
Program Product

GC28-11S4-3
File No. S370-36

MVS/Extended Architecture
Supervisor Services and
Macro Instructions

MVS/System Product:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

---. -. ~
--~ .-- ----..-- ------. ------ -- -----------~-y-

Fourth Edition (June, 1987)

This is a major revision of GC28-1154-2. See the Summary of Amendments following the
Contents for a summary of the changes made to this manual. Technical changes or
additions to the text and illustrations are indicated by a vertical line to the left of the
change.

This edition applies to Version 2 Release 2.0 and its enhancements and all subsequent
releases of MVS/System Product 5665-291 or 5740-XC6 until otherwise indicated in new
editions or Technical Newsletters. The previous edition (GC28-1154-1) still applies to
Version 2 Release 2.0 and may now be ordered using the temporary order number
GQ28-1154. The temporary numbers for editions prior to Version 2 Release 2.0 are given
in MVS/System Product General Information Manual (GC28-1ll8). Changes are made
periodically to the information herein; before using this publication in connection with
the operation of IBM systems, consult the latest IBM System/370 Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products or services do not state or imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product in this publication is not intended to state or imply that
only IBM's product may be used. Any functionally equivalent product may be used
instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1982, 1987

)

Preface

)

This book, intended mainly for the programmer coding in assembler language, describes how to
use the services of the supervisor, the macro instructions used to request these services, and the
linkage conventions used by the control program to provide these services.

The system programmer interested in additional information on the supervisor should see
MVS/Extended Architecture System Programming Library: System Macros and Facilities
Volume 1, GC28-1150 and Volume 2, GC28-1151.

This book is divided into two parts. Part I, "Supervisor Services," provides explanations and
aids for using the facilities available through the supervisor. Part II, "Macro Instructions,"
provides coding information.

Part I is divided into eight topics. Specific topics include:

• Linkage Conv:entions
• Subtask Creation and Control
• Program Management
• Resource Control
• Program Interruption, Termination, and Dumping Services
• Virtual Storage Management
• Real Storage Management
• Data in Virtual Facility
• Miscellaneous Services

Part II contains the descriptions and definitions of the supervisor macro instructions available
in the assembler language. It provides applications programmers coding the assembler language
with the information necessary to code the macro instructions. The standard, list, and execute
forms of the macro instructions are grouped, where applicable, for ease of reference.

Use of this book requires a basic knowledge of the operating system and of assembler language.
Books that contain basic information are:

Assembler H Version 2 Application Programming: Language Reference, GC26-4037

MVS / Extended Architecture Checkpoint/ Restart User's Guide, GC26-40 12

MVS/Extended Architecture Data Administration Macro Instruction Reference, GC26-4014

MVS/Extended Architecture Data Administration Guide, GC26-4013

MVS/Extended Architecture Linkage Editor and Loader User's Guide, GC26-4011

MVS/Extended Architecture Message Library: Routing and Descriptor Codes, GC28-1194

Preface 111

MVSjExtended Architecture Operations: JES3 Commands, SC23-0063

MVSjExtended Architecture Operations: System Commands, GC28-1206

OSjVS2 MVS Planning: Global Resource Serialization, GC28-1062

MVSjExtended Architecture System Programming Library: Initialization and Tuning,
GC28-1149

MVSjExtended Architecture System Programming Library: Service Aids, GC28-1159

MVSjExtended Architecture System Programming Library: System Macros and Facilities
Volume 1, GC28-1150

MVSjExtended Architecture System Programming Library: System Macros and Facilities
Volume 2, GC28-1151

MVSjExtended Architecture System Programming Library: System Modifications,
GC28-1152

Resource Access Control Facility (RACF): General Information Manual, GC28-0722

System Programming Library: Resource Access Control Facility (RACF), SC28-1343

370-Extended Architecture: Principles of Operation, GA22-7085

MVSjExtended Architecture: Integrated Catalog Administration: Access Method Services
Reference, GC26-4135

Notes:

1. All references to RACF in this publication indicate the program product Resource Access
Control Facility Version 1 Release 7 (5740-XXH).

2. All references to Assembler H in this publication indicate the program product Assembler H
Version 2 (5668-962).

IV Supervisor Services and Macro Instructions

Contents

Part I: Supervisor Services
Summary of Services 1

Linkage Conventions 3
Linkage Registers 3
Saving the Calling Program's Registers 5
Establishing a Base Register 6
Providing a Save Area 6
Summary of Conventions to be Followed When Passing and Receiving Control 8

Subtask Creation and Control 9
Creating the Task 9
Priorities 10
Task and Subtask Communications 11

) Program Management 15
Residency and Addressing Mode of Programs 15

Residency Mode Definitions 16
Addressing Mode Definitions 16

Linkage Considerations for MVSjXA 16
Passing Control Between Programs with the Same AMODE 17
Passing Control Between Programs with Different AMODEs 17

Load Module Structure Types 18
Load Module Execution 19
Passing Control in a Simple Structure 19

Passing Control without Return 20
Passing Control with Return 22

Passing Control in a Dynamic Structure 28
Bringing the Load Module into Virtual Storage 28
Passing Control with Return 33
Passing Control without Return 37

Additional Entry Points 40
Entry Point and Calling Sequence Identifiers as Debugging Aids 40

Resource Control 41
Task Synchronization 41
Using a Serially Reusable Resource 42

Naming the Resource 43
Types of Resources that Can Be Shared 43
Requesting Exclusive or Shared Control 44
Limiting Concurrent Requests for Resources 44
Processing the Request 44

Resource Access Control Facility (RACF) 50
RACHECK Macro Instruction 50

Contents V

RACSTAT Macro Instruction 51
FRACHECK Macro Instruction 51

System Authorization Facility (SAF) 51
MVS Router 51
MVS Router Parameter List 52
RACROUTE Macro Instruction 52

Program Interruption, Recovery/Termination, and Dumping Services 53
Interruption Services 53
Specifying User Exit Routines 53

Using the SPIE Macro Instruction 54
U sing the ESPIE Macro Instruction 56
Register Contents Upon Entry to User's Exit Routine 58
Functions Performed in User Exit Routines 58

Recovery /Termination Services 59
Using SETRP to Change the Completion and Reason Codes 60
Changing the Completion and Reason Codes Directly 60
Handling ABENDs 61

Dumping Services 68
ABEND Dumps 68
Obtaining a Symptom Dump 69
SNAP Dumps 69
Obtaining a Summary Dump 70

Virtual Storage Management 73
Explicit Requests for Virtual Storage 73

Cell Pool Services 75
Implicit Requests for Virtual Storage 79

Data-in-Virtual 83
Using the Services Of Data-in-Virtual 85
The IDENTIFY Service 88
The ACCESS Service 88
The MAP Service 89
The SAVE Service 91
The RESET Service 93
The UNMAP Service 94
The UNACCESS and UNIDENTIFY Services 95
Conditions for Invocation of Data-in-Virtual 96
DIV Macro Programming Examples 99

Executing an Application 99
Processing a Data-in-Virtual Object. 100

Performance Considerations 105

Real Storage Management 107
Relinquishing Virtual Storage 108
Loading/Paging Out Virtual Storage Areas 108
Virtual Subarea List (VSL) 109
Page Service List (PSL) 109

Miscellaneous Services 111
Timing Services 111
Communicating with the System Operator 113
Writing to the Programmer 116

VI Supervisor Services and Macro Instructions

Writing to the System Log 116

) Message Deletion 117

Part ll: Macro Instructions 119
Selecting the Macro Level 119
Addressing Mode and the Macro Instructions 120
Macro Instruction Forms 121
Coding the Macro Instructions 123

Continuation Lines 125
ABEND - Abnormally Terminate a Task 126
ATTACH - Create a New Task 129
ATTACH (List Form) 136
ATTACH (Execute Form) 137
CALL - Pass Control to a Control Section 139
CALL (List Form) 141
CALL (Execute Form) 142
CHAP - Change Dispatching Priority 143
CPOOL - Perform Cell Pool Services 145
CPOOL - (List Form) 149
CPOOL - (Execute Form) 150
CPUTIMER - Provide Current CPU Timer Value 151
DELETE - Relinquish Control of a Load Module 153
DEQ - Release a Serially Reusable Resource 155
DEQ (List Form) 159
DEQ (Execute Form) 160
DETACH - Detach a Subtask 161

) DIV - Data-in-Virtual 163
DIV (List Form) 168
DIV (Execute Form) 169
DIV (Modify Form) 170
DOM - Delete Operator Message 171
ENQ - Request Control of a Serially Reusable Resource 173
ENQ (List Form) 179
ENQ (Execute Form) 180
ESPIE - Extended SPIE 181

SET Option 181
RESET Option 183
TEST Option 184

ESPIE (List Form) 186
ESPIE (Execute Form) 187
ESTAE - Extended Specify Task Abnormal Exit 188
ESTAE (List Form) 192
EST AE (Execute Form) 193
EVENTS - Wait for One or More Events to Complete 194

Using the EVENTS Macro Instruction 196
FRACHECK - Fast Path Resource Authorization Checking 201
FRACHECK (List Form) 205
FRACHECK (Execute Form) 206
FREEMAIN - Free Virtual Storage 207
FREEMAIN (List Form) 211
FREEMAIN (Execute Form) 212
GETMAIN - Allocate Virtual Storage 213
GETMAIN (List Form) 218
GETMAIN (Execute Form) 219

)

Contents Vll

IDENTIFY - Add an Entry Name 220
LINK - Pass Control to a Program in Another Load Module 222
LINK (List Form) 225
LINK (Execute Form) 226
LOAD - Bring a Load Module into Virtual Storage 227
LOAD (List Form) 230
LOAD (Execute Form) 231
PGLOAD - Load Virtual Storage Areas into Real Storage 232
PGLOAD (List Form) 234
PGOUT - Page Out Virtual Storage Areas from Real Storage 235
PGOUT (List Form) 237
PGRLSE - Release Virtual Storage Contents 238
PGRLSE (List Form) 240
PGRLSE (Execute Form) 241
PGSER - Page Services 242
POST - Signal Event Completion 246
RACHECK - Check RACF Authorization 248
RACHECK (List Form) 257
RACHECK (Execute Form) 259
RACROUTE - MVS Router Interface 261
RACROUTE (List Form) 265
RACROUTE (Execute Form) 266
RACST AT - RACF Status Extract Service 267
RACSTAT (List Form) 270
RACSTAT (Execute Form) 271
RETURN - Return Control 272
SAVE - Save Register Contents 274
SEGLD - Load Overlay Segment and Continue Processing 276
SEGWT - Load Overlay Segment and Wait 277
SETRP - Set Return Parameters 278
SNAP - Dump Virtual Storage and Continue 281
SNAP (List Form) 288
SNAP (Execute Form) 290
SPIE - Specify Program Interruption Exit 292
SPIE (List Form) 295
SPIE (Execute Form) 296
SPLEVEL - SET and TEST Macro Level 297
STATUS - Change Subtask Status 299
STIMER - Set Interval Timer 301
STIMERM SET - Set Multiple Interval Timer 305
STIMERM SET - Set Multiple Interval Timer (List Form) 310
STIMERM SET - Set Multiple Interval Timer (Execute Form) 311
STIMERM TEST - Test a Time Interval 312
STIMERM TEST - Test a Time Interval (List Form) 315
STIMERM TEST - Test a Time Interval (Execute Form) 316
STIMERM CANCEL - Cancel a Timer Request 317
STIMERM CANCEL (List Form) 320
STIMERM CANCEL (Execute Form) 321
SYNCH - Take a Synchronous Exit to a Processing Program 322
SYNCH (List Form) 324
SYNCH (Execute Form) 325
TIME - Provide Time and Date 326
TTIMER - Test Interval Timer 329
WAIT - Wait for One or More Events 331

VIl1 Supervisor Services and Macro Instructions

(1
\~

WTL - Write To Log 334
WTL (List Form) 335
WTL (Execute Form) 336
WTO - Write to Operator 337
WTO (List Form) 341
WTO (Execute Form) 342
WTOR - Write to Operator with Reply 343

Ignored Parameters 344
WTOR (List Form) 345
WTOR (Execute Form) 346
XCTL - Pass Control to a Program in Another Load Module 347
XCTL (List Form) 350
XCTL (Execute Form) 351

Index 353

)

)

Contents IX

X Supervisor Services and Macro Instructions

Figures

1. Acquiring P ARM Field Information 4
2. Format of the Save Area 5
3. Use of the SAVE Macro Instruction 5
4. Chaining Save Areas in a Nonreenterable Program 7
5. Chaining Save Areas in a Reenterab1e Program 7
6. Levels of Tasks in a Job Step 12
7. Assembler Definition of AMODEjRMODE 15
8. Example of Addressing Mode Switch 18
9. Characteristics of Load Modules 19

10. Passing Control in a Simple Structure 21
11. Passing Control With a Parameter List 21
12. Passing Control With Return 23
13. Passing Control With CALL 23
14. Test for Normal Return 24
15. Return Code Test Using Branching Table 25

) 16. Establishing a Return Code 26
17. Using the RETURN Macro Instruction 27
18. RETURN Macro Instruction With Flag 27
19. Search for Module, EP or EPLOC Parameter With DCB=O or DCB Parameter

Omitted 30
20. Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying Private

Library 31
21. Search for Module Using DE Parameter 32
22. Use of the LINK Macro Instruction With the Job or Link Library 34
23. Use of the LINK Macro Instruction With a Private Library 35
24. Use of the BLDL Macro Instruction 35
25. The LINK Macro Instruction With a DE Parameter 35
26. Misusing Control Program Facilities Causes Unpredictable Results 39
27. Event Control Block 41
28. ENQ Macro Instruction Processing 45
29. Interlock Condition 49
30. Two Requests For Two Resources 50
31. One Request For Two Resources 50
32. Program Interruption Control Area 55
33. Using the SPIE Macro Instruction 55
34. Program Interruption Element 56
35. Extended Program Interruption Element 57
36. Detecting an Abnormal Condition 62
37. Key Fields in the SDWA 65
38. Using the GETMAIN Macro Instruction 75

)
39. Virtual Storage Control 77
40. Using the List and the Execute Forms of the DEQ Macro 81
41. Releasing Virtual Storage 108
42. Interval Processing 112

Figures Xl

43. Characters Printed or Displayed on an MCS Console 113
44. Descriptor Code Indicators 115
45. Writing to the Operator 115
46. Writing to the Operator With a Reply 116
47. Macro Level Selected at Execution Time 120
48. Sample Macro Instruction 123
49. Continuation Coding 125
50. Return Code Area Used by DEQ 157
51. DEQ Macro Instruction Return Codes 158
52. Return Code Area Used by ENQ 177
53. ENQ Return Codes 177
54. Creating a Table 196
55. Parameter List Format 197
56. Posting the Parameter List 198
57. Processing One Event At a Time 199
58. FRACHECK Parameters for RELEASE = 1.6 and Later 203
59. Types of Profile Checking Performed by RACHECK 253
60. RACHECK Parameters for RELEASE = 1.6 and Later 254
61. RACSTAT Parameters for RELEASE = 1.6 and Later 268

Xll Supervisor Services and Macro Instructions

)

)

Summary of Amendments

Summary of Amendments
for GC28-11S4-3
for MVS/System Product Version 2 Release 2

This revision contains changes to the SNAP, DOM, and ATTACH macro instructions, and a
description of the new DIV macro instruction.

Summary of Amendments
for GC28-11S4-2
for the following:
- MVS/System Product Version 2

Release 1.3 Vector Facility Enhancement
- RACF Version 1 Release 7
- PTF UZ90404

In support of RACF Version I Release 7, this revision contains changes to the FRACHECK,
RACHECK, RACROUTE, and RACST AT macro instructions.

In support of MVSjSystem Product Version 2, Release 1.3 Vector Facility Enhancement, this
revision contains changes to the ESPIE, SNAP, and SPIE instructions for the Vector Facility.

In support of PTF UZ90404, this revision contains changes to the ATTACH, LINK, LOAD,
and XCTL macro instructions.

The revision also contains minor technical and editorial changes.

Summary of Amendments
for GC28-11S4-1
for MVS/System Product Version 2 Release 1.3

This revision contains maintenance updates to ABEND, ATTACH, CHAP, CPOOL, ESPIE,
ESTAE, GETMAIN, PGSER, RACHECK, SETRP, SNAP, SPLEVEL, TTIMER, and WTO.

Summary of ~mendments Xlll

I~

Xl V Supervisor Services and Macro Instructions

)

)

Part I: Supervisor Services

Summary of Services

The supervisor provides the resources that your programs need while assuring that as many of
these resources as possible are being used at a given time. Well designed programs use system
resources efficiently. Knowing the conventions and characteristics of the supervisor will help
you design more efficient programs.

The services you can request from the supervisor are discussed in chapters dealing with the
following topics:

Sub task Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
other tasks for execution time.

Program Management: You can use the supervisor to aid communication between segments of
a program. Residency and addressing mode of programs and linkage considerations for
MVSjXA are discussed in this chapter. Save areas, addressability, and passage of control from
one segment of a program to another are also discussed.

Resource Control: Portions of some tasks are dependent on the completion of events in other
tasks, thus requiring planned task synchronization. Planning is also required when more than
one program uses a serially reusable resource.

Program Interruption, Termination, and Dumping Services: The supervisor provides facilities for
writing exit routines to handle specific types of interruptions. It is not likely, however, that you
will be able to write routines,to handle all types of abnormal conditions. The supervisor
therefore provides for termination of your program when you request it by issuing an ABEND
macro instruction, or when the control program detects a condition that will degrade the system
or destroy data.

Virtual Storage Management: While virtual storage allows you to write large programs without
the need for complex overlay structures, virtual storage must be obtained for your job step.
Virtual storage is allocated by both explicit and implicit requests.

Real Storage Management: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page size blocks. The
services provided allow you to release virtual storage contents, load virtual storage areas into
real storage, and page out virtual storage areas from real storage.

In addition to the services outlined above, the supervisor provides the facilities for timing
events, and operator communication with both the system and application programs.

Part I: Supervisor Services 1

2 Supervisor Services and Macro Instructions

)

)

)

Linkage Conventions

You should design all programs, regardless of their function or relative position in the task,
using certain conventions and with certain characteristics of the control program in mind. This
chapter describes these conventions and characteristics and tells how they affect the execution
of your program. See the "Program Management" chapter for information about linkage
considerations for MVS/XA.

During the execution of a program the services of another program may be required. The
program that requests the services of another program is known as a calling program, and the
program that was requested is known as the called program. For example, when the control
program passes control to program A, program A becomes a called program. If program A in
turn passes control to program B, program A becomes a calling program, and program B
becomes a called program. From the point of view of the control program, however, program
A remains a called program until control is returned by program A. For more information on
this subject, see the discussion under the heading "Task and Subtask Communications" in
"Subtask Creation and Control."

The following conventions are presented assuming one calling and one called program. They
apply, however, to all called and calling programs operating in the system. If the conventions
presented here are always followed, execution of the called program will not be affected by the
method used to pass control or by the identity of the calling program.

Linkage Registers

Registers 0, 1, 13, 14, and 15 are known as the linkage registers; they are used in fixed ways by
the control program. It is good practice to use these registers in the same way in your program,
since they may be modified by the control program or by your program when system macro
instructions are used. Registers 2-12 are not changed by the control program.

Registers 0 and I are used to pass parameters to the control program or to a called program.
The expansions of some system macro instructions result in instructions that load a value into
register 0 or 1 or both, or load the address of a parameter list into register 1. For other macro
instructions, the control program uses register 1 to pass specified parameters to the program
you call.

Register 13 contains the address of the save area provided by the calling program.

Register 14 contains the return address of the calling program or an address within the control
program to which your program is to return control when it has completed execution.

Register 15 contains the entry address when control is passed to your program by the control
program. The entry address of the called routine should be in register 15 when you pass
control to another program. The expansion of some macro instructions results in instructions

Linkage Conventions 3

that load into register 15 the address of a parameter list to be passed to the control program.
Register 15 is also used by the called program to return a value (a return code) to the calling
program.

The manner in which the control program passes the information in the P ARM field of your
EXEC statement is a good example of how the control program uses a parameter register to
pass information. When control is passed to your program from the control program, register 1
contains the address of a fullword on a fullword boundary in your area of virtual storage (refer
to Figure 1). The high-order bit (bit 0) of this word is set to 1. This is a convention used by
the control program to indicate the last word in a variable-length parameter list; you must use
the same convention when making requests to the control program. Bits 1-31 of the fullword
contain the address of a two-byte length field on a half word boundary. The length field
contains a binary count of the number of bytes in the P ARM field, which immediately follows
the length field. If the P ARM field was omitted in the EXEC statement, the count is set to
zero. To prevent possible errors, the count should always be used as a length attribute in
acquiring the information in the P ARM field. If your program is not going to use this
information immediately, you should load the address from register 1 into one of registers 2-12
or store the address in a fullword in your program.

Register
1

4 Bytes

~----------/,~-----------

""

Full-Word
Boundary

Figure 1. Acquiring PARM Field Information

4 Supervisor Services and Macro Instructions

Length Field PARM Field 0
k-----~

-----v-------A.-------..,,r--------)

Half-Word
Boundary

2 Bytes a to 1 00 Bytes

)

)

)

Saving the Calling Program's Registers

The first action a called program should take is to save the contents of the calling program's
registers. The contents of any register the called program modifies and the contents of the
linkage registers must be saved. All registers should be saved to avoid errors when the called
program is modified.

The registers are saved in the 18-word save area provided by the calling program and pointed to
by register 13. The format of this area is shown in Figure 2. As indicated by this figure, the
contents of each register must be saved in a specific location within the save area. Registers can
be saved either with a store-multiple (STM) instruction or with the SAVE macro instruction.
The store-multiple instruction, STM 14,12,12(13), places the contents of all registers except 13
in the proper words of the save area. Saving register 13 is discussed under the heading
"Providing a Save Area."

Word Contents

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Used by PL/I language program
Address of previous save area (stored by calling program)
Address of next save area (stored by current program)
Register 14 (Return address)
Register 15 (Entry address)
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7
Register 8
Register 9
Register 10
Register 11
Register 12

Figure 2. Format of the Save Area

The SAVE macro instruction generates instructions that store a designated group of registers in
the save area. The registers to be saved are coded in the same order as in an STM instruction.
Figure 3 illustrates uses of the SAVE macro instruction. The T parameter (in B) specifies that
the contents of registers 14 and 15 are to be saved.

(A) PROGNAME
(B) PROGNAME

SAVE (14,12)
SAVE (5,10),T

Figure 3. Use of the SAVE Macro Instruction

The SAVE macro instruction or the equivalent instructions should be placed at the entry point
to the program.

Linkage Conventions 5

Establishing a Base Register

In MVSjXA, addresses are resolved by adding a displacement to a base address. You must,
therefore, establish a base register using one of the registers from 2-12 or register 15. If your
program does not use system macro instructions and does not pass control to another program,
you can establish a base register using the entry address in register 15. Otherwise, because both
your program and the control program use register 15 for other purposes, you must establish a
base using one of the registers 2-12. This should be done immediately after saving the calling
program's registers.

Note: Cautiously choose your base registers keeping in mind that some instructions alter
register contents (for example, TRT alters register 2). A complete list of instructions and their
processing is available in Principles of Operation.

Providing a Save Area

If any control section in your program passes control to another control section, your program
must provide its own save area. You must also provide a save area when you use certain
system functions, such as GET or PUT. If you establish which registers are available to the
called program or control section, a save area is not necessary. Omitting the save area is not a
good coding practice, however, since any changes in your program might necessitate changing a
called program.

\Vhether or not your program provides a save area, you must save the address of the calling
program's save area, which you used, because you will need it to restore the registers before you
return control to the program that called you. If you are not providing a save area, you can
keep the address in register 13 or store it in a location in virtual storage. If you are creating
your own save area, use the following procedure.

• Store the address of the save area that you used (the address passed to you in register 13) in
the second word of the save area you created.

• Store the address of your save area (the address you will pass in register 13) in the third
word of the calling program's save area.

This procedure enables you to find the save area when you need it to restore the registers, and
it enables a trace from save area to save area should one be necessary during a dump.

Figure 4 and Figure 5 show two methods of obtaining a save area and of saving all the
registers, including the addresses of the two save areas. In Figure 4 the registers are stored in
the save area provided by the calling program by using the STM instruction. Register 12 is
then established as the base register. The address of the caller's save area is then saved in the
second word of the new save area, established by the DC statement. The address of the calling
program's save area is loaded into register 2. The address of the new save area is loaded into
register 13, and then stored in the third word of the caller's save area.

6 Supervisor Services and Macro Instructions

)

)

)

PROGNAME
PROGNAME
PROGNAME

SAVEAREA

CSECT
AMODE
RMODE
STM
LR
USING
ST
LR
LA
ST

DC

31
24
14,12,12(13)
12,15
PROGNAME,12
13,SAVEAREA+4
2,13
13,SAVEAREA
13,8(2)

18F'O'

Figure 4. Chaining Save Areas in a Nonreenterable Program

In Figure 5, the SAVE macro instruction is used to store registers. (An STM instruction could
have been used.) The entry address is loaded into register 12, which is established as the base
register. An unconditional GETMAIN macro instruction (discussed in detail under the heading
"Virtual Storage Management") is issued requesting the control program to allocate 72 bytes of
virtual storage from an area outside your program, and to return the address of the area in
register 1. The addresses of the old and new save ,areas are stored in the assigned locations, and
the address of the new save area is loaded into register 13.

PROGNAME
PROGNAME
PROGNAME

CSECT
AMODE
RMODE
SAVE
LR
USING
GETMAIN
ST
ST
LR

31
24
(14,12)
12,15
PROGNAME,12
R,LV=72
13,4(1)
1,8(13)
13,1

Figure 5. Chaining Save Areas in a Reenterable Program

Linkage Conventions 7

Summary of Conventions to be Followed When Passing and
Receiving Control

The following is a list of conventions to be followed when passing and receiving control. The
actual methods of passing control are described under the heading "Program Management."

By a calling program before passing control (return required):

• Place the address of your save area in register 13.

• Place the address at which you wish to regain control (the return address) in register 14.

• Place the entry address of the program you are calling in register 15.

• Place the address of the parameter list (if there is one) in register 1. (Passing parameters is
discussed under "Program Management.")

By a calling program before passing control (no return required):

• Restore registers 2-12 and 14.

• Place the address of the save area provided by the program that called you in register 13.

• Place the entry address of the program you are calling in register 15.

• Place the addresses of parameter lists in registers 1 and o.

By a called program upon receiving control:

• Save the contents of registers 0-12, 14, and 15 in the save area provided by the calling
program.

• Establish a base register.

• Request the control program to allocate storage for a save area if you did not already
allocate it by using a DC statement.

• Store the save area addresses in the assigned locations.

By a called program before returning control:

• Restore registers 0-12 and 14.

• Place the address of the save area provided by the program you are returning control to in
register 13. . .

• Place a return code in register 15 if one is required. Otherwise, restore register 15.

8 Supervisor Services and Macro Instructions

)

)

)

Subtask Creation and Control

One task is created in the address space by the control program as a result of initiating
execution of the job step (the job step task). You can create additional tasks in your program.
If you do not, however, the job step task is the only task in the address space being executed.
The benefits of a multiprogramming environment are still available even with only one task in
the job step; work is still being performed for other address spaces when your task is waiting
for an event, such as an input operation, to occur.

The advantage in creating additional tasks within the job step is that more tasks are competing
for control. When a wait condition occurs in one of your tasks, it is not necessarily a task from
some other address space that gets control; it may be one of your tasks, a portion of your job.

The general rule is that parallel execution of a job step (that is, more than one task in an
address space) should be chosen only when a significant amount of overlap between two or
more tasks can be achieved. The amount of time taken by the control program in establishing
and controlling additional tasks, and your increased effort to coordinate the tasks and provide
for communications between them must be taken into account.

Creating the Task

A new task is created by issuing an ATTACH macro instruction. The task that is active when
the ATTACH macro instruction is issued is the originating task; the newly created task is the
subtask of the originating task. The subtask competes for control in the same manner as any
other task in the system, on the basis of priority (both address space priority and task priority
within the address space) and the current ability to use a processor. The address of the task
control block for the subtask is returned in register 1.

If the ATTACH macro instruction is executed successfully, control is returned to the user with
a return code of X'OO' in register 15.

The entry point in the load module to be given control when the subtask becomes active is
specified as it is in a LINK macro instruction, that is, through the use of the EP, EPLOC, and
DE parameters. The use of these parameters is discussed in "Program Management."
Parameters can be passed to the subtask using the P ARAM and VL parameters, also described
under "The LINK Macro Instruction." Additional parameters deal with the priority of the
subtask, provide for communication between tasks, specify libraries to be used for program
linkages, and establish an error recovery environment for the new subtask.

CAUTION
All modules contained in the libraries for a job step should be uniquely named. If
duplicate module names are contained in these libraries, the results are
unpredictable.

Subtask Creation and Control 9

Priorities

There are really three priorities to consider: address space priorities, task priorities, and subtask
priorities.

Address Space Priority

Task Priority

When each job is initiated, an address space is created. All successive steps in the job execute
in the same address space. The address space has a dispatching priority, which is normally
determin~d by the control program. The control program will select, and alter, the priority in
order to achieve the best load balance in the system - that is, in order to make the most
efficient use of processor time and other system resources.

It may be desirable for some jobs to execute at a different address space priority than the
default priority assigned by the system. To assign a priority, you code
DPRTY=(valuel,value2) on the EXEC statement. The address space priority is then
determined as follows:

address space dispatching priority = (valuel x 16) + value2

Once the address space dispatching priority is set, it can be altered only by the control program.
(Thus, there is no limit priority associated with an address space.) However, a new address
space priority may be set for succeeding job steps by specifying different values in the DPRTY
parameter on the EXEC statement.

The IEAIPSxx and IEAICSxx members of SYS1.PARMLIB can override the dispatching
priority specified by the DPRTY parameter. The control program assigns the priority obtained
from IEAIPSxx to jobsteps that request a dispatching priority falling within specific installation
defined limits. IEAICSxx directs jobs into specific performance groups thereby affecting their
priority. See SP L: Initialization and Tuning for additional information.

Each task in an address space has associated with it a limit priority and a dispatching priority.
These priorities are set by the control program when a job step is initiated. When other tasks
are created in the address space by use of the ATTACH macro instruction, they may be given
different limit and dispatching priorities by use of the LPMOD and DPMOD parameters,
respectively.

The task dispatching priorities of the tasks in an address space do not affect the order in which
the jobs are selected for execution because the order is selected on the basis of address space
dispatching priority. Once an address space is selected for dispatching, the highest priority task
awaiting execution is selected. Thus, task priorities may affect processing within an address
space. Note, however, that in a multiprocessing system, task priorities cannot guarantee the
order in which the tasks will execute because more than one task may be executing
simultaneously in the same address space on different processors. In a paging environment,
page faults may alter the order in which the tasks execute.

10 Supervisor Services and Macro Instructions

It, I' ~I

)

)

Subtask Priority

When a subtask is created, the limit and dispatching priorities of the subtask are the same as
the current limit and dispatching priorities of the originating task except when the subtask
priorities are modified by the LPMOD and DPMOD parameters of the ATTACH macro
instruction. The LPMOD parameter specifies the number to be subtracted from the current
limit priority of the originating task. The result of the subtraction is assigned as the limit
priority of the subtask. If the result is zero or negative, zero is assigned as the limit priority.
The DPMOD parameter specifies the number to be added to the current dispatching priority of
the originating task. The result of the addition is assigned as the dispatching priority of the
subtask, unless the number is greater than the limit priority or less than zero. In that case, the
limit priority or 0, respectively, is used as the dispatching priority.

Assigning and Changing Priority

Tasks with a large number of input/output operations should be assigned a higher priority than
tasks with little input/output, because the tasks with much input/output will be in a wait
condition for a greater amount of time. The lower priority tasks will be executed when the
higher priority tasks are in a wait condition. As the input/output operations are completed, the
higher priority tasks get control, so that more I/O can be started.

The priorities of subtasks can be changed by using the CHAP macro instruction. The CHAP
macro instruction changes the dispatching priority of the active task or one of its subtasks by
adding a positive or negative value. The dispatching priority of an active task can be made less
than the dispatching priority of another task. If this occurs, if the other task is dispatchable it
would be given control after execution of the CHAP macro instruction.

The CHAP macro instruction can also be used to increase the limit priority of any of an active
task's subtasks. An active task cannot change its own limit priority. The dispatching priority
of a subtask can be raised above its own limit priority, but not above the limit of the
originating task. When the dispatching priority of a sub task is raised above its own limit
priority, the subtask's limit priority is automatically raised to equal its new dispatching priority.

Task and Subtask Communications

The task management information in this section is required only for establishing
communications among tasks in the same job step. The relationship of tasks in a job step is
shown in Figure 6. The horizontal lines in Figure 6 separate originating tasks and subtasks;
they have no bearing on task priority. Tasks A, AI, A2, A2a, B, BI and Bla are all subtasks
of the job-step task; tasks AI, A2, and A2a are subtasks of task A. Tasks A2a and Bla are the
lowest level tasks in the job step. Although task BI is at the same level as tasks Al and A2, it
is not considered a subtask of task A.

Task A is the originating task for both tasks Al and A2, and task A2 is the originating task for
task A2a. A hierarchy of tasks exists within the job step. Therefore the job step task, task A,
and task A2 are predecessors of task A2a, while task B has no direct relationship to task A2a.

Subtask Creation and Control 11

Figure 6. Levels of Tasks in a Job Step

Job
Step
Task

, ,
I I
I ,
I I
I I
I I
I I

I TaSk'A2a I I TaSk'S1a I

All of the tasks in the job step compete independently for processor time; if no constraints are
provided, the tasks are performed and are terminated asynchronously. However, since each
task is performing a portion of the same job step, some communication and constraints between
tasks are required, such as notification of the completion of subtasks. If termination of a
predecessor task is attempted before all of the subtasks are complete, those subtasks and the
predecessor task are abnormally terminated.

Two parameters, the ECB and ETXR parameters, are provided in the ATTACH macro
instruction to assist in communication between a subtask and the originating task. These
parameters are used to indicate the normal or abnormal termination of a subtask to the
originating task. If the ECB or ETXR parameter, or both, are coded in the ATTACH macro
instruction, the task control block of the subtask is not removed from the system when the
subtask is terminated. The originating task must remove the task control block from the
system after termination of the subtask by issuing a DETACH macro instruction. If the ECB
parameter is specified in the ATTACH macro instruction, the ECB must be in storage so that

12 Supervisor Services and Macro Instructions

)

)

)

the issuer of the attach can wait on it (using the WAIT macro instruction) and the control
program can post it on behalf of the terminating task. The task control blocks for all subtasks
must be removed before the originating task can terminate normally.

The ETXR parameter specifies the address of an end-of-task exit routine in the originating task,
which is to be given control when the subtask being created is terminated. The end-of-task
routine is given control asynchronously after the subtask has terminated and must therefore be
in virtual storage when it is required. After the control program terminates the subtask, the
end-of-task routine specified is scheduled to be executed. It competes for CPU time using the
priority of the originating task and of its address space and can be given control even though
the originating task is in the wait condition. Although the DETACH macro instruction does
not have to be issued in the end-of-task routine, this is a good place for it.

The ECB ~arameter specifies the address of an event control block (discussed under "Task
Synchronization"), which is posted by the control program when the subtask is terminated.
After posting occurs, the event control block contains the completion code specified for the
subtask.

If neither the ECB nor the ETXR parameter is specified in the ATTACH macro instruction, the
task control block for the subtask is removed from the system when the subtask is terminated.
Its originating task does not have to issue a DETACH macro instruction. A reference to the
task control block in a CHAP or a DETACH macro instruction in this case is risky as is task
termination. Since the originating task is not notified of sub task termination, you may refer to
a task control block that has been removed from the system, which would cause the active task
to be abnormally terminated.

Subtask Creation and Control 13

14 Supervisor Services and Macro Instructions

)

)

Program Management

This chapter discusses facilities that will help you to design your programs. It includes
descriptions of the residency mode and addressing mode of programs, linkage considerations for
MVS/XA, load module structures, facilities for passing control between programs, and the use
of the associated macro instructions.

Residency and Addressing Mode of Programs

The control program ensures that each load module is loaded above or below 16 megabytes
(Mb) virtual as appropriate and that it is invoked in the correct addressing mode (24-bit or
31-bit). The placement of the module above or below 16 Mb depends on the residency mode
(RMODE) that you define for the module. Whether a module executes in 24-bit or 31-bit
addressing mode depends on the addressing mode (AM ODE) that you define for the module.

When a program is executing in 24-bit addressing mode, the system treats both instruction and
data addresses as 24-bit addresses. This allows programs executing in 24-bit addressing mode
to address 16 megabytes (16,777,216 bytes) of storage. Similarly, when a program is executing
in 31-bit addressing mode, the system treats both instruction and data addresses as 31-bit
addresses. This allows a program executing in 31-bit addressing mode to address 2 gigabytes
(2,147,483,648 bytes or 128 x 16 megabytes) of storage.

You can define the residency mode and the addressing mode of a program in the source code.
Figure 7 shows an example of the definition of the AMODE and RMODE attributes in the
source code. This example defines the addressing mode of the load module as 31-bit and the
residency mode of the load module as 24-bit. Therefore, the program will receive control in
31-bit addressing mode and will reside below 16 Mb.

SAMPLE CSECT
SAMPLE AMODE 31
SAMPLE RMODE 24

Figure 7. Assembler Definition of AMODE/RMODE

Version 2 of Assembler H places the AMODE and RMODE in the external symbol dictionary
(ESD) of the output object module for use by the linkage editor. The linkage editor passes this
information on to the control program through the directory entry for the partitioned data set
(PDS) that contains the load module and the composite external symbol dictionary (CESD)
record in the load module. You can also specify the AMODE/RMODE attributes of a load
module by using linkage editor control cards. SP L: 31-bit Addressing contains additional
information about residency and addressing mode; Linkage Editor and Loader contains
information about the linkage editor control cards.

Program Management 15

Residency Mode Definitions

The control program uses the RMODE attribute from the PDS directory entry for the module
to load the program above or below 16 Mb. The RMODE attribute can have one of the
following values:

24 specifies that the program must reside in 24-bit addressable virtual storage.

ANY specifies that the program can reside anywhere in virtual storage because the code has no virtual storage
residency restrictions.

Note: The default value for RMODE is 24.

Addressing Mode Definitions

The AMODE attribute, located in the PDS directory entry for the module, specifies the
addressing mode that the module expects at entry. Bit 32 of the program status word (PSW)
indicates the addressing mode of the program that is executing. MVSjXA supports programs
that execute in either 24-bit or 31-bit addressing mode. The AMODE attribute can have one of
the following values:

24 specifies that the program is to receive control in 24-bit addressing mode.

31 specifies that the program is to receive control in 31-bit addressing mode.

ANY specifies that the program is to receive control in either 24-bit or 31-bit addressing mode.

Note: The default value for AMODE is 24.

Linkage Considerations for MVS/XA

MVSjXA supports programs that execute in either 24-bit or 31-bit addressing mode. The
following branch instructions take addressing mode into consideration:

Branch and link (BAL)
Branch and link, register form (BALR)
Branch and save (BAS)
Branch and save, register form (BASR)
Branch and set mode (BSM)
Branch and save and set mode (BASSM)

See Principles of Operation for a complete description of how these instructions function. The
following paragraphs provide a general description of these branch instructions in MVS/XA.

The BAL and BALR instructions are unconditional branch instructions (to the address in
operand 2). BAL and BALR function differently depending on the addressing mode in which
you are executing. The difference is in the linkage information passed in the link register when
these instructions execute. In 31}bit addressing mode, the link register contains the AMODE
indicator (bit 0) and the address of the next sequential instruction (bits 1-31); in 24-bit
addressing mode, the link register contains the instruction length code, condition code, program
mask, and the address of the next sequential instruction.

BAS and BASR perform the same function that BAL and BALR perform when BAL and
BALR execute in 31-bit addressing mode.

16 Supervisor Services and 'Macro Instructions

)

)

)

The BSM instruction provides problem programs with a way to change the AMODE bit in the
PSW. BSM is an unconditional branch instruction (to the address in operand 2) that saves the
current AMODE in the high-order bit of the link register (operand 1), and sets the AMODE
indicator in the PSW to agree with the AMODE of the address to which you are transferring
control (that is, the high order bit of operand 2).

The BASSM instruction functions in a manner similar to the BSM instruction. In addition to
saving the current AMODE in the link register, setting the PSW AMODE bit,and transferring
control, BASSM also saves the address of the next sequential instruction in the link register"
thereby providing a return address.

BASSM and BSM are used for entry and return linkage in a manner similar to BALR and BR.
The major difference from BALR and BR is that BASSM and BSM can save and change
addressing mode.

Passing Control Between Programs with the Same AMODE

If you are passing control between programs that execute in the same addressing mode, there
are several combinations of instructions that you can use. Some of these combinations are:

Transfer Return

BALjBALR BR
BASjBASR BR

Passing Control Between Programs with Different AMODEs

If you are passing control between programs executing in different addressing modes, the
AMODE indicator in the PSW must be changed. The BASSM and BSM instructions perform
this function for you. You can transfer to a program in another AMODE using a BASSM
instruction and then return by means of a BSM instruction. This sequence of instructions
ensures that both programs execute in the correct AMODE.

Figure 8 shows an example of passing control between programs with different addressing
modes. In the example, TEST executes in 24-bit AMODE and EPI executes in 31-bit
AMODE. Before transferring control to EPl, the TEST program loads register 15 with EPA,
the pointer defined entry point address (that is, the address of EPI with the high order bit set to
1 to indicate 31-bit AMODE). This is followed by a BASSM 14,15 instruction, which performs
the following functions:

• Sets the high-order bit of the link register (register 14) to 0 (because TEST is currently
executing in 24-bit AMODE) and puts the address of the next sequential instruction into
bits 1-31.

• Sets the PSW AMODE bit to 1 to agree with bit 0 of register 15.

• Transfers to EPI (the address in bits 1-31 of register 15).

Program Management 17

The EPI program executes in 31-bit AMODE. Upon completion, EPI sets a return code in
register 15 and executes a BSM 0,14 instruction, which performs the following functions:

• Sets the PSW AMODE bit to 0 to correspond to the high-order bit of register 14.
• Transfers control to the address following the BASSM instruction in the TEST program.

TEST
TEST
TEST

CSECT
AMODE
RMODE

L
BASSM

'~.

24
24

15,EPA
14,15

EP1

OBTAIN TRANSFER ADDRESS
SWITCH AMODE AND TRANSFER

EPA
EXTRN
DC A(X'80000000'+EP1) POINTER DEFINED ENTRY POINT ADDRESS

EP1
EP1
EP1

END

CSECT
AMODE
RMODE

SLR
BSM
END

31
ANY

15,15
0,14

SET RETURN CODE 0
RETURN TO CALLER'S AMODE AND TRANSFER

Figure 8. Example of Addressing Mode Switch

Load Module Structure Types

Each load module used during a job step can be designed in one of three load module
structures: simple, planned overlay, or dynamic. A simple structure does not pass control to any
other load modules during its execution, and is brought into virtual storage all at one time. A
planned overlay structure may, if necessary, pass control to other load modules during its
execution, and it is not brought into virtual storage all at one time. Instead, segments of the
load module reuse the same area of virtual storage. A dynamic structure is brought into virtual
storage all at one time, and passes control to other load modules during its execution. Each of
the load modules to which control is passed can be one of the three structure types.
Characteristics of the load module structure types are summarized in Figure 9.

Since the large capacity of virtual storage all but eliminates the need for complex overlay
structures, planned overlays will not be discussed further.

18 Supervisor Services and Macro Instructions

«

)

)

Structure Type

Simple
Planned Overlay
Dynamic

Loaded All at One Time

Yes
No
Yes

Figure 9. Characteristics of Load Modules

Simple Structure

Passes Control to Other
Load Modules

No
Optional
Yes

A simple structure consists of a single load module produced by the linkage editor. The single
load module contains all of the instructions required and is paged into real storage by the
control program as it is executed. The simple structure can be the most efficient of the two
structure types because the instructions it uses to pass control do not require control-program
assistance. However, you should design your program to make most efficient use of paging.

Dynamic Structure

A dynamic structure requires more than one load module during execution. Each load module
required can operate as either a simple structure or another dynamic structure. The advantages
of a dynamic structure over a simple structure increase as the program becomes more complex,
particularly when the logical path of the program depends on the data being processed. The
load modules required in a dynamic structure are paged into real storage when required, and
can be deleted from virtual storage when their use is completed.

Load Module Execution

Depending on the configuration of the operating system and the macro instructions used to
pass control, execution of the load modules is serial or in parallel. Execution is serial in the
MVSjXA operating system unless an ATTACH macro instruction is used to create a new task.
The new task competes for processor time independently with all other tasks in the system. The
load module named in the ATTACH macro instruction is executed in parallel with the load
module containing the ATTACH macro instruction. The execution of the load modules is
serial within each task.

The following paragraphs discuss passing control for serial execution of a load module.
Creation and management of new tasks is discussed under the headings "Task Creation and
Control."

Passing Control in a Simple Structure

There are certain procedures to follow when passing control toW an entry point in the same load
module. The established conventions to use when passing control are also discussed. These
procedures and conventions are the framework for all program interfaces. Knowledge of the
information about addressing contained in the Assembler Language publication is required.

Program Management 19

Passing Control without Return

Some control sections pass control to another control section of the load module and do not
receive control back. An example of this type of control section is a housekeeping routine at
the beginning of a program that establishes values, initializes switches, and acquires buffers for
the other control sections in the program. Use the following procedures when passing control
without return.

Preparing to Pass Control

Because control will not be returned to this control section, you must restore the contents of
register 14. Register 14 originally contained the address of the location in the calling program
(for example, the control program) to which control is to be passed when your program is
finished. Since the current control section does not make the return to the calling program, the
return address must be passed on to the control section that does make the return. In addition,
the contents of registers 2-12 must be unchanged when your program eventually returns control,
so these registers must also be restored.

If control were being passed to the next entry point from the control program, register 15
would contain the entry address. You should use register 15 in the same way, so that the called
routine remains independent of the program that passed control to it.

Use register 1 to pass parameters. Establish a parameter list and place the address of the list in
register 1. The parameter list should consist of consecutive fullwords starting on a full word
boundary, each fullword containing an address to be passed to the called control section.
When executing in 24-bit AMODE, each address is located in the three low-order bytes of the
word. When executing in 3 I-bit AMODE, each address is located in bits 1-31 the word. In
both addressing modes, set the high-order bit of the last word to 1 to indicate that it is the last
word of the list. The system convention is that the list contain addresses only. You may, of
course, deviate from this convention; however, when you deviate from any system convention,
you restrict the use of your programs to those programmers who know about your special
conventions.

Since you have reloaded all the necessary registers, the save area that you received on entry is
now available, and should be reused by the called control section. Pass the address of the save
area in register 13 just as it was passed to you. By passing the address of the old save area, you
save the 72 bytes of virtual storage for a second, unnecessary, save area.

Note: If you pass a new save area instead of the one received on entry, errors could occur.

Passing Control

The common way to pass control between one control section and an entry point in the same
load module is to load register 15 with a V-type address constant for the name of the external
entry point, and then to branch to the address in register 15. The external entry point must
have been identified using an ENTRY instruction in the called control section if the entry point
is not the same as the control section's CSECT name.

Figure 10 shows an example of loading registers and passing control. In this example, no new
save area is used, so register 13 still contains the address of the old save area. It is also
assumed for this example that the control section will pass the same parameters it received to
the next entry point. First, register 14 is reloaded with the return address.·· Next, register 15 is
loaded with the address of the external entry point NEXT, using the V-type address constant at
the location NEXTADDR. Registers 0-12 are reloaded, and control is passed by a branch

20 Supervisor Services and Macro Instructions

)

)

instruction using register 15. The control section to which control is passed contains an
ENTRY instruction identifying the entry point NEXT.

L 14,12(13)
L 15,NEXTADDR
LM 0,12,20(13)
BR 15

NEXTADDR DC V(NEXT)

LOAD CALLER'S RETURN ADDRESS
ENTRY NEXT
RETURN CALLER's REGISTERS
NEXT SAVE (14,12)

Figure 10. Passing Control in a Simple Structure

Figure 11 shows an example of passing a parameter list to an entry point with the same
addressing mode. Early in the routine the contents of register 1 (that is, the address of the
fullword containing the PARM field address) were stored at the fullword PARMADDR.
Register 13 is loaded with the address of the old save area, which had been saved in word 2 of
the new save area. The contents of register 14 are restored, and register 15 is loaded with the
entry address.

USING *,12
EARLY ST 1,PARMADDR

L
L
L
L
LA
01
LM
BR

PARMLIST DS
DCBADDRS DC

DC
PARMADDR DC
NEXTADDR DC

13,4(13)
0,20(13)
14,12(13)
15,NEXTADDR
1,PARMLIST
PARMADDR,X'80'
2,12,28(13)
15

OA
A(INDCB)
A(OUTDCB)
A(O)
V(NEXT)

Establish addressability
Save parameter address

Reload address of old save area

Load return address
Load address of next entry point
Load address of parameter list
Turn on last parameter indicator
Reload remaining registers
Pass control

Figure 11. Passing Control With a Parameter List

The address of the list of parameters is loaded into register 1. These parameters include the
addresses of two data control blocks (DeBs) and the original register 1 contents. The
high-order bit in the last address parameter (PARMADDR) is set to 1 using an OR-immediate
instruction. The contents of registers 2-12 are restored. (Since one of these registers was the
base register, restoring the registers earlier would have made the parameter list unaddressable.)
A branch register instruction using register 15 passes control to entry point NEXT.

Program Management 21

Passing Control with Return

The control program passed control to your program, and your program will return control
when it is through processing. Similarly, control sections within your program will pass control
to other control sections, and expect to receive control back. An example of this type of
control section is a monitoring routine; the monitor determines the order of execution of other
control sections based on the type of input data. Use the following procedures when passing
control with return.

Preparing to Pass Control

Use registers 15 and 1 in the same manner they are used to pass control without return.
Register 15 contains the entry address in the new control section and register 1 is used to pass a
parameter list.

Register 14 must contain the address of the location to which control is to be returned when the
called control section completes execution. The address can be the instruction following the
instruction which causes control to pass, or it can be another location within the current control
section designed to handle all returns. Registers 2-12 are not involved in the passing of control;
the called control section should not depend on the contents of these registers in any way.

You should provide a new save area for use by the called control section as previously
described, and pass the address of that save area in register 13. Note that the same save area
can be reused after control is returned by the called control section. One new save area is
ordinarily all you will require regardless of the number of control sections called.

Passing Control

Two standard methods are used for passing control to another control section and providing
for return of control. One is an extension of the method used to pass control without a return,
and requires a V-type address constant and a branch, a branch and link, or abranch and save
instruction provided both programs execute in the same addressing mode. If the addressing
mode changes, a branch and save and set mode instruction should be used. The other method
uses the CALL macro instruction to provide a parameter list and establish the entry and return
addresses. With either method, you must identify the entry point by an ENTRY instruction in
the called control section if the entry name is not the same as the control section CSECT name.
Figure 12 and Figure 13 illustrate the two methods of passing control; in each example, assume
that register 13 already contains the address of a new save area.

Figure 12 also shows the use of an inline parameter list and an answer area. The address of
the external entry point is loaded into register 15 in the usual manner. A branch and link
instruction is then used to branch around the parameter list and to load register 1 with the
address of the parameter list. An inline parameter list, such as the one shown in Figure 12, is
convenient when you are debugging because the parameters involved are located in the listing
(or the dump) at the point they are used, instead of at the end of the listing or dump. Note
that the high-order bit of the last address parameter (ANSWERAD) is set to 1 to indicate the
end of the list. The area pointed to by the address in the ANSWERAD parameter is an area to
be used by the called control section to pass parameters back to the calling control section.
This is a possible method to use when a called control section must pass parameters back to the
calling control section. Parameters are passed back in this manner so that no additional
registers are involved. The area used in this example is twelve words. The size of the area for
any specific application depends on the requirements of the two control sections involved.

22 Supervisor Services and Macro Instructions

)

)

)

L
CNOP
BAL

PARMLIST DS
DCBADDRS DC

DC
ANSWERAD DC

NEXTADDR DC
GOOUT BALR

RETURNPT
AREA DC

15,NEXTADDR
0,4
1,GOOUT

OA
A(INDCB)
A(OUTDCB)
A(AREA+X'80000000')

V(NEXT)
14,15

12F'0'

Entry address in register 15

Parameter list address in
register 1
Start of parameter list
Input DCB address
Output DCB address
Answer area address with
high-order bit on
Address of entry point
Pass control; register 14
contains return address
and current AMODE

Answer area from NEXT

Note: This example assumes that you are passing control to a program that executes in the same addressing mode as
your program. See the topic "Linkage Considerations for MVSjXA" for information on how to handle branches
between programs that execute in different addressing modes.

Figure 12. Passing Control With Return

RETURNPT
AREA

CALL

DC

NEXT,(INDCB,OUTDCB,AREA),VL

12F'0'

Note: You cannot use the CALL macro instruction to pass control to a program that executes in a different addressing
mode.

Figure 13. Passing Control With CALL

The CALL macro instruction in Figure 13 provides the same functions as the instructions in
Figure 12. When the CALL macro instruction is expanded, the parameters cause the following
results:

NEXT - A V-type address constant is created for NEXT, and the address is loaded into
register 15.

(INDCB,OUTDCB,AREA) - A-type address constants are created for the three parameters
coded within parentheses, and the address of the first A-type address constant is placed in
register 1.

VL - The high-order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The address of the instruction
following the CALL macro instruction is loaded into register 14 before control is passed.

In addition to the results described above, the V -type address constant generated by the CALL
macro instruction requires the load module with the entry point NEXT to be link edited into
the same load module as the control section containing the CALL macro instruction. The
Linkage Editor and Loader publication tells more about this service.

Program Management 23

The parameter list constructed from the CALL macro instruction in Figure 13, contains only
A-type address constants. A variation on this type of parameter list results from the following
coding:

CALL NEXT,(INDCB,(6),(7)),VL

In the above CALL macro instruction, two of the parameters to be passed are coded as
registers rather than symbolic addresses. The expansion of this macro instruction again results

. in a three-word parameter list; in this example, however, the expansion also contains
instructions that store the contents of registers 6 and 7 in the second and third words,
respectively, of the parameter list. The high-order bit in the third word is set to 1 after register
7 is stored. You can specify as many address parameters as you need, and you can use
symbolic addresses or register contents as you see fit.

Analyzing the Return

When control is returned from the control program after processing a non-authorized system
macro instruction, the contents of registers 2-13 are unchanged. When control is returned to
your control section from the called control section, registers 2-14 contain the same information

. they contained when control was passed, as long as system conventions are followed. The
called control section has no obligation to restore registers 0 and 1; so the contents of these
registers mayor may not have been changed.

When control is returned, register 15 can contain a return code indicating the results of the
processing done by the called control section. If used, the return code should be a multiple of
four, so a branching table can be used easily, and a return code of zero should be used to
indicate a normal return. The control program frequently uses this method to indicate the
results of the requests you make using system macro instructions; an example of the type of
return codes the control program provides is shown in the description of the IDENTIFY macro
instruction.

The meaning of each of the codes to be returned must be agreed upon in advance. In some
cases, either a "good" or "bad" indication (zero or nonzero) will be sufficient for you to decide
your next action. If this is true, the coding in Figure 14 could be used to analyze the results.
Many times, however, the results and the alternatives are more complicated, and a branching
table, such as shown in Figure 15 could be used to pass control to the proper routine.

Note: Explicit tests are required to ensure that the return code value does not exceed the
branch table size.

RETURNPT LTR
BNZ

15,15 Test return code for zero
ERRORTN Branch if not zero to error

routine

Figure 14. Test for Normal Return

24 Supervisor Services and Macro Instructions

c

)

)

RETURNPT B RETTAB(15) Branch to table using return
code

RETTAB B NORMAL Branch to normal routine
B CONDl Branch to routine for

condition 1
B COND2 Branch to routine for

condition 2
B GIVEUP Branch to routine to handle

impossible situations

Figure 15. Return Code Test Using Branching Table

How Control is Returned

In the discussion of the return under "Analyzing the Return" it was indicated that the control
section returning control must restore the contents of registers 2-14. Because these are the same
registers reloaded when control is passed without a return, refer to the discussion under
"Passing Control without Return" for detailed information and examples. The contents of
registers 0 and 1 do not have to be restored.

Register 15 can contain a return code when control is returned. As indicated previously, a
return code should be a multiple of four with a return code of zero indicating a normal return.
The return codes other than zero that you use can have any meaning, as 100ig as the control
section receiving the return codes is aware of that meaning.

The return address is the address originally passed in register 14; you should always return
control to that address. If an addressing mode switch is not involved, you can either use a
branch instruction such as BR 14, or you can use the RETURN macro instruction. An
example of each of these methods of returning control is discussed in the following paragraphs.
If an addressing mode switch is involved, you can use a BSM 0,14 instruction to return control.
See Figure 8 for an example that uses the BSM instruction to return control.

Figure 16 shows a portion of a control section used to analyze input data cards and to check
for an out-of-tolerance condition. Each time an out-of-tolerance condition is found, in addition
to some corrective action, one is added to the one-byte value at the address STATUSBY. After
the last data card is analyzed, this control section returns to the calling control section, which
bases its next action on the number of out-of-tolerance conditions encountered. The coding
shown in Figure 16 loads register 14 with the return address. The contents of register 15 are
set to zero, and the value at the address STATUSBY (the number of errors) is placed in the
low-order eight bits of the register. The contents of register 15 are shifted to the left two places
to make the value a multiple of four. Registers 2-12 are reloaded, and control is returned to
the address in register 14.

Program Management 25

Q£UiC;;;iI"i:

L

L
SR
IC
SLA

LM
BR

STATUSBY DC

13,4~.13)

14,12(13)
15,15
15,STATUSBY
15,2

2,12,28(13)
14

X'OO'

Load address of previous save
area
Load return address
Set register 15 to zero
Load number of errors
Set return code to multiple
of 4
Reload registers 2-12
Return

Note: This example assumes that you are returning to a program with the same AMODE. If not, use the BSM
instruction to transfer control.

Figure 16. Establishing a Return Code

The RETURN macro instruction saves coding time. The expansion of the RETURN macro
instruction provides instructions that restore a designated range of registers, load a return code
in register 15, and branch to the address in register 14. If T is specified, the RETURN macro
instruction flags the save area used by the returning control section (that is, the save area
supplied by the calling routine). It does this by setting the low-order bit of word four of the
save area to one after the registers have been restored. The flag indicates that the control
section that used the save area has returned to the calling control section. The flag is useful
when tracing the flow of your program in a dump. For a complete record of program flow, a
separate save area must be provided by each control section each time control is passed.

You must restore the contents of register 13 bef9re issuing the RETURN macro instruction.
Code the registers to be reloaded in the same order as they ",:,ould have been designated for a
load-multiple (LM) instruction. You can load register 15 with the return code before you write
the RETURN macro instruction, you can specify the return code in the RETURN macro
instruction, or you can reload register 15 from the save area.

The coding shown in Figure 17 provides the same result as the coding shown in Figure 16.
Registers 13 and 14 are reloaded, and the return code is loaded in register 15. The RETURN
macro instruction reloads registers 2-12 and passes control to the address in register 14. The
save area used is not flagged. The RC = (15) parameter indicates that register 15 already
contains the return code, and the contents of register 15 are not to be altered.

26 Supervisor Services and Macro Instructions

(

)

)

L 13,4(13) Restore save area address
L 14,12(13) Return address in

register 14
SR 15,15 Zero register 15
IC 15,STATUSBY Load number of errors
SLA 15,2 Set return code to

multiple of 4
RETURN (2 ,12) , RC= (15) Reload registers and

return

"

STATUSBY DC X'OO'

Note: You cannot use the RETURN macro instruction to pass control to a program that executes in a different
addressing mode.

Figure 17. Using the RETURN Macro Instruction

Figure 18 illustrates another use of the RETURN macro instruction. The correct save area
address is again established, and then the RETURN macro instruction is issued. In this
example, registers 14 and 0-12 are reloaded, a return code of 8 is placed in register 15, the save
area is flagged, and control is returned. Specifying a return code overrides the request to
restore register 15 even though register 15 is within the designated range of registers.

L
RETURN

13,4(13)
(14,12),T,RC=8

Figure 18. RETURN Macro Instruction With Flag

Return to the Control Program

The discussion in the preceding paragraphs has covered passing control within one load
module, and has been based on the assumption that the load module was brought into virtual
storage because of the program name specified in the EXEC statement. The control program
established only one task to be performed for the job step. When the logical end of the
program is reached, control passes to the return address passed (in register 14) to the first
control section in the control program. When the control program receives control at this
point, it terminates the task it created for the job step, compares the return code in register 15
with any COND values specified on the JOB and EXEC statements, and determines whether or
not subsequent job steps, if any are present, should be executed.

Program Management 27

I Passing Control in a Dynamic Structure

The discussion of passing control in a simple structure provides the background for the
discussion of passing control in a dynamic structure. Within each load module, control should
be passed as in a simple structure. If you can determine which control sections will make up a
load module before you code the control sections, you should pass control within the load
module without involving the control program. The macro instructions discussed in this section
provide increased linkage capability, but they require control program assistance and possibly
increased execution time.

Bringing the Load Module into Virtual Storage

The load module containing the entry name you specified on the EXEC statement is
automatically brought into virtual storage by the control program. The control program places
the load module above or below 16 Mb according to its RMODE attribute. Any other load
modules you require during your job step are brought into virtual storage by the control
program when requested; these requests are made by using the LOAD, LINK, ATTACH, and
XCTL macro instructions. The LOAD macro instruction sets the high-order bit of the entry
point address to indicate the addressing mode of the load module. The ATTACH, LINK, and
XCTL macro instructions use this information to set the addressing mode for the module that
gets control. If the AMODE is ANY, the module will get control in the same addressing mode
as the program that issued the ATTACH, LINK, or XCTL macro instruction. If a copy of the
load module must be brought into storage, the control program places the load module above
or below 16 Mb according to its RMODE attribute. The following paragraphs discuss the
proper use of these macro instructions.

Location of the Load Module

Initially, each load module that you can obtain dynamically is located in a library (partitioned
data set). This library is the link library, the job or step library, the task library, or a private
library.

• The link library is always present and is available to all job steps of all jobs. The control
program provides the data control block for the library and logically connects the library to
your program, making the members of the library available to your program.

• The job and step libraries are explicitly established by including //JOBLIB and //STEPLIB
DD statements in the input stream. The / /JOBLIB DD statement is placed immediately
after the JOB statement, while the / /STEPLIB DD statement is placed among the DD
statements for a particular job step. The job library is available to all steps of your job,
except those that have step libraries. A step library is available to a single job step; if there
is a job library, the step library replaces the job library for the step. For either the job
library or the step library, the control program provides the data control block and issues
the OPEN macro instruction to logically connect the library to your program.

• Unique task libraries can be established by using the TASKLIB parameter of the ATTACH
macro instruction. The issuer of the ATTACH macro instruction is responsible for
providing the DD statement and opening the data set or sets. If the TASKLIB parameter
is omitted, the task library of the attaching task is propagated to the attached task. In the
following example, task A's job library is LIB!. Task A attaches task B, specifying
TASKLIB=LIB2 in the ATTACH macro instruction. Task B/s task library is

28 Supervisor Services and Macro Instructions

(

)

)

therefore LIB2. When task B attaches task C, LIB2 is searched for task C before LIBl or
the link library. Because task B did not specify a unique task library for task C, its own
task library (LIB2) is propagated to task C and is the first library searched when task C
requests that a module be brought into virtual storage.

Task A
Task B

ATTACH EP=B,TASKLIB=LIB2
ATTACH EP=C

• A private library is defined by including a DD statement in the input stream and is
available only to the job step in which it is defined. You must provide the data control
block and issue the OPEN macro instruction for each data set. You may use more than
one private library by including more than one DD statement and an associated data
control block.

A library can be a single partitioned data set, or a collection of such data sets. When it is a
collection, you define each data set by a separate DD statement, but you assign a name only to
the statement that defines the first data set. Thus, a job library consisting of three partitioned
data sets would be defined as follows:

IIJOBLIB
II
II

DD DSNAME=PDSl, .. .
DD DSNAME=PDS2, .. .
DD DSNAME=PDS3 .. .

The three data sets (PDSl, PDS2, PDS3) are processed as one, and are said to be concatenated.
Concatenation and the use of partitioned data sets is discussed in more detail in the Data
Management Services publication.

Some of the load modules from the link library may already be in virtual storage in an area
called the link pack area. The contents of these areas are determined during the nucleus
initialization process and will vary depending on the requirements of your installation. The link
pack area contains all reenterable load modules from the LPA library, along with installation
selected modules from the SVC and link libraries. These load modules can be used by any job
step in any job.

With the exception of those load modules contained in this area, copies of all of the reenterable
load modules you request are brought into your area of virtual storage and are available to any
task in your job step. The portion of your area containing the copies of the load modules is
called the job pack area.

The Search for the Load Module

In response to your request for a copy of a load module, the control program searches the job
pack area, the task's load list, and the link pack area. If a copy of the load module is found in
one of the pack areas, the control program determines whether that copy can be used (see
"Using an Existing Copy"). If an existing copy can be used, the search stops. If it cannot be
used, the search continues until the module is located in a library. The load module is then
brought into the job pack area or the load list area.

The order in which the libraries and pack areas are searched depends on the parameters used in
the macro instruction (LINK, LOAD, XCTL, or ATTACH) requesting the load module. The
parameters that define the order of the search are EP, EPLOC, DE, DCB, and TASKLIB.

The T ASKLIB parameter is used only for A TT ACH. You should choose the parameters for the
macro instruction that provide the shortest search time. The search of a library actually involves
the search of a directory, followed by copying the directory entry into virtual storage, followed
by loading the load module into virtual storage. If you know the location of the load module,

Program Management 29

you should use parameters that eliminate as many of these searches as possible, as indicated in
Figure 19, Figure 20, and Figure 21.

The EP, EPLOC, or DE parameter specifies the name of the entry point in the load module;
you code one of the three every time you use a LINK, LOAD, XCTL, or ATTACH macro
instruction. The optional DCB parameter indicates the address of the data control block for
the library containing the load module. Omitting the DCB parameter or using the DCB
parameter with an address of zero specifies the data control block for the task libraries, the job
or step library, or the link library. If TASKLIB is specified and if the DCB parameter contains
the address of the data control block for the link library, no other library is searched.

To avoid using "system copies" of modules resident in LPA and LINKLIB, you can specifically
limit the search for the load module to the job pack area and the first library on the normal
search sequence, by specifying the LSEARCH parameter on the LINK, LOAD, or XCTL
macro instruction with the DCB for the library to be used.

The following paragraphs discuss the order of the search when the entry name used is a member
name.

The EP and EPLOC parameters require the least effort on your part; you provide only the
entry name, and the control program searches for a load module having that entry name.
Figure 19 shows the order of the search when EP or EPLOC is coded, and the DCB parameter
is omitted or DCB = 0 is coded.

The job pack area is searched for an available copy.
The requesting task's task library and all the unique task libraries of its preceding tasks are searched. (Note: For the

ATTACH macro, the attached task's library and all the unique task libraries of its preceding tasks are searched.)
The step library is searched; if there is no step library, the job library (if any) is searched.
The link pack area is searched.
The link library is searched.

Figure 19. Search for Module, EP or EPLOC Parameter With DCB = 0 or DCB Parameter Omitted

When used without the DCB parameter, the EP and EPLOC parameters provide the easiest
method of requesting a load module from the link, job, or step library. The task libraries are
searched before the job or step library, beginning with the task library of the task that issued
the request and continuing through the task libraries of all its antecedent tasks. The job or step
library is then searched, followed by the link library.

A job, step, or link library or a data set in one of these libraries can be used to hold one version
of a load module, while another can be used to hold another version with the same entry name.
If one version is in the link library, you can ensure that the other will be found first by
including it in the job or step library. However, if both versions are in the job or step library,
you must define the data set that
contains the version you want to use before the data set that contains the other version. For
example, if the wanted version is in PDSI and the unwanted version is in PDS2, a step library
consisting of these data sets should be defined as follows:

IISTEPLIB
II

DD DSNAME=PDS1, .. .
DD DSNAME=PDS2, .. .

If, however, the first version of a nonreusable module in the job or step library has been
previously loaded and the version in the link library or the second version in the job library is
desired, the DCB parameter must be coded in the macro instructions.

30 Supervisor Services and Macro Instructions

(

)

)

Use extreme caution when specifying module names in unique task libraries, because duplicate
names may cause the wrong module to be brought into virtual storage when a task requests it.
Once a module has been loaded from a task library, the module name is known to all tasks in
the region and a copy of that module is given to all tasks requesting that that module name be
loaded, regardless of the requester's task library.

If you know that the load module you are requesting is a member of one of the private
libraries, you can still use the EP or EPLOC parameter, this time in conjunction with the DCB
parameter. You specify the address of the data control block for the private library in the DCB
parameter. The order of the search for EP or EPLOC with the DCB parameter is shown in
Figure 20.

The job pack area is searched for an available copy.
The specified library is searched.
The link pack area is searched.
The link library is searched.

Figure 20. Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying Private
Library .

Searching a job or step library slows the retrieval of load modules from the link library; to
speed this retrieval, you should limit the size of the job and step libraries. You can best do this
by eliminating the job library altogether and providing step libraries where required. You can
limit each step library to the data sets required by a single step; some steps (such as
compilation) do not require a step library and therefore do not require searching and retrieving
modules from the link library. For maximum efficiency, you should define a job library only
when a step library would be required for every step, and every step library would· be the same.

The DE parameter requires more work than the EP and EPLOC parameters, but it can reduce
the amount of time spent searching for a load module. Before you can use this parameter, you
must use the BLDL macro instruction to obtain the directory entry for the module. The
directory entry is part of the library that contains the module.

To save time, the BLDL macro instruction must obtain directory entries for more than one
entry name. You specify the names of the load modules and the address of the data control
block for the library when using the BLDL macro instruction; the control program places a
copy of the directory entry for each entry name requested in a designated location in virtual
storage. If you specify the link library and the job or step library, the directory information
indicates from which library the directory entry was taken. The directory entry always indicates
the relative track and block location of the load module in the library. If the load module is
not located on the library you indicate, a return code is given. You can then issue another
BLDL macro instruction specifying a different library.

To use the DE parameter, you provide the address of the directory entry and code or omit the
DCB parameter to indicate the same library specified in the BLDL macro instruction. The task
using the DE parameter should be the same as the one which issued the BLDL or one which
has the same job, step, and task library structure as the task issuing the BLDL. The order of
the search when the DE parameter is used is shown in Figure 21 for the link, job, step, and
private libraries.

The preceding discussion of the search is based on the premise that the entry name you
specified is the member name. The control program checks for an alias- entry point name when
the load module is found in a library. If the name is an alias, the control program obtains the
corresponding member name from the library directory, and then searches to determine if a

Program Management 31

usable copy of the load module exists in the job pack area. If a usable copy does not exist in a
pack area, a new copy is brought into the job pack area. Otherwise, the existing copy is used,
conserving virtual storage and eliminating the loading time.

Directory Entry Indicates Link Library and DeB = 0 or DeB Parameter Omitted.
The job pack area for the region is searched for an available copy.
The link pack area is searched.
The module is obtained from the link library.

Directory Entry Indicates Job, Step, or Task Library and DeB = 0 or DeB Parameter Omitted.
The job pack area for the region is searched for an available copy.
The module is obtained from the task library designated by the 'Z' byte of the DE operand.

DeB Parameter Indicates Private Library
The job pack area for the region is searched for an available copy.
The module is obtained from the specified private library.

Figure 21. Search for Module Using DE Parameter

As the discussion of the search indicates, you should choose the parameters for the macro
instruction that provide the shortest search time. The search of a library actually involves a
search of the directory, followed by copying the directory entry into virtual storage, followed by
loading the load module into virtual storage. If you know the location of the load module, you
should use the parameters that eliminate as many of these unnecessary searches as possible, as
indicated in Figure 19, Figure 20, and Figure 21. Examples of the use of these figures are
shown in the following discussion of passing control.

Using an Existing Copy

The control program uses a copy of the load module already in the job pack area if the copy
can be used. Whether the copy can be used or not depends on the reusability and current
status of the load module; that is, the load module attributes, as designated using linkage editor
control statements, and whether the load module has already been used or is in use. The status
information is available to the control program only when you specify the load module entry
name on an EXEC statement, or when you use ATTACH, LINK, or XCTL macro instructions
to transfer control to the load module. The control program protects you from obtaining an
unusable copy of a load module if you always "formally" request a copy using these macro
instructions (or the EXEC statement); if you pass control in any other manner (for instance, a
branch or a CALL macro instruction), the control program, because it is not informed, cannot
protect your copy.

All reenterable modules (modules designated as reenterable using the linkage editor) from any
library are completely reusable; only one copy is ever placed in the link pack area or brought
into your job pack area, and you get immediate control of the load module. If the module is
serially reusable, only one copy is ever placed in the job pack area; this copy is always used for
a LOAD macro instruction. If the copy is in use, however, and the request is made using a
LINK, ATTACH, or XCTL macro instruction, the task requiring the load module is placed in
a wait condition until the copy is available. A LINK macro instruction should not be issued
for a serially reusable load module currently in use for the same task; the task will be
abnormally terminated. (This could occur if an exit routine issued a LINK macro instruction
for a load module in use by the main program.)

If the load module is not reusable, a LOAD macro instruction will always bring in a new copy
of the load module; an existing copy is used only if a LINK, ATTACH, or XCTL macro
instruction is issued and the copy has not been used previously. Remember, the control
program can determine if a load module has been used or is in use only if all of your requests
are made using LINK, ATTACH, or XCTL macro instructions.

32 Supervisor Services and Macro Instructions

(

)

)

Using the LOAD Macro Instruction

The LOAD macro instruction is used to ensure that a copy of the specified load module is in
virtual storage in your region or job pack area if it was not preloaded into the link pack area.
When a LOAD macro instruction is issued, the control program searches for the load module
as discussed previously and brings a copy of the load module into the region if required. When
the control program returns control, register 0 contains the addressing mode and the virtual
storage address of the entry point specified for the requested load module, and register 1
contains the length of the loaded module (in doublewords) and the authorization code in the
high byte. Normally, the LOAD macro instruction is used only for a reenterable or serially
reusable load module, since the load module is retained even though it is not in use.

The control program also establishes a "responsibility" count for the copy, and adds one to the
count each time the requirements of a LOAD macro instruction are satisfied by the same copy.
As long as the responsibility count is not zero, the copy is retained in virtual storage.

The responsibility count for the copy is lowered by one when a DELETE macro instruction is
issued during the task which was active when the LOAD macro instruction was issued. When a
task is terminated, the count is lowered by the number of LOAD macro instructions issued for
the copy when the task was active minus the number of deletions. When the use count for a
copy in a job pack area reaches zero, the virtual storage area containing the copy is made
available.

Passing Control with Return

The LINK macro instruction is used to pass control between load modules and to provide for
return of control. You can also pass control using branch, branch and link, branch and save,
or branch and save and set mode instructions or the CALL macro instruction; however, when
you pass control in this manner you must protect against multiple uses of nonreusable or
serially reusable modules. You must also be careful to enter the routine in the proper
addressing mode. The following paragraphs discuss the requirements for passing control with
return in each case.

The LINK Macro Instruction

When you use the LINK macro instruction, as far as the logic of your program is concerned,
you are passing control to another load module. Remember, however, that you are requesting
the control program to assist you in passing control. You are actually passing control to the
control program, using an SVC instruction, and requesting the control program to find a copy
of the load module and pass control to the entry point you designate. There is some similarity
between passing control using a LINK macro instruction and passing control using a CALL
macro instruction in a simple structure. These similarities are discussed first.

The convention regarding registers 2-12 still applies; the control program does not change the
contents of these registers, and the called load module should restore them before control is
returned. You must provide the address in register 13 of the save area for use by the called
load module; the control program does not use this save area. You can pass address
parameters in a parameter list to the load module using register 1; the LINK macro instruction
provides the same facility for constructing this list as the CALL macro instruction. Register 0
is used by the control program and the contents may be modified. In certain cases, the contents
of register 1 may be altered by the LINK macro instruction.

There is also some difference between passing control using a LINK macro instruction and
passing control using a CALL macro instruction. When you pass control in a simple structure,

Program Management 33

register 15 contains the entry address and register 14 contains the return address. When the
called load mod~,de gets control, that is still what registers 14 and 15 contain, but when you use
the LINK macro instruction, it is the control program that establishes these addresses. When
you code the LINK macro instruction, you provide the entry name and possibly some library
information using the EP, EPLOC, or DE, and DCB parameters, but you have to get this entry
name and library information to the control program. The expansion of the LINK macro
instruction does this by creating a control program parameter list (the information required by
the control program) and passing its address to the control program. After the control program
finds the entry name, it places the address in register 15.

The return address in your control section is always the instruction following the LINK; that is
not, however, the address that the called load module receives in register 14. The control
program saves the address of the location in your program in its own save area, and places in
register 14 the address of a routine within the control program that will receive control.
Because control was passed using the control program, return must also be made using the
control program. The control program also handles all switching of addressing mode when
processing the LINK macro instruction.

The control program establishes a use count for a load module when control is passed using the
LINK macro instruction. This is a separate use count from the count established for LOAD
macro instructions, but it is used in the same manner. The count is increased by one when a
LINK macro instruction is issued and decreased by one when return is made to the control
program or when the called load module issues an XCTL macro instruction.

Figure 22 and Figure 23 show the coding of a LINK macro instruction used to pass control to
an entry point in a load module. In Figure 22, the load module is from the link, job, or step
library; in Figure 23, the module is from a private library. Except for the method used to pass
control, this example is similar to Figures 10 and 11. A problem program parameter list
containing the addresses INDCB, OUTDCB, and AREA is passed to the called load module;
the return point is the instruction following the LINK macro instruction. A V-type address
constant is not generated, because the load module containing the entry point NEXT is not to
be edited into the calling load module. Note that the EP parameter is chosen, since the search
begins with the job pack area and the appropriate library as shown in Figure 19.

RETURNPT
AREA

LINK

DC

EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=l

12F'O'

Figure 22. Use of the LINK Macro Instruction With the Job or Link Library

34 Supervisor Services and Macro Instructions

(

)

)

OPEN

LINK

PVTLIB DCB

(PVTLIB)

EP=NEXT, DCB=PVTLIB,PARAM= (INDCB,OUTDCB,
AREA) ,VL=l

DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R)

Figure 23. Use of the LINK Macro Instruction With a Private Library

Figure 24 and Figure 25 show the use of the BLDL and LINK macro instructions to pass
control. Assuming that control is to be passed to an entry point in a load module from the link
library, a BLDL macro instruction is issued to bring the directory entry for the member into
virtual storage. (Remember, however, that time is saved only if more than one directory entry
is requested in a BLDL macro instruction. Only one is requested here for simplicity.)

LISTADDR

NAMEADDR

BLDL

OS
DC
DC
DC
OS

O,LISTADDR

OH
H'Ol'
H'60'
CL8'NEXT'
26H

List description field:
Number of list entries
Length of each entry

Member name
Area required for directory
information

Figure 24. Use of the BLDL Macro Instruction

The first parameter of the BLDL macro instruction is a zero, which indicates that the directory
entry is on the link, job, step, or task library. The second parameter is the address in virtual
storage of the list description field for the directory entry. The second two bytes at
LISTADDR indicate the length of each entry. A character constant is established to contain
the directory information to be placed there by the control program as a result of the BLDL
macro instruction. The LINK macro instruction in Figure 25 can now be written. Note that
the DE parameter refers to the name field, not the list description field, of the directory entry.

LINK DE=NAMEADDR,DCB=O,PARAM=(INDCB,OUTDCB,AREA),VL=l

Figure 25. The LINK Macro Instruction With a DE Parameter

Program Management 35

Using CALL or Branch and Link

You can save time by passing control to a load module without using the control program.
Passing control without using the control program is performed as follows. Issue a LOAD
macro instruction to obtain a copy of the load module, preceded by a BLDL macro instruction
if you can shorten the search time by using it. The control program returns the address of the
entry point and the addressing mode in register 0 and the length in doublewords in register 1.
Load this address into register 15. The linkage requirements are the same when passing control
between load modules as when passing control between control sections in the same load
module: register 13 must contain a save area address, register 14 must contain the return
address, and register 1 is used to pass parameters in a parameter list. A branch instruction, a
branch and link instruction, a branch and save instruction, a branch and save and set mode
instruction (BASSM), or a CALL macro instruction can be used to pass control, using register
15. Use BASSM only if there is to be an addressing mode switch. The return will be made
directly to your program.

Notes:

1. You must use a branch and save and set mode instruction if passing control to a module in a
different addressing mode.

2 .. When control is passed to a load module without using the control program, you must check
the load module attributes and current status of the copy yourself, and you must check the
status in all succeeding uses of that load module during the job step, even when the control
program is used to pass control.

The reason you have to keep track of the usability of the load module has been discussed
previously; you are not allowing the control program to determine whether you can use a
particular copy of the load module. The following paragraphs discuss your responsibilities
when using load modules with various attributes. You must always know what the reusability
attribute of the load module is. If you do not know, you should not attempt to pass control
yourself.

If the load module is reenterable, one copy of the load module is all that is ever required for a
job step. You do not have to determine the status of the copy; it can always be used. You can
pass control by using a CALL macro instruction, a branch, a branch and link instruction, a
branch and save instruction, or a branch and save and set mode instruction (BASSM). Use
BASSM only if there is to be an addressing mode switch.

If the load module is serially reusable, one use of the copy must be completed before the next
use begins. If your job step consists of only one task, preventing simultaneous use of the same
copy involves making sure that the logic of your program does not require a second use of the
same load module before completion of the first use. An exit routine must not require the use
of a serially reusable load module also required in the main program.

Preventing simultaneous use of the same copy when you have more than one task in the job
step requires more effort on your part. You must still be sure that the logic of the program for
each task does not require a second use of the same load module before completion of the first
use. You must also be sure that no more than one task requires the use of the same copy of the
load module at one time; the ENQ macro instruction can be used for this purpose. Properly
used, the ENQ macro instruction prevents the use of a serially reusable resource, in this case a
load module, by more than one task at a time. Refer to "Resource Control" for a complete
discussion of the ENQ macro instruction. A conditional ENQ macro instruction can also be
used to check for simultaneous use of a serially reusable resource within one task.

36 Supervisor. Services and Macro Instructions

)

)

)

If the load module is nonreusable, each copy can only be used once; you must be sure that you
use a new copy each time you require the load module. You can ensure that you always get a
new copy by using a LINK macro instruction or by doing as follows:

1. Issue a LOAD macro instruction before you pass control.

2. Pass control using a branch, branch and link, branch and save, branch and save and set
mode instruction, or a CALL macro instruction.

3. Issue a DELETE macro instruction as soon as you are through with the copy.

How Control is Returned

The return of control between load modules is the same as return of control between two
control sections in the same load module. The program in the load module returning control is
responsible for restoring registers 2-14, possibly loading a return code in register 15, passing
control using the address in register 14 and possibly setting the correct addressing mode. The
program in the load module to which control is returned can expect registers 2-13 to be
unchanged, register 14 to contain the return address, and optionally, register 15 to contain a
return code. Control can be returned using a branch instruction, a branch and set mode
instruction or the RETURN macro instru(;l.~vi1. If control was passed without using the control
program, control returns directly to the calling program. However, if control was originally
passed using the control program, control returns first to the control program, then to the
calling program.

The action taken by the control program is as follows. Th~ control program returns in the
caller's addressing mode. When control was passed using c:. LINK or ATTACH macro
instruction, the responsibility count was increased by one for the copy of the load module to
which control was passed to ensure that the copy would be in virtual storage as long as it was
required. The return of control indicates to the control program that this use of the copy is
completed, and so the responsibility count is decreased by one. The virtual storage area
containing the copy is made available when the responsibility count reaches zero.

Passing Control without Return

The XCTL macro instruction is used to pass control between load modules when no return of
control is required. You can also pass control using a branch instruction; however, when you
pass control in this manner, you must protect against multiple uses of nonreusable or serially
reusable modules. The following paragraphs discuss the requirements for passing control
without return in each case.

Passing Control Using a Branch Instruction

The same requirements and procedures for protecting against reuse of a nonreusable copy of a
load module apply when passing control without return as were stated under "Passing Control
With Return." The procedures for passing control are as follows.

A LOAD macro instruction should be issued to obtain a copy of the load module. The entry
address and addressing mode returned in register 0 are loaded into register 15. The linkage
requirements are the same when passing control between load modules as when passing control
between control sections in the same load module; register 13 must be reloaded with the old
save area address, then registers 14 and 2-12 restored from that old save area. Register 1 is
used to pass parameters in a parameter list. If the addressing mode does not change, a branch

rrogram Management 37

instruction is issued to pass control to the address in register 15; if the addressing mode does
change, a branch and save and set mode macro instruction is used.

Note: Mixing branch instructions and XCTL macro instructions is hazardous. The next topic
explains why.

Using the XCTL Macro Instruction

The XCTL macro instruction, in addition to being used to pass control, is used to indicate to
the control program that this use of the load module containing the XCTL macro instruction is
completed. Because control is not to be returned, the address of the old save area must be
reloaded into register 13. The return address must be loaded into register 14 from the old save
area, as must the contents of registers 2-12. The XCTL macro instruction can be written to
request the loading of registers 2-12, or you can do it yourself. If you restore all registers
yourself, do not use the EP parameter. This creates an inline parameter list that can only be
addressed using your base register, and your base register is no longer valid. If EP is used, you
must have XCTL restore the base register for you.

When using· the XCTL macro instruction, you pass parameters in a parameter list. In this case,
however, the parameter list (or the parameter data) must be established in a portion of virtual
storage outside the current load module containing the XCTL macro instruction. This is
because the copy of the current load module may be deleted before the called load module can
use the parameters, as explained in more detail below.

The XCTL macro instruction is similar to the LINK macro instruction in the method used to
pass control: control is passed by way of the control program using a control program
parameter list. The control program loads a copy of the load module, if necessary, loads the
entry address in register 15, saves the address passed in register 14, and passes control to the
address in register 15. The control program adds one to the responsibility count for the copy of
the load module to which control is to be passed and subtracts one from the responsibility
count for the current load module. The current load module in this case is the load module last
given control using the control program in the performance of the active task. If you have been
passing control between load modules without using the control program, chances are the
responsibility count will be lowered for the '.vrong load module copy. And remember, when the
responsibility count of a copy reaches zero, that copy may be deleted, causing unpredictable
results if you try to return control to it.

Figure 26 shows how this could happen. Control is given to load module A, which passes
control to the load module B (step 1) using a LOAD macro instruction and a branch and link
instruction. Register 14 at this time contains the address of the instruction following the branch
and link. Load module B then is executed, independently of how control was passed, and issues
an XCTL macro instruction when it is finished (step 2) to pass control to load module C. The
control program knowing only of load module A, lowers the responsibility count of A by one,
resulting in its deletion. Load module C is executed and returns to the address which used to
follow the branch and link instruction. Step 3 of Figure 26 indicates the result.

Two methods are available for ensuring that the proper responsibility count is lowered. One
way is to always use the control program to pass control with or without return. The other
method is to use only LOAD and DELETE macro instructions to determine whether or not a
copy of a load module should remain in virtual storage.

38 Supervisor Services and Macro Instructions

(

(

)

)

Control Program

"
A

~
LOAD 8
BALR 8

Control
Program
------------~ A I

I

t
BALR

I

8 I
I
I ,

XCTL C

.... -

-------------------~

,----------,

I
I

----------'

8

XCTL C

RETURN

r-----.!' Control
Program

C

Program Control l
To routine which
last issued a BALR
instruction.

Step 1

Step 2

step 3

Figure 26. Misusing Control Program Facilities Causes Unpredictable Results

Program Management 39

Additional Entry Points

Through the use of linkage editor facilities you can specify as many as 17 different names (a
member name and 16 aliases) and associated entry points within a load module. It is only
through the use of the member name or the aliases that a copy of the load module can be
brought into virtual storage. Once a copy has been brought into virtual storage, however,
additional entry points can be provided for the load module, subject to one restriction. The
load module copy to which the entry point is to be added must be one of the following:

• A copy that satisfied the requirements of a LOAD macro instruction issued during the same
task

• The copy of the load module most recently given control through the control program in
performance of the same task

The entry point is added through the use of the IDENTIFY macro instruction, which can be
issued only by a program running under a program request block (PRB). The IDENTIFY
macro instruction cannot be issued by supervisor call routines or asynchronous exit routines
established using other supervisor macro instructions.

When you use the IDENTIFY macro instruction, you specify the name to be used to identify
the entry point, and the virtual storage address of the entry point in the copy of the load
module. The address must be within a copy of a load module that meets the requirements
listed above; if it is not, the entry point will not be added, and you will be given a return code
of OC (hexadecimal). The name can be any valid symbol of up to eight characters, and does
not have to correspond to a name or symbol within the load module. The name must not be
the same as any other name used to identify any load module available to the control program;
duplicate names cause errors. The control program checks the names of all load modules in the
link pack area, and the job pack area when you issue an IDENTIFY macro instruction, and
provides a return code of 8 if a duplicate is found. You are responsible for not duplicating a
member name or an alias in any of the libraries.

IDENTIFY services sets the addressing mode of the alias entry point equal to the addressing
mode of the major entry point.

If an authorized caller creates an alias for a module in the page able link pack area, IDENTIFY
services places an entry for the alias on the active link pack area queue. If an unauthorized
caller creates an alias for a module in the page able link pack area, IDENTIFY services places
an entry for the alias on the task's job pack queue.

Entry Point and Calling Sequence Identifiers as Debugging Aids

An entry point identifier is a character string of up to 70 characters that can be specified in a
SAVE macro instruction. The character string is created as part of the SAVE macro
instruction" expansion.

A calling sequence identifier is a 16-bit binary number that can be specified in a CALL or a
LINK macro instruction. When coded in a CALL or a LINK macro instruction, the calling
sequence identifier is located in the two low-order bytes of the fullword at the return address.
The high-order two bytes of the fullword form a NOP instruction.

40 Supervisor Services and Macro Instructions

(

)

)

Resource Control

Task Synchronization

Some planning on your part is required to determine what portions of one task are dependent
on the completion of portions of all other tasks. The POST macro instruction is used to signal
completion of an event; the WAIT and EVENTS macro instructions are used to indicate that a
task cannot proceed until one or more events have occurred. An event control block is used
with the WAIT, EVENTS or POST macro instructions; it is a fullword on a fullword boundary,
as shown in Figure 27.

An event control block is also used when the ECB parameter is coded in an ATTACH macro
instruction. In this case the control program issues the POST macro instruction for the event
(subtask termination). Either the 24-bit (bits 8 to 31) return code in register 15 (if the task
completed normally) or the completion code specified in the ABEND macro instruction (if the
task was abnormally terminated) is placed in the event control block as shown in Figure 27.
The originating task can issue aWAIT or EVENTS WAIT = YES macro instruction specifying
the event control block; the task will not regain control until after the event has taken place and
the event control block is posted (except if an asynchronous event occurs, for example, timer
expiration).

o 2 31

I w I p I completion code

Figure 27. Event Control Block

When an event control block is originally created, bits 0 (wait bit) and 1 (post bit) must be set
to zero. If an ECB is reused, bits 0 and 1 must be set to zero before aWAIT, EVENTS ECB =
or POST macro instruction can be specified. If, however, the bits are set to zero before the
ECB has been posted, any task waiting for that ECB to be posted will remain in the wait state.
When a WAIT macro instruction is issued, bit 0 of the associated event control block is set to
1. When a POST macro instruction is issued, bit 1 of the associated event control block is set
to 1 and bit 0 is set to O. For an EVENTS type ECB, POST also puts the completed ECB
address in the EVENTS table.

AWAIT macro instruction can specify more than one event by specifying more than one event
control block. (Only one WAIT macro instruction can refer to a event control block at a time,
however.) If more than one event control block is specified in a WAIT macro instruction, the
WAIT macro instruction can also specify that all or only some of the events must occur before
the task is taken out of the wait condition. When a sufficient number of events have taken
place (event control blocks have been posted) to satisfy the number of events indicated in the
WAIT macro instruction, the task is taken out of the wait condition.

Resource Control 41

An optional parameter, LONG = YES or NO, allows you to indicate whether the task is
entering a long wait or a regular wait. A long wait should never be considered for I/O activity.
However, you might want to use a long wait when waiting for an operator response to a
WTOR macro instruction.

Using a Serially Reusable Resource

When one or more programs using a serially reusable resource modify the resource, they must
not use the resource simultaneously with other programs. Consider a data area in virtual
storage that is being used by programs associated with several tasks of a job step. Some of the
programs are only reading records in the data area; because they are not updating the records,
they can access the data area simultaneously. Other programs using the data area, however, are
reading, updating, and replacing records in the data area. Each of these programs must serially
acquire, update, and replace records by locking out other programs. In addition, none of the
programs that are only reading the records want to use a record that another program is
updating until after the record has been replaced.

If your program uses a serially reusable resource, you must prevent incorrect use of the
resource. You must ensure that the logic of your program does not require the second use of
the resource before completion of the first use. Be especially careful when using a serially
reusable resource in an exit routine; because exit routines get control asynchronously with
respect to your program logic, the exit routine could obtain a resource already in use by the
main program. When more than one task is involved, using the ENQ macro instruction
correctly can prevent simultaneous use of a serially reusable resource.

The ENQ macro instruction requests that the control program assign control of a resource to
the active task. The control program determines the status of the resource, and does one of the
following:

• If the resource is available, the control program grants the request by returning control to
the active task.

• If the resource has been assigned to another task, the control program delays assignment of
control by placing the active task in a wait condition until the resource becomes available.

• Passes back a return code indicating the status of the resource.

• Abends the caller on unconditional requests that would otherwise result in a non-zero
return code.

When the status of the resource changes so that the waiting task can get control, the task is
taken out of the wait condition and placed in the ready condition.

The DEQ macro instruction is used in conjunction with the ENQ macro instruction. If used
properly, ENQ/DEQ can protect serially reusable resources. The rules for proper use of
ENQ/DEQ are as follows:

• Everyone must use ENQ/DEQ.
• Everyone must use the same names and scope values for the same resources.
• Everyone must use consistent ENQ/DEQ protocol.

42 Supervisor Services and Macro Instructions

(

)

)

)

Naming the Resource

Represent the resource in the ENQ macro instruction by two names known as the qname and
the marne, and by a scope indicator. The qname and marne need not have any relation to the
actual name of the resource. The control program does not associate the name with the actual
resource; it merely processes requests having the same qname, rname, and scope on a first-in,
first-out basis. It is up to you to associate the names with the actual resource by ensuring that
all users of the resource use qname, marne, and scope to represent the same resource. The
control program treats requests having different qname, marne, and scope combinations as
requests for different resources. Because the control program cannot determine the real name
of the resource from the qname, rname, and scope, a task could use the resource by specifying a
different qname, rname, and scope combination or by accessing the resource without using
ENQ. In this case, the control program cannot provide any protection.

You will be abnormally terminated if you use SYSZ as the first four characters of a qname
(unless you are authorized, in key 0, or in supervisor state) because the control program uses
SYSZ for its qnames. Avoid using SYSA through SYSY because the control program
sometimes uses these characters for its qnames as well. Either check with your system
programmer to see which of the SYSA through SYSY combinations you can use or avoid using
SYSx (where x is alphabetic) to begin qnames.

You can request a scope of STEP, SYSTEM, or SYSTEMS.

Use a scope of STEP if the resource is used only in your address space. The control program
uses the address space identifier to make your resource unique in case someone else in another
address space uses the same qname and rname and a scope of STEP.

Use a scope of SYSTEM if the resource is available to more than one address space in the
system. All programs that serialize on the resource must use the same qname and marne and a
scope of SYSTEM. For example, to prevent two jobs from using a named resource
simultaneously, use SYSTEM.

Use a scope of SYSTEMS if the resource is available to more than one system. All programs
that serialize on the resource must use the same qname and marne and a scope of SYSTEMS.
For example, to prevent two processors from using a named resource simultaneously, use
SYSTEMS. Note that the control program considers a resource with a SYSTEMS scope to be
different from a resource represented by the same qname and rn~me but with a scope of STEP
or SYSTEM.

Types of Resources that Can Be Shared

Global resource serialization, which handles ENQs, DEQs, and RESERVEs, recognizes two
types of resources. These are local resources and global resources.

A local resource is a resource identified on the ENQ or DEQ macro instruction by a scope of
STEP or SYSTEM. (Note that a resource with a scope of SYSTEM has its scope converted to
SYSTEMS if the resource appears in the SYSTEM inclusion resource name list. See Planning:
Global Resource Serialization for information about resource name lists.) A local resource is
recognized and serialized only within the requesting operating system. The local resource
queues are updated to reflect each request for a local resource. If a system is not operating
under global resource serialization (that, is, the system is not part of a global resource
serialization complex), all resources requested are treated as local resources, and a resource
requested by a RESERVE macro instruction always causes a hardware reserve for the entire
volume.

Resource Control 43

If a system is part of a global resource serialization complex, a global resource is identified on
the ENQ or DEQ macro instruction by a scope of SYSTEMS. (Note that a resource with a
scope of SYSTEMS has its scope changed to SYSTEM if the resource appears in the
SYSTEMS exclusion resource name list.) A global resource is recognized and serialized by all
systems in the global resource serialization complex.

Requesting Exclusive or Shared Control

To request exclusive control of the resource, code E in the ENQ macro instruction. If you are
changing the resource, you must request exclusive control.

To request shared control of the resource, code S in the ENQ macro instruction. Request
shared control only if you are not changing the resource.

Limiting Concurrent Requests for Resources

In order to prevent anyone job, started task, or TSO user from generating too many
concurrent requests for resources, global resource serialization counts and limits the number of
ENQs in each address space. When a user issues an ENQ, global resource serialization
increases the count of outstanding requests for that address space by one and decreases the
count by one when the user issues a DEQ.

When the computed count reaches the threshold value or limit, global resource serialization
processes subsequent requests as follows:

• Unconditional· requests (ENQs that use the RET = NONE option) are abended with a
system code of X' 538'.

• Conditional requests (ENQs that specify the RET = HAVE or RET = USE option) are
rejected and the user receives a return code ofX'18'.

The RESERVE and GQSCAN macros, which also increase the count of outstanding requests,
are described in SPL: System Macros and Facilities.

Processing the Request

The control program constructs a unique list for each qname, rname, and scope combination it
receives in an ENQ or RESERVE macro instruction. When a task makes a request by issuing
an ENQ or RESERVE macro instruction, the control program searches the existing lists for a
matching qname, rname, and scope. If it finds a match, the control program adds the task's
request to the end of the existing list; the list is not ordered by the priority of the tasks on it. If
the control program does not find a match, it creates a new list, and adds the task's request as
the first (and only) element. The task gets control of the resource based on the following:

• The position of the task's request on the list
• Whether or not the request was for exclusive or shared control

Figure 28 shows the status of a list built for a qname, marne, and scope combination. The S
or E next to the entry indicates that the request was for either shared or exclusive control. The
task represented by the first entry on the li~t always gets control of the resource, so the task
represented by ENTRY1 (Figure 28, Step 1) is assigned the resource. The request that

44 Supervisor Services ~nd Macro Instructions

)

)

established ENTRY2 was for exclusive control, so the c~rresponding task is placed in the wait
condition, along with the tasks represented by all the other entries in the list.

ENTRYl (5)

ENTRY2 (E) ENTRY2 (E)

ENTRY3 (5) ENTRY3 (5) ENTRY3 (5)

ENTRY4 (5) ENTRY4 (5) ENTRY4 (5)

ENTRY5 (E) ENTRY5 (E) ENTRY5 (E)

ENTRY6 (5) ENTRY6 (5) ENTRY6 (5)

Step 1 Step 2 Step 3

Figure 28. ENQ Macro Instruction Processing

Eventually, the task represented by ENTRYI releases control of the resource, and the ENTRYI
is removed from the list. As shown in Figure 28, Step 2, ENTRY2 is now first on the list, and
the corresponding task is assigned control of the resource. Because the request that established
ENTRY2 was for exclusive control, the tasks represented by all the other entries in the list
remain in the wait condition.

Figure 28, Step 3, shows the status of the list after the task represented by ENTRY2 releases
the resource. Because ENTRY3 is now at the top of the list, the task represented by ENTRY3
gets control of the resource. ENTRY3 indicates that the resource can be shared, and, because
ENTRY4 also indicates that the resource can be shared, ENTRY4 also gets control of the
resource. In this case, the task represented by ENTRY5 does not get control of the resource
until the tasks represented by ENTRY3 and ENTRY4 release control because ENTRY5
indicates exclusive use.

The control program uses the following general rules in manipulating the lists:

• The task represented by the first entry in the list always gets control of the resource.

• If the request is for exclusive control, the task is not given control of the resource until its
request is the first entry in the list.

• If the request is for shared control, the task is given control either when its request is first
in the list or when all the entries before it in the list also indicate a shared request.

• If the request is for several resources, the task is given control when all of the entries
requesting exclusive control are first in their respective lists and all the entries requesting
shared control are either first in their respective lists or are preceded only by entries
requesting shared control.

Duplicate Requests for a Resource

A duplicate request occurs when a task issues an ENQ macro instruction to request a resource
that the task already controls. For example, if a task that has control of a resource issues an
unconditional ENQ macro to request the same resource, the task is abnormally terminated. If
you make a duplicate request for a resource you might be abnormally terminated. With the
second request, the control program recognizes the contradiction and returns control to the task
with a non-zero return code or abnormally terminates the task. You should design your
program to ensure that a second request for a resource made by the same task is never issued
until control of the resource is released for the first use. Be especially careful when

Resource Control 45

using an ENQ macro instruction in an exit routine. Two specific reasons why the use of ENQ
in an exit routine must be carefully planned are:

• The exit may be entered more than once for the same TCB.

• An exit routine may request resources already obtained by some other process associated
with the TCB.

More information on this topic follows under "Conditional and Unconditional Requests."

Releasing the· Resource

Use the DEQ macro instruction to release a serially reusable resource that you obtained by
using an ENQ macro instruction. If you try to release a resource for which you do not have
control, you either-get a non-zero return code or you are abnormally terminated. It is possible
for many tasks to be placed in the wait condition while one task is assigned control of the
resource. Having many tasks in the wait state might reduce the amount of work being done by
the system, therefore, you should issue a DEQ macro instruction as soon as possible to release
the resource, so that other tasks can use it. If a task terminates without releasing a resource,
the control program releases the resource automatically.

Conditional and Unconditional Requests

Up to this point, only unconditional requests have been considered. You can, however, use the
ENQ and DEQ macro instructions to make conditional requests by using the RET parameter.
For authorized programs, the ECB parameter is another way to make conditional requests with
the ENQ macro instruction. This parameter, restricted to APF-authorized (key 0 or supervisor
state) programs, is described in SPL: System Macros and Facilities, Volume 2. One reason for
making a conditional request is to avoid the abnormal termination that occurs if you issue two
ENQ macro instructions for the same resource within the same task or when a DEQ macro
instruction is issued for a resource for which you do not have control.

The RET = parameter of ENQ and DEQ can provide the following options:

RET = CHNG indicates the status of the resource specified is changed from shared to exclusive control.

RET = HAVE indicates that control of the resource is requested conditionally; that is. control is requested only if a
request has not been made previously for the same task.

RET = TEST indicates the availability of the resource is to be tested. but control of the resource is not requested.

RET = USE indicates control of the resource is to be assigned to the active task only if the resource is immediately
available. If any of the resources are not available. the active task is not'placed in a wait condition.

For the following descriptions, the term "active task" mean the task issuing the ENQ macro
instruction. No reference is intended to different tasks which might be active in other
processors of a multiprocessor.

46 Supervisor Services and Macro Instructions

c

)

)

)

RET = TEST is used by a task to test the status of the corresponding qname, rname, and scope
combination, without changing the list in any way or waiting for the resource.

• A return code of 0 indicates that the active task does not now have control of the resource,
but could have been given immediate control if it had been requested, because no other task
has control of the resource.

• A return code of 4 indicates that another task has control of the resource, and the active
task would have been placed in a wait condition if it had made an unconditional request.

• A return code of 8 indicates that the active task already has control of the resource.

• A return code of 14 indicates that the active task does not yet have control of the resource,
but is in the list to be given control at a later time when other task(s) release the resource.

Note: For return code 14 to occur, the restricted use of the ECB = parameter of the ENQ
must have been used to make an entry on the list without placing the task in a wait
condition.

RET = TEST is most useful for determining if the task already has control of the resource. It is
less useful for determining the status of the list and taking action based on that status. In the
interval between the time the control program checks the status and the time your program
checks the return code and issues another ENQ macro instruction, another task could have
been made active, and the status of the list could have changed.

RET = USE is used if you want your task to assigned control of the resource only if the
resource is immediately available. If the resource is not immediately available, no entry will be
made on the list and the task will not be made to wait. RET = USE is most useful when there
is other processing that can be done without using the resource. For example, by issuing a
preliminary ENQ with RET = USE in an interactive task, you can attempt to gain control of a
needed resource without locking your terminal session. If the resource is not available, you can
do other work rather than enter a long wait for the resource.

• A return code of 0 indicates that the active task did not have control of the resource prior
to issuing the ENQ, but now has been given control and the corresponding entry has been
put in the list.

• A return code of 4 indicates that the active task has not been given control of the resource,
and an entry has not been made in the list, because another task already has control of the
resource.

•
•

•

A return code of 8 indicates that the active task already has control of the resource.

A. return code of 14 indicates that the active task does not yet have control of the resource,
but is in the list to be given control at a later time when other task(s) release the resource.

A return code of 18 indicates that the limit for the number of concurrent resource requests
has been reached. The task does not have control of the resource unless some previous
ENQ/RESERVE request caused the task to obtain control of the resource.

For authorized programs, the ECB parameter is another way to make conditional requests
with the ENQ macro instruction. This parameter, restricted to APF-authorized (key 0 or
supervisor state) programs, is described in SPL: System Macros and Facilities, Volume 2.

Resource Control 47

RET = CHNG is used to change a previous request from shared to exclusive control.

• A return code of 0 indicates that the active task now has exclusive control of the resource.
Either exclusive control was already held, or shared control was converted to exclusive
control as requested.

• A return code of 4 indicates that the requested change in attribute cannot be honored,
because the active task is currently sharing the resource with another task.

• A return code of 8 indicates that the active task does not have an entry on the list for the
specified resource. There is nothing to change.

• A return code of 14 indicates that the active task does have an entry on the list for the
resource, but is not yet in control of the resource. No change is made.

For authorized programs, the ECB parameter is another way to make conditional requests
with the ENQ macro instruction. This parameter, restricted to APF-authorized (key 0 or
supervisor state) programs, is described in SPL: System Macros and Facilities, Volume 2.

RET = HAVE is used with both the ENQ and DEQ macro instructions to specify a conditional
request for control of a resource (ENQ) when you do not know whether or not you have
already requested control of that resource. RET = HAVE is used to release control (DEQ),
with protection against abnormal termination of the active task, if an ENQ is duplicated or a
DEQ is issued for a resource not held. If the resource is owned by another task, you will be
put in a wait condition until the resource becomes available.

RET = HAVE with ENQ can make the active task wait until the resource becomes available.

• A return code of 0 indicates that the active task did not previously have an entry on the list
or control of the resource, but has now been given control.

• A return code of 8 indicates that the active task already has control of the resource and
already has an entry on the list. (Without RET = HAVE, this situation would cause
abnormal termination. With RET = HAVE, it is effectively a no-operation.)

• A return code of 14 indicates that the active task has entry on the list for the resource, but
is not yet in control of the resource. No change is made.

For authorized programs, the ECB parameter is another way to make conditional requests
with the ENQ macro instruction. This parameter, restricted to APF-authorized (key 0 or
supervisor state) programs, is described in SPL: System Macros and Facilities, Volume 2.

For DEQ:

• A return code of 0 indicates that the DEQ routine found an entry for the active task on the
list for the specified resource, and has removed the entry. If the active task held control of
the resource, this action relinquishes control. If the active task did not hold control of the
resource (because the restricted ECB parameter had been used with ENQ, and control has
not meanwhile become available), the DEQ routine simply removes the entry from the list
without affecting control of the resource.

• A return code of 4 indicates the resource has been requested for the task, but the task has
not been assigned control. The task is not removed from the wait condition. (This return
code could result if DEQ is issued within an exit routine which was given control because
of an interruption).

48 Supervisor Services and Macro Instructions

)

)

• A return code of 8 indicates that the active task did not have an entry on the list for the
specified resource. There was no entry to dequeue.

If ENQ and DEQ are used in an asynchronous exit routine, code RET = HAVE to avoid
possible abnormal termination.

Avoiding Interlock

An interlock condition happens when two tasks are waiting for each others' completion, but
neither task can get the resource it needs to complete. Figure 29 shows an example of an
interlock. Task A has exclusive access to resource M, and higher-priority task B has exclusive
access to resource N. When task B requests exclusive access to resource M, B is placed in a
wait state because task A has exclusive control of resource M.

The interlock becomes complete when task A requests exclusive control of resource N. The
same interlock would have occurred if task B issued a single request for multiple resources M
and N prior to task A's second request. The interlock would not have occurred if both tasks
had issued single requests for multiple resources. Other tasks requiring either of the resources
are also in a wait condition because of the interlock, although in this case they did not
contribute to the conditions that caused the interlock.

Task A
ENQ (M,A,E,8,SYSTEM)

ENQ (N,B,E,8,SYSTEM)

Figure 29. Interlock Condition

Task B

ENQ (N,B,E,8,SYSTEM)
ENQ (M,A,E,8,SYSTEM)

The above example involving two tasks and two resources is a simple example of an interlock.
The example could be expanded to cover many tasks and many resources. It is imperative that
you avoid interlock. The following procedures indicate some ways of preventing interlocks.

• Do not request resources that you do not need immediately. If you can use the serially
reusable resources one at a time, request them one at a time and release one before
requesting the next.

• Share resources as much as possible. If the requests in the lists shown in Figure 29 had
been shared, there would have been no interlock. This does not mean you should share a
resource that you will modify. It does mean that you should analyze your requirements for
the resources carefully, and not request exclusive control when shared control is enough.

• Use the ENQ macro instruction to request control of more than one resource at a time.
The requesting program is placed in a wait condition until all of the requested resources are
available. Those resources not being used by any other program immediately become
exclusively available to the waiting program. For example, instead of coding the two ENQ
macro instructions shown in Figure 30, you could code the one ENQ macro instruction
shown in Figure 31. If all requests were made in this manner, the interlock shown in
Figure 29 could not occur. All of the requests from one task would be processed before
any of the requests from the second task. The DEQ macro instruction can release a
resource as soon as it is no longer needed; resources requested in a multiple ENQ can be
individually released through separate DEQ instructions.

Resource Control 49

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM)
ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM)

Figure 30. Two Requests For Two Resources

ENQ (NAME1ADD,NAME2ADD ,E, 8 ,SYSTEM,NAME3ADD ,NAME'4ADD IE, 10 ,SYSTEM)

Figure 31. One Request For Two Resources

• If the use of one resource always depends on the use of a second resource, then you can
define the pair of resources as one resource in the ENQ and DEQ macro instructions. You
can use this procedure for any number of resources that are always used in combination.
However, the control program cannot protect these resources if they are also requested
independently. Any requests must always be for the set of resources.

• If there are many users of a group of resources and some of the users require control of a
second resource while retaining control of the first resource, it is still possible to avoid
interlocks. In this case, each user should request control of the resources in the same order.
For instance, if resources A, B, and C are required by many tasks, the requests should
always be made in the order of A, B, and C. An interlock situation will not develop, since
requests for resource A will always precede requests for resource B.

Resource Access Control Facility (RACF)

The Resource Access Control Facility (RACF) provides software access control measures that
can be used to enhance data security in a computing system. RACF can be used in addition to
any present data security measures currently being used.

RACF provides the ability to specify access authorities under which the resources (for example,
DASD data sets, tape volumes, and DASD volumes) in the system are made available to the
'users of the system.

When users, groups, and resources are defined to RACF, RACF builds and stores their
descriptions in profiles on the RACF data set. The profiles will be used by RACF for
RACHECK authorization checking.

For more information on RACF, see Resource Access Control Facility (RACF): General
Information Manual.

RACHECK Macro Instruction

RACHECK processing determines if a user is authorized to obtain use of a resource protected
by RACF. When a user requests access to a RACF-protected resource, acceptance of the
request is based upon the identity of the user and whether the user has been permitted sufficient
access authority to the resource.

50 Supervisor Services and Macro Instructions

(

)

)

)

RACF performs system authorization checking when a resource manager that controls a
RACF-protected resource issues the RACHECK macro instruction before allowing a user
access to the resource.

RACSTAT Macro Instruction

RACST AT processing determines if RACF is active and optionally determines if RACF
protection is in effect for a given resource class. The macro can be used to determine if a
resource class is defined to RACF.

FRACHECK Macro Instruction

FRACHECK processing determines if a user is authorized to obtain a RACF-protected
resource. FRACHECK is a branch-entered service that performs authorization checking for
RACF-protected resources whose profiles have been brought into main storage by the
RACLIST routine.

System Authorization Facility (SAF)

The System Authorization Facility (SAF) provides a system interface that conditionally directs
control to the Resource Access Control Facility (RACF), if RACF is present, and/or a
user-supplied processing routine when receiving a request from a resource manager. SAF does
not require any other program product as a prerequisite, but overall system security functions
are greatly enhanced and complemented by the concurrent use of RACF. The key element in
SAF is the MVS router.

MVS Router

SAF provides an installation with centralized control over system security processing by using a
system service called the MVS router. The MVS router provides a focal point and a common
system interface for all products providing resource control. The resource managing
components and subsystems call the router as part of certain decision-making functions in their
processing, such as access control checking and authorization-related checking. These functions
are called "control points." This single SAF interface encourages the use of common control
functions shared across products and across systems.

The router is always present whether or not RACF is present. If RACF is available in the
system, the router passes control to the RACF routine (ICHRFROO) that invokes the
appropriate RACF function based on the parameter information and the RACF router table
(ICHRFROl), which associates router invocations with RACF functions. The RACF router
table is described in the SPL: Resource Access Control Facility (RACF). Before it calls the
RACF routine, the router calls an optional, user-supplied security processing exit if one has
been installed. The MVS router exit is described in SPL: Supervisor.

Control points that issue the RACROUTE macro instruction enter the MVS router in the same
key and state as the RACROUTE issuer. Control points that continue to issue the RACF
macro instructions go directly to RACF, bypassing the router.

Resource Control 51

MVS Router Parameter List

The MVS router parameter list (mapped by macro ICHSAFP) is generated when tho
RACROUTE macro is issued and describes the security processing request by providing the
request type. If the router installation exit exists, the router passes the parameter list to this
exit. If RACF is active, the router uses the request type information to invoke the appropriate
RACF function.

Field Name Offset Length Description

SAFPRRET 0(0))4 Return code - Defines the RACF or installation exit return code.

SAFPRREA 4 (4) 4 Reason code - Defines the RACF or installation exit reason code.

SAFPPLN 8 (8) 2 Length - Defines the length of the SAFP parameter list.

10 (A) 2 Reserved

SAFPREQT 12 (C) 2 Request type - A binary halfword corresponding to the request type on the
RACROUTE macro. The request type and the associate request numbers
are listed below;

AUTH (RACHECK) - 1 (01)
FASTAUTH (FRACHECK) - 2 (02)

14 (E) 2 Reserved

SAFPREQR 16 (10) 4 Request name address - Points to an 8-byte character field containing the
control point name.

SAFPSUBS 20 (14) 4 Subsystem name address - Points to an 8-byte character field containing
the calling subsystem's name, version, and release level.

SAFPWA 24 (18) 4 SAF work area address - Points to a 512-byte work area for use by the
MVS router and the RACF front end routine.

28 (lC) 4 Reserved

32 (20) 4 Reserved

SAFPRACP 36 (24) 4 Offset - Contains the (signed) offset from the start of the MVS router
parameter list to the RACF parameter list.

RACROUTE Macro Instruction

The RACROUTE macro instruction is the interface to the MVS router that provides a focal
point and a common system interface for all products providing resource control. The MVS
router first invokes an optional installation exit and then invokes RACF, if RACF is active and
installed on the system.

The RACROUTE macro accepts all valid parameters for the RACF macros (RACHECK and
FRACHECK) and internally issues the appropriate RACF macro to generate a RACF
parameter list. When the RACROUTE macro internally invokes the RACF macros,
RACROUTE verifies that only valid parameters have been coded and then passes the
parameters to the MVS router. Existing control points that invoke RACFprocessing via the
supervisor call interface can continue to do so or can replace the RACF supervisor calls with
the RACROUTE macro.

See the RACROUTE macro in Part II for a description of the return codes.

52 Supervisor Services and Macro Instructions

4

)

)

Program Interruption, Recovery ITermination, and Dumping Services

The supervisor offers many services to detect and process abnormal conditions during system
execution. The hardware detects certain types of abnormal conditions (such as an attempt to
execu~ an instruction with an invalid operation code) and causes program interruptions to
occur. The software detects other abnormal conditions (such as an attempt to open a data set
that is not defined to. the system, which causes the OPEN routine to request abnormal
termination by issuing an ABEND macro instruction).

You can write exit routines to handle specific types of interruptions and abnormal conditions.
The supervisor initiates the recovery/termination process for your program either when you
request it (for example, by issuing an ABEND macro instruction) or when MVS/XA detects a
condition that will degrade the system or destroy data.

Interruption Services

Some conditions encountered in a program cause a program interruption. These conditions
include incorrect parameters and parameter specifications, as well as exceptional results, and are
known generally as program exceptions. You can disable the interruptions for certain
exceptions (fixed point and decimal overflow, exponent underflow, and significance) by setting
the corresponding bits in the program status word (PSW) to zero.

When a task becomes active for the first time, all program interruptions that can be disabled
are disabled, and the task uses a standard control program exit routine, included when the
system was generated. This exit routine gets control when certain program interruptions occur;
it issues an ABEND macro instruction specifying task abnormal termination and requesting a
dump.

Specifying User Exit Routines

By issuing the SPIE or ESPIE macro instruction, you can specify your own exit routine to be
given control for one or more types of program exceptions. If you issue an ESPIE macro
instruction, you can also pass the address of a parameter list to the exit routine. When one of
the specified program exceptions occurs in a problem program being executed in the
performance of a task, the exit routine receives control in the key of the TCB (TCBPKF) and
in the addressing mode in effect when the SPIE or ESPIE was issued. (If a SPIE macro
instruction was issued, this is 24-bit addressing mode.) For other program interruptions, part of
the control program, the recovery termination manager (RTM), gets control. If the SPIE or
ESPIE macro instruction specifies an exception for which the interruption has been disabled,
the control program enables the interruption when the macro instruction is issued.

Program Interruption, Recovery/Termination, and Dumping Services 53

The environment established by an ESPIE macro instruction exists for the entire task, until the
environment is changed by another SPIEjESPIE macro instruction, or until the program
creating the ESPIE returns via an SVC 3. Each succeeding SPIE or ESPIE macro instruction
completely overrides specifications in the previous SPIE or ESPIE macro instruction. You can
intennix SPIE and ESPIE macro instructions in one program. Only one SPIE or ESPIE
environment is active at a time. If an exit routine issues a SPIE or ESPIE macro instruction,
the new SPIEjESPIE environment does not take effect until the exit routine completes.

The control program automatically deletes the SPIEjESPIE exit routine when the RB that
established the exit tenninates. If a caller attempts to delete a specific SPIEjESPIE
environment established under a previous RB, the caller is abended with a system completion
code of X'46D'. A caller can delete all previous SPIE and ESPIE environments (regardless of
the RB under which they were established) by specifying a token of zero with the RESET
option of the ESPIE macro instruction or an exit address of zero with the SPIE macro
instruction.

Notes:

1. In MVSj370, the SPIE environment existedfor the life of the task. In MVSjXA, the SPIE
environment is deleted when the request block representing the program that issued the macro
instruction is deleted. That is, when a program running under MVSjXA completes, any SPIE
environments created by the program are deleted. This might create an incompatibility with
MVSj370 for programs that depend on the SPIE environment remaining in effect for the life
of the task rather than the life of the request block.

2. A SPIE exit routine established while executing in 24-bit addressing mode will not receive
control if the program executing is in 31-bit addressing mode at the time of the interruption.

Any problem program, executing in either 24-bit or 31-bit addressing mode in the performance
of a task, can issue the ESPIE macro instruction. If your program is executing in 31-bit
addressing mode, you cannot issue the SPIE macro instruction. The SPIE macro instruction is
restricted in use to callers executing in 24-bit addressing mode in the performance of a task.
The following topics describe how to use the SPIE and ESPIE macro instructions.

Using the SPIE Macro Instruction

The PICA and the program interruption element (PIE) contain the information that enables the
control program to intercept user-specified program interruptions established using the SPIE
macro instruction. The PIE and its associated PICA are called the "SPIEenvironment. " You
can modify the contents of the active PICA in order to change the active SPIE environment.
The PICA and the PIE are described in the following topics.

Program Interruption Control Area

The expansion of each standard or list form of the SPIE macro instruction contains a control
program parameter list called the program interruption control area (PICA). The PICA, as
shown in Figure 32, contains the new program mask for the interruption types that can be
disabled in the PSW, the address of the exit routine to be given control when one of the
specified interruptions occurs, and a code for interruption types (exceptions) specified in the
SPIE macro instruction.

54 Supervisor Services and Macro Instructions

(

)

)

Displacement
Bytes 0 2 3 4 5

~----------~--------------------------------~------------~ 0000 Program Exit Routine Address Interruption Type
Mask

Figure 32. Program Interruption Control Area

The control program maintains a pointer (in the PIE) to the PICA referred to by the last SPIE
macro instruction executed. This PICA might have been created by the last SPIE or might
have been created previously and referred to by the last SPIE. Before returning control to the
calling program or passing control to another program via an XCTL macro instruction, each
program that issues a SPIE macro instruction must cause the control program to adjust the
SPIE environment to the condition that existed previously or to eliminate the SPIE environment
if one did not exist on entry to the program. When you issue the standard or execute form of
the SPIE macro instruction, the control program returns the address of the previous PICA in
register 1. If no SPIEjESPIE environment existed when the program was entered, the control
program returns zeroes in register 1.

You can cancel the effect of the last SPIE macro instruction by issuing a SPIE macro
instruction with no parameters. This action does not reestablish the effect of the previous
SPIE; it does create a new PICA that contains zeroes, thus indicating that you do not want an
exit routine to process interruptions. You can reestablish any previous SPIE environment,
regardless of the number or type of subsequent SPIE macro instructions issued, by using the
execute form of the SPIE specifying the PICA address that the control program returned in
register 1. The PICA whose address you specify must still be valid (not overlaid). If you
specify zeroes as the PICA address, the SPIE environment is eliminated.

Figure 33 shows how to restore a previous PICA. The first SPIE macro instruction designates
an exit routine called FIXUP that is to be given control if fixed-point overflow occurs. The
address returned in register 1 is stored in the fu1lword called HOLD. At the end of the
program, the execute form of the SPIE macro instruction is used to restore the previous PICA.

HOLD

SPIE

ST

L
SPIE

DC

FIXUP,(8) Provide exit routine for fixed-point
overflow

1,HOLD Save address returned in register 1

5,HOLD Reload returned address
MF=(E,(5» Use execute form and old PICA address

F'O'

Figure 33. Using the SPIE Macro Instruction

Program Interruption, Recovery/Termination, and Dumping Services 55

Program Interruption Element

The first time you issue a SPIE macro instruction during the performance of a task, the control
program creates a 32-byte program interruption element (PIE) in the virtual storage area
assigned to your job step. Because the PIE is freed the first time you eliminate the SPIE
environment (by specifying a PICA address of zero in the execute form of the SPIE macro
instruction or by specifying a SPIE with no parameters), the control program also creates a
PIE whenever you issue a SPIE macro instruction and no PIE exists. The format of the PIE is
shown in Figure 34.

Hexadecimal Decimal
Displacement Displacement
(Bytes) (Bytes) 2 3

0 0
4 4 Reserved I PICA Address

I (Interruption Codes)

C 12 Old Program Status Word in BC mode

10 16 Register 14

14 20 Register 15

18 24 Register 0

IC 28 Register I

20 32 Register 2

Figure 34. Program Interruption Element

The PICA address in the PIE is the address of the program interruption control area used in
the last execution of the SPIE macro instruction for the task. When control is passed to the
routine indicated in the PICA, the BC mode old program status word contains the interruption
code in bits 16-31 (the first byte is the exception extension code and the second is the exception
code); you can test these bits to determine the cause of the program interruption. The control
program stores the contents of registers 14,15,0,1, and 2 at the time of the interruption as
indicated.

Using the ESPIE Macro Instruction

The ESPIE macro instruction extends the functions of the SPIE macro instruction to callers in
31-bit addressing mode. The options that you can specify using the ESPIE macro instruction
are:

• SET to establish an ESPIE environment (that is, specify the interruptions for which the
user-exit routine will receive control)

• RESET to delete the current ESPIE environment and restore the SPIEjESPIE environment
specified

• TEST to determine the active SPIEjESPIE environment

If you specify ESPIE SET, you pass the following information to the service routine:

• A list of the program interruptions to be handled by the exit routine
• The location of the exit routine
• The location of a user-defined parameter list

56 Supervisor Services and Macro Instructions

(

)

)

The service routine returns a token representing the previously active SPIE or ESPIE
environment, or zero if there was none.

If you code ESPIE RESET, you pass the token, which was returned when the ESPIE
environment was established, back to the ESPIE service routine. The SPIE or ESPIE
environment corresponding to the token is restored. If you pass a token of zero with RESET,
all SPIE and ESPIE environments are deleted.

If you specify ESPIE TEST, you will be able to determine the active SPIE or ESPIE
environment. An active SPIE environment is represented by a pointer to the PICA, which
resides in user storage. (The PICA is described earlier in this section.) The active ESPIE
environment is represented by protected control blocks belonging to the ESPIE service. To
change an active ESPIE environment, you must issue the ESPIE macro with the SET or
RESET option.

There are two control program areas associated with the ESPIE macro instruction. They are
the extended program interruption element (EPIE) and the fake PICA. The EPIE and the fake
PICA are described in the following topics.

The Extended Program Interruption Element (EPIE)

The control program creates an EPIE the first time you issue an ESPIE macro instruction
during the performance of a task or whenever you issue an ESPIE macro instruction and no
EPIE exists. The EPIE is freed when you eliminate the ESPIE environment.

The EPIE contains the information that the ESPIE service routine passes to the ESPIE exit
routine when it receives control. When the exit routine receives control, register I contains the
address of the EPIE. (See the topic "Register Contents Upon Entry to User's Exit Routine" for
the contents of the other registers.) The format of the EPIE is shown in Figure 35.

Hexadecimal Decimal
Displacement Displacement

(Bytes) (Bytes)

o 0

4 4 'EPIE'

8 8 Address of user-supplied parameter list

Contents of the general purpose registers at the time of the interruption.
48 72 The registers are stored in order-register 0 to register 15.

50 80 Old program status word in EC mode

Program interruption information consisting of the two-byte ILC followed
54 84 by the two-byte interruption code

Address of a translation exception for a page fault (meaningful only if the
58 88 interruption is a page fault)

60 96 Reserved

Figure 35. Extended Program Interruption Element

The Fake PICA

The fake PICA is used by MVS/XA to maintain compatibility between the SPIE and the ESPIE
macro instructions. Jf you code a SPIE macro instruction to specify interruptions for which a
SPIE exit routine is to receive control and if an ESPIE environment was previously active, the
service routine returns the address of a fake PICA. The fake PICA resides in 24-bit addressable
storage. The user should not modify its contents.

Program Interruption, Recovery ITermination, and Dumping Services 57

Register Contents Upon Entry to User's Exit Routine

When control is passed to your routine, the register contents are as follows:

Register 0: Internal control program information.

Register 1: Address of the PIE or EPIE for the task that caused the interruption.

Registers 2-12: Same as when the program interruption occurred.

Register 13: Address of the save area for the main program. The exit routine cannot use this area.

Register 14: Return address (to the control program).

Register 15: Address of the exit routine. The exit routine must be in virtual storage when it is required, and must
return control to the control program using the address passed in register 14. For an ESPIE macro
instruction, the control program restores all 16 registers from the EPIE. For a SPIE macro
instruction, the control program restores registers 14,15,0,1, and 2 from the program interruption
element after control is returned, but does not restore the contents of registers 3-13. If a program
interruption occurs when the program interruption exit routine is in control, the control program exit
routine gets control.

Functions Performed in User Exit Routines

Your exit recovery routine must determine the type of interruption that occurred before taking
corrective action. Determining the type of interruption depends on whether the exit is
associated with an ESPIE or a SPIE macro instruction.

• For an ESPIE, your exit recovery routine can check the two-byte interruption code (the
first byte is the exception extension code and the second is the exception code) at offset
X' 52' in the EPIE.

• For a SPIE, your exit recovery routine can test bits 16 through 31 (the first byte is the
exception extension code and the second is the exception code) of the old program status
word (OPSW in BC mode) in the PIE.

Note: For both ESPIE and SPIE - If you are using vector instructions and an exception of 8,
12, 13, 14, or 15 occurs, your recovery routine can check the exception extension code (the first
byte of the two-byte interruption code in the EPIE or PIE) to determine whether the exception
was a vector or scalar type of exception.

Your recovery routine can alter the contents of the registers when control is returned to the
interrupted program. The procedure for altering the registers also depends on whether the exit
is associated with an ESPIE or a SPIE.

• For an ESPIE exit, the recovery routine can alter the contents of registers 0 through 15 in
the save area in the EPIE because the control program reloads these registers from this area
when it returns control to the interrupted program.

• For a SPIE exit, the recovery routine can alter registers 14 through 2 in the register save
area in the PIE because the control program reloads these registers from this area when it
returns control to the interrupted program. To change registers 3 through 13, the recovery
routine must alter the contents of the registers.

The recovery routine can also alter the last four bytes of the OPSW in the PIE or EPIE. For
an ESPIE, the recovery routine alters the CC and program mask starting at the third byte in
the OPSW. By changing the OPSW, the routine can select any return point in the interrupted
program. In addition, for ESPIE exits, the routine must set the AMODE bit of this four-byte
address to indicate the addressing mode of the interrupted program.

58 Supervisor Services and Macro Instructions

(

)

)

Recovery ITermination Services

Part of the control program, the recovery termination manager (RTM), monitors the flow of
control of software recovery processing and supplies the services of normal and abnormal task
termination. RTM selects the appropriate recovery or termination process according to the
status of the system.

RTM gets control in response to events such as the following:

• Unanticipated program checks (except those protected by SPIE routines)
• Machine checks
• Invalid issuance of an SVC while locked, disabled, in SRB mode, or in cross memory

model, or while an enabled, unlocked task mode FRR was established
• I/O error on page-in request
• Request by an authorized caller to terminate a task
• ABEND macro instructions

RTM invokes any recovery routine that has been established to recover or clean up for the
process in control. The recovery routine could be one of yours or it could be a system routine.
If this recovery routine cannot recover from the incident (it requests termination or itself fails),
RTM invokes the previously-established recovery routine. This passing of control from one
recovery routine to another is called percolation. If none of the recovery routines can recover
(request a retry), the control program terminates the process in control.

When a recovery routine gets control, it determines why it has been entered and decides either
to percolate or to retry. To tell RTM what it wants done, the recovery routine issues the
SETRP macro instruction, which manipulates fields in the system diagnostic work area
(SDWA). When the recovery routine returns to RTM, RTM honors the request, if possible.

To allow communication between the main routine and the recovery routine, there is a
parameter area. For a recovery routine established by an ESTAE macro instruction, you can
supply a parameter area by coding the P ARAM parameter on the macro instruction. When
you establish a recovery routine, RTM saves a pointer to the parameter area and makes the
pointer available to your recovery routine when it is entered. Usually, the main routine uses
the parameter area to leave a footprint, that is, it sets indicators as part of normal processing; if
an error occurs, these indicators let the recovery routine know where in the main process the
failure occurred. The recovery routine can examine the footprint to determine what action to
take.

If the recovery routine decides that a retry might be successful, it asks RTM to continue
execution of the main routine at some appropriate point. Note that retry is not always allowed.
If a recovery routine requests a retry when retry is not allowed, RTM ignores the request and
continues with the termination process (percolates).

Any recovery routine that requests a retry must always include logic designed to avoid
recursion, to prevent the creation of a tight loop between the recovery routine and the retry
portion of the main routine. For example, if the recovery routine supplies a bad retry address
to RTM, and the execution of the first instruction at the given address causes a program check,
the first recovery routine to get control is the one that just requested the retry. If the recovery
routine requests another retry at the same address, the loop is formed.

Cross memory mode is described in SPL: System Macros and Facilities.

Program Interruption, Recovery/Termination, and Dumping Services 59

Using SETRP to Change the Completion and Reason Codes

You can specify both completion and reason code values on the ABEND macro instruction.
RTM passes these values to recovery exit routines to identify abnormal terminations. You can
change the values of the completion code and the reason code by using the SETRP macro
instruction. The COMPCOD keyword allows you to specify a new completion code; the
REASON keyword allows you to specify a new reason code.

The reason code has no meaning by itself, but must be used in conjunction with a completion
code. In order to maintain meaningful completion and reason codes, RTM propagates changes
to these values according to the following rules:

• If a user changes both the completion code and the reason code, R TM accepts both new
values.

• If a user changes the reason code but not the completion code, R TM accepts the new
reason code and uses the unchanged completion code.

• If a user changes the completion code but not the reason code, R TM accepts the new
completion code and uses a zero for the reason code.

• If a user does not change either value, RTM uses the unchanged values.

Changing the Completion and Reason Codes Directly

Using the SETRP macro instruction is the preferred way for changing the completion and
reason codes. If you change these values directly in a recovery exit routine you should emulate
SETRP processing as follows:

• When you change the completion code, store the new completion code in SDW ACMPC, a
three-byte field in the system diagnostic word area (SDW A), and set the one-bit flag,
SDWACCF, to indicate the change.

• When you change the reason code, store the new reason code in SDW ACRC, a four-byte
field in the SDWA, and set the one-bit flag, SDWAREAF, to indicate the change.

Before passing control to a recovery exit routine, RTM saves the current completion and reason
codes. After the recovery routine returns control to RTM, RTM examines the contents of the
SDWACCF and SDWAREAF flags to determine whether changes have been made to the
completion and
reason codes and then determines which values to pass to the next recovery exit routine. RTM
makes this decision as shown in the following table:

SDWACCF SDWAREAF
Completion code flag Reason code flag

ON OFF
OFF ON
ON ON

Values passed to the
next recovery exit routine

The abend completion code and a reason code of zero
The unchanged completion code and the altered reason code
The altered completion code and the altered reason code

If both flags are off, RTM passes the values in the user's SDWA to the next recovery exit
routine unless the completion code has been changed and the reason code has not been
changed. In this case RTM passes the value of the completion code in the user's SDWA and a
reason code of zero to the next recovery exit routine.

60 Supervisor Services and Macro Instructions

)

)

Handling ABENDs

The control program does a great deal of checking for abnormal conditions. It uses hardware
to detect errors such as protection violations or addressing errors. The data management and
supervisor routines provide some error checking facilities to ensure that, based on the
information you have provided, only valid data is being processed, and that you have not made
any conflicting requests. F or abnormal conditions that can possibly be corrected, the control
program returns to your program with a return code indicating the probable source of the
error. For conditions that indicate that further processing would result in degradation of the
system or destruction of data, the control program gives control to RTM.

There will, of course, be abnormal conditions unique to your program that the control program
cannot detect. Figure 36 is an example of one of these. The routine shown in Figure 36
checks a control field in an input parameter list to determine which function the program is to
perform. Only characters 1 through 4 are valid in the control field. The presence of any other
character is invalid, but the routine must be prepared to detect and handle these characters.
One way to handle an invalid character is to return to the calling program with an error return
code. The calling program can then try to interpret the return code and recover from the error.
If it cannot do so, the calling program can detach its incomplete subtasks, execute its usual
termination procedures, and return control to its calling program, again with an error return
code. This procedure might result in termination of all the tasks of a job step; if it does, you
can use the COND parameters of the JOB and EXEC statements to indicate whether
subsequent job steps should be executed.

Another way to handle this unexpected condition is to issue an ABEND macro instruction.
RTM gets control.

The position within the job step hierarchy of the task for which the ABEND macro instruction
is issued determines the exact function of the abnormal termination routine. If an ABEND
macro instruction is issued when the job step task (the highest level or only task) is active, or if
the STEP parameter is coded in an ABEND macro instruction issued during the performance
of any task in the job step, all the tasks in the job step are terminated. For example, if the
STEP parameter is coded in an ABEND macro under TSO, the TSO job will be terminated.
An ABEND macro instruction (without a STEP parameter) that is issued in performance of
any task in the job step task usually causes only that task and its subtasks to be abnormally
terminated. However, if the abnormal termination cannot be fulfilled as requested, it might be
necessary for RTM to abnormally terminate the job step task.

Program Interruption, Recovery jTermination, and Dumping Services 61

RTN1
Yes

RTN2
Yes

RTN3
Yes

RTN4
Yes

Figure 36. Detecting an Abnormal Condition

If you have created a recovery routine for your program, RTM passes control to your routine.
If you have not set up a recovery routine, RTM handles the problem. The action RTM takes
depends on whether or not the job step is going to be terminated.

If the job step is not going to be terminated, RTM:

• Releases the resources owned by the terminating task and all of its subtasks starting with
the lowest level task.

• Places the system or user completion code specified in the ABEND macro instruction in the
task control block of the active task (the task for which the ABEND macro instruction was
issued).

• Posts the ECB with the completion code specified in the ABEND macro instruction if the
ECB parameter was coded in the ATTACH macro instruction issued to create the active
task.

62 Supervisor Services and Macro Instructions

c

)

)

• Schedules the end-of-task exit routine to be given control when the originating task
becomes active if the ETXR parameter was coded in the ATTACH macro instruction
issued to create the active task.

• Calls a routine toFREEMAIN the terminating TCB.

If the job step is to be terminated, RTM:

• Releases the resources owned by each task, starting with the lowest level task, for all tasks
in the job step. No end-of-task exit routine is given control.

• Writes the system or user completion code specified in the ABEND macro instruction on
the system output device.

The remaining steps in the job are skipped unless you can establish your own recovery routine
to perform similar functions and any other functions that your program requires. Use either
the EST AE macro instruction or the ATTACH macro instruction with the EST AI option to set
up an error routine that gets control whenever your program issues an ABEND macro
instruction. Your error routine also gets control if the system issues an ABEND on your
behalf. Your routine can determine its actions with regard to the abnormal condition. With
this approach, you can put less error handling code in your mainline routines. For example,
there is no need to check return codes after a subroutine if the subroutine issues an ABEND.
The error handling functions can be part of the EST AE or EST AI routines that execute only
when there is an error.

How to Use an ESTAE Recovery Routine

Within an EST AE recovery routine, you can perform pre-termination functions and diagnose
the error. You can also determine whether abnormal termination should continue for the task,
or whether normal processing can continue at some point in the mainline routine.

When the abnormal termination is issued, the ESTAE recovery routine must be resident. It can
either be part of the program issuing the EST AE or be brought into virtual storage with the
LOAD macro instruction. '

A single program can create more than one recovery routine by issuing the ESTAE macro
instruction with the CT parameter. (The program can also overlay or cancel recovery routines
by issuing ESTAE macros with the OV parameter or with an address of zero, respectively.) All
EST AE requests issued by programs running under the same task are queued so that the
routine established by the most recent EST AE request is the first to get control. If this routine
fails or requests that abnormal termination continue (percolation), RTM cancels the routine
and the exit established by the previous ESTAE request gets control.

If you want to use the same recovery routine for several tasks at the same time, the routine
must be reenterable. For convenience, you should make all your ESTAE exit routines
reenterable.

You must cancel all the EST AE routines you have created before returning control to your
caller. If you try to cancel an EST AE routine not associated with your request block, you get a
return code that indicates your request is invalid.

Program Interruption, Recovery/Termination, and Dumping Services 63

Providing Information for Dump Analysis and Elimination

Dump analysis and elimination (DAE) uses information that callers provide in EST AE recovery
routines to construct unique symptom strings needed to describe software failures. DAE uses
these symptom strings to analyze dumps and suppress duplicates as requested. Each symptom
string contains specific pieces of information called symptoms that DAE obtains from fields in
the system diagnostic work area (SDW A), SDW A extensions, ABDUMP symptom area, and
SDW A variable recording area (SDW A VRA).

When using DAE, you must select symptoms carefully. If the data you supply is too precise,
no other failure will have the same symptoms; if the data is too general, many failures will have
the same symptoms.

The following publications contain additional information pertaining to DAE:

• SP L: System Modifications provides information about how an installation can modify
DAE to fit its needs.

• Operations: System Commands contains the syntax and use of the SET DAE command.

• Debugging Handbook contains sample symptom output and DAE control block
information.

• System Logic Library provides a description of the logic and an explanation of symptom
strings.

• SPL: System Macros and Facilities Volume 1 describes the function of DAE for authorized
users.

Interface to an ESTAE Recovery Routine

Before your first ESTAE recovery routine receives control, RTM performs I/O and
asynchronous processing requests specified in the ESTAE macro instruction. RTM performs
the requested I/O processing only for the first EST AE routine. Subsequent routines receive an
indication of the I/O processing previously done, but no additional processing is performed.
However, RTM performs asynchronous processing for each routine.

The recovery routine is enabled and has the same protection key and PSW key mask (PKM) as
the routine that established the recovery routine as long as the establishing routine was under a
problem program protection key (keys 8-15). An ESTAE routine created by a program running
under key 0-7 gets control in key O.

Before each EST AE recovery routine receives control, R TM tries to get storage for and to
initialize a work area to contain information about the error. This work area is called the
system diagnostic work area (SDW A). To access the SDW A, you must include the SDW A
mapping macro - IHASDW A - as a DSECT in your EST AE routine. Figure 37 shows key
fields in the SDW A.

64 Supervisor Services and Macro Instructions

(

)

Field Name Use

SDW APARM This four-byte field, located at offset 0, contains the pointer to the user parameter list that you supply
for an ESTAE-type recovery routine.

SDWACMPC This three-byte field contains the ABEND completion code that existed when RTM gave control to
the recovery routine. The recovery routine can change the ABEND code by changing this field. The
system code appears in the first twelve bits and the user code appears in the second twelve bits.

SDWAGRSV This field shows the contents of general registers 0-15 as they were at the time of the error.

SDW ACRC This four-byte field contains the reason code that existed when RTM entered the recovery routine.
The recovery routine can change the reason code by changing this field.

SDWAECI This field contains the PSW that existed at the time of the error.

SDW AEC2 The contents of this field vary according to the type of recovery routine:

SDWASRSV

SDWASPID

SDWALNTH

SDWACOMU

SDWAVRAL

SDWAHEX

SDWAEBC

SDWAURAL

SDWACCF

SDWAREAF

SDWAFAIN

• For an ESTAE routine, the field contains the extended control PSW of the RB that created the
recovery routine at the time the RB last incurred an interruption.

• For an ESTAI routine, this field contains zeroes.

The contents of this field vary according to the type of recovery routine.

• For an ESTAE routine, this field contains the general registers 0-15 of the RB that established
the recovery routine as they were at the time the RB last incurred an interruption.

• For an ESTAI routine, this field contains zeroes.

If the recovery routine requests a retry, RTM uses the contents of this field to load the registers for the
retry routine. To change the contents of the registers for the retry routine, you must make the changes
to this field and request a register update on the SETRP macro instruction.

This field contains the subpool ID of the SDW A.

This field contains the length, in bytes, of the SDW A.

The recovery routines use this 8-byte field to communicate with each other when percolation occurs.
RTM copies this field from one SDWA to the next on all percolations. If the field contains zeroes,
either there was no information passed or RTM was not able to pass it.

This field contains the length of the variable recording area (VRA) for this SDW A.

This is a one bit field set by the recovery routine to indicate that EREP is to print the data in the VRA
in hexadecimal form.

This is a one-bit field set by the recovery routine to indicate that EREP is to print the data in the VRA
in EBCDIC form.

This is a one-byte field set by the recovery routine to indicate the length of the VRA used. The field
initially contains zeroes. Whenever the recovery routine uses any part of the VRA, it must set this
field.

The recovery -routine sets this one-bit field when it changes the completion code.

The recovery routine sets this one-bit field when it changes the reason code.

This 12-byte field contains the six bytes of the instruction stream that both precede and follow the
failing instruction pointed to by the PSW. The SDWAFAIN field contains zeroes if RTM cannot
access the failing instruction stream pointed to by the time-of-error PSW. For example, if the
time-of-error PSW is not valid, the SDW AF AIN field contains zeroes.

SDW ADAET This eight-byte field contains DAE status and error flags for this dump.

SDW AOCUR This two-byte field contains the current count of the number of previous occurrences of these
symptoms in other SDW As.

Figure 37. Key Fields in the SDW A

Program Interruption, Recovery/Termination, and Dumping Services 65

The first field in the SDW A contains the address of the parameter list established by the
EST AE macro instruction. The register contents on entry to the EST AE routine depends on
whether or not RTM obtained an SDWA. If RTM obtained an SDW A, the registers are as
follows:

Register 0

Register 1
Registers 2-12
Register 13
Register 14
Register 15

A code indicating the type of I/O processing performed:

o - Active I/O has been quiesced and is restorable.
4 - Active I/O has been halted and is not restorable.
8 - No I/O was active when the ABEND occurred.
16 - No I/O processing was performed.

Address of the SDW A.
Unpredictable.
Address of a 72-byte register save area.
Return address.
Entry point address.

When the ESTAE routine has completed its analysis of the error, it can use the SETRP macro
instruction to inform RTM what it wants done. The SETRP macro instruction initializes the
SDW A with the desired options. You can return from the ESTAE exit routine by using the
SETRP REGS parameter or by using a BR 14 instruction.

If RTM could not obtain an SDWA, the register contents are as follows:

Register 0
Register 1
Register 2
Registers 3-13
Register 14
Register 15

12 (decimal). RTM could not obtain an SDWA.
ABEND completion code.
Address of the parameter list specified in the ESTAE macro instruction or O.
Unpredictable.
Return address.
Entry point address.

If RTM could not provide an SDWA, it does not provide a register save area either. In this
case, your ESTAE routine must save the address in register 14 and use it as the return address
to RTM. You must place a return code in register 15 before returning to RTM. The return
code indicates whether ABEND processing is to be continued for the task or whether a retry
address can be given control. The return codes are:

Return
Code Meaning

o Continue with termination. Any ESTAE routines that were established prior to this routine will get control.
4 Give control to the retry address. (You must place the retry address in register 0.)

How to Use an EST AI Routine

You can provide an exit in your program to intercept abnormal termination of a subtask by
using the ESTAI parameter on the ATTACH macro instruction you issue to create the subtask.
Once you establish an ESTAI routine for one of your subtasks, it will be used for all of your
subtasks. For example, suppose task A attaches task B and uses the ESTAI parameter in the
ATTACH macro instruction. When task B attaches task C, the EST AI routine created by task
A is active for C as well as B.

Because more then one sub task can abnormally terminate at the same time, the EST AI routine
might be used by more than one subtask concurrently. Your ESTAI exit routines must
therefore be reenterable.

66 Supervisor Services and Macro Instructions

)

)

Interface to an EST AI Routine

EST AI routines are entered after all EST AE routines that exist for a given task have received
control and have either failed or percolated. The interface to ESTAI routines is the same as for
EST AE exits, however, one additional option is available for ESTAI. When you return to
R TM, you can specify return code 16 either on the SETRP macro instruction if an SDW A
exists, or in register 15 if an SDWA is not available. The return code indicates to RTM that
termination should continue and that no other EST AI routines should receive control for that
task.

ESTAE/ESTAI Retry Routines

If a given ESTAE or ESTAI routine requests percolation, RTM gives control to the next oldest
ESTAE or ESTAI routine that exists for the task. However, if a given ESTAE or ESTAI exit
routine requests retry, the control program takes a dump if requested and does not process any
further EST AE or EST AI routines.

An ESTAE or ESTAI routine can request retry whenever the SDWACLUP bit in the SDWA is
set to zero. To request retry, the exit routine must supply a retry address. The retry address is
the point in the mainline routine that is to get control in order to continue its processing. In
response to a valid retry request, RTM gives control to the retry address supplied. A retry
routine requested by an EST AE routine operates as an extension of the mainline code. That is,
the retry routine operates under the same RB that issued the request for ESTAE recovery. All
RBs prior to the retry RB are purged before giving control to the retry routine.

RTM purges the RB queue to cancel the effects of partially executed programs that are at a
lower level in the program hierarchy than the program for which the retry occurs. Certain
effects, however, cannot be canceled. Among these are:

• Subtasks created by an RB to be purged
• Resources allocated by the ENQ macro instruction
• DCBs that exist in dynamically-acquired virtual storage

If there are quiesced restorable I/O operations, the retry routine can restore them. RTM
supplies a pointer to the purged I/O request list. You can use SVC RESTORE to have the
control program restore all I/O requests on the list. The retry routine should free the storage
occupied by the SDW A (if there was an SDW A) when that storage is no longer needed unless
the exit routine specified FRESDW A = YES on the SETRP macro instruction. The subpool
number and length to use on the FREEMAIN macro instruction are in the SDW A.

Interface to a Retry Routine

There are two different interfaces to a retry routine:

• If RTM was able to obtain an SDWA, you can set the register contents in the SDWA to
whatever you wish and request that they be passed to the retry routine by coding
RETREGS = YES in the SETRP macro instruction. This method is used most often in
mainline processing.

• If RTM could not obtain an SDWA or if RETREGS=NO was specified on the SETRP
macro instruction, only parameter registers are passed to the retry routine. This method is
used most often if a special retry routine is to get control.

Program Interruption, Recovery/Termination, and Dumping Services 67

If RTM could not obtain an SDWA, register contents are as follows:

Register 0
Register 1
Register 2
Registers 3-13
Register 14
Register 15

12 (decimal)
Address of the user parameter list established via the ESTAE macro instruction
Address of the purge I/O restore list (PIRL) if I/O was quiesced and is restorable, otherwise 0
Unpredictable
Address of an SVC 3 instruction
Entry point address of the retry routine

If RTM obtained an SDWA and the retry routine specified RETREGS=NO or
FRESDWA = NO:

Register 0
Register 1
Registers 2-13
Register 14
Register 15

o
Address of the SDW A
Unpredictable
Address of an SVC 3 instruction
Entry point address of the retry routine

If RTM obtained an SDWA and the retry routine specified RETREGS=NO and
FRESDWA = YES:

Register 0
Register 1
Register 2
Registers 3-13
Register 14
Register 15

20 (decimal)
Address of the user parameter list established via the ESTAE macro instruction
Address of the PIRL if I/O was quiesced and is restorable, otherwise 0
Unpredictable
Address of an SVC 3 instruction
Entry point address of the retry routine

If the retry routine requested register update (RETREGS = YES), the registers, as they appear
in the SDWA, are passed to the retry routine.

In all cases, the routine runs enabled and the protection key is the same key as the routine that
established the retry routine.

Dumping Services

A problem program can request two types of storage dumps:

• An ABEND dump obtained through use of the DUMP parameter in the ABEND macro
instruction or the DUMP=YES parameter on the SETRP macro instruction in a recovery
exit.

• A snap dump obtained through use of the SNAP macro instruction.

ABEND Dumps

An ABEND macro instruction initiates error processing for a task. The DUMP option of
ABEND requests a dump of storage and the DUMPOPT option may be used to specify the
areas to be displayed. These dump options may be expanded by an EST AE or EST AI routine.
The control program usually requests a dump for you when it issues an ABEND macro
instruction. However, the control program can provide an ABEND dump only if you include a
DD statement (SYSABEND, SYSMDUMP, or SYSUDUMP) in the job step. The DD
statement determines the type of dump provided and the system dump options that are used.
When the dump is taken, the dump options that you requested (specified in the ABEND macro
instruction or by recovery routines) are added to the installation-selected options.

68 Supervisor Services and Macro Instructions

c

)

)

Note: The operator can use the CHNGDUMP command either to alter the dump options you
or the installation specified, or to suppress all ABEND dumps.

If a dump is requested and the EST AE/EST AI routine also requests retry, the control program
takes the dump before passing control to the retry address.

The data set containing the dump can reside on any device supported by the basic sequential
access method (BSAM). The dump is placed in the data set described by the DD statement you
provide. If you select a printer, the dump is printed immediately. However, if you select a
direct access or tape device, you must schedule a separate job to obtain a listing of the dump,
and to release the space on the device. If the dump data set was described by a SYSMDUMP
DD statement, you can use the AMDPRDMP service aid to format and print the dump. (Do
not select a printer for a SYSMDUMP DD statement.) For information about the
AMDPRDMP service aid see SP L: Service Aids.

Obtaining a Symptom Dump

With all ABEND dumps, you will automatically receive a short symptom dump of
approximately ten lines. This symptom dump provides a summary of error information, which
will help you to identify duplicate problems.

You will receive this dump even without a DD statement unless your installation changes the
default via the CHNGDUMP operator command or the dump parmlib member for
SYSUDUMP.

SNAP Dumps

A task can request a SNAP dump at any time during its processing by issuing a SNAP macro
instruction. For a SNAP dump, the DD statement can have any name except SYSABEND,
SYSMDUMP, and SYSUDUMP.

Like the ABEND dump, the data set containing the dump can reside on any device that is
supported by BSAM. The dump is placed in the data set described by the DD statement you
provide. If you select a printer, the dump is printed immediately. However, if you select a
direct access or tape device, you must schedule a separate job to obtain a listing of the dump,
and to release the space on the device.

To obtain a dump using the SNAP macro instruction, you must provide a data control block
and issue an OPEN macro instruction for the data set before issuing any SNAP macro
instructions. If the standard dump format is requested, 120 characters per line are printed. The
data control block must contain the following parameters: DSORG = PS, RECFM = VBA,
MACRF=W, BLKSIZE=882 or 1632, and LRECL= 125. (The data control block is
described in Data Management Services Guide and Data Management Macro Instructions. If a
high-density dump is to be printed on a 3800 Printing Subsystem, 204 characters per line are
printed. To obtain a high-density dump, code CHARS = DUMP on the DD statement
describing the dump data set. The BLKSIZE= must be either 1470 or 2724, and the
LRECL= must be 209. CHARS = DUMP can also be coded on the DD statement describing
a dump data set that will not be printed immediately. If CHARS = DUMP is specified and the
output device is not a 3800, print lines are truncated and print data is lost. If your program is
to be processed by the loader, you should also issue a CLOSE macro instruction for the SNAP
data control block.

Program Interruption, Recovery/Termination, and Dumping Services 69

Finding Information in a SNAP Dump

You will obtain a dump index with each SNAP dump. The index wilL help you find
information in the dump more quickly. Included in the information in the dump index is an
alphabetical list of the active load modules in the dump along with the page number in the
dump where each starts.

Obtaining a Summary Dump

You can request a summary dump for an abending task by coding the SUM option of the
SNAP macro instruction. You can also obtain a summary dump by coding the DUMPOPT
option of the ABEND or SETRP macro instruction and specifying a list form of SNAP that
contains the SUM option.

If SUM is the only option that you specify, the dump will contain a dump header, control
blocks, and the other areas listed below. The dump header for all ABEND dumps contains the
following information:

• The dump title

• The ABEND code and program status word (PSW) at the time of the error

• If the PSW contains the address of an active load module:

The name and address from the PSW of the load module in error
The offset, into this load module, at which the error occurred

The control blocks and other areas consist of the following information:

• The control blocks dumped for the CB option

• The error control blocks (RTM2W As and SCBs)

• The save areas

• The registers at the time of the error

• The contents of the load module (if the PSW contains the address of an active load
module)

• The module pointed to by the last PRB (if it can be found)

• lK of storage before and after the addresses pointed to by the PSW and the registers at the
time of the error

Note: This storage will only be dumped if the caller is authorized to obtain it. The storage
is printed by ascending storage addresses, with duplicate addresses removed.

• The supervisor trace table consisting of all trace entries for the ASID that is being dumped.

Note: The GTF trace records are not included in the dump.

70 Supervisor Services and Macro Instructions

(

)

)

If you specify other options in addition to SUM, the summary dump is dispersed throughout
the dump. For example, if you specify the options:

CB,SUM,SPLS,LSQA,ERR,TRT

The dump will contain the following information:

• Dump title (SUM)

• ABEND code and PSW (SUM)

• Name and address from the PSW of the module in error (SUM)

• Offset into the module where the error occurred (SUM)

• Control blocks (SUM and CB)

• Error control blocks (ERR)

• Save areas (SUM)

• LSQA (LSQA)

• Registers at the time of the error (SUM)

• Contents of the active load module (SUM)

• 1 K of storage before and after the addresses in the PSW and the registers at the time of the
error (SUM)

• Subpool data (SPLS)

• If system trace is active, the system trace data and if GTF is active, the GTF trace data
(TRT)

Program Interruption, Recovery/Termination, and Dumping Services 71

c
72 Supervisor Services and Macro Instructions

)

)

Virtual Storage Management

Use the virtual storage area assigned to your job step through implicit and explicit requests for
virtual storage. The use of a LINK macro instruction is an example of an implicit request; the
control program allocates storage before bringing the load module into your job pack area.
The use of the GETMAIN macro instruction is an explicit request for a certain number of
bytes of virtual storage to be allocated to the active task. In addition to your requests for
virtual storage, requests are made by the control program and data management routines for
areas to contain some of the control blocks required to manage your tasks'.

Note: If your job step is to be executed as a nonpageable (V = R) task, the REGION
parameter value specified on the job or execute statement determines the amount of virtual
(real) storage reserved for the job step. If you run out of storage because of a system failure,
such as in a GETMAIN request, increase the REGION parameter size.

The following paragraphs discuss some of the techniques that can be applied for efficient use of
the virtual storage area reserved for your job step. These techniques apply as well to the data
management portions of your programs. The specific data management storage allocation
facilities are discussed in the Data Management Services Guide and Data Management Macro
Instructions publications; the principles discussed here provide the background you need to use
these facilities.

Explicit Requests for Virtual Storage

Virtual storage can be explicitly requested for the use of the active task by issuing a GETMAIN
macro instruction. The request is satisfied by allocating a portion of the virtual storage area
reserved for the job step. The virtual storage area is usually not set to zero when allocated.
(The storage is zeroed for the initial allocation of a page).

You release virtual storage by issuing a FREEMAIN macro instruction. This does not release
the area from control of the job step, but makes the area available to satisfy the requirements
of additional requests for any task in the job step. The virtual storage assigned to a task is also
given up to a different task in the same job step when the task terminates, except as indicated
under "Subpool Handling." Releasing virtual storage for use by other job steps is discussed
under "Relinquishing Virtual Storage."

Specifying the Size of the Area

Virtual storage areas are always allocated to the task in multiples of eight bytes and may begin
on either a doubleword or page boundary. The request for virtual storage is given in terms of
bytes; if the number specified is not a multiple of eight, it is rounded to the next higher multiple
of eight. You can make repeated requests for a small number of bytes as you need the area or
you can make one large request to completely satisfy the requirements of the task. There are
two reasons for making one large request: it is the only way you can be sure of getting

Virtual Storage Management 73

contiguous storage and avoid fragmenting your address space, and because you only make one
request, the amount of control program overhead is less.

Types of Explicit Requests

There are several methods of explicitly requesting virtual storage using a GETMAIN macro
instruction. Each of the methods, which are designated by coding an associated character in
the parameter field of the GETMAIN macro instruction, has certain advantages, depending on
the requirements of your program. You can specify the actual location (above or below 16 Mb)
of the virtual area allocated by using the LOC parameter of the GETMAIN macro instruction.
(LOCjs valid only with RU, RC, VRU, and VRC.) If you code LOC=ANY and the subpool
indicated is supported above 16 Mb, GETMAIN attempts to allocate the virtual storage area
above 16 Mb. If this is not possible or if the subpool is not supported above 16 Mb,
GETMAIN allocates the area below 16 Mb.

The last three methods do not produce reenterable coding unless coded in the list and execute
forms. (See the topic "Implicit Requests" for additional information.) When you use the last
three types, you can allocate storage below 16 Mb only.

The methods and the characters associated with them follow:

Register Type: There are several kinds of register requests. In each case the address of the
area is returned in register 1. All of the register requests produce reenterable code because the
parameters are passed to the control program in registers, not in a parameter list. The register
requests are as follows:

R specifies a request for a single area of virtual storage of a specified length, located below 16 Mb.

RU or RC specifies a request for a single area of virtual storage of a specified length, located above or below 16
Mb according to the LOC parameter.

VRU or VRC specifies a request for a single area of virtual storage with length between two values that you specify,
located above or below 16 Mb according to the LOC parameter. GETMAIN attempts to allocate the
maximum length you specify. If not enough storage is available to allocate the maximum length,
GETMAIN allocates the largest area with a length between the two values that you specified.
GETMAIN returns the length in register O.

Element Type: EC or EU specifies a request for a single area of virtual storage, below 16 Mb,
of a specified length. GETMAIN places the address of the allocated area in a fullword that
you supply.

Variable Type: VC or VU specifies a request for a single area of virtual storage below 16 Mb
with a length between two values you specify. GETMAIN attempts to allocate the maximum
length you specify; if not enough storage is available to allocate the maximum length, the
largest area with a length between the two values is allocated. GETMAIN places the address of
the area and the length allocated in two consecutive fullwords that you supply.

List Type: LC or LU specifies a request for one or more areas of virtual storage, below 16
Mb, of specified lengths.

In addition to the above methods of requesting virtual storage, you can designate the request as
conditional or unconditional. If the request is unconditional and sufficient virtual storage is not
available to fill the request, the active task is abnormally terminated. If the request is
conditional, however, and insufficient virtual storage is available, a return code of 4 is provided
in register 15; a return code of 0 is provided if the request was satisfied.

74 Supervisor Services and Macro Instructions

(

)

)

PROCEED2
PROCEED 1
MIN
SIZES

ANSWADD

An example of using the GETMAIN macro instruction is shown in Figure 38. The example
assumes a program that operates most efficiently with a work area of 16,000 bytes, with a fair
degree of efficiency with 8,000 bytes or more, inefficiently with less than 8,000 bytes. The
program uses a reenterable load module having an entry name of REENTMOD, and will use it
again later in the program; to save time, the load module was brought into the job pack area
using a LOAD macro instruction so that it will be available when it is required.

GETMAIN EC,LV=16000,A=ANSWADD

LTR
BZ
DELETE
GETMAIN
L
CH
BNL

DC
DC
DC
DC
DC

15,15
PROCEED 1
EP=REENTMOD
VU,LA=SIZES,A=ANSWADD
4,ANSWADD+4
4,MIN
PROCEED 1

H'8000'
F'4000'
F'16000'
F'O'
F'O'

Conditional request for 16,000 bytes
in processor storage
Test return code
If 16,000 bytes allocated, proceed
If not, delete module and try to get
smaller amount of virtual storage
Load and test allocated length
If 8,000 or more, use procedure 1
If less than 8,000 use procedure 2

Min. size for procedure 1
Min. size for procedure 2
Size of area for maximum efficiency
Address of allocated area
Size of allocated area

Figure 38. Using the GETMAIN Macro Instruction

A conditional request for a single element of storage with a length of 16,000 bytes is requested
in Figure 38. The return code in register 15 is tested to determine if the storage is available; if
the return code is 0 (thJ 16,000 bytes were allocated), control is passed to'the processing
routine. If sufficient storage is not available, an attempt to obtain more virtual storage is made
by issuing a DELETE macro instruction to free the area occupied by the load module
REENTMOD. A second GETMAIN macro instruction is issued, this time an unconditional
request for an area between 4,000 and 16,000 bytes in length. If the minimum size is not
available, the task is abnormally terminated. If at least 4,000 bytes are available, the task can
continue. The size of the area actually allocated is determined, and one of the two procedures
(efficient or inefficient) is given control.

Cell Pool Services

The cell pool macro instruction (CPOOL) provides users with another way of obtaining virtual
storage. This macro instruction provides centralized, high performance ~ell management
services.

Cell pool services obtain a block of virtual storage (called a cell pool) from a specified subpoo1
at the user's request. The user can then request smaller blocks of storage (called cells) from this
cell pool as needed. If the storage for the requested cells exceeds the storage available in the
cell pool, the user can also request that the cell pool be increased in size (extended) to fill all
requests.

Virtual Storage Management 75

The CPOOL macro instruction provides the user with the following cell pool services:

• Create a cell pool (BUILD)

• Obtain a cell from a cell pool if storage is available (GET,COND)

• Obtain a cell from a cell pool and extend the cell pool if storage is not available
(GET,UNCOND)

• Return a cell to the cell pool (FREE)

• Free all storage for a cell pool (DELETE)

Subpool Handling

In an operating system, subpools of virtual storage are provided to assist in virtual storage
management and for commut¥cations between tasks in the same job step. Because the use of
subpools requires some knowledge of how the control program manages virtual storage, a
discussion of virtual storage control is presented here.

Virtual Storage Control: When the job step is given a region of virtual storage, all of the
storage area available for your use within that region is unassigned. Subpools are created only
when a GETMAIN macro instruction is issued designating a subpool number (other than 0)
not previously specified. If no subpool number is designated, the virtual storage is allocated
from subpool 0, which is created for the job step by the control program when the job-step task
is initiated.

The PSW key of the requestor is assigned to the subpool and does not change. A task, if it is
authorized to do so, can change its PSW key. Such a change makes a previously acquired
subpool unusable because the subpool's key no longer matches the task's key.

For purposes of control and virtual storage protection, the control program considers all virtual
storage within the region in terms of 4096-byte blocks. These blocks are assigned to a subpool,
and space within the blocks is allocated to a task by the control program when requests for
virtual storage are made. When there is sufficient unallocated virtual storage within any block
assigned to the designated subpool to fill a request, the virtual storage is allocated to the active
task from that block. If there is insufficient unallocated virtual storage within any block
assigned to the subpool, a new block (or blocks, depending on the size of the request) is
assigned to the subpool, and the storage is allocated to the active task. The blocks assigned to
a subpool are not necessarily contiguous unless they are assigned as a result of one request.
Only blocks within the region reserved for the associated job step can be assigned to a subpool.

Figure 39 is a simplified view of a virtual-storage region containing four 4096-byte blocks of
storage. All the requests are for virtual storage from subpool O. The first request from some
task in the job step is for 1008 bytes; the request is satisfied from the block shown as Block A
in the figure. The second request, for 4000 bytes, is too large to he satisfied from the unused
portion of Block A, so the control program assigns the next available block, Block B, to
subpool 0, and allocates 4000 bytes from Block B to the active task. A third request is then
received, this time for 2000 bytes. There is enough area in Block A (blocks are checked in the
order first in" first out), so an additional 2000 bytes are allocated to the task from Block A. All
blocks are searched for the closest fitting free area which will then be assigned. If the request
had been for 96 bytes or less, it would have been allocated from Block B. Because all tasks
may share subpool 0, Request 1 and Request 3 do not have to be made from the same task,
even though the areas are contiguous and from the same 4096 byte block. Request 4, for 6000

76 Supervisor Services and Macro Instructions

c

)

)

bytes, requires that the control program allocate the area from 2 contiguous blocks which were
previously unassigned, Block D and Block C. These blocks are assigned to subpool O.

Request 1
1008 bytes

Request 3
2000 bytes

Block A

Figure 39. Virtual Storage Control

Request 2 14000 bytes

Block B Block C

Request 4
16000 bytes

Block D

As indicated in the preceding example, it is possible for one 4096-byte block in subpool 0 to
contain many small areas allocated to many different tasks in the job step, and it is possible
that numerous blocks could be split up in this manner. Areas acquired by a task other than the
job-step task are not released automatically on task termination. Even if FREEMAIN macro
instructions were issued for each of the small areas before a task terminated, the probable result
would be that many small unused areas would exist within each block while the control
program would be continually assigning new blocks to satisfy new requests. To avoid this
situation, you can define subpools for exclusive use by individual tasks.

Any subpool can be used exclusively by a single task or shared by several tasks. Each time that
you create a task, you can specify which subpools are to be shared. Unlike other subpools,
subpool 0 is shared by a task and its subtask, unless you specify otherwise. When subpool 0 is
not shared, the control program creates a new subpool 0 for use by the subtask. As a result,
both the task and its subtask can request storage from subpool 0 but both will not receive
storage from the same 4096-byte block. When the subtask terminates, its virtual storage areas
in subpool 0 are released; since no other tasks share this subpool, complete 4096-byte blocks are
made available for reallocation.

Note: If the storage is shared, it is not released until the owning task terminates.

When there is a need to share subpool 0, you can define other subpools for exclusive use by
individual tasks. When you first request storage from a subpool other than subpool 0, the
control program assigns a new 4096-byte block to that subpool, and allocates storage from that
block. The task that is then active is assigned ownership of the subpool and, therefore, of the
block. When additional requests are made by the same task for the same subpool, the requests
are satisfied by allocating areas from that block and as many additional blocks as are required.
If another task is active when a request is made with the same subpool number, the control
program assigns a new block to a new subpool, allocates storage from the new block, and
assigns ownership of the new subpool to the second task.

Virtual Storage Management 77

A task can specify subpools numbered from 0 to 127. FREEMAIN macro instructions can be
issued to release any complete subpool except subpool 0, thus releasing complete 4096-byte
blocks. When a task terminates, its unshared subpools are released automatically.

Owning and Sharing: A subpool is initially owned by the task that was active when the
subpool was created. The subpool can be shared with other tasks, and ownership of the
subpool can be assigned to other tasks. Two macro instructions are used in the handling of
subpools:· the GETMAIN macro instruction and the ATTACH macro instruction. In the
GETMAIN macro instruction, the SP parameter can be written to request storage from
subpools 0 to 127; if this parameter is omitted, subpool 0 is assumed. The parameters that deal
with subpools in the ATTACH macro instruction are:

• GSPV and GSPL, which give ownership of one or more subpools (other than subpool 0) to
the task being created.

• SHSPV and SHSPL, which share ownership of one or more subpools (other than subpool
0) with the new subtask.

• SZERO, which determines whether subpool 0 is shared with the subtask.

All of these parameters are optional. If they are omitted, no subpools are given to the subtask,
and only subpool 0 is shared.

Creating a Subpoo.l: If the subpool specified does not exist for the active task, a new subpool is
created whenever SHSPV or SHSPL is coded on an ATTACH macro instructions or a
GETMAIN macro instruction is issued. A new subpool zero is created for the subtask if
SZERO = NO is specified on ATTACH. If one of the A TT ACH macro instruction parameters
that specifies shared ownership of a subpool causes the subpool to be created, the subpool
number is entered in the list of subpools owned by the task, but no blocks are assigned and no
storage is actually. allocated. If a GETMAIN macro instruction results in the creation of a
subpool, the subpool number is assigned to one or more 4096-byte blocks, and the requested
storage is allocated to the active task. In either case, ownership of the subpool belongs to the
active task; if the subpool is created because of an ATTACH macro instruction, ownership is
transferred or retained depending on the parameter used.

Transferring Ownership: An owning task gives ownership of a subpool to a direct subtask by
using the GSPV or GSPL parameters in the ATTACH macro instruction issued when that
subtask is created. Ownership of a subpool can be given to any subtask of any task, regardless
of the control level of the two tasks involved and regardless of how ownership was obtained. A
subpool cannot be shared with one or more subtasks and then transferred to another subtask,
however; an attempt to do this results in abnormal termination of the active task. Ownership
of a subpool can only be transferred if the active task has sole ownership; if the active task is
sharing a subpool and an attempt is made to transfer it to a subtask, the subtask receives
shared control and the originating task relinquishes the subpool. Once ownership is transferred
to a subtask or relinquished, any subsequent use of that subpool number by the originating task
results in the creation of a new subpool. When a task that has ownership of one or more
subpools terminates, all of the virtual storage areas in those subpools are released. Therefore,
the task with ownership of a subpool should not terminate until all tasks or subtasks sharing
the subpool have completed their use of the subpool.

If GSPV or GSPL specifies a subpool which does not exist for the active task, no action is
taken.

78 Supervisor Services and Macro Instructions

)

)

Sharing a Sub pool: Shared use of a subpool can be given to a direct subtask of any task with
ownership or shared control of the subpool. Shared use is given by specifying the SHSPV or
SHSPL parameters in the ATTACH macro instruction issued when the subtask is created. Any
task with ownership or shared control of the subpool can add to or reduce the size of the
subpool through the use of GETMAIN and FREEMAIN macro instructions. When a task
that has shared control of the subpool terminates, the subpool is not affected.

Sub pools in Task Communication: The advantage of subpools in virtual storage management is
that, by assigning separate subpools to separate subtasks, the breakdown of virtual storage into
small fragments is reduced. An additional benefit from the use of subpools can be realized in
task communication. A subpool can be created for an originating task and all parameters to be
passed to the subtask placed in the subpool. When the subtask is created, the ownership of the
subpool can be passed to the subtask. After all parameters have been acquired by the subtask,
a FREEMAIN macro instruction can be issued, under control of the subtask, to release the
subpool virtual storage areas. In a similar manner, a second subpool can be created for the
originating task, to be used as an answer area in the performance of the subtask. When the
subtask is created, the subpool ownership would be shared with the subtask. Before the subtask
is terminated, all parameters to be passed to the originating task are placed in the subpool area;
when the subtask is terminated, the subpool is not released, and the originating task can acquire
the parameters. After all parameters have been acquired for the originating task, a
FREEMAIN macro instruction again makes the area available for reuse.

Implicit Requests for Virtual Storage

You make an implicit request for virtual storage every time you issue a LINK, LOAD,
ATTACH, or XCTL macro instruction. In addition, you make an implicit request for virtual
storage when you issue an OPEN macro instruction for a data set. This section discusses some
of the techniques you can use to cut down on the amount of real storage required by a job step,
and the assistance given you by the control program.

Reenterable Load Modules

A reenterable load module is designed so that during execution it does not modify itself. Only
one copy of the load module is paged into real storage to satisfy the requirements of any
number of tasks in a job step. This means that even though there are several tasks in the job
step and each task concurrently uses the load module, the only real storage needed is an area
large enough to hold one copy of the load module (plus a few bytes for control blocks). The
same amount of real storage would be needed if the load module were serially reusable;
however, the load module could not be used by more than one task at a time.

Reenterable Macro Instructions

All of the macro instructions described in this manual can be written in reenterable form.
These macro instructions are classified as one of two types: macro instructions that pass
parameters in registers 0 and 1, and macro instructions that pass parameters in a list. The
macro instructions that pass parameters in registers present no problem in a reenterable
program; when the macro instruction is coded, the required parameter values should be
contained in registers. For example, the POST macro instruction requires that the ECB address
be coded as follows:

POST ecb address

Virtual Storage Management 79

One method of coding this in areenterable program would be to require this address to refer to
a portion of storage that has been allocated to the active task through the use of a GETMAIN
macro instruction. The address would change for each use of the load module. Therefore, you
would load one of the general registers 2-12 with the address, and designate that register when
you code the macro instruction. If register 4 contains the ECB address, the POST macro
instruction is written as follows:

POST (4)

The macro instructions that pass parameters in a list require the use of special forms of the
macro instruction when used in a reenterable program. The macro instructions that pass
parameters in a list are identified within their descriptions in the macro instruction section of
this manual. The expansion of the standard form of these macro instructions results in an
in-line parameter list and executable instructions to branch around the list, to load the address
of the list, and to pass control to the required control program routine. The expansions of the
list and execute forms of the macro instruction simply divide the functions provided in the
standard form expansion: the list form provides only the parameter list, and the execute form
provides executable instructions to modify the list and pass control. You provide the
instructions to load the address of the list into a register.

The list and execute forms of a macro instruction are used in conjunction to provide the same
services available from the standard form of the macro instruction. The advantages of using list
and execute forms are as follows:

• Any parameters that remain constant in every use of the macro instruction can be coded in
the list form. These parameters can then be omitted in each of the execute forms of the
macro instruction which use the list. This can save appreciable coding time when you use a
macro instruction many times. (Any exceptions to this rule are listed in the description of
the execute form of the applicable macro instruction.)

• The execute form of the macro instruction can modify any of the parameters previously
designated. (Again, there are exceptions to this rule.)

• The list used by the execute form of the macro instruction can be located in a portion of
virtual storage assigned to the task through the use of the GETMAIN macro instruction.
This ensures that the program remains reenterable.

Figure 40 shows the use of the list and execute forms of a DEQ macro instruction in a
reenterable program. The length of the list constructed by the list form of the macro
instruction is obtained by subtracting two symbolic addresses; virtual storage is allocated and
the list is moved into the allocated area. The execute form of the DEQ macro instruction does
not modify any of the parameters in the list form. The list had to be moved to allocated
storage because the control program can store a return code in the list when RET = HA VE is
coded .. Note that the coding in a routine labeled MOVERTN is valid for lengths up to 256
bytes only. Some macro instructions do produce lists greater than 256 bytes when many
parameters are coded (for example, OPEN and CLOSE with many data control blocks, or ENQ
and DEQ with many resources), so in actual practice a length check should be made. The
move long instruction (MVCL) should be considered for moving large data lists.

80 Supervisor Services and Macro Instructions

(

)

)

LA
LA
SR
BAL
DEQ

3,MACNAME
5,NSIADDR
5,3
14,MOVERTN
, MF= (E , (1))

Load address of list form
Load address of end of list
Length to be moved in register 5
Go to routine to move list
Release allocated resource

* The MOVERTN allocates storage from subpool ° and moves up to 256
* bytes into the allocated area. Register 3 is from address,
* register 5 is length. Area address returned in register 1.

MOVERTN

MOVEINST

MACNAME
NSIADDR
NAME 1
NAME 2

GETMAIN
LR
BCTR
EX
BR
MVC

DEQ

DC
DC

R,LV=(5)
4,1
5,0
5,MOVEINST
14
0(0,4) ,0(3)

Address of area in register 4
Subtract 1 from area length
Move list to allocated area
Return

(NAMEl,NAME2,8,SYSTEM),RET=HAVE,MF=L

CL8'MAJOR'
CL8'MINOR'

Instruction in a Reenterable Program

Figure 40. Using the List and the Execute Forms of the DEQ Macro

Nonreenterable Load Modules

The use of reenterahle load modules does not automatically conserve virtual storage; in many
applications it will actually prove wasteful. If a load module is not used in many jobs and if it
is not employed by more than one task in a job step, there is no reason to make the load
module reenterable. The allocation of virtual storage for the purpose of moving coding from
the load module to the allocated area is a waste of both time and virtual storage when only one
task requires the use of the load module.

You should not make a load module reenterable or serially reusable if reusability is not really
important to the logic of your program. Of course, if reusability is important, you can issue a
LOAD macro instruction to load a reusable module, and later issue a DELETE macro
instruction to release its area.

Notes:

1. If your module is reenterable or serially reusable, the load module must be link edited, with
the desired attribute, into a library.

2. A module that does not modify itself (a refreshable module) reduces paging activity because it
does not need to be paged out.

Virtual Storage Management 81

Freeing of Virtual Storage

The control program establishes two responsibility counts for every load module brought into
virtual storage in response to your requests for that load module. The responsibility counts are
lowered as follows:

• If the load module was requested in a LOAD macro instruction, that responsibility count is
lowered when using a DELETE macro instruction.

• If the load module was requested in a LINK, ATTACH, or XCTL macro instruction, that
responsibility count is lowered when using an XCTL macro instruction or by returning
control to the control program.

• When a task is terminated, the responsibility counts are lowered by the number of requests
for the load module made in LINK, LOAD, ATTACH, and XCTL macro instructions
during the performance of that task, minus the number of deletions indicated above.

The virtual storage area occupied by a load module is released when the responsibility counts
reach zero. When you plan your program, you can design the load modules to give you the
best trade-off between execution time and efficient paging. If you use a load module many
times in the course of a job step,issue a LOAD macro instruction to bring it into virtual
storage; do not issue a DELETE macro instruction until the load module is no longer needed.
Conversely, if a load module is used only once during the job step, or if its uses are widely
separated, issue a LINK macro instruction to obtain the module and issue an XCTL from the
module (or return control to the control program) after it has been executed.

There is a minor problem involved in the deletion of load modules containing data control
blocks. An OPEN macro instruction must be issued before the data control block is used, and
a CLOSE macro instruction issued when it is no longer needed. If you do not issue a CLOSE
macro instruction for the data control block, the control program issues one for you when the
task is terminated. However, if the load module containing the data control block has been
removed from virtual storage, the attempt to issue the CLOSE macro instruction causes
abnormal termination of the task. You must either issue the CLOSE macro instruction yourself
before deleting the load module, or ensure that the data control block is still in virtual storage
when the task is terminated (possibly by issuing a GETMAIN and creating the DCB in the area
that had been allocated by the GETMAIN).

82 Supervisor Services and Macro Instructions

)

)

I Data-in-Virtual

Data-in-virtual simplifies the writing of applications that use large amounts of data from
permanent storage. Applications can create, read, and update data without the I/O buffer,
blocksize, and record considerations that the traditional GET and PUT types of access methods
require. Moreover, by using the services of data-in-virtual, certain applications that access large
amounts of data can potentially improve their performance and their use of system resources.

Such applications have an accessing pattern that is non-sequential and unpredictable. This kind
of pattern is a function of conditions and values that are revealed only in the course of the
processing. In these applications, the sequential record subdivisions of conventional access
methods are meaningless to the central processing algorithm. It is difficult to adapt this class of
applications to conventional record management programming techniques, which require all
permanent storage access to be fundamentally record-oriented. Through the DIV macro,
data-in-virtual provides these applications a way to manipulate the data without the constraints
of record-oriented processing.

An application written for data-in-virtual views its permanent storage data as a seamless body
of data without internal record boundaries. By using the data-in-virtual MAP service, the
application can make any portion of the data set appear in virtual storage, in an area that is
called a virtual storage window. Then, the data in the window can be referenced and updated
with conventional processor instructions that access memory. When the application decides to
copy the updates to the data set, it uses the data-in-virtual SAVE service.

The data-in-virtual services process the application data in 4096-byte units that are on page
(4096-byte) boundaries. The processing is similar to that of paging data set support, but a
special type of permanent data set is used to store the application data. This type of data set,
which is called a linear data set, is supported by Access Method Services and is referred to in
this book as a data-in-virtual object, a data object, or simply, an object. The data-in-virtual
object is truly a continuous string of uninterrupted data.

Data-in-Virtual 83

Defining a Linear Data Set

Before you can use the DIV macro to process a linear data set, the data set must exist on
permanent storage.

To create the data set, you need to specify the DEFINE CLUSTER function of IDCAMS with
the LINEAR parameter. When you use DEFINE CLUSTER, it is strongly recommended that
you specify the SHAREOPTIONS(1,3) parameter with a dataset disposition parameter of ,SHR
in the JCL. This permits multiple readers or a single updater to access the linear data set. The
system does not provide suitable data set integrity if any other values are specified for
SHAREOPTIONS.

The following JCL invokes Access Method Services (IDCAMS) to create the linear data set
named DIV.SAMPLE on the volume called DIVPAK. When IDCAMS creates the data set, it
creates it as an empty data set. Note that no RECORDS parameter is used because linear data
sets do not have records.

IIJNAME
II
11*
11*
11*
11*
IICLUSTPG
IISYSPRINT
IIDIVPAK
IISYSIN

1*

JOB 'ALLOCATE LINEAR' ,MSGLEVEL=(l, 1) ,
CLASS=R,MSGCLASS=D,USER=JOHNDOE

ALLOCATE A VSAM LINEAR DATASET

EXEC PGM=IDCAMS,REGION=4096K
DD SYSOUT=*
DD UNIT=3380,VOL=SER=DIVPAK,DISP=OLD
DD *
DEFINE CLUSTER (NAME (DIV. SAMPLE) -

VOLUMES (DIVPAK) -
TRACKS(l,l) -
SHAREOPTIONS(1,3) -
LINEAR)

For further information on the creation of linear VSAM data sets and the alteration of
entry-sequenced VSAM data sets, see MVS/Extended Architecture Integrated Catalog
Administration: Access Method Services Reference.

84 Supervisor Services and Macro Instructions

(

)

)

Using the Services Of Data-in-Virtual

Identify

Access

Map

Each invocation of the DIV macro requests anyone of eiglit distinct services provided by
data-in-virtual:

• IDENTIFY

• ACCESS

• MAP

• SAVE

• RESET

• UNMAP

• UNACCESS

• UNIDENTIFY

To request processing of a data-in-virtual object, an application must invoke the IDENTIFY
service. The application uses IDENTIFY to tell the system which data-in-virtual object it wants
to process, via the DDNAME parameter. IDENTIFY generates a unique id, or token, that
uniquely represents the application's individual request to use the given data set. It returns this
id to the application. When the application requests other kinds of services with the DIV
macro, it supplies this id as an input parameter.

To access the object, an application must use the ACCESS service. ACCESS is similar to the
OPEN macro of VSAM. It has a mode parameter of READ or UPDATE, and it gives your
application the right to read or update the object. ACCESS excludes other applications from
reading and updating the object, as determined by the current SHAREOPTIONS definition for
the object. You normally invoke ACCESS after you invoke IDENTIFY and before you invoke
MAP.

The data object is stored in units of 4096-byte blocks. An application uses the MAP service to
specify the part of the object that is to be processed in virtual storage. It can specify the entire
object (all of the blocks), or a part of the object (any continuous range of blocks).

After ACCESS, the application issues a GETMAIN macro to obtain a virtual storage area
large enough to contain the string of blocks that is to be processed. The size of the object,
which is returned (optionally) by ACCESS, can determine how much virtual storage needs to be
requested when the application issues GETMAIN. After GETMAIN, the application invokes
MAP. MAP establishes a direct correspondence between blocks on the object and pages in
virtual storage. A continuous range of pages corresponds to a continuous range of blocks. This
correspondence is called a virtual storage window, or a window.

After MAP, the application can look into the virtual storage area that is framed by the window.
When it looks into this virtual storage area, it sees the same data that is on the object. When
the application references this virtual storage area, it is referencing the data from the object,
which is available in the window whenever a reference is made inside the window. To reference
the area in the window, the application simply uses any conventional processor instructions that
access memory.

Data-in-Virtual 85

Although the object data becomes available in the window when MAP is used, no actual
movement of data from the object into the window occurs at that time. Actual movement of
data from the object to the window can only occur when the application refers to data in the
window. When a page in the window is referenced for the first time, a page fault occurs. When
the page fault occurs, the system reads the permanent storage block into real storage.

When data is read into real storage, the data movement involves only the precise block that is
referenced, which replaces the corresponding page in the window. Thus, only the blocks that are
referenced by an application are ever read into real storage.

Notes:

1. If the application would rather keep in the window the data that existed before the window
was established (instead of having the object data appear in the window), it can specify this by
using the RETAIN parameter. This would be useful when creating an object or overlaying the
contents of an object.

2. An important concept for data-in-virtual is the concept offreshly obtained storage. When
virtual storage has been obtained by a GETMAIN macro and not subsequently modified, the
storage is considered to be in the freshly obtained state. When referring to this storage or any
of its included pages, this book uses the terms, "freshly obtained storage" and "freshly
obtained pages." If a program stores into afreshly obtained page, only that page loses its
freshly obtained status, while other pages still retain it.

Save and Reset

Unmap

After the MAP service, the application can access the data inside the window directly through
normal programming techniques. When the application changes some data in the window,
however, the data on the object does not consequently change. If the application wants the data
changes in the window to appear in the object, it must use the SAVE service. SAVE causes all
changed blocks inside the window to be written out to the object. Unchanged blocks are not
written. When SAVE completes, the object contains any changes that the application made
inside the virtual storage window. If a SAVE is preceded by another SAVE, the second SAVE
will only pick up the changes that occurred since the previous SAVE.

If the application changes some data in a virtual storage window but then decides not to keep
those changes, it can use the RESET service to remove the changes from the window.

When the application is finished processing the part of the object that is in the window, it
eliminates the window by using UNMAP. To process a different part of the object, one not
already mapped, the application can use the MAP service again. Because parts of the same
object can be viewed simultaneously through several different windows, the application can set
up separate windows on the same object. However, a specific page of virtual storage cannot be
in more than one window at a time. The SAVE, RESET, MAP, and UNMAP services can be
invoked repeatedly as required by the processing requirements of the application.

86 Supervisor Services and Macro Instructions

(

Unaccess

Unidentify

)

)

If the application has temporarily finished processing the object but still has other processing to
perform, it uses UNACCESS to relinquish access to the object. Then, other programs can
access the object. If the application needs to access the same object again, it can regain access
to the object by using the ACCESS service again without having to use the IDENTIFY service
again.

The application uses UNIDENTIFY to revoke its previous request, which was made by
IDENTIFY, to process a data-in-virtual object.

Data-in-Virtual 87

The IDENTIFY Service

Your program uses IDENTIFY to select the data-in-virtual object that you want to process.
IDENTIFY has three parameters: ID, DDNAME and TYPE.

Parameters of IDENTIFY - DDNAME: When you specify the IDENTIFY service, you specify
a DDNAME parameter that identifies your data-in-virtual object. IDENTIFY causes the
system to create a unique eight-byte id that it returns to you, stored in the address that you
specify with the ID parameter. Your program supplies this id as a token input parameter on
subsequent invocations of other data-in-virtual services.

Simultaneous requests for different processing activities against the same data-in-virtual object
can originate from different tasks or from different routines within the same task. Each task or
routine requesting processing activity against the data set must invoke the identify service. To
correlate the various DIV macro invocations and processing activities, the eight-byte ids
generated by IDENTIFY are sufficiently unique to reflect the individuality of the IDENTIFY
request, yet they all reflect the same data-in-virtual object.

Parameters of IDENTIFY - TYPE: The TYPE parameter indicates the storage format of the
data set name. You must specify TYPE = DA to indicate that the data set name is found in a
data definition statement.

The ACCESS Service

Your program uses the ACCESS service to request permission to read or update the object.
ACCESS uses three parameters: ID, MODE, and SIZE.

Parameters of ACCESS -ID: When you issue a DIV macro that requests the ACCESS service,
you must also specify, on the ID parameter, the identifier that the IDENTIFY service returned.
The ID parameter tells the system what object you want access to. When you request
permission to access the object under a specified ID, the system checks the following conditions
before it grants the access:

• The ID specified with your ACCESS request has already been established by a previous
invocation of IDENTIFY.

• You have not already accessed the object under the same unique eight-byte ID. Before
you can reaccess an already-accessed object under the same ID, you must first invoke
UNACCESS for that ID.

• If your installation uses RACF, you must have the proper RACF authorization to access
the object.

• If you are requesting read access, the object must not be empty. You use the MODE
parameter to request read or update access.

88 Supervisor Services and Macro Instructions

(

)

)

Parameters of ACCESS - MODE: Multiple users (using different IDs) can request access to
the same object. If you expect multiple users, VSAM serializes their access if you specify
SHAREOPTIONS(1,3) in the DEFINE CLUSTER access method service request when you
create the data set. If you specify other than SHAREOPTIONS(1,3), VSAM does not perform
serialization that is suitable for data-in-virtual usage, and the responsibility for data set
serialization rests with you.

When your JCL specifies SHAREOPTIONS(1,3) and a disposition of SHR, the MODE
parameter determines how your program accesses the object. You can specify a mode parameter
of READ or UPDATE. READ lets your program share read access to the object with any
other programs that have requested read access under separate IDs. READ does not let you
invoke SAVE, which changes the object. However, it does not prevent you from making
changes in the window.

UPDATE lets you invoke SAVE to change the data in the object, and it prevents other
programs from accessing the object. When you request UPDATE, no one else can use the data
set in either read or update mode. Conversely, when another program is accessing the object in
update mode, it is impossible for you to read the object or update it.

Parameters of ACCESS - SIZE: SIZE specifies the address of a four-byte field. When control
is returned to your program after the ACCESS service executes, the four-byte field contains the
current size of the object. The size is the number of blocks that must be mapped to ensure that
the entire object is mapped. If SIZE is omitted or if SIZE = * is specified, the size is not
returned.

The MAP Service

The MAP service is used to make an association between part or all of a data object, the
portion being specified by the OFFSET and SPAN parameters, and your program's virtual
storage. This association, which is called a virtual storage window, takes the form of a
one-to-one correspondence between specified blocks on the object and specified pages in the
virtual storage. After the MAP is complete, your program can then proceed with the processing
of the data in the window. The RETAIN parameter specifies whether data that is currently in
the window is to be retained or to be replaced by the data from the associated object.

Note: Virtual storage pages that are page-fixed cannot be mapped into a virtual storage
window. Once the window exists, you can page-fix data inside the window so long as it is not
fixed when you issue SAVE or UNMAP.

The DIV macro has five parameters which are used when invoking MAP: ID, OFFSET,
SPAN, AREA, and RETAIN.

Parameters of MAP -ID: The ID parameter specifies the storage location containing the
unique eight-byte value that was returned by IDENTIFY. The map service uses this value to
determine which object is being mapped under which request.

If you specify the same ID on multiple invocations of the MAP service, you can create
simultaneous windows corresponding to different parts of the object. However, an object block
that is mapped into one window cannot be mapped into any other window created under the
same ID. If you use different IDs, however, an object block can be included simultaneously in
several windows.

Data-in-Virtual 89

Parameters of MAP - OFFSET and SPAN: The OFFSET and SPAN parameters indicate a
range of blocks on the object. Blocks in this range appear in the window. OFFSET indicates
the first object block in the range, while SPAN indicates how many contiguous blocks make up
the range. An offset of zero indicates the beginning of the object. For example, an offset of zero
and a span of ten causes the block at the beginning of the object to appear in the window,
together with the next nine object blocks. The window would then be ten pages long.

Specifying OFFSET = * or omitting OFFSET causes a default OFFSET of zero to be used.
Specifying SPAN = 0, SPAN = * or omitting SPAN results in a default SPAN of the number of
blocks needed to MAP the entire object, starting from the block indicated by OFFSET.
Specifying both OFFSET = * and SPAN = * or omitting both causes the entire object to appear
in the window.

The OFFSET and SPAN parameters may be used to specify a range spanning any portion of
the object, the entire object, or extending beyond the object. Specifying a range beyond the
object enables a program to add data to the object, causing the object to grow. If data in a
mapped range beyond the object is saved (using the SAVE service), the size of the object is
updated to reflect the new size.

To use the OFFSET parameter, specify the storage location containing the block offset of the
first block to be mapped. The offset of the first block in the data object is zero. To use the
SPAN parameter, specify the storage location containing the number of blocks in the mapped
range.

Parameters of MAP - AREA: When you specify MAP, you must also specify an AREA
parameter. AREA indicates the beginning of a virtual storage space large enough to contain
the entire window. Before invoking MAP, you must ensure that this virtual storage space is
owned by your task. This can be ensured by specifying a storage area that is obtained by the
GETMAIN macro. The storage must belong to a single, page able private area subpool. It must
begin on a 4096-byte boundary (that is, a page boundary) and have a length thatis a multiple
of 4096 bytes.

Note that any virtual storage space assigned to one window cannot be simultaneously assigned
to another window. If your MAP request specifies, via the AREA parameter, a virtual storage
location that is part of another window, the request is rejected.

A virtual storage area that is mapped into a window cannot be freed as long as the map exists.
Attempts to do this will result in the virtual space being made unusable and an ABEND of the
program. Subsequent attempts to reference the mapped virtual space will also result in an
ABEND.

Parameters of MAP - RETAIN: The RETAIN parameter determines what data is to be viewed
in the window. It can be either the contents of the virtual storage area (that corresponds to the
window) the way it was before you invoked MAP, or it can be the contents of the object.

If you specify RETAIN = NO, or do not specify the RETAIN parameter at all (which defaults
to RETAIN = NO), then the contents of the object replaces the contents of the virtual storage
whenever a page in the window is referenced. Virtual storage that corresponds to a range
beyond the end of the object appears as binary zeros when referenced. RETAIN = NO can be
used when you want to view data already on the object, possibly with the intent of changing
some data and saving it back to the object.

If you specify RETAIN = YES, then the window retains the contents of virtual storage. The
data in the window are not replaced by data from the object as a result of the MAP operation.

90 Supervisor Services and Macro Instructions

c

)

)

If you issue a subsequent SAVE, the data on the object is REPLACED by the data in the
window. If the window extends beyond the object and your program has not referenced the
pages in the extending part of the window, then the extending pages are not saved. However, if
the extending pages have been referenced, then they are saved on the object, causing the object
to be extended so it can hold the additional data.

RETAIN = YES can also be used to reduce the size of (truncate) the object. If the part you
want to truncate is mapped with RETAIN = YES. and the window consists of freshly obtained
storage, then at SAVE time, the data object size is reduced.

If you want to have zeroes written at the end of the object, then the corresponding virtual
storage must be explicitly set to zero prior to the SAVE.

The SAVE Service

The SAVE service causes data to be written from virtual storage onto the data-in-virtual object.
When you invoke SAVE, you specify a single and continuous range of blocks on the
data-in-virtual object. Any virtual storage windows inside this range are eligible to participate
in the SAVE.

For a SAVE request to be valid, the object must currently be accessed with
MODE = UPDATE, under the same ID as the one specified on this SAVE request. Because an
object can be mapped beyond its current end, the object might be extended when the SAVE is
done if there are changed pages beyond the current end at the time of the ACCESS. On the
other hand, the SAVE truncates the object if freshly obtained pages are mapped in a range that
extends to or beyond the end of the object. In either case, the new object size is returned to
your program if you specify the SIZE parameter.

Pages within the range cannot be page fixed when the SAVE is issued. Mapped pages in the
range that are freshly obtained are written as binary zeroes if they occur before a changed page.
The DIV macro has four parameters which are used when invoking SAVE: ID, OFFSET,
SPAN and SIZE.

Notes:

1. If data to be saved has not changed since the last SA VE, no I/O will be performed. The
performance advantages of using data-in-virtual are primarily because of the automatic
elimination of unnecessary read and write I/O operations.

2. The range specified with SAVE refers to the blocks of the object, which relate to pages inside
a window.

3. The range specified with SAVE can extend beyond the end of the object.

4. Pages of the object not mapped to any window are not saved.

5. Pages in a window that lie outside the specified range are not saved.

Parameters of SAVE - ID: The ID parameter tells the SAVE service which data object is being
written to under which request. Use ID to specify the storage location containing the unique
eight-byte name that was returned by IDENTIFY. The object must have been previously
accessed with MODE = UPDATE under the same ID as the one specified for SAVE.

Data-in-Virtual 91

Parameters of SA VE - OFFSET and SPAN: The OFFSET and SPAN parameters are used to
select a continuous range of object blocks, within which the SA VE service can operate.
OFFSET indicates the first block and SPAN indicates the number of blocks in the range. As in
the MAP service, the offset and span parameters refer to object blocks; they do not refer to
pages in the window.

Specifying OFFSET = * or omitting OFFSET causes the default offset (zero) to be used. The
zero offset does not omit or skip over any of the object blocks, and it causes the range to start
right at the beginning of the object. Specifying SPAN=O, SPAN=*, or omitting SPAN gives
you the default span. The default span includes the first object block after the part skipped by
the offset, and it includes the entire succession of object blocks up to and including the object
block that corresponds to the last page of the last window.

When SAVE executes, it examines each virtual storage window established for the object. In
each window, it detects every page that corresponds to an object block in the selected range.
Then, if the page has changed since the last SAVE, the page is written on the object. (If the
page has not changed since the last SAVE, it is already identical to the corresponding object
block and there is no need for it to be saved.) Although SAVE discriminates between blocks on
the basis of whether they have changed, it has the effect of saving all window pages that lie in
the selected range. Specifying both OFFSET = * and SPAN = * or omitting both causes the
system to save all changed pages in the window without exceptions.

To use the OFFSET parameter, specify the storage location containing the block offset of the
first block to be saved. The Offset of the first block in the object is zero. To use the SPAN
parameter, specify the storage location containing the number of blocks in the range to be
saved.

Parameters of SA VE - SIZE: Invoking SA VE can change the size of the object. When you
specify SIZE, the size of the object after SAVE completes is returned in the virtual storage
location specified by the SIZE parameter. If you omit SIZE or specify SIZE = *, the size value
is not returned.

Effect of RETAIN Mode on SAVE

While RETAIN cannot be specified on SAVE, the RETAIN mode of each included window
affects how the window is saved.

When RETAIN=NO was specified for a previously mapped window, all pages in the virtual
storage window appear to contain the contents of the object and are considered unchanged with
respect to the object. When SAVE is issued, only pages in mapped windows that are changed
and correspond to blocks within the range being saved are written to the object. Pages that
might have been freshly obtained before the MAP, but have not been referenced since the
MAP, still are not saved because they appear to contain the data that is on the corresponding
blocks of the object. As with RETAIN = YES, the size of the object can still increase if the
saved range extends beyond the current end of the object and it contains mapped windows with
changed pages.

When RETAIN=YES was specified for a mapped virtual storage window, all pages in the
window that are not freshly obtained are considered changed. SAVE writes all these pages,
which are considered changed, onto the object. If both the range to be saved and the previously
mapped virtual storage window ranges extend beyond the current end of the object,

92 Supervisor Services and Macro Instructions

(

)

)

then the object is extended to hold the additional data. In addition, freshly obtained pages in
the window will be written to the object as zeroes if:

• The freshly obtained pages correspond to blocks on the object within the current object
sIze.

• The freshly obtained page currently being saved is followed, in the current window or in
another window, by one or more changed pages.

On the other hand, freshly obtained pages in the window will cause the object to shrink in
size (i.e. to be truncated) if:

• The freshly obtained page or pages are at the end of the window; that is, there are no
changed pages beyond the last unchanged page.

• No other mapped windows beyond the current window contain changed pages.

• At least one of the freshly obtained pages in the window corresponds to the last block on
the object; that is, the end of the object is mapped to a freshly obtained page. In this
situation, the last block of the window must be equal to or greater than the last block of
the object.

If all of the listed conditions for truncation are true, then the object is truncated to the last
block that still contains data, either because (1) it corresponded to the last changed page in a
mapped window or because (2) there was no mapped window page corresponding to that block.
In the second case, the block is not affected by the SAVE; it contains the data that existed
before the SAVE.

The RESET Service

At times during program processing, your program might have made changes to pages in the
virtual storage window, and might no longer want to keep those changes. RESET, which is the
opposite of SAVE, causes data from the object to appear in the virtual storage window. As
with SAVE and MAP, the range to be reset refers to the object rather than the virtual storage.
RESET only resets windows that are within the specified range, and it resets all the windows in
the range.

Effect of RETAIN mode on RESET

Although the RETAIN parameter cannot be specified when you invoke RESET against a
virtual storage window, the system remembers how RETAIN was specified on the MAP
operation that created the window. Therefore, when you invoke RESET, the system resets the
window one way for RETAIN=NO and another way for RETAIN=YES:

• If the window was created with RETAIN = NO, then after the RESET the data in the
window is the same as the object data, as of the last SAVE. This applies to all the pages in
the window.

• If the window was created with RETAIN = YES, then after the RESET the pages in the
window acquire a freshly obtained status unless you have been doing SAVE operations on
this window. Individual object blocks changed by those SAVE operations re-appear after
the RESET in their corresponding window pages, together with the other pages. However,
the other pages appear freshly obtained.

Data-in-Virtual 93

Note: Regardless of the RETAIN mode of the window, any window page that corresponds to
a block beyond the end of the object will appear as a freshly obtained page.

Parameters of RESET - ID: The ID parameter tells the RESET service what data object is
being written to. Use ID to specify the storage location containing the unique eight-byte name
that was returned by IDENTIFY and used with previous MAP requests. The object must be
previously accessed (with either MODE = READ or MODE = UPDATE) under the same ID as
the one being specified for RESET.

Parameters of RESET - OFFSET and SPAN: The OFFSET and SPAN keywords are used to
indicate the RESET range, the part of the object that is to supply the data for the RESET. As
with MAP and SA VE, OFFSET indicates the first object block in the range, while SPAN
indicates how many contiguous blocks make up the range, starting from the block indicated by
OFFSET. The first block of the object has an offset of zero.

To use OFFSET, specify the storage location containing the block offset of the first block to be
reset. To use SPAN, specify the storage location containing the number of blocks in the range
to be RESET. Specifying OFFSET = * or omitting OFFSET causes a default OFFSET of zero
to be used. Specifying SPAN = * or omitting SPAN sets the default to the number of blocks
needed to reset all the virtual storage windows that are mapped under the specified ID,
however, starting only with the block number indicated by OFFSET. Specifying both
OFFSET = * and SPAN = * or omitting both resets all windows that are currently mapped
under the specified ID.

The UNMAP Service

Your program uses the UNMAP service to remove the association between a window in virtual
storage and the object. Each UNMAP request must correspond to a previous MAP request.
Note that, because UNMAP has no effect on the object, changes made in virtual storage but
not yet saved are not saved on the object when UNMAP is issued. UNMAP has three
parameters: ID, AREA, and RETAIN.

Parameters of UNMAP - ID: The ID parameter that you specify is the address of an
eight-byte field in storage. That field contains the identifier associated with the object. The
identifier is the same value that the IDENTIFY service returned, which is also the same value
you specified when you issued the corresponding MAP request.

Parameters of UNMAP - AREA: The AREA parameter specifies the address of a four-byte
field in storage that contains a pointer to the start of the virtual storage to be unmapped.
This address must point to the beginning of a window. It is the same address that you
provided when you issued the corresponding MAP request.

Parameters of UNMAP - RETAIN: RETAIN specifies the state that virtual storage is to be
left in after it is unmapped; that is, after the correspondence between virtual storage and the
object is removed.

Provided that you specify RETAIN = NO for the MAP service, specifying RETAIN = YES on
the corresponding UNMAP transfers the value of the object into the window. In this case,
RETAIN=YES with UNMAP specifies that the virtual storage area corresponding to the
unmapped window is to contain the same data as the object. After UNMAP, your program
can still reference and change the data in this virtual storage but can no longer save it on the
object unless the virtual area is mapped again.

94 Supervisor Services and Macro Instructions

(

~I

)

)

Specifying RETAIN = NO with UNMAP indicates that the data in the unmapped window is to
be freshly obtained.

Notes:

1. If RETAIN = YES is specified on MAP, RETAIN= YES on the corresponding UNMAP does
not transfer the object value into the window. In this case, UNMAP leaves the window
contents unchanged.

2. If UNMAP is issued with RETAIN=NO, and there are unsaved changes in the virtual storage
window area, those changes are lost.

3. Ifunmap is issued with RETAIN= YES, and there are unsaved changes in thge window, they
remain in the virtual storage.

4. The RETAIN parameter of MAP and UNMAP can be used to move data on the object
without having to physically move it in virtual storage. For example, if you map block 2 to an
area of virtual storage specifying RET AIN = NO, then block 2 of the object appears in the
virtual storage window. If you then issue UNMAP with RETAIN= YES, block 2 is retained
in virtual storage, even though the correspondence with the object has been removed.

Then, by mapping the virtual area to block 7 and specifying RETAIN= YES, you set up a
correspondence between the same virtual area and block 7, with the original data from block 2
retained in the window. Finally, by issuing SAVE, you save the window (containing the block
2 data) on block 7 of the object. For more information on RETAIN, see the MAP and SAVE
services. Note that the second map need not be for the same data object.

5. Unmapping with RETAIN= YES has certain performance implications. It causes
unreferenced pages, and maybe some unchanged ones, to be read from the object.

The UNACCESS and UNIDENTIFY Services

You use UNACCESS to terminate your access to the object for the specified ID. UNACCESS
automatically includes an implied UNMAP. If you issue an UNACCESS with outstanding
virtual storage windows, any windows that exist for the specified ID are unmapped with
RETAIN = NO. The ID parameter is the sole parameter of the UNACCESS service, and it
designates the same ID that you specified in the corresponding ACCESS. As in the other
services, use ID to specify the storage location containing the unique eight-byte name that was
returned by IDENTIFY.

You use UNIDENTIFY to notify the system that your use of an object under the specified ID
has ended. If the object is still accessed as an object under this ID, UNIDENTIFY
automatically includes an implied UNACCESS. The UNACCESS, in tum, issues any necessary
UNMAPs, using RETAIN=NO. The ID parameter is the only parameter for UNIDENTIFY,
and it must designate the same ID as the one specified in the corresponding ACCESS. As in the
other services, use ID to specify the storage location containing the unique eight-byte name that
was returned by IDENTIFY.

Data-in-Virtual 95

Conditions for Invocation of Data-in-Virtual

The services of data-in-virtual execute synchronously, i.e. control is not returned from the DIV
macro until the service is completed. Thus, before you can successfully invoke a service, the
previous service must be complete. However, multiple services can be executing concurrently for
different IDs. To invoke the DIV macro, you can be in the supervisor state, or you can be in
the problem program state with a user key. You must supply a standard 72 byte save area. To
issue the DIV macro, you must be:

1. enabled for I/O and external interrupts.

2. executing in 31 bit addressing mode.

3. executing in an environment that allows the use of SVCs. This means that you must be:

• in task (TCB) mode.
• not holding any locks.
• in non-cross memory mode.

Sharing Services within a Task

The services of data-in-virtual are task-oriented. When a user issues IDENTIFY, an association
is established between the ID assigned and the user's task. The type of association differs,
however, depending on whether the task is authorized or not. The authorized task runs in
supervisor state, has a system key (0-7), or has APF authorization. The non-authorized task
runs in problem program state, with a user key, and with no APF authorization.

• For the non-authorized user, the use of data-in-virtual services for a specific ID is strictly
local to its immediate task. That is, all services for a particular ID must be requested by the
same task that requested IDENTIFY, and obtained the ID.

• For the authorized user, one task can issue IDENTIFY while authorized subtasks of that
task, using the ID returned by IDENTIFY, can request all the other services, except
ACCESS.

However, any task, authorized or not, may reference or change the data in a mapped virtual
storage window, even if the window was mapped by another task, and even if the object was
identified and accessed by another task. As long as the task can address the window, it is
allowed to reference or change the included data.

Because data-in-virtual services affect virtual storage, the storage protect key of any task that
requests a service (under a given ID) must be the same as the storage protect key of the task
that issued the IDENTIFY (that obtained the ID). This is not required if the task has storage
protect key zero.

Miscellaneous Restrictions

• When you attach a new task, you cannot pass ownership of a mapped virtual storage
window to the new task. That is, the A TT ACH keywords GSPV and GSPL cannot be used
to pass the mapped virtual storage. Ownership of subpool zero cannot be passed using
GSPV and GSPL keywords.

96 Supervisor Services and Macro Instructions

c

)

)

• Data-in-virtual services cannot be invoked in cross memory mode. There are no
restrictions, however, against referencing and updating a mapped virtual storage window in
cross memory mode.

Return Codes, Reason Codes and Abend Codes.

If control is returned to the user after the DIV macro executes, a return code is supplied in the
low order (rightmost) byte of general register 15. Successful completion is indicated by a zero
return code and unsuccessful completion is indicated by a non-zero return code. When control
is returned after an unsuccessful completion, a reason code is supplied in the two low order
bytes of general register zero.

If control is not returned, an abend code and a reason code are supplied. The hexadecimal
values of the reason, return and abend codes are:

Reason Return Abend Explanation
code code code

none 00 none Successful completion.
0001 none 08B Unknown service was requested.
0002 none 08B Unknown parameter list format.
0003 none 08B Input parameter list cannot be addressed.
0004 none 08B Storage specified in the parameter list cannot be

addressed.
0005 none 08B The parameter list contains a reserved field that

does not contain binary zeroes.
0006 none 08B The caller is not running in task mode.
0007 none 08B The caller is in cross memory mode.
0008 none 08B An invalid TYPE is specified.
0009 none 08B The supplied ID is not a valid ID or is an ID that

cannot be used by the caller.
OOOA 08 none There is another service currently executing with

the specified ID.
OOOB none 08B The object is already accessed with the specified ID.
OOOC none 08B The caller does not have proper RACF

authorization to the requested object.
OOOD none 08B The requested window exceeds the maximum

allowable size for the object.
OOOE none 08B The object is not currently accessed for the specified

ID.
OOOF none 08B The specified range overlaps a range that is already

mapped for the specified ID.
0010 none 08B The specified range overlaps another mapped range.
0011 none 08B Undetermined user error.
0012 none 08B The virtual storage specified does not begin on a

4K boundary.
0013 none 08B The virtual storage specified is not in a pageable

private area subpool.
0014 none 08B The virtual range specified cannot be used to map

an object.
0015 none 08B The virtual range specified contains at least one

page that was not obtained by a GETMAIN
macro, and RETAIN=NO was not specified.

0016 none 08B The virtual range specified contains at least one
fixed page.

0017 OC none An I/O error has occurred.
0018 none 08B Caller does not have UPDATE access to the object.
0019 none 08B A page to be saved or reset was in the page fixed

state.
OOIA 04 none The specified range does not encompass any

mapped area of the object.
001B none 08B The virtual storage area specified to be unmapped

is not currently mapped.
OOlC 08 none The object cannot be accessed at the current time.
OOlD none 08B The accessed object is not at the correct Control

Interval size.
OOIE none 08B The length of the ddname exceeds the maximum

size allowed.
OOlF none 08B The caller's storage protect key is not the same as

when IDENTIFY was invoked.

Data-in-Virtual 97

Reason Return Abend Explanation
code code code

0020 none 08B An ACCESS was attempted by a task that does not
own the specified ID.

0021 OC none Portions of the object could not be retained in
virtual storage as requested.

0022 none 08B The specified storage to be mapped is not owned by
the task chain that did the IDENTIFY.

0023 none 08B Part or all of the specified storage to be mapped is
not in the user's key.

0024 none 08B The caller holds the local lock.
0025 none 08B The caller is executing in an environment that

precludes the use of SVCs.
0026 none 08B The caller is not executing in 31 bit addressing

mode.
0027 none 08B The specified offset and span describe a range that

goes beyond the maximum supported object size.
0028 none 08B The caller has attempted to access an empty object

for reading.
0801 08 none System error - Insufficient storage available to build

the necessary data-in-virtual control block
structure.

0802 08 none System error - I/O driver failure.
0803 OC none System error - A necessary page table could not be

read into real storage.
0804 OC none System error - Catalog update failed.
0805 none 08B Unexpected system error
0806 OC none System error - I/O error.
0807 04 none Media damage may be present in allocated DASD

space. The damage is beyond the currently saved
portion of the object. The SA VE completed
successfully.

0808 08 none System error - I/O ftom a previous request has not
completed.

~

98 Supervisor Services and Macro Instructions

)

)

DIV Macro Programming Examples

The following programming examples illustrate how to code and execute a program that
processes a data-in-virtual object.

Executing an Application

The following JCL job causes the execution of an application program called SAMPLE. The
function of SAMPLE is to perform some kind of application-oriented processing on the
data-in-virtual object, DIV.SAMPLE, that was allocated in the previous example.

When SAMPLE executes, it issues a DIV macro specifying to the IDENTIFY service the name
of the data-in-virtual object that it will process. To identify the data set, SAMPLE specifies the
ddname, DYNAMIC, on the DDNAME parameter of the DIV macro.

The system then connects the actual data set name, DIV.SAMPLE, with the program that
will process it. The link between the application program and the data set is the name,
DYNAMIC, which appears in both the application and the JCL.

//*
//*
//*
//*
//SAMPLE
//STEPLIB
//DYNAMIC
//SYSABEND
/*

EXECUTE A DATA-IN-VIRTUAL APPLICATION

EXEC PGM=SAMPLE
DD DSN=DIV22.LOAD.JOBS,DISP=SHR
DD DSN=DIV.SAMPLE,DISP=SHR
DD SYSOUT=*

Data-in-Virtual 99

Processing a Data-in-Virtual Object.

The following example shows a program that processes a data-in-virtual object. The first part of
the program identifies the data set and accesses the object. Then it obtains the virtual storage
where it will place the window.

SAMPLE
SAMPLE
SAMPLE
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CSECT ,
AMODE 31
RMODE ANY

FUNCTION: GETMAIN SOME VIRTUAL STORAGE. THEN
IDENTIFY AND ACCESS THE LINEAR DATA SET. THEN
MAP AND PROCESS THE VIRTUAL STORAGE, AND STORE
DATA INTO IT. THEN DO SOME SAVES AND RESETS.
FINISH UP WITH AN' UNMAP, AN UNACCESS AND AN
UNIDENTIFY. ALL INVOCATIONS OF DATA-IN-VIRTUAL
IN THIS PROGRAM WILL DEFAULT TO 'RETAIN = NO'.

DESCRIPTION: THIS JOB MAKES CHANGES IN THE
LINEAR DATASET CLUSTER, 'DIV.SAMPLE', WHICH IS
TREATED AS A LINEAR DATASET. AFTER THIS JOB
IS RUN, THE DATASET WILL CONTAIN SEVEN PAGES
OF ONES, FOLLOWED BY ONE PAGE OF ZEROES,
FOLLOWED BY EIGHT PAGES OF FIVES. IT IS
ASSUMED THE DATASET WAS CREATED BY A DEFINE
CLUSTER COMMAND AND THAT IT CONTAINS ZEROES
WHEN THIS PROGRAM BEGINS TO EXECUTE.

@MAINENT DS
USING
B

OH
* ,R15
@PROLOG
AL1(14) DC

DC
DROP

@PROLOG STM
LR
USING
ST

C'SAMPLE PROGRAM'
R15
R14,R12,12(R13)
R12,R15
SAMPLE,R12
R13,SAVEAREA+4
R2,R13
R13,SAVEAREA
R13,8(R2)

STD ENTRY LINKAGE

*
*
*

*
*
*

*
*
*

LR
LA
ST
SR R15,R15 CLEAR R15

GET STORAGE FOR THE WINDOW

GETMAIN RU,LV=16*4096,SP=O,BNDRY=PAGE
ST R1,MAPPTR1 PTR TO STORAGE

INVOKE IDENTIFY SERVICE OF DIV MACRO

DIV IDENTIFY,DDNAME=DDNAME,TYPE=DA,ID=TESTID
LTR R15,R15 CHECK IF RC IS ZERO
BNZ ERROR IDENTIFY FAILED

INVOKE ACCESS SERVICE OF DIV MACRO

DIV ACCESS,MODE=UPDATE,ID=TESTID
LTR R15,R15 CHECK IF RC IS ZERO
BNZ ERROR ACCESS FAILED

·100 Supervisor Services and Macro Instructions

c

)

)

Processing a Data-in-Virtual Object (continued)

The program maps the object. The resulting virtual storage window is eight pages long, and it
corresponds to the second eight blocks of the object. The window is situated in the virtual
storage obtained earlier by the GETMAIN macro. The program fills the window with fives,
then saves the window back into the second eight blocks of the object. The program eradicates
the window by invoking UNMAP.

*
*
*

*
*
*

LOOPl

*
*
*

*
*
*

*
*
*

INVOKE THE MAP SERVICE OF THE DIV MACRO
TO SKIP THE FIRST EIGHT BLOCKS OF THE OBJECT

L
ST
ST
DIV

LTR
BNZ

R3,EIGHT GET SPAN
R3,SPVALUE INITIALIZE SPAN
R3,OFFS INITIALIZE OFFSET
MAP,ID=TESTID,AREA=MAPPTR1,
SPAN=SPVALUE,OFFSET=OFFS
R15,Rl5 CHECK IF RC IS ZERO
ERROR MAP FAILED

FILL IN 5'S FOR ALL EIGHT MAPPED BLOCKS

L
LR
SR
L
IC
STC
LA
LA
CR
BM

Rl,MAPPTRl
R2,Rl
R5,R5
R6,PAGE8
R3,N55
R3, a (, R2)
R2, 1 (, R2)
R5, 1 (, R5)
R5,R6
LOOPl

POINTS TO WINDOW
POINTS TO MAP
COUNTER 32 KBYTES
COUNTER MAXIMUM
5S USED AS FILLER
STORE INTO MAP
POINTS NEXT BYTE
COUNT UP ONE BYTE
LAST BYTE OF MAP?
DO AGAIN IF NOT

INVOKE THE SAVE SERVICE OF THE DIV MACRO

DIV SAVE,ID=TESTID,SIZE=OBJSIZE
LTR Rl5,Rl5 CHECK ZERO RC
BNZ ERROR SAVE FAILED

INVOKE THE UNMAP SERVICE OF THE DIV MACRO

DIV UNMAP,ID=TESTID,AREA=MAPPTRl
LTR Rl5,R15 CHECK ZERO RC
BNZ ERROR UNMAP FAILED

OBJECT NOW HAS 8 CONTIGUOUS PAGES OF 5'S

x

Data-in-Virtual 101

Processing a Data-in-Virtual Object (continued)

The program creates a new window that includes the first eight blocks of the object. This map
omits OFFSET, causing a default offset of zero to be used with the specified span of eight
blocks. After filling the window with ones, the program invokes RESET against the eighth
block of the object, which corresponds to the eighth page of the window. Because the
information provided by the reset comes from the object, which still contains zeroes, the eighth
page in the window is set to zeroes.

*
*
*

*
*
*

LOOP2

*

INVOKE MAP SERVICE FOR FIRST EIGHT 4K
BLOCKS OF DATASET, WITH DEFAULT OFFSET.

L
ST
DIV

LTR
BNZ

R3,EIGHT GET VALUE OF SPAN
R3,SPVALUE INITIALIZE SPAN
MAP,ID=TESTID,AREA=MAPPTR1,
SPAN=SPVALUE
R1S,R1S CHECK ZERO RC
ERROR MAP FAILED

FILL IN DATA - l'S FOR THE FIRST 8 PAGES

L
LR
SR
L
IC
STC
LA
LA
CR
BM

R1,MAPPTR1
R2,R1
RS,RS
R6,PAGE8
R3,N11
R3,O(,R2)
R2, 1 (, R2)
RS, 1 (, RS)
RS,R6
LOOP2

POINTS TO WINDOW
POINTS TO MAP
COUNTER 32 KBYTES
COUNTER MAXIMUM
1S USED AS FILLER
STORE INTO MAP
POINTS TO NEXT BYTE
COUNT UP ONE BYTE
LAST BYTE OF MAP?
DO AGAIN IF NOT

* RESET 8TH VIRTUAL BLOCK FROM THE CORRESPONDING
* BLOCK ON DASD. THIS BLOCK NOW CONTAINS ZEROES
* SINCE THE PROGRAM HAS NOT YET INVOKED ANY
* SAVE SERVICES AFFECTING IT.
*

L
ST
L
ST
DIV

LTR
BNZ

R3,SEVEN
R3,OFFS INITIALIZE OFFSET
R3,ONE
R3,SPVALUE INITIALIZE SPAN
RESET,ID=TESTID,
SPAN=SPVALUE,OFFSET=OFFS
R1S,R1S CHECK IF RC IS ZERO
ERROR RESET FAILED

102 Supervisor Services and Macro Instructions

x

x

(

)

)

Processing a Data-in-Virtual Object (continued)

.. The program saves the window in the first eight blocks of the object by issuing the DIV macro,
specifying SAVE. Then it terminates its use of the object by invoking the UNMAP,
UNACCESS, and UNIDENTIFY services of the DIV macro.

*
*
*
*
*

*
*
*

*
*
*
*
*

*
*
*
ERROR

EXIT

INVOKE SAVE, USING DEFAULTS FOR SPAN AND
OFFSET. THIS SAVES * BLOCKS. THE FIRST
SEVEN ARE FILLED WITH X'll' AND THE LAST
HAS ALL BINARY ZEROES.

DIV SAVE,ID=TESTID,SIZE=OBJSIZE
LTR R1S,R1S CHECK ZERO RC
BNZ ERROR SAVE FAILED

INVOKE THE UNMAP SERVICE

DIV UNMAP,ID=TESTID,AREA=MAPPTRl
LTR R1S,R1S CHECK IF RC IS ZERO
BNZ ERROR UNMAP FAILED

THE OBJECT NOW HAS SEVEN CONTIGUOUS BLOCKS OF
l'S, FOLLOWED BY ONE BLOCK OF O'S, FOL~OWED BY
EIGHT BLOCKS OF SIS. NOW INVOKE UNACCESS.

DIV UNACCESS,ID=TESTID
LTR R1S,R1S CHECK IF RC IS ZERO
BNZ ERROR UNACCESS FAILED

INVOKE THE UNIDENTIFY SERVICE

B
EQU
L
ST
EQU
DIV
LTR
BZ
L
ST

EXIT SKIP ERROR PROCESSING
*
R1S,SIXTEEN
R1S,SAVER1S
*

BAD RETURN CODE
HOLD R1S VALUE

UNIDENTIFY,ID=TESTID
R1S,R1S CHECK IF RC IS ZERO
FREE IF SO, LEAVE RC GOOD
R1S,SIXTEEN SET BAD RETURN CODE
R1S,SAVER1S HOLD R1S VALUE

Data-in-Virtual 103

Processing a Data-in-Virtual Object (continued)

Finally, the program frees its virtual storage and goes through a standard exit linkage
sequence.

*
*

FREE STORAGE AND EXIT

FREE EQU *
FREEMAIN RU,A=MAPPTR1,LV=16*4096,SP=0
L R15,SAVER15 RETRIEVE R15
L R13,4(R13) STD EXIT LINKAGE
L R14,12(R13)
LM RO,R12,20(R13) SAVE RETURN CODE

*
*
*
MAPPTR1
OBJSIZE
OFFS
SPVALUE
SAVER15
SAVEAREA
TESTID
DDNAME

*
*
*
N11
N55
ONE
SEVEN
EIGHT
SIXTEEN
PAGE8
*

BR R14
SPACE 2

DECLARE VARIABLES

DS
DS
DS
DS
DS
DS
DS
DS
ORG
DC
DC
ORG
SPACE

A
F
A
A
F'O'
CL72
CL8
CL8
DDNAME
AL1(7)
CL7'DYNAMIC'
DDNAME+8
2

CONSTANTS

DC X'll'
DC X'55'
DC F'l'
DC F'7'
DC F'8'
DC F'16' .
DC F'32768'

PTR TO GETMAINED STORAGE
SIZE RETURNED FROM ACCESS
POSIfION IN OBJECT
LENGTH TO BE MAPPED-RESET
RC VALUE IN REG 15
USED BY DATA-IN-VIRTUAL
ID RETURNED FROM IDENTIFY

LENGTH OF DDNAME
NAME USED IN JCL

HEX ONES
HEX FIVES
ONE
SEVEN
EIGHT
SIXTEEN
8 TIMES 4096

* REGISTERS
RO EQU 0
R1 .EQU 1
R2 EQU 2
R3 EQU 3
R5 EQU 5
R6 EQU 6
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT
END SAMPLE

104 Supervisor Services and Macro Instructions

(

)

)

Performance Considerations

When an application reads more input and writes more output data than necessary, the
unnecessary reads and writes impact performance. The improved performance that can be
expected from data-in-virtual comes from a reduction in the amount of unnecessary I/O.

As an example of unnecessary I/O, consider the I/O performed by an interactive application
that requires immediate access to several large data sets. The program knows that some of the
data, although not all of it, will be accessed. However, the program does not know ahead of
time which data will be accessed. A possible strategy for gaining immediate access to all the
data is to read all the data ahead of time, reading each data set in its entirety insofar as this is
possible. Once read into main storage, the data can be accessed quickly. However, if only a
small percentage of the data is likely to be accessed during any given period, the I/O performed
on the unaccessed data is unnecessary.

Furthermore, if the application changes some data in main storage, it might not keep track of
the changes. Therefore, to guarantee that all the changes are captured, the application might
then write entire data sets back onto permanent storage even though only relatively few bytes
are changed in the data sets.

Whenever such an application starts up, terminates, or accesses different data sets in an
alternating manner, time is spent reading data that is not likely to be accessed. This time is
essentially wasted, and the amount of it is proportional to the amount of bypassed data for
which I/O is performed. Such applications are suitable candidates for a data-in-virtual
implementation.

Factors Affecting Performance

When applications are implemented using the techniques of data-in-virtual, the unnecessary I/O
does not take place and the performance can be expected to improve. If the same application is
first implemented using conventional access methods, and then implemented a second time
using data-in-virtual techniques, the performance differential between the first implementation
and the second is a combined function of two factors: the size of the data set and its access
pattern. To obtain significant performance improvements, both factors must be present in the
application:

• Pattern refers to the pattern in which the application references the data. If the pattern is
process-driven, non-pervasive and scattered unpredictably throughout the data set, the
data-in-virtual implementation will have the better performance.

• Size refers to the magnitude of the data sets that the application must process. The larger the
data sets, the more the performance differential between the two implementations, and the
data-in-virtual implementation will have the better performance.

Engineering and scientific applications often use data access patterns that are suitable for
data-in-virtual. Among the applications that can be considered for a data-in-virtual
implementation are:

• Applications that process large arrays

• VSAM relative record applications

• BDAM fixed length record applications

Data-in-Virtual 105

On the other hand, commercial applications often use data access patterns that are not suitable
because they are predictable and sequential. If the access pattern of a proposed application is
fundamentally sequential or if the data set is small, a conventional VSAM (or other sequential
access method) implementation may perform better than a data-in-virtual implementation.
However, this does not rule out commercial applications as data-in-virtual candidates. If the
performance factors are favorable, any type of application, commercial or scientific, is suitable
for a data-in-virtual implementation.

106 Supervisor Services and Macro. Instructions

c

)

)

)

Real Storage Management

The real storage manager (RSM) administers the use of real storage and directs the movement
of virtual pages between auxiliary storage and real storage in page size (4096 bytes) blocks. It
makes all addressable virtual storage in each address space appear as real storage. Only virtual
pages necessary for program execution are kept in real storage, the remainder reside on
auxiliary storage. RSM employs the auxiliary storage manager (ASM) of the Data Manager to
perform the actual paging I/O necessary to transfer pages in and out of real storage. ASM also
provides DASD allocation and management for paging I/O space on auxiliary storage. RSM
relies on the system resources manager (SRM) for guidance in the performance of some of its
operations.

RSM assigns storage page frames upon request from four pools of available frames, thereby
associating virtual addresses with real storage addresses. Frames are repossessed upon
termination of use, when freed by a user, when a user is swapped-out, or when needed to
replenish an available pool. While a virtual page occupies a real storage frame, the page is
considered pageable unless specified otherwise as a system page that must be resident in real
storage. RSM also allocates virtual equals real (Y = R) regions upon request by those programs
that cannot tolerate dynamic relocation. Such a region is allocated contiguously from a
predefined area of real storage and is non-pageable. Programs in this region do run in
translation mode, although addressing is one to one virtual to real.

The paging services provided in MVSjXA include the following:

• PGRLSE or PGSER, RELEASE parameter - Release the virtual storage contents
• PGLOAD or PGSER, LOAD parameter - Load the virtual storage areas into real storage
• PGOUT or PGSER, OUT parameter - Page out the virtual storage areas from real storage

The page release function allows the userand the system to make available space in both real
storage and auxiliary storage that is known to be of no future use. Proper use of this function
can increase the amount of storage available to the system and prevent needless paging I/O
activity. Usage of page release may improve operating efficiency when the using program can
discard the contents of a large virtual storage area (circumscribing one or more pages) and
reuse the virtual storage pages; paging operations may be eliminated for those virtual storage
pages when they are reused.

The proper use of the page load and page out functions will tend to decrease system overhead
resulting from page faults and to clean out of real storage those pages no longer required for
program execution or not required for some period in the future.

Real Storage Management 107

Relinquishing Virtual Storage

When an area of virtual addressable storage within your program no longer has significant
contents, you can make this storage available by issuing a PGRLSE macro instruction or by
issuing the PGSER macro instruction with the RELEASE parameter specified. These macro
instructions make available all real and external page storage wholly associated with the area of
virtual address space specified. As shown in Figure 41, if the specified addresses are not on
page boundaries, the low address is rounded up and the high address is rounded down; then,
the pages contained between the addresses are released. The virtual space remains, but its
contents are forfeited. When the using program can discard the contents of a large virtual area
(one or more complete pages) and reuse the virtual space without the necessity of paging
operations, the page release function may improve operating efficiency.

address 1
(low)

1 page

Figure 41. Releasing Virtual Storage

Released virtual storage

address 2
(high)

All storage obtained for your program by the GETMAIN macro instruction is automatically
freed by the control program when the job step terminates. Freeing storage in this manner
requires no action on your part. When you issue a FREEMAIN macro instruction,
FREEMAIN does the equivalent of a page release for any resulting free page and the page is
no longer available to the issuer.

Loading/Paging Out Virtual Storage Areas

The PGLOAD macro instruction and the PGSER macro with the LOAD parameter specified
essentially provide a page-ahead function. By loading specified virtual storage areas into real
storage, you can attempt to ensure that certain pages will be in real storage when needed. Page
faults can occur, however, and these pages may be paged out.

With the page-load function, you have the option of specifying that the contents of the virtual
area is to remain intact or be released. If you specify RELEASE = Y, the current contents of
entire virtual 4K pages to be brought in may be discarded and new real frames assigned without
page-in operations; if you specify RELEASE = N, the contents are to remain intact and be used
later.

If you specify PGLOAD with RELEASE=Y or PGSER with LOAD and RELEASE=Y, the
page release function will be performed before the page load function. That is, no page-in is
needed for areas defining entire virtual pages since the contents of those pages are expendable.

The page-out function initiates page-out operations for specified virtual address pages that are
in real storage. The real storage frames will be made available for reuse upon completion of
the page-out operation unless you specify the KEEPREL para~eter in the macro instruction.

108 Supervisor Services and Macro Instructions

)

)

An area that does not encompass one or more complete pages will be copied to auxiliary
storage, but the real frames will not be freed.

Virtual Subarea List (VSL)

The virtual subarea list provides the basic input to the page service functions that use a 24-bit
interface: PGLOAD, PGRLSE, and PGOUT. The list consists of one or more doubleword
entries, each entry describing an area of virtual storage: The list must be nonpageable and
contained in the address space of the subarea to be processed.

Each parameter list entry has the following format:

Byte o 2 3 4 5 6 7

FLAGS START ADDRESS FLAGS END ADDRESS + 1

Byte 0 Flags:
Bit 0 (1..)

Bit 1 (.1..)
Bit 2 (.. 1.)
"Bit 3 (... 1)
Bit 4 (.... 1...)
Bit 5 (..... 1..)
Bit 6 (...... 1.)
Bit 7 (....... 1)

Start Address:

This bit indicates that bytes 1-3 are a chain pointer to the next VSL entry to be processed;
bytes 4-7 are ignored. This feature allows several parameter lists to be chained as a single
logical parameter list.
Reserved.
Reserved.
PGLOAD is to be performed; reserved, set by macro instruction.
PGRLSE is to be performed; reserved, set by macro instruction.
Reserved.
Reserved.
Reserved.

The virtual address of the origin of the virtual area to be processed.

Byte 4 Flags:
Bit 0 (1..)
Bit 1 (.1..)
Bit 2 (.. 1.)
Bit 3 (... 1)

Bit 4 (.... 1...)
Bit 5 (..... 1..)
Bit 6 (...... 1.)
Bit 7 (...... .1)

End Address + 1:

This flag iIidicates the last entry of the list. It is set in the last doubleword entry in the list.
When this flag is set, the entry in which it is set is ignored.
Reserved.
This flag indicates that a return code of 4 was issued from a page service function other than
PGRLSE.
Reserved.
PGOUT is to be performed; reserved, set by macro instruction.
KEEPREL option of PGOUT is to be performed; reserved, set by macro instruction.
Reserved.

The virtual address of the byte immediately following the end of the virtual area.

Page Service List (PSL)

The page services list provides the basic input to the page service function for the PGSER
macro instruction. You can specify either 24-bit or 3 I -bit addresses in the PSL entries. Each
PSL entry specifies the range of addresses for which a service is to be performed or points to
the first PSL entry in a new list of concatenated PSL entries that are to be processed. Within a
PSL entry, you can also nullify a service on a range of addresses by indicating that you do not
want to perform the service for that range.

Real Storage Management 109

Each 12-byte PSL entry has the following form:

Bytes Meaning

0-3 Bit 0 of byte 0 must be o. The remainder of these bytes contains the 31-bit starting address for which the page
service is to be performed or a pointer to the next PSL.

4-7 Bit 0 of byte 4 must be o. If bytes 0-3 contain the starting address, these bytes contain the address of the last
byte for which the page service is to be performed. If bytes 0-3 contain a pointer to the next PSL, these bytes
are reserved.

8 Flags set by the caller as follows:

Bit Meaning

o Set to I to indicate that this is the last PSL entry in a concatenation of PSL entries.
1 Set to 1 to indicate that no services are to be performed for the range of addresses specified.
2 Set to 1 to indicate that bytes 0-3 contain a pointer to the next PSL.

9-11 Set by the POSER service routine.

110 Supervisor Services and Macro Instructions

)

)

Miscellaneous Services

Timing Services

Interval timing is a standard feature of MVSjXA. It provides the ability to request the date
and time of day and provides for setting, testing, and canceling intervals of time.

Date and Time of Day

The operator is responsible for initially supplying the correct date and the time of day in terms
of a 24-hour clock. You request the date and time of day using the TIME macro instruction.
The control program returns the date in register I and the time of day in register 0 or in a
doubleword that you supply if you specify the MIC or STCK parameter.

If ZONE = GMT is specified, the returned time of day and date will be for Greenwich Mean
Time. If ZONE = L T is specified or if the ZONE parameter is omitted, the local time of day
and date will be returned. However, if STCK is specified, the ZONE parameter will be
ignored.

All references to time of day use the time-of-day (TOD) clock, a 64-bit binary counter. The
TOO clock runs continuously while the power is on; the clock is not affected by the system
stop-conditions. The operator normally sets the clock only after an interruption of CPU power
has caused the clock to stop, and restoration of power has restarted it. The operator sets the
clock during system initialization in response to a system message. (For more information
about the TOO clock, see Principles of Operation.)

Interval Timing

Time intervals up to 24 hours in length can be established for any task in the job step through
the use of the STIMER or STIMERM SET macro instructions. The time remaining in an
interval established via the STIMER macro can be tested or cancelled through the use of
TTIMER macro instruction. The time remaining in an interval established via the STIMERM
SET macro instruction can be cancelled or tested through the use of the STIMERM CANCEL
or STIMERM TEST macro instructions.

The value of the CPU timer can be obtained by using the CPUTIMER macro instruction. The
CPU timer is used to track task-related time intervals.

The TASK, REAL, or WAIT parameters of the STIMER macro instruction and the
WAIT = YESINO parameter of the STIMERM SET macro instruction specify the manner in
which the time interval is to be decreased. REAL and WAIT indicate the interval is to be
decreased continuously, whether the associated task is active or not. TASK indicates the

Miscellaneous Services III

interval is to be decreased only when the associated task is active. STIMERM SET can
establish real time intervals only.

If REAL or TASK is specified on STIMER or WAIT=NO is specified on STIMERM SET,
the task continues to compete with the other ready tasks for control; if WAIT is specified on
STIMER, or WAIT = YES is specified on STIMERM SET, the task is placed in a WAIT
condition until the interval expires, at which time, the task is placed in the ready condition.

When TASK or REAL is specified on STIMER or WAIT = NO is specified on STIMERM
SET, the address of an asynchronous timer completion exit routine can also be specified. This
routine is given control sometime after the time interval completes. The delay is dependent on
the system's work load and the relative dispatching priority of the associated task. If an exit
routine is not specified, there is no notification of the completion of the time interval. The exit
routine must be in virtual storage when specified, must save and restore registers as well as
return control to the address in register 14.

Timing services does not serialize the use of asynchronous timer completion routines.

Figure 42 shows the use of a time interval when testing a new loop in a program. The
STIMER macro instruction sets a time interval of 5.12 seconds, which is to be decreased only
when the task is active, and provides the address of a routine called FIXUP to be given control
when the time interval expires. The loop is controlled by a BXLE instruction.

STIMER TASK,FIXUP,BINTVL=TIME Set time interval
LOOP

NG

FIXUP

TM
BC
BXLE
TTIMER

USING
SAVE
01

TIMEXP,X'Ol'
1,NG
12,6,LOOP
CANCEL

FIXUP,15
(14,12)
TIMEXP,X'Ol'

RETURN (14,12)

TIME DC
TIMEXP DC

X'00000200'
X'OO'

Figure 42. Interval Processing

Test if FIXUP routine entered
Go out of loop if time interval expired
If processing not complete, repeat loop
If loop completes, cancel remaining time

Provide addressability
Save registers
Time interval expired, set switch in loop

Restore registers

Timer is 5.12 seconds
Timer switch

The loop continues as long as the value in register 12 is less than or equal to the value in
register 6. If the loop stops, the TTIMER macro instruction causes any time remaining in the
interval to be canceled; the exit routine is not given control. If, however, the loop is still in

112 Supervisor Services and Macro Instructions

«

)

)

effect when the time interval expires, control is given to the exit routine FIXUP. The exit
routine saves registers and turns on the switch tested in the loop. The FIXUP routine could
also print out a message indicating that the loop did not go to completion. Registers are
restored and control is returned to the control program. The control program returns control
to the main program and execution continues. When the switch is tested this time, the branch
is taken out of the loop. Caution should be used to prevent a timer exit routine from issuing an
STIMER specifying the same exit routine. An infinite loop may occur.

The priorities of other tasks in the system may also affect the accuracy of the time interval
measurement. If you code REAL or WAIT, the interval is decreased continuously and may
expire when the task is not active. (This is certain to happen when WAIT is coded.) After the
time interval expires, assuming the task is not in the wait condition for any other reason, the
task is placed in the ready condition and then competes for CPU time with the other tasks in
the system that are also in the ready condition. The additional time required before the task
becomes active will then depend on the relative dispatching priority of the task.

The STIMER macro instruction should not be issued while a BT AM OPEN or LINE OPEN
operation is in progress, since the BT AM OPEN LINE routines also use STIMER. STIMER
should not be issued before invoking dynamic allocation because dynamic allocation can also
issue STIMER.

Communicating with the System Operator

The WTO and the WTOR macro instructions allow you to write messages to the operator. The
WTOR macro instruction also allows you to request a reply from the operator. Messages can
be sent to (and replies received from) as many as 99 operator consoles. Only standard,
printable EBCDIC characters, shown in Figure 43, appear on the console. All other characters
are replaced by blanks. If the terminal does not have dual-case capability, it prints lowercase
characters as uppercase characters.

Hex EBCDIC Hex EBCDIC Hex EBCDIC Hex EBCDIC
Code Character Code Character Code Character Code Character

40 (space) 7B # 99 r D5 N
4A ¢ 7C CfJ A2 s D6 0
4B 7D A3 t D7 P
4C < 7E A4 u D8 Q
4D (7F A5 v D9 R
4E + 81 a A6 w E2 S
4F I 82 b A7 x E3 T
50 & 83 c A8 y E4 U
5A 84 d A9 z E5 V
5B $ 85 e Cl A E6 W
5C * 86 f C2 B E7 X
5D 87 g C3 C E8 y
5E 88 h C4 D E9 Z
5F .. 89 C5 E FO 0
60 91 j C6 F Fl 1
61 92 k C7 G F2 2
6B , 93 1 C8 H F3 3
6C % 94 m C9 I F4 4
6D 95 n Dl J F5 5
6E > 96 0 D2 K F6 6
6F ? 97 p D3 L F7 7
7A 98 q D4 M F8 8

F9 9

Figure 43. Characters Printed or Displayed on an MCS Console

Miscellaneous Services 113

Notes:

1. If the display device or printer is defined to JES3, the following characters are also translated
to blanks:

If;-,:"

2. The system recognizes the following hexadecimal representations of the u.s. national
characters: @ as X7C'; $ as X'5B'; and # as X7B'. In countries other than the U.S., the
U.S. national characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the $
character generates a X'4A'.

There are two basic forms of the WTO macro instruction: the single-line form, and the
multiple-line form.

The following should be considered when issuing multiple-line WTO messages (MLWTO).

• Only the first line of a multiple-line WTO message is passed to the installation-written
WTO exit routine (IEECVXIT).

• When a console switch takes place, unended multiple-line WTO messages and multiple-line
WTO messages in the process of being written to the original console are not moved to the
new console.

• When a hard copy switch takes place from the system log to an active operator's console,
MLWTO messages in the process of being written to the system log are not moved to the
new hard copy device.

• The left-most three bytes of register zero must be zero for a multiple-line message. You
must ensure that this is done.

• When the system hard copy log is an active operator's console, only the hard copy versions
of multiple-line messages are written to the console.

• Because the hard copy log receives a copy of every message in the system, use an. active
operator's console as the hard copy log only in an emergency.

See the macro instructions section for an explanation of the parameters in the single-line and
multiple-line forms of the WTO macro instruction.

The message is routed using the routing codes specified in the WTO macro instruction. At
system generation, each operator's console in the system is assigned routing codes that
correspond to the functions that the installation wants that console to perform. When any of
the routing codes assigned to a message match any of the routing codes assigned to a console,
the message is sent to that console.

Disposition of the message is indicated through the descriptor codes specified in the WTO
macro instruction. Descriptor codes classify WTO messages so that they can be properly
presented on, and deleted from, display devices. Each WTO macro instruction should contain
at least one descriptor code. The descriptor code is not printed or displayed as part of the
message text.

If the user supplies a descriptor code in the WTO macro instruction, an indicator is inserted at
the start of the message. The indicators are: a blank, an at sign (@), an asterisk (*), or a blank

114 Supervisor Services and Macro Instructions

(

)

)

followed by a plus sign (+). The indicator inserted in the message depends on the descriptor
code that the user supplies and whether the user is a privileged or APF-authorized program or a
non-authorized problem program. Figure 44 shows the indicator that is used for each
descriptor code.

Descriptor
Code

1
2
3-10
11
12-16

Privlleged or
APF-Authorized Program

*
*
blank
*
blank

Figure 44. Descriptor Code Indicators

Non-Authorized
Problem Program

@
@
blank +
@
blank +

The indicator @ or * informs operators that they must take some immediate or critical eventual
action. A critical eventual action is an action that the operator must perform, as soon as
possible, in response to a critical situation during the operation of the system. For example, if
the dump data set is full, the operator is notified to mount a new tape on a specific unit. This
is considered a critical action because no dumps can be taken until the tape is mounted; it is
eventual rather than immediate because the system continues to run and processes jobs that do
not require dumps.

If a problem program issues a message with descriptor code of 1 or 2, descriptor code 7 is
forced so that the message is deleted at address space or task termination. For more
information concerning routing and descriptor codes, see Routing and Descriptor Codes.

If an application that uses WTO needs to alter a message each time the message is issued, the
list form of the WTO macro may be useful. The message area, which is referenced by the WTO
parameter list, can be altered before you issue the WTO. The message length, which appears in
the WTO parameter list, does not need to be altered if you pad out the message area with
blanks.

A sample WTO macro instruction is shown in Figure 45.

Single-line WTO
format

Multiple- WTO
line format
(list form)

'BREAKOFF POINT REACHED. TRACKING COMPLETED.', C
ROUTCDE=14,DESC=7

('SUBROUTINES CALLED',C),
('ROUTINE TIMES CALLED' ,L),('SUBQUER' ,D),
('ENQUER' ,D) , ('WRITER' ,D) ,
(, DQUER' ,DE) ,
ROUTCDE=(2,14),DESC=(7,8),MF=L

C
C
C
C

Figure 45. Writing to the Operator

To use the WTOR macro instruction, code the message exactly as designated in the single-line
WTO macro instruction. (The WTOR macro instruction cannot be used to pass multiple-line
messages.) When the message is written, the control program adds a two-character message
identifier before the message to associate the reply with the message. The control program also
inserts an indicator as the first character of all WTOR messages, thereby informing the operator
that immediate action is required. You must, however, indicate the response desired. In
addition, you must supply the address of the area in which the control program is to place the
reply, and you must indicate the length of the reply. The length of the reply may not be zero.

Miscellaneous Services 115

You also supply the address of an event·control block which the control program posts after
the reply has been placed, left-adjusted, in your designated area.

A sample WTOR macro instruction is shown in Figure 46. The reply is not necessarily
available at the address you specified until a WAIT macro instruction has been issued.

ECBAD
REPLY

XC
WTOR

WAIT

DC
DC

ECBAD,ECBAD Clear ECB
'STANDARD OPERATING CONDITIONS? REPLY YES OR NO', C
REPLY,3,ECBAD,ROUTCDE=(l,15)
ECB=ECBAD

F'O'
C'bbb'

Event control block
Answer area

Figure 46. Writing to the Operator With a Reply

When a WTOR macro instruction is issued, any console receiving the message has the authority
to reply. The first reply received· by the control program is returned to the issuer of the
WTOR, providing the syntax of the reply is correct. If the syntax of the reply is not correct,
another reply is accepted. The WTOR is satisfied when the control program moves the reply
into the issuer's reply area and posts the event control block. Each console that received the
original WTOR will also receive the accepted reply unless it's a security message. No console
receives the accepted reply to a security message. The master console may answer any WTOR,
even if it did not receive the original message.

Writing to the Programmer

The WTO and the WTOR macro instructions allow you to write messages to the programmer,
as well as to the operator. However, only the operator can reply to a WTOR message.

To write a message to the programmer, you must specify ROUTCDE = 11 in the WTO or the
WTOR macro instruction.

Writing to the System Log

The system log consists of one SYSOUT data set on which the communication between the
operator and the system is recorded. You can use the system log by coding the information
that you wish to log in the "text" parameter of the WTL macro instruction.

When the WTL macro instruction is executed, the control program places your text in one of
the buffers and, when the buffer is full, writes the buffer onto the system log data set. The
control program writes the text of your WTL macro instruction on the master console instead
of on the system log if the system log is not active.

Although when using the WTL macro instruction you code the message within apostrophes, the
written message does not contain the apostrophes. The message can include any character that

116 Supervisor Services and Macro Instructions

c

)

)

is valid for the WTO macro instruction and is assembled and written the same way as the WTO
macro instruction. MCS routing codes and descriptor codes are not assigned, since they are not
needed by the WTL macro instruction.

Note: The exact format of the output of the WTL macro instruction varies depending on the
job entry system (JES2 or JES3) that is being used, the output class that is assigned to the log
at system initialization, and whether DLOG is in effect for JES3. In JES3, system log entries
are preceded by a 23-character prefix
that includes a time stamp and routing information. If the combined prefix and message
exceeds 126 characters, the log entry is split at the first blank or comma encountered when
scanning backward from the 126th character of the combined prefix and message. See
Operations: JES3 Commands for information about the format of the log entry when using
JES3.

Message Deletion

When using a display console, messages that are no longer necessary can be deleted
from, the operator's screen by the programmer. The control program assigns a message
identification number to each WTO and WTOR message and returns the message
identification number in register 1. The DOM macro instruction uses the identification
number to indicate which message is to be deleted. The message identification number must
not be confused with the reply identification number that is assigned to WTOR replies.

Deleting messages is simplified by the TOKEN parameter of the DOM, WTO, and WTOR
macros. TOKEN identifies a unique 4-byte ID that you originate and associate with one or
more messages when you issue a WTO or WTOR. Then you can use the same token ID when
you issue a DOM macro to delete all the messages that are associated with the ID.

When you you want to delete several (up to 60) messages with a single DOM invocation,
you can use the COUNT parameter with MSGLIST. Count is used to indicate the number of
messages in the message list. The high order bit of each message ID in the message list must
be zero.

You can also use the DOM macro instruction to keep WTOR messages from appearing, or
erase them if they have already appeared, by specifying REPLY = YES on the macro.
The issuer of the DOM with REPLY = YES must be a task in the same job step and
address space as the issuer of the WTOR macro instruction or must be a task executing in
supervisor state, in key 0-7, or authorized by APF.

Because all outstanding WTOs that were issued with a descriptor code of 7 are deleted at
address space or task termination, it is possible for a WTO to be deleted without ever being
displayed. If a task terminates and the JES global processor is not active or if the console to
which the message is routed is backed up, the message is deleted.

Miscellaneous Services 11 7

c
118 Supervisor Services and Macro Instructions

)

)

Part II: Macro Instructions

You can communicate service requests to the control program using a set of macro instructions
provided by IBM. These macro instructions are available only when programming in the
assembler language, and are processed by the assembler program using macro definitions
supplied by IBM and placed in the macro library when the system was generated.

The processing of the macro instruction by the assembler program results in a macro expansion,
generally consisting of data and executable instructions in the form of assembler language
statements. The data fields are the parameters to be passed to the requested control program
routine; the executable instructions generally consist of a branch around the data, instructions
to load registers, and either a branch instruction or a supervisor call (SVC) to give control to
the proper program. The exact macro expansion appears as part of the assembler output
listing.

Applications programmers can use the macro instructions described in this publication without
restriction. Some macro instructions contain parameters that are restricted to systems
programmers and installation-approved personnel. These parameters, as well as
installation-controlled macro instructions, are described in SPL: System Macros and Facilities.

Selecting the Macro Level

Certain MVS/XA macro expansions cannot execute on an MVS/370 system. These macros are
downward incompatible. Parameters that are new for MVS/XA are not supported by the
MVS/370 versions of the downward incompatible macros. In some cases the new parameters
are ignored, in other cases they cause assembly errors. Callers executing in 31-bit addressing
mode must use the MVS/XA version of these downward incompatible macro instructions. The
following macro instructions are the downward incompatible macros described in this book:

• ATTACH
• ESTAE
• EVENTS
• STIMER
• WTOR

The SPLEVEL macro instruction solves the problems associated with downward incompatible
macros. The SPLEVEL macro instruction allows an installation to assemble programs using
the MVS/XA macro library and to select either the MVS/370 or the MVS/XA version of the
downward incompatible macros.

Before issuing a downward incompatible macro, users can specify the macro level that they
want. They do this by issuing the SPLEVEL macro using the SET = n option, with n = I or 2.
If n = I, the MVS/370 expansion of the macro code is generated and if n = 2, the MVS/XA
expansion of the macro code is generated. If the user does not specify the value of n, the

Part II: Macro Instructions 119

SPLEVEL routine uses the default value of 2. See SPL: System Modifications for information
concerning the way in which an installation can change this default.

A user can also select the level of the macro at execution time, based on the system that is
operating. The example in Figure 47 shows one method of selecting the macro level. The
example uses the WTOR macro instruction, but any downward incompatible macro instruction
could be substituted. The code makes use of the fact that the CVTMVSE bit in byte CVTDCB
(located at offset 116 or X'74' of the communications vector table (CVT)) is set to 1 when
System Product Version 2 is operating. The CVTMVSE field of the CVT is defined in System
Product Version 2.

*

*

*
SP2

DETERMINE WHICH SYSTEM IS EXECUTING
TM CVTDCB,CVTMVSE
BO SP2

INVOKE MVS/370 VERSION OF THE MACRO
SPLEVEL SET=l
WTOR
B CONTINUE

INVOKE MVS/XA VERSION OF THE MACRO
SPLEVEL SET=2
WTOR

* RESET TO SYSTEM DEFAULT
CONTINUE SPLEVEL SET

Figure 47. Macro Level Selected at Execution Time

The SPLEVEL macro instruction is also described in SPL: System Macros and Facilities.

Addressing Mode and the Macro Instructions

Callers in either 24-bit or 31-bit addressing mode can invoke most of the macros described in
this book. The following is a list of the macro instructions, documented in Part II of this book,
that require the caller to be executing in 24-bit addressing mode and require that the parameters
be located in 24-bit addressable storage:

• FRACHECK

• RACHECK

• RACROUTE

• RACSTAT

• SEGLD

• SEGWT

• SPIE

Note: RACF services are also available through the RACROUTE macro, which can execute in
either 24-bit or 31-bit addressing mode.

All addresses specified as parameters for the other macro instructions in this book can be 31-bit
addresses unless otherwise stated. If a parameter passed by a program executing in 31-bit
addressing mode must be located in 24-bit addressable storage, the restriction is stated in the
description of the macro instruction.

120 Supervisor Services and Macro Instructions

(

)

)

In general, a program executing in 24-bit addressing mode cannot pass parameters located
above 16 Mb in virtual storage to a system service. There are exceptions to this general rule.
For example, a program executing in 24-bit addressing mode can:

• Free storage above 16 Mb using the FREEMAIN macro instruction

• Allocate storage above 16 Mb using the GETMAIN macro instruction

• Perform cell pool services for cell pools located in storage above 16 Mb using the CPOOL
macro instruction

• Perform page services for storage locations above 16 Mb using the PGSER macro
instruction

See the descriptions of the individual macro instructions for details.

If your program is to execute in 31-bit addressing mode, you must use the MVSjXA version of
these macro instructions:

• ATTACH

• CALL

• ESTAE

• EVENTS

• LINK

• SETRP

• STIMER

• SYNCH

• WTOR

• XCTL

Macro Instruction Forms

When written in the standard form, some of the macro instructions result in instructions that
store into an inline parameter list. The option of storing into an out-of-line parameter list is
provided to allow the use of these macro instructions in a reenterable program. You can
request this option through the use of list and execute forms. When list and execute forms exist
for a macro instruction, their descriptions follow the description of the standard form.

Use the list form of the macro instruction to provide a parameter list to be passed either to the
control program or to a problem program, depending on the macro instruction. The expansion
of the list form contains no executable instructions; therefore registers cannot be used in the list
form.

Use the execute form of the macro instruction in conjunction with one or two parameter lists
established using the list form. The expansion of the execute form provides the executable
instructions required to modify the parameter lists and to pass control to the required program.
Only the ATTACH, LINK, and XCTL macro instructions use two parameter lists: a problem
program list, resulting from the address parameter and VL parameters, and a control program
list, resulting from the remaining parameters. The control program list is required, and the
problem program list is optional in these macro instructions.

Part II: Macro Instructions 121

If you do not generate the control program parameter list form of the macro, you must provide
the list yourself, initialize it, then update it (either directly or by explicitly specifying keywords
on the execute form).

Note: If the program issuing the execute form of a macro instruction is executing in 24-bit
addressing mode, the remote control program parameter list must be located in 24-bit
addressable storage.

The CALL, DEQ, ENQ, and SNAP macro instructions can result in variable length parameter
lists. The length of the parameter list generated by the list form of the macro instruction must
be equal to the maximum length list required by any execute form that refers to the list. The
maximum length list can be constructed in one of three methods:

• Code the parameters required for the maximum length execute form in the list form.

• Provide a DS instruction immediately following the list form to allow for the maximum
length parameter list.

• Acquire a maximum length list by using commas in the list form to indicate the maximum
number of parameters. For example, the STORAGE parameter of the SNAP macro
instruction could be coded as STORAGE = (""",,) to allow for five pairs of addresses. The
actual addresses would be provided in the execute forms.

The descriptions of the following macro instructions assume that the standard begin, end, and
continue columns are used - for example, column 1 is assumed as the begin column. To change
the begin, end, and continue columns, code the ICTL instruction to establish the coding format
you wish to use. If you do not use ICTL, the assembler recognizes the standard columns. To
code the ICTL instruction, see Assembler H Version 2 Application Programming: Language
Reference.

122 Supervis()r Services and Macro Instructions

(

)

)

Coding the Macro Instructions

The table appearing near the beginning of each macro instruction indicates how the macro
instruction is to be coded. The table does not explain the meanings of the parameters; the
parameters are explained following the table.

Figure 48 shows a sample macro instruction, TEST, and summarizes all the coding information
that is available for it. The table is divided into three columns, A, B, and C.

rr
name

b

TEST

b

MATH

@2r------'1....HIST
GEOG

~ ,DATA=data addr

@~---J"'~ ,LNG=data length

,FMT=HEX
f82\---~ ... ~ ,FMT=DEC
\(JI ,FMT=BIN

,PASS=value

,grade

Figure 48. Sample Macro Instruction

name: symbol. Begin name in column 1 .

One or more blanks must precede TEST.

One or more blanks must follow TEST.

data addr: RX-type address, or register (2) - (12)

data length: symbol or decimal digit, with a maximum
value of 256.

Default: FMT =HEX

value: symbol, decimal digit, or register (1) or (2) - (12).
Default: PASS=65

grade: symbol, decimal digit, or register (1) or (2) - (12).

• The first column, A, contains those parameters that are required for that macro instruction.
If a single line appears in that column, AI, the parameter on that line is required and must
be coded. If two or more lines appear together, A2, one and only one of the parameters on
the lines must be coded.

• The second column, B, contains those parameters that are optional for that macro
instruction. If a single line appears in that column, Bl, the parameter on that line is
optional. If two or more lines appear together, B2, one and only one of the parameters
appearing on lines may be coded if desired.

• The third column, C, provides additional information for coding the macro instruction.
The following terms can appear in column C.

symbol: any symbol valid in the assembler language. That is, an alphabetic character followed
by 0-7 alphameric characters, with no special characters and no blanks.

Part II: Macro Instructions 123

decimal digit: any decimal digit up to the value indicated in the parameter description. If both
symbol and decimal digit are indicated, an absolute expression is also allowed.

register (2) - (12): one of general registers 2 through 12, specified within parentheses,
previously loaded with the right-adjusted value or address indicated in the parameter
description. The unused high-order bits must be set to zero. The register may be designated
symbolically or with an absolute expression.

register (0): general register 0, previously loaded as indicated under register (2) - (12) above.
Designate the register as (0) only.

register (1): general register 1, previously loaded as indicated under register (2) - (12) above.
Designate the register as (1) only.

RX-type address: any address that is valid in an RX-type instruction (for example, LA).

A-type address: any address that may be written in an A-type address constant.

default: a value that is used in default of a specified value, and that is assumed if the
parameter is not coded.

Use the parameters to specify the services and options to be performed, and write them
according to the following general rules:

• If the selected parameter is written in all capital letters (for example, MATH, HIST, or
FMT = HEX), code the parameter exactly as shown.

• If the selected parameter is written in italics (for example, grade) substitute the indicated
value, address, or name.

• If the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, DATA = data addr) code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

• Read the table from top to bottom, and code the parameters in the order shown. Code
commas and parentheses exactly as shown.

• If you select a parameter to be coded, read the third column, C, before proceeding to the
next parameter. Column C often contains notes pertaining to restrictions on coding the
parameters.

124 Supervisor Services and Macro Instructions

(

)

)

Continuation Lines

You can continue the parameter field of a macro instruction on one or more additional lines
according to the following rules:

1. Enter a continuation character (not blank, and not part of the parameter coding) in column
72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 49 shows an
example of each method. Additional information on the continuation of any assembler
language macro instruction is provided in the publication Assembler Language.

1 10 16 44 72
,+ t t t t

NAME1 OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,OPX
ERAND7 THIS IS ONE WAY

NAME 2 OP2 OPERAND1,OPERAND2, THIS IS ANOTHER WAY X
OPERAND3,OPERAND4, ANOTHER x
OPERAND5,OPERAND6,OPERAND7 WAY

Figure 49. Continuation Coding

Part II: Macro Instructions 125

ABEND - Abnormally Terminate a Task

The ABEND macro instruction is used to initiate error processing for a task. ABEND can
request a full or tailored dump of virtual storage areas and control blocks pertaining to the
tasks being abnormally terminated, and can specify that the entire job step is to be abnormally
terminated. Before the task is terminated, an ESTAE exit gets control. This exit may recover
the task and allow it to retry.

If the job step task is abnormally terminated or if ABEND specifies job step termination, the
completion code is recorded on the system output device, and the remaining job steps in the job
are either skipped or executed as specified in their job control statements.

If the job step is not to be terminated, the following actions are taken:

• The task that was active when ABEND was issued is terminated, along with all of the
subtasks of that active task.

• The completion code is posted as indicated in the completion code parameter. description
below.

• The end-of-task exit routine specified in the ATTACH macro instruction that created the
task which issued ABEND is selected to be given control. The exit routine is given control
when the originating task of the task for which ABEND was issued becomes active. None
of the end-of-task exit routines specified for any subtasks of the task for which ABEND
was issued are given control.

The ABEND macro instruction is written as follows:

name

b

ABEND

b

comp code

,REASON = reason code

,DUMP
"STEP
,,,code type
,DUMP,STEP
,DUMP"code type
"STEP, code type
,DUMP,STEP,code type

,DUMPOPT=parm list addr

name: symbol. Begin name in column 1.

One or more blanks must precede ABEND.

One or more blanks must follow ABEND.

comp code: symbol, decimal or hexadecimal digit, or register (1) or (2) - (12).
Value range: 0 - 4095

reason code: symbol, decimal or hexadecimal number, or register (2) - (12).

code type: USER or SYSTEM.
Default: code type = USER.

parm list addr: RX-type address, or register (2) - (12).

The parameters are explained as follows:

comp code
specifies the completion code associated with the abnormal termination. If the job step is
to be terminated, the decimal representation of the user completion code or the
hexadecimal representation of the system completion code is recorded on the system
output device. If the job step is not to be terminated, the completion code is placed in the

126 Supervisor Services and Macro Instructions

(

)

)

TCB of the active task, and in the ECB specified in the ECB parameter of the ATTACH
macro instruction issued to create the active task. If you specify a hexadecimal digit, you
must use X'dd' format to distinguish the hexadecimal from decimal.

,REASON = reason code
specifies the reason code that the user wants to pass to subsequent recovery exits. The
value range for the reason code is a 32-bit hexadecimal number or a 31-bit decimal
number. This reason code supplements the completion code associated with an abnormal
termination, allowing the user to uniquely identify the cause of the abnormal termination.
The recovery termination manager propagates the reason code to each recovery exit and
to the TCB and ASCB control blocks, making it available for system messages.

,DUMP
"STEP
",code type
,DUMP, STEP
,DUMP"code type
"STEP ,code type
,DUMP ,STEP ,code type

specifies options available with the ABEND macro instruction:

DUMP specifies that a dump is requested of virtual storage areas assigned to the task and
control blocks pertaining to the task. A separate dump is provided for eac~ of the tasks
being terminated as a result of ABEND. If a //SYSABEND, //SYSMDUMP, or
/ /SYSUDUMP DD statement is not provided, the DUMP parameter is ignored.

STEP specifies that the entire job step of the active task is to be abnormally terminated.

Note: If the STEP parameter is coded in an ABEND macro under TSO, the TSO job
will be terminated.

code type specifies that the completion code is to be treated as a USER or SYSTEM code.

,DUMPOPT = parm list addr
specifies the address of a parameter list valid for the SNAP macro instruction. The
parameter list is used to produce a tailored dump, and may be created by using the list
form of the SNAP macro instruction, or a compatible list may be created. The TCB,
DCB, ID, and STRHDR options available on SNAP will be ignored if they appear in the
parameter list; the TCB used will be that of the task being terminated, the DCB used will
be provided by the ABDUMP routine. If a / /SYSABEND, / /SYSMDUMP, or
//SYSUDUMP DD statement is not provided, the DUMPOPT parameter is ignored.

If the dump options specified include ranges of storage areas to be dumped, only the
storage areas in the first thirty ranges will be dumped. If SUBPLST is specified in the
SNAP parameter list passed to the ABEND macro instruction via DUMPOPT, the first
seven subpools will be dumped.

ABEND - Abnormally Terminate a Task 127

Example 1

Example 2

Example 3

Operation: Terminate with a user completion code of 432.

ABEND 432

Operation: Terminate with the user completion code that is contained in register 5. The entire
job step is to be terminated.

ABEND (S)"STEP

Operation: Terminate with a system completion code of X'OC4'.

ABEND X'OC4' ",SYSTEM

128 Supervisor Services and Macro Instructions

(

)

)

ATTACH - Create a New Task

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic "Selecting the Macro Level" for additional
information. If your program is to execute in 31-bit addressing mode, you must use the
MVS/XA version of this macro instruction. Except for the address of the DCB, all input
parameters to the ATTACH macro instruction can have addresses greater than 16 Mb if the
issuer is executing in 31-bit addressing mode.

The ATTACH macro instruction causes the control program to create a new task and indicates
the entry point in the program to be given control when the new task becomes active. The
entry point name that is specified must be a member name or an alias in a directory of a
partitioned data set, or must have been specified in an IDENTIFY macro instruction. If the
specified entry point cannot be located, the new subtask is abnormally terminated.

On entry to the attached routine, the high-order bit, bit 0, of register 14 is set to indicate the
addressing mode of the issuer of the ATTACH macro. If bit 0 is 0, the issuer is executing in
24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode.

The address of the task control block for the new task is returned in register 1. The new task is
a subtask of the originating task; the originating task is the task that was active when the
ATTACH macro instruction was issued. The limit and dispatching priorities of the new task
are the same as those of the originating task unless modified in the ATTACH macro
instruction.

The load module containing the program to be given control is brought into virtual storage if a
usable copy is not available in virtual storage. The issuing program can provide an event
control block, in which termination of the new task is posted, an exit routine to be given
control when the new task is terminated, and a parameter list whose address is passed in
register 1 to the new task. If the ECB or ETXR parameter is coded, a DETACH macro
instruction must be issued to remove the subtask from the system before the program that
issued the ATTACH macro instruction terminates. If the ECB or ETXR parameter is not
coded, the subtask is automatically removed from the system upon completion of its execution.
If the ECB parameter is specified in the ATTACH macro instruction, the ECB must be in
storage so that the issuer of the attach can wait on it (using the WAIT macro instruction) and
the control program can post it on behalf of the terminating task. The ATTACH macro
instruction can also be used to specify that ownership of virtual subpools is to be assigned to
the new task, or that the subpools are to be shared by the originating task and the new task.

ATTACH - Create a New Task 129

The standard form of the ATTACH macro instruction is written as follows:

name

b

ATTACH

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LPMOD = limit prior nmbr

,DPMOD=disp prior nmbr

,PARAM = (addr)
,PARAM= (addr),VL = 1

,ECB = eeb addr

,ETXR = exit rtn addr

,GSPV = subpool nmbr
,GSPL = sub pool list addr

,SHSPV = subpool nmbr
,SHSPL = sub pool list addr

,SZERO=YES
,sZERO=NO

,TASKLIB = deb addr

,ST AI = (exit addr)
,sT AI = (exit addr ,parm addr)
,ESTAI=(exit addr)
,EST AI = (exit addr ,parm addr)

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

,ASYNCH=NO
,ASYNCH = YES

,TERM=NO
,TERM=YES

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow ATTACH.

entry name: symbol.
entry name addr: A-type address, or register (2) - (12).
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit, or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For example,
PARAM = (addr,addr,addr)

eeb addr: A-type address, or register (2) - (12).

exit rln addr: A-type address, or register (2) - (12).

sub pool nmbr: symbol, decimal digit, or register (2) - (12).
subpoollist addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2)-(12).
sub pool list addr: A-type address, or register (2)-(12).

Default: SZERO = YES

deb addr: A-type address, or register (2)-(12).

exit addr: A-type address, or register (2)-(12).
parm addr: A-type address, or register (2)-(12).

Note: PURGE may be specified only if STAI or ESTAI is specified.
Default for STAI: PURGE = QUIESCE
Default for EST AI: PURGE = NONE

Note: ASYNCH may be specified only if STAI or ESTAI is specified.
Default for STAI: ASYNCH = NO
Default for EST AI: ASYNCH = YES

Note: TERM may be specified only if ESTAI is specified.
Default: TERM = NO

value: any valid macro keyword specification.

The parameters are explained as follows:

EP = entry name
EPLOC = entry name addr
DE = list entry addr

specifies the entry name, the address of the. entry name, or the address of the name field
of a 60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

Note: The task structure must not be changed via an ATTACH or DETACH between
the issuance of the BLDL and the issuance of the ATTACH for the module, or an abend
106 with a return code of 15 might result.

If an unauthorized program issues the ATTACH macro instruction and the DE parameter
specifies an entry in an authorized library, the program-supplied DE information is

130 Supervisor Services and Macro Instructions

(

)

)

ignored for integrity reasons. Instead, contents management uses the BLDL macro
instruction to construct a new list entry containing the DE information for the ATTACH.
The DE information supplied by an unauthorized program will also be ignored if the
A TT ACH macro instruction is requesting access to a program or library that is controlled
by the System Authorization Facility.

,DCB = deb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. (Note: The DCB must be opened before the ATTACH
macro instruction is executed and must be the DCB used in the BLDL that built the 60
byte DE list entry. The DCB must remain open until the subtask becomes active, and it
should not be closed immediately following the attach macro.)

Note: DCB must reside in 24-bit addressable storage.

,LPMOD = limit prior nmbr
specifies the number (255 or less) to be subtracted from the current limit priority of the
originating task. The result is the limit priority of the new task. If this parameter is
omitted, the current limit priority of the originating task is assigned as the limit priority of
the new task.

,DPMOD = disp prior nmbr
specifies the signed number (255 or less) to be algebraically added to the current
dispatching priority of the originating task. The result is assigned as the dispatching
priority of the new task, unless it is greater than the limit priority of the new task. If the
result is greater, the limit priority is assigned as the dispatching priority.

If a register is designated, a negative number must be in two's complement form in the
register. If this parameter is omitted, the dispatching priority assigned is the smaller of
either the new task's limit priority or the originating task's dispatching priority.

,PARAM = (addr)
,P ARAM = (addr), VL = 1

specifies address(es) to be passed to the control program. Each address is expanded inline
to a full word on a fullword boundary, in the order designated. Register I contains the
address of the first word when the program is given control.

VL = I should be designated only if the called program can be passed a variable number
of parameters. VL = I causes the high-order bit of the last address to be set to I; the bit
can be checked to find the end of the list.

,ECB=eeb addr
specifies the address of an event control block for the new task to be used by the control
program to indicate the termination of the new task. The ECB must be in storage so that
the issuer of the attach can wait on it (using the WAIT macro instruction) and the control
program can post it on behalf of the terminating task. The return code (if the task is
terminated normally) or the completion code (if the task is terminated abnormally) is also
placed in the event control block. If this parameter is coded, a DETACH macro
instruction must be issued to remove the subtask from the system after the subtask has
been terminated.

,ETXR = exit rtn addr
specifies the address of the end-of-task exit routine to be given control after the new task
is normally or abnormally terminated. The exit routine is given control when the
originating task becomes active after the subtask is terminated, and must be in virtual

ATTACH - Create a New Task 131

storage when required. If this parameter is coded, a DETACH macro instruction must be
issued to remove the subtask from the system after the subtask has been terminated.

The exit routine receives control in the addressing mode of the issuer of the ATTACH
macro instruction. ATTACH processing issues an ABEND with completion code X'72A'
if a task attempts to create two subtasks with the same exit routine in different addressing
modes.

The contents of the registers when the exit routine is given control are as follows:

Register Contents

o Control program information.
1 Address of the task control block for the task that was terminated.
2-12 Unpredictable.
13 Address of a save area provided by the control program.
14 Return address (to the control program).
15 Address of the exit routine.

The exit routine is responsible for saving and restoring the registers.

,GSPV = sub pool nmbr
,GSPL = subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a list of
virtual storage subpool numbers each less than 128. Except for subpool zero,
ownership of each of the specified subpools is assigned to the new task. Although it
can be specified, subpool zero cannot be transferred. When ownership of a subpool is
transferred, programs of the originating task can no longer GETMAIN or FREEMAIN
the associated virtual storage areas.

If GSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number.

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each less than 128. Programs of both originating task and the
new task can use the associated virtual storage areas.

If SHSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number.

,SZERO=YES
,SZERO=NO

specifies whether subpool 0 is to be shared with the subtask. YES specifies that subpool 0
is to be shared; NO specifies that subpool 0 is not to be shared.

,TASKLIB = deb addr
specifies that a task library DCB address has been supplied and is stored in TCBJLB.
Otherwise, TCBJLB is propagated from the originating task. (Note: The DCB must be
opened before the ATTACH macro instruction is executed.) SYSl.LINKLIB is the last
library searched. If the DCB address specifies SYSl.LINKLIB, the search begins with
SYSl.LINKLIB, goes through other libraries, and ends with SYSl.LINKLIB. An 806-4
abend might occur if the requested module is in another library.

Note: DCB must reside in 24-bit addressable storage.

132 Supervisor Services and Macro Instructions

(

)

)

)

,STAI = (exit addr)
,STAI=(exit addr,parm addr)
,ESTAI=(exit addr)
,ESTAI = (exit addr,parm addr)

specifies whether a ST AI or EST AI SCB is to be created; any ST AI/EST AI SCBsqueued
to the originating task are propagated to the new task.

The exit addr specifies the address of the ST AI or EST AI exit routine which is to receive
control if the subtask abnormally terminates; the exit routine must be in virtual storage at
the time of abnormal termination. The parm addr is the address of a parameter list which
may be used by the ST AI or EST AI exit routine.

ATTACH processing passes control to an EST AI exit routine in the addressing mode of
the issuer of the ATTACH macro instruction. Therefore, the EST AI exit routine can
execute in either 24-bit or 31-bit addressing mode. A ST AI exit routine can execute only
in 24-bit addressing mode. If a caller in 31-bit addressing mode specifies the STAI
parameter on the ATTACH macro instruction, the caller is abended with an X'52A'
completion code.

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

specifies what action is to be taken with regard to I/O operations when the subtask is
abnormally terminated. No action may be specified (NONE), a halting of I/O operations
may be requested (HALT), or a quiescing of I/O operations may be indicated
(QUIESCE).

,ASYNCH=NO
,ASYNCH = YES

specifies whether asynchronous exits are to be allowed when a subtask abnormal
termination occurs.

ASYNCH = YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the EST AE exit routine.

• PURGE = QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE = NONE is specified and the CHECK macro instruction is issued in the
EST AE exit routine for any access method that requires asynchronous interruptions
to complete normal input/output processing.

Note: If ASYNCH = YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

ATTACH - Create a New Task 133

,TERM=NO
,TERM = YES

specifies whether the exit routine associated with the EST AI request is also to be
scheduled in the following situations:

• CANCEL

• Forced LOGOFF

• Job step timer expiration

• Wait time limit for job step exceeded

• ABEND condition because incomplete task detached when ST AE option not specified
on DETACH

• ATTACH macro instruction with the EST AI operand issued by subtask and attaching
task abnormally terminates

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

The RELATED parameter may be used, for example, as follows:

ATTCHl ATTACH

DETCHl DETACH

EP=MYJOB,ECB=MYECB,RELATED=(DETCH1,
'CREATE SUBTASK')

(1),RELATED=(ATTCH1,'DETACH SUBTASK')

Note: The ATTACH macro instruction will fit on one line when coded, so there is no
need for a continuation indicator.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Successful completion.

04 ATTACH was issued in a STAE exit; processing not completed.

08 Insufficient storage available for control block for STAI/ESTAI request; processing not completed.

OC . Invalid exit routine address or invalid parameter list address specified with STAI parameter; processing
not completed.

Note: For any return code other than 00, register I is set to zero upon return.

134 Supervisor Services and Macro Instructions

Example 1

Example 2

)

)

Note: The program manager processing for ATTACH is performed under the new subtask,
after control has been returned to the originating task. Therefore, it is possible for the
originating task to obtain return code 00, and still not have the subtask successfully created (for
example, if the entry name could not be found by the program manager). In such cases, the
new subtask is abnormally terminated.

Operation: Cause the program named in the list to be attached. Establish RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

Operation: Cause PROGRAMI to be attached, share subpool 5, wait on WORDI to
synchronize processing with that of the subtask, and establish EXITI as an ESTAI exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAE=(EXIT1)

ATTACH - Create a New Task 135

ATTACH (List Form)

Two parameter lists are used in an ATTACH macro instruction: a control program parameter
list and an optional problem program paramet~r li~t. You can construct only the control
program parameter list in the list form of ATTACH. Address parameters to be passed in a
parameter list to the problem program can be provided using the list form of the CALL macro
instruction. This parameter list can be referred to in the execute form of ATTACH.

The list form of the ATTACH macro instruction is·written as follows:

name

b

ATTACH

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LPMOD = limit prior nmbr

,DPMOD = disp prior nmbr

,ECB = eeb addr

,ETXR = exit rtn addr

,GSPV = subpool nmbr
,GSPL = subpoollist addr

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

,SZERO = YES
,SZERO=NO

,TASKLIB = deb addr

,STAI=(exit addr)
,sTAI = (exit addr,parm addr)
,ESTAI = (exit addr)

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

,ASYNCH=NO
,ASYNCH = YES

,TERM=NO
,TERM = YES

,RELATED = value

,SF=L

name: symbol. Begin name in .column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow A IT ACH.

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

limit prior nmbr: symbol or decimal digit.

disp prior nmbr: symbol or decimal digit.

eeb addr: A-type address.

exit rtn addr: A-type address.

sub pool nmbr: symbol or decimal digit.
subpoollist addr: A-type address.

sub pool nmbr: symbol or decimal digit.
sub pool list addr: A-type address.

Default: SZERO = YES

deb addr: A-type address.

exit addr: A-type address.
parm addr: A-type address.

Note: PURGE may be specified only if STAI or ESTAI is specified.
Default for STAI: PURGE = QUIESCE
Default for ESTAI: PURGE=NONE

Note: ASYNCH may be specified only if ST AI or EST AI is specified.
Default for STAI: ASYNCH = NO
Default for ESTAI: ASYNCH = YES

Note: TERM may be specified only if ESTAI is specified.
Default: TERM = NO .

value: any valid macro keyword specification ..

The parameters are explained under the standard form of the ATTACH macro instruction, with
the follow~ng exception:

,SF=L
specifies the list form of the ATTACH macro instruction.

136 Supervisor Services and Macro Instructions

---~--~--'---

(

)

)

ATTACH (Execute Form)

Two parameter lists are used in ATTACH: a control program parameter list and an optional
problem program parameter list. Either or both of these parameter lists can be remote and can
be referred to and modified by the execute form of ATTACH. If only the problem program
parameter list is remote, parameters that require use of the control program parameter list
cause that list to be constructed inline as part of the macro expansion.

The execute form of the ATTACH macro instruction is written as follows:

name

b

AITACH

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LPMOD = limit prior nmbr

,DPMOD = disp prior nmbr

,PARAM=(addr)
,PARAM = (addr),VL = 1

,ECB = eeb addr

,ETXR = exit rln addr

,GSPV = subpool nmbr
,GSPL = subpoollist addr

,SHSPV = subpool nmbr
,SHSPL = subpoollist addr

,sZERO = YES
,SZERO=NO

,TASKLIB = deb addr

,STAI = (exit addr)
,STAI=(exit addr,parm addr)
,EST AI = (exit addr)
,EST AI = (exit addr ,parm addr)

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

,ASYNCH=NO
,ASYNCH = YES

,TERM=NO
,TERM=YES

,RELATED = value

,MF = (E,prob addr)
,SF = (E,etrl addr)
,MF=(E,prob addr),SF = (E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede AITACH.

One or more blanks must follow AITACH.

entry name: symbol.
entry name addr: RX-type address, or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (l2).

limit prior nmbr: symbol, decimal digit, or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: RX-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For example,
PARAM = (addr,addr,addr)

ceb addr: RX-type address, or register (2) - (12) .

exit rln addr: RX-type address, or register (2) - (12).

sub pool nmbr: symbol, decimal digit, or register (2) - (12).
subpoollist addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpoollist addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

exit addr: RX-type address, or register (2) - (12).
parm addr: RX-type address, or register (2) - (12).

Note: PURGE may be specified only if STAI or ESTAI is specified.

Note: ASYNCH may be specified only if STAI or EST AI is specified.

Note: TERM may be specified only if EST AI is specified.

value: any valid macro keyword specification.

prob addr: RX-type address, or register (1) or (2) - {12).
etrl addr: RX-type address, or register (2) - (12) or (15).

ATTACH (Execute Form) 137

The parameters are explained under the standard form of the ATTACH macro instruction, with
the following exceptions:

,MF = (E,prob addr)
,SF = (E,ctrl addr)
,MF = (E,prob addr),SF = (E,ctrl addr)

specifies the execute form of the ATTACH macro instruction using either a remote
problem program parameter list or a remote control program parameter list. Any
problem program or control program parameters are provided in parameter lists expanded
inline.

Notes:

1. If ST AI is specified on the execute form, the following fields are overlaid in the control
program parameter list: exit addr, parm addr, PURGE, and ASYNCH. If parm addr is not
specified, zero is used; if PURGE or ASYNCH are not specified, defaults are used.

2. If EST AI is specified on the execute form, then the following fields are overlaid: exit addr,
parm addr, PURGE, ASYNCH, and TERM. If parm addr is not specified, zero is used; if
PURGE, ASYNCH, or TERM are not specified, defaults are used.

3. If the STAIor ESTAI is to be specified, it must be completely specified on either the list or
execute form, but not on both forms.

4. If SZERO is not specified on the list or execute form, the default is SZERO = YES. If
SZERO = NO is specified on either the list form or a previous execute form using the same
SF= list, then SZERO = YES is ignored for any following execute forms of the macro. Once
SZERO = NO is specified, it is in effect for all users of that list.

138 Supervisor Services and Macro Instructions

)

)

CALL - Pass Control to a Control Section

If your program is to execute in 31-bit addressing mode, you must use the MVS/XA version of
this macro instruction. You cannot use the CALL macro instruction to pass control to a
program in a different addressing mode.

The CALL macro instruction passes control to a control section at a specified entry point as
follows:

• OVERLAY: The overlay segment containing the designated entry point is brought into
virtual storage if required, and control is passed to the segment.

Refer to Linkage Editor and Loader for details on overlay. The CALL macro instruction
cannot be used in an asynchronous exit routine.

• NON-OVERLAY: If a symbol is designated, the linkage editor includes the load module
containing that entry point in the same load module containing the CALL instruction.
When the CALL macro instruction is executed, control is passed to the control section at
the specified entry point.

The linkage relationship established when control is passed is the same as that created by a
BAL instruction; that is, the issuing program expects control to be returned. The control
program is not involved in passing control, so the reusability of the called program must be
maintained by the user.

An address parameter list can be constructed and a calling sequence identifier can be provided.

The standard form of the CALL macro instruction is written as follows:

name

b

CALL

b

entry name

,(addr)
,(addr),VL

,ID=id nmbr

name: symbol. Begin name in column 1.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

entry name: symbol or register (15).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For example,
(addr ,addr ,addr)

id nmbr: symbol or decimal digit, with a maximum value of 4095.

The parameters are explained as follows:

entry name
specifies the entry name to be given control.

,(addr)
,(addr),VL

specifies addressees) to be passed to the control program. Each address is expanded inline
to a fullword on a fullword boundary, in the order designated. Register I contains the
address of the first parameter when the program is given control. (If this parameter is not
coded, register I is not altered.)

CALL - Pass Control to a Control Section 139

Example 1

VL should be coded only if the called program can be passed a variable number of
parameters. VL causes the high-order bit of the last address parameter to be set to I; the
bit can be checked to find the end of the list.

,ID=idnmbr
specifies an identifier useful for debugging purposes only. The last fullword of the macro
expansion is a NOP instruction containing the identifier value in bytes 3 and 4.

Upon entry to the called program, the register contents are as follows:

Register Meaning

1 Address of parameter list, if present.
14 Return address.
15 Entry address of called program.

Operation: Call the entry point contained in register 15, and pass three addresses to the control
program.

CALL (15),(ADDR1,ADDR2,ADDR3)

140 Supervisor Services and Macro Instructions

,~

(

)

)

CALL (List Form)

The list form of the CALL macro instruction is used to construct a nonexecutable problem
program parameter list. This list form generates only' ADCONs of the address parameters.
This problem program parameter list can be referred to in the execute form of a CALL, LINK,
ATTACH, or XCTL macro instruction.

The list form of the CALL macro instruction is written as follows:

name

b

CALL

b

,(addr)
,(addr),VL

,MF=L

name: symbol. Begin name in column I.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

addr: A-type address.
Note: addr is one or more addresses, separated'by commas. For example,
(addr ,addr ,addr)

The parameters are explained under the standard form of the CALL macro instruction, with the
following exception:

,MF=L
specifies the list form of the CALL macro instruction.

CALL (List Form) 141

CALL (Execute Form)

A remote problem program parameter list is referred to and can be modified by the execute
form of the CALL macro instruction. Only executable instructions and a VCON of the entry
point are generated.

The execute form of the CALL macro instruction is written as follows:

name

b

CALL

b

entry name

,(addr)
,(addr),VL

,ID=id nmbr

,MF = (E,prob addr)

name: symbol. Begin name in column 1.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

entry name: symbol or register (15).

addr: RX-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For example,
(addr ,addr ,addr)

id nmbr: symbol or decimal digit, with a maximum value of 4095.

prob addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the CALL macro instruction, with the
following exception:

,MF = (E,prob addr)
specifies the execute form of the CALL macro instruction. This form uses a remote
problem program parameter list. If the address parameters are ~lso specified in this form,
the ADCONS of the parameter are placed on contiguous fullword boundaries beginning
at the address specified in the MF parameter, and sequentially overlaying corresponding
fullwords in the existing list.

142 Supervisor Services and Macro Instruction~

)

)

CHAP - Change Dispatching Priority

CHAP changes the dispatching priority of the task or any of its sub tasks relative to the other
tasks in the address space. It does not change the priority relative to other tasks in the system.
CHAP may also change the limit priority of a subtask. (See the section "Priorities" in this
pUblication.) The algebraic sum of the priority value and the dispatching priority of the subject
task determines the new dispatching priority.

• If the subject task is the task executing CHAP, its dispatching priority is set equal to the
sum of the priority value and the dispatching priority. This value is not set at less than
zero or greater than the limit priority for the task. Its limit priority is unaffected.

• If the subject task is a subtask of the task executing CHAP, its dispatching priority is set
equal to the sum of the priority value and the dispatching priority. This value is not set at
less than zero or greater than the limit priority of the task executing CHAP. After this
modification, if the subtask's dispatching priority exceeds its limit priority, the limit priority
is made equal to the dispatching priority.

The CHAP macro instruction is written as follows:

name

b

CHAP

b

name: symbol. Begin name in column 1.

One or more blanks must precede CHAP.

One or more blanks must follow CHAP.

priority value priority value: symbol, decimal digit, or register (0) or (2) - (12).

tcb addr: RX-type address, or register (1) or (2) - (12). ,'S'
,tcb addr Default: 'S'

,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

priority value

,'8'

specifies the signed value to be added to the dispatching priority of the specified task. If
the value is negative and contained in a register, it must be in two's complement form.

,teb addr
specifies the address of a fullword on a fullword boundary containing the address of a
task control block (TCB) for a subtask of the active task. If'S' is coded or assumed, the
dispatching priority of the active task is updated.

Note: TCB must reside in 24-bit addressable storage.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and

CHAP - Change Dispatching Priority 143

Example 1

Example 2

LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

The RELATED parameter may be used, for example, as follows:

CHAPUP

CHAP DOWN

CHAP 1,IS' ,RELATED=(CHAPDOWN,'UP PRIORITY')

CHAP -l,IS' ,RELATED=(CHAPUP,
'RESUME INITIAL PRIORITY')

Note: The second CHAP macro instruction will fit on one line when coded, so there is
no need for a continuation indicator.

Operation: Lower by 2 the dispatching priority of the subtask TCB, whose address is in a
fullword which is addressed by register 1. The subtask TCB will be repositioned on the
dispatching queue in accordance with its new dispatching priority.

CHAP -2, (1)

Operation: Cause the TCB of the task issuing CHAP to be repositioned at the bottom of the
group of TCBs on the dispatching queue for the address space, having the same dispatching
priority as that task.

CHAP o

144 Supervisor Services and Macro Instructions

)

)

CPOOL - Perform Cell Pool Services

The CPOOL macro instruction creates a cell pool, obtains or returns a cell to the cell pool, or
deletes the previously built cell pool, according to the function requested. Problem state,
non-system key users cannot create cell pools in subpools greater than 127. On entry to the
CPOOL macro instruction, users who specify the parameters: BUILD, DELETE, or
REGS = SAVE must pass the address of a 72-byte save area in register 13.

The CPOOL macro instruction is written as follows:

name

b

CPOOL

b

BUILD
GET
FREE
DELETE

,UNCOND
,U
,COND
,C

name: symbol. Begin name in column 1.

One or more blanks must precede CPOOL.

One or more blanks must follow CPOOL.

Default: UNCOND
Note: This parameter can be specified only with the GET keyword.

,PCELLCT = primary cell count cell count: symbol, decimal digit, or register (0), (2) - (12).
Note: This parameter can be specified only with the BUILD keyword.

,SCELLCT = secondary cell count Default: PCELLCT
Note: This parameter can be specified only with the BUILD keyword.

,CSIZE = cell size cell size: symbol, decimal digit, or register (0), (2) - (12).
Note: This parameter can be specified only with the BUILD keyword.

,SP=subpool number subpool number: symbol, decimal digit 0-127, or register (0), (2) - (12).

,LOC = BELOW
,LOC = (BELOW,ANY)
,LOC = ANY
,LOC = (ANY,ANY)
,LOC = RES
,LOC = (RES,ANY)

,CPID=pool id

,CELL = cell addr

,HDR=hdr

,REGS = SAVE
,REGS=USE

Note: This parameter can be specified only with the BUILD keyword.
Default: SP = 0

Default: LOC = RES
Note: This parameter can be specified only with the BUILD keyword.

pool id: RX-type address or register (0), (2) - (12).
Note: This parameter must be specified with the GET, FREE, and DELETE
keywords but is optional with the BUILD keyword.

cell addr: RX-type address or register (2) - (12).
Note: This parameter is required with the FREE keyword, is optional with the
GET keyword, and cannot be specified with the BUILD and DELETE
keywords.

hdr: character string enclosed in single quotes, RX-type address, or register
(0), (2) - (12).
Default: 'CPOOL CELL POOL'
Note: This parameter can be specified only with the BUILD keyword.

Default: REGS = SAVE
Note: This parameter can be specified only with the GET or FREE keywords.

CPOOL - Perform Cell Pool Services 145

The parameters are explained as follows:

BUILD
GET
FREE
DELETE

specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocating storage and chaining the
cells together. It returns an identifier (CPID) to be used with GET, FREE, and DELETE
requests. Therefore, BUILD must be done before GET, FREE, or DELETE.

GET attempts to obtain a cell from the previously built cell pool. This request can be
conditional or unconditional as described under the UNCONDjCOND keyword.

FREE returns a cell to the cell pool.

DELETE deletes a previously built cell pool and frees storage for the initial extent, all
secondary extents, and all pool control blocks.

,UNCOND
,U
,COND
,C

when used with GET specifies whether the request for a cell is conditional or
unconditional. If COND or C is specified and the cell pool is empty, the CPOOLservice
routine returns to the caller without a cell and places a zero in the return field of the cell
address. If UNCOND or U is specified and the cell pool is empty, the CPOOL service
routine extends the pool in order to obtain a cell for the caller.

,PCELLCT = primary cell count
specifies the number of cells expected to be needed in the initial extent of the cell pool.
The CPOOL service module uses PCELLCT and cell size, (CSIZE) to determine the
optimum number of cells to provide in order to make effective use of virtual and real
storage.

,SCELLCT = secondary cell count
specifies the number of cells expected to be in each secondary or non-initial extent of the
cell pool. The CPOOL service routine uses SCELLCT and CSIZE to determine the
optimum number of c~lls to provide in order to make effective use of virtual and real
storage.

,CSIZE = cell size
specifies the number of bytes in each cell of the cell pool. If CSIZE is a multiple of 8, the
cell resides on doubleword boundaries. If CSIZE is a multiple of 4, the cell resides on
word boundaries. The minimum value of CSIZE is 4 bytes.

,SP = subpool number
specifies the subpool from which the cell pool is to be obtained. If a register or variable is
specified, the subpool number is taken from bits 24-31.

146 Supervisor Services and Macro Instructions

)

)

,LOC=BELOW
,LOC = (BELOW,ANY)
,LOC=ANY
,LOC = (ANY ,ANY)
,LOC=RES
,LOC = (RES,ANY)

specifies the location of virtual storage and real storage for the cell pool.

Note: The location of real storage using this parameter is only guaranteed after the
storage is fixed.

LOC = BELOW indicates that virtual and real storage are to be allocated below 16 Mb.

LOC= (BELOW,ANY) indicates that virtual storage is to be allocated below 16 Mb and
real storage can be anywhere.

LOC=ANY and LOC = (ANY , ANY) indicate that both virtual and real storage can be
located anywhere.

LOC = RES indicates that the location of virtual and real storage depends on the location
of the issuer of the macro. If the issuer resides below 16 Mb, virtual and real storage are
allocated below 16 Mb; if the issuer resides above 16 Mb, virtual and real storage can be
located anywhere.

LOC = (RES,ANy) indicates that the location of virtual storage depends on the location
of the issuer of the macro. If the issuer resides below 16 Mb, virtual storage is allocated
below 16 Mb; if the issuer resides above 16 Mb, virtual storage is allocated anywhere.
Real storage can be located anywhere.

Note: Callers executing in 24-bit addressing mode could perform BUILD request services
for cell pools located in storage above 16 Mb by specifying LOC = ANY or
LOC = (ANY,ANY).

,CPID = pool id
specifies the address or register containing the cell pool identifier that is returned to the
caller after the pool is created using CPOOL BUILD. The issuer must specify CPID on
all subsequent CPOOL requests containing the keywords GET, FREE, or DELETE.

,CELL = cell addr
specifies the address or register where the cell address is returned to the caller on a GET
or FREE request.

,HDR=hdr
specifies a 24-byte header, which is placed in the header of each initial and secondary
extent. The header can contain user-supplied information that would be useful in a
dump.

,REGS = SAVE
,REGS = USE

indicates whether or not registers 2-12 are t<? be saved. If REGS = SAVE is specified, the
registers are saved in a 72-byte user-supplied save area pointed to by register 13. If
REGS = USE is specified, the registers are not saved.

CPOOL - Perform Cell Pool Services 147

Example 1

Example 2

Example 3

Example 4

The contents of the registers on return from this macro depends on the parameters specified.

Register(s) Comment

o Contains the cell pool identification (CPID)

Contains the address of the cell that was obtained if GET was specified; contains zero if GET conditional
was specified and the cell could not be obtained

2-12 Saved for BUILD and DELETE requests or if REGS = SAVE is specified

5-13 Saved if GET conditional or FREE is specified with REGS = USE

13 Saved if GET unconditional and REGS = USE, BUILD, or DELETE is specified

Operation: Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in the
initial extent and 20 cells in all subsequent extents of the cell pool.

CPOOL BUILD,PCELLCT=lO,SCELLCT=20,CSIZE=40,SP=2

Operation: Unconditionally obtain a cell pool, specifying the pool ID in register 2. Do not
save the registers.

CPOOL GET,U,CPID=(2),REGS=USE

Operation: Free a cell specifying the pool ID in register 2 and the cell address in register 3.

CPOOL FREE,CPID=(2),CELL=(3)

Operation: Delete a cell pool, specifying the pool ID in register 2.

CPOOL DELETE,CPID=(2)

148 Supervisor Services and Macro Instructions

c

)

)

CPOOL - (List Form)

The list form of the CPOOL macro instruction builds a non-executable parameter list that can
be referred to by the execute form of the CPOOL macro.

The list form of the CPOOL macro instruction is written as follows:

name

b

CPOOL

b

BUILD

,PCELLCT = primary cell count

,SCELLCT = secondary cell count

,CSIZE = cell size

,SP = subpool number

,LOC = BELOW
,LOC = (BELOW,ANy)
,LOC=ANY
,LOC = (ANY,ANy)
,LOC=RES
,LOC = (RES,ANy)

,CPID=pool id

,HDR=hdr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede CPOOL.

One or more blanks must follow CPOOL.

cell count: symbol, decimal digit, or register (0), (2) - (12).
Note: PCELLCT must be specified on either the list or the execute form of the
macro.

Default: PCELLCT

cell size: symbol, decimal digit, or register (0), (2) - (12).
Note: CSIZE must be specified on either the list or the execute form of the
macro.

sub pool number: symbol, decimal digit 0-127, or register (0), (2) - (12).
Default: SP = 0

Default: LOC = RES

pool id: A-type address or register (0), (2) - (12).

hdr: character string enclosed in single quotes, A-type address, or register (0),
(2) - (12).

The parameters are explained under the standard form of the CPOOL macro instruction with
the following exception:

,MF=L
specifies the list form of the CPOOL instruction.

CPOOL - (List Form) 149

CPOOL - (Execute Form)

The execute form of the CPOOL macro instruction is written as follows:

name

b

CPOOL

b

BUILD

,PCELLCT = primary cell count

name: symbol. Begin name in column 1.

One or more blanks must precede CPOOL.

One or more blanks must follow CPOOL.

cell count: symbol, decimal digit, or register (0), (2) - (12).
Note: PCELLCT must be specified on either the list or the execute form of the
macro.

,SCELLCT = secondary cell count Default: PCELLCT

,CSIZE = cell size cell size: symbol, decimal digit, or register (0), (2) - (12).

,SP = subpool number

,LOC = BELOW
,LOC = (BELOW,ANy)
,LOC=ANY
,LOC = (ANY,ANy)
,LOC=RES
,LOC = (RES,ANy)

,CPID=poo/ id

,HDR=hdr

,MF = (E,ctrl prog)

Note: CSIZE must be specified on either the list or the execute form of the
macro.

sub pool number: symbol, decimal digit 0-127, or register (0), (2) - (12).
Default: SP = 0

Default: LOC = RES

pool id: RX-type address or register (0), (2) - (12).

hdr: character string enclosed in single quotes, RX-type address, or register
(0), (2) - (12).

clrl prog: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the CPOOL macro instruction with
the following exception:

,MF = (E,ctrl prog)
specifies the execute form of the CPOOL instruction.

150 Supervisor Services and Macro Instructions

«

)

)

CPUTIMER - Provide Current CPU Timer Value

The CPUTIMER macro instruction provides the current CPU timer value for this processor.
This value consists of the time remaining in a time interval established by the STIMER macro
instruction. If there is no outstanding time interval, the value returned by the macro
instruction is meaningless.

The caller of the CPUTIMER macro instruction must provide the address of a 72-byte save
area in register 13.

The CPUTIMER macro instruction is written as follows:

name

b

CPUTIMER

b

TU ,slor addr
MIC,slor addr

,ERRET = err rln addr

name: symbol. Begin name in column 1.

One or more blanks must precede CPUTIMER.

One or more blanks must follow CPUTIMER.

Default: TU
slor addr: RX-type address, or register (1), (2) - (12).

err rln addr: RX-type address, or register (2) - (12).

The parameters are explained as follows:

TU,stor addr
MIC,stor addr

specifies the form in which the remaining time interval is to be returned to the caller.
This value is returned as an unsigned 64-bit binary number, at the address specified by
stor addr. stor addr must be the start of a double word area on a double word boundary
and it must be a 31-bit address.

If TU is specified, the timer value is returned to the caller in timer units. The low-order
. bit of the timer value is approximately equal to 26.04166 microseconds (one timer unit).

If MIC is specified, the timer value is returned to the caller in microseconds. Bit 51 of the
timer value is equivalent to 1 microsecond.

The resolution of CPU timer is model dependent. See Principles of Operation for a
description of the CPU timer.

,ERRET = err rtn addr
specifies the 31-bit address of the routine to be given control when the CPUTIMER
function cannot be performed. If this parameter is omitted, the CPUTIMER function
returns a code in general register IS indicating why the function could not be performed.
The error routine executes in the addressing mode of the issuer of the CPUTIMER macro
instruction.

CPUTIMER - Provide Current Processor Timer Value 151

Example 1

Example 2

Example 3

Example 4

The return codes are as follows:

Hexadecimal
Code Meaning

o The function was performed.
4 The function was not performed because the user-specified area was not on a double word boundary.
8 The function was not performed because the user supplied an invalid address.
OC The function was not performed because the value of the CPU timer was not usable.
10 The function was not performed because a machine check occurred.
14 The function was not performed because a program check occurred.

Operation: Place the value of the CPU timer in microseconds in location TIMELEFT.

CPUTIMER MIC,TIMELEFT

Operation: Store the value of the CPU timer in time units in the location addressed by register
1.

CPUTIMER TU, (1)

Operation: Store the value of the CPU timer in timer units in location TIMELEFT. If an
error occurs, transfer control to the error routine labeled ERREXIT.

CPUTIMER ,TIMELEFT,ERRET=ERREXIT

Operation: Place the val~e of the CPU timer in microseconds in the location addressed by
register 1. If an error occurs, transfer control to the address in register 2.

CPUTIMER MIC,(l),ERRET=(2)

152 Supervisor Services and Macro Instructions

(

)

)

DELETE - Relinquish Control of a Load Module

The DELETE macro instruction cancels the effect of a previous LOAD macro instruction. If
DELETE cancels the only outstanding LOAD request for the module and no other
requirements exist for the module, the virtual storage occupied by the load module is released
and is available for reassignment by the control program.

The entry name specified in the DELETE macro instruction must be the same as that specified
in the LOAD macro instruction that brought the load module into storage. Also, the DELETE
macro instruction must be issued by the same task that issued the LOAD macro instruction.

Any module loaded by a task will not be removed from virtual storage until the DELETE
macro instruction is issued or end of task is reached. In addition, any module loaded by a
system task will not be removed from virtual storage until a DELETE macro instruction is
issued by a system task or end of task is reached.

The DELETE macro instruction is written as follows:

name

b

DELETE

b

EP = entry name
EPLOC = entry name addr
DE=list entry addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede DELETE.

One or more blanks must follow DELETE.

entry name: symbol.
entry name addr: RX-type address, or register (0) or (2) - (12).
list entry addr: RX-type address, or register (0) or (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows:

EP = entry name
EPLOC = entry name addr
DE = list entry addr

specifies the entry name, the address of the entry name, or the address of a 60-byte list
entry for the entry name that was constructed using the BLDL macro instruction. If
EPLOC is coded, the name must be padded to eight bytes, if necessary.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAINjFREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

DELETE - Relinquish Control of a Load Module 153

Example 1

The RELATED parameter may be used, for example, as follows:

LOADI

DELI

LOAD

DELETE

EP=APGIOHKI ,RELATED= (DELI,
'LOAD APGIOHKI')

EP=APGIOHKI,RELATED=(LOADI,
'DELETE APGIOHKI')

Note: Each of these macro instructions will fit on one line when coded, so there is no
need for a continuation illdicator.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Successful completion of requested function.
04 Request was not issued for this module, or attempt was made to delete a system module.

Operation: Remove a module (pGMTOVL Y) from virtual storage.

DELETE EP=PGMTOVLY

154 Supervisor Services and Macro Instructions

(

)

)

DEQ - Release a Serially Reusable Resource

The DEQ macro instruction removes control of one or more serially reusable resources from
the active task. Register 15 is set to 0 if the request is satisfied. An unconditional request to
release a resource from a task that is not in control of the resource, or a request that contains
invalid parameters results in abnormal termination of the task.

Note: When global resource serialization is active, the SYSTEM inclusion resource name list
and the SYSTEMS exclusion resource name list are searched for every resource specified with a
scope of SYSTEM or SYSTEMS. A resource whose name appears in one of these resource
name lists might have its scope changed from the scope that appears on the macro instruction.
See Planning: Global Resource Serialization for more information.

The standard form of the DEQ macro instruction is written as follows:

b

DEQ

b

name name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qname addr

,rname addr

qname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - 12).

, rname length: symbol, decimal digit, or register (2) - (12).
,rname length Note: rname length must be coded if a register is specified for rname addr.

,
,STEP
,SYSTEM
,SYSTEMS

Default: STEP

,RET = HAVE
,RET = NONE

,RELATED = value

Default: RET = NONE

value: any valid macro keyword specification.

The parameters are explained as follows:

(
specifies the beginning of the resource(s) description.

qname addr
specifies the address in virtual storage of an 8-character name. The name can contain any
valid hexadecimal digits. The qname must be the same name specified for the resource in
an ENQ macro instruction.

,rname addr
specifies the address in virtual storage of the name used in conjunction with qname and
scope to represent the resource acquired by a previous ENQ macro instruction. The name
can be qualified, must be from 1 to 255 bytes long, and can contain any valid
hexadecimal digits. The rname must be the same name specified for the resource in an
ENQ macro instruction.

DEQ - Release a Serially Reusable Resource 155

,rname length

,

specifies the length of the rname described above. The length must have the same value
as specified in the previous ENQ macro instruction. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length, or you may specify a value of O. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified above.

,STEP
,SYSTEM
,SYSTEMS

)

specifies the scope of the resource. You must specify the same STEP, SYSTEM, or
SYSTEMS option as you used in the ENQ macro instruction requesting the resource.

specifies the end of the resource(s) description.

Note: The parameters qname addr, rname addr, rname length, and the scope can be
repeated within a single set of parentheses to indicate multiple resources. These
parameters can be repeated until there is a maximum of 255 characters including the
parentheses.

,RET = HAVE
,RET = NONE

specifies that the request for releasing the resources named in DEQ is to be conditional
(HAVE) or unconditional (NONE). If this parameter is omitted, the request for release is
unconditional, and the active task is abnormally terminated if it has not been assigned
control of the resources.

HAVE specifies that the request to release the resources named in the DEQ macro
instruction is to be honored only if the active task has been assigned control of the
resources. A return code is set if the resource is not held.

NONE specifies an unconditional request to release the resources. The active task is
abnormally terminated if it has not been assigned control of the resources. If the
parameter is omitted, NONE is the default.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid coding values.

, The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

156 Supervisor Services and Macro Instructions

c

)

)

The RELATED parameter may be used, for example, as follows:

ENQUEUE ENQ

DEQUEUE DEQ

(MAJOR,MINOR,S,8,STEP),
RELATED=(DEQUEUE,'OBTAIN RESOURCE')

(MAJOR,MINOR,8,STEP) ,
RELATED=(ENQUEUE,'RELEASE RESOURCE')

x

x

Return codes are provided by the control program only if RET = HAVE is designated. If
all of the return codes for the resources named in DEQ are 0, register 15 contains o. If
any of the return codes are not 0, register 15 contains the address of a virtual storage area
containing the return codes as shown in Figure 50. The return codes are placed in the
parameter list resulting from the macro expansion in the same sequence as the resource
names in the DEQ macro instruction. The return codes are shown in Figure 51.

Address
Returned in
Register 15

Return
Codes

~ ~ 2 3
o

12

24

36

~

4

RC 1

RC 2

RC 3

''''

L."

1

12

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

,----C--!......--f ~.!.....---RC N~DD
Figure 50. Return Code Area Used by DEQ

DEQ - Release a Serially Reusable Resource 157

Example 1

Example 2

Hexadecimal
Code Meaning

o The _resource has been released.

4 The resource has been requested for the task, but the task has not been assigned control. The task is
not removed from the wait condition. (This return code could result if DEQ is issued within an exit
routine which was given control because of an interruption.)

8 Control of the resource has not been requested by the active task, or the resource has already been
released.

Figure 51. DEQ Macro Instruction Return Codes

Operation: Release control of the resource in Example 1 of ENQ, (later in this section) if it has
been assigned to the current task. The length of the mame is explicitly defined as 9 characters.

DEQ (MAJOR1,MINOR1,9,STEP),RET=HAVE

Operation: Unconditionally release control of the resources in Example 2 of ENQ. The length
of the rname for the first resource is 3 characters and the length of the rname for the third
resource is 8 characters. Allow the length of the second resource to default to its assembled
length.

DEQ (MAJOR4,MINOR4,3,STEP,MAJOR2,MINOR2"SYSTEM,
MAJOR3,MINOR3,8,SYSTEMS)

x

158 Supervisor Services and Macro Instructions

c

)

)

DEQ (List Form)

Use the list form of the DEQ macro instruction to construct a DEQ parameter list. The
number of qname, rname, and scope combinations in the list form of DEQ must be equal to the
maximum number of qname, rname and scope combinations in any execute form of DEQ that
refers to that list form.

The list form of the DEQ macro instruction is written as follows:

name

b

DEQ

b

qname addr

,mame addr

,mame length

.
,STEP
,SYSTEM
.SYSTEMS

,RET = HAVE
.RET=NONE

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qname addr: A-type address.

mame addr: A-type address.

mame length: symbol or decimal digit.

Default: STEP

value: any valid macro keyword specification.

The parameters are explained under the standard form of the DEQ macro instruction, with the
following exception:

,MF=L
specifies the list form of the DEQ macro instruction.

DEQ (List Form) 159

DEQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the DEQ macro. The parameter list can be generated by the list form of either the DEQ or
the ENQ macro instruction. a1.The execute form of the DEQ macro instruction is written as
follows:

b

DEQ

b

name

qname addr

,rname addr

,rname length

,
,STEP
,SYSTEM
,SYSTEMS

,RET = HAVE
,RET = NONE

,RELATED = value

,MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, the (,), and all parameters between (
and) should not be specified. If something in the list is desired, the (,), and all
parameters in the list should be specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digit or register (2) - (12).

Default: STEP

Note: See note opposite (above.

Default: RET = NONE

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

The parameters are explained under the standard form of the DEQ macro instruction, with the
following exception:

,MF = (E,ctrl addr)
specifies the execute form of the DEQ macro instruction using a DEQ parameter list.

160 Supervisor Services and Macro Instructions

)

)

DETACH - Detach a Subtask

The DETACH macro instruction is used to remove from the system a subtask created by an
ATTACH macro instruction that specified the ECB or ETXR parameter. Each subtask created
in this manner must be removed from the system before the originating task terminates.
Failure to remove these subtasks causes abnormal termination of the originating task and all of
its subtasks. Issuing a DETACH macro instruction that specifies a subtask created without the
ECB or ETXR parameter also causes abnormal termination of the originating task when the
specified subtask has already terminated. Issuing a DETACH macro instruction that specifies a
subtask that has not terminated causes termination of that subtask and all of its subtasks. A
DETACH macro instruction can be issued only for subtasks created by the active task.

The DETACH macro instruction is written as follows:

name

b

DETACH

b

teb addr

,STAE=NO
,STAE=YES

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede DETACH.

One or more blanks must follow DETACH.

teb addr: symbol, RX-type address, or register (1) or (2) - (12).

Default: STAE=NO

value: any valid macro keyword specification.

The parameters are explained as follows:

tcb addr
specifies the address of a fullword on a fullword boundary containing the address of the
task control block for the subtask to be removed from the system.

Note: tcb addr specifies a storage location below 16 Mb.

,STAE=NO
,STAE=YES

specifies whether the exit routine specified in a ST AE macro instruction issued by the
subtask, or ST AI/EST AE/EST AI exits existing for the subtasks, is or is not to be given
control if the subtask is detached before it has been terminated. If a retry routine is
specified by the ST AE exit routine, it is not given control.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

DETACH - Detach a Subtask 161

Example 1

Example 2

The RELATED parameter may be used, for example, as follows:

ATTCHl ATTACH EP=MYJOB~ECB=MYECB,RELATED=(DETCH1,
'CREATE SUBTASK')

ST 1,TCBADDR SAVE TCB ADDRESS
WAIT 1,MYECB WAIT FOR SUBTASK

TO COMPLETE
DETCHl DETACH TCBADDR,RELATED={ATTCH1,'DETACH SUBTASK')

Note: The ATTACH macro instruction will fit on one line when coded, so there is no
need for a continuation indicator.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code ~eruDng

00 Successful completion .

. 04 An incomplete subtask was detached with STAE=YES specified; DETACH processing successfully
completed.

Operation: Cause the subtask to be removed from the address space. The address of the TCB
is in the fullword labeled SAVEWORD.

DETACH SAVEWORD

Operation: In addition to causing the subtask to be removed from the address space, give
control to the most recent ST AE exit established by the subtask if the sub task has not yet been
terminated.

DETACH (l),STAE=YES

162 Supervisor Services and Macro Instructions

(

)

)

DIV - Data-in-Virtual

The DIV macro lets you access a data object on permanent storage via paging I/O and process
this object through normal virtual storage addressing. Data-in-virtual maps the object onto a
single virtual address range so your program can view it as beginning at a virtual location and
occupying a consecutive virtual address range. The DIV macro performs the following eight
services:

• IDENTIFY

• ACCESS

• MAP

• RESET

• SAVE

• UNMAP

• UNACCESS

• UNIDENTIFY

The standard form of the DIV macro instruction is written as follows:

b

DIV

b

name

IDENTIFY
ACCESS
MAP
RESET
SAVE
UNMAP
UNACCESS
UNIDENTIFY

,ID=addr

,AREA=addr

,DDNAME = addr

,MODE = READ
,MODE = UPDATE

,OFFSET=addr
,OFFSET = *
,RETAIN = YES
,RETAIN=NO

,SIZE = addr
,SIZE = *
,SPAN = addr
,SPAN = *
,TYPE=DA

name: symbol. Begin name in column 1.

One or more blanks must precede DIV.

One or more blanks must follow DIV.

Valid parameters:
ID, TYPE, DDNAME
ID, MODE, SIZE
ID, AREA, OFFSET, SPAN, RETAIN
ID, OFFSET, SPAN
ID, OFFSET, SPAN, SIZE
ID, AREA, RETAIN
ID
ID

addr: Rx type address or register (2) - (12)

Default: OFFSET =0

Default: RETAIN = NO

See explanation of parameters if omitted

See explanation of parameters if omitted

DIV - Data-in-Virtual 163

The IDENTI~Y, ACCESS, MAP, SAVE, RESET, UNMAP, UNACCESS and UNIDENTIFY
parameters, which designate the services of the DIV macro, are mutually exclusive. You can
select only one. The parameters are explained as follows:

IDENTIFY
selects the data-in-virtual object (linear data set) that you want t6 process. When you
specify IDENTIFY, you must also specify ID, DDNAME and TYPE. ID specifies the
address of an eight-byte field, DDNAME specifies the object, and TYPE specifies the
storage format of the DDNAME. The IDENTIFY service creates a unique eight-byte
internal name that is returned at the address specified by the ID parameter. This name is
a token that represents the use of the selected object within your task. When you invoke
other data-in-virtual services, you use this token as the ID input parameter.

ACCESS

MAP

requests permission to access a data-in-virtual object. When you specify ACCESS, you
must also specify ID and MODE and you may optionally specify SIZE. The ID
parameter, which provides the address of the unique name that was returned by the
IDENTIFY service, indicates the object you want to access. If SIZE is specified, the
macro returns the current size of the object in the location that SIZE designates. If
specified, MODE indicates whether the object will be accessed for reading or updating.

specifies a request to establish addressability to the object in a specified range of virtual
storage, called the virtual window. When you specify MAP, you must also specify ID and
AREA, and you may optionally specify OFFSET, SPAN, and RETAIN. The ID
parameter, which provides the address of the unique name that was returned by the
IDENTIFY service, selects the object that you 'want to map. AREA indicates the starting
address of the virtual window. OFFSET and SPAN specify the range of blocks on the
object that is to be mapped to the window. RETAIN indicates whether or not data
previously existing in the virtual window is kept, or replaced by data from the object data.

RESET
releases changes made in the window since the last SAVE operation. When you specify
RESET, you must also specify ID, and you may optionally specify OFFSET and SPAN.
ID, which provides the address of the unique name that was returned by the IDENTIFY
service, indicates the virtual window that you want to reset. OFFSET and SPAN specify
the range of blocks on the object that corresponds to the virtual window. Data in pages of
mapped virtual windows that correspond to the RESET range will be replaced. If the
window corresponds to blocks on the object, the data is replaced by the current contents
of the object. If the window corresponds to blocks offset beyond the end of the object, the
data is not relevant (as if the pages had just been obtained by a GETMAIN). No change
to the object itself will be made by a RESET.

SAVE
specifies that data from the window is to be saved. Saving is accomplished by writing
changed pages from the window to the corresponding blocks of the object. When you
specify SAVE, you must also specify ID, and you may optionally specify OFFSET, SPAN
and SIZE. ID, which specifies the unique name that was returned by the IDENTIFY
service, selects the object into which the blocks are written. OFFSET and SPAN specify
the data blocks, relative to the beginning of the object, that are to be saved. Changed
pages from the window are then written into those blocks.

164 Supervisor Services and Macro Instructions

)

)

UNMAP
specifies a request to terminate a virtual window by removing the correspondence between
virtual pages in the window and blocks on the object. After the UNMAP is complete, the
contents of the pages depend on the value you specify for RETAIN; the virtual pages in
the former window either retain a copy of the data that was on the corresponding blocks
of the object, or appear as if they had just been obtained by a GETMAIN.

When you specify UNMAP, you must also specify ID and AREA, and you may specify
RETAIN. ID provides the address of the unique name that was returned by the
IDENTIFY service, the same name that was input to the MAP service that created the
window. AREA specifies the starting address of the virtual window. RET AIN specifies
whether data from the object is to be retained or discarded. If you specify
RETAIN = YES, the data from the object is retained in virtual storage. If you specify
RETAIN = NO, the data is discarded from virtual storage, leaving the appearance of data
that has been just obtained by a GETMAIN. RETAIN=NO is the default. UNMAP has
no effect on the object itself and does not save data from the virtual window. If you want
to save the data in the window, then invoke the SAVE before you invoke UNMAP.

UNACCESS
specifies that you are relinquishing your permission to read from or write to a
data-in-virtual object. When you specify UNACCESS, you must also specify ID, which
provides the address of the unique name that was returned by the IDENTIFY service.
When UNACCESS is invoked, any outstanding windows for the specified ID are
automatically unmapped with an implied RETAIN = NO.

UNIDENTIFY
specifies that the use of a data-in-virtual object under a previously assigned ID is ended.
When you specify UNIDENTIFY, you must also specify ID, which provides the address
of the unique name that was returned by the IDENTIFY service. If the object is still
accessed or mapped under the specified ID, the system will automatically unaccess and
unmap it with an implied RETAIN=NO.

,ID =addr
specifies the address of a field in storage where the IDENTIFY service stores a unique
eight-byte name that it associates with the object. This name, which is like a token, is the
output value of the IDENTIFY service; it is a required input value for all the other
services.

,AREA = address
specifies the address of a four-byte field in storage containing a pointer to the start of the
virtual window. The AREA parameter must be specified when you invoke the MAP and
the UNMAP services. The starting address for an UNMAP request must be identical to
the starting address of its corresponding MAP request. The virtual storage area that is
occupied by a window must meet the following requirements:

• The window must begin on a 4096-byte (page) boundary and must be a multiple of
4096 bytes long.

• Virtual storage within the window must have been obtained by the GETMAIN macro
from a single, pageable, private area subpool owned by the task that issued the
IDENTIFY.

• The window cannot contain VIO storage.

• Pages within the window cannot be page fixed.

DIV - Data-in-Virtual 165

DDNAME = addr
specifies the address of a field containing the ddname for the object. The first byte of the
field must be the number of characters in the ddname. The bytes following the first byte
must contain the EBCDIC characters of the ddname itself. The ddname must conform to
the standard syntax for ddnames. (One through eight alphameric or national characters,
the first of which must be alphabetic or national.) DDNAME is required when you
invoke IDENTIFY but it is not allowed when you invoke other services of the DIY
macro.

,MODE = READ
,MODE = UPDATE

specifies whether the object is being accessed for the purpose of reading or updating. If
you are using the SAVE service to update an object, specify MODE = UPDATE.
Otherwise, specify MODE = READ to signify read-only access to the object. MODE must
be specified whenever you specify ACCESS.

,OFFSET = addr
,OFFSET=*

specifies the beginning of a continuous string of blocks in a data-in-virtual object.
OFFSET is used with SPAN to define a continuous string of blocks in an object.
OFFSET designates the location of the first block in the string, and SPAN designates
how many blocks are in the string. An OFFSET value of zero designates the first block
(the beginning) of an object. An OFFSET beyond the current end of the object is
permitted as long as it remains within the maximum number of blocks allowed for the
object and also within the absolute limit of (2**20)-1. if you omit offset or specify
offset = *, a default OFFSET of zero is used. The OFFSET parameter can be specified
with the MAP, RESET, and SAVE services.

,RETAIN = YES
,RETAIN = NO

specifies the retain mode of the window, which controls the actions of the MAP,
UNMAP, and SAVE services. The retain mode determines what data appears in the
window when the MAP service is invoked, and what data is left in virtual storage when
UNMAP is invoked. It also affects how blocks are saved when you invoke the SAVE
service, and how blocks are reset when you invoke RESET. The RETAIN parameter may
be specified when you specify the MAP and the UNMAP parameters of the DIV macro.
If the RETAIN parameter is not specified, the retain mode defaults to NO.

,SIZE =addr
,SIZE=*

specifies the address of a four-byte field where the system stores the size of the object. The
size is stored in this field as a return value whenever you specify SAVE or ACCESS and
also specify SIZE. When control is returned after the execution of a SAVE, the value that
i~ returned is the minimum number of blocks that must be mapped to ensure that the
entire object is mapped. If you omit SIZE or specify SIZE = *, then the size is not
returned.

The size parameter may only be specified when you specify MAP, RESET, or SAVE.

166 Supervisor Services and Macro Instructions

(

)

)

,SPAN =addr
,SPAN=*

specifies the address of a four-byte field containing the number of blocks that are to be
processed by the MAP, RESET, or SAVE services. These services operate only on a string
of contiguous blocks. SPAN indicates how many blocks are in the string. It is used with
OFFSET, which indicates the first block of the string.

For the RESET and SAVE services, the block string can include discontiguous mappings
of an object. This lets you reset or save several maps in a single DIY macro invocation.

For the MAP service, the block string can extend beyond the end of the object, but it
cannot extend beyond the maximum size allowed for the object. You can create a window
that exceeds the size of the object. The maximum span allowed is (2**20)-1 bytes.

If you omit SPAN or specify SPAN = *, the SPAN default value is used. The default is
also be used if the four-byte field contains zero. For the SAVE and RESET services, the
default value is the number of blocks in the object from the specified or defaulted block
to the end of the last mapped range. For the MAP service, the default is the current size
of the object in blocks, minus the value specified by OFFSET. If the offset value is
beyond the end of the object, the span defaults to one when you omit SPAN.

SPAN may be specified only when you specify MAP, RESET or SAVE.

,TYPE=DA
specifies that your program is using a data definition statement to identify the object. You
must specify TYPE = DA whenever you specify IDENTIFY.

DIV - Data-in-Virtual 167

DIV (List Form)

The list form of the DIV macro instruction is written as follows:

b

DIV

b

name

IDENTIFY
ACCESS
MAP
RESET
SAVE
UNMAP.
UNACCESS
UNIDENTIFY

,AREA = addr

,DDNAME = addr

,ID=addr

,MODE = READ
,MODE = UPDATE

,TYPE=DA

,OFFSET = addr
,OFFSET = *
,RETAIN = YES
,RETAIN=NO

,SIZE = addr
,SIZE = *

name: symbol. Begin name in column 1.

One or tiJ.ore blanks must precede DIV.

One or more blanks must follow DIV.

Valid parameters:
ID, TYPE, DDNAME
ID, MODE, SIZE
ID, AREA, OFFSET, SPAN, RETAIN
ID, OFFSET, SPAN
ID, OFFSET, SPAN, SIZE
ID, AREA, RETAIN
ID
ID

Initialized to zero if omitted
addr: A-type address

Initialized to zero if omitted

Initialized t.o zero if omitted

Initialized to zero if omitted

Initialized to zero if omitted

Default: OFFSET = 0

Default: RETAIN:= NO

See explanation of parameters if omitted

,SPAN = addrSee explanation of parameters if omitted
,SPAN = *

,MF=L

,MF=L
specifies the list form of the DIV macro. The list form generates the DIV parameter list
in line without any executable code or register usage.

168 Supervisor Services and Macro Instructions

)

)

DIV (Execute Form)

The execute form of the DIV macro instruction is written as follows:

b

DIV

b

name

IDENTIFY
ACCESS
MAP
RESET
SAVE
UNMAP
UNACCESS
UNIDENTIFY

,AREA = addr

,DDNAME = addr

,ID=addr

,MODE = READ
,MODE = UPDATE

,TYPE=DA

,OFFSET=addr
,OFFSET = *

,RETAIN = YES
,RETAIN=NO

,SIZE = addr
,SIZE=*

,SPAN=addr
,SPAN = *

,MF = (E,addr)

,MF = (E,addr)

name: symbol. Begin name in column 1.

One or more blanks must precede DIV.

One or more blanks must follow DIV.

Valid parameters:
ID, TYPE, DDNAME
ID, MODE, SIZE
ID, AREA, OFFSET, SPAN, RETAIN
ID, OFFSET, SPAN
ID, OFFSET, SPAN, SIZE
ID, AREA, RETAIN
ID
ID

No change in executable parameter list if omitted
addr: Rx type address or register (2) - (12)

No change in executable parameter list if omitted

No change in executable parameter list if omitted

No change in executable parameter list if omitted

No change in executable parameter list if omitted

Default: OFFSET =0

Default: RETAIN = NO

See explanation of parameters if omitted

See explanation of parameters if omitted

specifies the Execute form. In the Execute form, DIV will be called using the parameter
list specified by "addr." "addr" indicates the address of the parameter list and may be (a)
any address that is valid in an RX-type assembler language instruction or (b) one of the
general registers 2 through 12 specified within parentheses. The register may be expressed
either symbolically or as a decimal number. The specified parameter list will be updated
for any parameters that are specified. Other parameter fields will be unaffected.

DIV (Execute Form) 169

DIV (Modify Form)

The modify form of the DIV macro instruction is written as follows:

b

DIV

b

name

IDENTIFY
ACCESS
MAP
RESET
SAVE
UNMAP
UNACCESS
UNIDENTIFY

,AREA=addr

,DDNAME = addr

,ID=addr

,MODE = READ
,MODE = UPDATE

,TYPE=DA

,OFFSET=addr
,OFFSET = *
,RETAIN = YES
,RETAIN=NO

,SIZE=addr
,SIZE = *
,SPAN = addr
,SPAN = *

,MF = (M,addr)

,MF = (M,addr)

One or more blanks must precede DIV.

One or more blanks must follow DIV.

Valid parameters:
ID, TYPE, DDNAME
ID, MODE, SIZE
ID, AREA, OFFSET, SPAN, RETAIN
ID, OFFSET, SPAN
ID, OFFSET, SPAN, SIZE
ID, AREA, RETAIN
ID
ID

No change in executable parameter list if omitted
addr: Rx type address or register (2) - (12)

No change in executable parameter list if omitted

No change in executable parameter list if omitted

No change in executable parameter list if omitted

No change in executable parameter list if omitted

Default: OFFSET = 0

Default: RETAIN = NO

See explanation of parameters if omitted

See explanation of parameters if omitted

See explanation of parameters if omitted.

specifies the MODIFY form. The modify form of the macro is used to modify an already
defined DIV parameter list. It is exactly the same as the EXECUTE form except that
DIV is not called. Registers 1 and 15 are destroyed.

170 Supervisor Services and Macro Instructions

(~

)

)

DOM - Delete Operator Message

The DOM macro instruction is used to delete an operator message or group of messages from
the display screen of the operator's console. It can also prevent messages from ever appearing
on any operator's console. When a program no longer requires that a message be displayed, it
can issue the DOM macro instruction to delete the message.

Depending on the timing of the DOM relative to the WTO(R), the message mayor may not be
displayed. If the message is being displayed, it is removed when space is required for other
messages.

When a WTO or WTOR macro instruction is issued, the system assigns an identification
number to the message and returns this number (24 bits right-justified) to the issuing program
in general register 1. When the display of this message is no longer needed, you can issue the
DOM macro instruction using the identification number that was returned in general register 1.

The DOM macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede DOM.

DOM

b One or more blanks must follow DOM.

MSG=addr
MSGLIST = list addr
TOKEN=addr

addr: register (1) - (12), or an address.
list addr: symbol, RX-type address, or register (1) - (12).
addr: register (1) - (12), or an address.

,COUNT=addr addr: register (2) - (12), or an address.

,REPLY = YES

The parameters are explained as follows:

MSG=
MSGLIST=

specifies the message numbers of messages to be deleted.

For MSG, the address or register contains the 24-bit, right-justified
identification number of the message to be deleted. Use this parameter to delete a
single message. If you use register 1, the macro expansion is shortened by two bytes.

For MSGLIST, the address is of a list of one or more fullwords, each word containing a
24-bit, right-justified identification number of a message to be deleted. A maximum of 60
identification numbers may be in the message list. If more than 60 identification numbers
are in the list, only the first 60 are processed. Begin the list on a fullword boundary.
When you are not using the COUNT parameter, indicate the end of the list by setting the
high-order bit of the last fullword entry to 1. If you use register 1, the macro expansion is
shortened by four bytes. If any register from 2 through 12 is used, the macro expansion is
shortened by two bytes.

DOM - Delete Operator Message 171

Example 1

Example 2

Example 3

Example 4

,COUNT =
The count field or register contains the one-byte count of 4-byte DOM ids associated with
this request. The count value must be from 1 to 60. If this keyword is used, the issuer
must not set the high order bit on in the last entry of the DOM parameter list. If this
keyword is not specified, the DOM ids are treated as 3-byte ids. If an address is used
instead of a register, the address points to a I-byte field which contains the count. The
COUNT keyword is invalid with the TOKEN keyword.

,REPLY = YES
specifies that the need for a reply to a WTOR message has been eliminated.

REPLY=YES is invalid with TOKEN and COUNT. When you specify REPLY = YES,
you must specify either MSG or MSGLIST to identify the message or group of messages
that is to be deleted.

TOKEN =
The field or register contains the 4-byte TOKEN of the messages that are to be deleted.
The messages that are deleted by TOKEN are the messages that were issued with this
TOKEN via WTO. Unauthorized users may delete only those messages which were
originally issued under the same jobstep TCB, ASID and system id. No DOM ids can be
specified with this keyword. This keyword is mutually exclusive with the MSG,
MSGLIST, and COUNT keywords.

Note: For any DOM keywords that allow a register specification, the value must be
right-justified in the register and the remaining bytes within the register must be zero.

Operation: Delete an operator message whose message id is in register 1.

DOM MSG=(l)

Operation: Delete a list of operator messages, some of which may be WTORs.

DOM MSGLIST=ID2,REPLY=YES

Operation: Delete a number of operator messages. The COUNT parameter indicates how
many messages are to be deleted.

DOM MSGLIST=ID3,COUNT=COUNT4

Operation: Delete all messages issued with a particular token.

DOM TOKEN=TOKENl

172 Supervisor Services and Macro Instructions

)

)

ENQ -, Request Control of a Serially Reusable Resource

ENQ requests the control program to assign control of one or more serially reusable resources
to the active task. If any of the resources are not available, the active task might be placed in a
wait condition until all of the requested resources are available. Once control of a resource has
been assigned to a task, it remains with that task until a DEQ macro instruction is issued or the
task terminates. Register 15 is set to 0 if the request is satisfied.

You can also use ENQ to determine the status of the resource; whether it is immediately
available or in use, and whether control has been previously requested for the active task in
another ENQ macro instruction.

You can request either shared or exclusive use of a resource. The resource is represented in the
ENQ by a pair of names, the qname and the rname, and a scope value. In order for ENQjDEQ
to coordinate the use of the resources:

• Everyone must use ENQjDEQ.
• Everyone must use the same names and scope values for the same resources.
• Everyone must use consistent ENQjDEQ protocol. '

Issuing two ENQ macro instructions for one task for the same resource without an intervening
DEQ macro instruction results in abnormal termination of the task, unless the second ENQ
designates RET = TEST, USE, CHNG, or HAVE. If a task terminates while it still has control
of any resources, all requests that this task made are automatically dequeued.

Global resource serialization counts and limits the number of concurrent resource requests from
an address space. If an unconditional ENQ (an ENQ that uses the RET = NONE option)
causes the count of concurrent resource requests to exceed the limit, the caller is abended with a
system code of X'538'. See "Limiting Concurrent Requests for Resources" in Part I.

Note: When global resource serialization is active, the SYSTEM inclusion resource name list
and the SYSTEMS exclusion resource name list are searched for every resource specified with a
scope of SYSTEM or SYSTEMS. A resource whose name appears in one of these resource
name lists might have its scope changed from the scope that appears on the macro instruction.
See Planning: Global Resource Serialization for more information.

ENQ - Request Control of a Serially Reusable Resource 1 73

The standard form of the ENQ macro instruction is written as follows:

b

ENQ

b

name name: symbol. Begin name in column I.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr

,rname addr

qname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

Default: E ,
,E
,S

rname length: symbol, decimal digit, or register (2) - (12).
,rname length

Default: assembled length of rname

, Default: STEP
,STEP
,SYSTEM
,SYSTEMS

)

,RET=CHNG
,RET = HAVE
,RET = TEST
,RET = USE
,RET = NONE

,RELATED = value

Default: RET = NONE

value: any valid macro keyword specification.

The parameters are explained as follows:

(
specifies the beginning of the resource(s) description.

qname addr
specifies the address in virtual storage of an 8-character name. The name can contain any
valid hexadecimal character. Every program issuing a request for a serially reusable
resource must use the same qname, rname, and scope to represent the resource. (See the
section "Naming the Resource" for restrictions on naming qname.)

,rname addr

,
,E
,8

specifies the address in virtual storage of the name used in conjunction with qname to
represent a single resource. The name must be from 1 to 255 bytes long and can contain
any valid hexadecimal characters. The rname length must be specified if either the name
specified in the rname field, or the length attribute on the rname is defined by an EQU
assembler instruction. Additionally, the rname length must be coded if the rname addr
field is coded as a register.

specifies whether the request is for exclusive (E) or shared (S) control of the resource. If
the resource is modified while under control of the task, the request must be for exclusive
control; if the resource is not modified, the request should be for shared control.

174 Supervisor Services and Macro Instructions

)

)

,
,rname length

specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between I and 255 to
override the assembled length, or you may specify a value of O. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified above.
This rname length parameter may be specified as an explicit constant (decimal digit), a
label from an EQU assembler instruction (symbol), or a register (2)-(12). The rname
length must be specified if either the name specified in the rname field, or the length
attribute of the rname is defined by an EQU assembler instruction. Additionally, the
rname length must be coded if the rname addr field is coded as a register.

,STEP
,SYSTEM
,SYSTEMS

)

specifies the scope of the resource used only within an address space (STEP), used by
programs of more than one address space (SYSTEM), or shared between systems
(SYSTEMS). If STEP is specified, a request for the same qname and rname from a
program in another address space denotes a different resource. If SYSTEM or
SYSTEMS is specified, requests for the same qname, rname, and scope from programs of
any address space denote the same resource.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the same
resource. If two macro instructions specify the same qname and rname, but one specifies
STEP and the other specifies SYSTEM or SYSTEMS, they are treated as requests for
different resources.

Note: The SYSTEM option is not the same as the SYSTEMS option. When you specify
SYSTEMS, you are spreading the scope of the resource across two or more processors.
SYSTEM confines the scope to a single processor, but it includes two or more address
spaces in the scope of the resource.

specifies the end of the resource (s) description.

Note: The parameters qname addr, rname addr, type of control, rname length, and the
scope can be repeated within a single set of parentheses to indicate multiple resources.
These parameters can be repeated until there is a maximum of 255 characters including
the parentheses.

,RET=CHNG
,RET = HAVE
,RET = TEST
,RET = USE
,RET = NONE

specifies the type of request for all of the resources named above.

CHNG - the status of the resource specified is to be changed from shared to exclusive
control.

HAVE - control of the resources is requested conditionally; that is, control is requested
only if a request has not been made previously for the same task.

ENQ - Request Control of a Serially Reusable Resource 175

TEST - the availability of the resources is to be tested, but control of the resources is
not requested.

USE - control of the resources is to be assigned to the active task only if the resources
are immediately available. If any of the resources are not available, the active
task is not placed in a wait condition.

NONE - control of all the resources is unconditionally requested.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), .and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

The RELATED parameter may be used, for example, as follows:

ENQUEUE ENQ

DEQUEUE DEQ

(MAJOR,MINOR,S,8,STEP),
RELATED=(DEQUEUE,'OBTAIN RESOURCE')

(MAJOR,MINOR,8,STEP),
RELATED=(ENQUEUE,'RELEASE RESOURCE')

x

x

Return codes are provided by the control program only if you specify RET = TEST,
RET = USE, RET = CHNG, or RET = HAVE; otherwise, return of the task to the active
condition indicates that control of the resource has been assigned (or previously assigned) to the
task. If all return codes for the resources named in the ENQ macro instruction are 0, register
15 contains 0. If any of the return codes are not 0, register 15 contains the address of a storage
area containing the return codes, as shown in Figure 52. The return codes are placed in the
parameter list resulting from the macro expansion in the same sequence as the resource names
in the ENQ macro instruction. The return codes are shown in Figure 53.

176 Supervisor Services and Macro Instructions

)

)

Address
Returned in
Register 15

+ o

12

24

36

'-"

2 3

Return
Codes

!
RC 1

RC 2

RC 3

-

4

t.

~

I~

12

Return codes are
12 bytes apart.
starting 3 bytes
from the address
in register 15.

C ~----,---1 ---l--.!..-.---RC N -L---JDO
Figure 52. Return Code Area Used by ENQ

Hexadecimal
Code Meaning

o For RET = TEST, the resource was immediately available.
For RET = USE or RET = HAVE, control of the resource has been assigned to the active task.
For RET = CHNG, the status of the resource has been changed to exclusive.

4 For RET = TEST or RET = USE, the resource is not immediately available.
For RET = CHNG, the status cannot be changed to exclusive.

8 For RET = TEST, RET = USE, or RET = HAVE, this task has made a previous request for control of
the same resource and this task has control of the resource.
If bit 3 of the first byte of this entry in the ENQ parameter list is on, this task has shared control of the
resource; if bit 3 is off, this task has exclusive control.
For RET = CHNG, the resource was not queued or was not previously requested by the requesting task.

14 This task has made a previous request for control of the same resource, and this task does not have
control of resource.

18 For RET = HAVE or RET = USE, the limit for the number of concurrent resource requests has been
reached. The task does not have control of the resource unless some previous ENQ request caused the
task to obtain control of the resource.

Figure 53. ENQ Return Codes

ENQ - Request Control of a Serially Reusable Resource 177

Example 1

Example 2

Operation: Conditionally request shared control of a serially reusable resource that is known
only within the address space (STEP). The resource is only to be obtained if immediately
available. The resource will be used for read-only purposes. The length of rname is allowed to
default.

ENQ (MAJORl,MINORl,S"STEP),RET=USE

Operation: Unconditionally request exclusive control of 3 resources. The scope of each
resource differs (STEP, SYSTEM, and SYSTEMS respectively). The rname length of the first
resource is 3 characters and the rname length of the third resource is 8 characters. Allow the
rname length of the second resource to default to its assembled length.

ENQ (MAJOR4,MINOR4,E,3"MAJOR2,MINOR2",SYSTEM,
MAJOR3,MINOR3,E,8,SYSTEMS)

x

178 Supervisor Services and Macro Instructions

c

)

)

ENQ (List Form)

Use the list form of ENQ to construct a control program parameter list. Any number of
resources can be specified in the ENQ macro instruction; therefore, the number of qname,
rname, and scope combinations in the list form the ENQ macro instruction must be equal to the
maximum number of qname, rname, and scope combinations in any execute form of the macro
instruction that refers to that list form.

The list form of the ENQ macro instruction is written as follows:

b

ENQ

b

name

qname addr

marne addr

,
,E
,S

,marne length

,
,STEP
,SYSTEM
,SYSTEMS

,RET = CHNG
,RET = HAVE
,RET = TEST
,RET = USE
,RET = NONE

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr: A-type address.

marne addr: A-type address.

Default: E

marne length: symbol or decimal digit.
Default: assembled length of marne

Default: STEP

Default: RET = NONE

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ENQ macro instruction, with the
following exception:

,MF=L
specifies the list form of the ENQ macro instruction.

ENQ (List Form) 179

ENQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the ENQ macro instruction. The parameter list can be generated by the list form of ENQ.

The execute form of the ENQ macro instruction is written as follows:

b

ENQ

b

name

qname addr

mame addr

,
,E
,S

,mame length

,STEP
,SYSTEM
,SYSTEMS

)

,RET = CHNG
,RET = HAVE
,RET = TEST
,RET = USE
,RET = NONE

,RELATED = value

,MF=(E,ctri addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, then (,), and all parameters between
(and) should not be specified. If something in the list is desired, then (,), and
all parameters in the list should be specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

mame addr: RX-type address, or register (2) - (12).

Default: E

mame length: symbol, decimal digit, or register (2) - (12).

Default: STEP

Note: See note opposite (above.

Default: RET = NONE

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

The parameters are explained under the standard form of the ENQ macro instruction, with the
following exception:

,MF = (E,ctri addr)
specifies the execute form of the ENQ macro instruction using a remote control program
parameter list.

180 Supervisor Services and Macro Instructions

(

)

)

)

ESPIE - Extended SPIE

The ESPIE macro instruction extends the function of the SPIE (specify program interruption
exits) macro instruction to callers in 31-bit addressing mode. Callers in either 24-bit or 31-bit
addressing mode can issue the ESPIE macro instruction. Only callers in 24-bit addressing mode
can issue the SPIE macro instruction. For additional information concerning the relationship
between the SPIE and the ESPIE macro instructions, see the section "Interruption Services" in
Part I.

The ESPIE macro instruction performs the following functions using the options specified:

• Establishes an ESPIE environment (that is, identifies the interruption types that are to
cause entry to the ESPIE exit routine) by executing the SET option of the ESPIE macro
instruction.

• Deletes an ESPIE environment (that is, cancels the current SPIEjESPIE environment) by
executing the RESET option of the ESPIE macro instruction.

• Determines the current SPIEjESPIE environment by executing the TEST option of the
ESPIE macro instruction.

SET Option

The SET option of the ESPIE macro instruction is written as follows:

name

b

ESPIE

b

SET

,exit addr

,(interruptions)

,PARAM = list addr

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: A-type address, or register (2) - (12).

interruptions: decimal digits 1-15 and expressed as:

single values: (2, 3,4, 7, 8, 9, 10)
ranges of values: «2, 4), (7, 10»
combinations: (2,3,4, (7, 10»

list addr: A-type address or register (2) - (12).

The parameters are explained as follows:

SET
indicates that an ESPIE environment is to be established.

,exit addr
specifies the address of the exit routine to be given control when program interruptions of
the type specified by interruptions occur. The exit routine receives control in the same
addressing mode as the issuer of the ESPIE macro instruction.

ESPIE - Extended SPIE 181

,(interruptions)
indicates the interruption types that are being trapped. The interruption types are:

Number Interruption Type

1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow (mask able)
9 Fixed-point divide
10 Decimal overflow (maskable)
11 Decimal divide
12 Exponent overflow
13 Exponent underflow (maskable)
14 Significance (maskable)
15 Floating-point divide

These interruption types can be designated as one or more single numbers, as one or more
pairs of numbers (designating ranges of values), or as any combination of the two forms.
For example, (4,8) indicates interruption types 4 and 8; ((4,8)) indicates interruption types
4 through 8.

If a program interruption type is maskable, the corresponding program mask bit in the
PSW is set to 1. If a maskable interruption is not specified, the corresponding bit in the
PSW is set to o. Interruption types not specified above (except for type 17, which is
described in SPL: System Macros and Facilities) are handled by the control program.
The control program forces an abend with the program check as the completion code. If
an EST AE-type recovery routine is also active, the SDW A indicates a system-forced
abnormal termination. The registers at the time of the error are those of the control
program.

Note: For both ESPIE and SPIE - If you are using vector instructions and an exception
of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the exception extension
code (the first byte of the two-byte interruption code in the EPIE or PIE) to determine
whether the exception was a vector or scalar type of exception.

,P ARAM = list addr
specifies the fullword-address of a parameter list that is to be passed by the caller to the
exit routine.

On return from the SET option of the ESPIE macro instruction, the registers contain the
following information:

Register Content

o Unpredictable
1 Token representing the previously active SPIEjESPIE environment
2-13 Unchanged
14 Unpredictable
15 Return code of 0

182 Supervisor Services and Macro Instructions

)

)

Example 1

Operation: Give control to an exit routine for interruption types 1 and 4. EXIT is the location
of the exit routine to be given control and PARMLIST is the location of the user parameter list
to be used by the exit routine.

ESPIE SET,EXIT,(1,4),PARAM=PARMLIST

RESET Option

The RESET option of the ESPIE macro cancels the current SPIE/ESPIE environment and
re-establishes the previously active SPIE/ESPIE environment identified by the token specified.

The RESET option of the ESPIE macro instruction is written as follows:

name

b

ESPIE

b

RESET

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

,token token: RX-type address, or register (1), (2) - (12).

The parameters are explained as follows:

RESET
indicates that the current ESPIE environment is to be deleted and the previously active
SPIE/ESPIE environment specified by token is to be re-established.

,token
specifies a fullword that contains a token representing the previously active SPIE/ESPIE
environment. This is the same token that ESPIE processing returned to the caller when
the ESPIE environment was established using the SET option of the ESPIE macro
instruction.

If the token is zero, all SPIEs and ESPIEs are deleted.

On return from ESPIE RESET, the contents of the registers are as follows:

Register Contents

o Unpredictable
1 Token identifying the new active SPIEjESPIE environment
2-13 Unchanged
14 Unpredictable
15 Return code of 0

ESPIE - Extended SPIE 183

Example 1

Operation: Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE
environment represented by the contents of TOKEN.

ESP IE RESET,TOKEN

TEST Option

The TEST option of the ESPIE macro instruction determines the active SPIE/ESPIE
environment and returns the information in a four-byte parameter list.

The TEST option of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE. b

ESPIE

b

TEST

One or more blanks must follow ESPIE.

,parm addr parm addr: RX-type address, or register (1), (2) - (12).

The parameters are explained as follows:

TEST
indicates a request for information concerning the active or current SPIE/ESPIE
environment. ESPIE processing returns this information to the caller in a four-word
parameter list located at parm addr.

,parm addr
specifies the address of a four-word parameter list aligned on a fullword boundary. The
parameter list has the following form:

Word Content

o Address of the user-exit routine (31-bit address with the~h-order bit set to 0)
1 Address of the user-defined parameter list
2 Mask of program interruption types (Note: Bit 1 corresponds to interrupt code 1, bit 2 to interrupt code

2, and so on.)
3 Zero

184 Supervisor Services and Macro Instructions

«

Example 1

)

)

On return from ESPIE TEST, the registers contain the following information:

Register Contents

o Unpredictable

1-13 Unchanged

14 Unpredictable

15 Return code as follows:

Code Meaning

o An ESPIE exit is active and the four-word parameter list contains the information described under
the parm addr parameter of the ESPIE macro instruction.

4 A SPIE exit is active and word 1 of the parameter list contains the address of the current PICA.
Words 0, 2, and 3 of the parameter list are unpredictable.

8 A SPIE or ESPIE exit is not active. All the words of the parameter list are unpredictable.

Operation: Identify the active SPIEjESPIE environment. Return the information about the
exit routine in the four-word parameter list, PARMLIST. Also return, in register 15, an
indicator of whether a SPIE, ESPIE, or neither is active.

ESP IE TEST,PARMLIST

ESPIE - Extended SPIE 185

ESPIE (List Form)

Example 1

The list form of the ESPIE macro instruction builds a non-executable problem program
parameter list that can be referred to or modified by the execute form of the ESPIE macro
instruction.

The list form of the ESPIE macro instruction is written as follows:

name

b

ESPIE

b

SET

,exit addr

,(interruptions)

,PARAM = list addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: A-type address.
Note: This parameter must be specified on either the list or the execute form of
the macro instruction.

interruptions: decimal digit 1-15 and expressed as:

single values: (2, 3, 4, 7, 8, 9, 10)
range of values: «2,4), (7, 10»
combinations: (2,3,4, (7, 10»

list addr: A-type address.

The parameters are explained under the standard form of the ESPIE macro instruction with the
following exception:

,MF=L
specifies the list form of the ESPIE macro instruction.

Operation: Build a non-executable problem program parameter list that will cause control to
be transferred to the exit routine, EXIT for the interruption types specified in the execute form
of the macro instruction. Provide the address of the user parameter list, P ARMLIST.

LISTl ESPIE SET,EXIT"PARAM=PARMLIST,MF=L

186 Supervisor Services and Macro Instructions

c

)

)

ESPIE (Execute Form)

Example 1

The execute form of the ESPIE macro instruction can refer to and modify the parameter list
constructed by the list form of the ESPIE macro instruction.

The execute form of the ESPIE macro instruction is written as follows:

name

b

ESPIE

b

SET

,exit addr

,(inlerrup lions)

,PARAM = list addr

,MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: RX-type address or register (2) - (12).
Note: This parameter must be specified on either the list or the execute form of
the macro instruction.

interruptions: decimal digit 1-15 and expressed as:

single values: (2, 3, 4, 7, 8, 9, 10)
range of values: «2, 4), (7, 10))
combinations: (2,3,4, (7, 10))

list addr: RX-type address or register (2) - (12).

ctrl addr: RX-type address, or register (1), (2) - (12).

The parameters are explained under the standard form of the ESPIE macro instruction with the
following exception:

,MF = (E,etrl addr)
specifies the execute form of the ESPIE macro instruction using a remote control program
parameter list.

Operation: Give control to a user exit routine for interruption types 1, 4, 6, 7, and 8. The exit
routine address and the address of a user parameter list for the exit routine are provided in a
remote control program parameter list at LISTl.

ESP IE SET,,(1,4,(6,8)),MF=(E,LIST1)

ESPIE (Execute Form) 187

ESTAE - Extended Specify Task Abnormal Exit

This macro can be assembled compatibly between MVSjXA and MVSj370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVSjXA. See the topic "Selecting the Macro Level" for additional
information.

If your program is to execute in 31-bit addressing mode, you must use the MVSjXA version of
this macro instruction. ESTAE exits and retry routines execute in the same address mode as
the program that issues the EST AE macro instruction.

The ESTAE macro instruction provides recovery capability facilities. Issuance of the ESTAE
macro instruction or, ATTACH with the STAI (specify task abnormal interrupts) or ESTAI
(extended STAI) option allows the user to intercept a scheduled ABEND. Control is given to a
user specified exit routine in which the user may perform pre-termination processing, diagnose
the cause of ABEND, and specify a retry address if he wishes to avoid the termination. These
exits operate in both problem program and supervisor modes.

The standard form of the ESTAE macro instruction is written as follows:

name

b

ESTAE

b

exit addr
o

,CT
,OV

,PARAM = list addr

,XCTL=NO
,XCTL = YES

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

,ASYNCH = YES
,ASYNCH=NO

,TERM=NO
,TERM = YES

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede ESTAE.

One or more blanks must follow ESTAE.

exit addr: A-type address, or register (2) - (12).

Default: CT

list addr: A-type address, or register (2) - (12).

Default: XCTL = NO

Default: PURGE = NONE

Default: ASYNCH = YES

Default: TERM = NO

value: any valid macro keyword specification.

The parameters are explained as follows:

exit addr
o

specifies the address of an EST AE exit routine to be entered if the task issuing this macro
instruction terminates abnormally. If 0 is specified, the most recent EST AE exit is
canceled.

188 Supervisor Services and Macro Instructions

)

)

,CT
,OV

specifies the creation of a new EST AE exit (CT) or indicates that parameters passed in
this ESTAE macro instruction are to overlay the data contained in the previous ESTAE
exit (OV).

,P ARAM = list addr
specifies the address of a user-defined parameter list containing data to be used by the
EST AE exit routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

specifies that the ESTAE macro instruction will be canceled (NO) or will not be canceled
(YES) if an XCTL macro instruction is issued by this program.

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

specifies that all outstanding requests for I/O operations will not be saved when the
ESTAE exit is taken (HALT), that I/O processing will be allowed to continue normally
when the ESTAE exit is taken (NONE), or that all outstanding requests for I/O
operations will be saved when the EST AE exit is taken (QUIESCE). If QUIESCE is
specified, the user's retry routine can restore the outstanding I/O requests.

Note: If PURGE = NONE is specified, all control blocks affected by input/output
processing may continue to change during EST AE exit routine processing.

If PURGE = NONE is specified and the ABEND was originally scheduled because of an
error in input/output processing, an ABEND recursion will develop when an input/output
interruption occurs, even if the exit routine is in progress. Thus, it will appear that the
exit routine failed when, in reality, input/output processing was the cause of the failure.

Do not use PURGE = HALT to stop processing a data set if you expect to continue
reading the data set at a different point.

ISAM Notes: If ISAM is being used and PURGE = HALT is specified or PURGE = QUIESCE
is specified but I/O is not restored:

• Only the input/output event on which the purge is done will be posted. Subsequent event
control blocks (ECBs) will not be posted.

• The ISAM check routine will treat purged I/O as normal I/O.

• Part of the data set may be destroyed if the data set is being updated or added to when the
failure occurred.

,ASYNCH = YES
,ASYNCH=NO

specifies that asynchronous exit processing will be allowed (YES) or prohibited (NO)
while the user's EST AE exit is executing.

ESTAE - Extended Specify Task Abnormal Exit 189

ASYNCH = YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the ESTAE exit routine.

• PURGE = QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE = NONE is specified and the CHECK macro instruction is issued in the
EST AE exit routine for any access method that requires asynchronous interruptions
to complete normal input/output processing.

Note: If ASYNCH = YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

,TERM=NO
,TERM = YES

specifies that the exit routine associated with the EST AE request will be scheduled (YES)
or will not be scheduled (NO), in addition to normal EST AE processing, in the following
situations:

• Cancel by opera tor.

• Forced logoff.

• Expiration of job step timer.

• Exceeding of wait time limit for job step.

• ABEND condition because of DETACH of an incomplete subtask when the ST AE
option was not specified on the DETACH.

• ABEND of the attaching task when the EST AE macro instruction was issued by a
subtask.

• ABEND of job step task when a non-job step task requested ABEND with the STEP
option.

When the exit routine is entered because of one of the preceding reasons, retry will not be
permitted. If dump is requested at the time of ABEND, it is taken prior to entry into the
exits.

Note: If DETACH was issued with the ST AE parameter, the following will occur for the task
to be detached:

• All EST AE exits will be entered.

• The most recently established ST AE exit will be entered.

• All ST AI/EST AI exits will be entered unless return code 16 is returned from one of the
STAI exits.

In these cases, entry to the exit is prior to dumping and retry will not be permitted.

190 Supervisor Services and Macro Instructions

c

)

Example 1

Example 2

)

,RELATED = value
specifies information used to self-document IlJ.acro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

The RELATED parameter may be used, for example, as follows:

DEFESTAE ESTAE (4),CT,PARAM=(2),RELATED=(DELESTAE,
'DELETE ESTAE')

DELESTAE ESTAE O,RELATED=(DEFESTAE,'DEFINE ESTAE')

Note: This macro instruction will fit on one line when coded, so there is no need for a
continuation indicator.

Control is returned to the instruction following the EST AE macro instruction. When control is
returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00

04

OC

10

14

Successful completion of ESTAE request.

ESTAE OV was specified with a valid exit address, but the current exit is either nonexistent, not owned
by the user's RB, or is not an ESTAE exit.

Cancel (an exit address equal to zero) was specified and either there are no exits for this TCB, the most
recent exit is not owned by the caller, or the most recent exit is not as ESTAE exit.

An unexpected error was encountered while processing this request.

ESTAE was unable to obtain storage for an SCB.

Operation: Request an overlay of the existing ESTAE recovery exit (at ADDR), with the
following options: parameter list is as PLIST, I/O will be halted, no asynchronous exits will be
taken, ownership will be transferred to the new request block resulting from any XCTL macro
instructi ons.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Operation: Provide the pointer to the recovery code in the register called EXITPTR, and the
address of the ESTAE exit parameter list in register 9. Register 8 points to the area where the
ESTAE parameter list (created with the MF=L option) was moved.

ESTAE (EXITPTR),PARAM=(9),MF=(E,(8))

EST AE - Extended Specify Task Abnormal Exit 191

ESTAE (List Form)

The list form of the EST AE macro instruction is used to construct a remote control program
parameter list.

The list form of the EST AE macro instruction is written as follows:

name

b

ESTAE

b

exit addr
o
,PARAM = list addr

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

,ASYNCH=YES
,ASYNCH=NO

,TERM=NO
,TERM = YES

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ESTAE.

One or more blanks must follow ESTAE.

exit addr: A-type address.

list addr: A-type address.

Default: PURGE = NONE

Default: ASYNCH = YES

Default: TERM = NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the EST AE macro instruction, with
the following exception:

,MF=L
specifies the list form of the EST AE macro instruction.

192 Supervisor Services and Macro Instructions

)

)

ESTAE (Execute Fonn)

A remote control program parameter list is used in, and can be modified by, the execute form
of the EST AE macro instruction. The control program parameter list can be generated by the
list form of the EST AE macro instruction. If the user desires to dynamically change the
contents of the remote EST AE parameter list, he may do so by coding a new exit address
and/or a new parameter list address. If exit address or PARAM is coded, only the associated
field in the remote EST AE parameter list will be changed. The other field will remain as it was
before the current EST AE request was made.

The execute form of the EST AE macro instruction is written as follows:

name

b

ESTAE

b

exit addr
o
,CT
,CV

,PARAM = list addr

,XCTL=NO
,XCTL=YES

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

,ASYNCH=YES
,ASYNCH=NO

,TERM=NO
,TERM = YES

,RELATED = value

,MF = (E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow ESTAE.

exit addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

etr! addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the EST AE macro instruction, with
the following exception:

,MF = (E,ctrl addr)
specifies the execute form of the EST AE macro instruction using a remote control
program parameter list.

ESTAE (Execute Form) 193

EVENTS - Wait for One or More Events to Complete

This macro can be assembled compatibly between MVSjXA and MVSj370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic "Selecting the Macro Level" for additional
information.

If your program is to execute in 31-bit addressing mode, you must use the MVSjXA version of
this macro instruction.

The EVENTS macro instruction is a functional specialization of the WAIT ECBLIST == macro
facility with the advantages of notifying the program that events have completed and the order
in which they completed.

The macro performs the following functions:

• Creates and deletes EVENTS tables.
• Initializes and maintains a list of completed event control blocks.
• Provides for single or multiple ECB processing.

For a detailed explanation of how to use EVENTS to perform these functions see "Using the
EVENTS Macro Instruction" in this section.

The EVENTS macro instruction is written as follows:

name

b

EVENTS

b

name: symbol. Begin name in column 1.

One or more blanks must precede EVENTS.

One or more blanks must follow EVENTS.

ENTRIES = n n: variable, decimal digit 1-32,767.
ENTRIES =DEL,TABLE= table address table address: symbol, RX-type address, or register (2) - (12).
TABLE = table address Note: If ENTRIES = n or ENTRIES = DEL, TABLE = table address is not

specified, no other parameter should be specified.

,WAIT = NO Default: None.
,WAIT=YES

,ECB = ecb address
,LAST = last address

ecb address: symbol, RX-type address, or register (2) - (12).
last address: symbol, RX-type address, or register (2) - (12).
Note: Optional parameters are only valid when TABLE = table address is the
only required parameter specified.

The parameters are explained as follows:

ENTRIES==n
n is a decimal number from 1 to 32,767 that specifies the maximum number of completed
ECB addresses that can be processed in an EVENTS table concurrently.

Note: When this parameter is specified no other parameter should be specified.

ENTRIES == DEL, TABLE == table address
specifies that the EVENTS table whose address is specified by TABLE == table address is
to be deleted. The user is responsible for deleting all of the tables he creates; however, all
existing tables are automatically freed at task termination.

194 Supervisor Services and Macro Instructions

)

)

Notes:

1. When this parameter is specified no other parameter should be specified.
2. table address specifies a storage location below 16 megabytes.

TABLE == table address
specifies either a register number or the address of a word containing the address of the
EVENTS table associated with the request. The address specified with the operand
TABLE must be that of an EVENTS table created by this task.

Note: table address specifies a storage location below 16 megabytes.

,WAIT==NO
,WAIT==YES

specifies whether or not to put the issuing program in a wait state when there are no
completed events in the· EVENTS table (specified by the TABLE = parameter).

,ECB == ecb address
specifies either a register number or the address of a word containing the address of an
event control block. The EVENTS macro instruction should be used to initialize any
event-type ECB. To avoid the accidental destruction of bit settings by a system service
such as an access method, the ECB should be initialized after the system service that will
post the ECB has been initiated (thus making the ECB eligible for posting) and before the
EVENTS macro is issued to wait on the EVENTS table.

Notes:

1. Register 1 should not be specified for the ECB address.

2. This parameter may not be specified with the LAST= parameter.

3. If only ECB initialization is being requested, neither WAIT= NO nor WAIT= YES
should be specified, to prevent any unnecessary WAIT processing from occurring.

,LAST == last address
specifies either a register number or the address of a word containing the address of the
last EVENT parameter list entry processed.

Notes:

1. Register 1 should not be specified for the LAST address.
2. This parameter should not be specified with the ECB= parameter.
3. last address specifies a storage location below 16 megabytes.

EVENTS - Wait for One or More Events to Complete 195

Using the EVENTS Macro Instruction

The following explains the different uses of EVENTS:

• Creating EVENTS Tables - When ENTRIES=n is specified, the system creates an
EVENTS table with "n" entries for completed ECB addresses. This table is queued on the
EVENTS table queue associated with the task. (There is no limit to the number of
EVENTS tables that can be queued for a single task.) The address of the EVENTS table is
returned to the user in register 1. See Figure 54.

EVENTS Table

ENTRY1

ENTRY2

ENTRYn-1

ENTRYn

Figure 54. Creating a Table

Header Section

Variable Length
Entry Section

• Deleting EVENTS Tables - When ENTRIES = DEL,TABLE = table address is specified,
the EVENTS table whose address is specified by the TABLE = table address parameter shall
be deleted. The address specified with the TABLE operand must be that of an EVENTS
table created by this task. The user is responsible for deleting all of the tables he creates;
however, all existing tables are automatically freed at task termination.

• Initializing ECBs - When an ECB is created, bits 0 (wait bit) and bit I (post bit) must be
set to zero. When an EVENTS ECB = macro instruction is issued, bit 0 of the associated
event control block is set to 1. When a POST macro instruction is issued, bit 1 of the
associated event control block is set to 1 and bit 0 is set to O. If the ECB is reused, bit 0
and bit 1 must be set to zero before either a WAIT, EVENTS ECB =, or POST macro
instruction can be specified. If, however, the bits are set to zero before the ECB has been
posted, any task waiting for that ECB to be posted will remain in wait state.

• Maintaining a List of Completed EVENT Control Blocks - After the ECB has been
initialized the POST macro sets the complete bit and puts the address of the completed
ECB in the EVENTS table.

196 Supervisor Services and Macro Instructions

)

)

• Providing Single or Multiple ECB Processing - When the WAIT parameter is specified and
there are completed ECBs in the EVENTS table, the address of the parameter list is
returned in register 1. The parameter list has the following format:

Register 1

--. ECB1

--. ECB2

--. ECBm-1

--. ECBm

Figure 55. Parameter List Format

The parameter list contains completed ECB addresses in post occurrence order. The high order
bit of the last word in the list is set to 1. The user may choose to process the entire list (see
LAST parameter) or one event at a time by successive EVENTS requests with the WAIT =
option.

However, if WAIT = NO is specified and no ECBs are posted in the EVENTS table, register 1
contains a zero when the user receives control.

When a user has processed more than one ECB in the parameter list returned from the previous
EVENTS WAIT = macro, the LAST = parameter should be used to indicate the last ECB
processed. The EVENTS macro removes from the parameter list all entries from the first thru
the last specified by LAST, and then completes processing the request according to the WAIT =
specific a tion.

In the illustration that follows, ECBs 6 through 10 were posted to the parameter list while the
user was processing 1 through 5.

EVENTS - Wait for One or More Events to Complete 197

EVENTS TABLE=table address, WAIT =YES

I Register 1 I

~ - ~ ECB1

~ ECB2

~ ECB3

~ ECB4

1 ~ ECB5

(Load register 2 with address of the last entry processed.)

EVENTS TABLE=table address, WAIT =YES, LAST =(2)

I Register 1 I

~ -
~ ECB6

~ ECB7

---.. ECBB

---.. ECB9

1 ~ ECB10

Figure 56. Posting the Parameter List

c
198 Supervisor Services and Macro Instructions

)

)

This figure demonstrates processing one event at a time.

Issuing EVENTS TABLE=table address, WAIT=YES for the
first time will initiate:

I Register 1 I

~ Parameter List
, ----.
~

~

~

1 ~

ECB1

ECB2

ECB3

ECB4

ECB5

The second time that EVENTS TABLE=table address, WAIT =YES
is issued will initiate:

I
Register 1

I

~ Parameter List
,
~ ECB2

----. ECB3

---. ECB4

1 ~ ECB5

Figure 57. Processing One Event At a Time

EVENTS - Wait for One or More Events to Complete 199

Example 1

Example 2

The following shows total processing via EVENTS.

EVENTS and ECB Initialization

START
EVENTS
ST
WRITE
LA
EVENTS

ENTRIES=1000
R1,TABADD
ECBA
R2,ECBA
TABLE=TABADD,ECB=(R2)

Parameter List Processing

LOOP1

LOOP2

BEGIN
EVENTS
LR
B
EVENTS
LR
EQU
TM
BO
LA
B

Deleting EVENTS Table

EVENTS
TABADD DS

TABLE=TABADD,WAIT=YES
R3,R1 PARMLIST AD DR
LOOP2 GO TO PROCESS ECB
TABLE=TABADD,WAIT=YES,LAST=(R3)
R3,R1 SAVE POINTER
* PROCESS COMPLETED EVENTS
O(R3) ,X'80' TEST FOR MORE EVENTS
LOOP1 IF NONE, GO WAIT
R3,4(,R3) GET NEXT ENTRY
LOOP2 GO PROCESS NEXT ENTRY

TABLE=TABADD,ENTRIES=DEL
F

Processing One ECB at a Time.

NEXTREC

RETEST

TABLE

EVENTS
ST
GET
ENQ
READ
LA
EVENTS
WRITE
LA
EVENTS
LTR
BNZ
B
DS

ENTRIES=10
1,TABLE
TPDATA,KEY
(RESOURCE,ELEMENT,E"SYSTEM)
DECBRW,KU,,'S' ,MF=E
3,DECBRW
TABLE=TABLE,ECB=(3),WAIT=YES
DECBRW,K,MF=E
3,DECBRW
TABLE=TABLE,ECB=(3),WAIT=NO
1,1
NEXTREC
RETEST
F

200 Supervisor Services and Macro Instructions

(

)

)

FRACHECK - Fast Path Resource Authorization Checking

The FRACHECK macro is used to check a user's authorization for access to a resource.
FRACHECK verifies access to those resources whose RACF profiles have been brought into
main storage by the RACLIST facility. FRACHECK is a branch entered service that does not
save registers upon entry. Registers 0-5, 14, and 15 are used by the FRACHECK macro
instruction and are not restored. Registers 6-13 are not altered by FRACHECK.

Note: For RACF release 1.6 and previous releases: Only callers in 24-bit addressing mode can
issue this macro. Callers executing in 31-bit addressing mode, who want to use the
FRACHECK function, can code the RACROUTE macro.

The standard form of the FRACHECK macro instruction is written as follows:

name

b

FRACHECK

b

ENTITY = entity addr

,CLASS = 'c/assname'
,CLASS = classname addr

,ATTR=READ
,ATTR = UPDATE
,ATTR = CONTROL
,ATTR = ALTER
,ATTR = reg:

,ACEE = acee addr

,WKAREA = area addr

,APPL = 'applname'
,APPL = applname addr

,INSTLN = parm list addr

,RELEASE = number

name: symbol. Begin name in column 1.

One or more blanks must precede FRACHECK.

One or more blanks must follow FRACHECK.

entity addr: A-type address or register (2) - (12).

classname: DASDVOL or TAPEVOL.
classname addr: A-type address or register (2) - (12).

reg: registers (2) - (12).
Default: ATTR = READ

acee addr: A-type address or register (2) - (12).

area addr: A-type address or register (2) - (12).

applname addr: A-type address or register (2) - (12).

parm list addr: A-type address or register (2) - (12).

number: 1.6 or 1.7
Default: RELEASE = 1.6

The parameters are explained as follows:

ENTITY = entity addr
specifies that RACF authorization checking is to be performed for the resource whose
name is pointed to by the specified address. The resource name is a 6-byte volume serial
number for CLASS = 'DASDVOL' or CLASS = 'T APEVOL'. The name must be left
justified and padded with blanks. The length of all other resource names is determined
from the class descriptor tables.

,CLASS = 'classname'
,CLASS = classname addr

specifies that RACF authorization checking is to be performed for a resource of the
specified class. If an address is specified, the address must point to an 8-byte field
containing the classname.

FRACHECK - Fast Path Resource Authorization Checking 201

,ATTR=READ
,ATTR=UPDATE
,ATTR=CONTROL
,ATTR=ALTER
,ATTR = (reg)

specifies the access authority required by the user or group accessing the resource:

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to read or write.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to
the VSAM control password. For non-V SAM data sets and other resources, RACF
user or group has UPDATE authority.

AL TER - RACF user or group has total control over the resource.

If a register is specified, the register must contain one of the following codes in the
low-order byte of the register:

X'02'-READ
X'04'-UPDATE
X'08'-CONTROL
X'80'-ALTER

,ACEE = acee addr
specifies the address of the accessor control environment element (ACEE) to be used to
check authorization and to locate the in-storage profiles (RACLIST output) for the
specified classes. If an ACEE is specified, it is used for authorization checking. If the
specified ACEE has an in-storage profile list for the specified class, it is used to locate the
resource. If an ACEE is not specified or if there is no in-storage profile list for the
specified class in the ACEE, RACF uses the TASK ACEE pointer in the extended TCB
called the TCBSENV. Otherwise, or if the TASK ACEE pointer is zero, RACF uses the
main ACEE to obtain the list of the in-storage profiles. The main ACEE is pointed to by
the ASXBSENV field of the address space extension block.

,WKAREA = area addr
specifies the address of a 16 word work area to be used by FRACHECK which contains
the following information:

Word 13 contains the return code the FRACHECK caller receives.

Word 14 contains the address of the in-storage profile used to determine
authorization, or zero if no profile was found.

Word 15 contains a value provided by a pre-processing installation exit, or zero if
there was no pre-processing exit.

Workarea words 13 and 14 are passed back to the FRACHECK issuer as a return code in
register 15 (see return codes below) and a profile address in register 1, respectively.

202 Supervisor Services and Macro Instructions

c

)

)

,APPL = 'applname'
,APPL = applname addr

specifies the name of the application requesting the authorization checking. This
information is not used for the authorization checking process but is made available to
the installation exit(s). If an address is specified, it should point to an 8-byte area
containing the application name, left justified and padded with blanks, if necessary.

,INSTLN = parm list addr
specifies the address of an area that contains information for the FRACHECK
installation exit. This address is passed to the exit routine when the exit is given control.
The INSTLN parameter is used by application or installation programs to pass
information to the FRACHECK installation exit.

,RELEASE = number
specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by the
macro processing. An error message will be issued at assembly time. For the parameters
that are valid for RELEASE = 1.6 and later, see Figure 58.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
FRACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

Parameters For RELEASE = 1.6 and Later

The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Parameter RELEASE = RELEASE =
1.6 1.7

ACEE= X X

APPL= X X

ATTR= X X

CLASS = X X

ENTITY = X X

INSTLN= X X

RELEASE = X X

WKAREA= X X

Figure 58. FRACHECK Parameters for RELEASE = 1.6 and Later

FRACHECK - Fast Path Resource Authorization Checking 203

Return Codes and Reason Codes

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 The user or group is authorized to use the resource.

04 The resource or classname is not defined to RACF.

08 The user or group is not authorized to use the resource.

OC RACF is not active.

10 FRACHECK installation exit error occurred.

14 RACF CVT does not exist (RACF is not installed or insufficient level of RACF is installed).

64 Indicates that the CHECK subparameter of the RELEASE keyword was specified on the execute form
of the FRACHECK macro; however, the list form of the macro does not have the proper RELEASE
parameter. Macro processing terminates.

FRACHECK examines the auditing and global auditing options currently in effect for the
resource for which access authority is being determined. It sets a reason code that indicates to
FRACHECK's caller if logging of the access attempt should be performed:

Hexadecimal
Code Meaning

00 The access attempt is not within the scope of the audit or global audit specification. No logging should
be performed. The user is either authorized or unauthorized for the resource as indicated by the
FRACHECK return code.

04 The access attempt is within the scope of the audit or global audit specification for that resource.
Logging of the attempt should be performed by issuing, for example, a RACHECK for the resource for
which authorization is being determined. RACHECK provides the necessary logging function. The user
is either authorized or unauthorized for the resource, as indicated by the FRACHECK return code.

204 Supervisor Services and Macro Instructions

c

)

)

FRACHECK (List Form)

The list form of the FRACHECK macro instruction is written as follows:

name

b

FRACHECK

b

ENTITY = entity addr

,CLASS = 'c/assname'
,CLASS = c/assname addr

,ATTR=READ
,ATTR=UPDATE
,ATTR = CONTROL
,ATTR = ALTER

,ACEE = acee addr

,WKAREA = area addr

,APPL = 'applname'
,APPL = applname addr

,INSTLN = parm list addr

,RELEASE = number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede FRACHECK.

One or more blanks must follow FRACHECK.

entityaddr: A-type address.

c/assname: DASDVOL or T APEVOL.
c/assname addr: A-type address.

Default: A TTR = READ

acee addr: A-type address.

area addr: A-type address.

applname addr: A-type address.

parm list addr: A-type address.

number: 1.6 or 1.7
Default: RELEASE = 1.6

The parameters are explained under the standard form of the FRACHECK macro instruction,
with the following exception:

,MF=L
specifies the list form of the FRACHECK macro instruction.

FRACHECK (List Form) 205

FRACHECK (Execute Form)

The execute form of the FRACHECK macro instruction is written as follows:

name name: symbol. Begin name in column 1.

o One or more blanks must precede FRACHECK.

FRACHECK

o One or more blanks must follow FRACHECK.

ENTITY = entity addr entity addr: RX-type address or register (2) - (12).

,CLASS = classname addr classname addr: RX-type address or register (2) - (12).

,ATTR = (reg) reg: register (2) - (12).

,ACEE = acee addr acee addr: RX-type address or register (2) - (12).

,WKAREA = area addr area addr: RX-type address or register (2) - (12).

,APPL = applname addr applname addr: RX-type address or register (2) - (12).

,INSTLN = parm list addr parm list addr: RX-type address or register (2) - (12).

,RELEASE = (number,CHECK) number: 1.6 or 1.7
,RELEASE = number Default: RELEASE = 1.6
,RELEASE = (,CHECK)

,MF = (E,ctrl addr) ctrl addr: RX-type address or register (1) - (12).

The parameters are explained under the standard form of the FRACHECK macro instruction,
with the following exception:

,MF= (E,ctrl addr)
specifies the execute form of the FRACHECK macro instruction, using a remote control
program parameter list.

,RELEASE = (number, CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

specifies the RACF release level of the parameter list to be generated by the is macro.

Certain parameters can be specified only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by the
macro processing. An error message will be issued at assembly time. For the parameters
that are valid for RELEASE = 1.6 and later, see Figure 58 on page 203.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
FRACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the execute
form of the macro, the execute form of the macro will not be done. Instead, a return
code of X'64' will be generated.

206 Supervisor Services and Macro Instructions

)

)

FREEMAIN - Free Virtual Storage

The FREEMAIN macro instruction releases one or more areas of virtual storage, or an entire
virtual storage subpool, previously assigned to the active task as a result of a GETMAIN
macro instruction. The active task is abnormally terminated if the specified virtual storage does
not start on a doubleword boundary or, for an unconditional request, if the specified area or
subpool is not currently allocated to the active task. Register 15 is set to 0 to indicate
successful completion. For a conditional FREEMAIN, register 15 is set to 4 if the specified
area or subpool is not currently allocated to the active task.

In the parameters discussed below, EU, LU, and VU specify unconditional requests and result
in the same processing as E, L, and V, respectively. The two formats for these requests are
available to maintain compatibility with the GETMAIN formats.

The standard form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC,LA = length addr
LU,LA=length addr
L,LA = length addr
VC
VU
V
EC,L V = length value
EU ,LV = length value
E,L V = length value
RC,L V = length value
RC,SP = subpool nmbr
RU,LV = length value
RU,SP=subpool nmbr
R,L V = length value
R,SP = subpool nmbr

,A = addr

,SP = sub pool nmbr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R, RC,
or RU is specified, register (0) may also be specified.
subpool nmbr: symbol, decimal digit 0-127, or register (2) - (12).
If R is specified, register (0) may also be specified.
Note: For subpool freemains, if the forms RC,SP = sub pool nmbr or
RU,SP=subpool nmbr or R,SP=subpool nmbr are specified, no other
parameters except RELATED may be specified. SP = must be specified
for subpool FREEMAINS; for other types of FREEMAIN, SP= is optional
and defaults to SP = O.
Note: RC and RU are the only parameters that can be used to free
storage above 16 Mb.

addr: A-type address, or register (2) - (12).
Note: If R, RC, or RU is coded, register (1) can also be specified.

subpool nmbr: symbol, decimal digit 0-127, or register (2) - (12). If R is
specified above, register (0) may also be specified.

value: any valid macro keyword specification.

FREEMAIN - Free Virtual Storage 207

The parameters are explained as follows:

LC,LA = length addr
LU,LA=length addr
L,LA = length addr
VC
VU
V
EC,L V = length value
EU,L V = lerzgth value
E,L V = length value
RC,L V = length value
RC,SP = subpool nmbr
RU,L V = length value
RU,SP = subpool nmbr
R,L V = length value
R,SP = subpool nmbr

specifies the type of FREEMAIN request:

LC, LV, and L indicate conditional (LC) and unconditional (LV and L) list requests, and
specify release of one or more areas of virtual storage. The length of each virtual storage
area is indicated by the values in a list beginning at the address specified in the LA
parameter. The address of each of the virtual storage areas must be provided in a
corresponding list whose address is specified in the A parameter. All virtual storage areas
must start on a doubleword boundary.

VC, VV, and V indicate conditional (VC) and unconditional (VV and V) variable
requests, and specify release of single areas of virtual storage. The address and length of
the virtual storage area are provided at the address specified in the A parameter.

EC, EV, and E indicate conditional (EC) and unconditional (EV and E) element requests,
and specify release of single areas of virtual storage. The length of the single virtual
storage area is indicated in the LV parameter. The address of the virtual storage area is
provided at the address indicated in the A parameter.

RC, RV, and R indicate conditional (RC) and unconditional (RV and R) register
requests, and specify release of single areas of virtual storage from the subpool indicated,
or specify release of the entire subpool indicated. If the release is not for the entire
subpool, the address of the virtual storage area is indicated in the A parameter. The
length of the area is indicated in the LV parameter. The virtual storage area must start
on a doubleword boundary.

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if the
virtual storage being freed is not allocated to the active task. However, A05-2 and
A78-2 abends cannot be prevented. An unconditional request indicates that the task is
to be abnormally terminated in this situation.

2. If the address of the area to be freed is greater than 16 Mb, you must use RC or RU.

3. Callers executing in either 24-bit or 31-bit addressing mode can use RC or RU to free
storage located above 16 Mb.

208 Supervisor Services and Macro Instructions

c

)

)

LA specifies the virtual storage address of one or more consecutive fullwords starting on a
fullword boundary. One word is required for each virtual storage area to be released; the
high-order bit in the last word must be set to 1 to indicate the end of the list. Each word
must contain the required length in the low-order three bytes. The fullwords in this list
must correspond with the fullwords in the associated list specified in the A parameter.
The words should not reside in the area to be released. If this rule is violated and if the
words are the last allocated items on a virtual page, the whole page is returned to storage
and the FREEMAIN abends with an OC4. The words must not overlap the virtual
storage area specified in the A parameter.

L V specifies the length, in bytes, of the virtual storage area being released. The value
should be a multiple of 8; if it is not, the control program uses the next high multiple of
8. If R is coded, LV = (0) may be designated; the high-order byte of register 0 must
contain the subpool"number, and the low-order three bytes must contain the length (in
this case, the SP parameter is invalid).

,A=addr
specifies the virtual storage address of one or more consecutive fullwords, starting on a
fullword boundary. The words should not reside within the area to be released. If this
rule is violated and if the words are the last allocated items on a virtual page, the whole
page is returned to storage and the FREEMAIN abends with an OC4. If E, Ee, EV, R,
RC, or RV is designated, one word, which contains the address of the virtual storage area
to be released, is required. If V, VC, or VU is coded, two words are required; the first
word contains the address of the virtual storage area to be released, and the second word
contains the length of the area. If L, LC, or LV is coded, one word is required for each
virtual storage area to be released; each word contains the address of one virtual storage
area. If R, RC, or RV is coded, any of the registers 1 through 12 can be designated, in
which case the address of the virtual storage area, not the address of the fullword, must
have previously been loaded into the register.

,SP = subpool nmbr
specifies the subpoo1 number of the virtual area to be released. The subpool number can
be between 0 and 127. The SP parameter is optional and if omitted, subpool 0 is
assumed. If R is coded, SP = (0) can be designated, in which case the subpoof number
must be previously loaded into the low-order byte of register O.

For subpoo1 freemains, the SP parameter specifies the number of the subpoo1 to be
released and the valid range is 1 through 127. Subpool zero cannot be released. If
R,SP = (0) is specified with no other parameters, the high-order byte of register 0 must
contain the subpoo1 number and the low-order 3 bytes must contain zero.

,RELATED = value
specifies information used to self-document macro instruCtions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

FREEMAIN - Free Virtual Storage 2{)9

Example 1

Example 2

Example 3

The RELATED parameter may be used, for example, as follows:

GETI

FREEl

GETMAIN

FREEMAIN

R,LV=4096,RELATED=(FREEl,
'GET STORAGE')

R,LV=4096,A=(1),
RELATED=(GETl'FREE STORAGE')

Note: Each of these macro instructions will fit on one line when coded, so there is no
need for a continuation indicator.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Virtual storage was freed.
04 Not all virtual storage was freed.

Operation: Free 400 bytes of storage from subpool 10, where the storage address is contained
in register 1. If the storage was allocated to the task, register 15 will contain 0 on return; if the
storage was not allocated to the task or was partially free, the status of the storage remains
unchanged, and a 4 is returned in register 15.

FREEMAIN RC,LV=400,A=(1) ,SP=lO

Operation: Free all of subpool 3 (if any) that belongs to the current task. A return will be
made to the caller even if there is no subpool 3 for the current task.

FREEMAIN RU,SP=3

Operation: Free from subpool 5 three areas of lengths 200, 800, and 32 previously obtained by
a list type GETMAIN which placed the addresses in AREADD. If any of these areas are not
allocated to the task, the task will be abnormally terminated.

FREEMAIN

LNTHLIST
AREAADD

LU,LA=LNTHLIST ,A=AREAADD, SP=5

DC F'200' ,F'800' ,X'80' ,FL3'32'
DS 3F

210 Supervisor Services and Macro Instructions

(

)

)

FREEMAIN (List Form)

Use the list form of the FREEMAIN macro instruction to construct a nonexecutable control
program parameter list.

The list form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC
LV
L
VC
VV
V
EC
EV
E

,LA = length addr
,LV = length value

,A=addr

,SP = subpool nmbr

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede FREE~AIN.

One or more blanks must follow FREE MAIN .

length addr: A-type address.
length value: symbol or decimal digit.
Note: LA may only be specified with LC, LV, or Labove.
Note: LV may only be specified with EC, EV, or E above.

addr: A-type address.

subpool nmbr: symbol or decimal digit 0-127.

value: any valid macro keyword specified.

The parameters are explained under the standard form of the FREEMAIN macro instruction,
with the following exception:

,MF==L
specifies the list form of the FREEMAIN macro instruction.

FREEMAIN (List Form) 211

FREEMAIN (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the FREEMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN.

The execute form the the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC
LV
L
VC

VV
V
EC
EV
E

,LA = length addr
,LV = length value

,A = addr

,SP = subpool nmbr

,RELATED = value

,MF = (E,ctrl prog)

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12).
Note: LA may only be specified with LC, LV, or Labove.
Note: LV may only be specified with EC, EV, or E above.

addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit 0-127, or register (2) - (12).

value: any valid macro keyword specified.

ctrl prog: RX-type address, or register (1) or (2).

The parameters are explained under the standard form of the FREEMAIN macro instruction,
with the following exception:

,MF = (E,ctrl prog)
specifies the execute form of the FREEMAIN macro instruction using a remote control
program parameter list.

212 Supervisor Services and Macro Instructions

c

)

)

GETMAIN - Allocate Virtual Storage

The GETMAIN macro instruction requests the control program to allocate one or more areas
of virtual storage to the active task. The virtual storage areas are allocated from the specified
subpool in the virtual storage area assigned to the associated job step. The virtual storage areas
each begin on a doubleword or page boundary and are not cleared to 0 when allocated. (The
storage is set to zero for the initial allocation of a page.) The total of the lengths specified must
not exceed the length available. For most subpools the storage will be released when the task
assigned ownership terminates, or through the use of the FREEMAIN macro instructions.

The options R, LC, LU, VC, VU, EC, or EU can be used by callers in either 24-bit or 31-bit
addressing mode. If one of these options is specified, storage area addresses and lengths will be
treated as 24-bit addresses and values. The parameter list addresses and the pointers to the
length and address lists in the parameter lists (if present) will be treated as 31-bit addresses if
the caller's addressing mode is 31-bit; otherwise, they will be treated as 24-bit addresses.

The options RU, RC, VRU, and VRC can be used by callers in either 24-bit or 31-bit
addressing mode. However, all values and addresses will be treated as 31-bit values and
addresses.

The standard form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC,LA = length addr ,A = addr
LU,LA=length addr,A =addr
VC,LA=length addr,A =addr
VU ,LA = length addr ,A = addr
EC,LV = length value,A =addr
EU ,LV = length value,A = addr
RC,L V = length value
R U ,LV = length value
R,LV = length value
VRC,L V = (maximum length value,
minimum length value)
VRU,LV=(maximum length value,
minimum length value

,SP = sub pool nmbr

,BNDRY=DBLWD
,BNDRY = PAGE

,LaC = BELOW
,LaC = (BELOW,ANY)
,LaC = (ANY)
,LaC = (ANY,ANY)
,LaC = RES
,LaC = (RES,ANY)

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R is
specified, register (0) may also be specified.
addr: A-type address, or register (2) - (12).
Note: RC, RU, VRC, or VRU must be used to allocate storage with
addresses greater than 16Mb.

maximum length value: symbol, decimal, digit, or register (2) - (12).

minimum length value: symbol, decimal, digit, or register (2) - (12).

sub pool nmbr: symbol, decimal digit 0-127, or register (2) - (12).
Note: Subpools are specified as follows:

• LC,LU,VC,VU,EC,EU,RC,RU,VRC, and VRU use the SP parameter.

• R with LV not equal to (0) uses the SP parameter.

• R with LV = (0) must use register O. The low-order three bytes of register
o must contain the length of the subpool, and the high-order byte must
contain the number of the subpool.

Default: BNDRY=DBLWD
Note: This parameter may not be specified with R a.bove.

Default: LOC = RES
Note: This parameter can only be used with RC, RU, VRC, or VRU.
On all other forms, the default, LaC = BELOW is used.

value: any valid macro keyword specification.

GETMAIN - Allocate Virtual Storage 213

The parameters are explained as follows:

LC,LA == length ad dr, A = addr
LU,LA == length addr,A = addr
VC,LA == length addr,A = addr
VU,LA == length addr,A = addr
EC,LV == length value,A = addr
EU,L V == length value,A = addr
RC,L V == length value
RU,L V = length value
R,L V == length value
VRC,L V == (maximum length value, minimum length value)
VRU,L V == (maximum length value, minimum length value)

specifies the type of GETMAIN request:

LC and LU indicate conditional (LC) and unconditional (LU) list requests and specify
requests for one or more areas of virtual storage. The length of each virtual storage area
is indicated by the values in a list beginning at the address specified in the LA parameter.
The address of each of the virtual storage areas is returned in a list beginning at the
address specified in the A parameter. No virtual storage is allocated unless all of the
requests in the list can be satisfied.

VC and VU indicate conditional (VC) and unconditional (VU) variable requests and
specify requests for single areas of virtual storage. The length of the single virtual storage
area is between the two values at the address specified in the LA parameter. The address
and actual length of the allocated virtual storage area are returned by the control program
at the address indicated in the A parameter.

EC and EU indicate conditional (EC) and unconditional (EU) element requests, and
specify requests for single areas of virtual storage. The length of the single virtual storage
area is indicated in the LV = length value parameter. The address of the allocated virtual
storage area is returned at the address indicated in the A parameter.

RC indicates a conditional register request, and Rand RU indicate unconditional register
requests. RC, RU, and R specify requests for single areas of virtual storage. The length
of the single virtual area is indicated in the LV = length value parameter. The address of
the allocated virtual storage area is returned in register 1. (R generates the SVC 10
calling sequence, whereas RU and RC generate the SVC 120 and associated parameter
format.)

VRC and VRU indicate variable register conditional (VRC) and unconditional (VRU)
requests for a single area of virtual storage. The length returned will be between the
maximum and minimum lengths specified by the parameter LV = (maximum length value,
minimum length value). The address of the allocated virtual storage is returned in register
1 and the length in register o.

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if virtual
storage is not allocated to the active task. An unconditional request indicates that the
task is to be abnormally terminated in this situation.

2. The LC, LU, VC, VU, EC, EU, and Rforms of the GETMAIN macro instruction can
only be used to obtain virtual storage with addresses below 16 Mb. The RC, RU, VRC,
and VRU forms of the GETMAIN macro instruction can be used to obtain virtual
storage when the addresses are above 16 Mb or when the addresses are below 16Mb.

214 Supervisor Services and Macro Instructions

)

)

LA specifies the virtual storage address of consecutive fullwords starting on a fullword
boundary. Each fullword must contain the required length in the low-order three bytes,
with the high-order byte set to o. The lengths should be multiples of 8; if they are not,
the control program uses the next higher multiple of 8. If VC or VV was coded, two
words are required. The first word contains the minimum length required, the second
word contains the maximum length. If LC or LV was coded, one word is required for
each virtual storage area requested; the high-order bit of the last word must be set to 1 to
indicate the end of the list. The list must not overlap the virtual storage area specified in
the A parameter.

LV = length value specifies the length, in bytes, of the requested virtual storage. The
number should be a multiple of 8; if it is not, the control program uses the next higher
multiple of 8. If R is specified, LV = (0) may be coded; the low-order three bytes of
register 0 must contain the length, and the high-order byte must contain the subpool
number. LV = (maximum length value, minimum length value) specifies the maximum and
minimum values of the length of the storage request.

A specifies the virtual storage address of consecutive fullwords, starting on a fullword
boundary. The control program places the address of the virtual storage area allocated in
one or more words. If E was coded, one word is required. If L was coded, one word is
required for each entry in the LA list. If V was coded, two words are required. The first
word contains the address of the virtual storage area, and the second word contains the
length actually allocated. The list must not overlap the virtual storage area specified in
the LA parameter.

,SP = subpool nmbr
specifies the number of the subpool from which the virtual storage area is to be allocated.
The subpool number must be a valid subpool number between 0 and 127.

,BNDRY=DBLWD
,BNDRY=PAGE

specifies that alignment on a doubleword boundary (DBLWD) or alignment with the start
of a virtual page on a 4K boundary (PAGE) is required for the start of a requested area.
If one of the following subpools 226, 233-235, 239, 245, or 253-255 is requested, the
BNDRY = PAGE keyword is ignored. Requests for storage from these subpools are
assigned from a single page, unless the request is greater than a page.

,LOC=BELOW
,LOC=(BELOW,ANY)
,LOC=ANY
,LOC = (ANY ,ANY)
,LOC=RES
,LOC = (RES,ANY)

specifies the location of virtual and real storage. When LOC is specified, real storage is
allocated anywhere until the storage is fixed. After the storage is fixed, virtual and real
storage are located in the following manner.

LOC = BELOW indicates that real and virtual storage are to be located below 16 Mb.

LOC=(BELOW,ANY) indicates that virtual storage is to be located below 16 Mb and
real storage can be located anywhere.

LOC = ANY and LOC = (ANY,ANY) indicates that virtual and real storage can be
located anywhere.

GETMAIN - Allocate Virtual Storage 215

Note: The LOC parameter is not valid for fixed subpools. For fixed subpools the actual
location of the virtual storage area depends on the subpool specified. If the subpool is
supported (backed) above 16 megabytes, GETMAIN attempts to locate the virtual
storage area above 16 megabytes. If this is not possible, GETMAIN locates the virtual
storage below 16 megabytes. LSQA subpools will be backed anywhere regardless of the
LOC parameter.

LOC = RES indicates that the location of virtual and real storage depends on the location
of the caller. If the caller resides below 16 Mb, virtual and real storage are to be located
below 16 Mb; if the caller resides above 16 Mb, virtual and real storage are to be located
anywhere.

LOC = (RES,ANY) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 Mb, virtual storage is to be located
below 16 Mb; if the caller resides above 16 Mb, virtual storage can be located anywhere.
In either case, real storage can be located anywhere.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

The RELATED parameter may be used, for example, as follows:

GETI GETMAIN

FREEl FREEMAIN

R,LV=4096,RELATED=(FREEl,
'GET STORAGE')

R,LV=4096,A=(1),RELATED=(GETl,
'FREE STORAGE')

Note: Each of these macro instructions will fit on one line when coded, so there is no
need for a continuation indicator.

When control is returned, for conditional type requests (LC, EC; VC, RC, and VRC) register
15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Virtual storage requested was allocated.
04 The request could not be satisfied because of insufficient virtual storage.

The contents of registers 0, 1, and 15 are not preserved when the GETMAIN macro instruction
is issued.

216 Supervisor Services and Macro Instructions

(

Example 1

Example 2

Example 3

)

)

Operation: Obtain 400 bytes of storage from subpool10. If the storage is available, the
address will be returned in register 1 and register 15 will contain 0; if virtual storage is not
available, register 15 will contain 4.

GETMAIN RC,LV=400,SP=lO

Operation: Obtain 48 bytes of storage from default subpool o. If the storage is available, the
address will be stored in the word at AREAADDR; if the virtual storage is not available, the
task will be abnormally terminated.

GETMAIN EU,LV=48,A=AREAADDR

AREAADDR DS F

Operation: Obtain a maximum of 4096 or a minimum of 1024 bytes of virtual storage, with
addresses above or below 16 Mb. Indicate that if the real storage is fixed, it should also be
located above or below 16 Mb. If the storage is available, the address will be returned in
register 1 and the length of the storage allocated will be returned in register 0; if the storage is
not available, the task will be terminated.

GETMAIN VRU,LV=(4096,1024),LOC=ANY

GETMAIN - Allocate Virtual Storage 217

GETMAIN (List Form)

Use the list form of the GETMAIN macro instruction to construct a control program
parameter list.

The list form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC
LV
VC
VV
EC
EV

,LA = length addr
,LV = length value

,A=addr

,SP = subpool nmbr

,BNDRY=DBLWD
,BNDRY = PAGE

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address.
length value: symbol or decimal digit.
Note: LA may only be specified with EC or EV above.
Note: LV may only be specified with LC, LV, or VV above.

addr: A-type address.

subpool nmbr: symbol or decimal digit 0-127.

Default: BNDRY=DBLWD

value: any valid macro keyword specified.

The parameters are explained under the standard form of the GETMAIN macro instruction,
with the following exception:

,MF=L
specifies the list form of the GETMAIN macro instruction.

218 Supervisor Services and Macro Instructions

(

)

)

GETMAIN (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the GETMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN.

The execute form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC
LV
VC
VV
EC
EV

,LA = length addr
,LV = length value

,A=addr

,SP = subpool nmbr

,BNDRY=DBLWD
,BNDRY = PAGE

,RELATED = value

,MF = (E,etrl prog)

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12).
Note: LA may only be specified with EC or EV above.
Note: LV may only be specified with LC, LV, VC, or VV above.

addr: RX-type address, or register (2) - (12).

sub pool nmbr: symbol, decimal digit 0-127, or register (2) - (12).

Default: BNDRY=DBLWD

value: any valid macro keyword specified.

etrl prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the GETMAIN macro instruction,
with the following exception:

,MF = (E,ctri prog)
specifies the execute form of the GETMAIN macro instruction using a remote control
program parameter list.

GETMAIN (Execute Form) 219

IDENTIFY - Add an Entry Name

The IDENTIFY macro instruction is used to add an entry name to a copy of a load module
currently in virtual storage. The copy must be one of the following:

• A copy that satisfied the requirements of a LOAD macro instruction issued during the
execution of the current task.

• The last load module given control, if control was passed to the load module using a
LINK, ATTACH, or XCTL macro instruction.

The IDENTIFY macro instruction may not be issued by an asynchronous exit routine.
Normally, the IDENTIFY macro assigns the identified entry point as reentrant. A user issuing
this macro should be sure that his program is reenterable, otherwise, results are unpredictable.

An exception is the case of a non-authorized user identifying a module from an authorized
library. In this case, the identified entry point is assigned the same attributes (reentrant, serially
reusable, non-reusable, load only) as the main entry point. If the program is marked
non-reusable, an ABEND 806 with a return code of four may result. The user should ensure
that the program issuing this macro is reentrant or serially reusable if this exception applies.

IDENTIFY services sets the addressing mode of the entry name that was added equal to the
addressing mode of the major entry name. The system assigns the major entry name according
to how the load module was constructed.

• If the load module was constructed using the linkage editor (and brought into virtual
storage via program fetch or virtual fetch), the major entry name is the name of the load
module in the partitioned data set directory (not an alias to that member).

• If the load module was brought into storage by the loader, the major entry name is either
the name that the user provided as input to the loader or the name that the loader used as
a default. See the NAME = parameter in the LOADER section of Linkage Editor and
Loader for information about how to specify this name.

Note: You can override the addressing mode of the entry name by using the AM ODE
parameter in the P ARM field of the EXEC JCL statement.

If an authorized caller creates an entry name for a module in the pageable link pack area,
IDENTIFY services places an entry for the alias on the active link pack area queue. If an
unauthorized caller creates an entry name for a module in the pageable link pack area,
IDENTIFY services places an entry for the alias on the task's job pack queue.

The IDENTIFY macro instruction is written as follows:

name

b

IDENTIFY

b

EP = entry name
EPLOC = entry name addr

,ENTRY = entry addr added

name: symbol. Begin name in column 1.

One or more blanks must precede IDENTIFY.

One or more blanks must follow IDENTIFY.

entry name: symbol
entry name addr: RX-type address, or register (0) or (2) - (12).

entry addr added: RX-type address, or register (1) or (2) - (12).

220 Supervisor Services and Macro Instructions

c

)

Example 1

)

The parameters are explained as follows:

EP = entry name
EPLOC = entry name addr

specifies the entry name or address of the entry name. The name does not have to
correspond to any symbol or name in the load module, and must not correspond to any
name, alias, or added entry name for a load module in the link pack area queue, or the
job pack area of the job step. If EPLOC is coded, the name must be padded to eight
bytes, if necessary.

,ENTRY = entry addr added
specifies the virtual storage address of the entry point being added.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Successful completion of requested function.

04 Entry name and address already exist.

08

OC

10

14

18

lC

24

28

Entry name duplicates the name of a load module currently in virtual storage; entry address was not
added.

Entry address is not within an eligible load module; entry address was not added.

Request issued by an asynchronous exit routine; entry address was not added.

LINK, LOAD, XCTL, ATTACH, or IDENTIFY request was previously issued using the same entry
name but a different address; current request was ignored.

Parameter list is invalid or is not on a word boundary.

Extent list length is not positive or a multiple of 8, or extent address is not on a double word boundary,
is not addressable, or is not in caller's region.

Unexpected system error.

EPLOC address is fetch protected.

Operation: Add an entry name (PGMT AL2A) to a load module in virtual storage. Register 3
contains the entry point address.

IDENTIFY EP=PGMTAL2A,ENTRY=(R3)

IDENTIFY - Add an Entry Name 221

LINK - Pass Control to a Program in Another Load Module

If your program is to execute in 31-bit addressing mode, you must use the MVSjXA version of
this macro instruction.

The LINK macro instruction is used to pass control to a specified entry name in another load
module; the entry name must be a member name or an alias in a directory of a partitioned data
set (PDS) or must have been specified in an IDENTIFY macro instruction. The load module
containing the program is brought into virtual storage if a usable copy is not available.

LINK processing handles the setting of the addressing mode when passing control. The called
program is given control in the addressing mode indicated in its PDS directory entry. On entry
to the called program, the high-order bit, bit 0, of register 14 is set to indicate the addressing
mode of the issuer of the LINK macro. If bit 0 is 0, the issuer is executing in 24-bit addressing
mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode. This makes it possible to
return control to the calling program in the addressing mode in which it was executing.

The problem program optionally can provide a parameter list to be passed to the called
program. If the called program terminates abnormally, or if the specified entry point cannot be
located, the task is abnormally terminated.

The standard form of the LINK macro instruction is written as follows:

name

b

LINK

b

EP = entry name
EPLOC = entry name addr
DE=/ist entry addr

,DCB = deb addr

,PARAM = (addr)
,PARAM=(addr),VL= 1

,ID=id nmbr

,ERRET = err rtn addr

,LSEARCH = NO
,LSEARCH = YES

name: symbol. Begin name in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

entry name: symbol
entry name addr: A-type address, or register (2) - (12).
list entry addr: A-type address, or register (2) - (l2).

deb addr: A-type address, or register (2) - (l2).

addr: A-type address, or register (2) - (l2).
Note: addr is one or more addresses, separated by commas. For example,
(addr ,addr ,addr)

id nmbr: symbol or decimal digit, with a maximum value of 4095.

err rtn addr: A-type address, or register (2) - (l2).

Default: No

The parameters are explained as follows:

EP = entry name
EPLOC = entry name addr
DE = list entry addr

specifies the entry name, the address of the entry name, or the address of the name field
in a 60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary. If
an unauthorized program issues the LINK macro instruction and the DE parameter
specifies an entry in an authorized library, the program-supplied DE information is
ignored for integrity reasons. Instead, contents management uses the BLDL macro
instruction to construct a new list entry containing the DE information for the LINK.

222 Supervisor Services and Macro Instructions

)

)

Note: The task structure must not be changed via an ATTACH or DETACH between
the issuance of the BLDL and the issuance of the ATTACH for the module, or an abend
106 with a return code of 15 might result. The DE information supplied by an
unauthorized program will also be ignored if the LINK macro instruction is requesting
access to a program or library that is controlled by the System Authorization Facility.

,DCB = deb addr
specifies the address of the opened data control block for the partitioned data set
containing the entry name described above. This parameter must indicate the same DCB
used in the BLDL mentioned above.

If the DCB parameter is omitted or if DCB = 0 is specified when the LINK macro
instruction is issued by the job step task, the data sets referred to by either the STEP LIB
or JOBLIB DD statement are first searched for the entry point name. If the entry point
name is not found, the link library is searched.

If the DCB parameter is omitted or if DCB = 0 is specified when the LINK macro
instruction is issued by a subtask, the data sets associated with one or more data control
blocks referred to by the T ASKLIB operand of previous ATTACH macro instructions in
the subtasking chain are first searched for the entry point name. If the entry point name
is not found, the search is continued as if LINK had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,P ARAM = (addr)
,P ARAM = (addr), VL = 1

specifies address(es) to be passed to the called program. Each address is expanded inline
to a fullword on a fullword boundary, in the order designated. Register 1 contains the
address of the first parameter when the program is given control. (If this parameter is not
coded, register 1 is not altered unless the execute form of the LINK macro instruction is
coded.)

VL = 1 should be designated only if the called program can be passed a variable number
of parameters. VL = 1 causes the high-order bit of the last address parameter to be set to
1; the bit can be checked to find the end of the list.

,ID=id nmbr
specifies an identifier useful for debugging purposes only. The last fullword of the macro
expansion is a NOP instruction containing the identifier value in bytes 3 and 4.

,ERRET = err rtn addr
specifies the address of a routine to receive control when an error condition that would
cause an abnormal termination of the task is detected. Register I contains the abend
code that would have resulted had the task abended. The routine does not receive control
when input parameter errors are detected.

,LSEARCH = NO
,LSEARCH = ,YES

specifies whether (YES) or not (NO) the search is to be limited to the job pack area and
the first library in the normal search sequence.

~INK - Pass Control to a Program in Another Load Module 223

Example 1

Example 2

Operation: Pass control to a specified entry name (PGMLKRUS) in another load module. Let
the system find the module from available libraries.

LINK EP=PGMLKRUS

Operation: Pass control to a specified entry name (pGMA) in another load module, specifying
(in registers 4, 6, 8) three addresses to be passed to the called program.

LINK EP=PGMA,PARAM=«4),(6),(8»

224 Supervisor Services and Macro Instructions

(

)

)

LINK (List Form)

Two parameter lists are used in a LINK macro instruction: a control program parameter list
and problem program parameter list. Only the control program parameter list can be
constructed in the list form of LINK. Address parameters to be passed in a parameter list to
the problem program can be provided using the list form of CALL. This parameter list can be
referred to in the execute form of LINK.

The list form of the LINK macro instruction is written as follows:

name

b

LINK

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,ERRET = err rtn addr

,LSEARCH = NO
,LSEARCH = YES

,SF=L

name: symbol. Begin name in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

entry name: symbol
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

err rtn addr: A-type address.

Default: No

The parameters are explained under the standard form of the LINK macro instruction, with the
following exception:

,SF=L
specifies the list form of the LINK macro instruction.

Notes:

1. Coding the LSEARCH parameter causes a parameter list to be created that is different from
the list created when LSEARCH is omitted. If you code LSEARCH in either the list or
execute form of the macro instruction, you must code it in both forms.

2. If ERRET is coded in the list form and not specified in the execute form, the error routine
specified in the list form will be retained and used in the execute form of the macro
instruction. If ERRET is specified in both the list and the execute form, the error routine
specified in the execute form of the macro instruction will be used.

LINK (List Form) 225

LINK (Execute Form)

Two parameter lists are used in a LINK macro instruction: a control program parameter list
and an optional problem program parameter list. Either or both of these lists can be remote
and can be referred to and modified by the execute form of LINK. If only one of the
parameter lists is remote, parameters that require use of the other parameter list cause that list
to be, constructed inline as part of the macro expansion.

The execute form of the LINK macro instruction is written as follows:

name

b

LINK

b

EP = entry name
EPLOC = entry name addr
DE=/ist entry addr

,DCB = dcb addr

,PARAM = (addr)
,PARAM=(addr),VL= 1

,ID=id nmbr

,ERRET = err rln addr

,LSEARCH = NO
,LSEARCH = YES

,MF=(E,prob addr)
,SF = (E,etrl addr)
,MF=(E,prob addr),SF=(E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

entry name: symbol.
entry name addr: RX-type address or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

addr: RX-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For example,
(addr ,addr ,addr)

id nmbr: symbol or decimal digit, with a maximum value of 4095.

err rln addr: RX-type address or register (2) - (12).

Default: No

prob addr: RX-type address, or register (1) or (2) - (12).
ctrl addr: RX-type address, or register (2) - (12) or (15).

The parameters are explained under the standard form of the LINK macro instruction, with the
following exceptions:

,MF == (E,prob addr)
,SF == (E,ctrl addr)
,MF == (E,prob addr),SF == (E,ctrl addr)

specifies the execute form of the LINK macro instruction. This form uses a remote
problem program parameter list, a remote control program parameter list, or both.

Notes:

1. Coding the LSEARCH parameter causes a parameter list to be created that is different from
the list created when LSEARCH is omitted. If you code LSEARCH in either the list or the
execute form of the macro instruction, you must code it in both forms.

2. If ERRET is coded in the list form and not specified in the execute form, the error routine
specified in the list form will be retained and used in the execute form of the macro
instruction. If ERRET is specified in both the list and the execute form, the error routine
specified in the execute form of the macro instruction will be used.

226 Supervisor Services and Macro Instructions

c

)

)

LOAD - Bring a Load Module into Virtual Storage

The LOAD macro instruction is used to bring the load module containing the specified entry
name into virtual storage, if a usable copy is not available in virtual storage.

LOAD services places the load module in storage above or below the 16 megabyte line
depending on the module's RMODE, which is specified in the partitioned data set's directory
entry for the module.

The responsibility count for the load module is increased by one. On output, the high-order
byte of register 1 contains the authorization code of the loaded module and the low three bytes
contain the module's length in doublewords. Control is not passed to the load module; instead,
the virtual storage address of the designated entry point is returned in register O. The load
module remains in virtual storage until the responsibility count is reduced to 0 through task
terminations or until the effects of all outstanding LOAD requests for the module have been
canceled (using the DELETE macro instruction), and there is no other requirement for the
module.

LOAD services sets the high order bit of the entry point address in register 0 to indicate the
module's AMODE, which is obtained from the partitioned data set's directory entry for the
module. If the module's AMODE is 31, it sets the indicator to 1; if the module's AMODE is
24, it sets the indicator to 0; and if the module's AMODE is ANY, it sets the indicator to
correspond to the caller's AMODE.

The entry name in the load module must be a member name or an alias in a directory of a
partitioned data set or must have been specified in the IDENTIFY macro instruction. If the
entry name was previously specified in an IDENTIFY macro instruction, no attempt is made to
bring in an additional copy of the module. If the specified entry name cannot be located, the
task is abnormally terminated.

The LOAD macro instruction is written as follows:

name

b

LOAD

b

EP = entry name
EPLOC = entry name addr

DE = list entry addr

,DCB = deb addr

,ERRET = err rtn addr

,LSEARCH = NO
,LSEARCH = YES

,LOADPT = addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
entry name addr: If LSEARCH or LOADPT is specified, A-type address or
register (2) - (12); otherwise, RX-type address or register (0) or (2) - (12).
list entry addr: If LSEARCH or LOADPT is specified, A-type address or
register (2) - (12); otherwise, RX-type address, or register (2) - (12).

deb addr: If LSEARCH or LOADPT is specified, A-type address or register
(2) - (12); otherwise, RX-type address, or register (1) or (2) - (12).

err rtn addr: RX-type address or register (2) - (12).

Default: No

addr: A-type address or register (2) - (12).

value: any valid macro keyword specification.

LOAD - Bring a Load Module into Virtual Storage 227

The parameters are explained as follows:

EP = entry name
EPLOC = entry name addr
DE = list entry addr

specifies the entry name, the address of the name, or the address of the name field in a
60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

If an unauthorized program issues the LOAD macro instruction and the DE parameter
specifies an entry in an authorized library, the program-supplied DE information is
ignored for integrity reasons. Instead, contents management uses the BLDL macro
instruction to construct a new list entry containing the DE information for the LOAD.
TheDE information supplied by an unauthorized program will also be ignored if the
LOAD macro instruction is requesting access to a program or library that is controlled by
the System Authorization Facility.

Note: The task structure must not be changed via an ATTACH or DETACH between
the issuance of the BLDL and the issuance of the ATTACH for the module, or an abend
106 with a return code of 15 might result.

,DCB = deb addr
specifies the address of the opened data control block for the partitioned data set
containing the entry name described above. This parameter must indicate the same DCB
used in the BLDL mentioned above.

If the DCB parameter is omitted or if DCB =0 is specified when the LOAD macro
instruction is issued by the job step task, the data sets referred to by either the STEPLIB
or JOBLIB DD statement are first searched for the entry name. If the entry name is not
found, the link library is searched.

If the DCB parameter is omitted or if DCB = 0 is specified when the LOAD macro
instruction is issued by a sub task, the data sets associated with one or more data control
blocks referred to by the T ASKLIB operand of previous ATTACH macro instructions in
the subtasking chain are first searched for the entry name. If the entry name is not found,
the search is continued as if the LOAD had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,ERRET = err rtn addr
specifies the address of a routine to receive control when an error condition that would
cause an abnormal termination of the. task is detected. Register 1 contains the abend
code that would have resulted had the task abended, and register 15 contains the reason
code that is associated with the abend. The routine does not receive control when input
parameter errors are detected.

,LSEARCH=NO
,LSEARCH = YES

specifies whether (YES) or not (NO) the search is to be limited to the job pack area and
the first library in the normal search sequence.

,LOADPT = addr
specifies that the starting address at which the module was loaded is to be returned to the
caller at the indicated address.

228 Supervisor Services and Macro Instructions

(

Example 1

)
Example 2

)

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

The RELATED parameter may be used, for example, as follows:

LOAD 1

DELl

LOAD

DELETE

EP=APGIOHKl , RELATED= (DELl,
'LOAD APGIOHK1')

EP=APGIOHK1,RELATED=(LOAD1,
'DELETE APGIOHK1')

Note: Each of these macro instructions will fit on one line when coded, so there is no
need for a continuation indicator.

Operation: Bring a load module containing a specified entry name (PGMLKRUS) into virtual
storage. Let the system find the module from available libraries.

LOAD EP=PGMLKRUS

Operation: Bring a load module containing the entry name EPNAME into virtual storage.
Indicate that register 7 contains the address of the DCB associated with the partitioned data set
that contains this load module. Return the load address of the requested module in the
location pointed to by register 8. If an error occurs during this processing, transfer control to
the error routine located at ERRADDR.

LOAD EP=EPNAME,DCB=(7) ,LOADPT=(8),ERRET=ERRADDR

LOAD - Bring a Load Module into Virtual Storage 229

LOAD (List Form)

The list form of the LOAD macro instruction builds a non-executable problem program
parameter list that can be referred to or modified by the execute form of the LOAD macro
instruction.

The list form of the LOAD macro instruction is written as follows:

name

b

LOAD

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LSEARCH = NO
,LSEARCH = YES

,LOADPT = addr

,RELATED = value

,SF=L

name: symbol. Begin name in column 1.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

Default: No

addr: A-type address.

value: any valid macro keyword specification.

The parameters are explained under the st~ndard form of the LOAD macro instruction with the
following exception:

,SF=L
specifies the list form of the LOAD macro instruction.

230 Supervisor Services and Macro Instructions

(

)

LOAD (Execute Form)

The execute form of the LOAD macro instruction can refer to and modify the parameter list
constructed by the list form of the macro instruction.

The execute form of the LOAD macro instruction is written as follows:

name

b

LOAD

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,ERRET = err rtn addr

,LSEARCH = NO
,LSEARCH = YES

,LOADPT = addr

,RELATED = value

,SF = (E,list addr)

name: symbol. Begin name in column 1.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
entry name addr: RX-type address, or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

err rtn addr: RX-type address, or register (2) - (12).

Default: No

addr: RX-type address or register (2) - (12).

value: any valid macro keyword specification.

list addr: RX-type address or register (2) - (12) or (15).

The parameters are explained under the standard form of the LOAD macro instruction with the
following exception:

,SF = (E,list addr)
specifies the execute form of the LOAD macro instruction.

LOAD (Execute Form) 231

PGLOAD - Load Virtual Storage Areas into Real Storage

The PGLOAD macro instruction is used to load specified virtual storage areas into real storage
in anticipation of future needs. That is, PGLOAD is essentially a page-ahead function. The
PGLOAD macro instruction performs this function for virtual addresses below 16 Mb; the
LOAD option of the PGSER macro instruction performs the same function for virtual
addresses either above or below 16 Mb. Note, however, that a page that has been loaded via
PGLOAD is eligible for page-out selection in the same manner as a page that has been
demand-paged into real storage.

The misuse of this function can have adverse effects on system performance. Causing
unnecessary pages to be brought into real storage will force more useful pages to be displaced
and, consequently, cause unnecessary paging activity. Proper use of this function, however, will
tend to decrease system overhead resulting from page faults.

The standard form of the PGLOAD macro instruction is written as follows:

name

b

PGLOAD

b

R

,A = start addr

,ECB = ecb addr

,EA = end addr

,RELEASE=N
,RELEASE=Y

name: symbol. Begin name in column 1.

One or more blanks must precede PGLOAD.

One or more blanks must follow PGLOAD.

start addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1

Default: RELEASE = N
Note: RELEASE = Y may only be specified with EA above.

The parameters are explained as follows:

R
specifies that no parameter list is being supplied with this request.

,A = start addr
specifies the start address of the virtual area to be loaded.

,ECB = ecb addr
specifies the address of an ECn that is used to signal event completion.

,EA = end addr
specifies the end address + 1 of the virtual area to be loaded.

,RELEASE=N
,RELEASE=Y

specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

232 Supervisor Services and Macro Instructions

Example 1

)
Example 2

Example 3

)

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Operation completed normally; ECB posted complete.
08 Operation proceeding; ECB will be posted when all page-ins are complete.

If control is not returned, an ABEND is issued with the following reason codes in register 15:

Hexadecimal
Code Meaning

10 Virtual subarea list entry or ECB address invalid. No ECB is posted.

If the ECB parameter is coded, the ECB is unchanged if the request was initiated but not
complete (return code 8), or if an ABEND was issued with return code 10. Otherwise, the ECB
is posted complete with code

0- Operation completed successfully.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has
completed, with code

0- Operation completed successfully.

Operation: Page-in a single byte of virtual storage, causing the entire 4096-byte page
containing that byte to be paged into real storage.

PGLOAD R,A=(R3)

Operation: Page-in the virtual storage lying in the range addressed by registers 3 and 4, and
notify the requestor via posting of the ECB when the page-ins are complete.

PGLOAD R,A=(R3),EA=(R4),ECB=(R5)

Operation: Discard the contents of the virtual pages totally encompassed by START AD and
ENDAD before new real storage frames are assigned.

PGLOAD R,A=STANDARD,EA=ENDAD,RELEASE=Y

PGLOAD - Load Virtual Storage Areas into Real Storage 233

PGLOAD (List Form)

The list form of the PGLOAD macro instruction uses a virtual subarea list.

The list form of the PGLOAD macro instruction is written as follows:

name

b

PGLOAD

b

L

,LA=/ist addr

,ECB = ecb addr

,RELEASE=N
,RELEASE=Y

name: symbol. Begin name in column 1.

One or more blanks must precede PGLOAD.

One or more blanks must follow PGLOAD.

list addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) - (2) or (15).

Default: RELEASE = N

The parameters are explained under the standard form of the PGLOAD macro instruction, with
the following exceptions:

L
specifies that a parameter list is being supplied with this request.

,LA = list addr
specifies the address of the first entry of a virtual subarea list.

234 Supervisor Services and Macro Instructions

)

)

PGOUT - Page Out Virtual Storage Areas from Real Storage

The PGOUT macro instruction is used to initiate page-out operations for specified virtual
storage areas that are in real storage. The PGOUT macro instruction performs this function
for virtual addresses below 16 Mb; the OUT option of the PGSER macro instruction performs
the same function for virtual addresses either above or below 16 Mb. The PGOUT function is
complementary to the PGLOAD function. You have the option of specifying that the virtual
pages to be paged out either remain valid in real storage or be marked invalid and the real
frames assigned to them be made available for reuse. The use of this option will not prevent
page faults from occurring on the specified storage.

The misuse of this function, like the misuse of the PGLOAD function, can have adverse effects
on system performance. On the other hand, proper use of this function will tend to clean out
of real storage those pages no longer needed for program execution or not required for some
period in the future.

The standard form of the PGOUT macro instruction is written as follows:

name

b

PGOUT

b

R

,A = start addr

,EA = end addr

,KEEPREL=N
,KEEPREL=Y

name: symbol. Begin name in column 1.

One or more blanks must precede PGOUT.

One or more blanks must follow PGOUT.

start addr: A-type address, or register (1) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).

Default: KEEPREL = N

The parameters are explained as follows:

R
specifies that no parameter list is being supplied with this request.

,A = start addr
specifies the start address of the virtual area to be paged out.

,EA = end addr
specifies the end address + 1 of the virtual area to be paged out.

,KEEPREL=N
,KEEPREL=Y

specifies that the virtual pages will be marked invalid and the real storage frames freed for
reuse (N) or that the virtual pages will not be invalidated (Y).

PGOUT - Page Out Virtual Storage Areas from Real Storage 235

Example 1

Example 2

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Operation completed normally; paging I/O proceeding asynchronously.

OC One or more pages specified to be paged out were not paged out. Either the pages were in the nucleus
in unusable real frames, in SQA or LSQA, in V = R area allocated region, were page fixed, or the system
resources necessary to perform the page out operations were momentarily unavailable. Paging I/O is
proceeding normally for all other pages.

10 Operation abnormally terminated. Virtual subarea list entry invalid.

Operation: Page-out the area of real storage totally encompassed by the start and end virtual
boundaries specified.

PGOUT R,A=(R3),EA=(R4)

Operation: Create an auxiliary storage copy of a virtual area before continuing to use the area.
The area will remain in real storage after the page-outs complete.

PGOUT R,A=(R3) ,EA=(R4),KEEPREL=Y

236 Supervisor Services and Macro Instructions

c

)

PGOUT (List Form)

The list form of the PGOUT macro instruction uses a virtual subarea list.

The list form of the PGOUT macro instruction is written as follows:

name

b

PGOUT

b

L

,LA = list addr

,KEEPREL=N
,KEEPREL=Y

name: symbol. Begin name in column 1.

One or more blanks must precede PGOUT.

One or more blanks must follow PGOUT.

list addr: A-type address, or register (1) or (2) - (12).

Default: KEEPREL = N

The parameters are explained under the standard form of the PGOUT macro instruction, with
the following exceptions:

L
specifies that a parameter list is being supplied with this request.

,LA = list addr
specifies the address of the first entry of a virtual subarea list (VSL). See the topic
"Virtual Subarea List (VSL)" in Part I for a description of the VSL.

PGOUT (List Form) 237

PGRLSE - Release Virtual Storage Contents

The PGRLSE macro instruction is used to release to the system all real storage and auxiliary
storage associated with specified page able virtual storage areas. The PGRLSE macro
instruction performs this function for virtual addresses below 16 Mb; the RELEASE option of
the PGSER macro instruction performs the same function for virtual addresses either above or
below 16 Mb. Use PGRLSE when a large area (one or more complete pages) of virtual storage
within your program no longer has significant contents.

Functionally, PGRLSE is equivalent to a FREEMAIN macro instruction followed by a
GETMAIN macro instruction. That is, the virtual space is maintained, but the data is
discarded. When the page(s) being released is next referred to, that page is cleared to zeros.
Thus, you can help reduce system overhead by releasing virtual storage when you no longer
need it.

Proper use of this function can increase the amount of storage available to the system and
prevent needless paging I/O activity. Usage of PGRLSE may improve operating efficiency
when the using program can discard the contents of a large virtual storage area and reuse the
virtual storage pages; paging operations may be eliminated for those virtual storage pages when
they are reused.

The standard form of the PG RLSE macro instruction is written as follows:

name

b

PGRLSE

b

LA=lowaddr

,HA = high addr

name: symbol. Begin name in column 1.

One or more blanks must precede PG RLSE.

One or more blanks must follow PGRLSE.

low addr: A-type address, or register (0) or (2) - (12).

high addr: A-type address, or register (1) or (2) - (12).

The parameters are explained as follows:

LA = low addr
specifies the address of the lower boundary of the area to be released.

,HA = high addr
specifies the address of the upper boundary + 1 of the area to be released.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Successful completion.

04 Execution failed. The area specified, or a portion of the area, is protected from the requesting program.·
Any valid portion of the area preceding the protected area is released.

238 Supervisor Services and Macro Instructions

Example 1

Example 2

)

Operation: Release the contents of the pages included within the specified areas. Only those
pages fully encompassed will be nullified.

PGRLSE LA=(R4),HA=(RS)

Operation: Perform the operation in Example 1, but use A-type addresses.

PGRLSE LA=LOWADDR,HA=HIGHADDR

PGRLSE - Release Virtual Storage Contents 239

PGRLSE (List Form)

The list form of the PGRLSE macro instruction is used to construct a control program
parameter list.

The list form of the PGRLSE macro instruction is written as follows:

name

b

PGRLSE

b

LA = low addr,

HA = high addr,

MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede PGRLSE.

One or more blanks must follow PGRLSE.

lowaddr: A-type address.

high addr: A-type address.

The parameters are explained under the standard form of the PGRLSE macro instruction, with
the following exception:

MF=L
specifies the list form of the PGRLSE macro instruction.

240 Supervisor Services and Macro Instructions

)

PGRLSE (Execute Form)

A remote control program parameter list is referred to, and can be modified by, the execute
form of the PGRLSE macro instruction.

The execute form of the PGRLSE macro instruction is written as follows:

name

b

PGRLSE

b

LA = low addr,

HA=high addr,

MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede PGRLSE.

One or more blanks must follow PGRLSE.

low addr: A-type address, or register (0) or (2) - (12).

high addr: A-type address, or register (1) or (2) - (12).

ctrl addr: RX-type address, or register (2) - (12).

The parameters are explained under the standard form of the PGRLSE macro instruction, with
the following exception:

MF = (E,ctrl addr)
specifies the execute form of the PGRLSE macro instruction using a remote control
program parameter list.

PGRLSE (Execute Form) 241

PGSER - Page Services

The PGSER macro instruction performs the same paging services as PGLOAD, PGOUT, and
PGRLSE. PGSER performs these services for addresses either above or below 16 Mb.

The services are:

• Page load equivalent to PGLOAD
• Page out equivalent to PGOUT
• Page release equivalent to PGRLSE

If the common area is being released and the caller is not in key zero, the caller's key must
match the key of the storage.

Regardless of the addressing mode, all addresses passed in registers are used as 31-bit addresses.
All RX-type addresses are assumed to be in the addressing mode of the caller. The standard
form of the PGSER macro instruction is written as follows:

name

b

PGSER

b

R
L

,LOAD
,OUT
,RELEASE

,LA = list addr

,A = start addr

,EA = end addr

,ECB = ecb addr

,RELEASE=Y
,RELEASE=N

,KEEPREL=Y
,KEEPREL=N

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede PGSER.

One or more blanks must follow PGSER.

list addr: RX-type address or register (1), (2) - (12).
Note: This parameter is valid only with L.

start addr: RX-type address or register (1), (2) - (12).
Note: This parameter is valid only with R.

Default: EA = start addr
end addr: RX-type address or register (15), (2) - (12).
Note: This parameter is valid only with R.

Default: If LOAD is specified, ECB = O.
ecb addr: RX-type address or register (0) or (2) - (12).
Note: This parameter is optional if LOAD is specified and is invalid for OUT
and RELEASE.

Default: RELEASE = N
Note: This parameter may be specified only if LOAD is specified.

Default: KEEPREL = N
Note: This parameter may be specified only if OUT is specified.

value: any valid macro keyword specification.

242 Supervisor Services and Macro Instructions

I~

(

)

)

R
L

specifies the manner in which the input is supplied. If R is specified, the user supplies the
starting and ending addresses of the virtual area for which the service needs to be
performed. Before processing the request, page services puts these addresses in registers 1
and 15, respectively. If L is specified, the user supplies the address of the page services
list (PSL), which specifies the virtual area for which the service is to be performed. Before
processing the request, page services puts the address of the PSL in register 1. See the
topic "Page Service List (PSL)" in Part I for a description of the PSL.

,LOAD
,OUT
,RELEASE

indicates the function to be performed.

LOAD specifies that a page-in operation is to be initiated for the virtual storage area
specified, in anticipation of future needs.

OUT specifies that a page-out operation is to be initiated for the virtual storage area
specified.

RELEASE specifies that all real and auxiliary storage, associated with the virtual storage
area specified, is to be released.

,LA == list addr
specifies the address of the page services list (PSL) for L requests.

,A = start addr
specifies the address of the start of the virtual area for R requests.

,EA = end addr
specifies the address of the end of the virtual area for R requests.

Note: PGLOAD, PGOUT, and PGRLSE use end + 1 as the value for the end address.

,ECB = ecb addr
specifies the address of the ECB that is used to signal event completion for a LOAD
request.

If an ECB is supplied, the caller must check the return code because the ECB will not be
posted if the return code is zero. If an ECB is not supplied, it is not necessary to check
the return code because control returns to the caller only if the request was successfully
completed; if unsuccessful, page services abnormally terminates the caller.

Page services verifies that the ECB address is in an area allocated via GETMAIN and
that the ECB is in the caller's protect key. Before posting the ECB, page services again
verifies that the ECB is located in an allocated area and that the ECB is in the caller's
protect key. (This is to check that the allocated area has not been freed via FREEMAIN
and the protect key has not been changed.) It is the user's responsibility to ensure that
the page containing the ECB is not freed and that the key is not altered. If either test
fails, page services does not post the ECB.

PGSER - Page Services 243

,RELEASE=Y
,RELEASE=N

specifies that all the real and auxiliary storage associated with the virtual storage areas is
to be released to the system (Y) or that all the real and auxiliary storage associated with
the virtual storage areas is not to be released to the system (N).

,KEEPREL=Y
,KEEPREL=N

specifies that the virtual pages should be validated again after the page-out completes (Y);
or that the virtual pages will be marked invalid and the real storage frames freed for reuse
(N).

,RELATED = value
provides information to document the macro by relating the service performed to some
corresponding function or service. The format can be any valid coding value that the user
chooses.

On return the register contents are as follows:

Register Contents

0-4 The contents are destroyed and unpredictable.
5-13 The contents are unchanged.
14 The contents are destroyed and unpredictable.
15 This register contains the return code.

The return codes, given in register 15, along with the option used and the meaning follow:

Option

LOAD

LOAD

OUT

OUT

RELEASE

Code Meaning

o The operation completed normally and the ECB will not be posted. If no ECB is supplied, the
operation is completed or proceeding.

8 The operation is proceeding. The ECB, if applicable and available, will be posted with X'OO' when
all page-ins are complete.

o The operation completed normally.

C One or more pages specified to be paged-out was not paged out. The page service is proceeding
for the other pages

o The operation completed normally.

If an error is found in one of the parameters, the requestor is abnormally terminated with a
system abend code of X'18A' and one of the following hexadecimal reason codes is provided in
register 15:

Hexadecimal
Code Meaning

4 A page-release operation abnormally terminated because either a page release was attempted for
permanently backed storage or a non-system key caller attempted to release storage in a different key.

10 A page-load operation abnormally terminated because the PSL or ECB address was invalid. (An ECB
can be specified for a LOAD request.)

Callers not authorized to use a specific service are abnormally terminated with a system abend
code of X'28A'.

244 Supervisor Services and Macro Instructions

c

Example 1

Example 2

)

Operation: Perform the page-load function for the 4096-byte virtual area starting at BUFFER.
No ECB is supplied.

PGSER R,LOAD,A=BUFFER,EA=BUFFER+4095,ECB=O

Operation: Release the virtual area specified in the PSL located at LOADWORD.

PGSER L,RELEASE,LA=LOADWORD

PGSER - Page Services 245

POST - Signal Event Completion

Use the POST macro instruction to have the specified ECB (event control block) set to indicate
the occurrence of an event. If this event satisfies the requirements of an outstanding WAIT or
EVENTS macro instruction, the waiting task is taken out of the wait state and dispatched
according to its priority. The bits in the ECB are set as follows:

Bit 0 of the specified ECB is set to 0 (wait bit) by POST processing.
Bit 1 is set to 1 (complete bit) by POST processing.
Bits 2 through 31 are set to the specified completion code by POST processing.

The POST macro instruction is written as follows:

name name: symbol. Begin name in column I.

One or more blanks must precede POST. b

POST

b One or more blanks must follow POST.

ecb addr ecb addr: RX-type address, or register (I) or (2) - (12).

,comp code

,RELATED = value

comp code: symbol, decimal digit, or register (0) or (2) - (12).
Range of values: 0 to 230_1
Default: 0

value: Any valid macro keyword specification.

The explanation of the parameters is as follows:

ecb addr
specifies the address of the fullword event control block representing the event.

,comp code
specifies the completion code to he placed in the event control block upon completion.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

246 Supervisor Services and Macro Instructions

Example 1

Example 2

~I

)

The RELATED parameter may be used, for example, as follows:

WAITl WAIT

RESUMEl POST

1,ECB=ECB,RELATED=(RESUME1,
'WAIT FOR EVENT')

ECB,O,RELATED=(WAIT1,
'RESUME WAITER')

Note: Each of these macro instructions will fit on one line when coded, so there is no
need for a continuation indicator.

Operation: Signal event completion with a default completion code. POSTECB is the address
of an ECB.

POST POSTECB

Operation: Signal event completion with a completion code of X'7FF'. POSTECB is the
address of an ECB.

POST POSTECB,X'7FF'

POST - Signal Event Completion 247

RACHECK - Check RACF Authorization

The RACHECK macro instruction is used to provide authorization checking when a user
requests access to a RACF-protected resource.

Systems using RACF Version 1, Release 6 or later, have the option to temporarily grant access
requests to users who do not have sufficient authority instead of unconditionally denying
requests. In this case, RACF issues a warning message instead of failing the request. RACF
provides this option on an individual basis; installations can use the warning facility selectively
via the WARNING = YES keyword of the RACDEF macro for that particular profile, without
affecting the access control provided by other RACF profiles.

RACHECK bypasses the warning processing if the OWNER keyword is specified, as this
indicates that the request is coming from a RACF command processor.

Notes:

1. Do not use the DSTYPE=M or OWNER parameters unless RACF Version 1, Release 4 or
later is installed on your system.

2. Do not use the ACCLVL or RACFIND parameters unless RACF Version 1, Release 5 or
later is installed on your system.

3. Only callers in 24-bit addressing mode can issue this macro. Callers executing in 31-bit·
addressing mode, who want to use the RACHECKjunction, can code the RACROUTE
macro.

248 Supervisor Services and Macro Instructions

)

)

The standard form of the RACHECK macro instruction is written as follows:

name

b

RACHECK

b

ENTITY = (resource name addr)
,VOLSER = vol addr

,CLASS = 'classname'
,CLASS = class name addr

,RELEASE = number

,ATTR=READ
,ATTR = UPDATE
,ATTR=CONTROL
,ATTR = ALTER
,ATTR = reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,OLDVOL=old vol addr

,APPL = 'applname'
,APPL = applname addr

,OWNER = owner ID addr

,ACCLVL = (access value addr)
,ACCL VL = (access value addr,
parm list addr)

,RACFIND = YES
,RACFIND = NO

,GENERIC = YES
,GENERIC = ASIS

,FILESEQ = reg
,FILESEQ = number

.,TAPELBL = STD
,TAPELBL = BLP
,TAPELBL=NL

,STATUS = NONE
,STATUS = ERASE

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

resource name addr: A-type address, or register (2) - (12).
vol addr: A-type address, or register (2) - (12).
Note: VOLSER is required only for CLASS = 'DATASET' and DSTYPE
not equal to M when a discrete profile name is used and only when
ENTITY is also coded.

'classname': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: CLASS = 'DATASET'

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
Default: A TTR = READ

Default: DSTYPE = N

parm list addr: A-type address, or register (2) - (12).

old vol addr: A-type address, or register (2) - (12).

applname addr: A-type address, or register (2) - (12).

owner ID addr: A-type address, or register (2) - (12).

access value addr: A-type address or register (2)-(12).

parm list addr: A-type address or register (2)-(12).

Default: GENERIC = ASIS

reg: register (2) - (12).
number: 1-9999

Default: T APELBL = STD

Default: STATUS = NONE

RACHECK - Check RACF Authorization 249

The parameters are explained as follows:

ENTITY = (resource name addr)

ENTITY = (resource name addr) specifies that RACF authorization checking is to be
performed for the resource whose name is pointed to by the specified address. The
resource name is a 44-byte DASD data set name for CLASS = 'DATASET' or a 6-byte
volume serial number for CLASS = 'DASDVOL' or CLASS = 'T APEVOL'. The length of
all other resource names is determined from the class descriptor tables. The name must
be left justified in the field and padded with blanks.

By establishing and maintaining a resource profile, the resource manager can reduce the
I/O required to perform RACF authorization checks on highly-accessed resources.

,VOLSER = vol addr
specifies the volume serial number, as follows:

• For non-VSAM DASD data sets and tape data sets, this is the volume serial number
of the volume on which the data set resides.

• For VSAM DASD data sets and tape data sets, this is the volume serial number of
the catalog controlling the data set.

The field pointed to by the specified address contains the volume serial number padded to
the right with blanks, if necessary, to make six characters. VOLSER = is only valid and
must be supplied with CLASS = 'DATASET', (unless DSTYPE=M is specified) and if
ENTITY is also coded.

,CLASS = 'classname'
,CLASS = classname addr

specifies that RACF authorization checking is to be performed for a resource of the
specified class. If an address is specified, the address must point to a one-byte field
indicating the length of the classname, followed by the class name (for example
DATASET, DASDVOL or TAPEVOL).

,RELEASE = number
specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. For instance, to use the
RACHECK release 1.7 parameter FILE SEQ you must be using RACF 1.7 on your
system and specify RELEASE = 1.7. If you specify a parameter with an incompatible
release level, the parameter will not be accepted by the macro processing. An error
message will be issued at assembly time. For the parameters that are valid for
RELEASE = 1.6 and later, see Figure 60 on page 254.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

250 Supervisor Services and Macro Instructions

)

)

,ATTR=READ
,ATTR=UPDATE
,ATTR = CONTROL
,ATTR=ALTER
,ATTR=reg

specifies the access authority of the user or group permitted access to the resource for
which RACF authorization checking is to be performed:

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to write or read.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to
the VSAM control password. For non-VSAM data sets and other resources, RACF
user or group has UPDATE authority.

ALTER - RACF user or group has total control over the resource.

If a register is specified, the register must contain one of the following codes in the
low-order byte of the register:

X'02' - READ
X'04' - UPDATE
X'08' - CONTROL
X'80' - ALTER

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

specifies the type of data set associated with the request:

• N for non-V SAM
• V for VSAM
• M for model profile
• T for tape

If DSTYPE = T is specified and tape data set protection is not active, the processing will
be the same as for RACHECK CLASS = 'T APEVOL'. DSTYPE should only be specified
for CLASS = 'DATASET'.

Note: Do not specify DSTYPE=M unless RACF Version 1, Release 4 or later is
installed on your system.

,INSTLN = parm list addr
specifies the address of an area that is to contain parameter information meaningful to the
RACHECK installation exit routine. This information is passed to the installation exit
routine when it is given control from the RACHECK routine.

The INSTLN parameter can be used by an application program acting as a resource
manager that needs to pass information to the RACHECK installation exit routine.

RACHECK - Check RACF Authorization 251

,OLDVOL = old vol addr
specifies a volume serial:

• For CLASS = 'DATASET', within the same multivolume data set specified by
VOLSER=.

• For CLASS='TAPEVOL', within the same tape volume specified by ENTITY=.

RACF authorization checking will verify that the OLD VOL specified is part of the same
multivolume data set or tape volume set.

The specified address points to the field that contains the volume serial number padded to
the right with blanks, if necessary, to make six characters.

,APPL = lapplname'
,APPL = applname addr

specifies the name of the application requesting authorization checking. The applname is
not used forthe authorization checking process but is made available to the installation
exit routine(s) called by the RACHECK routine. If the address is specified, the address
must point to an 8-byte field containing the application name left justified and padded
with blanks.

,OWNER = owner ID addr
specifies a profile owner id that is compared with the profile owner id in the owner field
of the RACF profile. If the owner names match, the access authority allowed for that
userid is 'ALTER'. The address must point to an 8-byte field containing the owner name,
left-justified and padded with blanks.

If OWNER is specified, any WARNING and OPERATIONS attribute processing is
bypassed.

Note: Do not specify OWNER unless RACF Version 1, Release 4 or later is installed on
your system.

,ACCL VL = (access value addr)
,ACCL VL = (access value addr,parm list addr)

specifies the tape label access level information for the MVS tape label functions. The
access value pointed to by the specified address is a one byte length field, containing the
value (0-8) of the length of the following data, followed by an eight-character string that
will be passed to the RACHECK installation exit routines. The optional parameter list
pointed to by the specified address contains additional information to be passed to the
RACHECK installation exit routines. RACF does not inspect or modify this
information.

Note: Do not use the ACCLVL parameter unless RACF Version 1, Release 5 or later is
installed on your system.

252 Supervisor Services and Macro Instructions

)

)

,RACFIND = YES
,RACFIND=NO

indicates whether or not the resource is protected by a discrete profile. The RACF
processing and the possible return codes are given in Figure 59. Note that in all cases, a
return code of X'OC' is also possible.

Note: Do not use the RACFIND parameter unless RACF Version 1, Release 5 or later
is installed on your system.

Operand

RACFIND = YES

RACFIND=NO

RACFIND not
specified

Generic ProfIle Checking
Inactive

Look for discrete profile;
if found, exit with
return code 00 or 08.
If no discrete profile is
found, exit with return
code 08.

No checking. Exit
with return code 04.

Look for discrete profile;
if found, exit with
return code 00 or 08.
If no discrete profile is
found, exit with return
code 04.

Generic ProfIle Checking
Active

Look for discrete profile;
if found, exit with
return code 00 or 08.
Look for generic profile;
if found, exit with return code 00
or 08.
Exit with return code 08 if neither
a discrete nor a generic profile
is found.

Look for generic profile;
if found, exit with
return code 00 or 08.
if not found, exit with
return code 04.

Look for discrete profile;
if found, exit with
return code 00 or 08.
Look for generic profile;
if found, exit with return code 00
or 08.
Exit with return code 04 if neither a
discrete nor a generic profile is found.

Figure 59. Types of Profile Checking Performed by RACHECK

,GENERIC = YES
,GENERIC = ASIS

specifies whether the resource name is to be treated as a generic profile name. If
GENERIC is specified with CLASS = DEFINE, NEWNAME, then GENERIC applies to
both the old and new names. GENERIC is ignored if the GENCMD option on the
RACF SETROPTS command is not specified for the class (see RACF Command
Language Reference).

This keyword is designed primarily for use by RACF commands.

• If GENERIC = YES is specified, the resource name is considered a generic profile
name, even if it does not contain either of the generic characters: an asterisk (*) or a
percent sign (%).

• If GENERIC = ASIS is specified, the resource name is considered a generic only if it
contains either of the generic characters: an asterisk (*) or a percent sign (%).

RACHECK - Check RACF Authorization 253

,FILESEQ = number
,FILESEQ = reg

specifies the file sequence number of a tape data set on a tape volume or within a tape
volume set. The value must be in the range 1 - 9999. If a register is specified, it must
contain the file sequence number in the low-order half-word. If CLASS = 'DATASET'
and DSTYPE = T are not specified, FILESEQ is ignored.

,TAPELBL = STn
,TAPELBL = BLP
,TAPELBL=NL

specifies the type of tape label processing to be done:

• STD - IBM or ANSI standard labels.
• BLP - bypass label processing.
• NL - non-labeled tapes.

For TAPELBL=BLP, the user must have the requested authority to the profile ICHBLP
in the general resource class FACILITY. For TAPELBL=NL or BLP, the user will not
be allowed to protect volumes with volume serial numbers in the format "Lnnnnn."

This parameter is primarily intended for use by data management routines to indicate the
label type from the LABEL keyword on the JCL statement.

This parameter is valid only for CLASS = 'DATASET' and DSTYPE=T, or
CLASS='TAPEVOL'. The default is TAPELBL=STD.

,STATUS = NONE
,STATUS = ERASE

Specifies whether or not RACHECK is to return the erase status of the given data set.
This parameter is valid only for CLASS = 'DATASET' and a DSTYPE value other than
T. The default is STATUS = NONE.

Parameters For RELEASE = 1.6 and Later

The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Parameter RELEASE = RELEASE =
1.6 1.7

ACCLVL= X X

APPL= X X

ATTR= X X

CLASS = X X

DSTYPE=N, V, or X X
M

DSTYPE=T X

ENTITY = X X

FILESEQ= X

GENERIC = X X

INSTLN= X X

OLDVOL= X X

OWNER = X X

Figure 60 (Part 1 of 2). RACHECK Parameters for RELEASE = 1.6 and Later

254 Supervisor Services and Macro Instructions

«

)

)

Parameter RELEASE = RELEASE =
1.6 1.7

RACFIND= X X

RELEASE = X X

STATUS = X

TAPELBL= X

VOLSER= X X

Figure 60 (Part 2 of 2). RACHECK Parameters for RELEASE = 1.6 and Later

Return Codes and Reason Codes

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

OC

64

Meaning

The user is authorized by RACF to obtain use of a
RACF-protected resource. Register 0
contains one of the following reason codes:

00 indicates a normal completion.

04 indicates STATUS = ERASE was specified and the
data set is to be erased when scratched. Or the
warning status of the resource was requested by the RACHECK
issuer setting bit '10' at offset 12 decimal
in the RACHECK parameter list and the resource is
in warning mode.

The specified resource is not protected by RACF.
Register 0 contains the following
reason code:

00 indicates a normal completion.

The user is not authorized by RACF to obtain use
of the specified RACF-protected resource.
Register 0 contains the following
reason code:

00 indicates a normal completion.

04 indicates STATUS = ERASE was specified and the
data set is to be erased when scratched.

08 indicates DSTYPE=T or CLASS = 'TAPEVOL'
was.specified and the user is not authorized
to use the specified volume.

OC indicates the user is not authorized to
use the data set.

10 indicates DSTYPE=T or CLASS='TAPEVOL'
was specified and the user is not authorized
to specify LABEL = (,BLP).

The OLDVOL specified was not part of the multivolume
data set defined by VOLSER, or it was not part of the
same tape volume defined by ENTITY.

Indicates that the CHECK subparameter of the RELEASE
keyword was specified on the execute form of the RACHECK macro;
however, the list form of the macro does not have the proper
RELEASE parameter. Macro processing terminates.

RACHECK - Check RACF Authorization 255

Example 1

Example 2

Example 3

Operation: Perform RACF authorization checking using the standard form, for a non-VSAM
data set controlled by the catalog pointed to by register 8. Register 7 points to the data set
name, and the RACF user is requesting the highest level of control over the data set. The
"RACF-indicated" bit in the data set's DSCB is on.

RACHECK ENTITY={(R7»,VOLSER=(R8) ,CLASS='DATASET',
ATTR=ALTER ,'RACFIND=YES

Operation: Perform RACF authorization checking using the standard form, for a VSAM data
set pointed to by register 8. Register 7 points to the data set name, and the RACF user is
requesting the data set for read only. Register 4 points to an area containing additional
parameter information.

RACHECK ENTITY=({R7»,VOLSER={R8) ,CLASS=' DATASET' ,
DSTYPE=V,INSTLN=(R4)

Operation: Using the standard form, perform RACF authorization checking for a tape volume
for read access only. The tape volume is pointed to by register 8 and the volume's access level
is in register 5.

RACHECK ENTITY=«R8»,CLASS='TAPEVOL' ,ATTR=READ,
ACCLVL= ((RS))

256 Supervisor Services and Macro Instructions

)

)

RACHECK (List Form)

The list form of the RACHECK macro instruction is written as follows:

name

b

RACHECK

b

ENTITY = (resource name addr)
,VOLSER = vol addr

,CLASS = 'classname'
,CLASS = class name addr

,RELEASE = number

,ATIR=READ
,ATIR=UPDATE
,AITR=CONTROL
,ATIR = ALTER
,ATIR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,OLD VOL = old vol addr

,APPL = 'applname'
,APPL = applname addr

,OWNER = owner ID addr

,ACCL VL = (access value addr)
,ACCLVL=(access value addr,
parm list addr)

,RACFIND = YES
,RACFIND = NO

,GENERIC = YES
,GENERIC = ASIS

,FILESEQ = reg
,FILESEQ = number

,TAPELBL = STD
,TAPELBL = BLP
,TAPELBL=NL

,STATUS = NONE
,STATUS = ERASE

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

resource name addr: A-type address.
vol addr: A-type address.
Note: VOLSER is required on either the list or the execute form of the
macro, but only for CLASS = 'DATASET' and DSTYPE not equal to M
when a discrete profile name is used. If required, VOLSER must be
specified on either the list or the execute form of the macro.

'classname': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: CLASS = 'DATASET'

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
Default: A TIR = READ

Default: DSTYPE = N

parm list addr: A-type address.

old vol addr: A-type address.

applname addr: A-type address.

owner ID addr: A-type address.

access value addr: A-type address or register (2)-(12).

parm list addr: A-type address or register (2)-(12).

Default: GENERIC = ASIS

reg: register (2) - (12).
number: 1-9999

Default: T APELBL = STD

Default: STATUS = NONE

RACHECK (List Form) 257

The parameters are explained under the standard form of the RACHECK macro instruction
with the following exception:

,MF==L
specifies the list form of the RACHECK macro instruction.

258 Supervisor Services and Macro Instructions

)

)

RACHECK (Execute Form)

The execute form of the RACHECK macro instruction is written as follows:

name

b

RACHECK

b

ENTITY = (resource name addr)
,vOLSER = vol addr

,CLASS = 'classname'
,CLASS = class name addr

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

,ATTR=READ
,ATTR=UPDATE
,ATTR = CONTROL
,ATTR = ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,OLDVOL = old vol addr

,APPL = 'applname'
,APPL = applname addr

,OWNER = owner ID addr

,ACCLVL = (access value addr)
,ACCLVL=(access value addr,
parm list addr)

,RACFIND = YES
,RACFIND = NO

,GENERIC = YES
,GENERIC = ASIS

,FILESEQ = reg
,FILESEQ = number

,TAPELBL = STD
,TAPELBL=BLP
,TAPELBL=NL

,STATUS = NONE
,STATUS = ERASE

,MF=(E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

resource name addr: RX-type address, or register (2) - (12).
vol addr: RX-type address, or register (2) - (12).
Note: VOLSER is required on either the list or the execute form of the
macro, but only for CLASS = 'DATASET' and DSTYPE not equal to M
when a discrete profile name is used. If required, VOLSER must be
specified on either the list or the execute form of the macro.

'classname': 1-8 character name.
class name addr: RX-type address, or register (2) - (12).
Default: CLASS = 'DATASET'

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
Default: ATTR = READ

Default: DSTYPE = N

parm list addr: RX-type address, or register (2) - (12).

old vol addr: RX-type address, or register (2) - (12).

applname addr: RX-type address, or register (2) - (12).

owner ID addr: RX-type address, or register (2) - (12).

access value addr: RX-type address or register (2)-(12).
RX-type address or register (2)-(12).
parm list addr:

Default: GENERIC = ASIS

reg: register (2) - (l2).
number: 1-9999

Default: T APELBL = STD

Default: STATUS = NONE

ctrl addr: RX-type address, or register (1) or (2) - (12).

RACHECK (Execute Form) 259

The parameters are explained under the standard form of the RACHECK macro instruction
with the following exceptions:

,MF = (E,ctrl addr)
specifies the execute form of the RACHECK macro instruction.

,RELEASE = (number, CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. For instance, to use the
RACHECK release 1.7 parameter FILE SEQ you must be using RACF 1.7 on your
system and specify RELEASE = 1.7. If you specify a parameter with an incompatible
release level, the parameter will not be accepted by the macro processing. An error
message will be issued at assembly time. For the parameters that are valid for
RELEASE = 1.6 and later, see Figure 60 on page 254.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the execute
form of the macro, the execute form of the macro will not be done. Instead, a return
code X'64' will be generated.

260 Supervisor Services and Macro Instructions

(

)

RACROUTE - MVS Router Interface

The RACROUTE macro instruction is used to invoke the System Authorization Facility (SAF)
MVS router, which conditionally directs control to the Resource Access Control Facility
(RACF) when RACF is present.

You can use RACROUTE to access the functions that are provided by the following RACF
macros: RACHECK, and FRACHECK. In coding the RACROUTE macro instruction to
access a particular RACF macro function, you must also use the necessary parameters from
that macro on the RACROUTE macro instruction. For example, if you code RACROUTE to
access the RACHECK function, you must code REQUEST=AUTH and any other required
parameters and any optional ones you need from the RACHECK macro. RACROUTE
validates that only the parameters applicable to the RACHECK macro have been coded.

Notes:

1. For RACF Version 1 Release 6, all parameters and parameter lists must reside below 16
megabytes.

2. For RACF Version 1 Release 7:
If a caller is executing in 24-bit addressing mode, all parameters and parameter lists are
assumed to reside below 16 megabytes. If a caller, however, is executing in 31-bit addressing
mode, and is calling RACF via the RACROUTE macro instruction, RACF will assume that
all parameters and parameter lists may reside above the 16 megabytes (that is, that all
parameter addresses are true 31-bit addresses).

All parameter lists generated by the RACROUTE macro instruction are in a format that
allows compiled code to be moved above 16 megabytes without recompilation.

This 31-bit support is available only when RACF is called via the RACROUTE,
FRACHECK, or RACST AT macro instructions. Any caller that uses the RACHECK macro
instruction may be in 24-bit addressing mode only. RACF does not support this caller in
31-hit mode.

RACROUTE - MVS Router Interface 261

The standard form of the RACROUTE macro instruction is written as follows:

name

b

RACROUTE

b

REQUEST = AUTH
REQUEST = FASTAUTH

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

,WORKA= work area addr

,RELATED = value

,LOC = BELOW
,LOC=ANY
,LOC=ABOVE

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: A-type address or register (2) - (12).
Default: zero.
Note: If REQSTOR = is coded and RACF is installed, the RACF router
table must be updated to match the operand.

subsys addr: A-type address or register (2) - (12).
Note: If SUBSYS = is coded and RACF is installed, the RACF router table
must be updated to match the operand.

work area addr: A-type address or register (2) - (12).

value: Any valid macro keyword specified.

Default: See parameter description.
Note: LOC can be coded only if
REQUEST = VERIFY or REQUEST = LIST is coded.

In addition to the parameters described above, all parameters valid on the RACHECK, and FRACHECK macros are
permitted on the RACROUTE macro. Depending on the parameter REQUEST = , some of these are required, some
optional, and some are invalid.

The parameters are explained as follows:

REQUEST = AUTH
REQUEST=FASTAUTH

specifies a code that determines the RACF parameter list to be issued internally as well as
the RACF routine to receive control. The permissible codes and their associated RACF
macros are as follows:

AUTH--RACHECK
FASTAUTH--FRACHECK

For RACROUTE to work correctly, once you have chosen a REQUEST code you must
also code (on the RACROUTE macro) the parameters that belong to the associated
macro instruction. Please see the associated macro for the necessary parameters.

Notes:

1. Data areas returned by RACF to the caller will be either above or below the 16-megabyte line,
depending upon the caller's addressing mode and the data area in question.

,REQSTOR = reqstor addr
specifies the address of an 8-byte character field containing the control point name (this
address identifies a unique control point within a set of control points that exists in a
subsystem). If this operand is coded and RACF is installed, the RACF router table must
be changed to match the operand. If the table is not updated, the default to bypass
RACF processing is taken. For a description of the RACF router table and the macro
used to update it, see SPL: Resource Access Control Facility (RACF).

If this operand is omitted, a string of eight blanks is assumed.

262 Supervisor Services and Macro Instructions

)

)

,SUBSYS = subsys addr
specifies the address of an 8-byte character field containing the calling subsystem's name,
version, and release level. If this operand is coded and RACF is installed, the RACF
router table must be changed to match the operand. If the table is not updated, the
default to bypass RACF processing is taken. For a description of the RACF router table
and the macro used to update it, see SPL: Resource Access Control Facility (RACF).

If this operand is omitted, a string of eight blanks is assumed.

,WORKA = work area addr
specifies the address of a 512-byte work area for use by the MVS router and the RACF
front end routine.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified is at the discretion of the user, and can be any valid coding value.

Return Codes and Reason Codes

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Code

00

04

08

Meaning

The requested security function has completed successfully. In addition, if the requested
function was 'AUTH', the authorization request was accepted.

The requested function has not been processed. In addition, if the request was 'AUTH',
the MVS router could neither accept nor fail the request. The following are possible
reasons for a request not being processed.

- The MVS router is not active.
- The RACF front end routine detected that a null action was requested for the

specified request type, resource type, and subsystem ID.
- The request/resource/subsystem combination could not be found in the router table.
- RACF is not active on the system, and RACFIND = YES was not specified, and

there is no RACROUTE installation exit routine (or an exit originated a return code
of 4).

- RACF is active on the system, but no profile exists for the specified resource.

The requested function was processed by RACF, the MVS router, or the router exit
(ICHRTXOO) and failed. If the requested function was 'AUTH', the authorization
request has been failed. If RACF is inactive for an 'AUTH' request with
RACFIND = YES, then the MVS router fails the request. The RACF or router exit
return code and reason codes are returned in the first two words of the RACROUTE
input parameter list.

RACROUTE - MVS Router Interface 263

Example 1

Example 2

Operation: Invoke the MVS router to perform authorization checking using the standard form,
for a non-VSAM data set pointed to by register 8. Register 7 points to the data set name and
the RACF user is requesting the highest level of control over the data set. The
"RACF-indicated" bit in the data set's DSCB is on.

RACROUTE REQUEST=AUTH,WORKA=RACWK,ENTITY=«R7)),
VOLSER=(R8),CLASS='DATASET' ,ATTR=ALTER,
RACFIND=YES

RACWK DS CL512

x
X

Operation: Invoke the MVS router to perform authorization checking using the standard form,
for an IMSjVS transaction pointed to by register 5. The user requests only read access. The
request is issued on behalf of the IMSjVS subsystem.

RACROUTE REQUEST=FASTAUTH,SUBSYS=SUBIMS,
WORKA=RACWK,ENTITY=(R5),
CLASS='TIMS' ,WKAREA=FRACWK,
ATTR=READ

SUBIMS
FRACWK
RACWK

DC CL8'IMS'
DS 16F
DS CL512

X
X
X

264 Supervisor Services and Macro Instructions

c

)

)

RACROUTE (List Form)

The list form of the RACROUTE macro instruction is written as follows:

name

b

RACROUTE

b

REQUEST = AUTH
REQUEST = FASTAUTH

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

,WORKA= work area addr

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: A-type address.
Default: zero.
Note: If REQSTOR = is coded and RACF is installed, the RACF router
table must be updated to match the operand.

subsys addr: A-type address.
Note: If SUBSYS = is coded and RACF is installed, the RACF router table
must be updated to match the operand.

work area addr: A-type address or register (2) - (12).

value: Any valid macro keyword specified.

In addition to the parameters described above, all parameters valid on the RACHECK, and FRACHECK macros are
permitted on the RACROUTE macro. Depending on the parameter REQUEST =, some of these are required, some
optional, and some are invalid.

The parameters are explained under the standard form of the RACROUTE macro instruction
with the following exception:

,MF=L
specifies the list form of the RACROUTE macro instruction.

RACROUTE (List Form) 265

RACROUTE (Execute Form)

The execute form of the RACROUTE macro instruction is written as follows:

name

b

RACROUTE

b

REQUEST = AUTH
REQUEST=FASTAUTH

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

,WORKA=work area addr

,RELATED = value

,MF = (E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: RX-type address or register (2) - (12).
Default: zero.
Note: If REQSTOR = is coded and RACF is installed, the RACF router
table must be updated to match the operand.

subsys addr: RX-type address or register (2) - (12).
Note: If SUBSYS = is coded and RACF is installed, the RACF router table
must be updated to match the operand.

work area addr: RX-type address or register (2) - (12).

value: Any valid macro keyword specified.

efrl addr: RX-type address or register (1).

In addition to the parameters described above, all parameters valid on the RACHECK, and FRACHECK macros are
permitted on the RACROUTE macro. Depending on the parameter REQUEST =, some of these are required, some
optional, and some are invalid.

The parameters are explained under the standard form of the RACROUTE macro instruction
with the following exception:

,MF = (E, ctrl addr)
specifies the execute form of the RACROUTE macro where ctrl addr is the address of the
associated parameter list.

266 Supervisor Services and Macro Instructions

)

)

)

RACSTAT - RACF Status Extract Service

The RACST AT macro instruction is used to determine if RACF is active and optionally
determine if RACF protection is in effect for a given resource class. The RACST AT macro can
also be used to determine if a resource class name is defined to RACF.

RACST AT is a branch entered service that uses standard linkage conventions.

Note: For RACF release 1.6 and previous releases, only callers in 24-bit addressing mode can
issue this macro.

The standard form of the RACST AT macro instruction is written as follows:

name

b

RACSTAT

b

CLASS = 'c/assname',

CLASS = classname addr,

ENTRY = entry addr

,RELEASE = number

name: symbol. Begin name in column 1.

One or more blanks must precede RACSTAT.

One or more blanks must follow RACSTAT.

classname: DASDVOL, TAPEVOL, or any class defined in the RACF class
descriptor table
classname addr: A-type address, or register (2) - (12).

entry addr: A-type address, or register (2) - (12).

number: 1.6 or 1.7
Default: RELEASE = 1.6

The parameters are explained as follows:

CLASS = 'classname',
CLASS = classname addr,

specifies the classname for which RACF authorization checking is performed. The name
can be explicitly defined on the macro by enclosing the name in quotes. If specified, the
address must point to an 8-byte field containing the classname, left justified and padded
with blanks if necessary. If CLASS = is omitted, the status of RACF is returned.

ENTRY = entry addr
specifies the address of a 4-byte area that is set to the address of the specified class in the
class descriptor table. This operand is ignored when the CLASS = operand is omitted.

,RELEASE = number
specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. If you specify a
parameter with a:g. incompatible release level, the parameter will not be accepted by the
macro processing. An error message will be issued at assembly time. For the parameters
that are valid for RELEASE = 1.6 and later, see Figure 61 on page 268.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACST AT macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

RACSTAT - RACF Status Extract Service 267

Parameters For RELEASE = 1.6 and Later

Return Codes

Reason Codes

The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Parameter RELEASE = RELEASE =
1.6 1.7

CLASS = X X

ENTRY = X X

RELEASE = X X

Figure 61. RACSTAT Parameters for RELEASE = 1.6 and Later

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 RACF is active and,if CLASS = was specified, the class is active.

04 RACF is active; the class is inactive.

08 RACF is active; the class is not defined to RACF.

OC RACF is inactive and, if CLASS = was specified, the class is active.

10 RACF is inactive; the class is inactive.

14 RACF is inactive; the class is not defined to RACF.

18

64

RACF CVT does not exist (RACF is not installed) or an insufficient level of RACF is installed.

Indicates that the CHECK subparameter of the RELEASE keyword was specified on the execute form
of the RACSTAT macro; however, the list form of the macro does not have the proper RELEASE
parameter. Macro processing terminates.

FRACHECK examines the auditing options in effect for the resource for which access authority
is being determined. It sets a reason code that indicates to FRACHECK's caller whether
logging of the access attempt should be performed:

Hexadecimal
Code Meaning

00 The access attempt is not within the scope of the audit or the global audit specification. The user is
either authorized or unauthorized for the resource as indicated by the return code.

04 The access attempt is within the scope of the audit or the global audit specification for the resource.
Logging of the attempt should be performed by issuing, for example, a RACHECK for the resource for
which authorization is being determined. RACHECK provides the necessary logging function.

Note: The class descriptor entry for the specified class is returned to the caller (in the 4-byte
area addressed by the entry addr), for return codes 00, 04, OC, and 10.

268 Supervisor Services and Macro Instructions

(

Example 1

)

)

Operation: Determine if the DASDVOL class is active and retrieve the address of its class
descriptor. A fullword, CDADDR, contains the class descriptor address.

RACSTAT CLASS='DASDVOL' ,ENTRY=CDADDR

RACSTAT - RACF Status Extract Service 269

RACSTAT (List Form)

The list form of the RACST A T macro instruction is written as follows:

name

b

RACSTAT

b

CLASS = 'c1assname',
CLASS = c1assname addr,

ENTRY = entry addr,

,RELEASE = number

MF=L

name: symbol. Begin name in column I.

One or more blanks must precede RACSTAT.

One or more blanks must follow RACSTAT.

c1assname: DATASET, DASDVOL, or TAPEVOL.
c1assname addr: A-type address.

entry addr: A-type address.

number: 1.6 or 1.7
Default: RELEASE = 1.6

The parameters are explained under the standard form of the RACST AT macro instruction
with the following exception:

MF=L
specifies the list form of the RACST AT macro instruction.

270 Supervisor Services and Macro Instructions

c

)

)

RACSTAT (Execute Form)

The execute form of the RACST A T macro is written as follows:

name name: symbol. Begin name in column 1.

b

RACSTAT

One or more blanks must precede RACSTAT.

b One or more blanks must follow RACSTAT.

CLASS = 'classname', classname: DATASET, DASDVOL, or TAPEVOL.
CLASS = classname addr, classname addr: RX-type address or register (2) - (12).

ENTRY = entry addr, entryaddr: RX-type address or register (2) - (12).

,RELEASE = (number,CHECK) 'number: 1.6 or 1.7
,RELEASE = number Default: RELEASE = 1.6
,RELEASE = (,CHECK)

MF = (E,ctri addr) ctri addr: RX-type address or register (1) - (12).

The parameters are explained under the standard form of the RACST AT macro instruction,
with the following exception:

MF = (E,ctrl addr)
specifies the execute form of the RACST AT macro instruction, using a remote control
program parameter list.

,RELEASE = (number, CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

specifies the. RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by the
macro processing. An error message will be issued at assembly time. For the parameters
that are valid for RELEASE = 1.6 and later, see Figure 61 on page 268.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACST AT macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the execute
form of the macro, the execute form of the macro will not be done. Instead, a return
code of X'64' will be generated.

RACSTAT (Execute Form) 271

RETURN - Return Control

The RETURN macro instruction restores the control to the calling program and signals normal
termination of the called program. The return of control is always made by executing a branch
instruction using the address in register 14. Because the RETURN macro uses a BR 14 to pass
control, it can be used only when the return is to a program that executes in the same
addressing mode. The RETURN macro instruction can restore a designated range of registers,
provide a return code in register 15, and flag the save area used by the called program.

If registers are to be restored, or if an indicator is to be placed into the save area, register 13
must contain the address of the save area, which must have the standard format.

The RETURN macro instruction is written as follows:

name

b

RETURN

b

name: symbol. Begin name in column 1.

One or more blanks must precede RETURN.

One or more blanks must follow RETURN.

(regl) regl and reg2: decimal digits, and in the order 14, 15,0 through 12.
(reg 1 ,reg2)

,T

,Re = ret code ret code: decimal digit, symbol, or register (15). The maximum value is 4095.

The parameters are explained as follows:

(regl)
(regl,reg2)

,T

specifies the register or range of registers to be restored from the save area pointed to by
the address in register 13. If you omit this parameter, the contents of the registers are not
altered. Do not code this parameter when returning control from a program interruption
exit routine.

causes the control program to flag the save area used by the called program. The
low-order bit of word 4 of the save area is set to 1 after the registers have been loaded;
this designates that a called program has executed a return to its caller. Do not specify
this parameter when returning control from an exit routine.

,RC=ret code
specifies the return code to be passed to the calling program. If a symbol or decimal digit
is coded, the return code is placed right-adjusted in register 15 before return is made; if
register 15 is coded, the return code has been previously loaded into register 15 and the
contents of register 15 are not altered or restored from the save area. (If you omit this
parameter, the contents of register 15 are determined by the reg] and reg2 parameters.)

Note: If register 15 is coded and a return code greater than 4095 (decimal) is passed, the
results could be either an invalid return code in the message or invalid RC testing.

272 Supervisor Services and Macro Instructions

Example 1

)

)

Operation: Restore registers 14-12, flag the save area, and return with a code of O.

RETURN (14,12),T,RC=O

RETURN - Return Control 273

SA VE - Save Register Contents

The SAVE macro instruction stores the contents of the specified registers in the save area at the
address contained in register 13. If you wish, you may specify an entry point identifier. Write
the SAVE macro instruction only at the entry point of a program because the code resulting
from the macro expansion requires that register 15 contain the address of the SAVE macro
prior to its execution. Do not use the SAVE macro instruction in a program interruption exit
routine.

The SAVE macro instruction is written as follows:

name

b

SAVE

b

name: symbol. Begin name in column 1.

One or more blanks must precede SAVE.

One or more blanks must follow SAVE.

(regl) regl and reg2: decimal digits, and in the order 14, 15,0 through 12.
(reg 1 ,reg2)

,
,T

,id name id name: character string of up to 70 characters or as an *

The parameters are explained as follows:

(regl)
(regl,reg2)

,
,T

specifies the register or range of registers to be stored in the save area at the address
contained in register 13. The registers are stored in words 4 through 18 of the save area.

specifies that registers 14 and 15 are to be stored in word 4 and 5, respectively, of the save
area. This parameter permits you to save two noncontiguous sets of registers.

If you specify both T and reg2, and regl is any of registers 14, 15, 0, 1, or 2, all of
registers 14 through the reg2 value are saved.

,id name
specifies an identifier to be associated with the SAVE macro instruction. If an asterisk (*)
is coded, the identifier is the name associated with the SAVE macro instruction, or, if the
name field is blank, the control section name is used. The identifier aids in locating a
program's save area in a dump. If the CSECT instruction name field is blank, the
parameter is ignored.

Whenever a symbol or an asterisk is coded, the following macro expansion occurs:

• A count byte containing the number of characters in the identifier name is assembled four
bytes following the address contained in register 15.

• The character string containing the identifier name is assembled starting at five bytes
following the address contained in register 15.

• An instruction to branch around the count and identifier fields is assembled.

274 Supervisor Services and Macro Instructions

c

Example 1

)

)

Operation: Save registers 14-12, and associate the identifier with the CSECT name.

SAVE (14,12),,*

SAVE - Save Register Contents 275

SEGLD - Load Overlay Segment and Continue Processing

Example 1

The SEGLD macro instruction causes the control program to load the specified segment and
any segments in its path that are not part of a path already in virtual storage. Control is not
passed to the specified segment, but is returned to the instruction following the SEGLD macro
instruction. Processing is overlapped with the loading of the segment. Refer to the Linkage
Editor and Loader for details on overlay. .

Note: This macro can be used only by callers in 24-bit addressing mode.

The SEGLD macro instruction is written as follows:

name

b

SEGLD

b

ext seg name

name: symbol. Begin name in column 1.

One or more blanks must precede SEGLD.

One or more blanks must follow SEGLD.

ext seg name: symbol.

The parameters are explained as follows:

ext seg name
specifies the name of a control section or an entry name in the required section. An
exclusive reference is not allowed. The name does not have to be identified by an
EXTRN statement.

Operation: Cause the control program to load segment PGM54.

SEGLD PGM54

276 Supervisor Services and Macro Instructions

c

)

)

SEGWT -, Load Overlay Segment and Wait

Example 1

The SEGWT macro instruction causes the control program to load the specified segment and
any segments in its path that are not part of a path already in virtual storage. Control is not
passed to the specified segment; control is not returned to the segment issuing the SEGWT
macro instruction until the requested segment is loaded. Refer to the publication Linkage
Editor and Loader for details on overlay operations. The SEGWT macro instruction cannot be
used in an asynchronous exit routine.

Note: This macro can be used only by callers in 24-bit addressing mode.

The SEGWT macro instruction is written as follows:

name

b

SEGWT

b

ext seg name

name: symbol. Begin name in column 1.

One or more blanks must precede SEGWT.

One or more blanks must follow SEGWT.

ext seg name: symbol.

The parameters are explained as follows:

ext seg name
specifies the name of a control section or an entry name in the required section. An
exclusive reference is not allowed. The name does not have to be identified by an
EXTRN statement.

Operation: Cause the control program to load segment PGMWT.

SEGWT PGMWT

SEGWT - Load Overlay Segment and Wait 277

SETRP - Set Return Parameters

The SETRP macro instruction is used to indicate the various requests that a recovery exit may
make. It may be used only if a system diagnostic work area (SOW A) was passed to the
recovery exit. The macro instruction is valid only for EST AEjEST AI exits. (The SOW A
mapping macro - IHASOWA - must be included in the routine that issues SETRP.)

The SETRP macro instruction is written as follows:

name

b

SETRP

b

,WKAREA = (reg)

,REGS = (reg 1)
,REGS = (reg 1 ,reg2)

,DUMP= IGNORE
,DUMP=YES
,DUMP=NO

,DUMPOPT=parm list addr

,REASON = code

,RC=O
,RC=4
,RC= 16

,RETADDR = retry addr

name: symbol. Begin name in column 1.

One or more blanks must precede SETRP.

One or more blanks must follow SETRP.

reg: decimal digits 1-12.
Default: WKAREA=(I)

reg1: decimal digits 0-12, 14 15.
reg2: decimal digits 0-12, 14, 15.
Note: If reg1 and reg2 are both specified, order is 14, 15,0-12.

Default: DUMP=IGNORE

parm list addr: RX-type address, or register (2) - (12).
Note: This parameter may be specified only if DUMP = YES is specified
above.

code: any four-byte number specified in decimal (31-bit) or hexadecimal
(32-bit).

Default: RC=O

retryaddr: RX-type address, or register (2) - (12).
Note: This parameter may be specified only if RC = 4 is specified above.
reg info addr: RX-type address, or register (2) - (12).

,RETREGS = NO reg info addr: RX-type address, or register (2) - (12).
,RETREGS = YES Default: RETREGS = NO
,RETREGS = YES,RUB = reg info addr Note: This parameter may be specified only if RC = 4 is specified above.

,FRESDWA=NO Default: FRESDWA=NO
,FRESDWA = YES Note: This parameter may be specified only if RC = 4 is specified above.

,COMPCOD = comp code comp code: symbol, decimal digit, or register (2) - (12).
,COMPCOD=(comp code,USER) Default: COMPCOD= (comp code,USER)
,COMPCOD = (comp code,SYSTEM)

The parameters are explained as follows:

,WKAREA = (reg)
specifies the address of the SOW A passed to the recovery exit. If this parameter is
omitted the address of the SOW A must be in register 1.

278 Supervisor Services and Macro Instructions

c

)

:>

,REGS = (reg 1)
,REGS = (reg 1 ,reg2)

specifies the registe~ or range of registers to be restored from the save area pointed to by
the address in register 13. If REGS is specified, a branch on register 14 instruction will
also be generated to return control to the control program. If REGS is not specified, the
user must code his own return.

,DUMP = IGNORE
,DUMP = YES
,DUMP=NO

specifies that the dump option fields will not be changed (IGNORE), will be zeroed (NO),
or will be merged with dump options specified in previous dump requests, if any (YES).
If IGNORE is specified, a previous exit had requested a dump or a dump had been
requested via the ABEND macro instruction, and the previous request will remain intact.
If NO is specified, no dump will be taken.

,DUMPOPT = parm list addr
specifies the address of a parameter list that is valid for the SNAP macro instruction. The
parameter list can be created by using the list form of the SNAP macro instruction, or a
compatible list can be created. If the specified dump options include subpools for storage
areas to be dumped, up to seven subpools can be dumped. Subpool areas are
accumulated and wrapped, so that the eighth subpool area specified replaces the first.
The TCB, DeB, and STRHDR options available on SNAP will be ignored if they appear
in the parameter list. The TCB used will be the one for the task that suffered error. The
DCB used will be one created by the control program and either SYSABEND,
SYSMDUMP, or SYSUDUMP will be used as a DDNAME.

,REASON = code
specifies the reason code that the user wishes to pass to subsequent recovery exits.

,RC=O
,RC=4
,RC=16

specifies the return code the user exit routine sends to recovery processing to indicate
what further action is required:

o - Continue with termination, causes entry into previously specified recovery routine, if any.

4 - Retry using the retry address specified.

16 - Suppress further ESTAI/STAI processing (for ESTAI only).

,RETADDR = retry addr
specifies the address of the retry routine to which control is to be given.

,RETREGS = NO
,RETREGS = YES
,RETREGS = YES,RUB = reg info addr

specifies the contents of the registers on entry to the retry routine. If NO is specified or
defaulted, only parameter registers (14-2) are passed; all others are unpredictable. If YES
is specified, the contents of the SDWASRSV field will be used to initialize registers 0-14
when an FRR requests retry and registers 0-15 when an ESTAE requests a retry. For
EST AE exits, this field contains the registers at the last interruption of the RB level at
which retry will occur. For ESTAI exits, the contents of SDAWSRSV must be set by the
user either before SETRP is issued or by use of the RUB parameter; any field not set will
cause the corresponding register to contain 0 on entry to the retry routine.

SETRP - Set Return Parameters 279

Example 1

Example 2

RUB specifies the address of an area (register update block) that contains register update
information. The data specified in this area will be moved into the SDW A and will be
loaded into the general purpose registers on entry to the retry routine. The maximum
length of the RUB is 66 bytes.

• The first two bytes represent the registers to be updated, register 0 corresponding to
bit 0, register 1 corresponding to bit 1, and so on. The user indicates which of the
registers are to be stored in the SDWA by setting the corresponding bits in these two
bytes.

• The remaining 64 bytes contain the update information for the registers, in the order
0-15. If all 16 registers are being updated, this field consists of 64 bytes. If only one
register is being updated, this field consists of only 4 bytes for that one register.

For example, if only registers 4, 6, and 9 are being updated:

• Bits 4, 6, and 9 of the first two bytes are set.

• The remaining field consists of 12 bytes for registers 4, 6, and 9; the first 4 bytes are
for register 4, followed by 4 bytes for register 6, and 4 final bytes for register 9.

,FRESDWA = NO
,FRESDW A = YES

specifies that the entire SDW A be freed (YES) or not be freed (NO) prior to entry into
the retry routine.

,COMPCOD = comp code
,COMPCOD = (comp code,USER)
,COMPCOD = (comp code,SYSTEM)

specifies the user or system completion code that the user wishes to pass to subsequent
recovery exits.

Operation: Request continue with termination, suppress dumping, restore register 14 from the
save area and pass control to the location it contains, contain the SDW A in the location
addressed by register 3, and change the completion code to 10.

SETRP RC=O,DUMP=NO,REGS=(14),WKAREA=(3),
COMPCOD=(X'OOA' ,USER)

x

Operation: Retry using address X, take a dump before retry, use the contents of SDWASRSV
to initialize the registers, free the SDWA before control is passed to the retry address, and
restore registers 14-12.

SETRP RC=4,RETREGS=YES,DUMP=YES,FRESDWA=YES,
REGS=(14,12),RETADDR=X

x

280 Supervisor Services and Macro Instructions

(

)

)

SNAP - Dump Virtual Storage and Continue

You can use the SNAP macro instruction to obtain a dump of some or all of the storage
assigned to the current job step. You can also dump some or all of the control program fields.
The SNAP macro instruction causes the specified storage to be displayed in the addressing
mode of the caller.

You must provide a data control block and issue an OPEN macro instruction for the data set
before any SNAP macro instructions are issued. The DCB macro instruction must contain the
following parameters:

DSORG=PS,RECFM=VBA,MACRF=(W) ,BLKSIZE=nnn ,LRECL=xxx ,
and DDNAME=any name but SYSABEND, SYSMDUMP or SYSUDUMP

The DCB and TCB must reside in 24-bit addressable storage. All other parameters can reside
above 16 Mb if the issuer is executing in 31-bit addressing mode.

If a standard dump of 120 characters per line is requested, BLKSIZE must be either 882 or
1632, and LRECL must be 125. (The data control block and the DCB macro instruction are
described in Data Management Services Guide and Data Management Macro Instructions.) A
high-density dump printed on a 3800 Printing Subsystem has 204 characters per line. To obtain
a high-density dump, you must code CHARS = DUMP on the DD statement describing the
dump data set. The BLKSIZE= must be either 1470 or 2724, and the LRECL= must be 209.
You can also code CHARS = DUMP on the DO statement describing a dump data set that will
not be printed immediately. If you specify CHARS = DUMP and the output device is not a
3800, print lines are truncated and print data is lost. If you open a SNAP data set in a problem
program that will be processed by the system loader, your problem program must close the data
set.

There are three ways to obtain a dump:

1. Spool the dump by specifying SYSOUT = x on the DO statement. The dump is printed
without a separate job but is deferred until after the job ends.

2. Select a tape or direct access device. This method requires a separate job step to print the
dump. This method might be used if the dump is to be printed more than once.

3. Select a printer on the DO statement. This method is almost never used because the printer
cannot be used by anyone else for the duration of the job step.

Both NUC and ALL VNUC are valid. Only ALL VNUC gives you the whole virtual nucleus.

SNAP - Dump Virtual Storage and Continue 281

The standard form of the SNAP macro instruction is written as follows:

name

b

SNAP

b

DCB = dcb addr

,TCB = tcb addr

,ID=id nmbr

,SDATA = ALL
,SDATA= (sys data code)

,PDATA=ALL
,PDATA=(prob data code)

,STORAGE = (strt addr,end addr)
,LIST = list addr

,STRHDR = (hdr addr)
,STRHDR=hdr list addr

,SUBPLST = sbp list addr

name: symbol. Begin name in column 1.

One or more blanks must precede SNAP.

One or more blanks must follow SNAP.

dcb addr: A-type address, or register (2) - (12).

tcb addr: A-type address, or register (2) - (12).

id nmbr: symbol, decimal digit, or register (2) - (12).
Value range: 0-255

sys data code: any combination of the following, separated by commas. If you
specify only one code, you do not need the parentheses.

NUC
SQA
LSQA
PCDATA
SWA

CB
Q
TRT

DM

ERR
10
ALLVNUC

SUM

prob data code: any combination of the following, separated by commas. If
you specify only one code, you do not need the parentheses.

PSW
REGS
SA or SAH
JPA or LPA or ALLPA
SPLS
SUBTASKS

strt addr: A-type address, or register (2) - (12).
end addr: A-type address, or register (2) - (12).
list addr: A-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified, separated by commas.
For example:
STORAGE = (strt addr,end addr,strt addr,end addr)

hdr addr: A-type address, or register (2) - (12).
Note: hdr addr is one or more addresses separated by commas. If you specify
only one header address as an A-type address, you do not need the
parentheses. If you specify one or more registers, then you must code double
parentheses (one set enclosing each register and one set enclosing the list of
registers). If STRHDR = (hdr addr) is specified, then STORAGE must also be
specified.

hdr list addr: A-type address, or register (2) - (12).
Note: If STRHDR = hdr list addr is specified, then LIST must also be
specified.

sbp list addr: A-type address, or register (2) - (12).

The parameters are explained as follows:

DCB = deb addr
specifies the address of a previously opened data control block for the data set that is to
contain the dump.

Note: DCB must reside in 24-bit addressable storage.

282 Supervisor Services and Macro Instructions

)

)

,TeD = tcb addr
specifies the address of a fullword on a fullword boundary containing the address of the
task control block for a task of the current job step. If omitted, or if the fullword
contains 0, the dump is for the active task. If a register is designated, the register can
contain 0 to indicate the active task, or can contain the address of a TCB.

Note: TCB must reside in 24-bit addressable storage.

,ID=id nmbr
specifies the number that is to be printed in the identification heading with the dump. If
the number specified is not in the acceptable value range, it will not be printed properly in
the heading.

,SDATA = ALL
,SDATA = (sys data code)

specifies the system control program information to be dumped:

ALL All of the SDATA options except ALLVNUC (The read-only portion of the nucleus is not
included in the dump unless ALLVNUC is also specified as an option.)

NUC The PSA, SQA, LSQA, and the read/write portion of the nucleus (if the entire nucleus is required,
specify the ALLVNUC option.)

SQA

LSQA

SWA

CB

Note: The CVT will be included if this option is specified.

The system queue area (subpools 226, 239, and 245).

The local system queue area and subpools 229 and 230.

The scheduler work area related to the task (subpools 236 and 237).

The control blocks for the task.

Q The global resource serialization control blocks for the task.

TRT The GTF trace and system trace data. If system tracing is active and the requestor is authorized,
all system trace entries for all address spaces are included in the dump. Unauthorized requestors
obtain those system trace entries, after the job-start time stamp in the ASCB, for their current
address space. If GTF tracing is active, only the GTF trace entries for the current address space
are included in the dump.

DM Data management control blocks for the task.

ERR Recovery/termination control blocks for the task. These control blocks summarize information
that describes abnormal terminations of the task.

10 Input/Output supervisor control blocks for the task.

ALLVNUC The entire virtual nucleus, the PSA, LSQA, and SQA. (The NUC option will not dump the
read-only section of the nucleus.) If the SNAP parameter list is used for a SYSMDUMP, the
ALLVNUC option is converted to ALLNUC on the SVC dump parameter list.

Note: The CVT is included if this option is specified.

PCDATA Program call information for the task.

The SUM option is valid for an abending task or on a list form of the SNAP macro
instruction pointed to by the DUMPOPT keyword of the ABEND or SETRP macro
instructions. The option SUM causes the dump to contain a summary dump. If SUM is
the only option requested, the dump contains a dump header, control blocks, and the

SNAP - Dump Virtual Storage and Continue 283

other areas listed below. The header information, which is provided for all ABEND
dumps, consists of the following information:

• The dump title

• The ABEND code and program status word (PSW) at the time of the error

• If the PSW contains the address of an active load module:

The name and PSW address of the load module in error
The offset, into the load module, at which the error occurred

The following control blocks and areas are also included in the dump:

• The control blocks dumped for the CB option

• The error control blocks (RTM2W As and SCBs)

• The save areas

• The registers at the time of the error

• The contents of the load module (if the PSW contains the address of an active load
module)

• The module pointed to by the last PRB (if it can be found)

• lK of storage before and after the addresses pointed to by the PSW and the registers
at the time of the error.

Note: This storage will only be dumped if the caller is authorized to obtain it. The
storage is printed by ascending storage addresses with duplicate addresses removed.

• System trace entries after the job-start time stamp in the ASCB for the current
address space.

Note: The GTF trace records are not included.

If other options are specified with SUM, the summary dump is dispersed throughout the
dump. See the topic "SNAP Dumps" for an example of how this is done.

,PDATA=ALL
,PDATA = (prob data code)

specifies the problem program information to be dumped:

ALL

PSW

REGS

SA

All of the following fields.

Program status word when the SNAP or ABEND macro instruction was issued.

Contents of the floating-point registers and general-purpose registers when the SNAP or ABEND
macro instruction was issued. Also, contents of the vector registers, vector status register, and the
vector mask register when the SNAP or ABEND macro instruction was issued for any task that
uses the Vector Facility.

Save area linkage information, program call linkage, information, and a back trace through save
areas.

284 Supervisor Services and Macro Instructions

)

)

SAH Save area linkage information and program caUlinkage information.

JPA Contents of job pack area.

LPA Contents of active link pack area for the requested task.

ALLPA Contents of job pack area and active link pack area for the requested task.

SPLS All virtual storage subpools (0-127,252).

SUBTASKS The designated task and the program data information for all ofits subtasks.

,STORAGE = (strt addr,end addr)
,LIST = list addr

specifies one or more pairs of starting and ending addresses or a list of starting and
ending addresses of areas to be dumped. Each starting address is rounded down to a
fullword boundary; each ending address is rounded up to a fullword boundary. The area
is then dumped in fullword increments. Callers executing in either 24-bit or 31-bit
addressing mode must set the high-order bit of the fullword containing the last address in
this list to 1. Callers executing in 31-bit addressing mode must ensure that this bit is
cleared in all other addresses in the list because SNAP processing truncates the list at the
first address that contains a 1 in the high order bit.

,STRHDR = (hdr addr)
,STRHDR = hdr list addr

specifies one or more header addresses or the address of a list of header addresses. Each
header address must be the address of a one byte header length field, which is followed by
the text of the header. The header has a maximum length of 100 characters.

If the STORAGE parameter was specified, the STRHDR (storage header) value must be
one or more header addresses. The number of pairs of starting and ending addresses
specified for STORAGE must be the same as the number of header addresses specified for
STRHDR. If a header is not desired for a storage area, a comma must be used to
indicate its absence.

If the LIST parameter was specified, the STRHDR value must be the address of a list of
header addresses. The list of addresses must begin on a fullword boundary, and the high
order bit of the fullword containing the last address of the list must be set to 1. The
number of pairs of starting and ending addresses supplied with the LIST parameter must
be the same as the number of addresses in the list supplied with STRHDR. If a header is
not desired for a storage area, the STRHDR list must contain a zero address to indicate
its absence.

,SUBPLST = sbp list addr
specifies the address of a list of subpool numbers to be dumped. Each entry in the list
must be a two-byte entry and must specify a valid subpool number. The first halfword of
the list must contain the number of subpools in the list and must be on a fullword
boundary. If you specify an invalid subpool number or a subpool number for which you
do not have authorization, the number is skipped and you receive a comment in the dump
output indicating the error. If a subpool contains 4k blocks of data that are mapped
from a linear data set, the dump includes only the blocks that have changed since the
last DIV SAVE function was invoked.

Note: A maximum of seven subpool numbers is permitted on the list form of the SNAP
macro instruction pointed to by the DUMPOPT keyword of ABEND or SETRP.

SNAP - Dump Virtual Storage and Continue 285

Example 1

Example 2

Example 3

Control is returned to the instruction following the SNAP macro instruction. When control is
returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Successful completion.

04 Data control block was not open, or an invalid page exception occurred during the validity check of the
DCB parameters.

08 Task control block address was not valid, an invalid page reference occurred during the validity check of
the TCB address, a subt~sk is a job step task, sufficient storage was not available, or the READ for
JFCB or JFCBE failed. In all cases, the dump is canceled. (Message IEA9971 is issued when the
READ for JFCB or JFCBE fails.)

OC Data control block type (DSORG, RECFM, MACRF, BLKSIZE, or LRECL) was incorrect, or the
DCB's BLKSIZE and/or LRECL were not compatible with the dump format options specified on the
dump-related DD statement.

Operation: Dump the storage ranges pointed to by register 9, and dump all PDATA and
SDATA options.

SNAP DCB=(8),TCB=(5),PDATA=ALL,SDATA=ALL,LIST=(9)

Operation: Dump the storage ranges pointed to by register 9, and dump only the trace table
and enqueue control blocks.

SNAP DCB=(8),TCB=(5),ID=4,LIST=(9),SDATA=(TRT,Q)

Operation: Dump storage area 1000-2000 with no header, and dump storage area 3000-4000
with a header of 'USER LABEL ONE'. The comma specified in the value for STRHDR
indicates that no header is wanted for storage area 1000-2000.

Ll
HDRI

SNAP

DC
DC

DCB=(8),STORAGE=(lOOO,2000,3000,4000) ,
STRHDR= (,Ll)

ALI (L' HDRI)
C'USER LABEL ONE'

x

286 Supervisor Services and Macro Instructions

(

Example 4

Example 5

)

)

Operation: Dump storage area 1000-1999 with a header of 'LABEL ONE' and dump storage
area 3000-3999 with a header of 'LABEL TWO'.

SNAP DCB=(8),LIST=X,STRHDR=Ll

X DC A(lOOO) Start address
DC A(l999) End address
DC A(3OOO) Start address
DC X'80' End of list indicator
DC AL3(3999) End address

Ll DC A(HDRl) Address of length label for
header one

DC X'80' End of list
DC AL3 (HDR2) Address of length label for

header two
HDRl DC ALl (L' HDRlA) Length of header one
HDRlA DC C'LABEL ONE' Header one
HDR2 DC ALl(L'HDR2A) Length of header two
HDR2A DC C'LABEL TWO' Header two

Operation: Dump subpool 0, 1, and 2 storage related to the current TCB.

SNAP DCB=XYZ,TCB=O,SUBPLST=SUBADDR

SUBADDR DS OF
DC X'0003'
DC X'OOOO'
DC X'OOOl'
DC X'0002'

Fullword boundary
Number of entries in the list
Subpool 0
Subpool 1
Subpool 2

SNAP - Dump Virtual Storage and Continue 287

SNAP (List Form)

Use the list form of the SNAP macro to construct a control program parameter list. You can
specify any number of storage addresses using the STORAGE parameter. Therefore, the
number of starting and ending address pairs in the list form of SNAP must be equal to the
maximum number of addresses specified in any execute form of the macro, or a DS instruction
must immediately follow the list form to allow for the maximum number of addresses.

The list form of the SNAP macro instruction is written as follows:

name

b

SNAP

b

DCB = dcb addr

,ID=id nmbr

,SDATA=ALL
,SDATA=(sys data code)

,PDATA=ALL
,PDATA=(prob data code)

,STORAGE = (strt addr,end addr)
,LIST = list addr

,STRHDR=(hdr addr)

,STRHDR=hdr list addr

,SUBPLST = sbp list addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SNAP.

One or more blanks must follow SNAP.

dcb addr: A-type address.

id nmbr: symbol or decimal digit.
Value range: 0-255

sys data code: any combination of the following, separated by commas. If you
specify only one code, you do not need parentheses.

NUC
SQA
LSQA
PCDATA
SWA

CB
Q
TRT

DM

ERR
10
ALLVNUC

SUM

prob data code: any combination of the following, separated by commas. If
you specify only one code, you do not need parentheses.

PSW
REGS
SA or SAH
JPA or LPA or ALLPA
SPLS
SUBTASKS

strt addr: A-type address.
end addr: A-type address.
list addr: A-type address.
Note: One or more pairs of addresses may be specified, separated by commas.
For example:
STORAGE = (strt addr,end addr,strt addr,end addr)

hdr addr: A-type address.
Note: hdr addr is one or more addresses separated by commas. If you specify
only one header address, you do not need the parentheses. If STRHDR = (hdr
addr) is specified, then STORAGE must also be specified.

hdr list addr: A-type address.
Note: If STRHDR=hdr list addr is specified, then LIST must also be
specified.

sbp list addr: A-type address.

288 Supervisor Services and Macro Instructions

)

The parameters are explained under the standard form of the SNAP macro instruction, with the
following exception:

,MF=L
specifies the list form of the SNAP macro instruction.

SNAP (List Form) 289

SNAP (Execute Form)

A remote control program parameter list is referred to and can be modified by the execute form
of the SNAP macro instruction.

If you code only the DCB, ID, MF, or TCB parameters in the execute form of the macro
instruction, the bit settings in the parameter list corresponding to the SDATA, PDATA, LIST,
and STORAGE parameters are not changed. However, if you code the SDATA, PDATA, or
LIST parameters, the bit settings for the coded parameter from the previous request are reset to
zero, and only the areas requested in the current macro instruction are dumped.

The execute form of the SNAP macro instruction is written as follows:

name

b

SNAP
b

DCB = deb addr

,TCB = tcb addr
,TCB='S'

,ID=id nmbr

,SDATA=ALL
,SDATA=(sys data code)

,PDATA=ALL
,PDATA=(prob data eode)

,STORAGE = (strt addr,end addr)
,LIST = list addr

,STRHDR = (hdr addr)

,STRHDR= hdr list addr

,SUBPLST = sbp list addr

,MF = (E,ctrl addr)

name: symbol. Begin name in column 1.
One or more blanks must precede SNAP.

One or more blanks must follow SNAP.

deb addr: RX-type address, or register (2) - (12).

tcb addr: RX-type address, or register (2) - (12).

id nmbr: symbol, decimal digit or register (2) - (12).
Value range: 0-255

sys data code: any combination of the following, separated by commas. If you
specify only one code, you do not need parentheses.

NUC
SQA
LSQA
PC DATA
SWA

CB
Q
TRT

DM

ERR
10
ALLVNUC

SUM

prob data code: any combination of the following, separated by commas. If
you specify only one code, you do not need parentheses.

PSW
REGS
SA or SAH
JPA or LPA or ALLPA
SPLS
SUBTASKS

strt addr: RX-type address, or register (2) - (12).
end addr: RX-type address, or register (2) - (12).
list addr: RX-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified, separated by commas.
For example:
STORAGE = (strt addr,end addr,strt addr,end addr)

hdr addr: RX-type address, or register (2) - (12).
Note: hdr addr is one or more addresses separated by commas. If you specify
only one header address as an RX-type address, you do not need the
parentheses. If you specify one or more registers, then you must code double
parentheses (one set enclosing each register and one set enclosing the list of
registers). If STRHDR = (hdr addr) is specified, then STORAGE must also be
specified.

hdr list addr: RX-type address, or register (2) - (12).
Note: If STRHDR = hdr list addr is specified, then LIST must also be
specified.

sbp list addr: RX-type address, or register (2) - (12).

etrl addr: RX-type address, or register (1) or (2) - (12).

290 Supervisor Services and Macro Instructions

)

)

The parameters are explained under the standard form of the SNAP macro instruction, with the
following exceptions:

,TCB='S'
specifies the task control block of the active task.

Note: TCB = 'S' causes a dump of the active task if this is the first use of the list form of
the SNAP macro instruction or if the TCB specified on a previous execute form of the
SNAP macro instruction was the current TCB or TCB='S'.

,MF = (E,ctrl addr)
specifies the execute form of the SNAP macro instruction using a remote control program
parameter list.

SNAP (Execute Form) 291

SPIE - Specify Program Interruption Exit

The SPIE macro instruction specifies the address of an interruption exit routine and the
program interruption types that are to cause the exit routine to be given control. If the
program interruption types specified can be masked, the corresponding program mask bit in the
PSW (program status word) is set to 1. If a maskable interruption is not specified, the
corresponding bit in the PSW is set to o.

Only callers in 24-bit addressing mode can issue the SPIE macro instruction. If a caller in
31-bit addressing mode issues a SPIE macro instruction, the caller is abended with a system
completion code of X'30E'. Callers in 31-bit addressing mode must use the ESPIE macro
instruction, which performs the same function as the SPIE macro instruction for callers in both
24-bit and 31-bit addressing mode. The ESPIE macro instruction is described in Part II of this
book. For additional information concerning the relationship between the SPIE and the ESPIE
macro instructions, see the section on program interruption processing, in Part I.

Each succeeding SPIE macro instruction completely overrides any previous SPIE macro
instruction specifications for the task. The specified exit routine is given control in the key of
the TCB (TCBPKF) when one of the specified program interruptions occurs in any problem
program of the task. When a SPIE macro instruction is issued from a SPIE exit routine, the
program interruption element (PIE) is reset (zeroed). Thus, a SPIE exit routine should save any
required PIE data before issuing a SPIE. If a caller issues an ESPIE macro instruction from
within a SPIE exit routine, it has no effect on the contents of the PIE. However, if an ESPIE
macro instruction deletes the last SPIEjESPIE environment, the PIE is freed and the SPIE exit
cannot retry.

If the current SPIE environment is cancelled during SPIE exit routine processing, the control
program will not return to the interrupted program"when the SPIE program terminates.
Therefore, if the SPIE exit routine wishes to retry within the interrupted program, a SPIE
cancel should not be issued within the SPIE exit routine.

The SPIE macro instruction can be issued by any problem program being executed in the
performance of the task. The control program automatically deletes the SPIE exit routine when
the request block (RB) that issued the SPIE macro instruction terminates. If a caller attempts
to delete a SPIE environment established under a previous RB, the caller is abended with a
system completion code of X'46D'.

Note: In MVSj370 the SPIE environment existed for the life of the task. In MVSjXA, the
SPIE environment is deleted when the request block that issued the macro is deleted. That is,
when a program running under MVSjXA completes, any SPIE environments created by the
program are deleted. This might create an incompatibility with MVSj370 for programs that
depend on the SPIE environment remaining in effect for the life of the task rather than the
request block

A PICA (program interruption control area) is created as part of the expansion of SPIE. The
PICA contains the exit routine's address and a code indicating the interruption types specified
in SPIE.

If a SPIE environment was active, the SPIE service routine returns the address of the previous
PICA in register 1; if an ESPIE environment was active, the SPIE service routine returns the
address of a fake PICA in register 1. The contents of the fake PICA are unpredictable. If no
SPIEjESPIE environment was active, the service routine returns a zero.

292 Supervisor Services and Macro Instructions

)

For more information on the SPIE macro and its control blocks, see the section on program
interruption processing.

The standard form of the SPIE macro instruction is written as follows:

b

SPIE

b

name

exit addr,(interrupts)

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: A-type address, or register (2) - (12).
interrupts: decimal digits, 1-15, expressed as:

single values: (2,3,4,7,8,9,10)
ranges of values: «2,4),(7,lO))
combinations: (2,3,4,(7,10))

The parameters are explained as follows:

exit addr,(interrupts)
specifies the address of the exit routine to be given control when a program interruption
of the type specified occurs. The interruption types are:

Number Interruption Type

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Notes:

Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data
Fixed-point overflow (maskable)
Fixed-point divide
Decimal overflow (maskable)
Decimal divide
Exponen t overflow
Exponent underflow (maskable)
Significance (maskable)
Floating-point divide

1. If an exit address is zero or no parameters are specified, the SP IE environment is cancelled.

2. If a program interruption type is maskable, the corresponding bit is set to 1 when specified
and to 0 when not specified. Interruption types that are not maskable and not specified above
are handled by the control program, which forces an abend with the program check as the
completion code. If an EST AE-type recovery routine is also active, the SD W A indicates a
system-forced abnormal termination. The registers at the time of the error are those of the
control program.

3. As shown in the table above, interruption types can be designated as one or more single
numbers, as one or more pairs of numbers (designating ranges of values), or as any
combination of the two forms. For example, (4,8) indicates interruption types 4 and 8;
((4,8)) indicates interruption types 4 through 8.

SPIE - Specify Program Interruption Exit 293

Example 1

4. For both ESPIE and SPIE - If you are using vector instructions and an exception of 8, 12,
13, 14, or 15 occurs, your recovery routine can check the exception extension code (the first
byte of the two-byte interruption code in the EPIE or PIE) to determine whether the
exception was a vector or scalar type of exception.

Operation: Give control to an exit routine for interruptions 1, 5, 7, 8, 9, and 10. DOITSPIE is
the address of the SPIE exit routine.

SPIE DOITSPIE,(1,5,7,(8,lO))

294 Supervisor Services and Macro Instructions

)

SPIE (List Form)

Use the list form of the SPIE macro instruction to construct a control program parameter list in
the form of a program interruption control area.

The list form of the SPIE macro instruction is written as follows:

b

SPIE

b

name

exit addr,
(interrupts),

MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: A-type address.
interrupts: decimal digits, 1-15, expressed as:

single values: (2,3,4,7,8,9,10)
ranges of values: «2,4),(7,10»
combinations: (2,3,4,(7,10»

The parameters are explained under the standard form of the SPIE macro instruction, with the
following exception:

MF=L
specifies the list form of the SPIE macro instruction.

SPIE (List Form) 295

SPIE (Execute Form)

A remote control program parameter list, the program interruptions control area (PICA) is used
in, and can be modified by, the execute form of the SPIE macro instruction. The PICA can be
generated by the list form of SPIE, or you can use the address of the PICA returned in 'register
1 following a previous SPIE macro instruction. If this macro instruction is being issued to
reestablish a previous SPIE environment, code only the MF parameter.

The address of the remote control program parameter list associated with any previous SPIE
environment is returned by the SPIE macro instruction.

The execute form of the SPIE macro instruction is written as follows:

b

SPIE

b

name

exit addr,
(interrupts),

MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: RX-type address, or register (2) - (12).
interrupts: decimal digits, 1-15, expressed as:

single values: (2,3,4,7,8,9,10)
ranges of values: ((2,4),(7,10))
combinations: (2,3,4,(7,10))

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the SPIE macro instruction, with the
following exception:

MF=(E,ctrl addr)
specifies the execute form of the SPIE macro instruction using a remote control program
parameter list.

Note: If SPIE is coded with a 0 as the control address, the SPIE environment is cancelled.

296 Supervisor Services and Macro Instructions

)

)

SPLEVEL - SET and TEST Macro Level

Specific macro instructions supplied in the MVSjXA macro library are identified as downward
incompatible (to MVS/370 System Product Version 1 Release 3). Unless the user takes specific
action, these macros generate downward incompatible statements. It is possible to cause the
generation of downward compatible expansions of these macros by using the SPLEVEL macro
instruction. The downward incompatible macro instructions interrogate a global symbol (set by
SPLEVEL) during assembly to determine the type of expansion to be generated. See the topic
"Selecting the Macro Level" for additional information concerning the downward incompatible
macro instructions and Assembler H Version 2 Application Programming: Language Reference
for information about global set symbols.

The SPLEVEL macro instruction is written as follows:

name

b

SPLEVEL

b

SET=n
SET
TEST

name: symbol. Begin name in column 1.

One or more blanks must precede SPLEVEL.

One or more blanks must follow SPLEVEL.

n: I or 2.
Default: SET = 2

The parameters are explained as follows:

SET=n
SET
TEST

specifies whether the macro level is being set or tested.

If SET = n is specified, SPLEVEL processing sets a global set symbol equal to n, where n
must be 1 or 2. If a user codes one of the downward incompatible macros, one of the
following macro expansions is generated:

• the MVSj370 (System Product Version 1 Release 3) macro expansion if n = 1
• the MVS/XA macro expansion if n=2

If SET is specified without n, the SPLEVEL routine uses the default value, which is 2,
unless the installation has changed the default.

The TEST option is used to determine the macro level that is in effect. The results of the
test request are returned to the user in the global set symbol, &SYSSPLV, which is
defined by "GBLC &SYSSPLV." If TEST is specified and if SPLEVEL SET has not been
issued during this assembly, SPLEVEL processing puts the default value into the global
set symbol. If SPLEVEL SET has been issued, the previous value of n or the default
value is already in the global set symbol.

SPLEVEL - SET and TEST Macro Level 297

Example 1

Example 2

Operation: Select the MVSj370 version of a specific downward incompatible macro instruction.

SPLEVEL SET=l

Operation: Select the MVSjXA version of a specific downward incompatible macro instruction.

SPLEVEL SET:=!:2

298 Supervisor S~rvices and Macro lnstructions

c

)

STATUS - Change Subtask Status

The STATUS macro instruction lets the programmer change the dispatchability status of one or
all of a program's subtasks. For example, the STATUS macro instruction can be used to
restart subtasks that were stopped when an attention exit routine was entered.

The STATUS macro instruction is written as follows:

name

b

STATUS

b

START
STOP

,TCB = tcb addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STATUS.

One or more blanks must follow STATUS.

tcb addr: RX-type address, or register (2) - (12).

value: Any valid macro keyword specification.

The parameters are explained as follows:

START
STOP

specifies that the START or STOP count in the task control block specified in the TCB
parameter will be decreased (for ST ART) or increased (for STOP) by 1. If the TCB
parameter is not coded, the count is decreased/increa.sed by 1 in the task control blocks
for all the subtasks of the originating task.

Note: This parameter does not assure that the subtask(s) is stopped when control is
returned to the issuer. A subtask can have a "stop deferred" condition that would cause
that particular subtask to remain dispatchable until stops are no longer. deferred. In an
MP environment, it would be possible to have a task issue the STATUS macro with the
STOP parameter and resume processing while the subtask (for which the STOP was
issued) is re-dispatched to another processor.

,TeD = teb addr
specifies the address of a fullword on a fullwordboundary containing the address of the
task control block that is to have its START/STOP coun~ adJusted. (If a register is
specified, however, the address is of the TCB itself.) If this parameter is not coded, the
count is adjusted in the task control blocks for all the subtasks of the originating task.

Note: TCB must reside in 24-bit addressable storage.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE)~

STATUS - Chang~·Su,btask Statu.~ 299

Example 1

Example 2

Example 3

The RELATED parameter may be used, for example, as follows:

STATl STATUS

STAT2 STATUS

STOP,TCB=YOURTCB,RELATED=(STAT2,
'STOP A SUBTASK')

START,TCB=YOURTCB,RELATED=(STATl,
'START A SUBTASK')

Note: Each of these macro instructions will fit on one line when coded, so there is no
need for a continuation indicator.

Operation: Stop all subtasks.

STATUS STOP

Operation: Stop a specific subtask. WHERETCB is a fullword specifying the address of a
subtask TCB.

STATUS STOP,TCB=WHERETCB

Operation: Start a specific subtask. WHERETCB is a fullword specifying the address of a
subtask TCB.

STATUS START,TCB=WHERETCB

300 Supervisor Services and Macro Instructions

)

)

STIMER - Set Interval Timer

This macro can be assembled compatibly between MVSjXA and MVSj370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVSjXA. See the topic "Selecting the Macro Level" for additional
information.

If your program is to execute in 31-bit addressing mode, you must use the MVSjXA version of
this macro instruction.

The STIMER macro instruction is used to set a timer to a specified time interval (less than or
equal to 24 hours) or to an interval that will expire at a specified time of day (not to exceed
24:00:00:00). An optional asynchronous timer completion exit is given control when the time
interval expires; if no asynchronous timer completion routine is specified, no indication that the
time interval has expired is provided. Only one time interval per task is in effect at a time,'
using STIMER, however, using STIMERM in conjunction with STIMER allows 17 separate
intervals to be associated with a task. A second STIMER macro instruction issued before the
first time interval expires overrides the first interval and exit routine. If a timer exit routine
issues an STIMER macro instruction specifying the same exit routine, an infinite loop might
result.

The time interval may be a 'real-time interval' (measured continuously in real time via the clock
comparator), or a 'task time interval' (measured, only while the task is in execution, via the
CPU timer). If a real time interval is specified, the task may elect to either continue (REAL) or
suspend (WAIT) execution during the interval. If the task elects to continue execution, it may
optionally specify an exit routine to be given control on completion of the time interval. If the
task elects to suspend execution, it is restarted at the next sequential instruction on completion
of the time interval. If a task time interval is specified, the task must continue. It may
optionally specify an exit routine to be given control on completion of the interval.

The STIMER macro instruction is written as follows:

name

b

STIMER

b

REAL
REAL,exit rtn addr
TASK
TASK,exit rtn addr
WAIT

,BINTVL = stor addr
,DINTVL=stor addr
,GMT = stor addr
,MICVL=stor addr
,TOD=stor addr
,TUINTVL=stor addr

,ERRET = err rtn addr

name: symbol. Begin name in column 1.

One or more blanks must precede STIMER.

One or more blanks must follow STIMER.

exit rtn addr: RX-type address, or register (0) or (2) - (12).

stor addr: RX-type address, or register (1) or (2) - (12).
Note: The GMT and TOD parameters must not be specified with
TASK above.

err rtn addr: RX-type address
or register (2) - (12).

STIMER - Set Interval Timer 301

The parameters are explained as follows:

REAL
REAL,exit rtn addr
TASK
T ASK,exit rtn addr
WAIT

specifies whether the timer interval is a real-time interval (REAL or WAIT) or a task-time
interval (TASK):

For REAL, the interval is decreased continuously. If the TOD or GMT parameter is
coded, the interval expires at the indicated time of day.

For TASK, the interval is decreased only when the associated task is active.

For WAIT, the interval is decreased continuously. The task is to be placed in the wait
condition until the interval expires.

The exit rtn addr is the address of the timer completion exit routine to be given control
after the specified time interval expires. The routine does not get control immediately
when the interval completes, but at some time after the interval completes, depending on
the system's work load and the relative dispatching priority of the associated task. The
routine must be in virtual storage when it is required. The exit routine receives control in
the addressing mode of the caller. The contents of the registers when the exit routine is
given control are as follows: .

Register

0- 1
2 - 12
13
14
15

Contents

Control program information.
Unpredictable.
Address of a control-pro gram-provided save area.
Return address (to the control program).
Address of the exit routine.

The exit routine is responsible for saving and restoring registers. The exit routine executes
as a subroutine, and must return control to the control program. Although timing
services allows only one active time interval for a task, it does not serialize the use of an
asynchronous timer completion exit routine.

,BINTVL = stor addr
,DINTVL = stor addr
,GMT = stor addr
,MICVL = stor addr
,TOD=stor addr
,TUINTVL = stor addr

specifies that the time be returned:

For BINTVL, the address is in virtual storage containing the time interval. The time
interval is presented as an unsigned 32-bit binary number; the low-order bit has a value of
0.01 second.

302 Supervisor Services and Macro Instructions

c

)

For DINTVL, the address is a doubleword on a doubleword boundary in virtual storage
containing the time interval. The time interval is presented as zoned decimal digits of the
form:

HHMMSSth, where:

HH is hours (24-hour clock)
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds

For GMT, the address is an 8-byte area containing the Greenwich mean time at which the
interval is to be completed. The time is presented as zoned decimal digits of the form
HHMMSSth, as described above under DINTVL.

For MICVL, the address is a doubleword on a doubleword boundary containing the time
interval. The time interval is represented as an unsigned 64-bit binary number; bit 51 is
the low-order bit of the interval value and equivalent to 1 microsecond.

For TOD, the address is a doubleword on a doubleword boundary containing the time of
day at which the interval is to be completed. The time of day is presented as zoned
decimal digits of the form HHMMSSth, as described above under DINTVL.

For TUINTVL, the address is a fullword on a fullword boundary containing the time
interval. The time interval is presented as an unsigned 32-bit binary number; the
low-order bit has a value of one timer unit (approximately 26.04166 microseconds).

Note: For the DINTVL, GMT, and TOD parameters, the zoned decimal digits are not
checked for validity. Thus, the specification of invalid digits can result in an ABEND
OC7, or a time interval different from that desired.

,ERRET = err rtn addr
specifies the address of the routine to be given control when the STIMER function cannot
be performed because of damaged clocks. The STIMER macro will test the return code
and give control to the specified routine for a non-zero value. The register contents when
the routine is given control are:

Register

0- 1
2 - 14
15

Contents

unpredictable
unchanged
return code

If the caller does not specify ERRET, then the STIMER function will return only on
successful completion (return code 0). If ERRET is not specified, failure due to damaged
clock(s) will result in the abnormal termination of the caller.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Meaning
Code

00 Successful completion.
08 Damaged clocks.

STIMER - Set Interval Timer 303

Example 1

Notes:

1. The time interval specified by an STIMER macro instruction has no relation to the time
interval specified in an EXEC statement.

2. If the optional exit routine address and WAIT are not specified, no indication of completion
of the time interval is provided.

3. The TTIMER and CPUTIMER macro instructions provide a facility for determining the
remaining time interval associated with STIMER.

4. The STIMER macro instruction should not be issued while a BTAM OPEN or LINE OPEN
operation is in progress, since the BTAM OPEN LINE routines also use STIMER. STIMER
should not be issued before invoking dynamic allocation because dynamic allocation can also
issue STIM ER.

5. Specifying a time interval greater than 24 hours and DINTVL (without TOD or GMT),
BINVTL, MICVL, or TUINVL causes the time interval to be set to 24 hours.

6. Specifying a time interval greater than 24 hours and DINTVL with TOD or GMT, causes a
12F abend.

The priorities of other tasks in the system can also affect the accuracy of the tim,e interval
measurement. If you code REAL or WAIT, the interval is decreased continuously and can
expire when the task is not active. After the time interval expires, assuming the task is not in
the wait condition for any other reasons, the task is placed in the ready condition and competes
for control with the other ready tasks in the system. The additional time required before the
task becomes active depends on the relative dispatching priority of the task.

Operation: Request the user's asynchronous exit routine, located at location EXIT, to receive
control after the number of hundredths of seconds specified at INTVLONG has elapsed in real
time.

STIMER REAL ,EXIT , BINTVL=INTVLONG

304 Supervisor Services and Macro Instructions

)

)

STIMERM SET - Set Multiple Interval Timer

The STIMERM SET macro instruction is used to set a timer to a specified time interval (less
than 24 hours) or to an interval that will expire at a specified time of day (not to exceed 24
hours). Up to sixteen STIMERM requests per task may be in effect at a time. Note that this
limit of sixteen does not include time intervals established via the STIMER macro instruction
or the set DIE function.

The time interval is a real-time interval, measured continuously. The task may elect to either
continue (W AIT = NO) or suspend execution (W AIT = YES). If the task elects to continue
execution, it may optionally specify an exit routine to be given control on completion of the
time interval. If an exit routine is specified, the task may optionally elect to pass a parameter to
the exit routine. The optional asynchronous timer completion exit is given control when the
time interval expires; if no asynchronous timer completion routine is specified, and
WAIT = YES is not specified, no indication. that the time interval has expired is provided.

The standard form of the STIMERM SET macro instruction is written as follows:

name

b

STIMERM

b

SET

,ID = stor addr

,BINTVL = stor addr
,DINTVL= stor addr
,GMT=stor addr
,MICVL=stor addr
,TOD =stor addr
,TUINTVL = stor addr

,ERRET = err rtn addr

,WAIT = YES
,WAIT=NO

,EXIT = exit rtn addr

,PARM = stor addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

stor addr: A-type address or register (2) - (12).

stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).

err rln addr: A-type address or register (2) - (12).

Default: WAIT = NO

exit rtn add,.: A-type address or register (2) - (12).
Note: EXIT must not be specified if WAIT = YES is specified.

stor addr: A-type address or register (2) - (12).
Note: If PARM is specified, EXIT must be specified and WAIT = YES must not
be specified.

The parameters are explained below:

SET
This indicates a request to establish a REAL time interval.

,ID=addr
specifies the address of a 4-byte area in which the identifier timer service assigns to this
request will be returned.

STIMERM SET - Set MUltiple Interval Timer 305

,BINTVL = stor addr
,DINTVL = stor addr
,GMT = stor addr
,MICVL = stor addr
,TOD = stor addr
,TUINTVL = stor addr

specifies the storage address and format of the time interval:

For BINTVL, the address of a 4-byte area containing the time interval. The time interval is
represented as an unsigned 32-bit binary number; the low-order bit has a value of 0.01 second.

For DINTVL, the address of an 8-byte area in virtual storage containing the time interval. The
time interval is represented as zoned decimal digits of the form:

HHMMSSth, where:

HH is hours (24-hour clock)
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds

For GMT, the address is an 8-byte area containing the Greenwich mean time at which the
interval is to be completed. The time is represented as zoned decimal digits of the form
HHMMSSth, as described previously under DINTVL.

For MICVL, the address is an 8-byte storage area containing the time interval. The time
interval is represented as an unsigned 64-bit binary number; bit 51 is the low-order bit of the
interval value and equivalent to 1 microsecond.

For TOD, the address is an 8-byte storage area containing the time of day at which the interval
is to be completed. The time of day is represented as zoned decimal digits of the form
HHMMSSth, as described previously under DINTVL.

For TUINTVL, the address is a 4-byte area containing the time interval. The time interval is
represented as an unsigned 32-bit binary number; the low-order bit has a value of one timer
unit (approximately 26.04166 microseconds).

Note: For the DINTVL, GMT, and TOD parameters, the zoned decimal digits are not
checked for validity. Thus, the specification of invalid digits can result in an ABEND OC7, or a
time interval different from that desired.

,ERRET = err rtn addr
specifies the address of the routine to be given control when the STIMERM function
cannot be performed. If this parameter is omitted and an error is encountered, the
invoker of the STIMERM function will be abnormally terminated. The specified error
routine will be entered in the addressing mode of the STIMERM invoker. If the macro
parameter list or any in-storage parameters are not accessible, the STIMERM invoker will
be abended regardless of whether or not ERRET has been specified.

306 Supervisor Services and Macro Instructions

(~

)

)

The register contents when the routine is given control are:

Register Contents

o
1
2-14
15

address of a 24-byte STIMERM parameter list
unpredictable
unchanged
return code

,EXIT = exit rtn addr
specifies the address of an exit routine to be given asynchronous control after the
requested timer interval expires. The system's workload and the relative dispatching
priority of the associated task determine exactly when, after the interval completes, the
exit routine gets control. The specified exit routine will be entered in the addressing mode
of the STIMERM invoker. If WAIT = YES is specified, then the EXIT parameter must
not be specified.

Exit Routine Interface

The timer exit routine, established with the EXIT parameter in an STIMERM macro
instruction, receives control with the following register values:

RO - control program information

Rl - points to an 8-byte fetch-protected storage area below the 16Mb line and in the protect key that issued the
STIMERM SET macro instruction.

Rl----- >
Word 1 TIMER REQUEST ID

Word 2 USER PARAMETER (specified in the PARM keyword)

R2-R12 - unpredictable
R13 - address of a 72-byte save area provided by the control program
R14 - return address (to control program)
R15 - address of the exit routine

The exit routine receives control in the addressing mode of the STIMERM issuer.

,P ARM = stor addr
specifies the address of a 4-byte parameter to be passed to the exit routine when the
requested timer interval expires. P ARM = stor addr must not be specified if WAIT = YES
is specified. If PARM = stor addr is specified, EXIT = exit rtn addr must also be specified.

,WAIT = YES
,WAIT =NO

specifies whether the task should be suspended until the requested time interval expires.
WAIT = YES specifies that the task should be suspended until the requested time interval
expires. If WAIT = NO is coded, and EXIT is not specified, then no indication of timer
expiration is given. WAIT = NO is the default.

,RELATED = value
specifies information used to self document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid macro
keyword expression.

STIMERM SET - Set Multiple Interval Timer 307

Example 1

When control is returned, register 15 contains one of the following return codes. Note that for
non-zero return codes, the ERRET routine if specified is given control. If ERRET is omitted, a
non-zero return code will result in an ABEND of the STIMERM invoker;

Hexadecimal Meaning
Code

0 The STIMERM service completed successfully.

8 All time-of-day clocks in the system are inoperative.

C GMT or TOD value specified exceeds 24 hours.

10 Parameters passed to STIMERM are invalid.

18 All clock comparators in the system are inoperative.

lC Request would cause the limit of concurrent STIMERM SET requests
supported for a TASK to be exceeded.

Usage Notes:

1. The time interval specified by an STIMERM macro instruction has no relation to the time
interval specified in an EXEC statement.

2. If the optional exit routine address and WAIT = NO are not specified, no indication of
completion of the time interval is provided.

3. Specifying a time interval greater than 24 hours and DINTVL, BINVTL, MICVL, or
TUINVL, causes the time interval to be set to 24 hours.

4. Specifying a time interval greater than 24 hours with TOD or GMT, causes a 32E abend if
ERRET is not specified.

5. All input and output data addresses are treated as full 31-bit addresses.

6. The STIMERM SET parameter list may be above or below the 16Mb line.

7. There is no interaction between the STIMER macro support and the STIMERM SET
macro support.

8. An exit routine will be unable to distinguish between the case where PARM = was not
specified and the case where the specified P ARM value was zero.

9. If the macro parameter list or any in-storage parameters are not accessible, the STIMERM
invoker will be abended regardless of whether or not ERRET has been specified.

10. If multiple asynchronous exits are established, the exit routines may not receive control in
the same order that the intervals expire.

Operation: SET a timer to a specified time interval. Specify the address of a 4-byte area in
which the identifier assigned by the timer service to this request will be returned. Specify that
control should be given to an asynchronous timer completion exit named TIME when the time
interval expires. Specify the address of a 4-byte area (containing the time interval represented
as an unsigned 32-bit binary number) named INTERVAL. Include an error exit routine named
ERROR.

STIMERM SET,ID=ADDRESS,BINTVL=INTERVAL,EXIT=TIME,ERRET=ERROR

308 Supervisor Services and Macro Instructions

c

Example 2

Example 3

)

Operation: SET a timer to a time interval that specifies the address of a 4-byte area in which
the identifier assigned by timer service will be returned. Specify the address of a 8-byte area
(containing the Greenwich mean time at which the interval is to be completed) named
INTERVAL. Specify that the task should be suspended until the requested time interval
expires. Include an error exit routine named EXITX.

STIMERM SET,ID=ADDRESS,GMT=INTERVAL,WAIT=YES,ERRET=EXITX

Operation: SET a timer to a time interval that specifies the address of a 4-byte area in which
the identifier assigned by timer service will be returned. Specify the address of an 8-byte area
(containing the time interval represented as a zoned decimal digit) in register 8. Specify the
address of a 4-byte parameter to be passed to the exit routine when the requested time interval
expires. Include the address of an exit error routine in register 9.

STIMERM SET,ID=(7),DINTVL=(8),PARM=USERDATA,ERRET=(9)

STIMERM SET - Set Multiple Interval Timer 309

STIMERM SET - Set Multiple Interval Timer (List Form)

Example 1

The list form of the STIMERM SET macro instruction is written as follows:

name

b

STIMERM

b

SET

,MF=L

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

The parameters are explained as follows:

,MF=L
specifies the list form of the STIMERM SET macro. If MF = L is not specified, then the
standard form of the macro is expanded. If MF = L is specified, the only keyword
allowed is RELATED.

Operation: Establish a remote STIMERM SET parameter list.

STIMERM SET,MF=L

310 Supervisor Services and Macro Instructions

)

STIMERM SET - Set Multiple Interval Timer (Execute Form)

Example 1

The execute form of the STIMERM SET macro instruction is written as follows:

name

b

STIMERM

b

SET

,ID = stor addr

,BINTVL = slor addr
,DINTVL = stor addr
,GMT = stor addr
,MICVL=slor addr
,TaD =stor addr
,TUINTVL = stor addr

,ERRET = err rtn addr

,WAIT=YES
,WAIT=NO

,EXIT = exit rtn addr

,PARM =slor addr

,MF = (E,ctrl addr)

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

slor addr: A-type address or register (2) - (12).

slor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).
slor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).

err rtn addr: A-type address or register (2) - (12).

exit rtn addr: A-type address or register (2) - (12).

slor addr: A-type address or register (2) - (12).

ctrl addr: A-type address or register (1) - (12).

The parameters are explained in the standard form of the STIMERM SET macro instruction,
with the following exception.

,MF = (E,ctrl addr)
specifies the execute form of the STIMERM SET macro instruction using a remote
problem program parameter list. If MF = (E,ctrl addr) is not specified, then the standard
form of the macro is expanded.

Operation: Establish a timer to a specified time interval specifying the address of a 4-byte area
in which the identifier assigned to this request by timer service will be returned. Specify the
address of an 8-byte area (containing the time interval represented as an unsigned 64-bit binary
number) in register 5. Specify the address of a program to be given asynchronous control after
the requested timer interval expires. Specify the address of a 4-byte parameter to be passed to
the exit routine when the requested time interval expires. Include the address of an error
routine in register 9.

STIMERM SET,ID=(4) ,MICVL=(5) ,EXIT=ROUTE,PARM=DATA,
MF=(E,REMOTE),ERRET=(9)

x

STIMERM SET - Set Multiple Interval Timer (Execute Form) 311

STIMERM TEST - Test a Time Interval

The STIMERM TEST macro instruction is used to test the remaining time interval for a timer
request established via the STIMERM SET macro instruction. The particular timer request to
be tested is identified via the ID = parameter, and must have been established by the current
task.

If TU is specified, the STIMERM TEST macro instruction causes the control program to
return the amount of time remaining to the designated 4-byte storage area as an unsigned 32-bit
binary number containing the number of timer units (approximately 26,04166 microseconds per
unit) remaining in the interval.

If MIC is specified, the remaining time is returned to the designated 8-byte storage area. Bit 51
of the area is the low-order bit of the interval value, and is equivalent to approximately 1
microsecond.

If the specified (via ID =) timer request does not exist for the current task, or has expired, the
storage area designated by TU = or MIC = is set to O.

If the specified (via ID =) timer request exists for the current task, and the calculation of the
interval remaining results in a negative or zero time interval, the minimum positive interval will
be returned to the user. If the specified timer request has expired, a zero time interval is
returned. This allows the user to differentiate the case where the interval has expired, and the
case where the interval has not yet expired, but the remaining interval is less than or equal to
zero.

The standard form of the STIMERM TEST macro instruction is written as follows:

name

b

STIMERM

b

TEST

,ID = stor addr

,TV = stor addr
,MIC = stor addr

,ERRET = err rtn addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

stor addr: A-type address or register (2) - (12).

stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).

err rtn addr: A-type address or register (2) - (12).

The parameters are explained below:

TEST
This indicates a request to return the remaining time for a request made using the
STIMERM SET option.

,ID = stor addr
specifies the address of a 4-byte area containing the identifier assigned by the timer service
routine to a particular timer request.

312 Supervisor Services and Macro Instructions

)

)

)

,TV = stor addr
,MIC = stor addr

specifies that the remaining time in the interval be returned:

For TV, the time is returned to the specified 4-byte area as an unsigned 32-bit binary
number. The low-order bit is approximately 26.04166 microseconds (one timer unit).

For MIC, the time is returned in microseconds. The stor addr is the 8-byte area where the
remaining interval is to be stored. The remaining interval is represented as an unsigned
64-bit binary number; bit 51 is equivalent to 1 microsecond.

The stor addr is the area where the remaining interval is to be stored. TV and MIC are
mutually exclusive.

,ERRET = err rtn addr
specifies the address of the routine to be given control when the STIMERM function
cannot be performed. If this parameter is omitted and an error is encountered, the
STIMERM issuer will be abnormally terminated. The specified error routine will be
entered in the AMODE of the STIMERM invoker.

If the macro parameter list or any in-storage parameters are not accessible, the
STIMERM invoker will be abended regardless of whether or not an ERRET = has been
specified.

The register contents when the routine is given control are:

Register Contents

0-1 unpredictable
2-14 unchanged
15 return code

,RELATED = value
specifies information used to self document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid macro
keyword expression.

Return Codes

When control is returned, register 15 contains one of the following return codes. Note that for
non-zero return codes, the ERRET routine if specified, is given control. If ERRET is omitted, a
non-zero return code results in an abnormal termination of the STIMERM invoker.

Hexadecimal Meaning
Code

0 The STIMERM service has completed successfully.

8 All time-of-day clocks in the system are inoperative.

10 Parameters passed to STIMERM are invalid.

24 An invalid STIMERM ID number (either 0, or greater than the highest ID
assigned by the system) has been specified.

STIMERM TEST - Test a Time Interval 313

Example 1

Example 2

Usage Notes:

I. All input and output addresses are treated as full 3 I-bit addresses.

2. The STIMERM TEST parameter list may be above or below the 16Mb line.

3. There is no interaction between the TTIMER macro support and the STIMERM TEST
macro support. A time interval established via the STIMER macro cannot be tested with
the STIMERM TEST macro instruction. Similarly, a time interval established via the
STIMERM SET macro cannot be tested with the TTIMER macro instruction.

4. If the macro parameter list or any in-storage parameters are not accessible, the STIMERM
invoker will be abended regardless of whether or not an ERRET = has been specified.

Operation: Test the remaining time interval for a timer request established with the STIMERM
SET macro instruction, specifying the address of a 4-byte area (register 4) from which the
identifier assigned to this request by the timer service will be obtained. Specify that the time be
returned in a 4-byte area as an unsigned 32-bit binary number at the address labeled
INTERVAL. Include the address of an exit error routine called XYZ.

STIMERM TEST,ID=(4),TU=INTERVAL,ERRET=XYZ

Operation: Test the remaining time interval for a timer request established with the STIMERM
SET macro instruction, specifying the address of a 4-byte area at the address labeled ADDR
from which the identifier assigned to this request by timer service will be obtained. Specify that
the time be returned in microseconds in a 8-byte area as an unsigned 64-bit binary number at
the address labeled INTERVAL. Include the address of an exit error routine called
ERRORADD.

STIMERM TEST,ID=ADDR,MIC=INTERVAL,ERRET=ERRORADD

314 Supervisor Services and Macro Instructions

c

)

)

STIMERM TEST - Test a Time Interval (List Form)

Example 1

The list form of the STIMERM TEST macro instruction is written as follows:

name

b

STIMERM

b

TEST

,MF=L

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

The parameters are explained as follows:

,MF=L
specifies a list form macro. If MF = L is not specified, then the standard form of the
macro is expanded. If MF = L is specified, the only keyword allowed is RELATED = .

Operation: Establish a remote STIMERM TEST or CANCEL parameter list.

STIMERM TEST,MF=L

STIMERM TEST - Test a Time Interval (List Form) 315

STIMERM TEST - Test a Time Interval (Execute Form)

Example 1

The execute form of the STIMERM TEST macro instruction is written as follows:

name

b

STIMERM

b

TEST

,ID = stor addr

,TU=stor addr
,MIC = stor addr

,ERRET = err rtn addr

,MF=(E,ctrl addr)

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

stor addr: A-type address or register (2) - (12).

stor addr: A-type address or register (2) - (l2).
stor addr: A-type address or register (2) - (12).

err rtn addr: A-type address or register (2) - (l2).

ctrl addr: A-type address or reg (0), or (2) - (12).

The parameters are explained under the standard form of the STIMERM TEST macro
instruction with the following exception:

,MF = (E,ctrl addr)
specifies an execute form of the STIMERM STEST macro instruction using a remote
problem program parameter list. If MF = (E,ctrl addr) is not specified, then the standard
form of the macro is expanded.

Operation: Test the remaining time interval for a timer request established with the STIMERM
SET macro instruction, specifying the address of a 4-byte area at the address named ADDR in
which the identifier assigned by timer service to this request will be returned. Specify that
register 3 will point to the appropriate list. Specify that the time be returned in microseconds in
a 8-byte area as an unsigned 64-bit binary number at the address named INTERVAL. Include
the address of an exit error routine called ERR.

STIMERM TEST, ID=ADDR,MIC=INTERVAL,MF= (E, (3»,ERRET=ERR

316 Supervisor Services and Macro Instfuct~~)flS

)

STIMERM CANCEL - Cancel a Timer Request

The STIMERM CANCEL macro instruction is used to cancel a specific timer request, (or all)
of the current task's timer requests established via the STIMERM SET macro instruction. The
ID = parameter is used to identify the timer request(s) to be cancelled. If a specific timer
request is to be cancelled, then the remaining time interval for that request may optionally be
returned to a storage area designated by the TV or MIC parameters.

If TV is specified, the STIMERM CANCEL macro instruction causes the control program to
return the amount of time remaining to the designated 4-byte storage area as an unsigned 32-bit
binary number containing the number of timer units (approximately 26.04166 microsecond
units) remaining in the interval.

If MIC is specified, the remaining time is returned to the designated 8-byte storage area. Bit 51
of the area is equivalent to approximately 1 microsecond.

If the specified (via ID =) timer request exists for the current task, and the calculation of the
interval remaining results in a negative or zero time interval, the minimum positive interval will
be returned to the user. If the specified timer request has expired, a zero time interval is
returned. This allows the user to differentiate the case where the interval has expired, and the
case where the interval has not yet expired, but the remaining interval is less than or equal to
zero.

If a non-zero time is returned when ID = is specified, any exit routine associated with the
specified timer request is cancelled.

If an invalid STIMERM ID (either 0, or greater than the highest ID assigned by the system)
has been specified, the ERRET routine will be entered, or if ERRET is not specified, the
STIMERM CANCEL invoker will be abnormally terminated.

The standard form of the STIMERM CANCEL macro instruction is written as follows:

name

b

STIMERM

b

CANCEL

,ID = stor addr
,ID=ALL

,TV = stor addr
,MIC=

,ERRET = err rtn addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

stor addr: A-type address or register (2) - (12).

stor addr: A-type address or register (2) - (12).
stor addr stor addr: A-type address or register (2) - (12).

err rtn addr: A-type address or register (2) - (12).

The parameters are explained below:

CANCEL
This indicates a request to cancel and optionally return the remaining time for a timer
request.

STIMERM CAN CEL - Cancel a Timer Request 31 7

,ID = stor addr
,ID=ALL

,TV

specifies the address of a 4-byte area containing the identifier assigned by the timer service
to a particular timer request. ID = ALL results in all the current task's timer request(s)
established by STIMERM SET being cancelled. If ALL is specified, no remaining time
interval is returned.

If ID = ALL is specified, then neither TV nor MIC may be specified.

,MIC = stor addr
specifies that the remaining time in the interval be returned:

For TV, the time is returned to the specified 4-byte area as an unsigned 32-bit binary
number. The low-order bit is approximately 26.04166 microseconds (one time unit).

For MIC, the time is returned to the specified 8-byte area. Bit 51 of the area is equivalent
to approximately 1 microsecond.

The stor addr is the area where the remaining interval is to be stored.

,ERRET = err rtn addr
specifies the address of the routine to be given control when the STIMERM function
cannot be performed. If this parameter is omitted and an error is encountered, the
STIMERM issuer will be abnormally terminated. The specified error routine will be
entered in the addressing mode of the STIMERM invoker. If the macro parameter list or
any in-storage parameters are not accessible, the STIMERM invoker will be abnormally
terminated regardless of whether or not an ERRET routine is specified.

The register contents when the routine is given control are:

Register

0-1
2-14
15

Contents

unpredictable
unchanged
return code

,RELATED = value
specifies information used to self document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid macro
keyword expression.

Return Codes

When control is returned, register 15 contains one of the following return codes. Note that for
non-zero return codes, the ERRET routine if specified, is given control. If ERRET is omitted,
a non-zero return code will result in an ABEND of the STIMERM invoker.

318 Supervisor Services and Macro Instructions

) Example 1

Example 2

Example 3

)

Hexadecimal Meaning
Code

0 The STIMERM service has completed successfully.

8 All time-of-day clocks in the system are inoperative. The CANCEL has
been performed, but no remaining time interval will be returned.

10 Parameters passed to STIMERM are invalid.

24 An invalid STIMERM ID (either 0, or greater than the highest ID assigned
by the system has been specified).

Usage Notes:

1. All input and output addresses are treated as full 31-bit addresses.

2. The STIMERM CANCEL parameter list may be above or below the 16Mb line.

3. There is no interaction between the TTIMER CANCEL macro support and the STIMERM
CANCEL macro support. A time interval established via the STIMER macro cannot be
cancelled with STIMERM CANCEL.

4. If the macro parameter list or any in-storage parameters are not accessible, the STIMERM
invoker will be abnormally terminated regardless of whether or not an ERRET routine is
specified.

5. If the STIMERM CANCEL specifies (via ID =) a timer request that was established with
the WAIT = YES parameter, the task will not be taken out of the wait condition.

Operation: Cancel a timer request established with a STIMERM SET macro instruction,
specifying the address of a 4-byte area named ADDRESS containing the identifier assigned by
the timer service. The time interval remaining should be returned as an unsigned 32-bit binary
number in a 4-byte area called INTERVAL. An exit error routine named ERROR is also be
specified.

STIMERM CANCEL,ID=ADDRESS,TU=INTERVAL,ERRET=ERROR

Operation: Cancel a timer request established with a STIMERM SET macro instruction,
specifying the address of a 4-byte area named PLACE containing the identifier assigned by the
timer service. The time interval remaining should be returned in a 8-byte area called
INTERVAL. An exit error routine named EXIT A is also be specified.

STIMERM CANCEL,ID=PLACE,MIC=INTERVAL,ERRET=EXITA

Operation: Cancel all the timer requests established with STIMERM SET macro instruction for
the current task.

STIMERM CANCEL,ID=ALL

STIMERM CANCEL - Cancel a Timer Request 319

STIMERM CANCEL (List Form)

Example 1

The list form of the STIMERM CANCEL macro instruction is written as follows:

name

b

STIMERM

b

CANCEL

,MF=L

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

The parameters are explained as follows:

,MF=L
specifies a list form of the macro instruction. If MF = L is not specified, then the
standard form of the macro is expanded. If MF = L is specified, the only keyword allowed
is RELATED=.

Operation: Establish the appropriate storage for the EXECUTE form of the STIMERM
CANCEL macro instruction.

STIMERM CANCEL,MF=L

320 Supervisor Services and Macro Instructions

(

)

)

STIMERM CANCEL (Execute Form)

Example 1

The execute form of the STIMERM CANCEL macro instruction is written as follows:

name

b

STIMERM

b

CANCEL

,ID = stor addr
,ID=ALL

,TV = stor addr
,MIC = stor addr

,ERRET = err rtn addr

,MF=(E,ctrl addr)

,RELATED = any value

name: symbol. Begin name in column 1.

One or more blanks must precede STIMERM.

One or more blanks must follow STIMERM.

stor addr: A-type address or register (2) - (12).

stor addr: A-type address or register (2) - (12).
stor addr: A-type address or register (2) - (12).

err rln addr: A-type address or register (2) - (12).

clrl addr: A-type address or register (2) or (2).

The parameters are explained under the standard form of the STIMER CANCEL macro
instruction with the following exception:

,MF = (E,ctrl addr)
specifies an execute form using a remote problem program parameter list. If MF = (E,ctrl
addr) is not specified, then the standard form of the macro is expanded.

Operation: Cancel the timer request established with a STIMER SET macro instruction.
Specify the address of a 4-byte identifier named ADDRESS, and that the time interval
remaining be returned as an unsigned binary number in a 4-byte area named INTERVAL.
Specify an error e~it routine named ERROR.

STIMERM CANCEL, ID=ADDRESS,TU=INTERVAL,MF= (E, (O)),ERRET=ERROR

STIMERM CANCEL (Execute Form) 321

SYNCH - Take a Synchronous Exit to a Processing Program

If your program is to execute in 31-bit addressing mode, you must use the MVSjXA version of
this macro instruction.

The SYNCH macro instruction makes it possible for a problem state program to take a
synchronous exit to a processing program. On entry to the processing program, the high-order
bit, bit 0, of register 14 is set to indicate the addressing mode of the issuer of the SYNCH
macro. If bit 0 is 0, the issuer is executing in 24-bit addressing mode; if bit 0 is 1, the issuer is
executing in 31-bit addressing mode. The SYNCH routine analyzes a PRB (program request
block) and schedules execution of the requested program. After the processing program has
been executed, the program that issued the SYNCH macro instruction regains control.

The standard form of the SYNCH macro instruction is written as follows:

name

b

SYNCH

b

entry point addr

,RESTORE = NO
,RESTORE = YES

,AM ODE =24
,AMODE=31
,AMODE = DEFINED
,AMODE = CALLER

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH.

One or more blanks must follow SYNCH.

entry point addr: RX-type address, or register (2) - (12) or (15).

Default: RESTORE = NO

Default: AMODE = CALLER.
Note: AMODE=DEFINED can be specified only
if the entry point address is provided in
a register.

The parameters are explained as follows:

entry point addr
specifies the address of the entry point of the processing program to receive control.

,RESTORE = NO
,RESTORE = YES

specifies whether registers 2-13 are to be restored when control returns to the caller.

,AMODE=24
,AMODE=31
,AMODE = DEFINED
,AMODE = CALLER

specifies the addressing mode in which the requested program is to receive control.

If AMODE = 24 is specified, the requested program will receive control in 24-bit
addressing mode.

If AMODE = 31 is specified, the requested program will receive control in 31-bit
addressing mode.

If AMODE=DEFINED is specified, the user must provide the entry point using a
register and not an RX-type address. The requested program will receive control in the

322 Supervisor Services and Macro Instructions

(

Example 1

Example 2

Example 3

Example 4

Example 5

)

addressing mode indicated by the high order bit of the entry point address. If the bit is
off, the requested program will receive control in 24-bit addressing mode; if the bit is set,
the requested program will receive control in 31-bit addressing mode.

If AMODE = CALLER is specified, the requested program will receive control in the
addressing mode of the caller.

Operation: Take a synchronous exit to PROGRAMA. Do not restore registers 2-13 when
control returns.

LOAD EP=PROGRAMA,DCB=LIBl
LR R8,RO
SYNCH (R8) ,RESTORE=NO

Load desired program
Obtain the entry point

Operation: Take a synchronous exit to a program labeled SUBRTN and restore registers 2-13
when control returns.

SYNCH SUBRTN,RESTORE=YES

Operation: Take a synchronous exit to the program located at the address given in register 8
and restore registers 2-13 when control returns. Indicate that this program is to execute in
24-bit addressing mode.

SYNCH(8),RESTORE=YES,AMODE=24

Operation: Take a synchronous exit to the program located at the address given in register 8
and restore registers 2-13 when control returns. Indicate that this program is to receive control
in the addressing mode defined by the high-order bit of its entry point address.

SYNCH (8),RESTORE=YES,AMODE=DEFINED

Operation: Take a synchronous exit to the program located at the address given in register 8
and restore registers 2-13 when control returns. Indicate that this program is to receive control
in the addressing mode as the caller.

SYNCH (8),RESTORE=YES,AMODE=CALLER

SYNCH - Take a Synchronous Exit to a Processing Program 323

SYNCH (List Form)

Example 1

The list form of the SYNCH macro instruction is used to construct a control program
parameter list.

The list form of the SYNCH macro instruction is written as follows:

name

b

SYNCH

b

,RESTORE = NO
,RESTORE = YES

,AMODE=24
,AMODE=31
,AMODE = DEFINED
,AMODE = CALLER

,MF=L

name: symbol. Begin name in column I.

One or more blanks must precede SYNCH.

One or more blanks must follow SYNCH.

Default: RESTORE=NO

Default: AMODE = CALLER

The parameters are explained under the standard form of the SYNCH macro instruction, with
the following exception:

,MF=L
specifies the list form of the SYNCH macro instruction.

Operation: Use the list form of the SYNCH macro instruction to specify that registers 2-13 are
to be restored when control returns from executing the SYNCH macro instruction and that the
addressing mode of the program is to be defined by the high-order bit of the entry point
address. Assume that the execute form of the macro instruction specifies the program address.

SYNCH ,RESTORE=YES,AMODE=DEFINED,MF=L

324 Supervisor Services and Macro Instructions

)

SYNCH (Execute Form)

Example 1

The execute form of the SYNCH macro instruction uses a remote control program parameter
list that can be generated by the list form of SYNCH.

The execute form of the SYNCH macro instruction is written as follows:

name

b

SYNCH

b

entry point addr

,RESTORE = NO
,RESTORE = YES

,AMODE=24
,AMODE=31
,AMODE = DEFINED
,AMODE = CALLER

,MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH.

One or more blanks must follow SYNCH.

entry point addr: RX-type address, or register (2) - (12) or (15).

Default: RESTORE=NO

Default: AMODE=CALLER
Note: AMODE=DEFINED can be specified only if the entry point
address is provided in a register.

ctrl addr: RX-type address or register (1), (2) - (12).

The parameters are explained under the standard form of the SYNCH macro instruction, with
the following exception:

,MF = (E,ctrl addr)
specifies the execute form of the SYNCH macro instruction.

Operation: Use the execute form of the SYNCH macro instruction to take a synchronous exit
to the program located at the address given in register 8 and restore registers 2-13 when control
returns. Indicate that the program is to receive control in the same addressing mode as the
caller and that the parameter list is located at SYNCHL2.

SYNCH (8),RESTORE=YES,AMODE=CALLER,MF=(E,SYNCHL2)

SYNCH (Execute Form) 325

TIME - Provide Time and Date

The TIME macro instruction causes the control program to return either the local time of day
and date, the Greenwich mean time of day and date; or the contents of the TOD clock. The
time of day and date are only as accurate as the corresponding information entered by the
operator, and the system response time .

. Unless STCK is specified, the date is returned in register 1 as packed decimal digits of the form

OCYYDDDF, where:

C is a digit representing centuries beyond the twentieth. In the years 1900 through 1999, the macro will return a
value ofC=O.

YY is the last two digits of the year
DDD is the day of the year
F is a 4-bit sign character that allows the data to be unpacked and printed

The time of day, based on a 24-hour clock, is returned in different forms, as designated by the
parameters shown below. For the DEC, BIN, and TU parameters, the time of day is returned
in register O. For the MIC and STCK parameters, the time of day and TOD clock contents
respectively are stored at the specified address.

The TIME macro instruction is written as follows:

The parameters are explained as follows:

name

b

TIME

b

DEC
BIN
TV
MIC,stor addr
STCK,stor addr

,ZONE=LT
,ZONE = GMT

,ERRET = err rtn addr

DEC
BIN
TV
MIC ,stor addr
STCK ,stor addr

name: symbol. Begin name in column 1.

One or more blanks must precede TIME.

One or more blanks must follow TIME.

Default: DEC
stor addr: RX-type address or register (0) or (2) - (12).

Default: ZONE = LT
Note: This parameter has no meaning if STCK above is specified.

err rtn addr: A-type address, or register (2) - (12).

specifies that the time of day or TOD clock contents be returned:

For DEC, the time of day is returned in register 0 as packed decimal digits, without a
sign, of the form

HHMMSSth, where:

HH is hours (24-hour clock)
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds

326 Supervisor Services and Macro Instructions

)

For BIN, the time of day is returned in register 0 as an unsigned 32-bit binary number.
The low-order bit is equivalent to 0.01 seconds.

For TV, the time of day is returned in register 0 as an unsigned 32-bit binary number.
The low-order bit is approximately 26.04166 microseconds (one timer unit).

For MIC, the time of day is returned in microseconds. The stor addr is the address of an
8-byte area in storage with bit 51 equivalent to one microsecond.

For STCK, the contents of the TOD clock is returned as an unsigned 64-bit fixed-point
number, where bit 51 is equivalent to 1 microsecond. The stor addr is the address of an
8-byte area in storage. Register 1 does not contain the date on return.

Notes:

1. The resolution of the time-of-day clock is model dependent. See Principles of Operation
for an explanation of the rate advancement.

2. stor addr must be a 24-bit address.

,ZONE=LT
,ZONE = GMT

specifies that the local time and date (L T) or the Greenwich mean time and date (GMT)
is to be returned .

. ,ERRET = err rtn addr
specifies the address of the routine to be given control when the TIME function cannot be
performed because of damaged clocks. The TIME macro will test the return code and
give control to the specified routine for a non-zero value. The register contents when the
routine is given control are:

Register

0-1
2-14
15

Contents

unpredictable .
unchanged
return code

If the caller does not specify ERRET, then the TIME function will return only on
successful completion (return code 0). If ERRET is not specified, failure due to damaged
clock(s) will result in the abnormal termination of the caller.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Meaning
Code

00 Successful completion
08 Damaged clocks

TIME- Provide Time and Date 327

Example 1

Operation: Request the system to store the time-of-day clock in the address pointed to by
register 2. The user's routine TIMEERR is to receive control if no usable time-of-day clock
exists in the system.

TIME STCK,(2),ERRET=TIMEERR

328 Supervisor Services and Macro Instructions

)

)

TTIMER - Test Interval Timer

The TTIMER macro instruction is used to test the timer interval established by an STIMER
macro instruction. It is also used to cancel the remaining time interval.

If TV is specified or assumed, the TTIMER macro instruction causes the control program to
return in register 0 the amount of time remaining in a timer interval previously set by an
STIMER macro instruction. The time remaining is returned as an unsigned 32-bit binary
number specifying the number of timer units (approximately 26.04166 microsecond units)
remaining in the interval. If a time interval has not been set or has already expired, register 0
contains O.

If MIC is specified, the remaining time is returned to the doubleword area specified in the
address. Bit 51 of the area is the low-order bit of the interval value and equivalent to 1
microsecond. If a time interval has not been set or has already expired the area is set to O.

Note: The resolution of the timer is model dependent. See Principles of Operation for
additional details concerning the timer facility.

The TTIMER macro instruction is written as follows:

name

b

TTIMER

b

CANCEL

,TV
,MIC,slor addr

,ERRET = err rln addr

name: symbol. Begin name in column 1.

One or more blanks must precede TTIMER.

One or more blanks must follow TTIMER.

Default: TV
stor addr: RX-type address, or register (0) or (2) - (12).

err rtn addr: RX-type address, or register (2) - (12).

The parameters are explained as follows:

CANCEL
specifies that the remaining time interval and any exit routine are to be canceled. If the
time interval has already expired, the CANCEL option has no effect and a value of zero
time remaining is returned. In this case, a specified exit will still receive control. If a
non-zero time remaining is returned when the CANCEL option is specified, any exit
routine is canceled. If CANCEL is not designated, the unexpired portion of the time
interval remains in effect.

If WAIT was coded in the STIMER macro instruction that established the interval, the
task is not taken out of the wait condition and CANCEL is ignored.

TTIMER - Test Interval Timer 329

Example 1

,TV
,MIC ,stor addr

specifies that the remaining time in the interval be returned:

For TU, the time is returned in register 0 as an unsigned 32-bit binary number. The
low-order bit is approximately 26.04166 microseconds (one timer unit).

For MIC, the time is returned in microseconds. The stor addr is the doubleword area on
a doubleword boundary where the remaining interval is to be stored.

,ERRET = err rtn addr
specifies the address of the routine to be given control when the TTIMER function
cannot be performed because of damaged clocks. The TTIMER macro will test the
return code and give control to the specified routine for a non-zero value. The register
contents when the routine is given control are:

Register

0-1
2-14
15

Contents

unpredictable
unchanged
return code

If the caller does not specify ERRET, then the TTIMER function will return only on
successful completion (return code 0). If ERRET is not specified, failure due to damaged
clock(s) will result in the abnormal termination of the caller.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Meaning
Code

00
08

Successful completion
Damaged clocks

Usage Notes:

1. Time intervals established via the STIMERM SET macro instruction cannot be tested
or cancelled with the TTIMER macro instruction.

Operation: Cancel the task's current time interval. The time remaining, if any, should be
returned in timer units in register O.

TTIMER CANCEL,TU

330 Supervisor Services and Macro Instructions

(

)

)

WAIT - Wait for One or More Events

The WAIT macro instruction is used to inform the control program that performance of the
active task cannot continue until one or more specific events, each represented by a different
ECB (event control block), have occurred. Bit 0 and bit 1 of each ECB must be set to 0 before
it is used. The control program takes the following action:

• For each event that has already occurred (each ECB is already posted), the count of the
number of events is decreased by 1.

• If the number of events is 0 by the time the last event control block is checked, control is
returned to the instruction following the WAIT macro instruction.

• If the number of events is not 0 by the time the last ECB is checked, control is not returned
to the issuing program until sufficient ECBs are posted to bring the number to O. Control
is then returned to the instruction following the WAIT macro instruction.

The WAIT macro instruction is written as follows:

name

b

WAIT

b

event nmbr,

ECB = ecb addr
ECBLIST = ecb list addr

,LONG=NO
,LONG=YES

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede WAIT.

One or more blanks must follow WAIT.

event nmbr: symbol, decimal digit, or register (0) or (2) - (12).
Default: 1
Value range: 0-255

ecb addr: RX-type address, or register (1) or (2) - (12).
ecb list addr: RX-type address, or register (1) or (2) - (12).

Default: LONG = NO

value: Any valid macro keyword specification.

The parameters are explained as follows:

event nmbr,
specifies the number of events waiting to occur.

ECB = ecb addr
ECBLIST = ecb list addr

specifies the address of an ECB on a fullword boundary or the address of a virtual storage
area containing one or more consecutive fullwords on a fullword boundary. Each
fullword contains the address of an ECB; the high order bit in the last fullword must be
set to 1 to indicate the end of the list.

The ECB parameter is valid only if the number of events is specified as one or is omitted.
The number of ECBs in the list specified by the ECBLIST form must be equal to or
greater than the specified number of events.

,LONG=NO
,LONG = YES

specifies whether the task is entering a long wait (YES) or a regular wait (NO).

WAIT - Wait for One or More Events 331

Example 1

Example 2

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

The RELATED parameter is available on macro instructions that provide opposite
services (for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macro instructions that relate to previous occurrences of the
same macro instructions (for example, CHAP and EST AE).

The RELATED parameter may be used, for example, as follows:

WAITl WAIT l,ECB=ECB,RELATED=(RESUMEl,
'WAIT FOR EVENT')

RESUMEl POST ECB,O,RELATED=(WAITl,
'RESUME WAITER')

Note: Each of these macro instructions will fit on one line when coded, so there is no
need for a continuation indicator.

CAUTION
A job step with all of its tasks in aWAIT condition is terminated upon
expiration of the time limits that apply to it.

Example: You have previously initiated one or more activities to be completed asynchronously
to your processing. As each activity was initiated, you set up an ECB in which bits 0 and 1
were set to o. You now wish to suspend your task via the WAIT macro instruction until a
specified number of these activities have been completed.

Completion of each activity must be made known to the system via the POST macro
instruction. POST causes an addressed ECB to be marked complete. If completion of the
event satisfies the requirements of an outstanding WAIT, the waiting task is marked ready and
will be executed when its priority allows.

Operation: Wait for one event to occur (with a default count).

WAIT ECB=WAITECB
WAITECB DC F'O'

Operation: Wait for 2 events to occur.

LISTECBS

WAIT 2,ECBLIST=LISTECBS

DC A(ECBl)
DC A(ECB2)
DC X'80'
DC AL3(ECB3)

332 Supervisor Services and Macro Instructions

Example 3

)

Operation: Enter a long wait for a task.

WAIT 1,ECBLIST=LISTECBS,LONG=YES

LISTECBS DC A(ECB1)
DC A(ECB2)
DC X'80'
DC AL3 (ECB3)

WAIT - Wait for One or More Events 333

WTL - Write To Log

Example 1

Example 2

The WTL macro instruction causes a message to be written to the system log. The message can
include any character that can be used in a C-type (character) DC statement, and is assembled
as a variable-length record.

Note: The exact format of the output of the WTL macro instruction varies depending on the
job entry subsystem (JES2 or JES3) that is being used, the output class that is assigned to the
log at system initialization, and whether DLOG is in effect for JES3. In JES3, system log
entries are preceded by a 23-character prefix that includes a time stamp and routing
information. If the combined prefix and message exceeds 126 characters, the log entry is split
at the first blank or comma encountered when scanning backward from the l26th character of
the combined prefix and message. See Operations: JES3 Commands for information about the
format of the log entry when using JES3.

The standard form of the WTL macro instruction is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede WTL. b

WTL

b

'msg'

One or more blanks must follow WTL.

msg: Up to 126 characters.

The parameter is explained as follows:

<msg'
specifies the message to be written to the system log. The message must be enclosed in
apostrophes, which will not appear in the system log. See Figure 43 for a list of the
printable EBCDIC characters passed to display devices or printers.

Note: If the msg text exceeds 126 characters, truncation occurs at the last embedded blank
before the l26th character; when there are no embedded blanks, truncation occurs after the
l26th character.

Operation: Write a message to the system log.

WTL 'THIS IS THE STANDARD FORMAT FOR THE WTL MACRO'

Operation: Write a message constructed in the list form of WTL.

WTL MF=(E,(R2))

3 34 Supervisor Services and Macro Instructions

)

WTL (List Form)

The list form of the WTL macro instruction is used to construct a control program parameter
list. The message parameter must be provided in the list form of the macro instruction.

The list form of the WTL macro instruction is written as follows:

name

b

WTL

b

'msg'

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

msg: Up to 126 characters.

The 'msg' parameter is explained under the standard form of the WTL macro instruction. A
description of the MF parameter follows:

,MF=L
specifies the list form of the WTL macro instruction.

Note: If msg text exceeds 126 characters, truncation occurs at the last embedded blank before
the 126th character; when there are no embedded blanks, truncation occurs after the 126th
character.

WTL (List Form) 335

WTL (Execute Form)

The execute form of the WTL macro instruction uses a remote control program parameter list.
The parameter list can be generated by the list form of WTL. You cannot modify the message
in the execute form.

The execute form of the WTL macro instruction is written as follows:

name

b

WTL

b

MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

ctrl addr: RX-type address, or register (1) or (2) - (12).

This parameter is explained as follows:

MF = (E,ctri addr)
specifies the execute form of the WTL macro instruction. This form uses a remote
control program parameter list.

336 Supervisor Services and Macro Instructions

)

WTO - Write to Operator

The WTO macro instruction causes a message to be written to one or more operator consoles.
WTO processing uses register 15.

The standard form of the WTO macro instruction is written as follows:

name name: symbol. Begin name in column I.

One or more blanks must precede WTO. b

WTO

b

'msg '

One or more blanks must follow WTO.

msg: Up to 125 characters.
('text')
(,text',line type)

The permissible line types and lengths are shown below:

C 34 char
L 70 char
D 70 char
DE 70 char
E

Default: D

The maximum number of each line type allowed in a single WTO instructions
is:

I C type
2 L type
10 D type
I DE type
I E type

,ROUTCDE = (routing code)

The maximum total number of line types allowed in one instruction is 10.

routing code: decimal digit from I to 16. The routing code is one or more
codes, separated by commas.

,DESC = (desc code) desc code: decimal digit from 1 to 16. The desc code is one or more codes,
separated by commas.

The parameters are explained as follows:

'msg'
('text)
ftext',line type)

specifies the message or multiple-line message to be written to one or more operator
consoles.

The first format is used to write a single-line message to the operator. In the format, the
message must be enclosed in apostrophes, which do not appear on the console. It can
include any character that can be used in a character (C-type) DC instruction. When a
program issues a WTO macro instruction, the control program translates the text; only
standard printable EBCDIC characters are passed to the display devices as shown in
Figure 43. All other characters are replaced by blanks. Unless the console has dual-case
capability, lowercase characters are converted to uppercase by the display station or
printer and displayed or printed as uppercase characters. The message is assembled as a
variable-length record.

WTO - Write to Operator 337

c

L

D

DE

E

The second and third formats are used to write a multiple-line message to the operator.
The message can be up to ten lines long; the system truncates the message at the end of
the tenth line. The ten-line limit does not include the control line (message IEE932II), as
explained under line type C below.

Note: If the second format is coded without repetition, for example, ('text'), the message
appears as a single-line message.

The text is one line of the multiple-line message. A line consists of a character string
enclosed in apostrophes (which do not appear on the operator console). Any character
valid in a C-type DC instruction can be coded. The maximum number of characters
depends. on which line type is specified.

Note: The left most three bytes of register zero must be zero for a multiple-line message.
The user must ensure that this is done.

The line type defines the type of information contained in the "text" field of each line of
the message:

indicates that the "text" parameter is the text to be contained in the control line of the
message. The control line normally contains a message title. C may only be coded for
the first line of a multiple-line message. If this parameter is omitted and descriptor code 9
is coded, the system generates a control line (message IEE932I) containing only a message
identification number. The control line remains static during framing operations on a
display console (provided that the message is displayed in an out-of-line display area).
Control lines are optional.

indicates that the "text" parameter is a label line. Label lines contain message heading
information; they remain static during framing operations on a display console (provided
that the message is displayed in an out-of-line display area). Label lines are optional. If
coded, lines must either immediately follow the control line or another label line or be the
first line of the multiple-line message if there is no control line. Only two label lines may
be coded per message.

indicates that the "text" parameter contains the information to be conveyed to the
operator by the multiple-line message. During framing operations on a display console,
the data lines are paged.

indicates that the "text" parameter contains the last line of information to be passed to
the operator.

indicates that the previous line of text was the last line of text to be passed to the
operator. The "text" parameter, if any, coded with a line type of E is ignored.

338 Supervisor Services and Macro Instructions

)

)

,ROUTCDE = routing code
specifies the routing code(s) to be assigned to the message.

The routing codes are:

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control

9
10
11
12
13
14
15
16

System security
System error/maintenance
Programmer information
Emulators
Reserved for customer use
Reserved for customer use
Reserved for customer use
Reserved for future expansion

Note: Routing codes 1, 2, 3, 4, 7, 8, and 10 cause hard copy of the message when display
consoles are used or more than one console is active. All other routing codes may go to
hard copy as a SYSGEN option or as a result of a VARY HARDCPY command.

,DESC = (desc code)
specifies the message descriptor code(s) to be assigned to the message. Descriptor codes 1
through 6 and descriptor code 11 are mutually exclusive. Codes 7 throug1110 can be
assigned in combination with any other code. ~.

The descriptor codes are:

1
2
3
4
5
6

System failure
Immediate action required
Eventual action required
System status
Immediate command response
Job status

7
8
9
10
11
12-16

Application program/processor
Out-of-line message
Operator request
Dynamic status displays
Critical eventual action requested
Reserved for future use

Note: All WTO messages with descriptor codes of 1, 2, or 11 are action messages that
have an @ sign printed before the first character. This indicates a need for operator
action.

Messages with descriptor code 7 are deleted at end of job step.

Support for queuing messages with descriptor code 8 is by console id only.

On operator consoles that support color, descriptor codes determine the color in which a
message should be displayed. The colors used are described in Operatipns: System Commands.

The message processing facility cannot suppress messages with descriptor codes 1, 2, 3, 5
(except for responses from MONITOR JOBNAMES, MONITOR SESS, and MONITOR
STATUS commands), and 11. Messages with any other descriptor codes can be suppressed if
they have been identified by an id or prefix in SYS1.PARMLIB member MPFLSTxx.

If both the ROUTCDE and DESC parameters are omitted and the message is not a single-line
message, the routing code specified in the OLDWTOR parameter of the system generation
CONSOLE macro instruction is assigned, and a default of 7 is assigned as the descriptor code.
If the OLDWTOR sysgen option is omitted, all routing codes and a descriptor code of 7 are
assigned. Routing codes should be used with ML WTO messages. If DESC is specified with no
ROUTCDE, the message will be queued to the hardcopy log by default.

WTO - Write to Operator 339

Example 1

Example 2

When control is returned, general register 1 contains the identification number (24 bits and
right-justified) assigned to the message. This number can be used to delete the message when it
is no longer needed.

Return codes from execution of a WTO using the multiple-line feature are as follows:

Hexadecimal
Code Meaning

00 No errors encountered.

04 Number of lines passed was 0; request is ignored. Number of lines passed was greater than 10; only 10
lines are processed. Message text length for a line was less than 1; all lines up to error line are
processed.

08 ID passed in register 0 does not match any on queue. Request is ignored.

OC Invalid line type. An end has been forced at the point of the error except if the first line is an E line, in
which case the request is ignored.

Return codes from execution of a WTO are as follows:

Hexadecimal
Code Meaning

30 Required resource for routing code 11 was not available. Request is ignored for routing code 11. If any
other routing code is specified, the request is processed.

Operation: Write a WTO message to all active consoles.

WTO 'NDPOOOOS ENDED' , X
ROUTCDE=(1,2,3,4,S,6,7,8,9,lO,11,12,13,14,lS,16), X
DESC=(4)

Operation: Write a multiple-line message to the master console if the master is receiving
routing code 2 and to any other console receiving routing code 2.

WTO ('text l' ,D), DATA LINE
('text 2' ,DE), DATA END LINE
ROUTCDE=(2),DESC=(4)

X
X

340 Supervisor Services and Macro Instructions

(

)

WTO (List Form)

The list form of the WTO macro instruction is used to construct a control program parameter
list.

The list form of the WTO macro instruction is written as follows:

name

b

WTO

b

'msg'
('text)

,ROUTCDE = (routing code)

,D ESC = (desc code)

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg: Up to 125 characters.
The permissible line types and text lengths are shown below:

C 34 char
L 70 char
D 70 char
DE 70 char
E

Default: D

The maximum number of each line type allowed in a single WTO instructions
is:

1 C type
2 L type
10 D type
1 DE type
1 E type.

The maximum total number of line types allowed in one instruction is 10.

routing code: decimal digit from I to 16. The routing code is one or more
codes, separated by commas.

desc code: decimal digit from 1 to 16. The desc code is one or more codes,
separated by commas.

The parameters are explained under the standard form of the WTO macro instruction, with the
following exception:

,MF=L
specifies the list form of the WTO macro instruction.

WTO (List Form) 341

WTO (Execute Form)

Example 1

The execute form of the WTO macro instruction uses a remote control program parameter list.
The parameter list can be generated by the list form of WTO. The message cannot be modified
in the execute form of the macro instruction.

The execute form of the WTO macro instruction is written as follows:

name

b

WTO

b

MF=(E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

ctrl addr: RX-type address, or register (1) or (2) - (12).

This parameter is explained as follows:

MF = (E,ctrl addr)
specifies the execute form of the WTO macro instruction using a remote control program
parameter list.

Operation: Write a message with a pre-built parameter list pointed to by register 1.

WTO MF=(E,(l))

342 Supervisor Services and Macro Instructions

)

)

WTOR - Write to Operator with Reply

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic "Selecting the Macro Level" for additional
information. If your program is to execute in 31-bit addressing mode, you must use the
MVS/XA version of this macro instruction.

The WTOR macro instruction causes a message requiring a reply to be written to one or more
operator consoles and the hardcopy log. The macro instruction also provides the information
required by the control program to return the reply to the issuing program.

The standard form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

'msg' msg: Up to 122 characters.

,replyaddr

,reply length

reply addr: A-type address, or register (2) - (12).

reply length: symbol, decimal digit, or register (2) - (12). The minimum length
is 1; the maximum length is 115 when the operator enters REPLY id, 'reply'
and 119 when the operator enters Rid, 'reply'.

,ecb addr ecb addr: A-type address, or register (2) - (12).

,ROUTCDE = (routing code) routing code: decimal digit from 1 to 16. The routing code is one or more
codes, separated by commas.

The parameters are explained as follows:

'msg'
specifies the message to be written to the operator's console. The message must be
enclosed in apostrophes, which do not appear on the console. It can include any
character that can be used in a character (C-type) DC instruction. When a program
issues a WTO macro instruction, the control program translates the text; only the
standard printable EBCDIC characters shown in Figure 43 are passed to the display
devices. All other characters are replaced by blanks. Unless the console has dual-case
capability, lowercase characters are converted to uppercase by the display station or
printer and displayed or printed as uppercase characters. The message is assembled as a
variable-length record.

Note: All WTOR messages are action messages. An indicator is printed before the first
character of an action message to indicate a need for operator action.

,replyaddr
specifies the address in virtual storage of the area into which the control program is to
place the reply. The reply is left-justified at this address.

,reply length
specifies the length, in bytes, of the reply message.

WTOR - Write to Operator with Reply 343

,ecb addr
specifies the address of the event control block (ECB) to be used by the control program
to indicate the completion of the reply and the id of the replying console. After the
control program receives the reply, the ECB appears as follows:

Offset Length(bytes) Contents

o 1 Completion code
1 2 Reserved
3 1 Console id in hexadecimal

,ROUTCDE = (routing code)
specifies the routing code(s) to be assigned to the message.

The routing codes are:

1 Master console action 9 System security
2 Master console information 10 System error/maintenance
3 Tape pool 11 Programmer information
4 Direct access pool 12 Emulators
5 Tape library 13 Reserved for customer use
6 Disk library 14 Reserved for customer use
7 Unit record pool 15 Reserved for customer use
8 Teleprocessing control 16 Reserved for future expansion

When control is returned, general register 1 contains the identification number (24 bits and
right-justified) assigned to the message. This number can be used to delete the message when a
reply is no longer needed.

Ignored Parameters

Example 1

The parameter DESC = (desc code) is meaningless if coded since all WTOR messages are
assigned descriptor codes of 7 (application program/processor).

Operation: Write a WTOR message to all active consoles.

WTOR 'THIS IS WTOR NUMBER 001' ,REPLY,18,ECB1, X
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

344 Supervisor Services and Macro Instructions

(

WTOR (List Form)

The list form of the WTOR macro instruction is used to construct a control program parameter
list. The message parameter must be provided in the list form.

The list form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

'msg'

,replyaddr

,reply length

,ecb addr

,ROUTCDE = (routing code)

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

msg: Up to 122 characters.

reply addr: A-type address.

reply length: symbol or decimal digit. The minimum length is 1; the maximum
length is 115 when the operator enters REPLY id, 'reply' and 119 when the
operator enters Rid, 'reply'.

ecb addr: A-type address.

routing code: decimal digit from 1 to 16. The routing code is one or more
codes, separated by commas.

The parameters are explained under the standard form of the WTOR macro instruction, with
the following exception:

,MF=L
specifies the list form of the WTOR macro instruction.

WTOR (List Form) 345

WTOR (Execute Form)

The execute form of the WTOR macro instruction uses a remote control program parameter
list. The parameter list can be generated by the list form of WTOR.

The execute form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

,replyaddr

,reply length

,eeb addr

,MF = (E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

replyaddr: RX-type address, or register (2) - (12).

reply length: symbol, decimal digit, or register (2) - (12). The minimum length
is 1; the maximum length is 115 when the operator enters REPLY id, 'reply'
and 119 when the operator enters Rid, 'reply'.

eeb addr: RX-type address, or register (2) - (12).

elrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the WTOR macro instruction, with
the following exception:

,MF=(E,ctrl addr)
specifies the execute form of the WTOR macro instruction using a remote control
program parameter list. The parameter list must be aligned on a fullword boundary. The
list form of WTOR provides this alignment.

346 Supervisor Services and Macro Instructions

)

XCTL - Pass Control to a Program in Another Load Module

If your program is to execute in 31-bit addressing mode, you must use the MVS/XA version of
this macro instruction.

The XCTL macro instruction causes control to be passed to a specified entry name in another
load module; the entry name must be a member name, an alias in a directory of a partitioned
data set, or must have been specified in an IDENTIFY macro instruction. The control
program brings the load module containing the entry name into storage if a usable copy is not
already available. XCTL handles the setting of the addressing mode when passing control to
this entry name. The control program reassigns the storage occupied by the load module that
issued the XCTL if that module is no longer required. The program executing the XCTL
macro instruction is logically removed as a subprogram of the program (system or user) that
placed the issuer of XCTL into execution.

No return is made to the program issuing the XCTL macro instruction; the use count for the
load module containing the XCTL macro instruction is decremented by 1. A return to the
program that placed the issuer of XCTL into execution is required for successful completion of
the task. For this reason, registers 2 through 14, the program interruption control area, and the
program mask must be restored to the state that existed when the load module received control
before the XCTL macro instruction can be issued. If the specified entry cannot be located, the
task is abnormally terminated.

On entry to the program specified in the XCTL macro, the high-order bit, bit 0, of register 14 is
set to indicate the addressing mode of the issuer of the macro. If bit 0 is 0, the issuer is
executing in 24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing
mode.

The standard form of the XCTL macro instruction is written as follows:

name

b

XCTL

b

(regJ),
(reg J ,reg 2),

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LSEARCH=NO
,LSEARCH = YES

name: symbol. Begin name in column 1.

One or more blanks must precede XCTL.

One or more blanks must follow XCTL.

regJ and reg2: decimal digits in the order 2 through 12.

entry name: symbol.
entry name addr: A-type address or register (2) - (12).
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

Default: LSEARCH = NO

The parameters are explained as follows:

(regl),
(regl,reg2),

specifies the register or range of registers to be restored from the save area at the address
contained in register 13.

XCTL - Pass Control to a Program in Another Load Module 347

EP = entry name
EPLOC = entry name addr
DE = list entry addr

specifies the entry name, the address of the entry name, or the address of a 60-byte list
entry for the entry name that was constructed using the BLDL macro instruction. If
EPLOC is coded, the name must be padded to eight bytes, if necessary.

If an unauthorized program issues the XCTL macro instruction and the DE parameter
specifies an entry in an authorized library, the program-supplied DE information is
ignored for integrity reasons. Instead, contents management uses the BLDL macro
instruction to construct a new list entry containing the DE information for the XCTL.
The DE information supplied by an unauthorized program will also be ignored if the
XCTL macro instruction is requesting access to a program or library that is controlled by
the System Authorization Facility.

Note: The task structure must not be changed via an ATTACH or DETACH between
the issuance of the BLDL and the issuance of the ATTACH for the module, or an abend
106 with a return code of 15 might result.

,DCB = deb addr
specifies the address of the opened data control block for the partitioned data set
containing the entry name described above. This parameter must indicate the same DCB
used in the BLDL mentioned above. The DCB must not be defined in the program
issuing the XCTL macro instruction.

If the DCB parameter is omitted or if DCB = 0 is specified when the XCTL macro
instruction is issued by the job step task, the data sets referred to by either the STEPLIB
or JOB LIB DD statement are first searched for the entry name. If the entry name is not
found, the link library is searched.

If the DCB parameter is omitted or if DCB = 0 is specified when the XCTL macro
instruction is issued by a subtask, the data sets associated with one or more data control
blocks referred to by the T ASKLIB operand of previous ATTACH macro instructions in
the sub tasking chain are first searched for the entry point name. If the entry point name
is not found, the search is continued as if the XCTL had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,LSEARCH=NO
,LSEARCH = YES

specifies whether (YES) or not (NO) you want the search limited to the job pack area and
the first library in the normal search sequence.

Note: Do not use register 1 as a pointer to the parameter list passed by the module that issues
XCTL. Use the execute form of the XCTL and pass the parameters explicitly using the
P ARAM keyword.

348 Supervisor Services and Macro Instructions

Example 1

)

Operation: Pass control via the address of the entry name (XCTLEP), and have registers 2-12
restored. Let the system determine the copy of the module to be used.

XCTL (2,12),EPLOC=XCTLEP

XCTL - Pass Control to a Program in Another Load Module 349

XCTL (List Form)

Two parameter lists are used in an XCTL macro instruction: a control program parameter list
and an optional problem program parameter list. Only the control program parameter list can
be constructed in the list form of XCTL. Address parameters to be passed in a parameter list
to the problem program can be provided using the list form of the CALL macro instruction.
This parameter list can be referred to in the execute form of XCTL.

The list form of the XCTL macro instruction is written as follows:

name

b

XCTL

b

EP = entry name,
EPLOC = entry name addr,
DE=list entry addr,

DCB = deb addr,

LSEARCH = NO,
LSEARCH = YES,

SF=L

name: symbol. Begin name in column 1.

One or more blanks must precede XCTL.

One or more blanks must follow XCTL.

entry name: symbol.
entry name addr: A-type addresses.
list entry addr: A-type address.

deb addr: A-type address.

Default: LSEARCH = NO

The parameters are explained under the standard form of the XCTL macro instruction, with the
following exception:

SF=L
specifies the list form of the XCTL macro instruction.

Note: Coding the LSEARCH parameter causes a parameter list to be created that is different
from the list created when LSEARCH is omitted. If you code LSEARCH in either the list or
execute form of the macro instruction, you must code it in both forms.

350 Supervisor Services and Macro Instructions

)

XCTL (Execute Form)

Two parameter lists are used in the XCTL macro instruction: a control program parameter list
and problem program parameter list. Either or both of these parameter lists can be remote and
can be referred to, and modified by, the execute form of XCTL. If only the problem program
parameter list is remote, parameters that require the control program parameter list cause that
list to be constructed inline as part of the macro expansion. If only the control program
parameter list is remote, no problem program parameters can be specified.

The execute form of the XCTL macro instruction is written as follows:

name

b

XCTL

b

(reg1),
(reg 1 ,reg2),

EP = entry name,
EPLOC = entry name addr,
DE = list entry addr,

DCB = deb addr,

PARAM = (addr),
PARAM=(addr),VL= 1,

LSEARCH = NO,
LSEARCH = YES,

MF = (E,prob addr)
SF = (E,etrl addr)
MF = (E,prob addr),SF = (E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede XCTL.

One or more blanks must follow XCTL.

reg1 and reg2: decimal digits or RX-type addresses, and in the order 2
through 12.

entry name: symbol.
entry name addr: RX-type address of register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

addr: RX-type address, or register (2) - (12).
addr is one or more addresses, separated by commas. For example,
PARAM = (addr ,addr,addr)

Default: LSEARCH = NO

prob addr: RX-type address, or register (1) or (2) - (12).
etrl addr: RX-type address, or register (2) - (12) or (15).

The parameters are explained under the standard form of the XCTL macro instruction, with the
following exceptions:

PARAM=(addr)
PARAM = (addr), VL = 1

specifies address(es) to be passed to the called program. Each address is expanded inline
to a fullword on a fullword boundary, in the order designated. Register 1 contains the
address of the first parameter when the program is given control. If this parameter is not
coded, register 1 is not altered unless the LSEARCH parameter is coded. If LSEARCH
is coded, the contents of register 1 are unpredictable.

VL = 1 should be designated only if the called program can be passed a variable number
of parameters. VL = 1 causes the high-order bit of the last address parameter to be set to
1; the bit can be checked to find the end of the list.

LSEARCH=NO
LSEARCH = YES

specifies whether (YES) or not (NO) you want the search limited to the job pack area and
to the first library in the normal search sequence. If LSEARCH is specified and P ARAM
is not specified, the contents of register 1 are unpredictable.

XCTL (Execute Form) 351

MF = (E,prob addr)
SF = (E,ctri addr)
MF = (E,prob addr),SF = (E,ctri addr)

specifies the execute form of the XCTL macro instruction. This form uses a remote
problem program parameter list, a remote control program parameter list, or both.

Note: Coding the LSEARCH parameter causes a parameter list to be created that is different
from the list created when LSEARCH is omitted. If you code LSEARCH in either the list or
execute form of the macro instruction, you must code it in both forms.

352 Supervisor Services and Macro Instructions

)

Index

I Special Characters I
/ /JOBLIB DD statements 28
/ /STEPLIB DD statements 28

A-type address 124
ABDUMP symptom area 64
ABEND completion code, field containing 65
ABEND dump

changing dump options 69
requesting 68
suppressing 69

ABEND macro instruction
description 126
examples 128
syntax 126
use of 61

abends
handling 61
interrupting scheduled 188

abnormal conditions, processing and detecting 53
abnormal termination

caused by failure to remove a subtask 161
caused by misuse of ENQ 173
of a task 126
providing an EST AI to handle 66
requesting 61
ways to avoid with ENQ/DEQ 46
when an entry name is not located 227
when deleting a SPIE/ESPIE environment 54
when issuing CLOSE 82

action messages 339, 343
adding a load module entry name 220
address space priority 10
addressing mode

See also AMODE program attribute
affect on BAL and BALR 16
bit in the PSW 16
changing

example 18
using BSM or BASSM 17
using LINK 222

considerations when passing control 17
indicator

in a PDS entry 15
in an entry point address 17, 28

of a loaded module 33
of alias entry points 40
of SPIE routines 54
specifying

in source code 15

using linkage editor control cards 15
aliases

addressing mode of 40
establishing 40

allocating virtual storage 213
AMDPRDMP service aid, printing and formatting

ABEND dumps 69
AMODE program attribute

See also addressing mode
changing

example 17
using BSM or BASSM 17

indicator
in a PDS entry 15
in an entry point address 17, 28

purpose 15
specifying

in source code 15
using linkage editor control cards 15

use in load processing 227
values 16

analyzing return codes 24
ASM (auxiliary storage manager) 107
Assembler H 15
asynchronous

exit routine 220
ATTACH macro instruction

addressing mode considerations 28, 129
creating subpools 78
description 129
DPMOD parameter 10
ECB parameter, use of 12
ESTAI parameter, use of 63
ETXR parameter, use of 12
example 135
execute form 137
GSPL parameter 78
GSPV parameter 78
list form 136
LPMOD parameter 10
requesting subpool ownership 78
return codes 134
SHSPL parameter 78
SHSPV parameter 78
specifying subpools 78
SPLEVEL macro, use of 129
standard form 130
syntax

execute form 137
list form 136
standard form 130

SZERO parameter 78
T ASKLIB parameter 28, 29
use of 9, 19, 28

authorization checking, RACF 50
authorization code for a loaded module 33
auxiliary storage manager (ASM) 107

Index 353

avoiding an interlock condition 49

BAL instruction 16
BALR instruction 16
BAS instruction 16
base register

establishing 6
use of 6

BASR instruction 16
BASSM instruction 17, 36
BLDL macro instruction, use of 31, 35, 36
branch and link (BAL) instruction 16
branch and link instruction, register form (BALR) 16
branch and save (BAS) instruction 16
branch and save and set mode (BASSM) instruction 17
branch and save instruction, register form (BASR) 16
branch and set mode (BSM) instruction 17
branch instructions

BAL 16
BALR 16
BAS 16
BASR 16
BASSM 17
BSM 17
use of 36
using with XCTL, danger of 38

branching table, use in analyzing return codes 24
bringing a load module into virtual storage 28, 227
BSM instruction 17

CALL macro instruction
addressing mode considerations 139
description of 139
example 140
execute form 142
list form 141
standard form 139
syntax

of execute form 142
of list form 141
of standard form 139

use of 22, 23, 33, 36
called programs

definition of 3
entry address 3
first action to take 5

calling program
definition of 3
return address 3
save area 5

address 3

354 Supervisor Services and Macro Instructions

how used 5
saving registers of 5

calling sequence identifier 40
cancel a timer request 317
cell pool

creating 145
deleting 145
obtaining 75, 145
returning 145
services 145

cells 75
chaining save areas 7
changing the dispatching priority 143
CHAP macro instruction

description of 143
example 144
syntax 143
use of 11

characters printed on an MCS console 113
check RACF authorization 248
checking

resource authorization 201
CHNGDUMP command 69
codes

authorization 33
completion 60
descriptor 114
message routing 114
reason 60

coding macro instructions 122, 123
communicating with the system operator 113
completed ECBs, list of 197
completion codes, changing 60
concatenated data sets 29
concurrent requests for resources

limiting 44
continuation lines in macro parameter fields 125
control

See also passing control
returning 25, 27, 37

control points
definition 51

control program linkage conventions 3
controlling virtual storage 76
conventions

for passing control 8, 19
for receiving control 8

CPOOL macro instruction
description 145
example 148
execute form 150
list form 149
standard form 145
syntax

of execute form 150
of list form 149
of standard form 145

use of 75
CPU timer, obtaining value of 151
CPUTIMER macro instruction

)

description of 151
example 152
relationship to STIMER macro 151
return codes 152
syntax 151

creating
a cell pool 145
a subpool 78
a task 9, 129
an ESPIE environment 181
an EVENTS table 194

critical eventual action message 115
CVTDCB byte 120
CVTMVSE bit 120

DAE
See dump analysis and elimination

data control block
deleting load modules that contain 82
for SNAP dumps 69

data security 50
data sets, dump 69
date and time of day, requesting 111
DCB parameter 31
DD statements required for dumps 68
DE parameter 31
debugging aids for calling sequences 40
decimal digit term in macro instruction description 124
default priority 10
DELETE macro instruction

description 153
example 154
lowering the responsibility count 82
relationship to LOAD macro 153
return codes 154
syntax 153

deleting
a cell pool 145
a load module 153
an ESPIE environment 181
an EVENTS table 194
operator messages 117, 171

DEQ macro instruction
description of 155
example 158
execute form 160
list form 159
return code area 157
return codes 48, 157
rules for using 42
standard form 155
syntax

of execute form 160
of list form 159
of standard form 155

use of 42, 46

descriptor codes 114
DETACH macro instruction

description 161
example 162
return codes 162
syntax 161

detaching a sub task 161
determining

status of RACF protection 267
the ESPIE environment 181
which system is executing 120

directory entry, PDS 15
directory search 29
dispatching priority

assigning 10
changing 143

DIV (data-in-virtual) macro instruction
linear data set 83
performance considerations 105
programming example 99
reason codes 97
retain mode 90, 92, 93, 94
return codes 97
rules for invoking 96
rules for use in a task 96
services of

access 87
identify 87
map 88
reset 92
save 90
unaccess 95
unidentify 95
unmap 93

syntax 163
use of 83

DOM macro instruction
description of 171
example 172
syntax 171
use of 117

downward incompatible macro instructions 119, 297
DPMOD parameter on ATTACH 10
DPRTY parameter on the EXEC statement 10
dump analysis and elimination (DAE)

providing information for 64
dumping services 68
dumps

ABEND 68
data sets for 69
indexes in SNAP dumps 70
operator's effect on 69
requesting 68
SNAP 68,69
summary 70
symptom 69
types a problem program can request 68

duplicate.
names in unique task libraries 31
requests for a resource 45

Index 355

dynamic load module structure
advantages of 19
description of 18, 19

ECB (event control block)
description of 41
initializing 196
list of completed 196
parameter of ATTACH 12, l3,41
setting 246

end-of-task exit routine 13
ENQ macro instruction

description 173
example 45, 178
execute form 180
list form 179
return code area 177
return codes 47, 177
rules for using 42, 173
standard form 174
syntax

of execute form 180
of list form 179
of standard form 174

use of 36,42
entry point

adding 40
address

AMODE indicator 17,227
of a loaded module 33
specifying 3

identifier 40
identifying 22
using aliases 40

EP parameter 30
EPIE (extended program interruption element) 57
EPLOC parameter 30
error processing 59, 61-63
ESD (external symbol dictionary), AMODE/RMODE

indicators 15
ESPIE environment

deleting 54, 181
determining 181
establishing 54, 181

ESPIE macro instruction
description 181
examples

of ESPIE RESET 184
of ESPIE SET 183
of ESPIE TEST 185
of the execute form 187
of the list form 186

execute form 187
list form 186
options

RESET 56, 183

356 Supervisor Services and Macro Instructions

SET 56, 181
TEST 56,184

return codes
from ESPIE RESET 183
from ESPIE SET 182
from ESPIE TEST 185

syntax
of ESPIE RESET 183
of ESPIE SET 181
of ESPIE TEST 184
of the execute form 187
of the list form 186

use of 53
using 56

establishing
a base register 6
an ESPIE environment 181

EST AE macro instruction
addressing mode considerations 188
description 188
example 191
execute form 193
list form 192
return codes 191
SPLEVEL macro, use of 188
standard form 188
syntax

of the execute form 193
of the list form 192
of the standard form 188

use of 63
EST AE recovery routine

how to use 63
interface to 64
pointer to parameter list created by 65
retry processing 67

EST AI recovery routine
how to use 66
interface to 67
retry processing 67

ETXR parameter of ATTACH, use of 12
event

control block
See ECB

signalling completion of 41, 246
EVENTS macro instruction

description 194
example 200
parameter list 197
SPLEVEL macro, use of 194
syntax 194
use of 41, 196

events table
creating 194, 196
deleting 194, 196
format of 196

exclusion name lists 155, 173
exclusive resource control 44
EXEC statement, DPRTY parameter 10
execute form of macro instructions 121

)

execution of load modules 19
exit routine

asynchronous 220
end-of-task 13, 126
establishing EST AEs 188
functions performed by 58
register contents on entry 58
specifying 53
using serially reusable resources 42

explicit requests for virtual storage 73
extended PIE (program interruption element) 57
extended SPIE macro instruction

See ESPIE macro instruction
extended ST AE

See EST AE recovery routine
external symbol dictionary (ESD), AMODE/RMODE
indicators 15

fake PICA 57
fast path resource authorization checking 201
finding

a load module 29
a save area 6

FRACHECK macro instruction
chart of parameters by release 203
description 201
execute form 206
list form 205
return codes 204
standard form 201
syntax

of standard form 20 I
of the execute form 206
of the list form 205

use of 51
frames

assigning 107
repossessing 107

freeing virtual storage 82, 207
FREEMAIN macro instruction

description 207
example 210
execute form 212
list form 211
return codes 210
standard form 207
syntax

of the execute form 212
of the list form 211
of the standard form 207

use of 73

GETMAIN macro instruction
addressing mode considerations 213
creating subpools 78
description 213
example 217
execute form 219
list form 218
LOC parameter 74
return codes 216
standard form 213
syntax

of the execute form 219
of the list form 218
of the standard form 213

types of 74
use of 73, 74

gigabytes 15
global resource serialization 44, 155, 173
global resources 43, 44
global symbol 297

handling abends 61

IDENTIFY macro instruction
description 220
example 221
return codes 221
syntax 220
use of 40

IEECVXIT 114
IHASDW A mapping macro 64
immediate action message 115
implicit requests for virtual storage 79
inclusion name lists 155, 173
inline parameter list, use of 22
interface

to a retry routine 67
to an EST AI routine 67

interlock
avoiding 49
illustration of 49

interruptions
See program interruption

interval timing, establishing 111
introduction to supervisor services

Index 357

job library
reason for limiting size of 31
use of 28
when to define 31

job pack area (JPA) 29
job step task, creating 9
JPA (job pack area) 29

last word in parameter list, how to indicate 4
length of a loaded module 33
library

description of 29
search 29

limit priority 10, 11
link library 28
LINK macro instruction

addressing mode considerations 28
description 222
example 224
execute form 226
list form 225
standard form 222
syntax

of the execute form 226
of the list form 225
of the standard form 222

use of 28, 33, 35
when to use 82

link pack area (LPA) 29
linkage

considerations for MVSjXA 16
conventions 3
editor 15
registers 3

list form of macro instructions 121
lists

of completed ECBs 197
of SYSTEM inclusion resource names 155
of SYSTEMS exclusion resource names 155

load list area 29
LOAD macro instruction

description 227'
example 229
execute form 231
indicating addressing mode 28
list form 230
relationship to DELETE macro 153
standard form 227
syntax

of the execute form 231
of the list form 230
of the standard form 227

358 Supervisor Services and Macro Instructions

use of 28, 33, 36
when to use 82

load module
adding an entry name 220
addressing mode 33
aliases 40
authorization code 33
bringing into virtual storage 227
characteristics of 18
deleting 153
entry point address 33
execution 19
how to avoid getting an unusable copy 32
length 33
location 28
more than one version 30
names 40
passing control to 222
releasing control 153
responsibility count 33, 38, 227
searching for 29
structure types 18
use count 34
using an existing copy 32

loading
registers and passing control 20
virtual storage 108,232, 242

LOC parameter on the GETMAIN macro 74
local resource 43
location of a load module 28
long wait 42
LPA Oink pack area) 29
LPMOD parameter on ATTACH 10

machine check, recovery 59
macro instructions

addressing mode considerations 120-121
coding 122, 123
downward incompatible 119
expansion 119
forms of

execute 80, 121
list 80, 121
standard 80, 121

level of, selecting 119-120, 129, 188, 194, 301, 343
reenterable form 79
requiring caller to be in 24-bit mode 120
requiring MVSjXA version in 31-bit mode 121
restrictions on using 119
sample 123
terms used in description of

A-type address 124
decimal digit 124
default 124
register 124

)

)

RX-type address 124
symbol 123

ways of passing parameters 79
when can be used 119

MCS consoles, characters displayed 113
megabytes 15
member names, establishing 40
message

critical eventual action 115
deleting 11 7, 171
descriptor codes 114
disposition of 114
example of WTO 115
identifier 115
immediate action 115
indicator in first character 114
multiple-line (MLWTO) 114
replying to 116
routing 114
sending to operator consoles 113
single-line 114

MLWTO (multiple-line messages), considerations for
using 114

module
See also load module
names 9

multiple versions of load modules 30
multiple-line (ML WTO) messages, considerations for

using 114
MVS router

description 51
parameter list 52

MVS router interface 261

names
duplicate 9
of resources 43

nonreenterable load modules 81
nonreusable load module, passing control to 37

obtaining a cell pool 145
operator

consoles, characters displayed 113
messages, writing 113

originating task 9
overlay load module structure 18
ownership of subpools 78

page
faults, decreasing 107
movement of 107
releasing 107
reusing 107
size of 107

page service list (PSL) 109
page-ahead function 108
paging I/O 107
paging out virtual storage 108, 235, 242
paging services

input to 109
list of 107
PGLOAD macro instruction 232
PGOUT macro instruction 235
PGRLSE macro instruction 238
PGSER macro instruction 242

parallel execution, when to choose 9
parameter addresses

determining length of 120
macros requiring 24-bit 120

parameter area for recovery routines 59
parameter list

description of 20
example of passing 21
for macros, constructing 122
indicating end of 22
inline, use of 22
location of 38, 122
used in EVENTS processing 197
variable length for macros 122

parameter registers 3
PARM field information 4
partitioned data set directory entry

See PDS directory entry .
passing control .

between control sections 20, 139
between programs with different AM ODEs
between programs with the same AMODE
in a dynamic structure 28-39

with return 33
without return 37

in a simple structure 19-27
with return 22
without return 20

preparing to 20, 22
to another load module 222
using a branch instruction 22, 37
using CALL 23
using LINK 33
with a parameter list 21
with control program assistance 33
wi th return 22
without control program assistance 19, 36

passing parameters
in lists 20, 79

17,36
17

Index 359

in registers 79
registers used 3

passing return addresses 20
PDS directory entry

AMODE indicator
RMODE indicator

15, 222
15, 16

percolation 59, 63, 65
performing cell pool services 145
PGLOAD macro instruction

description 232
example 233
list form 234
page-ahead function 108
return codes 233
standard form 232
syntax

of the list form 234
of the standard form 232

use of 107
PGOUT macro instruction

description 235
example 236
list form 237
return codes 236
standard form 235
syntax

of the list form 237
of the standard form 235

use of 107
PG RLSE macro instruction

description 238
example 239
execute form 241
list form 240
return codes 238
standard form 238
syntax

of the execute form 241
of the list form 240
of the standard form 238

use of 107, 108
PGSER macro instruction

addressing mode considerations 242
description 242
example 245
input to 109
page-ahead function 108
return codes 244
syntax 242
use of 108

PICA (program interruption control area)
format 55
pointer to 55
purpose of 54
restoring a previous 55

PIE (program interruption element)
format of 56
purpose of 54

planned overlay load module structure 18

360 Supervisor Services and Macro Instructions

pointer-defined entry point address 17
post bit 41
POST macro instruction

description 246
example 247
syntax 246
use of 41

PRB (program request block) 40
preparing to pass control

with return 22
without return 20

priority
address space 10
assigning 11
changing 11
control program's influence on 10
dispatching 10
higher, when to assign 11
limit 10, 11
subtask 11
task 10

private library 28
processing a resource request 44
program check, recovery 59
program design 19
program exceptions

See program interruption
program interruption

causes 53
control area, see PICA and fake PICA
determining the cause of 56
determining the type of 58
element, see PIE and EPIE
handling 53

program management 15-40
program mask 54
program request block (PRB) 40
program status word

See PSW
protecting resources

via RACF 50
via serialization 42

providing a save area 6
PSL (page service list) 109
PSW (program status word)

addressing mode bit 16, 17
at time of error, field containing ·65
key assigned to the requestor 76

purging the RB queue 67

qname of a resource
purpose of 43, 173

«

(

)

RACF
check authorization 248

RACF (resource access control facility)
function of 50
macro instructions

FRACHECK 201
RACSTAT 267

protection, determining status of 267
RACHECK macro instruction

chart of parameters by release 254
description 248
examples 256
execute form 259
list form 257
return codes 255
standard form 249
syntax 249, 257, 259
use of 50

RACROUTE macro instruction
description 261
examples 264
execute form 266
list form 265
return codes 263
standard form 262
syntax 262
use of 52

RACST AT macro instruction
chart of parameters by release 268
description 267
example 269
execute form 271
list form 270
of the execute form 271
reason codes 268
return codes 268
syntax

of the execute form 271
of the list form 270
of the standard form 267

use of 51
RB (request block), purging queue of 67
real storage management (RSM) 107 -110
real storage, loading into virtual storage 232
reason code

changing 60
field containing 65

receiving control, conventions for 8
recovery routine

altering register contents 58
altering the old PSW 58
avoiding recursion 59
creating your own 63
function performed by 58
interfaces to ESTAEs 64
parameter area for 59

recovery termination manager (R TM), function of 59

recovery /termination services 59
recursion, avoiding in recovery routines 59
reenterable

load module 32, 36, 79
macro instructions 79
recovery routine 63

refreshable module 81
REGION system parameter 73
register

altering the contents of 58
contents at time of error 65
contents for a retry routine 68
how the control program uses 3
linkage 3
saving 5

register 1, passing parameters with 20
register 13, use of 3
register 14

use of 3,22
when to restore 20

register 15, use of 3, 20
registers 2-12 22
releasing

a resource 46
control of a load module 153
serially reusable resources 155
virtual storage 107
virtual storage contents 238, 242

replying to WTOR messages 116
request block (RB), purging queue of 67
requesting

dumps 68
serially reusable resources 173

requests for resources
limiting concurrent 44

RESERVE macro instruction 43
residency mode of programs

See RMODE program attribute
resource

checking RACF authorization 201
class, determining RACF protection of 267
control 41-51
global 43
local 43
making duplicate requests for 45
name lists 43, 155, 173
naming 43
processing a request for 44
protecting

via RACF 50
via serialization 42

releasing 46
requesting

conditionally 46
exclusive control of 44
pairs of 50
shared control of 44
unconditionally 46

serially reusable
determining status of 173

Index 361

releasing 155
requesting 173
use of 42

types that can be shared 43
resource access control facility

See RACF
responsibility count for a loaded module 33, 38, 82,

227
restoring

a PICA 55
I/O operations during retry processing 67
registers upon return 25

retry processing 59
retry routines

EST AE/EST AI 67
interface to 67
register contents 68
requirements of 67
restoring I/O operations 67

return address
location of 3
passing 20

return code area
used in DEQ processing 157
used in ENQ processing 177

return codes
analyzing 24
establishing 26
from ATTACH processing l34
from CPUTIMER processing 152
from DELETE processing 154
from DEQ processing 158
from DETACH processing 162
from ENQ processing 177
from ESPIE TEST processing 185
from EST AE processing 191
from FRACHECK processing 204
from FREEMAIN processing 210
from GETMAIN processing 216
from PGOUT processing 236
from PGRLSE processing 238
from PGSER processing 244
register 4
using 24

RETURN macro instruction
description 272
example 273
return codes 272
syntax 272
use of 25,26

returning
a cell pool 145
control

in a dynamic structure 37
in a simple structure 25

reusability attributes of a load module 36
reusable modules 32
reusing a save area 22
RMODE program attribute

affect on load processing 227

362 Supervisor Services and Macro Instructions

indicator in PDS entries 15
purpose 15
specifying

in source code 15
using linkage editor control cards 15

use of 28
values 16

rname of a resource, purpose of 43, 173
routing

codes 114
messages 114

RSM (real storage management) 107-110
RTM (recovery termination manager), function of 59
RX-type address 124

SAF (system authorization facility) 51
save area

address, register containing 3
chaining 7
creating 6
format 5
how to tell if used 26
passing address of 20
reusing 22

SA VE macro instruction
description 274
example 275
syntax 274
use of 5,40

saving the calling program's registers 5
scope of a resource

changing 43, 155, 173
STEP, when to use 43
SYSTEM, when to use 43
SYSTEMS, when to use 43
use of 43, 173

SDWA (system diagnostic work area) 64
changing via SETRP 59
key fields in

SDW ACCF bit 60, 65
SDWACLUP bit 67
SDW ACMPC 60, 65
SDWACOMU 65
SDW ACRC 60, 65
SDWADAET 65
SDW AEBC bit 65
SDWAECI 65
SDWAEC2 65
SDWAFAIN 65
SDWAGRSV 65
SDWAHEX bit 65
SDWALNTH 65
SDWAOCUR 65
SDWAPARM 65
SDW AREAF bit 60, 65

)

SDWASPID 65
SDWASRSV 65
SDWAURAL 65
SDWAVRAL 65

length, field containing 65
mapping macro for 64
obtaining storage for 64

SDW A extensions 64
SDWAVRA 64
searching for a load module 29-32

areas/libraries searched 30
limiting 30
order of 29, 30

security
data (see RACF)

SEGLD macro instruction
addressing mode considerations 120
description 276
example 276
syntax 276

SEGWT macro instruction
addressing mode considerations 120
description 277
example 277
syntax 277

selecting the macro level 119-120, 129, 188, 194, 301,
343

serializing resources
avoiding an interlock 49
requesting exclusive control 44
requesting shared control 44

serially reusable
modules

obtaining a copy of 32
passing control to 36

resources
releasing 155
requesting 173
serializing 173
using 42-50

services that the supervisor provides
set a multiple timer 305
SETRP macro instruction

description 278
example 280
syntax 278
use of 59, 66
using 60

shared resource control 44
sharing subpools 77, 79
signalling completion of an event 246
simple load module structure 18, 19
SNAP data control block 69
SNAP dump

index 70
requesting 69

SNAP macro instruction
description 281
example 286, 287
execute form 290
list form 288

return codes 286
standard form 282
syntax

of the execute form 290
of the list form 288
of the standard form 282

use of 69
specify program interruption exit

See SPIE
SPIE (specify program interruption exit) environment

addressing mode of 54
adjusting 55
canceling 55
definition 54
reestablishing 55

SPIE macro instruction
addressing mode considerations 120
addressing mode restrictions 54
description 292
example 294
execute form 296
list form 295
standard form 293
syntax

of the execute form 296
of the list form 295
of the standard form 293

use of 53, 54
SPLEVEL macro instruction

ATTACH macro's use of 129
description 297
ESTAE macro's use of 188
EVENTS macro's use of 194
example 298
options

SET 119,297
TEST 297

purpose of 119
STIMER macro's use of 301
syntax 297
WTOR macro's use of 343

SRM (system resource manager), function of 107
STATUS macro instruction

description 299
example 300
syntax 299

step library
reason for limiting size of 31
use of 28

STIMER macro instruction
addressing mode considerations 301
description 301
example 304
relationship to CPUTIMER macro 151
SPLEVEL macro, use of 301
syntax 301

STIMERM CANCEL
description 317
examples 319, 320, 321
execute form 321

Index 363

list form 320
return codes 318
standard form 317
syntax 317, 320, 321

STIMERM macro instructions
use of III

STIMERM SET
description 305
example 308, 310, 311
execute form 311
exit routine interface 307
list form 310
return codes 308
standard form 305
syntax 305, 310, 311

STIMERM TEST
description 312

. example 314, 315, 316
execute form 316
list form 315
return codes 313
standard form 312
syntax 312, 315, 316

storage
See virtual storage

storage request
explicit 73
implicit 73

storage subpool, see subpool 76
subpool

creating 78
handling 76
ID of the SDW A 65
in task communication 79
ownership of 78
PSW key assignment 76
sharing 77, 79
transferring ownership 78

subtask
changing status of 299
communications with tasks 11
controlling 9
creating 9
detaching 161
priority 11
terminating 12, 41

summary dumps 70
supervisor services, introduction to 1
SVC, recovery from invalid issuance 59
switching addressing modes

See addressing mode, changing
symbol term in macro instruction description 123
symptom dumps 69
SYNCH macro instruction

addressing mode considerations 322
description 322
example

example of standard form 323

364 Supervisor Services and Macro Instructions

of the execute form 325
of the list form 324
of the standard form 323

execute form 325
list form 324
standard form 322
syntax

of the execute form 325
of the list form 324
of the standard form 322

synchronizing tasks 41
system authorization facility 51
system conventions for parameter lists 20
system diagnostic work area

See SDWA
SYSTEM inclusion resource name list 43, 155, 173
system log, writing to 116
system resource manager (SRM), function of 107
SYSTEMS exclusion resource name list 155, 173
SYSUDUMP PARMLIB member 69

task
advantage of creating additional 9
communications with subtasks 11
control block, see TCB
creating 9, 129
library, establishing 28
priority, affect on processing 10
synchronization 41

T ASKLIB parameter of ATTACH 28, 29
tasks in a job step, illustration of 12
rCB (task control block)

address of 9
removing 12

test a time interval 312
testing return codes 24
time interval

example of using 112
TIME macro instruction

description 326
example 328
syntax 326
use of 111

time of day and date, requesting 111
time-of-day (TOD) clock 111
timing services 111
TOD (time-of-day) clock 111
transferring control

See passing control
TTIMER macro instruction

description 329
example 330
syntax 329

use count 34
user exit routine

See exit routine

V-type address constant, using to pass control 22
V = R (virtual = real) storage, allocation of 107
variable recording area

See VRA
virtual storage

allocating 213
bringing a load module into 227
controlling 76
explicit requests for 73
freeing 82, 207
implicit requests for 79
loading 107, 108, 232, 242
obtaining via CPOO L 75
page-ahead function 108, 232
paging out 108, 235, 242
planning for future needs 232
releasing 107, 108, 153
releasing contents of 238, 242
specifying the amount allocated to a task 73
subpools 76
using efficiently 73

virtual storage management (VSM) 73-82
virtual subarea list (VSL) 109
virtual = real (V = R) storage, allocation of 107
VRA (variable recording area)

length of, field containing 65
length used, field containing 65

VSL (virtual subarea list) 109
VSM (virtual storage management) 73-82

wait
bit 41
condition 41
long 42

WAIT macro instruction
description 331
example 332, 333
syntax 331
use of 41

writing
to the operator with reply 113
to the operator without reply 115
to the programmer 116

to the system log 116
WTL macro instruction

description 334
example 334
execute form 336
list form 335
standard form 334
syntax

of the execute form 336
of the list form 335
of the standard form 334

use of 116
WTO macro instruction

description 337
descriptor code for 115
example 115, 340, 342
execute form 342
list form 341
multiple-line (MLWTO) form 114
return codes 340
single-line form 114
standard form 337
syntax

of the execute form 342
of the list form 341
of the standard form 337

use of 113
WTOR macro instruction

addressing mode considerations 343
description 343
example 116, 344
execute form 346
ignored parameters 344
list form 345
SPLEVEL macro, use of 343
standard form 343
syntax

of the execute form 346
of the list form 345
of the standard form 343

use of 113

X'538' system code 44, 173
XCTL macro instruction'

addressing mode considerations 28, 347
description 347
example 349
execute form 351
list form 350
lowering the responsibility count 82
standard form 347
syntax

of the execute form 351
of the list form 350
of the standard form 347

Index 365

use of 28, 38
using with branch instructions, danger of 38

I Numerics I

24-bit addressing mode
description 15
GETMAIN considerations 213
macros requiring caller to be in 120
restrictions on parameter addresses 121
SPIE routine considerations 54

31-bit addressing mode

366 Supervisor Services and Macro Instructions

description 15
GETMAIN considerations 213
macros requiring MVS/XA expansion

ATTACH 129
CALL 139
ESTAE 188
EVENTS 194
LINK 222
STIMER 301
SYNCH 322
WTOR 343
XCTL 347

SPIE considerations 54
value of parameter addresses 120

46D system completion code 54

MVS/Extended Architecture Supervisor Services and Macro Instructions

GC28-1154-3 S370-36

Printed in U.S.A.
-~- .----- .-- ------- ------. _ ---- _ ---_ ... -
-~- .. -®

MVS/Extended Architecture
Supervisor Services and
Macro Instructions

GC28-1154-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title.page.)

MVS/Extended Architecture Supervisor Services and Macro Instructions

GC28-1154-3

Reader's Comment Form

BUSINESS REPLY MAIL
FI RST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921 -2
PO Box 390
Poughkeeps~~~ . ~eY." York 12602

5370-36

11

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1
1
1
1
1
1
1
1

I
1
1
1
1
1
1 ---1

Fold and tape Please Do Not Staple

---- ----- .-- -- - ----- -. ------- ------- -------- - • -®

/0270~/j8

Fold and tape

Printed in U.S.A.

GC28-1154-03

1
1
1
1
1
1
1
1
1
1
1
1
1

I
1
1
1
1
1
1
1
I
I
I
1
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1

I

