH lock table.

• IOSUCB (lOS unit control block lock) -- serializes access and updates to the unit control
blocks (UCB)s. There is one lock for each UCB.

• SRM (system resources manager lock) -- serializes use of the SRM control algorithms and
associated data.

• TRACE (TRACE lock) -- serializes the system trace buffer structure.

• CPU (processor lock) -- serializes on the processor level, providing system recognized (legal)
disablement.

• CMS (general cross memory services lock) -- serializes on more than one address space
where this serialization is not provided by one or more of the other global locks.

• CMSEQDQ (ENQ/DEQ cross memory services lock) -- serializes ENQ/DEQ functions and
the use of ENQ/DEQ control blocks.

• CMSSMF (SMF cross memory services lock) -- serializes SMF functions and the use of
SMF control blocks.

• CML (cross memory local lock) -- serializes resources in an address space other than the
home address space.

• Local storage lock (LOCAL) -- serializes functions and storage, used by the local supervisor
within an address space. There is one lock for each address space.

You must hold a local lock, either CML or LOCAL, when requesting the CMS, CMSEQDQ,
or CMSSMF lock. You cannot release the local lock while holding a cross memory services
lock. You need not hold all locks in the hierarchy up to the highest lock needed. Hold only
locks that you need.

Locking Hierarchy
The locks are arranged in a hierarchy to prevent a deadlock between functions on the
processor(s). An example of a deadlock between functions would be:

• Function A holding the SRM lock and requesting the DISP lock on processor 0

• Function B holding the DISP lock on processor 1 and requesting the SRM lock currently
held on processor 0

A function on a processor can request unconditionally only those locks that are higher in the
hierarchy than the locks it currently holds, thus preventing deadlocks. The hierarchy is shown
in Figure 7, with RSMGL being the highest lock.

(
i ", .. ,
, .1

j

The CPU lock has no hierarchical relationship with other spin locks. The CPU lock can be
obtained while other spin locks are held; other spin locks can be obtained (in their hierarchical
sequence) while the CPU lock is held. The CPU lock is, however, higher in hierarchical order C·: /

than any of the suspend locks, therefore once you obtain the CPU lock, you cannot obtain any
suspend lock. The cross memory services locks (CMS, CMSEQDQ, and CMSSMF) are equal

1-22 SPL: System Macros and Facilities Volume 1

(

(

(:

to each other in the hierarchy. The CML and LOCAL locks are also equal to each other in the
hierarchy.

With the exception of cross memory services locks, a processor can hold only one lock at the
same level of hierarchy. Therefore, if a processor holds an IOSUCB lock, it may not request a
different IOSUCB lock at a different address. If a processor holds one cross memory services
lock, it can not request another cross memory services lock. However, a processor can hold all
cross memory services locks if it unconditionally requests them simultaneously. If the locks are
requested at the same time, they must be released at the same time. It is not recommended that
all cross memory services locks be held at the same time because it will degrade performance.

USing the Same Lockword for Class Locks at Different Levels
To simplify lockword management, a user can provide the same lockword for certain class locks
at different levels of the locking hierarchy (for example, the RSMST, RSMCM, RSMXM, and
RSMAD locks). However, the lockword can only represent one lock at any given time.

For example, the RSMXM lock held at location 1000 on processor 0 creates two kinds of
locking restrictions:

• No other lock (for example, RSMAD) can be obtained at location 1000 on processor 0 or
any other processor, until the RSMXM lock is released (however, another lock, like the
RSMAD lock, can be obtained at another location on processor 0).

• An RSMXM lock at another location on cannot be obtained on processor 0 until the
RSMXM lock at location 1000 is released (however, the RSMXM lock at another location
on another processor can be obtained).

The lock manager prevents an interlock by detecting the attempt to simultaneously obtain
multiple locks using the same lockword or lock location.

For conditional requests using the same lockword, the lock manager supplies return codes that
the user can check. For unconditional requests, if the caller holds the lockword for a different
level lock, the lock manager abnormally terminates the caller with an 073 ABEND code. The
return codes are described with the syntax of the SETLOCK macro instruction in Volume 2.

There is another situation in which an interlock could occur. This type of interlock is not
prevented by the lock manager, but must be solved in the program by using internal hierarchy
rules. It involves using the same lockword for a class of locks. For example, if task A and task
B are executing on different processors an interlock could occur if:

Task A holds the RSMAD lock located at location 1000 and requests the RSMXM lock
located at location 2000 while task B holds the RSMAD lock located at location 2000 and
requests the RSMXM lock located at location 1000.

CML Lock Considerations
The cross memory local lock (CML) is provided to allow cross memory services to serialize
resources in an address space that might not be the home address space. It has the same
attributes as the LOCAL lock. (The LOCAL lock refers only to the home address space
pointed to by PSAAOLD.) The owner of a CML lock can be suspended for the same reasons
as the owner of the LOCAL lock, such as CMS lock suspension or page fault suspension.

In a multi-tasking environment, it is possible for more than one task or SRB in an address
space to obtain a local level lock. For example, task A might own the LOCAL lock of its
address space while task B in the same address space owns the CML lock of address space C.

Serialization 1-23

To prevent possible system deadlocks, only one lock at the local level can be held at one time
by a unit of work. If a CML lock is requested while owning the LOCAL lock, the requestor
will be abended. The same is true if the LOCAL lock is requested while owning a CML lock. /":-- '"

Either a CML lock or the LOCAL lock must be held to request one or all of the cross memory
services locks (eMS, CMSEQDQ, or CMSSMF).

The requestor of a CML lock must have authority to access the specified address space prior to
the lock request. This is accomplished by setting the primary or secondary address space to
that specified on the lock request. The specified address space must be non-swappable prior to
the obtain request.

Note: The CML lock of the master scheduler address space cannot be obtained. The master
scheduler address space lock can only be obtained as a LOCAL lock.

Obtaining, ReleaSing, and Testing locks (SETlOCK)
Use the SET LOCK macro instruction to obtain, release, or test a specified lock or set of locks
(using the OBTAIN, RELEASE, and TEST parameters). Users can also obtain the current
CPU lock use count for a processor and determine whether a processor holds a spin lock higher
in the locking hierarchy than a specified lock. To use SETLOCK, you must be executing in
supervisor state with protection key O. Users of SETLOCK can also be executing in SRB
mode, in cross memory mode, as an extension of the interrupt handlers, or as a system service
such as the MVS/XA dispatcher.

Disabled/Enabled State for Obtain
When a global spin type lock is successfully obtained, control returns to the caller with the
processor disabled for I/O and external interruptions.

When a suspend type lock is successfully obtained via an unconditional request, control returns
to the caller with the processor enabled for I/O and external interruptions.

For an unsuccessful conditional request of a spin lock, control returns to the caller disabled
only if the caller was disabled on entry. Otherwise, control returns enabled for I/O and external
interruptions. If a disabled caller unconditionally requests a suspend type lock that is not
immediately available, the caller is abnormally terminated.

Disabled/Enabled State for Release
When a global spin type lock is released, control returns to the caller enabled for I/O and
external interruptions unless at least one of the following is true:

• Another global spin lock is held
• A disabled supervisor indicator (PSASUPER) is on
• The DISABLED parameter was specified

If one of the above is true, control returns to the caller disabled for I/O and external
interruptions.

When a suspend type lock is released, control returns disabled for I/O and external
interruptions if the caller was disabled on entry. Otherwise control returns to the caller enabled
for I/O and external interruptions.

For a release request via the SPIN, ALL, or (reg) parameters, the final state is the same as that
which would have existed had the locks been released one at a time.

1-24 SPL: System Macros and Facilities Volume I

0'

"'" -/

(~

(

(

(~

(~

Altering the Dispatching Queue (INTSECT)
The intersect function is the serialization mechanism that the dispatcher and control program
functions use to alter the dispatching queues. The LOCAL and dispatcher locks are used in
conjunction with the intersect function. Intersect serialization is only between the requestor of
the intersect and the dispatcher. The requesting routine must hold the LOCAL or dispatcher
lock for serialization with other routines.

A routine can intersect on either the local or global level. The LOCAL lock is required for
obtaining the local intersect; it also ensures the proper serialization with other routines
requesting the local intersect. The local intersect ensures serialization of an address space with
the dispatcher and serialization of routines that modify the TCB dispatching queue or TCB
dispatchability. Similarly, the dispatcher lock is required for routines requesting the global
intersect. The global intersect ensures serialization of dispatcher functions on a global level.

Using the Must-Complete Function (ENQ/DEQ)
System routines (routines operating under a storage protection key of zero) often update and/or
manipulate system resources such as system data sets, control blocks, and queues. These
resources contain information critical to continued operation of the system. The task
requesting this serialization must successfully complete its processing of the resource.
Otherwise, the resource might be left incomplete or might contain erroneous information.

The ENQ service routine ensures that a routine queued on a critical resource(s) can complete
processing of the resource(s) without interruptions leading to termination. ENQ places other
tasks in a nondispatchable state until the requesting task -- the task issuing an ENQ macro
instruction with the set must-complete (SMC) parameter -- has completed its operations on the
resource. The requesting task releases the resource and terminates the must-complete condition
by issuing a DEQ macro instruction with the reset must-complete (RMC) parameter.

Because the must-complete function serializes operations to some extent, its use should be
minimized -- use the function only in a routine that processes system data whose validity must
be ensured. Just as the ENQ function serializes use of a resource requested by many different
tasks, the must-complete function serializes execution of tasks.

Characteristics of the Must-Complete Function
The must-complete function can be used only at the step level, where only the current problem
program task in an address space is allowed to execute. All other problem program tasks, and
the initiator task, are made non-dispatchable.

When the must-complete function is requested, the requesting task is marked in "must complete
mode" when the resource(s) queued upon are available. All asynchronous exits from the
requesting task are deferred. The initiator and all other tasks in the job step are set
nondispatchable. Tasks external to the requesting task are prevented from initiating procedures
that will cause termination of the requesting task. Other external events, such as a CANCEL
command issued by an operator, or a job step time expiration, are also prevented from
terminating the requesting task.

The failure of a task that owns a must-complete resource results in the abnormal termination of
the entire job step. The programmer and the operator receive a message stating that the failure
occurred while the step was in must-complete mode.

Serialization 1-25

__ " ___ • __ "_ ""_0 __________ ••••• ______________ _

Programming Notes
1. All data used by a routine that is to operate in the must-complete mode should be checked

for validity to ensure against a program-check interruption.

2. If a routine that is already in the must-complete mode calls another routine, the called
routine also operates in the must-complete mode. An internal count is maintained of the
number of SMC requests; an equivalent number of RMC requests is required to reset the

. must-complete function.

3. Interlock conditions can arise with the use of the ENQ function. Additionally, an interlock
might occur if a routine issues an ENQ macro instruction while in the must complete mode.
Also, a task that is non-dispatchable, because of a must-complete request, might already be
queued on the requested resource. In this case, an enabled wait occurs. An enabled wait
can be broken by an operator's action (such as the use of the FORCE command).

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be used, (unless
extreme care is taken) by a routine operating in the must-complete mode. An interlock
condition results if a serially reusable routine requested by one of these macro instructions
either has been requested by one of the tasks made nondispatchable by the use of the SMC
parameter or was requested by another task and has been only partially fetched.

5. The time a routine is in the must-complete mode should be kept as short as possible -- enter
at the last moment and leave as soon as possible. One suggested way is to:

a. ENQ (on desired resource(s»
b. ENQ (on same resource(s»,RET= HAVE,SMC = STEP

Step (a) gets the resource(s) without putting the routine into the must-complete mode.
Later, when appropriate, issue the ENQ with the must~complete request (Step b). Issue a
DEQ macro instruction to terminate the must complete mode as soon as processing is
finished. Tasks set nondispatchable by the corresponding ENQ macro instruction are made
dispatchable and asynchronous exits from the requesting task are enabled.

Limiting Global Resource Serialization Requests
Global resource serialization allows an installation to share symbolically-referenced resources
between units of work. (Planning: Global Resource Serialization explains the function and use
of global resource serialization.) A global resource serialization request is an ENQ or
RESERVE request that causes an element to be added to any queue in the global resource
serialization queue area.

GQSCAN uses the same control blocks as ENQ and RESERVE to obtain the status of
resources and requestors of resources during resumption processing. (The GQSCAN macro is
described in the section 'Measuring System Characteristics' and in Volume 2.) In order to
prevent anyone job, started task, or TSO user from generating too many concurrent requests,
global resource serialization limits the number of global resource serialization requests in each
address space.

Global resource serialization counts the number of ENQ/RESERVE requests and the number
of pending GQSCAN requests issued by all TCBs in each address space. Each time a user
issues an ENQ/RESERVE, global resource serialization increases the count in that address
space by 1 for each resource name and decreases the count by 1 when a user in that address
space issues a DEQ. Similarly, when a user issues a GQSCAN request, global resource
serialization increases the count in that address space by 1 and decreases the count by 1 when
the scan is completed (if resumption is requested).

1-26 SPL: System Macros and Facilities Volume I

/' .. '

(.

(

(:

Global resource serialization compares the computed count of requests to a threshold value
(4096) stored in the GVTCREQ field of the global resource serialization vector table (GVT).
(See SPL: System Modifications for a description of how to change the threshold value.) When
the computed count reaches the threshold value, global resource serialization processes
subsequent requests as follows:

• ENQ/RESERVE requests from unauthorized callers are rejected; unconditional requests
from these callers are abended and conditional requests receive a return code of X' 18'.

• ENQ/RESERVE requests from authorized callers are not rejected until the count exceeds
the threshold value by a tolerance value. This higher limit is stored in the GVTCREQA
field of the GVT. The tolerance provided by the system is 15, but system programmers can
change this value. (See SPL: System Modifications for a description of how to change the
limit for authorized callers.) This means that an additional 15 concurrent ENQ/RESERVE
requests are accepted from authorized callers. This is done to allow for normal termination
and to permit error recovery routines to obtain the resources that they need. Once the
computed count exceeds the limit for authorized callers, subsequent requests are rejected in
the same way as requests from unauthorized callers.

• GQSCAN requests that do not fit into the caller's buffer receive a return code ofX'14';
these requests are not queued and a TOKEN is not provided.

ENQ/RESERVE requests from authorized callers use the MASID and MTCB parameters to
allow a further conditional control of a resource. One task issues an ENQ or RESERVE for a
resource specifying a matching ASID; if the issuing task does not receive control, it is notified
whether the matching task has control (which allows the issuing task to use the resource even
though it could not acquire the resource itself). This process requires serialization between the
issuing and requesting tasks.

Shared Direct Access Storage Devices (Shared DASD)
The shared DASD facility allows systems to share direct access storage devices. Systems can
share common data and consolidate data when necessary. No change to existing records, data
sets, or volumes is necessary to use the facility. However, reorganization of volumes might be
desirable to achieve better performance.

Exercise careful planning in accessing shared data sets or shared data areas. Data integrity can
not be assured without proper intersystem communication. This topic, as it relates to macro
instructions, is discussed further under "Macro Instructions Used with Shared DASD."
Similarly, appropriate security procedures must be performed on each of the multiple systems
involved in the sharing of DASD before data can be regarded as secure. Data sets that are
intended to be protected via passwords or RACF should be initially protected on each system
before sensitive data is placed in them. This topic, as it refers to password protection, is
discussed further under "System Configuration."

Devices that Can be Shared
The following control units and devices are supported by the shared DASD option:

• IBM 2835 Storage Control Unit with two-channel switch -- IBM 2305 Fixed Head Storage
Facility.

• IBM 3830 Storage Control Unit with two-channel switch -- IBM 3330 Series Disk Storage
Drive. The IBM 3330, 3340/3344, 3350 Series devices may also be configured for shared
use via the string switch feature.

• IBM 3880 Storage Control Units Models 2 and 3 -- IBM 3380 Direct Access Storage
Facility.

Serialization 1-27

• IBM 3880 Storage Control Units Models 1 and 2 -- IBM 3375 Direct Access Storage
Facility.

Alternate channels to a device from anyone system can only be specified for the IBM 3330,
3340/3344, 3350 Series Storage Unit, the 3375 Direct Access Storage Device, and the 3380
Direct Access Storage Device.

Volume/Device Status
The shared DASD facility requires that certain combinations of volume characteristics and
device status be in effect for shared volumes of devices. Figure 9 shows the combinations that
must be in effect for a volume' or device:

System A Systems B, C, D

Permanently resident
Reserved

Permanently resident
Reserved

Removable
Removable
Offline

Offline - Non-JES3 devices
Removable - JES3 - managed devices
Removable, reserved, or permanently resident
(In JES2, if a device is removable in one
system, it must be offline in all others.)

Figure 9. Valid Volume Characteristic and Device Status Combinations

If a volume or device is marked removable on anyone system, the device must be either in
offline status or removable status on all other systems. The mount characteristic of a volume
and/or the status of a device can be changed on one system as long as the resulting combination
is valid for other systems sharing the volume or device. No other combinations of volume
characteristics and device status are supported.

System Configuration ,
Operating system configurations do not have to be identical to share a data set. The only
additional equipment needed for the Shared DASD option is either a two-channel switch or a
2844 Auxiliary Control unit. The user must also observe certain restrictions about the data sets
that are shared. The following data sets cannot be shared:

Master catalog
PASSWORD
SYSl.DCMLIB
SYSl.DUMPxx
SYSl.LOGREC
SYSl. LPALIB

SYSl.MANx
SYSl.NUCLEUS
SYSl. PAGExx
SYSl. STGI NDEX
SYS1.SVCLIB

Because the system does not provide for the sharing of the PASSWORD data set, the
PASSWORD data set for each system must contain password records for all protected data
sets. Where independent computing systems share common DASD resources, individual
installations must ensure that the PASSWORD data set contains records for all protected data
sets for each system sharing the DASD. For further details regarding password protection on
shared DASD, see System-Data Administration.

Volume Handling
Volume handling with the shared DASD option must be clearly defined because operator
actions on the sharing system must be performed in parallel. The following rules should be in
effect when using the shared DASD option:

\.

• Operators should initiate all shared volume mounting and demounting operations. The Ie· ~.
system will dynamically allocate devices unless they are in reserved or permanently resident
status, and only the former can be changed by the operator.

1-28 SPL:System Macros and Facilities Volume 1

(

• Mounting and demounting operations must be done in parallel on all sharing systems. A
VARY OFFLINE must be issued on all systems before a device can be dismounted.

• Valid combinations of volume mount characteristics and device status for all sharing
systems must be maintained. To IPL a system, a valid combination must be established
before device allocation can proceed. This valid combinatidn is established either by
specifying mount characteristics of shared devices in VA TLST, or varying all shareable
devices offline before issuing START commands and then following parallel mount
procedures.

Macro Instructions Used with Shared DASD (RESERVE, EXTRACT)
You can use the RESERVE, ENQ, DEQ, and EXTRACT macro instructions when working
with shared DASD. The following paragraphs describe the use of these macro instructions in
relation to shared DASD.

• The RESERVE macro instruction reserves a device (identified by its UCB address and
symbolic resource name) for use by a particular system. Each task that needs exclusive use
of a device must issue the RESERVE macro. When a task issues a RESERVE for a
particular device, the system increases the count of outstanding reserve requests (located in
the UCBSQC field of the UCB) for that device. If MVS starts I/O for that device while the
count is non-zero, it precedes the channel program with a RESERVE channel control word
(CCW) that reserves the device to the system that executed the RESERVE CCW.

Notes:

1. The set-must-complete (SMC) parameter of the ENQ macro instruction can also be
used with RESERVE.

2. If a check point restart occurs when a RESERVE is in effect for devices, the system
does not restore the RESERVE; the user's program must reissue the RESERVE.

• The initiator, allocation, and direct access device storage management (DADSM)
components of MVS use an ENQ with a major name of SYSDSN to serialize access to
datasets, whether these data sets exist on shared DASD or not. The use of global resource
serialization in a shared DASD environment allows DADSM ,to serialize the use of DASD
space by all systems sharing a volume so that data integrity is guaranteed. The SYSDSN
major name must be a resource known to all systems in the shared DASD environment.
Refer to the topic Setting Up Resources Name Lists in the "Global Resource Serialization"
section for more information about how to make SYSDSN known to all systems.

• When the task issues a DEQ for the resource named on the RESERVE macro, the system
reduces the count in the UCB. When this count reaches zero, the system starts a channel
program, consisting of a RELEASE CCW, to free the device.

• If global resource serialization is active, ENQ and DEQ, with SCOPE = SYSTEMS
specified, can serialize on a particular shared DASD data set without reserving the entire
device. See Planning: Global Resource Serialization for details.

• The EXTRACT macro instruction obtains the address of the task input/output table
(TIOT) from which the UCB address can be obtained. "Finding the UCB Address for the
RESERVE Macro" explains this procedure. EXTRACT provides information, it does not
actually serialize a resource.

Serialization 1-29

Releasing Devices
The DEQ macro instruction is used with RESERVE just as it is used with ENQ. It must
describe the same resource as the RESERVE and its scope must be stated as SYSTEMS;
however, the UeB = pointer address parameter is not required. If the DEQ macro instruction is
not issued by a task that has previously reserved a device, the system frees the device when the
task is terminated.

Preventing Interlocks
The greater the number of device reservations occurring in each sharing system, the greater the
chance of interlocks occurring. Allowing each task to reserve only one device minimizes the
exposure to interlock. The system cannot detect interlocks caused by a program's use of the
RESERVE macro instruction and therefore, enabled wait states can occur on the system.
Global resource serialization can also be used to prevent interlocks by suppressing the hardware
RESERVE or simply issuing a global ENQ to serialize the resource. See Planning: Global
Resource Serialization for additional information on this topic.

Volume Assignment
Because exclusive control is by device, not by data set, consider which data sets reside on the
same volume. In this environment it is quite possible for two tasks in two different systems -
processing four different data sets on two shared volumes -- to become interlocked. (If global
resource serialization is active and RESERVEs are converted to global ENQs, an interlock does
not occur.) For example, as shown in Figure 10, data sets A and B reside on device 124, and
data sets D and E reside on device 236. A task in system 1 reserves device 124 in order to use
data set A; a task in system 2 reserves device 236 in order to use data set D. Now the task in
system 1 tries to reserve device 236 in order to use data set E and the task in system 2 tries to
reserve device 124 in order to use data set B. Neither can ever regain control, and neither will
complete normally. When the system has job step time limits, the task, or tasks, in the
interlock will be abnormally terminated when the time limit expires. Moreover, an interlock
could mushroom, encompassing new tasks as these tasks try to reserve the devices involved in
the existing interlock.

Task X Task Y

I \
Reserves Reserves

I 1 • Interlock

Device 124 Device 236

Figure 10. Example of an Interlock Environment

1-30 SPL: System Macros and Facilit~es Volume 1

(

Program Libraries
When assigning program libraries to shared volumes, take care to avoid interlock. For
example, SYSl.LINKLIB for system I resides on volume X, while SYSl.LINKLIB for system 2
resides on volume Y. A task in system I invokes a direct access device space management
function for volume Y, causing that device to be reserved. A task in system 2 invokes a similar
function for volume X, reserving that device. However, each load module transfers to another
load module via XCTL. Since the SYSl.LINKLIB for each system resides on a volume
reserved by the other system, the XCTL macro instruction cannot complete the operation. An
interlock occurs; because no access to SYSl.LINKLIB is possible, both systems will eventually
enter an enabled wait state. (If global resource serialization is active and RESERVEs are
converted to global ENQs, an interlock does not occur).

Using Different Serialization Techniques for the Same Volume
A task interlock can occur within a global resource serialization complex when two tasks
reserve the same volume and some of the RESERVEs specify resource names that suppress the
hardware reserve while other RESERVEs are hardware reserves that lock up the entire volume.
The UCB count of outstanding reserves for that volume is manipulated only for the hardware
RESERVEs.

If you code a RESERVE macro, the hardware reserve is suppressed when the resource name
appears in the reserve conversion resource name list (RNL). See Planning: Global Resource
Serialization for additional information about RNLs and about preventing interlocks.

Finding the UCB Address for the RESERVE Macro
This topic explains procedures for finding the UCB address for use by the RESERVE macro
instruction; it also shows a sample assembler language subroutine that issues the RESERVE
and DEQ macro instructions and can be called by routines written in higher level languages.

Job management routines construct the TIOT, which resides in virtual storage during step
execution. The TIOT consists of one or more DD entries, each of which represents a data set
defined by a DD statement for the jobstep. Each entry includes the DD name. Associated
with each DD entry is the UCB address of the associated device. In order to find the UCB
address, you must locate the DD entry in the TIOT corresponding to the DD name of the data
set for which the RESERVE macro instruction is to be issued.

ProvidIng the Unit Control Block Address to RESERVE: Use the EXTRACT macro instruction
to obtain information from the task control block (TCB). The address of the TIOT can be
obtained from the TCB in response to an EXTRACT macro instruction. Before issuing an
EXTRACT macro instruction, set up an answer area to receive the requested information. One
full word is required for each item to be provided by the control program. If you want to
obtain the TIOT address, you must specify FIELDS=TIOT in the EXTRACT macro
instruction.

The control program returns the address of the TIOT, right adjusted, in the full word answer
area.

You canalso obtain the UCB address via the data extent block (DEB) and the data control
block (DCB). The DCB contains data pertinent to the current use of the data set. After the
DCB has been opened, offset 44 decimal contains the DEB address. The DEB contains an
extension of the information in the DCB. Each DEB is associated with a DCB and the two
point to each other.

Serialization 1-31

The DEB contains information about the physical characteristics· of the data set and other
information that the control program uses. A device-dependent section for each extent is
included as part of the DEB. Each such extent entry contains the UCB address of the device to c-'''''
which that portion of the data .set has been allocated. In order to find the UCB address, you 'I. .:
must locate the extent entry in the DEB for which you intend to issue the RESERVE macro
instruction. (In disk addresses of the form MBBCCHHR, the M indicates the extent number
starting with 0).

Procedures for Finding the UCB Address of a Device:

• For data sets using the queued access methods in the update mode or for unopened data
sets:

1. Extract the nOT from the TCB.

2. Search the nOT for the DD name associated with the shared data set.

3. Add 16 to the address of the DD entry found in step 2. This results in a pointer to the
UCB address in the nOT.

4. Issue the RESERVE macro specifying the address obtained in step 3 as the parameter
of the UCB keyword.

Note: This procedure can be used for non-concatenated DD statements and for data sets
that reside on a single volume.

• For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.

2. Load the address of the field labeled DEBDVMOD in the DEB obtained in step 1.
The result is a pointer to the UCB address in the DE~.

3. Issue the RESERVE macro specifying the address obtained in step 2 as the parameter
of the UCB keyword.

• For BDAM data sets, you can reserve the device at any point in the processing in the
following manner:

1. Open the data set.

2. Convert the block address used in the READ/WRITE macro to an actual device
address of the form MBBCCHHR.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the "M" of the actual device address (step 2) by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the UCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the parameter
of the UCB keyword.

1-32 SPL: Syst¥m Macros and Facilities Volume 1

(

• If the data .set is an ISAM data sel, QISAM in the load mode should be used only at
system update tiIhe. Further, if it isa multivolume ISAM data set, it must be assumed that
all jobs will access the data set throllgh the highest level index. The indexes should never
reside in virtual storage when the data set is being shared. In this case, by issuing a
RESERVE macro for the volume on which the highest level index resides, the user
effectively reserves the volumes on whkh the prime data and indepel1dent overflow areas
reside. The following procedures can be used to achieve this:

I. Open the data set.

2. Locate the actual device address (MBBCtHHR) of the highest level index. This
address can be obtained from the DeB.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the "M'; of the ae<:tual device address located in step 2 by 16.

6. The sum of steps 4 and ~ is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the UCB address for this
extent.

7. Issue the RESE:RVE macro speCifying tl:1e address obtained in step 6 as the parameter
of the DCa keywQ'rd.

• For information concetning how to find the UCB address when using the VSAM access
method, See JlSAM Adminisfration Guide.

RESDEQ Slibroutlhe: The assembler I~hguage subroutine in Figure II can be used by
assembler language programs to issue the RESERVE and DEQ macro instructions. Parameters
that must be passed to the R~SDEQ routine, if the RESERVE macro instruction is to be
issued, are:

DDNAME - the eight character name of the OD statement for the device to be reserved.

QNAME • an eight character name.

RNAME LENGTH - oile byte (a binary integer) that contains the RNAME length value.

RNAME - a name from I to 255 chatacters in length.

The DEQ macro instruction does not require the UCB = ucb addr as a parameter. If the DEQ
macro is to be issued, a fullword of binary zeroes must be placed in the leftmost four bytes of
the DDNAME field before control is passed.

Serialization 1-33

RESDEQ CSECT
RESDEQ AMODE 24
RESDEQ RMODE 24

SAVE (14,12), T SAVE REGISTERS
BALR 12,0 SET UP ADDRESSABILITY
USING *,12
ST 13,SAVE+4
LA 11,SAVE ADDRESS OF MY SAVE AREA IS

STORED IN THIRD WORD OF CALLER'S
ST 11 ,8(13) SAVE AREA
LR 13,11 ADDRESS OF MY SAVE AREA
LR 9,1 ADDRESS OF PARAMETER LIST
L 3,0(9) DDNAME PARAMETER OR WORD OF

ZEROS
CLC 0{4,3),=F'0' WORD OF ZEROS IF DEQ IS

REQUESTED
BE WANTDEQ

*PROCESS FOR DETERMINING THE UCB ADDRESS USING THE TIOT
XR 11,11 REGISTER USED FOR DO ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE
LA 7,24(7) ADDRESS OF FIRST DO ENTRY

NEXTDD CLC 0{8,3),4{7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7)
LA 7,0(7,11)
CLC 0(4,7),=F'0'
BNE NEXTDD

LENGTH OF DO ENTRY
ADDRESS OF NEXT DO ENTRY

CHECK FOR END OF TIOT

ABEND 200, DUMP DDNAME IS NOT IN TIOT, ERROR
FINDUCB LA 8,16(7) ADDRESS OF WORD IN TIOT THAT
* CONTAINS ADDRESS OF UCB
*PROCESS FOR DETERMINING THE QNAME REQUESTED
WANTDEQ L 7,4(9) ADDRESS OF QNAME

MVC QNAME(8),0(7) MOVE IN QNAME
*PROCESS FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME

*
*

ISSUEDEQ
RETURN

MOVERNAM
ADDRTIOT
SAVE
QNAME
RNAME
RNLEN

L 7,8(9) ADDRESS OF RNAME LENGTH
MVC RNLEN+3(1),0(7) MOVE BYTE CONTAINING LENGTH
L 7,RNLEN
STC 7,RNAME STORE LENGTH OF RNAME IN THE

FIRST BYTE OF RNAME PARAMETER
FOR RESERVE/DEQ MACROS

L
BCTR
EX
CLC
BE
RESERVE
B
DEQ
L
RETURN
MVC
DC
OS
OS
OS
DC
END

6,12(9)
7,0
7,MOVERNAM
0(4,3},=F'0'
ISSUEDEQ

ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH
MOVE IN RNAME

(QNAME,RNAME,E,0,SYSTEMS),UCB=(8)
RETURN
(QNAME,RNAME,0,SYSTEMS)
13,SAVE+4 RESTORE REGISTERS AND RETURN
(14,12),T
RNAME+l(0) ,0(6)
F' 0'
18F
2F
CL256
F'0'

Figure 11. Example of Subroutine Issuing RESERVE and DEQ

{~
'\.jl

/"
I

Note: This example assumes that non-concatenated DD statements and single volume data sets (. ,',;
are used. 0/

1-34 SPL: System Macros and Facilities Volume 1

(- ..

(

(-

(.

Indicating Event Completion (POST)
The POST macro instruction signifies the completion of an event by one routine to another.
Usually the system posts the completion of the event in the user's address space. The user can,
however, cause the system to post completion of the event in another address space.

Cross Memory POST
The authorized user (executing in supervisor state, under protection key 0-7, or
APF-authorized) of the POST macro instruction can use the ASCB and ERRET parameters to
schedule an SRB to be dispatched to perform a POST in an address space other than his own.
If the caller is authorized to specify the ASCB and ERRET parameters, no check is made to
determine if the requested address space is the issuing address space. This use of the POST
macro instruction is sometimes known as "cross memory post."

The ERRET routine is given control in the issuer's address space when an error condition is
detected. It receives control enabled, unlocked, in SRB mode, and with the following register
contents:

Register

o
1
2
3
4-13
14
15

Contents

ECB address
address of POSTer's ASCB
completion code specified on POST invocation
completion code from failing address space
unpredictable
return address
ERRET address

The ERRET routine will receive control in the addressing mode of the caller of the cross
memory POST. The ERRET routine must return control to the address in register 14,
unlocked and enabled.

If cross-memory post is being used, a synchronization problem arises when it becomes necessary
to eliminate an ECB that is a potential target for a cross memory post request. To ensure that
all outstanding cross memory post requests for the ECB have completed, the user must invoke
the SPOST macro instruction. The ECB might or might not be posted, depending on existing
conditions. Because SPOST invokes the PURGEDQ SVC, see the description of PURGEDQ
for the restrictions on its use.

The serialization method used to control modifications to an ECB depends on whether or not
the ECB is waiting. If the ECB is not waiting (the high order bit of the ECB is off), it may be
'quick posted' via the compare-and-swap instruction using the technique described in
"Bypassing the POST Routine" If the ECB is waiting (the high order bit of the ECB is on), the
LOCAL lock serializes updates to the ECB.

Bypassing the POST Routine
The programmer can bypass the POST routine whenever the corresponding WAIT has not yet
been issued if the wait bit is not on. In this case, a compare-and-swap (CS) instruction can be
used to quick post the ECB. The compare operand should reflect the ECB content with the
wait and post bits off, and the swap operand should have the post bit on and contain the
desired post code. If the wait bit is on in the ECB, the CS will fail (giving a non-zero condition
code), and the normal POST routine must be executed. If the wait bit is not on, the CS will, in
effect, post the completion of the event. Note that holding the LOCAL lock does not eliminate
the requirement to use the CS instruction. Figure 12 demonstrates an example of how to
'Quick Post' an ECB.

Serialization 1-35

L RX, ECB
N RX,=X'3FFFFFFF'
L RY,=X'40000000 ,
CS RX,RY,ECB
BZ POSTDONE
LTR RX,RX
BM DOPOST
N RX,=X'40000000'
BNZ POSTDONE

DOPOST POST ECB
POSTDONE EQU *

Get contents of ECB.
Turn off wait and post bits
Post bit and post code
Compare and swap to post ECB
Branch if CS is successful
Wait bit on?
If yes, then execute POST
Is ECB posted?
If yes, do not execute POST

Figure 12. Bypassing the POST Routine

Waiting for Event Completion (EVENTS)
The EVENTS macro instruction allows a user to wait for the completion of one of a series of
events and be directly informed by the system which of the events have completed. Branch
entry to this function, significantly more efficient than SVC entry, is available to users executing
in key 0, supervisor state, and holding only the LOCAL lock.

Branch entry specifies BRANCH = YES on the EVENTS macro instruction. If this parameter
is used, the branch entry routine performs all normal WAIT processing and ECB initialization.
You can specify BRANCH = YES in conjunction with either WAIT = YES, WAIT = NO, or
ECB=.

• If you specify WAIT = YES, control will later be returned to the dispatcher, even though
there might be ECBs posted to the EVENTS table. EVENTS frees the LOCAL lock.
Before issuing the EVENTS macro instruction with the WAIT = YES option, you must
establish the return environment (the PSW and registers in the RB and TCB). EVENTS
stores a pointer to the first completed EVENTS entry into the TCB register I save location.
(This service is not available to Type 1 SVCs or SRBs.)

• If you do not specify WAIT = YES, control returns to you. EVENTS does not free the
LOCAL lock.

Writing POST Exit Routines
The POST exit function provides authorized system routines with a service that allows them to
receive control immediately upon each completion of an outstanding event. Thus, the user can
write a routine that receives control between the time the ECB is marked completed and the
return by POST to the caller.

This function defines a special type of ECB known as an extended ECB. When initialized,
these extended ECBs identify potential work requests rather than waiting tasks. A purpose of
an extended ECB is to notify a process (for example, a subsystem) of an additional work
request. Thus when an extended ECB is posted, a subroutine of the process receives control
and updates a queue to identify the current work request.

When using the POST exit function, your routine must follow this sequence:

• Identify POST exit routines:
• Initialize extended ECBs and ECB extensions.
• Wait for work requests.
• Delete POST exit routines before terminating.

1-36 SPL: System Macros and Facilities Volume 1

.-/

,('\
'\,)
,~

_,J

(-

(

(

Identifying and Deleting Exit Routines
IEAOPTOE is the entry point to POST. It performs exit identification and deletion through a
function code that indicates whether the input exit address should be added to or deleted from
the POST exit address queue for the current address space. A function code of 4 indicates an
exit creation request, while 8 indicates an exit deletion request. Details of this interface are in
"Branch Entry to the POST Macro Instruction."

You cannot provide the same exit routine as input to IEAOPTOE on separate invocations in
different addressing modes. A 24-bit caller of the POST -exit-delete function can only delete an
exit below 16 megabytes; a 31-bit caller must pass a valid 3 I-bit address and can delete an exit
above or below 16 megabytes.

The process that establishes a POST exit is responsible for deleting that exit before its normal
or abnormal termination.

Initializing Extended ECBs and ECB Extensions
The user must obtain and initialize the extended ECBs and ECB extensions. A system service is
not available to perform these functions.

The ECB extension must be obtained and initialized before the initialization of the extended
ECB. This sequence avoids the possibility of an initialized extended ECB being posted before
the initialization of the ECB extension.

The ECB extension is two words long, begins on a word boundary, and can be from any
subpool. However, the POST routine must be able to read from the ECB extension in the PSW
key of the issuer of the POST macro instruction. The ECB extension must also be accessible in
the addressing mode of the POST's caller. More than one extended ECB can point to it. The
mapping for the ECB extension is available via the EXT = YES parameter on the IHAECB
mapping macro. It has the format shown in Figure l3.

VALUE
(\ byte) I MODE

(I byte) I
POST DATA
(4 bytes)

RESERVED
(2 bytes)

Figure 13. ECB Extension (ECBE)

The fields in the ECBE are:

VALUE is one byte containing a value from 1-255. A value of 1 indicates that the
POST exit function is being requested. All other function codes are reserved.

MODE The first bit of this byte indicates the addressing mode of the exit routine. If
the byte contains X'80', the exit routine will receive control in 31-bit addressing
mode. If the byte contains X'OO', the exit routine will receive control in 24-bit
addressing mode. The first bit of this byte must match the addressing mode
that existed when IEAOPTOE was invoked to identify the exit routine.

POST DATA When VALUE is 1 (that is, contains X'Ol') this field contains the address of
the exit routine to be given control when the POST occurs.

Serialization 1-37

--------- --- -- - -

The extended ECB must conform to current requirements for ECBs and be initialized to the
format shown in Figure 14. The extended ECB must be initialized only after it is eligible for
posting. The extended ECB must be initialized using a compare-and-swap (CS) instruction.
Holding the LOCAL lock does not eliminate the requirement to use the CS instruction to
initialize the ECB because the ECB could be 'quick posted' by a routine, using CS, that does
not hold the LOCAL lock. It is unnecessary to hold the LOCAL lock to initialize an extended
ECB. Compare and Swap is necessary and sufficient to initialize an extended ECB. The
meaning of the bits in the extended ECB follows:

Bits Meaning

o If one, indicates initialized ECB.
1-29 Address of the associated ECB extension.
30-31 If ones, indicates an extended ECB.

o 1-29 30 31

I' I Ad,,",~ of ECBE I I I
Figllre 14. Extended ECB

If the compare and swap fails and if the ECB is pre-posted, the user should perform the
appropriate POST exit functions in order to replace those ordinarily performed by the already
concluded POST processing.

Once the extended ECB has been initialized, the LOCAL lock must be held when modifying the
ECB. If the LOCAL lock is not held, posts may be lost.

POST Interface with Exit Routines
Before giving the exit control, POST checks to ensure that the user's exit routine address
identified in the ECB extension denotes a valid POST exit routine. Even though POST thereby
makes sure that a valid system exit receives control, the exit routine must ensure that an
unauthorized routine has not counterfeited the extended ECBjECB extension pair.

The user's exit routine receives control from POST with the LOCAL lock in supervisor state,
key zero. The routine must not release the LOCAL lock and should be able to process in both
SRB and TCB mode. The register contents at entry to the user exit routine are:

Register

o
1
2-13
14
15

Contents

Address of the currently posted ECB
Address of related ECB extension
Unpredictable
Return address
Exit routine entry point address

The register contents upon return to POST from the user's routine must be:

Register 11, I4-Unchanged
Register 0-10, 12, 13, IS-Irrelevant

The user's exit routine must return control in supervisor state, PSW key zero and with the
LOCAL lock still held.

For performance reasons, the user's routine should not cause page faults (that is, the routine's
code and the data that it references should be available when the routine receives control).

1-38 SPL: System Macros and Facilities Volume I

(

(

Re-entry to POST from a POST Exit
A POST exit routine can issue POST only via the POST entry point, IEAOPT03. Details of the
interface are in "Branch Entry to the POST Service Routine."

Because of the save area recursion within POST, a POST exit routine cannot post another
extended ECB unless it does so by specifying a cross memory post. Any attempt to activate
another POST exit before the completion of the current exit causes a 702 abend. If you must
post another extended ECB from a POST exit routine, you should either have your routine
issue a cross memory post or schedule your own SRB so that your routine enters POST by
branching to it.

Example of Using a POST Exit Function
A subsystem allocates and initializes extended ECBs, ECBEs, and EQTs. These data areas
appear in Figure 15. Once initialized, the subsystem dispatcher waits on a list of ECBs. Each
list entry identifies an ECB in an EQT.

Extended ECB

I 80888883

Notes:

ECB Extension (ECBEl

00888880

01 000000

+ Exit routine

!+ EQT i , ,
r---------------------- I I ,

I User Data I
I , L ______________________ l

Event Queue Table (EQTI

j-----------------------I

I User Info I , ,
1-----------------------1

!+ ECB !
~----------------------I '. ' I T Scheduled Queue I
, I

~----------------------, , I

! + Dispatching Queue ! ! _______________________ 1

1 . The dotted lines identify data defined by the dispatching
applications rather than data required by the POST exit function.

2. The address of the ECB extension is 00888880.

Figure 15. Data Areas Post Exit Example

As soon as any system routine posts an extended ECB, the subsystem exit routine identified in
the ECBE receives control. The exit routine receives control in the addressing mode specified
by the first bit in byte I of the ECBE. If this bit is on, the exit routine receives control in
31-bit addressing mode; if this bit is off, the exit routine receives control in 24-bit addressing
mode. After checking the validity of the work request, the exit routine places a work element
on the EQT schedule queue identified by the ECBE. The exit routine then posts the ECB
associated with that EQT, which completes the queuing of the work and the activation of the
dispatching task.

The subsystem dispatcher then scans the ECB list to locate posted ECBs (that is, an EQT with
work queued). The subsystem dispatcher then uses compare and swap to switch the schedule
queue to the dispatching queue values. Then the subsystem dispatcher dequeues work from the
dispatching queue until the queue is depleted. Then the subsystem dispatcher clears the post bit
in that EQT ECB and again uses compare and swap to move the schedule queue to the
dispatching queue. If the dispatching queue is still empty, the subsystem dispatcher checks the
next ECB in the ECB list. After having processed the entire ECB list, the subsystem dispatcher
again awaits requests for work.

Serialization 1-39

The subsystem dispatcher can use the USERINFO field in the EQT for serialization where
multiple system dispatcher tasks can wait on the same EQT.

Branch Entry to the POST Service Routine
Branch entry to the POST service routine provides all the normal ECB and RB POST
processing. The BRANCH parameter on the POST macro instruction uses entry point
IEAOPT01 only. To use the other entry points, shown in Figure 16, you must write your own
code. In general, the caller must hold the LOCAL lock and be in supervisor state, PSW key
zero. Upon completion of the POST process, control returns to the caller in supervisor state,
PSW key zero with the LOCAL lock.

Note: CML (cross memory local) lock means the loca110ck of an address space other than the
home address space. LOCAL lock means the local lock of the home address space. When
written in lower case, local lock means any local-level lock, either the LOCAL or a CML lock.

You can use branch entry to the POST service routine in cross memory mode for cross memory
POST. If you hold the LOCAL lock of the home address space and if bit 0 of register 12 is 0,
then the current address space must be the home address space and registers 0-9 and 14 are
preserved. If you do not hold home's local lock or if bit 0 of register 12 is 1, then the current
address space can be any address space and only registers 9 and 14 are preserved.

Note: If the high-order bit of register 12 is 0 and an error routine is invoked, the error routine
is dispatched in the home address space.

Figure 16 shows the POST function and the branch entry points through which those functions
can be performed. Figure 17 shows the input parameters to POST. Figure 18 shows the
output parameters from POST.

Functions Entry Points

IEAOPTOI IEAOPT02 IEAOPT03* IEAOPTOE
(CVTOPTOI) (CVTOPT02) (CVTOPT03) (CVTOPTOE)

Local ECB POST X X X

Local POST without ECB X X

Cross address space POST X** X

Post exit creation/deletion X

* This entry point performs processing identical to entry point IEAOPTOI. It is designed for use only by POST exit
routines (that is, routines that receive control from POST as the result of having established that exit via entry point
IEAOPTOE).

** The local lock does not need to be held for a cross address space POST at this entry point.

Figure 16. POST Function and Branch Entry Points

1-40 SPL: System Macros and Facilities Volume 1

;f~"

~~J:

./

Registers IEAOPTOI IEAOPT02 IEAOPT03 IEAOPTOE

((CVTOPTOt) (CVTOPT02) (CVTOPT03) (CVTOPTOE)

0 ECB storage protect ECB storage Func. Code
keyl protect key'

I Exit Routine Address

10 Completion Code2 Completion Code Completion Code2

II ECB Address3 ECB Address ECB Address'

12 Error Routine Error Routine

(- Address4 Address4

I3 ASCB Address4 ASCB Address4

14 Return Address Return Address Return Address Return Address

15 Entry Point Address Entry Point Address Entry Point Entry Point Address
Address

1 If cross address' space post, optionally contains the storage protection key of the ECB in bits 24-27.
(

2 If POST -without-ECB, contains RB address; if cross address space post and the storage protection key of the
ECB is supplied in register 0, then the high order bit must be set to one.

3 If POST-without-ECB, set to zero; if local address space POST, ensure high-order bit of register is zero; if
cross address space POST, set high-order bit of register to I.

4 Only necessary when performing cross address space POST. If performing a cross address space POST and
the high order bit in register 12 is on, only registers 9 and 14 are retained, and the error routine executes
in the master scheduler's address space.

Figure 17. POST Branch Entry Input

Entry Points Registers Saved and Restored

IEAOPT01 ' 0-9, 122, 132, 14

IEAOPT02 0-9, 12-14

IEAOPT03 0-14

IEAOPTOE 2-14

1 The contents of only registers 9 and 14 are retained during a cross address space POST when
either the LOCAL lock is not held or the high order bit in register 12 is on; all other register
contents are unpredictable.

2 The contents of these registers will not be saved and restored during a cross address space
POST; their contents are therefore unpredictable in these circumstances.

Figure 18. POST Branch Entry Output

Serialization 1-41

~~-----------.----

Branch Entry to the WAIT Service Routine
Branch entry to the WAIT service routine provides all the normal ECB and RB WAIT
processing. This function is not available, however, to Type 1 SVCs or SRBs. The caller must
hold home's LOCAL lock and be in key zero, supervisor state with current addressability to the
home address space. While holding home's LOCAL lock and before branching to WAIT, the
caller must establish the PSW and register return environment in its RB and TCB. When
WAIT is invoked, the caller should hold only the LOCAL lock. WAIT performs the following
functions:

• Stores the ECB/ECBLIST address into the register I location of the TCB register save area,
(user data cannot be passed through this field or register).

• Releases home's LOCAL lock.

• Returns control to the dispatcher (control does not return to the caller even though all
previously pending events have already occurred). The dispatcher ensures that all FRRs
have been deleted.

Branch entry to WAIT can occur without identification of any ECBs. This process sets the
wait count in the current RB to the specified value. The corresponding POSTs-without-ECB
then activate the RB. If you use this process, make sure that the WAIT -without-ECB precedes
the POST-without-ECB in order to avoid causing the RB to wait indefinitely.

The following registers contain parameters for branch entry to WAIT:

Register

o

15

Contents

The wait count in the low order byte. When the high order bit is one, it
indicates long-wait (The LONG = YES specification).

The ECB pointer value. If only one ECB is being waited on, place that ECB',
address in register I. If a list of ECBs is being waited on, place the
complemented ECBLIST address in register 1. If the WAIT-without-ECB
function is being requested, set register I to a value of zero.

The branch entry address to WAIT (lEA VW AIT), which in tum is obtained
from the CVT (CVTVW AIT).

You can use branch entry to the WAIT service routine in cross memory mode if you hold the
LOCAL lock of the home address space and if the current address space is the home address
space.

Suspension and Resumption of Request Blocks
An alternate method of waiting for an event and indicating its completion is available on a
restricted basis for systems programming. This method gives faster performance than the
normal method of using the WAIT and POST macro instructions. The summary below outlines
the functions that provide this alternative:

Macro

SUSPEND
RESUME
TCTL
CALLDISP

Description

Wait for an event to complete.
Indicate the completion of the event.
Give control directly to a ready task.
Give up control so that an event can complete.

1-42 SPL: System Macros and Facilities Volume I

j'

(
Waiting for an Event to Complete (SUSPEND)

The SUSPEND macro instruction provides an efficient means of waiting for an event to
complete. It is analogous to the WAIT macro instruction, and is used in a
SUSPEND-RESUME sequence, which is analogous to the WAIT-POST sequence. The
SUSPEND macro instruction causes the wait for event completion through the wait count field
(RBWCF) in the request block (RB). This field is the same one the WAIT macro instruction
uses. When used with the SUSPEND macro instruction, however, the wait count field is
known as the suspend count field, even though the function it performs for both macro
instructions is the same.

The SUSPEND macro instruction does not have an immediate effect on the issuer as the WAIT
macro instruction does. Instead, the effect is delayed, depending on the type of suspension the
macro instruction user requests. If the previous RB is suspended, the effect takes place when
the current RB exits. If the current RB is suspended, the suspended state occurs when the RB
passes control to the dispatcher.

RBs that issue the SUSPEND macro instruction with the RB = CURRENT option should hold
the suspended state time to a minimum. As soon as possible after SUSPEND completion, the
RB that issues a SUSPEND RB = CURRENT should exit to the dispatcher (for example, issue
a CALLDISP macro instruction with the BRANCH = YES option). Using the SUSPEND
macro instruction this way minimizes potential performance problems because the RB in this
case must either be disabled or must hold the LOCAL lock or a CML lock. Minimizing
suspension time also minimizes other potential problems the program might experience by
limiting the time in which the RB is unable to cause any synchronous interrupts (such as SVCs
and page faults) or provide interfaces to the WAIT, POST, or EVENTS macro instructions.

RBs that issue SUSPEND RB = PREVIOUS, on the other hand, do not require the same
synchronization because they are operating on behalf of another RB. The suspension of the
previous RB does not require disabled execution or the holding of the LOCAL lock or a CML
lock.

The following scenarios show typical SUSPEND macro instruction sequences:

Scenario 1:
SUSPEND RB = PREVIOUS

1. Type 2 SVC routine receives control.

2. The SVC suspends the macro issuer's RB.

3. The process that will eventually issue the RESUME is started.

4. The SVC completes processing and exits.

5. Event completion occurs; process started in step 3 resumes issuer of the macro instruction.

6. The macro issuer's task resumes (at return from the SVC routine).

Scenario 2:
SUSPEND RB = CURRENT

1. User acquires the LOCAL lock or a CML lock.

2. The macro suspends processing of the current RB.

3. The process that will eventually issue the RESUME is started.

4. Macro issuer issues CALLDISP BRANCH = YES, which releases the LOCAL lock or
CML lock before going to the dispatcher.

Serialization 1-43

5. Event completion occurs; process started in step 3 resumes issuer of the macro instruction.

6. Normal processing resumes.

Consider the following when using the SUSPEND macro instruction:

• The SUSPEND macro instruction can be issued in cross memory mode.

• Only a routine executing under protection key 0 can issue SUSPEND.

• The SUSPEND macro instruction requires that the CVT mapping macro be included.

• When the issuer requests (explicitly or by default) the SUSPEND RB = PREVIOUS option,
there must be a previous RB on the chain to prevent a task abend.

• Only task-related users can issue SUSPEND, and then only for the current task.
SUSPEND cannot be issued for another TCB or by an SRB.

• SUSPEND RB = PREVIOUS is intended for use by Type 2, 3, and 4 SVCs to place the
issuer of the SVC in a suspended state.

• The SUSPEND function user must ensure that the SUSPEND and RESUME sequence
takes place in proper order. The user must issue SUSPEND, then event completion must / '\
occur, and then the RESUME function must take place. One way to ensure proper "
sequencing is to issue SUSPEND before scheduling the asynchronous process on which the
RB must wait.

• When using the SUSPEND RB = CURRENT option, the issuer must either execute
disabled or hold the LOCAL lock or a CML lock. The issuer must remain in this state until
the program initiates the stimulus for event completion in order not to lose control, which
could result in never being redispatched. Because the issuer must also coordinate the
SUSPEND and RESUME sequence, the event completion must not occur until after the
SUSPEND RB = CURRENT macro takes effect. The caller that is in the key 0 supervisor
state and EUT (enabled unlocked task) mode and that uses a local lock to serialize the
SUSPEND and RESUME processing sequence can use issue CALLDISP
FRRSTK = SAVE to enter the dispatcher. The CALLDISP routine releases the local lock,
which serialized the SUSPEND/RESUME processing of the caller. Because an EUT FRR
exists, the current FRR stack is saved.

When a Type I or Type 6 SVC issues a SUSPEND RB = CURRENT, the top RB (the
caller of the SVC) is suspended. Whenever the SVC exits (via EXIT PROLOGUE or
T6EXIT), the caller is suspended until RESUME occurs. A TYPE I SVC must not issue
the CALLDISP macro instruction or release home's LOCAL lock, and it must exit via its
exit mechanism. A Type 6 SVC must not issue the CALLDISP macro instruction or
become enabled, and it also must exit via its exit mechanism.

When a TYPE 2, 3, or 4 SVC issues a SUSPEND RB=CURRENT, the top RB (the SVC
itself) is suspended. The SUSPEND routine returns control to the SVC. The SVC can
continue to execute as long as it remains locally locked or disabled. Once the SVC releases
the LOCAL lock or enables, an interrupt or an entry to the dispatcher (via CALLDISP)
suspends the SVC until it is resumed. While the SVC is enabled and before it is resumed, it
cannot incur a page fault, issue an SVC, or branch enter any supervisor service that makes
local work ready or places the caller in a wait state (for example, WAIT, POST, EVENTS,
or STATUS).

• The SUSPEND and RESUME sequence must not be intermixed with the WAIT and POST
sequence on a single RB because both sequences use the same count field for control of the
functions. Because the SUSPEND-RESUME sequence is a restricted-use function, it does
only minimal validity checking. For example, if an RB were already waiting on 255 events C" .•
and someone issued a SUSPEND against it, the count would be reset to one. .

• An RB can have only one SUSPEND outstanding at a time. There can be no subsequent
SUSPEND macros issued until a RESUME occurs for the outstanding SUSPEND macro.

1-44 SPL: System Macros and Facilities Volume I

(

(

('

• A program that has invoked the SUSPEND RB = CURRENT option must not be
suspended again (for example, through a page fault or a lock suspension) after releasing
home's LOCAL lock, a CML lock, or enabling until a RESUME is issued counteracting
the outstanding SUSPEND macro instruction.

Resuming Execution of a Suspended Request Block (RESUME)
The RESUME macro instruction, which is supported in cross memory mode, provides an
efficient means for indicating the completion of an event. The RESUME macro instruction
specifies the TCB and RB that were previously suspended by the SUSPEND macro instruction.
The specified TCB and RB must be addressable in the currently addressable address space.
Only routines executing in supervisor state and PSW key zero can issue the RESUME macro
instruction.

The RESUME macro instruction and the service routine it calls must serialize the use of the
task that is being resumed. This serialization might require the local lock of the task's address
space, called the target address space. Because disabled or locked callers of RESUME are not
allowed to obtain a local lock, the RESUME macro instruction has the MODE and ASYNC
options to handle these types of situations.

Note: The ASYNC parameter for the RESUME macro instruction is spelled differently from
similar parameters on other macro instructions.

The MODE option specifies whether or not the RESUME operation must complete
(MODE = UNCOND) or not (MODE = COND). MODE = UNCOND requires that certain
system locks can be obtained.

The ASYNC option specifies whether or not RESUME can schedule an SRB to perform the
resume if necessary. These RESUME options can be combined in four ways:

• MODE = UNCOND and ASYNC = N

RESUME attempts to obtain the necessary task serialization to complete the function
synchronously. If it can obtain serialization, RESUME completes its function and
returns to its caller. If it cannot obtain serialization, RESUME requests the local lock
of the target address space to serialize the operation. The caller of RESUME must be
able to obtain the target address space's local lock or already hold it when RESUME is
issued. This means that, with one exception, the caller of RESUME must either be
running enabled and unlocked or disabled and holding the target address space's local
lock when the RESUME is issued. The exception is the disabled caller that resumes the
TCB under which it is running, that is, the currently executing TCB. This situation
could occur if, for example, a routine became disabled,executed a SUSPEND
RB = CURRENT macro instruction, and then determined that there was more work to
be done. The disabled, unlocked routine could issue a RESUME macro instruction for
the TCB and RB to counteract the SUSPEND.

If the local lock is required but not available, the caller will be suspended waiting for
the local lock. Control returns to the caller after the RESUME has occurred.

Disabled interrupt exits cannot issue the RESUME macro instruction with the
MODE = UNCOND and ASYNC = N options.

The RETURN = N option on the RESUME macro instruction is allowed only with this
combination of options. The RETURN = N option cannot be used with the ASCB
parameter. To use RETURN = N, the caller must be running in SRB mode, must be in
home addressing mode, and must not hold any locks. If these three conditions are met,
the TCTL service is entered to transfer control to the task that was just resumed. If
these three conditions are not met, that caller is abended with an X'070' abend code.

Serialization 1-45

• MODE=UNCOND and ASYNC=Y

RESUME attempts to obtain the necessary task serialization and complete the function
synchronously. If RESUME cannot obtain serialization, RESUME does not obtain the C
local lock. RESUME unconditionally obtains an SRB from the supervisor SRB pool
and schedules it to complete the RESUME asynchronously.

The caller can be enabled or disabled, however, the VSMFIX lock must be available.
The caller must not hold any locks higher in the lock hierarchy than the VSMFIX lock
or the caller must hold the VSMFIX lock when the RESUME macro instruction is
issued.

• MODE = COND and ASYNC=N

RESUME attempts to obtain the necessary task serialization to complete the function
synchronously. If serialization is available, the task is resumed and control returns to
the caller. If serialization is not available, RESUME returns to the caller without
completing the RESUME operation.

The caller can either be enabled or disabled and can hold any combination of locks.
RESUME does not attempt to obtain any locks. The caller must be prepared to handle ('
the situation when the RESUME operation can not be performed because the necessary ','/
serialization is not available.

• MODE = COND and ASYNC=Y

RESUME attempts to obtain the necessary serialization to complete the function
synchronously. If serialization is available, the task is resumed and control returns to
the caller. If serialization is not available, RESUME conditionally obtains an SRB
from the supervisor SRB pool and schedules it to perform the RESUME
asynchronously. If the supervisor SRB pool is empty, RESUME returns to the caller
without completing the RESUME operation.

The caller can be either enabled or disabled, and can hold any combination of locks.
RESUME does not attempt to obtain any locks. The caller'must be prepared to
handle the situation when the RESUME operation cannot be performed because the
necessary serialization is not available.

RESUME provides return codes in register 15 to indicate the result of the RESUME attempt.
See the RESUME macro instruction in Volume 2 for details on the return codes.

The RESUME macro instruction requires the IHAPSA mapping macro. If the ASCB option is
not specified, then the MODE = UNCOND and ASYNC = Y combination requires the CVT
mapping macro. All other combinations require the IHASVT mapping macro.

Transferring Control for SRB Processing (TCTL)
The TCTL (transfer control) macro instruction allows an SRB routine to exit from its
processing and to pass control to a task with minimal dispatcher overhead. When an SRB
specifies RESUME RETURN = N, control transfers to the resumed TCB. Control then passes
to the top RB on the TCB/RB chain, but only if it passes all the dispatchability tests the
dispatcher normally makes.

Some other considerations for using the TCTL macro instruction are:

• The TCTL macro may be used only by SRB programs, but they may be in any key. If a
non-SRB routine issues either the TCTL macro or a RESUME RETURN=N, the routine
will abnormally terminate with a X'070' system completion code.

1-46 SPL: System Macros and Facilities Volume 1

.. ;,.,,-..... , .•. ,-,,!....>. -~ .• - .• - .• ~~. '--'i~

• The TCTL constitutes an exit from the issuing routine, which therefore causes cleanup of
the SRB.

• The TCTL service requires inclusion of the CVT mapping macro.

The TCTL service requires that the SRB requesting the TCTL must not hold any locks and
must be in home addressing mode.

Using the BRANCH = YES Option of CALLDISP (CALLDISP)

(

The CALLDISP macro instruction with the BRANCH = YES option is supported in cross
memory mode. The BRANCH = YES option allows an issuer of the SUSPEND macro with its
RB = CURRENT option to exit while leaving the current RB in the wait state. This option
causes the supervisor to save status and control to pass to the dispatcher.

Some considerations for using the BRANCH = YES option on the CALLDISP macro
instruction are:

• The issuer of CALLDISP must be executing in supervisor state with PSW key zero.

• The issuer must be in task mode rather than in SRB mode.

• The BRANCH = YES option requires inclusion of these mapping macros:

IHASVT
IHAPSA

• The FIXED = YES or FIXED = NO option can be specified with BRANCH = YES.

• When FRRSTK = SA VE is specified:

The caller must not hold any locks or an abend results.

Note: For MVS/System Product Version 2 Release 1.3 Vector Facility Enhancement or
MVS/System Product Version 2 Release 1.3 Availability Enhancement and later releases:

If any EUT (enabled unlocked task) FRRs exist, the current FRR stack is saved and
the caller may hold either the LOCAL or CML lock. CALLDISP releases the lock
before going to the dispatcher.

If no EUT FRR exists, the caller cannot hold any locks. Otherwise, an abend occurs.

• When FRRSTK = NOSA VE is specified:

Notes:

The current FRR stack is purged.

The caller may hold either the LOCAL or CML lock. CALLDISP releases the lock
before going to the dispatcher.

1. A type 1 and type 6 SVC must not issue the CALLDISP macro instruction.

2. The LOCAL or CML lock can be used to serialize the SUSPEND processing and establish
the RESUME processing. If a local lock is not used to serialize the FRR stack, the caller
can use the CALLDISP FRRSTK = SAVE option to serialize the stack. For more
information, see "Suspension and Resumption of Request Blocks" in this volume.

Serialization 1-47

.- .• - .• -", - .. ,.-_._ ••..... _-._._--." _._- - -1 . ----

1-48 SPL:System Macros and Facilities Volumel , i

(

(

Reporting System Characteristics

This chapter describes three ways to report system characteristics:

• Using GQSCAN to obtain resource usage reports
• Using SRM to obtain subsystem measurement reports
• Using SYMREC to obtain software error reports

Collecting Information About Resources and Their Requestors
(GQSCAN)

Global resource serialization enables an installation to share symbolically-named resources
between units of work. Programs issue ENQ, DEQ, and RESERVE macro instructions to
request access to resources. Global resource serialization runs in its own address space and
maintains the resource queues in this address space, which cannot be swapped, cancelled, or
forced. The only way you can extract information from the resource queues is by usinK the
GQSCAN macro instruction. You can extract this information whether or not global resource
serialization is active. See Planning: Global Resource Serialization for information about how
global resource serialization functions.

Using GQSCAN, you can inquire about a particular scope of resources (such as STEP,
SYSTEM, or SYSTEMS), a specific resource by name, a specific system's resources, a specific
address space's resources, or resources requested by the RESERVE macro instruction. The
GQSCAN service routine collects the information you request from the resource queues and
consolidates that information before returning it.

In order to specify a scope of LOCAL or GLOBAL, you must be a supervisor state, key zero
user. SCOPE = LOCAL and SCOPE = GLOBAL are restricted because when you specify these
parameters the GQSCAN service routine serializes the use of the GRS control blocks to stop
any other ENQ, DEQ, or RESERVE instructions from changing them.

The information you request is returned in an area whose location and size you specify using
the AREA parameter on the GQSCAN macro instruction. You can also specify a fullword
location in which the GQSCAN service routine can return a token by specifying the TOKEN
parameter. If the amount of information exceeds the size of your area, the GQSCAN service
routine gives you as much as the area will hold and returns a token in the specified location.
On subsequent invocations of the GQSCAN macro instruction, if you provide the token, you
can obtain the remaining information. You can invoke the GQSCAN macro instruction again
and again using the same token, until all of the information has been returned. You can also
invoke the GQSCAN macro instruction using the same token and QUIT = YES to terminate
the scan.

© Copyright IBM Corp. 1982, 1989 Reporting System Characteristics 1-49

The information is returned in the form of resource information blocks and resource
information block extensions, as shown below.

RIB Resource information block (RIB) describes a resource
A

RIBE RIB extension (RIBE) describes resource requestor
Al

RIBE
A2

RIBE
A3

RIB
B

RIBE
BI

RIBE
B2

The RIB and RIBE are described in the Debugging Handbook.

The amount of information you get about a particular resource depends on the scope you
specify on the GQSCAN macro instruction, the size of the area you provide, and whether or
not you specify a token.

Whether you specify a scope of STEP, SYSTEM, SYSTEMS, or ALL with or without a token,
the information returned the first time you issue the GQSCAN macro instruction is the same.
You get the first RIB and as many of its associated RIBEs as will fit in your area. The RIB
has an entry that tells how many RIBEs it has and, of those, how many appear in your area.
Any RIBEs that do not fit are lost. If there is room for another RIB and all of its RIBEs, it
also is returned and so on until there is not enough room for the next RIB and all of its RIBEs.

The second return of information occurs the next time you issue the GQSCAN macro
instruction. The contents of this return differ depending on whether or not you specify a token.
If you specified a token on the first GQSCAN and supply that token on the next invocation,
the information returned continues with the next RIB, and as many of its associated RIBEs as
will fit in your area. Any RIBEs that do not fit are lost. If there is room for another RIB and
all of its RIBEs, it too is returned, and so on, until there is not enough room for the next RIB
and all of its RIBEs. If you do not specify a token, the information starts over with the first
RIB.

The example in Figure 19 shows three returns. The scope is either STEP, SYSTEM,
SYSTEMS, or ALL and a token is specified each time.

1-50 SPL: System Macros and Facilities Volume 1

/""'"
I '

(

(

For the example, assume that there are four resources, A, B, C, and D. Resource A has three
requestors, resource B has six requestors, resource C has two requestors, and resource D has
one requestor.

First return Second return Th i rd retu rn

RIB A RIB B RIB C

3 RISEs tota I 6 RISEs tota I 2 RISEs tot a I
3 here 5 here 2 here

RIBEA1 RIBEB1 RISE C1

RIBEA2 RIBEB2 RISE

RIBEA3 RIBEB3 RIS D

RIBEB4 1 RIBE total
1 here

RIBEB5 RIBE
D1

Figure 19. GQSCAN Results with STEP, SYSTEM, SYSTEMS, or ALL

Whether you specify a scope of LOCAL or GLOBAL with or without a token, the information
returned the first time you issue the GQSCAN macro instruction is the same. You get the first
RIB and as many of its associated RIBEs as will fit in your area. The RIB has an entry that
tells the number of RIBEs associated with it, and, of those, how many appear in your area.
Any RIBEs that do not fit will appear in your area the next time you issue the GQSCAN
macro instruction if a token is provided. If there is room for another RIB and at least one
RIBE, it is also returned, and so on , until there is not enough room for a RIB and RIBE
combination. If you do not specify a token, the information starts over with the first RIB.

The example in Figure 20 shows two returns. The scope is either LOCAL or GLOBAL and a
token is specified each time. Note that the GQSCAN service routine does not truncate any of
the RIBEs. On every return after the first, in which you supply the token that was returned,
the previous RIB is repeated to put the remaining RIBEs in context and more resource
information, if any, continues.

First return

RIB A

3 RIBEs total
3 here

RIBEA1

RIBEA2

RIBEA3

RIB B

6 RIBEs total
4 here

RIBE B1

RIBE B2

RIBE B3

RlBE B4

Second return

RIB
B

6 RIBEs tota I
2 here

RIBE B5

RISE
B6

RIB
C

2 RISEs total
2 here

R1BEC1

Figure 20. GQSCAN Results with LOCAL or GLOBAL

Reporting System Characteristics 1-51

In scanning the information returned, be sure to use the size of the fixed portion of the RIB
and the RIBE that is returned in register O. The size of the fixed portion of the RIB is in the
high-order half of register 0 and the size of the RIBE is in the low-order half. ()

The first RIB starts at the beginning of the area you specify. The first RIBE is pointed to by
the current RIB pointer plus the size of the fixed portion of RIB plus the size of the variable
portion of RIB (RIBVLEN). To find the second RIBE, add the size of the RIBE.

To find the second RIB, use the current RIB pointer plus the size of the fixed portion of the
RIB plus RIBVLEN and then add the number of RIBEs times the RIBE size.

1-52 SPL: System Macros and Facilities Volume 1

(-

(

(

Using the SRM Reporting Interface to Measure Subsystem Activity
The reporting interface allows an IBM or user-written interactive subsystem to pass transaction
performance data to the system resources manager (SRM). The data collected by the SRM can
be reported through the RMF workload activity report or the transaction activity report. The
Resource Measurement Facility (RMF) program product must be installed to obtain these
reports. The data is reported according to the subsystem identifiers (subsystem name,
transaction name, transaction class, or use rid) specified in the installation control specification
(IEAICSxx parmlib member). For more information on the installation control specification,
see Initialization and Tuning.

The reporting interface is necessary because, except for TSO, the SRM does not normally
recognize the individual transactions of an interactive subsystem. For example, the SRM
considers a subsystem that consists of an address space created by a START command to be a
single long transaction, and the RMF workload activity report indicates the total service for the
address space but does not indicate the average transaction response time. However, when a
subsystem uses the interface and the subsystem is specified in the installation control
specification, the RMF workload activity report provides the average transaction response time.

The reporting interface consists of a SYSEVENT macro instruction, which the subsystem must
issue at the completion of each transaction. Issuing the macro instruction allows the subsystem
to pass the transaction start time or elapsed time and, optionally, its resource utilization. The
SRM does not use data collected through the reporting interface to dynamically adjust resource
distribution to subsystems. However, the installation can review the RMF reports to determine
which, if any, SRM parameters need to be changed.

Reporting System Characteristics 1-53

Reporting Software Error Symptoms (SYMREC)
SYMREC is a facility that can store and format information about non-a bend errors that occur
in an authorized user application. Authorized applications may be written to detect their own
errors and to invoke the SYMREC macro, which stores information about each error on
SYS1.LOGREC, the on-line repository where error information is collected. The unit of
information that the SYMREC macro stores in the repository is called a symptom record. The
data in the symptom record is a description of some programming failure combined with a
description of the environment where the failure occurred.

The SYMREC facility can interpret the symptom records stored on the repository, and
formatting them into various kinds of reports. SYMREC consists of the following elements:

1. Two macros, ADSR and SYMREC.

2. Formatting capabilities that are invoked through EREP and IPCS.

Writing Applications That Use SYMREC
The use of SYMREC implies that an application is written in a programming style in which the
program monitors execution-time conditions that denote errors. To write an application that
uses SYMREC, you use the ADSR macro to obtain a DSECT for an area in your virtual
storage that is called a symptom record. This area has six sections. Whim the application starts
to execute, it first stores zeroes into the entire area, then initializes certain fields in the first two
sections. These fields identify the application's environment and supply essential addressing
information for the application as it executes. After identifying the symptom record, the
application continues with its main processing.

If the application detects an error during its processing, it collects information about the error,
then stores the error information in the symptom record by referencing the data fields in the
ADSR DSECT. When the application stores the error information, the information is in a
special format called the SDB (structured data base) format.

After storing data into the symptom record, the application issues the SYMREC macro, which
writes data from the symptom record to an on line repository. Before SYMREC processing
writes the data, it updates the symptom record in the application's virtual storage (even if the
storage is store-protected) with various data about the execution environment. After SYMREC
writes the data, it returns control to the application with return and reason codes respectively in
registers 15 and O. The application can continue processing if the error is not fatal. The return
and reason codes, in hexadecimal, are:

Return Code Reason Code

0000

0000

0004

0164

0008

1-54 SPL: System Macros and Facilities Volume 1

Explanation

Symptom record component completed successfully
and the symptom record was recorded.

Successful completion of the SYMREC macro service
routine.

Error(s) detected on the SYMREC macro statement.
The entire input record was recorded. Following are
specific reasons why the symptom record component
processed unsuccessfully:

The input symptom record was successfully copied.
However, an attempt to write section 1 information
from the completed symptom record failed. The area
was found non-accessible to a write request.

Error(s) detected on the SYMREC macro statement.
A partial symptom record was recorded. Following
are specific reasons why the symptom record
component processed unsuccessfully:

c

r-

(

(

Return Code Reason Code

0158

015C

OOOC

0104

0108

OIOC

0114

0128

012C

0134

0144

0010

OF04

OF08

OFOC

OFIO

0014

Explanation

Total length of the input symptom record exceeds the
maximum.

Optional segments of the input symptom record were
found non-accessible. The record includes the
accessible entries of the input symptom record.

Serious error on the SYMREC macro statement. No
symptom record was recorded. Following are specific
reasons why the symptom record component
processed unsuccessfully:

The first 2 bytes of the input symptom record does
not contain the SR operand.

The input symptom record does not contain the
required entries for section 2.

The input symptom record does not contain the
required entries for section 2.1.

The input symptom record does not contain the
required entries for section 3.

Portions of the input symptom record were found
non-accessible to a write request.

Required portions of the input symptom record were
found non-accessible to a write request.

Input symptom record address is in non-accessible
storage.

Program attributes of the job issuing the SYMREC
macro are not written in accordance with the
symptom record component standards.

Serious error in the symptom record component.
Error is not related to SYMREC macro statement.
No symptom record was recorded. Following are
specific reasons why the symptom record component
processed unsuccessfully:

Insuflicient space in the LOGREC buffer to
accommodate the symptom record.

SYMREC macro service routine could not acquire
storage for its workarea and a copy of the symptom
record.

Failure occurred while moving the symptom record to
the LOG REC buffer.

SYMREC macro service routine has a logic error.

Symptom record component is not operable.

To invoke the SYMREC macro, an application must be authorized, enabled for interrupts, and
running in primary addressing mode (bit 16 of the PSW is equal to zero). The AMODE
attribute of the program can be set for either 24-bit or 31-bit addressing, but any address passed
to SYMREC must be a 31-bit address. A program that invokes SYMREC can be running in
cross memory mode, and it can be holding a suspend lock.

Reporting System Characteristics 1-55

The Format of the Symptom Record
The symptom record consists of six sections that are structured according to the format of the
ADSR DSECT. These sections are numbered 1 through 5, including an additional section that i("'.
is numbered 2.1. Because sections 2.1,3,4, and 5 of the symptom record are non-fixed, they do "L,,/
not need to be sequentially ordered within the record. In section 2, the application supplies the
offset and the length of the non-fixed sections. The ADSR format is described in the Debugging
Handbook, and the purpose of each section is as follows:

Section 1 (Environmental data): Section 1 contains the record header with basic environmental
data. The SYMREC caller initializes this area to zero and stores the characters, 'SR', into the
record header. The environmental data of section 1 is filled in automatically whenever the
SYMREC macro is invoked. The environmental data that SYMREC stores in this section
provides a system context within which the software errors can be viewed. Section 1 includes
itdms such as:

• CPU model and serial numbers
• Date and time, with a time zone conversion factor
• Name of the customer installation
• Product ID of the control program
• Special features installed, if any

Section 2 (Control data): Section 2 contains control information with the lengths and offsets of
the sections that follow. The application must initialize the control information before invoking
SYMREC for the first time. Section 2 immediately follows section 1 in the symptom record
structure.

Section 2.1 (Component data): Section 2.1 contains the name of the component in which the
error occurred, as well as other specific component-related data. The application must also
initialize section 2.1 before invoking SYMREC.

Section 3 (Primary SDB symptoms): Section 3 contains the primary string of problem
symptoms, which may be used to perform tasks such as duplicate problem recognition.
Whenever an application detects a given error, the string that it stores in section 3 becomes
uniquely associated with that error incident as its primary symptom string. Note that an
application does not store any primary symptom string or invoke SYMREC unless it detects an
error in its own processing.

Section 4 (Secondary SDB symptoms): Section 4 contains an optional secondary symptom
string. The purpose of the secondary string is to save any critical diagnostic values that existed
at the time of the incident.

Section 5 (Free-format data): Section 5 contains logical segments of optional problem related
data to aid in problem diagnosis. However, the data in section 5 is not in the SDB format,
which is only found in sections 3 and 4. Each logical segment in section 5 is structured in a
key-length-data format. This format consists of a two-byte key field, which is immediately
followed by a two-byte length field, which is immediately followed by a variable length data
field. The length that is indicated in the two-byte length field should be equal to the length of
the data field.

1-56 SPL: System Macros and Facilities Volume I

r' \J

(

(

(

(

Symptom Strings - SOB Format
The symptom strings placed in sections 3 and 4 of the symptom record must be in the SDB
(structured data base) format. In this format, the individual symptoms in sections 3 and 4 of the
symptom record are separated by syntactical dividers called prefixes. For more information on
the prefixes that SYMREC recognizes, see Debugging Handbook. Also see A Structured
Approach to Describing and Searching Problems for more general information on symptom
strings and prefixes. Examples of typical prefixes are:

PIDS/
RIDS/
AB/
PRCS
REGS/
LVLS/
FLDS/
VALU/

a component name follows the slash
a routine name follows the slash
an abend code follows the slash
a return code follows the slash
a register name follows the slash
a release level follows the slash
a data field name follows the slash
an error-related value follows the slash

An SDB symptom string is a continuous character string. Each prefix must end in a slash, and
a blank is required between successive symptoms in the string. For example:

LVLSjBle PIDSj5752SASR RIDSjASRSERVX PRCSjeeeeeeel REGSjGR14
VALUjH81ABCDEF FLDSjXSTATUS VALUjCUSED

Symptom strings in SDB format can be interpreted as meaningful remarks about program
incidents. The symptom string shown above is interpreted as follows:

LVLSjBlO
PIDS/5752SASR
RIDSj ASRSERVX
PRCS/OOOOOOO 1
REGS/GRI4
VALU/H81ABCDEF
FLDS/XST ATUS
VALU/CUSED

In release level B 10
of the component, 5752SASR,
routine ASRSERVX was executing,
and it received return code 00000001.
At that time. general register 14
contained hex 81ABCDEF, and
the field, XST ATUS,
contained characters USED.

Using EREP and IPes to Format Symptom Record Reports
To format and print various reports from the data on the repository, you use EREP and IPCS
programs, which invoke the SYMREC post-processing services. The four basic reports
generated by SYMREC post processing services are:

The System Summary Report: The system summary EREP report is an overview of processor,
channel, subchannel, operating system, and I/O subsystem errors. The report contains a count
per CPU of the symptom records that were stored.

The Event History Report: The event history report consists of one-line abstracts of selected
information from each record, listed in chronological order. The one-line abstract is the
primary symptom string. The event history also has a count of the symptom records classified
by processor.

The Detail Edit Report: The detail edit report shows the entire contents of an error record,
except for section 2. Optional fields that have not been completed, which contain hexadecimal
zeroes, are not included in the report.

Reporting System Characteristics 1-57

The Detail Summary Report: The detail summary report shows each unique primary symptom
string in the repository; it does not duplicate symptom strings that recur. For each unique
string, the report indicates the number of occurrences and the date and time of the first and last rr~.'.
occurrence. SYMREC uses the first 80 bytes of the symptom string when comparing for Ii_
duplicate strings.

Note: For detailed information on these reports, see Debugging Handbook.

Through EREP, you can generate all four reports, which are obtained when you specify the
TYPE = S parameter. IPCS can generate only one kind of report, the detail edit report. To
cause IPCS to generate this report, you specify the LOGDATA verb. LOGDATA causes one
report to be ,generated for each symptom record in its recording buffer.

Programming Notes for SYMREC Applications
This section contains programming notes on how the various fields of the ADSR data area
(symptom record) are set. Some fields of the ADSR data area (symptom record) must be set by
the caller of the SYMREC macro, and other fields are set by the system when the application
invokes the SYMREC service. The fields that the SYMREC caller must always set are indicated
by an RC code in the following sections. The fields that are set by SYMREC are indicated by
an RS code.

The RA code designates certain flag fields that need to be set only when certain kinds of
alterations and substitutions are made in the symptom record after the incident occurs. These
alterations and substitutions must be obvious to the user who interprets the data. Setting these
flag fields is the responsibility of the program that alters or substitutes the data. For example, if
a program changes a symptom record that is already written on the repository, it should set the
appropriate RA-designated flag-bit fields as an indication of how the record has been altered.

The remaining fields, those not marked by RC, RS, or RA, are optionally set by the caller of
the SYMREC macro. When SYMREC is invoked, it checks that all the required input fields in
the symptom record are set by the caller. If the required input fields are not set, SYMREC
issues appropriate return and reason codes.

Programming Notes for Section 1
Notes in this section pertain to the following fields, which are in section 1 of the ADSR data
area.

ADSRID Record header (RC)
ADSRGMT Local Time Conversion Factor
ADSRTIME Time stamp (RS)
ADSRTOD Time stamp (HHMMSSTH)
ADSRDATE Date (YYMMDD)
ADSRSID Customer Assigned System/Node Name (RS)
ADSRSYS Product ID of Base System (BCP) (RS)
ADSRCML Feature and level of Symrec Service (RS)
ADSRTRNC Truncated fl ag (RS)
ADSRPMOD Section 3 modified flag (RA)
ADSRSGEN Surrogate record flag (RA)
ADSRSMOD Section 4 modified flag
ADSRNOTD ADSRTOD & ADSRDATE not computed flag (RS)
ADSRASYN Asynchronous event flag (RA)
ADSRDTP Name of dump

1-58 SPL: System Macros and Facilities Volume I

\ , ~/

i("
" __ /i

(

(

(

('

Notes:

1.

2.

3.

4.

5.

SYMREC stores the TOO clock value into ADSRTIME when the incident occurs.
However, it does not compute ADSRTOD and ADSRDATE when the incident occurs, but
afterwards, when it formats the output. When the incident occurs, SYMREC also sets
ADSRNOTD to 1 as an indication that ADSRTOD and ADSRDATE have not been
computed.

SYMREC stores the customer-assigned system node name into ADSRSID.

SYMREC stores the first four digits of the base control program component id into
ADSRSYS. The digits are 5752, 5759 and 5745 respectively for MVS, VM, and DOS/VSE.

The ADSRDTP field is not currently used by the system.

If section 3 of a symptom record is changed or extended after SYMREC is invoked, the
program that makes the change should set the ADSRPMOD flag to 1. If section 4 of a
symptom record is changed or extended after SYMREC is invoked, the program that
makes the change should set the ADSRSMOD flag to 1. The purpose of these flags is to
indicate whether the symptom strings are original, intact, and exactly the same as when
SYMREC was invoked.

6. If some application creates the record asynchronously, that application should set
ADSRSYN to 1. 1 means that the data is derived from sources outside the normal
execution environment, such as human analysis or some type of machine post-processing.

7. If SYMREC truncates the symptom record, it sets ADSRTRNC to 1. This can happen
when the size of the symptom record provided by the invoking application exceeds
SYMREC's limit.

8. ADSRSGEN indicates that the symptom record was not provided as 'first time data
capture' by the invoking application. Another program created the symptom record. For
instance, the system might have abended the program, and created a symptom record for it
because the failing program never regained control. Setting the field to I means that
another program surrogate created the record. The identification of the surrogate might be
included with other optional information, for example, in section 5.

9. The application invoking SYMREC must provide the space for the entire symptom record,
and initialize that space to hex zeroes. The application must also store the value 'SR' into
ADSRID.

10. The fields ADSRCPM through ADSRFL2, which appear in the record that is written on
the repository, are also written back into the input symptom record as part of the execution
ofSYMREC.

Reporting System Characteristics 1-59

Programming Notes for Section 2
Notes in this section pertain to the following fields, which are in section 2 of the ADSR data
area.

ADSRARID
ADSRL
ADSRCSL
ADSRCSO
ADSRDBL
ADSRDBO
ADSRROSL
ADSRROSA
ADSRRONL
ADSRRONA
ADSRRISL
ADSRRISA
ADSRSRES

Notes:

Architectural level designation
Length of section 2
Length of section 2.1
Offset of section 2.1
Length of section 3
Offset of section 3
Length of section 4
Offset of section 4
Length of section 5
Offset of section 5
Length of section 6
Offset of section 6
Reserved for system use

(RS)
(RC)
(RC)
(RC)
(RC)
(RC)

1. The invoking application must ensure that the actual lengths of supplied data agree with
the lengths indicated in the ADSR data area. The application should not assume that the
SYMREC service validates these lengths and offsets.

2. The lengths and offsets in section 2 are intended to make the indicated portions of the
record indirectly addressable. Invoking applications should not program to a computed
absolute offset, which may be observed from the byte assignments in the data area.

3. The value of the ADSRARID field is the architectural level at which the SYMREC service
is operating. This field is supplied by the SYMREC service.

4. Section 2 has a fixed length of 48 bytes. Optional fields (not marked with RC, RS, or RA)
will contain zeroes when the invoking application provides no values for them.

Programming Notes for Section 2.1
Notes in this section pertain to the following fields, which are in section 2.1 of the ADSR data
area.

ADSRC C'SR21' Section 2.1 Identifier (RC)
ADSRCRL Architectural Level of Record (RC)
ADSRCID Component identifier
ADSRFLC Component Status Flags
ADSRFLC1 Non-IBM program flag (RC)
ADSRLVL Component Release Level (RC)
ADSRPTF Serv ice Level
ADSRPID PIO number (RC)
ADSRPIDL PIO release level (RC)
AOSRCDSC Text description
ADSRRET Return Code (RS)
ADSRREA Reason Code (RS)
AOSRPRID Problem Identifier
ADSRID Subsystem identifier

Notes:

1. This section has a fixed length of 100 bytes, and cannot be truncated. Optional fields (not
marked with RC, RS, or RA) will appear as zero if no values are provided.

2. ADSRCID is the component ID of the application that incurred the error, without the
imbedded punctuation that normally appears when the component id is seen in print.

1-60 SPL: System Macros and Facilities Volume!

".
,. ,I

(

(

Under some circumstances, there can be more than one component ID involved. For
ADSRCID, select the component ID that is most indicative of the source of the error. The
default is the component 10 of the detecting program. In no case should the component ID
represent a program that only administratively handles the symptom record. Additional and
clarifying data (such as, other component ID involved) is optional, and may be placed in
optional entries such as ADSRCDSC of section 2.1, section 4, or section 5.

For example: if component A receives a program check; control is taken by component B,
which is the program check handler. Component C provides a service to various programs
by issuing SYMREC for them. In this case, the component 10 of A should be given.
Component B is an error handler that is unrelated to the source of the error. Component C
is only an administrator. Note that, in this example, it was possible for B to know A was
the program in control and the source of the program check. This precise definition is not
always possible. B is the detector, and the true source of the symptom record. If the identity
of A was unknown, then B would supply, as a default, its own component ID.

ADSRCID is not a required field in this section, although it is required in section 3 after
the PIDS/ prefix of the symptom string. Repeating this value in section 2.1 is desirable but
not required. Where the component ID is not given in section 2.1, this field must contain
zeroes.

ADSRPID is the Program Information Department (PID) number assigned to the program
that incurred the error. It appears as a seven-character value with no punctuation and one
byte of padding. ADSRPID must be provided only by IBM programs that do not have an
assigned component ID. Therefore, ADSRCID contains hex zeroes if ADSRPID is
provided.

3. ADSRLVL is the release level of the assigned component ID. It is required even if the
assigned component ID value is not given in ADSRCID for IBM products. All release level
values are numeric values. Therefore, this field normally has a blank (X'40') as the
rightmost pad character.

4. ADSRPIDL is the release level of the program designated by ADSRPID, and it should be
formatted using the characters, V, R, and M as separators, where V, R, and M represent
the version, release, and modification level respectively. For example, V1R2lbbbbb is
Version 1 Release 2.1 without any modification. No punctuation can appear in this field,
and ADSRPIDL must be provided only when ADSRRPID is provided.

5. ADSRPTF is the service level. It may differ from ADSRLVL because the program may be
at a higher level than the release. ADSRPTF can contain any number indicative of the
service level. For example, a PTF, FMID, APAR number, or user modification number.
This field is not required, but it should be provided if possible.

6. ADSRCDSC is a 32-byte area that contains text, and it is only provided at the discretion of
the reporting component. It provides clarifying information. For example, 'lOS IOSB
ANALYSIS ROUTINE'.

7. ADSRREA is the reason code, and ADSRRET is the return code from the execution of
SYMREC. SYMREC places these values in registers 0 and 15 and in these two fields as
part of its execution. The fields are right justified, and identical to the contents of registers
o and 15.

8. ADSRCRL is the architectural level of the record. Note that ADSRARID (section 2) is the
architectural level of the SYMREC service.

9. ADSRPRID is a value that can be used to associate the symptom record with other
symptom records. This value must be in EBCDIC, but it is not otherwise restricted.

Reporting System Characteristics 1-61

10. ADSRNIBM is a flag indicating that a non-IBM program originated the symptom record.
When this flag is 1, ADSRPID, ADSRPIDL, and ADSRPTF are interpreted respectively as
program name, program major level, and program fix level. For IBM programs originating
a symptom record, this flag must be '0'.

11. ADSRSSID is the name of a subsystem. The primary purpose of this field is to allow IBM
subsystems to intercept the symptom record from programs that run on the subsystem.
They may then add their own identification in this field as well as additional data in
sections 4 and 5. The subsystem can then pass the symptom record to the system via
SYMREC. A zero value is interpreted as no name.

12. The ADSRVSE6 flag is set to 1 when the user has added another section to the symptom
record after sectio~ 5 (that is, the contents of ADSRRISL are non-zero).

Programming Notes for Section 3
Section 3 of the symptom record contains the primary symptoms associated with the error
incident, and it is provided by the application that incurred the error, or some program that
acts in its behalf. The internal format of the data in section 3 is the SDB format, with a blank
separating each entry. Once this data has been passed to SYMREC by the invoker, it may not
be added to or modified without setting ADSRPMOD to '1'. The data in this section is
EBCDIC, and no hex zeros may appear. The symptoms are in the form KID where K is a
keyword of 1 to 8 characters and D is at least 1 character. D can only be an alphanumeric or
@, $, and #.

Notes:

1. The symptom KID can have no imbedded blanks, but the '#' can be used to substitute for
desired blanks. Each symptom (KID) must be separated by at least one blank. The first
symptom may start at ADSRRSCS with no blank, but the final symptom must have at
least one trailing blank. The total length of each symptom (KID combination) can not
exceed 15 characters.

2. This section is provided by the component that reports the failure to the system. Once a
SYMREC macro is issued, the reported information will not be added to or modified, even
if the information is wrong. It is the basis for automated searches, and even poorly chosen
information will compare correctly in such processing because the component consistently
produces the same symptoms regardless of what information was chosen.

3. If section 3 is modified, then a flag in section 1 (ADSRPMOD) should be set to warn users
(such as detecting programs) that this data has been modified (perhaps to correct it), and
may be useless in SDB automated searches.

4. The PIDSI entry is required, with the component ID following the slash. It is required from
all programs that originate a symptom record and have component a ID assigned. Further,
it must be identical to the value in ADSRCID (section 2.1) if that is provided. (ADSRCID
is not a required field).

1-62 SPL: System Macros and Facilities Volume 1

\... ,7

c

(

(

<.

(

Programming Notes for Section 4
Section 4 of the symptom record contains the secondary symptoms associated with the error
incident, and it is provided by the application that incurred the error, or some program that
acts in its behalf. The internal format of the data in section 4 is the SDB format, with a single
blank separating each entry. Once this data has been passed to SYMREC by the invoker, it
may not be added to or modified without setting ADSRSMOD to). The data in this section is
EBCDIC, and no hex zeroes may appear. The symptoms are in the form, KID, where K is a
keyword of one to eight characters and D is at least one character. D must be alphanumeric or
@, $, or #.

Notes:

1. The secondary symptom string is in the same SDB format as the primary symptom string.

2. If any changes are made in this section, ADSRSMOD must be set to 1.

Programming Notes for Section 5
Section 5 of the symptom record contains logical segments of data that are provided by the
component or some program that acts in its behalf. The component may store data in section 5
when SYMREC is invoked, or the system may add notes in this section at the time of
SYMREC execution. Further, section 5 may be added to by a general edit of the record or by
other programs operating on the entry any time after SYMREC is invoked.

Notes:

1. The first segment must be stored at symbolic location ADSR5ST. In each segment, the first
two characters are a hex key value, and the second two characters are the length of the data
string, which must immediately follow the two-byte length field. Adjacent segments must be
packed together. The length of section 5 is in the ADSRRONL field in section 2, and this
field should be correctly updated as a result of all additions or deletions to section 5.

2. There are 64K key values grouped in thirteen ranges representing thirteen potential
SYMREC user categories. The data type (that is, hexadecimal, EBCDIC, etc.) of section 5
is indicated by the category of the key value. Thus, the key value indicates both the user
category and the data type that are associated with the information in section 5. Because
the component ID is a higher order qualifier of the key, it is only necessary to control the
assignment of keys within each component ID or, if a component ID not assigned, within
each PID number.

Key Value

OOOI-OOFF
OIOO-OFFF
IOOO-18FF
1900-IFFF
2000-BFFF
COOO-CFFF
DOOO-DFFF
EOOO-EFFF
FOOO
F001-FOFF
FlOO-FEFF
FFOO
FF01-FFFF

User Category and Data Type

Reserved
MVS system programs
VM system programs
DOS/VSE system programs
Reserved
Product programs and non-printable hex data
Product programs and printable EBCDIC data
Reserved
Any program and printable EBCDIC data
Not assignable
Reserved
Any program and non-printable hex data
Not assignable

Reporting System Characteristics 1-63

Obtaining Accumulated Processor Time
The TIMEUSED macro offers you the opportunity to record execution times and to measure
performance. TIMEUSED returns the amount of processor time that a work unit (such as a
task or an SRB) has used since it began executing.

TIMEUSED is available only to authorized programs (supervisor state or PSW key 0-7).

Example of measuring performance with TIMEUSED macro:

Use TIMEUSED to measure the efficiency of a routine or other piece of code. If you need to
sort data, you may now code several different sorting algorithms, and then test each one. The
logic for a test of one algorithm might look like this:

1. Issue TIMEUSED
2. Save old time
3. Run sort algorithm
4. Issue TIMEUSED
5. Save new time
6. Calculate time used (new time - old time)
7. Issue a WTO with the time used and the algorithm used.

After running this test scenario for all of the algorithms available, you can determine which
algorithm has the best performance.

1-64 SPL: System Macros and Facilities Volume 1

(

Communication

The following types of communication are included in this chapter:

• Interprocessor communication
• Writing operator messages
• Inter-address space communication

Interprocessor Communication
Interprocessor communication (lPC) is a function that provides communication between
processors sharing the same control program. Those executing functions that require a
processor or program action on one or more processors use the IPC interface to invoke the
desired action. The IPC function uses the signal processor (SIGP) instruction to provide the
necessary hardware interface between the processors.

Based on the condition code of the SIGP instruction, the IPC function may invoke the excessive
spin routine. The excessive spin routine may cause message IEE331A to be issued. This
message either requires the operator to initiate alternate CPU recovery (ACR) or continue with
processing. For more information concerning the SIGP instruction, see Principles of Operation.

Service Classes
IPC services divide the SIGP order codes into two classes, direct and remote. The SIGP
instruction and the valid order codes are documented in Principles of Operation.

Direct service class is defined for those control program functions that require the modification
or sensing of the physical state of one of the configured processors. The following SIGP order
codes can be invoked via the DSGNL macro instruction.

Sense: The specified processor presents its status to the issuing processor. No other action is
caused at the specified processor.

Start: The specified processor is placed in the operating state. The processor does not
necessarily enter the operating state during the execution of the SIGP instruction. No action is
caused at the specified processor if that processor is in the operating state when the order code
is accepted.

Stop: The specified processor stops. The processor does not necessarily enter the stopped state
during the execution of the SIGP instruction. No action is caused at the specified processor if
that processor is in the stopped state when the order code is accepted.

Restart: The specified processor restarts. The processor does not necessarily perform the
function during the execution of the SIGP instruction.

Stop and Store Status: The specified processor stops and stores status. The processor does, not
necessarily complete the operation, or even enter the stopped state, during the execution of the
SIGP instruction.

Store Status at Address: The specified processor stores status starting at a specified location.
If the specified processor is not stopped, it does not accept the order. The processor does not
necessarily complete the operation during the execution of the SIGP instruction.

© Copyright IBM Corp. 1982, 1989 Communication 1-65

Initial CPU Reset: The specified processor performs initial processor reset. The execution of
the reset does not affect other processors and does not cause any channels, including those
reconfigured to the specified processor, to be reset. The reset operation is not necessarily
completed during the execution of the SIGP instruction.

CPU Reset: The specified processor performs processor reset. The execution of the reset does
not affect other processors and does not cause any channels, including those configured to the
specified processor, to be reset. The reset operation is not necessarily completed during the
execution of the SIGP instruction.

Set Prefix: The specified processor's prefix register is set to the value passed to it by the
control program. If the specified processor is not stopped, it does not accept the order. This
function is not necessarily completed during the execution of the SIGP instruction.

Remote class services are defined for those control program functions that require the execution
of a software function on one of the configured processors. The remaining SIGP functions are
defined as remote services. External call is a remote pendable service that can be invoked via
the RPSGNL macro and emergency signal is a remote immediate service that can be invoked
via the RISGNL macro. A description of these services follows: ~

External Call: An "external call" external-interruption condition is generated to the specified
processor. The interruption condition becomes pending during the execution of the SIGP
instruction. The associated interruption occurs when the processor is interruptible for that
condition. Only one external-call condition can be kept pending in a processor at a time. Issue
the RPSGNL macro instruction to invoke the external-call function.

Emergency Signal: An "emergency-signal" external-interruption condition is generated at the
specified processor. The interruption condition becomes pending during the execution of the
SIGP instruction. The associated interruption occurs when the processor is interruptible for
that condition. At anyone time the receiving processor can keep pending one emergency-signal
condition for each processor of the multiprocessing system, including the receiving processor
itself. Issue the RISGNL macro instruction to invoke the emergency signal function.

Status Indicators
If the user receives a return code of 8 from the DSGNL macro, register 0 contains a status
indicator describing the state of the specified processor. The status indicators describe the
following conditions:

Equipment Check: This condition exists when the processor executing an instruction detects
equipment malfunctioning that has affected only the execution of the instruction and the
associated hardware function. The order code mayor may not have been transmitted, and may
or may not have been accepted, and the status bits provided by the specified processor may be
in error.

Incorrect State: This condition exists when an order has been directed to a processor that is
not stopped. The condition, when present, is indicated only in response to status or prefix.

Invalid Parameter: This condition exists when an address exception occurs. This happens
when the storage referenced by the status or prefix function is not installed or not configured
on the system. The condition, when present, is indicated only in response to status or prefix.

1-66 SPL: System Macros and Facilities Volume 1

(

(-

(

c

External Call Pending: This condition exists when an external-call interruption condition is
pending in the specified processor because of a previously issued SIGP instruction. The
condition exists from the time an external-call function is accepted until the resulting external
interruption is accepted. The condition may exist on the issuing processor or another processor.
The condition, when present, is indicated only in response to sense and to external call.

Stopped: This condition exists when the specified processor is in the stopped state. The
condition, when present, is indicated only in response to sense.

Operator Intervening: This condition exists when the specified processor is executing certain
operations initiated from the console or the remote operator control panel. The particular
manually initiated operations that cause this condition to be present depend on the model and
on the specified functions. This condition, when present, can be indicated in response to all
functions. Operator intervening is indicated in response to sense if the condition is present and
precludes the acceptance of any of the installed orders (or SIGP hardware functions). The
condition might also be indicated in response to unassigned or uninstalled orders.

Check Stop: This condition exists when the specified processor is in the check-stop state. The
condition, when present, is indicated only in response to sense, external call, emergency signal,
start, stop, restart, and stop and store status. The condition may also be indicated in response
to unassigned or uninstalled functions.

Invalid Function: This condition exists during the communications associated with the
execution of SIGP when the specified processor decodes an unassigned or uninstalled function
code.

MSSF Failure: This condition exists when the MSSF (3082) is currently inoperative. The
MSSF performs the SIGP between two processors.

Receiver Check: This condition exists when the specified processor detects malfunctioning of
equipment during the communications associated with the execution of SIGP. When this
condition is indicated, the function has not been initiated and, because the malfunction may
have affected the generation of the remaining receiver status bits, these bits are not necessarily
valid. A machine-check condition mayor may not have been generated at the specified
processor.

Communication 1-67

Writing and Deleting Messages {WTO, WTOR, DOM, and WTl}
The WTO and WTOR macro instructions allow you to write a message to a display device or a
printer at the operator console. Besides writing a message, WTOR allows you to request a reply
from the operator who receives the message. The DOM macro instruction allows you to delete
a message that is already written to the operator. The standard printable EBCDIC characters
that constitute messages are shown in Figure 21. All other characters, which are not printable,
are replaced by blanks. If the terminal does not have dual-case capability, it prints lowercase
EBCDIC characters as uppercase EBCDIC characters.

Hex EBCDIC Hex EBCDIC Hex EBCDIC Hex EBCDIC
Code Code Code Code

40 (space) 7B # 99 r D5 N
4A ¢ 7C @ A2 s D6 0
4B 7D A3 t D7 P
4C < 7E A4 u D8 Q
4D 7F A5 v D9 R
4E + 81 a A6 w E2 S
4F I 82 b A7 x E3 T
50 & 83 c A8 y E4 U
5A 84 d A9 z E5 V
5B $ 85 e CI A E6 W
5C * 86 f C2 B E7 X
50 87 g C3 C E8 Y
5E 88 h C4 D E9 Z
SF 89 C5 E FO 0
60 91 j C6 F FI 1
61 92 k C7 G F2 2
6B , 93 I C8 H F3 3
6C % 94 m C9 I F4 4
6D 95 n DI J F5 5
6E > 96 0 D2 K F6 6
6F ? 97 p D3 L F7 7
7A 98 q D4 M F8 8

F9 9

Figure 21. EBCDIC Characters Printed or Displayed on an MCS Console

Notes:

1. If the display service or printer is defined to JES3, the following characters are translated to
blanks:

T ! " ---,

2. The system recognizes the following hexadecimal representations of the U.S. national
characters: @ as X'7C'; $ as X'5B'; and # as X'7B'. In countries other than the U.S., the
U.S. national characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the $
character generates a X'4A'.

Routing the Message
The ROuTCDE parameter allows you to specify the routing code or codes for a WTO and
WTOR message. The routing codes determine which MCS console or consoles receive the
message. Each code represents a predetermined subset of the consoles that are attached to the
system, and that are capable of displaying the message. It is up to the user to define the
consoles that belong to each routing code. WTO and WTOR allow routing codes from 1 to
128. Routing codes 29 through 41 are reserved, and are ignored if specified. Routing codes 42
through 128 are available to authorized programs only, although the ROuTCDE parameter
itself is available to non-authorized as well as authorized users.

1-68 SPL: System Macros and Facilities Volume 1

/ "
'--

jl

(

(

(

(

The parameters, MSGTYP and MCSFLAG, which are associated with message routing, should
only be used by programmers familiar with multiple console support (MCS). The MSGTYP
parameter is typically used for messages related to the monitor command. The MCSFLAG
parameter is used to specify various attributes of the message, such as:

• Whether the message is for a particular console
• Whether the message is for all active consoles
• Whether the message is a command response
• Whether the message is for the hardcopy log

The MCSFLAG = BUSYEXIT parameter determines what happens if no message buffers are
available. If BUSYEXIT is specified and no console buffers for either MCS or JES3 are
available, or if BUSYEXJT is specified and there is a JES3 WTO staging area excess, the WTO
is terminated. If BUSYEXIT is not specified, the WTO invocation will be placed in a wait state
until WTO buffers are again available. BUSYEXIT is available to authorized programs only.

When MSGTYP = Y is specified, the MCSFLAG field indicates that the MSGTYP field is to
be used for the message routing criteria. In this case, the issuer of the WTO(R) must set a
message identifier bit in the MSGTYP field of the macro expansion. The macro expansion is
mapped by IEZWPL. When a message identifier bit is recognized by the system, the message is
routed to all consoles and TSO terminals (in operator modes) that have requested the particular
type of information represented by the identifier bit. If there are no consoles or terminals
requesting that kind of information, a WTO message is not sent anywhere; however, a WTOR
message is sent to the master console. The routing codes and REGO MCSFLAG field, if
present, are ignored when MSGTYP = Y is specified.

Another alternative for routing a message is to use the CONSID parameter. This parameter lets
you specify a field or register that contains the four-byte id of the console that is to receive the
message. This is a handy alternative to the MCSFLAG option of placing the console id in
register zero. When you issue a WTO or WTOR macro that uses both the CONSID and the
ROUTCDE parameters, the message(s) will go to all of the consoles specified by both
parameters.

Notes:

1. By using the various parameters of WTO(R), messages can be routed by route code,
console id, descriptor code, and message type. Messages can be sent on multiple paths. See
the description of the WTO(R) macro instruction in V01ume 2 for additional information.

2. For the convenience of the operator, messages can be associated with individual keynames.
A keyname consists of 1 to 8 alphanumeric characters, and it appears with the message on
the console. The keyname can be used as an operand in the D R console command, Which
operators can issue at the console. Use the KEY parameter on the WTO or WTOR macro
for this purpose.

Writing a Multiple-Line Message
Messages consisting of multiple lines should be issued using the WTO multiple-line capability to
assure that all lines of a multiple-line message appear together and are not broken up by other
single-line messages.

Using the WTO macro instruction, a program can write a multiple-line message to one or more
operator consoles. System programs (supervisor state, PSW key 0-7, or APF-authorized) can
create a message that consists of up to 255 lines with one WTO request. If more than 255 lines
are needed, the authorized user can issue more than one WTO.

Communication 1-69

------------------- -

When issuing more than one request, the first WTO supplies the first lines of the message, up to
a limit of 255 lines. Subsequent WTO requests can then add lines to the message. The
additional lines appear at the end of the message and continue until an "END" line is specified.
For the first request, you must ensure that the left most three bytes of register zero are zero. If
the bytes are not zero, WTO assumes that the multiple-line request is adding lines to an existing
message, and no new message is created.

After processing the first request, the system places a message identifier in register l. For each
additional request, you must pass this identifier to the subsequent lines via the CONNECT
parameter of WTO.

Embedding Label Lines in a Multiline Message
Label lines provide column headings in tabular displays. You can change the column headings
used to describe different sections of a tabular display by embedding label lines in the existing
multiline WTO message for a tabular display.

System programs (supervisor state, PSW key 0-7, or APF-authorized) that are authorized to
add lines to an existing multiline WTO message are also permitted to embed label lines within
that existing multiline WTO message. The label line does not have to appear immediately
following the control line and before the data lines. At most two label lines can appear
consecutively without an intervening data line.

Note: You cannot use the WTO macro instruction to embed label lines. The WTO macro
instruction handles label lines at the beginning of the message only.

Using the Authorized Parameters of WTO and WTOR
CONNECT, JOBID, JOBNAME, SUBSMOD, SYSNAME, PRTY, and SYSNAME are
authorized parameters used with WTO or WTOR.

The CONNECT parameter is used to connect a subsequent message to a previous message. For
example, if your program develops a large, multi-line message of unknown length, it can issue
different WTOs for the different parts of the message at different times. The CONNECT
parameter can force all these WTOs to use the same message id, and cause all the different
parts of the message to be physically reunited at the display console as a single message. To use
CONNECT, you save the message id that is returned in general register 1 after you issue the
first part of the multi-line message. On subsequent invocations of WTO for the remaining
message parts, you supply the returned message id as an input parameter by using the
CONNECT parameter. The end-of-message character in the text allows the system to recognize
the last WTO in the sequence, and to start issuing the message. CONNECT is mutually
exclusive with CONSID and SYSNAME, and it is not available with WTOR.

The SYSNAME parameter, which is mutually exclusive with CONNECT, is used to provide an
eight-byte system name that appears on the console with the message. SYSNAME is available
with WTO and WTOR.

The WQEBLK parameter, which is similar in principle to the DOMCBLK parameter of the
DOM macro, is used when the control information for WTO(R) is in a table instead of in the
input parameters. WQEBLK is mutually exclusive with all other parameters. As an example of
how WQEBLK can be used, an application might capture the internally-generated control table
resulting from the invocation of a previous WTO(R). Then it might supply this table as an
input parameter in the subsequent WTO(R), by using the WQEBLK parameter.

The JOBNAME and JOBID parameters are used to correlate WTO or WTOR macros and
their resulting messages with the jobs that are passing through the system.

1-70 SPL: System Macros and Facilities Volume 1

(.... "" ;'1'<

--."?!

c

(-

(

(,

The SUBSMOD parameter is used to indicate whether the message can be modified by a
subsystem, and the PRTY parameter is used to give the message a priority that is visible when
the message appears on the console. These two parameters are only available with WTOR.

Deleting Messages Already Written
The DOM macro deletes the messages that were created using the WTO or WTOR macros.
Depending on the timing of a DOM macro relative to the WTO or WTOR, the message mayor
may not have already appeared on the operator's console.

• When a message already exists on the operator screen, it has a format that indicates to the
operator whether the message still requires that some action be taken. When the operator
responds to a message, the message format changes to remind the operator that a response
was already given. The actual message, however, remains displayed until it rolls off the
screen. When DOM deletes a message, it does not actually erase the message. It only
changes its format, displaying it like a non-action message.

• If the message is not yet on the screen, DOM deletes the message before it appears. The
DOM processing does not affect the logging action. That is, if the message is supposed to
be logged, it will be, regardless of when or if a DOM is issued. The message is logged in
the format of a message that is waiting for operator action.

The program that generates an action message is responsible for deleting that message.

Identifying Messages to be Deleted
To identify the message(s) that you want to delete, you normally use the MSG, MSGLIST, or
TOKEN parameters. When you issue a WTO or WTOR macro instruction to write a given
message to the operator, the system generates a message id, which it returns in general register
1. To delete the message, you can issue the DOM macro instruction with a MSG or MSGLIST
parameter specifying the same system-generated message id that WTO or WTOR returned in
general register 1. If you specify MSGLIST (message list), then several message ids can be
associated with the delete request. The number of message ids in the message list is defined by
the COUNT parameter or it is defined by an 1 in the high order bit position of the last message
id in the list. The count parameter cannot exceed 60.

On the other hand, the TOKEN parameter allows the message id to be generated by the user
rather than the system. When you issue WTO or WTOR with a TOKEN parameter, the system
associates your TOKEN parameter with all the message(s) that are written by this particular
WTO or WTOR. Then you can issue DOM with the same TOKEN parameter to delete all the
message(s) associated with the token.

Limiting the Extent of Message Deletion
DOM allows you to limit the extent of message deletion. One way to limit the extent of
message deletion is to use the SYSID parameter, which deletes only messages from a particular
system whose id you specify. Another way to limit the extent of deletion is to use the SCOPE
parameter. If you specify SCOPE = SYSTEMS, the delete request is sent to all other processors.
To delete messages only within the host system, you can specify SCOPE = SYSTEM. SYSID
and SCOPE can only be coded by authorized users.

Communication 1-71

Custom-Built Delete Functions
When DOM executes, it builds a control block from the specified parameters to control the
execution of the delete. All the input parameters specified on the DOM macro are represented
by fields in this control block. However, the control block can be built directly by an authorized
user. To build the DOM control block without specifying parameters, simply specify the
address of the control block by using the DOMCBLK parameter. When this parameter is
specified, the system does not build any delete control block, and it substitutes the
user-provided control block instead.

Note: Specifying the REPLY = parameter of the DOM macro causes an MNOTE warning
message to be issued at assembly time. The MNOTE warns you that you are coding the
REPLY = parameter, which is a function no longer supported in the system. If you code the
REPL Y = parameter and receive the MNOTE warning, remove the REPLY = parameter from
your program and reassemble it. Programs containing the REPL Y = parameter that are already
assembled do not need to be reassembled.

Writing to the System Log
There are two ways to request that the system write a message to the system log:

• Use the HRDCPY option on the MCSFLAG parameter on the WTO macro.

• Use the HARDCOPY statement in CONSOLxx member of SYSl.PARMLIB to specify
that the message appear at the device that is the hardcopy log. Note that you can use this
member to direct the system log to a printer or a spooled file.

You can change this specification through the VARY HARDCPY command.

IBM recommends that you do not use the WTL macro to write to the system log. This macro
generates messages with formats that are inconsistent with other messages in the log.

Inter-Address Space Communication
There are many advantages to the use of multiple virtual address spaces. Virtual addressing
permits an addressing range that is greater than the real storage capabilities of the system. The
use of multiple virtual address spaces provides this virtual addressing capability to each job in
the system by assigning each job its own separate virtual address space. The potentially large
number of address spaces provides the system with a large virtual addressing capacity.

With multiple virtual address spaces, errors are confined to one address space, except for errors
in commonly addressable storage, thus improving system integrity and making error recovery
easier. Programs in separate address spaces are protected from each other. Isolating data in its
own address space also protects the data. In addition, having a separate address space for data
increases the amount of data that can be addressed.

In a multiple virtual address space environment, sometimes applications need ways to
communicate between address spaces. There are two basic methods of inter-address space
communication:

• Scheduling a service request block (SRB), an asynchronous process described in this chapter
(see" Asynchronous Address Space Communication.")

• Using cross memory services, a synchronous process that is also described later in this
chapter (see "Cross Memory" on page 1-79.)

1-72 SPL: System Macros and Facilities Volume 1

C,,·,_·."\
"

(

("

(

(

c

Asynchronous Address Space Communication
A program can use a dispatchable unit of work, the SRB, for asynchronous communication
between the program and a routine, the SRB routine, in another address space (or a routine in
the same address space). This process is called scheduling an SRB. While WAIT and POST
macros can synchronize communication between the program and the SRB routine, the major
advantage of scheduling an SRB is that an SRB routine is asynchronous in nature and executes
independently of the routine that scheduled it. This advantage makes SRBs very useful in the
following situations, where the scheduling program does not need to wait for the SRB routine
to finish executing:

• To process in parallel

In a multi-processor environment, the SRB routine, after being scheduled, can be
dispatched on another processor and can execute concurrently with the routine that
scheduled it. The scheduling program can continue to do other processing in parallel with
the SRB routine.

• To avoid serializing

Because the SRB represents a separate unit of work, the unit of work that schedules the
SRB routine is not serialized or delayed while the SRB routine completes its function. The
following types of delays can usually be avoided:

Page fault resolution
Address space swap-ins
Lock suspensions - wait time

• To account for resources

Because the SRB represents a separate unit of work, the processor time spent accomplishing
that work can be charged to the address space in which the SRB is executing.

• To make changes of state

In some instances, a routine might be executing in some state that prevents certain
functions from being performed. (For example, a routine that is in a disabled state cannot
request a suspend-type lock.) A routine can avoid these restrictions by scheduling an SRB
to complete the function.

• To raise the priority of a process

Because the SRB represents a separate unit of work, the SRB has its own dispatching
priority. It can execute at a priority higher than that of any address space or at the priority
of the address space in which it is scheduled.

A Service Request Block (SRB)
An SRB is a control block that represents an SRB routine that performs a particular function
or service in a specified address space. The SRB is similar to a TCB in that it identifies a unit
of work to the dispatcher. Some characteristics of an SRB are:

• The SRB is built by the program.

• The SRB is required only for initial dispatch. The user can free or reuse the SRB after it is
dispatched.

• An SRB cannot "own" storage areas. SRB routines can obtain, reference, use, and free
storage areas, but the areas must be owned by a TCB.

• An SRB has associated with it such resources as an FRR stack.

Communication 1-73

Two macros schedule and manage SRBs:

• The SCHEDULE macro service places the SRB on a dispatcher queue to be dispatched
when it becomes the highest priority work in the system. When the system dispatches the ,f
SRB, the SRB routine begins executing. ~..;

• The PURGEDQ macro service allows for cleanup of SRB activity.

The scheduling program must be in supervisor state with PSW key O. It first allocates storage
for the SRB from commonly addressable fixed storage (for example, subpool 245) either above
or below 16 megabytes. The storage key should be O. The program then initializes fields in the
SRB that identify:

• The SRB routine
• The address space in which the SRB routine is to execute
• The priority level of the SRB relative to other requests in the system
• Additional infortnation for recovery and control

The SRB can be reused after it has been dispatched. The program must provide the
serialization to ensure that it doesn't reschedule an SRB, or change or free the SRB while it still
on a dispatcher queue.

It is the scheduling program's responsibility (not the system's) to obtain storage for the SRB,
and then to free this storage when the SRB is no longer needed.

The Content of an SRB
Before issuing the SCHEDULE macro, the scheduling program must initialize the fields in the
SRB. Use the following information to help you initialize the SRB. IHASRB macro maps the
structure of an SRB. To see the format of the SRB, see IHASRB mapping macro in Debugging

/'
(

Handbook. You can include IHASRB in your program. /' ~\

SRBASCB

SRBPKF

SRBEP

SRBSAVE

SRBPARM

SRBCPAFF

SRBRMTR

Contains the address of the ASCB of the address space in which the SRB
routine will execute.

Indicates, in the 4 high-order bits, the PSW key of the SRB routine. The 4
low-order bits must be zero.

Specifies the address of the entry point of the SRB routine. If the SRB routine
is to execute in 31-bit addressing mode, set the high-order bit in the field to 1;
if the routine is to execute in 24-bit addressing mode, set the high-order bit to
O.

Contains all zeroes. This field is used by the system.

Contains the address of a user parameter area. The system will load the
address into register 1 when the system dispatches the SRB routine. Through
this field, the scheduling program passes infomlation to the SRB routine.

Defines the processor affinity. If all zeroes or all ones, no affinity is implied.
Otherwise, this field contains a bit mask in which the bits that are set "on"
indicate on which processors the SRB can be dispatched. (For example, set the
nth bit "on" to indicate that the SRB can be dispatched on the processor with
physical address n.)

Contains the address of an RMTR. This routine is responsible for cleaning up
an SRB that has been scheduled but not yet dispatched. The RMTR is
required; SRBRMTR must contain a valid nonzero address. For information
about the RMTR, see "Resource Manager Termination Routine (RMTR)" on
page 1-78.

1-74 SPL: System Macros and Facilities Volume 1

c

(~

(

SRBPTCB

SRBPASID

SRBFRRA

Priority of the SRB

Contains the address of a TCB that is associated with the SRB routine. The
system uses this address in two ways:

• If the SRB routine abends and its FRR does not exist or does not retry,
the task is scheduled for abnormal termination.

• If the specified TCB terminates, the system purges the SRB and gives the
RMTR control.

If this SRB is not related to any task, or purging is not necessary, specify a
zero value.

Contains the ASID of the address space associated with the SRB routine. If
you specified a nonzero value in SRBPTCB, you must specify a value for
SRBPASID; the value must contain the ASID of the address space containing
that TCB. Otherwise, this field can be zeroes.

Contains the address of an FRR that receives control if the SRB routine
abends. If the FRR is to execute in 3l-bit addressing mode, set the high-order
bit in the field to 1; if the routine is to execute in 24-bit addressing mode, set
the high-order bit to O.

Through the SCHEDULE macro, a program schedules either a global SRB (through
SCOPE = GLOBAL) or a local SRB (through SCOPE = LOCAL), depending on the priority at
which you want the system to dispatch the SRB. The system gives a global SRB a priority that
is above that of any task in any address space. The system gives a local SRB a priority equal
to that of the address space in which it is dispatched, but higher than that of any task within
that address space.

The global SRBs that user programs dispatch compete with the global SRBs that the system
dispatches. Therefore, it is recommended that you specify SCOPE = LOCAL (the default).

Characteristics and Restrictions of SRB Routines
At entry, an SRB routine is in supervisor state, primary ASC mode, enabled and unlocked.
The general purpose registers contain the following:

Register Contents

o Address of the SRB

Area for passing user parameters from the scheduling program to the SRB
routine (same as SRBPARM)

2

14

15

If FRR = YES, 24-bit address of FRR parameter area; otherwise unpredictable

Return address

Entry point address

Other general purpose registers and all access registers are unpredictable.

The SRB routine runs in the operating mode known as SRB mode. Code in SRB mode:

• Cannot leave supervisor state and must establish its own recovery environment. However,
the scheduling program can specify that the SRB routine be dispatched with a LOCAL lock
held (LLOCK = YES) or have a recovery routine established for the SRB routine
(FRR = YES), or both.

• Can request any lock through the SETLOCK macro

Communication 1-75

• Cannot issue SVCs except ABEND. This limitation means that a program in SRB mode
cannot issue some of the system macros and data management macros such as OPEN and
CLOSE. The macro descriptions in the SPL: System Macros and Facilities Volume 2 and tf"""\

Supervisor Services and Macro Instructions tell whether you can use the macros in SRB ,_../
mode. If a description does not give this information, you can assume that the macro does
not support SRB mode callers.

• Must provide for all cleanup before it completes execution. Cleanup activity might include
freeing the SRB storage.

• Must return control to the address supplied in register 14, in supervisor state with no locks
held, except the CPU lock. (If LLOCK = YES, the routine must release the LOCAL lock.)

• Can issue a PC instruction and schedule an SRB

• Should not be a long-running program. An SRB routine is generally not preempted by I/O
interruptions once the SRB is dispatched.

Although SRB routines run enabled and can be interrupted by an asynchronous interruption,
they do not lose control to higher priority tasks or SRBs until they give up control voluntarily.
However, SRBs might lose control because of synchronous events that cause suspension of the
program in control, such as page faults and unconditional requests for suspend-type locks. In
this case, full status of the process is saved and other work is dispatched; the SRB is
redispatched when the situation is resolved.

An enabled SRB routine can take page faults.

• If the routine does not hold any locks when the page fault occurs, the system suspends the
SRB, which allows the system to dispatch other work on the active processor. The system
redispatches the SRB when after resolves the page fault.

• If the routine holds a suspend type lock (such as a local, CML, or CMS lock) when a page
fault occurs, the suspended SRB continues to hold those locks. The system suspends other
workunits that require the lock held by the suspended SRB until the system redispatches the
SRB and explicitly releases those locks.

Purging SRBs (PURGEDQ)
Because an SRB routine is dispatched after the program actually issues the SCHEDULE
macro, the conditions that existed in the system at the time the SCHEDULE was issued might
have changed by the time the SRB routine is dispatched. If, in this time interval, the
environment that the SRB routine needs to run successfully has been changed, the results are
unpredictable. An example of a changed environment is when a task or address space
terminates, leaving outstanding requests for the task or address space. The system issues
PURGEDQs at task and address space termination. For task termination, any SRBs associated
with the task (SRBPTCB) are purged. For address space termination, any SRBs scheduled to
the address space (SRBASCB) are purged. If there are any other conditions for which your
SRBs should be purged, you should issue PURGEDQ to cover them. For this reason, a
program, such as an FRR, an ESTAE routine, or a resource manager, might use the
PURGEDQ macro to:

• Dequeue SRBs that are scheduled, but not yet dispatched
• Allow processing for previously scheduled SRBs to complete
• Purge each dequeued SRB

1-76 SPL: System Macros and Facilities Volume I

./

c

(-

(

(

The program must tell PURGEDQ which SRBs are to be purged. Input to PURGEDQ is as
follows:

• The address of the RMTR (RMTR parameter, required).

• The address space identifier (corresponding to SRBASCB) of the address space in which the
SRB is scheduled to be dispatched (ASID parameter, optional).

• The address space of the TCB associated with the SRB that the system is to purge
(ASIDTCB parameter, optional).

The RMTR parameter specifies the address of the RMTR. The RMTR cleans up an SRB that
has been scheduled, but not yet dispatched. The system purges only those SRBs whose
SRBRMTR field contains the address of the RMTR, as specified on the PURGEDQ macro.

The ASID parameter specifies the address of a halfword containing an address space identifier.
PURGEDQ searches for SRBs scheduled to be dispatched into the address space specified by
this parameter.

• If you specify the current address space, the PURGEDQ routine waits for completion of
any active SRBs and then dequeues all nondispatched SRBs. After all of the SRBs have
been dequeued or completed, the RMTR specified in the SRB is given control to perform
the required cleanup for each dequeued SRB. No locks should be held when PURGEDQ is
invoked.

• If you specify an address space other than the current address space, only SRBs that have
not yet been dispatched are affected because PURGEDQ does not wait for SRBs already
dispatched but not completed.

If you omit the ASID parameter, the system uses the current address space.

The ASIDTCB parameter specifies the address of a doubleword that describes the TCB for
which SRBs are to be purged. Through this parameter, you can purge the SRBs associated
with a specific task. If you omit the parameter, the system purges SRBs associated with the
current task in the current address space.

Specify the ASIDTCB parameter in one of the following ways:

I. To purge all SRBs scheduled to a specific address space as defined by ASID:

Bytes 0 - 7 Zero The system is to purge all SRBs defined by the ASID
(SRBASCB) and RMTR parameters, regardless of their task
(SRBPASID) and address space (SRBPTCB) association.

2. To purge all SRBs scheduled by a specified address space:

Bytes 0 - I
Bytes 2 - 3
Bytes 4 - 7

Reserved
ASlD
Zero

The system is to purge all SRBs defined by the
ASID and RMTR parameters and associated
with the specified address space (SRBPASID), regardless of
their task (SRBPTCB).

3. To purge SRBs associated with a specified TCB in a specified address space:

Bytes 0 - 1
Bytes 2 - 3
Bytes 4 - 7

Zero
ASlD
TCB

The system is to purge all SRBs defined by the
ASID and RMTR parameters and associated
with the specified address space (SRBPASID) and task
(SRBPTCB). (If you specify SRBPTCB, you must also
specify SRBPASID.)

All other values produce unpredictable results.

Communication 1-77

Resource Manager Termination Routine (RMTR)
If the system has purged the SRB from the dispatching queue before the SRB routine can run,
PURGEDQ calls the RMTR associated with the SRB. The primary purpose of the RMTR is rf""'"
to clean up the SRB activity. The routine can either free the SRB storage by invoking the \~
FREEMAIN macro or mark the SRB so that it can be reused. The choice depends on how
your application manages its SRBs.

The RMTR must be commonly addressable from all address spaces and must remain in
supervisor state. One RMTR can provide recovery for more than one SRB. However, then
you must be more careful when you tell the PURGEDQ macro which SRB (or SRBs) to purge.

At entry, the RMTR must be enabled, in supervisor state, with PSW key 0, and hold no locks.
Entry register contents are as follows:

Register

o

2

14

15

Contents

Contents of register 0 of the caller of PURGEDQ at the time the PURGEDQ
SVC was issued. This register allows the caller of PURGEDQ to pass
information to the RMTR.

Address of the dequeued SRB.

Contents of SRBPARM of the dequeued SRB.

Return address of PURGEDQ.

Entry point of RMTR.

The RMTR must return control using a BR 14, enabled, in supervisor state with PSW key 0
and hold no locks. It may, however, acquire locks, issue SVCs and destroy input registers
during its processing.

Synchronous Inter-Address Space Communication
MVSjXA provides a synchronous method of communication between address spaces that is
called cross memory. Using cross memory, programs can pass control directly to programs in
other address spaces and can move data directly from one address space to another. At any
time, a program has associated with it two addressable address spaces, the primary address
space and the secondary address space. It is between these two address spaces, which may be
the same, that synchronous communication occurs.

Three of the ways cross memory can be used are program sharing, data movement, and data
access.

Program Sharing: A program residing in the private area of a particular address space can be
directly called by programs residing in a number of different address spaces. These address
spaces must have such calling ability defined for them. MVSjXA provides a set of macro
instructions to establish the required access structures. Thus, a service needed by a number of
address spaces no longer has to reside in commonly addressable storage, or have multiple
images in many address spaces.

Data Movement: A program can move data directly between the primary and secondary
address spaces, within an address space, and between storage areas of differing storage
protection keys. Thus, programs can pass data directly between address spaces.

Data Access: A program residing in commonly addressable storage can choose to access data I'e' "",

from either the primary or secondary address space. Being able to access data in two address ...
spaces increases the amount of data that the program can handle.

1-78 SPL: System Macros and Facilities Volume 1

(

(

('--'

. -

Program sharing, data movement, and data access enable cross memory to provide:

• Storage isolation and protection of code and data structures. By moving their programs
and data structures from commonly addressable storage to their own address spaces,
MVS/XA components and subsystems avoid the accidental destruction of their information
by unrelated processes.

• Migration of code and data from commonly addressable storage to private storage. With
code and data migrating to private storage, the common storage requirements of the system
decrease. This decrease effectively expands the private area addressing range and provides
each user with more virtual storage.

• Creation of data address spaces. Partitioning data into address spaces isolates sensitive
data and provides restricted access to it. This also enables a program to address greater
amounts of data.

Cross Memory
Cross memory is a very complex concept, and there are a number of warnings and restrictions
associated with its use. Before listing the restrictions, however, some definitions are needed.

Cross Memory Terminology: The following terms are associated with cross memory.

• Cross memory environment: The environment in which synchronous inter-address space
communication can take place.

• Home address space: The home address space, whose address space identifier (A SID) is
called the HASID1, is the address space defined by PSAAOLD. The home address space
contains the address space local control blocks that describe a unit of work to the control
program. On initial dispatch of a unit of work, the home address space and the primary
address space are the same.

• Primary address space: The primary address space, whose ASID is called the PASID2, is
the address space whose segment table is used to access data and instructions in primary
mode.

• Secondary address space: The secondary address space, whose ASID is called the SASID2,
is the address space whose segment table is used to access data in secondary mode. In
secondary mode, instructions must be in common storage because they might be fetched
from either the primary or secondary address space.

• Current address space: The current address space is the primary address space when in
primary mode and the secondary address space when in secondary mode.

• Primary mode: In primary mode, instructions and data are fetched from the primary
address space.

• Secondary mode: In secondary mode, data is fetched from the secondary address space.
Instructions might be fetched from either the primary or secondary address space.

• Home mode: A unit of work is in home mode if it is in primary mode and HASID and
P ASID are the same.

• CML lock: The cross memory local (CML) lock is the local level lock of an address space
other than the home address space.

1 Principles of Operation uses the terms HASN, PASN, SASN, and primary-space mode.
MVS/XA publications use the equivalent terms HASID, PASID, SASID, and primary mode .

2 Principles of Operation uses the terms HASN, PASN, SASN, and primary-space mode.
MVS/XA publications use the equivalent terms HASID, PASID, SASID, and primary mode.

Communication 1-79

• Cross memory mode: Cross memory mode exists when at least one of the following is true:

The home address space is not the primary address space.
The home address space is not the secondary address space.
Secondary mode is active.
A CML lock is held.

• Active addressing bind to an address space: An executing unit of work has an active
addressing bind to an address space if that address space is the current PASlD or SASlD.

• Active bind to an address space: An executing unit of work has an active bind to an
address space if the unit of work holds the CML lock of that address space or if the
address space is associated with the current HASlD, PASlD, or SASlD.

A series of macro instructions create a cross memory environment. The macro instructions
establish the necessary linkage and authorization information for synchronous inter-address
space communication. The following System/370-XA instructions actually accomplish the
communication:

• PC - program call - causes another program to get control. The program can be in another
address space.

• PT - program transfer - returns control from the program called by the PC instruction to
the calling program.

• SSAR - set secondary ASN3 - sets the secondary address space to any desired address space.

• MVCP - move to primary - moves data from the secondary address space to the primary
.address space.

• MVCS - move to secondary - moves data from the primary address space to the secondary
address space.

• MVCK - move with key - moves data between storage areas that have different protection
keys.

• SAC - set address space control - explicitly sets either the primary or secondary mode.

• lAC - insert address space control - indicates in a general purpose register whether primary
or secondary mode is in effect.

• EPAR - extract primary ASN3 - places the primary ASlD into a general purpose register.

• ESAR - extract secondary ASN3 - - places the secondary ASlD into a general purpose
register.

Warnings and Restrictions: The design and implementation of programs using synchronous
cross memory communication is extremely complex. System services use cross memory on a
user's behalf; the user can obtain the benefits of cross memory without having to know the
details. Using cross memory services improperly could cause severe system problems.
Therefore, it is very important to consider all the implications of using cross memory. Some
general considerations that apply to users of cross memory are:

• Real storage requirements might increase.
• Resource management is different.
• Accounting methods might be affected.

J Principles of Operation uses the term ASN. MVS/XA publications use the equivalent term ASID.

1-80 SPL: System Macros and Facilities Volume 1

/f~""".

,-""

/" "
\,.

c

(

(

Cross memory has the following specific restrictions:

• Services are not available in cross memory mode unless their description specifically states
that they are available.

• Code running in cross memory mode cannot issue any SVCs except ABEND. That is, any
system service that depends on SVCs is not available in cross memory mode. TSO test, for
example, provides only limited testing for programs that execute in cross memory mode
because TSO test uses the TEST SVc.

• Only one step of a job can establish ownership of space switch entry tables. Subsequent job
steps cannot issue the LXRES, AXRES, or ETCRE macro instructions.

• MVS/XA does not support cross memory accesses to a swapped-out address space; such
accesses cause an ASID translation exception-program interruption that is treated as an
error. Thus, in order to be accessed, the address space must be one of the following:

The home address space
A non-swappable address space
An address space whose local lock is held

This restriction must be a major consideration when using cross memory because it might
increase the storage requirements of the system.

• Some MVS/XA services require an active addressing bind to the address space in \\~J.ich
processing is to occur. Such an address space must be one of the following:

The home address space
A non-swappable address space
An address space whose local lock is held

If none of these three requirements are met, the address space might be swapped out and a
unit of work that referenced the address space would be abnormally terminated.

• Storage acquired in a cross memory environment is attributed to the job step task of the
address space in which it was obtained if the subpool it comes from is task related. A
program that acquires such a resource should provide a task termination/address space
termination resource manager to clean up any resources obtained on behalf of the
terminating task or address space but attributed to another address space's job step task.
For more considerations on resource management see "Designing a PC Routine" later in
this section.

• Execution time is attributed to the home address space, not necessarily the address space in
which the program executes.

• Routines that get control as the result of a PC instruction must not use the
checkpoint/restart facility.

Summary of MVS/XA Facilities Available in Cross Memory Mode
The MVS/XA facilities available in cross memory mode can be divided into two categories:
those services that are available to cross memory mode programs without restriction and those
services that have special cross memory options or restrictions associated with their use. A list
of the macro instructions available without restrictions to cross memory mode caBers and a list
of the macro instructions that have special options or restrictions for cross memory callers are
provided in Volume 2 under the topic "Cross Memory Restrictions for Macro Instructions."

Communication 1-81

In addition to the services provided by the macro instructions, the following functions are
available to cross memory mode programs without restriction:

Segment and page faults - The system function of resolving segment and page faults is
supported for a unit of work executing in cross memory mode.

Dispatcher, interrupt handling - The MVSjXA dispatcher and interrupt handlers, except the
SVC interrupt handler, support programs executing in cross memory mode, and these
functions save and restore the additional status required by cross memory mode programs.

System tracing also traces cross memory information.

The macro instruction descriptions in Volume 2 give details about cross memory support.

Cross Memory Structures
Cross memory uses a set of programming and data structures that can be divided into three
functional areas: cross memory authorization, cross memory linkage, and linkage conventions.

"Cross Memory Authorization" describes how address spaces and programs are authorized to
use PT, SSAR, and PC instructions and how the user can request that the system provide this
authorization.

"Cross Memory Linkage" describes the structures and tables used by the PC instruction and
how a user can request that the system create and connect these structures to particular address
spaces.

"Linkage Conventions" describes a set of programming conventions that must be used to
preserve register information and maintain system serviceability when using cross memory.

Cross Memory Authorization: Cross memory uses a more flexible authorization mechanism for
inter-address space communication than the PSW key zero, supervisor state requirement for
scheduling SRBs. There are multi-level authorization facilities that permit both supervisor and
problem state programs in an address space to access programs and data in a selected set of
address spaces, and also to restrict an individual problem state program's access to only a
selected set of programs in other address spaces.

Programs have a selected set of PSW keys to which they are authorized, and, in problem state,
this set controls the program's authority to access data in the secondary address space. Users
request authorization by invoking a series of macro instructions.

Address Space Authorization: An address space's authorization to access other address spaces
is based upon the authorization index (AX). Each address space has an AX. A program runs
with the AX of the primary address space. The AX indicates the authority of the program to
set another address space as its primary address space using the PT instruction and to set
another address space as its secondary address space using the SSAR instruction.

The PT instruction is the mechanism used to return control from a PC routine (a routine that
gets control as the result of a PC instruction). A program should use the PT instruction only to
return to a program that called it using the PC instruction because instruction processing
continues at the specified virtual address in the new primary address space, and system integrity
and serviceability might be exposed by using the PT instruction in any other way.

Once a program has established another address space as its secondary address space, the

,r"
(,~ ,

'--'I

/

_,7'

program is authorized to move data between the secondary address space and the primary C'''', '
address space if the storage protection key of the data permits. The program can also directly
reference data in the secondary address space by switching to secondary mode if the storage
protection key of the data permits.

1-82 SPL: System Macros and Facilities Volume 1

(

(

Each address space has associated with it an authorization table (AT). The AT contains one
entry for every AX in use and indicates the authority of programs running with that AX to
issue PT and SSAR instructions to the address space. The AX is used to index into the AT of
the target address space on a PT or SSAR instruction to check if the issuing program has the
authority to set the target address space as its primary or secondary address space.
Authorization checking is required for both supervisor state and problem programs.

A particular address space, then, can selectively obtain PT and SSAR authority to a specific set
of address spaces based on the A Ts of those address spaces.

MVSjXA provides macro instructions to supervisor state or PKM 0-7 (the PKM is described
below under "Program Authorization") programs to:

• Reserve an AX value for an address space (AXRES macro instruction)

• Free an AX value (AXFRE macro instruction)

• Set an address space's AX to a specified value (AXSET macro instruction)

• Set an address space's AT to indicate authorization levels for a specified AX value (ATSET
macro instruction)

• Determine the AX value of an address space (AXEXT macro instruction)

All address spaces start with an AX of O. An AX of 0 is an unauthorized AX value that
prevents the address space from using PT and SSAR instructions. An AX of 1 is a fully
authorized AX value that permits the address space to issue PT and SSAR instructions to any
active address space. Certain system services that functionally serve all address spaces have an
AX of 1. To have any other AX value, the user must explicitly reserve and set the AX with the
AXRES and AXSET macro instructions, respectively. An address space to which this AX
value is to be authorized (the address space to be accessed using PT and SSAR) must have its
AT set using the A TSET macro instruction.

Program Authorization - PKM (PSW Key Mask): Each program has associated with it a PSW
key mask (PKM) value. The PKM value can authorize individual programs to use cross
memory. The PKM is a 16-bit string value that represents storage protection keys that are
valid for the program to use, where bit n equal to 1 indicates that the program is authorized to
use key n. The PKM is used only to perform authorization checking for problem state
programs; supervisor state programs do not require PKM authority.

The PKM value is checked to see whether a problem state program can use the secondary
access key specified on the MVCP and MVCS instructions to access storage in the secondary
address space. It is also checked to see whether a problem program can use the secondary
access key on the MVCK instruction.

The PKM value is also checked to see whether a problem program can issue a PC instruction.
The PC instruction looks up an entry table entry (described later under "Cross Memory
Linkage") that contains information for the PC instruction. Part of this information consists of
an authorization key mask (AKM) value. The AKM is a 16-bit string value that indicates
authorized keys in which a problem program can use a particular PC instruction. If the
program's PKM indicates that it is authorized to use any of the keys indicated by the AKM,
then the program can use the PC instruction. The PKM value also indicates whether a problem
program can set a particular PSW key using the SPKA instruction.

All programs are initially dispatched with a PKM value equal to the bit mask representation of
the field TCBPKF or SRBPKF. For example, X'0080' represents key 8 and X'8000' represents
key O. The PKM value can be changed using the PC and PT instructions and the MODESET
SVC instruction.

Communication 1-83

The MODESET SVC sets the PKM value to the bit mask representation of the PSW key value
when control returns to the program in prpblem state.

The entry table that contains information for the PC instruction also contains an execution key
mask (EKM). The EKM is a 16-bit string value like the PKM and could contain additional
keys to which the PC service is to be authorized. The EKM is ORed into the PKM when the
PC routine receives control.

A program that issues a PT instruction specifies a 16-bit string value that indicates the PSW
keys the program is authorized to use when the PT instruction is completed. This 16-bit string
is ANDed with the original PSW key mask, and the result is placed in the PSW key mask in
control register 3.

Cross Memory Linkage: Synchronous cross memory transfer of control is done with the
program call (PC) instruction and the program transfer (PT) instruction. The PC instruction
uses a PC number as input. The PC number is composed of two concatenated indexes, the
linkage index (LX) and the entry index (EX). The PC instruction uses these indexes to perform
a two level table lookup that causes a specific program to get control in the address space and
mode specified in the table.

The first level table is the linkage table; the second level table is the entry table. Figure 22
shows how the PC number is used to access a particular entry table entry. The first portion of
the PC number is the linkage index (LX), which selects a specific entry in the linkage table.
The low order byte of the PC number is the entry index (EX), which is an index into the entry
table pointed to by the linkage table entry. The entry table entry contains information that
describes the program to receive control.

PC number

----------_/~~----------
(' '\

PC I 0 LX EX I
o 11 12 23 31

select linkage table entry select entry table entry

Linkage table

Entry table Ii> .

Entry table Ii> "------.~
I------------l

Figure 22. PC Number Indexing Link.age and Entry Tables

1-84 SPL: System Macros and Facilities Volume 1

Entry table

Program Ii> , etc.

,/ ,
,

- /

c

(-

(--

(

.--~.---. _._----

Linkage Tables: There is a linkage table associated with each address space in the system. An
address space can have its own unique linkage table that gives it a set of cross memory services
that is different from the set of services for any other address space. The linkage table can
contain up to 1024 entries. Each linkage table entry can point to an entry table that describes a
subset of the services available to the address space.

When a program wants to provide services via the PC instruction, it reserves an index into
every linkage table in the system. The program connects an entry table to the reserved index
for every linkage table whose address space is to have access to the services. To reserve an
index, the program invokes the reserve linkage index service by issuing the LXRES macro
instruction, which returns the reserved linkage index (LX). For further details, see "How to
Establish a Cross Memory Environment" later in this section.

Entry Tables: Each program that provides services accessed via a PC instruction owns one or
more entry tables. These entry tables are connected to the linkage tables of those address
spaces that require access to the programs. Each entry in the entry table contains the following
information about the program to be given control:

• Instruction address - specifies the addressing mode and virtual address in which the service
is to receive control. (The addressing mode bit specifies the addressing mode of the called
program as 24-bit or 31-bit.) For those entry table entdes that do not descdbe user defined
programs, this entry points to a special abend routine.

• ASID - specifies the ASID of the address space in which the called program will execute. If
the value is zero, the program executes in the caller's primary address space.

• Problem state bit - specifies whether the called program will operate in problem state or
supervisor state.

• Authorization key mask (AKM) - the AKM and the EKM are described earlier under
"Cross Memory Authorization."

• Execution key mask (EKM) - the EKM and AKM are described earlier under "Cross
Memory Authorization."

• Latent parameter address - specifies the address of a double word to be passed to the called
program. The entry table creator supplies the first word. The second word is used by the
PC LINK macro instruction. (PC LINK is described later in this section under "Linkage
Conventions. ")

An entry index (EX) is associated with each entry created in the entry table; the first entry has
an EX of X'OO' and subsequent entries have EXs of X'Ot' through X'FF'.

A program creates an entry table by issuing the ETCRE (create entry table) macro instruction,
supplying all necessary details about the programs to receive control. These details go into the
entry table. The ETCON and ETDIS macro instructions, respectively, connect and disconnect
entry tables from linkage tables. The ETDES macro instruction destroys an entry table by
removing it from the system. The uses of these macro instructions are described in greater
detail in "How to Establish a Cross Memory Environment" later in this section. Figure 23
summarizes the macro instructions used to establish authorization and linkage.

Communication 1-85

.... - -- .. -.--.. ---.. -.~~-- ... --.. --~

Macro Instructions
For Authorization

AXRES (Reserve AX)
AXFRE (Free AX)
AXEXT (Extract AX)
AXSET (Set AX)
A TSET (Set AT)

Macro Instructions
For Linkage

LXRES (Reserve LX)
LXFRE (Free LX)
ETCRE (Create ET)
ETDES (Destroy ET)
ETCON (Connect ET)

ETDIS (Disconnect ET)

Function

Reserve authorization index
Return an AX for reuse
Determine the AX of an address space
Set the AX for an address space
Set PT and SSAR authority in an
authorization table entry

Reserve a linkage index
Return an LX for reuse
Create an entry table
Destroy an entry table
Connect an entry table to a linkage
table at the specified LX
Disconnect an entry table from a
linkage table

Figure 23. Authorization and Linkage Macro Instructions

PC Numbers: PC numbers are not permanently associated with a particular service the way
SVC numbers are. The LX portion of the PC number is assigned by the control program and
is not known before IPL. The EX portion is assigned by the component that owns a particular
entry table. (While the component could make the EX portion of the PC number known by
convention to the callers of its services, this is neither necessary nor desirable.)

Because the PC numbers themselves are not known before program execution, macro
instructions and control program services cannot use PC numbers directly. Instead, PC
numbers are determined indirectly by a table lookup process. For example, the PC numbers
corresponding to many system functions are contained in a system function table (SFT) pointed
to by the CVT. A macro instruction that invokes one of these PC services uses a permanently
assigned index into the SFT to obtain the PC number for the service. A program that provides
PC services must use a similar indirect method to give its callers the PC numbers they need to
invoke its services. The caller of a service is not dependent on the actual PC number that is
issued to obtain the service, on which module performs the service, or on where that module is
located.

Linkage Conventions
In a cross memory environment linkage conventions are more important than in other
environments because the "how did I get here" information is essential. Therefore, users must
save and restore status and diagnostic information in a consistent way for every program
call/program transfer sequence.

When a program gets control as the result of a PC instruction, and uses PT to return, there are
several things to be aware of:,

• The called program must preserve registers 3 and 14 in order to return control with PT.

• The called program must preserve the PSW key and program mask across the PCjPT
interface.

1;:'86 SPL: System Macros and Facilities Volume 1

f"'"

V

C'
" ;I

(~

(

• If there is a dump when the called program is executing, the following information might be
needed for the dump:

Who called the currently executing program?
What were the original contents of the caller's registers?
Where is the caller's save area chain?

In order to preserve the above information, a program that is about to issue a PC instruction
does the following:

• Saves registers 2 through 12 in the last 11 words (words 7 through 17) of a standard save
area pointed to by register 13. You must save registers before issuing a PC because the PC
instruction updates registers 3, 4, and 14, and the address space where the save area resides
might no longer be the currently addressable address space.

• Saves the current SASID in bits 16-31 of save area word 5.

• Optionally loads registers 0, 1, and 15 as parameter registers.

• Loads register 2 with a PC number.

• Issues a PC specifying register 2.

The program that receives control as a result of the PC issues the PC LINK macro instruction
with the STACK option to save linkage information. The PC LINK macro instruction can only
be issued in supervisor state. The PC LINK macro instruction creates an area called a stack
element (STKE), which contains the following information:

• Caller's save area address from caller's register 13

• AMODE, return address, and PSW problem state bit from caller's register 14

• Parameter registers 0, 1, and 15

• Caller's PSW key and other information from caller's register 2 as follows:

In bits 0-23, bits 8-31 of caller's register 2
In bits 24-27, PSW key
In bits 28-31, zeroes

• Caller's PSW key mask and PASID from caller's register 3

• Latent parameter list address for this entry from caller's register 4

• Return address from the PCLINK service routine to the program that issued PCLINK
STACK. This point is just after the PC routine entry point.

• Program mask from current PSW

After issuing PC LINK STACK, the program begins processing. It can, if it needs to, get
information from the stack element using the PC LINK macro instruction with the EXTRACT
option.

When the program is about to return control to its caller, it loads any data to be passed back to
the caller into registers 0, 1, and 15 and then issues PCLINK with the UNSTACK,THRU
option. This option restores registers 3, 13, 14, the program mask and, optionally, the original
PSW protection key. The program then issues a PT instruction to return control. The caller
restores its own registers and its SASID.

The PCLINK stack element is described in the Debugging Handbook. Diagnostic Techniques
describes how the PC LINK stack elements and register save areas are chained together.

Communication 1-87

Figure 24 summarizes the PCjPT linkage conventions. In the figure, a program in ASID 8
issues a PC that invokes a program in ASID 7.

ASlD 8 ASlD 7
Save registers
Save SASlD
Load parameters
Load PC number
PC-------------.lssue PCLlNK STACK

Issue PCLlNK UNSTACK
~-------- PT

Restore SASlD
Restore registers

Figure 24. PCfPT Linkage Conventions

How to Establish a Cross Memory Environment
This section contains three examples that show three ways to establish a set of services for
access via a PC instruction. The term "subsystem" is used in this section but note that the
functions providing cross memory services are not limited to those functions that use the
subsystem interface. The required operations are grouped into five categories:

l. SETTING UP initializes the structure that cross memory needs so the transfers of control
can take place.

2. ESTABLISHING ACCESS sets up the linkage necessary for an address space to use cross
memory services.

3. PROVIDING SERVICE consists of designing a service for cross memory use. Refer to

,r-" (0

"Designing a PC Routine" later in this section. /,
,

4. REMOVING ACCESS disconnects the linkage that enabled an address space to use cross \'j

memory services.

5. CLEANING UP removes the structures established in the initialization step.

The first example shows how to make a cross memory subsystem's services available to a select
group of users. (The code actually shows only one user, but the extra steps for adding users are
pointed out.) The second example shows how to make a subsystem's services available
system-wide to all address spaces. The third example shows how a subsystem can provide a
series of non-space switch services that operate on data in the user's address space. A
non-space switch service is one that does not cause an address space switch. See "Designing a
PC Routine" later in this section.

Assume for all the examples that the subsystem has obtained common storage that can be
accessed via the CVT. In this area it would store the PC numbers corresponding to its services.
It could also store some of the lists that are needed to invoke PC/AUTH services, and that
must be available to different address spaces. Assume also that SSBLOCK, shown in
Figure 25, is in common storage accessible via the hypothetical CVT field, CVTXXXX. All
examples use the declared storage areas shown in Figure 25.

1-88 SPL: System Macros and Facilities Volume I

(

SSBLOCK DS OD SUBSYSTEM'S BLOCK
LXL DS OF LX LIST
LXCOUNT DS F NUMBER OF LXS REQUESTED
LXVALUE DS F LX RETURNED BY LXRES
AXL DS OF AX LIST
AXCOUNT DS H NUMBER OF AXS REQUESTED
AXVALUE DS H AX RETURNED BY AXRES
TKL DS OF TOKEN LIST
TKCOUNT DS F NUMBER OF ETS CREATED
TKVALUE DS F TOKEN RETURNED BY ETCRE
PCTAB DS OF TABLE OF PC NUMBERS
SERVIPC DS F PC NUMBER FOR SERVICE 1
SERV2PC DS F PC NUMBER FOR SERVICE 2

Figure 25. Declared Storage For Cross Memory Examples

Example 1 - Making Services Available to Selected Address Spaces
Setting Up: To make its services available to other address spaces via a PC instruction, the
subsystem sets up the linkage and entry tables and the authorization structures.

To request that the control program reserve an LX for later use, use the LXRES macro
instruction to reserve a 4-byte LX across the entire system. When LXRES is issued, the home
address space becomes the owner of the LX.

GETLX

LA
ST
LXRES

2,1
2,LXCOUNT REQUEST 1 LX
LXLIST=LXL,RELATED=(FREELX,CONET)

To set up the entry table describing the services and their entry points, use the ETCRE macro
instruction. An entry table describes all the services the subsystem makes available to users
through a PC instruction. The home address space, at the time the ETCRE macro instruction
is issued, becomes the owner of the entry table.

First construct a list of entry table descriptors. Each descriptor, mapped by the IHAETD
mapping macro instruction, describes a program that gets control when a PC is issued.
Figure 26 shows an entry table descriptor list ",ith two entries.

CET1 ETCRE ENTRIES=ETDESC,RELATED=(CONET,DISET1,DESET2)
ST e,TKVALUE SAVE RETURNED TOKEN

Communication 1-89

ETDESC DS OD ENTRY TABLE DESCRIPTION LIST
'" (MAPPED BY IHAETD)
"'------------------------- ETD HEADER

DC X'OO' ETDFMT - MUST BE ZERO
DC X'OO' ETDRSV1 - RESERVED, MUST BE ZERO
DC H'2' ETDNUM - NUMBER OF ENTRY

'" DESCRIPTIONS THAT FOLLOW
"'------------------------- ENTRY 1

'"
'"
'"

'"

'"

'"

DC X'OO'
DC X'CO'

DC H'O'
DC F'O'
DC A(SERVICE1)

DC X'FFFF'
DC X'8000'

DC F'O'

ETDEX-ENTRY INDEX (EX)
ETDFLG - PROGRAM WILL EXECUTE
SUPERVISOR STATE (ETDSUP ON)
AND ENTRY WILL CAUSE SPACE
SWITCH (ETDXM ON)
ETDRSV3 - RESERVED, MUST BE ZERO
ETDPROl
ETDPR02 - VIRTUAL ADDRESS TO BE
GIVEN CONTROL
ETDAKM - CALLER CAN BE IN ANY KEY
ETDEKM - SERVICEl CAN ACCESS ONLY
KEY 0 PLUS KEYS AUTHORIZED IN CALLER'S PKM
ETDPAR - LATENT PARAMETER
PASSED TO CALLED PROGRAM

"'------------------------- ENTRY 2
DC X'Ol' ETDEX

'"
'"

'"

'"
'"

'"

DC X'80' ETDFLG - PROGRAM WILL EXECUTE IN
SUPERVISOR STATE (ETDSUP ON) AND
ENTRY IN NON-SPACE SWITCH (ETDXM OFF)

DC H'O' ETDRSV3
DC CL8'SERVICE2' ETDPRO (PROGRAM NAME) PROGRAM

MUST BE IN LPA
DC X'OOFF'
DC X'OOFF'

DC F'O'

ETDAKM - CALLER MUST BE KEY 8-15
ETDEKM - SERVICE CAN ACCESS ONLY
KEYS 8-15 PLUS KEYS AUTHORIZED IN CALLER'S
PKM
ETDPAR - LATENT PARAMETER
PASSED TO CALLED PROGRAM

Note: Upon entry, the PC routine receives a pointer, in general purpose register 4, to the
latent parameter list. The first word of the latent parameter list is the value from the
ETDPAR field.

Figure 26. Entry Table Descriptions for Examples

To request that the control program reserve an authorization index (AX) for the service, use the
AXRES macro instruction. The AX is reserved across the entire system. The home address
space at the time the AXRES macro instruction is issued becomes the owner of the AX.

LA 2,1
STH 2,AXCOUNT REQUEST 1 AX

GETAX AXRES AXLIST=AXL,RELATED=(AXSET,FREEAX)

To set the AX of the subsystem's address space to the AX value the control program reserved,
use the AXSET macro instruction.

SETAX AXSET AX=AXVALUE,RELATED=(GETAX,SETAX)

1-90 SPL: System Macros and Facilities Volume 1

rf' ...)'
'-./

i{ '" , .
[

\" .. /

At this point, you can construct the PC numbers that will be used to invoke the services. A PC
number is a fullword value formed from an LX and an EX.

(-- 0 LX EX ·1

(

o 1112 2324 31

The linkage index returned by LXRES is in the following format so that you can OR it with an
EX to form a PC number:

0 LX 0

L 1, LXVALUE LX=PC# WITH EX OF 0
LA 2,0(,1) CONSTRUCT EX=0 PC#
ST 2,SERV1PC SAVE PC# FOR FIRST SERVICE
LA 2,1(,1) CONSTRUCT EX=l PC#
ST 2,SERV2PC SAVE PC# FOR SECOND SERVICE

Establishing Access: The next two steps make the subsystem's services available to a user.
The instructions used for these two steps must be issued from the user's address space but they
must be invoked by a supervisor state or PKM 0-7 routine. Ifthe user is a problem state
program, the subsystem must arrange for the instructions to be executed on its behalf with the
user's address space as the home address space. These two steps, of course, must be repeated
for each user.

1. Set the PT and SSAR authority in the user's authorization table entry that corresponds to
the subsystem's AX value so that the subsystem can issue a PT or SSAR instruction to the
user's address space. This action allows the subsystem to access user data and return
control to the user.

SETAT ATSET AX=AXVALUE,PT=YES,SSAR=YES,RELATED=(GETAX,
SETAX,RESETAT)

2. Connect the subsystem's entry table to the user's linkage table at the entry that corresponds
to the subsystem's LX. The linkage table now points to the subsystem's entry table.

CONET

LA
ST
ETC ON

2,1
2,TKCOUNT SET COUNT OF ETS TO BE CONNECTED
TKLIST=TKL,LXLIST=LXL,RELATED=(GETLX,CET1)

Now all the user needs to get to the subsystem is the correct PC number. The SUbsystem
devises a method of making its PC numbers available and makes the method known. The
subsystem could use an executable macro instruction that expands into code that locates the PC
number and then executes the PC instruction to invoke the desired service. The subsystem
could keep the PC numbers in a table that each address space can locate in commonly
addressable storage.

Communication 1-91

At this point in the example, the subsystem has set up two services that the user can access
using PC instructions. The subsystem has also established authority to issue PT and SSAR
instructions to the user. The user's linkage table is connected to the subsystem's entry table as
shown in Figure 27.

LX
SS

LT user

.,.
ET

ss

Q

EX=1

EX=2

EX=3

,...- /

ET
SS

ETE for Service 1

ETE for Service 2

invalid

invalid

At this point, the subsystem
has established its ability
to provide two services to a
user via a PC. The user's LT
is connected to the
subsystem's entry table.

Figure 27. Linkage Table and Entry Table Connection

Providing Service: The PC instruction gives control to a PC routine that might run in cross
memory mode. The PC routine must have been designed following the guidelines described in
"Designing a PC Routine" later in this section.

To invoke the PC routine, the subsystem might provide a macro instruction. In the example, a
macro instruction to invoke the first service would generate the following code:

STM 14,12,12(13}
ESAR 2
ST 2,16(,13}
L 15,FLCCVT
L 15,CVTXXXX(,15}
L 2,SERVIPC(,15}
PC 0(2)
L 14,12(,13}
L 2,16(,13}
SSAR 2
LM 2,12,28(13}

SAVE REGISTERS
SAVE CALLER'S SASID IN THE
REG 15 SLOT OF SAVEAREA
ACCESS CVT
ACCESS SUBSYSTEM BLOCK
OBTAIN SERVICEI PC NUMBER
ISSUE THE PC
RESTORE REG 14
LOAD SAVED SASID
RESTORE CALLER'S SASID
RESTORE REGS 2-12

Removing Access: The next two steps remove access to subsystem services. The steps are
performed with the user's address space as the home address space. These steps are essentially
the opposite of the steps used to establish access. First, remove the subsystem's PT and SSAR
authority to the user's address space.

RESETAT ATSET AX=AXVALUE,PT=NO,SSAR=NO,RELATED=(SETAT)

Second, disconnect the subsystem's entry table from the user's linkage table.

DlSETl ETDlS TKLIST=TKL,RELATED=CETI

1-92 SPL: System Macros and Facilities Volume 1

["'\
'\.~/

c

(

(

(

Cleaning Up: When the subsystem is about to shut down, it must remove all cross memory
connections and release any cross memory resources it owns. Destroy the subsystem's entry
table, first making sure that all connections to it have been disconnected.

DESETl ETDES TOKEN=TKVALUE,RELATED=CETI

Free the subsystem's linkage index so that another subsystem can reuse it.

FREELX LXFRE LXLIST=LXL,RELATED=GETLX

Reset the subsystem's AX to zero.

SR 2,2 ZERO VALUE
RESETAX AXSET AX=(2) RESET AX TO ZERO

Free the AX value so the system can reuse it. This action removes PT and SSAR authority
corresponding to the subsystem's AX in all authorization tables in the system.

FREEAX AXFRE AXLIST=AXL,RELATED=GETAX

Example 2 - Making Service Available to All Address Spaces
This example shows how a subsystem makes global services available system-wide to all users.
The example uses the same storage areas as example 1, however, it does not need the AX list.
Figure 25 and Figure 26 earlier, show the areas. The main differences between example 1 and
example 2 are example 2's use of a system linkage index and a system AX value. There are
only ten slots available in the system linkage table for the user to use. A system linkage index
allows the subsystem to globally connect an entry table to all address spaces, and a system AX
value gives the subsystem PT and SSAR authority to all address spaces.

SeHing Up: The first step in the set up operation is obtaining a "system" linkage index. The
control program sets aside part of the available linkage indexes for use as system LXs. When
an entry table is connected to a system LX, the entry table is automatically connected to all
present and future address spaces.

Unlike ordinary LXs, system LXs cannot be freed for reuse. When an address space that owns
a system LX terminates, the LX becomes "dormant." The system allows a dormant system LX
to be reconnected to an address space different from the original owning address space. This is
an important consideration for a subsystem that can be terminated and then restarted. The
subsystem must have a way to "remember" the system LX it owned so that it can connect the
LX to an entry table when it is restarted.

There are two ways subsystems or components become owners of a system LX. Many
IBM-supplied global services use a pre-assigned system LX and the PC numbers that
correspond to their services are in the system function table (SFT).

The second way that a subsystem can get a system LX is by issuing the LXRES macro
instruction with the SYSTEM = YES option.

Communication 1-93

.---------.--.~.------- ----~-----

The code shown in the following three steps runs with the subsystem's address space as the
home address space. The first step obtains a system LX. If the subsystem is coming up for the
first time since IPL and does not have a system LX preassigned in the SFT, issue the LXRES
macro instruction with the SYSTEM = YES option. Save the LX somewhere, probably in
common storage, so that it is accessible if the subsystem is restarted. On a subsystem restart,
this step is not necessary.

LA 2,1
ST 2, LXCOUNT REQUEST 1 SYSTEM LX

GETS LX LXRES LXLIST=LXL,SYSTEM=YES

Next, set the subsystem AX to 1. This allows the subsystem to issue a PT or SSAR instruction
to all other address spaces because an AX of 1 is authorized to all address spaces. The
subsystem that is providing a global service does not need to obtain a unique AX.

LA 2,1
AXSET AX=(2)

Define the subsystem's entry table as follows:

ETCRE ENTRIES=ETDESC
ST 0,TKVALUE SAVE THE ET TOKEN

Next construct the PC numbers in the same way as in example 1.

Establishing Access: The following ETCON macro instruction, issued once from any address
space, connects the subsystem's entry table to all address spaces in the system, current and
future.

LA 2,1
ST 2,TKCOUNT SET COUNT OF ETS TO BE CONNECTED
ETCON LXLIST=LXL,TKLIST=TKL

All address spaces in the system now have access to the subsystem's services. All linkage tables
are connected to the subsystem's entry table and, because the subsystem's AX is 1, it can issue
PT and SSAR to any address space. Figure 28 shows how the linkage and entry tables appear
at this point.

LX
SS

LT
1

~

•••

ET
SS

LT
n

t ET
SS

Figure 28. Linkage and Entry Tables for a Global Service

EX=O ETE for Service 1

EX=1 ETE for Service 2

EX=2 invalid

EX=3 invalid
~

Providing Service: The subsystem provides service in the same way as in Example 1. The users
of the services need to determine the PC number associated with each service. For many
IBM-supplied services, the PC numbers are in the SFT. Other services must use a similar
method.

1-94 SPL: System Macros and Facilities Volume I

(.->'
I' ..-/

(

(

Removing Access: To remove access, disconnect all users and destroy the entry table by
issuing the ETDES macro instruction with the PURGE = YES option. This disconnects the
entry table from all linkage tables in the system and then destroys it. (You cannot issue an
ETDIS macro instruction for an entry table connected to a system LX.)

ETOES TOKEN=TKVALUE,PURGE=YES

Cleaning Up: To clean up, reset the subsystem's AX to ° as follows:

SR 2,2
AXSET AX=(2)

Example 3 - Providing Non-Space Switch Services
In this example, a subsystem is providing a series of non-space switch services. Non-space
switch services are described in "Designing a PC Routine" later in this section. This example is
like example 1 except that the macro instructions for AX authorization are not used because an
address space switch does not occur.

Designing a PC Routine
PC routines get control as the result of a PC instruction. A PC routine serves the same general
purpose as an SVC routine in that it is a means of providing a function at an increased level of
authority. While the SVC always increases the authority of the SVC routine to key 0,
supervisor state, the PC instruction allows greater flexibility in the authority that a PC routine
can have. A PC instruction can switch to supervisor state, increase PKM authority, and switch
to a different primary address space that has greater AX authority. The PC instruction can
also prevent problem state programs from calling PC services based on PKM authority. For
more information on the PKM and AX, see "Cross Memory Authorization" earlier in this
section.

The SVC instruction requires that the issuer be in enabled task mode and hold no locks, but the
PC instruction does not have these restrictions.

The PC instruction also allows the PC routine and the data it manipulates to reside in its own
address space and be isolated from its callers.

The PC instruction must be issued in primary mode. The PC instruction can cause an address
space switch. When you set up the entry table descriptor as input to the ETCRE macro
instruction, one of the attributes specified is whether or not the PC routine is space switch.

When a non-space switch PC routine gets control, it executes in primary mode, and both the
primary and secondary addresses are set to the address space in which the PC was issued.

When a space switch PC routine gets control, it executes in primary mode in the address space
in which the entry table by which it is accessed was created, not the address space in which the
PC instruction was issued. Secondary mode is set to the PC issuer's address space. Thus, the
space switch PC routine gets control in cross memory mode.

All PC routines, both space switch and non-space switch, must:

• Be loaded under the job step task of the address space that created the entry table(s) that
describe the routine or else be permanently resident (in PLPA or the nucleus).

• Preserve and restore PC linkage information.

• Use a PT instruction to return to their caller.

• Not use the checkpoint/restart facility.

Communication 1-95

---------~ -- ------- ----- ----

PC routines that cause an address space switch have the following additional requirements:

• The address space in which the PC routine runs must be non-swappable.

• The PC routine must perform its functions using only the MVSjXA services supported in
cross memory mode. Refer to "Warnings and Restrictions" earlier.

A space switch PC routine can access data in another address space by using the MVCP and
MVCS instructions, or by using secondary mode. When executing in secondary mode,
remember that all data is accessed from the secondary address space and that you cannot
predict which address space (primary or secondary) instructions will be fetched from. Thus, all
space switch PC routines that run in secondary mode must reside in common storage.

In deciding whether to make the PC routine a space· switch or non-space switch routine,
consider the nature of the routine itself and the data it manipulates. If either the PC routine or
the data it manipulates needs to be isolated from the routine's callers, then the program or
data, whichever requires isolation, should be located in the private area of an address space and
the PC routine should be a space switch Pc. If the program and data reside in commonly
addressable storage or in the caller's address space, then the PC routine can be a non-space
switch PC. A non-space switch PC can increase PKM authority and switch to supervisor state,
but it cannot increase AX authority because no address space switch occurs. /

Figure 29 shows the possible locations of the non-space switch PC routine and the data it
manipulates and also lists the types of users who can invoke a non-space switch PC routine.

Location of PC routine: Location of data to be manipulated: PC routine can be connected to
address space:

Common Common or caller's private area All address spaces. via connection. to a
system LX or any address space via
connection to an LX.

An entry table Common or caller's privale Only entry table owner's address space
owner's private area area

Figure 29. Characteristics of a Non-Space Switch PC Routine

Figure 30 shows the possible locations of the space switch PC routine and the data it
manipulates, what types of users can invoke the PC routine, and whether or not the routine can
run in secondary mode.

Location of PC routine Location of data PC routine can be PC routine can run in
connected to: secondary

Common " Common " All address spaces Yes
" Particular address with a system LX

space that owns ET " Any address space
Particular address " Associated data (to connect to a
space that owns an ET address space specific address

" Each calling space, the address No
address space space that creates

the ET must be
able to issue PT
and SSAR instruc-
tions to the con-
nected address
space)

Figure 30. Characteristics of a Space Switch PC Routine

1-96 SPL: System Macros and Facilities Volume 1

c

(

(

Recovery Considerations
There are special recovery considerations when you write a space switch PC routine. A PC
routine executing in cross memory mode has active binds to address spaces other than home. If
one or more of these address spaces terminates, then the PC routine will incur a program check
and its recovery routine might get control. The SETFRR macro instruction provides options
that specify the cross memory mode in which the recovery routine must get control. There are
also options that enable a recovery routine to get control as a resource manager when the
requested cross memory mode cannot be established in order to recover resources serialized by
local (CML) or global locks. Refer to "Providing Recovery Routines" for details on recovery
in cross memory mode. See "Locking" in the Serialization section for more information about
the CML lock.

Linkage Conventions: The linkage conventions for PC and PT transfers of control have
already been described under "Linkage Conventions" earlier. You will recall that the PC LINK
macro instruction provides a standard method for saving status. The stack entries created by
PCLINK are formatted like standard save areas so that you can trace the flow of control across
address spaces in the event of a dump.

Resource Management: PC routines should be loaded under the job step task of the address
space that created the associated entry tables. If the task under which the PC routine was
loaded fails and it is not the job step task of the address space that created the entry tables, the
PC routine is freed even though users are still connected to the inoperative PC routine, and
results are unpredictable. If the PC routine is loaded under the job step task, any failure of the
task causes a program check when any program issues a PC to the inoperative PC routine.

When a job step task that owns entry tables providing space switch PC services terminates,
whether normally or abnormally, the space switch event mask for the address space is turned
on. If this indicator is on, no unit of work can execute in cross memory mode in the address
space. A unit of work currently using the space switch PC services or a unit of work
attempting to issue a PC to the address space causes a space switch event program check.
Subsequent job steps execute normally except that they cannot reestablish space switch PC
services. If a unit of work in a subsequent job step attempts to reestablish space switch PC
services (that is, issues an LXRES, AXRES, or ETCRE macro instruction), it causes a X'OS2'
abend.

When a job step task that owns space switch entry tables terminates (normally or abnormally),
the address space of the task is not terminated. The ASID representing the address space of the
terminated task is retained and evaluated for possible reuse before the next IPL takes place. The
reuse of address space spares an installation the burden of scheduling IPLs at frequent intervals
to recover the lost space. The automatic recovery of used address spaces is an important
consideration in the installation's choice of a MAXUSERS parameter. It is also a factor in how
an installation controls the creation and termination of cross memory environments.

The system maintains a history of cross memory binds and address spaces. When all cross
memory binds have terminated, address spaces that created space switch entry tables are
generally reused, although there are a few special cases in which system integrity cannot be
guaranteed if the spaces are reused. The system recognizes those cases (there are two) and
prevents the reuse of the corresponding address space for the duration of the current IPL.

• The first case involves circular PC chains. For example, consider programs pI, p2, and p3
running in respective address spaces sl, s2, and s3. If PC instructions are issued by pI to
p2, and by p2 to p3, and then by p3 back to pI, a circular PC chain exists. Upon
termination, address spaces such as sl-s3 that are used in a circular PC chain are considered
non-reusable for the duration of the IPL.

Communication 1-97

• The second case involves any address space that has a cross memory connection to a system
linkage index (LX). When this kind of address space terminates, it is considered
non-reusable for the duration of the IPL. In addition, if this space is connected to any other
address spaces, upon their termination they would also become non-reusable for the
duration of the IPL.

A TCB for any job step task that owns a cross memory resource imposes a restriction on other
TCBs that are higher up. The higher TCBs (that is, TCB for the initiator, RCT, DUMP, or
STC) are restricted; they can only use system PC services. When the TCB that represents the
task terminates, any connections between the higher TCBs and non-system entry tables are
severed. Subsequent PCs that depend on those connections will not be successful.

While a PC routine is running, execution time is attributed to the home address space whether
or not it is the same address space in which the PC routine executes.

1-98 SPL: System Macros and Facilities Volume I

t1'\
I\.J

(

(~

(-

(

(

Virtual Storage Management

Virtual storage management (VSM) allocates and releases blocks of virtual storage on request,
ensures that real frames exist for SQA, LSQA, and V = R pages, and protects storage with fetch
and storage protection keys. In addition, VSM provides the following services through the use
of the macro instructions specified:

• List the starting address and the size of the private area regions associated with a given
TCB -- VSMREGN

• Verify that a given area has been allocated via a GETMAIN macro instruction -
VSMLOC

• List the ranges of virtual storage allocated in a specified area -- VSMLIST

These VSM services are especially useful when determining available storage, coding recovery
procedures, or specifying areas to be included in a dump. VSMREGN enables you to
determine the amount of storage that you have for potential use. If you need to check whether
a GETMAIN was issued to allocate a given block of storage, you can use the VSMLOC macro
instruction to perform this check. If the given block is located in private area storage, you can
also request the address of the TCB that issued the GETMAIN macro. VSMLOC enables you
to verify control blocks or storage locations when coding recovery procedures. You can use
VSMLOC to check whether a control block has been allocated and to verify that the control
block is located in the correct subpool. VSMLIST enables you to obtain detailed information
about virtual storage that could be useful in determining the areas that you might need in a
dump and thereby limit the size of the dump. Limiting the size of a dump is especially critical
when executing in 31-bit addressing mode because of the amount of storage involved. The use
of VSMLIST is described later in this topic under the heading "Obtaining Information about
the Allocation of Virtual Storage."

© Copyright IBM Corp. 1982, 1989 Virtual Storage Management 1-99

Allocating and Freeing Virtual Storage (GETMAIN, FREEMAIN)
The GETMAIN and FREEMAIN macro instructions respectively allocate and free one or (f""
more areas of virtual storage. The KEY parameter allows a user executing in PSW key zero to 0 i

specify the storage key for storage requests involving subpools 227, 228, 229, 230, 231, and 241.

You can use the GETMAIN and FREEMAIN macro instructions when your program is
executing in either 24-bit or 3l-bit addressing mode. If you specify the options R, LC, LU, VC,
VU, V, EC, EU, or E (provided by SVC 4, 5, and 10), storage addresses and lengths are treated
as 24-bit addresses and lengths. If you want to specify 3l-bit address and lengths, you must use
the options RU, RC, VRC, or VRU. You can use the keyword LOC with these options to
indicate the location of both virtual and real storage. See Figure 31 for a list of valid subpools
and the location of these subpools when backed in real storage.

Most of the functions of GETMAIN and FREEMAIN (including the options mentioned
above) are available to all users. However, some of the GETMAIN and FREEMAIN
functions are available only to programs executing in supervisor state or PSW key zero. The
restricted functions are provided by the parameters BRANCH and KEY.

The BRANCH Parameter
In addition to the normal SVC entries to the GETMAIN and FREEMAIN macros, there are
also branch entries, which are available through the BRANCH parameter. Although the
branch entries require the user to do more work, they are more efficient than the SVC entries.

Branch entry to the GETMAIN or FREEMAIN macro instructions is accomplished by
specifying BRANCH = YES on the macro instructions. If the BRANCH = YES parameter is
used, the caller must preload register 4 with the TCB address, preload register 7 with the ASCB
address, and hold the LOCAL lock. The contents of register 3 are destroyed if RC, RU, VRC,
or VRU are specified with this parameter.

Callers in cross memory mode can use the BRANCH = YES parameter of the GETMAIN and
FREEMAIN macro instructions. If the caller is in cross memory mode, the storage that is
allocated or freed is located in the currently addressable address space. The caller must hold
the CML lock for the currently addressable address space; load register 7 with the address of
the ASCB of the currently addressable address space; and load register 4 with zero or the
address of a TCB in the currently addressable address space. If register 4 contains a zero, the
storage is associated with the current job step task that owns the cross memory resources in the
currently addressable address space (that is, the TCB anchored in ASCBXTCB).

An additional branch entry point is provided to obtain global storage without the need for
holding the LOCAL lock. This entry point is available to programs that contain no references
to particular address spaces (for example, timer routines). The caller must be in key zero,
supervisor state, and be disabled. In addition, the caller must hold no locks higher in the
locking hierarchy than the VSMFIX lock for global subpools or the VSMPAG lock for
subpools 231 and 241. Although the TCB address and ASCB address are not required for this
entry, the macro expansion loads register 4 with the address of the global save area pointed to
by the CVT.

Global branch entry can be obtained by coding BRANCH = (YES,GLOBAL) on the
GETMAIN or FREEMAIN macro instruction that includes the positional parameter RC, RU,
VRC, or VRU. The subpools that are supported by this entry are limited to the global
subpools: common service area (CSA) subpools 227,228,231, and 241, and system queue area
(SQA) subpools 226,239, and 245. Any other subpool is considered an error.

1-100 SPL: System Macros and Facilities Volume 1

(-

(

(

The KEY Parameter
The KEY parameter allows a user executing in PSW key zero to specify the storage key for
storage he requests. Because branch entry users must be executing in PSW key zero at entry
time, the KEY parameter satisfies the need to specify the actual key in which the requested
storage is to be obtained.

The KEY parameter applies only to six subpools: 227, 228, 229, 230, 231, and 241. These
subpools allow the requestor to obtain both global and local storage in key O. (The KEY
parameter allows an override of the PSW key.) Subpools 227 (fetch protected) and 228 (not
fetch protected) are fixed global storage in the common service area, and must be freed
explicitly. Subpools 229 (fetch protected) and 230 (not fetch protected) are local storage
allocated from the top of the private area downward and intermixed with LSQA and SW A, and
are freed automatically when the task terminates. Subpools 231 (fetch protected) and 241 (not
fetch protected) are global storage in the common service area, and must be freed explicitly.

Using Cell Pool Services (CPOOL)
The cell pool macro instruction provides users with another way of obtaining virtual storage.
This macro instruction provides centralized, high performance cell management services.

Cell pool services obtain a block of virtual storage (called a cell pool) from a specific subpool at
the user's request. The user can then request smaller blocks of storage (called cells) from this
cell pool as needed. If the storage for the requested cells exceeds the storage available in the
cell pool, the user can also request that the cell pool be increased in size (extended) to fill all
requests.

The CPOOL macro instruction makes the following cell pool services available:

• Create a cell pool (BUILD)

• Obtain a cell from a cell pool if storage is available (GET,COND)

• Obtain a cell from a cell pool and extend the cell pool if storage is not available
(GET,UNCOND)

• Return a cell to the cell pool (FREE)

• Free all storage for a cell pool (DELETE)

The CPOOL macro instruction, with the exception of the TCB, KEY, and
LINKAGE = BRANCH parameters, is available to all users. Note, however, that in order to
provide high performance, cell pool services do not attempt to detect most user errors. For
example, the following user errors are not detected by cell pool services:

• The user is executing in a non-zero key that does not match the key of the pool being
manipulated.

• The user attempts to free a cell from a pool that has already been deleted.

• When trying to free a cell, the user passes cell pool services a bad cell address. (This might
damage the cell pool, preventing subsequent requests from being properly handled.)

• A disabled user requests that a cell pool be built in a pageable subpool.

Virtual Storage Management 1-101

Using Storage Subpools
Both the GETMAIN and the CPOOL instructions allow users to allocate storage from specified ;('-"
storage subpools. ".;)

The chart in Figure 31 lists the valid MVS/XA subpools and the characteristics of the subpools.
It indicates the type of storage, whether the storage is fixed or fetch protected, where the
storage is backed when fixed, and the storage key associated with the storage.

The storage map in Figure 32 shows the location of the storage areas listed in Figure 31.
Virtual storage management allocates low private area storage beginning at the start of the
private area or the start of the extended private area and it allocates high private area storage
beginning at the upper end of the private area or the upper end of the extended private area.

The storage keys listed are:

Key

o
1

USER

JOB

Meaning

MVSjXA system control program

Job scheduler and job entry subsystem (JES2 or JES3)

The storage key is taken from the PSW at the time of the GETMAIN or can be
specified on the GETMAIN/FREEMAIN macro instructions.

The storage key is from the TCB associated with the request at the time of the
first GETMAIN request. All subsequent GETMAIN requests use this key
regardless of the key currently in the TCB.

1-102 SPL: System Macros and Facilities Volume I

(

(~'

Subpool Type of Storage Fixed Fetch Protected Where Backed Storage Key

0-127 Low private No Yes Below 16 Mb Job
226 Common-SQA Yes No Below 16 Mb 0
227 Common-CSA/ECSA Yes Yes Below 16 Mb User
228 Common-CSA/ECSA Yes No Below 16 Mb User
229 High Private No Yes Below 16 Mb User
230 High private No No Below 16 Mb User
231 Common-CSA/ESCSA No Yes Below 16 Mb User
233 Private-LSQA/ELSQA Yes No Anywhere 0
234 Private-LSQA/ELSQA Yes No Anywhere 0
235 Private-LSQA/ELSQA Yes No Anywhere 0
236 High private No No Anywhere 1
237 High private No No Anywhere 1
239 Common-SQA/ESQA Yes Yes Anywhere 0
240 Low private No Yes Below 16 Mb Job
241 Common-CSA/ECSA No No Below 16 Mb User
245 Common-SQA/ESQA Yes No Anywhere 0
250 Low private No Yes Below 16 Mb Job
251 Low private No Yes Below 16 Mb Job
252 Low private No No Below 16 Mb 0
253 Private-LSQA/ELSQA Yes No Anywhere 0
254 Private-LSQA/ELSQA Yes No Anywhere 0
255 Private-LSQA/ELSQA Yes No Anywhere 0

Figure 31. Characteristics of the Valid Storage Subpools

Notes:

1. All private area subpools are swappable. Common area subpools are not swappable.

2. All subpools allocated virtually in the extended area can be backed anywhere.

3. Subpools 0-127, 229, 230, 231, 240,241, 250, 251, and 252 can be backed anywhere.
However, if a page fix is requested for allocation in the nonextended areas, these subpools
are backed below 16 megabytes real unless LOC is specified with ANY for real allocation.

4. Subpool 226 is valid only for allocating virtual storage below 16 megabytes.

5. Subpools 227 and 228 are backed anywhere for virtual addresses above 16 megabytes. For
virtual addresses below 16 megabytes, they are backed below 16 megabytes unless the user
of the GETMAIN instruction specifies the LOC parameter with ANY for real allocation.

6. Callers executing in key ° and supervisor state, who request storage from subpool 0, via the
GETMAIN macro instruction, obtain that storage from subpool 252. Therefore, if they
want to dump the storage using the SDUMP macro instruction, they must specify subpool
252 rather than subpool 0.

Virtual Storage Management 1-103

Free space

VSM and RSM work areas
PVf page tables

ELSQA
Authorized subpools

-----~-------~--------~-------

Free space

i i i ---------------------------------

USER subpools
(0-127,251,252)

ECSA

ELPA

ESQA

Extended nucleus

Nucleus

SQA

LPA

CSA

LSQA
Authorized subpools

-----~-------~--------J:-------

Free space

_____ Jt _______ ~ ________ Jl _______
User subpools

(0-127,251,252)

System region

PSA

2G

Extended
private area

r
Extended
common area

1
16 Mb f-----

Common
area

t

Private
area

::K j
--~-------------

Common area o __ ~ ____________ _

Figure 32. MVSjXA Virtual Storage Map

1-104 SPL: System Macros and Facilities Volume 1

",

/

'"

c

("

(

Obtaining Information about the Allocation of Virtual Storage
The VSMLIST macro instruction provides information about the allocation of virtual storage.
The VSMLIST service routine returns the information in a user-supplied work area specified as
a parameter of the VSMLIST macro instruction. The length of the work area varies but it
must be a minimum length of 4K bytes. Figure 33 shows the format of the VSMLIST work
area.

0

Return code
4

Address of data area
8

Length of data area
12

Parameter list
32

Control information
x

Data area
y

Figure 33. Format of the VSMLIST Work Area

Using the VSMLlST Work Area
Prior to the first invocation of the VSMLIST macro instruction for a single request, you must
set the first four bytes of the work area to zero. This field will contain the return code of the
VSMLIST macro instruction after control returns to the issuer.

The VSMLIST service routine updates the work area and places the requested information in
the data area located at the end of the work area. If the macro instruction was executed
successfully and all of the requested information fit into the data area, the VSMLIST service
routine returns to the caller with a return code of 0 in the first four bytes of the work area. If
the macro instruction was executed successfully, but all of the requested information could not
fit into the data area, the service routine returns to the caller with a return code of 4 in the first
four bytes of the work area. In this case, the caller can reissue the macro instruction as many
times as necessary to obtain all of the information.

For multiple invocations of VSMLIST, the service routine continues supplying the information,
starting where it left off on the previous invocation, provided the work area is not changed.
However, multiple invocations do not p .. uvide cumulative results. For each invocation of a set
of multiple invocations for a specific request:

• The count fields are relative to the current invocation of the macro instruction (for
example, the number-of-subpools field contains the number of subpool descriptors in the
current invocation only).

• The output in the data area describes the current invocation only.

You can avoid mUltiple invocations by enlarging the work area to hold all of the information.
If you do enlarge the work area, be sure to set the first four bytes of the work area (the return
code area) to zero before reissuing the macro instruction.

Virtual Storage Management 1-105

Bytes Field name

0-3 Return code

4-7 Address of data area

8-11 Length of the data area

12-15 Parameter list

32-x Control information

x-y Data area

Description

This field contains the return code from the previous invocation of the
VSMLIST macro instmction. You must set this field to zero before
the first invocation of the VSMLIST macro instmction for a single
request.
The data area is located at the end of the work area and contains the
information that you requested.
The data area varies in length and is limited in size by the length of
the work area that you specified as a parameter of the VSMLIST
macro instruction.
This section of the work area is constmcted by the VSMLIST service
routine according to the parameters that you specified when you
issued the VSMLIST macro instmction.
Bytes Contents

12-15 Length of work area
16 SP operand represented as follows:

17

X'OO' -- SQA
X'OI' -- CSA
X'02' -- LSQA
X'03' -- PVT
X'FF' -- Subpoollist provided

SPACE operand represented as follows:
X'OO' -- ALLOC
X'OI' -- FREE
X'02' -- UNALLOC

18 Information about the TCB, LOC, and REAL operands
represented as follows:
X'80' -- ALL specified for the TCB operand
X'40' -- ANY specified for the LOC operand
X'20' -- REAL operand specified

19 Set to zero
20-23 TCB address or zero
24-27 Subpoollist address or zero
28-31 Set to zero
The control information is lIsed by the VSMLIST service on multiple
invocations for a single request. This area varies in size.
This area contains the actual output of the VSMLIST macro
instmction. The area varies in size and is limited by the length of the
work area specified as a parameter of the macro instruction.

Figure 34. Description of VSMLIST Work Area

The information returned in the data area depends on the parameters specified on the macro
invocation. You can use the VSMLIST macro instruction to obtain information about the
following types of storage:

• Allocated
• Free
• Unallocated

Except for subpool 245, an allocated block of storage is a multiple of 4K, some of which has
been allocated via a GETMAIN macro instruction. Free space within that block is the area
that has not been allocated via a GETMAIN macro instruction. An unallocated block of
storage is some multiple of 4K none of which has been allocated via a GETMAIN macro
instruction.

VSMLIST reports all SQA pages not allocated to subpools 226 and 239 as. allocated to subpool
245. These pages of subpool 245 may not have been allocated via a GETMAIN macro.

The format of the information returned in the data area for each of these three types of
requests follows.

1-106 SPL: System Macros and Facilities Volume I

Allocated Storage Information
You can request allocated storage information by coding the SPACE = ALLOC parameter of
the VSMLIST macro instruction. The format of the output varies according to what you
specify for the SP parameter.

If you specify SP = SQA, SP = CSA, or SP = LSQA, the output consists of the allocated storage
information for the subpools in the specified area. The subpools listed in each of these areas
are:

SQA: 226, 239, 245
CSA: 227, 228, 231, 241
LSQA: 255

Figure 35 shows the format of the output for a request for information about the allocated
storage in a specified area.

If you specify SP = PVT, the output consists of the allocated storage information for subpools
in the private area according to the owning TCB. These subpools are 0-127,229,230,236,237,
251, and 252. Figure 38 shows the format of the allocated storage information for the private
area.

If you specify a subpool list, the output consists of the allocated storage information for each of
the subpools in the list. Figure 39 shows the format of the allocated storage information for a
subpool list request.

Virtual Storage Management 1-107

._------_._---_ ...

Number of subpools

First subpool descriptor

Number of allocated blocks in first subpool

Allocated block descriptor for first block

Allocated block descriptor for second block

Allocated block descriptor for last block

Second subpool descriptor

Number of allocated blocks in second subpool

Allocated block descriptor for first block

Allocated block descriptor for second block

Allocated block descriptor for last block

Last subpool descriptor

Number of allocated blocks in last subpool

Allocated block descriptor for first block

Allocated block descriptor for second block

Allocated block descriptor for last block

Notes:

First

subpool

in specified

area

Second

subpool

in specified

area

Last

subpool

in specified

area

1. The number of subpools and the number of allocated blocks in the subpool
are given as 31-bit numbers.

2. Figure 36 shows the format of a subpool descriptor.

3. Figure 37 shows the format of an allocated block descriptor.

Figure 35. Allocated Storage Information for Subpools in a Specified Area

1-108 SPL: System Macros and Facilities Volume 1

Byte Content

(0 X'OO' to identify a subpool descriptor

Length of subpool descriptor

2 SubpoolID

3 Miscellaneous flags and storage key as follows:

Bit Meaning When Set

0-3 Storage key

4 The TCB with which this descriptor is associated
owns the storage described by this descriptor

This is meaningful for private area storage only.

5 The storage described by this descriptor is shared.
This is meaningful for private area storage only.

6-7 Reserved

4-7 Owning TCB address (if PVT subpool), otherwise zero.

(Figure 36. Format of Subpool Descriptor

Byte Content

0-3 The virtual address of the allocated block

Bit Meaning When Set

0 The caller specified the REAL option and this
allocated block could be backed in real storage
above (bit 0= 1) or below (bit 0=0) 16 megabytes.

(, 4-7 The length of the allocated block

Figure 37. Format of Allocated Block Descriptor

(

(

Virtual Storage Management 1-109

Number of TCBs in the private area

Address of the first TCB

Allocated storage information for
subpools owned by the first TCB

Address of the second TCB

Allocated storage information for
subpools owned by the second TCB

Address of the last TCB

Allocated storage information for
subpools owned by the last TCB

Notes:

I F;",TCB

Is",,,,,, TCB

I "", TCB

1. The number of subpools in the private area is a 31-bit number.

2. The address oC the TCB is contained in a fullword.

3. Figure 35 shows the format of the allocated storage information for the
subpools owned by each TCB.

Figure 38. Allocated Storage Information for the Private Area

Number of SQA subpools

Number of CSA subpools

Number of LSQA subpools

Number of TCBs

If the number of SQA subpools
is not zero, the information for
the SQA as described in Figure 35

If the number of CSA subpools
is not zero, the information for
the CSA as described in Figure 35

If the number of LSQA subpools
is not zero, the information for
the LSQA as described in Figure 35

If the number of TCBs is not
zero, the information for the
private area as described in Figure 35

Note: The number of subpools is a 31-bit number.

This information lis always present

but could be zero.

Figure 39. Allocated Storage Information for a Subpool List

1-110 SPL: System Macros and Facilities Volume 1

(

Free Storage Information
A request for free storage information is specified by the SPACE = FREE parameter of the
VSMLIST macro instruction. The VSMLIST service routine returns information about both
allocated and free virtual storage. The information is returned in the same manner as allocated
storage information except that each allocated block descriptor is followed by the number of
pieces of contiguous free storage contained within the allocated block and the free space
descriptors for each of these areas. Figure 40 shows the format of a free space descriptor.

Byte Content

0-3 The virtual address of the start of the free space

4-7 The length of the free space

Figure 40. Format of Free Space Descriptor

Virtual Storage Management 1-111

Unallocated Storage Information
You can request information about unallocated storage by specifying the SPACE = UNALLOC
parameter of the VSMLIST macro instruction. You can obtain this information for CSA and
private area subpools only, by specifying SP=CSA or SP=PVT. Figure 41 shows the format
of the output for a SPACE = UNALLOC request for CSA or PVT subpools.

Number of region descriptors

First region descriptor

Number of unallocated blocks in the first region

Unallocated block descriptor for the first unallocated block

Unallocated block descriptor for the second unallocated block

Unallocated block descriptor for the last unallocated block

Second region descriptor

Number of unallocated blocks in the second region

Unallocated block descriptor for the first unallocated block

Unallocated block descriptor for the second unallocated block

Unallocated block descriptor for the last unallocated block

Last region descriptor

Number of unallocated blocks in the last region

Unallocated block descriptor for the first unallocated block

Unallocated block descriptor for the second unallocated block

Unallocated block descriptor for the last unallocated block

Notes:

1. The number of region descriptors and the number of unallocated
blocks in each region are given as 31- bit numbers.

2. Figure 42 shows the format of a region
descriptor.

3. Figure 43 shows the format of an
unallocated block descriptor.

First

region in

specified

area

Second

region in

specified

area

Last

region in

specified
area

Figure 41. Unallocated Storage Information for CSA and PVT Subpools

1-112 SPL: System Macros and Facilities Volume I

(-

Byte Content

0-3

4-7

The virtual address of the region (CSA, ECSA, RCT area,
V = V area, extended V = V area, or V = R area)

The length of the region

Figure 42. Format of Region Descriptor

Byte Content

0-3 The virtual address of the unallocated block

4-7 The length of the unallocated block

Figure 43. Format of Unallocated Block Descriptor

Accessing the Scheduler Work Area
When the system interprets JCL statements, it obtains information about jobs that are coming
into the system. It stores this information in the scheduler work area (SW A). When jobs run,
the system (dynamic allocation, for example) develops additional information about the jobs,
which it also stores in the SW A. Some of this information is in the following SW A blocks:

• The job control table (JCT)
• The step control table (SCT)
• The account control table (ACT)
• The job file control block (JFCB)
• The job file control block extension (JFCBX)

Your program can use the SW AREQ macro and the IEFQMREQ macro to access the
information in these blocks. Some of the blocks have accounting and timing infotmation.
Your program can use this information to generate reports of the system resources that your
job uses.

For detailed information on coding the macros, see SPL: System Macros and Facilities Volume
2. By using these macros, you can read from a block, write into a block, or obtain the location
of a block. You can also create or delete a SW A block, although creating and deleting a block
requires special knowledge of the system. The only SW A blocks that you can access are the
ones associated with your job.

As shown in Figure 44, SW A blocks have a prefix area and a data area:

SWA Prefix

Data
Area

Figure 44. Format of a SW A Control Block

Virtual Storage Management 1-113

The part of an SWA block that you can access by using the SWAREQ and IEFQMREQ
macros is the data area. Each macro has a different way of accessing a SW A block:

• IEFQMREQ reads the SW A informati'on into a buffer that you provide, or writes
information from your buffer into the SW A.

• SW AREQ, instead of actually writing or reading information, only tells you the location of
the SW A block that you are interested in. Once you know the location, you can read or
write information yourself.

Using the IEFQMREQ and the SWAREQ Macros
To use these macros, you must be authorized, in task mode, and not in cross memory mode.
However, when you are using SW AREQ to perform a Read Locate or a Locate All, you can
override these restrictions by specifying the UNAUTH = YES parameter.

When you invoke the macros, you must provide a function code and a pointer to an external
parameter area (EPA). The function code specifies the service that the macro is to perform.
The EPA is where you store input data to the macro and where the macro returns output data
to you. The input data in the EPA depends on the function code that you specify. The data in
the EPA can be:

• The buffer address.

• The token that represents the SW A block. These tokens are called SV As.

• The pointer (block pointer) to the SW A block being accessed.

• The length (block length) of the block being accessed. Assign locate is the only function
that requires you to input a block length.

• An id field (block id) that represents the type of SWA block. Use this block id to compare
against the block id in a SW A block returned from a read function. If the comparison is
not equal, then the returned block is not the type of SW A block that you requested. Block
ids are listed in the IEFQMIDS macro.

One of the items that you must store in the EPA before invoking the macro is the token that
identifies the SWA block that you want to access. You can obtain these tokens (called SVAs)
from the following fields:

SW A block to be accessed Field that contains the token

JCT Gob control table) JSCBJCTA in the active JSCB

SCT (step control table) JSCSCTP in the active JSCB

ACT (account control table) JCTACTAD in the JCT or
SCTAFACTin the SCT

JFCB Gob file control block) TIOEJFCB in the TIOT entry

JFCBX Gob file control block extension) JFCBEXAD in the JFCB

The SWAREQ Macro
sw AREQ, instead of actually writing or reading information, only tells you the location of the
SW A block that you are interested in. Once you know the location, you can read or write
information yourself. By specifying a function code when you invoke the macro, you can
request the following SW AREQ services.

1-114 SPL: System Macros and Facilities Volume I

c

(

(

Read Locate - Returns the address of the block that you specify. It does not read any data
from the specified block into your buffer. Your program does the actual reading by coding
techniques such as MVC instructions.

Write Locate - When you use regular coding techniques to write data from your buffer
into the data area of a SW A block, the system does not know that the block has been
written into. To allow the system to set up the control fields that are necessary to integrate
the SW A block into the system, use write locate to inform the system that a write has taken
place.

Other services (Assign Locate, Assign Conditional, Delete Block, and Locate All) are available
but require special knowledge of the system:

Assign Locate - Obtains storage within the SW A for the type of block that you specify.
Because the system has already assigned the necessary SW A blocks when your program
executes, you would not normally use this service.

Assign Conditional - This service is the same as assign locate with the following exception:
it does not abend if it cannot obtain the storage that it needs, but gives you a return code
instead.

Delete Block - This service removes the block that you specify from the SW A. After this
service executes, the specified block does not exist.

Locate All- This service returns the address of the data area and the address of the prefix
area of the SWA block that you specify.

How to invoke SWAREQ
As parameters of the SW AREQ macro, you specify the function code and the pointer to the
EPA. The EPA input data and the EPA output data for each function code are summarized in
the following block:

SWAREQ Function EPA EPA Input Fields EPA Output Fields
Size

Assign Locate 16 Block length, SV A, block pointer
block id

Assign Conditional 16 Block length, SV A, block pointer
block id

Read Locate 16 SVA Block pointer, block length, block
id

Write Locate 16 SVA, block None
pointer, block id

Delete Block 16 SVA None

Locate All 28 SVA, QMPA Block pointer, block id, block
pointer length, prefix pointer, prefix

length.

Virtual Storage Management 1-115

When you write a program that invokes SW AREQ, you must provide the field definitions in
the EPA. You might also need to provide the SW A block definitions. When you assemble the
program, the assembler ne~ds ?efinit1I'onks forhthe" Com~unications Vector Table.dand the Job f"'''\
Entry Subsystem CommUlllcatlOns B oc . T e 10110wmg mapping macros prOVl e the V
definitions that you need:

• IEFZB505 - EPA mapping macro
• IEFQMIDS - SW A block id definitions
• IEFJESCT - job entry subsystem communications block
• CVT - Communications vector table

When you specify UNAUTH = YES, you must observe the following rules:

• Your function code must specify Read Locate or Locate All.

• The EPA that you provide must be an extended EPA - an EPA that is 28 bytes long. To
provide an extended EPA, use an option of the IEFZB505 mapping macro.

• If the job for which you are invoking SW AREQ is not the current job, or if the TCB of the
job step is not addressable by PSATOLD, you must pass the QMPA address that is
associated with the job you are interested in. In this case, obtain the QMPA address from
the active JSCB of whatever job you are interested in, and place this address in the EPA
that SW AREQ refers to by its input parameter.

SWAREQ Summary
To issue a locate mode request, take the following steps:

1. Build an EPA (mapped by macro IEFZB505).

2. Issue the SW AREQ macro instruction, specifying the address of the EPA pointer and the
required function code.

Example of Using SWAREQ
The following program locates the JFCB block in the scheduler work area. After the program
obtains the location of the block, it can store new information in the block or it can move
information from the block into another area. The example assumes that register 6 points to
the nOT:

LA 5,EPA GET ADDRESS OF THE EPA
ST 5,SWEPAPTR INITIALIZE EPA POINTER
USING SWAEPA,5 ESTABLISH ADDRESSABILITY TO EPA
XC SWAEPA,SWAEPA INITIALIZE THE EPA
USING TIOT1,6 ESTABLISH ADDRESSABILITY TO TIOT
MVC SWVA,TIOEJFCB MV SVA OF JFCB INTO EPA
SWAREQ FCODE=RL,EPA=SWEPAPTR,MF=(E,SWAPARMS) LOCATE THE JFCB
L 7,SWBLKPTR SET THE POINTER TO THE JFCB
USING INFMJFCB,7 ESTABLISH ADDRESSABILITY TO JFCB

*
SWEPAPTR DS F
EPA DS CL16
SWAPARMS SWAREQ MF=L

CVT
IEFJESCT
IEFZB505
IEFTIOTl
IEFJFCBN

1-116 SPL: System Macros and Facilities Volume 1

/' " \

!(~.' \-

(-

(

(.-..

Return Codes and Reason Codes from SWAREQ
UNAUTH = YES: If you specify UNAUTH = YES, SW AREQ cannot abend. It always returns
to the program that invoked it. Check the return code in general register 15. If the return code
is 0, the service is successful. Otherwise, the service failed and the non-zero return code in
register 15 is also the reason code associated with the failure. In hexadecimal, the reason codes
are:

08 - Invalid SV A in the SW A prefix
24 -- Attempt to read a block not yet written
28 - Invalid pointer to the EPA

UNAUTH = NO: If you specify UNAUTH = NO or omit UNAUTH, the service can abend if an
error occurs or if you are holding a lock. The return, reason, and abend codes for
UNAUTH=NO are as follows:

When control returns after invoking SWAREQ, check the return code in general register 15. If
the return code is 0, the service is successful. Otherwise, the service failed, and the non-zero
return code in register 15 is also the reason code associated with the failure. There is only one
reason code: reason code hexadecimal 38, which means that the system could not obtain the
storage necessary to carry out the request.

When control does not return from SW AREQ, an abend occurred. To interpret the abend
dump, use the contents of general registers 0, 1 and 15. Register 0 contains the address of an
area that contains diagnostic information. Register 1 contains abend code OBO. Register 15
has the reason code associated with the abend. The reason codes, in hexadecimal, are:

04 - Invalid function requested
08 - Invalid SV A in the SW A Prefix
OC - Attempt to read a block not yet written
10 - Invalid length for a SW A block
1 C - Invalid block ID
20 - Invalid block pointer
24 - SV A does not correspond to any virtual address

The IEFQMREQ Macro
IEFQMREQ reads the SW A information into a buffer that you provide, or writes information
from your buffer into the SW A. By specifying a function code when you invoke the macro,
you can request the following IEFQMREQ services. Use the symbolic function codes that are
in the IEFQMNGR mapping macro:

Read - Reads the data area of a specified block into your buffer.

Write - Writes information from your buffer into the block that you specify. Only the
data area is written, not the prefix area.

Other services (Read All, Write All, Assign, and Write Assign) are available but require special
knowledge of the system:

Assign - Obtains storage within the SW A for the type of block that you specify. Because
the syst~m has already assigned the necessary SW A blocks when your program executes,
you would not normally use this service.

Write Assign - Writes information from your buffer into the block that you specify, and
automatically assigns a section of SW A storage for another block. Only the data area is
written, not the prefix area; the system fills in the prefix area. By the time your program
executes, the system has already assigned the SW A blocks that are necessary for your job to
run. Thus, you would not normally use the write assign .

Virtual Storage Management 1-117

Read All- Reads the block that you specify, including the data and the prefix areas, into
your buffer.

Write All - Writes the data that is in your buffer into the block that you specify. The data
and the prefix area are both written.

How to Invoke IEFQMREQ
The IEFQMREQ macro does not have any parameters. Before you invoke the macro you must
store input data for the macro in the queue manager parameter area (QMPA) and the external
parameter area (EPA). The input that you store in the QMPA is:

• The function code - The function code specifies the service to be performed.

• The EPA address - The EPA address, which can be in either of two QMPA fields, locates
the EPA. Fill in the first field if you are specifying a three-byte address and the second
field if you are specifying a four-byte address.

• A 4-byte EPA address indicator - Set this indicator if you are using a four-byte EPA
address.

• The extended EPA indicator - Some services let you specify the size of the EPA as 8 or 16 / "
bytes. Set this indicator if you are using the 16-byte EPA size.

• The number of EPAs - This is the number of times that the function is to be performed,
and the number of EPA blocks that you are passing. For example, when you read three
different SW A blocks into three different buffers in a single invocation of IEFQMREQ, the
number that you specify in this field is 3.

• The SW A manager subpool - This field, which is necessary only for the Assign function
code, specifies the number of the subpool that contains the SW A block to be assigned. The
number must indicate subpool 236 or subpool 237.

If you want the function to be performed more than once, supply more than one EPA. For
example, you can read three different SW A blocks into three different buffers in a single
invocation of IEFQMREQ. If you supply more than one EPA, you must arrange them
contiguously in storage. When you invoke the macro, general register 1 must point to the
QMPA. The EPA input data and the EPA output data for each IEFQMREQ function code
are summarized in the following block:

1-118 SPL:System Macros and Facilities Volume 1

/'

/

(
IEFMQREQ EPA EPA Output Fields EPA Output
Function size Fields

Assign, Assign/Start 4 None SVA

Assign, Assign/Start 16 Block id, block length SVA

Read 8 or SV A, buffer address Block id
16

Write 8 or SV A, buffer address, block id None
16

Write/Assign 8 SV A for write, buffer address, write SV A for Assign
block id

Write/Assign 16 SV A for write, buffer address, write SV A for Assign
block id, length for assign, assign
block id

Readall/Move 8 or SV A, buffer address Block id
16

Writeall/Move 8 or SV A, buffer address, block id None
16

When you write a program that invokes IEFQMREQ, you must supply input data in fields that
are in the QMPA and the EPA. You also need to supply SW A block definitions as input to the
macro. When you assemble the program, the assembler needs definitions for the
communications vector table and the job entry subsystem communications block. The format
of the QMPA input data is defined in the Debugging Handbook. The format of the other input
data is defined in the following mapping macros:

• IEFQMNGR - QMPA mapping macro
• IEFZBS06 - EPA mapping macro
• IEFQMIDS - SW A block id definitions
• IEFJESCT - Job entry subsystem communications block
• CVT - communications vector table

IEFQMREQ Summary
To issue a move mode request, take the following steps:

1. Build a QMPA (mapped by macro IEFQMNGR), which includes specifying the function
code and setting a pointer to the EPA.

2. Build an EPA (mapped by macro IEFZBS06).

3. Set register 1 to point to the QMPA.

4. Issue the IEFQMREQ macro.

Virtual Storage Management 1-119

Example of Using IEFQMREQ
The following program copies the JFCB from the scheduler work area into a buffer that the
program provides. The example assumes register 6 points to the TIOT:

LA 5,EPA GET ADDRESS OF THE EPA
USING SWAMMEPA,5 ESTABLISH EPA ADDRESSABILITY
LA 1,QMPA GET ADDRESS OF THE QMPA
USING IOPARAMS,l ESTABLISH QMPA ADDRESSABILITY
XC IOPARAMS(36),IOPARAMS INITIALIZE THE QMPA
MVI QMPOP,QMREAD INDICATE READ FUNCTION
MVI QMPCL,l INDICATE 1 EPA IS BEING PASSED
STCM 5,7,QMPACL PUT 3-BYTE EPA ADDRESS IN QMPA
XC SWAMMEPA,SWAMMEPA INITIALIZE THE EPA
USING TIOTl,6 ESTABLISH ADDRESSABILITY TO TIOT
MVC SWROWVA,TIOEJFCB SVA OF JFCB MOVED TO EPA
LA 8,JFCBCOPY SET THE POINTER TO THE JFCB
ST 8,SWBUFPTR SET BUFFER POINTER IN EPA
IEFQMREQ COPY SWA BLOCK TO THE BUFFER
USING INFMJFCB,8 ESTABLISH ADDRESSABILITY TO JFCB

*
JFCBCOPY OS CL176

CL8
CL36

BUFFER TO READ THE JFCB INTO
EPA DS
QMPA OS

CVT
I EFJESCT
IEFZB506
IEFQMNGR
IEFTIOTl
IEFJFCBN

! Return Codes and Reason Codes from IEFQMREQ
When control returns aft~r invoking IEFQMREQ, check the return code in general register 15.
If the return code is 0, the service is successful. Otherwise, the service failed, and the nOn-zero
return code in register 15 is also the reason code associated with the failure. There is only one
reason code: reason code hexadecimal 38, which means that the system could not obtain the
storage necessary to carry out the request.

When control does not return from IEFQMREQ, an abend occurred. To interpret the abend
dump, use the contents of general registers 0, 1 and 15. Register 0 contains the address of the
SDW A. Register 1 contains abend code OBO. Register 15 has the reason code associated with
the abend. The reason codes, in hexadecimal, are:

04 - Invalid function requested
08 - Invalid SV A in the SW A Prefix
OC - Attempt to read a block not yet written
10 - Invalid length for a SWA block
14 - Invalid count field
lC - Invalid block ID
24 - SV A does not correspond to any virtual address

1-120 SPL: System Macros and Facilities Volume 1

(~

(

Real Storage Management

The real storage manager (RSM) administers the use of real storage and directs the movement
of virtual storage pages between auxiliary storage slots and real storage frames in blocks of
4096 bytes. It makes all addressable virtual storage in each address space appear as real
storage. Only the virtual pages necessary for program execution are kept in real storage. The
remainder reside on auxiliary storage. RSM employs the auxiliary storage manager (ASM) to
perform the actual paging I/O necessary to transfer pages in and out of real storage. ASM also
provides DASD allocation and management for paging space on auxiliary storage. RSM relies
on the system resource manager (SRM) for guidance in the performance of some of its
operations.

RSM assigns real storage frames upon request from pools of available frames, thereby
associating virtual addresses with real storage addresses. Frames are repossessed when freed by
a user, when a user is swapped-out, or when needed to replenish the available pool. While a
virtual page occupies a real storage frame, the page is considered page able unless it is fixed by
the FIX option of the PGSER macro instruction, a PGFIX or PGFIXA macro instruction, or
obtained from a fixed subpool. RSM also allocates virtual equals real (V = R) regions upon
request by those programs that cannot tolerate dynamic relocation. Such a region is allocated
contiguously from a predefined area of real storage and is non-pageable.

The PGSER macro instruction in MVS/XA provides all the paging services through the use of
parameters rather than separate macro instructions as in MVS/370. PGSER handles virtual
addresses above or below 16 megabytes. The macro instructions, PGFIX, PGFIXA, PGFREE,
PGFREEA, PGLOAD, PGANY, PGOUT, and PGRLSE are supported by MVS/XA to
maintain compatibility with MVS/370, but it is recommended that you use the PGSER macro
instruction.

Users should note that MVS/XA paging services function differently from MVS/370 paging
services in the following ways:

• The end address (EA) specified on the PGSER macro instruction is the address of the last
byte On which the page service is to be performed (not the last byte + 1).

• In the register format SVC entry for the PGSER macro instruction, register 14 is used in
addition to registers 0, 1, and 15.

• If an ECB is supplied, with a page-fix or page-load request and the caller invokes PGSER,
then the return code must be checked because the ECB is not posted for a return code of O.

• If an ECB is not supplied the return code need not be checked. Control will not be
returned until the request is successfully completed. If the request fails, the caller will be
abnormally terminated.

• Users of the PGSER macro instruction do not need to hold the local lock.

• Users of BRANCH = Y or BRANCH = SPECIAL options of the PGSER macro instruction
must provide an 18-word savearea; this savearea must be in non-pageable storage if
BRANCH = SPECIAL is specified.

The paging services provided include the following:

• Fix virtual storage contents -- PGFIX, PGFIXA, or the FIX option of PGSER

• Fast path to fix virtual storage contents -- the FIX and BRANCH = SPECIAL options of
PGSER

• Free real storage -- PGFREE, PGFREEA, or the FREE option of PGSER

© Copyright IBM Corp. 1982, 1989 Real Storage Management 1-121

• Fast path to free real storage -- the FREE and BRANCH = SPECIAL options of PGSER

• Load virtual storage areas into real storage -- PGLOAD or the LOAD option of PGSER

• Page out virtual storage areas from real storage -- PGOUT or the OUT option of PGSER

• Release virtual storage contents -- PGRLSE or the RELEASE option of PGSER

• Page anywhere (above or below the 16 megabyte (megabytes) line of real storage) -
PGANY or the ANYWHER option of PGSER

The PGFIX, PGFIXA, PGFREE, and PGFREEA functions as well as the FIX and FREE
options of PGSER are available only to authorized system functions and users and are
described in the following topics. PGANY, PGLOAD, PGOUT, and PGRLSE as well as the
ANYWHER, LOAD, OUT, and RELEASE options of PGSER are not restricted and are
available to all users. PGSER and PGANY are described in this publication. PGLOAD,
PGOUT, and PGRLSE are described in Supervisor Services and Macro Instructions.

Fixing/Freeing Virtual Storage Contents
Fixing virtual storage and freeing real storage are complementary functions. The PGFIX and
PGFIXA macro instructions and the FIX option of PGSER make specified storage areas
resident in real storage and ineligible for page-out as long as the requesting address space
remains in real storage. Note that page fixing ties up valuable real storage and is usually
detrimental to system performance unless the use of the fixed pages is extremely high.

The PGFREE and PGFREEA macro instructions and the FREE option of PGSER make
specified storage areas, which were previously fixed via the PGFIX macro instruction or the
FIX option of PGSER, eligible for page-out. Pages fixed by PGFIX, PGFIXA, or the FIX
option of PGSER are not considered pageable until the same number of page free and page-fix
requests have been issued for any virtual area. The fix and free requests for a page must be
issued by the same task (unless TCB = 0 is specified), otherwise the page will not be freed.

When using the fix function, you have the option of specifying the relative real time duration
anticipated for the fix. Specify LONG = Y, if you expect that the duration of the fix will be
relatively long. (As a rule of thumb, the duration of a fix is considered long if the interval can
be measured on an ordinary timepiece-that is, in seconds.) Additional processing might be
required to avoid an assignment of a frame to the V = R area or an area that might be varied
omine. Specify LONG = N, if you expect the time duration of the fix to be relatively short. A
long-term fix is assumed if you do not specify this option.

In both the fix and free functions, you have the option of specifying that the contents of the
virtual area are to remain intact or be released. If the contents are to be released, specify
RELEASE = Y; otherwise, specify RELEASE = N. If you specify PGFIX or the FIX option of
PGSER with RELEASE = Y, the release function is performed before the fix function. If you
specify PGFREE or the FREE option of PGSER with RELEASE = Y, the free function is
performed and those pages of the virtual subarea with zero fix counts are released; that is, the
contents of virtual areas spanning entire virtual pages that were fixed are expendable and no
page-outs for these pages are necessary.

The BRANCH = SPECIAL and the FIX or FREE options of PGSER provide the fast path
version of PGSER. The fast path version of PGSER with the FIX option ensure that specific
storage areas are resident in real storage and ineligible for page-out. These functions execute
only short-term, synchronous page fixes.

1-122 SPL: System Macros and Facilities Volume I

(-.'.' '.
i .. ,;I

(

(

(-

Notes:

1. PGFIX and the FIX option of PGSER do not prevent pages from being paged out when
an entire virtual address space is swapped out of real storage. Consequently, the user of
PGFIX and the FIX option of PGSER cannot assume a constant real address mapping for
fixed virtual areas in most cases.

2. When using the PGFIXA macro instruction or the fast path version of PGSER with the
FIX option, or a branch entry to PGSER with the options FIX and TCB = 0, fixed areas
will not automatically be freed at the end of a job; to free them, issue a PGFREEA macro
instruction or the PGSER macro instruction with the FREE and BRANCH = SPECIAL
options.

PGFIX/PGFREE Completion Considerations
Under normal circumstances, you can reverse the effect of a PGFIX by using a PGFREE when
the need for a page fix ceases. You can also reverse the effect of the FIX option of PGSER by
using the FREE option of PGSER when the need for a page fix ceases. However, a page-fix
request sometimes completes asynchronously if, for example, it requires a page-in operation. In
such cases, you might need to explicitly purge page-fix operations.

For this reason, the page-fix function provides a mechanism for signalling event completion.
The mechanism is the standard ECB together with WAIT/POST logic. The requestor supplies
an ECB address and waits on the ECB after a request if the return code indicates that all of the
pages were not immediately fixed. The ECB is posted when all requested pages are fixed in real
storage.

Note: Callers who supply an ECB and use PGSER must check the return code before waiting
since the ECB is not posted for a return code of O.

There are two ways to explicitly purge a page fix:

• If the page fix is known to be complete, the page fix is reversed through the page-free
function.

• If there is any possibility that the page fix has not been posted as complete, issue PGFREE
or PGSER with FREE and supply an ECB address. This ECB parameter identifies the
event control block that was supplied as an input parameter with the page fix being purged.
Note that for the purpose of canceling a page-fix request that has not yet completed, the
ECB must uniquely identify the page-fix request. Consequently, to provide for explicit
purging, you must ensure that the ECB for any incomplete page fix can be located in a
purge situation, and that the ECB has not been reused at the time the page fix is to be
canceled.

The page-free function always completes immediately and requires no ECB address except for
purging considerations.

The issuer of the following instructions is responsible for freeing the fixed frames:

• PGFIXA
• PGSER, with the FIX, BRANCH, and TCB = 0 options
• PGSER, with the FIX and BRANCH = SPECIAL options

This can be accomplished by using PGFREEA; PGSER with FREE, BRANCH, and TCB = 0;
or PGSER with FREE and BRANCH = SPECIAL.

Real Storage Management 1-123

An FRR (functional recovery routine) or EST AE recovery routine should be established during
the period these fixes are outstanding. The recovery routine should free the frames in case there
is an unexpected error. «~.

Input to Page Services
There are two formats for providing input to page services. These are the register (R) and list
(L) formats. If you specify R, page services uses the input information supplied in registers to
perform the requested function; if you specify L, page services uses the input information
provided in a parameter list to perform the requested function. The information that you must
provide in the parameter list includes the starting and the ending addresses for which you want
the page service to be perfornled and an indication of the end of the list.

The list used depends on which page services macro instruction you code. Descriptions of the
parameter lists and the macros that use them follow.

Virtual Subarea List (VSL)
The virtual subarea list provides the basic input to the page service functions: PGFIX,
PGFIXA, PGFREE, PGFREEA, PGLOAD, PGRLSE, and PGOUT.

The list contains one or more doubleword entries; each entry describes an area in virtual
storage. The list must be non-pageable and located in the address space to be processed. The
VSL is not required to be on a word boundary.

See Debugging Handbook for an exact description of the VSL.

Page Service List (PSL)
The page service list provides the basic input to the page service functions of the PGSER macro
with the exception of the BRANCH = SPECIAL option. Each entry in the list specifies a range
of addresses to be processed, or specifies the address of the next list entry to be processed, or is
null. The first entry also indicates the paging service that is to be performed on all the ranges
specified in the list.

The PSL has the following characteristics:

• The list must be in non-page able storage.
• The PSL is not required to be on a word boundary.
• All addresses specified are 31-bit addresses.

See Debugging Handbook for an exact description of the PSL.

Short Page Service List (SSL)
The short page service list provides the basic input to the PGSER macro instruction with the
BRANCH = SPECIAL option. The list contains entries for the 31-bit starting and 31-bit
ending addresses of the virtual area to be fixed or freed.

The SSL has the following characteristics:

• The list must be in non-pageable storage.
• The SSL is not required to be on a word boundary.
• All addresses specified are 31-bit addresses.

See Debugging Handbook for an exact description of the SSL.

1-124 SPL: System Macros and Facilities Volume 1

\..~/

('

(

(

Branch Entry to the PGSER Routine
Branch entry to the PGSER macro instruction is available in both cross memory mode and
non-cross memory mode for the FIX, FREE, OUT, LOAD, ANYWHER, and RELEASE
options. The caller must be enabled, in supervisor state and key 0, and must set up the PSL as
shown in Debugging Handbook. The caller does not need to hold the local lock, but must
ensure that register 13 contains the address of an 18-word savearea when the PGSER macro
instruction is issued.

The macro uses the registers as follows:

Register(s) Bit(s)

0

0
1-31

2

3 0-15
16-23
24-31

4

5-12

13

14

15

Contents

ECB address or 0 if no ECB

o for register format 1 for list format
Start of virtual area for register format
Pointer to the first PSL for list format

31-bit address of the last byte of the
virtual area for register format
Irrelevant for list format

Reserved for register format
Same as FUNC in PSL for register format
Same as FLAG2 in PSL for register format
Irrelevant for list format

TCB address or 0 for register format
Irrelevant for list format

Not used

Address of standard 72-byte save area,
required for branch entry only.
For BRANCH = SPECIAL, the save area must
be non-pageable.

Pointer defined return address
(The first bit indicates the
AMODE. If this bit is 1, the AMODE
is 31-bit; if this bit is 0, the
AMODE is 24-bit.

Entry point address

On return from the PGSER macro instruction, the registers are set as follows:

Register

0-4
5-13
14
15

Contents

The contents are destroyed and unpredictable.
The contents are unchanged.
The contents are destroyed and unpredictable.
Return code

Real Storage Management 1-125

Branch Entry to MVS/370 Page Services
Branch entry is available for all MVS/370 page services (page-fix, page-free, page-load,
page-release, page-any, and page-out) in non~cross memory mode; and for all but the page-out
service in cross memory mode. The caller must be in key 0, supervisor state, and must hold the
local lock of the currently addressable address space.

Note: LOCAL lock means the local lock of the home address space. When written in lower
case, the local lock refers to either the LOCAL or CML (cross memory local) lock.

Cross Memory Mode
The pages that are candidates for page services must be addressable in the current address
space. The caller must set up registers as follows:

Register(s)

o

2

3

4

5-6

7

8-13

14

15

Bit(s)

o
1-7

Contents

o

o for register format 1 for list format
Same as bits 1-7 ofVLSFLAGI field ofVSL
for register format; irrelevant for list format

8-31 24-bit starting address on which the service
is to be performed for register format; 24-bit
address of user's first VSL for list format

0-7

8-31

Same as VSLFLAG2 field in VSL for
register format; irrelevant for list format
24-bit ending address + 1 for which the
service is to be performed for register
format; irrelevant for list format

Irrelevant

o

Irrelevant

ASCB address of current address space

Irrelevant

Return address

Entry point to page services (contents of CVTPSXM)

On return, the page service sets the registers as follows:

Register

0-14
15

Contents

Unchanged
Return code

The only return code possible is O. This indicates that the requested function was processed
successfully.

Note: PGFIXA and PGFREEA can be invoked in cross memory mode.

1-126 SPL:System Macros and Facilities Volume I

(-" ': \

~/J

~, /

c

(-

('

(.-

(

· Non-Cross Memory Mode
The caller must set up registers as follows:

Register(s)

o

2

3

4

5-13

14

15

Bit(s)

o
1-7

8-31

0-7

8-31

Contents

ECD address or 0 if no ECD is specified

o for register format 1 for list format
Same as bits 1-7 ofVSLFLAGl field ofVSL
for register format; irrelevant for list format
24-bit starting address on which the service
is to be performed for register format; 24-bit
address of user's first VSL for list format

Same as VSLFLAG2 field in VSL for
register format; irrelevant for list format
24-bit ending address + 1 for which the
service is to be performed for register
format; irrelevant for list format

Irrelevant

TCD address or 0

Irrelevant

Return address

Entry point to page-anywhere service (contents
of CVTVPSID or PVTPSIB)

On return, the page service sets the registers as follows:

Register

0-14
15

Contents

Unchanged
Return code

The return codes are as follows:

Code

o

8

12

Meaning

The requested function was processed successfully.
If the function was page-fix or page-load, and an ECD was
supplied, it will be posted.

The requested function was page-fix or page-load with
an ECD. The function will be processed
asynchronously and the ECD will be
posted upon completion.

The requested function was page-out and
the function was unsuccessful for at
least one of the specified pages.

Real Storage Management 1-127

/

(~

1-128 SPL: System Macros and Facilities Volume I

(~

(

(

The Nucleus

The nucleus contains routines that execute with dynamic address translation (DAT) turned off
and routines that execute with DAT on. These routines are located in two separate load
modules. Load module IEAVNUCOn (n identifies the particular load module) contains the
DAT-ON nucleus and load module IEAVEDAT contains the DAT-OFF nucleus. See System
Initialization Logic for information concerning the manner in which the nucleus is loaded into
storage.

There are two macro instructions that provide services for the nucleus. These macro
instructions are:

Macro
DATOFF
NUCLKUP

Function
Provides a means of linking to routines in the DAT-OFF nucleus
Provides a means of obtaining information about CSECTs in the DAT-ON
nucleus

Linking to Routines in the OAT-OFF Nucleus (DATOFF)
The DAT-OFF nucleus is not mapped in virtual storage. 1PL processing loads the DAT-OFF
nucleus into consecutive real storage located at the highest available real address. Because the
DAT -OFF nucleus is not mapped in virtual storage, a special method is used to link to routines
in this area. The DATOFF macro instruction provides the means of linking to routines in the
DAT-OFF nucleus.

When using the DATOFF macro instruction, the caller specifies an index that identifies the
routine that is to receive control in the DAT-OFF nucleus. The index, entry point, and
purpose of the routines available to users in the DAT-OFF nucleus are shown in Figure 45.

Index Entry Point Purpose

INDCDS IEAVCDS Compare Double and Swap
INDMVCLO IEAVMVCO General DAT-OFF MVCL function
INDMVCLK IEAVMVKY General DAT-OFF MVeL function in user key
INDXCO IEAVXCO General OAT-OFF XC function
INDUSRI IEAVEURI User defined function
INDUSR2 IEAVEUR2 User defined function
INDUSR3 IEAVEUR3 User defined function
INDUSR4 IEAVEUR4 User defined function

Figure 45. OAT-OFF Routines Available to Users

All routines that execute with DAT turned off must be located in the DAT-OFF nucleus.
These routines receive control and execute in 31-bit addressing mode and must be capable of
residing either above or below the 16 megabytes line. Therefore routines that execute in the
DAT-OFF nucleus must have the attributes AMODE=31, RMODE=ANY. For information
concerning 24-bit/31-bit compatibility, see SPL: 31-Bit Addressing.

USing System Provided OAT -OFF Routines (DATOFF)
The system defined index values, 1NDMVCLO, 1NDMVCLK, 1NDXCO, and 1NDCDS are
available to users. 1NDMVCLO initiates the move character long (MVCL) function,
1NDMVCLK initiates the MVCL function in user key, 1NDCDS initiates the compare double
and swap function, and 1NDXCO initiates the exclusive OR (XC) function. The register usage
and linkage for these functions follows.

© Copyright IBM Corp. 1982, 1989 The Nucleus 1-129

In all cases, the DATOFF macro instruction destroys the contents of general registers 0, 14,
and 15.

INDMVCLO- Move Character Long
All register values must be 31-bit addresses. Before issuing the macro instruction, the user must
load the registers as follows:

Register

o
2
3
4
5
14
15
1,6-13

Use

Used by macro
Real location into which the characters are to be moved
Length of the area into which the characters are to be moved
Reallocation of the area from which the characters are to be moved
Length of the area from which the characters are to be moved
U sed by macro
Used by macro
Unused

The user invokes the MVeL function by coding the following macro instruction:

DATOFF INDMVCL0

INDMVCLK- Move Character Long in User Key
All register values must be 31-bit addresses. Before issuing the macro instruction, the user must
load the registers as follows:

Register

o
2
3
4
5
6

14
15
1,7-13

Use

Used by macro
Reallocation into which the characters are to be moved
Length of the area into which the characters are to be moved
Reallocation of the area from which the characters are to be moved
Length of the area from which the characters are to be moved
Bits 24-27 contain the PSW key in which the MVeL function is to be
performed.
Used by macro
Used by macro
Unused

The user invokes the MVeL in user key function by coding the following macro instruction:

DATOFF INDMVCLK

1-130 SPL: System Macros and Facilities Volume 1

/

(

(

(

(~

INDXCO - Exclusive OR
All register values must be 31-bit addresses. Before issuing the macro instruction, the user must
load the registers as follows:

Register Use

o
2

3

4

14
15
1,5-13

U sed by macro
Reallocation of first operand and location for results of exclusive OR
character operation
Length, in bytes, of operand pointed to by register 2. The length must be in
bits 24-31 of register 3. Allows a maximum length of 256 bytes
Real location of the operand to be exclusive orred with the operand pointed to

by register 2.
U sed by macro
Used by macro
Unused

The user invokes the XC function by coding the following macro instruction:

DATOFF lNDXC0

IEAVMVCO- Compare Double and Swap
All register values must be 31-bit addresses.
load the registers as follows:

Before issuing the macro instruction, the user rm.:.st

Register use

o
I
2,3
4,5
6
7-13
14
15

U sed by macro
Unchanged
First 64 bit operand in even-odd pair of registers (target data)
Third 64 bit operand in even-odd pair of registers (source data)
Real address of second operand, a doubleword in storage (target address)
Unchanged
U sed by macro
U sed by macro

The user invokes the CDS function by coding the following macro instruction:

DATOFF lEAVCDS

The Nucleus 1-131

Writing User OAT -OFF Routines
As shown in Figure 45, there are four DAT-OFF indexes that users can define. These indexes
are INDUSR1, INDUSR2, INDUSR3, and INDUSR4. The entry points corresponding to ,r"
these indexes are IEAVEUR1, IEAVEUR2, IEAVEUR3, and IEAVEUR4, respectively. (~;

User written DAT-OFF routines are restricted as follows:

• The user of the DATOFF macro instruction must be in key 0, supervisor state, and
executing with DAT turned on.

• The DAT -OFF routine must have the attributes AMODE = 31 and RMODE = ANY.

• The DAT -OFF routine must preserve register 0 because register 0 contains the return
address of the module that issued the DATOFF macro.

• The DAT-OFF routine must use branch instructions to link to other DAT-OFF routines.

• The DAT-OFF routine must,use BSM 0,14 to return.

See SPL: System Modifications for information about how user-written DAT-OFF routines are
placed in the DAT-OFF nucleus.

1-132 SPL: System Macros and Facilities Volume 1

(-

(

(

Obtaining Information about CSECTs in the OAT-ON Nucleus
(NUCLKUP)

IPL processing places the CSECTs located in the DAT-ON nucleus in virtual storage and
creates a map of them. The real addresses do not equal the virtual addresses and the real
addresses are not necessarily contiguous. IPL processing loads the CSECTs into storage
according to residency mode and according to whether they are read only or read/write. If the
CSECT is assembled with RMODE = ANY, it is placed in the extended nucleus. Figure 46
shows the virtual storage map of the DAT -ON nucleus.

~ 2G

rJ r

Extended
Read/write nucleus

Extended
Read-only nucleus

16 MB
Read-only nucleus

Read/write nucleus

rJ ,J

Figure 46. Virtual Storage Map of DAT-ON Nucleus

The nucleus map look up service provides users with information about these CSECTs.
Through the use of the NUCLKUP macro instruction, users can perform two functions:

• Retrieve the address and addressing mode of a nucleus CSECT, given the name of the
CSECT

• Retrieve the name and entry point address of a nucleus CSECT, given an address within
the CSECT.

The Nucleus 1-133

1-134 SPL: System Macros and Facilities Volume I

(

(::

Normal and Abnormal Program Termination

The supervisor offers many services that help to detect and process abnormal conditions during
system execution. The hardware detects certain types of abnormal conditions (such as an
attempt to execute an instruction with an invalid operation code) and causes program
interruptions to occur. The software detects other abnormal conditions (such as an attempt to
open a data set that is not defined to the system) and causes abnormal terminations.

The supervisor enables you to write recovery routines to handle interruptions and abnormal
conditions. The supervisor initiates the recovery termination process of your program either
when you request it (for example, by issuing an ABEND macro instruction) or when MVS/XA
detects a condition that will degrade the system or destroy data.

The services described in this section include:

• Invoking recovery termination (CALLRTM and ABEND macro instructions)

• Processing program interruptions (SPIE and ESPIE macro instructions)

• Intercepting system errors (SLIP command)

• Using system trace facilities (PTRACE)

• Dumping virtual storage (SDUMP macro instruction and CHNGDUMP command)

• Providing recovery routines (EST AE, ATTACH with the EST AI parameter, FEST AE, and
SETFRR macro instructions)

• Uses of resource managers

Recovery Termination Manager
The recovery termination manager (RTM) controls the flow of software recovery processing by
handling all normal and abnormal terminations of tasks and address spaces. RTM gets control
in response to events such as the following:

• Unanticipated program checks (except those protected by SPIE routines)

• Machine checks

• Invalid use of an SVC (issuing an SVC while locked, disabled, in SRB mode, or in cross
memory mode)

• I/O error on page-in request

• ABEND or CALLRTM macro instruction requesting termination of a task or address
space (see "Invoking the Recovery Termination Manager" later in this topic)

When one of these events occurs, RTM initiates recovery processing before proceeding with
abnormal termination.

Your installation-written functions can use RTM's recovery processing by providing recovery
routines for the functions. A recovery routine is a routine that you establish to get control if
your main function terminates abnormally. The recovery routine can perform such processing
as:

• Documenting the error
• Providing a dump of the storage needed to diagnose the error
• Freeing resources acquired by the main function

© Copyright IBM Corp. 1982, 1989 Normal and Abnormai Program Termination 1-135

---- ----- -----~----------.---------------------------.---.-- --------

• Requesting a retry -- returning control to an appropriate point in the main function
• Requesting that RTM continue with the abnormal termination

To provide recovery for tasks and SRBs, RTM recognizes two types of recovery routines:
functional recovery routines (FRRs) and ESTAE-type recovery routines. See "Uses of
Resource Managers" later in this chapter for a full description.

When a function terminates abnormally, RTM gets control and generally invokes the most
recently-established recovery routine to recover for the process that was in control. If this
recovery routine cannot recover from the error (it fails or requests that termination continue),
RTM invokes the next most recently established-recovery routine. The passing of control from
one recovery routine to another is called percolation.

Note: MVS/XA functions provide their own recovery routines; thus, percolation can pass
control to both installation-written and system-provided recovery routines. If all recovery
routines percolate -- that is, no recovery routine can recover from the error -- then the process
in control (an SRB or a task) is terminated.

RTM invokes recovery routines only during abnormal termination of tasks or SRBs. RTM
also invokes resource manager routines during both normal and abnormal termination of a task
or an address space. The major purpose of a resource manager is to release any resources held
by the task or address space and make these resources available to other users. See "Uses of
Resource Managers" later in this chapter for a description of the processing such routines can
perform.

Invoking the Recovery Termination Manager

CALLRTM

RTM can be called to perform its recovery and termination services on behalf of the caller or
on behalf of another routine. Two macro instructions -- CALLRTM and ABEND -- invoke
RTM.

A routine issues the CALLRTM macro instruction to direct the recovery termination services to
a task or address space other than itself or its callers. Only key 0 supervisor state routines can
issue CALLRTM.Control returns to the issuer of the macro instruction if TYPE = ABTERM
or TYPE = MEMTERM is specified.

TYPE = ABTERM: If the CALLRTM macro instruction specifies TYPE = ABTERM, RTM
processing is directed toward the specified task, and you should consider locking and work area /' ",
requirements: ""' ____ /

• If the TCB parameter is specified as 0 (or defilUlted to 0) and the ASID parameter is
omitted, the current task in the current address space is abnormally terminated. In this
situation, the caller must be disabled (for example, hold any of the spin locks) and need not
provide a work area via register 13. If dump options are supplied, they must be contained
in fixed pages. The routine must exit to the dispatcher without changing the TCB or RB
and without enabling.

• If the TCB parameter is specified as an address and the ASID parameter is omitted, the
task associated with the specified TCB in the current address space is abnormally
terminated. In this situation, the caller must own the LOCAL lock, and need not provide a
work area. If the caller specifies a TCB equal to the current TCB address, the caller must
also be disabled.

• If the ASID parameter is specified, the ABTERM function is scheduled as a service request
block (SRB) to terminate the task in the specified address space. The caller, who specifies
ASID, must pass the address of an 18-wordsave area in register 13.

1-136 SPL: System Macros and Facilities Volume I

(

(

(

(

ABEND

TYPE = MEMTERM: If the CALLRTM macro instruction specifies TYPE = MEMTERM,
RTM processing is directed toward an address space and you should consider the following
locking and work area information:

• If the ASID parameter is nonzero, the specified address space is abnormally terminated.
The caller need not be disabled or own any locks. The caller must pass the address of an
18-word work area in register 13.

• If the ASID parameter is specified as 0 or is omitted, the current address space is
abnormally terminated. The caller need not be disabled or own any locks. The caller must
pass the address of an 18-word work area in register 13.

Note: The required work area is not the standard 18-word save area; therefore, standard
IBM linkage conventions do not apply to it. One aspect of this difference is that
CALLRTM does not save registers in this work area in the same order as it would in a
standard save area. All 18 words are used.

Because TYPE = MEMTERM processing circumvents all task recovery and task resource
manager processing, its use is restricted to a select group of routines that can determine that
task recovery and task resource manager clean-up are either not warranted or will not
successfully operate in the address space being terminated. These routines include:

• Paging supervisor, when it determines that it cannot swap in the LSQA for an address
space

• Memory create, when it determines that an address space cannot be initialized

• RTM or supervisor control functional recovery routine (FRR), when it determines that
uncorrectable translation errors are occurring in the address space

• RTM, when it determines that task recovery and termination cannot take place in the
current address space

• Region control task, when it has determined that the address space might become
permanently deadlocked -- that is, unusable -- or that the status of the address space is
unpredictable because of an error during swap-out processing

• RTM, when all tasks in the address space have terminated

• Auxiliary storage management (ASM) recovery, when it has an indeterminate error from
which it cannot recover while handling a request for either swap-in or swap-out

• SVC 34, in response to a FORCE command

In addition, the terminal control address space (TCAS) specifies TYPE = MEMTERM when the
system operator replies "FSTOP" (forced stop) to certain messages that can occur when
TSO/VTAM time sharing starts or stops. The messages are IKT001D (replying "FSTOP"
cancels terminal users already active when TSO/VTAM is starting) and IKT010D (replying
"FSTOP" cancels terminal users still active when TSO/VTAM is being stopped). In both cases,
the system operator should reply "FSTOP" to cancel users only if "SIC" (system-initiated
cancellation) is ineffective. Replying "SIC" does not cause task resource manager processing to
be bypassed.

Any routine, including supervisor state, locked, disabled, or SRB routines, can issue the
ABEND macro instruction to direct the recovery termination services to itself (cause entry into
its recovery routine) or to its callers. The issuer of ABEND should remove its own recovery
routine if it wishes its caller to be abended or to enter recovery. Control never returns to the
issuer of the macro (except as a result of a retry). See Supervisor Services and Macro
Instructions for a description of the ABEND macro instruction.

Normal and Abnormal Program Termination 1-137

--------.-.. --- ...

Processing Program Interruptions (SPIE, ESPIE)
The SPIE macro instruction enables a problem program executing in 24-bit addressing mode to rr-'"
specify an error exit routine to get control in response to one or more program error \.
interruptions. The ESPIE macro instruction extends the function of SPIE to callers in 31-bit
addressing mode. Callers in both 24-bit and 31-bit addressing mode can use the ESPIE macro
instruction.

Each succeeding SPIE/ESPIE macro instruction completely overrides any previous SPIEjESPIE
macro instruction specifications for the task. The specified exit routine gets control in the key
of the TCB (TCBPKF) when one of the specified program interruptions occurs in any problem
program of the task. When a SPIE macro instruction is issued from a SPIE exit routine, the
program interruption element (PIE) is reset (zeroed). Thus, a SPIE exit routine should save any
required PIE data before issuing a SPIE.

If a caller issues an ESPIE macro instruction from within a SPIE exit routine, it has no effect
on the contents of the PIE. However, if an ESPIE macro instruction deletes the last
SPIE/ESPIE environment, the PIE is freed, and the SPIE exit cannot retry.

If the current SPIE environment is cancelled during SPIE exit routine processing, the control
program will not return to the interrupted program when the SPIE program terminates.
Therefore, if the SPIE exit routine wishes to retry within the interrupted program, a SPIE
cancel should not be issued within the SPIE exit routine.

The SPIE macro instruction can be issued by any problem program being executed in the
performance of the task. The control program automatically deletes the SPIE exit routine when
the request block (RB) that created the SPIE macro instruction terminates.

The SPIE and ESPIE macro instructions and their related services are discussed in detail in
Supervisor Services and Macro Instructions. The syntax of both the SPIE and the ESPIE macro
instructions appears in Volume 2.

Interruption Types
The programmer can specify interruptions 1-15 using either the SPIE or the ESPIE macro
instruction. The installation-authorized system programmer can also specify interruption 17.
Interruption 17 designates page faults and can be specified so that a user-written SPIE/ESPIE
exit routine gets control before a supervisor routine when a problem state page fault occurs.
The user-provided SPIE/ESPIE exit routine gets control in problem program state and in the
key of the TCB (TCBPKF) when a page fault occurs for the program that issued the
SPIEjESPIE macro instruction. The exit routine gets control in the addressing mode that was
in effect when the SPIE or ESPIE macro instruction was issued. (If a SPIE macro instruction
was issued this is 24-bit addressing mode.) The SPIE/ESPIE exit routine for interruption type
17 handles page faults at the task level. This includes all RBs executing under the task for
which the SPIE/ESPIE was issued. The exit routine resolves page faults by invoking the paging
supervisor.

A caller in supervisor state, who issues the SPIE macro instruction is abnormally terminated
with a 30E abend completion code. A caller in supervisor state, who issues the ESPIE macro
instruction is abnormally terminated with a 46D-18 abend completion-reason code. If the caller
takes a page fault while in supervisor state, the exit routine does not get control even if a
SPIE/ESPIE macro instruction specifying interruption type 17 is in effect. Supervisor routines
resolve the page fault and continue program processing without abending the caller.

1-138 SPL: System Macros and Facilities Volume I

,,/

)

c

('.

(

(

If a program fault occurs while a SPIEjESPIE specifying interruption type 17 is in effect, the
program check first level interrupt handler (FLIH) passes control to a SPIEjESPIE service
routine, which then passes control to the SPIE/ESPIE exit routine via an LPSW. The
SPIE/ESPIE service routine sets up functional recovery routines (FRRs) to handle possible page
faults caused by PIE/PICA references (for a SPIE) or EPIE references (for an ESPIE) during
this set-up processing. If such a page fault occurs, the SPIEjESPIE service routine returns to
the FLIH, which invokes the paging supervisor to handle the original page fault. In this case
the SPIE/ESPIE exit routine does not handle the original page fault because the SPIE/ESPIE
service routine cannot provide the information that the exit routine needs. After the page fault
is resolved, processing continues in the problem program.

There is another situation in which the exit routine might not get control when a page fault
occurs. To use interruption type 17, you must place the PIE/PICA (for a SPIE macro
instruction), the EPIE (for an ESPIE macro instruction), the SPIE/ESPIE program, and data
areas in fixed storage. Page faults can occur after issuing the SPIE/ESPIE macro instruction
and before placing this information in fixed storage. If a page fault occurs at this point, the
SPIE/ESPIE service routine performs set-up processing and, if it can reference the PIE/PICA
(for SPIE) and the EPIE (for ESPIE), passes control to the exit routine. If the exit routine
encounters a page fault, the paging supervisor resolves the page fault unless the routine is
running disabled. A disabled page fault c~uses an OC4 abend. Once the page fault is resolved,
normal processing continues in the exit routine.

Note: In MVS/370 the SPIE environment existed for the life of the task. In MVS/XA the
SPIE environment is deleted when the request block containing the macro is deleted. That is,
when a program running under MVS/XA completes, any SPIE environments created by the
program are deleted. This might create an incompatibility with MVS/370 for programs that
depend on the SPIE environment remaining in effect for the life of the task rather than the
request block.

Intercepting System Errors
Intercepting system events provides a way to get information about software conditions, in
addition to the information normally supplied by dumping services during abnormal
termination. The intercepting process, known as serviceability level indication processing
(SLIP) is a major debugging tool.

SLIP definitions, called traps, specify the system conditions at the time of interception and the
action that is to be taken after the interception. There are two types of SLIP traps: non-PER
traps and PER traps. A non-PER trap obtains information about an error condition normally
handled by the recovery/termination manager (RTM), such as a program check, abend, or
restart interrupt. A PER trap uses program event recording (PER) hardware to obtain
information about any of the following PER events:

• Successful branch: Successful execution of a branch taken within a user defined range of
virtual addresses.

• Storage alteration: Alteration of the contents of a virtual storage location within a
user-defined range of virtual addresses.

• Instruction fetch: Fetching and execution of an instruction within a user-defined range of
virtual addresses.

Once the trap is defined and enabled, SLIP processing checks current system conditions for
each SLIP event. PER traps are checked each time a PER event occurs; non-PER traps are
checked when RTM processes an error. When current system conditions match the conditions
specified in the trap, the action specified in the trap occurs. Normally, the action specified,

Normal and Abnormal Program Termination 1-139

such as scheduling an SVC dump or writing a GTF trace record, is designed to collect
diagnostic data.

SLIP users can minimize the effect of PER traps on system performance by limiting the scope
of a SLIP trap to, for example, a particular address space or job. A SLIP trap can also include
controls that automatically disable the trap when it is causing excessive overhead or has
collected the required amount of data. The action to be taken when the trap matches can also
be tailored. For example, SLIP users can tailor the SVC dump to include only diagnostic
material essential for debugging. In addition, SLIP users can specify the type and contents of
the GTF trace records. For more information on the SLIP command operands, see Operations:
System Commands, TSO/E Programming Guide, and TSO/E Programming Services.

Using the SLIP Command
Use of the SLIP command should be restricted to system programmers.

The command uses three operands to control SLIP traps:

• SET -- establish SLIP traps .
• MOD -- modify SLIP traps
• DEL -- delete SLIP traps

It is also possible to display information about SLIP traps by using the DISPLAY command at
the operator's console or from a TSO terminal. For specific information about how to enter
both the SLIP and DISPLAY commands, refer to Operations: System Commands or TSO/E
System Programming Command Reference. The descriptions in those publications also explain
the operands. For more information on designing effective SLIP traps, see Diagnostic
Techniques.

Obtaining an SVC Dump During Slip Processing
SLIP processing invokes SDUMP (if A = SVCD or A = TRDUMP is specified) to obtain an
SVC dump at the time the SLIP trap is entered. It uses SDURGPSA (a system parameter of
the SDUMP macro instruction, not available for general use) to specify the following
information:

• The PSW at the time of the error
• The contents of control register 3 and 4
• The contents of general registers 0-15

SVC dump puts this information into the dump header record. Summary dump dumps 4K of
storage (for one address space only) around the PSW at the time of the error. The address
space used depends on the setting of the S-bit. (If the S-bit is on, it dumps this area in the
secondary address space; if off, it dumps this area in the primary address space. In addition, it
dumps 4K of storage around the addresses in all general registers for both address spaces.

SDUMP copies the storage specified by the SDURGPSA parameter into SDUMP storage
before returning to SLIP. This allows SLIP to continue without waiting for SDUMP to
complete.

Bypassing Dump Suppression
Dump analysis and elimination (DAE) suppresses duplicate SDUMPs and SYSMDUMPs
under certain conditions. However, you can use the ACTION keyword of the SLIP command
to override DAE. When all of the match conditions are met for a non-PER SLIP trap, the
ACTION = NOSUP keyword prevents suppression of a recovery routine's dump request.

1-140 SPL: System Macros and Facilities Volume 1

(

(

The SLIP actions of SVCDUMP and TRDUMP (trace dump) also override DAE. These
actions trap critical problems that always require a dump.

"Suppressing SDUMPs and SYSMDUMPs" later in this section provides more information
about DAE and contains a list of other publications that describe DAE.

System Trace Facilities
MVSjXA system trace provides a record in storage of significant software events. System
tracing is in effect, by default, in MVSJXA. The system trace facility consists of branch tracing,
address space tracing, and explicit tracing. Each of these types of tracing causes entries to be
made in the trace table. The trace table consists of one queue of trace buffers for each
processor. These buffers are located in the private area of the trace address space. Diagnostic
Techniques provides diagnostic information about the system trace table.

Performing Branch Tracing
Branch tracing causes entries to be made in the trace table when the following branch
instructions execute successfully:

• Branch and link register (BALR)
• Branch and save register (BASR)
• Branch and save and set mode (BASSM)

Performing Address Space Tracing
Address space tracing causes entries to be made in the trace table when the following
instructions execute successfully:

• Program call (PC)
• Program transfer (PT)
• Set secondary ASID (SSAR)

Performing Explicit Tracing (PTRACE)
System services use the PTRACE macro instruction to explicitly trace normal system events.
Callers in key 0 and supervisor state can also use the PTRACE macro instruction to make
explicit entries in the trace table. These entries consist of an event identifier, the contents of a
designated range of general registers or storage locations and system supplied status
information. See the Debugging Handbook for examples of trace records.

The TRACE operator command dynamically controls tracing. It allows the operator to start or
stop tracing, set the trace table size, and select the type of tracing. The TRACE command is
described in Operations: System Commands.

Normal and Abnormal Program Termination 1-141

---------.. -.--.--

Dumping Virtual Storage
There are a variety of ways in which users can obtain dumps of virtual storage. The macro ("
instructions that produce dumps are ABEND, SNAP, and SDUMP. Any user can issue the '.,.c,',!
ABEND or SNAP macro instruction to request a dump of virtual storage. These unprivileged
macro instructions are described in Supervisor Services and Macro Instructions. A system
routine that encounters an error can use the SDUMP macro instruction to obtain a dump. The
syntax of the SDUMP macro instruction is given in Volume 2 and a description of its use
follows.

There are several operator commands related to controlling, taking, displaying, and suppressing
dumps. These commands are: CHNGDUMP, DISPLAY DUMP, DUMP, DUMPDS, and
SET DAE. The syntax and description of these operator commands are given in Operations:
System Commands. A brief description of the way in which a system programmer can use these
commands is given later under the heading "Using the Dumping Services Commands."

Additional information on dumps, of interest to system programmers, can be found in SPL:
System Modifications, Diagnostic Techniques, Debugging Handbook, IPCS User's Guide and
Reference, and Service Aids. SPL: System Modifications describes pre-dump suppression,
post-dump installation exits, and dump data sets. Diagnostic Techniques provides information
on the analysis and use of dumps. Debugging Handbook describes the types of dumps and also
gives samples of the output from dumps. Service Aids describes Print Dump (PRDMP),
including the improved and reformatted summary dump output that it produces in MVS/XA.
IPCS User's Guide and Reference describes the various subcommands that allow you to analyze
a dump online.

This topic contains information that a system programmer needs to control and use MVS/XA
dumping facilities. It includes the following subtopics:

• Using the IPCS Macro Instructions
• Using the SDUMP macro instruction
• Obtaining an SVC dump
• Obtaining a summary dump
• Using dump data sets
• Using the dumping services commands
• Cancelling and restarting the DUMPSRV address space
• Getting more than one SYSMDUMP
• Suppressing SDUMPs and SYSMDUMPs

Using the IPCS Macro Instructions
Interactive Problem Control System (IPCS) provides several macro instructions that PRDMP,
SNAP, IPCS and user-written exit routines can use to tailor dump output.

The BLSQMDEF and BLSQMFLD macro instructions are used together to create a control
block model. The format model processor service and the control block formatter service under
IPCS and PRDMP use this model to format a control block in a dump. The model is a
read-only structure that resides in a load library or in a CSECT within an exit program, and
describes the control block to the formatter. The model consists of a header, defined by the
BLSQMDEF macro instruction, and an array of entries, defined by the BLSQMFLD macro
instruction, that describe individual fields.

The BLSRESSY macro instruction maps the IPCS symbol table record for use in the get

"--, ,,/

symbol and equate symbol services. With the BLSRESSY macro instruction, users of the get ',:f~'
symbol and equate symbol services can retrieve definitions described in the table and can create ~
definitions for later use by the IPCS user or by other routines.

1-142 SPL: System Macros and Facilities Volume I

(

(-.

(,

The BLSABDPL macro instruction maps the exit parameter list (BLSABDPL), a data area that
enables IPCS, PRDMP, SNAP, and user-written exit routines to tailor dumps. With the
BLSABDPL macro instruction, users can access different parameter lists within the
BLSABDPL parameter list and then invoke the corresponding exit service routine.

For the syntax of the macro instructions, see SPL: System Macros and Facilities Volume 2. For
information about the exit service routines, see IPCS Planning and Customization.

Using the SDUMP Macro Instruction
System routines use the SDUMP macro instruction to obtain fast unformatted dumps of virtual
storage. The SDUMP macro instruction invokes SVC dump to provide these services. Only
one SVC dump can be taken in the system at one time.

Users can issue the SDUMP macro instruction while executing in either 24-bit or 31-bit
addressing mode. The routine that issues the macro instruction regains control in the same
addressing mode it was in when it requested the dump. SVC dump can handle both 24-bit and
31-bit addresses. It uses the value of the PSW, at the time of the error, to determine the
addressing mode of the storage to be dumped. Users who switch addressing mode should note
that SVC dump interprets the contents of registers and the addresses of parameter lists
according to the caller's addressing mode at the time of the error. J

Using SDUMP in a Reentrant Program
Callers who want to generate reentrant code must code the list and execute forms of the
SDUMP macro instruction. In order to use the list and execute form of the SDUMP macro
instruction, the caller needs to know the length of the parameter list that is generated by the list
form of the SDUMP macro instruction. The length of the parameter list varies depending on
the options that you specify.

The SDUMP parameter list is a minimum of 40 bytes in length. The following conditions will
change the size of the parameter list:

• If any of the following options are specified, the parameter list is at least 48 bytes long:

TYPE = XMEM or XMEME
SDATA=GRSQ
LISTA
SUMLSTA
SUSPEND = YES or NO

If any of the following options are specified, the parameter list is at least 68 bytes long:

TYPE = NOLOCAL
SUBPLST
KEYLIST
SDATA = ALLNUC

• If any of the following options are specified, the parameter list is at least 128 bytes long.

PLISTVER=2
SYMREC
ID
IDAD
PSWREGS
SDATA=DEFAULTS
SDATA = NODE FAULTS
SDATA=IO

Normal and Abnormal Program Termination 1-143

.----_ .. _-------_ •. _-----.------

If the HDR, STORAGE, or ID option is specified, the length of these areas must be added to
the value 40, 48, 68, or 128, as indicated above, to obtain the total length of the parameter list.

A caller can determine the amount of storage needed for the parameter list of the SDUMP
macro instruction in the following ways:

• Include the IHASDUMP mapping macro in the program, using the macro variable
%SDUMP _PLISTVER= '2'. This provides the mapping of all of the parameters (whether
specified or not) and is the maximum length, excluding the length of the HDR, STORAGE,
and ID options.

• Dynamically compute the amount of storage needed and place the result in SDUMPLEN:

SDUMPBEG SDUMP SDATA=(SUM),SUBLIST=SLIST,MF=L
SDUMPEND EQU *
SDUMPLEN DC A(SDUMPEND-SDUMPBEG)

SDUMP Options
The parameters of the SDUMP macro instruction provide several important options including:
the type of entry to the dumping routine, the address spaces to be dumped, the use of the SQA
buffer, if default SDAT A areas should be included in the dump, and a reason code option for
dumps that fail.

BRANCH Options: Issuers of the SDUMP macro instruction can specify branch entry
(BRANCH = YES) or SVC entry (BRANCH = NO) to the dumping routine. Callers who
specify an SVC entry must satisfy one of the following conditions:

• Be APF authorized
• Be in supervisor state
• Be executing in a system key

Callers who cannot issue an SVC must specify branch entry on the SDUMP macro instruction
to obtain an SVC dump. The branch entry caller must be in key 0, supervisor state, and must
also satisfy one of the following conditions:

• Be in SRB mode
• Hold any lock
• Be disabled (with a supervisor bit on in the PSASUPER field of the prefixed save area)
• Have an enabled-unlocked-task FRR on the FRR stack

The branch entry interface uses standard linkage conventions. On entry, register 13 must point
to a 72-byte save area. Branch entry callers must include the CVT mapping macro instruction
with the PREFIX = YES parameter.

Address Space Options: There are several options that allow a user to dump one or more
address spaces up to a limit of 15. These options are obtained by specifying the following
parameters of the SDUMP macro instruction:

ASID
ASIDLST
LISTA
TYPE=XMEM
TYPE=XMEME
SUBPLST

Except for SUBPLST, these parameters automatically cause an SRB to be scheduled to produce

c

" /

the dump. This· type of dump is called a scheduled dump. If any ASID in the subpoollist t--/'.
specified by SUBPLST is different from the current ASID, SUBPLST also produces a "-
scheduled dump; if all of the ASIDs in the subpoollist are not different from the current ASID,

1-144 SPL: System Macros and Facilities Volume 1

(

(

(~ .
. '

SUBPLST produces a synchronous dump. A synchronous dump is a dump that is finished
when control returns to the caller rather than a dump that is still in progress when control is
returned to the caller.

SQA BuHer Option: Callers who specify the BUFFER = YES parameter of the SDUMP macro
instruction will obbin a dump of a 4K buffer reserved in the system queue area (SQA) for the
callers of SVC dump. A user can reserve the buffer (by setting the high order bit of the
CVTSDBF field of the communication vector table (CVT)) and fill it with information before
invoking SVC dump. The buffer should be used by routines that are involved with volatile data
that would be changed or must be changed before SVC dump can dump it.

The CVTSDBF field of the CVT points to the buffer. Before using the buffer, callers of SVC
dump must check that the high order bit of CVTSDBF is off, using compare and swap logic. If
the bit is set, assume that a dump is in progress and continue processing as if a dump could not
be taken. If the bit is not set, set the bit before filling the buffer and calling SVC dump.

Default SDATA options: When a caller must limit the amount of data in the dump and knows
exactly what information is required to diagnose a problem, the caller can invoke SDAT A
specifying NODEFAULTS to override the normal SDATA options. These default options
include:

• ALLPSA
• SQA
• SUMDUMP
• 10
• Default SDATA options specified by the CHNGDUMP command.

Failing Dump option: Callers who specify the TYPE = FAILRC parameter on the SDUMP
macro receive special information from SVC DUMP whenever the dump fails. When control
returns to the caller after a dump failure and TYPE = F AILRC was specified, the reason code is
combined with the return code and passed to the caller in both register 15 and the ECB. When
the return code is in the ECB, the POST flag is set on. The values and meanings of these codes
follow:

Value

00000208

00000308

00000408

00000508

00000608

00000808

00000908

00000A08

OOOOOB08

Meaning

Another dump was in progress at the time of request.

DUMP = NO was specified at IPL time or CHNGDUMP
SET,SDUMP,NODUMP was specified.

Dump was suppressed by the SLIP NODUMP facility.

No SYSl.DUMP data set was available.

1/0 error occurred writing the first record.

No SRBs could be scheduled to start the dump.

A termination error occurred in SVC DUMP before the first record could be
written.

No dump could be taken because of a STATUS STOP SRBs condition, which
prevents SVC DUMP from scheduling any SRBs or doing I/O.

The dump was suppressed because the dump analysis and elimination facility
determined that the problem was a duplicate of a known problem.

Normal and Abnormal Program Termination 1-145

,~ .. --""",""--------

Determining the Initial Status of an SVC Dump Request
Users can determine the initial status of an SVC dump request by examining the SDWASDRC
byte in the system diagnostic work area (SDW A). The possible values of this indicator and t-~
their meanings follow: V
Hexadecimal
Value

o

2

3

4

5

6

8

9

A

B

C-FE

FF

Meaning

No SVC dump was requested.

An SVC dump was successfully started .

. An SVC dump was suppressed because another SVC dump was in progress.

An SVC dump was suppressed by a request by the installation (for example:
DUMP=NO at IPL or CHNGDUMP SET,SDUMP,NODUMP).

An SVC dump was suppressed by a SLIP NODUMP command.

An SVC dump was suppressed because a SYSl.DUMP data set was not
available. (Only for synchronous dumps)

An SVC dump was suppressed because an I/O error occurred during the
initialization of the SYS1.DUMP data set. (Only for synchronous dumps)

An SVC dump was suppressed because an SRB could not be scheduled to
activate the dump tasks in the requested address spaces.

An SVC dump was suppressed because a terminating error occurred in
SDUMP before the first dump record was written.

An SVC dump was suppressed because a status stop SRB condition was
detected. (This prevents dump I/O from completing.)

An SVC dump was suppressed by DAE.

Reserved. ..
An SVC dump was suppressed for some other unspecified reason.

Obtaining an SVC Dump
The two types of SV~ dumps are a scheduled dump and a synchronous dump. The type of
dump produced depends on the dump options in the SDUMP parameter list and the mode of
entry (SVC entry or branch entry).

Scheduled Dump
A scheduled dump is a dump that is scheduled by an SRB. It is produced in the following
cases:

• BRANCH = YES is specified on the SDUMP macro instruction.

• BRANCH=NO is specified (or used as a default) on the SDUMP macro instruction along
with one or more of the following parameters:

ASID or ASIDLST
LISTA
TYPE = XMEM or TYPE = XMEME
SUBPLST (with any ASID different from the ASID of the current address space)

Callers interested only in the current address space should not use the ASID option. If the
current ASID is specified as a parameter on the SDUMP macro instruction, the caller will
obtain a scheduled dump and not a synchronous dump.

1-146 SPL: System Macros and Facilities Volume I

(

If a caller obtaining a scheduled dump does not specify the ECB option and wait for the dump
to complete, the dump is produced asynchronously with the caller's recovery. For this reason, a
scheduled dump is sometimes called an asynchronous dump. When BRANCH = YES is
specified, the dump is also called a branch-entry SDUMP. The dump taken by SLIP is a
branch-entry SDUMP.

A scheduled dump can contain one of three types of summary dumps. See the section
"Obtaining a Summary Dump" for a description of the types of summary dumps.

Synchronous SDUMP
A synchronous SDUMP is a non-scheduled dump that is completed before the caller regains
control from SVC 51. This type of dump is always entered by an SVC (BRANCH = NO) and is
sometimes called an SVC-entered SDUMP. A SYSMDUMP is an example of a synchronous
dump. It is requested by an SVC 51 during ABDUMP processing.

In the case of a synchronous dump, the caller should not specify the ECB option, because there
is nothing to wait for.

A synchronous dump can contain only an enabled summary dump. See the topic "Obtaining a
Summary Dump" for a description of this type of dump.

Obtaining a Summary Dump
A summary dump will be obtained by default unless the CHNGDUMP command specifies
NOSUM, or SDATA= NOSUM or SDATA=NODEFAULTS is specified as a parameter on
the SDUMP macro instruction. In order to avoid duplicate data in a summary dump, the
dumping routine uses a range table to accumulate the addresses of the storage areas to be
dumped. Duplicate storage is eliminated only around the PSW and registers. If the SDW A
address is in a register, it is dumped once as the SDW A in formatted output, and once as
unformatted storage.

The type of summary dump depends on two SDUMP parameters, BRANCH and SUSPEND.
(The default for both of these parameters is NO.) The summary dumps and the parameters
that produce them are:

Summary Dump

DISABLED
SUSPEND
ENABLED

Parameters

BRANCH = YES, SUSPEND = NO
BRANCH = YES, SUSPEND = YES
BRANCH = NO (SUSPEND cannot be specified)

A description of each of the three types of summary dumps follows.

Disabled Summary Dump: The purpose of the disabled summary dump is to save volatile
system information before returning control to the user. The caller can specify either the
SUMLIST or SUMLST A parameter and the PSWREGS parameter to save specific information
in the summary dump. However, because the system is disabled, the dump includes only data
that is paged in.

A disabled summary dump contains the following information:

• The cross memory status record giving the home, primary, and secondary ASIDs and the
CML ASID (if the caller holds a CML lock)

• The storage areas specified by the parameters SUMLIST and SUMLST A

Normal and Abnormal Program Termination 1-147

• 4K of storage before and 4K after the PSW address from primary storage, and 4K of
storage before and 4K after each of the general purpose registers from primary and
secondary storage, as provided by the caller's PSWREGS area. If the control registers are
provided, they will be used to determine primary and secondary storage. Otherwise, the
storage will be dumped from the caller's primary and secondary address space.

• The PSA, PCCA, and LCCA for each processor

• The current PC LINK stack (pointed to by PSASEL)

• The IHSA and its associated XSB and PC LINK stack (The PSW and registers from the
IHSA are added to the range table causing 4K of storage around each address to be
dumped.)

• If it exists, the caller's SDW A (The PSW and register addresses from the SDW A are added
to the range table causing 4K of storage around each address to be dumped.)

• The SUPER FRR stacks

• The global, local, and CPU work save area (WSA) vector tables and the save areas pointed
to by entries in each WSA vector table

• 4K of storage on either side of the address portion of the I/O old PSW, the program check
old PSW, the external old PSW, and the restart old PSW

Suspend Summary Dump: The purpose of the suspend summary dump is to save volatile
system information before returning to the caller. The caller can specify either the SUMLIST
or SUMLSTA parameter and the PSWREGS parameter to save specific information in the
summary dump. The difference between the suspend summary dump and the disabled
summary dump is that the suspend summary dump can save pageable data.

A suspend summary dump contains the following information:

• The ASID record, PSA, PCCA, LCCA, IHSA, XSB, and PCLINK stack

• The storage area specified by the parameters SUMLIST and SUMLST A

• 4K of storage before and 4K after the PSW address from primary storage, and 4K of
storage before and 4K after each of the general purpose registers from primary and
secondary storage, as provided by the caller's PSWREGS area. If the control registers are
provided, they will be used to determine primary and secondary storage. Otherwise, the
storage will be dumped from the caller's primary and secondary address space.

• The caller's ASCB

• The caller's unit of work (a TCB, RB, and XS~ or SSRB, XSB, and PC LINK stack)

• For TCB mode callers, the caller's SDWA, RTM2 work areas, the associated SDWAs, the
PSW, and registers

• For SRB mode callers, the SDW A (The PSW and register addresses from the SDW A)

• The caller's register save area is added to the range table causing 4K of storage around
each register address to be dumped.

Enabled Summary Dump: The purpose of the enabled summary dump is to group information
for debugging dumps by specifying a particular option on the SDUMP macro instruction. This
is the only type of summary dump that can be produced by an SVC entry to SDUMP. If the
dump is a scheduled dump, the summary information is saved for each address space specified.

,

1-148 SPL: System Macros and Facilities Volume 1

(

-~-~~~- _ .. - -- -_. -----~--~.--- ._._.- ---~ ... --.. - -"-_•• ----~~

An enabled summary dump contains the following information for each address space:

• The ASID record (contains ASID, jobname, and stepname)

• The storage areas specified by the parameters SUM LIST and SUMLST A

• 4K of storage before and 4K after the PSW address from primary storage, and 4K of
storage before and 4K after each of the general purpose registers from primary and
secondary storage, as provided by the caller's PSWREGS area. If the control registers are
provided, they will be used to determine primary and secondary storage. Otherwise, the
storage will be dumped from the caller's primary and secondary address space.

• The RTM2 work areas pointed to by all TCBs in the address space

• 4K of storage before and 4K after the PSW in each RTM2W A at the time of the error

• 4K of storage before and 4K· after each register in each RTM2W A at the time of the error

Suppressing SDUMPs and SYSMDUMPs
You can use dump analysis and elimination (DAE) to suppress SDUMPs and SYSMDUMPs.
Use of DAE reduces the number of duplicate dumps and avoids tracking and screening of
unnecessary dumps. System performance is improved because duplicate problems are
recognized before the dump is taken. Another benefit is that the symptom data, stored in the
SYS1.DAE data set, provides a consistent set of data for identifying a failure.

When you use DAE, it does the following for each dump taken:

• Builds a symptom string from error information contained in either of the following:

A user-supplied symptom record (as defined by the ADSR mapping macro) that
contains unique information about the dump (OAE checks for this first). To allow
OAE to use such a symptom record, invoke the SOUMP macro with the SYMREC
parameter.

A system diagnostic work area (SDW A). OAE checks for an SOW A only if there is no
user-supplied symptom record. An SDWA is available in a recovery environment (that
is, the system passes an SOWA to an ESTAE- or FRR-type recovery routine).

• Stores each symptom string it creates in SYSl.OAE.

• Compares each symptom string it creates to those previously recorded in SYSI.DAE to
determine if the dump should be suppressed.

• Suppresses the dump under the following circumstances:

User-supplied symptom record:

- The symptoms of the dump must match existing symptoms recorded in SYSl.DAE.

SDWA:

The symptoms of the dump must match existing symptoms recorded in SYSl.DAE, and

The VRADAE indicator in the SOW A VRA must be set. This condition is met only if
your program supplies a recovery routine that invokes the VRAOATA macro with
KEY = VRAOAE. Specification of this key indicates to OAE that the SOW A contains
sufficient data to uniquely identify the problem.

Normal and Abnormal Program Termination 1-149

Notes:

1. DAE will build a symptom string only if certain minimum requirements are met (see SPL:
System Modifications for a description of these requirements).

2. If DAE does not find either a user-supplied symptom record or an SDW A, it will not
suppress the dump.

The following publications contain additional information about DAE:

• Operations: System Commands contl!-ins the syntax and use of the SET DAE command.

• SPL: System Modifications provides information about how an installation can modify
DAE to fit its needs.

• Debugging Handbook contains sample symptom output, DAE control block information,
and field descriptions provided by the ADSR mapping macro.

• System Logic Library provides a description of the logic and an explanation of symptom
strings.

• SPL: Initialization and Tuning contains information about the ADYSETxx parmlib
members that are used by DAE.

Using Dump Data Sets
The SDUMP macro instruction, the DUMP command, and the ACTION = SVCD or
TRDUMP parameter of the SLIP command produce SVC dumps that are stored in dump data
sets. A dump data set can be placed on a direct access storage device (allocated with
RECFM=F, LRECL = 4104) or on a tape. The system obtains these data sets by using the
DUMP parameter of the system parameter list (at IPL) or by using the DUMPDS operator
command (after IPL). (For details on the DUMP parameter of the system parameter list, see
Initialization and Tuning. For a description of the DUMPDS operator command, see
Operations: System Commands.)

Dump data sets are dynamically allocated to the DUMPSRV address space with DISP = SHR.
Users must do one of the following:

• If you are running another job using these data sets (for example, AMDPRDMP service
aid), specify DISP = SHR when allocating the dump data set (This will share the dump data
set with the DUMPSRV address space.)

• Issue the DUMPDS operator command to remove the data set from use by the system

Using the Dumping Services Commands
There are several operator commands related to controlling, taking, displaying, and suppressing
dumps. For complete details and the syntax of each of these commands, see Operations: System
Commands.

1-150 SPL: System Macros and Facilities Volume 1

r(" '-,

" "'---_/

('

(

("

..

A brief description of the use of these commands follows:

Command

CHNGDUMP

DISPLAY DUMP

DUMP

DUMPDS

SET DAE=xx

Use

Modifies or overrides the default dump options used on
SYSABEND, SYSUDUMP, SYSMDUMP, and SDUMP.

Displays the current dump options set by the CHNGDUMP
command and some specific information from the dump header
record. It also indicates whether the dump data sets are full or
empty and includes a timestamp.

Obtains a scheduled dump for a job or address space. It can also
obtain a dump of the system for performance analysis.

Modifies the SDUMP data set queue and thereby adds or deletes
data sets from use by SDUMP. It also clears full dump data sets.

Depending on the keywords specified (by the SYS1.PARMLIB
member ADYSETxx), starts or stops DAE processing or requests
that SDUMPs or SYSMDUMPs be suppressed, matched, and/or
updated.

Canceling and Restarting the DUMPSRV Address Space
If an installation is using post dump exits, cancelling the DUMPSRV address space can be
useful. The cancellation, followed by the resource manager's restart causes new versions of the
post dump exits to be loaded and used. See SPL: System Modifications for additional
information concerning an installation's use of post dump exits.

Getting More Than One SYSMDUMP
MVS/XA can handle a SYSMDUMP in two ways. One makes only the most recent
SYSMDUMP available; each dump after the first overlays the preceding one. The other makes
only the first SYSMDUMP available; any subsequent dumps are lost. If you choose this
second method, however, you can take additional steps to avoid losing subsequent
SYSMDUMPs.

To make only the first SYSMDUMP available, you must specify
DSNAME = SYS1. SYSMDPxx,DISP = SHR on the SYSMDUMP DD statement. (See Job
Control Language for more information about the SYSMDUMP DD statement.) Any other
value for DSNAME or DISP causes the system to make only the most recent SYSMDUMP
available.

When the data set is created, it must be cleared and an EOF must be written as the first record
on the SYSMDPxx data set. EOF means that the data set is empty; anything other than EOF
means that the data set is full and subsequent dumps are lost. To obtain these subsequent
SYSMDUMPs, you must intercept the message

IEA9931 SYSMDUMP TAKEN TO data set name

and pass control to an installation-written routine that will copy the dump onto another data
set, clear the data set, and write another EOF as the first record on the SYSMDPxx data set.
One way to intercept message IEA993I is to use the WTO exit routine IEECVXIT. (See SPL:
User Exits for information on message routing exit routines. SPL: System Modifications
contains information on post dump exit processing, which can be used to off-load
SYSMDUMP data sets.)

Normal and Abnormal Program Termination 1-151

--------------------------------- ---

Providing Recovery Routines
When a unit of work (either a task or an SRB) terminates abnormally, RTM invokes a recovery
routine, if one exists. The recovery routine might determine where the error occurred and
decide whether to continue with termination or to continue processing (retry) at some
appropriate point in the main routine. Other functions that your recovery routine might
perform are to document the error, take a dump of the storage necessary to determine the cause
of the error, and, when required, free resources that are no longer needed. See "Providing
Information for DAE" later in this section for information about documenting the error.

The decision about whether or not your particular function requires recovery depends, naturally
enough, on the nature of the function. One major factor in this decision is the set of resources
that the function acquires. If a function acquires resources that might be requested by another
function or that are not known to be related to the task or SRB then a recovery routine should
be established to free the resources. Examples of resources that must be freed are queues of
control blocks serialized for exclusive use, private locks, cells obtained from cell pools, and
storage that must be explicitly freed.

Once you have determined that your particular function requires recovery, you must select the
type of recovery routine that your function needs -- either a functional recovery routine (FRR)
or an ESTAE-type recovery routine.

Because of the complexity of the MVS/XA environment and the various uses your installation
might make of that environment, it is difficult to provide many hard and fast rules about which
type of recovery routine is best for a particular situation. If the recovery routine requires that a
lock held by the main routine not be freed, or if cross memory mode is a factor, the recovery
routine must be an FRR. In other situations generally grouped as task recovery, an
EST AE-type recovery routine can provide the function you need.

In general, establish an FRR to provide recovery for locked, disabled, or SRB mode routines or
routines executing in cross memory mode. Identify an FRR to RTM by coding the SETFRR
macro instruction. This macro instruction creates an entry in a system recovery area called an
FRR stack. When RTM invokes an FRR, the FRR runs with the locks that were held at the
time of the error, or as modified by previous FRRs, and the enablement implied by those locks.

In general, establish an EST AE-type recovery routine to provide recovery for unlocked tasks
that do not execute in cross memory mode. Identify an ESTAE-type recovery routine to RTM
by coding the EST AE or FEST AE macro instruction or the EST AI parameter on the ATTACH
macro instruction.

Note: The STAE macro instruction and the STAI parameter of the ATTACH macro
instruction are available for compatibility with Release 1 of VS2 and with MFT and MVT.
"STAE/STAI Exit Routines" later in this chapter provides information on STAE and STAI;
however, it is recommended that you use EST AE, FEST AE, or EST AI for all new
development.

"Selecting a Recovery Routine" later in this chapter describes the factors, particularly the
system environment, that you must consider in choosing the type of recovery routine for a
particular situation. Which type of recovery routine you choose also affects the order in which
your recovery routine can get control. When percolation occurs, recovery routines get control
in LIFO (last-in, first-out) order, starting with FRRs (if any). If all FRRs percolate, then all
ESTAE-type recovery routines get control in the reverse of the order in which they were
established. See "Percolation, Retry, and Resume" later in this chapter for detailed information
on the process of percolation, the factors that go into making a request for a retry to the main
routine, and-a definition of the special situation when an FRR can request a resume.

1.;152 SPL: System Macros and Facilities Volume 1

(

(

(

In some situations, the function that your recovery routine must perform is itself one that
requires recovery. See "Recovery for Recovery" later in this chapter for a description of such
situations and some of the considerations involved in providing recovery for a recovery routine.

"Recovery Routine Guidelines" pulls together various pieces of infonnation for you to use as a
basis for making decisions about recovery routines and designing recovery routines.

Providing Information for Dump Analysis and Elimination
Dump analysis and elimination (DAE) depends on information that users provide in EST AE
and FRR recovery routines to construct unique symptom strings needed to describe software
failures. DAE uses these symptom strings to analyze dumps and suppress duplicates as
requested. The symptom string contains symptoms (specific pieces of information) that DAE
obtains from the system diagnostic work area (SDW A), SDW A extensions, ABDUMP
symptom area, and the SDWA variable recording area (SDW A VRA).

If you are placing information into the SDW AVRA for use by DAE, you must provide the
information in key/length/data format. You can use the VRADATA macro to create the entry
in this format.

Users must select symptoms carefully. If the data they supply is too precise, no other failure
will have the same symptoms; if the data is too general, many failures will have the same
symptoms. See "Suppressing SDUMPs and SYSMDUMPs" earlier in this section for
additional information about DAE and for a list of other publications that document DAE.

Selecting a Recovery Routine
Several basic restrictions and requirements govern your choice between an FRR and an
EST AE-type recovery routine. These are:

• An FRR can be established only when you make the request in key 0 and supervisor state.

• If an enabled unlocked task establishes an FRR using EUT = YES, it cannot issue any
SVCs except SVC 13. Also, the system does not dispatch any new asynchronous exits on
that task until all FRRs for the task have been deleted.

• From the time an FRR is established until the time it is deleted, at least one of the
following must be true.

Some lock is held.
- The unit of work is executing either disabled or as an SRB.
- An FRR with EUT = YES exists.

• The size of each FRR stack satisfies the recovery needs of the control program. If
additional FRRs placed on the stack cause the size to be exceeded, the routine issuing the
SETFRR macro instruction terminates abnormally. Any user-written routines outside of
the control program may add one, and only one, FRR to the stack; if they add more than
one, abnormal termination occurs if the size of the stack is exceeded. This applies to all of
the recovery stacks, including the normal stack. The normal FRR stack is used by control
program routines that are invoked on behalf of the user.

• You cannot use the EST AE macro instruction or the EST AI parameter of the ATTACH
macro instruction to establish a recovery routine when executing in cross memory mode or
as an SRB.

• You can use the FESTAE macro instruction in cross memory mode as long as data
addressability at the time the macro is issued is to the dispatched address space (home).

Normal and Abnormal Program Termination 1-153

Beyond these basic restrictions and requirements, your choice of an FRR or an EST AE-type
recovery routine depends on the environment for which recovery is to be established and on the
environment in which the recovery routine is to get control. Oth~r major differences are the rf""'"
register interface and the availability of a system diagnostic work area (SDW A) for use by the , ~">
recovery routine.

The following information under "System Environment," "Register Interface," and "System
Diagnostic Work Area (SDW A)" describes the differences between FRRs and EST AE-type
recovery routines in more detail. And, if you choose an EST AE-type recovery routine, you
must decide whether to establish it with the EST AE macro instruction, the FEST AE macro
instruction, or the EST AI parameter of the ATTACH Macro instruction. See "ESTAE-type
Recovery Routines" for the basic differences between the three methods of establishing an
EST AE-type recovery routine.

System Environment

LOCKING

The environment -- the state of the system -- consists of such factors as locks held, enablement
or disablement, supervisor or problem program state, PSW key, PSW key mask (PKM),
authorization index, and cross memory mode. To enable you to determine whether an FRR or (/
an EST AE-type recovery routine best meets your needs, identify the system environment your
recovery routine requires and use the following information to select the type of recovery
routine.

ESTAE-Type Recovery Routines: All locks are freed before the first ESTAE-type recovery
routine gets control.

FRRs: The locks held when the first FRR gets control are the same as they were at the time of
the error. /'

If the recovery routine is to free locks held by the main routine, the FRR should issue the
SETRP macro instruction to use the lock-freeing functions of RTM.

The lock-freeing functions of RTM are effective only for percolation, not for retry. In any
event, the FRR must not free the last global lock and it must not free any local lock because
RTM depends on these locks to serialize the system diagnostic work area (SDWA) passed to
the FRR. Freeing these locks can cause different units of work to use the same SDW A
simultaneously.

For more information on how RTM manipulates locks, see "Decisions Made in a Recovery
Routine" later in this chapter.

DISABLEMENT
ESTAE-Type Recovery Routines: All ESTAE-type recovery routines are entered enabled.

FRRs: An FRR gets control and is entered disabled if, at the time of the error, the main
routine is disabled and any of the following states exist:

1. Any global spin lock is held.

2. A super FRR stack was active or the control program set a bit in the PSASUPER area of
the PSA. (Generally, thisc.ondition occurs when an interrupt handler is running.)

1-154 SPL: System Macros and Facilities Volume 1

(~.

' ...

(

ADDRESSING MODE
The addressing mode for all recovery routines (both EST AE and FRR) is the addressing mode
of the caller at the time the routine was established.

SUPERVISOR/PROBLEM PROGRAM STATE
ESTAE-Type Recovery Routines: An ESTAE-type recovery routine is entered in the state -
either supervisor or problem program -- that existed at the time it was established.

FRRs: All FRRs are entered in supervisor state.

AUTHORIZATION INDEX (AX)

PSW KEY

The authorization index for all recovery routines -- both EST AE-type recovery routines and
FRRs -- is the effective AX for the address space in which the recovery routine is to get control.
Refer to "Cross Memory Authorization" in the Inter-Address Space Communication section for
more information about the AX.

ESTAE-Type Recovery Routines: An ESTAE-type recovery routine is entered with key 0
whenever it was established with a key less than 8. Otherwise, it is entered with the key that
existed at the time it was established.

FRRs: All FRRs are entered in key O.

PSW KEY MASK (PKM)
ESTAE-Type Recovery Routines: All ESTAE-type recovery routines are entered with a PSW
key mask (PKM) that is the ORing of the following:

• The PSW key under which the exit is to get control.
• The TCBPKF.
• The PKM that existed when the EST AE-type recovery routine was established.

However, if the recovery routine was established with a FESTAE macro instruction, the system
uses the PKM that existed at the time of the error.

FRRs: See the following information on "Cross Memory State" for information about the
PKM that exists when an FRR is entered.

CROSS MEMORY STATE
ESTAE-Type Recovery Routines: All ESTAE-type recovery routines are entered in primary
mode with the primary address space (PASID) and the secondary address space (SASID) the
same as the dispatched address space (HASID).

FRRs: The cross memory environment for an FRR depends on the values coded for the
MODE parameter in the SETFRR macro instruction that established the FRR.

NORMAL Addressing Environments
Specifying HOME, PRIMARY, or FULLXM for the MODE parameter of the SETFRR
macro instruction indicates to RTM the normal or expected addressing environment of the
FRR.

MODE = HOME
If you specify MODE = HOME or omit the MODE parameter, the FRR gets control in
home mode; that is, the FRR is entered with PASID = SASID = HASID, in primary mode.
The PSW key mask (PKM) for an FRR that covers SRB code is the same as the PKM at
the time of the error. The PKM for an FRR that covers a task is the TCBPKF
transformed into a PKM.

Normal and Abnormal Program Termination 1-155

MODE = PRIMARY
If you code MODE = PRIMARY, the FRR gets control in primary mode with the primary
and secondary address space the same as the primary address space that existed when the
SETFRR macro instruction was issued. The PKM is the PKM that existed when the
SETFRR macro instruction was issued.

MODE = FULLXM
If you specify MODE = FULLXM, the FRR gets control in the cross memory environment
that existed when the SETFRR macro instruction was issued. That is, the primary address
space (PASID), secondary address space (SASID), the mode, and PKM are the same as
those that existed when the SETFRR macro instruction was issued.

If RTM cannot enter an FRR with its normal addressing environment established as defined by
the MODE parameter on the SETFRR macro instruction, RTM bypasses the FRR and
percolates to the next FRR on the FRR stack, unless the FRR was established to execute in a
restricted addressing environment (also specified by the MODE parameter).

RESTRICTED ADDRESSING ENVIRONMENTS
Specifying either LOCAL or GLOBAL (or both) for the MODE parameter of SETFRR
indicates to RTM that the FRR can run in a restricted addressing environment. When an FRR
is entered in a restricted addressing environment, it is often called a resource manager because
its only purpose to recover resources. These resources can be critical system resources
(GLOBAL) or critical address space resources (LOCAL). RTM does not allow an FRR to
retry.

When RTM enters an FRR to recover critical resources, it sets bits in the SDWA to indicate to
the FRR in which of the restricted addressing environments it is being entered.

"

If you specify both LOCAL and GLOBAL, RTM first tries to enter the FRR in the LOCAL .. £ '\

restricted addressing environment. If it cannot, RTM then tries to enter the FRR in the",,-.J
GLOBAL restricted addressing environment. These environments, and the bits that RTM sets
to indicate the environment to the routine, are:

MODE = GLOBAL: MODE = GLOBAL should be used by services that need to clean up global
resources if the main routine terminates abnormally. When GLOBAL is specified and RTM
cannot enter the FRR in its normal mode, it enters the FRR in the restricted GLOBAL mode if
one of the following system conditions exists:

• The main routine holds a global spin lock.

• A "super FRR stack" was active or the control program has set a bit in the PSASUPER
word of the PSA. (Generally this condition occurs when an interrupt handler is running.)

A global FRR must reside in commonly addressable storage.

When RTM enters an FRR in restricted GLOBAL mode, the entry environment is:

• PASID = SASID, in primary mode. The PASID can be that of any address space; thus,
when entered in this mode, the routine must not reference private storage.

• RTM sets the SDWAGLBL bit in the SDWA to one to indicate that RTM is entering the
routine in restricted GLOBAL mode (otherwise, this bit is set to zero).

• RTM sets the SDWACLUP bit in the SDWA to one to indicate that the routine is not
allowed to retry, although, if system conditions permit, subsequent FRRs are permitted to
retry.

1-156 SPL: System Macros and Facilities Volume I

('

I. ""

MODE = LOCAL: MODE = LOCAL should be used by services that need to clean up critical
address space related resources serialized by means of a local lock (including the CML lock).
When LOCAL is specified and RTM cannot enter the FRR in its nonnal mode, it enters the
FRR in the restricted LOCAL mode as long as a local lock is held and the address space whose
lock is held has not terminated or suffered a DAT error.

If it is possible for the FRR to get control in one address space in normal mode and in another
address space in restricted mode, the FRR must reside in commonly addressable storage.

RTM enters an FRR established with the LOCAL parameter in LOCAL restricted mode for
two different reasons:

1. RTM tried to establish the environment required to enter the FRR in normal mode but
could not; this problem can occur, for example, when the SASID is no longer valid.

2. An address space is tenninating and at least one unit of work in that address space is
holding the local lock for another address space (CML lock).

In both cases, the entry environment is:

• Primary mode, the home address space can be any address space, and the PASID and
SASID are the same as the locked address space.

• RTM sets the SDWALCL bit in the SDWA to one to indicate that RTM is entering the
routine in LOCAL restricted mode (otherwise, this bit is set to zero).

• RTM sets the SDWALCL and SDWAGLBL bits if the SETFRR macro instruction
included both the LOCAL and GLOBAL parameters, and RTM is entering the FRR in
LOCAL restricted mode while the LOCAL lock is held and one of the following is true:

A spin lock is held
- A super bit is set
- The FRR is on a super FRR stack

• RTM sets the SDW ACLVP bit in the SDW A to one to indicate that the routine is not
allowed to retry, although, if system conditions permit, subsequent FRRs are permitted to
retry.

The following considerations apply when RTM enters the FRR in LOCAL restricted mode as a
result of the second reason stated earlier.

1. If the FRR issues a SETRP macro instruction to request that RTM free the CML lock,
subsequent FRRs are not entered because the resources in the address space are no longer
serialized and therefore no further LOCAL resource clean up can be done.

2. The FRR must not depend on executing in task mode because, even though the SETFRR
macro instruction was issued in task mode, an FRR entered in LOCAL restricted mode
executes in SRB mode. In this case, the information in the SDWA reflects the interrupted
process (from IHSA or SSRB) that originally held the CML lock, and the FRR is not
permitted to retry.

3. The FRR created with the LOCAL parameter must be prepared to be suspended during its
nonnal mode recovery processing and then be entered a second time in LOCAL restricted
mode to recover critical address space resources. If the executing FRR has established
another FRR, specifying MODE = LOCAL, the newer FRR gets control in LOCAL
restricted mode followed by the FRR that was in control at the time of suspension.

Normal and Abnormal Program Termination 1-157

REGISTER INTERFACE
ESTAE-Type Recovery Routines: Before entering an ESTAE-type recovery routine, RTM
attempts to obtain and initialize a system diagnostic work area (SDW A). The SDW A contains
information about the error; see "System Diagnostic Work Area (SDWA)" later in this section.
The first word of the SDWA contains the address of the parameter list specified on the
EST AE-type recovery request. The register interface to the recovery routine varies depending
on whether or not RTM can obtain an SDW A.

If RTM can obtain an SDW A, the register contents on entry to the recovery routine are:

Register

Register
Register
Register
Register

o a code indicating the type of I/O processing performed:
o active I/O has been quiesced and is restorable.
4 active I/O has been halted and is not restorable
8 no active I/O at ABEND time
16 no I/O processing was performed

1 address of the SDW A
13 save area address (72 bytes)
14 return address
15 entry point address of the EST AE recovery routine

The contents of all other registers are unpredictable.

If RTM cannot obtain an SDWA, the register contents on entry to the recovery routine are:

Register
Register
Register
Register
Register
Register

o a decimal 12 to indicate that an SDW A was not obtained.
1 ABEND completion code
2 address of user-supplied parameter list
13 unpredictable
14 return address
15 entry point address of the EST AE recovery routine

The contents of all other registers are unpredictable.

When a recovery routine entered without an SDW A completes, it must set a return code for
RTM in register 15. This return code must be one of the following:

Hexadecimal Code Meaning

o
4

16

RTM is to continue with termination (percolate).
RTM is to schedule a retry. The recovery routine has
placed the address of the retry routine in register O.
Valid only for an ESTAI recovery routine. RTM is
to continue with termination, and no further
EST AI processing is to be performed.

FRRs: All FRRs are entered with an SDW A. The register contents on entry to the FRR are:

Register
Register
Register
Register

o address of a 200-byte work area for the FRR
1 address of the SDW A
14 return address
15 address of the FRR

The contents of all other registers are unpredictable.

1-158 SPL: System Macros and Facilities Volume 1

(

(

The FRR can use any register without saving its contents; however, the routine must maintain
the return address supplied in register 14.

SYSTEM DIAGNOSTIC WORK AREA (SDWA)
The system diagnostic work area (SDW A) is a communication area between RTM and the
recovery routine. RTM always supplies an SDWA for an FRR. If for any reason RTM
cannot supply an SDW A, it bypasses the FRR and percolates to the next FRR on the FRR
stack. Because RTM cannot always supply an SDWA for an ESTAE-type recovery routine, an
EST AE-type recovery routine must always check the contents of register 0 to determine if there
is an SDW A available.

The mapping macro IHASDW A provides the field names and describes their content and use.
Detailed information on the name, offset, and meaning of each field appears in the Debugging
Handbook. To enable you to determine what kinds of information RTM supplies to the
recovery routine in the SDW A and what kinds of information the recovery routine must return
to RTM, Figure 47 lists the names and meanings of some of the key fields.

It is recommended that you use the SETRP macro instruction, which manipulates fields in the
SDW A, to change fields in the SDW A before returning control from your recovery routine to
RTM.

Normal and Abnormal Program Termination 1-159

Field Name

SDWAPARM

SDWACMPC

SDWACRC

SDWAGRSV

SDWAECI

SDWAEC2

Use

This 4-byte field, located at offset 0, contains the pointer to the user
parameter list supplied by the user for an EST AE-type recovery routine.
For an FRR, this field contains the address of the six-word parameter
area returned by a SETFRR macro instruction with the PARMAD
parameter.

This field contains the ABEND completion code that existed when RTM
entered the recovery routine. The recovery routine can change the
ABEND code by altering this field. The system code appears in the· first
twelve bits, and the user code appears in the second twelve bits.

This field contains the error code associated with the ABEND completion
code in SDW ACMPC. The recovery routine can change the reason code
by altering this field by means of the SETRP macro instruction and its
REASON keyword. This field is not defined if the SDW ARCF flag field
is zero.

This field shows the contents of the general purpose registers (0-15) as
they were at the time of the error.

This field contains the extended control (EC) PSW that .existed at the
time of the error.

The contents of this field vary according to the type of recovery routine:

• For an EST AEjFEST AE routine, the field contains the PSW of the
RB that created the recovery routine at the time the RB last incurred
an interruption. However, if this RB was disabled or was holding a
lock when the interrupt occurred, the field does not contain the last
interrupt address, but the address of the second to last interrupt. '",-. j

• For an ESTAI routine, this field contains zeros.

• For an FRR, the field contains the extended control PSW used to
give control to the FRR.

Figure 47 (Part 1 of 2). Key Fields in the SDWA

1-160 SPL: System Macros and Facilities Volume 1

./

('

(-

(

Field Name

SDWASRSV

SDWASPID

SDWALNTH

SDWACOMU

SDWAFAIN

SDWADAET

SDWAOCUR

SDWAVRAL

SDWAHEX

SDWAEBC

SDWAURAL

Use

The contents of this field vary according to the type of recovery routine:

• For an ESTAE/FESTAE routine, this field contains the general
purpose registers (0-15) of the RB that established the recovery
routine as they were at the time the RB last incurred an interrupt.

• For an ESTAI routine, this field contains zeros.

• For an FRR, this field has the same contents as SDW AGRSV.

If the recovery routine requests a retry, RTM uses the contents of this
field to load the registers for the retry routine. To update the contents of
the registers for the retry routine, you must make the required changes to
SDW ASRSV and request a register update using the RETREGS = YES
parameter on the SETRP macro instruction. You can update the
registers directly or with the RUB parameter on SETRP.

This field contains the subpool ID of the storage used to obtain the
SDWA.

This field contains the length, in bytes, of this SDW A, the SDW A
extensions, and the variable recording area. (This allows the user to free
the extensions along with the SDW A.)

The recovery routines can use this eight-byte field to communicate with
each other when percolation occurs. RTM copies this field from one
SDW A to the next on all percolations. When the field contains all zeros,
either no information is passed or RTM has not been able to pass the
information.

This 12-byte field contains the six bytes of the instruction stream that
both precede and follow the failing instruction pointed to by the PSW.
The SDWAFAIN field contains zeroes if RTM cannot access the failing
instruction stream pointed to by the time-of-error PSW. For example, if
the time-of-error PSW is not valid, the SDW AF AIN field contains zeroes.

This eight-byte field contains DAE status and error flags for this dump.

This two-byte field contains the current count of the number of previous
occurrences of these symptoms in other SDW As.

This field contains the length of the variable recording area (VRA) for
this SDWA.

This bit is set by the recovery routine to indicate that EREP is to print
the data in the VRA in hexadecimal form.

This bit is set by the recovery routine to indicate that EREP is to print
the data in the VRA in EBCDIC.

This one-byte field is used by the recovery routine to indicate the length
of the VRA used. The field is always zeroes initially, and it must be set
whenever a recovery routine uses any part of the VRA.

Figure 47 (Part 2 of 2). Key Fields in the SDW A

Normal and Abnormal Program Termination 1-161

EST AE-Type Recovery Routines
You establish an ESTAE-type recovery routine (also known as an ESTAE exit or an ESTAE
environment) by means of the ESTAE macro instruction, the FESTAE macro instruction, or
the ESTAI parameter of the ATTACH macro instruction. Any ESTAE-type recovery routine,
regardless of how it is established, executes under its own program request block created by the
SYNCH service routine. The recovery routine executes in the same addressing mode as the
issuer of the EST AE macro instruction.

Before an EST AE-type recovery routine gets control, the control program performs any purge
and asynchronous processing that was specified as a macro option when the routine was
established. The control program performs the requested I/O processing only for the first
recovery routine. Subsequent routines receive an indication of the I/O processing previously
performed, but no additional I/O processing is done. However, the control program performs
asynchronous processing for each routine.

An EST AE macro instruction creates a task-related recovery routine. A fast EST AE
(FEST AE) macro instruction performs the same function with minimal processor overhead. A
recovery routine established by the FEST AE macro instruction gets control in the same
sequence and under the same conditions as a recovery routine established by the EST AE macro
instruction. However, only an SVC routine executing under an SVRB (type 2,3 or 4 SVC) can
issue FEST AE; other factors to be considered for using FEST AE are described later under
"Using the FESTAE Macro Instruction." The ESTAI parameter on the ATTACH macro
instruction establishes a recovery routine that gets control if the attached subtask encounters an
unrecovered abnormal termination; that is, a recovery routine established by the ESTAI
parameter gets control under the subtask. Also, any recovery routine established by the EST AI
parameter is propagated to any subsequent subtasks. Figure 48 shows the queuing structure of
the EST AE routines and the propagation of routines created by EST AI to a subtask.

Because EST AE-type recovery routines are associated with RBs, they are J;emoved when their
RBs terminate. The fact that they are removed is important because a program expects one of
its own EST AE-type recovery routines to get control rather than one left behind by a
subprogram. A program might, however, invoke a service routine that does not create an RB.
If that routine then issues an EST AE macro instruction and fails to delete the resulting
ESTAE-type recovery routine, a problem could develop if the original program is scheduled for
abnormal termination. The EST AE-type recovery routine left behind by the service routine
would receive control rather than the EST AE-type recovery routine associated with the
program, because the recovery routine specified by the most recently-issued ESTAE macro
instruction gets control.

1-162 SPL: System Macros and Facilities Volume 1

---- ---- - --- ------~---------

(

(

TCB1

~

RB1 SCB

I ESTAE2 I ESTAE1 1 ESTAE2
ATTACH RS2.ESTAl3 1 SCB

TCB2

I I ESTAE1

RB2 ,iJO SCB

I ESTAE4 I 1 ESTAE4
ATTACH RB3

SCB

TCB3 , I ESTAI3 I

RB3 SCB 'If

I ESTAI3 I
(propagated)

Figure 48. ESTAE Environment

This potential problem can be avoided by using the TOKEN parameter on the ESTAE macro
instruction to associate a token with that EST AE routine. In order to delete or overlay an
ESTAE routine that was created with TOKEN, the same token must be specified in the ESTAE
cancel or overlay macro instruction. All more recent EST AE exits are deleted.

If a program issues an EST AE macro instruction that specifies both the TOKEN parameter and
XCTL = YES and then issues XCTL, the token must be passed as part of the parameters to the
called routine so that the routine can delete the EST AE routine.

Normal and Abnormal Program Termination 1-163

Using the FEST AE Macro Instruction
The FESTAE macro instruction enables a type 2,3, or 4 SVC (an SVC for which the SVC
FLIH creates an SVRB) to establish an EST AE-type recovery routine with minimal processor
overhead. However, the following restrictions apply:

• Only a type 2, 3, or 4 SVC in key 0 can use FEST AE.

• The SVC can use FEST AE only once to create a recovery routine. Therefore, any SVC
needing to change its exit address must use branch entry EST AE services, and any SVC
needing more than a single recovery routine must use SVC 60 or branch entry to get the
additional recovery routines.

• FEST AE can be issued in cross memory mode if the home address space is addressable at
the time the FEST AE recovery routine is entered. In addition to the parameter area that
you can supply by coding the PARAM parameter op the FEST AE macro instruction, a
24-byte parameter area is also available as an option. The name of the optional parameter
area is RBFEPARM, and it is in the SVRB. The recovery routine receives this parameter
area when an error occurs. Hence, the main routine can clear (set to zero) and initialize the
parameter area with appropriate information (such as tracking data) that might be useful to
the recovery routine. You must clear the parameter area before using it to ensure that no
spurious data remains in it from previous processing.

FEST AE users must also include the following OSECTs for the FEST AE macro expansion:

IHARB
IKJTCB
IHAPSA
IHASCB

Special Considerations
When writing an EST AE-type recovery routine, consider the following:

• When an ESTAE-type recovery routine receives control, it should first examine the code in
register 0 to see if an SOW A was provided. If an SOW A was not provided (that is, register
o contains a decimal 12), register 13 does not point to a save area, and your routine must
not save the registers.

• An EST AE-type recovery routine can request, via a SETRP macro instruction parameter,
that the control program free the SOW A instead of freeing it in a retry routine. When the
retry routine is to free the SOW A, note that an EST AE-type recovery routine created under
any control program protection key (key 0-7) receives an SOW A in key 0 storage.
Therefore, if the retry routine is executing under a key other than key 0, it must issue the
MOOESET macro instruction to become key 0 before issuing theFREEMAIN macro
instruction to free the SOW A.

• If an ESTAE-type recovery routine itself requests termination or fails, RTM percolates and
does the following:

Accumulates dump options

Resets the asynchronous exit indicator according to the request of the next recovery
routine

Ignores the I/O options for the next recovery routine

Initializes a new SOW A

Gives control to the next recovery routine

If all recovery routines fail or indicate termination, the task is terminated.

1-164 SPL: System Macros and Facilities Volume 1

'-,,- ./

(-

(

• If a non-jobstep task issues an ABEND macro instruction with the STEP parameter, RTM
enters recovery for the non-jobstep task. If the recovery routines do not request a retry, the
jobstep is terminated with the specified ABEND code. RTM enters subsequent recovery
routines for the jobstep task only when the macro instruction that established the recovery
routine specified the TERM = YES parameter.

• For some situations, RTM enters ESTAE-type recovery routines only when the
TERM = YES parameter was specified when the EST AE macro instruction was issued. The
situations are:

System initiated logoff

Job step timer expiration

Wait time limit for job step exceeded

ABEND occurred because a DETACH macro instruction was issued for an incomplete
subtask

Operator cancel

Error occurred on a task higher in the tree

When RTM enters the recovery routines established with the TERM=YES parameter as a
result of the above errors, RTM takes the following actions:

• Gives control to all such routines in LIFO order

• Does not enter any ESTAI routine previously suppressed by a return code of 16 or any
previously-entered recovery routine that specified a return code of 0

• Ignores any request for retry

• Ignores the TERM = YES parameter if it is specified on a nested EST AE macro instruction

Decisions Made in a Recovery Routine
When a recovery routine gets control, it determines why it has been entered and decides either
to percolate (continue with termination), to retry, or in a special case, to resume. To convey its
decision to RTM, the recovery routine issues the SETRP macro instruction, which manipulates
appropriate fields in the SDWA. When the recovery routine returns to RTM, RTM honors the
request, if appropriate.

The MVSjXA recovery scheme provides a parameter area for communication between the main
routine and its recovery routine. The parameter area varies according to the type of recovery
routine:

1. For an FRR, RTM supplies a six-word parameter area.

2. For a recovery routine established by an ESTAE or FESTAE macro instruction the user
can supply a parameter area by coding the PARAM parameter on the macro instruction.

When a recovery routine is established, RTM saves a pointer to the parameter area and makes
the pointer available to the recovery routine when it is entered. Usually, the main routine uses
the parameter area to leave a footprint, that is, to set indicators that let the recovery routine
know where in the main process the failure occurred. The recovery routine can examine the
footprint to determine what action to take.

Note: For a recovery routine established by a FESTAE macro instruction, there is also a
six-word parameter area available in the SVRB. (RTM does not preserve the pointer to-this
area).

Normal and Abnormal Program Termination 1-165

------- . __ .. -._-_._-

RESUME

RETRY

When an operator presses the RESTART key on the processor to break a spin loop, RTM
gives control to the FRR established by the routine executing on that processor. In this
situation, the first -- and only the first -- FRR to get control can request RESUME. As a result
of a RESUME request, RTM terminates the unit of work executing on the processor identified
by the recovery routine. Execution resumes with the next sequential instruction on the
interrupted processor.

RESUME should be specified only when the main routine is deliberately spinning waiting for a
resource to be freed by the another processor.

A retry request from a recovery routine asks RTM to continue execution of the code that
established the recovery routine at some appropriate point. The retry routine executes in the
same addressing mode as the issuer of the EST AE macro instruction. The recovery routine
cannot change the addressing mode of the retry routine. Note that retry is not always
permitted. Whenever the system cannot permit a retry, RTM sets the SDWACLUP bit in the
SDWA to one. If a recovery routine requests retry,when it is not allowed, RTM ignores the
request and continues with termination (percolates).

Any recovery routine that requests a retry must include logic designed to avoid recursion, to
prevent the creation of a tight loop between the recovery routine and its retry routine. For
example, if the recovery routine supplies a bad retry address to RTM, and the execution of the
first instruction at the given address causes a program check, the first recovery routine to get
control is the one that just requested the retry. If the recovery routine requests another retry at
the same address, the loop is created.

The environment in which the retry routine gets control from an FRR differs from the
environment for a retry routine that gets control from an EST AE-type recovery routine.

RETRY FROM AN FRR
An FRR can request a valid retry whenever the SDWACLUP bit in the SDWA is set to zero;
to request a retry, the FRR must supply a retry address, the entry point of the retry routine.
The retry address is the point in the main routine that is to get control in order to continue its
processing. In response to a valid retry request, RTM gives control to the retry address that the
recovery routine supplies. The retry routine executes as a continuation of the unit of work that
encountered the error. Note that RTM does not delete the FRR that requests a retry; the FRR
remains valid and can be entered again.

The environment that exists when the retry routine gets control is described in the following
topics.

Registers: Upon entry to the retry routine, the contents of the registers are the same as the
contents of the SDW ASRSV field in the SDW A. The FRR that requests the retry manipulates
SDW ASRSV to set the contents of the registers for the retry routine. Register 15 always
contains the retry address.

Locks: The status of locks held is the same on entry to the retry routine as it was when the
FRR requesting retry completed its processing.

Disablement: The retry routine is entered disabled, if, and only if, the FRR requesting the
retry returns to RTM disabled. Otherwise, the retry routine is entered enabled.

Supervisor/Problem Program State: The retry routine from an FRR is always entered in
supervisor state.

1-166 SPL: System Macros and Facilities Volume 1

f-~

C;

./

(

(

(

PSW Key: The retry routine from an FRR is always entered in key zero.

Cross Memory Environment: The PKM, PASID, SASID, and mode for the retry routine can
be either those that existed at the time of the error or those that existed at the time of the entry
to the FRR that is requesting the retry. The FRR makes the choice. Use caution in choosing
to establish the environment that existed at the time of the error because a problem with the
environment might very well be the cause of the error.

The authorization index (AX) is the current one for the PASID of the retry routine.

SDWA: When the retry request comes from an FRR, the SDW A is not available to the retry
routine.

Retry From an ESTAE-Type Recovery Routine
An ESTAE-type recovery routine can request a valid retry whenever the SDWACLUP bit in
the SDW A is set to zero; to request a retry, the recovery routine must supply a retry address,
the entry point of the retry routine. The retry address is the point in the code that established
the recovery routine that is to get control in order to continue its processing. In response to a
valid retry request, RTM gives control to the retry address that the recovery routine supplies.
The retry routine executes as a continuation of the code that established the recovery routine.
That is, the retry routine executes under the same RB that established the ESTAE-type
recovery, and RTM purges all RBs more current than the retry RB before giving control to the
retry routine. Note that ESTAI is an exception; a retry request from a recovery routine
established by the EST AI parameter of the ATTACH macro instruction must execute under a
PRB. If there is a PRB whose RBLINK field points to an RTM2 SVRB, that PRB is used. If
there is no previous RTM2 SVRB on the queue, then the retry RB is the newest PRB that is
older than the oldest non-PRB. If there is no PRB, retry is suppressed.

RTM purges the RB queue to attempt to cancel the effects of partially-executed programs that
are at a lower level in the program hierarchy than the program under which the retry occurs.
However, the RB purge does not cancel certain effects on the system such as:

• Subtasks created by an RB to be purged
• Resources allocated by the ENQ macro instruction
• DCBs that exist in dynamically-acquired virtual storage

If there are quiesced restorable I/O operations, the retry routine can restore them. RTM
supplies a pointer to the purged I/O request list (PIRL). The retry routine can use SVC
RESTORE to have the system restore all I/O requests on the PIRL.

Note that RTM does not cancel the ESTAE-type recovery routine that requests a retry; the
recovery routine remains valid and can be entered again.

The environment that exists when the retry routine gets control is described in the following
topics.

Registers: The contents of the general purpose registers upon entry to the retry routine depend
on whether or not RTM was able to obtain an SDW A for the EST AE-type recovery routine.

Normal and Abnormal Program Termination 1-167

If RTM could not obtain an SDWA for the recovery routine, the register contents on entry to
the retry routine are:

Register Contents

o A decimal 12.
1 Address of the user parameter list established

using ESTAE or ATTACH with ESTAI.
2 A pointer to the PIRL, if I/O was quiesced and

is restorable; otherwise zero.
14 Address of supervisor-assisted exit linkage (SVC 3)
15 Entry point address of the retry routine.

The contents of all other registers are unpredictable.

If RTM could obtain an SDW A for the recovery routine, the register contents depend on
whether or not the recovery routine requested a register update and/or requested that the
SDW A be freed. (See the SETRP macro instruction in Volume 2 of this publication for
information on the RETREGS parameter used to request a register update and the
FRESDWA parameter used to request that RTM free the SDWA.) The register contents are
one of the following:

1. If the recovery routine did not request register update and did not request that the SDW A
be freed, the register contents on entry to the retry routine are:

Register

o
1
14

15

Contents

Zero
Address of the SDW A
Address of supervisor-assigned exit
linkage (SVC 3)
Entry point address of the retry routine

The contents of all other registers are unpredictable.

2. If the recovery routine did not request update but did request that the SDWA be freed, the
register contents on entry to the retry routine are:

Register

o
1

2

14
15

Contents

A decimal 20
Address of the user parameter list established
using ESTAE or ATTACH with ESTAI
A pointer to the PIRL, if I/O was quiesced and
is restorable; otherwise zero
Address of supervisor-assisted linkage (SVC 3)
Entry point address of the retry routine

The contents of all other registers are unpredictable.

3. If the recovery routine requests register update, the contents of the 16 general purpose
registers on entry to the retry routine are the same as the contents of the 16 words in
SDWASRSV. In this case, the recovery routine provides the contents of the registers for
the retry routine by updating any or all of the register slots in the SDW ASRSV before
returning control to RTM with the retry request. If the recovery routine does not also

{f"""\, ,_/

request that the SDW A be freed, it must keep a pointer t() the SDW A; this pointer enables ('., ... '~
the retry routine to reference and subsequently free the SDW A. Note that register 15 does ,./
not contain the entry point address of the retry routine unless the recovery routine sets it up
that way.

1-168 SPL: System Macros and Facilities Volume I

(~

(

Locks

The retry routine is entered with no locks held. If the ESTAE-type recovery routine obtains
any locks, it must free those locks before returning to RTM. Otherwise, an SVC error occurs
and the retry routine does not get control.

Disablement: The retry routine is always entered enabled.

Supervisor/Problem Program State: If the recovery routine was established by an EST AE
macro instruction, the retry routine is entered in the state that existed when the macro
instruction was issued. If the recovery routine was established by a FEST AE macro instruction,
it is entered in supervisor state. If the recovery routine was established by the EST AI
parameter of the ATTACH macro instruction, the retry routine is entered in supervisor state if,
and only if, the RBOPSW of the retry RB is in supervisor state and the main routine was
authorized at the time of the error. Otherwise, the retry routine is entered in problem program
state.

The main routine is considered to be authorized at the time of the error when at least one of
the following is true:

1. The program is APF-authorized.

2. The TCBPKF of the task in error is less than 8.

3. The bit TCBFSM of the task in error (in TCBFLGS3 of the TCB) is on, indicating that all
RBs for that TCB execute in supervisor state.

PSWKey

If the recovery routine was established by an EST AE or FEST AE macro instruction, the retry
routine is entered with the same PSW key that existed when the macro instruction was issued.

If the recovery routine was established by the ESTAI parameter of the ATTACH macro
instruction, the retry routine is entered with the same PSW key as the one in RBOPSW of the
retry RB when one of the following is true:

1. The main routine was authorized (as defined earlier under "Supervisor/Problem Program
State") at the time of the error.

2. The RBOPSW of the retry RB has a key greater than or equal to 8 and is in problem
program state, and the PKM of that RB (XSBKM field in the XSB control block for that
RB) does not have authority to keys less than 8.

Otherwise, the PSW key of the retry routine is that of the TCBPKF.

PSW Key Mask (PKM): If the recovery routine was established by the EST AE macro
instruction, the retry routine is entered with the PKM that existed when the macro instruction
was issued.

If the recovery routine was established by the FEST AE macro instruction, the retry routine is
entered with the PKM that existed at the time of the error.

Normal and Abnormal Program Termination 1-169

If the recovery routine was established by the EST AI parameter of the ATTACH macro
instruction, the retry routine is entered with the PKM from the XSBKM field in the XSB
control block of the retry RB only if one of the following is true:

1. The main routine was authorized (as defined earlier under "Supervisor/Problem Program
State") at the time of the error.

2. The RBOPSW of the retry RB has a key greater than or equal to 8 and is in problem
program state, and the PKM of that RB does not have authority to keys less than 8.

Otherwise, the PKM of the retry routine only has authority that is equivalent to that of the
TCBPKF.

Authorization Index (AX): The retry routine is entered with the authorization index that is in
effect for the dispatched address space (HOME or PSAAOLD).

Cross Memory Mode: The retry routine is entered in primary mode with
PASID = SASID = HASID.

Addressing Mode: The Retry routine is entered in the same addressing mode that existed when
the recovery routine was entered.

SDWA: When RTM obtains an SDWA for an ESTAE-type recovery routine, the recovery
routine can make the SDW A available to the retry routine. In this case, the retry routine must
free the SDW A using the pointer to it and its length. The length appears in the SDW ALNTH
field, and the subpool in which the SDW A resides appears in the SDW ASPID field.

Percolation
When a recovery routine gets control and cannot recover from the error (that is, it does not
retry), it must free the resources held by themain routine and request that RTM continue with
termination (percolate). Note that a recovery routine entered with the SDWACLUP bit set to
one in the SDW A, indicating that retry is not permitted, has no choice but to percolate. When
the recovery routine requests percolation, the previously-established recovery routine gets
control. When a retry is not requested and RTM has entered all possible recovery routines, the
unit of work (either an SRB or a task) terminates abnormally. Figure 49 shows the decisions
RTM makes to determine which recovery routine is to get control in a particular situation.

When a recovery routine requests percolation, it is cancelled; that is, RTM effectively removes
that recovery routine from the environment. A cancelled recovery routine is not entered again
unless that recovery routine is established again after a retry. There are two types of
percolation: percolation for the same unit of work and SRB-to-task percolation.

1-170 SPL: System Macros and Facilities Volume 1

lr-\
~/

~~'

"L', .-;/

(

(

(

Error:

(ENTER RTM)

YES

0·
TASK

~. YES

EXIT TO SRB
DISPATCHER

FRR

FRR
EXECUTION

~ YES

NO

~SRB
OR TASK

1 TASK

1 MAIN

DEQUEUE REQUEST
FOR SRB-TO-TASK
PERCOLATION

1
SET UP TO

REENTER SAME
FRR TO PROCESS

SRB-TO-TASK
PERCOLATION

REQUEST

Figure 49 (Part 1 of 3). Routing Control to Recovery Routines

·1
DELETE

FRR

.(RETRY) TO SRB

ESTAE RETRY TO
RECOVERY ROUTINE

NO
~ RETRY TO TASK' s

MAIN ROUTINE

Normal and Abnormal Program Termination 1-171

CANCEL
ESTAE-TYPE
RECOVERY
ROUTINE

RETRY TO ANOTHER

NO

RECOVERY ROUTINE 14-----<:..

YES

ESTAE-TYPE

ESTAE-TYPE
RECOVERY
ROUTINE
EXECUTION

YES

~ MAIN

RETRY IN
MAIN ROUTINE

Figure 49 (Part 2 of 3), Routing Control to Recovery Routines

1-172 SPL: System Macros and Facilities Volume 1

NO

YES

PURGE SRB-TO-TASK
PERCOLATION
QUEUE IF ONE

EXISTS

TERMINATE
THE TASK

SET UP TO ENTER
SAME ESTAE-TYPE

ROUTINE TO PROCESS
SRB-TO-TASK
PERCOLATION

REQUEST

DEQUEUE
REQUEST FOR
SRB-TO-TASK
PERCOLATION

c

(-

f'

(

('

G
1

STOP THE
RELATED TASK

l YES

IS
TASK IN

RECOVERY

[S
SRB-TO-TASK
PERCOLATION

REQUEST
SERIALIZED

1 YES

QUEUE REQUEST FOR
SERIALIZED SRB-TO-TASK

PERCOLATION ON TCB
QUEUE

I
~

RESTART THE
RELATED TASK

EXIT TO SRB
DISPATCHER

SET UP TASK FOR
NO TERMINATION-

TASK REENTERS
RTM FROM THE

BEGINNING

NO

YES
~ IGNORE THE

REQUEST

Figure 49 (Part 3 of 3). Routing Control to Recovery Routines

Normal and Abnormal Program Termination 1-173

Percolation for the Same Unit of Work
Percolation for the same unit of work causes control to be given to one recovery routine after
another for that same unit of work, which can be either a task or an SRB.

Percolation to an FRR always occurs from another FRR. The environment (except for the
cross memory environment) in which a subsequent FRR gets control is the same as the one that
existed when the first FRR was entered. The cross memory environment varies because FRRs
can turn off the super bits. The lock status, which implies enablement or disablement, could
also be different. If an FRR obtains locks that were not held when it was entered and then
requests percolation, RTM frees those locks before giving control to the next FRR. Also, if the
percolating FRR requested that RTM free any locks, RTM frees these locks before giving
control to the next FRR.

Percolation to an EST AE-type recovery routine can occur from either an FRR or another
ESTAE-type recovery routine. The environment in which an ESTAE-type recovery routine gets
control does not vary regardless of whether the percolation request came from an FRR or
another ESTAE-type recovery routine. Note that a recovery routine established by the ESTAI
parameter of the ATTACH macro instruction can choose either to percolate to a previous r' "

ESTAI routine (by setting a return code of 0 for RTM) or to bypass further ESTAI recovery
routine processing and continue with termination (by setting a return code of 16 for RTM).

SRB-TO-TASK Percolation
When an SRB is scheduled and the fields SRBPASID and SRBPTCB are supplied, the task
whose TCB address is in SRBPTCB and is executing in the address space whose ASID is in
SRBPASID is defined as the SRB's related task. When an SRB with a related task terminates
abnormally and the FRR for the SRB does not exist or does not request a retry, the error is
percolated to the recovery for the related task. This percolation is called SRB-to-task
percolation.

SRB-to-task percolation occurs if none of the FRRs established by the SRB retry or if the SRB
does not have an FRR. Either case creates a request for RTM to perform SRB-to-task
percolation. RTM ignores the request whenever the related task is terminated. RTM may
ignore the request when the related task is already in recovery. If serialization is requested on
the SETRP macro instruction in the FRR for that SRB, the percolation request is deferred.
(See the SERIAL = YES parameter of the SETRP macro instruction in Volume 2 of this
publication.) Serializing SRB-to-task percolation ensures that information about multiple SRB
failures is not lost.

Note: SERIAL = YES should not be specified unless the task's recovery routine expects it.

RTM processes requests for non-serialized SRB-to-task percolation as follows:

• If the task is in recovery, RTM ignores the request.

• If the task is not in recovery, then RTM abnormally terminates the task and passes the
information about the SRB's error to the task's recovery.

1-174 SPL: System Macros and Facilities Volume 1

(

(....

. '"

RTM processes requests for serialized SRB-to-task percolation as follows:

• If the task is already in recovery, RTM saves and queues the information about the SRB's
error for processing later when the task recovers from the previous error.

• If the task is not in recovery, RTM abnormally terminates the task and passes the
information about the SRB's error to the task's recovery.

When one of the task's recovery routines that is not a nested recovery routine (defined in
"Recovery for Recovery" later in this chapter) requests a retry, RTM checks for queued
requests for SRB-to-task percolation and takes the following actions before performing the
retry:

1. If any requests are queued, RTM dequeues a request and again enters the recovery routine
that requested the retry. RTM repeats this process as long as there are queued requests.

2. When the queue is empty or depleted, R TM honors the retry request and gives control to
the retry routine.

Figure 49 shows this process.

The environment for a task recovery routine entered as a result of SRB-to-task percolation is
the same as the environment described earlier under "Percolation for the Same Unit of Work."

However, the information in the SDWA describes the error that occurred in the SRB.
Whenever serialized SRB-to-task percolation is requested and RTM must queue a request,
RTM obtains an area from the user's private area to preserve the information about the SRB's
error. If no space is available, RTM cannot preserve that information but still enters the task
recovery for the request. If an SDW A is available, RTM sets the SDWARPIV bit to indicate
that error-time information is not available. Also, RTM sets the SDW ACOMU field to zeroes
because RTM cannot preserve its contents to pass from the SRB's FRR to the task recovery
routine.

Recovery for Recovery
In some situations, the function a recovery routine performs is so essential that you should
establish a recovery routine to recover from errors in the recovery routine. Two examples of
such situations are:

1. The availability of some resources can be so critical to continued system or subsystem
operation that it might be necessary to establish a recovery routine for the recovery routine,
thus ensuring the availability of the critical resources.

2. A recovery routine might perform a function that is, in effect, an extension of the main
routine's processing. For example, a system service might elect to check a caller's
parameter list for fetch or store protection. The service references the user's data in the
user's key and, as a result of protection, suffers a program check. The recovery routine gets
control and requests a retry in order to pass a particular return code to the main routine.
If this recovery routine terminates abnormally and does not establish its own recovery, then
the caller's recovery routine gets control, and the caller does not get an opportunity to
check the return code that it was expecting.

You can establish an FRR from either another FRR or from an ESTAE-type recovery routine.
You can also establish an EST AE-type recovery routine from an EST AE-type recovery routine.
However, do not establish an ESTAE-type recovery routine from an FRR because RTM gives
control to all FRRs in a recovery path before giving control to any EST AE-type recovery
routines. Therefore, an EST AE-type recovery routine established in an FRR might not get
control in the proper sequence.

Normal and Abnormal Program Termination 1-175

Any recovery routine established in a recovery routine is called a nested recovery routine (either
a nested FRR or a nested ESTAE recovery routine). Nested ESTAE recovery routines can
retry; the retry routine executes under the RB of the ESTAE-type recovery routine that
established the nested recovery routine.

Nested FRRs, however, cannot retry. If you need to provide recovery for one FRR with a
second FRR, and the second FRR must be able to request a retry, establish both FRRs in the
main routine. For example, assume that you want to provide recovery for FRR A with another
FRR, FRR B. In the main routine, issue the SETFRR macro instruction for FRR B first,
followed by the SETFRR macro instruction that established FRR A. If the main routine
terminates abnormally, FRR A gets control. If FRR A then encounters an error, FRR B g~ts
control and, because it is not nested, it can request a retry. Note that RTM deletes FRR A
when it gives control to, FRR B. If FRR A is needed for the rest of the processing, the retry
routine must establish it again. If FRR A is not established again, RTM passes any subsequent
errors to FRR B.

All FRRs (nested or not) as well as the main routine, execute under the top RB while in task
mode.

Recovery Routine Guidelines
The actions a recovery routine should take are highly dependent on the function of the main
routine; the information presented here summarizes the major decisions -- whether or not you
need a recovery routine and what kind of recovery routine you need -- and presents some
considerations related to recovery routines that request retry and those that request a dump.
"FRR Summary" identifies the information in this book that can help you to design an FRR;
"ESTAE-Type Recovery Routine Summary" does the same for ESTAE-type recovery routines.

Deciding Whether Recovery Is Needed
The first decision you must make is whether or not the main routine requires a recovery
routine. Usually, if a function acquires resources that might be requested by another function
or that are not known to be related to the task, a recovery routine should be established to free
the resources. An example of this type of resource is storage with a subpool that is not
task-related (such as subpool 231). Another case that requires a recovery routine occurs when
the main routine manipulates such resources as data areas, queues, and data sets that are used
by more than one function. The recovery routine in this case should maintain integrity of the
resource in case of failure. Recovery routines can also be used to:

• Intercept errors and perform clean-up processing

• Intercept expected program checks and perform the desired action

• Isolate an error to a particular section of processing and continue further processing if
possible

• Intercept abends and provide tailored dumps

Deciding What Type of Recovery Routine to Establish
The second decision is what type of recovery routine to establish. If the function holds a lock,
is physically disabled, or is an SRB, an FRR can intercept errors. If the function is running
under a task and holds a lock during some portion of its processing, an EST AE can intercept
errors, but the lock is freed before the EST AE routine gets control. An EST AE-type recovery
routine is useful when losing the locked status can be tolerated, such as when the lock is used
only to protect a queue from change while it is being read. Also, if the function is running as
an enabled unlocked SRB and there is no need to retry at some point in the SRB, an EST AE
routine associated with its related task could be used to intercept errors in the SRB.

1-176 SPL: System .Macros and Facilities Volume 1

(....
. '. /

(-

(

('-

..

If the function attaches any subtasks, it can also provide recovery for the subtask by specifying
the EST AI parameter on the ATTACH macro instruction.

Requesting a Retry
A recovery routine that requests a retry should not assume the registers in the SDW A are its
own because there are problems, such as errors in called routines that have no recovery or
errors in an asynchronous routine (such as an SRB or IRB) that can affect the register contents
in the SDW A. The safest method to ensure a successful retry is for the main routine to save
volatile information, such as register contents and addresses, in the parameter area passed to
the recovery routine and for the recovery routine to use that information for retry. For
example, the issuer of the macro instruction can save the base register and data register for the
function in the parameter area. This information enables the recovery routine to reference the
areas that belong to the function.

Requesting an ABEND Dump From an FRR
When writing an FRR, note that RTM places the SYSABENDjSYSUDUMPjSYSMDUMP
dump options specified on the SETRP macro instruction into the SDW A. Dump options that
an FRR specifies replace any dump options that an ABEND macro instruction or a previous
recovery routine specified. Also, the CHNGDUMP operator command can add to or override
the options. RTM takes one ABEND dump based on the accumulated options. RTM does
not take the dump if a retry occurs before the error percolates to an ESTAE-type recovery
routine. RTM takes the dump only if all FRRs percolate and no subsequent recovery routine
suppresses the dump.

Requesting an ABEND Dump From an ESTAE-Type Recovery Routine
When writing an ESTAE-type recovery routine, note that RTM accumulates the
SYSABENDjSYSUDUMPjSYSMDUMP dump options specified by means of the SETRP
macro instruction and places them in the SOW A. During percolation, these options are merged
with any dump options specified on an ABEND or CALLRTM macro instruction or by other
recovery routines. Also, the CHNGDUMP operator command can add to or override the
options. RTM takes one dump as specified by the accumulated options. If the recovery
routine requests a retry, RTM takes the dump before the retry. If the recovery routine does not
request a retry, RTM percolates through all recovery routines before taking the dump.

Requesting SVC Dumps and LOGREC Recording From Recovery Routines
By the time an ABEND dump is taken after percolation, valuable function-related information
might have been cleaned up by the recovery routines that have already executed. Also, an
ABEND dump is returned to the person who ran the abnormally terminating job. Usually the
system programming staff wants to see the dumps requested by authorized programs
immediately. A recovery routine that is an authorized program can issue the SDUMP macro
instruction to request an SVC dump for system programmers to use. Being an authorized
program is only one of the rules for requesting SVC dumps. Other restrictions are described in
"Using the SDUMP Macro Instruction" later in this section.

Even when SVC dumps are requested, extra care must be taken to preserve valuable
function-related information for routines that need to use the branch entry to SVC dump and
that cannot wait by using the ECB option on the SDUMP macro instruction.

• For example, information in control blocks used for communication with other address
spaces can be changed before a branch entry SVC dump is taken. The recovery routine
should use footprint areas to save this information. The available footprint areas include
the function's work areas, the variable recording area (VRA) in SDWAVRA, the 4K SQA
buffer provided for the SDUMP macro instruction, and any areas the SUMLIST or
SUMLISTA parameter specified in an SDUMP macro instruction. Documentation
describing how footprint areas are used is very helpful when analyzing the dump or
LOGREC entries.

Normal and Abnormal Program Termination 1-177

,I

1

• If volatile information is required, the recovery routine should issue an SDUMP macro
instruction after saving the volatile information. Volatile information can be saved by
specifying SUM LIST A or SUMLIST = list address, BRANCH = YES, and
SDATA=SUMDUMP in the SDUMP macro instruction. The areas indicated by the
SUM LIST parameter are included in the summary dump. For branch entered SVC dumps,
the summary dump is taken by default while the system is disabled. Enabled routines can
request SUSPEND = YES on branch entry SVC dump requests in order to preserve
pageable volatile data. Volatile data can also be saved by moving it into the 4K SQA
buffer described in this section under "Using the SDUMP Macro Instruction," however,
this buffer can be used only if no other recovery routine is using it.

Other considerations related to dumping and LOGREC recording are:

• Dumps are usually not required to solve type x37 abends (caused when not enough space is
allocated for a data set) and type 913 abends (caused when an operator or user does not
supply the correct password). Also, when a prior task is abending and has already taken an
ABEND or SVC dump (indicated by the SDW A bits SDW ACTS and SDW AMABD being
on or the SDW AEAS bit being on), another dump is not necessary. When several recovery
routines are written for the same component, the recovery routines that are higher in the
hierarchy can test the SDW AEAS bit to check if a lower routine has already taken an SVC
dump. (Lower routines should set the SDW AEAS bit to indicate that an SVC dump has
been taken.) If other routines have not issued an error message for an abend, the higher
recovery routine should issue one.

• The default dump data set is the data set that the user specifies on the SYSABEND,
SYSMDUMP, or SYSUDUMP DD statement. If the function executes in key 0, or if it
has access to restricted data that should be kept secure in a dump, either the data set
specified on the DD statement should be secure or the SDUMP macro instruction should
be used to take the dump. The SDUMP macro instruction can include the DCB option for
a secure data set.

• When using the SDUMP macro instruction, consider the following:

The SDUMP macro instruction should specify a title that summarizes the problem and
function. The print dump service aid inserts the first 62 characters of the title on each
output page. The title should include at least the name of the module that failed and
the name of the recovery module, as in the following example:

OC4 ABEND IN OPEN, ERRMOD=IFGORROA,
ISSUER=IGG020FC, JOBN=C49JACIA, STEPN=GO,
SDWAVRA=8417F0

The SDUMP macro instruction should not specify all SDATA parameters unless all
storage areas are necessary to correct the error. If a particular area is not required,
omit the corresponding keyword or do not specify the SDAT A option, if there is one.
Whenever possible, tailor the SDUMP using the storage list options (STORAGE =,
LIST =, SUMLST A =, SUMLIST =, and LIST A =).

• When LOGREC recording is requested (the default for the first FRR if not specified on the
SETRP macro instruction), the name of the module that failed and the name of the
recovery module should be saved in the appropriate SDW A fields (SDW AMODN,
SDW ACSCT, and SDWAREXN). Additional functional information should be saved in
the SDWACRC, SDWACID, SDWAMLVL, SDWASC, and SDWARRL fields, and in the
SDW A variable recording area (SDW A VRA). For a way to map the contents of the VRA,
see the VRADATA macro instruction in Volume 2.

1-178 SPL: System Macros and Facilities Volume 1

./

(

(

(

FRR Summary
If you decide to use an FRR to provide recovery, review the following:

• The syntax of the SETFRR macro instruction in Volume 2.

• The information about FRRs presented under "System Environment" on page 1-154.

• The register use information for FRRs presented under "REGISTER INTERFACE" on
page 1-158.

• The information about the SDW A presented under "SYSTEM DIAGNOSTIC WORK
AREA (SDWA)" on page 1-159. Note that the SDWA is fully described in the Debugging
Handbook.

• If your FRR might request a resume or a retry, the information presented under
"RESUME" on page 1-166 and "RETRY FROM AN FRR" on page 1-166.

• The syntax of the SETRP macro instruction in Volume 2.

• The information presented under "Recovery Routine Guidelines" on page 1-176.

ESTAE-Type Recovery Routine Summary
If you decide to use an EST AE-type recovery routine to provide recovery, review the following:

• If you are using EST AE, the syntax of the EST AE macro instruction in Volume 2.

• If you are using FESTAE, the information presented under "Using the FEST AE Macro
Instruction" on page 1-164 and the syntax of the FEST AE macro instruction in Volume 2.

• If you are using the EST AI parameter, the syntax of the ATTACH macro instruction in
Volume 2.

• The register use information for EST AE-type recovery routines presented under
"REGISTER INTERFACE" on page 1-158.

• The information about EST AE-type recovery routines presented under "System
Environment" on page 1-154.

• The information about the SDW A presented under "SYSTEM DIAGNOSTIC WORK
AREA (SDWA)" on page 1-159. Remember that an SDWA might not always be available
to your routine. The SDWA is fully described in Debugging Handbook.

• If your ESTAE-type recovery routine might request a retry, the information presented
under "Retry From an ESTAE-Type Recovery Routine" on page 1-167.

• The syntax of the SETRP macro instruction in Volume 2.

• If your main routine is a task related to an SRB, the information presented under
"SRB-TO-TASK Percolation" on page 1-174.

• The information presented under "Recovery Routine Guidelines" on page 1-176.

STAE/STAI Exit Routines
The ST AE macro instruction causes a recovery routine address to be made known to the
control program. This recovery routine is associated with the task and the RB that issued
STAE. Use of the STAI option on the ATTACH macro instruction also causes a recovery
routine to be made known to the control program, but the routine is associated with the
subtask created via ATTACH. Furthermore, STAI recovery routines are propagated to all
lower-level subtasks of the subtask created with ATTACH that specified the ST AI parameter.

If a task is scheduled for abnormal termination, the exit routine specified by the most recently
issued STAE macro instruction gets control and executes under a program request block
created by the SYNCH service routine. Only one ST AE routine receives control. The ST AE
routine must specify, by a return code in register 15, whether a retry routine is to be scheduled.

Normal and Abnormal Program Termination 1-179

If no retry routine is to be scheduled (return code = 0) and this is a subtask with ST AI
recovery routines, the ST AI recovery routine is given controL If there is no ST AI recovery
routine, abnormal termination continues.

If there is more than one ST AI recovery routine existing for a task, the newest one receives
control first. If it requests that termination continue (return code = 0), the next ST AI routine
receives control. This continues until either all STAI routines have received control and
requested that the termination continue, a STAI routine requests retry (return code = 4 or 12),
or a ST AI routine requests that the termination continue but no further ST AI routines receive
control (return code = 16).

Programs running under a single TCB can issue more than one ST AE macro instruction with
the create (CT) parameter. Each issuance makes the previous ST AE environment temporarily
inactive. The environment becomes active when the current ST AE environment is canceled.

A ST AE environment is canceled when the RB that created it goes away (unless it issues XCTL
and specified the XCTL = YES parameter on the ST AE macro instruction), when the ST AE
macro instruction is issued with the CANCEL option, or when the ST AE routine receives
control. If a STAE exit routine receives control and requests retry, the retry routine reissues the
ST AE macro instruction if it wants continued ST AE protection.

A ST AI environment is canceled if the task completes or if it requests that termination continue
and no further ST AI processing be done. In the later case, all ST AI exits for the task are
canceled.

Interface to a STAE/STAI Routine: Prior to entering a STAE/STAI recovery routine, the
control program attempts to obtain and initialize a work area that contains information about
the error. The first word of the SDW A contains the address of the parameter list specified on / '\
the STAE macro instruction or the STAI parameter or the ATTACH macro instruction.

Upon entry to the ST AE routine, parameter registers are as follows:

If an SDW A was obtained:

Register 0 a code indicating the type of I/O processing performed:
o active I/O has been quiesced and is restorable.
4 active I/O has been halted and is not restorable.
8 no active I/O at ABEND time.
16 active I/O, if any, was allowed to continue.

Register 1 address of the SDW A.
Register 13 save area address.
Register 14 return address.
Register 15 address of ST AE exit routine.

If no SDW A was available:

Register 0
Register 1
Register 2
Register 13
Register 14
Register 15

a code of 12 to indicate that no SDWA was obtained.
ABEND completion code.
address of user-supplied parameter list.
unpredictable.
return address.
address of ST AE exit routine.

1-180 SPL: System Macros and Facilities Volume 1

j

(

(

When the STAE or STAI routine has completed, it should return to RTM via the contents of
register 14. Register 15 should contain one of the following return codes:

Return Code

o

4,8,12

16

Action

Continue the termination. The next ST AI, EST AI, or
ESTAE routine will be given control. No other STAE
routines will receive control.

A retry routine is to be scheduled.

No further STAI/ESTAI processing is to occur. This
code may only be issued by a ST AI/EST AI routine

For the following situations, ST AEjST AI routines are not entered:

• If the abnormal termination is caused by an operator's CANCEL, job step timer expiration,
or the detaching of an incomplete task without the ST AE = YES option.

• If the failing task has been in a wait state for more than 30 minutes.

• If the ST AE macro instruction was issued by a subtask and the attaching task abnormally
terminates.

• If the recovery routine was specified for a sub task, via the ST AI parameter of the
ATTACH macro instruction, and the attaching task abnormally terminates.

• If a problem other than those above arises while RTM is preparing to give control to the
ST AE routine.

• If another task in the jobstep terminates without the step option.

STAE/STAI Retry Routines: If the STAE retry routine is scheduled, the system automatically
cancels the active STAE environment; the preceding STAE environment, if one exists, then
becomes the active one. Users wanting to maintain STAE protection during retry must
reestablish an active ST AE environment within the retry routine, or must issue multiple ST AE
requests prior to the time that the retry routine gains control.

Like the ST AE/ST AI exit routine, the ST AEjST AI retry routine must be in storage when the
exit routine determines that retry is to be attempted. If not already resident in your program,
the retry routine may be brought into storage via the LOAD macro instruction by either the
main program or exit routine.

If the ST AE/ST AI routine indicates that a retry routine has been provided (return code = 4, 8,
or 12), register 0 must contain the address of the retry routine. The STAE environment that
requested retry is canceled and the request block queue is purged up to, but not including, the
RB of the program that issued the ST AE macro instruction. This is done by pointing each RB
old PSW to an SVC 3 (EXIT) instruction. In addition, open DCBs that can be associated with
the purged RBs are closed and queued I/O requests associated with the DCBs being closed are
deleted from the I/O restore chain.

The RB purge is an attempt to cancel the effects of partially executed programs that are at a
lower level in the program hierarchy than the program under which the retry occurs. However,
certain effects on the system are not canceled by this RB purge. Generally, these effects are
TCB-related and are not identifiable at the RB level. Examples of these effects are as follows:

• Subtasks created by a program to be purged. Reason: subtasks cannot be associated with
an RB; the structure is defined via TCBs.

• Resources allocated by the ENQ macro instruction. Reason: ENQ resources are associated
with the TCB and are not identifiable at the RB level.

Normal and Abnormal Program Termination 1-181

-------~----~~-------

• DCBs that exist in dynamically acquired virtual storage. Reason: Only DCBs in the
program, as defined by the RB via the CDE itself, are closed.

If there are quiesced restorable input/output operations, they can be restored, in the STAE retry
routine, by using word 2 in the SDW A. Word 2 contains the pointer to the purged I/O request
list (PIRL) passed as a parameter to SVC Restore. SVC Restore is used to have the system
restore all I/O requests on the PIRL.

If an SDW A was obtained upon entry to the ST AE/ST AI retry routine, register contents are as
follows:

Register
Register
Register
Register
Register

o 0
1 Address of the SDW A.
2-13 Unpredictable.
14 Address of an SVC 3 EXIT instruction.
15 Address of the ST AE/ST AI retry routine.

When the storage is no longer needed, the retry routine should use the FREEMAIN macro
instruction to free the first 104 bytes of the work area. If the retry routine is in the user key,
this storage should be freed from subpool 0 which is the default subpool for the FREEMAIN
macro instruction. If the retry routine is in the control program key, storage must be freed
from subpool 250. The remainder of the work area's storage was freed by RTM during
ST AE/ST AI processing.

If the ABEND/STAE interface routine was not able to obtain storage for the work area,
register contents are as follows:

Register 0 12
Register 1 ABEND completion code.
Register 2 Address of PIRL or 0 if I/O is not restorable.
Register 14 Address of an SVC EXIT instruction
Register 15 Address of the ST AE/ST AI retry routine

The retry routine is entered in supervisor state if the RBOPSW of the retry RB is in supervisor
state and the task was authorized at the time the ST AE routine was established or at the time
of the error. Otherwise. the retry routine is entered in problem program state.

The task is considered to be authorized at the time the ST AE routine is established when at
least one of the following is true:

1. The task is APF-authorized.
2. The requestor is in supervisor state.
3. The requestor has a PSW key less than 8.
4. The TCBPKF of the task is less than 8.
5. The PKM of the requestor allows keys less than 8.

The main routine is considered to be authorized at the time of the error when at least one of
the following is true:

1. The task is APF-authorized.

2. The TCBPKF of the task in error is less than 8.

3. The bit TCBFSM of the task in error (in TCBFLGS3 of the TCB) is set to one, indicating
that all RBs for that TCB execute in supervisor state.

1-182 SPL: System Macros and Facilities Volume I

' ~",

'",- ,/

\"" ,/

(

(

(

(

The retry routine is entered with the same PSW key as the one in RBOPSW of the retry RB
when one of the following is true:

1. The task was authorized at the time of the error as described above.

2. The RBOPSW of the retry RB has a key greater than or equal to 8 and is in problem
program state, and the PKM of that RB (XSBKM field in the XSB control block for that
RB) does not have authority to keys less than 8.

Otherwise, the PSW key of the retry routine is that of the TCBPKF.

Uses of Resource Managers
A resource manager routine gets control during normal and abnormal termination of a task or
an address space. Task or address space termination is the process of removing a task or
address space from the system, releasing the resources from the task or address space, and
making the resources available for reuse. MVS/XA provides resource managers that are
invoked to establish routines that "clean up" the queues and control blocks associated with the
resources.

In general, MVS/XA does not provide a resource manager for a function that is totally
self-contained. A self-contained function does not allocate any resources to the requestor or
reclaims all allocated resources before the function returns control. Examples of self-contained
functions are EXTRACT and TTIMER. MVS/XA does provide a resource manager for
functions that are not self-contained -- that do allocate resources to the requestor. Such
services fall into two categories: paired requests (such as OPEN/CLOSE and ENQ/DEQ) and
requests that invoke an asynchronous process (such as STIMER and I/O requests).

The system-provided resource managers can, for example, perform clean-up work for a
subsystem. The responsibilities of a resource manager include:

• For task termination, removing all traces of the fact that the TCB for the terminating task
at one time was connected to, allocated to, or associated with the resource in question. The
resource should be left in such a state that it can be reused by another task in the address
space or in the system.

• For address space termination, releasing all system queue area and common storage area
control blocks obtained for the use of the terminating address space. Also, any buffers, bit
settings, pointers, and so on relating to the terminating address space should be reset to
make the system appear as if the ASID or ASCB of the terminating address space never
existed.

The resource manager is also responsible for establishing a recovery environment when first
entered to protect itself against errors during its own processing. For SRBs, the clean-up
routine issues the PURGEDQ macro instruction to ensure that all undispatched SRBs are
removed from the SRB dispatching queue.

If an installation creates a function that is not totally self-contained, the installation should also
provide a resource manager for that function. The installation-created resource manager should
perform the same basic tasks for this new function that system resource managers perform for
system functions. See SPL: System Modifications for information on how to write an
installation resource manager.

Normal and Abnormal Program Termination 1-183

c

c
1-184 SPL: System Macros and Facilities Volume 1

(-

(

Protecting the System

Protecting the system or maintaining system integrity is a major consideration in large systems.
This chapter includes information concerning the following topics:

• System integrity
• Using the authorized program facility (APF)
• Using the resource access control facility (RACF)
• Protecting low storage

System Integrity
System integrity is defined as the ability of the system to protect itself against unauthorized user
access to the extent that security controls cannot be compromised. That is, there is no way for
an unauthorized problem program using any system interface to bypass store or fetch
protection, bypass password checking, bypass RACF checking, or obtain control in an
authorized state.

Note: An authorized program in MVS/XA is one that executes in a system key (keys 0-7), in
supervisor state, or is authorized via the authorized program facility (APF).

Documentation on System Integrity
This section contains information about MVS/XA system integrity. The related topic of
security in regard to the physical environment of a computing system is discussed in the
following publications:

• The Considerations of Physical Security in a Computer Environment
• Data Security Controls and Procedures--A Philosophy for DP Installations
• Security Assessment Questionnaire

Installation Responsibility
To ensure that system integrity is effective and to avoid compromising any of the integrity
controls provided in the system, the installation must assume responsibility for the following:

• Physical environment of the computing system.

• Adoption of certain procedures (for example, the password protection of appropriate
system data sets) that are a necessary complement to the integtjty support within the
operating system itself.

• That its own modifications and additions to the control program do not introduce any
integrity exposures. That is, all installation-written authorized code (for example, an
installation SVC) must perform the same or an equivalent type of validity checking and
control that the MVS/XA control program employs to maintain system integrity.

Elimination of Potential Integrity Exposures
MVS/XA system integrity support restricts only unauthorized problem programs. It is the
responsibility of the installation to verify that any authorized programs added to the system
control program will not introduce any integrity exposures. To do this effectively, an
installation should consider these areas for potential integrity exposure:

• User-supplied addresses for user storage areas.
• User-supplied addresses for protected control blocks.
• Resource identification.
• SVC routines calling SVC routines.

© Copyright IBM Corp. 1982, 1989 Protecting the System 1-185

• Control program and user data accessibility.
• Resource serialization. (See the section "Locking.")

Each of the following descriptions is a guideline to aid the installation in:

• Eliminating that area as a potential integrity exposure.

• Determining whether an impact on existing installation-written code might occur, especially
where that code is dependent on the use of non-standard interfaces to the system control
program.

There should be no impact on installation-written routines that use standard interfaces (problem
program/system interface described in an SRL) because no standard interfaces for system·
integrity support have been removed from the MVS/XA system control program. However,
some routines now require authorization for use.

User-Supplied Addresses for User Storage Areas
A potential integrity exposure exists whenever a routine having a system protection key (key
0-7) accept& a user-supplied address of an area to which a store or fetch is to be done. If the
system routine does not adequately validate the user-supplied address to ensure that it is the
address of an area accessible to the user for storing and fetching data, an integrity violation can
occur when the system-key routine:

• Stores into (overlays) system code or data (for example, in the nucleus or the system queue
area), or into another user's code or data.

• Moves data from a fetch-protected area that is not accessible to the user (for example,
fetch-protected portion of the common service areas) to an area that is accessible to the
user.

To eliminate this problem system-key routines should always verify that the entire area to be
stored into, or fetched from, is accessible (for storing or fetching) to the user in question. The
primary validation technique is the generally established MVS/XA convention that system-key
routines obtain the protection key of the user before accessing the user-specified area of storage.
For example, MVS/XA data management SVC routines (which generally execute in key 5)
assume the user's key before modifying a data control block (DCB) or an I/O block (lOB).

User-Supplied Addresses for Protected Control Blocks
A potential integrity exposure exists whenever the control program (system key/privileged
mode) accepts the address of a protected system control block from the user. For most system
control blocks, this situation should not be permitted to exist. However, in certain cases it is
necessary to allow the user to provide the address of a system control block that describes his
allocation/access to a particular resource (for example, a data set), in order to identify that
resource from a group of similar resources (for example, a user might have many data sets
allocated). Inadequate validity checking in this situation can create an integrity exposure,
because an unauthorized problem program could provide its own (counterfeit) control block in
place of the system block and thereby gain the ability to:

• Access a resource in an uncontrolled manner (because the control block in this case would
normally define the restrictions, such as read-only for a data set, on the user's allocation to
the resource).

• Gain control in a privileged state (because such control blocks might contain the addresses
of routines that run in privileged mode or with a system (0-7) key).

• Cause various other problems depending on exactly what data is in the control block
involved.

1-186 SPL: System Macros and Facilities Volume 1

(

To avoid this type of exposure, the control program must verify, for every such address
accepted from a problem program, that the address is that of:

1. A protected control block created by the control program.

2. The correct type of control program block (for example, a TCB versus a DEB, or a QSAM
DEB versus an ISAM DEB).

3. A control block created for use in connection with the user (job step) that supplied the
address.

In MVS/XA, verification is generally accomplished by establishing a chain or table of the
particular type of control block to be validated. This chain or table is located via a protected
and jobstep-related control block that is known to be valid. Addresses that are not allowed to
be supplied by the user, are located via a chain of protected control blocks that begins with a
control block known to be valid or fixed at a known location at IPL time, such as the CVT.
Therefore, a control block can only be entered in the chain/table by:

• An authorized program satisfying point 1.

• Definition, where the chain/table establishes the type of control block satisfying point 2.

• Definition, where each chain/table is located only through a jobstep-related control block
satisfying point 3.

Note: This does not imply that a system routine must go back to the CVT or similar control
block every time it wants to establish a valid chain. Typically, a control block address not too
far down on such a chain is available and already validated in a register. For example, the first
load of an SVC can receive control with a valid TCB address in a register.

Resource Identification
Resource identification is another area that can be subject to integrity exposures. Exposures
can result if the control program does not maintain and use sufficient data to uniquely
distinguish one resource from other similar resources. For example, a program must be
identified by both name and library to distinguish it from other programs. The consequences of
inadequate resource identification are problems such as the ability of an unauthorized problem
program to create counterfeit control program code or data, or to cause varying types of
integrity problems by intermixing incompatible pieces of control program code and/or data.

The general solution can only be stated as the reverse of the problem; that is, the control
program must maintain and use sufficient (protected) data on any control program resource to
distinguish between that resource and other control program or user resources. The following
are examples of the controls that MVS/XA employs to comply with the requirement:

• In general, authorized program requests to load other authorized programs are satisfied
only from authorized system libraries (see the topic "Control Program Extensions"
described in this section.)

• MVS/XA takes explicit steps to ensure that routines loaded from authorized system
libraries are used only for their intended purpose. This includes expanded validity checking
to remove any potential for the unauthorized program to specify explicitly which of the
authorized library routines are to gain control in any given situation.

• Sensitive system control blocks are validated as being the "correct" blocks to be used in any
given control program operation. (See the topic "User-Supplied Addresses of Protected
Control Blocks" described earlier in this section.)

Protecting the System 1-187

SVC Routines Calling SVC Routines
A potential problem area exists whenever a problem program is allowed to use one SVC routine
(routine A) to invoke a second SVC routine (routine B) that the problem program could have
invoked directly. An integrity exposure occurs if:

• SVC routine B bypasses some or all validity checking based on the fact that it was called by
SVC routine A (an authorized program) or

• User-supplied data passed to routine B by routine A either is not validity checked by
routine A, or is exposed to user modification after it was validated by routine A.

These problems will not exist if the user calls SVC routine B directly, because the validity
checking will be performed on the basis of the caller being an unauthorized program.

SVC routine A, which is aware that it has been called by an unauthorized program, must ensure
that the proper validity checking is accomplished. However, it is usually not practical for SVC
routine A to do the validity checking itself, because of the potential for user modification of the
data before or during its use by SVC routine B. The general solution should be for SVC
routine A to provide an interface to SVC routine B, informing routine B that the operation is
being requested with user-supplied data in behalf of an unauthorized problem program
(implying that normal validity checking should be performed).

In practice, in MVSjXA, most SVC B-type routines that could be subject to this problem use
the key of their caller as a basis for determining whether or not to perform validity checking.
Therefore, most SVC A-type MVSjXA routines have simply adopted the convention of
assuming the key of their caller before calling the SVC B routine. (For additional information
see the section "Writing SVC Routines" later in this book.)

Control Program and User Data Accessibility
Important in maintaining system integrity is the consideration of what system data is sensitive
and must be protected from the user, and what data can be exposed to user manipulation. The
implications of the exposure of the wrong type of data are obvious.

In general, it is necessary to store protect the following types of data:

• Code, and the location of code, that is to receive control in an authorized state.
• Work areas for such code, including areas where it saves the contents of registers.
• Control blocks that represent the allocation or use of system resources.

,['\
\ I ,_/

/

MVSjXA maintains such items in system storage, or in a separate address space in the case of / "
some APF-authorized programs. '" /

It might also be necessary to protect, for a limited period, certain data that is normally under
the control of the user (for example, to prevent its modification during a critical operation). In
this case MVSjXA provides fetch protection for such data if:

• The data consists of proprietary information (such as passwords).
• The control program cannot determine the nature of the contents of the data area.

Fetch Protection Provided for the PSA
The last 2K locations of the PSA (addresses 2048 through 4095) contain sensitive system data
that must be protected. These locations are key 0 fetch protected. This means that only key 0
programs can fetch data from the last 2k of the PSA. Also the entire PSA of one CPU is key 0
fetch-protected from programs attempting to access the PSA while executing on another CPU.

1-188 SPL: System Macros and Facilities Volume I

;('-,
I\L./

(

(

Control Program Extensions
This potential problem area involves the somewhat hazy distinction that exists between the
control program and certain types of problem programs. In most installations, there are
problem state/user key (keys 8-15) programs that are actually extensions to the control program
in that they are allowed (by means of various special SVCs, and so forth) to bypass normal
system controls over access to system resources. For example, a special utility program that
scans all the data on a pack might be able to avoid the normal system extent checking on a
direct access volume.

If an installation has its own control program extensions and SVCs that allow the bypass of
normal system security or integrity checks (for example, an SVC that returns control in key 0),
and if such SVCs are not currently restricted from use by an unauthorized program, the APF
facility should be used to restrict them and to authorize the control program extensions that use
them.

Using the Authorized Program Facility (APF)
The authorized program facility (APF) is a facility that an installation manager uses to protect
the system. In MVS, certain system functions, such as all or part of some SVCs, are sensitive;
their use must be restricted to users who are authorized. An authorized program is one that
executes in supervisor state, with a PSW key of 0-7, or with APF authorization. In addition, an
authorized program should be thoroughly tested so that its use does not compromise the
system.

The MVS/XA supervisor uses APF to protect the system as follows:

1. The supervisor limits the use of sensitive system SVC routines and optionally, sensitive user
SVC routines, to authorized programs by issuing a TEST AUTH macro instruction before
giving control to the SVC routine. TESTAUTH determines, among other things, the
authorization status of the calling program. The installation can then use APF to prohibit
unauthorized programs from using sensitive SVC routines.

2. The supervisor ensures that all modules in an authorized job step task are fetched only
from authorized libraries. The supervisor thus prevents the unauthorized counterfeiting of
any module in an authorized job step task's module flow.

APF Authorization
APF is a mechanism that allows a program to become authorized. APF authorization is
established at the job step task level and depends on the authorization status of the first module
of the job step task at the time the job step task is initiated. Only when the first module loaded
meets both of the following conditions is the job step task marked APF-authorized:

• The module comes from an authorized library.

• The module was link-edited with the authorization code AC = 1. This code is contained in
a bit setting in the partitioned data set (PDS) directory entry for the module.

The authorization code is meaningful only when the load module resides in an authorized
library and is executed as the first module of a job step task. Thus, even though a program is
link-edited with AC = 1, it can run as an authorized program only if it is loaded from an
authorized library. When this occurs, the program manager then verifies that all subsequent
modules for that program also come from authorized libraries; if they do not, a 306 abend
results. Authorized libraries are marked at OPEN time by having a bit turned on in their
DEBs.

Protecting the System 1-189

The names of programs that are APF-authorized in the systems IBM provides can vary from
one release to another. To determine which programs are APF-authorized in the current
system, list the PDS directories of the authorized libraries (see "Authorized Libraries" later in
this discussion) and check for modules that are marked authorized (AC= 1). Only modules f-"

marked authorized and any modules they invoke from authorized libraries can ever run as 0
authorized programs.

Authorized Programs
MVSjXA considers a program authorized when that program executes in anyone of the
following states:

• Supervisor state (bit 15 of the PSW is zero).
• A system key (bits 8-11 of the PSW are in the range 0-7).
• As part of an APF-authorized job step task (bit JSCBAUTH in the JSCB is 1).

However, MVSjXA sometimes distinguishes authorization between a program that runs either
in supervisor state or system key and a program that is APF-authorized. For example, the use
of certain keywords in some macro instructions is restricted to programs running in supervisor
state or system key; programs that are APF-authorized but not in supervisor state or system
key cannot use these keywords.

When MVSjXA attaches the first load of a job step task (identified via the JSTCB keyword in
the ATTACH macro instruction), program management decides whether to mark the task
authorized or to leave it unauthorized. If the first load module has AC = 1 and comes from an
authorized library, the program is considered APF-authorized, and the task is marked
APF-authorized. If these conditions are not met, the task is not marked APF-authorized and
cannot normally become so during the life of the job step. (See "Authorization Results Under
Various Conditions" for exceptions to this rule.)

You should recognize the distinction between an authorized program and an authorized user.
To use restricted functions in MVSjXA a program must be authorized; that is, in supervisor
state, running with a system key, or part of an APF-authorized task or some combination of
these that satisfies the restriction. Any user, however, can submit a job that executes an
authorized program. To restrict a program to an individual user or a class of users, you can
use existing data set security facilities to place the program in a library, other than LINKLIB,
SVCLIB, or LPALIB, protected by RACF or by a password. If the program is an authorized
program, the library must be an authorized library.

Note: An authorized program could also be restricted by defining it as a RACF resource and
using the RACHECK macro instruction in the program to verify the user's authorization.

Authorized Libraries
APF-authorized programs must reside in authorized libraries. The authorized libraries in
MVSjXA are:

• SYSl.LINKLIB
• SYSl.SVCLIB
• SYSl.LPALIB (only during an IPL; see note 2)
• Installation authorized libraries

To allow an installation to authorize libraries, MVSjXA provides member IEAAPFOO and
supports optional members IEAAPFxx in SYSl.PARMLIB. During IPL, the system uses the
contents of one member, specified at IPL, to build the APFT ABLE, which contains the names
of authorized libraries and the serial numbers of the volumes on which they reside.
SYSl.LINKLIB and SYSl.SVCLIB are automatically placed in the first two entries of the
APFT ABLE; the remaining entries contain the names from member IEAAPFxx (where xx is
the identifier of the member). The volume serial numbers in the entries prevent the system from

1-190 SPL: System Macros and Facilities Volume 1

(.... ~'
/

(

(

obtaining data from a non-authorized library having the same name as an authorized library
but residing on a different volume.

The LNKLSTxx members of SYS1.PARMLIB denote libraries to be concatenated to
SYS1. LINKLIB. If libraries in the LNKLST concatenation are accessed through either
JOBLIB or STEPLIB DD statements, MVSjXA does not consider them authorized unless the
installation has also placed the names of the libraries in IEAAPFxx. As long as a load module
is in an authorized library, an authorized program can load it. The installation is responsible
for ensuring that duplicate module names are not permitted across authorized libraries to
preclude access to an incorrect module resulting in possible integrity exposures.

For details concerning SYS1.PARMLIB members IEAAPFxx and LNKLSTxx, see
Initialization and Tuning.

Notes:

1. If a JCL DD statement concatenates an authorized library in any order with an
unauthorized library, the entire set of concatenated libraries is treated as unauthorized.

2. After IPL, SYS1.LPALiB is not an authorized library. SYS1.LPALIB is authorized only
during NIP processing when the system builds the page able link pack area (PLPA). All
modules in PLPA are marked as coming from an authorized library. SYS1.LPALIB
becomes an authorized library after IPL only when an installation places its name in the
IEAAPFxx member of SYS1.PARMLIB, and there is no reason to do so.

Mixing APF and Non-APF Libraries in LNKLST
You can include the LNKAUTH parameter in the system parameter list, IEASYSxx, to
indicate whether all data sets in the LNKLST concatenation are to be treated as APF
authorized (LNKAUTH= LNKLST) or whether only those that are named in the APFTABLE
are to be treated as APF authorized (LNKAUTH = APFTAB). This means that it is possible
to mix APF authorized libraries and non-APF authorized libraries in the LNKLST
concatenation. The LNKAUTH parameter is also described in Initialization and Tuning.

Using APF
APF allows an MVSjXA installation to restrict use of SVC routines to authorized programs
and to restrict access to load modules; that is, APF prevents authorized programs from
accessing any load module that is not in an authorized library.

Restricting The Use of Sensitive Routines
MVSjXA provides the capability to restrict the use of sensitive routines to authorized callers.
To restrict the use of an SVC routine, use the TEST AUTH macro or use the SVCT ABLE
macro during system generation. To restrict the use of non-SVC routines, use the TESTAUTH
macro.

Using the SVCTABLE Macro to Restrict the Use of an SVC: You can specify the FCOI
parameter on the SVCT ABLE macro instruction during system generation to restrict sensitive
SVCs to authorized callers. MVS ensures that only authorized programs can access routines so
restricted. To successfully invoke a restricted SVC routine, the calling program must be in
supervisor state, or running under a system key, or APF authorized. If an unauthorized
program tries to access a restricted SVC, an 047 abend results.

Using the TESTAUTH Macro to Restrict the Use of a Routine: You can use the TESTAUTH
macro to restrict the use of any routine, including SVC routines. TESTAUTH enables you to
restrict an entire routine or particular paths through the routine when only a portion of the
routine's function is sensitive. Though you can specify any combination of system key,
supervisor state, and APF authorization for TESTAUTH to test, you should specify only those

Protecting the System 1-191

conditions that you consider essential. If any of the conditions specified to TESTAUTH are
present, TESTAUTH returns an indication that the caller is authorized. For example, to
validate the authorization status of programs requesting restricted functions, various system
routines use TESTAUTH to make the following distinctions:

1. The caller is executing in supervisor state, system key, or both.
2. The caller is an APF-authorized task (the JSCBAUTH bit in the JSCB is on).

The TESTAUTH macro instruction, inserted at appropriate locations in a routine, returns an
authorized or unauthorized indication. The routine can then take appropriate action based
upon this indication.

The TESTAUTH macro is not used to control the use of I/O appendages. I/O appendages are
controlled by means of the IEAAPPOO member of SYS1.PARMLIB. (See the description of
this member in Initialization and Tuning.)

Restricting Load Module Access
To authorize a program, the installation must first assign the authorization code to the first
load module of the program. APF prevents authorized programs from accessing any load
module that is not in an authorized library. If an authorized program tries to access a module
that is not in an authorized library, a search is done to find a copy of the module in an
authorized library. If a copy is found, then processing continues with that copy of the module.
If there is not a copy of the module in any authorized library, a 306 abend results.

Assigning Authorization
An installation can assign load modules the APF-authorization code either through the PARM
field on the link edit step or through a linkage editor control statement. The authorization
code of a load module has meaning only when it resi&s on an APF-authorized library and
when it is executed as the first program of a job step attach.

To assign an authorization code via JCL, code AC = 1 in the operand field of the PARM
parameter of the EXEC statement as follows:

//LKED EXEC PGM=HEWL,PARM='AC=l', ...

If no authorization code is assigned in the linkage editor step, the default is non-authorization.
The authorization code for a given output load module can be overridden with the SETCODE
control statement.

The SETCODE statement establishes authorization for a specific output load module. If it is
used, you must place it before the NAME statement for the load module. The format of the
SETCODE statement is:

SETCODE AC(l)

If more than one SETCODE statement is assigned to a given output load module, the last
statement found is used.

1-192 SPL: System Macros and Facilities Volume 1

r,r-",
V

,'-"- "'"'"

(

(/

In the example in Figure 50, the SETCODE statement assigns an authorization code to the
output load module MODI.

IILKED
IISYSPRINT
IISYSUTl
IISYSLMOD
IISYSLIN
II
II

SETCODE
NAME

1*

EXEC
DD
DD
DD
DD

DD

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,5))
DSNAME=SYSI.LINKLIB,DISP=OLD
DSNAME=&&LOADSET,DISP=(OLD,PASS),
UNIT=SYSDA
*
AC(I)
MODI (R)

Figure 50. Assigning Authorization via SETCODE

No security or integrity exposure exists if a program is link-edited into an unauthorized library
with authorization code AC = 1. The job step task is not authorized when the first module of
the job step task is loaded and no abend occurs. However, if the loaded module tries to execute
functions or SVCs that require authorization, the program is abended.

Authorization Results Under Various Conditions
When a program issues an SVC or accesses a load module through a LINK, LOAD, or XCTL
macro instruction, authorization is straight-forward; the only factors considered are whether the
calling program is authorized and whether the called program is a restricted SVC or a load
module in an authorized library. Figure 51 summaries the authorization rules.

Abend Resulting
Rule From Violation

1. An unauthorized routine cannot call a restricted 047
SVC.

2. A routine running in supervisor state, system key, 306
or APF-authorized cannot call programs residing
outside APF-authorized libraries.

Figure 51. Authorization Rules

The rules shown in Figure 51 are also true when the ATTACH macro instruction is used unless
the RSAPF keyword is specified. An attaching task that specifies RSAPF = YES and is running
in supervisor state or PSW key 0-7 can attach programs residing outside APF-authorized
libraries if the following conditions are met:

• The caller is not running APF-authorized or the caller turns authorization (JSCBAUTH)
off until program fetch obtains the subtask.

• The caller is attaching a subtask in problem state.

• The attached task's TCB key is 8-15 (non-system key).

The newly attached subtask does not run APF-authorized. If the attaching task is not in
supervisor state or PSW key 0-7, the default, RSAPF=NO,is taken and a 306 abend might'
result.

However, if the subtask comes from an APF-authorized library and is link edited with the
APF-authorized attribute, then the task executes with APF authorization.

Protecting the System 1-193

Another factor to be considered when using ATTACH is the JSTCB keyword. A routine
running in supervisor state or system key can attach a task that is allowed to become
APF-authorized if the routine specifies JSTCB = YES.

Guidelines for Using APF
Installations using APF authorization must control which programs are stored in authorized
libraries. If the first module in a program sequence is authorized, the system assumes that the
flow of control to all subsequent modules is known and secure as long as these subsequent
modules come from authorized libraries. To ensure that this assumption is valid, the
installation should:

• Ensure that all programs that will run as authorized programs adhere to the installation's
integrity guidelines.

• Protect authorized libraries through RACF or passwords to ensure that only selected users
can store programs in these libraries. .

• Ensure that no two load modules with the same name exist across the set of authorized
libraries. Two modules with the same name could lead to accidental or deliberate mix-up
in module flow, possibly introducing an integrity exposure.

• Link edit with the authorization code (AC = 1) only the first load module in a program
sequence. Do not use the authorization code for subsequent load modules, thus ensuring
that a user cannot call modules out of sequence, become APF-authorized, and thus possibly
bypass validity checking or critical logic flow.

• Ensure that IEAAPFxx does not contain the names and volume serial numbers of data sets
that no longer exist. If it does, a user could assign his own data sets with the same names
on the same volumes and cause his own libraries to become authorized.

Resource Access Control Facility (RACF)
The Resource Access Control Facility (RACF) provides software access control measures that
can be used to enhance data security in a computing system. RACF can be used in addition to
any data security measure currently being used.

RACF provides the ability to specify access authorities under which the permanent DASD data
sets, tape volumes, DASD volumes, terminals. and other resources are made available to the
users of the system. RACF can protect VSAM, non-VSAM, cataloged, and uncataloged data
sets.

When users, groups, DASD data sets, tape volumes, DASD volumes, terminals, and other
resources are defined to RACf, RACF builds and stores their descriptions in profiles on the
RACF data set. RACF uses these profiles for RACHECK authorization checking and
RACINIT user identification and verification.

For more information on RACF, see Resource Access Control Facility (RACF) - General
Information Manual.

Defining a Resource to RACF (RACDEF)
The RACDEF macro instruction can be used to define, modify, and delete resource profile (for
example, a tape volume profile and a DASD data set profile) for RACF.

The resource manager responsible for establishing and maintaining the resources issues the
RACDEF macro instruction to define or delete the resource profile.

1-194 SPL: System Macros and Facilities Volume 1

~~~- .. -.-.--~.--.--. 



( 

Identifying a RACF-Defined User (RACINIT) 
The RACINIT macro instruction can be used to determine if a userid is defined to RACF and 
if the user has supplied a valid password, group name, and operator identification. RACF 
builds an access environment element for the user if the userid, password, group name, and 
terminal id (for the terminal user) are accepted. The identification and verification in the case 
of a terminal or batch job user, is based on the information contained in the TSO LOGON or 
IMS jSIGN command or data specified in the JOB statement for the batch job. The access 
environment element identifies the scope of the user's authorization to be used during the 
current terminal session or batch job. 

Checking RACF Authorization (RACHECK and FRACHECK) 

RACHECK 

Two macros, RACHECK and FRACHECK, enable you to determine whether a user is 
authorized to access a RACF resource. 

RACHECK processing determines if a user is authorized to obtain use of a resource (for 
example, DASD data set, tape volume, or DASD volume) protected by RACF. When a user 
requests access to a RACF-protected resource, acceptance of the request is based upon the 
identity of the user and whether the user has been permitted sufficient access authority to the 
resource. 

RACF performs system authorization checking when a resource manager that controls a 
RACF-protected resource issues the RACHECK macro instruction before allowing a user 
access to the resource. 

The system programmer using this macro instruction to check a user's authorization to a 
resource has available three parameters (CSA, LOG, and PROFILE) that are not available to 
the application programmer. These parameters permit the system programmer to specify that a 
profile is to be copied and maintained in main storage for the resource and that different types 
of access attempts are or are not to be recorded on the SMF data set. 

FRACHECK 
The FRACHECK macro provides a fast-path way to perform a function similar to 
RACHECK. The FRACHECK macro, however, requires that the profile of the resource being 
checked be in storage. To build an in-storage profile, issue the RACLIST macro before issuing 
the FRACHECK macro. . 

Retrieving and Encrypting Data (RACXTRT) 
The RACXTRT macro instruction can be used for either of two purposes. It can be used to 
retrieve certain specified fields from a RACF user profile or it can be used to encrypt certain 
clear-text (readable) data. 

Building In-Storage Profiles (RACLlST) 
The RACLIST macro instruction can be used to build in-storage profiles from RACF defined 
class resources. RACLIST processes only the resources described by class descriptors. Once 
profiles are brought into main storage by RACLIST, FRACHECK and RACHECK macros 
can be issued for the resources without requiring access to the RACF data set. 

Protecting the System 1-195 



RACSTAT Macro Instruction 
RACST AT processing determines if RACF is active and optionally determines if RACF 
protection is in effect for a given resource class. The macro can be used to determine if a 
resource class is defined to RACF. 

Protecting the Vector Facility 
Because all users are authorized, by default, to the Vector Facility, an installation that does not 
want to limit access to the Vector Facility does not have to take any required action. 

An installation that wants to limit access to the Vector Facility can use the following RACF 
commands to do so: 

RDEFINE FACILITY IEAVECTOR UACC(NONE) 
PERMIT IEAVECTOR CLASS(FACILITY) ID(groupx) ACCESS(READ) 
CONNECT usern GROUP(groupx) 

or 

RDEFINE FACILITY IEAVECTOR UACC(READ) 
PERMIT IEAVECTOR CLASS(FACILITY) ID(groupy) ACCESS(NONE) 
CONNECT usern GROUP(groupy) 

or 

RDEFINE SECDATA CATEGORY ADDMEM(VECTOR) 
RDEFINE FACILITY IEAVECTOR UACC(READ) ADDCATEGORY(VECTOR) 
ALTUSER usern ADDCATEGORY(VECTOR) 

In addition, an installation can minimize the overhead of authorization checking by coding a 
RACF global table entry for the Vector Facility, thus eliminating I/O to the RACF data base. 
This can be done with the following RACF command: 

RDEFINE GLOBAL FACILITY ADDMEM(IEAVECTOR/READ) 

System Authorization Facility (SAF) 
The System Authorization Facility (SAF) provides a system interface that conditionally directs 
control to the Resource Access Control Facility (RACF), if RACF is present, and/or a 
user-supplied processing routine when receiving a request from a resource manager. SAF does 
not require any other program product as a prerequisite, but overall system security functions 
are greatly enhanced and complemented by the concurrent use of RACF. The key element in 
SAF is the MVS router. 

MVS Router 
SAF provides an installation with centralized control over system security processing by using a 
system service called the MVS router. The MVS router provides a focal point and a common 
system interface for all products providing resource control. The resource managing 
components and subsystems call the MVS router as part of certain decision-making functions in 
their processing, such as access control checking and authorization-related checking. These 
functions are called "control points." This single SAF interface encourages the use of common 
control functions shared across products and across systems. 

1-196 SPL: System Macros and Facilities Volume I 



( 

The router is always present whether or not RACF is present. If RACF is available in the 
system, the router passes control to the RACF routine (ICHRFROO) that invokes the 
appropriate RACF function based on the parameter information and the RACF router table 
(ICHRFROI), which associates router invocations with RACF functions. The RACF router 
table is described in SPL: Resource Access Control Facility (RACF). Before it calls the RACF 
routine, the router calls an optional, user-supplied security processing exit if one has been 
installed. (See the following topic "MVS Router Exit.") 

Control points that issue the RACROUTE macro instruction enter the MVS router in the same 
key and state as the RACROUTE issuer. Control points that continue to issue the RACF 
macro instructions go directly to RACF, bypassing the router. 

For use on an MVSjXA system, the MVS router exit must be link-edited with AMODE(ANY) 
and RMODE(24.) 

MVS Router Exit 
The MVS router provides an optional installation exit that is invoked whether or not RACF is 
installed and active on the system. If RACF is not available, the router exit acts as an 
installation written security processing (or routing) routine. If RACF is available, the exit acts 
as a RACF preprocessing exit. The installation exit should have an AMODE of ANY and an 
RMODE of 24. 

The only way to invoke the MVS router installation exit is by issuing the RACROUTE macro. 
The exit is entered via a branch and link macro and thus will execute in the same key and state 
as the issuer of the RACROUTE macro. The exit must be named ICHRTXOO and must be 
located in the link pack area (LPA). The router passes the parameter list to the installation 
exit. In addition, the exit receives the address of a ISO-byte work area. 

Control points that continue to use the RACF macro instructions do not invoke the installation 
exit. 

On entry to the MVS router exit routine, register I contains the address of the following area: 

Offset 

o 
4 

Length 

4 
4 

Description 

Parameter list address - points to the MVS router parameter list 
Work area address - points to a ISO-byte work area that the exit 
can use 

Protecting the System 1-197 



Return Codes 
MVS Router Exit Codes 

The exit routine returns one of the following return codes in register 15: 

Hex (Decimal) 

0(0) 

C8 (200) 

CC (204) 

DO (208) 

Other 

Meaning 

The exit has completed successfully. Control proceeds to the RACF front 
end routine for further security processing and an invocation of RACF. 

The exit has completed successfully. The MVS router translates this 
return code to a router return code of 0 and returns control to the issuer 
of the RACROUTE macro, bypassing RACF processing. (See the note 
below.) 

The exit has completed successfully. The MVS router translates this 
return code to a router return code of 4 and returns control to the issuer 
of the RACROUTE macro, bypassing RACF processing. (See the note 
below.) 

The exit has completed processing. The MVS router translates this return 
code to a router return code of 8 and returns control to the issuer of the 
RACROUTE macro, bypassing RACF processing. (See the note below.) 

If the exit routine sets any return code other than those described above, 
the MVS router returns control directly to the issuer of the RACROUTE 
macro and passes the untranslated code as the router return code. The 
exit routine should place the return and reason code information in the 
parameter list. Further RACF processing is bypassed. 

Note: The installation exit routine is responsible for putting RACF compatible return and 
reason codes in the first two full words of the parameter list. If the exit routine does not issue a 
specific reason code, it should issue a zero reason code. 

Simulating a Call to RACF 

Normally, a caller, such as DFP, IMS, or JES invokes the MVS router and passes it class, 
requestor, and subsystem parameters via the RACROUTE exit parameter list. Using those 
parameters, the MVS router calls the router exit, which then returns to the router with a return 
code. If the return code is 0, as defined above, the router invokes RACF. RACF reports the 
results of that invocation to the router by entering return and reason codes in registers 15 and 0 
respectively. The router converts the RACF return and reason codes to router return and 
reason codes and passes them to the caller. The router provides additional information to the 
caller by placing the unconverted RACF return and reason codes in the first and second words 
(respectively) of the ROUTER input parameter list. 

Instead of invoking RACF processing, your installation may choose to have the MVS router 
exit respond to the caller's request. If that is the case, you must still provide the caller with the 
RACF return and and reason codes that it expects to receive. To do so, you must set the 
router exit return code, as defined above, so that RACF is not invoked. However, you must 
still simulate the results of a RACF invocation by by coding the exit so it places the RACF 
return and reason codes in the first and second fullwords (respectively) of the RACROUTE 
input parameter list. 

1-198 SPL: System Macros and Facilities Volume 1 

/ 

(, 



( 

(:-

( 

( 

MVS Router Parameter List 
The MVS router parameter list (mapped by macro ICHSAFP) is generated when the 
RACROUTE macro is issued and describes the security processing request by providing the 
request type. If the router installation exit exists, the router passes the parameter list to this 
exit. If RACF is active, the router uses the request type information to invoke the appropriate 
RACF function. 

Field Name Offset Length Description 

SAFPRRET 0(0) 4 Return code - Defines the RACF or installation exit 
return code. 

SAFPRREA 4 (4) 4 Reason code - Defines the RACF or installation exit 
reason code. 

SAFPPLN 8 (8) 2 Length - Defines the length of the SAFP parameter 
list. 

10 (A) 2 Reserved. 
SAFPREQT 12 (C) 2 Request type - A binary ha1fword corresponding to the 

request type on the RACROUTE macro. The request 
type and the associated request numbers are listed 
below. 
AUTH (RACHECK) - I (01) 
FAST AUTH (FRACHECK) - 2 (02) 
LIST (RACLIST) - 3 (03) 
DEFINE (RACDEF)- 4 (04) 
VERIFY (RACINIT)- 5 (05) 

14 (E) 2 Reserved. 
SAFPREQR 16 (10) 4 Request name address - Points to an 8-byte character 

field containing the control point name. 
SAFPSUBS 20 (14) 4 Subsystem name address - Points to an 8-byte 

character field containing the calling subsystem's 
name, version, and release level. 

SAFPWA 24 (18) 4 SAF work area address - Points to a 512-byte work 
area for use by the MVS router and the RACF front 
end routine. 

28 (1C) 4 Reserved. 
32 (20) 4 Reserved. 

SAFPRACP 36 (24) 4 Offset - Contains the (signed) offset from the start of 
the MVS router parameter list to the RACF 
parameter list. 

Interface to the MVS Router (RACROUTE) 
The RACROUTE macro instruction is the interface to the MVS router that provides a focal 
point and a common system interface for all products providing resource control. The MVS 
router first invokes an optional installation exit and then invokes RACF, if RACF is active and 
installed on the system. 

The RACROUTE macro accepts all valid parameters for any of the RACF macros (RACDEF, 
RACINIT, RACHECK, RACLIST and FRACHECK) and internally issues the appropriate 
RACF macro to generate a RACF parameter list. When the RACROUTE macro internally 
invokes the RACF macros, RACROUTE verifies that only valid parameters have been coded 
and then passes the parameters to the MVS router. Existing control points that invoke RACF 
processing via the supervisor call interface can continue to do so or can replace the RACF 
supervisor calls with the RACROUTE macro. 

See the RACROUTE macro in Volume 2 for a description of the return codes. 

Protecting the System 1-199 



'.-. - --'.-----_. __ ._-_._------------

Changing System Status (MODESET) 
The MODE SET macro instruction alters selective fields of the program status word (PSW). 
You can code the standard form of MODESET in two separate ways: one form generates an 
SVC and the other form generates inline code. 

Generating an SVC 
This form of MODESET, which executes as APF-authorized, in supervisor state, or under 
protection key 0-7, changes the status of programs between supervisor state and problem 
program state, and key zero and non-key zero. The parameters that must be specified to 
perform the changes are MODE and KEY respectively. 

The MODE parameter specifies whether bit 15 of the PSW is to beset to one or zero. When 
bit 15 is one, the processor is in the problem state. For problem state, the PKM is changed to 
reflect the PSW key. When bit 15 is zero, the processor is in the supervisor state. 

The KEY parameter specifies whether bits 8-11 are to be set to zero or set to the value in the 
caller's TCB. Bits 8-11 form the processor protection key. The key is matched against a key in 
storage whenever information is stored, or whenever information is fetched from a location that 
is protected against fetching. 

Generating Inline Code 
This form of MODESET is used to ensure that storage areas and the control program functions 
they are associated with have the same protection key. The EXTKEY parameter of 
MODESET indicates the key to be set in the current PSW. 

You can set the following keys: 

• . Scheduler 
• Job entry subsystem 
• Real storage management 
• Virtual storage management 
• System resource management 
• Supervisor 
• Data management 
• Telecommunications access method 
• Key of zero 
• Key ofTCB 
• Key of caller of type 1 SVC issuing MODESET 
• Key of caller of type 2, 3, or 4 SVC issuing MODESET 

Other parameters of MODESET allow the original key to be saved and restored upon 
completion of the desired changes. . 

1-200 SPL: System Macros and Facilities Volume 1 



( 

Protecting Low Storage (PROTPSA) 
The low address protection facility provides protection against altering storage addresses in the 
range of 0-511. The facility is designed to prevent inadvertent program destruction of storage 
used by hardware to fetch new PSWs for interruption processing. Low address protection does 
not apply to the storing of status by the processor, such as old PSWs, logout data, and 
processor logouts, nor does it apply to the data address in channel commands words (CCWs) 
and indirect data address words (IDA Ws). 

The PROTPSA macro instruction is used to disable and enable low address protection. To use 
this macro, programs must execute in supervisor state with PSW protection key 0, must be 
physically disabled for I/O and external interrupts, and must not issue any SVCs. The program 
must not call or transfer control to another program while low address protection is disabled. 
The protection-disabled window, that part of the program that is executing with low address 
protection disabled, should be as small as possible. 

To insure the proper functioning of the low address protection facility, the contents of control 
register 0 must be maintained. This requires any program that modifies control register 0, 
except those using the PROTPSA macro instruction, to place a copy of control register 0 into 
the field PSACROSV of the PSA. 

Bit 3 of control register 0 is defined as the protection bit. When this bit is zero, low address 
protection is disabled and stores are permitted. If the bit is set to one, low address protection is 
enabled and stores are not permitted. When a store in the address range 0-511 is attempted and 
low address protection is enabled, the content of the storage area addressed by the instruction is 
not modified. The execution of the current instruction is terminated and a protection exception 
occurs. 

Protecting the System 1-201 



t" 
'l/ 

1-202 SPL: System Macros and Facilities Volume 1 



( 

( 

Exit Routines 

This chapter includes the following topics: 

• Using asynchronous exit routines 
• Establishing a timer disabled exit routine 

Additional information on exit routines can be found in SPL: User Exits. 

Using Asynchronous Exit Routines 
An authorized user can request an asynchronous exit routine to execute on behalf of a specific 
task. Before execution, the exit routine must complete three system control stages, each stage 
carried out by an individual "exit effector" routine. 

The stage 1 exit effector routine creates and initializes an interrupt request block (IRB) that 
identifies the user's asynchronous exit routine to the system. Interface to the stage 1 exit 
effector is through the create interrupt request block (CIRB) macro instruction. Volume 2 
describes the CIRB macro instruction. 

The stage 2 exit effector routine schedules the user's exit routine for execution. Input to the 
stage 2 exit effector is an interrupt queue element (IQE) initialized by the caller. The IQE 
identifies the task the exit routine is to execute under and the associated IRB, and it also 
contains information about the exit routine's characteristics. At the conclusion of stage 2 exit 
effector processing, the user's exit routine is logically ready for system dispatch and execution. 
The exit routine is executed only once each time the caller invokes the stage 2 exit effector for 
that exit routine. Reuse of previously defined control blocks is possible, however. Thus, two or 
more invocations of the exit routine can use one interface to the stage I exit effector. 

The MVS/XA dispatcher invokes the stage 3 exit effector to queue the exit routine's IRB to the 
specified task. The exit routine will then execute on the next dispatch of that task (provided no 
other IRBs have been scheduled for that task). 

Stage 1 Initialization 
The CIRB macro instruction provides the interface to the stage 1 exit effector and is normally a 
type 1 SVC interface. Also, a branch entry interface is available by specifying BRANCH = YES 
as one of the macro options. Detailed information about using the CIRB macro instruction is 
in Volume 2. When invoked, the stage 1 exit effector routine obtains the storage for the IRB 
and, optionally, the IQE and a problem program work area. Also, the stage 1 exit effector 
initializes those fields in the IRB necessary to control the execution of the exit routine. At 
completion of the stage I exit effector, the IRB address is returned to the caller in register l. 
The IQE, if requested, occupies storage contiguous to the IRB and is pointed to by the 
RBNEXA V word in the IRB. The problem program work area, if requested, is pointed to by 
the RBPPSA VI word in the IRB. The data area configuration is shown in Figure 52. 

© Copyright IBM Corp. 1982, 1989 Exit Routines 1-203 



Register 1 

IRB 

LSCA 
(Subpool 253) 

IRB Prefix 

RBPPSAV1 __ V 
I---- , , 

I IQE I L _______________ ! 

Broken lines indicate optionally acquired storage. 

Figure 52. Asynchronous Exit Data Area Configuration 

Problem Program Storage 
(Subpool 250) 

--.., ---------------------1 
I I 
I I 
I 72-byte I 
I Save Area I 
I I L ___________________ J 

The fields in the IRB initialized by the stage I exit effector are: 

• RBEP -- entry point address of the exit routine. 

• RBST AB -- flags indicating how the IRB and IQE are to be treated upon termination of 
the exit routine (defined according to the STAB and RETRN parameters of CIRB). 

• RBIQETP -- flag indicating the type of queue element (RQE or IQE) associated with the 
exit request. Note: Only the I/O supervisor uses RQEs. 

• RBOPSW -- PSW to be loaded to initiate execution of the exit routine: 

PSW is enabled for interrupts. 

Protection key: 0 if KEY = SUPR specified on CIRB macro; TCB key (TCBPKF) of 
the caller if KEY = PP is specified on CIRB. 

Mode: Supervisor state if MODE = SUPR on the CIRB macro instruction; problem 
program state if MODE = PP on CIRB. 

• RBSIZE -- the size of the IRB (including the size of the IQE if the CIRB specification 
included the WKAREA parameter). 

• RBNEXA V -- the address of the IQE if WKAREA was specified (occupie~ the first four 
bytes of the work area). 

• RBPPSA VI -- the address of the problem program save area if SVAREA was specified. 

1-204 SPL: System Macros and Facilities Volume I 

( . .. -". 
~: 

b-,~;... ... ;/ 



( 

( 

Stage 2 Scheduling 
The user must initialize the IQE to define to the system the task under which the exit routine is 
to execute. The fields to be initialized are: 

• IQEPARAM -- optional address of the parameter list to be passed to the exit routine. 

• IQEIRB -- address of the IRB as returned in register 1 by the stage 1 exit effector routine. 

• IQETCB -- address of the TCB for the task under which the user's exit routine is to 
execute. 

When IRB/IQE initialization is complete, the user should invoke the stage 2 exit effector 
routine to queue the request (IQE) to the appropriate system asynchronous exit queue. The 
entry to stage 2 is by branch only, where the branch entry point address is found in the 
communications vector table (CVT) field CVTOEFOO. The interface to the stage 2 exit effector 
is defined as follows: 

Register 

o 
1 
2-13 
14 
15 

Contents 

Irrelevant for scheduling an exit via IQE. 
Twos-complement IQE address. 
Irrelevant. 
Return address. 
Irrelevant. 

Note: Upon return, registers 0, 2-9 and 11-14 are unchanged, register 1 contains a true 
(non-complemented) IQE address, and register 10 is destroyed. 

The caller of stage 2 must: 

• Hold the local lock. 
• Be addressable in the address space in which the exit routine is to be dispatched. 
• Be in supervisor state under protection key zero. 

Stage 3 Execution 
Once scheduled by stage 2, the user's exit routine is logically ready for dispatch. Stage 3, 
effectively a subroutine of the MVS/XA dispatcher, is called to queue the IRB associated with 
the user's exit to the task the IQE indicates. The user's exit executes as a result of the next 
dispatch of the task unless a subsequent IRB has been scheduled for the same task. In this 
case, the second exit routine might be executed first. Stage 3 execution depends on valid 
information being in the IQE fields. Because stage 3 performs no validity checks on IQE 
initialization, the user must ensure that the IQE fields are correctly initialized. 

Execution and Termination Characteristics 
The following characteristics of an asynchronous exit routine can influence the user's choice of 
CIRB options and should be considered: 

• The exit routine executes as an IRB under the TCB defined by the IQE passed to the stage 
3 exit effector routine. 

• The exit routine executes enabled in the key and state requested by the CIRB macro 
instruction interface to the stage I exit effector routine. 

Exit Routines 1-205 



• Register contents upon entry to the exit routine are: 

Register Contents 

o IQE address. 
1 Parameter list address (IQEPARAM). 
13 Problem program register save area address (if any). 
14 Return address (CVTEXIT). 

• Upon termination of the asynchronous exit routine: 

The IQE is returned to a "next available" queue anchored by the RBNEXA V field in 
the IRB if the user specified the WKAREA and RETRN = YES options on the CIRB 
macro instruction. This allows subsequent invocations of the exit routine without 
requiring the user to repeat requests for stage 1 processing (data area setup). 

If the user specified the SV AREA and STAB = (DYN) options on the CIRB macro 
instruction, the problem program register save area is freed. 

If the user specified the STAB = (DYN) option of the CIRB macro instruction, the IRB 
and IQE are freed. 

Establishing a Timer Disabled Interrupt Exit 
Timer supervision provides a function called set DIE that allows a user-written program to 
establish a disabled interrupt exit (DIE) routine. The DIE routine gains control asynchronously 
after a specified real time interval has elapsed. 

The set DIE function is available only to programs executing in supervisor state with PSW key 
zero. The set DIE function allows users to initiate a real time interval by branching to the set 
DIE system service (IEAVRT02). When the time interval expires, the user's DIE routine gains 
control as an extension of the timer second level interrupt handler (IEAVRTIO). It is also 
possible for a user to set a new time interval from the DIE routine. 

Although a program can have an unlimited number of outstanding time intervals at one time, 
storage and system performance considerations may impose practical and reasonable limits. 

Note: The time during which a DIE routine is executing is not charged to the job step time of 
the interrupted address space. 

The caller of the set DIE service routine can be executing in either task control block (TCB) or 
service request block (SRB) mode, but must be in PSW key zero and supervisor state. The 
entry point to the set DIE service routine is in field TPCSDIE in the timer supervision work 
area mapped by macro IEA VVTPC. The address of this work area is in CVT field CVTTPC. 

The caller of the set DIE service routine must provide the following input environment: 

1. Register 1 must contain the address of a user-supplied timer queue element (TQE) whose 
fields are available from the IHATQE mapping macro. The IHATQE macro is available in 
macro library APVTMACS. This user TQE must: 

• Be a contiguous block of 128 bytes aligned on a double word boundary. 

• Reside in SQA 

1-206 SPL: System Macros and Facilities Volume 1 

" ( ' 
'.,' - ~/ 



( 

• Include the following field initialization: 

TQEAID -- zero or a valid ASID, important in case of an address space failure (see 
"Obtaining and Freeing the TQE"). 

TQEV AL -- the desired real time interval (a 64 bit unsigned binary number with bit 
51 = 1 microsecond). 

TQEAMODE bit in TQEFLGS3 field -- set to 1 to indicate that the address of the 
user's DIE in TQEEXIT is pointer defined. 

TQEEXIT -- address of the user's DIE. If the TQEAMODE bit in the TQEFLGS3 
field is set to 1, the high-order bit of this field, TQEXMODE, must indicate the 
addressing mode of the user's DIE. If the user's DIE is to execute in 24-bit addressing 
mode, TQEXMODE=O; if the user's DIE is to execute in 31-bit addressing mode, 
TQEXMODE = 1. 

• Have all the other fields cleared to zero. 

2. Registers 2 - 12 must be parameter registers whose input values will be restored in the same 
registers on entry to the DIE routine. 

3. Register 14 must contain the caller's return address. 

Loss of the contents of register 1 and 11-13 occurs upon return from the set DIE service 
routine. Register 15 contains a return code as follows: 

Code Meaning 

o The TQE was successfully enqueued onto the system's real time queue. 
4 Failure - needed clocks are unavailable. 

Note: The set DIE service routine obtains the dispatcher lock if the caller does not already 
hold it. After completing its processing, the set DIE routine releases the lock if the caller did 
not previously hold it. The caller must not hold any lock higher in the locking hierarchy than 
the dispatcher lock. 

The set DIE service routine does not establish its own recovery routine. Any system program 
calling the set DIE service routine should have its own FRR or ESTAE routine. A program 
check occurs in the set DIE service routine if the caller is not both in PSW key zero and in 
supervisor state. 

The DIE routine executing out of the timer SLIH gains control under timer supervision's FRR 
on the current stack. The DIE itself can optionally establish its own FRR, which should 
terminate by percolation to let the timer supervision FRR gain control. When the timer 
supervision FRR gets control, it tries to repair any damage to the system's real time queue and 
then percolates. 

DIE Characteristics 
Entry to the DIE routine is in supervisor state, with PSW key zero, disabled, with no disabled 
global spin locks held. Register contents upon entry are as follows: 

• Register 1 contains the address of the TQE. At this time the TQE is not enqueued upon 
the real time queue. Fields TQETCB and TQEASCB respectively contain a TCB address 
and an ASCB address, if previously set by the user on entry to the set DIE service routine. 

• Register 2 - 12 are as they were upon entry to the set DIE service routine (or as changed by 
a previous DIE entry -- "DIE Execution"). 

• Register 14 contains the return address. 

Exit Routines 1-207 



• Register 15 contains the entry point of the DIE routine. 

• The contents of floating point registers are unpredictable. 

While a system program has a TQE enqueued upon the real time queue, it must ensure that the 
associated DIE routine is available for the timer SUH (second level interrupt handler) to access 
from any address space. Additionally, because the DIE is entered disabled, its code must be 
resident or fixed to avoid a page fault at entry. 

Exit from the DIE Routine: must be to the address specified in register 14. This exit must also 
occur in supervisor state with PSW key zero, and disabled. The routine must release all locks it 
obtained but need not save the general purpose registers. Floating point registers, however, 
must have the same contents on exit as on entry to the DIE. 

DIE Execution: must be like the execution of an interrupt handler because it executes as an 
extension of the timer SUH. Specifically, the DIE routine executes under the following 
restrictions: 

• The DIE must be capable of executing in any address space because the timer interruption 
may occur while any address space enabled for external interruptions is executing. 

• The DIE cannot reference any private storage areas. 

• The DIE must execute disabled. Hence, it cannot cause a page fault. 

• The DIE cannot request a local lock or the CMS lock because these are suspend locks and 
might therefore already be in use. Furthermore, the DIE routine cannot assume whether or 
not these locks are held upon entry. 

• The DIE cannot execute any SVCs. 

The DIE routine may re-enqueue the TQE to set another real time interval by using the timer's 
TQE ENQUEUE routine (whose entry point is in CVT field CVTQTEOO). The DIE routine 
must hold the dispatcher lock upon entry to the TQE ENQUEUE routine. 

The input environment for the TQE ENQUEUE routine must be as follows: 

• Supervisor state, key zero, and holding the dispatcher lock. 

• Register 1 must contain the address of the TQE supplied to the DIE routine. Only the 
following TQE fields can be changed. 

TQEV AL -- This field should contain the clock comparator value for the next interruption. ./( .. " 
This value is equivalent to the desired interval added to the value in TQEVAL when the "j 

DIE routine was entered. Alternatively, TQEVAL can be calculated by adding the desired 
interval to the current TOD clock reading (as obtained by a STCK instruction). The choice 
of which method to use is further discussed under "Clock Failure." 

TQEAMODE bit in TQEFLGS3 field -- set to 1 to indicate that the address of the user's 
DIE in TQEEXIT is pointer defined. 

TQEEXIT -- This field should contain the new address if a DIE routine address different 
from the current one is desired. Otherwise the field should remain unchanged. If the 
TQEAMODE bit in the TQEFLGS3 field is set to 1, the high-order bit of this field, 
TQEXMODE, must indicate the addressing mode of the user's DIE. If the user's DIE is to 
execute in 24-bit addressing mode, TQEXMODE=O; if the user's DIE is to execute in 
31-bit addressing mode, TQEXMODE= 1. 

TQEDREGS -- If the parameter values in registers 2 - 12 are to be changed for the 
subsequent DIE routine entry, the new values should be set in this eleven word field. 

• Register 2 must contain the caller's return address. 

1-208 SPL: System Macros and Facilities Volume 1 



Upon return from the TQE ENQUEUE routine, all registers are as they were on entry except 
for registers 13 and 15. 

Although the set DIE function is similar to the TQE ENQUEUE function, the routines differ in 
the following respects: 

• Although TQE ENQUEUE expects an already established and fully initialized TQE as 
input, the set DIE service routine completes the user-supplied TQE (including important 
flag bits) to make it acceptable to timer supervision. 

• For TQE ENQUEUE, TQEVAL in the TQE must be set to the clock comparator value for 
the next interruption. With the set DIE service routine, it must be set to the desired 
interval. The set DIE service routine then converts it to the proper clock comparator value. 

• TQE ENQUEUE assumes that the clocks are functioning correctly. The set DIE service 
routine must use the clocks directly and therefore verifies (rather than assumes) that the 
clocks are functioning correctly. The set DIE service routine is therefore capable of 
advantageously using alternate clocks in a multiprocessing environment in which one or 
more clocks have failed. 

( Timer Queue Element Control 

( 

( 

The major aspects of controlling the timer queue element (TQE) associated with the user's DIE 
routine are: 

• Obtaining and freeing the TQE 
• Serializing the use of each TQE 
• Time-of-day clock failure 
• Interval cancellation 

Descriptions of each of these aspects follow. 

Obtaining and Freeing the TQE: is your responsibility as user of the set DIE function because 
the TQE resides in SQA. Thus, you must explicitly free the TQE when it is no longer necessary 
and (with one exception) in error situations as well. Timer supervision frees a TQE for you for 
a failing address space only if the TQE is enqueued on the real time queue and has field 
TQEAID set to the ASID of the failing address space. 

Before freeing the TQE, however, you must ensure that it is not currently on the real time 
queue. There are several ways to accomplish this: 

• Always free the TQE in the DIE routine because it is never on the real time queue when the 
routine receives control. 

• Before freeing the TQE, use timer supervision's TQE DEQUEUE routine. This routine 
either removes the TQE from the real time queue or, if the TQE is not on the queue, takes 
no action. 

Notes: 

1. You must not alter the TQE (other than in the fields previously described). 

2. The interface for the TQE DEQUEUE routine is described in the section "Interval 
Cancellation. " 

Serializing the Use of Each TQE: is also your responsibility. Serialization includes the 
execution of the set DIE service routine, TQE ENQUEUE, and TQE DEQUEUE routines for 
a given TQE because these routines update the supplied TQE. Never update a TQE, however, 
while it is on the real time queue. Timer supervision serializes the use of the real time queue by 
means of the dispatcher lock. 

Exit Routines 1-209 



Clock Failure: can keep a DIE routine from receiving control. If a clock required by a DIE 
routine's TQE fails while the TQE is on the real time queue, timer supervision leaves the TQE 
on the queue, thereby denying control to the DIE routine. To permit the DIE routine to 
receive control, a properly functioning TOD clock and clock comparator must be varied online. 
For this remedy to work, the DIE routine must be in resident or fixed storage as long as its 
TQE is on the real time queue. These storage locations make the DIE routine available to the 
timer SLIR from any address space. 

When the DIE routine gains control under these circumstances, the clock comparator value in 
TQEV AL could be behind the TOO clock. If the DIE routine re-enqueues the TQE on each 
successive entry and adds a new interval to TQEV AL, then the DIE routine gains control each 
time, immediately upon enablement of the external interruptions. This sequence continues until 
the value in TQEV AL is equal to the TOO clock value. To avoid this synchronization loop, 
the DIE routine can calculate the new TQEV AL as the sum of the new interval plus the current 
TOO clock value. This method, however, requires that the DIE routine contain error recovery 
code in case the STCK instruction fails due to a bad TOO clock in the executing processor. 

Interval Cancellation: can occur by using timer supervision's TQE DEQUEUE routine. This 
routine removes a specific TQE from the real time queue and resets clocks if necessary. The 
entry point to the TQE DEQUEUE routine is in CVT field CVTQTDOO. Entry to this routine 
must be by branch entry, in supervisor state, with PSW key zero, and with the dispatcher lock. 
The input environment is as follows: 

• Register 1 must contain the address of the TQE to be dequeued. 
• Register 2 must contain the caller's return address. 

Upon return, all registers except 13 and 15 are the same as they were on entry. 

1-210 SPL: System Macros and Facilities Volume 1 

;/ 



( 

( 

(: 

User-Written SVC Routines 

This chapter includes the following topics: 

• Writing SVC routines 
• Inserting SVC routines into the control program 
• Subsystem SVC Screening 

Writing SVC Routines 
You can introduce user-written SVC routines into the control program whenever you IPL the 
system. When you write an SVC routine, you must follow the same programming conventions 
used by SVC routines supplied with MVS/XA. Five types of SVC routines are supplied with 
MVS/XA, and the programming conventions for each type are different. 

SVC routines, including user-written ones, can either be part of the resident control program 
(the nucleus) , or be part of the fixed or pageable link pack area. Types 1, 2, and 6 SVC 
routines become part of the resident control program, and types 3 and 4 go into the link pack 
area. Before IPLing the system, you must place your SVC routine in SYSl.NUCLEUS or 
SYSl.LPALIB. You must also create, before IPLing the system, an IEASVCxx member in 
SYSl.PARMLIB with SVCPARM statements that describe the characteristics of your SVC 
routine. 

SVC routines receive control with PSW key zero and in supervisor state. They must be 
reenterable and, if you want to aid system facilities in recovering from machine malfunctions, 
they must also be refreshable. 

If your routines must execute serially with respect to other parts of the control program, then 
you must use the same locking conventions as the control program. If you write two or more 
SVC routines that must serialize with each other, use the locking facilities or the ENQ and 
DEQ macro instructions. 

When you insert an SVC routine into the control program, you specify which locks the routine 
will require. When an SVC routine receives control, it is normally enabled and it can be holding 
one or more locks. However, if you specified that the routine requires a disabled spin lock, the 
routine is disabled when it receives control. The routine is also entered in a disabled state if it 
is a type 6 SVC routine. 

Type 6 SVC Routines 
You must define your user-written SVC routine as being one of the five valid types, including 
type 6. The type 6 SVC routine performs functions similar to the type 1 SVC routine. However, 
because the instruction path lengths for receiving and releasing control are shorter, the type 6 
routine offers performance advantages over the type 1. The type 6 SVC routine cannot require 
the LOCAL lock, as noted later. 

The type 6 SVC also provides a more efficient way to change from TCB mode to SRB mode 
processing. The type 1 SVC must schedule an SRB, which then goes through queuing and 
dequeuing operations before it is eventually dispatched. The type 6 SVC, however, normally 
results in immediate scheduling and dispatching of the SRB. 

© Copyright IBM Corp. 1982, 1989 User-Written SVC Routines 1-211 



Because a type 6 SVC routine executes under the control of the SVC first level interrupt handler 
(FUH), it has the same limitations that apply to the FUH. When a type 1 SVC routine exits, it 
always returns to the SVC FUH. There are three exit options for a type 6 SVC: 

• Return to the caller directly 
• Return to the dispatcher 
• Dispatch an SRB (service request block) 

To exit from a type 6 SVC routine, either issue the T6EXIT macro or use the original contents 
of register 14 as a return address. The use of T6EXIT results in the following register 
conditions: 

T6EXIT Option Register 14 Register 0 Register 1 Register 15 

CALLER As on entry Returned to Returned to Returned to 
caller caller caller 

DISPATCH CVTT6SVC N/A 0 N/A 
SRB CVTT6SVC N/A SRB address N/A 
BR 14 As on entry Returned to Returned to Returned to 

caller caller caller 

If a type 6 SVC uses the RETURN = SRB exit option on the T6EXIT macro instruction, 
register 1 must point to an SRB. The SRBASCB field must indicate the current address space. 

The system neither acquires nor releases any locks for type 6 SVCs. Because a type 6 SVC 
executes disabled, it has exclusive use of the processor. Thus, the SVRB save areas are 
unavailable to a type 6 SVC routine, although the PSA areas can be used instead. When a type 
6 SVC is executing, no other task-related activity can occur concurrently. To indicate this 
situation, the TCBACTIV flag is set. Type 6 SVC routines should be short enough to minimize 
any adverse effect on performance and they should provide for recovery by using the SETFRR 
macro instruction. 

Non-Preemptable SVC routines 
You can define a user-written SVC routine as non-preemptable for I/O interruptions. If a 
non-preemptable SVC routine sustains an I/O interrupt, the SVC, rather than the highest 
priority ready work, gets control when I/O processing is complete. The non-preemptable SVC 
cannot issue other SVCs and remain non-preemptable because the exit function always resets 
the non-preemptable indicator in the TCB associated with the SVC. This action causes the 
issuing SVC to lose its non-preemptable state. If a non-preemptable SVC issues a ST AX 
DEFER = NO macro instruction, the SVC routine remains non-preemptable until it exits. 

Programming Conventions for SVC Routines 
Figure 53 summarizes the programming conventions for the five types of SVC routines. Details 
about many of the conventions are in the reference notes that follow the figure. The numbers 
in the right most column of the figure correspond to the reference notes. If a reference note for 
a convention does not pertain to a specific type of SVC routine, that type is indicated by an 
asterisk. 

1-212 SPL: System Macros and Facilities Volume 1 

;(---", 
{.:-

',,-.../ 

" -', 
,-, 



Conventions Type 1 Type 2 Type 3 Type 4 Type 6 Reference Code 

Part of resident control 
program Yes Yes No No Yes 

Size of routine Any Any Any Any Any 

Reenterable routine Yes Yes Yes Yes Yes I 

Refreshable routine No No Yes Yes No 2 

Locking requirements Yes No No No No 3 

Entry point Must be on a halfword boundary and must be the first 
instruction to get control. Need not be the first 
byte of the module. 

Number of routine Numbers assigned to your SVC routine should be in 
descending order from 255 through 200 

Name of routine IGCnnn IGCnnn IGCOOnnn IGCOOnnn IOCnnn 4 

Register contents at entry Registers 3, 4, 5, 6, 7, and 14 contain communication pointers; 5 
time registers 0, 1, 13, and 15 are parameter registers 

Supervisor request block NoSVRB 224 224 224 NoSVRB 6 

(' 
(SVRB) size exists exists 

May issue WAIT macro No Yes Yes Yes No 7 
instruction 

May suspend Yes No No No Yes 8 
their caller 

May issue XCTL macro No Yes Yes Yes No 9 
instruction 

May pass control to what None Any Any Any None 10 
other types of SVC routines 

Type of linkage with other Not Issue supervisor call (SVC) instruction Not II (-- SVC routines Applicable Applicable 

Exit from SVC routine Branch using return register 14 T6 EXIT 12 
or BR 14 

Method of abnormal ABEND ABEND ABEND 

Recovery FRR ESTAE or FRR FRR 13 

Figure 53. Programming Conventions for SVC Routines 

<. 

User~Written SVC Routines 1-213 



Reference SVC Routine 
Code Types 

1 all 

2 3,4 

3 all 

4 all 

Reference Notes 

If your SVC routine is to be reenterable, you cannot use macro 
instructions whose expansions store information into an inline 
parameter list. 
Types 3 and 4 in the pageable LPA must be refreshable. Types 3 
and 4 in the fixed LPA must be reenterable, but not necessarily 
refreshable. 
The following conventions on locking requirements apply: 
* Type 1 SVC routines always receive control with the LOCAL 

lock held and must not release the LOCAL lock. Additional 
locks may be requested prior to entry via the SVCT ABLE 
macro instruction or may be requested dynamically within the 
SVC routine. 

* Types 2, 3, and 4 may also request locks via the SVCTABLE 
macro instruction or may obtain them dynamically. 

* Types I and 2 may request that any locks be held on entry. 
Types 3 and 4 may only request that the LOCAL or LOCAL 
and CMS lock be held. 

* If no lockS are held or obtained, or only suspend locks (LOCAL 
and CMS) are held or obtained, the SVC routine executes in 
supervisor state key zero, enabled mode. 

* If disabled spin locks are held or obtained, the SVC routine 
executes in supervisor state, key zero, disabled mode. No SVCs 
may be issued. 

* SVCs may not take disabled page faults. Therefore, if a 
disabled spin lock is held, the SVC routines must ensure that 
any referenced pages are fixed. For types 3 and 4, all pages 
containing code must be fixed. 

* An FRR may be defined for any SVC routine that holds, or 
obtains locks to provide for abnormal termination (see reference 
code 9). 

* Type 6 may not request any locks. 
You must use the following conventions when naming SVC 
routines: 
* Types 1,2, and 6 must be named IGCnnn; nnn is the decimal 

number of the SVC routine. You must specify this name in an 
ENTRY, CSECT, or START instruction. 

* Types 3 and 4 must be named IGCOOnnn; nnn is the signed 
decimal number of the SVC routine. 

The following conventions regarding type 3 and 4 SVCs are not 
enforced by SVC processing, but have traditionally been used to 
distinguish between the two types: 
* A type 3 SVC identifies a function that is contained in a single 

load module. 
* A type 4 SVC identifies a function that loads additional 

modules. You can identify these loaded modules as IGCOlnnn, 
IGC02nnn, ... , and IGCOxnnn. (IGCOlnnn is the first module 
that IGCOOnnn loads, IGC02nnn is the second module that 
IGCOOnnn loads, and IGCOxnnn is the last module that 
IGCOOnnn loads.) 

1-214 SPL: System Macros and Facilities Volume I 

(\ 
, ;/1 

(" 
, 

"~~ 

,/' -........... 

/ 

/' ~', 

\". j 



Reference SVC Routine 
Code Types Reference Notes 

( 5 all Before your SVC routine receives control, the contents of all 
registers are saved. In general, the location of the register save 
area is unknown to the routine that is called. When your SVC 
routine receives control, the status of the registers is as follows: 

* Register 0 and 1 contain the same information as when the SVC 
routine was called. 

* Register 2 contains unpredictable information. 
* Register 3 contains the starting address of the communication 

vector table (CVT). 

* Register 4 contains the address of the task control block (TCB) 
of the task that called the SVC routine. 

* Register 5 contains the address of the supervisor request block 
(SVRB), if a type 2, 3, or 4 SVC routine is in control. If a type 
I or 6 SVC routine is in control, register 5 contains the address 
of the last active request block. 

* Register 6 contains the entry point address. (- * Register 7 contains the address of the address space control 
block (ASCB). 

* Registers 8 through 12 contain unpredictable information. 

* Register 13 contains the same information as when the SVC 
routine was called. 

* Register 14 contains the return address. 

* Register 15 contains the same information as when the SVC 
routine was called. 

You must use register 0, I, and 15 if you want to pass information 

(- to the calling program. The contents of registers 2 through 14 are 
restored when control is returned to the calling program. 

6 2,3,4 When a type 2, 3, or 4 SVC routine receives control, register 5 
contains the address of the SVRB with in this 224-byte area. This 
SVRB contains a 48-byte "extended save area." In addition, an 
area is provided for a STAE control block (SCB); this SCB is used 
by the FEST AE macro instruction. 

7 2,3,4 You can issue the WAIT macro instruction if you hold no locks. 
You can issue WAIT macro instructions that await either single or 
multiple-events. The event control block (ECB) for single-event 

( waits on the ECB list and ECBs for multiple-event waits must be 
in virtual storage. Type 6 SVCs may not issue WAIT but may 
issue SUSPEND. 

8 1,6 Both type I and 6 SVC routines can issue SUSPEND 
RB = CURRENT to suspend their callers. 

9 2,3,4 When you issue an XCTL macro instruction in a routine under 
control of a type 2, 3, or 4 SVRB, the new load module must be 
located in the fixed or pageable link pack area. The contents of 
registers 2 through 13 are unchanged when control is passed to the 
load module; register 15 contains the entry point of the called load 
module. 

10 all No SVC routines except ABEND may be called if locks are held. 
ABEND may be called at any time. 

11 all No locks may be held. If locks are held, branch entry to SVCs is 
acceptable, or the locks may be freed, the SVC issued, and the 

(,: locks reobtained. 

User-Written SVC Routines 1-215 



Reference 
Code 

12 

13 

SVC Routine 
Types 

all 

all 

Reference Notes 

Branch using return register 14 should be used. SVC routines that 
exit via BR 14 or T6EXIT must return control in the same state in 
which they received control, such as, key zero, supervisor state. 
Otherwise,if locks are held, SVC 3 results in abnormal termination. 
Note: To ensure that control is returned to the dispatcher, the SVC 
routine can load register 14 with the address in the CVTEXPI field 
of the CVT before issuing BR 14. 
If an SVC routine is entered with a lock held or if an SVC routine 
obtains a lock, it should specify a functional recovery routine 
(FRR) for as long as the lock is held (see SETFRR macro 
instruction). The FRR receives control if an error occurs, and 
ensures the validity of the data being serialized by the lock; the 
FRR either recovers or releases the lock and continues with 
termination. 
If no FRR is specified, the recovery termination manager releases 

C~' ''\ 
;' - I 

the lock and terminates the task. No cleanup of the data is /', 
performed. (Note that the lock is released before any 
ST AI/EST AI/EST AE (or ST AE) recovery routine is entered. 
If no locks are acquired for or by an SVC routine, then an EST AE 
may be used to define your recovery processing (see ESTAE and 
SETRP macro instructions). 

Inserting SVC Routines Into the Control Program 
To supply user-written SVC routines to the system, you place descriptions of your user SVC 
routines in SYSl.PARMLIB, and you place the actual routines in SYSl.NUCLEUS and 
SYSl.LPALIB. When the system is IPLed, the NIP program translates the SVC definitions that 
you placed on SYS1.PARMLIB into SVC table entries. Then NIP places the SVC table in the 
extended read-only nucleus. 

When NIP processes SYS1.PARMLIB, it searches for member names that it uses to build the 
SVC table. These member names have the form, IEASVCxx, where xx is the field specified by 
the SVC = option in the IPL system parameters. 

In the IEASVCxx members, you code SVCPARM statements. The SVCPARM statements 
describe the properties and attributes of individual SVC routines. Each SVCPARM statement 
that you code describes a single SVC routine; it generates one entry in the SVC table. Using the 
SVCPARM statement, you specify the SVC number, type, entry point name, lock requirements, 
authorization level, and whether or not the SVC is preemptable. See SPL: Initialization and 
Tuning for a description of the SVC = and SVCPARM statements. 

The user SVC entries, which are represented by the SVC numbers 200-255, are the only ones 
you are allowed to define. You cannot modify SVCs that are in the range of 0-199. When you 
define an SVC with an SVCPARM statement, you define its type as type 1 through type 6, 
excluding type 5. The system provides no SVC routines in the range 200-255. Therefore, unless 
the user defines some SVC routines in this range, execution of an SVC 200 through 255 will 
cause an abend. 

1-216 SPL: System Macros and Facilities Volume 1 



(~ 

Modifying the SVC Table at Execution Time (SVCUPDTE) 
After the IPL, the SVC table can be dynamically modified by authorized users via the 
SVCUPDTE macro. For example, authorized subsystems such as VTAM can alter the SVC 
table when the subsystem starts and restore the table when the subsystem terminates. For 
additional flexibility, the EPNAME and EXTRACT parameters of the SVCUPDTE macro 
allow the authorized user to dynamically associate SVC numbers with entry points of SVC 
routines. 

An SVC update recording table is maintained in parallel with the SVC table. This table 
provides a record of changes to the SVC table. Entries are created whenever a change is made 
to the SVC table with SVCPARM statements or the SVCUPDTE macro. 

Intercepting an SVC Routine 
When you execute an SVC instruction, the unique program to which control is passed is called 
the SVC routine. A common programming technique is to intercept an SVC routine by 
inserting another program in the path between the SVC instruction and the SVC routine. The 
inserted program is sometimes called a front end to the original SVC routine. After the front 
end program is inserted, the resulting body of code, including the front end program and the 
original SVC routine, is the new SVC routine. 

Intercepting SVC routines can be recursive. Thus, if an SVC routine already has a front end, 
you can still add another front end onto it, and so on, indefinitely. 

To intercept an SVCroutine, you must obtain and save the address of the existing SVC routine 
for use by the front end program. To change the entry in the SVC table so it points to the 
front end program, you must use the REPLACE function of the SVCUPDTE macro. 

In a user environment where the interception of SVC routines is recursive, it might "be necessary 
to serialize the modification of the SVC table. To serialize, use the ENQ and DEQ macros to 
secure and hold the SYSZSVC TABLE resource while you are changing the SVC table. 

Before you obtain the SVC table entry, use ENQ to secure this resource, and hold it until you 
have replaced the SVC table entry with the pointer to the front end routine. Then you can 
DEQ the resource. The major and minor names of this resource are, respectively, SYSZSVC 
and TABLE. 

User-Written SVC Routines 1-217 



Subsystem SVC Screening 
After you write an SVC routine and insert it into the system, the routine is generally available 
unless you take steps to regulate access to the routine. Subsystem SVC screening allows a 
system routine to define those SVCs that a specific task can validly issue. When SVC screening 
is active for a task, the SVC first level interrupt handler (FLIH) determines, for each SVC 
issued by that task, whether the task can request that SVC function. If the SVC request is 
invalid, the SVC FLIH gives control to a special error subroutine supplied by the routine that 
activated the screening function. 

The subsystem, executing under PSW protection key zero, activates SVC screening by setting 
two fields in each TCB for which screening is desired. The two fields consist of a screen flag bit 
and a one-word field containing the address of the subsystem screen table, which provides the 
interface between the SVC FLIH and the subsystem subroutine. In addition to these fields, the 
subsystem may optionally set the TCBSVCSP bit to indicate that ATTACH processing is to 
pass the SVC screening information to the attached task. The important SVC screening fields in 
the TCB are: 

• TCBSVCS - A flag bit. When set to one, it indicates that screening is in effect for this 
task. 

• TCBSVCA2 - Address of the subsystem screen table. 

• TCBSVCSP - Propagation bit. When set to one, it indicates that ATTACH processing 
should pass the SVC screening information in these three fields to the attached task. 

When the screening facility detects an invalid SVC, it gives control to the specified error 
routine. The error routine receives control as an SVC and is subject to the same restrictions as 
SVC routines. Before giving control to the subroutine, the SVC FLIH provides the setup for the 

£~ 

"-...; 

subroutine as defined by the subsystem SVC entry (SSTSVCN) in the subsystem screen table. \," j 

This setup includes: 

• Initializing the SVRB if the subroutine is to execute as a type 2, 3, or 4 SVC. 
• Obtaining the LOCAL lock if the subroutine is to execute as a type 1 SVC. 
• Acquiring all locks necessary for the subroutine's execution. 

1-218 SPL: System Macros and Facilities Volume I 

"------~" ----------------------



( 

( 

(.r 

The subsystem that needs SVC screening obtains storage via GETMAIN for a 264 byte area 
called the subsystem screen table. To prevent a page fault, this area must come from the LSQA 
(subpool 253-255), the SQA (subpool 245), or must be in fixed storage. If the subsystem screen 
table is in fixed storage, the subsystem must ensure that the storage is protected from user 
modification. The subsystem screen table contains two areas as follows: 

1) SSTSVCN -- Subsystem SVC entry (8 bytes) 
Bytes Content 
0-3 Entry point address of the subsystem subroutine that will get control whenever a 

task has issued an SVC against which there is a screening restriction. 
4 X'OO' -- means that the subroutine is to execute as a Type 1 SVC 

X'80' -- means that the subroutine is to execute as a Type 2 SVC 
X'CO' -- means that the subroutine is to execute as a Type 3 or Type 4 SVC 
X'20' -- means that the subroutine is to execute as a Type 6 SVC 

5 Zero. 
6-7 Locks to be held on entry to the subroutine. If the appropriate lock bit is one, the 

lock will be acquired by the SVC FUR. The lock bits are: 
Bit Lock 
o LOCAL 
1 CMS 
2 SRM 
3 SALLOC 
4 Dispatcher 

Bits 5-15 are always zero (om. 

2) SSTMASK -- SVC screening mask (256 bytes) 
Bytes Content 
8-263 Each byte corresponds to an SVC number in ascending order in the range 0-255. 

When the high order bit in a byte is one, the task may validly issue the respective 
SVC; when the bit is zero, there is a screening restriction that prohibits the task 
from issuing the SVC. 

The subsystem must get and initialize the subsystem screen table properly. The subsystem must 
also free the table before terminating. 

User-Written SVC Routines 1-219 



1-220 SPL: System Macros and Facilities Volume I 



( 

( 

UCB Scan Services 

The UCB scan routine (IOSVSUCB) allows you to scan each UCB in the system or in a 
specified device class. The device classes are: tape, communication, channel-to-channel adapter, 
direct access, display, unit record, and character reader. Using IOSVSUCB you can, for 
example, find the UCB currently associated with a particular VOLSER or find all tape devices 
currently allocated. 

IOSVSUCB runs in the caller's key, state, and addressing mode. The caBer can be in either 
task or SRB mode with the following restrictions: 

• If in task mode, the caBer must be enabled and must hold no locks. 

• If in SRB mode, the caBer cannot hold the UCB lock or any lock higher than that in the 
locking hierarchy. 

Invoking IOSVSUCB 
IOSVSUCB is more general than the IOSLOOK macro instruction, which requires the user to 
be in supervisor state and to provide the device address as input. See Volume 2 for a 
description of the lOS LOOK macro. 

Each time that you invoke IOSVSUCB, you will obtain the address of the common segment of 
one unit control block (UCB). In order to scan several UCBs, you must invoke IOSVSUCB 
repeatedly, once for each UCB. IOSVSUCB keeps track of your position in the UCB chain by 
information that it stores in the lOO-byte work area that you provide as input. To start your 
scan you must clear this work area to binary zero. The zeros indicate that IOSVSUCB is to 
start the scan at the first UCB in the system or device class. If you want to continue the scan 
to obtain the next UCB, you must not change the work area. See Figure 56 for an example of 
how to use IOSVSUCB. 

Input to IOSVSUCB 
To use IOSVSUCB, the caller must: 

• Obtain a lOO-byte work area that starts on a double-word boundary and clear the work 
area to binary zero each time that the scan is to start with the first UCB in the system or 
the first UCB in a device class. 

• Build a parameter list as shown in Figure 54. 

Address of the IOO-byte work area provided by the caller. 

Address of the byte containing the device class to which the search is being restricted. See the topic "Limiting the UCB 
Scan" for information on how to restrict the search to a specific device. If all UCBs are to be scanned. the byte 
pointed to must contain X'OO'. 

Address of the word in which IOSVSUCB is to return the UCB address. The high order bit of this field must be I to 
indicate it is the last word in the parameter list. 

Figure 54. Parameter List for the UCB Scan Routine (IOSVSUCB) 

© Copyright IBM Corp. 1982,1989 UCB Scan Services 1-221 



• Set up the registers to contain the following information: 

Register 
1 
13 
14 
15 

Contents 
Address of the parameter list 
Address of caller's 18-word save area 
Caller's return address 
Entry point of the UCB scan routine (IOSVSUCB) (The CVTUCBSC 
field in the CVT contains the entry point address.) 

Note: The data areas that the caller passes to IOSVSUCB must be addressable in the 
addressing mode of the caller. If the program runs in 31-bit addressing mode, the data areas 
can be anywhere. If the program runs in 24-bit addressing mode, the data areas must be below 
16 megabytes. 

Limiting the UCB Scan 
If you want to limit the UCB scan to a specific device class, you must provide the address of a 
one-byte field containing the hexadecimal code for that class. These fields are defined in the 
UCBDVCLS (or UCBTBYT3) bit string in the UCB. Figure 55 lists the valid device class 
specifications with their UCB definitions. For example, to restrict the search to tapes, set the 
byte containing the device class equal to the constant UCB3T APE. If you use the UCB 
definitions in your program, you must include the UCB mapping macro (IEFUCBOB). To 
scan all of the UCBs in the system, provide the address of a one-byte field containing X'OO'. 

UCB Definition 

UCB3TAPE 
UCB3COMM 
UCB3CTC 
UCB3DACC 
UCB3DISP 
UCB3UREC 
UCB3CHAR 

Device Class 

Tape 
Communication 
Channel-to-channel adapter 
Direct access 
Display 
Unit record 
Character reader 

Figure 55. Device Classes 

1-222 SPL: System Macros and Facilities Volume 1 



( 

( 

( ". 
" 

Output from IOSVSUCB 
When IOSVSUCB returns, register 15 contains one of the following return codes: 

Return 
Code 

Meaning 

00 IOSVSUCB stored a UCB address in the. location specified in the third word 
of the parameter list. 

04 There are no more UCBs. IOSVSUCB set the lOO-byte work area to binary 
zeros. 

Notes: 

1. A dynamic device reconfiguration (DDR) swap might occur during a scan. Because this 
type of swap results in the interchange of information in UCBs, it might cause a UCB 
address to be skipped or returned twice. 

2. Do not place any dependencies on the order in which the UCB addresses appear during a 
scan. The address of the UCB representing device 250, for example, might be returned 
before the one representing device 140. 

3. Devices with optional channels are associated with only one UCB. Therefore, IOSVSUCB 
returns only one UCB address for those devices. Devices with multiple exposures have one 
UCB associated with each exposure. Therefore, IOSVSUCB returns one UCB address for 
each exposure. 

ueB Scan Services 1-223 



Example Using IOSVSUCB 
Figure 56 contains an example of how to use IOSVSUCB to find the UCB currently associated 
with a particular VOLSER. The search is limited to direct access UCBs. 

FINDVOL CSECT 
PROLOG STM 

BALR 
PSTART DS 

SETUP 

* 
* 
* 
* 

USING 
ST 
LA 
ST 
LR 

DS 
L 
USING 
XC 
LA 
ST 
LA 

ST 
MVI 

RI4,RI2,12(R13) 
RI2,O 
OH 
PSTART,RI2 
RI3,MYSAVE+4 
R2,MYSAVE 
R2,8(RI3) 
R13,R2 

SAVE CALLER'S REGISTER 13 
GET MY SAVE AREA ADDRESS 
CHAIN SAVE AREA TO CALLER'S 
SET UP TO USE LOCAL SAVE AREA 

OH SET UP FOR UCB SCAN SERVICE 
R3,CVTPTR GET CVT ADDRESS 
CVTMAP,R3 SET UP ADDRESSABILITY TO CVT 
WORKAREA,WORKAREA CLEAR WORK AREA 
RI,WORKAREA GET ADDRESS OF WORK AREA 
RI,PARMWA STORE ADDRESS IN THE PARMLIST 
RI,DEVCLASS GET ADDRESS OF AREA CONTAINING 

THE DEVICE CLASS TO BE SEARCHED 
RI,PARMDEVT STORE ADDRESS IN THE PARMLIST 
DEVCLASS,UCB3DACC INDICATE ONLY DIRECT ACCESS UCBS 

ARE TO BE SEARCHED. 
NOTE: IF ALL UCBS WERE TO BE 

SEARCHED, DEVCLASS WOULD 
BE SET TO X'OO'. 

x 

LA RI,ADDRUCB GET ADDRESS OF WORD WHERE SCAN X 

ST 
01 
USING 

SEARCH DS 
LA 
L 
BALR 

* 
* 
* 
* 
* 
* 
* 
* 

RI,PARMUCB 
PARMUCB,x'80' 
UCBOB,R2 
OH 
RI,PARMLIST 
RI5,CVTUCBSC 
R14,R15 

SERVICE WILL STORE THE UCB ADDRESS 
STORE ADDRESS IN THE PARMLIST 
INDICATE END OF PARMLIST 
SET UP ADDRESSABILITY TO UCB 

PUT PARMLIST ADDRESS IN·REGISTER I 
GET SCAN SERVICE ADDRESS 
GO TO SCAN SERVICE. 
INTERFACE: 

REGISTER 1 = 

REGISTER 13 = 

REGISTER 14= 
REGISTER IS = 

ADDRESS OF THE 
PARAMETER LIST 
ADDRESS OF AN 
18-WORD SAVE AREA 
RETURN ADDRESS 
SCAN SERVICE ENTRY 
POINT ADDRESS 

Figure 56 (Part 1 of 2). Example of the UCB Scan Routine (IOSVSUCB) 

1-224 SPL: System Macros and Facilities Volume 1 



LTR R15,R15 HAS A UCB BEEN RETURNED? 
BNZ NOMATCH NO, AT END OF DEVICE CLASS AND X 

(-j. 
NO MATCH FOUND 

L R2,ADDRUCB GET UCB ADDRESS THAT THE SCAN X 
SERVICE RETURNED 

CLC UCBVOLI,SRCHVOL IS THIS THE VOLSER WE'RE LOOKING X 
FOR? 

BNE SEARCH NO, CONTINUE SCAN OF UCBS. 

* NOTE: THE WORK AREA MUST NOT BE 
* CHANGED BETWEEN CALLS TO THE 
* SCAN SERVICE ROUTINE 
FOUND DS OH 

NOMATCH DS OH 

ENDIT DS OH 
L R13,MYSAVE+4 RESTORE CALLER'S REGISTER 13 
LM RI4,RI2,12(R13) RESTORE REMAINDER OF CALLER'S X 

REGISTERS 
BR Rl4 

(~ EJECT 
PARMLIST DS 3F PARMLIST MAPPING 

ORG PARMLIST 
PARMWA DS F ADDRESS OF IOO-BYTE WORK AREA 
PARMDEVT DS F ADDRESS OF BYTE CONTAINING X 

THE DEVICE TYPE TO BE SEARCHED 
PARMUCB DS F ADDRESS OF WORD TO CONTAIN THE X 

UCBADDRESS 
SPACE 

DEVCLASS DS CLI BYTE CONTAINING DEVICE CLASS TO X 
BE SEARCHED FOR 

ADDRUCB DS F WORD IN WHICH UCB SCAN WILL PLACE X 

( 
THE ADDRESS OF THE UCBS. ALIGN 

DS OD ON DOUBLE-WORD BOUNDARY. ([HE 

* WORK AREA FOR SCAN SERVICE MUST 

* BE ON A DOUBLE-WORD BOUNDARY.) 
WORKAREA DS CLlOO WORK AREA 
MY SAVE DS 18F 

DSECT 
IEFUCBOB UCB MACROID 
CVT DSECT = YES 
EJECT 
END FINDVOL 

( Figure 56 (Part 2 of 2). Example of the DCB Scan Routine (IOSVSUCB) 

DCB Scan Services 1-225 



Obtaining Information from the Input/Output Supervisor (lOS) 
The 10SINFO macro instruction obtains the subchannel number for a specified unit control 
block (UeB) from the input/output supervisor (lOS) without being dependent on the location 
or format of the information as it is maintained by lOS. The macro returns the subsystem 
identification word (SID), which identifies the subchannel number of the UeB, in a 
user-specified location. The SID is a fullword value; it contains the subchannel number in its 
ending halfword. (The first halfword contains X'OOOl'.) 

10SINFO obtains the number of the subchannel that was associated with the UeB at NIP 
time. However, the subchannel and the UeB might become disassociated during system 
operation. Any disassociation of the UeB and the subchannel means the subchannel number in 
the SID might not be valid. Therefore, lOS returns information consistent with NIP time but 
does not guarantee that the subchannel will always be associated with the UeB. 

If the UeB is disassociated from the subchannel at the time of the 10SINFO macro invocation, 
10SINFO can detect the situation and notify the user via a return code. If the UeB is 
disassociated from the subchannel after the 10SINFO macro invocation, 10SINFO can not 
notify the caller. For detailed information on how 10SINFO deals with the disassociation of /' 
the subchannel from the UeB, see the instructions for coding the macro in Volume 2 of this 
book. 

1-226 SPL: System Macros and Facilities Volume 1 

rf' 
~, 



(-

( 

( 

Dynamic Allocation 

The allocation of resources performed in response to JCL at step allocation (or at logon, for 
time-sharing users) can be altered prior to step deallocation (or logoff) by invoking dynamic 
allocation functions. A job's device requirements might not be fully evident prior to execution; 
using dynamic allocation, the program can acquire resources as the need develops. Similarly, 
each job can use common resources more efficiently with dynamic allocation: the resources can 
be acquired just before use and/or released immediately after use. 

You request dynamic allocation functions by invoking SVC 99. 

"Dynamic Allocation" introduces the functions available through SVC 99, along with some 
concepts and processing features that are special to SVC 99. 

In addition, this topic describes installation options you can use to control the processing of all 
SVC 99 requests. 

"Requesting SVC 99 Functions" describes how to request SVC 99 functions, including details 
on coding the SVC 99 parameter list and information on the return codes issued by SVC 99 
functions. 

"Requesting SVC 99 Functions" also presents all the SVC 99 text unit keys, in numerical order 
by key within verb code groups, in reference format. In addition, "Requesting SVC 99 
Functions" includes a detailed discussion of the processing involved in dsname allocation, and 
an example of a dynamic allocation request. 

The term "resource" means a ddname-data set combination, with any attendant volumes and 
devices. 

"Dynamic allocation functions" refers to the allocation of I/O resources during program 
execution, and all of the related functions of resource allocation performed by SVC 99. 

To avoid confusion between the specific function of dynamically allocating a resource and the 
set of functions provided by the dynamic allocation routines, the first is called dynamic 
allocation and the second SVC 99 junctions, throughout the remainder of the book. 

Note: Throughout the remainder of the book, the word "deallocate" is used to denote the 
action, and the word "unallocated" is used to denote the state. In cases where the common 
usage is hard to change - for example, in the name of an SVC 99 function - without causing 
confusion, the words "unallocate/unallocation" have been retained. 

© Copyright IBM Corp. 1982, 1989 Dynamic Allocation 1-227 



Introduction to SVC 99 Functions 
When you invoke SVC 99, you can request five different functions. They are: 

• Dynamic allocation - acquiring a resource 
• Dynamic unallocation - deallocating a resource 
• Dynamic concatenation - associating acquired data sets 
• Dynamic deconcatenation - separating associated data sets 
• Dynamic information retrieval - obtaining certain data set information 

A typical use for SVC 99 functions is in a program that needs temporary use of a volume for 
which there is heavy contention. In such a case, dynamic allocation and dynamic unallocation 
provide the means for a program to tie up the volume for only as long as necessary rather than 
for the total execution time of the program. 

Another common use for SVC 99 functions is in a program whose need for I/O resources varies 
according to the input. Dynamic allocation and dynamic unallocation permit such programs to 
allocate and then free only the files necessary to process the input, so the specific resources 
supporting the required files can be in use for the minimum time. 

You request SVC 99 functions via the DYNALLOC macro. Instead of specifying operands on 
the macro, you supply information in the SVC 99 parameter list. 

You request a specific SVC 99 function via information in two fields of the parameter list: 

• Verb code - a one-byte hexadecimal code that describes the function being requested. 

• Text Unit Key - a two-byte hexadecimal value that describes the processing being 
requested from the SVC 99 function routine. A number of keys are available for each verb 
code. 

For example, verb code 01 with the key of 2 requests that a new data set be allocated, while 
verb code 02 with key 7 requests that an existing data set be deallocated. 

You use other fields in the SVC 99 parameter list to supply the information required to process 
your request. See Figure 58 for the entire SVC 99 parameter list. 

1-228 SPL: System Macros and Facilities Volume 1 

\". / 



( 

( 

Concepts Needed to Understand SVC 99 Processing 
SVC 99 processing involves some features dictated by the environment in which dynamic 
allocation or deallocation takes place, and by the very fact that the SVC 99 function is 
performed dynamically - while a program is executing. Because SVC 99 was developed to 
speed up time-sharing operations, these features might appear to be relevant only to a program 
running in an interactive environment. However, any program that invokes SVC 99 makes use 
of the features. 

An understanding of the features - and the concepts behind them - is essential to an 
understanding of the SVC 99 functions. 

Processing Control F:eatures 
SVC 99 routines provide some controls designed specifically for the unpredictable interactive 
environment. 

Time-sharing command processors use SVC 99 functions to dynamically allocate data sets 
required for their own processing (for example, work areas), in addition to the data sets the user 
requests via the time-sharing commands. Because the same command processor can be called 
again, and different command processors might need the same data sets, the command 
processors do not deallocate the data sets they allocate for their own use. This avoids 
allocation processing that would be required when a subsequent command processor requested 
the same data sets. However, keeping all data sets allocated until the end of a terminat'session 
can also tie up resources that might no longer be needed. The following features help to avoid 
tying up resources that are not being used: 

In-Use Bit and Attribute 
An in-use bit for each data set is located in the data set association block (DSAB). 

The in-use bit is turned on when a data set is dynamically allocated. In a time-sharing 
environment, the terminal monitor program (TMP) turns off the in-use bits of all data sets that 
were dynamically allocated by a command processor when that command processor completes 
execution. (Turning off the in-use bit does not deallocate the data set.) If a subsequent 
command processor dynamically requests a previously-allocated data set, the in-use bit is turned 
on again until the command processor completes execution and returns control to the TMP. 

As part of the in-use feature, the system also keeps track of the data sets that have been 
"not-in-use" for the longest time. 

Control Limit 
The control limit limits the number of data sets that can be allocated but marked "not-in-use" 
(that is, the in-use bit is turned off). 

This control limit is determined by the JCL parameter DYNAMNBR on the EXEC statement 
in the logon procedure and the number of DD statements in the logon procedure. If the 
control limit is exceeded when the SVC 99 routines receive a request for a new dynamic 
allocation, the routines automatically attempt to deallocate enough data sets to meet the control 
limit, starting with eligible data sets that have been not-in-use for the longest time. 

If the control limit is still exceeded after all eligible resources have been deallocated, the request 
for a new allocation fails. In this case, you must explicitly request deallocation of an existing 
allocation before the new allocation can be satisfied. 

Dynamic Allocation 1-229 



Note: The control limit would not seem to apply to a program running in a batch 
environment. However, some utilities (IDCAMS, for example) may expect a control limit, and 
could cause an 043C error reason code from SVC 99 (see Figure 62). If a batch program f.,. ~"'. 
requires a large number of allocations, you might need to include the DYNAMNBR parameter I' 

, on the EXEC statement, specifying a large value. The value that you specify must not exceed '-c/ 
the maximum number of single ).llit DD statements allowed for the current TrOT size. 

Permanently Allocated Attribute 
The permanently allocated attribute prevents the SVC 99 routines from automatically 
deallocating a particular data set to meet the control limit. The effect of this attribute is to 
determine a data set's eligibility for automatic deallocation. 

The permanently allocated attribute is automatically assigned to data sets allocated through 
JCL and the ALLOCATE command. In addition, you can request (via the SVC 99 parameter 
list) that a data set be assigned this attribute when you dynamically allocate the data set. 

Here is an example of the use of the permanently allocated attribute: The ATTRIBUTE 
command processor assigns the permanently allocated attribute to a dummy data set that is 
associated with other attributes specified on the command. The dummy data set must not be / ~" 
automatically deallocated if the control limit is exceeded; it must remain available, to be 
referenced by a USING keyword on an ALLOCATE command, until the user FREEs the data 
set. Therefore, it needs the permanently allocated attribute. 

Note: Because permanently-allocated resources are not automatically deallocated, and all 
resources allocated via the ALLOCATE command and JCL are permanently allocated, the 
control limit primarily limits the number of resources that a terminal user can have allocated at 
the same time. If no control limit is established, the limit is the maximum number of 
single-unit DD statements allowed for the TrOT size specified at IPL. For information on how 
the TIOT size is changed, see "Installation Options For SVC 99 Functions" on page 1-237. 

Because a batch application is more predictable than a time-sharing terminal session, the 
programmer who is using SVC 99 functions in a batch application probably will not need to be 
concerned with the in-use bit, the control limit, or the permanently allocated attribute. For an 
exception, see the note under "Control Limit." 

Convertible Attribute 
Because a data set requested by a command processor or an application program might already 
be allocated, the dynamic allocation routines first check for an existing allocation that matches 
the current request. This avoids redundant allocation processing. In some cases, an existing 
allocation matches the current request except for some parameters. The dynamic allocation 
routines can change certain unmatching parameters of the existing allocation to meet the 
current request if the existing allocation has the convertible attribute. The convertible attribute 
allows the dynamic allocation routines to change the following parameters of the existing 
allocation: 

• Ddname 
• Member name 
• Status 
• Normal and conditional dispositions 
• Space 
• Deallocation at CLOSE 
• Input only 
• Output only 
• DCB attributes 
• Password 

In addition, the routines can change the permanently allocated attribute. 

1-230 SPL: System Macros and Facilities Volume 1 



(-

( 

(, 

The convertible attribute is automatically assigned to all data sets dynamically allocated 
without the permanently allocated attribute. You can, however, assign both the convertible 
attribute and the permanently allocated attribute to a resource: although you might want to 
prevent a data set from being automatically deallocated, you might also want to allow some of 
its parameters to be changed to satisfy a new allocation. 

Although the setting and use of the convertible attribute are transparent to a program running 
in a batch environment, the SVC 99 routines make use of this feature. All the resources 
dynamically allocated on behalf of a program running in a batch environment are automatically 
assigned the convertible attribute. When, for example, a program in your batch job 
dynamically allocates a data set for input only and later allocates the same data set for output 
only, the dynamic allocation routines will automatically avoid redundant allocation processing 
by using the first allocation and changing "input only" to "output only." 

Functions Available Through SVC 99 
When you invoke SVC 99, you request that its routines perform one of five general functions. 
The following topics discuss those five, and some subdivisions among them, in general terms. 
"Requesting SVC 99 Functions" presents the individual text unit keys you use to request SVC 
99 functions, grouped within the general divisions discussed here. 

Dynamic Allocation 
You can request one of two types of dynamic allocation: allocation by dsname or allocation by 
ddname. 

Dsname Allocation 
Dynamic allocation by dsname is equivalent to data set allocation during job step initiation; the 
SVC 99 parameter list is equivalent to a DD statement. In the parameter list, you request the 
allocation-by-dsname function by specifying verb code 01. You can request most of the JCL 
services that you can code in a DD statement - such as data set disposition, volume label 
information, expiration date, and SYSOUT destination - by specifying different text units in 
the parameter list. Figure 57 lists JCL DD statement facilities that cannot be used in dynamic 
allocation. 

In addition, you can specify the following, which do not have a JCL equivalent, via SVC 99 
text units: 

• The password for a password-protected data set. If you specify the password in your 
program via SVC 99, the system need not prompt the operator. 

• The permanently allocated attribute. 

• The convertible attribute. 

• Return of certain information. 

Dynamic Allocation 1-231 



Restricted DDnames JOBCAT, STEPCAT, JOBLIB, and STEPLIB 

Keyword Parameters CHKPT, DDNAME, DLM, and DSID 

Positional Parameters *, DATA, and DYNAM 

Selected Subparameters of 
Keywords Keyword Subparameter Not Supported 

DCB reference to ddname of a previous step 
CYLOFL 
NTM 
RKP 

DISP PASS specification 

DSN reference to ddname (as in *.ddname) 
ISAM area name 

SPACE ABSTR specification 

UNIT AFF 

VOLUME RETAIN specification 
REF=ddname 

Figure 57. JCL DD Statement Facilities not Supported by Dynamic Allocation 

Consult the detailed description of each text unit key (see "Requesting SVC 99 Functions") for 
the capabilities supported by the key. While a subparameter may be supported (for example, 
DCB = DSORG), all values of that subparameter may not be supported (for example, 
DCB = DSORG = IS). 

See "Requesting SVC 99 Functions" for programming considerations for dynamic allocation by 
dsname. 

Ddname Allocation 
Ddname allocation allows you to reuse, by specifying only the associated ddname, a 
previously-allocated data set that was marked not-in-use. Ddname allocation processing sets 
the in-use bit on. 

This type of dynamic allocation request is useful in time-sharing command processors for 
re-allocating groups of data sets that were allocated and concatenated by an earlier command 
processor but whose in-use bits were then turned off by the TMP. 

In MVS, the HELP command processor uses ddname allocation to allocate the SYSHELP data 
set. As a user, you may allocate, in your logon procedure, a group of data sets to be searched 
for HELP information. These data sets are concatenated with the ddname of SYSHELP. 
When the TMP receives control after the LOGON command processor completes execution, the 
in-use bits of all the SYSHELP data sets are off. Then, when you issue the HELP command, 
the HELP command processor invokes the allocation-by-ddname function, specifying 
SYSHELP as the ddname. As a result, all of the data sets concatenated to SYSHELP will have 
the in-use bit turned on. (If the system cannot locate the SYSHELP ddname, the HELP 
command processor uses the allocation-by-dsname function to allocate the SYSl.HELP data 
set; it will be associated with a system-generated ddname.) 

You request dynamic allocation by ddname by specifying verb code 06 and putting the ddname 
to be allocated in the SVC 99 parameter list. You are, in effect, asking the SVC 99 routines to 
use a specific existing allocation to satisfy your request. 

1-232 SPL: System Macros and Facilities Volume 1 

~--------

./ 



( 

( 

( 

( 

In order for the SVC 99 routines to satisfy your ddname dynamic allocation request, the 
existing allocation must not be in use. In addition, it must not have the convertible attribute; 
or it must be permanently concatenated. In other words, it must have properties that ensure 
that the ddname could not have been disassociated from the existing allocation. (See "The 
Permanently Concatenated Attribute" in the topic "Dynamic Concatenation" for a description 
of this attribute.) 

If the existing allocation with the specified ddname does not meet these requirements, or if the 
ddname is not associated with any of your program's existing allocations, the request is failed 
and an error reason code is returned in the SVC 99 parameter list. 

If the existing allocation meets the requirements, its in-use bit is turned on and the request has 
been satisfied. If the existing allocation is a member of a concatenated group, all members of 
the group are assigned the in-use attribute, so the entire group has been allocated. 

You may specify that an indication is to be returned if the existing allocation that satisfies the 
request is associated with a dummy data set. 

Dynamic Unallocation 
The SVC 99 dynamic unallocation routines deallocate resources when you request it via the 
appropriate verb code. Two functions are available through dynamic unallocation: 

• Releasing a data set, specified by verb code 02 with key 7 in the SVC 99 parameter list. 

Releasing a data set involves the following processes: 

Disassociating the ddname from the data set name, which allows the ddname to be 
used in subsequent dynamic allocations. 

Processing the data set disposition. 

Releasing the data set for use by other jobs except when: 

A temporary VIO data set is released at the end of the last step in which it is 
referenced. 
A temporary non-VIO data set is released at the end of the job. 

Freeing the unit(s) to which the data set was allocated. 

Releasing the volume(s) on which the data set was allocated. 

• Removing the in-use attribute, specified by verb code 02 with text unit key 8 in the SVC 99 
parameter list. 

This function turns off the data set's in-use bit. When this processing is completed, the 
data set is referred to as "not-in-use." You can also request remove in-use processing based 
on task-id by specifying verb code 05; see "Removing the In-Use Attribute by Task-ID." 

If you code verb code 02 without specifying key 7 or key 8, the dynamic unallocation routines 
remove the in-use attribute from data sets allocated through JCL, the time-sharing ALLOCATE 
command, or dynamically with the permanently allocated option; the routines release data sets 
that were allocated dynamically without the permanently allocated option. 

You use key 7 and key 8 to specify explicitly the type of processing you prefer. An explicit 
specification will be satisfied in all but one case: the routines will not remove the in-use 
attribute from a non-permanently allocated, non-&dsname data set with a disposition of 
DELETE. Such a resource cannot be used to satisfy a subsequent request, so it will be 
released. 

You can request either dynamic unallocation function for a dsname or a ddname. 

Dynamic Allocation 1-233 

------------------



Dynamic Unallocatlon Processing: The following considerations apply to all dynamic 
unallocation requests: 

• If a data set is open, is a member of an open concatenated group, or is a private catalog, it 
will not be deallocated. 

• When a SYSOUT data set is released, it is immediately made available for output (unless 
you specify an overriding disposition of DELETE, in which case the data set is deleted). 

The following considerations apply to unallocation requests specifying a dsname: 

• If no ddname is specified and the dsname is associated with more than one ddname, all 
associated data sets are deallocated. If an error occurs while deallocating one ddname, 
processing continues for the others and an error code is returned in the SVC 99 parameter 
list. If errors occur for more than one ddname, the error code applies to the last ddname 
for which there was an error. 

• If a member name is specified with the dsname, only those associations containing both the 
member name and dsname are deallocated. (Both the member name and dsname text unit 
keys must be coded for a valid request.) 

The following considerations apply to unallocation requests specifying a ddname: 

• Only the occurrence of the data set associated with the specified ddname is deallocated, 
even if that data set is associated with other ddnames. 

• If a dsname or dsname and membername are specified in addition to the ddname, they 
must be associated with that ddname or the request fails. 

Deallocatlng Concatenated Groups: If the specified resource is associated with a permanently 
concatenated group, the in-use attribute is removed from all members of the group, and the 
count of the number of resources held for reuse is increased by the number of members in the 
group. (An exception occurs when the concatenated group was generated by the system, as, for 
example, VSAM data sets spanning device types and GDG ALL groups. In these cases, the 
group is treated as a single resource.) 

If the concatenated group does not have the permanently concatenated attribute, the group is 
deconcatenated and the member associated with the specified dsname is released. (The first 
member is released if the group's ddname is specified.) 

If a concatenated group has the permanently concatenated attribute and you specify a ddname 
with a dsname, a VSAM dsname, or GDG ALL, the entire group is released. If you specify a 
dsname with a VSAM dsname or GDG ALL, the request for dynamic unallocation fails. 

Changing Parameters at Dynamic Unallocation: You can include with your dynamic 
unallocation request text units to change a data set's parameters as it is being deallocated. If 
your request is in the form of verb code 02, key 8, the changes are honored when the data set is 
actually released, unless they have been overridden in the meantime. If your dynamic 
unallocation request is in the form of verb code 02, key 7, the changes take effect immediately. 

The parameters that can be changed at deallocation are: 

• Output class 
• HOLD/NOHOLD parameters 
• Remote work station destination 
• Disposition 

1-234 SPL: System Macros and Facilities Volume 1 



( 

( 

( 

Allocation disposition cannot be overridden for passed data sets, VSAM data sets, or 
system-named data sets. For all other types of data sets, the disposition specified on an 
unallocation request overrides the disposition specified at allocation. 

If you request that a data set be cataloged when it is deallocated, you must provide linkage to 
the catalog data set. The system will not dynamically allocate the catalog data set. You can 
provide the necessary linkage by pre-allocating the catalog data set or by allocating it through a 
STEPCAT DD statement. 

Members of partitioned data sets cannot be deleted with a disposition of DELETE; the entire 
data set is deleted. An overriding disposition of DELETE for data sets allocated as shared is 
invalid; the overriding disposition request is failed. 

Removing the In-Use Attribute by Task-ID 
In addition to requesting removal of the in-use attribute by specifying a ddname or dsname, 
you may request, via verb code 05, that the in-use attribute be removed based on task-ID. The 
attribute may be removed from all resources associated with a specified task, or all resources 
except those associated with the current task, its higher-level tasks, and the initiator. This 
function is used by, for example, the time-sharing terminal monitor program (TMP) to turn off 
the in-use bits of any data sets allocated by a command processor when the command processor 
completes execution. 

Dynamic Concatenation 
Dynamic concatenation logically connects allocated data sets into a concatenated group. You 
request this function by specifying verb code 03 in the SVC 99 parameter list. You can only 
identify data sets to be concatenated by their associated ddnames. These data sets must not be 
open; if they are, the request for dynamic concatenation fails. 

The order in which you specify the ddnames is the order in which the SVC 99 routines will 
concatenate their associated data sets. The name associated with the concatenated group is the 
ddname that was specified first; the other ddnames are no longer associated with any data set. 

If a ddname you specify is already associated with a concatenated group, that entire group will 
be included in the new concatenation. 

After the request for dynamic concatenation is satisfied, all members of the 
dynamically-concatenated group are assigned the in-use attribute. 

The Permanently Concatenated Attribute 
You can request that a concatenated group created via SVC 99 be assigned the permanently 
concatenated attribute. A concatenated group defined via JCL is automatically assigned the 
permanently concatenated attribute, as is a concatenated group defined by the system via JCL 
or SVC 99. A GDG ALL request and a request for a VSAM data set that spans device types 
are examples of the latter situation. 

A group with the permanently concatenated attribute has the following characteristics: 

• The group cannot be dynamically deconcatenated into its member data sets. 

• If a permanently concatenated group is dynamically concatenated with other data sets to 
form a new non-permanently concatenated group, the permanently concatenated group 
remains intact if the new group is dynamically deconcatenated. 

• If the group is not a system-defined permanently concatenated group, it is automatically 
assigned the permanently allocated attribute. 

Dynamic Allocation 1-235 



Note: To dynamically release a non-system-defined permanently concatenated group, you 
specify the ddname, not the dsname, in the unallocation request. 

/"-'\ 
Dynamic Deconcatenation ~-> 

Dynamic deconcatenation logically disconnects the members of a concatenated group. You 
request dynamic deconcatenation by specifying verb code 04 in the SVC 99 parameter list. You 
identify the concatenated group to be deconcatenated by specifying the ddname of the group. 

The request for dynamic deconcatenation fails if the concatenated group is open. A 
permanently concatenated group, or members of a concatenated group that are permanently 
concatenated, remain concatenated. 

When a concatenated group is dynamically deconcatenated, the ddnames that were associated 
with the data sets before they were concatenated are restored unless this would result in 
duplicate ddnames. This situation could arise if a dynamic allocation with the ddname to be 
restored occurred after a dynamic concatenation. In this case, the deconcatenation request fails. 

Dynamic deconcatenation has no effect on the in-use attributes associated with the members of 
the group. 

Dynamic Information Retrieval 
Dynamic information retrieval provides you with information about your current allocation 
environment. You request this function by specifying verb code 07 in the SVC 99 parameter 
list. You can request information about ddnames or dsnames. 

In addition, you can ask for information about any or all of your currently-allocated requests 
by specifying a relative request number. For example, you could obtain information about all 
your allocation requests by successively asking for information about the 1st, 2nd, ... nth 
allocation request. Code the DINRTLST text unit key (key 13) with this series of requests, to 
receive an indication of the last relative entry. 

You can request the following kinds of information using SVC 99 verb code 07: 

• Data set name 

• Ddname 

• Member name 

• Data set organization 

• Status 

• Normal disposition 

• Conditional disposition 

• Attribute status, including the permanently allocated, in-use, permanently concatenated, 
convertible, and dynamically allocated attributes 

• Data set types, including dummy, SYSIN, SYSOUT, and allocation of the user's terminal 
as an I/O device 

• The number of resources held in anticipation of reuse that exceeds the control value; that is, 
the number of existing allocations that must be deallocated before a request for a new 
allocation can be satisfied 

• Whether or not the allocation is the last relative request. 

1-236 SPL: System Macros and Facilities Volume 1 

.,(~ 
Ii .,,_/ 



( 

Installation Options For SVC 99 Functions 
This section describes the values and options your installation might want to modify in order to 
control SVC 99 processing. The values and options discussed in the following topics are: 

• Default values for space and unit information 
• Default values for the TIOT 
• Mounting volumes and bringing devices online 
• Installation validation routines. 

Space and Unit Defaults 
This section describes how to change the allocation default values for space and unit. It also 
describes remote user workstation and TIOT defaulting. 

Existing Default Values for Space: If no space information is specified on a request for a new 
direct access data set, and the request is eligible to MSS exclusively (with MSVGP specified), 
the SVC 99 routines use the MSVGP defaults. 

If the request is not eligible to MSS exclusively, or MSVGP is not specified, the defaults are: 

• Block length of 1000 
• 10 primary blocks and 50 secondary blocks 
• Release unused space (RLSE) specification 

These space defaults are contained in the allocation default CSECT IEFAB445 (load module 
IEF AB445). The contents of the module are as follows: 

Note: Beginning at offset zero; the hexadecimal numbers in parentheses show the values 
supplied by IBM. 

• Three bytes for the primary quantity value (' OOOOOA ') 

• Three bytes for the secondary quantity value ('000032 ') 

• Three bytes for the average block length (' 0003E8 ') 

• Three bytes for the number of directory blocks ('000000 ') 

• One byte of flags with the following bit meanings: 

bit 0: TRK (0) 
bit 1: CYL (0) 
bit 2: blocklength (1) 
bit 3: RLSE (1) 
bit 4: CONTIG (0) 
bit 5: MXIG (0) 
bit 6: ALX (0) 
bit 7: ROUND (0) 

Existing Default Values for Unit: If a time-sharing user's dynamic allocation request does not 
include unit information, the SVC 99 routines obtain a unit description from the UADS entry. 

If the user is not a time-sharing user, or if the UADS entry does not contain a unit description, 
'SYSALLDA' (the system's esoteric name indicating all direct access devices) is the default. 
This default is contained in the allocation default CSECT IEFAB445, in the eight bytes 
beginning at offset 13 (decimal). 

The unit description you supply in your dynamic allocation request can override the unit type 
for a cataloged data set. The unit description from the UADS, however, cannot override the 
unit information in the catalog. 

Dynamic Allocation 1-237 



.--.---------~--------------

Default Value for a Remote User Work Station: If a remote user work station - or destination 
- is not specified by a time-sharing user allocating a SYSOUT data set, the SVC 99 routines 
obtain a default value from the UADS entry. (-,-\ 

~j 
Default Value for The TIOT: The size of the TIOT is determined by the DEFTIOTS field in the 
allocation default CSECT (IEFAB445). The IBM-supplied default for the size of the TIOT is 
32K. An installation may change that to a larger (maximum 64K) value or a smaller 
(minimum 16K) value. This default is contained in the allocation default CSECT IEFAB445, 
in the byte beginning at offset 23 (decimal). 

The size of the TIOT controls how many DDs are allowed per jobstep. By specifying any 
integer from 16 to 64 as the value of the DEFTIOTS field, the user controls the DD allowance. 
The following table shows the relationship between the size of the TIOT and the maximum 
number of DDs allowed: 

DEFTIOTS Maximum number 
Dec (Hex) Size of TIOT of DDs allowed 

16 10 16384 (16K) 816 
24 18 24576 (24K) 1225 
32 20 32768 (32K) 1635 
40 28 40960 (40K) 2045 
48 30 49152 (48K) 2454 
56 38 57344 (56K) 2864 
64 40 65536 (64K) 3273 

Mounting Volumes and Bringing Devices Online 
Dynamic allocation processing can bring devices online and have volumes mounted. 

This function is optional for time-sharing users, because it is time-consuming and requires 
operator intervention; it is not always desirable in an interactive environment. If selected, the 
option is assigned via the UADS entries. 

Other users of SVC 99, however, can always have volumes mounted and devices brought online. 
If you do not want this function performed during dynamic allocation, you can indicate in the 
SVC 99 parameter list that volumes are not to be mounted and that devices are not to be 
brought online for a request. 

In addition, the operator may inform the dynamic allocation routines that a volume is not to be 
mounted or that a device is not to be brought online. If the operator thus prevents the 
mounting or bringing online of a volume or device, the allocation request fails. 

If you allow volume mounting, the SVC 99 routines will wait for tape volumes to be mounted. 
Common allocation processing, by contrast, does not wait for tape volumes to be mounted. 
When a volume is mounted for a dynamic allocation request, OPEN verifies that it is the 
correct volume. 

If the option to have volumes mounted and devices brought online is not in effect, tape and 
direct access devices that have an outstanding mount request, or that are not ready, are not 
eligible for use by dynamic allocation. 

1-238 SPL: System Macros and Facilities Volume 1 

-"" 

/' 



(-

( 

Installation Input Validation Routine for SVC 99 
An exit (IEFDB401) from the allocation control routine provides for a user-written routine to 
validate or alter any request to SVC 99. The routine is entered for all system and user SVC 99 
requests. You must code it so it does not interfere with system requests. 

Your validation routine can test and modify the SVC 99 input request, and it can indicate 
through a return code whether processing of the request is to continue. For example, the 
routine might perform the following functions: 

• Control the amount of direct access space requested 
• Check for authorization to use specified units 
• Check for authorization to use certain data sets 
• Check for authorization to hold certain resources for reuse 

See SPL: User Exits for information about programming conventions that the input validation 
routine must observe. 

Dynamic Allocation 1-239 



1-240 SPL: System Macros and Facilities Volume 1 

--_._----------

C···"'\ , , 

.,,' I 



( 

( 

( 

( 

Requesting SVC 99 Functions 

To request an SVC 99 function, you must code the DYNALLOC macro (it has no operands) 
and supply the SVC 99 parameter list. The SVC 99 routines perform requested functions based 
on the information you provide in the parameter list, in the form of text unit keys. 

This topic consists primarily of descriptions of the various text unit keys you use to request 
SVC 99 functions. It also includes a discussion of the parameter list itself, a detailed review of 
the process of dynamic allocation by dsname, the SVC 99 return codes, and some general 
cons\derations for using SVC 99. An example of a dynamic allocation request is provided at 
the end of this topic. 

Programming Considerations When Using SVC 99 
Before deciding to use any of the SVC 99 functions, you should consider the environment of the 
program that invokes SVC 99. Your program interacts with the job entry subsystem, with the 
MVS initiator, with data management functions, and with the common allocation functions of 
the MVS scheduler, in addition to the SVC 99 routines themselves. If the program is a system 
routine, there are cross-memory considerations, as well. 

You must make sure your routine does not interfere with the normal functioning of the 
operating system. Conversely, you should be aware that operating system functions could 
affect the interface between your program and the SVC 99 routines; and that the SVC 99 
routines could affect the functioning of your program. 

Following are some of the things you need to consider when preparing to use SVC 99. Other 
considerations are included with the topics to which they apply. 

• Serialization of Resources 

Your program might serialize the same resources as SVC 99. The SVC 99 routines can 
serialize the following resources, depending on the path taken in SVC 99 processing. 

Major Name Minor Name 

SYSDSN 
SYSIEFSD 
SYSIEFSD 
SYSIEFSD 
SYSIEFSD 
SYSZOPEN 
SYSZPCCB 
SYSZTIOT 
SYSZVMV 
SYSZVOLS 

data set name 
CHNGDEVS 
DDRDA 
DDRTPUR 
Q4 
data set name 
PCCB 
address of the DSAB QDB.asid 
ucbaddr 
volume serial number 

• Other System Routines and SVC 99 

System routines invoked by various paths of SVC 99 processing might also serialize a 
system resource. Some of the system functions invoked by SVC 99 processing are 
LOCATE, OBTAIN, CATALOG, SCRATCH, DADSM Allocate, and MSS Interface 
(SVC 126). 

• No Cross Memory Support for SVC 99 

SVC 99 does not work in cross memory mode. 

© Copyright IBM Corp. 1982, 1989 Requesting SVC 99 Functions 1-241 



• Enqueuing on the SYSZTIOT; Avoiding 138 Abends 

Avoid requesting SVC 99 functions in routines that run under the control of an interruption 
request block (IRB), especially when the program that might be interrupted issues OPEN, 
OPENJ, CLOSE, EOV, or FEOV, or any other SVC that enqueues on the SYSZTIOT. An 
SVC 99 request issued in such an environment can cause a 138 abend when SVC 99 tries to 
enqueue on the SYSZTIOT resource. 

For the same reason, user exits for OPEN/CLOSE/EOV, or for any other routines that 
enqueue on SYSZTIOT, should not issue SVC 99 requests. 

• Avoiding OBO Abends 

Programs that issue SVC 99 should not receive control during START (initialization) 
processing for LOGONs, MOUNTs, or started tasks. 

Programs that get control during START processing (user exits, for example) should not 
issue LOCATE, OPEN, OBTAIN, CATALOG, SCRATCH, or DADSM Allocate for data 
sets that have not been preallocated to the program; to do so will cause an OBO abend. 

Subsystems that receive control during step allocation as a result of the SUBSYS parameter 
should not issue SVC 99; to do so might cause an OBO abend. 

• Accessing ICF CATALOGS, CVOLs and VSAM Private Catalogs 

Programs that get control during 'START' (Initialization, User Exits, for example) should 
not issue LOCATE, OPEN, OBTAIN, CATALOG, SCRATCH, or DADSM allocate for 
data sets that have not been preallocated to the program; to do so could cause 
MSGIEC331I, RC4, RC84. 

• SMS Consideration 

Programs that issue SVC 99 in an environment with the storage management subsystem 
(SMS) active should request the message processing function of SVC 99 in order to obtain 
error messages relating to a request. 

• JES Consideration 

The program that requests SVC 99 functions must not receive control when the job entry 
subsystem is being started; an unending wait could result, causing the system to crash. 

• Effect of Outstanding STIMER or STIMERM 

The program that requests SVC 99 functions must not have an STIMER macro 
outstanding, because certain paths in SVC 99 issue another STIMER, which causes an 
overlay of the first STIMER. This situation causes the program that issued the SVC 99 
request never to receive control because of the expiration of the timer. 

One STIMER ID must be available for allocation processing. If an ID is unavailable, an 
X I 05C I abend with a return code of 6 may result. 

• Considerations for System Routines 

System routines that invoke SVC 99 functions should be aware that a non-zero return code 
might be returned. Because system routines cannot always diagnose non-zero return codes, 
the system routine should print an error message including the error code (S99ERROR) 
and information code (S99INFO) fields from the SVC 99 request block (S99RB). 

• Accessing CVOLs or VSAM Private Catalogs 

Routines should not allocate data sets that are cataloged in OS CVOLs or VSAM private 
catalogs to long-running tasks, because the private catalog or CVOL will be allocated and 
will remain allocated until the step terminates. This is especially important in installation 
exits for system tasks, because the private catalog or CVOL might be allocated to an 
initiator or subsystem such as JES2 or JES3. 

1-242 SPL: System Macros and Facilities Volume 1 

.r 
l . 
"'-.Y 



( .. ~ 

( 

(: 

Volumes that contain a CVOL or VSAM private catalog for data sets allocated to 
long-running steps should be assigned the permanently resident attribute. 

• Changes to the TIOT By SVC 99 Routines 

SVC 99 routines might cause changes to the task input/output table (TIOT). Depending on 
the function requested via SVC 99, an entry could be added, deleted, or reordered; you 
cannot assume a fixed order for TIOT entries. 

You should make sure a problem program is aware of changes to the TIOT, especially if 
the EXTRACT macro is also being used within that program, or in the program that will 
gain control when SVC 99 processing is finished. 

If you need to reference TIOT entries after SVC 99 is invoked, do so via the data set 
association block (DSAB) chain, which is pointed to by the DSAB queue descriptor block 
(DSAB QDB) field, JSCDSABQ, in the active JSCB. 

Datasets that are cataloged in a private catalog or CVOL should not be dynamically 
allocated in the JES3 address space. If they are dynamically allocated, a system deadlock 
may occur involving SYSZTIOT, which is required for the SVC 99, and SYSZPCCB, which 
is required in the modification of the private catalog control block (PCCB). 

SVC 99 Parameter List 
When you code DYNALLOC, you must supply a parameter list. The SVC 99 parameter list 
includes a request block, request block extension, text pointers, and text units. The request 
block, text points, and text units are required. The request block extension is required only if 
you need to use the message processing function of SVC 99. 

The request block indicates the function you want. the SVC 99 routines to perform, and the 
extension contains message processing information: The text pointers contain the addresses of 
the text unit keys, and the text units contain the keys and parameters for the SVC 99 functions. 
Figure 58 illustrates the structure of the SVC 99 parameter list. 

IBM supplies two macros, IEFZB4DO and IEFZB4D2, to aid in constructing the SVC 99 
parameter list. IEFZB4DO provides symbolic names (DSECTs) for the positional information 
in the structure; IEFZB4D2 provides mnemonics for the text unit keyword values. The names 
in Figure 58 are those assigned by the macro IEFZB4DO. 

On entry to SVC 99, register 1 must point to a pointer to the request block. 

The pointers to the parameter list, the request block, the extension, and the text units must be 
created in storage with the same key as the one for the caller of SVC 99. 

In addition, the request block, the extension, and any information retrieval text units must be in 
non-store-protected storage. This is to prevent an OC4 abend when SVC 99 copies the caller's 
parameters into its own work area and then restores the information retrieval text units into the 
caller's storage. 

Note: SVC 99 only restores information retrieval text units originally specified by the caller 
and validated by the IEFDB401 exit routine (see SPL: User Exits). Text units added or 
modified by IEFDB401 are not copied back to the calling program's storage. 

Requesting SVC 99 Functions 1-243 



Register 1 

S99RBPTR 

t Request Block 

o 

4 

Must be on 0 

4 

8 

12 

16 

Request Block Extension S99RBX 

Control block to (S99RBX) Version 
number 

Process
ing Reserved 

8 options 

CPPL + 12~--------------------~ 
Message Processing Return Code 

16~--------------------~ 

PUTLINE/WTO Return Code 
20~ ____________________ ~ 

t Message Block chain 
24r----------.----------~ 

Information 
Retrievel Error 
Code 

Information Retrieval 
Reason Code 

2Br---------~----------~ 

Reserved 

Request Block - S99RB 

LENGTH Verb 
FLAGS 1 

= 20 Code 

Error Code Info. 
Code 

t Text Pointers 

• Request Block Extension 

FLAGS2 

Figure 58. Structure of the SVC 99 Parameter List 

Request Block Pointer 

t Text Unit 

t Text Unit 

Text Units - S99TUNIT 

I Key I # I LEN I PARM I 

I Key I # I LEN I PARM I 

The request block pointer, DSECT name S99RBP, is a single fullword containing the address of 
the SVC 99 request block. IEFZB4DO assigns the label S99RBPTR to the address. The 
high-order bit in this field must be set to one. 

Request Block 
The request block must begin on a fullword boundary. Mapping macro IEFZB4DO assigns it a 
DSECT name of S99RB. It contains the following fields (the names in parentheses are those 
assigned by IEFZB4DO): 

• LENGTH (S99RBLN) A one-byte field containing the length of the request block. The 
length is always 20 bytes. 

• VERB CODE (S99VERB) A one-byte field that iaentifies the SVC 99 function to be 
performed. You may specify the following verb codes: 

1-244 SPL: System Macros and Facilities Volume I 

;~c 

~~ 



( 

( 

( 

Verb Code Name Meaning 

01 
02 
03 
04 
05 
06 
07 

S99VRBAL 
S99VRBUN 
S99VRBCC 
S99VRBDC 
S99VRBRI 
S99VRBDN 
S99VRBIN 

Request for dsname allocation 
Request for deallocation (based on dsname or ddname) 
Request for concatenation 
Request for deconcatenation 
Request for removing the in-use attribute based on task-ID 
Request for ddname allocation 
Request for information retrieval 

• FLAGSl (S99FLAGl) A two-byte field that instructs the system on how to satisfy dsname 
allocation requests. The meaning of the bits in the field are as follows: 

Bit 

o 

2 

3 

4 

Bit Name 

S990NCNV 

S99NOCNV 

Meaning When On 

Only use an existing allocation that has the convertible attribute 
to satisfy the request. 

Do not use an existing allocation to satisfy this request. 

S99NOMNT Do not mount volumes or consider offline devices. (This bit 
overrides S99MOUNT and S990FFLN in FLAGS2.) If this bit 
is one and the request causes a private catalog to be allocated, 
mounting will not be allowed for that catalog. 

S99JBSYS Treat the data set as part of the job's normal output. The data 
set is not expected to be dynamically deallocated (spun off). This 
flag is used for SYSOUT data sets. If the data set is dynamically 
deallocated, it will be printed immediately, but paging space will 
not be released until the job ends. 

S99CNENQ Issue a conditional ENQ on the TIOT resource. If the TIOT is 
not available, an error code is returned to the user. 

5-16 Reserved; must be zero 

Note: The FLAGS 1 indicators (except S99CNENQ) are used only for dsname allocation 
requests. 

• ERROR CODE (S99ERROR) A two-byte field that SVC 99 uses to return error reason 
codes. See "SVC 99 Return Codes." 

• INFO CODE (S99INFO) This two-byte field is used by SVC 99 to return Information 
reason codes. See "SVC 99 Return Codes." 

• TEXT POINTERS ADDRESS (S99TXTPP) A fullword field containing the address of a 
list of pointers to the text units. 

• REQUEST BLOCK EXTENSION ADDRESS (S99RBX) A fullword field containing the 
address of the request block extension. 

• FLAGS2 (S99FLAG2) A four-byte field of indicators. These indicators may be set only by 
authorized programs. To be authorized, the requesting program must meet at least one of 
the following criteria: 

It must have a system storage protection key (0-7). 
It must be in supervisor state. 
It must be APF-authorized. 

Requesting SVC 99 Functions 1-245 



The meanings of the FLAGS2 bits are: 

Bit Bit Name 

o S99WTVOL 

S99WTDSN 

2 S99NORES 

3 S99WTUNT 

4* S990FFLN 

5 S99TIONQ 

Meaning When On 

Wait for volumes. 

Wait for dsname. (See Note 2.) 

Do not reserve data sets. 

Wait for units. (See note 3.) 

Consider omine devices. The system ignores this bit if 
S99NOMNT in FLAGS 1 is on. For a batch user, or if a 
time-sharing user has the mount attribute in his UADS entry, the 
system proceeds as if this bit were on, regardless of the setting. 

TIOT ENQ already performed. 

6 S99CATLG Set special catalog data set indicators. 

7* S99MOUNT Volumes may be mounted. The system ignores this bit if 
S99NOMNT in FLAGS1 is on. For a batch user, or if a 
time-sharing user has the mount attribute in her UADS entry, the 
system proceeds as if this bit were on, regardless of the setting. 

8 S99UDEVT 

9 S99PCINT 

10-31 

Unitname parameter for DALUNIT is a device type. If you are 
using the output from the DEVTYPE macro, be sure the shared 
DASD bits are turned off. 

Allocate a private catalog on behalf of the initiator. 

Reserved. Must be zero. 

*These fields override the NOMOUNT option from the TSO user attribute data set 
(UADS). 

Notes: 

1. The FLAGS2 indicators (except S99TIONQ) are used only for dsname allocation requests. 

2. In a JES3 environment, authorizing a dynamic allocation request to wait for data set 
availability might cause a system interlock. 

3. Authorizing a dynamic allocation request to wait for currently allocated devices may cause 
the job to hang if the only devices available are already allocated to this job. 

Request Block Extension 
The request block extension'must begin on a fullword boundary. Mapping macro IEFZB4DO 
assigns it a DSECT name of S99RBX. It contains the following fields (the names in 
parentheses are those assigned by IEFZB4DO): 

• Request Block Extension Identifier (S99EID) A six-byte field containing the request block 
extension identifier, which can be obtained from the S99RBXID field in IEFZB8DO. 

• Version (S99EVER) A one-byte version number of the request block extension, which can 
be obtained from the S99RBXVR field in IEFZB4DO. 

1-246 SPL: System Macros and Facilities Volume I 

I'-~ 
I ,.,..; 



(~ 

( 

( 

( 

• Processing Options (S99EOPTS) A one-byte field that defines the SVC 99 message 
processing options. Select the processing options that 'you want by setting bits in this field 
as follows: 

Bit Bit name Meaning 

0 S99EIMSG The system issues error messages before 
control returns to the caller of SVC 99. 

S99ERMSG The system returns the messages to the 
caller of SVC 99, but the system does not 
issue the messages unless S99EIMSG is set. 

2 S99ELSTO The system returns the message blocks to 
the caller in the first 16 megabytes of 
storage. 

3 S99EMKEY The caller has specified a storage key in 
S99EKEY. When building message blocks, 
the system builds them in a storage area 
whose key is equal to the key specified in 
S99EKEY. 

4 S99EMSUB The caller has specified a storage subpool in 
S99ESUBP. The system builds the message 
blocks in that subpool when S99EMSUB is 
set. 

5 S99EWTP The system uses a WTO macro instruction 
to issue the error messages if this bit is set. 
Otherwise, the system uses a TSO 
PUTLINE command to issue the messages. 

6-7 Reserved. These bits must be zero. 

• Message Block Subpool (S99ESUBP) A one-byte field that defines the storage subpool 
containing the message blocks returned to the caller. This field is ignored unless the 
processing option S99EMSUB is indicated. If the caller does not indicate a subpool, the 
system uses a default subpool of o. The valid subpools are subpools 0-255, and they must 
be specified in hexadecimal. 

• Storage Key (S99EKEY) A one-byte storage key for the storage in which the message 
blocks are returned. This field is ignored unless the processing option S99EMKEY is 
specified. If the caller does not supply a storage key, the system uses the same key as the 
caller's TCB. The valid keys are 0-15, and they must be specified in hexadecimal. 

• Severity Level (S99EMGSV) A one-byte field that defines the minimum severity of the 
messages that should be processed by SVC 99. The severity levels, which are informational, 
warning, and severe, are defined by S99XINFO, S99XW ARN, and S99XSEVE in the 
IEFZB4DO. 

• Number of message blocks returned (S99ENMSG) A one-byte field containing the number 
of message blocks returned from SVC99. 

• CPPL address (S99ECPPL) A full word that contains the address of the command 
processor parameter list. This field is required if PUTLINE is used to issue messages. 

• Reserved. (S99ERCR) A one-byte reserved field containing zero. 

• Reserved. (S99ERCM) A one-byte reserved field containing zero. 

Requesting SVC 99 Functions 1-247 



• Message processing reason code (S99ERCO) A one-byte reason code that explains the 
failure of a message processing function. 

Hexadecimal Meaning 
code 

03 

04 

05 

06 

07 

08 

09 

WTO failed. 

PUTLINE failed. 

Unable to obtain storage for message blocks. 

Unable to obtain storage for PUTLINE macro. 

A CPPL address was not supplied for the PUTLINE message 
output function. 

The message block chain was invalid. 

Message extraction failed because the message block chain was 
invalid. 

• Message Block Freeing Reason Code (S99ERCF) A one-byte reason code that explains why, 
the system cannot free the message block storage area. 

Hexadecimal Meaning 
code 

01 

02 

Storage cannot be freed because FREEMAIN failed. 

Storage cannot be freed because of an invalid message block chain. 

• PUTLINE/WTO macro return code (S99EWRC) The fullword return code from the WTO \, ./ 
or PUTLINE macro, which are the macros that issue the messages. 

• Message Block Chain Address (S99EMSGP) A fullword that contains the address of a 
chain of message blocks. 

• Information Retrieval Error Code. (S99EERR) A two-byte code that explains errors found 
in information retrieval text units of dynamic allocation. This two-byte code applies only 
to verb code 01. See the SVC 99 return codes on page 1-259. 

• Information Retrieval Information Code (S99EINFO) A two-byte field containing an 
erroneous text unit. The text unit is an information retrieval text unit. This two-byte code 
applies only to verb code 01. See the SVC 99 return codes on page 1-259. 

• Reserved. (S99ERSV2) A fullword that contains zero. 

Text Pointers 
The text pointer part of the parameter list is a variable-length list of fullwords containing 
pointers to the text units. You indicate the end of the list by setting the high-order bit of the 
last pointer to one. A full word of zeros is ignored. 

Mapping macro IEFZB4DO assigns the DSECT name S99TUPL to the list, the label 
S99TUPTR to each pointer in the list, and label S99TUPLN to an equate that allows you to 
turn on the end-of-list indicator. 

1-248 SPL: System Macros and Facilities Volume 1 



( 

(' 

( 

( .. 

.. 

Text Units 
Each SVC 99 text unit is a variable-length field (assigned the DSECT name S99TUNIT by 
macro IEFZB4DO) that contains the following subfields: 

• KEY (S99TUKEY) A two-byte field containing a unique binary number that identifies the 
type of information to be found in the PARM subfield. For example, a key of '0004' for a 
dsname allocation request indicates that the value of the PARM subfield specifies data set 
status. SVC 99 ignores a KEY field of zero. See "Text Units by Function" for a 
description of the text units that can be coded for each SVC 99 function. 

• NUMBER (S99TUNUM) A two-byte binary number specifying the number of length and 
parameter combinations in the text unit. If a key of zero is specified, S99TUNUM must 
also be zero. 

• COMBINATION (S99UENT) The label for length and parameter combinations. 
IEFZB4DO provides a separate DSECT (named S99TUFLD) for use when specifying 
multiple parameters in a single text unit. This DSECT places the length field at 
displacement 0 for the second and subsequent combinations: 

S99TUFLD Label for the DSECT 
S99TULEN Label for the length field 
S99TUPRM Label for the parameter 

• LENGTH (S99TULNG) A two-byte binary number specifying the length of the following 
parameter field. 

• PARM (S99TUPAR) A variable-length field in which you put the parameter information 
identified by the value in the KEY field. See "Text Units by Function" for a description of 
the values you can code for each text unit key. 

The following notes apply to the structure of the text units; you will find rules for coding 
specific text units in "Text Units by Function." 

Notes: 

1. Special characters - of the type requiring apostrophes in JCL statements - are not valid 
in PARM values, except in the DALUSRID text unit. 

2. Parameters whose values consist of alphameric and national characters may include trailing 
blanks. 

3. The text units may be in any order. 

4. Each function of SVC 99 has an associated set of text units, and each set is independent of 
any other. For example, the functions of allocation and unallocation may both use a KEY 
value of '0007', but that value does not necessarily have the same meaning for both 
functions. 

Detailed Review of Dsname Allocation Processing 
The major function performed by the SVC 99 routines, and the function most often requested 
of them, is that of dynamically allocating a data set/resource according to its data set name 
(dsname). Following is a detailed discussion of the processing the SVC 99 routines perform in 
satisfying dsname allocation requests. 

When you invoke SVC 99 to perform dsname dynamic allocation, an "allocation environment" 
already exists for your request. It consists of the allocation requests made via your JCL or 
internal dynamic allocation, that have not yet been deallocated. The system considers these 
resources to be existing aUocations, and goes to them first to fill your SVC 99 requests . 

Requesting SVC 99 Functions 1-249 



For dsname allocation, the SVC 99 routines first check for environmental conflicts by noting 
the types of resources that are currently available to the task that includes your program. The 
routines then try to satisfy the request with an existing allocation that matches or can be made 
to match the request. (See the discussion of the convertible attribute in the "Dynamic 
Allocation" topic.) If the routines cannot make the match, they proceed with a new allocation. 
If an existing allocation can be used, much allocation processing is avoided. 

Checking for Environmental Conflicts 
The SVC 99 routines cannot satisfy a dsname allocation request that is in conflict with your 
existing allocation environment. Following is a list of the environmental conflicts that can 
cause your request to fail: 

• The specified ddname is associated with an existing allocation that is in use. 

• The specified ddname is associated with one of a group of concatenated data sets defined as 
permanently concatenated. (For a definition of permanently concatenated, see "The 
Permanently Concatenated Attribute.") 

• The request specifies a new non-temporary data set with the same dsname as that of an 
existing allocation. (This is not a conflict if the request specifies a different volume serial 
number.) 

• A status of OLD or SHR is specified for a dsname associated with an existing allocation 
that is not permanently allocated, not in-use, and has a disposition of DELETE. (This is 
not a conflict if the request specifies a different volume serial number.) 

• The specified ddname is associated with an existing allocation that does not have the 
convertible attribute or that does not fulfill the conditions listed under "Using an Existing 
Alloca tion." 

Using an Existing Allocation 
If possible, the SVC 99 routines will use an existing allocation - an allocated resource marked 
not-in-use - to satisfy your dsname allocation request. Although some parameters can be 
changed if necessary, the request and the existing allocation must match according to several 
criteria before the allocation can be selected to satisfy your request. 

In order to be satisfied by an existing allocation, your request must be one of the following: 

• A request for an explicit data set name (dsname), or 
• A request for the allocation of your terminal as an I/O device, or 
• A request for a dummy data set 

In order to be satisfied by an existing allocation, your request must not specify any of the 
following: 

• Data set sequence number 

• DeB reference 

• Label type 

• Parallel mounting 

• Private volume 

• Unit count 

• Unit description (If the dsname is in the form "&dsname," the unit name description is 
ignored.) 

• Volume count 

1-250 SPL: System Macros and Facilities Volume I 

/ '\ 

;! 



• Volume reference 

• Volume sequence number 

Note: MSVGP is ignored if an existing allocation is used. 

In order to be used to satisfy your request, the data set that is the existing allocation must have 
the following properties: 

• It must not be in use. 

• It must not be a member of a concatenated group. 

• It must have the same volume serial number as any explicitly specified in the request. 

• It must have the permanently-allocated attribute, if its disposition is DELETE and the 
request specifies a status of MOD. 

• It must not be a generation data group data set. 

• It must either have the convertible attribute or, if the request is in a form other than 
"&dsname," all of the following must be true: 

The request does not specify a ddname; or the specified ddname matches the ddname 
associated with the existing allocation. A terminal request that does not specify a 
ddname cannot be satisfied by an existing allocation that does not have the convertible 
attribute. 

For partitioned data sets, the member name specified in the request is the same as the 
member name associated with the existing allocation; or a member name is neither 
specified in the request nor associated with the existing allocation. 

The request does not specify input only, output only, or any DCB parameters. 

If a status of MOD is specified in the request, MOD is also associated with the existing 
allocation; or it is neither specified in the request nor associated with the existing 
allocation. 

The request does not specify that the convertible attribute be assigned to the allocation. 

The request does not specify that only existing allocations with the convertible attribute 
may be used. 

If the request specifies dsname in the form "&dsname," only the first item need be true. 

Even with all the restrictions listed here, more than one existing allocation could match your 
dsname request. Then, if you specified a ddname and one of the matching existing allocations 
is associated with that ddname, that is the allocation that the SVC 99 routines select to satisfy 
your request. 

If you did not specify a ddname, the SVC 99 routines select the matching existing allocation 
whose in-use bit was most recently turned off. (Data sets allocated via JCL are considered to 
have had their in-use attributes removed at step allocation.) 

It could happen that an existing allocation does not match your request even though it is 
associated with the same ddname you specify. Since the ddname is going to be associated with 
the resource that is allocated to your program, the system gives the rejected allocation a new 
ddname, of the form 'SYS' followed by five digits. The association of a system-generated 
ddname with an existing allocation cannot occur in the following cases: 

• The existing allocation is in use. 

• The existing allocation is open. 

• The existing allocation does not have the convertible attribute. 

Requesting SVC 99 Functions 1-251 



• The existing allocation is associated with a permanently concatenated group that does not 
represent an entire generation data set group or a multi-device-type VSAM data set. 

Changing the Parameters of an Existing Allocation 
When the dynamic allocation routines use an existing allocation to satisfy a dsname allocation 
request, some of the parameters of the existing allocation might have to be changed to reflect 
the parameters specified in the request. Only existing allocations that were dynamically 
allocated, with the convertible attribute, can have their parameters changed. Resources 
allocated via JCL or the TSO ALLOCATE command cannot have their parameters changed 
(with the exception of status and disposition specified via JCL), but they may be used if no 
changes are necessary. 

Note that, if your request does not specify the permanently allocated attribute, the allocated 
resource is automatically assigned the convertible attribute. An allocation request may specify 
both the permanently allocated and the convertible attributes in its parameter list. 

The following parameters are eligible for change by the SVC 99 routines: 

• Ddname 
• Member name 
• Status 
• Normal disposition 
• Conditional disposition 
• Space 
• Unallocation at CLOSE 
• Input only 
• Output only 
• DCB attributes 
• Password 
• Permanently allocated attribute 

No other parameters may be changed. 

Notes: 

1. You cannot change an exclusive status to shared status. For example, you cannot change 
OLD to SHR. However, it is possible to change SHR to OLD if no other jobs are 
enqueued on the requested data set, or the next job enqueued on the data set has requested 
exclusive use of the data set. 

2. You cannot change the parameters on an explicitly-referenced OUTPUT JCL statement 
(DALOUTPT). 

Using a New Allocation 
The dynamic allocation routines attempt a new allocation when they cannot satisfy your request 
with an existing allocation. New allocations cannot be processed by the dynamic allocation 
routines while a job step holds (for possible reuse) more dynamically allocated resources than 
permitted. The number of allocated resources permitted is determined in two ways: 

• The maximum number of concurrent allocation requests allowed per job step or 
time-sharing terminal session, including dynamic requests and requests made via JCL, is 
equal to the maximum number of single-unit DD statements allowed by the TIOT size 
specified at IPL. For information on how the TIOT size is related to the maximum number 
of DD statements, see "Installation Options For SVC 99 Functions" on page 1-237. 

• The control limit set by the DYNAMNBR parameter on the JCL EXEC statement plus the 
number of DD statements limits the number of resources that can be held for reuse (that is, 
resources that are allocated but whose in-use bits are off). 

1-252 SPL: System Macros and Facilities Volume I 

,/ 



(--

( 

When the maximum number of resources have been allocated and you request additional 
allocations, the dynamic allocation routines automatically attempt to deallocate enough 
resources to meet the control limit. 

Automatic Unallocation of Resources Held for Re-use 
The only resources eligible for automatic deallocation are those that were allocated dynamically 
without the permanently allocated attribute and whose in-use bit has been turned off. 
(Resources allocated through JCL and through the time-sharing ALLOCATE command are not 
eligible because they automatically have the permanently allocated attribute.) 

When many resources are eligible for automatic deallocation, the dynamic allocation routines 
choose those that have been designated as not-in-use for the longest time. These are 
deallocated and the new allocation is processed. 

If the control value is still exceeded after all eligible resources have been deallocated, the request 
for a new allocation fails. In this case, you must explicitly request deallocation of an existing 
allocation before the new allocation can be performed. 

Considerations When Requesting Dsname Allocation 
• If you do not specify a ddname, the system generates one. The ddname created consists of 

the characters 'SYS' followed by five digits. 

• You may specify passwords as part of a dynamic allocation request to bypass prompting 
the operator. 

• If you allocate a data set with a status of MOD but do not specify any volume information, 
and the data set cannot be found in the catalog, it is treated as a new data set. 

• If you specify a normal disposition of CATLG for a new direct access data set, the system 
catalogs the data set when it is allocated rather than when it is deallocated. If the data set 
cannot be cataloged, then no allocation will take place; if the data set cannot be allocated, 
it will not be cataloged. 

• Rather than wait for another user to release a data set, volume, or device in order to obtain 
use of it, the dynamic allocation routines fail a request by an unauthorized program. If an 
authorized program specifically requests a wait, the routines will wait. 

• You can request that the ddname, data set name, and volume serial number assigned by the 
allocation routines be returned in the SVC 99 parameter list. 

• You can also request that the data set organization (DSORG) of the allocated data set be 
returned in the SVC 99 parameter list. The SVC 99 routines return whatever you specify as 
the DSORG, if any. If you do not specify a DSORG on the allocation request, the system 
assigns and returns data set organizations according to the following defaults: 

If the allocation request is for a terminal as an I/O device or for a SYSOUT data set, 
'PS' (physical sequential) is returned as a default value. 

If the allocation request is for a tape data set, 'PS' is returned as a default value. 

If the allocation request is for a NEW direct access data set, 'PO' (partitioned 
organization) is returned if you specified a directory space quantity; otherwise, the data 
set is assigned the DSORG of 'PS'. 

If the allocation request is for an existing direct access data set, the data set 
organization obtained from the data set control block (DSCB) is returned. If the 
DSORG cannot be obtained from the DSCB, the allocation request is failed. 

For other types of allocation requests where you do not specify a DSORG for the data 
set, the system returns zeros in the SVC 99 parameter list field. 

Requesting SVC 99 Functions 1-253 



.... _. __ ._ .•. _- •. _--_. __ .... _. _.-- --_._ .... _-_ .. _-- .. _---_._._--

• For time-sharing users allocating new data sets using the TSO ALLOCATE command, 
DSORG is defaulted to partitioned organization (PO) if a directory quantity is specified, or 
to physical sequential (PS) otherwise. 

• You cannot.create ISAM data sets through dynamic allocation. 

• You cannot create VSAM data sets through dynamic allocation unless the storage 
management subsystem is active. 

• If you request an allocation by dsname and the dsname is already allocated but not 
available, the SVC 99 routines copy the unit and volume information from the existing 
allocation and associate the information with your request. 

• An allocation of a GDG data set will refer to the same data set for the life of the job (or 
TSO logon session), even if another generation is added during the job. 

• The dynamic allocation routines will not use passed data set information to retrieve volume 
information. 

Processing Messages from Dynamic Allocation 
Dynamic allocation indicates the outcome of an allocation request by a return code in general 
register 15 and a reason code in the request block. Even when the return code indicates a 
successful allocation, the reason code may show that a low level error occurred, one that was 
not serious enough to cause a failure. The reason code has a message associated with it, and 
programs that invoke dynamic allocation can process the reason code or the associated 
message. 

This book does not describe techniques for processing the reason code; it only describes 
techniques for processing the message. Programs that elect to process the reason code can use 
DAIRFAIL to convert the reason code into the message. DAIRFAIL is an IBM-supplied 
program that is described in TSOjE Version 2 Programming Services. 

Sending Dynamic Allocation Messages to the End User 
When a program invokes dynamic allocation, it normally does so in behalf of an end user. In a 
TSO environment, the end user is a TSO terminal. In a batch environment, the end user is the 
job. The message that dynamic allocation generates might be useful to the end user, and you 
can write programs to send the users these messages. A message can be a single message or a 
composite of several messages. You can request dynamic allocation to: 

• Send the message directly to the end user, or 
• Return the message to your program 

You can request to send the message to a TSO terminal or to the system job log. You can ask 
dynamic allocation not to send low-severity messages, such as informational messages that do 
not denote errors. 

Some installations might need to write special message-sending programs. In this case, request 
to have the message returned to your program instead of being sent. Request this by setting a 
control field in the request block extension. When you request the message to be returned, you 
can control the severity level of the returned messages. After dynamic allocation gives control 
back to your program, use IEFDB476 to help process the message. 

1-254 SPL: System Macros and Facilities Volume 1 

" .' 

... ---.~-~--~.-... -.-.----

If'"" 

~." 



(-

( 

Functions of the IEFDB476 Program 
The three main functions of IEFDB476 are: 

• Extracting messages - This function extracts the message from the system, formats it, and 
places it in a location that you specify. To extract, obtain an area of storage (GETMAIN 
macro) large enough to hold all the messages that you want to extract. When you invoke 
GETMAIN, note that the message might not be one but several separate messages. You 
must obtain 256 bytes for each separate message. The number of separate messages is in a 
request block extension field. When you invoke IEFDB476, you pass the location of the 
first 256-byte area. IEFDB476 places the extracted messages in contiguous 256-byte areas. 
Then your program can process the messages as required. 

• Sending Messages - This function sends the message to the end user. When you use this 
function, you must identify the end user that receives the message. 

• Freeing Storage - This function frees the storage area where the system keeps the message. 
To use this function, you indicate that the storage is not to be freed. Otherwise, the storage 
is freed by default. 

Note: Besides extracting messages, sending messages, and freeing storage, IEFDB476 can 
also convert a return code into the corresponding message. However, because DAIRF AIL also 
performs the same conversion function, older programs using DAIRFAIL for this purpose 
should continue to do so. 

To invoke IEFDB476, you must be in 31-bit addressing mode. General register 1 must contain 
the address of a four-byte parameter list that contains the address of the input parameter list: 

Requesting SVC 99 Functions 1-255 

---------------



Register 1 

I~ 

I + EMPARMS I /' 

/ EMPARMS 
0 

Flogs I ID III of Mes- I R d 
4 

number soge Blocks eserve 

t Either the foiling 

8 
SVC 99 or DAIR parameter list 

SVC 99 or DAIR return code 

12 

+ CPPL 
16 

+ Message Buffer ""-
18 \ Reserved 
20 

Reserved 
I 

, Message Buffers 
0 

1st message length I offset 
4 

'-' 1st message text .... '-' 

256 
offset 2nd message length I 

260 

'-' 2nd message text 

512 TL-__________ ----1T 

• 

• 

/ 

1-256 SPL:System Macros and Facilities Volume I 



(~ 

( 

The input to IEFDB476 is defined by the EMDSECTl dsect in the IEFZB476 macro: 

• Function flags (EMFUNCT) - A one-byte field that identifies the functions to be 
performed: 

Bit Bit Name 

o EMPUTLIN 

EMWTP 

Meaning when on 

Issue the messages via a PUTLINE 

Issue the messages via a WTO to the 
programmer 

2 EMRETURN Return messages in the user-supplied buffer 

3 EM KEEP Do not free the storage associated with the 
message blocks chained out of the SVC 99 
requt;st block extension. 

4-7 EMRSVOI Reserved 

• Caller identification number (EMIDNUM) -- A one-byte field that identifies the caller: 

Value Name Meaning 

50 

51 

EMDAIR 

EMSVC99 

EMFREE 

General caller with a DAIR error 

General caller with an SVC 99 error 

FREE command with an SVC 99 error 

• Number of message blocks (EMNMSGBK) - A one-byte field containing a count of the 
number of message blocks from which the text is to be extracted. The count of the nuniber 
of message blocks that is returned from SVC 99 is in field S99ENMSG of the SVC 99 
request block extension. The default count is 2 to maintain compatibili.ty with DAIRF AIL. 

• Reserved - A one-byte field containing zero. 

• Parameter list address (EMS99RBP) - A four-byte field containing the address of either the 
failing SVC 99 parameter list or the failing DAIR parameter list. 

• Return code (EMRETCOD) - A four-byte field containing the SVC 99 or DAIR return 
code 

• CPPL address (EMCPPLP) - A four-byte field containing the address of the command 
processor parameter list. This is required only when PUTLINE is requested. 

• Message buffer address (EMBUFP) - A four-byte field containing the address of the 
message buffers in which the messages are to be returned. 

• Reserved - An eight-byte field containing zero. 

The message buffer array is defined by the EMDSECT3 dsect in the IEFZB476 macro: 

• Length of message text (EMABUFLN) - A two-byte field containing the length of the 
message. The length includes the lengths of EMABUFLN and EMABUFOF . 

• Offset (EMABUFOF) - A two-byte field containing zeros. 

• Message text (EMABUFTX) - A 25I-byte field containing the returned message text. 

• Reserved- A one-byte field containing zero. 

Note: This dsect is provided for compatibility with DAIRF AIL. 

Requesting SVC 99 Functions 1-257 



The message buffers are defined by the EMDSECT2 dsect in the IEFZB476 macro: 

• Length of the first message (EMBUFL1) - A two-byte field containing the length of the 
first message. The length includes the lengths of EMBUFLl and EMBUFOI. 

• Offset (EMBUF01) - A two-byte field containing zeros. 

• Reserved - A one-byte field containing zero. 

• First message text (EMBUFT1) - A 25I-byte field containing the first returned message 
text. 

• Length of second message (EMBUFL2) - A two-byte field containing the length of the 
second message returned. The length includes the length of EMBUFL2 and EMBUF02. 

• Offset (EMBUF02) - A two-byte field containing zero. 

• Second message text (EMBUFT2) - A 25I-byte field containing the second returned 
message text. 

• Reserved - A one-byte field containing zero. 

The Dynamic Allocation Error Message Processor program (IEFDB476) produces return codes 
in general register 15. (It does not produce reason codes unless the SVC 99 caller uses a request 
block extension. The reason codes, which are in the reason code fields of the request block 
extension, are described on page 1-246.) 

Hexadecimal 
Return Code 

00 

04 

08 

OC 

10 

Meaning 

The request is successful 

The identification number of the caller is 
invalid 

An error occurred in PUT LINE or WTO while 
outputting a message. The PUTLINE or WTO 
return code, if any, is in the S99EWRC field of 
the SVC 99 request block extension. 

The program (IEFDB476) is unable to return 
messages 

The program (IEFDB476) is unable to free the 
storage associated with the message block 
chained out of the SVC 99 request block 
extension. 

Note: hexadecimal return code 10 is applicable 
only to SVC 99 callers that have a request 
block extension. 

1-258 SPL: System Macros and Facilities Volume I 

/ "\ 

./ 

I 
c·· .

. " 



(~ 

(~~ 

( 

SVC 99 Return Codes 
Note: The data area labels used in this topic are assigned by macros IEFZB4DO and 
IEFZB4D2. 

When the SVC 99 routines return control to your program, register 15 contains a return code. 
Depending on the return code, the S99ERROR and S99INFO fields in the input request block 
(S99RB) may also contain error and information reason codes. The return codes that can 
appear in register 15 are shown in Figure 59. 

Code 

0 

4 

8 

12 

Meaning 

Successful completion; there will also be an information reason code if a 
non-terminating error occurred during request processing. 

An error resulted from the current environment, the unavailability of a system 
resource, or a system routine failure; there will also be an error reason code. 

The installation validation routine denied this request. (See "Installation Input 
Validation Routine" for additional information.) 

The error is due to an invalid parameter list; there will also be an error reason code 
from class 3. (Class 3 reason codes are listed in Figure 60.) 

Figure 59. SVC 99 Return Codes 

The next two topics describe the information and error reason codes that the SVC 99 routines 
return in the SVC 99 request block. The last part of this chapter contains the descriptions of 
the SVC 99 text units, and an example of a dynamic allocation request. 

Information Reason Codes 
When the SVC 99 routines encounter a non-terminating error during processing, an information 
reason code appears in the request block field labelled S99INFO. The possible codes and their 
meanings are: 

Code Meaning 

0004 Reserved 

0008 Overriding disposition ignored for one of the following reasons: 

• Data set was originally allocated with a disposition of PASS 

• Data set is a non-subsystem data set that has a system-generated name; you 
cannot override disposition on this type of data set 

• Data set is a VSAM data set and the storage management subsystem is not 
active. 

In these cases, the data set is deallocated using the disposition specified when the 
request was allocated. 

OOOC-OOIC Reserved 

Requesting SVC 99 Functions 1-259 



0020 The data set was successfully deallocated but processing of the requested CATLG or 
UNCA TLG disposition was unsuccessful. The digit "n" is a code representing the 
reason for the failure. The possible codes and their meanings are: 

Code Meaning 

A control volume is required; a utility program must be used to catalog the data 
set. 

2 The data set to be cataloged is already cataloged; or the data set to be 
uncataloged could not be located; or no change was made to the volume serial list 
of a data set with a disposition of CATLG. 

3 The specified index does not exist. 

4 The data set could not be cataloged because the space was not available in the 
catalog. 

S Not enough storage was available to perform the specified cataloging. 

6 The data set to be cataloged in a generation index is improperly named. 

7 The data set to be cataloged has not been opened; no density information is 
available (for dual density tape requests only). 

8 Reserved 

9 An uncorrectable I/O error occurred in reading or writing the catalog. 

003n The data set was successfully deallocated but processing of the requested DELETE 
disposition was unsuccessful. The digit "n" is a code representing the reason for the 
failure. The possible codes and their meanings are: 

Code Meaning 

The expiration date has not occurred. 

2 Reserved 

3 Reserved 

4 No device was available for mounting the volume during deletion. 

S Not enough storage was available to perform the specified deletion. 

6 Either no volumes were mounted or volumes that were mounted could not be 
demounted to permit the remaining volumes to be mounted. 

8 The SCRATCH routine returned an error code. If the user's JOB statement 
requested allocation/termination messages, message IEF283I appears in the 
SYSOUT listing. This message lists the volume serial numbers of the data sets 
that were not deleted; following each number is a code that explains why each 
data set was not deleted. 

1-260 SPL: System Macros and Facilities Volume 1 

/ '\ 



( 

( 

Error Reason Codes 
When the SVC 99 routines return a nonzero return code in register. 15, the request block field 
labelled S99ERROR contains a code that explains the reason for the return code. 

Error reason codes are divided into the following classes: 

Class Description 

I Reserved 
2 Unavailable system resource 
3 Invalid parameter list 
4 Environmental error 
5 Reserved 
6 Reserved 
7 System routine error 

The error reason codes are shown in Figure 60 through Figure 63. The class designations 
listed here appear as the second digit of the reason code. 

Note: The explanations of the codes in these figures are followed, in parentheses, by an 
indication of the kind of request associated with the code. 

Requesting SVC 99 Functions 1-261 



CLASS 2 CODES (UNA V AlLABLE SYSTEM RESOURCE) 

Hex 
Code (Decimal) 

0204 (516) 

0208 (520) 

020C (524) 

0210 (528) 

0214 (532) 

0218 (536) 

021C (540) 

0220 (544) 

0224 (548) 

0228 (552) 

022C (556) 

0230 (560) 

0234 (564) 

0238 (568) 

023C (572) 

0240 (576) 

0244 (580) 

0248 (584) 

024C (588) 

0250 (592) 

0254 (596) 

0258 (600) 

025C (604) 

0260 (608) 

0264 (612) 

0268 (616) 

026C (620) 

0270 (624) 

Meaning 

Real storage unavailable. (dsname allocation) 

Reserved. 

Request for exclusive use of a shared data set cannot be honored. (dsname allocation)1 

Requested data set unavailable. The data set is allocated to another job and its usage attribute conflicts with 
this request. (dsname allocation)1 

Unit(s) not available; or, if allocating an internal reader, all defined internal readers are already allocated. 
(dsname allocation)1 

Specified volume or an acceptable volume is not mounted, and user does not have volume mounting 
authorization through SVC 99 request.(dsname allocation)1 

Unit name specified is undefined. (dsname allocation) 

Requested volume not available. (dsname allocation)2 

Eligible device types do not contain enough units. (dsname allocation)1 

Specified volume or unit in use by system. (dsname allocation) 

Volume mounted on ineligible permanently resident or reserved unit. (dsname allocation) 

Permanently resident or reserved volume on required unit. (dsname allocation) 

More than one device required for a request specifying a specific unit. (dsname allocation) 

Space unavailable in task input output table (TIOT). (dsname allocation, concatenation) 

Required catalog not mounted, and user does not have volume mounting authorization. (dsname allocation) 

Requested device is a console. (dsname allocation) 

Telecommunication device not accessible. (dsname allocation) 

MSS virtual volume cannot be mounted. (dsname allocation) 

Operating-system-managed resource was unavailable to the subsystem. (dsname allocation)3 

Subsystem resource not available. (dsname allocation)3 

The TIOT resource is currently unavailable and the user requested conditional ENQ on the resource. (all SVC 
99 functions) 

There was not a sufficient number of non-restricted units to satisfy the request, or lES3 selected a 
lES3-managed restricted unit to satisfy the request. (dsname allocation) 

Requested device is boxed and cannot be accessed, as a result of an I/O error condition or the operator issuing 
a VARY X, OFFLINE, FORCE command. (dsname allocation) 

Unit does not meet specified status requirements. (dsname allocation) 

Invalid request due to current unit status. (dsname allocation) 

Tape device is broken. (dsname allocation) 

Request requires more SMS-managed volumes than are eligible. 

Request requires more non-SMS-managed volumes than are eligible. 

The conditions that cause these return codes are detected by MVS or lES3. 

For MSS requests, the MSSC reason code for this failing job step is contained in message IEF710I on the hardcopy log. An 
explanation of the MSSC reason code is contained in Mass Storage System Extensions Messages. For non-MSS requests, this code 
is accompanied by message IEF485I. It may result from a lES3 failure because of a busy or unavailable situation. 

The information reason code contains a subsystem-defined value to further describe the error. This value is documented in 
publications associated with the particular subsystem. 

Figure 60. Class 2 Error Reason Codes (Unavailable System Resource) 

1-262 SPL: System Macros and Facilities Volume 1 

\ 
~-



( 

( 

c 

CLASS 3 CODES 

Hex 
Code (Decimal) 

0304- (772-
0338 824) 

033C- (828 
0354 852) 

0358 (856) 

035C (860) 

0360 (864) 

0364 (868) 

0368 (872) 

036C (876) 

0370 (880) 

0374 (884) 

0378 (888) 

037C (892) 

0380 (896) 

0384 (900) 

0388 (904) 

038C (908) 

0390 (912) 

0394 (916) 

0398 (920) 

039C (924) 

03AO (928) 

03A4 (932) 

03A8 (936) 

03AC (940) 

(INVALID PARAMETER LIST) 

Meaning 

Assigned by DAIR. 

Reserved. 

Overriding disposition of DELETE invalid for data set allocated as SHR. (unallocation)l 

Invalid PARM specified in text unit. (all SVC 99 functions)2 

Invalid KEY specified in text unit. (all SVC 99 functions)2 

JOBLIB/STEPLIB/JOBCAT/STEPCAT specified as ddname, or associated with specified dsname. (dsname 
allocation, ddname allocation, unallocation, concatenation, deconcatenation)l 

Authorized function requested by unauthorized user. (all SVC 99 functions) 

Invalid parameter list format. (all SVC 99 functions) 

Reserved. 

Invalid # specified in text unit. (all SVC 99 functions)2 

Duplicate KEY specified in text unit. (all SVC 99 functions)2 

Invalid LEN specified in text unit. (all SVC 99 functions)2 

Mutually exclusive KEY specified. Two keys that cannot be used together were used in the request. (dsname 
allocation, unallocation, information retrieval, remove-in-use processing)2 

Mutually inclusive KEY not specified. One key was used; two should have been used. (dsname allocation, 
unallocation)2 

Required key not specified. (ddname allocation, information retrieval, concatenation, deconcatenation, 
remove-in-use processing, un allocation) 

Duplicate ddnames specified. (concatenation) 

GDG group name specified with relative generation number exceeds 35 characters. (dsname allocation) 

Status and relative generation number are incompatible. (dsname allocation) 

Volume sequence number exceeds the number of volumes. (dsname allocation) 

Device type and volume are incompatible. (dsname allocation) 

Subsystem detected an invalid parameter. (dsname allocation)3 

Unable to protect data set/volume because of conflicting keyword specification. 

Request block extension has invalid format. 

The CPPL address is not specified ill request block extension 

The information reason code field contains 0004 if the requested function was performed, although an error occurred, as the error 
reason code indicates. 

The information reason code c.ontains the value of the key that caused the error. 

The information reason code field contains a subsystem-defined value to further describe the error. This value is documented in 
publications associated with the particular subsystem. 

Figure 61. Class 3 Error Reason Codes (Invalid Parameter List) 

Requesting SVC 99 Functions 1-263 



CLASS 4 CODES 

Hex 
Code (Decimal) 

0404- (1028-
040C 1036) 

0410 (1040) 

0414- (1044-
041C 1052) 

0420 (1056) 

0424 (1060) 

0428- (1064-
0430 1072) 

0434 (1076) 

0438 (1080) 

043C (1084) 

0440 (1088) 

0444 (1092) 

0448 (1096) 

044C (1100) 

0450 (1104) 

0454 (1108) 

0458 (1112) 

045C (1116) 

0460 (1120) 

0464 (1124) 

(ENVIRONMENTAL ERROR) 

Meaning 

Reserved. 

Specified ddname unavailable. (dsname allocation, ddname allocation) 

Reserved. 

Specified ddname or dsname associated with an open data set. (ddname allocation, concatenation, 
deconcatenation, unallocation, dsname allocation)1 

Deconcatenation would result in duplicate ddnames (deconcatenation).l 

Reserved. 

Ddname specified in ddname allocation request is associated with a convertible or non-permanently allocated 
resource. (ddname allocation) 

Specified ddname not found. (information retrieval, ddname allocation, concatenation, deconcatenation, 
un allocation) 

The system could not deallocate enough of the resources being held in anticipation of reuse to meet the 
control limit. (dsname allocation) 

Specified dsname not found. (information retrieval, unallocation) 

Relative entry number specified in information retrieval request not found. (information retrieval) 

Request for a new data set failed; the data set already exists. (dsname allocation) 

Request was made for a data set that has a disposition of delete; this request cannot be honored because the 
data set may be deleted at any time. (dsname allocation) 

Request would cause the limit of 1635 concurrent allocations to be exceeded. (dsname allocation) 

Ddname in DCB reference not found. (dsname allocation) 

Dsname in DCB reference or volume reference is a GDG group name. (dsname allocation) 

Specified dsname to be deallocated is a member of a permanently-concatenated group. (unallocation)l 

Specified dsname or member to be dea.lIocated is not associated with specified ddname. (unallocation) 

Specified dsname to be deallocated is a private catalog. (unallocation)1 

The information reason code field contains 0004 if the requested function was performed, although an error occurred as the error 
reason code indicates. 

4 

6 

The MSSC reason code for this failing job step is contained in message lEF7101 on the hardcopy log. An explanation of the MSSC 
reason code is contained in Mass Storage System Extensions Messages. 

This code corresponds to MSSC reason code '007', which is explained in Mass Storage System Extensions Messages. 

This code corresponds to MSSC reason code '207', which is explained in Mass Storage System Extensions Messages. 

The information reason code contains a subsystem-defined value to further describe the error. This value is documented in 
publications associated with the particular subsystem. 

The information reason code field contains the MSSC reason code. An explanation of the MSSC reason code is contained in Mass 
Storage System Extensions Messages. 

Figure 62 (Part 1 of 2). Class 4 Error Reason Codes (Environmental Error) 

1-264 SPL: System Macros and Facilities Volume 1 



( 

( 

( 

CLASS 4 CODES, continued 

Hex 
Code (Decimal) 

0468 (1128) 

046C (1132) 

0470 (1136) 

0474 (1140) 

0478 (1144) 

047C (1148) 

0480 (1152) 

0484 (1156) 

0488 (1160) 

048C (1164) 

0490 (1168) 

0494 (1172) 

0498 (1176) 

049C (1180) 

04AO (1184) 

04A4 (1188) 

04A8 (1192) 

04AC (1196) 

04BO (1200) 

04B4 (1204) 

04B8 (1208) 

04BC (1212) 

04CO (1216) 

04C4 (1220) 

04C8 (1224) 

04CC (1228) 

04DO (1232) 

Meaning 

Error while allocating or opening a private catalog. (dsname allocation) 

Remote work station not defined to job entry subsystem. (dsname allocation, unallocation) 

User unauthorized for subsystem request. (dsname allocation) 

Error while attempting to select optimum device. (dsname allocation). 

Unable to process job entry subsystem request. (dsname allocation, unallocation) 

Unable to establish ESTAE environment. (all SVC 99 functions) 

The number of units needed to satisfy the request exceeds the limit. (dsname allocation) 

Request denied by operator. (dsname allocation) 

GDG pattern DSCB not mounted. (dsname allocation) 

GDG pattern DSCB not found. (dsname allocation) 

Error changing allocation assignments. (dsname allocation) 

Error processing as CVOL. (dsname allocation) 

MSS virtual volume not accessible. (dsname allocation)2 

MSS virtual volume not defined. (dsname allocation)3 

Specified MSVGP name not defined. (dsname allocation)4 

Subsystem request in error. (dsname allocation)' 

Subsystem does not support allocation via key DALSSNM. (dsname allocation) 

Subsystem is not operational. 

Subsystem does not exist. 

Protect request not processed; RACF not in system or not active. 

MSS not initialized for allocation. (dsname allocation) 

MSS volume select error. (dsname allocation)6 

Protect request failed; user not defined to RACF. (dsname allocation) 

The last request was for a VOL = REF to a dsname or DCB = dsname that exceeded the maximum allowable 
dsname backward references. (A maximum of 972 backward references are allowed if the data set names are 
44 characters in length.) 

A non-zero return code was set in register 15 from either common allocation or JFCB housekeeping; however, 
the SlOT reason code (SIOTRSNC) was not set. This problem might result from installation modification of 
the eligible device table (EDT). (dsname allocation) 

Invalid output descriptor or invalid ddname reference. 

SMS (storage management subsystem) is not available. 

The information reason code field contains 0004 if the requested function was performed, although an error occurred, as the error 
reason code indicates. 

4 

6 

The MSSC reason code for this failing job step is contained in message IEF7101 on the hardcopy log. An explanation of the MSSC 
reason code is contained in Mass Storage System Extensions Messages. 

This code corresponds to MSSC reason code '007', which is explained in Mass Storage System Extensions Messages. 

This code corresponds to MSSC reason code' 207' , which is explained in Mass Storage System Extensions Messages. 

The information reason code contains a subsystem-defined value to further describe the error. This value is documented in 
publications associated with the particular subsystem. 

The information reason code field contains the MSSC reason code. An explanation of the MSSC reason code is contained in Mass 
Storage System Extensions Messages. 

Figure 62 (Part 2 of 2). Class 4 Error Reason Codes (Environmental Error) 

Requesting SVC 99 Functions 1-265 



CLASS 7 CODES (SYSTEM ROUTINE ERROR) 

Note: The failing system routine returns the code represented by "zz." 

Hex 
Code Meaning 

17zz LOCATE error. (Note: '08', '18', and '2C' are the only expected LOCATE return codes. 'FF' is returned as the value 
of zz if an unexpected return code is returned by LOCATE.) (dsname allocation) 

27zz Reserved 

37zz Reserved 

47zz DADSM allocate error. (dsname allocation)1 

57zz CATALOG error. (dsname allocation) 

67zz OBTAIN error. (dsname allocation, information retrieval)2 

7700 Subsystem error. (dsname allocation)3 

7704 A subsystem interface system error occurred while processing key DALSSNM. 

8700 Scheduler JCL Facility (SJF) error 4 

8704 

8708 

Scheduler JCL Facility access function error 

Mutual exclusivity checker error 4 

9700 Severe SMS (storage management subsystem) IDAX error 5 

9704 Severe SMS CATALOG error 5 

9708 Severe SMS VOLREF error 5 

970C Severe SMS VTOC error 5 

9710 Severe SMS DISP error 5 

9714 Severe SMS COPY SWB error S 

9728 System error wp.ile allocating a device 4 

4 

DADSM return codes can be found in Diagnosis Reference. The information reason code field might contain a value that further 
describes the error. An explanation of this value is contained in the allocation message corresponding to the error code. See the 
section on reason codes in the allocation/unallocation component of System Logic Library for the message number associated with 
the error and Message Library: System Messages for the message itself. 

OBTAIN return codes can be found in Diagnosis Reference. 

The information reason code field contains a subsystem-defined value to further describe the error. This value is documented in 
publications associated with the particular subsystem. 

A system error occurred. 

An error was detected by SMS. Request the message processing option of dynamic aliocation to obtain messages relating to the 
error. 

Figure 63. Class 7 Error Reason Codes (System Routine Error) 

1-266 SPL: System Macros and Facilities Volume I 

\..,. -",-' 



SVC 99 Text Units, by Function 
The following pages contain descriptions of each of the text units you can use in the SVC 99 
parameter list that accompanies the DYNALLOC macro. The text units are arranged 
according to the functions they request, in ascending order of their KEY values. See Figure 58 
for a general description of the text unit and text unit keys. 

You request a particular SVC 99 function by coding the appropriate verb code in the request 
block of the SVC 99 parameter list. The text units are grouped within verb codes; the largest 
group (verb code 01) is further divided into three subgroups. The verb codes and the functions 
they represent are listed below: 

Verb Code SVC 99 Function 

'01' Dsname allocation 
'02' Unallocation 
'03' Concatenation 
'04' 
'05' 
'06' 
'07' 

Deconcatenation 
Remove-in-use processing based on task-ID 
Ddname allocation 
Information retrieval 

Figure 64 through Figure 72 present the SVC 99 text units in list form, introductory to the 
descriptions of the text units in each verb code group. The mnemonics given for the text units 
are those assigned by mapping macro IEFZB4D2. 

A suggested approach to setting up your dsname text unit keys is to code the applicable JCL 
DD statement and then look up the text unit keys you need, by their mnemonics, in Figure 64. 
The descriptions of the text units are in order of the key numbers, for easy reference. 

Note that the values you specify in the text units are in binary (hexadecimal) and EBCDIC. 

Requesting SVC 99 Functions 1-267 



Hex Text IEFZB4D2 
Unit Key Mnemonic Dsname Allocation Function 1"-'>\ 
0001 DALDDNAM Associates a ddname with an allocation request. \,-) 

0002 DALDSNAM Names the data set to be allocated. 

0003 DALMEMBR Specifies data set number or relative generation number. 

0004 DALSTATS Specifies the data set status. 

0005 DALNDISP Specifies the data set's normal disposition. 

0006 DALCDISP Specifies the data set's conditional disposition. 

0007 DALTRK Specifies the space allocation in tracks. 

0008 DALCYL Specifies the space allocation in cylinders. 

0009 DALBLKLN Specifies the average data block length. 

ooOA DALPRIME Specifies a primary space quantity. 

OOOB DALSECND Specifies a secondary space quantity. 

OOOC DALDIR Specifies the number of PDS directory blocks. 

ooOD DALRLSE Deletes unused space at data set closure. 

OOOE DALSPFRM Ensures a specific allocated space format. 1'- -, 
ooOF DALROUND Specifies space allocation in whole cylinders. 

0010 DALVLSER Specifies volume serial numbers. 
\ 

0011 DALPRIVT Specifies the private volume use attribute. 

0012 DALVLSEQ Specifies the volume sequence number processing. 

0013 DALVLCNT Specifies the data set's volume count. 

0014 DALVLRDS Specifies volume reference to a cataloged data set. 

0015 DALUNIT Describes the unit specification. 

0016 DALUNCNT Specifies the number of devices to be allocated. 

0017 DALPARAL Specifies parallel mounting for a data set's volumes. 

0018 DALSYSOU Specifies the SYSOUT data set and defines its class. 
r·/~ "'-, 

0019 DALSPGNM Specifies the SYSOUT program name. ''"'-- /' 
OOIA DALSFMNO Specifies the SYSOUT form number. 

OOIB DALOUTLM Limits the SYSOUT data set's logical record count. 

OOIC DALCLOSE Frees a data set at closure. 

001O DALCOPYS Specifies the SYSOUT listing copies count. 

OOIE DALLABEL Specifies the type of volume label. 

OOIF DALDSSEQ Specifies a tape data set's relative position. 

0020 DALPASPR Password protects the created data set. 

0021 DALINOUT Specifies "input only" or "output only" data set processing. 
('\ 

0022 DALEXPDT Specifies the data set's expiration date. l 

0023 DALRETPD Specifies the data set's retention period. \~ ... ---,/ 

0024 DALDUMMY Allocates a dummy data set. 

0025 DALFCBIM Identifies the forms control buffer image. 

0026 DALFCBAV Requests operator verification of the image display or forms alignment. 

Figure 64 (Part 1 of 2). Verb Code 01 (Dsname Allocation) - Text Unit Keys, Mnemonics, and 
Functions 

1-268 SPL: System Macros and Facilities Volume 1 



( 

( 

( 

( 

Hex Text IEFZB4D2 
Unit Key Mnemonic 

0027 DALQNAME 

0028 DALTERM 

0029 DALUCS 

002A DALUFOLD 

002B DALUVRFY 

002C DALDCBDS 

002D DALDCBDD 

0058 DALSUSER 

0059 DALSHOLD 

005E DALMSVGP 

005F DALSSNM 

0060 DALSSPRM 

0061 DALPROT 

0063 DALUSRID 

0064 DALBURST 

0065 DALCHARS 

0066 DALCOPYG 

0067 DALFFORM 

0068 DALFCNT 

0069 DALMMOD 

006A DALMTRC 

006C DALDEFER 

006D DALEXPDL 

8002 DALOUTPT 

8004 DASTCL 

8005 DAMGCL 

8006 DADACL 

800B DALRECO 

800C DALKEYO 

800D DALREFD 

800E DALSECM 

800F DALLIKE 

8010 DALAVGR 

Dsname Allocation Function 

Names a TPROCESS macro, and a TCAM procedure. 

Specifies a time sharing terminal as an I/O device. 

Specifies a universal character set. 

Specifies "fold mode" for loading the requested print chain or train. 

Requests operator verification of the correct print chain or train mounting. 

Specifies the retrieval of DCB information from a cataloged data set's label. 

Specifies the retrieval of DCB information from a ddname-related, currently 
allocated data set. 

Specifies remote work station routing for the SYSOUT data set. 

Specifies hold queue routing for the SYSOUT data set. 

Specifies a group of MSS virtual volumes. 

Requests allocation of a subsystem data set. 

Specifies subsystem-defined parameters for use with key DALSSNM. 

Requests that the direct access data set or the tape volume be 
RACF-protected. 

Specifies a user ID to which the SYSOUT data set is to be routed. 

Specifies which stacker of the 3800 Printing Subsystem is to receive the 
paper output. 

Specifies the name or names of character arrangement tables for printing a 
data set on the 3800. 

Specifies how copies are to be grouped if printing is done on a 3800. 

Specifies the forms overlay to be used on the 3800 Printing Subsystem. 

Specifies the number of copies on which the forms overlay is to be printed. 

Specifies the name of the copy modification module to be loaded into the 
3800 Printing Subsystem. 

Specifies the table reference character that corresponds to a character 
arrangement table used for printing the copy modification data. 

Specifies that the system should allocate a device to the data set, but defer 
mounting the volume(s) until the data set is opened. 

Specifies the data set's expiration date. This differs from DALEXPDT 
because the year is specified with 4 digits instead of 2. 

Refers to a specific OUTPUT JCL statement. 

Specifies the storage class of a new SMS-managed data set. 

Specifies the management class of a new SMS-managed data set. 

Specifies the data class of a new SMS-managed data set. 

Specifies the organization of a new VSAM data set. 

Specifies the key offset of a new VSAM data set. 

Copies data set attributes from a DD statement. 

Copies data set attributes from a RACF data set profile. 

Copies data set attributes from a model data set. 

Specifies the value of the allocation unit. 

Figure 64 (Part 2 of 2). Verb Code 01 (Dsname Allocation) - Text Unit Keys, Mnemonics, and 
Functions 

Requesting SVC 99 Functions 1-269 



Dsname Allocation Text Units 
Most of the information that can be specified on a JCL DD statement can also be specified in 

.. rt-~ text units for the dsname allocation function (verb code '01'). These text units are described 
on the following pages and listed in Figure 64. The text units that represent DCB attributes "-....1 
are described under "DCB Attribute Text Units" and listed in Figure 65. The meaning of the 
parameters is the same as when specified on a DD statement as described in JCL User's Guide 
and JCL Reference. 

For dsname allocation text units that do not have a JCL equivalent, see Figure 66 and the 
topic "Non-JCL Dsname Allocation Functions." 

Ddname Specification - Key = '0001' 
DALDDNAM specifies a ddname to be associated with a dsname allocation request. When 
you code this key, # must be one, LEN is the length of the parameter field, and PARM 
contains the ddname. 

Example: to specify the ddname DDI, code 

KEY 
eeel 

# LEN PARM 
eeel eea3 C4 C4 FI 

Dsname Specification - Key = '0002' 
DALDSNAM specifies the name of the data set to be allocated. Dynamic allocation does not 
support backward references. See Figure 57. The QNAME (DALQNAME) and IPLTXTID 
(DALIPLTX) keys are mutually exclusive with DALDSNAM. When you code this key, # 
must be one, LEN is the length of the dsname, and PARM contains the dsname. 

Example: to specify the dsname MYDATA, code 

KEY 
eee2 

# 
eeel 

LEN 
1313136 

PARM 
D4 E8 C4 Cl E3 CI 

Example: to specify the temporary dsname &LOAD, code 

KEY 
eee2 

# 
131313 I 

LEN 
eee5 

PARM 
513 D3 06 CI C4 

Example: to specify the dsname A.B, code 

KEY 
eee2 

# 
eem 

LEN 
eee3 

PARM 
CI 48 C2 

Member Name Specification - Key = · 0003 • 
DALMEMBR specifies that a particular member of a data set is to be allocated, rather than 
the entire data set. A relative generation group number may be specified as the member name. 
When you specify DALMEMBR, you must also specify the dsname key (DALDSNAM). The 
QNAME (DALQNAME) and IPLTXTID (DALIPLTX) keys are mutually exclusive with 
DALMEMBR. When you code this key, # must be one, LEN is the actual length of the 
member name, arid P ARM contains the member name. 

Example: to specify the member name MEM I, code 

KEY 
eee3 

# LEN 
eeel eee4 

PARM 
04 C5 04 F1 

Example: to specify the relative generation number + 1, code 

KEY 
eee3 

# 
eeel 

LEN 
eee2 

PARM 
4E F1 

1-270 SPL: System Macros and Facilities Volume I 



( 

Data Set Status Specification - Key = 10004 I 
DALST ATS specifies the data set status desired. It is mutually exclusive with the SYSOUT key 
(DALSYSOU). When you code DALST ATS, # and LEN must be one, and PARM contains 
one of the following values: 

'01' if OLD is desired 
'02' if MOD is desired 
'04 ' if NEW is desired 
, 08 ' if SHR is desired 

Example: to specify a status of NEW, code 

Key # LEN PARM 
BBB4 BB01 0001 04 

Do not code MOD for temporary data sets dynamically allocated as &&dsname. 

Data Set Normal Disposition Specification - Key = 10005 I 
DALNDISP specifies the normal data set disposition desired. It is mutually exclusive with the 
SYSOUT key (DALSYSOU). When you code DALNDISP, # and LEN must be one, and 
PARM contains one of the following values: 

'01' if UNCATLG is desired 
'02' if CA TLG is desired 
'04' if DELETE is desired 
'08 ' if KEEP is desired 

Example: to specify a normal disposition of DELETE, code 

KEY # LEN PARM 
0005 00B1 0001 04 

Data Set Conditional Disposition Specification - Key = 10006 I 
DALCDISP specifies the conditional data set disposition desired. It is mutually exclusive with 
the SYSOUT key (DALSYSOU). The values for #, LEN, and PARM are the same as for 
normal disposition. 

Example: to specify a conditional disposition of DELETE, code 

KEY # LEN PARM 
OB06 0001 B0B1 04 

Track Space Type (TRK) Specification - Key = 10007 I 
DAL TRK specifies that space is to be allocated in tracks. The primary quantity space key 
(DALPRIME) or the secondary quantity space key (DALSECND) must also be specified when 
you code DALTRK. The text unit keys that define space in terms of cylinders (DALCYL, 
DALROUND) or blocks (DALBLKLN) are mutually exclusive with DALTRK. When you 
code this key, # must be zero; LEN and PARM are not specified. 

Example: to specify a space request in tracks, code 

KEY # LEN PARM 
BB07 BB0B 

Requesting SVC 99 Functions 1-271 



Cylinder Space Type (CYL) Specification - Key = • 0008' 
DALCYL specifies that space is to be allocated in cylinders. The primary quantity space key 
(DALPRIME) or secondary quantity space key (DALSECND) must also be specified when you r"" 
code this key. The text unit keys that define space in terms of tracks (DALTRK)or blocks V 
(DALBLKLN) are mutually exclusive with DALCYL. When you code this key, # must be 
zero; LEN and P ARM are not specified. 

Example: to specify a space request in cylinders, code 

KEY # LEN PARM 
0008 0000 

Block Length Specification - Key = • 0009 • 
DALBLKLN specifies the average data block length to be used by the system in computing the 
amount of space to allocate. The primary quantity space key (DALPRIME) or the secondary 
quantity space key (DALSECND) must also be specified when you code this key. The text unit 
keys that request space in terms of tracks (DALTRK) or cylinders (DALCYL, DALROUND) 
are mutually exclusive with DALBLKLN. When you code this key, # must be one, LEN must 
be three, and PARM contains the average data block length. The maximum PARM value is / '-, 
'OOFFFF' (65,535). DALBLKLN is mutually exclusive with DALAVGR. 

Example: to specify an average data block length of 80, code 

KEY # LEN PARM 
0009 0001 0003 00 00 50 

Primary Space Quantity Specification - Key = · OOOA • 
DALPRIME specifies a primary space quantity. You must also code one of the space type 
keys (DALBLKLN, DALCYL, DALTRK) when you specify DALPRIME. When you code /' .". 
this key, # must be one, LEN must be three, and PARM contains the primary quantity value. ~ j 

Example: to specify a primary quantity of 20, code 

KEY # LEN PARM 
000A 0001 0003 00 00 14 

Secondary Space Quantity Specification - Key = • OOOB • 
DALSECND specifies a secondary space quantity. You must also code one of the space type 
keys (DALBLKLN, DALCYL, DALTRK) when you specify DALSECND. When you code 
this key, # must be one, LEN must be three, and PARM contains the secondary quantity value. /' 

Example: to specify a secondary space quantity of 10, code 

KEY # LEN PARM 
000B 0001 0003 00 00 0A 

Directory Block Specification - Key = • OOOC • 
DALDIR specifies the number of blocks to be contained in the directory of a partitioned data 
set. You may also specify a space type key (DALBLKLN, DALCYL, or DALTRK) and the 
primary quantity key (DALPRIME) when coding DALDIR. With SMS, the number of blocks 
that you specify with DALDIR overrides the number that is specified in the data class of the 
data set. When you code this key, # must be one, LEN must be three, and PARM contains the 
number of directory blocks. 

Example: to specify two directory blocks, code 

KEY # LEN PARM 
000e 0001 0003 00 00 02 

1-272 SPL: System Macros and Facilities Volume 1 



Unused Space Release (RLSE) Specification - Key = '0000' 
DALRLSE specifies that unus<.d space is to be deleted when the data set is closed. When you 

(~/ code this key, # must be zero; LEN and PARM are not coded. 

( 

Example: to specify the release of unused space, code 

KEY 
G00D 

# 
0000 

LEN PARM 

Format of Allocated Space Specification - Key = 'OOOE' 
DALSPFRM specifies a particular format of allocated space. When you code this key, # and 
LEN must be one, and PARM contains one of the following values: 

'02' if different areas of contiguous space are to be allocated (ALX) 
'04' if maximum contiguous space is required (MXIG) 
'08' if space must be contiguous (CONTIG) 

Example: to specify contiguous space format, code 

KEY # LEN PARM 
000E 0001 0001 08 

Whole Cylinder Allocation (ROUND) Specification - Key = 'OOOF' 
DALROUND specifies that allocated space is to be equal to one or more whole cylinders when 
requested in units of blocks. When you code this key, # must be zero; LEN and PARM are 
not specified. 

Example: to specify allocation of whole cylinders, code 

KEY # LEN PARM 
000F 0000 

Volume Serial Specification - Key = '0010' 
DALVLSER specifies volume serial numbers. It is mutually exclusive with the SYSOUT 
(DALSYSOU) and volume reference (DAL VLRDS) keys. When you code DAL VLSER, # 
contains the number of volume serials being specified, LEN contains the length of the 
immediately following volume serial, and PARM contains the volume ~erial. 

Example: to specify the volume serials 231400 and 231401, code 

KEY # LEN PARM LEN PARM 
0010 0002 0006 F2 F3 Fl F4 F0 F0 0006 F2 F3 Fl F4 F0 Fl 

Private Volume Specification - Key = '0011' 
DALPRIVT specifies that the volume(s) allocated are to be assigned the volume use attribute of 
private. This key is mutually exclusive with the SYSOUT key (DALSYSOU). When you code 
DALPRIVT, # must be zero; LEN and PARM are not specified. 

Example: to specify the private volume attribute, code 

KEY 
0011 

# LEN 
0000 

PARM 

Requesting SVC 99 Functions 1-273 



Volume Sequence Number Specification - Key = '0012' 
DALVLSEQ specifies which volume, of a multi-volume data set, processing is to begin with. 
This key is mutually exclusive with the SYSOUT key (DALSYSOU). When you code l'-'" 
DALVLSEQ, # must be one, LEN must be two, and and PARM contains the volume sequence i'\..../' 
number. The maximum PARM value is I OOFF I (255). 

Example: to specify a volume sequence number of two, code 

KEY 
8012 

# 
8881 

LEN 
8082 

PARM 
8882 

Volume Count Specification - Key = '0013' 
DALVLCNT specifies the maximum number of volumes an output data set may require. This 
key is mutually exclusive with the SYSOUT key (DALSYSOU). When you code DAL VLCNT, 
# and LEN must be one, and P ARM contains the volume count. 

Example: to specify a volume count of 10, code 

KEY 
8813 

# 
8881 

LEN 
8081 

PARM 
8A 

Volume Reference to a Dsname Specification - Key = '0014' 
DAL VLRDS indicates that the system is to obtain volume serial information from the specified 
cataloged data set. This key is mutually exclusive with the SYSOUT (DALSYSOU) and 
volume serial (DAL VLSER) keys. (You cannot use a volume reference to a ddname for 
dynamic allocation.) When you code this key, # must be one, LEN is the actual length of the 
dsname, and PARM contains the dsname (a name of all blanks is invalid). 

Example: to specify volume reference to the data set DSNI, code 

KEY 
8014 

# 
8881 

LEN 
8884 

PARM 
C4 E2 D5 Fl 

Unit Description Specification - Key = '0015' 
DALUNIT specifies a unit as a group (esoteric) name, a device type (generic), or a specific unit 
address (in EBCDIC). When you code DALUNIT, # must be one, LEN is the actual length of 
the unit description, and PARM contains the unit description. 

Example: to specify the group name SYSDA, code 

KEY # 
8015 8881 

LEN 
8805 

PARM 
E2 E8 E2 C4 C1 

Example: to specify the device type 3330, code 

KEY # LEN PARM 
0815 8881 8804 F3 F3 F3 F8 

Example: to specify the unit address 230, code 

KEY 
8815 

# 
8881 

LEN 
8883 

PARM 
F2 F3 F8 

1-274 SPL: System Macros and Facilities Volume 1 

" '. 



( 

Unit Count Specification - Key = '0016' 
DALUNCNT specifies the number of devices to be allocated. It is mutually exclusive with the 
parallel mount key (DALPARAL). When you code DALUNCNT, # and LEN must be one, 
and PARM contains the unit count. The maximum PARM value is '3B' (59). 

Example: to specify a unit count of ten, code 

KEY # LEN PARM 
ee16 eeel eeel eA 

Parallel Mount Specification - Key = '0017' 
DALPARAL specifies that each volume of a data set is to be mounted on a separate device. It 
is mutually exclusive with the unit count key (DALUNCNT). When you code DALPARAL, # 
must be zero; LEN and PARM are not specified. 

Example: to specify parallel mount, code 

KEY # LEN PARM 
ee17 eeee 

SYSOUT Specification - Key = '0018' 
DALSYSOU specifies that a system output data set is to be allocated and defines the output 
class of the data set. When you code this key and want a class other than the default, # and 
LEN must be one, and PARM contains the output class. To obtain the class from the 
OUTPUT DD statement, if specified, code zero in the # field; LEN and PARM are not 
specified. If no OUTPUT DD statement is found, the default message class is used. 
DALSYSOU is mutually exclusive with the following text unit keys: 

DALSTATS, DALNDISP and DALCDISP 
DALVLSER, DALPRIVT, DALVLSEQ, DALVLCNT, and DALVLRDS 
DALQNAME 
DALSSNM, DALSSPRM, and DALSSATT 

Example: to specify a SYSOUT data set in class A, code 

KEY # LEN PARM 
ee18 eeel eeel Cl 

Example: to specify a SYSOUT data set and to default the class, code 

KEY # LEN PARM 
e618 eeee -

SYSOUT Program Name Specification - Key = '0019' 
DALSPGNM specifies the SYSOUT program name. The SYSOUT key (DALSYSOU) must 
also be specified when you code DALSPGNM. The subsystem name request (DALSSNM), 
subsystem parameter (DALSSPRM), and SYSOUT userid (DALUSRID) keys are mutually 
exclusive with DALSPGNM. When you code this key, # must be one, LEN is the actual length 
of the name, and PARM contains the program name. 

Example: to specify the program name MYWRITER, code 

KEY # LEN PARM 
ee19 eeel 0ee8 04 E8 E6 09 C9 E3 C5 09 

Requesting SVC 99 Functions 1-275 



SVSOUT Form Number Specification - Key = 1001 A I 
DALSFMNO specifies the SYSOUT form number. The SYSOUT (DALSYSOU) key must 
also be· specified when you code DALSFMNO. The subsystem name request (DALSSNM) and I-~ 
subsystem parameter (DALSSPRM) keys are mutually exclusive with DALSFMNO. When you '~ 
code this key, # must be one, LEN is the actual length of the form number, and PARM 
contains the form number. 

Example: to specify the form number 1234, code 

KEY # LEN PARM 
ee1A eeel eee4 F1 F2 F3 F4 

SYSOUT Output Limit Specification - Key = 1001 B I 
DALOUTLM specifies the number of logical records in a SYSOUT data set. The SYSOUT 
key (DALSYSOU) must also be specified when you code DALOUTLM. When you code this 
key, # must be one, LEN must be three, and PARM contains the output limit. 

Example: to specify an output limit of 1000, code 

KEY # LEN PARM 
ee1B eeel eee3 ee e3 E8 

Unallocation at CLOSE Specification - Key 1001 C I 
DALCLOSE requests unallocation when a DCB is closed rather than at step unallocation. 
When you code DALCLOSE, # must be zero; LEN and PARM are not specified. 

Example: to specify unallocation at CLOSE, code 

KEY # LEN PARM 
ee1C eeee -

SYSOUT Copies Specification - Key = 1001 D I 
DALCOPYS requests up to 255 hardcopy listings of a particular SYSOUT data set. The 
SYSOUT key (DALSYSOU) must also be specified when you code DALCOPYS. When you 
code this key, # and LEN must be one, and PARM contains the number of copies being 
requested. 

Example: to specify a request for 25 copies, code 

KEY # LEN PARM 
ee1D eeel eeel 19 

Label Type Specification - Key = 1001 E I 
DALLABEL specifies the type of label associated with a volume. It is mutually exclusive with 
the SYSOUT (DALSYSOU) key. When you code DALLABEL, # and LEN must be one, and 
P ARM contains one of the following values: 

'01' if the volume has no label (NL) 
'02' if the volume has an IBM standard label (SL) 
'04' if the volume has a non-standard label (NSL) 
'OA' if the volume has both an IBM standard label and a user label (SUL) 
, 10' if label processing is to be bypassed (BLP) 
, 21' if the system is to check for and bypass a leading tape mark on DOS unlabeled tape 

(LTM) 
'40' if the volume has an American National Standard label (AL) 
'48' if the volume has an American National Standard label and an American National 

Standard user label (AUL) 

1-276 SPL: System Macros and Facilities Volume 1 

/' '\ 



( 

(-

( 

" .. ___ . __ 0_._._- 0 .. _ . " ." ___ .. _" ___ _ 
."- ~ -._------------- -- ----_.- _._ ... -

Example: to specify no labels, code 

KEY # LEN PARM 
001E 0001 0001 01 

Note: If your installation has not specified the BLP feature in the JES2 reader cataloged 
procedure, specifying BLP has the same effect as specifying NL. 

Data Set Sequence Number Specification - Key = '001 F ' 
DALDSSEQ specifies the relative position of a data set on a tape volume (data set sequence 
number). It is mutually exclusive with the SYSOUT (DALSYSOU) key. When you code 
DALDSSEQ, # must be one, LEN must be two, and PARM contains the sequence number. 
The maximum PARM value is I 270F I (9999). 

Example: to specify a data set sequence number of 2, code 

KEY # LEN PARM 
001F 0001 0002 00 02 

Password Protection Specification - Key = '0020' 
DALPASPR specifies that the data set being created is to be password protected. It is mutually 
exclusive with the SYSOUT (DALSYSOU) key. When you code DALPASPR, # and LEN 
must be one, and PARM contains one of the following values: 

I 10" if the data set should not be read, changed, extended, or deleted without the password. 

"30 I if the data set should not be changed, extended, or deleted without the password. 
Reading is permitted. 

Example: to specify complete password protection, code 

KEY # LEN PARM 
0020 0001 0001 10 

Input Only or Output Only Specification - Key = '0021' 
DALINOUT specifies that the data set is to be processed for input only or output only. In the 
case of BDAM and BSAM data sets, this key overrides OPEN macro options (INOUT, 
UPDAT, aUTIN, OUTINX) the same way the JCL LABEL parameter options IN and OUT 
do. See JCL User's Guide and JCL Reference for details. 

DALINOUT is mutually exclusive with the SYSOUT (DALSYSOU) key. When you code 
DALINOUT, # and LEN must be one, and PARM contains one of the following values: 

"40 I if output only is to be requested. 
"80 I if input only is to be requested. 

Example: to specify processing for input only, code 

KEY # LEN PARM 
0021 0001 0001 80 

Expiration Date Specification (Short Form) - Key = '0022' 
DALEXPDT specifies the date when the data set can be deleted or overwritten by another data 
set. This key is mutually exclusive with the retention period (DALRETPD) and SYSOUT 
(DALSYSOU) keys. When you code DALEXPDT, # must be one, LEN must be five, and 
PARM contains five digits - a two-digit year value and a three-digit day value (yyddd). 

Example: to specify an expiration date of January 1, 1985 (85001), code 

KEY # LEN PARM 
0022 0001 0005 F8 F5 F0 F0 F1 

Requesting SVC 99 Functions 1-277 



Retention Period Specification - Key = '0023' 
DALRETPD specifies the number of days that must pass before the data set can be deleted or 

, overwritten by another data set. It is mutually exclusive with the expiration date 
(DALEXPDT) and SYSOUT (DALSYSOU) keys. When you code DALRETPD, # must be 
one, LEN must be two, and P ARM contains the retention period. The maximum P ARM value 
is I 270F I (9999). 

Example: to specify a retention period of 10 days, code 

KEY # LEN PARM 
0023 0001 0002 000A 

Dummy Data Set Specification - Key = '0024' 
DALDUMMY requests that a dummy data set be allocated. When you code this key, # must 
be zero; LEN and PARM are not specified. 

Example: to request allocation of a dummy data set, code 

KEY # LEN PARM 
0024 0000 -

Forms Control Buffer (FCB) Image Identification Specification - Key = '0025' 
DALFCBIM specifies the code that identifies the image to be loaded into the forms control 
buffer (FCB). It is mutually exclusive with the DCB INTVL (DALINTVL) and FRID 
(DALFRID) keys. When you code DALFCBIM, # must be one, LEN contains the length of 
the image-id (maximum of 4), and PARM contains the image-id. 

Example: to specify the image-id STD 1, code 

KEY # LEN PARM 
0025 0001 0004 E2 E3 C4 F1 

Form Alignment and Image Verification Specification - Key = 10026 I 
DALFCBA V requests that the operator be prompted to check the alignment of the printer 
forms before the data set is printed, or to visually verify the image displayed on the printer as 
the desired one. The FCB image-id (DALFCBIM) key must also be coded when DALFCBA V 
is specified. When you code this key, # and LEN must be one, and PARM contains one of the 
following values: 

'04 I if verification is requested (VERIFY). 
'08 I if alignment is requested (ALIGN). 

Example: to specify verification, code 

KEY # LEN PARM 
0026 0001 0001 04 

QNAME Specification - Key = '0027 I 
DALQNAME specifies the name of a TPROCESS macro and an optional qualifier designating 
the particular TCAM job or started task associated with the process name. The dsname 
(DALDSNAM), member name (DALMEMBR), IPLTXTID (DALIPLTX), and SYSOUT 
(DALSYSOU) keys are mutually exclusive with DALQNAME. The DCB BLKSIZE 
(DALBLKSZ), BUFL (DALBUFL), LRECL (DALLRECL), OPTCD (DALOPTCD) and 
RECFM (DALRECFM) keys (see "DCB Attribute Text Units") are meaningful with 
DALQNAME. 

1-278 SPL: System Macros and Facilities Volume 1 



When you code this key, # must be one, LEN is the length of the entire process name 
(maximum of eight characters for each name, plus a period if you are coding two names; total 
of 17), and PARM contains the process name itself. 

Example: to specify the process name TP 1, code 

KEY # LEN PARM 
0027 0001 0003 E3 07 F1 

Example: to specify the process name TPR.TCAM2, code 

KEY # LEN PARM 
0027 0001 0009 E3 07 09 4B E3 C3 C1 04 F2 

Terminal Specification - Key = 10028 I 
DALTERM specifies that a time-sharing terminal is to be used as an I/O device. In a batch 
environment, the specification is not used, but is checked for syntax. In a time-sharing 
environment, all other specifications except DCB specifications are ignored when DALTERM is 
coded. When you code this key, # must be zero; LEN and PARM are not specified. 

Example: to specify a terminal allocation, code 

KEY 
0028 

# 
0000 

LEN PARM 

Universal Character Set (UCS) Specification - Key = 10029 I 
DALUCS identifies a special character set to be used for printing a data set. The DCB INTVL 
(DALINTVL) and RESERVE (DALRSRVF and DALRSRVS) keys (see "DCB Attribute Text 
Units") are mutually exclusive with DALUCS. When you code this key, # must be one, LEN 
is the length of the character set name code (maximum is four) and PARM contains the 
character set code. 

Example: to specify the character set code AN, code 

KEY # LEN PARM 
0029 0001 0002 C1 05 

Fold Mode Specification - Key = I 002A I 
DALUFOLD specifies that the chain or train corresponding to the desired character set is to be 
loaded in the fold mode. You must also specify the universal character set key (DALUCS) 
when you code DALUFOLD. When you code this key, # must be zero; LEN and PARM are 
not specified. 

Example: to specify fold mode, code 

KEY 
002A 

# 
0000 

LEN PARM 

Character Set Image Verification Specification - Key = 10028 I 
DALUVRFY requests that the operator be prompted to verify that the correct chain or train is 
mounted before the data set is printed. You must also specify the universal character set key 
(DALUCS) when you code DALUVRFY. When you code this key, # must be zero; LEN and 
P ARM are not specified. 

Requesting SVC 99 Functions 1-279 



-- - --- -- -- -~---------------------
~- ---------------- --- -- ----

Example: to specify character set image verification, code 

KEY 
002B 

# 
0000 

LEN PARM 

DCB Reference to a Dsname Specification - Key = I 002C I 
DALDCBDS specifies that DCB information is to be retrieved from the data set label of a 
cataloged data set. This data set must reside on a direct access volume and the volume must 
currently be mounted. 

The DSORG, RECFM, OPTCD, BLKSIZE, LRECL, RKP, and KEYLEN DeB attributes, 
and the volume sequence number and expiration date are copied from the data set label. If text 
units for those parameters are coded in addition to this key, the text unit specifications override 
the parameters copied from the data set label. 

DALDCBDS is mutually exclusive with DCB reference to a ddname (DALDCBDD). When 
DALDCBDS is specified, # must be one, LEN is the length of the dsname, and PARM 
contains the data set same. (A dsname of all blanks is invalid.) 

Example: to specify DCB reference to the dsname ABC, code 

KEY # 
002C 0001 

LEN 
0003 

PARM 
C1 C2 C3 

DCB Reference to a Ddname Specification - Key = I 002D I 
DALDCBDD specifies that DCB information is to be retrieved from the currently allocated 
data set associated with the specified ddname. For time-sharing users, the expiration date and 
INPUT jOUTPUT ONLY specifications are also retrieved. This key is mutually exclusive with 
DCB reference to a dsname (the DALDCBDS key). Any DCB attributes, expiration date 
(DALEXPD), and INPUT/OUTPUT ONLY (DALINOUT) keys specified in addition to this 
key override the corresponding DCB parameters associated with the ddname. 

When you code DALDCBDD, # must be one, LEN is the length of the ddname, and PARM 
contains the ddname. 

Example: to specify DCB reference to the ddname DDl, code 

KEY 
0020 

#. 
0001 

LEN 
0003 

PARM 
C4 C4 F1 

SYSOUT Remote Work Station Specification - Key = 10058 I 
DALSUSER requests that the SYSOUT data set being allocated be routed to a remote work 
station when it is deallocated. When coded in conjunction with the user ID key (DALUSRID), 
this key represents the node to which the user ID is assigned. The SYSOUT key (DALSYSOU) 
is required with this key. When you code DALSUSER, # must be one, LEN is the length of 
the work station name (maximum of 8), and PARM contains the work station name. 

Example: to specify the work station USEROl, code 

KEY 
0058 

# 
0001 

LEN 
0006 

PARM 
E4 E2 C5 09 F0 F1 

1-280 SPL: System Macros and Facilities Volume I 

tfr~ ',,-, 



( 

( 

( 

SYSOUT Hold Queue Specification - Key = 10059 I 
DALSHOLD requests that the SYSOUT data set being allocated be placed on the hold queue 
when it is deallocated. The SYSOUT key (DALSYSOU) must also be specified when 
DALSHOLD is specified. When you code this key, # must be zero; LEN and PARM are not 
specified. 

Example: to specify hold, code 

KEY 
0059 

# 
0000 

LEN PARM 

MSVGP Specification - Key = lOOSE I 

DALMSVGP specifies a group of MSS virtual volumes. It is mutually exclusive with the 
SYSOUT (DALSYSOU), QNAME (DALQNAME), and volume serial (DALVLSER) text unit 
keys. When you code DALMSVGP, # must be one, LEN is the actual length of the MSVGP 
name, and P ARM contains the group name. 

Example: to specify a MSS volume group of SYSGROUP, code 

KEY # 
005E 0001 

LEN 
0008 

PARM 
E2 E8 E2 C7 09 06 E4 07 

Subsystem Name Request Specification - Key = I 005F I 
DALSSNM specifies a subsystem data set. You must specify the name of the subsystem that is 
to process the request for allocation unless you want the request processed by the default 
subsystem. 

• When you code DALSSNM to request a subsystem other than the default subsystem, # 
must be one, LEN specifies the length of the subsystem name (maximum of four) and 
PARM contains the subsystem name (one to four characters). 

The first character of the subsystem name must be either alphabetic or national and the 
remaining characters must be either alphameric or or national. See JCL Reference for a list 
of the alphameric and national character sets. 

• When you code DALSSNM to request the default subsystem, # must be zero; LEN and 
P ARM are not be specified. 

DALSSNM is mutually exclusive with the SYSOUT (DALSYSOU), SYSOUT program name 
(DALSPGNM) and SYSOUT form number (DALSFMNO) keys. 

Your installation's system programming staff can identify the subsystems at your installation 
that support DALSSNM requests. 

Example 1: to request subsystem SUBl, code 

KEY 
005F 

# 
0001 

LEN 
0004 

PARM 
E2 E4 C2 F1 

Example 2: to request the default subsystem, code 

KEY 
005F 

# 
0000 

LEN PARM 

Requesting SVC 99 Functions 1-281 



Subsystem Parameter Specification - Key = • 0060 • 
DALSSPRM specifies parameters that will be processed by a subsystem. When coding 
DALSSPRM, you must also specify the subsystem name (DALSSNM) key. DALSSPRM is 
mutually exclusive with the SYSOUT (DALSYSOU), SYSOUT program name (DALSPGNM), 
and SYSOUT form number (DALSFMNO) keys. 

When you code this key, # contains the number of LEN and PARM combinations that are 
present (maximum of 254), LEN specifies the length of the immediately-following parameter 
(value range from ° to 67), and PARM contains the parameter to be passed to the subsystem. 
When you code a LEN value of 0, do not code a PARM value. 

Example: to specify two parameters, PARM 1 and P ARAMETER2, code: 

KEY # LEN PARM 
0060 0002 0005 07 C1 09 04 F1 

000A 07 C1 09 C1 04 C5 E3 C5 09 F2 

Note: For additional information about subsystem data sets and subsystem parameters, refer 
to the documentation for the particular subsystem. 

PROTECT Specification - Key = '0061' 
DALPROT requests that the specified direct access data set or tape volume be RACF-protected 
when defined (DASD) or used (tape). It is mutually exclusive with the SYSOUT 
(DALSYSOU), FCB (DALFCBIM), QNAME (DALQNAME), terminal (DALTERM) and 
UCS (DALUCS) keys. 

When you code DALPROT, # must be zero; LEN and PARM are not specified. See JCL 
User's Guide and JCL Reference for additional information about specifying the PROTECT 
function. 

Example: to specify PROTECT, code 

KEY # LEN PARM 
0061 0000 

SYSOUT User ID Specification - Key = • 0063 • 
DALUSRID requests that the SYSOUT data set being allocated be routed to the specified user 
ID at a remote location. The SYSOUT (DALSYSOU) and SYSOUT remote work station 
(DALSUSER) keys are required with this key. The SYSOUT program name key 
(DALSPGNM) is mutually exclusive with DALUSRID. 

When you code this key, # must be one, LEN is the length of the user ID (maximum of 8), and 
PARM contains the user ID itself. The user ID may be any EBCDIC characters, including 
special characters. 

Example: to send the Class A SYSOUT data set to user ID D58-VWM at remote work station 
(node) DALLAS, code 

KEY # LEN PARM 
0063 0001 0007 C4 F5 F8 60 E5 E6 04 
0018 0001 0001 C1 
0058 0001 0006 C4 C1 03 03 C1 E2 

1-282 SPL: System Macros and Facilities Volume 1 

o 



( 

( 

Burst Specification - Key = 10064 I 
DALBURST specifies which stacker of the 3800 Printing Subsystem is to receive the paper 
output. 

When you code this key, # and LEN must be one, and PARM contains one of the following 
values: 

'02 I for burster-trimmer-stacker 
'04 I for continuous form stacking 

Example: to specify continuous form stacking, code 

KEY 
BB64 

# 
BBBI 

LEN 
BBB! 

PARM 
B4 

Character Arrangement Table Specification - Key = 10065 I 
DALCHARS specifies the name or names of character arrangement tables for printing a data 
set on the 3800 Printing Subsystem. 

When you code this key, # contains the number of character arrangement tables being specified, 
LEN contains the length of the immediately-following character arrangement table, and PARM 
contains the name of the character arrangement table. 

Example: to specify the character arrangement tables GSlO and GS12, code 

KEY 
0065 

# 
0B02 

LEN 
BBB4 

PARM 
C7E2FIFB 

LEN 
0004 

Copy Groups Specification - Key = 10066 I 

PARM 
C7E2F1F2 

DALCOPYG specifies how multiple copies of 3800 output are to be grouped. The copies 
specification (DALCOPYS) key is required with this key. 

When you code DALCOPYG, # contains the number of group values being specified, LEN 
must be one, and PARM contains the number of copies of each page that are to be grouped 
together. 

Example: to indicate that six copies of the data set are to be printed in three groups; and that 
the first group is to contain one copy of each page, the second group is to contain three copies 
of each page, and the third group is to contain two copies of each page, code 

KEY 
BBID 
BB66 

# 
BBB! 
0003 

LEN 
B0B! 
B0B! 

PARM 
06 
B! 

LEN PARM LEN 

BB01 03 00BI 

Flash Forms Overlay Specification - Key = 10067 I 

PARM 

B2 

DALFFORM specifies the forms overlay to be used on the 3800 Printing Subsystem. 

When you code this key, # must be one, LEN contains the length of the immediately-following 
form name, and PARM contains the name of the forms overlay frame that the operator is to 
insert into the printer before printing begins. 

Example: to specify the forms overlay frame named ABCD, code 

KEY 
BB67 

# 
BBB! 

LEN 
BB04 

PARM 
CIC2C3C4 

Requesting SVC 99 Functions 1-283 



Flash Forms Overlay Count Specification -Key = 10068 I 
DALFCNT specifies the number of copies on which the forms overlay is to be printed. When 
specifying DALFCNT, you must also specify the flash forms overlay (DALFFORM) key. 

When you code DALFCNT, # and LEN must be one, and PARM contains the number of 
copies. 

Example: to specify that the first five copies are to be flashed with the forms overlay, code 

KEY 
0068 

# 
0001 

LEN 
0001 

PARM 
05 

Copy Modification Module Specification - Key = 10069 I 
DALMMOD specifies the name of the copy modification module to be loaded into the 3800 
Printing Subsystem. 

When you code DALMMOD, # must be one, LEN contains the length of the 
immediately-following module name and PARM contains the name of the copy modification 
module. 

Example: to specify that the data in the copy modification module named A is to replace the 
variable data in the data set, code 

KEY 
0069 

# 
0001 

LEN 
0001 

PARM 
C1 

Copy Module Table Reference Specification - Key = I 006A I 
DALMTRC specifies the table reference character that corresponds to a character arrangement 
table specified on the DALCHARS text unit key, and used for printing the copy modification 
data. When specifying DALMTRC, you must also specify the copy modification module 
specification (DALMMOD) key. 

When you code this key, # and LEN must be one and PARM contains one of the following 
values: 

'00' for the first character arrangement table specified on the DALCHARS text unit 
'01' for the second character arrangement table specified 
'02' for the third character arrangement table specified 
'03' for the fourth character arrangement table specified 

Example: to indicate that the first character arrangement table specified on the DALCHARS 
key is to be used, code 

KEY 
006A 

# 
0001 

LEN 
0001 

PARM 
00 

DEFER Specification - Key = I 006C I 
DALDEFER specifies that the system should allocate a device to the data set, but the 
volume(s) on which the data set resides should not be mounted until the data set is opened. 

When you code DALDEFER, # must.be zero; LEN and PARM are not specified. See JCL 
User's Guide and JCL Reference for the rules regarding the use of DEFER. 

Example: to specify a request for deferred mounting of a volume or volumes, code 

KEY 
006C 

# 
0000 

LEN PARM 

1-284 SPL: System Macros and Facilities Volume 1 

,/ 

c 



( 

( 

( 

EXPIRATION DATE Specification (Long Form). Key = '0060' 
DALEXPDL specifies the date when the data set can be deleted or overwritten by another data 
set. The key is mutually exclusive with the retention period (DALRETPD), SYSOUT 
(DALSYSOU), and expiration date short form (DALEXPDT) keys. When you code 
DALEXPDL, # must be 1, LEN must be 7, and parm must contain seven digits -- a four-digit 
year value and a three-digit day value (yyyyddd). 

Example: to specify an expiration date of January 1, 2005 (2005001), code 

KEY # LEN PARM 
ee6D eeel eee7 F2 Fe Fe F5 Fe Fe FI 

OUTPUT Statement Reference· Key = '8002 I 
DALOUTPT explicitly associates a SYSOUT data set with the OUTPUT JCL statement 
specified in the PARM field. The SYSOUT (DALSYSOU) text unit key is required with this 
key. 

When you code DALOUTPT, # is a number ranging from one to 128 ('0080'), LEN is the 
length of the PARM field, (maximum of 'OOlA'), and PARM contains the name of the 
OUTPUT statement in one of the following forms: 

name 
stepname.name 
stepname. procstepname.name 

Example: to reference an OUTPUT JCL statement named oun in the job step named STEP1, 
and another named OUTX in the current step, code 

KEY # LEN PARM 
8ee2 eee2 eeeA E2 E3 C5 07 Fl 4B 06 E4 E3 Fl 

eee4 D6 E4 E3 E7 

Storage Class Specification. Key = 18004 I 
Code DALSTCL to specify the storage class of an SMS-managed data set. 

Example: To specify the storage class of "SAM" for an SMS-managed data set, code 

KEY # LEN PARM 
8ee4 eeel eee3 E2 CI D4 

Management Class Specification· Key = 18005 I 
Code DALMGCL to specify the management class of an SMS-managed data set. 

Example: To specify the management class of "SAM" SMS-managed data set, code 

KEY # LEN PARM 
8ee5 e00l 0e03 E2 Cl 04 

Data Class Specification. Key = 18006 I 
Code DALDACL to specify the data class of the data set. 

Example: To specify the data class of "SAM" for an SMS-managed data set, code 

KEY # LEN PARM 
8e06 ee01 0003 E2 Cl 04 

Requesting SVC 99 Functions 1-285 



Record Organization Specification - Key = I 800B I 
Code DALRECO to specify the record organization of a VSAM data set. 

• For a VSAM key-sequenced data set, code X'80'. 
• For a VSAM entry-sequenced data set, code X'40'. 
• For a VSAM relative record data set, code X'20'. 
• For a VSAM linear space data set, code X'IO'. 

Example: To specify a key-sequenced record organization, code 

KEY # LEN PARM 
seeB eeel eeel se 

Key Offset Specification - Key = I 800C I 
Code DALKEYO to specify the key offset. The key offset is the position of the first byte of 
the key in each logical record of a the specified VSAM data set. If the key is at the beginning 
of the logical record, the offset is zero. 

Example: To specify a key offset of 18 decimal (12 hexadecimal) bytes, code 

KEY # LEN PARM 
seec eeel eeel 12 

Copy 00 Specification - Key = 18000 I 
Code DALREFD to specify the name of the JCL DD statement from which the attributes are 
to be copied. 

Example: To copy the data set attributes from the JCL DD statement named "SAM", code 

KEY # LEN PARM 
SeeD eeel eee3 E2 Cl 04 

The specified name must be left justified in PARM. The name can be a ddname, a 
stepname.ddname, or a stepname.procstepname.ddname where ddname is the label on a JCL DD 
statement, and stepname and procstepname are labels that appear on JCL EXEC statements. 
Place the length of the name in LEN, and the value, X'OOOI', into the # field. 

Copy Profile Specification - Key = I 800E I 

Code DALSECM to specify the name of the RACF profile from which the RACF profile is to 
be copied. 

Example: To copy the generic RACF profile, "RPROF", code 

KEY # LENI PARMI 
SeeE eee2 eees 09 07 09 06 C6 

LEN2 PARM2 
. eeel se 

If the copied profile is generic, such as in the JCL statement, 
SEC MODEL = (RPROF,GENERIC), place the dsname value in PARMI and its length in 
LENl. Place X'80' in PARM2 and X'OOOI' in LEN2. Also, place X'0002' in the # field to 
indicate that the profile is generic. Define PARM2 as one byte, and PARMI for as many bytes 
as required to hold the name. 

If the copied profile was not defined generically, do not define LEN2 or PARM2. Place the 
dsname in PARMI, and its length into LEN!. Place X'OOOI' in the # field. 

1-286 SPL: System Macros and Facilities Volume 1 

\ 
\'-, 

c 



( 

( 

. ... 

Copy Model Specification - Key = '800F' 
Code DALLIKE to specify the name of the model data set from which the attributes are to be 
copied. 

Example: To copy the attributes of the model data set, "SAM", code 

KEY # LEN PARM 
800F 0001 0003 E2 C1 D4 

Average Record Specification - Key = '8010' 
Code DALAVGR to specify the allocation unit to be used when the data set is allocated. Code 
PARM as X'80', X'40', or X'20'. Code the LEN and the # fields as X'OOOl'. 

• X'80' represents single-record units. 
• X'40' represents thousand-record units. 
• X'20' represents million-record units 

Example: To specify single-record units, code 

KEY # LEN 
8010 0001 0001 

PARM 
80 

Requesting SVC 99 Functions 1-287 



Hex Text lEFZB4D2 
Unit Key Mnemonic SVC 99 Function 

C ' , 

002E DALBFALN Specifies buffer alignment. 

002F DALBFTEK Specifies the buffering technique. 

0030 DALBLKSZ Specifies block size. 

0031 DALBUFlN Specifies the receiving buffer count. 

0032 DALBUFL Specifies the buffer length. 

0033 DALBUFMX Specifies the buffer count per line. 

0034 DALBUFNO Specifies the buffer count per DCB. 

0035 DALBUFOF Specifies the buffer offset. 

0036 DALBUFOU Specifies the sending buffer count. 

0037 DALBUFRQ Specifies the buffer count per GET macro. 

0038 DALBUFSZ Specifies the line group buffer size. 

0039 DALCODE Specifies the data's paper tape code. 

003A DALCPRI Specifies the relative sending and receiving priority. 

003B DALDEN Specifies the magnetic tape density. " " 
003C DALDSORG Specifies the data set organization. 

003D DALEROPT Specifies reading and writing error options. 

003E DALGNCP Specifies the GAM-I/O count per WAIT macro. 

003F DALINTVL Specifies the line polling interval per group. 

0040 DALKYLEN Specifies the data set key lengths. 

0041 DALLIMCT Specifies the search limit. 

0042 DALLRECL Specifies the logical record length. 

0043 DALMODE Specifies card punch/reader operational mode. 
r'~ '" 0044 DALNCP Specifies the READ/WRITE count per CHECK. 

0045 DALOPTCD Specifies the control program's operational services. 
\."'t.:.,. -7 

0046 DALPClR Specifies the relationship of the receiving PCl to the allocation and freeing 
of buffers. 

0047 DALPCIS Specifies the relationship of the sending PCl to the allocation and freeing of 
buffers. 

0048 DALPRTSP Specifies printer line spacing. 

0049 DALRECFM Specifies the record format. 

004A DALRSRVF Specifies the first buffer's reserve byte count for insertion of data. 

004B DALRSRVS Specifies the secondary buffer's reserve byte count for insertion of data. / 
004C DALSOWA Specifies the user's telecommunications input work areas size. 

/ 

004D DALSTACK Specifies the card punch's stacker bin. 

004E DALTHRSH Specifies the use percentage of nonreusable direct access message queue 
records per flush c1osedown. 

004F DALTRTCH Specifies the 7-track tape recording technique. 

0051 DALIPLTX Specifies a TCAM network control program name. 

0054 DALDIAGN Requests OPEN/CLOSE/EOV diagnostic trace option. 

005A DALFUNC Specifies the type of data set to be opened for the 3525 
Card-Read-Punch-Print. 

005B DALFRID Specifies input to the 3886 Character Reader. 

Figure 65. Verb Code 01 (DCB Attributes) - Text Unit Keys, Mnemonics, and Functions 

1-288 SPL: System Macros and Facilities Volume 1 



( 

( 

DCB Attribute Text Units 
Use verb code 01 and the text unit keys listed in Figure 65 and described on the following 
pages to specify the DCB attributes of the data set being dynamically allocated. These 
attributes are described in JCL User's Guide and JCL Reference under the DCB parameter, and 
in Data Administration: Macro Instruction Reference. 

BFALN Specification - Key = '002E' 
DALBFALN specifies the buffer alignment. It is mutually exclusive with the GAM-I/O count 
key (DALGNCP). When you code DALBFALN, # and LEN must be one, and PARM 
contains one of the following values: 

'01' for fullword not a doubleword boundary (F) 
'02' for doubleword boundary (D) 

Example: to specify doubleword boundary, code 

KEY # LEN PARM 
002E 0001 0001 02 

BFTEK Specification - Key = '002F' 
DALBFTEK specifies the buffering technique to be used. It is mutually exclusive with the 
GAM-I/O count key (DALGNCP). When you code DALBFTEK, # and LEN must be one, 
and PARM contains one of the following values: 

'08' for dynamic buffering (D) 
I 10' for exchange buffering (E) 
, 20 ' for record buffering (R) 
'40' for simple buffering (S) 
, 60' for record area buffering (A) 

Example: to specify exchange buffering, code 

KEY 
002F 

# 
0001 

LEN 
0001 

PARM 
10 

BLKSIZE Specification - Key = '0030' 
DALBLKSZ specifies the block size. It is mutually exclusive with the buffer size key 
(DALBUFSZ). When you code DALBLKSZ, # must be one, LEN must be two, and PARM 
contains the block size. The maximum PARM value is '7FF8' (32,760). 

Example: to specify a block size of 80, code 

KEY # 
0030 0001 

LEN 
0002 

PARM 
00 50 

BUFIN Specification - Key = '0031' 
DALBUFIN specifies the number of buffers to be initially assigned for receiving operations for 
each line in the line group. It is mutually exclusive with the buffer number (DALBUFNO) and 
buffer request (DALBUFRQ) keys. When you code DALBUFIN, # and LEN must be one, 
and PARM contains the number of buffers. The maximum PARM value is 'OF' (15). 

Example: to specify 2 buffers, code 

KEY # LEN PARM 
0031 0001 0001 02 

Requesting SVC 99 Functions 1-289 



BUFL Specification - Key = 10032 I 
DALBUFL specifies the buffer length. When you code this key, # must be one, LEN must be 
two, and PARM contains the buffer length. The maximum PARM value is '7FFS' (32,760). 

Example: to specify a buffer length of SO, code 

KEY # LEN PARM 
0032 000l 0ee2 00 50 

BUFMAX Specification - Key = 10033 I 
DALBUFMX specifies the maximum number of buffers to be allocated to a line at one time. 
It is mutually exclusive with the NCP key (DALNCP). When you code DALBUFMX, # and 
LEN must be one, and P ARM contains the number of buffers. The maximum PARM value is 
'OF' (15). 

Example: to specify 4 buffers, code 

KEY # LEN PARM 
0033 000l 000l 04 

BUFNO Specification - Key = 10034 I 
DALBUFNO specifies the number of buffers to be assigned to the data control block. It is 
mutually exclusive with the BUFIN (DALBUFIN), BUFOUT (DALBUFOU), and BUFRQ 
(DALBUFRQ) keys. When you code DALBUFNO, # and LEN must be one, and PARM 
contains the number of buffers. 

Example: to specify 2 buffers, code 

KEY # LEN PARM 
0034 000l 000l 02 

BUFFOFF Specification - Key = 10035 I 
DALBUFOF specifies the buffer offset. When you code this key, # and LEN must be one, and 
PARM contains one of the following values: 

'SO' the block prefix is four bytes long and contains the block length (L) 
'nn' the length of the block prefix (maximum of '63' (99» 

Example: to specify an offset of 16, code 

KEY # LEN PARM 
0035 000l 000l 10 

BUFOUT Specification - Key = 10036 I 
DALBUFOU specifies the number of buffers to be assigned initially for sending operations for 
each line in the group. It is mutually exclusive with the BUFNO (DALBUFNO) and BUFRQ 
(DALBUFRQ) keys. When you code DALBUFOU, # and LEN must be one, and PARM 
contains the number of buffers. The maximum PARM value is 'OF' (15). 

Example: to specify 4 buffers, code 

KEY # LEN PARM 
0036 0e0l 0001 04 

1-290 SPL: System Macros and Facilities Volume 1 



( 

c 

BUFRQ Specification - Key = '0037' 
DALBUFRQ specifies the number of buffers to be requested in advance for the GET macro 
instruction. It is mutually exclusive with the BUFNO (DALBUFNO), BUF1N (DALBUF1N), 
and BUFOUT (DALBUFOU) keys. When you code DALBUFRQ, # and LEN must be one, 
and PARM contains the number of buffers. 

Example: to specify 4 buffers, code 

KEY # LEN PARM 
ee37 eeel eeel e4 

BUFSZ Specification - Key = '0038' 
DALBUFSZ specifies the length in bytes of each of the buffers to be used for all lines in a 
particular line group. It is mutually exclusive with the blocksize key (DALBLKSZ). When you 
code DALBUFSZ, # must be one, LEN must be two, and PARM contains the buffer length. 

Example: to specify a buffer length of 80, code 

KEY # LEN PARM 
ee38 eeel eee2 ee 50 

CODE Specification - Key = '0039' 
DALCODE specifies the paper tape code in which the data is punched. It is mutually exclusive 
with the key length (DALKYLEN), MODE (DALMODE), printer spacing (DALPRTSP), 
STACK (DALSTACK), and TRTCH (DALTRTCH) keys. When you code DALCODE, # 
and LEN must be one, and PARM contains one of the following values: 

'02' for Teletype 5-track (T) 
'04' for USASCII 8-track (A) 
'08' for National Cash Register 8-track (C) 
'10' for Burroughs 7-track (B) 
'20' for Friden 8-track (F) 
'40' for IBM BCD 8-track (I) 
, 80' for no conversion (N) 

Example: to specify USASCII, code 

KEY # LEN PARM 
ee39 eeel ee01 04 

CPRI Specification - Key = '003A' 
DALCPR1 specifies the relative priority to be given to sending and receiving operations. It is 
mutually exclusive with the THRESH key (DALTHRSH). When you code DALCPR1, # and 
LEN must be one, and PARM contains one of the following values: 

'01' for send priority (S) 
'02' for equal priority (E) 
'04' for receiving priority (R) 

Example: to specify equal priority, code 

KEY # LEN PARM 
ee3A eeel eeel e2 

Requesting SVC 99 Functions 1-291 



DEN Specification - Key = 10038 I 
DALDEN specifies the magnetic tape density. When you code this key, # and LEN must be 
one, and PARM contains one of the following values: ,r"" 

" , 

'03' for 200 bpi 7-track (0) "'-..,' 
'43 ' for 556 bpi 7 -track (1) 
'83' for 800 bpi 7-track, 800 bpi 9 - track (2) 
'C3' for 1600 bpi 9-track (3) 
'D3' for 6250 bpi 9-track (4) 

Example: to specify 1600 bpi 9 - track, code 

KEY II LEN PARM 
003B 0001 0001 C3 

DSORG Specifications - Key = I 003C I 
DALDSORG specifies the data set organization. When you code this key, # must be one, LEN 
must be two, and PARM contains one of the following values: 

'0004' for TCAM 3705 
'0008' for VSAM 
'0020' for TeAM message queue (TQ) 
'0040' for TeAM line group (TX) 
'0080' for graphics (GS) 
'0200' for partitioned organization (PO) 
'0300' for partitioned organization unmovable (POU) 
'0400' for government of message transfer to or from a telecommunications message 

processing queue (MQ) 
'0800' for direct access message queue (eQ) 
, 1000' for communication line group (CX) 
'2000' for direct access (DA) 
'2100' for direct access unmovable (DAU) 
, 4000' for physical sequential (PS) 
'4100' for physical sequential unmovable (PSU) 

Example: to specify Partitioned Organization, code 

KEY I LEN PARM 
003C 0001 0002 02 00 

EROPT Specification - Key = 10030 I 
DALEROPT specifies the option to be executed if an error occurs in writing or reading a 
record. When you code this key, # and LEN must be one, and PARM contains one of the 
following values: 

'10' for online BSAM testing (T) 
'20' to cause abnormal end of task (ABE) 
'40' to skip the block causing the error (SKP) 
'80' to accept the block causing the error (ACC) 

Example: to specify the SKP error option, code 

KEY I LEN PARM 
0030 0001 0001 40 

1-292 SPL: System Macros and Facilities Volume 1 

/,' "'\, 

\t..-/' 



( 

( 

GNCP Specification - Key = '003E' 
DALGNCP specifies the maximum number of GAM input/output macros that will be issued 
before aWAIT macro is issued. It is mutually exclusive with the BFTEK (DALBFTK) and 
BFALN (DALBFAL) keys. When you code DALGNCP, # and LEN must be one, and 
PARM contains the GNCP value. The maximum PARM value is '63' (99). 

Example: to specify a GNCP value of four, code 

KEY # LEN PARM 
003E 0001 0001 04 

INTVL Specification - Key = '003F' 
DALINTVL specifies the polling interval for the lines in the line group. This key is mutually 
exclusive with the UCS (DALUCS) and FCB (DALFCB) keys. When you code this key, # and 
LEN must be one, and PARM contains the INTVL value. 

Example: to specify an INTVL value of 10, code 

KEY # LEN PARM 
003F 0001 0001 0A 

KEY LEN Specification - Key = '0040' 
DALKYLEN specifies the length, in bytes, of the keys used in the data set. It is mutually 
exclusive with the CODE (DALCODE), MODE (DALMODE), PRTSP (DALPRTSP), 
STACK (DALSTACK), and TRTCH (DALTRTCH) keys. When you code this key, # and 
LEN must be one, and PARM contains the key length. 

Example: to specify a key length of eight, code 

KEY # LEN PARM 
0040 0001 0001 08 

LlMCT Specification - Key = '0041' 
DALLIMCT specifies the search limit. When you code this key, # must be one, LEN must be 
three, and PARM contains the search limit value. The maximum PARM value is '007FF8' 
(32,760). 

Example: to specify a search limit of 1000, code 

KEY # LEN PARM 
0041 0001 0003 0003E8 

LRECL Specification - Key = '0042' 
DALLRECL specifies the actual or maximum length, in bytes, of a logical record. When you 
code this key, # must be one, LEN must be two, and PARM contains one of the following 
values: 

'8000' for variable length spanned records processed under QSAM and BSAM, the logical 
records exceed 32,756 bytes (X) 

'nnnn' the logical record length. The maximum value for nnnn is '7FF8' (32,760). 

Example: to specify a logical record length of 80, code 

KEY # LEN PARM 
0042 0001 0002 0050 

Requesting SVC 99 Functions 1-293 



MODE Specification - Key = 10043 I 
DALMODE specifies the mode of operation for a card reader or punch. It is mutually 
exclusive with the CODE (DALCODE), KEYLEN (DALKYLEN), PRTSP (DALPRTSP), and ;1'\ 
TRTCH (DALTRTCH) keys. When you code DALMODE, # and LEN must be one, and ~_j 
PARM contains one of the following values: 

'40' for EBCDIC mode (E) 
, 50' for EBCDIC, read column eliminate mode (ER) 
'60' for EBCDIC, optical mark read mode (EO) 
'80' for card image mode (C) 
'90' for card image, read column eliminate mode (CR) 
, AO' for card image, optical mark read mode (CO) 

Example: to specify EBCDIC mode, code 

KEY # LEN PARM 
0043 000l 000l 40 

NCP Specification - Key = 10044 I 
DALNCP specifies the maximum number of READ or WRITE macros issued before a 
CHECK macro is issued. It is mutually exclusive with the BUFMAX (DALBUFMX) key. 
When you code DALNCP, # and LEN must be one, and PARM contains the NCP value. The 
maximum PARM value is '63' (99). 

Example: to specify an NCP value of two, code 

KEY # LEN PARM 
0e44 eeel eeel e2 

OPTCD Specification - Key = 10045 I 
DALOPTCD specifies optional services to be performed by the control program. When you 
code this key, # and LEN must be one, and PARM contains one of the following values: 

'01' for relative block addressing (R), or to select character arrangement tables for the 3800 
printer (J) 

'02' for user totaling facility (T) 

'04' for reduced tape error recovery or direct DASD search (Z) 

'08' for direct addressing (A), or 
for translation of ASCII to or from EBCDIC (Q) 

, 10' for feedback (F), or 
for hopper-empty exit (H), or 
for online correction for optical readers (0) 

'20' for chained scheduling or TCAM segment identification (C), or 
for extended search (E) 

'40' for disregarding end-of-file recognition for tape (B), or 
for allowance of data checks caused by an invalid character, or 
for handling a TCAM work unit as a message (U) 

'80' for write validity check, or to place TCAM message source in an eight-byte field in the 
workarea (W) 

1-294 SPL: System Macros and Facilities Volume I 



( 

( 

Note: When you are specifying more than one OPTCD value, PARM contains the sum of the 
values. 

For more information regarding the OPTCD specification key, see Data Administration: Macro 
Instruction Reference. 

Example: to specify OPTCD value D, code 

KEY # 
BB45 Beel 

LEN 
BeBl 

PARM 
4B 

Example: to specify OPTCD values D and C, code 

KEY # 
BB45 BBBl 

LEN 
BBm 

PARM 
6B 

Receiving PCI Specification - Key = '0046 I 
DALPClR specifies the relationship of program-controlled interrupts (PCl) during receiving 
operations to the allocation and freeing of buffers. When you code DALPClR, # and LEN 
must be one, and PARM contains one of the following values: 

'02' for a PCl and no new buffer allocated (R) 
'08' for no PCls (N) 
'20' for a PCl and new buffer allocated (A) 
'80' for a PCl, new buffer allocated, and the first buffer remains allocated (X) 

Example: to specify no PCls during receiving operations, code 

KEY # LEN PARM 
BB46 BBBI Beel B8 

Sending PCI Specification - Key = '0047 I 
DALPClS specifies the relationship of pels during sending operations to the allocation and 
freeing of buffers. When this key is specified, # and LEN contain one, and PARM contains: 

'01' for a PCl and no new buffer allocated (R) 
'04' for no PCls (N) 
'10' for a PCl and a new buffer allocated (A) 
'40' for a PCl, new buffer allocated, and first buffer remains allocated (X) 

Example: to specify no PCls during sending operations, code 

KEY # LEN PARM 
ee47 eem eem e4 

PRTSP Specification - Key = '0048' 
DALPRTSP specifies printer line spacing. It is mutually exclusive with the CODE 
(DALCODE), KEYLEN (DALKYLEN), MODE (DALMODE), STACK (DALSTACK), and 
TRTCH (DALTRTCH) keys. When you code DALPRTSP, # and LEN must be one, and 
P ARM contains one of the following values: 

'01' for no spacing (0) 
'09' for one-line spacing (1) 
, II' for two-line spacing (2) 
'19' for three-line spacing (3) 

Example: to specify no spacing, code 

KEY 
ee48 

# 
eem 

LEN 
eeel 

PARM 
m 

Requesting SVC 99 Functions 1-295 



RECFM Specification - Key = 10049 I 
DALRECFM specifies the record format. When you code this key, # and LEN must be one, 
and PARM contaiil.s one of the following values: 

'02' for machine code printer control characters in record (M), or 
for complete QT AM record (R) 

'04' for ASA printer control characters in record (A), or 
for complete QTAM message (G) 

'08' for standard fixed records, spanned variable records, or 
segment of QT AM message (S) 

'10' for blocked records (B) 

'20' for variable ASCII records (D), or 
for track overflow (T) 

'40' for variable records (V) 

'80' for fixed records (F) 

'CO' for undefined records (U) 

Note: When you code combinations of RECFM values, PARM contains the sum of the values. 

Example: to specify fixed records, code 

KEY 
0049 

# 
0001 

LEN 
0001 

PARM 
80 

Example: to specify variable blocked (VB) records, code 

KEY # LEN PARM 
0049 0001 0001 50 

First Buffer Reserve Specification - Key = I 004A I 
DALRSRVF specifies the number of bytes to be reserved in the first buffer for insertion of data 
by the DATETIME and SEQUENCE macros. The UCS (DALUCS) key is mutually exclusive 

;/- ~\ 

with DALRSRVF. When you code this key, # and LEN must be one, and PARM contains the ---,' 
number of bytes to reserve. 

Example: to reserve 8 bytes in the first buffer, code 

KEY 
004A 

# 
0001 

LEN 
0001 

PARM 
08 

Secondary Buffer Reserve Specification - Key = I 004B I 
DALRSRVS specifies the number of bytes to be reserved in buffers other than the first for 
insertion of data by the DATETIME and SEQUENCE macros. The UCS (DALUCS) key is 
mutually exclusive with DALRSRVS. When you code this key, # and LEN must be one, and 
PARM contains the number of bytes to reserve. 

Example: to reserve 8 bytes in secondary buffers, code 

KEY 
0048 

# 
0001 

LEN 
0001 

PARM 
08 

1-296 SPL: System Macros and Facilities Volume 1 



(-

(. 

SOWA Specification - Key = '004C' 
DALSOW A specifies the size, in bytes, of the user-provided input work areas for 
telecommunication jobs. When you code this key, # must be one, LEN must be two, and 
PARM contains the number of bytes. The maximum PARM value is '7FF8' (32,760). 

Example to specify a 256-byte work area, code 

KEY # LEN PARM 
004C 0001 0002 0100 

STACK Specification - Key = I 004D I 
DALSTACK specifies the stacker bin to receive cards. The CODE (DALCODE), KEYLEN 
(DALKYLEN), PRTSP (DALPRTSP), and TRTCH (DALTRTCH) keys are mutually 
exclusive with DALSTACK. When you code this key, # and LEN are one, and PARM 
contains one of the following values: 

'01' for bin 1 (1) 
'02' for bin 2 (2) 

Example: to specify stacker 2, code 

KEY # LEN PARM 
'004D 0001 0001 02 

THRESH Specification - Key = I 004E I 
DALTHRSH specifies the percentage of nonreusable disk message queue records to be used 
before a flush closedown occurs. The CPRI (DALCPRI) key is mutually exclusive with 
DALTHRSH. When you code this key, # and LEN must be one, and PARM contains the 
percentage. The maximum PARM value is '64' (100). 

Example: to specify a THRESH percentage of 99, code 

KEY # LEN PARM 
004E 0001 0001 63 

TRTCH Specification - Key = I 004F I 
DALTRTCH specifies the recording technique for 7-track tape. It is mutually exclusive with 
the CODE (DALCODE), KEYLEN (DALKYLEN), MODE (DALMODE), PRTSP 
(DALPRTSP), and STACK (DALSTACK) keys. When you code DALTRTCH, # and LEN 
must be one, and PARM contains one of the following values: 

, 13 ' for data conversion (C) 
'23' for even parity (E) 
'2B' for even parity and BCD/EBCDIC translation (ET) 
'3B' for BCD/EBCDIC translation (T) 

Example: to specify even parity, code 

KEY # LEN PARM 
004F 0001 0001 23 

IPL TXTID Specification - Key = 10051' 
DALIPLTX specifies the name of a TCAM network control program. It is mutually exclusive 
with the DSNAME (DALDSNAM), MEMBER NAME (DALMEMBR), and QNAME 
(DALQNAME) keys. When you code DALIPLTX, # must be one, LEN is the length of the 
name (maximum of 8), and P ARM contains the name. 

Requesting SVC 99 Functions 1-297 



Example: to specify an IPLTXTID value of PGM, code 

KEY 
0051 

# 
0001 

LEN 
0003 

PARM 
07 C7 04 

Diagnostic Trace Specification (DIAGNS = TRACE) - Key = • 0054 • 
DALDIAGN requests the OPEN/CLOSE/EOV trace option, which gives a module-by-module 
trace of OPEN/CLOSE/EOV's work area and the user's DCB. When you code DALDIAGN, 
# must be zero; LEN and PARM are not specified. 

Note: GTF must be active in the system while the job that requested the trace is running. 

Example: to specify the diagnostic trace specification, code 

KEY 
0054 

# 
0000 

LEN PARM 

FUNC = Specification - Key = · 005A I 
DALFUNC can be used with BSAM and QSAM; it specifies the type of data set to be opened 
for the 3525 Card Read-Punch-Print. When you code DALFUNC, # and LEN must be one, 
and P ARM contains one of the following values: 

'10' forW 
'12' forWT 
'14' forWX 
'16' forWXT 
'20' for P 
'30' forPW 
'34' forPWX 
'36' forPWXT 
'40' for R 
'50' forRW 
'52' for RWT 
'54' for RWX 
'56' for RWXT 
'60' for RP 
'68' for RPD 
'70' for RPW 
'74' for RPWX 
'76' for RPWXT 
'78' for RPWD 
'80' forI 

Where: 
D is data protection for a punch data set 
I is interpret punch data set 
P is punch 
R is read 
T is two line printer 
W is print 
X is printer 

1-298 SPL: System Macros and Facilities Volume I 

(, ~ 
/' 



( 

(-

( 

( 

Notes: 

1. In the absence of this information, the system assumes P. 

2. D, X, and T cannot be coded alone. 

3. If you specify D as part of a value, you must also specify the FCB image-id key 
(DALFCBIM), giving the image identifier for the data protection image. 

Example: to specify FUNC = RPWD, code 

KEY # LEN PARM 
005A 0001 0001 78 

FRID = Specification - Key = · 0058 • 
DALFRID specifies the last four characters of a SYSl.IMAGELIB member name to be used in 
the interpretation of documents for input to the IBM 3886 character reader. The FCB 
(DALFCBIM) key is mutually exclusive with DALFRID. 

When you code DALFRID, # must be one, LEN is the number of characters specified, and 
PARM contains the characters of the IMAGE LIB member name. The characters must be 
alphanumeric or national. If the length of the member name is four or less, code the entire 
name. 

Example: to specify the last four characters of member name SHARKI, code 

KEY 
005B 

# 
00(H 

LEN 
0004 

PARM 
C1 09 02 F1 

Non-JeL Dynamic Allocation Functions 
The keys listed in Figure 66 and described on the following pages do not have JCL 
equivalents; they have meaning only to the SVC 99 routines in performing dynamic allocation 
by dsname (verb code 01). You can specify the information retrieval keys C004-COIO when 
performing a dynamic allocation by both ddname and dsname. 

Hex Text IEFZB4D2 
Unit Key Mnemonic 

0050 
0052 
0053 
0055 
0056 
0057 
005C 
005D 
0062 

DALPASSW 
DALPERMA 
DALCNVRT 
DALRTDDN 
DALRTDSN 
DALRTORG 
DALSSREQ 
DALRTVOL 
DALSSATT 

SVC 99 Function 

Specifies the password for a protected data set. 
Specifies the permanently allocated attribute. 
Specifies the convertible attribute. 
Requests the return of the associated ddname. 
Requests the return of the allocated data set's name. 
Requests the return of data set organization. 
Specifies allocation of a subsystem data set. 
Requests the return of the volume serial number. 
Specifies allocation of a subsystem data set to SYSIN. 

Figure 66. Verb Code 01 (Non-JCL Dsname Functions) - Text Unit Keys, Mnemonics, and 
Functions 

Password Specification - Key = · 0050 • 
DALPASSW specifies the password for a password-protected data set. The dsname key 
(DALDSNAM) is required with this key. When you code DALPASSW, # must be one, LEN 
contains the length of the password, and PARM contains the password. 

Requesting SVC 99 Functions 1-299 



Example: to specify the password, MYKEY, code 

KEY # LEN PARM 
0050 000l 0005 04 E8 02 C5 E8 

Permanently Allocated Attribute Specification - Key = I 0052 I 
DALPERMA specifies that the permanently allocated attribute is to be assigned to this 
allocation. When you code this key, # must be zero; LEN and PARM are not specified. 

Example: to specify assignment of the permanently allocated attribute, code 

KEY # LEN PARM 
0052 0000 

Convertible Attribute Specification - Key = 10053 I 
DALCNVRT specifies that the convertible attribute is to be assigned to this allocation. 

Note: This specification is the default if the permanently allocated attribute key 
(DALPERMA) is not coded. 

When you code DALCNVRT, # must be zero; LEN and PARM are not specified. 

Example: to specify assignment of the convertible attribute, code 

KEY # LEN PARM 
0053 0000 

Ddname Return Specification - Key = 10055 I 
DALRTDDN requests that the ddname associated with the allocation be returned to the caller 
of SVC 99. When you code DALRTDDN, # must be one, LEN must be eight, and PARM is 

(--'\ 
"'--j 

an eight-byte field. The SVC 99 routines place the allocated ddname in PARM and update'\ 
LEN to the length of the ddname. ',,- ./ 

Example: to request that the allocated ddname be returned, code 

KEY # 
0055 00m 

LEN 
0008 

PARM 

This specification would be updated upon the assignment of the ddname DDI as follows: 

KEY # LEN PARM 
0055 000l 0003 C4 C4 Fl-----

Dsname Return Specification - Key = 10056 I 
DALRTDSN requests that the dsname that is allocated be returned to the caller of SVC 99. 
When you code DALRTDSN, # must be one, LEN must be forty-four, and PARM is a 
forty-four byte field. The SVC 99 routines place the allocated dsname in PARM and update 
LEN to the length of the dsname. 

Example: to request that the allocated dsname be returned, code 

KEY # LEN PARM 
0056 000l 002C 

This specification would be updated for the allocation of the dsname ABC as follows: 

KEY # LEN PARM 
0056 000l 0003 Cl C2 C3----- .•. --

1-300 SPL: System Macros and Facilities Volume I 

/ , 

.(. ~. 
I. 

e/' 



f 

(~ 

DSORG Return Specification - Key = • 0057 • 
DALRTORG requests that the data set organization of the allocated data set be returned to the 
caller of SVC 99. When you code DALRTORG, # must be one, LEN must be two, and 
PARM is a two-byte field. The SVC 99 routines put one of the following values into PARM: 

'0000' 
'0004' 

if the dynamic allocation routines cannot determine the DSORG 
ifTR 

'0008' ifVSAM 
'0020' ifTQ 
'0040' ifTX 
'0080' ifGS 
'0200' if PO 
'0300' ifPOU 
'0400' ifMQ 
'0800' ifCQ 
'1000' ifCX 
'2000' ifDA 
'2100' ifDAU 
'4000' ifPS 
'4100' ifPSU 
'8000' ifIS 
'8100' ifISU 

Example: to specify that the DSORG be returned, code 

KEY H LEN PARM 
ee57 eee1 eee2 

This specification would be updated for a DSORG of PS as follows: 

KEY H LEN PARM 
ee57 eee1 eee2 4eee 

Subsystem Request Specification - key = · 005e • 
DALSSREQ requests that a subsystem data set be allocated and, optionally, specifies the name 
of the subsystem for which the data set is to be allocated. 

When you code DALSSREQ without specifying a subsystem name, # must be zero and LEN 
and PARM are not specified. The data set is then allocated to the primary subsystem. 

When you code the subsystem name in the DALSSREQ key, # must be one, LEN is the length 
of the name (maximum of 4), and PARM contains the subsystem name. 

Note: To specify DALSSREQ, your program must be APF-authorized, in supervisor state, or 
running in a system protection key. 

Example 1: to request a subsystem data set for the primary subsystem, code: 

KEY H LEN PARM 
ee5C eeee 

Example 2: to request a subsystem data set for JES2, code: 

KEY H LEN PARM 
ee5C eee1 eee4 D1 C5 E2 F2 

Requesting SVC 99 Functions 1-301 



Volume Serial Return Specification - Key = 10050 I 
DALRTVOL requests that the volume serial number associated with the allocated data set be 
returned. Only the first volume serial of a multiple-volume data set is returned, and the volume ~'''\ 

sequence number, if any, is ignored. 0 
When you code DALRTVOL, # must be one, LEN must be six, and PARM is a six-byte field. 

If the allocated volume serial is available at the completion of allocation, the SVC 99 routines 
put the number in PARM. If the volume serial is not available at the completion of allocation, 
the SVC 99 routines set LEN to zero. 

The volume serial will not be available at the completion of allocation if either of the following 
is true: 

• No volume serial is allocated to the data set (a VIO or job entry subsystem data set) 

• The request results in the allocation of a new data set on magnetic tape without a specific 
volume serial having been assigned. 

Example: to specify that the allocated volume serial be returned, code 

KEY 
ee5D 

# 
eeel 

LEN 
eea6 

PARM 

This specification would be updated for the allocation of data set ABC on volume 123456 as 
follows: 

KEY LEN PARM 
ee5D eeel eea6 F1 F2 F3 F4 F5 F6 

Subsystem Request Type Specification - Key = 10062 I 
DALSSATT specifies that the subsystem data set being requested is to be allocated to SYSIN. 
The subsystem request key (DALSSREQ) is required with this key. 

Note: To specify DALSSATT, you must be APF-authorized, or in supervisor state, or running 
in a system protection key. 

When you code DALSSA IT, # and LEN must be one, and PARM contains '80 I , for SYSIN 
data set. 

Example: to specify a subsystem SYSIN data set, code: 

KEY 
ee62 

# LEN 
eeel 0ea1 

PARM 
80 

1-302 SPL: System Macros and Facilities Volume 1 

./ 



(-/ 

( 

( 

( 

c 

Hex Text IEFZB4D2 
Unit Key Mnemonic 

0001 DUNDDNAM 

0002 DUNDSNAM 

0003 DUNMEMBR 

0005 DUNOVDSP 

0007 DUNUNALC 

0008 DUNREMOV 

OOOA DUNOVSNH 

0018 DUNOVCLS 

0058 DUNOVSUS 

0059 DUNOVSHQ 

SVC 99 Function 

Specifies the ddname of the resource to be deallocated. 

Specifies the data set to be deallocated. 

Specifies the PDS member to be deallocated. 

Specifies an overriding disposition. 

Specifies deallocation even if the resource has the permanently allocated 
attributed. 

Specifies removal of the "in-use" attribute, even if the resource has the 
permanently allocated attribute. 

Specifies "nohold" status for a deallocated SYSOUT data set. 

Specifies an overriding SYSOUT class. 

Specifies an overriding remote workstation. 

Puts the SYSOUT data set on the hold queue and overrides previous "nohold" 
specifications. 

Figure 67. Verb Code 02 (Dynamic Unallocation) - Text Unit Keys, Mnemonics, and Functions 

Dynamic Unallocation Text Units 
Use verb code 02 and the text unit keys listed in Figure 67 and described on the following 
pages to request dynamic unallocation processing by the SVC 99 routines. 

Ddname Specification - Key = 10001 1 
DUNDDNAM specifies the ddname of the resource to be deallocated. When you code this 
key, # must be one, LEN is the length of the ddname, and PARM contains the ddname. 

Example: to specify the ddname D D 1, code 

KEY 
0001 

# 
0001 

LEN 
0003 

PARM 
C4 C4 Fl 

Dsname Specification - Key = 100021 
DUNDSNAM specifies the data set name to be deallocated. When you code this key, # must 
be one, LEN contains the length of the dsname, and PARM contains the dsname. 

Example: to specify the dsname MYDATA, code 

KEY 
0002 

# 
0001 

LEN 
0006 

PARM 
04 E8 C4 Cl E3 Cl 

Member name Specification - Key = 10003 1 
DUNMEMBR specifies that a particular member of the data set is to be deallocated. The 
dsname unallocation key (DUNDSNAM) is required with this key. When you code 
DUNMEMBR, # must be one, LEN is the length of the member name, and PARM contains 
the member name. 

Example: to specify the member name MEMl, code 

KEY 
0003 

# 
0001 

LEN 
0004 

PARM 
04 C5 04 F1 

Requesting SVC 99 Functions 1-303 



Overriding Disposition Specification - Key = 10005 I 
DUNOVDSP specifies a disposition that overrides the disposition assigned to a data set when it 
was allocated. When you code DUNOVDSP, # and LEN must be one, and PARM contains r""\ 
one of the following values: V 
'01' for an overriding disposition of UNCATLG 
'02' for an overriding disposition of CATLG 
'04' for an overriding disposition of DELETE 
'08' for an overriding disposition of KEEP 

Example: to specify an overriding disposition of CATLG, code 

KEY # 
0005 0001 

LEN PARM 
0001 02 

Note: The SVC 99 routines ignore this key if any of the following are true: 

• The overriding disposition was DELETE and the data set was originally allocated as 
SHARE. 

• The data set was originally allocated with a disposition of PASS. 
• The data set is a VSAM data set and SMS is not active on the system. 
• The data set is a non-subsystem data set that has a system-generated name. 

When the SVC 99 routines must ignore a DUNOVDSP request, they still perform the 
deallocation processing, but use the disposition from the original allocation request. 

Unalloc Option Specification - Key = 10007 I 
DUNUNALC specifies that the resource is to be deallocated even if it has the permanently 
allocated attribute. The remove option key (DUNREMOV) is mutually exclusive with 
DUNUNALC. When you code this key, # must be zero; LEN and PARM are not specified. 

Example: to specify the unalloc option, code 

KEY 
0007 

# 
0000 

LEN PARM 

Remove Option Specification - Key = 10008 I 
DUNREMOV specifies that the in-use attribute is to be removed even if the resource does not 
have the permanently allocated attribute. The unalloc option key (DUNUNALC) is mutually 
exclusive with DUNREMOV. When you code this key, # must be zero; LEN and PARM are 
not specified. 

Example: to specify the remove option, code 

KEY 
0008 

# 
0000 

LEN PARM 

Overriding SYSOUT Nohold Specification - Key = I OOOA I 
DUNOVSNH specifies that the SYSOUT data set being deallocated is not to be placed on the 
hold queue. This specification overrides the HOLD/NOHOLD specification assigned when the 
data set was allocated. 

This key is ignored if the data set is not a SYSOUT data set. The overriding hold key 
(DUNOVSHQ) is mutually exclusive with DUNOVSNH. When you code this key. # must be 
zero; LEN and PARM are not specified. 

Example: to specify nohold, code 

KEY # LEN PARM 
000A 0000 

1-304 SPL: System Macros and Facilities Volume 1 

------~-------------~ 

) 



( 

( " 

/ 

OverridingSYSOUT Class Specification - Key = 10018 1 
DUNOVCLS specifies a SYSOUT class that overrides the class assigned when the SYSOUT 
data set was allocated. This key is ignored if the resource is not a SYSOUT data set. When 
you code DUNOVCLS, # and LEN must be one, and PARM contains the overriding class. 

Example: to specify an overriding class of C, code 

KEY 
0818 

# 
0001 

LEN 
0081 

PARM 
C3 

Overriding SYSOUT Remote Workstation Specification - Key = 10058 1 
DUNOVSUS specifies that the SYSOUT data set being deallocated is to be routed to a remote 
user. This specification overrides the remote workstation specification assigned when the data 
set was allocated. DUNOVSUS is ignored if the data set is not a SYSOUT data set. 

When you code DUNOVSUS, # must be one, LEN is the length of the remote workstation 
name (maximum of 8), and PARM contains the remote workstation (user) name. 

Example: to specify the remote work station USEROI, code 

KEY 
0058 

# 
0081 

LEN 
0006 

PARM 
E4 E2 C5 09 F0 F1 

Overriding SYSOUT Hold Queue Specification - Key = 10059 1 
DUNOVSHQ specifies that the SYSOUT data set being deallocated is to be placed on the hold 
queue. This specification overrides the HOLD/NOHOLD specification assigned when the data 
set was allocated. This key is ignored if the data set is not a SYSOUT data set. The overriding 
nohold key (DUNOVSNH) is mutually exclusive with this key. 

When you code this key, # must be zero; LEN and PARM are not specified. 

Example: to specify hold, code 

KEY 
0059 

# 
0000 

Hex Text 
Unit Key 

0001 
0004 

LEN PARM 

IEFZB4D2 
Mnemonic 

DCCDDNAM 
DCCPERMC 

SVC 99 Function 

Specifies the ddnames to be concatenated. 
Specifies the permanently concatenated attribute. 

Figure 68. Verb Code 03 (Dynamic Concatenation) - Text Unit Keys, Mnemonics, and Functions 

Dynamic Concatenation Text Units 
Use verb code 03 and the text units listed in Figure 68 and described in the following 
paragraphs to request dynamic concatenation processing by the SVC 99 routines. 

Ddname Specification - Key = 10001 1 
DCCDDNAM specifies the ddnames that are associated with the data sets to be concatenated. 
When you code DCCDDNAM, # is the number of ddnames being specified (a minimum of 
two), LEN is the length of the immediately following ddname, and PARM contains the 
ddname. 

Requesting SVC 99 Functions 1-305 



Example: to specify concatenation of SYSLIB to MYLIB, code 

KEY 
0001 

# 
0002 

LEN 
0005 

PARM 
D4E8D3C9C2 

LEN 
0006 

PARM 
E2E8E2D3C9C2 

Permanently Concatenated Attribute Specification - Key = '0004' 
DCCPERMC specifies that the concatenated group be assigned the permanently concatenated 
attribute. When you code this key, # must be zero; LEN and PARM are not specified. 

Example: to specify assignment of the permanently concatenated attribute, code 

KEY 
0004 

# 
0000 

Hex Text 
Unit Key 

0001 

LEN PARM 

IEFZB4D2 
Mnemonic 

DDCDDNAM 

SVC 99 Function 

Specifies the ddname of the group to pe deconcatenated. 

Figure 69. Verb Code 04 (Dynamic Deconcatenation) - Text Unit Key, Mnemonic, and Function 

Dynamic Deconcatenation Text Unit 
Use verb code 04 and the following text unit to request dynamic deconcatenation processing by 
the SVC 99 routines. 

Ddname Specification - Key = '0001' 
DDCDDNAM specifies the ddname of the concatenated group that is to be deconcatenated. 
DDCDDNAM is required for dynamic deconcatenation. 

When you code DDCDDNAM, # must be one, LEN is the length of the ddname and PARM 
contains the ddname. 

Example: to request the deconcatenation of the group of data sets associated with the ddname 
DDl, code 

KEY 
0001 

# 
0001 

Hex Text 
Unit Key 

0001 

0002 

PARM LEN 
0003 C4 C4 F1 

IEFZB4D2 
Mnemonic 

DRITCBAD 

DRICURNT 

SVC 99 Function 

Removes the "in-use" attribute from all resources associated with the specified 
TCB address. 

Removes the "in-use" attribute from all resources but those of the current task 
and its higher-level tasks. 

Figure 70. Verb Code 05 (Remove-In-Use Processing Based on Task-ID) - Text Unit Keys, 
Mnemonics, and Functions 

1-306 SPL: System Macros and Facilities Volume I 



( 

Text Units for Removing the In-Use Attribute Based on Task-IO 
Use verb code 05 and the text units in Figure 70 and described as follows to request that the 
SVC 99 routines turn off the in-use bits for resources based on task-ID. 

TCB Address Specification - Key = '0001' 
DRITCBAD specifies that the in-use attribute is to be removed from all resources associated 
with the specified TCB address. The current task option key (DRICURNT) is mutually 
exclusive with this key. 

When you code DRITCBAD, # must be one, LEN must be four, and PARM contains the TCB 
address. 

Example: to specify the TCB address 22ACO, code 

KEY # LEN PARM 
0001 0001 0004 00022AC0 

Current Task Option Specification - Key = '0002' 
DRICURNT specifies that the in-use attribute is to be removed from all resources except those 
associated with the current task, its direct ancestors, and the initiator. This key is mutually 
exclusive with the TCB address key (DRITCBAD). When you code DRICURNT, # must be 
zero; LEN and PARM are not specified. 

Example: to specify the current task option, code 

KEY 
0002 

# 
0000 

Hex Text 
Unit Key 

LEN PARM 

IEFZB4D2 
Mnemonic SVC 99 Function 

0001 
0002 

DDNDDNAM 
DDNRTDUM 

Specifies the ddname to be allocated. 
Requests a dummy data set indication. 

Figure 71. Verb Code 06 (Ddname Allocation) - Text Unit Keys, Mnemonics, and Functions 

Odname Allocation Text Units 
Use verb code 06 and the text units listed in Figure 71 and described as follows to request 
ddname allocation processing. In ddname allocation, you are specifying that the SVC 99 
routines are to use a particular existing allocation to satisfy your allocation request. You 
identify the data set you wish by specifying the ddname associated with it. 

Ddname Specification - Key = '0001' 
DDNDDNAM specifies the ddname of the resource to be allocated. It is required for dynamic 
allocation by ddname. 

When you code DDNDDNAM, # must be one, LEN contains the length of the ddname, and 
PARM contains the ddname. 

Example: to specify the ddname SYSLIB, code 

KEY # LEN PARM 
0001 0001 0006 E2 E8 E2 03 C9 C2 

Requesting SVC 99 Functions 1-307 



Return DUMMY Indication Specification - Key = '0002' 
Code DDNRTDUM to request the return of an indication if the ddname specified in 
DDNDDNAM is associated with a dummy data set. When you code DDNRTDUM, # and 
LEN must be one, and PARM is a one-byte field. The SVC 99 routines set PARM as follows: 

'80 I if the ddname is associated with a dummy data set 
I 00 I otherwise 

Example: to specify that the DUMMY indication be returned, code 

KEY # LEN PARM 
0002 0001 0001 

Hex Text IEFZB4D2 
Unit Key Mnemonic 

0001 DINDDNAM 

0002 DINDSNAM 

0004 DINRTDDN 

0005 DINRTDSN 

0006 DINRTMEM 

0007 DINRTSTA 

0008 DINRTNDP 

0009 DINRTCDP 

OOOA DINRTORG 

OOOB DINRTLIM 

OOOC DINRTATT 

OOOD DINRTLST 

OOOE DINRTTYP 

OOOF DINRELNO 

C004 DINRSTCL 

COOS DINRMGCL 

C006 DINRDACL 

COOB DINRRECO 

COOC DINRKEYO 

COOD DINRREFD 

COOE DINRSECM 

COOF DINRLIKE 

COlO DINRAVGR 

SVC 99 Function 

Specifies the ddname identifier of the requested information. 

Specifies the data set for which the information is requested. 

Requests the return of the associated ddname. 

Requests the return of the data set name. 

Requests the return of the PDS member name. 

Requests the return of the data set's status. 

Requests the return of the data set's normal disposition. 

Requests the return of the data set's conditional disposition. 

Requests the return of the data set's organization. 

Requests the number of resources that must be deallocated before making a new 
allocation. 

Requests the return of special attribute indications. 

Requests the return of a last relative entry indication. 

Requests the return of the data set's type (terminal or dummy). 

Specifies the desired allocation information retrieval by relative request number. 

Requests the storage class of a new SMS-managed data set. 

Requests the management class of a new SMS-managed'data set. 

Requests the data class of a new data set. 

Requests the organization of a new VSAM data set. 

Requests the key offset of a new VSAM data set. 

Requests the DD name specified by the REFDD parameter of the DD 
statement. 

Requests the name of the RACF security data set profile. 

Requests the data set name on the LIKE parameter. 

Requests the value of the unit of allocation for a data set. 

Figure 72. Verb Code 07 (Dynamic Information Retrieval) - Text Unit Keys, Mnemonics, and 
Functions 

1-308 SPL: System Macros and Facilities Volume 1 



( 

( 

( 

Dynamic Information Retrieval Text Units 
Use verb code 07 and the text units listed in Figure 72 and described as follows to request that 
the SVC 99 routines return certain information about the allocated resources. 

Ddname Specification - Key = '0001' 
DINDDNAM specifies the ddname associated with the allocation you are requestirig 
information about. It is mutually exclusive with the dsname (DINDSNAM) and relative entry 
(DINRELNO) keys. When you code DINDDNAM, # must be one, LEN is the length of the 
ddname, and PARM contains the ddname. 

Example: to specify the ddname DDl, code 

KEY # 
eem eem 

LEN 
eee3 

PARM 
C4 C4 F1 

Dsname Specification - Key = '0002' 
DINDSNAM specifies the dsname of the allocated resource you are requesting information 
about. It is mutually exclusive with the ddname (DINDDNAM) and relative entry 
(DINRELNO) keys. When you code DINDSNAM, # must be one, LEN is the length of the 
dsname, and P ARM contains the dsname. 

Example: to specify the dsname MYDATA, code 

KEY # 
eee2 eem 

LEN 
eee6 

PARM 
D4 ES C4 C1 E3 C1 

Return Ddname Specification - Key = '0004' 
Code DINRTDDN to request the return of the ddname associated with the specified allocation. 
When you code this key, # must be one, LEN must be eight, andPARM is an eight-byte field. 
Upon return to your program, PARM will contain the requested ddname, and LEN will be set 
to its length. 

Example: to request the return of the ddname, code 

KEY # 
eee4 eem 

LEN 
eees 

PARM 

Return Dsname Specification - Key = '0005' 
Code DINRTDSN to request the return of the dsname of the specified allocation. When you 
code this key, # must be one, LEN must be forty-four, and PARM is a forty-four byte field. 
Upon return to your program, PARM will contain the dsname and LEN will be set to its 
length. 

Example: to request that the dsname be returned, code 

KEY # 
eee5 eem 

LEN 
ee2C 

PARM 

Return Member Name Specification - Key = '0006' 
Code DINRTMEM to request the return of the member name associated with the specified 
allocation. When you code this key, # must be one, LEN must be eight, and PARM is an 
eight-byte field. Upon return to your program, PARM will contain the member name and 
LEN will be set to its length (or to zero, if none). 

Example: to request that the member name be returned, code 

KEY 
eee6 

# 
eem 

LEN 
eees 

PARM 

Requesting SVC 99 Functions 1-309 



Return Status Specification - Key = 10007 I 
Code DINRTSTA to request the return of the data set status of the specified allocation. When 
you code this key, # and LEN must be one, and PARM is a one-byte field. Upon return to ~." 

your program, the PARM field will contain one of the following values: 0' 
'01' for OLD 
'02' for MOD 
'04' for NEW 
'08' for SHR 

Example: to request that the status be returned, code 

KEY # LEN PARM 
0007 0001 0001 

Return Normal Disposition Specification - Key = 10008 1 
Code DINRTNDP to request the return of the normal disposition of the specified resource. 
When you code this key, # and LEN must be one. PARM is a one-byte field. Upon return to 
your program, PARM will contain one of the following values: 

'01' forUNCATLG 
'02' for CATLG 
'04' for DELETE 
'08' for KEEP 
'10' for PASS 

Example: to request that the normal disposition be returned, code 

KEY # LEN PARM 
0008 0001 0001 

" --,/ 

Return Conditional Disposition Specification - Key = 10009 I j 

Code DINRTCDP to request the return of the conditional disposition of the specified resource. 
The values for #, LEN and PARM are the same as for the return normal disposition key 
(DINRTNDP). 

Example: to request that the conditional disposition be returned, code 

KEY # LEN PARM 
0009 0001 0001 

,t(' " 

''\..j 

1-310 SPL: System Macros and Facilities Volume 1 



(~ 

( 

(-

(-

(:: 

Return Data Set Organization Specification Key = I OOOA I 

Code DINRTORG to request the return of the data set organization (DSORG) of the specified 
resource. When you code this key, # must be one, LEN must be two, and PARM is a two-byte 
field. Upon return to your program, PARM will contain one of the following: 

'0000' if undetermined 
'0004' ifTR 
'0008' for VSAM 
'0020' ifTQ 
'0040' ifTX 
'0080' for GS 
'0200' for PO 
'0300' for POU 
'0400' for MQ 
'0800' for CQ 
'1000' for CX 
'2000' for DA 
'2100' for DAU 
'4000' for PS 
'4100' for PSU 
'8000' for IS 
'8100' for ISU 

Example: to request that the data set organization be returned, code 

KEY # 
ElElElA ElEl0l 

LEN 
ElElEl2 

PARM 

Return Limit Specification. Key = 10008 I 
Code DINRTLIM to request the return of the number of resources that must be deallocated 
before a new allocation can be made. When you code this key, # must be one, LEN must be 
two, and PARM is a two-byte field. Upon return to your program, PARM is set to the 
number of resources to be deallocated. 

Example: to request that the number of not-in-use data sets over the control limit be returned, 
code 

KEY # LEN PARM 
ElEl0B ElEl01 El0El2 

If three data sets must be deallocated, the SVC 99 routines return DINRTLIM as follows: 

KEY 
0ElElB 

# 
ElElEll 

LEN 
El0El2 

PARM 
ElElEl3 

Return Dynamic Allocation Attribute Specification· Key = I OOOC I 

Code DINRT ATT to request indications of the attributes assigned to the specified resource. 
When you code this key, # and LEN must be one, and PARM is a one-byte field. Upon return 
to your program, PARM is set as follows: 

Bit 0 on, if permanently concatenated 
Bit lon, if in use 
Bit 2 on, if permanently allocated 
Bit 3 on, if convertible 
Bit 4 on, if dynamically allocated 
Bits 5-7 reserved 

Requesting SVC 99 Functions 1-311 



Example: to request return of the data set attributes, code 

KEY # LEN PARM 
eeee eeel eeel 

If the allocation has the in-use and pernianently allocated attributes, PARM contains the 
following on return: 

KEY 
eeee 

# 
eem 

LEN 
eem 

PARM 
6e 

Return Last Entry Specification - Key = 10000 I 
Code DINRTLST to determine if the relative entry number you specify is the last relative entry. 
When you code DINRTLST, # and LEN must be one, and PARM is a one-byte field. Upon 
return to your program, PARM contains one of the following values: 

'80' if last relative entry 
'00' otherwise 

Example: to request the return of the last entry, code 

KEY 
eeeD 

# 
eeel 

LEN 
eem 

PARM 

Return Data Set Type Specification - Key = I OOOE I 

Code DINRTTYP to determine the type of the specified data set. When you code this key, # 
and LEN must be one, and PARM is a one-byte field. Upon return to your program, PARM 
contains one of the following values: 

'80' if a DUMMY data set 
'40' if a terminal allocation 
'20' if a SYSIN data set 
'10' if a SYSOUT data set 
'00' otherwise 

KEY # LEN PARM 
eeeE eem eem 

Relative Request Number Specification - Key = I OOOF I 

DINRELNO specifies the relative request number of the allocation you are requesting 
information about. It is mutually exclusive with the ddname (DINDDNAM) and dsname 
(DINDSNAM) keys. When you code DINRELNO, # must be one, LEN must be two, and 
PARM contains the relative number. 

Example: to specify that information is to be returned about your tenth SVC 99 request, code 

KEY 
eeeF 

# 
eeel 

LEN 
eee2 

PARM 
eeeA 

Return Storage Class Specification - Key = I C004 I 
Code DINRSTCL to request the storage class of the specified SMS-managed data set. 

Example: What is the storage class of the specified SMS-managed data set? 

KEY 
eee4 

# 
eem 

LEN 
eeea 

PARM 

The system returns the storage class identifier, left justified, into PARM, which must be an 
eight byte field. It also stores a two-byte number in LEN that indicates the length of the 
identifier. 

1-312 SPL: System Macros and Facilities Volume 1 

", 
; 

j 

c<"" 

'"", ,j 

c 



( 

( 

.1 

1 

1 

Return Management Class Specification - Key = I COOS I 

Code DINRMGCL to request the management class of the specified SMS-managed data set. 

Example: What is the management class of the specified SMS-managed data set? 

KEY 
C005 

# 
0001 

LEN 
0008 

PARM 

The system returns the management class identifier, left justified, into PARM, which must be 
an eight-byte field. It also stores a two-byte number in LEN that indicates the length of the 
identifier. 

Return Data Class Specification - Key = I C006 I 
Code DINRDACL to request the data class of the specified SMS-managed data set. 

Example: What is the data class of the specified data set? 

KEY 
C006 

# 
0001 

LEN 
0008 

PARM 
40 40 40 40 40 40 40 40 

The system returns the data class identifier, left justified, into PARM, which must be an 
eight-byte field. It also stores a two-byte number in LEN that indicates the length of the 
identifier. 

Return Record Organization Specification - Key = I COOB I 

Code DINRRECO to request the organization of the records in the specified VSAM data set. 

Example: How are the records organized in the specified VSAM data set? 

KEY # LEN PARM 
C008 0001 0001 00 

The system returns the record organization into PARM, which must be a one-byte field; the 
system also returnsX'OOOl' into both the LEN field and the # field. The value returned in 
P ARM is one of the following: 

• For a VSAM key-sequenced data set (KS), X'80' 
• For a VSAM entry-sequenced data set (ES), X'40' 
• For a VSAM relative record data set (RR), X'20' 
• For a VSAM linear space data set (LS), X'lO' 

1 Return Key Offset Specification - Key = I COOC I 

1 Code DINRKEYO to request the key offset. The key offset is the position of the first byte of 
. 1 the key in each logical record of the specified VSAM data set. If the key is at the beginning of 

1 the logical record, the offset is zero. 

Example: What is the key offset in a record of the specified VSAM data set? 

KEY # 
C00C 0001 

LEN 
0002 

PARM 
00 00 

The system returns a two-byte binary number representing the offset into PARM, which must 
be a two-byte field. It stores X'0002' into LEN. The value of the offset is less than or equal to 
65535 bytes. 

Requesting SVC 99 Functions 1-313 



Return Copy DD Specification - Key = 'COOD' 
Code DINRREFD to request the name of the JCL DD statement from which the attributes of 
the specified data set were copied. 

Example: What is the .name of the JCL DD statement from which the attributes of the specified 
data set were copied? 

KEY 
COOD 

# 
0001 

LEN 
001A 

PARM 

The system returns the name, left justified, into PARM, which you must define as a 26-byte 
field. It also stores the length of the name in LEN. The name can be a ddname, a 
stepname.ddname, or a stepname.procstepname.ddname where ddname is the label on a JCL DD 
statement, and stepname and procstepname are labels that appear on JCL EXEC statements. 

Return Copy Profile Specification - Key = 'COOE' 
Code DINRSECM to request the name of the RACF profile from which the RACF profile of 
the specified data set was copied. 

Example: What is the dsname of the RACF profile that was used to supply the profile of the 
specified data set? 

KEY # 
COOE 0001 

LEN! 
002C 

PARMI LEN2 
0000 

PARM2 

If the copied profile was defined generically, such as in the JCL statement, 
SECMODEL= (dsname,GENERIC), the system returns the dsname value in PARMI and the 
length of the dsname in LENl. It stores X'80' in PARM2 and X'OOOl' in LEN2. It also stores 
X'0002' in the # field, indicating that the profile is generic. You must define PARM2 as one ,c " 

byte, and P ARM 1 as 44 bytes.", /i 

If the copied profile was not defined generically, the system does not store anything in LEN2 or 
P ARM2. However, the system returns the dsname into P ARM 1, and the length of the dsname 
into LEN. The # field is set to X'OOOI', indicating that the profile is not generic. 

Return Copy Model Specification - Key = 'COOF' 
Code DINRLIKE to request the name of the model data set from which the attributes of the 
specified data set were copied. 

Example: What is the dsname of the model data set from which the attributes of the specified 
data set were copied? 

KEY # 
C00F 0001 

LEN 
002C 

PARM 

The system returns the dsname into PARM, which you must define as a 44-byte field, and the 
length of the dsname into LEN. It stores X'OOOl' in the # field. 

Return Average Record Specification - Key = 'C010' 
Code DINRA VGR to request the allocation unit that was used when the specified data set was 
allocated. 

Example: What unit of allocation was used to allocate the specified data set? 

KEY 
C010 

# 
0001 

LEN 
0001 

PARM 

1-314 SPL: System Macros and Facilities Volume 1 



( 

( 

The system returns a code into PARM, which you must define as a one-byte field. The 
returned code is one of the following: 

• U (X'80') represents single-record units. 
• K (X'40') represents thousand-record units. 
• M (X'20') represents million-record units 

The system also returns X'OOOl' in the # field. 

Example of a Dynamic Allocation Request 
The assembler language example in Figure 73 is a dynamic allocation request allocating 
SYSl.LINKLIB with a status of SHARE. It also requests that the SVC 99 routines return the 
ddname associated with SYSl.LINKLIB. 

Figure 74 shows the parameter list that is built from the SVC 99 invocation in Figure 73. 

Requesting SVC 99 Functions 1-315 



DYN CSECT 
USING *,15 
STM 14,12,12(13) 
BALR 12,13 

BEGIN OS flH 
USING BEGIN,12 
LA 13,513 AMOUNT OF STORAGE REQUIRED FOR THIS REQUEST. 
GETMAIN R,LV=(fl) GET THE STORAGE NECESSARY FOR THE REQUEST. 
LR 8,1 SAVE THE ADDRESS OF THE RETURNED STORAGE. 
USING S99RBP,8 ESTABLISH ADDRESSABILITY FOR S99RBP DSECT. 
LA 4,S99RBPTR+4 POINT FOUR BYTES BEYOND START OF S99RBPTR. 
USING S99RB,4 ESTABLISH ADDRESSABILITY FOR RB DSECT. 
ST 4,S99RBPTR MAKE 'RBPTR' POINT TO RB. 
01 S99RBPTR,S99RBPND TURN ON THE HIGH-ORDER BIT IN RBPTR. 
XC S99RB(RBLEN),S99RB ZERO OUT 'RB' ENTIRELY. 
MVI S99RBLN,RBLEN PUT THE LENGTH OF 'RB' IN ITS LENGTH FIELD. 
MVI S99VERB,S99VRBAL SET THE VERB CODE FIELD TO ALLOCATION FUNCTION. 
LA 5,S99RB+RBLEN POINT PAST 'RB' TO START OF TUP LIST. 
USING S99TUPL,5 ESTABLISH ADDRESSABILITY FOR TEXT UNIT PTRS. 
ST 5,S99TXTPP STORE ADDRESS OF TUP LIST IN THE RB. 
LA 6,DSNTU GET ADDRESS OF FIRST TEXT UNIT 
ST 6,S99TUPTR AND STORE IN TUP LIST. 
LA 5,S99TUPL+4 GET ADDRESS OF NEXT TUP LIST ENTRY. 
LA 6,STATUSTU GET ADDRESS OF SECOND TEXT UNIT 
ST 6,S99TUPTR AND STORE IN TUP LIST. 
LA 6,S99TUPL+8 POINT PAST END OF TUP LIST. 
USING S99TUNIT,6 ESTABLISH ADDRESSABILITY TO TEXT UNIT. 
LA 5,S99TUPL+4 GET ADDRESS OF NEXT TUP LIST ENTRY. 
ST 6,S99TUPTR STORE ADDRESS OF TEXT UNIT IN TUP LIST. 
01 S99TUPTR,S99TUPLN TURN ON HIGH-ORDER BIT IN LAST TUP LIST ENTRY. 
MVC S99TUNIT(14),RETDDN MOVE RETURN DDNAME TEXT UNIT TO PARM AREA. 
LR 1,8 PUT ADDRESS OF REQUEST BLOCK POINTER IN REG 1. 

DYNALLOC INVOKE SVC 99 TO PROCESS THE REQUEST. 
LM 14,12,12(13) 

BR 14 RETURN TO CALLER. 
RBLEN EQU (S99RBEND-S99RB) 
DSNTU DC AL2(DALDSNAM) 

DC X '1313131 , 
DC X'fl0flC' 
DC C'SYS1.LINKLIB' 

STATUSTU DC AL2(DALSTATS) 
DC X '131301 , 
DC X '00131' 
DC X'08' 

RETDDN DC AL2(DALRTDDN) 
DC X'fl001, 
DC X '13008 , 
OS CL8 
IEFZB4Dfl 
IEFZB4D2 

DYN CSECT 
END 

Figure 73. Example of a Dynamic Allocation Request 

1-316 SPL: System Macros and Facilities Volume 1 

,,,c-,,, 
'~ 



(' 

(-~ 

( 

Note the concepts that the example illustrates: 

• You need to request storage via the GETMAIN macro for the request block and the 
DALRTDDN text unit, because the SVC 99 routines modify them. The DALDSNAM and 
DSLST A TS text units can be in virtual storage. 

In the example, the GETMAIN request is for 50 bytes, derived as follows: 

Bytes Purpose 

4 Pointer to the request block. 
20 Request block space. 
12 Four bytes each for three text unit pointers. 
14 Text unit space for the requested return of the ddname. 

• IEFZB4DO provides DSECTs that map the parameter list structure. 

• The example uses IEFZB4D2 mnemonics in the text unit keys. 

Figure 74 shows the parameter list that results from the code in Figure 73. It is the SVC 99 
request block structure needed to allocate data set SYSl.LINKLIB with a disposition of 
SHARE, and to return the ddname assigned by SVC 99. 

+0 80 t Request Block 

+4 

+8 

+12 

14 01 0000 

0 

t Text Pointers 
/; 

--
+16 a 

+20 a 

+36 

+54 

+61 

+24 t Text Unit 1 

+28 t Text Unit 2 

+32 80 t Text Unit 3 

SYS1 . LINKLIB 

0055 0001 0008 8 bytes in which the 
ddname will be returned 

Figure 74. Parameter List Resulting From Dynamic Allocation Example 

Requesting SVC 99 Functions 1-317 

'"----,---------



/ 

/ 

c 
1-318 SPL: System Macros and Facilities Volume 1 



(-

( 

(-

( 

Index 

A 
ABDUMP symptom area 1-153 
ABEND 

completion code 1-158, 1-160 
occurred because of DETACH 1-165 
SVC 1-81 

abend dump 
from an ET AE routine 1-177 
from an FRR 1-177 

ABEND macro instruction 1-135, 1-142, 1-177 
function 1-137 

abends 1-178 
abnormal 

address space termination 1-136 
condition 1-135 
program termination 1-135 
termination 1-152, 1-183 

continue 1-136 
of attaching task 1-162 

access 
data from other address spaces 1-78 
environment element 1-195 

access environment element 1-195 
accounting methods 

affected by cross memory 1-80 
accumulated processor time, obtaining 1-64 
active 

addressing bind 
required by cross memory 1-80 

binds 1-97 
address 

range 0-511 1-201 
address space 

authorization 1-82 
current 1-79 
DUMPSRV 1-151 
home 1-79 
options of SDUMP macro instruction 1-144 
primary 1-79 
secondary 1-79 
swapped out 1-123 
switch 1-88 
termination 1-97, 1-135, 1-183 

resource manager duties 1-183 
tracing 1-141 

address space communication 
asynchronous 1-73 

address space tracing 
performing 1-141 

addressable 
address spaces 1-78 
virtual storage 1-121 

© Copyright IBM Corp. 1982, 1989 

addressing 
bind 1-80 
environment 

normal I-ISS 
restricted 1-156 

mode 1-13 
for retry 1-170 

addressing mode 1-155 
ADYSETxx 1-151 
AKM 

definition 1-83 
in entry table 1-85 

altering the dispatching queue 1-25 
alternate clocks 1-209 
alternate method 

for indicating event completion 1-42 
AMODE 1-13 

assembler definition 1-13 
contained in STKE 1-87 
values for 1-14 

answer area 
for EXTRACT 1-31 

APF 
authorization 1-4, 1-189 
guidelines 1-194 
restricting load module access 1-192 
using 1-191 

APF-authorized 1-182 
how to become 1-189 
how to find out which programs are 1-190 

APFTABLE 1-190 
ASCB 1-148 
ASID 1-144,1-147, 1-148 

in entry table 1-85 
of home address space 1-79 
option of SDUMP 1-145 
parameter of CALLR TM macro instruction 1-136, 

1-137 
record 1-148 
translation exception 1-81 

ASIDLST 1-144 
ASM 

functions 1-121 
recovery 1-137 

ASMGL lock 1-21 
assume key of caller 1-186 
asynchronous 

address space communication 1-73 
dump 1-145 
exit routine 

AT 

characteristics 1-203 
register contents 1-206 

set 1-86 

Index X-I 



ATSET macro instruction 1-83,1-86 
example 1-91, 1-92 

ATTACH macro 
EST AI parameter 1-167 

ATTACH macro instruction 
authorization 1-193 
changing the defaults 1-4 
defaults 1-4 
ESTAI parameter 1-152, 1-162 
function 1-4 
STAIoption 1-179 
ST AI parameter 1-152 

authorization 
address space 1-82 
APF 1-189 
assigning 1-192 
code 1-189, 1-192 

assigned via JCL 1-192 
assigned via SETCODE 1-192 
default 1-192 

cross memory 1-85 
index 1-86, 1-155 

for retry 1-170 
how to reserve 1-90 

macro instructions 1-86 
program 1-83 
requirements for STAE routines 1-182 
results under various conditions 1-193 
rules 1-193 
table 1-83 

authorized 
libraries 1-190 
programs 1-190 
user 1-190 

definition of 1-4 
auxiliary storage management 

g1obal10ck 1-21 
avoiding duplicate data 

in a summary dump 1-147 
AX 

determine 1-83 
extract 1-86 
for retry 1-167 
free 1-86 
how to reserve 1-90 
how to set 1-90 
initial value of 1-83 
owner of 1-90 
reserve 1-86 
set 1-86 

AXEXT macro instruction 1-83 
AXFRE macro instruction 1-83, 1-86 

example 1-93 
AXRES macro instruction 1-81, 1-83, 1-86, 1-97 

example 1-90 
AXSET macro instruction 1-83, 1-86 

example 1-90, 1-93, 1-95 

X-2 SPL: System Macros and Facilities Volume 1 

A=SVCD 
specified with SLIP 1-140 

A=TRDUMP 
specified with SLIP 1-140 

B 
BALR 1-141 
BASR 1-141 
BASSM 1-141 
BDAM data set 

how to reserve 1-32 
bind 

active 1-80 
addressing 1-80 

BLSABDPL macro instruction 1-142 
BLSQMDEF macro instruction 1-142 
BLSQMFLD macro instruction 1-142 
BLSRESSY macro instruction 1-142 
branch and link register 1-141 
branch and save and set mode 1-141 
branch and save register 1-141 
branch entry 

to PGSER routine 1-125 
to SDUMP 1-144 
to stage I 1-203 

BRANCH option 
of SDUMP macro instruction 1-147 

BRANCH options 
of SDUMP macro instruction 1-144 

branch tracing 1-141 
performing 1-141 

BRANCH = SPECIAL option ofPGSER 1-121 
BRANCH = YES option of CALLDISP 1-47 
buffer 

for internal START command 1-6 
bypassing POST 1-35 

C 
CALLDISP macro instruction 

BRANCH = YES option 1-47 
considerations for use 1-47 
function 1-47 
options 1-47 

CALLRTM macro instruction 1-135, 1-177 
ASID parameter 1-136, 1-137 
function 1-136 
restrictions 1-136 
TCB parameter 1-136 
TYPE=ABTERM 1-136 
TYPE=MEMTERM 1-137 
work area 1-136 

CCWs 
protection of 1-201 

CDS instruction 1-17 
cell pool services 1-10 1 

create 1-101 

4',\ 
~) 



( 

( 

cell pool services (continued) 
delete 1-101 
free 1-101 
obtain 1-101 

changing 
contents of registers for retry 1-161 
system status 1-200 
the PKM value 1-83 

changing the parameters at dynamic 
unallocation 1-234 

channel 
command words 

protection of 1-201 
CHAP macro instruction 

function 1-12 
characteristics 

of a non-space switch PC routine 1-96 
of a space switch PC routine 1-96 
of valid storage subpools 1-103 

characters on a MCS console 1-68 
check stop 1-67 
checking 

PER traps 1-139 
checkpoint/restart 

restricted in cross memory 1-81 
restrictions 1-15 
using 1-15 

CHNGDUMP command 1-135,1-142,1-151,1-177 
CIB 

address exact 1-7, 1-8 
contents 1-7 
counter 1-8 
free 1-8 
verb code 1-7 

CIRB macro instruction 1-203 
BRANCH = YES option 1-203 

clean up 
cross memory 1-95 
processing 1-183 
queues 1-183 
service available to all address spaces 1-95 

clock 
comparator 1-210 
failure 1-209 
functioning of 1-210 
resetting 1-210 

clocks 
alternate 1-209 

CML 
ASID 1-147 

CML lock 1-20, 1-22, 1-79 
considerations 1-23 
use 1-157 

CMS lock 1-20, 1-21, 1-214 
CMSEQDQ lock 1-20 
CMSSMF lock 1-20 
code protection 1-79 

------,-~------ --

collecting information 
about resources 1-49 

command 
MODIFY 1-7 
START 1-1 
STOP 1-7 

common 
storage 1-103 
storage for cross memory 1-79 

commonly addressable storage 
avoidance of 1-78 
for PC routine 1-91 
when FRR must reside in 1-157 

communication 
area 1-159 
inter-address space 1-72 
summary of 1-1 
with a problem program 1-7 

communications ECB 1-8 
compare 

and swap instruction 1-17 
double and swap 1-131 
double and swap instruction 1-17 

completion of an event 1-45 
concatenated groups, dynamically de allocating 1-234 
concatenation 

of authorized and unauthorized libraries 1-191 
concatenation of data sets by SVC 99 

See dynamic concatenation 
concepts of SVC 99 processing 1-229 
connect ET 1-86 
connecting entry table to linkage table 1-91 
considerations for dsname dynamic allocation 1-253 
continue 

with abnormal termination 1-136 
control 

program extensions 1-189 
register 0 1-201 
routing of recovery routines. 1-171 

control features of SVC 99 processing 
See processing control features for SVC 99 

control limit, for SVC 99 1-229 
control limit, in dynamic allocation 1-229 
control program extensions "1-189 
convertible attribute 1-230 

See also processing control features for SVC 99 
convertible attribute for dynamic allocation 

See processing control features for SVC 99 
counterfeiting a module 

preventing 1-189 
CPOOL macro instruction 

function 1-10 1 
CPU 

lock 1-19, 1-20 
reset 1-66 
work area save (WSA) vector table 1-148 

create 
a new task 1-4 

Index X-3 



create (continued) 
an address space 1-79 
ET 1-86 
IRB 1-203 

critical 
address space resources 1-157 
resource recovery 1-157 
system resources 1-156 

cross memory 
access 1-88 
authorization 1-82 
benefits of 1-78 
clean up 1-88 
considerations for recovery routines 1-97, 1-153 
data access 1-78 
data movement 1-78 
environment 1-79 
environment for retry 1-167 
establishing environment 1-88 
example 

set up 1-89 
examples 1-89 
facilities available 1-81 
general considerations 1-80 
initialize the structure 1-88 
instructions 1-80 
linkage 1-84 
linkage conventions 1-86 
local lock 1-20 
macro instructions 1-80 
mode 1-80 
mode for POST 1-40 
mode for retry 1-170 
post 1-35, 1-40 
program sharing 1-78 
provide service for 1-88 
remove access 1-88 
restrictions 1-80 
restrictions for FESTAE 1-164 
services lock 

CMS 1-22 
CMSEQDQ 1-22 
CMSSMF 1-22 
requesting 1-24 

state 1-155 
structures 1-82 
terminology 1-79 

CS instruction 1-17 
CSA 

subpools in 1-103 
current 

address space 1-79 
custom-built delete functions for messages 1-72 
CVT 

CVTSDBF field of 1-145 
mapping macro 1-44, 1-46 
use of 1-88, 1-205, 1-206, 1-208, 1-216 

X-4 SPL: System Macros and Facilities Volume 1 

CVTEXIT 1-206 
CVTEXPI 1-216 
CVTQTDOO 1-210 
CVTQTEOO 1-208 
CVTSDBF 1-145 
CVTTPC 1-206 
CVTVWAIT 1-42 
CVTOEFOO 1-205 

D 
DAE 

See dump analysis and elimination 
DALBFALN text unit 1-289 
DALBFTEK text unit 1-289 
DALBLKLN text unit 1-272 
DALBLKSZ text unit 1-289 
DALBUFIN text unit 1-289 
DALBUFL text unit 1-290 
DALBUFMX text unit 1-290 
DALBUFNO text unit 1-290 
DALBUFOF text unit 1-290 
DALBUFOU text unit 1-290 
DALBUFRQ text unit 1-291 
DALBUFSZ text unit 1-291 
DALBURST text unit 1-283 
DALCDISP text unit 1-271 
DALCHARS text unit 1-283 
DALCLOSE text unit 1-276 
DALCNVRT text unit 1-300 
DALCODE text unit 1-291 
DALCOPYG text unit 1-283 
DALCOPYS text unit 1-276 
DALCPRI text unit 1-291 
DALCYL text unit 1-272 
DALDCBDD text unit 1-280 
DALDCBDS text unit 1-280 
DALDDNAM text unit 1-270 
DALDEFER text unit 1-284 
DALDEN text unit 1-292 
DALDIAGN text unit 1-298 
DALDIR text unit 1-272 
DALDSNAM text unit 1-270 
DALDSORG text unit 1-292 
DALDSSEQ text unit 1-277 
DALDUMMY text unit 1-278 
DALEROPT text unit 1-292 
DALEXPDL text unit 1-285 
DALEXPDT text unit 1-277 
DALFCBA V text unit 1-278 
DALFCBIM text unit 1-278 
DALFCNT text unit 1-284 
DALFFORM text unit 1-283 
DALFRID text unit 1-299 
DALFUNC text unit 1-298 
DALGNCP text unit 1-293 
DALINOUT text unit 1-277 



( 

( 

( 

( 

DALlNTVL text unit 1-293 
DALlPLTX text unit 1-297 
DALKYLEN text unit 1-293 
DALLA BEL text unit 1-276 
DALLlMCT text unit 1-293 
DALLRECL text unit 1-293 
DALMEMBR text unit 1-270 
DALMMOD text unit 1-284 
DALMODE text unit 1-294 
DALMSVGP text unit 1-281 
DALMTRC text unit 1-284 
DALNCP text unit 1-294 
DALNDISP text unit 1-271 
DALOPTCD text unit 1-294 
DALOUTLM text unit 1-276 
DALOUTPT text unit 1-285 
DALPARAL text unit 1-275 
DALPASPR text unit 1-277 
DALPASSW text unit 1-299 
DALPCIR text unit 1-295 
DALPCIS text unit 1-295 
DALPERMA text unit 1-300 
DALPRIME text unit 1-272 
DALPRIVT text unit 1-273 
DALPROT text unit 1-282 
DALPRTSP text unit 1-295 
DALQNAME text unit 1-278 
DALRECFM text unit 1-296 
DALRETPD text unit 1-278 
DALRLSE text unit 1-273 
DALROUND text unit 1-273 
DALRSRVF text unit 1-296 
DALRSRVS text unit 1-296 
DALRTDDN text unit 1-300 
DALRTDSN text unit 1-300 
DALRTORG text unit 1-301 
DALRTVOL text unit 1-302 
DALSECND text unit 1-272 
DALSFMNO text unit 1-276 
DALSHOLD text unit 1-281 
DALSOW A text unit 1-297 
DALSPFRM 1-273 
DALSPGNM text unit 1-275 
DALSSA TT text unit 1-302 
DALSSNM text unit 1-281 
DALSSPRM text unit 1-282 
DALSSREQ text unit 1-301 
DALSTACK text unit 1-297 
DALSTATS text unit 1-271 
DALSUSER text unit 1-280 
DALSYSOU text unit 1-275 
DALTERM text unit 1-279 
DALTHRSH text unit 1-297 
DALTRK text unit 1-271 
DALTRTCH text unit 1-297 
DALUCS text unit 1-279 
DALUFOLD text unit 1-279 

DALUNCNT text unit 1-275 
DALUNIT text unit 1-274 
DALUSRID text unit 1-282 
DALUVRFY text unit 1-279 
DALVLCNT text unit 1-274 
DALVLRDS text unit 1-274 
DALVLSEQ text unit 1-274 
DALVLSER text unit 1-273 
DASD 

allocation and management 1-121 
DAT 

error 1-157 
turned off 1-129 
turned on 1-129 

DAT-OFF indexes 1-132 
DAT-OFF routines 1-129 

restrictions 1-13 2 
writing 1-132 

DA T -ON nucleus 
obtaining information 1-133 

data 
access 1-78 
area for asynchronous exit routines 1-204 
areas for POST 1-39 
movement 1-78 
protection 1-79 
sets that cannot be shared 1-28 

data security 1-194 
DATOFF macro instruction 

function 1-129 
DCB 

address 1-31 
contents 1-31 
for a secure data set 1-178 
in dynamically acquired virtual storage 1-167 

DCB attribute text units 1-289 
See also SVC 99 text units 

DCBDEBAD 1-32 
DCCDDNAM text unit 1-305 
DCCPERMC text unit 1-306 
DD name 1-31 
DDCDDNAM text unit 1-306 
Ddname Allocation 1-232 
ddname allocation text units 1-307 

See also SVC 99 text units 
DDNDDNAM text unit 1-307 
DDNRTDUM text unit 1-308 
DDs allowed per jobstep 

default number of 1-237 
modifying number of 1-237 

deadlock 1-22 
example 1-22 
preventing 1-22 

deadlocked address space 1-137 
deallocation by SVC 99 

See dynamic unallocation 
DEB 

bit for an authorized library 1-189 

Index X-5 



DEB (continued) 
use 1 .. 31 

DEBDVMOD 1 .. 32 
declared storage for cross memory examples 1 .. 89 
deconcatenating data sets via SVC 99 

See dynamic deconcatenation 
default 

dump data set 1 .. 178 
subpool 1 .. 182 

deleting messages already written 1 .. 71 
DEQ macro instruction 

example 1 .. 34 
function 1 .. 25 
use of 1 .. 49 

destroy 
entry table 1 .. 93 
ET 1 .. 86 

determine the AX of an address space 1 .. 83 
device classes for UCB scan 1 .. 222 
devices 

releasing 1 .. 30 
reserving 1 .. 29 
sharing 1 .. 27 
that can be shared 1 .. 27 

diagnostic 
data collecting 1 .. 140 
information in cross memory 1 .. 86 

DIE 
restrictions on execution 1 .. 208 

DIE routine 
characteristics 1 .. 207 
execution 1 .. 208 
exit from 1 .. 208 
recovery for 1 .. 210 
register contents on entry 1 .. 207 

DINDDNAM text unit 1 .. 309 
DINDSNAM text unit 1 .. 309 
DINRELNO text unit 1 .. 312 
DINRTATT text unit 1 .. 311 
DINRTCDP text unit 1 .. 310 
DINRTDDN text unit 1 .. 309 
DINRTDSN text unit 1 .. 309 
DINRTLIM text unit 1 .. 311 
DINRTLST text unit 1 .. 312 
DINRTMEM text unit 1 .. 309 
DINRTNDP text unit 1 .. 310 
DINRTORG text unit 1 .. 310 
DINRTSTA text unit 1 .. 310 
DINRTTYP text unit 1 .. 312 
direct 

service class 1 .. 65 
disable 

low address protection 1 .. 201 
disabled 

locks 1~21 

page fault 1 .. 214 
spin locks 

held by SVC routine 1 .. 214 

X-6 SPL: System Macros and Facilities Volume 1 

disabled/enabled state 
for obtain 1 .. 24 
for release 1 .. 24 

disablement 1 .. 154 
for retry 1 .. 166, 1 .. 169 
legal 1 .. 20 
system recognized 1 .. 20 

disconnect 
entry table from linkage table 1 .. 92 
ET 1 .. 86 

DISP 
JCL parameter 1 .. 151 
lock 1 .. 22 

dispatcher 1 .. 205 
in cross memory 1 .. 82 
lock 1 .. 208 
pass control to 1 .. 47 

dispatching queue 
altering 1 .. 25 

DISPLAY command 
used with SLIP 1 .. 140 

DISPLAY DUMP command 1 .. 142, 1 .. 151 
timestamp 1 .. 15 I 

documentation 
on system integrity 1 .. 185 

DOM macro instruction 
function 1 .. 71 

DRICURNT text unit 1 .. 307 
DRITCBAD text unit 1 .. 307 
DSNAME 1 .. 151 
dsname allocation 1 .. 231 

coding considerations 1 .. 253-1 .. 254 
in addition to JCL services 1 .. 231 
JCL services not available through dynamic 

allocation 1 .. 232 
processing details 1 .. 249, 1 .. 254 

dsname allocation processing 1 .. 249 
changing the parameters of an existing 

allocation 1 .. 252 
checking for environmental conflicts 1 .. 250 
criteria for using an existing allocation 1 .. 250 

required of the existing allocation 1 .. 251 
required of the request 1 .. 250 

using a new allocation 1 .. 252 
automatic deallocation of resources held for 

re .. use 1 .. 253 
dsname allocation text units 1 .. 270 

See also SVC 99 text units 
dsname processing by SVC 99 

See dsname allocation processing 
dump 

cross memory memory information needed 1 .. 87 
data sets 1 .. 150 
of virtual storage 1 .. 142 
options 1 .. 164 
overriding options 1 .. 177 
scheduled 1 .. 144 
summary 1 .. 147 

r~ 

V' 

f", 

10 



( 

( 

dump (continued) 
SVC 1-144 
synchronous 1-145 
tailoring 1-178 
title 1-178 
virtual storage 1-135 
when RTM takes 1-177 

dump analysis and elimination (DAE) 1-140, 1-149 
providing information for 1-153 
status and error flags 1-161 
symptom count 1-161 

DUMP command 1-142, 1-151 
dump suppression 1-149 

bypassing 1-140 
DUMPDS command 1-142, 1-151 
DUMPSRV address space 1-150 
DUNDDNAM text unit 1-303 
DUNDSNAM text unit 1-303 
DUNMEMBR text unit 1-303 
DUNOVCLS text unit 1-305 
DUNOVDSP text unit 1-304 
DUNOVSHQ text unit 1-305 
DUNOVSNH text unit 1-304 
DUNOVSUS text unit 1-305 
DUNREMOV text unit 1-304 
DUNUNALC text unit 1-304 
duration of fix 1-122 
DYNALLOC macro 1-228 
dynamic allocation 1-227, 1-231 

ddname allocation 1-232-1-233 
dsname allocation 1-231-1-254 
installation options 1-237 
summary of 1-2 

dynamic allocation by dsname, processing details 
See dsname allocation processing 

dynamic allocation error reason codes 
See SVC 99 error reason codes 

dynamic allocation information reason codes 
See SVC 99 information reason codes 

dynamic allocation input validation 
See installation input validation routine for SVC 99 

dynamic allocation installation options 
See installation options for SVC 99 functions 

dynamic allocation parameter list 
See SVC 99 parameter list 

dynamic allocation programming considerations 
See programming considerations when using SVC 99 

dynamic allocation request block 
See SVC 99 parameter list 

dynamic allocation request block pointer 
See SVC 99 parameter list 

dynamic allocation return codes 
See SVC 99 return codes 

dynamic allocation text pointers 
See SVC 99 parameter list 

dynamic allocation text units 
See SVC 99 parameter list 
See SVC 99 text units 

dynamic concatenation 1-235 
permanently concatenated attribute 1-235 

characteristics 1-235 
dynamic concatenation text units 1-305 

See also SVC 99 text units 
dynamic deconcatenation 1-236 
dynamic deconcatenation text unit 1-306 
dynamic information retrieval 1-236 

kinds of information retrieved 1-236 
dynamic information retrieval text units 1-309 

See also SVC 99 text units 
dynamic unallocation 1-233 

changing parameters 1-234 
of concatenated groups 1-234 
processing considerations 1-234-1-235 
removing in-use bit based on task id 1-235 

dynamic unallocation processing 1-234 
dynamic unallocation text units 1-303 

See also SVC 99 text units 

E 
EBCDIC characters 1-68 
EC PSW 1-160 
ECB 

extended 1-38 
not posted 1-123 
posted by a system routine 1-39 
posting 1-7 
supplied with a page-fix request 1-121 
supplied with a page-load request 1-121 
target for cross memory post 1-35 
used with page fix 1-123 

ECBE 
content 1-37 
used to identify a subsystem exit 1-39 

EKM 
definition 1-84 
in entry table 1-85 

ELSQA 
subpools in 1-103 

emergency 
signal 1-66 
signal function 1-66 

enable 
low address protection 1-201 

enabled 
locks 1-21 
summary dump 1-147 
task mode 1-95 
unlocked SRB 1-176 

end address 
for paging services 1-121 

ENQ macro instruction 1-26 
function 1-25 
use of 1-49 

ENQ/DEQ 1-17 

Index X .. 7 



ENQ/DEQ cross memory services lock 1-22 
entry index 1-85 
entry points 

for cross memory services 1-89 
to routines in DAT-OFF nucleus 1-129 

entry table 
constructed via ETCRE macro instruction 1-85 
contents 1-85 
descriptions for examples 1-90 
function of 1-89 
owner of 1-89 
second level table 1-84 
set up 1-89 
use 1-85 

environment 
for a task recovery 1-175 
for resource manager 1-183 
system 1-154 

EOF 1-151 
EP AR instruction 1-80 
EQT 

use of 1-40 
USERINFO field in 1-40 

equipment check 1-66 
EREP indicator 1-161 
ERRET routine 1-35 
error 

associated with ABEND 1-160 
documentation 1-135 
during swap-in 1-137 
during swap-out 1-137 
exit routine 1-138 
message for abend 

who issues 1-178 
on a higher task 1-165 
recovery 

for DIE routine 1-210 
error reason codes for dynamic allocation 

See SVC 99 error reason codes 
ESAR instruction 1-80 
ESCA 

subpools in 1-103 
ESPIE macro instruction 1-135, 1-138 

AMODE of callers 1-138 
ESQA 

subpools in 1-103 
establish 

a cross memory environment 1-88 
access 1-94 
access for cross memory 1-88 
addressability for QEDIT 1-8 

ESTAE 
environment 1-162 
exit 1-162 
nested routine 1-176 
recovery for SVCs 1-216 
routine 

when not to establish 1-175 

X-8 SPL: System Macros and Facilities Volume 1 

ESTAE macro instruction 1-135, 1-154, 1-162 
TOKEN parameter 1-163 

EST AE-type recovery 
routines 1-167 

deletion of 1-162 
special considerations 1-164 
summary 1-179 
use of 1-136 

EST AI parameter 1-162 
of ATTACH 1-135 
of ATTACH macro instruction 1-154 
propagation of recovery routine 1-162 

ET 
connect 1-86 
create 1-86 
destroy 1-86 
disconnect 1-86 

ETCON macro instruction 1-86 
example 1-91, 1-94 

ETCRE macro instruction 1-86, 1-95, 1-97 
example 1-94 
use of 1-89 

ETDES macro instruction 1-86 
example 1~93, 1-95 
PURGE = YES option 1-95 

ETDIS macro instruction 1-86 
example 1-92 

EUT FRRs 1-153 
event 

completion 1-43, 1-123 
indicating completion of 1-45 
waiting for completion 1-36 

EVENTS macro instruction 1-36 
EVENTS table 1-36 
EX 

portion of PC number 1-86 
use 1-85 

example 
authorization assigned via SETCODE 1-193 
bypassing the POST routine 1-36 
cross memory set up 1-89 
dump title 1-178 
of deadlock 1-22 
of subroutine issuing RESERVE and DEQ 1-34 
of SUSPEND macro instruction 1-43 
using POST exit function 1-39 

exclusive OR 1-131 
EXECUTE form of a macro instruction 1-16 
execution 

and termination of asynchronous exits 1-205 
time 

in cross memory 1-81 
EXIT 1-182 

for MVS router 1-197 
exit routines 1-203 

asynchronous 1-203 
deleting 1-37 
error 1-138 

c 



(-

exit routines (continued) 
identifying 1-37 
POST 1-36 
POST interface 1-38 
SPIE 1-138 
SPIEjESPIE 1-138 
STAEjSTAI 1-180 
summary of 1-2 
timer disabled 1-206 

explicit 
purging 1-123 
tracing 1-141 

extended 
area 1-103 
control (EC) PSW 1-160 

external 
call 1-66 
call function 1-67 
call pending 1-67 

extract 
AX 1-86 
information form the resource queues 1-49 
primary ASN (EPAR) instruction 1-80 
secondary ASN (ESAR) instruction 1-80 

EXTRACT macro instruction 
example 1-9 
function 1-7, 1-29 
use of 1-29 

EXTRACT option of PCLlNK 1-87 

F 
fast 

ESTAE 1-162 
path to fix virtual storage 1-121 
path to free virtual storage 1-122 

features unique to dynamic allocation 
See concepts of SVC 99 processing 

FESTAE macro instruction 1-135, 1-154, 1-162 
cross memory restrictions 1-164 
parameter area 1-164 
restrictions 1-164 
using 1-164 

fetch protection 1-185 
of PSA 1-188 

first 
level table for cross memory linkage 1-84 

fix 
virtual storage 1-122 

fast path 1-121 
FIX option of PGSER 1-122 
fixed frames 

responsibility for freeing 1-123 
footprint areas 1-177 
FORCE command 1-137 
forced 

stop 1-137 

FRACHECK macro instruction 1-195 
use of 1-195 

free 
an AX 1-86 
an AX value 1-83 
AX 1-93 
fixed frames 1-123 
linkage 1-93 
LX 1-86 
real storage 1-121 
the eIB 1-8 
virtual storage 1-122 

fast path 1-122 
FREE option of PGSER 1-122 
FREEMAIN macro instruction 1-102 

BRANCH parameter 1-100 
function 1-100 
KEY parameter 1-101 
used by retry routines 1-164 

FRR 
establishing 1-175 
global 1-156 
recovery for SVCs 1-216 
summary 1-179 

FRR stack 1-154 
normal 1-153 
super 1-154, 1-156 

FRRs 
nested 1-176 

FSTOP 1-137 
FULLXM 

MODE parameter of SETFRR 1-155 
functions available through SVC 99 1-231 

G 
general cross memory services lock 1-22 
GETMAIN macro instruction 1-102 

BRANCH parameter 1-100 
function 1-100 
KEY parameter 1-101 

getting control as result of PC instruction 1-86 
global 

dispatcher lock 1-22 
intersect 1-25 
locks 1-18 
resource serialization 1-30, 1-49 
services available to all users 1-93 
subpool 1-18 

GLOBAL MODE parameter of SETFRR 1-156 
global resource serialization 

limiting requests 1-26 
request 1-26 

GQSCAN macro instruction 1-26 
function 1-49 
results 1-51, I-52 
TOKEN parameter 1-49 

Index X-9 



GTF trace record 1-140 
guidelines 

for recovery routines 1-176 
for using APF 1-194 

GVCTOL 1-27 
GVTCREQ 1-27 

H 
HASID 1-79 
hexadecimal representation of characters 1-68 
hierarchy oflocks 1-22 
hierarchy of recovery routines 1-178 
high private storage 1-103 
home 

I 

address space 1-79 
as entry table owner 1-89 
as LX owner 1-89 
owner of AX 1-90 

address space and locking 1-20 
mode 1-79 
MODE parameter of SETFRR 1-155 

lAC instruction 1-80 
ICHRFROO 1-197 
ICHRFR01 1-197 
ICHRTXOO 1-197 
ICHSAFP 1-199 
IDAWs 

protection of 1-201 
identifying messages to be deleted 1-71 
IEAAPFxx 1-191 
IEAAPFOO 1-190 
IEAAPPOO 1-192 
IEASYSxx 1-191 
IEAVCDS 

register contents 1-131 
IEAVEURl 1-129 
IEAVEUR2 1-129 
IEAVEUR3 1-129 
IEAVEUR4 1-129 
IEAVMVCO 1-129 
lEA VMVKY 1-129 
lEA VVTCP mapping macro 1-206 
lEA VW AIT 1-42 
IEAVXCO 1-129 
IEAOPTOE 1-37 
IEAOPT01 1-40 
IEAOPT03 1-39 
IEECVXIT 1-151 
IEE331A 1-65 
IEFAB445 1-237 
IEFZB4DO 1-243, 1-244, 1-248, 1-259 
IEFZB4D2 1-243, 1-259 
IEZCOM mapping macro 1-8 

X-tO SPL: System Macros and Facilities Volume 1 

IEZMGCR mapping macro 1-6 
IEZWPL mapping macro 1-69 
IGCOOnnn 1-214 
IHAETD mapping macro 1-89 . 
IHAPSA mapping macro 1-46, 1-47, 1-164 
IHARB mapping macro 1-164 
IHASCB mapping macro 1-164 
IHASDWA mapping macro 1-159 
IHASVT mapping macro 1-47 
IHATQE mapping macro 1-206 
IHSA 1-148 
IKJTCB mapping macro 1-164 
IKTOOlD 1-137 
IKTOI0D 1-137 
in-use bit and attribute, for SVC 99 1-229 

See also processing control features for SVC 99 
removing, via dynamic unallocation 1-233 

incorrect state 1-66 
index 

used with DATOFF 1-129 
indicating event completion 1-45 
indirect data address words 

protection of 1-201 
INDMVCLK 1-129 

register contents 1-130 
INDMVCLO 1-129 

register contents 1-130 
INDUSR1 1-129 
INDUSR2 1-129 
INDUSR3 1-129 
INDUSR4 1-129 
INDXCO 1-129 

register contents 1-131 
information 

preserving for dumps 1-178 
information reason codes for dynamic allocation 

See SVC 99 information reason codes 
initial 

CPU reset 1-66 
input 

to paging services 1-124 
to set DIE 1-206 

insert address space control (lAC) instruction 1-80 
inserting 

SVC routines into the control program 1-216 
installation 

responsibility 1-185 
installation input validation routine for SVC 99 1-239, 

1-243 
installation options for SVC 99 functions 1-237 

installation-written input validation routine 1-239 
mounting volumes and bringing devices 

online 1-238 
space and unit default values 1-237 

instruction 
address 

in entry table 1-85 
fetch 1-139 C' 

!I,- ' 



(-

c 

integrity 
elimination of potential exposures 1-185 
exposures 

control program extensions 1-189 
resource identification 1-187 
sensitive system data 1-188 
SVC routines calling SVC routines 1-188 
user supplied addresses 1-186 

sYl>tem 1-185 
inter-address space communication 1-72 
intercept 

errors 1-176 
expected program checks 1-176 
system errors 1-135, 1-139 

interface 
to stage 2 1-205 

interlock 1-23, 1-30 
example 1-23, 1-30 
task 1-31 

interlocks 
preventing 1-30 

interrupt 
handlers 

in cross memory 1-82 
interruption 

types 1-138 
intersect 

global 1-25 
local 1-25 

interval cancellation 1-209, 1-210 
introduction to dynamic allocation 

See introduction to SVC 99 functions 
introduction to SVC 99 functions 1-228 

DYNALLOC macro 1-228 
parameter list 1-228 

See also? 
INTSECT macro instruction 

function 1-25 
invalid 

function 1-67 
parameter 1-66 

invoke 
recovery termination 1-135 
the emergency signal function 1-66 
the external-call function 1-66 

lOS 
obtaining information from 1-226 
synchronization lock 1-22 
unit control block lock 1-22 

10SINFO macro instruction 1-226 
IOSUCB lock 1-22 
IOSVSUCB 

input 1-221 
output from 

affected by DDR swap 1-223 
for devices with multiple exposures 1-223 
for devices with optional channels 1-223 

parameter list 1-221 

,---------~-~------

IOSVSUCB (continued) 
register contents 1-222 
restrictions on use 1-221 
return codes 1-223 

IOSYNCH lock 1-22 
IPC 

function 1-65 
service classes 1-65 

IPCS 
dumping service 1-142 

IQE 
function 1-205 
initialization 1-205 

IQEIRB 1-205 
IQEPARAM 1-205 
IQETCB 1-205 
IRB 

address 1-203 
create 1-203 
errors in 1-177 
initialization 1-203, 1-204 

ISAM data set 
how to reserve 1-33 

isolate 
an error 1-176 
data 1-79 

issuing RESERVE and DEQ 1-34 
I/O 

error on page-in 1-135 

J 
JES3 1-246 

class 2 reason code from SVC 99 1-262 
notes on dynamic allocation (SVC 99) 1-246, 1-262 

job 
library 1-4 

job entry subsystem 
and dynamic allocation (SVC 99) 1-241, 1-242, 

1-265, 1-301 
job step 

advantage of creating 1-3 
control block 1-5 
task 1-3 
task owning entry tables 1-97 
timer 

expiration 1-165 
jobname 1-149 
JSCB 1-4 
JSCBA UTH 1-192 

K 
key of caller 

assume 1-186 

Index X-ll 



L 
label 

embedding lines 1-70 
latent parameter 

address 
in entry table 1-85 

list address 
in STKE 1-85 

LCCA 1-148 
length 

of parameter list for SDUMP 1-143 
ofVRA 1-161 

libraries 
installation authorized 1-190 
program 1-31 
SYS1.LINKLIB 1-190 
SYS1.LPALIB 1-190 
SYS1.SVCLIB 1-190 

library 
search 1-4 

LIFO order 1-165 
limiting extent of message deletion 1-71 
link pack area 1-215 
linkage 

and entry tables 
for a global service 1-94 

conventions 
for PC recovery 1-86 
in cross memory 1-97 

index 1-84 
format of 1-92 

macro instructions 1-86 
tables 1-84 

connection to entry tables 1-92 
contents 1-85 
first level 1-84 
use 1-85 

linking to routines in DAT-OFF nucleus 1-129 
LINKLIB 

in dynamic allocation example 1-315 
LIST form of a macro instruction 1-16 
LISTA 1-144, 1-146 
LNKAUTH=APFTAB 1-191 
LNKAUTH = LNKLST 1-191 
LNKLST 

mixing APF and non-APF libraries in 1-191 
LNKLST concatenation 1-191 
load 

module 1-4 
virtual storage 1-122 

LOAD macro instruction 
function 1-14 
to bring in retry routine 1-181 

local 
intersect 1-25 
level lock 

obtaining more than one 1-23 

X-12 SPL: System Macros and Facilities Volume 1 

local (continued) 
lock 1-22, 1-205 

not needed with PGSER 1-125 
locks 1-18 
lockword 1-20 

LOCAL lock 1-22, 1-23 
event completion 1-36 
with local intersect 1-25 

LOCAL MODE parameter of SETFRR 1-157 
lock 

manager 1-19 
obtaining more than one local 1-23 

locked status 
and recovery 1-176 

locking 1-18, 1-154 
at the TCB level 1-17 
categories of locks 1-18 
conventions 

for SVCs 1-214 
hierarchy 1-22 
restrictions 1-22 
summary 1-19 

locks 
classes of 1-21 
conditionally requested 1-21 
CPU lock disablement 1-20 
enabled 1-21 
for retry 1-166, 1-169 
global 1-18 
in MVS/XA 1-21 
local 1-18 
multiple 1-21 
obtaining 1-24 
releasing 1-24 
requests for shared/exclusive 1-19 
shared/exclusive 1-19 
single 1-21 
spin 1-19 
suspend 1-20 
testing 1-24 
types 1-19, 1-20 
unconditionally requested 1-21 

lockword 1-19 
CPU 1-20 
local 1-20 
using the same 1-23 

logoff 
system initiated 1-165 

LOGREC 
recording 1-178 
recording considerations 1-178 
recording from recovery routines 1-177 

LONG = Y option 
of fix function 1-122 

low 
private storage 1-103 
storage protection 1-201 

l"-\ 
~~/ 

/ 

c 



( 

( 

LSQA 
subpools in 1-103 

LX 
format of 1-92 
free 1-86 
how to reserve 1-89 
portion of PC number 1-86 
reserve 1-86 
use 1-84 

LXFRE macro instruction 1-86 
example 1-93 

LX RES macro instruction 1-86, 1-97 
example 1-89, 1-94 
with SYSTEM = YES option 1-94 

M 
machine check 1-135 
macro instructions 

EXECUTE form 1-16 
LIST form 1-16 
used for cross memory authorization 1-86 
used for cross memory linkage 1-86 
used with shared DASD 1-29 

making services available 
to all address spaces 1-93 
to selected address spaces 1-89 

managing an SRB 1-74 
mapping macros 

CVT 1-44, 1-47 
ICHSAFP 1-199 
lEA VVTPC 1-206 
IEZCOM 1-8 
IEZMGCR 1-6 
IEZWPL 1-69 
IHAETD 1-89 
IHA~SA 1-46, 1-47, 1-164 
IHARB 1-164 
IHASCB 1-164 
IHASDWA 1-159 
IHASVT 1-47 
IHATQE 1-206 
IIUTCB 1-164 

master 
scheduler address space 1-24 

memory create 1-137 
MEMTERM 

routines that can invoke 1-137 
message deletion 

limiting extent of 1-71 
messages 

deleting 1-71 
deletion 1-71 
routing 1-68 
writing 1-68 

MGCR macro instruction 
example 1-6 
function 1-6 

MGCR macro instruction (continued) 
used to issue an internal START 1-6 

migration 
of code and data 1-79 

mode 
addressing 1-13 
cross memory 1-80 
for asynchronous exits 1-204 
home 1-79 
of set DIE caller 1-206 
primary 1-79 
residency 1-13 
secondary 1-79 

MODESET macro instruction 1-200 
function 1-4 
inline code 1-200 
keys that you can set 1-200 
SVC form 1-200 
use by retry routine 1-164 

MODESET SVC 1-84 
MODIFY command 1-7 
modifying the SVC table at execution time 1-217 
modules 

re-entrant 1-16 
mounting and demounting with shared DASD 1-29 
mounting volumes and bringing devices online 1-238 
move 

character long 1-130 
character long in user key 1-130 
data between address spaces 1-78 
to primary (MVCP) instruction 1-80 
to secondary (MVCS) instruction 1-80 
with key (MVCK) instruction 1-80 

movemen t of virtual storage pages 1-121 
MSSF failure 1-67 
multiple 

line messages 
embedding label lines 1-70 

multiple-event wait 1-215 
must-complete function 1-25 

characteristics 1-25 
MVCK instruction 1-80 

use 1-83 
MVCL function 1-130 
MVCP instruction 1-80 

use 1-96 
MVCS instruction 1-80 

use 1-96 
MVS router 1-196 

exit 1-197 
parameter list 1-199 

MVS router exit 1-197 
MVS router exit routine 

return codes 1-198 

Index X-I3 



N 
naming conventions 

for SVC routines 1-214 
national characters 1-68 
nested 

ESTAE routines 1-176 
FRRs 1-176 
recovery routine 1-176 
recovery routines 1-176 

new 
task 

save area for 1-4 
time interval 

setting 1-206 
next available queue for IQEs 1-206 
non-JCL dynamic allocation functions 1-299 

See also SVC 99 text units 
non-pageable storage 1-121 
non-preemptable SVC routines 1-212 
non-space switch service 

definition 1-88 
non-swappable address space 1-24 
nondispatchability bit 1-5 
normal 

FRR stack 1-153 
program termination 1-135 
system events 1-141 
termination 1-183 

NOSUM 
option of SDUMP macro instruction 1-147 
parameter of CHNGDUMP command 1-147 

not-in-use attribute, for SVC 99 1-229, 1-232, 1-233 
nucleus 1-129 

DAT-OFF 1-129 
linking to routines in OAT-OFF 1-129 
summary of 1-2 

NUCLKUP macro instruction 
function 1-133 

o 
obtain 

a global spin lock 1-24 
a suspend lock 1-24 
information about CSECTs in DAT-OFF 

nucleus 1-133 
information from lOS 1-226 

opened data sets 
finding the UCB address 1-32 

operator 
cancel 1-165 
intervening 1-67 
reply of FSTOP 1-137 

options 
override 1-177 

X-14 SPL: System Macros and Facilities Volume 1 

p 
page faults 1-138, 1-139 

avoiding 1-208 
page fix 

reverse 1-123 
page free 

use of ECB 1-123 
page out 

virtual storage 1-122 
paging services 1-121 

branch entry 
cross memory mode 1-125 
non-cross memory mode 1-127 

completion considerations 1-123 
differences between MVS/370 and MVS/XA 1-121 
input 1-124 

paging supervisor 1-137 
paired resources requests 1-183 
parameter 

area 

list 

for recovery routines 1-165 
of FESTAE 1-164 

for EST AE routine 1-160 
length for SDUMP 1-143 

registers 
contained in STKE 1-87 

parameter list for dynamic allocation 
See SVC 99 parameter list 

PASID 1-79,1-87, 1-157 
passing control to another address space 1-78 
password 

incorrect supplied 1-178 
protection 1-185 

PC 1-89 
PC command 1-141 
PC instruction 1-80, 1-84, 1-92 

functions performed before issuing 1-87 
issued from primary mode 1-95 

PC number 1-84, 1-86 
constructing 1-91 
contained in SFT 1-86 
contents 1-85 
indexing linkage and entry tables 1-85 
making available 1-91 

PC routine 
active binds 1-97 
characteristics of a non-space switch routine 1-96 
characteristics of a space switch routine 1-96 
data 1-96 
designing 1-95 
linkage conventions 1-97 
non-space switch 

mode of 1-95 
preserve and restore PC linkage information 1-95 
purpose of 1-95 
recovery considerations 1-97 



PC routine (continued) 
return to caller via PT 1-95 
secondary mode 1-96 
space switch 

additional requirements 1-96 
space switch and non-space switch 

requirements for 1-95 
space switch or non-space switch 1-96 
space-switch 

mode of 1-95 
use of checkpoint/restart not allowed 1-95 
where loaded 1-97 

PCCA 1-148 
PCLINK EXTRACT 

use of 1-87 
PC LINK macro instruction 

EXTRACT option 1-87 
function 1-87 
restrictions on 1-87 
STACK option 1-87 
standard method for saving status 1-97 
UNSTACK THRU option 1-87 

PCLINK STACK 1-87, 1-148 
PC/AUTH services 1-88 
PC/PT linkage conventions 1-88 
PER 

events 1-139 
hardware 1-139 

percolate 
definition 1-170 

percolation 1-170 
communication field 1-161 
definition 1-136 
for the same unit of work 1-174 
SRB-to-task 1-174 
to an ESTAE routine 1-174 
to an EST AI routine 1-174 
to an FRR 1-174 

permanently allocated attribute 1-230 
See also processing control features for SVC 99 
changing 1-230 

permanently concatenated attribute 1-235 
PGFIX macro instruction 

function 1-121 
PGFIXA macro instruction 

function 1-121 
PGFREE macro instruction 

function 1-121 
PGFREEA macro instruction 

function 1-121 
PGLOAD macro instruction 

function 1-122 
PGOUT macro instruction 

function 1-122 
PG RLSE macro instruction 

function 1-122 
PGSER 

BRANCH entry 1-125 

PGSER macro instruction 
BRANCH = SPECIAL 1-122 
BRANCH = SPECIAL option 1-123 
FIX option 1-122, 1-123 
FREE option 1-122 
function 1-121 
local lock 1-125 

PIRL 1-167 
PKM 

changing value 1-83 
checked for problem program 1-83 
use 1-83 

PLPA 
modules located in 1-191 

pointer to the SVC 99 request block 
See SVC 99 parameter list 

POST 
branch entry points and function 1-40 
bypass 1-35 
cross memory mode 1-40 
data areas 1-39 
entry points 1-39, 1-40 
exit function 1-36 
exit routines 1-36 
input for branch entry 1-41 
interface with exit routines 1-38 
output for branch entry 1-41 
re-entry 1-39 
save area recursion with 1-39 
service routine 

branch entry 1-40 
702 abend 1-39 

POST macro instruction 
function 1-35 

POST-without-ECB 1-42 
PRB 1-167 
precedence 1-12 
preventing 

deadlock 1-22 
interlock 1-23 

primary 
address space 1-79 

and CML lock 1-24 
mode 1-79 

PRIMARY MODE parameter of SETFRR 1-155 
printable characters 1-68 
priority 1-12 
private 

storage areas 1-208 
problem 

program state 1-200 
for retry 1-182 

state bit in entry table 1-85 
process program interruptions 1-135 
processing control features for SVC 99 1-229 

control limit 1-229 
control limit on allocated data sets 1-229 
convertible attribute 1-230 

parameters that can change 1-230 

Index X-15 



processing control features for SVC 99 (continued) 
in-use bit and attribute 1-229 
permanently allocated attribute 1-230 
TMP actions 1-229 

processor 
lock_ 1-22 
protection key 1-200 
time, obtaining accumulated 1-64 

profile 1-195 
profiles 

in-storage 1-194 
program 

authorization 1-83 
call 1-141 
call instruction 1-84 
call (PC) instruction 1-80 
call/program transfer sequence 

consistent use of 1-86 
check 1-135 
interruption 

processing 1-138 
interruptions 

processing 1-13 5 
libraries 1-31 
manag~ment 1-13 

summary of 1-1 
manager 1-4 
request block 1-179 

for ST AE recovery 1-179 
sharing 1-78 
termination 1-135 
transfer 1-141 
transfer instruction 1-84 
transfer (PT) instruction 1-80 

program termination 
normal and abnormal 

summary of 1-2 
programming considerations for SVC routines 1-212 
programming considerations when using SVC 99 1-241 

accessing CVOLs or VSAM Private Catalogs 1-242 
avoiding OBO abends 1-242 
changes to the TIOT by SVC 99 routines 1-243 
considerations for system routines 1-242 
cross memory considerations 1-241 
enqueuing on the SYSZTIOT 1-242 
JES consideration 1-242 
other system routines and SVC 99 1-241 
outstanding STIMER, effect of 1-242 
serialization of resources 1-241 
SMS consideration 1-242 

propagation 
of ST AI routines 1-179 

protecting 
low storage 1-201 
system data sets 1-185 
the system 1-185 

summary of 1-2 

X-16 SPL: System Macros and Facilities Volume 1 

protection 
key 1-4 
of low address range 1-201 

protection-disabled window 1-201 
PROTPSA macro instruction 1-201 
provide 

non-space switch services 1-95 
recovery routines 1-135 
service 1-85 

PSA 1-148 
fetch protection of 1-188 

PSAAOLD 1-79 
and locking 1-23 

PSACROSV 1-201 
PSASEL 1-148 
PSASUPER 1-154 

area of PSA 1-154 
PSL 

contents of 1-124 
PSW 1-148 

changing fields in 1-200 
extended control (EC) 1-160 
key mask of 1-83 
of caller 

in STKE 1-87 
PSW key 1-155 

for retry 1-167, 1-169 
set using the SPKA instruction 1-83 

PSW key mask 
for retry 1-169 
of caller 

in STKE 1-87 
PSWREGS 1-148 
PT command 1-141 
PT instruction 1-80, 1-82, 1-84, 1-92 
PTRACE macro instruction 1-135, 1-141 

function 1-141 
restricted 1-141 

purged I/O 
list 1-167 
request list 1-167 

PURGEDQ macro 
function 1-74, 1-76 

PURGEDQ macro instruction 1-183 
PURGEDQ SVC 1-35 
purging SRBs 1-76 

Q 
QEDIT macro instruction 1-17 

example 1-9 
function 1-17 

queued access methods 
finding the UCB address 1-32 

quiesced restorable I/O operations 1-168 

-----------_._.---- -~. 

c 



( 

( 

( "', 

" 

R 
RACDEF macro instruction 1-194 

use of 1-194 
RACF 1-194 

building in-storage profiles 1-195 
checking authorization 1-195 
defining a resource 1-194 
function 1-194 
identifying a RACF user 1-195 

RACHECK macro instruction 1-195 
use of 1-195 

RACINIT macro instruction 1-195 
use of 1-195 

RACLIST macro instruction 1-195 
RACROUTE macro instruction 1-199 
RACSTAT macro instruction 1-196 
RACXTRT macro instruction 1-195 
RB 1-148 

purging of queue 1-167 
queue 

for STAE, how purged 1-181 
things not cancelled by purge 1-167 

RBWCF field 1-43 
RBEP 1-204 
RBFEP ARM 1-164 
RBIQETP 1-204 
RBNEXA V 1-204 
RBOPSW 1-169, 1-204 
RBPPSAVI 1-204 
RBSIZE 1-204 
RBSTAB 1-204 
RBWCF 1-43 
re-entrant modules 

using 1-16 
real storage management 

address space lock 1-21 
common lock 1-21 
cross memory lock 1-21 
global lock 1-21 
lock 1-21 
steal lock 1-21 

real storage requirements 
possible increase in cross memory 1-80 

receiver check 1-67 
recovery 

an extension of main routine 1-175 
considerations 

for PC routine 1-97 
environment for resource managers 1-183 
for recovery routines 1-175 
for SRBs 1-136 
for subtasks 1-177 
for tasks 1-136 
routines 1-135, 1-152 

cancellation 1-170 
decisions 1-165 
ESTAE 1-136, 1-166 
ESTAE-type 1-162 

recovery (continued) 
routines (continued) 

ESTAE-type summary 1-179 
for locked disabled SRB mode routine 1-152 
FRR 1-136, 1-152 
FRR summary 1-179 
functions 1-135, 1-152, 1-176 
guidelines 1-176 
hierarchy of 1-178 
major decisions regarding 1-176 
nested 1-176 
order 1-152 
parameter area 1-165 
propagation of 1-179 
provide 1-135 
recovery 1-175 
requirements 1-153 
restrictions 1-153 
resume 1-166 
retry 1-166 
retry from an ESTAE-type 1-167 
retry from an FRR 1-166 
routing control to 1-171 
selecting 1-153 
types 1-136, 1-152 
when required 1-176 

SRB to task percolation 1-174 
subtask 1-180 
termination 

invoke 1-135 
reenterable SVCs 1-214 
refreshable SVCs 1-214 
region control task 1-137 
regions 

V=R 1-113 
registers 

at time or error 1-160 
contents for SVC routines 1-215 
for retry 1-166, 1-167 
for STAE/STAI retry routine 1-182 
in SDWA 1-177 
on entry to EST AE routine 1-158 
on entry to FRR 1-158 
on entry to STAE routine 1-180 
update 1-168 
upon entry to exit routine 1-207 

release 
virtual storage 1-122 

RELEASE option of fix function 1-122 
RELEASE option offree function 1-122 
releasing devices 1-30 
remote 

service class 1-65 
remove 

access for all users 1-92 
access for cross memory 1-88 
PT authority 1-92 
SSAR authority 1-92 

Index X-I7 



removing in-use attribute based on task id 
See dynamic unallocation 

removing the in-use attribute based on task-ID 1-307 
See also SVC 99 text units 

reporting system characteristics 1-49 
summary of 1-1 

request block 
resumption 1-42 
suspension 1-42 

requesting 
a retry 1-136,1-177 

requesting SVC 99 functions 1-241 
text units for parameter list 1-267 

See also SVC 99 text units 
reserve 

a device 1-29 
AX 1-83, 1-86 
LX 1-86 

RESERVE macro instruction 1-26 
example 1-34 
finding the UCB address 1-31 
function 1-29 
use of 1-49 

reset 
AX 1,-93 

reset must-complete 1-25 
residency mode 1-13 
resource 

access control facility 1-194 
management 1-97 

in cross memory 1-80 
management for cross memory 1-80 
manager 

environment 1-183 
purpose 1-136 
recovery environment for 1-183 
responsibilities 1-183 
routine 1-183 
routine, for critical resources 1-156 
system 1-183 
system provided 1-183 
uses 1-183 

profiles 1-194, 1-195 
scope of 1-49 
serialized by local or global locks 1-97 

resource manager termination routine 1-74, 1-77 
response time 

transaction 1-53 
restart 1-65 

with RESERVE 1-29 
RESTART key 1-166 
restricting 

load module access 1-192 
SVC routines 1-191 
unauthorized users 1-189 

restrictions 
for DAT-OFF routines 1-132 

X-IS SPL: System Macros and Facilities Volume 1 

resume 1-166 
recovery routine 1-166 

RESUME macro instruction 
ASYNC option 1-45 
caller in SRB mode 1-45 
function 1-45 
issued in cross memory mode 1-45 
MODE option 1-45 
options 1-45 

RESUME parameter 1-166 
retrieve 

address and addressing mode of a nucleus 
CSECT 1-133 

name and entry point address of a nucleus 
CSECT 1-133 

retrieving data set information via SVC 99 
See dynamic infonnation retrieval 

retry 1-152 
address 1-166 
from a recovery routine 1-177 
from an ESTAE-type recovery routine 1-167 
from an FRR 1-166 
requesting 1-136,1-177 
routine 1-166 

cross memory environment 1-170 
freeing SDW A 1-164 

when not permitted 1-166 
return 

address 
from PCLINK service, in STKE 1-87 

codes 
for STAE 1-181 
from recovery routine 1-158 

return codes 
from MVS router exit routine 1-198 

return codes from SVC 99 
See SVC 99 return codes 

review of dsname processing 
See dsname allocation processing 

RIB 
format 1-50 
used with GQSCAN 1-50 

RIBE 
format 1-50 

RISGNL macro instruction 1-66 
RMF 

transaction activity report 1-53 
used to report SRM data 1-53 
workload activity report 1-53 

RMODE 1-13 
assembler definition 1-13 
values for 1-13 

RMTR 
interface to 1-78 

router exit 1-197 
register l's content on entry 1-197 

routing the message 1-68 

-----... --~-~ 



(-

RPSGNL macro instruction 1-66 
RQE 1-204 
RSM 

functions 1-121 
lock 1-21 
paging services 1-121 
summary of 1-2 

RSMAD lock 1-21 
RSMCM lock 1-21 
RSMGL lock 1-21 
RSMST lock 1-21 
RSMXM lock 1-21 
RTM 

invoking 1-136 
receives control 1-135 
summary of services 1-135 
use of 1-136 

RTM2 SVRB 1-167 
RTM2 work areas 1-148 
RTM2WA 1-149 

S 
SAC instruction 1-80 
SAF 1-196 

key element in 1-196 
SALLOC lock 1-22 
SA SID 1-79,1-87, 1-88, 1-156 
save 

and restore registers with SYNCH 1-15 
save and restore status 

in cross memory 1-86 
save area 

address contained in STKE 1-87 
caller's in cross memory 1-87 
for CALLRTM 1-136 
new task 1-4 
POST routine 1-39 
standard in cross memory 1-97 

scanning the CIB chain 1-17 
SCB 

area provided for 1-215 
SCHEDULE macro 

function 1-74 
scheduled dump 1-146 

definition 1-146 
when produced 1-147 
with an ECB 1-147 

scheduler work area 1-5 
example of IEFQMREQ 1-120 
example of SW AREQ 1-116 
IEFQMREQ macro 1-113, 1-117 
JCL statements, and 1-113 
SWAREQ macro I-In, 1-114 

scheduler work area (SW A) 
access to 1-113 
description of 1-113 

scheduling an SRB 1-73, 1-74 
scope 

ALL 1-51 
GLOBAL 1-51,1-52 
LOCAL 1-51, 1-52 
STEP 1-49, 1-51 
SYSTEM 1-49, 1-51 
SYSTEMS 1-49, 1-51 

SDA T A options 
of SDUMP macro instruction 1-145 

SDUMP macro instruction 1-135,1-150, 1-178 
address space options 1-144 
BRANCH option 1-147 
BRANCH options 1-144 
considerations 1-178 
ECB option 1-177 
fails to dump 1-145 

in a reentrant program 1-143 
options 1-143 
parameter list length 1-143 
SDATA options 1-145 
SQA buffer option 1-145 
SUSPEND option 1-147 
TYPE = FAILRC parameter 1-145 

use 1-142 
using 1-143 

SDWA 1-153 
availability for retry 1-167, 1-175 
freeing 1-164 
key fields and meanings 1-160 
SDWASDRC byte in 1-146 
use of 1-159 

SDWA extensions 1-153 
SDWACID 1-178 
SDWACLUP 1-166 
SDWACLUP bit 1-166 
SDWACMPC 1-160 
SDWACOMU 1-161, 1-175 
SDWACRC 1-160,1-178 
SDWACSCT 1-178 
SDWACTS 1-178 
SDWADAET 1-161 
SDWAEAS 1-178 
SDWAEBC 1-161 
SDWAECI 1-160 
SDWAEC2 1-160 
SDWAFAIN 1-161 
SDWAGLBL 1-156 
SDWAGRSV 1-160 
SDWAHEX 1-161 
SDWALCL 1-157 
SDWALNTH 1-161 
SDW AMABD 1-178 
SDWAMLVL 1-178 
SDWAMODN 1-178 
SDWAOCUR 1-161 
SDWAPARM 1-160 

Index X-19 



SDWAREXN 1~178 

SDWARPIV 1-175 
SDWARRL 1-178 
SDWASC 1-178 
SDWASPID 1-161 
SDWASRSV 1-161, 1-166 
SDWAURAL 1-161 
SDWAVRA 1-153, 1-177, 1-178 
SDWAVRAL 1-161 
second level table for cross memory linkage 1-84 
secondary 

access key 1-83 
address space 1-79 

and the CML lock 1-24 
mode 1-79 

segment and page faults 
in cross memory 1-82 

self-contained function 1-183 
sense 1-65 
sensitive functions 

protecting 1-189 
serialization I-I, 1-12, 1-17, 1-25 

methods 1-17 
of SRB to task percolation 1-174 
of task execution 1-25 
of the use of a task 1-45 
requirements 1-17 
summary of 1-1 
techniques 

for the same volume 1-31 
when needed 1-17 

serially reusable resource 1-18 
service 

set 

classes 
direct 1-65 
of IPC 1-65 
remote 1-65 

address space control (SAC) instruction 1-80 
an address space's AT 1-83 
an address space's AX 1-83 
AT 1-86 
AX 1-86, 1-90 
prefix 1-66 
secondary ASID 1-141 
secondary ASN (SSAR) instruction 1-80 

SET DAE command 1-142 
SET DAE=xx command 1-151 
set DIE 

function 1-206 
input 1-206 
mode of caller 1-206 
restrictions on caller 1-208 
return codes 1-207 

set must-complete 1-25 
with RESERVE 1-29 

set up 
connect entry table to all address spaces 1-89 

X-20 . SPL: System Macros and Facilities Volume 1 

set up (continued) 
cross memory environment 1-88 

SETFRR macro instruction 1-135, 1-152, 1-155, 1-176 
MODE= FULLXM 1~156 

MODE=GLOBAL 1-156 
MODE=HOME 1-155 
MODE=LOCAL 1-157 
MODE=PRIMARY 1-156 
options for cross memory 1-97 

SET LOCK macro 1-76 
SETLOCK macro instruction 

function 1-24 
SETRP macro instruction 1-154, 1-159, 1-177 
setting up the buffer for MGCR 1-6 
SFT 

contents 1-86 
use of 1-86, 1-93 

shared DASD 1-27 
equipment needed for 1-28 
macros used with 1-29 
use of 1-27 

shared direct access storage devices 1-27 
sharing 

data 1-27 
the same control program 1-65 

SIGP 
order codes 1-65, 1-66 

CPU reset 1-66 
emergency signal 1-66 
external call 1-67 
initial CPU reset 1-66 
restart 1-65 
sense 1-65 
set prefix 1-66 
start 1-65 
stop 1-65 
stop and store status 1-65 
store status at address 1-65 

single-event wait 1-215 
SLIP 

command 1-135, 1-140, 1-150 
restricted 1-140 

establish traps 1-140 
modify traps 1-140 
obtaining an SVC dump 1-140 
traps 1-140 

displayed 1-140 
non-PER 1-139 
PER 1-139 

use of 1-139 
using 1-140 

SLIP command 
ACTION keywords 1-140 

SMF cross memory services lock 1-22 
SMS (storage management subsystem) 

consideration when using SVC 99 1-242 
SNAP macro instruction 1-142 

\ ..... / 



(~ 

space 
not enough allocated 1-178 

space allocation lock 1-22 
space and unit defaults for dynamic allocation 1-237 
space switch entry tables 

ownership of 1-81 
SPIE environment 

cancelling 1-138 
deleted 1-140 

SPIE macro instruction 1-135 
function 1-138 
issued by problem program 1-138 

SPIE/ESPIE environment 1-138 
spin locks 1-19 
SPOST macro instruction 

function 1-35 
SQA 

buffer dumped by SDUMP 1-145 
buffer option of SDUMP macro instruction 1-145 
subpools in 1-103 

SRB 
cleanup 1-47 
dispatching queue 1-183 
errors in 1-177 
managing 1-74 
priorities 1-75 
required information for SCHEDULE 1-74 
scheduling 1-72, 1-74 
to task percolation 1-174 
transferring control 1-46 

SRB routines 
characteristics 1-7 5 
restrictions 1-75 

SRB's related task 
definitionof 1-174 

SRBPASID 1-174 
SRBPKF 1-83 
SRBPTCB 1-174 
SRM 

lock 1-22 
reporting interface 1-53 

SSAR instruction 1-80, 1-82, 1-92, 1-141 
SSBLOCK 1-88 
SSL 

contents of 1-124 
SSRB 1-148 
STACK option of PCLINK 1-87 
STAE 

routines 
authorization requirements for 1-182 

ST AE environment 
when canceled 1-180 

ST AE macro instruction 1-180 
ST AE protection 

continued 1-180 
STAE/STAI 

exit routines 1-179 
retry routines 1-181 

ST AE/STAI (continued) 
routine 1-180 

interface to 1-180 
when not entered 1-181 

stage 1 
exit effector 1-203 

interface to 1-203 
initialization 1-203 

stage 2 
exit effector 1-203 

interface to 1-205 
restrictions on caller 1-205 
scheduling 1-205 

stage 3 1-205 
execution 1-205 
exit effector 1-205 

ST AI parameter 
of ATTACH 1-152 

standard 
EBCDIC characters 1-68 
interface 1-186 

start 1-65 
START CIB 1-7 
START command 

issuing an internal 1-6 
started program 1-6 
status conditions 

check stop 1-67 
equipment check 1-66 
external call pending 1-67 
incorrect state 1-66 
invalid function 1-67 
invalid parameter 1-66 
MSSF failure 1-67 
operator intervening 1-67 
receiver check 1-67 
stopped 1-67 

status indicators 1-66 
STATUS macro instruction 1-5 
STCK instruction 1-210 
stepname 1-149 
STKE 

contents of 1-87 
created by 1-87 

stop 1-65 
stop and store status 1-65 
STOP command 1-7 
stopped 1-67 
storage 

alteration 1-139 
auxiliary 1-121 
dumping virtual 1-142 
in cross memory 1-81 
isolation 1-79 
keys 1-103 
non-pageable 1-121 
protection 

types of data needing 1-188 

Index X-21 



storage (continued) 
real frames 1-99 
subpools 1-102 
virtual 1-121 

above 16 megabytes 1-121 
storage management subsystem 

See SMS 
store status at address 1-65 
SUBPLST 1-144 
subpools 1-103 

characteristics of 1-103 
default 1-182 
fetch protected 1-103 
fixed 1-103 
for ST AE retry processing 1-182 
global 1-18 
ID 1-161 
shared between tasks 1-17 
storage key of 1-103 
task related 1-81 
type of storage 1-103 
using 1-102 
where backed· 1-103 
236 and 237 1-5 

subsystem 
how term is used in cross memory 1-88 
identifiers 1-53 

subtasks 
creating additional 1-3 
creation and control 

summary of 1-1 
propagation of recovery routine to 1-162 
recovery for 1-177, 1-179 

successful branch 1-139 
SUM LIST 1-147,1-149 
SUMLSTA 1-147, 1-149 
summary 

ESTAE-type recovery routine 1-179 
FRR 1-179 
of authorization rules 1-193 
of facilities available in cross memory 1-81 
of locking characteristics 1-19 
of macro instructions for cross memory 

authorization 1-86 
of macro instructions for cross memory 

linkage 1-86 
of PCjPT linkage conventions 1-88 

summary dump 1-147 
avoid duplicate data 1-147 
disabled 1-147 
enabled 1-148 
parameters used 1-147 
suspend 1-148 

super FRR stack 1-156, 1-157 
supervisor 

assisted linkage 1-168 
control FRR 1-137 
state 1-200 

X-22 SPL: System Macros and Facilities Volume 1 

supervisor (continued) 
state for retry 1-182 

supervisor/problem program state 1-155 
for retry 1-169 

SUSMDUMP 
more than one 1-151 

suspend 
count field 1-43 
locks 1-20, 1-208 
summary dump 1-148 

SUSPEND and RESUME 
proper order 1-44 

SUSPEND macro instruction 
considerations for use 1-44 
examples 1-43 
function 1-43 
used in cross memory mode 1-44 
used with RESUME 1-44 

SUSPEND option of SDUMP 1-147 
SUSPEND RB = CURRENT scenario 1-43 
SUSPEND RB = PREVIOUS scenario 1-43 
suspended FRR 1-157 
SUSPEND/RESUME 1-17 
SVC 

dump 
during SLIP processing 1-140 
from recovery routines 1-177 
initial status 1-146 
obtain 1-146 
obtaining 1-146 

ESTAE recovery for routines 1-216 
first-level interrupt handler 1-191 
FLIH 1-191 
FRR recovery for routines 1-216 
invalid use 1-135 
locking conventions for routines 1-214 
naming conventions for routines 1-214 
register contents 1-215 
restore 1-182 

SVC dumps 1-149 
SVC routines, user written 

exiting from 1-212 
SVC types 1-5 1-211 
SYS1.LPALIB 1-211 

SYS1.NUCLEUS 1-211 
SYS1.PARMLIB 1-211 
TCBACTIV flag 1-212 
type 6 SVCs 1-211 
T6EXIT macro 1-212 

SVC routines, user-written 
IEASVC dataset member 1-216 
IEASYS dataset member 1-216 
inserting into control program at IPL time 1-216 
non-preemptable 1-212 
programming conventions 1-212 
screening access to 1-218 
STAX macro instruction 1-212 
SVCPARM statement 1-216 



( 

( 

SVC routines, user-written (continued) 
SVCUPDTE macro instruction 1-217 
SVC= statement 1-216 
SYS1.PARMLIB 1-216 
writing 1-211 

SVC 13 1-153 
SVC 3 1-168, 1-182 
SVC 34 1-137 
SVC 51 1-147 
SVC 60 1-164 
SVC 99 error reason codes 1-261 

See also SVC 99 return codes 
classes of 1-261 
for an invalid parameter list 1-263 
for an unavailable system resource 1-262 
for environmental errors 1-264, 1-265 
for system routine errors 1-266 

SVC 99 information reason codes 1-259 
See also SVC 99 return codes 

SVC 99 introduction 
See introduction to SVC 99 functions 

SVC 99 parameter list 1-243 
mapping macros for 1-243 
request block 1-244 

DSECT S99RB 1-244, 1-246 
request block pointer 1-244 

DSECT S99RBP 1-244 
structure of 1-244 
text pointers 1-248 
text units 1-249 

notes on structure 1-249 
SVC 99 request block 

See SVC 99 parameter list 
SVC 99 request block pointer 

See SVC 99 parameter list 
SVC 99 return codes 1-259 

error reason codes 1-261 
information reason codes 1-259 

SVC 99 text unit pointer list 
See SVC 99 parameter list 

SVC 99 text units 1-267 
See also SVC 99 parameter list 
dynamic concatenation text units 1-305 

ddname specification - DCCDDNAM 1-305 
permanently concatenated attribute -

DCCPERMC 1-306 
dynamic deconcatenation text unit 1-306 

ddname specification - DDCDDNAM 1-306 
dynamic information retrieval 1-309, 1-314 

ddname specification 1-309 
dsname specification - DINDSNAM 1-309 
relative request number - DINRELNO 1-312 
return conditional disposition -

DINRTCDP 1-310' 
return control limit - DINRTLIM 1-311 
return data set type - DINRTTYP 1-312 
return ddname - DINRTDDN 1-309 
return dsname - DINDTDSN 1-309 
return DSORG - DINRTORG 1-310 

SVC 99 text units (continued) 
dynamic information retrieval (continued) 

return dynamic allocation attributes -
DINRTATT 1-311 

return last relative entry - DINRTLST 1-312 
return member name - DINRTMEM 1-309 
return normal disposition - DINRTNDP 1-310 
return status - DINRTSTA 1-310 

for ddname allocation 1-307 
ddname specification - DDNDDNAM 1-307 
return DUMMY indication -

DDNRTDUM 1-308 
for dsname allocation 1-270 

align form or verify FCB image -
DALFCBAV 1-278 

allocated space format - DALSPFRM 1-273 
block length - DALBLKLN 1-272 
burst specification - DALBURST 1-283 
character arrangement table specification-

DALCHARS 1-283 
conditional disposition - DALCDISP 1-271 
copy groups specification - DALCOPYG 1-283 
copy modification module specification -

DALMMOD 1-284 
copy module table reference character -

DALMTRC 1-284 
cylinder space - DALCYL 1-272 
data set sequence number - DALDSSEQ 1-277 
data set status - DALSTATS 1-271 
DCB ddname reference - DALDCBDD 1-280 
DCB dsname reference - DALDCBDS 1-280 
ddname specification - DALDDNAM 1-270 
defer mounting - DALDEFER 1-284 
directory blocks - DALDIR 1-272 
dsname specification - DALDSNAM 1-270 
dummy data set - DALDUMMY 1-278 
expiration date - DALEXPDL 1-285 
expiration date (DALEXPDT) 1-277 
FCB image identification - DALDCBIM 1-278 
flash forms overlay count - DALFCNT 1-284 
flash forms overlay specification -

DALFFORM 1-283 
fold mode - DALUFOLD 1-279 
input or output only - DALINOUT 1-277 
label type - DALLA BEL 1-276 
member name specification -

DALMEMBR 1-270 
MSVGP specification - DALMSVGP 1-281 
normal disposition - DALNDISP 1-271 
OUTPUT statement reference -

DALOUTPT 1-285 
parallel mount - DALPARAL 1-275 
password protection - DALPASPR 1-277 
primary space quantity - DALPRIME 1-272 
private volume - DALPRIVT 1-273 
QNAME specification - DALQNAME 1-278 
RACF protection - DALPROT 1-282 
release unused space - DALRLSE 1-273 
retention period - DALRETPD 1-278 

Index X .. 23 



SVC 99 text units (continued) 
for dsname allocation (continued) 

round 1-273 
secondary space quantity - DALSECND 1-272 
subsystem name request - DALSSNM 1-281 
subsystem parameters - DALSSPRM 1-282 
SYSOUT copies - DALCQPYS 1-276 
SYSOUT form number - DALSFMNO 1-276 
SYSOUT hold queue - DALSHOLD 1-281 
SYSOUT output limit - DALOUTLM 1-276 
SYSOUT program name - DALSPGNM 1-275 
SYSOUT remote user - DALSUSER 1-280 
SYSOUT specification - DALSYSOU 1-275 
SYSOUT User ID specification -

DALUSRID 1-282 
terminal is an I/O device - DAL TERM 1-279 
track space - DALTRK 1-271 
Una,llocate at CLOSE - DALCLOSE 1-276 
unit count - DALUNCNT 1-275 
unit specification - DALUNIT 1-274 
universal character set - DALUCS 1-279 
verify character set image - DALUVFRY 1-279 
volume count - DALVLCNT 1-274 
volume reference - DALVLRDS 1-274 
volume sequence number - DALVLSEQ 1-274 

volume serial numbers - DAL VLSER 1-273 
for dsname allocation (DC B) 1-289, 1-299 

blocksize - DALBLKSZ 1-289 
buffer alignment - DALBFALN 1-289 
buffer count per DCB - DALBUFNO 1-290 
buffer length - DALBUFL 1-290 
buffer offset - DALBUFOF 1-290 
buffer size per line group - DALBUFSZ 1-291 
buffering technique - DALBFTEK 1-289 
card reader/punch mode - DALMODE 1-294 
data set key length - DALKYLEN 1-293 
data set organization - DALDSORG 1-292 
DIAGNS = TRACE specification -

DALDIAGN 1-298 
error option - DALEROPT 1-292 
first buffer reserve specification -

DALRSRVF 1-296 
FRID= specification - DALFRID 1-299 
FUNC= specification - DALFUNC 1-298 
GET macro buffer request - DALBUFRQ 1-291 
GNCP specification - DALGNCP 1-293 
IPLTXTID specification - DALIPLTX 1-297 
logical record length - DALLRECL 1-293 
maximum buffer numbers per line -

DALBUFMX 1-290 
optional CP services - DALOPTCD 1-294 
polling interval - DALINTVL 1-293 
printer line spacing - DALPRTSP 1-295 
punch paper tape code - DALCODE 1-291 
READ/WRITE maximum - DALNCP 1-294 
receiving buffer count - DALBUFIN 1-289 
receiving PCI specification - DALPCIR 1-295 
record format - DALRECFM 1-296 
search limit - DALLIMCT 1-293 

X·24 SPL: System Macros and Facilities Volume 1 

SVC 99 text units (continued) 
for dsname allocation (DCB) (continued) 

secondary buffer reserve specification -
DALRSRVS 1-296 

sending buffer count - DALBUFOU 1-290 
sending PCI specification - DALPCIS 1-295 
sending/receiving priority - DALCPRI 1-291 
size-of-work-area specification -

DALSOW A 1-297 
STACK specification - DALSTACK 1-297 
tape density - DALDEN 1-292 
THRESH specification - DAL THRSH 1-297 
TRTCH specification - DALTRTCH 1-297 

for dsname allocation (non-JCL) 1-299 
convertible attribute - DALCNVRT 1-300 
password specification - DALPASSW 1-299 
permanently allocated attribute -

DALPERMA 1-300 
return ddname - DALRTDDN 1-300 
return dsname - DALRTDSN 1-300 
return DSORG - DALRTORG 1-301 
return volume serial - DALRTVOL 1-302 
subsystem request - DALSSATT 1-302 
subsystem request - DALSSREQ 1-301 

for dynamic unallocation 1-303, 1-305 
ddname unallocation - DUNDDNAM 1-303 
dsname unallocation - DUNDSNAM 1-303 
member name specification 1-303 
override SYSOUT class - DUNOVCLS 1-305 
override SYSOUT hold - DUNOVSHQ 1-305 
override SYSOUT nohold - DUNOVSNH 1-304 
override SYSOUT remote workstation -

DUNOVSUS 1-305 
overriding disposition - DUNOVDSP 1-304 
remove in-use option - DUNREMOV 1-304 
unalloc option - DUNUNALC 1-304 

removing the in-use attribute 1-307 
current task option - DRICURNT 1-307 
TCB address specification - DRITCBAD 1-307 

SVC 99 text units for retrieving information 
See SVC 99 text units 

SVCs 1-208 
needing more than one recovery routine 1-164 

SVCTABLE macro instruction 1-191, 1-214 
SVCUPDTE macro instruction 1-217 
SVRB 1-164, 1-215 
SWA 1-5 
swapped-out 1-121 

address spaces in cross memory 1-81 
symptom strings 1-153 
SYMREC (symptom recording) 

description of 1-54 
SYNCH macro instruction 

function 1-15 
saving and restoring registers 1-15 

SYN CH service routine 1-162, 1-179 
synchronization loop 1-210 



synchronous 
dump 1-147 
exits 1-15 
interrupts 1-43 

SYSABEND 1-177 
SYSDUMPs 1-149 
SYSEVENT macro instruction 1-53 
SYSMDUMP 1-151, 1-177 
SYSMDUMP DD statement 1-151 
system 

changing status 1-200 
configuration 1-28 
control stages 1-203 
data 

protecting 1-188 
data sets 

protecting 1-185 
environment 1-154 

addressing mode 
authorization index 

1-155 
I-ISS 

cross memory state I-ISS 
definition 1-154 
disablement 1-154 
identify 1-154 
locking 1-154 
normal addressing environment 
PSW key I-ISS 
PSW key mask 1-155 
register interface 1-158 
restricted addressing environment 
supervisor/problem program state 

errors 1-135 
interception of 1-135, 1-139 

function table 1-86 
integrity 1-185 
program 

definition 1-4 
recovery area 1-152 
resources manager lock 1-22 
trace facilities 1-141 
trace table 1-141 
tracing in cross memory 1-82 

system authorization checking 1-195 
system authorization facility 1-196 
system initiated 

logoff 1-165 
system log 

writing message to 1-72 
system trace facilities 1-135 
system-initialized cancellation 1-137 
SYSUDUMP 1-177 
SYSZTIOT 

1-155 

1-156 
1-155 

See programming considerations when using SVC 99 
SYS I.MACLIB 1-8 
SYSl.PARMLIB 1-190 

ADYSETxx I-lSI 
libraries concatenated to 1-191 
LNKLSTxx 1-191 

T 
tailored dumps 1-176 
task 

changing the priority 1-12 
creation 1-3 
identifier 1-5 
rules for creating 1-3 
serializing the execution of 1-25 
termination 1-135, 1-183 

preventing 1-25 
resource manager duties 1-183 

TCAS 1-137 
TCB 1-148 

information for RESERVE 1-31 
parameter of CALLRTM macro instruction 
providing information for I-II 

TCBFSM 1-169, 1-182 
TCBJSCB \-5 
TCBPKF 1-83,1-138, 1-169 
TCBTID 1-5 
TCTL macro instruction 

considerations for use 1-46 
function 1-46 

terminal monitor program (TMP) 1-229 
termination 

abnormal 1-175, 1-183 
address space I -135 
continuing with 1-180 
normal 1-183 
of job step task 1-97 
task 1-135 

test and set instruction 1-17 
TESTAUTH macro instruction 

SVC routines 1-191 
text unit keys 

See SVC 99 text units 
text units for dynamic allocation 

See SVC 99 text units 
timer 

disabled interrupt exit 1-206 
interruption 1-208 
supervision 1-206 

TIMEUSED macro instruction 1-64 
time, obtaining accumulated processor 1-64 
TIOT 

address of 1-31 
default size for 1-237 
modifying size of 1-237 
obtaining the address of 1-29 

TOD 
clock 1-210 
current reading 1-208 

token 
for internal START 1-6 
for MGCR 1-6 
issuing an internal 1-6 
used with DOM macro instruction 1-71 

1-136 

Index X-25 



token (continued) 
used with the GQSCAN macro instruction 1-50 

TOKEN parameter 
ofDOM 1-71 
of ESTAE 1-163 
relation to XCTL 1-163 

TPCSDIE 1-206 
TQE 

address of i -208 
controlling 1-209 
freed when address space fails 1-209 
freeing 1-209 
obtain 1-209 
serialization 1-209 

TQE DEQUEUE routine 
function 1-209 
input 1-210 

TQE ENQUEUE routine 1-208 
differences from set DIE 1-209 
input environment 1-208 
register contents on exit 1-209 
registers 1-208 

TQEAID 1-207 
TQEASCB 1-207 
TQEDREGS 1-208 
TQEEXIT 1-207, 1-208 
TQETCB 1-207 
TQEVAL 1-208 
TRACE command 1-141 
TRACE lock 1-22 
tracing 

address space 1-141 
branch 1-141 
explicit 1-141 

transaction 
activity report 1-53 
of an interactive system 1-53 
response time 1-53 

transfer pages 1-121 
transferring control 

for SRB processing 1-46 
TS instruction ~ -17 
type 1 or 6 SVC issuing CALLDISP 1-47 
type 1 SVC 1-36 
type 1 SVC interface 1-203 
type 1 SVC issuing SUSPEND 1-36 
type 17 interruption 1-138 
type 2 3 or 4 SVC 1-164 
type 23 or 4 SVC issuing SUSPEND 1-44 
type 6 SVC issuing SUSPEND 1-44 
type 6 SVC routines 1-211 
TYPE=XMEM 1-144 
TYPE=XMEME 1-144 
T6EXIT 1-44 

X-26 SPL: System Macros and Facilities Volume 1 

U 
UCB address 

finding 1-31 
finding via the DEB 1-31 
of reserved device 

finding 1-32 
UCB scan services 

by device class 1-222 
for all UCBs 1-222 
limiting the scan 1-222 
purpose 1-221 
summary of 1-2 
using IOSVSUCB 1-221 

unallocation by SVC 99 
See dynamic unallocation 

uncorrectable translation errors 1-137 
unlocked task recovery routines 1-153 
unopened data sets 

finding the UCB address 1-32 
unprivileged macro instructions 1-142 
UNSTACK THRU option of PC LINK 1-87 
use attribute of permanently allocated 

See permanently allocated attribute 
user defined functions 1-129 
user-supplied addresses 

for protected control blocks 1-186 
for user storage areas 1-186 

user-written SVC routines 
summary of 1-2 

userid 
defined to RACF 1-195 

USERINFO field in EQT 1-39 
using 

storage subpools 1-102 
U.S. national characters 1-68 

V 
valid volume characteristics 1-28 
validate 

user-supplied addresses 1-186 
validating input for dynamic allocation functions 

See installation input validation routine for SVC 99 
validation 

primary technique 1-186 
verb codes 

MODIFY 1-7 
START 1-7 
STOP 1-7 

verify control blocks 1-187 
virtual 

addressing 1-72 
equal real regions 1-121 
storage 1-129 

above 16 megabytes 1-121 
allocated 1-107 
allocating 1-100 
dump 1-135 

----- --------------

I 

i 



( 

( 

virtual (continued) 
storage (continued) 

dumping 1-142 
fix 1-122 
fixing 1-122 
free 1-111,1-122 
freeing 1-122 
load 1-122 
map 1-104 
map of DAT-ON nucleus 1-104 
obtaining information about 1-105 
page out 1-122 
release 1-122 
unallocated 1-112 

storage management 
common area subpools lock 1-21 
common VSM work area lock 1-22 

virtual page 1-121 
volatile information 

saving 1-178 
volume 

assignment 1-30 
volume and device status 1-28 
volume handling 

rules with shared DASD 1-28 
VRA 

data to be printed in EBCDIC 1-161 
data to be printed in hexadecimal 1-161 
length 1-161 
use of 1-178 

VRADAE indicator 1-149 
VRADATA macro instruction 1-153,1-178 
VSL 

contents of 1-124 
VSM 

services 1-99 
summary of I-I 

VSMFIX lock 1-21 
VSMLIST macro instruction 1-99 

use 1-105 
VSMLIST work area 

description of 1-106 
using 1-105 

VSMLOC macro instruction 1-99 
VSMPAG lock 1-22 
VSMREGN macro instruction 1-99 

W 
WAIT 

count field 1-43 
entry point 1-42 
functions 1-42 
service routine 

branch entry 1-42 
W AI1 macro instruction 

function 1-36 

wait time for job step exceeded 1-165 
WAIT-without-ECB 1-42 
waiting 

for an event to complete 1-43 
for event completion 1-36 

WAIT jPOST jEVENTS 1-17 
work area 

for CALLRTM 1-136,1-137 
for recovery routines 1-180 

workload activity report 1-53 
writing 

operator messages 1-68 
user-written SVC routines 1-211 

WSA vector table 1-148 
WTO macro instruction 

function 1-68 
use in writing to system log 1-72 

WTOR macro instruction 
function 1-68 

x 
XC function 1-131 
XCTL macro instruction 1-31 
XSB 1-148,1-169,1-183 
XSBKM 1-169, 1-183 
x37 abend 1-178 

Numerics 
047 abend 1-191 
052 abend 1-97 
070 abend 1-45 
070 system completion code 1-46 
2305 fixed head storage facility 1-27 
2835 storage control unit 1-27 
30E abend 1-138 
306 abend 1-192, 1-193 
3830 storage control unit 1-27 
3880 storage control unit 1-27 
46D-18 abend completion-reason code 1-138 
702 abend 1-39 
913 abend 1-178 

Index X-27 



X-28 SPL: System Macros and Facilities Volume 1 

l'-', 
\j 



( 

( 

( 



MVS/Extended Architecture System Programming library: System Macros and Facilities Volume 1 

GC28-1150-4 

=:=--._------1 _----. m = -- ... == . :,=® 

S370-36 

Printed in U.S.A. 



( 

MVS/Extended Architecture 
System Programming 
Library: System Macros 
and Facilities 
Volume 1 

GC28-1150-4 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM 
representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 

-------- --.---.--~--... 



MVS/Extended Architecture System Programming Library: System Macros and Facilities Volume 1 

GC28-1150-4 

Reader's Comment Form 

Fold and tape 

--....------- - ---.----- -. ---- - - -----------------,,-® 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921 -2 
PO Box 950 
Poughkeepsie, New York 12602 

S370-36 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I,,,11,,1,1,,11,,1,,1,1,1,1,1,11,,1,1,,,1,111,,,,1,1 

Please Do Not Staple Fold and tape 

Printed in U.S.A. 

() 
c 
"" o 
"' 



( 

( 

MVS/Extended Architecture 
System Programming 
Library: System Macros 
and Facilities 
Volume 1 

GC28-1150-4 

_________ c ____ .• _ ....• ~. __ •.••• ". ~., __ ,~ 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems_ You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of publications, or for as.fistance in using your IBM system, to your IBM 
representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



I :1 

MVS/Extended Architecture System Programming Library: System Macros and Facilities Volume 1 

GC28-1150-4 

Reader's Comment Form 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921-2 
PO Box 950 
Poughkeepsie, New York 12602 

S370-36 

1111111111111111111111111111111111111111111111111111 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

I ---------------------------------------------------------------------------------------------------------------------------------------1 
Fold and tape Please Do Not Staple Fold and tape I 

---....- ------ - -------- ~---- - - ----------~- ... -® 

Printed in U.S.A. 

GC28-1150-04 

I I 

I 
I 

I 
I 

I 
I 
I 
I 

I 


