
Program Product

GC28-1158-1

File No. S370-36

MVS/Extended Architecture
System Programming Library:
31-Bit Addressing

MVS/System Product - JES3 Version 2 5665-291
MVS/System Product - JES2 Version 2 5740-XC6

--- ------ ----- ---- - ---- - - -----------,,-

Second Edition (January, 1984)

This is a major revision of, and obsoletes, GC28-1158-0. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.

This edition applies to the following program products and all subsequent releases until
otherwise indicated in new editions or technical newsletters:

Assembler H Version 2 (5668-962)
Basic Telecommunications Access Method/System Product (BT AM/SP) (5665-279)
MVS/XA Data Facility Product (DFP) (5665-284)
Resource Measurement Facility (RMF) Version 3 (5665-274)
MVS/System Product - JES2 (MVS/SP) Version 2 (5740-XC6)
MVS/System Product - JES3 (MVS/SP) Version 2 (5665-291)
TSO Extensions (TSO/E) for MVS/XA (5665-285)

See the Summary of Amendments following the Contents for a summary of the changes
made to this manual. Technical changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/3 70
Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to imply that only
IBM's program product may be used. Any functionally equivalent program may be used
instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 920-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982

Preface

This book is intended for programmers who are:

Writing new assembler language programs to execute on MVS/Extended
Architecture (MVS/XA)

• Changing existing assembler language programs, if necessary, to enable them to
execute in an MVS/XA 31-bit addressing environment

Some of the guidelines and suggested coding practices will be useful to applications
programmers. The book contains more technical detail than programmers writing
in higher level languages require.

You should read this book before writing new programs or modifying existing
programs to use 31-bit addresses. It defines terms used in 31-bit addressing and
contains the following chapters:

Chapter 1 - Understanding 31-Bit Addressing
• Chapter 2 - Planning for 31-Bit Addressing
• Chapter 3 - Addressing Mode and Residency Mode

Chapter 4 - Establishing Linkage
Chapter 5 - Performing I/O in 31-Bit Addressing Mode
Chapter 6 - Understanding the Use of Real Storage

This book relies on the MVS / Extended Architecture Conversion Notebook,
GC28-1143, for lists of changed services and control blocks.

This book also refers to:

MVS / Extended Architecture Supervisor Services and Macro Instructions,
GC28-1114

MVS / Extended Architecture System Programming Library: System Macros and
Facilities Volumes 1 and 2, GC28-1150 and GC28-1151

MVS / Extended Architecture System-Data Administration, GC26-4010

MVS / Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4014

MVS / Extended Architecture VSAM Administration Guide, GC26-4015

MVS / Extended Architecture System Programming Library: Service Aids,
GC28-1159

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

MVS/Extended Architecture Linkage Editor and Loader User's Guide,
GC26-4011

3 70-Extended Architecture: Principles of Operation, GA22-7085

Preface iii

iv SPL: 31-Bit Addressing

Contents

Chapter 1 - Understanding 31-Bit Addressing
Virtual Storage 1
Addressing Mode and Residency Mode 1
Requirements for Execution in 31-Bit Addressing Mode 4
Rules and Conventions for 31-Bit Addressing 4
Mode Sensitive Instructions 4

BAL and BALR 5
Branching Instructions 5
MVS!XA's Use of 31-Bit Addressing 6

Location of Control Blocks 6

Chapter 2 - Planning for 31-Bit Addressing 7
Converting Existing Programs 7
Writing New Programs for MVS!XA 10

Writing Programs to Run on Both MVS/370 and MVS!XA 12

Chapter 3 - Addressing Mode and Residency Mode 15
Addressing Mode - AM ODE 15
Residency Mode - RMODE 15
AMODE and RMODE Combinations 15
AMODE and RMODE Combinations at Execution Time 15
Determining the AMODE and RMODE of a Load Module 16
Assembler H Support of AMODE and RMODE 16

AMODE and RMODE in the ESD 17
AMODE and RMODE Assembler Instructions 17

DFP Linkage Editor Support of AMODE and RMODE 18
Linkage Editor RMODE Processing 21

DFP Loader Support for AMODE and RMODE 21
MVS/XA's Support of AMODE and RMODE 22

Program Fetch 23
ATTACH, LINK, and XCTL 23
LOAD 23
CALL 23
SYNCH 24
SVC 24
SRB 24
PC and PT 24
Data Management Access Methods 24
AMODE's Effect on Dumps 24

How to Change Addressing Mode 25

Chapter 4 - Establishing Linkage 27
Using the BASSM and BSM Instructions 28

Calling and Returning with BASSM and BSM 30
Using Pointer-Defined Linkage 31
Using Supervisor-Assisted Linkage 33
Linkage Assist Routines 34

Example of Using a Linkage Assist Routine 35
Using Capping - Linkage Using a Prologue and Epilogue 40

Chapter 5 - Performing I/O in 31-Bit Addressing Mode 43
Using the EXCP Macro Instruction 43
Using EXCPVR 44
Example of Performing I/O While Residing Above 16 Megabytes 45

Chapter 6 - Understanding the Use of Real Storage 57
Real Storage Considerations for User Programs 57

Load Real Address (LRA) Instruction 58
GETMAIN Macro Instruction 58
DAT-Off Routines 58

Index 61

Contents V

vi SPL: 31-Bit Addressing

Figures

1. Two Gigabyte Virtual Storage Map 2
2. 370-XA PSW 2
3. Maintaining Correct Interfaces to Modules that Change to AMODE 31 8
4. Establishing Correct Interfaces to Modules That Move Above 16 Megabytes 9
5. AMODE and RMODE Combinations 16
6. AMODE and RMODE Processing by the Linkage Editor 20
7. AMODE and RMODE Processing by the Loader 22
8. Mode Switching to Retrieve Data from Above 16 Megabytes 25
9. Linkage Between Modules with Different AMODEs and RMODEs 28

10. BRANCH and SAVE and Set Mode Description 29
11. Branch and Set Mode Description 29
12. Using BASSM and BSM 30
13. Example of Pointer-Defined Linkage 32
14. Example of Supervisor-Assisted Linkage 33
15. Example of a Linkage Assist Routine 36
16. Cap for an AMODE 24 Module 41
17. Performing II 0 While Residing Above 16 Megabytes 45

Figures vii

viii SPL: 31-Bit Addressing

Summary of Amendments

Summary of Amendments
for GC28-1158-1
for MVS/System Product Version 2 Release 1.2

Changes to this publication include technical and editorial updates in support of
MVS/Extended Architecture Release 1.2.

These changes include support for VSAM 31-bit addressing and new names for
some Data Facility Product publications.

Summary of Amendments
for GC28-1158-0
as Updated June 30, 1983
by Technical Newsletter GN28-5099

A change to Data Management Access Methods for VSAM requirements has been
made.

Summary of Amendments ix

X SPL: 31-Bit Addressing

Chapter 1 - Understanding 31-Bit Addressing

Virtual Storage

MVS Extended Architecture (MVS/XA) supports 31-bit real and virtual addresses,
which provide a maximum real and virtual address of two gigabytes (231) minus
one. For compatibility with existing programs, MVS/XA also supports 24-bit real
and virtual addresses. The basic changes in the system that provide for both 31-bit
addresses and the continued use of 24-bit addresses are:

A virtual storage map of two gigabytes with control program services to support
programs executing or residing anywhere in virtual storage.

• Two new program attributes that specify expected address length on entry and
intended location in virtual storage.

Bimodal operation, a capability of the processor that permits the execution of
programs with 24-bit addresses as well as programs with 31-bit addresses.

• New and changed instructions that are sensitive to addressing mode.

In the MVS/XA virtual storage map:

• Each address space has its own two gigabytes of virtual storage.

• Each major system area and the private area has a portion below the 16
megabyte line and an extended portion above the line but, logically, each of
these areas can be thought of as one area.

Figure 1 shows the virtual storage map.

Addressing Mode and Residency Mode

In MVS/370, addresses are 24 bits long and programs can only reside in the area
addressable by 24-bit addresses (below 16 megabytes). In MVS/XA, the
processor can treat addresses as having either 24 or 31 bits. Addressing mode
(AMODE) describes whether the processor is using 24-bit or 31-bit addresses. In
MVS/XA programs can reside in 24-bit addressable areas, as with MVS/370, or
beyond the 24-bit addressable area (above 16 megabytes). Residency mode
(RMODE) specifies whether the program should reside in the 24-bit addressable
area or if it can reside anywhere in 31-bit addressable storage.

Addressing mode (AMODE) and residency mode (RMODE) are program attributes
specified (or defaulted) for each CSECT, load module, and load module alias.
These attributes are the programmer's specification of the addressing mode in
which the program is expected to get control and where the program is expected to
reside in virtual storage.

AMODE defines the addressing mode (24, 31, or ANY) in which a program
expects to receive control. AddreSSing mode refers to the address length that a
program is prepared to handle on entry: 24-bit addresses, 31-bit addresses, or both
(ANY). Programs with an addressing mode of ANY have been designed to receive
control in either 24- or 31-bit addressing mode.

Chapter 1 - Understanding 31-Bit Addressing 1

o 12

Figure 2. 370-XA PSW

2 SPL: 31-Bit Addressing

r------------, 2 gigabytes

Extended ,.u
Private

Extended

Common

16Mb - -

Common

Private

Common

"rJ

ELSQA/ESW A 229/230

ECSA

EPLPA/EFLPA/EMLPA

ESQA

Extended Nucleus

Nucleus

SQA

PLPA/FLPA/MLPA/BLDL

CSA

LSQA/SW A/229 /230

PSA

Figure 1. Two Gigabyte Virtual Storage Map

,.l;

rr'

(

I

o

24-Bit
Addressing
Range

31-Bit
Addressing
Range

A 370-XA processor can operate with either 24-bit addresses (16 megabytes of
addressability) or 31-bit addresses (2 gigabytes of addressability). A 370-XA
processor uses PSW bit 32 (the A-mode bit) to control the length of addresses.
When bit 32 is 0, the 370-XA processor operates in 24-bit addressing mode. When
bit 32 is 1, the processor operates in 31-bit addressing mode. This ability of the
processor to permit the execution of programs in 24-bit addressing mode as well as
programs in 31-bit addressing mode is called bimodal operation. A program's
AMODE attribute determines whether the program is to receive control with 24-bit
or 31-bit addresses. Once a program gets control, the program can change the
AMODE if necessary.

Figure 2 illustrates the 370-XA PSW.

Instruction Address

16 18 20 24 32 63

In 24-bit addressing mode, the processor treats all virtual addresses as 24-bit
values. This makes it impossible for a program in 24-bit addressing mode to address
virtual storage with an address greater than 16,777,215 (16 megabytes) because
that is the largest number that a 24-bit binary field can contain.

In 31-bit addressing mode, the processor treats all virtual addresses as 31-bit
values.

The processor supports bimodal operation so that both new programs and most old
programs can execute correctly. (The Conversion Notebook describes the kinds of
programs that might not execute correctly.) Bimodal operation is necessary
because certain coding practices in existing programs depend on 24-bit addresses.
For example:

Some programs use a 4-byte field for a 24-bit address and place flags in the
high-order byte.

Some programs use the LA instruction to clear the high-order byte of a register.
(In 24-bit addressing mode, LA clears the high-order byte; in 31-bit addressing
mode, it clears only the high-order bit.)

Some programs depend on BAL and BALR to return the ILC (instruction
length code), the CC (condition code), and the program mask. (In 24-bit
addressing mode they do; in 31-bit addressing mode they do not.)

In the PDS (partitioned data set) directory, each load module and each alias entry
has an AMODE attribute.

A CSECT can have only one AMODE, which applies to all its entry points.
Different CSECTs in a load module can have different AMODEs.

RMODE specifies where a program is expected to reside in virtual storage. The
RMODE attribute is not related to real storage requirements. (RMODE 24
indicates that a program is coded to reside in virtual storage below 16 megabytes.
RMODE ANY indicates that a program is coded to reside anywhere in virtual
storage.)

In the PDS directory, each load module and each alias entry has an RMODE
attribute. The alias entry is assigned the same RMODE as the main entry.

The following kinds of programs must reside in the range of addresses below the 16
megabyte line (addressable by 24-bit callers):

Programs that have the AMODE 24 attribute

Programs that have the AMODE ANY attribute

Programs that use system services that require their callers to be AMODE 24

Programs that use system services that require their callers to be RMODE 24

Programs that must be addressable by 24-bit addressing mode callers

Programs without these characteristics can reside anywhere in virtual storage.

Chapter 3 describes AMODE and RMODE processing and MVS/XA support of
AMODE and RMODE in detail.

Chapter 1 - Understanding 31-Bit Addressing 3

Requirements for Execution in 31-Bit Addressing Mode

In general, to execute in 31-bit addressing mode a program must:

• Be assembled using Assembler H Version 2 and the MVS/XA macro
instruction library.

• Be link edited using the linkage editor supplied with Data Facility Product
(DFP) or be loaded using the loader supplied with DFP.

• Execute on an MVS/XA system.

Rules and Conventions for 31-Bit Addressing

Mode Sensitive Instructions

4 SPL: 31-Bit Addressing

It is important to distinguish the rules from the conventions when describing 31-bit
addressing. There are only two rules, and they are associated with hardware:

1. The length of address fields is controlled by the A-mode bit (bit 32) in the
PSW. When bit 32=1, addresses are treated as 31-bit values. When bit 32=0,
addresses are treated as 24-bit values.

Any data passed from a 31-bit addressing mode program to a 24-bit addressing
mode program must reside in virtual storage below 16 megabytes. (A 24-bit
addressing mode program cannot reference data above 16 megabytes without
changing addressing mode.)

2. The A-mode bit affects the way some instructions work.

The conventions, on the other hand, are more extensive. Programs using
MVS/XA services are expected to follow these conventions.

• A program should return control in the same addressing mode in which it
received control.

• A program expects 24-bit addresses from 24-bit addressing mode programs and
31-bit addresses from 31-bit addressing mode programs.

• A program should validate the high-order byte of any address passed by a
24-bit addressing mode program before using it as an address in 31-bit
addressing mode.

The processor is sensitive to the addressing mode that is in effect (the setting of the
PSW A-mode bit). The current PSW controls instruction sequencing. The
instruction address field in the current PSW contains either a 24-bit address or a
31-bit address depending on the current setting of the PSW A-mode bit. For those
instructions that develop or use addresses, the addressing mode in effect in the
current PSW determines whether the addresses are 24 or 31 bits long.

Principles of Operation contains a complete description of the 370-XA instructions.
The following topics provide an overview of the mode sensitive instructions.

BALandBALR

LA

LRA

Branching Instructions

BAL and BALR are addressing mode sensitive. In 24-bit addressing mode, BAL
and BALR work the same way as they do when executed on a processor running in
370 mode. BAL and BALR put link information into the high-order byte of the
first operand register and put the return address into the remaining three bytes
before branching.

First operand register (24-bit addressing mode)

next sequential instruction address

o 2 4 8

ILC - instruction length code
CC - condition code
PGM Mask - program mask

31

In 31-bit addressing mode, BAL and BALR put the return address into bits 1
through 31 of the first operand register and save the current addressing mode in
the high-order bit. Because the addressing mode is 31-bit, the high-order bit is
always a 1.

First operand register (31-bit addressing mode)

next sequential instruction address

o 31

When executing in 31-bit addressing mode, BAL and BALR do not save the
instruction length code, the condition code, or the program mask. IPM (insert
program mask), a new 370-XA instruction, can be used to save the program mask
and the condition code.

The LA (load address) instruction, when executed in 31-bit addressing mode, loads
a 31-bit value and clears the high-order bit. When executed in 24-bit. addressing
mode, it loads a 24-bit value and clears the high-order byte (as in 370 mode).

The LRA (load real address) instruction always results in a 31-bit real address
regardless of the issuing program's AMODE. The virtual address specified is
treated as a 24-bit or 31-bit address based on the value of the PSW A-mode bit at
the time the LRA instruction is executed. The Conversion Notebook describes an
additional difference.

BASSM (branch and save and set mode) and BSM (branch and set mode) are
branching instructions that manipulate the PSW A-mode bit (bit 32). Programs
can use BASSM when branching to modules that might have different addressing
modes. Programs invoked via a BASSM instruction can use a BSM instruction to
return in the caller's addressing mode. BASSM and BSM are described in more
detail in Chapter 4.

Chapter 1 - Understanding 31-Bit Addressing 5

BAS (branch and save) and BASR execute on extended architecture processors in
either 370 or 370-XA mode. They:

• Save the return address and the current addressing mode in the first operand.
Replace the PSW instruction address with the branch address.

The high-order bit of the return address indicates the addressing mode. BAS and
BASR perform the same function that BAL and BALR perform .in 31-bit
addressing mode. In 24-bit mode, BAS and BASR put zeroes into the high-order
byte of the return address register.

MVS/XA's Use of 31-Bit Addressing

Location of Control Blocks

6 SPL: 31-Bit Addressing

MVS/XA, in addition to providing support for the use of 31-bit addresses by user
programs, incluqes many system services that have been converted to use 31-bit
addresses. Likewise, most new functions provided by MVS/XA use 31-bit
addresses.

Some MVS/XA services are independent of the addressing mode of their callers.
These services accept callers in either 24-bit or 31-bit addressing mode and use
31-bit parameter address fields. They assume 24-bit addresses from 24-bit
addressing mode callers and 31-bit addresses from 31-bit addressing mode callers.
Most supervisor macros are in this category.

Other MVS/XA services have restrictions with respect to address parameter
values. Some of these services accept SVC callers and allow them to be in either
24-bit or 31-bit addressing mode. However, the same services might require
branch entry callers to be in 24-bit addressing mode or might require one or more
parameter addresses to be less than 16 megabytes.

Some services do not support 31-bit addressing at all. Among these are SPIE,
STAE, SEGLD, SEGWT, and data management macros for all DFP access
methods except VSAM 1. (VSAM accepts entry by a program that executes in
either 24-bit or 31-bit addressing mode.) The Conversion Notebook gives examples
of the system services in each of these categories.

370-XA provides new instructions that support 31-bit addressing mode and
bimodal operation. These new instructions are supported only by Assembler H
Version 2 (5668-962) installed with the ADV or UNIV instruction set specified.
The linkage editor functions that support MVS/XA are provided in Data Facility
Product (DFP) (5665-284). Programs that are to execute in 31-bit addressing
mode should be link edited using the DFP linkage editor or loaded using the DFP
loader.

Some system control blocks have been moved above the 16 megabytes line. (The
Conversion Notebook contains a list of the control blocks that were moved.) The
topic "How to Change Addressing Mode" later in this book describes how 24-bit
addressing mode programs can access data in control blocks that have moved
above 16 megabytes.

These access methods are SAM, BDAM, QISAM, ISAM, and BPAM.

Chapter 2 - Planning for 31-Bit Addressing

Most programs that run on MVS/370 will run on MVS/XA in 24-bit addressing
mode without change. Some programs need to be modified to execute in 31-bit
addressing mode to provide the same function on MVS/XA as on MVS/370. Still
other programs need to be modified to run in 24-bit addressing mode. The
Conversion Notebook helps you identify programs that need to be changed. This
chapter helps you determine what changes to make to a module you are converting
to 31-bit addressing and indicates what 31-bit address-related things to consider
when writing new code ..

Some reasons for converting to 31-bit addressing mode are:

The program can use more virtual storage for tables, arrays, or additional logic.

• The program needs to reference control blocks that have been moved above the
16 megabyte line.

The program is invoked by other 31-bit addressing mode programs.

• The program must run in 31-bit addressing mode because it is a user exit
routine that the system invokes in 31-bit mode.

Converting Existing Programs

The program needs to invoke system routines that expect to get control in
31-bit addressing mode.

Keeping in mind that 31-bit addressing mode programs can reside either pelow or
above the 16 megabyte line, there are two ways to convert existing programs:

1. Converting the program to use 31-bit addresses - a change in addressing mode
only.

• You can change the entire module to use 31-bit addressing.

• You can change only that portion that requires 31-bit addressing mode
execution.

Be sure to consider whether or not the code has any dependencies on 24-bit
addresses. Such code does not produce the same results in 31-bit mode as it
did in 24-bit mode. The topic "Mode Sensitive Instructions" in Chapter 1
contains an overview of instructions that function differently depending on
addressing mode. The Conversion Notebook describes additional coding
differences.

Figure 3 summarizes the the things that you need to do to maintain the proper
interface with a program that you plan to change to 31-bit addressing mode.

Chapter 2 - Planning for 31-Bit Addressing 7

Calling Module

AMODE 24
RMODE 24

Parameters are passed

AMODE24
RMODE24

CALL or BALR
to another CSECT .. -

LINK, XCTL, or ATTACH ..
r'

Invoked Module

AMODE 24 (intends to switch to AMODE 31)
RMODE24

Requires indicated changes:

Minor recoding at the source
level to switch addressing
modes and to zero bits 1-7 of
the high-order bytes of
addresses used by AMODE 31
module that point to locations
below 16 megabytes.

AMODE31
RMODE24

Minor recoding at the source
level to zero bits 1-7 of the
high-order bytes of addresses
used by AMODE 31 module
that point to locations below
16 megabytes.

Figure 3. Maintaining Correct Interfaces to Modules that Change to AMODE 31

8 SPL: 31-Bit Addressing

2. Moving the program above the 16 megabyte line - a change in both addressing
mode and residency mode

In general, the reason for moving an existing program above the 16 megabyte line
is because there is not enough room for it below the line. For example:

An existing program or application is growing so large that soon it will not fit
below the 16 megabyte line.

• An existing application that now runs as a series of separate programs, or that
executes in an overlay structure, would be easier to manage as one large
program.

• Code is in the system area, and moving it would provide more room for the
private area below 16 megabytes.

The techniques used to establish proper interfaces to modules that move above the
16 megabyte line depend on the number of callers and the ways they invoke the
module. Figure 4 summarizes the techniques for passing control. The programs
involved must ensure that any addresses passed as parameters are treated correctly.
(High-order bytes of addresses to be used by a 31-bit addressing mode program
must be validated or zeroed.)

Means of Entry to Moved Module Few AMODE 24, RMODE 24 Many AMODE 24, RMODE 24
(AMODE 31, RMODE ANY) Callers Callers

LOAD macro and BALR · Have caller use LINK Create a linkage assist routine (described
or in Chapter 4).

· Have caller use LOAD macro and BASSM Give the linkage assist routine the
(invoked program returns via BSM) name of the moved module.

or

· Change caller to AMODE 31, RMODE 24
before BALR

BALR using an address in a · Have caller switch to AMODE 31 when Create a linkage assist routine (described
common control block invoking in Chapter 4).

or

· Change the address in the control block
to a pointer-defined value (described in
Chapter 4) and use BAS SM. (The moved
module will use BSM to return.)

A IT ACH, LINK, or XCTL No changes required. No changes required.

SYNCH in AMODE 24 · Have caller use SYNCH with AMODE=31 Create a linkage assist routine (described
parameter in Chapter 4).

or

· Have caller switch to AMODE 31 before
issuing SYNCH.

· Change address in the control block to a
pointer-defined value and use SYNCH with
AMODE=DEFINED

Figure 4. Establishing Correct Interfaces to Modules That Move Above 16 Megabytes

In deciding whether or not to modify a program to execute in 31-bit addressing
mode either below or above the 16 megabyte line, there are several general
considerations:

1. How and by whom is the module entered?

2. What system and user services does the module use that do not support 31-bit
{'!;I1J.:.~s or parameters?

3. What kinds of coding practices does the module use that do not produce the
same results in 31-bit mode as in 24-bit mode?

4. How are parameters passed? Can they reside above 16 megabytes?

Among the specific practices to check for are:

1. Does the module depend on the instruction length code, condition code, or
program mask placed in the high order byte of the return address register by a
24-bit mode BAL or BALR instruction? One way to determine some of the
dependencies is by checking all uses of the SPM (set program mask)
instruction. SPM might indicate places where BAL or BALR were used to
save the old program mask, which SPM might then have reset. The IPM
(insert program mask) instruction can be used to save the condition code and
the program mask.

2. Does the module use an LA instruction to clear the high-order byte of a
register? This practice will not clear the high-order byte in 31-bit addressing
mode.

Chapter 2 - Planning for 31-Bit Addressing 9

3. Are any address fields that are less than 4 bytes still appropriate?

Make sure that a load instruction does not pick up a 4-byte field containing a
3-byte address with extraneous data in the high-order byte. Make sure that
bits 1-7 are zero.

4. Does the program use the ICM (insert characters under mask) instruction? The
use of this instruction is sometimes a problem because it can put data into the
high-order byte of a register containing an address, or it can put a 3-byte
address into a register without first zeroing the register. If the register is then
used as a base, index, or branch address register in 31-bit addressing mode, it
might not indicate the proper address.

5. Does the program invoke 24-bit addressing mode programs? If so, shared data
must be below 16 megabytes.

6. Is the program invoked by 24-bit or 31-bit addressing mode programs? Is the
data in an area addressable by the programs that need to use it? (The data
must be below 16 megabytes if used by a 24-bit addressing mode program.)

Writing New Programs for MVS/XA

10 SPL: 31-Bit Addressing

You can write programs that execute in either 24-bit or 31-bit addressing mode on
MVS!XA. However, in order to maintain an interface with existing programs and
with some system services, your 31-bit addressing mode programs will need'
subroutines or portions of code that execute in 24-bit addressing mode. If your
program resides below the 16 megabyte line, it can change to 24-bit addressing
mode when necessary. If your program resides above 16 megabytes, it needs a
separate load module to perform the linkage to an unchanged 24-bit addressing
mode program or service. Such load modules are called linkage assist routines and
are described in detail in Chapter 4.

When writing new programs for MVS/XA, there are some things you can do to
simplify the passing of parameters between programs that might be in different
addressing modes. In addition, there are new functions that you should consider
and that you might need to accomplish your program's objectives. (In general,
these new functions are not supported on MVS/370). Following is a list of
suggestions for coding programs to run on MVS/XA:

• Use fullword fields for addresses even if the addresses are only 24 bits in
length.

When obtaining addresses from 3-byte fields in existing areas, use SR (subtract
register) to zero the register followed by ICM (insert characters under mask) in
place of the load instruction to clear the high-order byte. For example:

Rather than: L 1,A

use: SR 1 , 1
reM 1,7,A+1

The 7 specifies a 4-bit mask of 0111. The ICM instruction shown inserts bytes
beginning at location A + 1 into register 1 under control of the mask. The bytes
to be filled correspond to the 1 bits in the mask. Because the high-order byte
in register 1 corresponds to the 0 bit in the mask, it is not filled.

If the program needs storage above 16 megabytes, obtain the storage using the
VRU, VRC, RU, and RC forms of GETMAIN and FREEMAIN. These are
the only forms that allow you to obtain and free storage above 16 megabytes.
Do not use storage areas above 16 megabytes for save areas and parameters
passed to other programs.

Do not use the STAE macro; use ESTAE. STAE has 24-bit addressing mode
dependencies.

Do not use SPIE; use ESPIE. SPIE has 24-bit addressing mode dependencies.

Do not use previous paging services macros; use PGSER.

To make debugging easier, switch addressing modes only when necessary.

• Identify the intended AMODE and RMODE for the program in a prologue.

• Do not use the STAI parameter on the ATTACH macro; use the ESTAI
parameter. ST AI has 24-bit addressing mode dependencies.

31-bit addressing mode programs should use EST AE or the EST AI parameter
on the ATTACH macro rather than STAE or STAI. When recovery routines
refer to the PSW field in the SDWA, they should refer to SDWAECl, which is
the EC mode PSW at the time of error.

User-written STAE and STAI routines need to be aware of the restricted
support of the BC mode PSW fields in the SDW A. The instruction length and
address fields contain zeroes in the following situations;

SDWACTLI (BC mode PSW at time of error) contains zero~s in the
designated fields when the error occurred while the program (or a service
routine executing on behalf of the program) was executing in 31-bit
addressing mode.

SDWACTL2 (BC mode PSW from the last program request block (PRB)
on the request block (RB) chain) contains zeros when the last PRB on the
RB chain refers to a program that was executing in 31-bit addressing mode.

When writing new programs for MVS/XA, you need to decide whether to use
24-bit addressing mode or 31-bit addressing mode.

The following are examples of kinds of programs that you should write in 24-bit
addressing mode;

• Assembler language programs when you gain no extra value from making them
execute in 31-bit addressing mode.

• Programs that must execute on MVS/370 as well as MVS/XA and do not
require any new MVS/XA functions.

• Service routines, even those in the common area, that use system services
requiring entry in 24-bit addressing mode or that must accept control directly
from unchanged 24-bit addressing mode programs.

Chapter 2 - Planning for 31-Bit Addressing 11

When you use 31-bit addressing mode, you must decide whether the new program
should reside above or below 16 megabYtes (unless it is so large that it will not fit
below). Your decision depends on what programs and system services the new
program invokes and what programs invoke it.

New Programs Below 16 Megabytes

The main reason for writing new 31-bit addressing mode programs that reside
below the 16 megabyte line is to be able to address areas above 16 megabytes or to
invoke 31-bit addressing mode programs while at the same time simplifying
communication with existing 24-bit addressing mode programs or system services,
particularly data management. For example, VSAM macro instructions accept
callers in 24-bit or 31-bit addressing mode.

Even though your program resides below the 16 megabyte line, you must be
concerned about dealing with programs that require entry in 24-bit addressing
mode or that require parameters to be below 16 megabytes. Figure 9 in Chapter 4
contains more information about parameter requirements.

New Programs Above 16 Megabytes

When you write new programs that reside above the 16 megabyte line, your main
concerns are:

Dealing with programs that require entry in 24-bit addressing mode or that
require parameters to be below 16 megabytes. Note that these are concerns of
any 31-bit addressing mode program no matter where it resides.

• How routines that remain below the 16 megabyte line invoke the new program.

Writing Programs to Run on Both MVS/370 and MVS/XA

12 SPL: 31-Bit Addressing

You can write new programs that will run on both MVS/370 and MVS/XA. If
these programs do not need to use any new MVS/XA functions, the best way to
avoid errors is to assemble the programs on MVS/370 with MVS/370 macro
libraries. You can also assemble these programs on MVS/XA with the MVS/XA
macro libraries, but you must generate MVS/370-compatible macro expansions by
specifying the SPLEVEL macro instruction at the beginning of the programs.

If the program needs to use MVS/XA functions, your programming task is more
difficult because most new MVS/XA functions are not supported on MVS/370.
You need to use dual paths in your program so that on each system your program
uses the services or macros that are supported on that system.

With minor exceptions, MVS/System Product Version 1 Release 3 programs that
use published external interfaces as documented in the following publications will
execute on MVS/System Product Version 2.

• OS /VS2 MVS JCL, GC28-0692

• OSjVS2 Supervisor Services and Macro Instructions, GC28-1114

• OSjVS2 TSO Command Language Reference, GC28-0646

• OSjVS2 Guide to Writing a Command Processor or Terminal Monitor Program,
GC28-0648

SPLEVEL Macro Instruction

OS/VS2 Data Management Macro Instructions, GC26-3873

OS/VS2 Access Method Services, GC26-3841

OS/VS Virtual Storage Access Method (VSAM) Programmers Guide,
GC26-3838

In addition to using published external interfaces, programs designed to execute on
either system must use fullword addresses where possible and use no new functions
on macro instructions except the LOC parameter on GETMAIN. These programs
must also be aware of downward incompatible macros and use SPLEVEL as
needed.

Some macro instructions are downward incompatible. (The Conversion Notebook
contains a list of these macros.) The level of the macro expansion (MVS/370 or
MVS/XA) that is generated during assembly depends on the value of an assembler
language global SET symbol. When the SET symbol value is 1, the system
generates MVS/370 expansions. When the SET symbol value is 2, the system
generates MVS/XA expansions.

The SPLEVEL macro instruction allows programmers to change the value of the
SET symbol. The SPLEVEL macro instruction shipped with MVS/SP Version 2
sets a default value of 2 for the SET symbol. Therefore, unless a program or
installation specifically changes the default value, the macros generated are
MVS/XA macro expansions.

You can, within a program, issue the SPLEVEL SET=l macro to obtain
MVS/370(MVS/System Product Version 1 Release 3 Modification Level 0)
expansions, or SPLEVEL SET=2 to obtain MVS/XA expansions. The SPLEVEL
macro instruction sets the SET symbol value for that program's assembly only and
affects only the expansions within the program being assembled. A single program
can include multiple SPLEVEL macro instructions to generate different macro
expansions. The following example shows how to obtain different macro
expansions within the same program by assembling both expansions and making a
test at execution time to determine which expansion to execute.

*

*

SP2

*

DETERMINE
TM
BO

WHICH SYSTEM IS EXECUTING
CVTDCB,CVTMVSE (CVTMVSE is bit 0 in the
SP2 CVTDCB field. If bit 0=1,

it indicates that MVS/XA
is executing.)

INVOKE THE MVS/370
SPLEVEL SET=1

VERSION OF THE WTOR MACRO

WTOR
B CONTINUE
EQU *

INVOKE THE MVS/XA VERSION
SPLEVEL SET=2
WTOR

OF THE WTOR MACRO

CONTINUE EQU *
Note: CVTMVSE is not defined prior to MVS/System Product Version 1 Release
3.

SPL: System Macros and Facilities and Supervisor Services and Macro Instructions
describe the SPLEVEL macro instruction. The Conversion Notebook contains
additional examples of its use.

Chapter 2 - Planning for 31-Bit Addressing 13

Dual Programs

14 SPL: 31-Bit Addressing

Certain macro instructions produce a "map" of control blocks or parameter lists.
These mapping macro instructions do not support the SPLEVEL macro. Mapping
macros for different levels of MVS systems are avallable only in the macro libraries
for each system. When programs use mapping macros, a different version of the
program may be needed for each system.

Sometimes two programs may be required; one for each system. In this case, use
one of the following approaches:

Keep each in a separate library
• Keep both in the same library but under different names

Chapter 3 - Addressing Mode and Residency Mode

Every program that executes in MVS/XA is assigned two program attributes: an
addressing mode (AMODE) and a residency mode (RMODE). Programmers can
specify these attributes for new programs. Programmers can also specify these
attributes for old programs through reassembly, linkage editor PARM values,
linkage editor MODE control statements, or loader PARM values. MVS/XA
assigns default attributes to any program that does not have AMODE and RMODE
specified.

Addressing Mode - AMODE

Residency Mode - RMODE

AMODE is a program attribute that can be specified (or defaulted) for each
CSECT, load module, and load module alias. AMODE states the addressing mode
that is expected to be in effect when the program is entered. AMODE can have
one of the following values:

• AMODE 24 - The program is designed to receive control in 24-bit addressing
mode.

AMODE 31 - The program is designed to receive control in 31-bit addressing
mode.

AMODE ANY - The program is designed to receive control in either 24-bit or
31-bit addressing mode.

RMODE is a program attribute that can be specified (or defaulted) for each
CSECT, load module, and load module alias. RMODE states the virtual storage
location (either above the 16 megabyte line or anywhere in virtual storage) where
the program should reside. RMODE can have the following values:

• RMODE 24 - The program is designed to reside below the 16 megabyte line in
virtual storage. MVS/XA places the program below 16 megabytes.

• RMODE ANY - The program is designed to reside at any virtual storage
location, either above or below the 16 megabyte line. MVS/XA places the
program above the 16 megabyte line unless there is no suitable virtual storage
above 16.megabytes.

AMODE and RMODE Combinations

Figure 5 shows all @sible AMODE and RMODE combinations and indicates
which are valid.

AMODE and RMODE Combinations at Execution Time

At execution time, there are only three valid AMODE/RMODE combinations:

1. AMODE 24, RMODE 24, which is the default
2. AMODE 31, RMODE 24
3. AMODE 31, RMODE ANY

Chapter 3 - Addressing Mode and Residency Mode 15

The ATTACH, LINK, and XCTL macro instructions give the invoked module
control in the AMODE previously specified. However, specifying a particular
AMODE does not guarantee that a module that gets control by other means will
receive control in that AMODE. For example, an AMODE 24 module can issue a
BALR to an AMODE 31, RMODE 24 module. The AMODE 31 module will get
control in 24-bit addressing mode.

RMODE 24 RMODEANY

AMODE24 Valid Invalid CD
AMODE 31 Valid Valid

AMODEANY Valid @ It Depends ®
CD This combination is invalid because an AMODE 24 module cannot reside above 16

megabytes.

o This is a valid combination in that the assembler, linkage editor, and loader accept it from all
sources. However, the combination is not used at execution time. Specifying ANY is a way
of deferring a decision about the actual AMODE until the last possible moment before
execution. At execution time, however, the module must execute in either 24-bit or 31-bit
addressing mode.

® The attributes AMODE ANY /RMODE ANY take on a special meaning when used
together. (This meaning might seem to disagree with the meaning of either taken alone.) A
module with the AMODE ANY /RMODE ANY attributes will execute on either an
MVS/370 or an MVS/XA system if the module is designed to:

Use no facilities that are unique to MVS/XA.

Execute entirely in 31-bit addressing mode on an MVS/XA system and return control
to its caller in 31-bit addressing mode. (The AMODE could be different from
invocation to invocation.)

Execute entirely in 24-bit addressing mode on an MVS/370 system.

The linkage editor and loader accept this combination from the ESD or CESD but not from
the PARM field of the linkage editor EXEC statement or the linkage editor MODE control
statement. The linkage editor converts AMODE ANY /RMODE ANY to AMODE
31/RMODE ANY.

Figure 5. AMODE and RMODE Combinations

Determining the AMODE and RMODE of a Load Module

Use the AMBLIST service aid to find out the AMODE and RMODE of a load
module. The module summary produced by the LISTLOAD control statement
contains the AMODE of the main entry point and the AMODE of each alias, as
well as the RMODE specified for the load module. Refer to Service Aids for
information about AMBLIST.

You can look at the source code to determine the AM ODE and RMODE that the
programmer intended for the program. However, the linkage editor or the loader
can override these specifications.

Assembler H Support of AMODE and RMODE

16 SPL: 31-Bit Addressing

Assembler H Version 2 supports AMODE and RMODE assembler instructions.
Using AMODE and RMODE assembler instructions, you can specify an AMODE
and an RMODE to be associated with a control section, an unnamed control
section, or a named common control section. The assembler sets the AMODE and
RMODE indicators in the ESD (external symbol dictionary) record for each
control section specified.

AM ODE and RMODE in the ESD

The assembler creates the external symbol dictionary, passing the information in it
to the linkage editor or loader as part of the object module. A flags field (byte 12
of the ESD item in the ESD record) contains information about the addressing
mode and residency mode of each CSECT. Bits 5, 6, and 7 of the flags field mean
the following:

Bit 5: 0-RMODE24
l-RMODEANY

Bits 6-7: 00 - AMODE 24 (when the default is used)
01 - AMODE 24 (when AMODE 24 is specified)
10 - AMODE 31
11 - AMODE ANY

The assembler checks to determine if the specified AMODE/RMODE combination
is valid. The only invalid combination is AMODE 24/ RMODE ANY.

The assembler also checks for the following error conditions:

• Multiple AMODE/RMODE statements for a single control section

An AMODE/RMODE statement with an incorrect or missing value

An AMODE/RMODE statement whose name field is not that of a valid
control section in the assembly.

AMODE and RMODE Assembler Instructions

The AMODE instruction specifies the addressing mode to be associated with a
CSECT in an object module. The format of the AMODE instruction is:

Name Operation Operand

Any symbol or blank AMODE 24/31/ANY

The name field associates the addressing mode with a control section. If there is a
symbol in the name field of an AMODE statement, that symbol must also appear in
the name field of a START, CSECT, or COM statement in the assembly. If the
name field is blank, there must be an unnamed control section in the assembly.

Similarly, the name field associates the residency mode with a control section. The
RMODE statement specifies the residency mode to be associated with a control
section. The format of the RMODE instruction is:

Name Operation Operand

Any symbol or blank RMODE 24/ANY

Both the RMODE and AMODE instructions can appear anywhere in the assembly.
Their appearance does not initiate an unnamed CSECT. There can be more than
one RMODE (or AMODE) instruction per assembly, but they must have different
name fields.

Chapter 3 - Addressing Mode and Residency Mode 17

The defaults when AMODE, RMODE, or both are not specified are:

SPECIFIED

Neither
AMODE24
AMODE 31
AMODEANY
RMODE24
RMODEANY

DEFAULTED

AMODE 24 RMODE 24
RMODE24
RMODE24
RMODE 24
AMODE24
AMODE31

DFP Linkage Editor Support of AMODE and RMODE

18 SPL: 31-Bit Addressing

The linkage editor accepts AMODE and RMODE specifications from any or all of
the following:

ESD (external symbol dictionary) entries in object modules.

• CESD (composite external symbol dictionary) entries in the load module.

P ARM field of the linkage editor EXEC statement. For example:

//LKED EXEC PGM=name,PARM='AMODE=31,RMODE=ANY, '

P ARM field input overrides ESD and CESD input.

• Linkage editor MODE control statements in the SYSLIN data set. For
example:

MODE AMODE(31) ,RMODE(24)

MODE control statement input overrides ESD, CESD, and P ARM input.

Linkage editor processing results in two sets of AMODE and RMODE indicators
located in:

• The CESD of the load module

The PDS (partitioned data set) directory entry for the member name and any
directory entries for alternate names or alternate entry points that were
constructed using the linkage editor ALIAS control statement

These two sets of indicators may differ because they can be created from different
input. The linkage editor creates indicators in the load module CESD based on
input from the input ESD and CESD. The linkage editor creates indicators in the
PDS directory based not only on input from the ESD and CESD, but also from the
P ARM field of the linkage editor EXEC statement~ and the MODE control
statements in the SYSLIN data set. The last two sources of input can override
indicators from the ESD and CESD. Figure 6 shows linkage editor processing of
AMODE and RMODE.

The linkage editor uses default values of AMODE 24/RMODE 24 for:

Object modules produced by assemblers other than Assembler H Version 2

• Object modules produced by Assembler H Version 2 where source statements
did not specify AMODE or RMODE

Load modules produced by linkage editors other than the DFP linkage editor

Load modules produced by the DFP linkage editor that did not have AMODE
or RMODE specified from any input source

Load modules in overlay structure

MVS/XA treats programs in overlay structure as AMODE 24, RMODE 24
programs. Putting a program into overlay structure destroys any AMODE and
RMODE specifications contained in the CESD.

The linkage editor checks to see if the specified AMODE and RMODE
combination is valid. The linkage editor recognizes as valid the following
combinations of AMODE and RMODE:

AM ODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE 31 RMODE ANY

AMODE ANY RMODE 24

AMODE ANY RMODE ANY Linkage editor accepts this combination from the ESD or
CESD and places AMODE 31, RMODE ANY into the PDS
directory entry (unless overridden by PARM values or MODE
control statements). The linkage editor does not accept
ANY / ANY from the PARM value or MODE control
statement.

Any AMODE value specified alone in the P ARM field or MODE control statement
implies an RMODE of 24. Likewise, an RMODE of ANY specified alone implies
an AMODE of 31. However, for RMODE 24 specified alone, the linkage editor
does not assume an AMODE value. Instead, it uses the AMODE value specified in
the ESD for the CSECT in generating the entry or entries in the PDS directory.

When the linkage editor creates an overlay structure, it assigns AMODE 24,
RMODE 24 to the resulting program.

Chapter 3 - Addressing Mode and Residency Mode 19

Assembler Input

For each CSECT,
AMODE/RMODE
specified by
assembler statements
or defaulted to
24/24

t
Assembler H
Version 2

t
Object module -
contains AM ODE/
RMODE in ESD.

... -
Linkage Editor Processing

Processes AMODE/RMODE
values from ESD and CESD.
Puts AMODE/RMODE into
output load module. (The linkage
editor does not use AMODE/
RMODE values from PDS
directory.)

Processes optional P ARM values
and/or MODE control statements
that override ESD / CESD values.
Puts AMODE/RMODE in load
module directory entry.

t
Load Module:

'-----I
• CESD contains AMODE/RMODE

of each executable control section
and named common control second
(derived from ESD or CESD
input values) .

• PDS directory contains AMODE/
RMODE value from ESD or
CESD or from overriding PARM
values or MODE control
statements.

Contents supervision or virtual fetch obtains
AMODE and RMODE from PDS directory
entry.

F"tgUfe 6. AMODE and RMODE Processing by the Linkage Editor

20 SPL: 31-Bit Addressing

-

Linkage Editor Input

Optional AMODE/
RMODEPARM
values from JCL
EXEC statement
and/or MODE
control statements

Linkage Editor RMODE Processing

In constructing a load module, the linkage editor frequently is requested to combine
multiple CSECTs, or it may process an existing load module as input, combining it
with additional CSECTs or performing a CSECT replacement.

The linkage editor determines the RMODE of each CSECT. If the RMODEs are
all the same, the linkage editor assigns that RMODE to the load module. If the
RMODEs are not the same (ignoring the RMODE specification on common
sections), the more restrictive value, RMODE 24, is chosen as the load module's
RMODE.

The RMODE chosen can be overridden by the RMODE specified in the P ARM
field of the linkage editor EXEC statement. Likewise, the P ARM field RMODE
can be overridden by the RMODE value specified on the linkage editor MODE
control statement.

The linkage editor does not alter the RMODE values obtained from the ESD or
CESD when constructing the new CESD. Any choice that the linkage editor makes
or any override processing that it performs affects only the PDS directory entries.

DFP Loader Support for AMODE and RMODE

The loader's processing of AMODE and RMODE is similar to the linkage editor's.
The loader accepts AMODE and RMODE specifications from:

ESDs in object modules
CESDs in load modules
PARM field of the JCL EXEC statement

Unlike the linkage editor, the loader does not accept MODE control statements
from the SYSLIN data set, but it does base its loading sequence on the sequence of
items in SYSLIN.

The loader passes the AMODE value to contents supervision. The loader
processes the RMODE value as follows. If the user specifies an RMODE value in
the P ARM field, that value overrides any previous RMODE value. Using the value
of the first RMODE it finds in the first ESD or CESD it encounters that is not for a
common section, the loader obtains virtual storage for its output. As the loading
process continues, the loader may encounter a more restrictive RMODE value. If,
for example, the loader begins loading based dil an RMODE ANY indicator and
later finds an RMODE 24 indicator in a section other than a common section, it
issues a message and starts over based on the more restrictive RMODE value.
Figure 7 shows loader processing of AMODE and RMODE.

Chapter 3 - Addressing Mode and Residency Mode 21

Assembler Input

For each CSECT,
AMODE/RMODE
specified by
assembler statements
or defaulted to
24/24

Assembler H
Version 2

Object module -
contains AMODE/
RMODE in ESD.

Load Module:

• CESD contains AMODE/
RMODE of each CSECT
(derived from ESD or
CESD input values).

• PDS directory information
is not used.

--
Loader Processing

Processes ESD and CESD
AMODE/RMODE values.

Processes optional AMODE/
RMODE PARM values that
override ESD and CESD values.

"
Loader constructs program in virtual
storage with AMODE/RMODE from ESD,
CESD, or overriding PARM values.

--

Loader Input

Optional AMODE/
RMODEPARM
values from JCL
EXEC statement

Figure 7. AMODE and RMODE Processing by the Loader

MVS/XA's Support of AMODE and RMODE

22 SPL: 31-Bit Addressing

The following are examples of MVS/XA's support of AMODE and RMODE:

• Program fetch obtains storage for the module as indicated by RMODE.

• ATTACH, LINK, and XCTL give the invoked module control in the
addressing mode specified by its AMODE.

LOAD brings a module into storage based on its RMODE and sets bit 0 in
register 0 to indicate its AMODE.

CALL passes control in the AMODE of the caller.

• SYNCH has an AMODE parameter that you can use to specify the AMODE of
the invoked module.

The SVC first level interrupt handler saves and sets the addressing mode.

SRBs are dispatched in the addressing mode indicated by the SRB specified to
the SCHEDULE macro.

Program Fetch

ATTACH, LINK, and XCTL

LOAD

CALL

The cross memory instructions PC and PT establish the addressing mode for
the target program.

DFP access methods, except VSAM macros, support AMODE 24 RMODE 24
callers only. VSAM macros support all addressing and residency mode.
callers.

Dumping is based on the AMODE specified in the error-related PSW.

Contents supervision places RMODE information from the PDS directory into the
program fetch work area before calling program fetch. Program fetch issues the
GETMAIN macro instruction to obtain storage above or below 16 megabytes as
specified by the RMODE value.

Issuing an ATTACH macro instruction causes the control program to create a new
task and indicates the entry point to be given control when the new task becomes
active. If the entry point is a member name or an alias in the PDS directory,
ATT ACH gives it control in the addressing mode specified in the PDS directory
entry or in the mode specified by the loader. If the invoked program has the
AMODE ANY attribute, it gets control in the AMODE of its caller.

The LINK and XCTL macro instructions also give the invoked program control in
the addressing mode indicated by its PDS directory entry for programs brought in
by fetch or in the AMODE specified by the loader. The entry point specified must
be a member name or an alias in the PDS directory passed by the loader, or
specified in an IDENTIFY macro instruction. If the entry point is an entry name
specified in an IDENTIFY macro instruction, IDENTIFY sets the addressing mode
of the entry name equal to the addressing mode of the main entry point.

Issuing the LOAD macro instruction causes the control program to bring the load
module containing the specified entry point name into virtual storage (if a usable
copy is not already there). LOAD sets the high-order bit of the entry point address
in register 0 to indicate the module's AMODE (0 for 24, 1 for 31), which LOAD
obtains from the module's PDS directory entry. If the module's AMODE is ANY,
LOAD sets the high-order bit in register 0 to correspond to the caller's AMODE.

LOAD places the module in virtual storage either above or below the 16 megabyte
line as indicated by the module's RMODE, which is specified in the PDS directory
entry for the module.

Specifying the ADDR parameter indicates that you want the module loaded at a
particular location. If you specify an address above 16 megabytes, be sure that the
module being loaded has the RMODE ANY attribute. If you do not know the
AMODE and RMODE attributes of the module, specify an address below 16
megabytes or omit the ADDR parameter.

The CALL macro instruction passes control to an entry point via BALR. Thus
control is transferred in the AMODE of the caller. CALL does not change
AMODE.

Chapter 3 - Addressing Mode and Residency Mode 23

SYNCH

SVC

SRB

PCandPT

Using the AMODE parameter on the SYNCH macro instruction, you can specify
the addressing mode in which the invoked module is to get control. Otherwise,
SYNCH passes control in the caller's addressing mode.

For SVCs (supervisor calls), the supervisor saves and restores the issuer's
addressing mode and makes sure that the invoked service gets control in the
specified addressing mode.

When an SRB (service request block) is dispatched, MVS/XA sets the PSW
A-mode bit based on the high-order bit of the SRBEP field. This bit, set by the
issuer of the SCHEDULE macro, indicates the addressing mode of the routine
operating under the dispatched SRB.

For a program call (PC), the entry table indicates the target program's addressing
mode. The address field in the entry table must be initialized by setting the
high-order bit to 0 for 24-bit addressing mode or to 1 for 31-bit addressing mode.

The PC instruction sets up register 14 with the return address and AMODE for use
with the PT (program transfer) instruction. If PT is not preceded by a PC
instruction, the PT issuer must set the high-order bit of the second operand register
to indicate the AMODE of the program being entered (0 for 24-bit addressing
mode or 1 for 31-bit addressing mode).

Data Management Access Methods

AMODE's Effect on Dumps

24 SPL: 31-Bit Addressing

User programs must be in AMODE 24, RMODE 24 when invoking DFP access
methods other than VSAM. All non-VSAM access methods require parameter
lists, control blocks, buffers, and user exit routines to reside in virtual storage below
16 megabytes.

VSAM request macro instructions accept callers in AMODE 31, RMODE 24.
Some macros allow parameter lists and control blocks to reside above 16
megabytes; for details on addressing and residence requirements for VSAM
parameter lists, control blocks, buffers, and exit routines, see VSAM Administration
Guide.

The only time AMODE has an effect on dumps is, for example, in a summary
dump when data on either side of the address in each register is dumped. If the
addresses in registers are treated as 24-bit addresses, the data dumped may come
from a different storage location than when the addresses are treated as 31-bit
addresses. If a dump occurs shortly after an addressing mode switch, some
registers may contain 31-bit addresses and some may contain 24 bit addresses, but
dumping services does not distinguish among them. Dumping services uses the
AMODE from the error-related PSW. For example, in dumping the area related to
the registers saved in the SDW A, dumping services uses the AMODE from the
error PSW stored in the SDW A.

How to Change Addressing Mode

To change addressing mode you must change the value of the PSW A-mode bit.
The following list includes all the ways to change addressing mode.

The mode setting instructions BASSM and BSM.

Supervisor-assisted linkage macro instructions (ATTACH, LINK, or XCTL).
MVS/XA makes sure that routines get control in the specified addressing
mode. Users need only ensure that parameter requirements are met.
MVS/XA restores the invoker's mode on return from LINK.

SVCs. The supervisor saves and restores the issuer's addressing mode and
ensures that the service routine receives control in the addressing mode
specified in its SVC table entry.

• SYNCH with the AMODE parameter to specify the addressing mode in which
the invoked routine is to get control.

An SRB. When the SRB is dispatched, MVS/XA sets the PSW A-mode bit
with the high-order bit of the SRBEP field.

The CIRB macro and the stage 2 exit effector. The CIRB macro is described
in SPL: System Macros and Facilities.

• A PC or PT instruction. PC and PT instructions establish the specified
addressing mode.

An LPSW instruction (not recommended).

The example in Figure 8 illustrates how a change in addressing mode in a 24-bit
addressing mode program enables the program to retrieve data from the OUXB
control block, which might reside above 16 megabytes. The example works
correctly whether or not the OUXB is actually above 16 megabytes. The example
uses the BSM instruction to change addressing mode. In the example, the
instruction L 2,4(,15) must be executed in 31-bit addressing mode. Mode setting
code (BSM) before the instruction establishes 31-bit addressing mode and code
following the instruction establishes 24-bit addressing mode.

USER
USER
USER

LABELl
LABEL2

LABEL3

CSECT
RMODE 24
AMODE 24
L 15,ASCBOUXB
L 1,LABELl SET HIGH-ORDER BIT OF REGISTER 1 TO 1

BSM
DC
DS
L
LA

0, 1
A (LABEL2
OH
2,4 (,15)
1 , LABEL3

BSM 0,1
DS OH

AND PUT ADDRESS INTO BITS 1-31
SET AMODE 31 (DOES NOT PRESERVE AMODE)

+ X'80000000')

OBTAIN DATA FROM ABOVE 16 MEGABYTES
SET HIGH-ORDER BIT OF REGISTER 1 TO 0
AND PUT ADDRESS INTO BITS 1-31
SET AMODE 24 (DOES NOT PRESERVE AMODE)

Figure 8. Mode Switching to Retrieve Data from Above 16 Megabytes

Chapter 3 - Addressing Mode and Residency Mode 25

26 SPL: 31-Bit Addressing

Chapter 4 - Establishing Linkage

This chapter describes the mechanics of correct linkage in 31-bit addressing mode.
Keep in mind that there are considerations other than linkage, such as locations of
areas that both the calling module and the invoked module need to address.

Linkage in MVS/XA is the same as in MVS/370 for modules whose addressing
modes are the same. As shown in Figure 9 , it is the linkage between modules
whose addressing modes are different that is an area of concern. The areas of
concern that appear in Figure 9 fall into two basic categories:

• Addresses passed as parameters from one routine to another must be addresses
that both routines can use.

High-order bytes of addresses must contain zeroes or data that the
receiving routine is programmed to expect.

Addresses must be less than 16 megabytes if they could be passed to a
24-bit addressing mode program.

• On transfers of control between programs with different AMODEs, the
receiving routine must get control in the AMODE it needs and return control
to the calling routine in the AMODE the calling routine needs.

There are a number of ways of dealing with the areas of concern that appear in
Figure 9:

• Use the branching instructions (BASSM and BSM)
• Use pointer-defined linkage
• Use supervisor-assisted linkage (ATTACH, LINK, and XCTL)
• Use linkage assist routines
• Use "capping."

Chapter 4 - Establishing Linkage 27

I AMODE 31 1 ok ~ _I AMODE31 I - -I

,~

I AMODE 31 I I AMODE 31 I
4 • Possible ~ Area Area

16 megabytes ok0 CD of Concern
Definite 1

® of) Concern

\
~ (, i

I AMODE24 I I AMODE24 I
~

Possible) Area

0) of + Concern

"

I AMODE 31 L. ok0 I AMODE31 I - ,.

1

AMODE24 I .. ok ~I AMODE 24
1

o When an AMODE 31 module that resides above the 16 megabyte line invokes an AMODE 24 module, the concerns are:

• The AMODE 24 program needs to receive control in 24-bit mode.

• The location of shared data (including control blocks, register save areas, and parameters). Can the AMODE 24 module address the
data?

• The AMODE 24 module cannot return control unless an addressing mode change occurs.

® An AM ODE 24 module cannot invoke an AMODE 31 module that resides above the line unless the AM ODE 24 module changes its
addressing mode either directly or using supervisor-assisted linkage.

® When both modules are below 16 megabytes the concerns are:

• Which module cleans out bits 1-7 of the high-order bytes of 24-bit values used as addresses?

• Can both modules address shared data?

@ While there are no restrictions on the mechanics of linkage between two AMODE 31 modules, there might be restrictions on parameter
values.

Figure 9. Linkage Between Modules with Different AMODEs and RMODEs

Using the BASSM and BSM Instructions

28 SPL: 31-Bit Addressing

The BASSM (branch and save and set mode) and the BSM (branch and set mode)
instructions are branching instructions that set the addressing mode. They are
designed to complement each other. (BASSM is used to call and BSM is used to
return, but they are not limited to such use.)

The description of BASSM from Principles of Operation appears in Figure 10.

B..-A_SS_M---rR....;..h_R,;;.,2...,--_....,[RR]

I '~C' I R t R2 I
o 8 12 15

Bits 32-63 of the current PSW, including the updated instruction address, are saved as link
information in the general register designated by R t• Subsequently, the addressing mode and
instruction address in the current PSW are replaced from the second operand. The action
associated with the second operand is not performed if the R2 field is zero.

The contents of the general register designated by the R2 field specify the new addressing mode
and branch address; however when the R2 field is zero, the operation is performed without
branching and without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch
address is generated from the contents of the register under the control of the new addressing
mode. The new value for the PSW is computed before the register designated by R t is changed.

Condition Code: The code remains unchanged. Program Exceptions:
Trace (R2 field is not zero).

Figure 10. BRANCH and SAVE and Set Mode Description

The description of BSM from Principles of Operation appears in Figure 11.

B,.-SM_--.R.....:t:..:....,R.....:2:......,-_--i[RR]

I 'OB' I R t R2 I
o 8 12 15

Bit 32 of the current PSW, the addressing mode, is inserted into the first operand. Subsequently
the addressing mode and instruction address in the current PSW are replaced from the second
operand. The action associated with an operand is not performed if the associated R field is zero.

The value of bit 32 of the PSW is placed in bit position 0 of the general register designated by Rb
and bits 1-31 of the register remain unchanged; however, when the R J field is zero, the bit is not
inserted, and the contents of general register 0 are not changed.

The contents of the general register designated by the R2 field specify the new addressing mode
and branch address; however, when the R2 field is zero, the operation is performed without
branching and without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch
address is generated from the contents of the register under the control of the new addressing
mode. The new value for the PSW is computed before the register designated by R J is changed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Figure 11. Branch and Set Mode Description

Chapter 4 - Establishing Linkage 29

Calling and Returning with BASSM and BSM

16 Megabytes

BELOWCSECT
BELOW AMODE 24
BELOW RMODE 24

In the following example, a module named BELOW has the attributes AMODE 24,
RMODE 24. BELOW uses a LOAD macro to obtain the address of module
ABOVE. The LOAD macro returns the address in register 0 with the addressing
mode indicated in bit 0 (a pointer-defined value). BELOW stores this address in
location EP ABOVE. When BELOW is ready to branch to ABOVE, BELOW
loads ABOVE's entry point address from EP ABOVE into register 15 and branches
using BASSM 14,15. BASSM places the address of the next instruction into
register 14 and sets bit 0 in register 14 to 0 to correspond to BELOW's addressing
mode. BASSM replaces the PSW A-mode bit with bit 0 of register 15 (a 1 in this
example) and replaces the PSW instruction address with the branch address (bits
1-31 of register 15) causing the branch.

ABOVE uses a BSM 0,14 to return. BSM 0,14 does not save ABOVE's addressing
mode because 0 is specified as the first operand register. It replaces the PSW
A-mode bit with bit 0 of register 14 (BELOW's addressing mode set by BASSM)
and branches.

ABOVE CSECT
ABOVE AMODE 31
ABOVE RMODE ANY

LOAD EP=ABOVE
ST O,EPABOVE

L
BASSM

Figure 12. Using BASSM and BSM

30 SPL: 31-Bit Addressing

Using Pointer-Defined Linkage

Pointer-defined linkage is a convention whereby programs can transfer control back
and forth without having to know each other's AMODEs. Pointer-defined linkage
is simple and efficient. You should use it in new or modified modules where there
might be mode switching between modules.

Pointer-defined linkage uses a pointer-defined value, which is a 4-byte area that
contains both an AMODE indicator and an address. The high-order bit contains
the AMODE; the remainder of the word contains the address. To use
pointer-defined linkage, you must:

• Use a pointer-defined value to indicate the entry point address and the entry
point's AMODE. (The LOAD macro provides a pointer-defined value.)

• Use the BASSM instruction specifying a register that contains the
pointer-defined value. BASSM saves the caller's AMODE and next the
address of the next sequential instruction, sets the AMODE of the target
routine, and branches to the specified location.

• Have the target routine save the full contents of the return register and use it in
the BSM instruction to return to the caller.

Using an ADCON to Obtain a Pointer-Defined Value

The following method is useful when you need to construct pointer-defined values
to use in pointer-defined linkages between control sections or modules that will be
link edited into a single load module. You can also use this method when the
executable program is prepared in storage using the loader.

The method requires the use of an externally-defined address constant in the
routine to be invoked that identifies its entry mode and address. The address
constant must contain a pointer-defined value. The calling program loads the
pointer-defined value and uses it in a BASSM instruction. The invoked routine
returns using a BSM instruction.

In Figure 13, RTN1 obtains pointer-defined values from RTN2 and RTN3. RTN1,
the invoking routine does not have to know the addressing modes of RTN2 and
RTN3. Later, RTN2 or RTN3 could be changed to use different addressing
modes, and at that time their address constants would be changed to correspond to
their new addressing mode. RTN1, however, would not have to change the
sequence of code it uses to invoke RTN2 and RTN3.

You can use the techniques that the previous example illustrates to handle routines
that have mUltiple entry points (possibly with different AMODE attributes). You
need to construct a table of address constants, one for each entry point to be
handled.

Chapter 4 - Establishing Linkage 31

RTN1

RTN2
RTN2

CSECT
EXTRN
EXTRN

L
L
BASSM

L
L
BASSM

CSECT
AMODE
ENTRY

BSM
RTN2AD DC

RTN3 CSECT
RTN3 AMODE

ENTRY

BSM
RTN3AD DC

RTN2AD
RTN3AD

15,=A(RTN2AD)
15,0(,15)
14, 15

15,=A(RTN3AD)
15,0(,15)
14, 15

24
RTN2AD

0,14
A(RTN2)

31
RTN3AD

LOAD ADDRESS OF POINTER-DEFINED VALUE
LOAD POINTER-DEFINED VALUE
GO TO RTN2 VIA BASSM

LOAD ADDRESS OF POINTER-DEFINED VALUE
LOAD POINTER DEFINED~VALUE
GO TO RTN3 VIA BASSM

RETURN TO CALLER IN CALLER'S MODE
WHEN USED AS A POINTER-DEFINED VALUE,
INDICATES AMODE 24 BECAUSE BIT 0 IS 0

0,14 RETURN TO CALLER IN CALLER'S MODE
A(X'80000000'+RTN3) WHEN USED AS A POINTER-DEFINED VALUE

INDICATES AMODE 31 BECAUSE BIT 0 IS 1

Figure 13. Example of Pointer-Defined Linkage

As with all forms of linkage, there are considerations over and above the linkage
mechanism. These include:

Both routines must have address ability to any parameters passed.

Both routines must agree whiCh of them will clean up any 24-bit addresses that
might have extraneous information bits 1-7 of the high-order byte. (This is a
consideration only for AMODE 31 programs.)

When a 24-bit addressing mode program invokes a module that is to execute in
31-bit addressing mode, the calling program must ensure that register 13 contains a
valid 31-bit address of the register save area with no extraneous data in bits 1-7 of
the high-order byte. In addition, when any program invokes a 24-bit addressing
mode program, register 13 must point to a register save area located below 16
megabytes.

Using the LOAD Macro Instruction to Obtain a Pointer-Defined Value

32 SPL: 31-Bit Addressing

LOAD returns a pointer-defined value in register O. You can preserve this
pointer-defined value and use it with a BASSM instruction to pass control without
having to know the target routine's AMODE.

Using Supervisor-Assisted Linkage

Figure 14 shows a "before" and "after" situation involving two modules, MODI
and MOD2. In the BEFORE part of the figure both modules execute in 24-bit
addressing mode. MODI invokes MOD2 using the LINK macro instruction. The
AFTER part of the figure shows MOD2 moving above 16 megabytes and outlines
the steps that were necessary to make sure both modules continue to perform their
previous function.

BEFORE MODI links to MOD2. Both MODI and MOD2 reside below 16 megabytes and have the attributes AMODE 24,
RMODE 24 by default.

MODI CSECT MOD2 CSECT

/
LINK EP=MOD2 ~

I--------J~ __ -----I

AFTER MOD2 moves above 16 megabytes.

When MOD2 moves above 16 megabytes, you must make sure it will execute correctly.
Specifically, you must:

~ MOD2 CSECT

1. Review any mode-sensitive instructions to be sure they perform as intended
in AM ODE 31, RMODE ANY.

2. Review system services used to be sure they can be invoked in AMODE 31,
RMODE ANY and make any necessary changes. (For example, change SPIE
to ESPIE.) Review Conversion Notebook chapters on incompatibilities, coexistence
considerations, and programming considerations. Move any services that do not
permit callers to be in 31-bit mode to modules residing below 16 megabytes.

MOD2 AMODE 31

MOD2 RMODE ANY

- r-----------------~
3. Make sure all parameters and control blocks needed by MODI reside below 16 megabytes.

4. Make sure all addresses passed by MODI have high-order bytes that are free of
extraneous data or code MOD2 to clean up to the high-order bytes of any
addresses shared with MOD 1.

5. Make sure that all fields containing addresses of areas above 16 megabytes are fullword fields.

16 megabyte

line

MOD 1 CSECT

LINK EP=MOD2 --
LINK handles the mode switching between MOD 1 and
MOD2 as follows:

AMODE 24}
1. LINK obtains MOD2's AMODE from the PDS directory entry.

by default
RMODE 24

2. LINK ensures that MOD2 is entered in the specified AMODE.
3. On completion, LINK restores MODI's AMODE by default and returns control.

Figure 14. Example of Supervisor-Assisted Linkage

Chapter 4 - Establishing Linkage 33

Linkage Assist ·Routines

34 SPL: 31-Bit Addressing

A linkage assist routine, sometimes called an addressing mode interface routine, is a
module that performs linkage for modules executing in different addressing or
residency modes. Using a linkage assist routine, a 24-bit addressing mode module
can invoke a 31-bit addressing mode module without having to make any changes.
The invocation results in an entry to a linkage assist routine that resides below the
16 megabyte line and invokes the 31-bit addressing mode module in the specified
addressing mode.

Conversely, a 31-bit addressing mode module, such as a new user module, can use
a linkage assist routine to communicate with other user modules that execute in
24-bit addressing mode. The caller appears to be making a direct branch to the
target module, but branches instead to a linkage assist routine that changes modes
and performs the branch to the target routine.

The main advantage of using a linkage assist routine is to insulate a module from
addressing mode changes that are occurring around it.

The main disadvantage of using a linkage assist routine is that it adds overhead to
the interface. In addition, it takes time to develop and test the linkage assist
routine. Some alternatives to using linkage assist routines are:

• Changing the modules to use pointer-defined linkage (described earlier in this
chapter).

• Adding a prologue and epilogue to a module to handle entry and exit mode
switching, as described later in this chapter under "Capping."

The MVS/XA control program uses several types of linkage assist routines.
Among these are routines that get control in the addressing mode of the caller and
perform the following operations:

• Save registers.

Clean up parameter and linkage registers. If the values in these registers came
from 24-bit addressing mode programs, bits 1-7 of the high-order bytes may
contain unwanted flags and indicators.

• Obtain a new save area.

• Branch to the target routine via the BASSM instruction.

• Get control back from the target routine and restore the caller's addressing
mode, if necessary. (The BSM instruction performs this function.)

• Restore the caller's registers.

• Return to the caller.

Example 0/ Using a Linkage Assist Routine

Figure 15 shows a "before" and "after" situation involving modules USERI and
USER2. USERI invokes USER2 by using a LOAD and BALR sequence. The
"before" part of the figure shows USERI and USER2 residing below the 16
megabyte line and lists the changes necessary if USER2 moves above 16
megabytes. USER 1 does not change.

The "after" part of the figure shows how things look after USER2 moves above 16
megabytes. Note that USER2 is now called USER3 and the newly created linkage
assist routine has taken the name USER2.

The figure continues with a coding example that shows all three routines after the
move.

Chapter 4 - Establishing Linkage 35

BEFORE
Existing Application - USERI invokes USER2 repeatedly

USERI USER2

BALR

~----t-----------~RETURN
~----------------~

Change Reason

Change name of USER2 to USER3. • USER 1 does not have to change the LOAD USER2
macro instruction.

Write a linkage assist routine called USER2. • USERI remains unchanged; new USER2 switches
AMODEs and branches to USER3 (the former USER).

Change USER3 (formerly USER2) as follows:

- Make sure all control blocks and parameters needed by
USER 1 and USER2 are located below the 16 megabytes
line.

- Check mode-sensitive instructions to be sure they
perform the intended function in AMODE 31,
RMODEANY.

- Check system services used to be sure they can be
invoked in AMODE 31, RMODE ANY and make any
necessary changes. (For example, change SPIE to
ESPIE.) Review Conversion Notebook chapters on
incompatibilities coexistence, considerations, and
programming considerations.

- Make sure that all fields containing addresses of areas
above 16 megabytes are fullword fields.

AFTER
Changed Application

USERI

USERI CSECT
LOAD EP= USER2

BALR

USER2 (NEW)

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24
LOAD USER3

BASSM
BSMTO
NEXT
SEQUENTIAL
INSTRUCTION

RETURN

Figure 15 (Part 1 of 4). Example of a Linkage Assist Routine

36 SPL: 31-Bit Addressing

- USERl and USER2 are AMODE 24; they cannot
access parameters or data above 16 megabytes.

- USER3 was moved above 16 megabytes and has the attributes
AMODE'31, RMODE ANY.

- USER3 has the attributes AMODE 31, RMODE ANY.
SPIE and some other system services will
not work in AMODE 31.

USER3 (formerly USER2)

USER3 CSECT
USER3 AMODE 31
USER3 RMODE ANY

RETURN

USER1 (This module will not change)

* USER MODULE USER1 CALLS MODULE USER2
USER1 CSECT
BEGIN SAVE (14,12) ,,* (SAVE REGISTER CONTENT, ETC.)
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL
* ENTRY CODING)

* ISSUE LOAD FOR MODULE USER2
LOAD EP=USER2 ISSUE LOAD FOR MODULE "USER2"

* In the MVS/XA environment, the LOAD macro returns a
* pointer-defined value. However, because module USER1
* has not been changed and executes in AMODE 24, the
* the pointer-defined value has no effect on the BALR
* instruction used to branch to module USER2.

ST 0,EPUSER2 PRESERVE ENTRY POINT

* MAIN PROCESS BEGINS
PROCESS DS OH

* PREPARE TO GO TO MODULE USER2

EPUSER2

L 15,EPUSER2 LOAD ENTRY POINT
BALR 14,15

TM
BC

DELETE
L
RETURN
DC
END

PROCESS

EP=USER2
13,4(13)

TEST FOR END
CONTINUE IN LOOP

(14,12) ,T,RC=O MODULE USER1 COMPLETED
F'O' ADDRESS OF ENTRY POINT TO USER2
BEGIN

USER2 (Original application module)

* USER MODULE USER2 (INVOKED FREQUENTLY FROM USER1)
USER2 CSECT

SAVE (14,12),,* SAVE REGISTER CONTENT, ETC.
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL
* ENTRY CODING)

L 13,4(13)
RETURN (14,12),T,RC=0 MODULE USER2 COMPLETED
END

Figure 15 (Part 2 of 4). Example of a Linkage Assist Routine

00000100
00000200
00000300
00000400
00000500

00000700
00000800

00000900

00001000
00001100

00002000
00002100
00002200

00003000
00003100

00005000
00007000
00007100

00000100
00000200
00000300
00000400

00008100
00008200

Chapter 4 - Establishing Linkage 37

USER2 (New linkage assist routine)

* THIS IS A NEW LINKAGE ASSIST ROUTINE
* (IT WAS NAMED USER2 SO THAT MODULE USER1 WOULD NOT
* HAVE TO BE CHANGED)
USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24

SAVE (14,12),,* (SAVE REGISTER CONTENT, ETC.)
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL
* ENTRY CODING)

* FIRST TIME LOGIC, PERFORMED ON INITIAL ENTRY ONLY,
* (AFTER INITIAL ENTRY, BRANCH TO PROCESS (SHOWN BELOW))

GETMAIN NEW REGISTER SAVE AREA

LOAD EP=USER3
* USER2 LOADS USER3 BUT DOES NOT DELETE IT. USER2 CANNOT
* DELETE USER3 BECAUSE USER2 DOES NOT KNOW WHICH OF ITS USES
* OF USER3 IS THE LAST ONE.

ST 0,EPUSER3 PRESERVE POINTER DEFINED VALUE

* PROCESS (PREPARE FOR ENTRY TO PROCESSING MODULE)

(FOR EXAMPLE, VALIDITY CHECK REGISTER CONTENTS)

* PRESERVE AMODE FOR USE DURING RETURN SEQUENCE
LA 1,XRETURN SET RETURN ADDRESS
BSM 1 ,0 PRESERVE CURRENT AMODE
ST 1,XSAVE PRESERVE ADDRESS
L 15,EPUSER3 LOAD POINTER DEFINED VALUE

* GO TO MODULE USER3
BASSM 14,15 TO PROCESSING MODULE

* RESTORE AMODE THAT WAS IN EFFECT
L 1,XSAVE
BSM 0, 1

XRETURN DS OH
L 13,4(13)

RETURN (14,12),T,RC=0
EPUSER3 DC F'O'
XSAVE DC F'O'

END

LOAD POINTER DEFINED VALUE
SET ADDRESSING MODE

MODULE USER2 HAS COMPLETED
POINTER DEFINED VALUE
ORIGINAL AMODE AT ENTRY

0000100
0000200
0000300
0000400
0000500
0000600
0000700
0000800

0002000
0002100

0003000

0004000

0004100

0005000

0007000
0008000
0008100
0008200
0009000
0009100
0009200
0009300
0009400
0009500
0009600

0010000
0010100
0010200
0010500

• Statements 8000 through 8200: These instructions preserve the AMODE in effect at the time of entry into module USER2.

• Statement 9200: This use of the BASSM instruction:

- Causes the USER3 module to be entered in the specified AMODE (AMODE 31 in this example). This occurs because the LOAD
macro returns a pointer-defined value that contains the entry point of the loaded routine, and the specified AMODE of the module.

- Puts a pointer-defined value for use as the return address into Register 14.

• Statement 9400: Module USER3 returns to this point.

• Statement 9500: Module USER2 re-establishes the AMODE that was in effect at the time the BASSM instruction was issued
(STATEMENT 9200).

Figure 15 (Part 3 of 4). Example of a Linkage Assist Routine

38 SPL: 31-Bit Addressing

USER3 (New Application Module)

* MODULE USER3 (PERFORMS FUNCTIONS OF OLD MODULE USER2)
USER3 CSECT
USER3 AMODE 31
USER3 RMODE ANY

SAVE (14,12),,* (SAVE REGISTER CONTENT, ETC.)
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA

* RESTORE REGISTERS AND RETURN

RETURN (14,12),T,RC=0
END

00000100
00000200
00000300
00000400
00000500
00000600

00008000

00008100
00008200

• Statements 300 and 400 establish the AMODE and RMODE values for this module. Unless they are over-ridden by linkage editor PARM
values or MODE control statements, these are the values that will be placed in the PDS directory for this module.

• Statement 8100 returns to the invoking module.

Figure 15 (Part 4 of 4). Example of a Linkage Assist Routine

Chapter 4 - Establishing Linkage 39

Using Capping - Linkage Using a Prologue and Epilogue

40 SPL: 31-Bit Addressing

An alternative to linkage assist routines is a technique called capping. You can add
a "cap" (prologue and epilogue) to a module to handle entry and exit addressing
mode switching. The cap accepts control in either 24-bit or 31-bit addressing
mode, saves the caller's registers, and switches to the addressing mode in which the
module is designed to run. After the module has completed its function, the
epilogue portion of the cap restores the caller's registers and addressing mode
before returning control.

For example, when capping is used, a module in 24-bit addressing mode can be
invoked by modules whose addressing mode is either 24-bit or 31-bit; it can
perform its function in 24-bit addressing mode and can return to its caIler in the
caller's addressing mode. Capped modules must be able to accept callers in either
addressing mode. Modules that reside above the 16 megabyte line cannot be
invoked in 24-bit addressing mode. Capping, therefore, can be done only for
programs that reside below the 16 megabyte line.

Some control program modules have addressing modes that are called CAP24 or
CAP31. These addressing modes are not supported by the assembler, linkage
editor, or loader. If you are debugging or modifying MVS/XA, you need to be
aware of these terms and their definitions:

• AMODE CAP24 - The control program module is designed to receive control
from either 24-bit or 31-bit addressing mode callers, execute mainly in 24-bit
addressing mode, and return control in the addressing mode of the caller.

• AMODE CAP31 - The control program module is designed to receive control
in either 24-bit or 31-bit addressing mode, execute mainly in 31-bit addressing
mode, and return control in the addressing mode of the caller.

Figure 16 shows a cap for a 24-bit addressing mode module.

MYPROG
MYPROG
MYPROG

MYMODE

RESETM

SAVE

CSECT
AMODE ANY
RMODE 24
USING *,15
STM 14, 1 2 , 1 2 (1 3)
LA 10,SAVE
ST 10,8(13)
LA 12,MYMODE
LA 11,RESETM
BSM 11,12
USING *,12
DS OH
DROP 15
ST 13,SAVE+4
LR 13,10

SAVE CALLER'S REGISTERS BEFORE SETTING AMODE
SET FORWARD ADDRESS POINTER IN CALLER'S
SAVE AREA
SET AMODE BIT TO 0 AND ESTABLISH BASE
GET ADDRESS OF EXIT CODE
SAVE CALLER'S AMODE AND SET IT TO AMODE 24

SAVE CALLER'S SAVE AREA
ESTABLISH OWN SAVE AREA

This is the functional part of the original module.
This example assumes that register 11 retains its
original contents throughout this portion of the program.

L
BSM
DS
LM
BR
DS
DC

13,4(13)
0, 11
OH
14,12, 12 (13)
14
OF
18F'0'

GET ADDRESS OF CALLER'S SAVE AREA
RESET CALLER'S AMODE

RESTORE CALLER'S REGISTERS IN CALLER'S AMODE
RETURN

Figure 16. Cap for an AMODE 24 Module

Chapter 4 - Establishing Linkage 41

42 SPL: 31-Bit Addressing

Chapter 5 - Performing I/O in 31-Bit Addressing Mode

Programs in 31-bit addressing mode usually need to use 24-bit addressing mode
programs to perform an I/O operation because all I/O control blocks, IDAWs
(indirect data address words), and CCWs must reside below 16 megabytes and all
I/O requests must be made by programs executing in 24-bit addressing mode
(except for VSAM). Generally, data buffers must be below 16 megabytes as well.

A 31-bit addressing mode program can perform an I/O operation by:

Using VSAM services that accept callers in either 24-bit or 31-bit addressing
mode. Control blocks must also reside in virtual storage below 16 megabytes.
(The VSAM Administration Guide describes VSAM services.)

• Using the EXCP macro instruction. All parameter lists, control blocks, CCWs,
virtual IDA Ws, and EXCP appendage routines must reside in virtual storage
below 16 megabytes. A description of using EXCP to perform I/O appears
later in this chapter.

Using the EXCPVR macro instruction. All parameter lists, control blocks,
CCWs, IDALs (indirect data address lists), and appendage routines must reside
in virtual storage below 16 megabytes. A description of using EXCPVR to
perform I/O appears later in this chapter.

Invoking a routine that executes in 24-bit addressing mode as an interface to
non-VSAM access methods, which accept callers executing in 24-bit
addressing mode only. Chapter 4 described this method.

• Using the method shown in Figure 17 later in this chapter.

To perform I/O to buffers located in virtual storage above 16 megabytes, programs
must use either:

• The EXCP macro instruction and virtual IDAWs.
The EXCPVR macro instruction.

Using the EXCP Macro Instruction

EXCP macro instruction users can perform I/O to virtual storage areas above 16
megabytes. By using virtual IDAW support, CCWs in the EXCP channel program
can, using a 24-bit address, point to a virtual IDA W that contains the 31-bit virtual
address of an I/O buffer. The CCWs and IDAWs themselves must reside in virtual
storage below 16 megabytes. The EXCP service routine supports only format 0
CCWs, the CCW format used in MVS/370.

Chapter 5 - Performing I/O in 31-Bit Addressing Mode 43

Using EXCPVR

44 SPL: 31-Bit Addressing

CCW (Format 0)

Address of
anIDAW

~IDAW
Virtual address of
an I/O buffer

Any CCW that causes data to be transferred can point to a virtual IDA W. Virtual
IDA W support is limited to non-VIO data sets.

Although the I/O buffer can be in virtual storage above 16 megabytes, the virtual
IDA W that contains the pointer to the I/O buffer and all the other areas related to
the I/O operation (CCWs, lOBs, DEBs, and appendages) must reside in virtual
storage below 16 megabytes.

System-Data Administration describes how to use EXCP.

Note: This topic concerns the use of real storage. Chapter 6 describes additional
real storage considerations.

The EXCPVR interface supports only format 0 CCWs (the format used in
MVS/370). Format 0 CCWs support only 24-bit addresses. All CCWs and
IDAWs used with EXCPVR must reside in virtual or real storage below 16
megabytes. The largest virtual or real storage address you can specify directly in
your channel program is 16 megabytes minus one. However, using IDAWs
(indirect data address words) you can specify any real storage address and
therefore you can perform I/O to any location in real or virtual storage. EXCPVR
channel programs must use IDAWs to specify buffer addresses above 16 megabytes
in real storage.

The format 0 CCW may contain the address of an IDAL (indirect address list),
which is a list of IDAWs (indirect data address words).

CCW (Format 0)

o 8

Address of
IDAL

IDAW I/O buffer
address

IDAW

IDAW

You must assume that buffers obtained by data management access methods have
real storage addresses above 16 megabytes. Data management access methods
specify LOC=(BELOW,ANY) when they issue GETMAIN macro instructions.
LOC=(BELOW,ANY) indicates that virtual storage can be backed with real
storage above 16 megabytes when page fixed.

System-Data Administration describes how to use EXCPVR.

Example of Performing I/O While Residing Above 16 Megabytes

BEFORE

USERI

Figure 17 shows a "before" and "after" situation that involves two functions,
USER1 and USER2. In the BEFORE part of the example, USER1 contains both
functions and resides below 16 megabytes. In the AFTER part of the example
USER 1 has moved above the 16 megabyte line. The portion of USER 1 that
requests data management services has been removed and remains below 16
megabytes.

The figure includes a detailed coding example that shows both USER 1 and USER2.

I_----~--
Data Management
Services

USER 1 is an application program that occasionally requests data management services to perform data base I/O. USER1 that requests
services. USER 1 and data management services reside below 16 megabytes.

AFTER

USERl CSECT

.USERI AMODE 31 ~
USERI RMODE ANY

'--------'~

~ USER2 CSECT

\

USER2 AMODE 24
USER2 RMODE 24

~-.~---

Data Management Services

(AMODE 24, RMODE 24
by default)

16 megabytes

line

USER1 moves above the 16 megabyte line and moves its interface to data management into a new module, USER2. USER2 remains below the
line because data management services must be invoked in 24-bit addressing mode (except for VSAM). The following coding example shows
USER 1 and USER2 after USER 1 has moved.

Figure 17 (Part 1 of 13). Performing I/O While Residing Above 16 Megabytes

Chapter 5 - Performing I/O in 31-Bit Addressing Mode 45

USER 1 Application Module

*Module USER1 receives control in 31-bit addressing mode, resides in
*storage above 16 megabytes, and calls module USER2 to perform data
*management services.
*In this example, note that no linkage assist routine is needed.
USER1 CSECT
USER1 AMODE 31
USER1 RMODE ANY

*
*
*

Save the caller's registers in save area provided

#100 SAVE (1 4 , 1 2)
BASR 12,0
USING *,12

Save registers
Establish base
Addressability

Storage will be obtained via GETMAIN for USER2's work area (which will also contain the save area that module
USER2 will store into as well as parameter areas in which information will be passed.) Since module USER2 must
access data in the work area, the work area must be obtained below the 16 megabyte line.

*
#200

*
*
*

LA O,WORKLNTH

GETMAIN RU,LV=(O) , LOC=BELOW
LR 6,1

USING WORKAREA,6

Length of the work area
required for USER2
Obtain work area storage
Save address of obtained
storage to be used for
a work area for module
USER2
Work area addressability

The SAVE operation at statement #100 may save registers into a save area that exists in storage either below or above the 16 megabyte line. If
the save area supplied by the caller of module USER 1 is in storage below the 16 megabyte line, it is assumed that that the high order byte of
register 13 is zero.

The GETMAIN at statement #200 must request storage below the 16 megabyte line for the following reasons:

1. The area obtained via GETMAIN will contain the register save area in which module USER2 will save registers. Because module USER2
runs in 24-bit addressing mode, it must be able to access the save area.

2. Because module USER2 will extract data from the work area to determine what function to perform, the area must be below the 16
megabyte line, otherwise, USER2 would be unable to access the parameter area.

Figure 17 (Part 2 of 13). Performing I/O While Residing Above 16 Megabytes

46 SPL: 31-Bit Addressing

*
*
#300

*

*

*
#400

*

*

*
*

*
*
*
*

*

LA O,GMLNTH

GETMAIN RU,LV=(O) , LOC=RES

LR 8,1

USING DYNAREA,8

ST 13,SAVEBKWD

LR 9,13

LA 1 3 , SAVEAREA

ST 13,8(9)

LOAD EP=IOSERV

ST O,EPA

Get dynamic storage for
module USER1 (USER1 resides
above the 16 megabyte line)
Get storage above the 16
megabyte line
Copy address of storage
obtained via GETMAIN
Base register for dynamic
work area
Save address of caller's
save area
Save caller's save area
address
USER1's save area address
Note - save area is below
the 16 megabyte line
Have caller's save area
point to my save area
Load address of data
management service
Entry point address
returned will be pointer-defined
Save address of loaded
routine.

The GETMAIN at statement #300 requests that the storage to be obtained match the current residency mode of module USERl. Because the
module resides above the 16 megabyte line, the storage obtained will be above the 16 megabyte line.

At statement #400, the address of the caller's save area is saved in storage below the 16 megabyte line.

Figure 17 (Part 3 of 13). Performing I/O While Residing Above 16 Megabytes

Chapter 5 - Performing I/O in 31-Bit Addressing Mode 47

Prepare to open input and output data base files

MVC FUNCTION,OPEN1

*
LA 1,COMMAREA

*
*
#500 L 15,EPA

*
*
#600 BASSM 14, 15

*
#650 MVC FUNCTION,OPEN2

*
LA 1,COMMAREA

*
*
#700 L 15,EPA

*
*

BASSM 14,15

*

Indicate open file 1
for input
Set up register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: AMODE will change
Indicate open file 2
for output
Setup register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: AMODE will change

The entrY'point address loaded at statements #500 and #700 is pointer-defined, as returned by the LOAD service routine. That is, the low-order'
three bytes of the symbolic field EPA will contain the virtual address of the loaded routine while the high order bit (bit 0) will be zero to indicate
the loaded module is to receive control in 24-bit addressing mode. The remaining bits (1-7) will also be zero in the symbolic field EPA.

The BASSM at statement #600 does the following:

Places into bit positions 1-31 of register 14 the address of statement #650.
Sets the high-order bit of register 14 to one to indicate the current addressing mode.
Replaces bit positions 32-63 of the current PSW with the contents of register 15 (explained above)

The BSM instruction used by the called service routine USER2 to return to USER 1 will reestablish 31-bit addressing mode.

Figure 17 (Part 4 of 13). Performing I/O While Residing Above 16 Megabytes

48 SPL: 31-Bit Addressing

Prepare to read a record from data base file 1.

READRTN DS
MVC
XC
LA

*
*

OH
FUNCTION, READ 1
BUFFER, BUFFER
1,COMMAREA

L 15, EPA

*
*

*
*
*
*
*
#900

*

*
*

BASSM 14,15

CLC

BE
MVC

STATUS,ENDFILE

EODRTN
BUFFR31A,BUFFER

Indicate read to file
Clear input buffer
Set up register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: The BASSM will change
the AMODE to 24-bit. The
BSM issued in the service
routine will reestablish
31-bit addressing mode.
End of file encountered
by module USER2 ?
Close files and exit
Move record returned to
storage above the 16 megabyte
line

At statement #900, a check is made to determine if called module USER2 encountered the end of file. The end of file condition in this example
can only be intercepted by tJSER2 because the EOO exit address specified on the DCB macro must reside below the 16 megabyte line. The end
of file condition must then be communicated to module USER 1.

Figure 17 (Part 5 of 13). Performing I/O While Residing Above 16 Megabytes

I Call a record analysis routine that exists above the 16 megabyte line.J

LA
ST
LA

*
ST
LA

*
*

L
#1000 BASR

MVC

*
*
*
*
*

1, BUFFR31A
1 , BUFPTR+O
1, UPDATBFR

1,BUFPTR+4
1,BUFPTR

15,ANALYZE
14, 15
BUFFER,UPDATBFR

Get address of first buffer
Store into parameter list
Get address of output
buffer
Store into parameter list
Set up pointers to work
buffers for the analysis
routine
Address of analysis routine
Call analysis routine
Move updated record to
storage below the 16 megabyte
line so that the
updated record can
be written back to the
data base

At statement #1000 a BASR instruction is used to call the analysis routine since no AMODE switching is required. A BALR could also have
been used. A BALR executed while in 31-bit addressing mode performs the same function as a BASR instruction. The topic "Mode Sensitive
Instructions" in Chapter 1 describes the instruction differences.

Figure 17 (Part 6 of 13). Performing I/O While Residing Above 16 Megabytes

Chapter 5 - Performing I/O in 31-Bit Addressing Mode 49

*
*
*
*
*
*
*
*
*

*

MVC FUNCTION,WRITE1
LA 1,COMMAREA

L 15,EPA

BASSM 14,15

B READRTN

I Prepare to close input and output data base files

EODRTN DS OH
MVC FUNCTION,CLOSE1
LA 1,COMMAREA

*
*

L !5,EPA
*
*

BASSM 14, 15

*
*
*
*
*

MVC FUNCTION,CLOSE2
LA 1,COMMAREA

*
*

L 15,EPA

*
*

BASSM 14,15

*
*
*
*
*

I

Indicate write to file
Set up register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: The BASSM will set
the AMODE to 24-bit. The
BSM issued in the service
routine will reestablish
31-bit addressing mode
Get next record to
process

End of data routine
Indicate close file
Set up register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: The BASSM sets
the AMODE to 24-bit. The
BSM issued in the service
routine will reestablish
31-bit addressing mode
Indicate close file 2
Set up register 1 to
point to the parameter
area
Get pointer-defined address
of the I/O service
routine
Call the service routine
Note: The BASSM sets
the AMODE to 24-bit. The
BSM issued in the service
routine will reestablish
31-bit addressing mode

Figure 17 (Part 7 of 13). Performing I/O While Residing Above 16 Megabytes

50 SPL: 31-Bit Addressing

*
*

*
*

*

Prepare to return to the caller

L 13,SAVEBKWD

LA O,WORKLNTH

FREEMAIN RC,LV=(O) ,A=(6)
DROP 6
LA O,GMLNTH

FREEMAIN RC,LV=(O) ,A=(8)
DROP 8
XR 15, 15
RETURN (14,12) ,RC=(15)

Restore save area address
of the caller of module
USER1
Length of work area and
parameter area used by
module USER2
Free storage

Length of work area used
by USER1
Free storage

Set return code zero

I Define DSECTs and constants for module to module communication I

I Define constants used to communicate the function module USER2 is to perform. I

DS
READ 1 DC
WRITE1 DC
OPEN1 DC
OPEN2 DC
CLOSE1 DC
CLOSE2 DC
ANALYZE DC

*
ENDFILE DC

WORKAREA DSEcr
SAVEREGS DS
*
SAVEAREA EQU
SAVERSVD DS
SAVEBKWD DS
SAVEFRWD DS
SAVE1412 DS
COMMAREA DS
*
*
FUNCTION DS
*
STATUS DS
BUFFER DS
WORKLNTH EQU

OF
C' R1 '
C'W1 '
C' 01'
C'02'
C 'C1 '
C'C2'
V (ANALYSIS)

C'EF'

OF

SAVEREGS
F
F
F
15F
OF

CL2

CL2
CL80
*-WORKAREA

Read from file 1 opcode
Write to file 1 opcode
Open file 1 opcode
Open file 2 opcode
Close file 1 opcode
Close file 2 opcode
Address of record
analysis routine
End of file indicator

This storage exists
below the 16 megabyte line

Reserved

Save area for registers 14-12
Parameter area used to
communicate with module
USER2
Function to be performed
by USER2
Status of read operation
Input/output buffer
Length of this DSECT

Figure 17 (Part 8 of 13). Performing I/O While Residing Above 16 Megabytes

Chapter 5 - Performing I/O in 31-Bit Addressing Mode 51

Define DSECT work area for module USER 1

DYNAREA DSECT
*
EPA DS F
BUFFR31A DS CLBO
*
BUFPTR DS OF

DS A
DS A

UPDATBFR DS CLBO
*
GMLNTH EQU *-DYNAREA

END

This storage exists
above the 16 megabyte line
Address of loaded routine
Buffer - above the 16 megabyte
line

Address of input buffer
Address of updated buffer
Updated buffer returned
by the analysis routine
Length of dynamic area

Figure 17 (Part 9 of 13). Performing I/O While Residing Above 16 Megabytes

52 SPL: 31-Bit Addressing

USER2 Service Routine

*Module USER2 receives control in 24-bit addressing mode, resides below
*the 16 megabyte line, and is called by module USER1 to perform data
*management services.

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24
*
* Save the caller's registers in save area provided
*

SAVE (14, 12) Save registers
BASR 12,0 Establish base
USING *,12 Addressability
LR 10, 1 Save parameter area pointer

* around GETMAINs
USING COMMAREA,10 Establish parameter area

* addressability

Storage will be obtained via GETMAIN for a save area that module USER2 can pass to external routines it calls.

*

*
*
*
*
*

*
*

LA O,WORKLNTH

GETMAIN RU,LV=(O) , LOC=RES

LR 6,1

USING SAVEREGS,6
LA O,GMLNTH

Length of the work area
required
Obtain save area storage,
which must be below the
16 megabyte line
Save address of obtained
storage to be used for
a save area for module
USER2
Save area addressability
Get dynamic storage for
module USER2 below the
16 megabyte line.

Note: This GETMAIN will only be done on the initial call to this module.

#2000 GETMAIN RU,LV=(O) , LOC=RES
*

LR 8, 1
*

USING DYNAREA,8
*

ST 13,SAVEBKWD
*

LR 9, 13
*

LA 13,SAVEAREA
*
*

Obtain storage below
the 16 megabyte line
Copy address of storage
obtained via GETMAIN
Base register for the
dynamic work area
Save address of caller's
save area
Save caller's save area
address
USER1's save area address
Note - save area is
below the 16 megabyte line

The GETMAIN at statement #2000 requests that storage be obtained to match the current residency mode of module USER2. Because the
module resides below the 16 megabyte line, storage obtained will be below the 16 megabyte line.

Figure 17 (Part 10 of 13). Performing I/O While Residing Above 16 Megabytes

Chapter 5 - Performing I/O in 31-Bit Addressing Mode 53

Note: The following store operation is successful because module USERI obtained save area storage below the 16 megabyte line.

ST 13,8(9)

*

* Process input requests

READ 1 DS OH

L 13,SAVEBKWD
LM 14,12,12(13)
BSM 0, 14

*
WRITE1 DS OH

L 13,SAVEBKWD
LM 14,12,12(13)
BSM 0, 14

*
OPEN1 DS OH

L 13,SAVEBKWD
LM 14,12,12(13)
BSM 0, 14

*
CLOSE1 DS OH

L 13,SAVEBKWD
LM 14,12,12(13)
BSM 0, 14

*
OPEN2 DS OH

L 13,SAVEBKWD
LM 14,12,12(13)
BSM 0, 14

*
CLOSE2 DS OH

L 13.SAVEBKWD
LM 14,12,12(13)
BSM 0,14

*

Have caller's save area
point to my save area

Read a record routine

Reload USER1's registers
Return to caller - this
instruction sets AMODE 31
Write a record routine

Reload USER1 's registers
Return to caller - this
instruction sets AMODE 31
Open file 1 for input

Restore caller's registers
Return to caller - this
instruction sets AMODE 31
Close file 1 for input

Restore caller's registers
Return to caller - this
instruction sets AMODE 31
Open file 2 for input

Restore caller's registers
Return to caller - this
instruction sets AMODE 31
Close file 2 for input

Restore caller's registers
Return to caller - this
instruction sets AMODE 31

Figure 17 (Part 11 of 13). Performing I/O While Residing Above 16 Megabytes

54 SPL: 31-Bit Addressing

Note: This FREEMAIN will only be done on the final call to this module.

LA O,GMLNTH

*
FREEMAIN RC,LV=(O) ,A=(8)

DeB END OF FILE and ERROR ANALYSIS ROUTINES

ERREXIT1 DS OH

MVC STATUS,ENDFILE

*
L 13,SAVWBKWD
LM 14,12,12(13)
BSM 0,14

*
*

ERREXIT2 DS OH

MVC STATUS, IOERROR

*
L 13,SAVWBKWD
LM 14,12,12(13)
BSM 0,14

*
*

Length of work area used
by USER2
Free storage

End of file encountered

Indicate end of file to
module USER1

Reload USER1 's registers
Return to USER1
indicating end of file
has been encountered

SYNAD error exit

Indicate I/O error to
module 'USER 1 '

Reload USER1 's registers
Return to USER1
indicating an I/O error
has been encountered

Figure 17 (Part 12 of 13). Performing I/O While Residing Above 16 Megabytes

Chapter 5 - Performing I/O in 31-Bit Addressing Mode 55

Note: Define the required DeBs that module USER2 will process. The DeBs exist in storage below the 16 megabyte
line. The END OF DATA and SYNAD exit routines also exist in storage below the 16 megabyte line.

INDCB

OUTDCB

DCB DDNAME=INPUT1,DSORG=PS,MACRF=(GL),EODAD=ENDFILE, x
SYNAD=ERREXIT1

DCB DDNAME=OUTPUT1,DSORG=PS,MACRF=(PL) ,SYNAD=ERREXIT2

* Work areas and constants for module USER2

IOERROR DC C'IO' Constant used to indicate
* an I/O error
ENDFILE DC C'EF' Constant used to indicate
* end of file encountered

SAVEREGS DSECT This storage exists
* below the 16 megabyte line
SAVEAREA EQU SAVEREGS
SAVERSVD DS F Reserved
SAVEBKWD DS F
SAVEFRWD DS F
SAVE1412 DS 15F Save area for registers 14-12
WORKLNTH EQU *-SAVEREGS Length of dynamic area

COMMAREA DSECT Parameter area used to
* communicate with module
* USER1
FUNCTION DS CL2 Function to be performed
* by USER2
STATUS DS CL2 Status of read operation
BUFFER DS CL80 Input/output buffer

DYNAREA DSECT This storage exists
* below the 16 megabyte line

GMLNTH EQU *-DYNAREA Length of dynamic area

END

Figure 17 (Part 13 of 13). Performing I/O While Residing Above 16 Megabytes

56 SPL: 31-Bit Addressing

Chapter 6 - Understanding the Use of Real Storage

MVS/XA programs and data reside in virtual storage that, when necessary, is
backed by real storage. Most programs and data do not depend on their real
storage addresses. Some MVS/XA programs, however, do depend on real
addresses and some require these real addresses to be less than 16 megabytes.
MVS/XA reserves as much real storage below 16 megabytes as it can for such
programs and, for the most part, handles their real storage dependencies without
requiring them to make any changes.

The system uses the area of real storage above 16 megabytes to back virtual
storage with real frames whenever it can. All virtual areas above 16 megabytes can
be backed with real frames above 16 megabytes. In addition, the following virtual
areas below 16 megabytes can also be backed with real frames above 16
megabytes:

SQA
LSQA

• Nucleus
• Pageable private areas
• Pageable CSA
• PLPA
• MLPA
• Resident BLDL

The following virtual areas are always backed with real frames below 16
megabytes:

• V =R regions
• FLPA
• Subpool226
• Subpools 227 and 228 (unless specified otherwise by the GETMAIN macro

instruction with the LOC parameter)

V" hen satisfying page-fix requests, MVS/XA backs page able virtual pages that
reside below 16 megabytes with real storage below 16 megabytes, unless the
GETMAIN macro specifies LOC=(BELOW,ANY) or the PGSER macro specifies
the ANYWHER parameter. If the GETMAIN macro specifies or implies a real
location of ANY, MVS/XA backs page able virtual pages with real frames above
16 megabytes even when the area is page fixed. MVS/XA ignores requests to fix
storage in the nucleus, SQA, or LSQA because those areas are already fixed. Real
addresses in those areas might, therefore, be greater than 16 megabytes.

Real Storage Considerations for User Programs

Among the things to think about when dealing with real storage in 31-bit
addressing mode are the use of the load real address (LRA) instruction, the use of
the LOC parameter on the GETMAIN macro instruction, the location of the
DAT-off portion of the nucleus, and using EXCPVR to perform I/O. (EXCPVR
was described in Chapter 5.)

Chapter 6 - Understanding the Use of Real Storage 57

Load Real Address (LRA) Instruction

The LRA instruction always results in a 31-bit real address regardless of the issuing
program's addressing mode. All programs that issue an LRA instruction must be
prepared to handle a 31-bit result if the virtual storage address specified could have
been backed with real storage above 16 megabytes. Issue LRA only against areas
that are fixed.

GETMAIN Macro Instruction

DAT-Off Routines

58 SPL: 31-Bit Addressing

The LOC parameter on the RU, RC, VRU, and VRC forms of the GETMAIN
macro instruction specifies not only the virtual storage location of the area to be
obtained, but also the real storage location when the storage is page fixed.

LOC=BELOW indicates that the virtual storage is to be located below 16
megabytes. When the area is page fixed, it is to be backed with real storage
below 16 megabytes.

LOC=(BELOW,ANY) indicates that virtual storage is to be located below 16
megabytes but that real storage can be located either above or below 16
megabytes.

LOC=ANY and LOC=(ANY,ANY) indicate that both virtual and real storage
can be located either above or below 16 megabytes.

LOC=RES indicates that the location of virtual and real storage depends on
the location (RMODE) of the GETMAIN issuer. If the issuer has an RMODE
of 24, LOC=RES indicates the same thing as LOC=BELOW; if the issuer has
an RMODE of ANY, LOC=RES indicates the same thing as LOC=ANY.

LOC=(RES,ANY) indicates that the location of virtual storage depends on the
location of the issuer but that real storage can be located anywhere.

LOC is optional except in the following case: A program that resides above the 16
megabyte line and uses theRU, RC, VRU, and VRC forms of GETMAIN must
specify either LOC=BELOW or LOC=(BELOW,ANY) on GETMAIN requests
for storage that will be used by programs running in 24-bit addressing mode.
Otherwise, virtual storage would be assigned above 16 megabytes and 24-bit
addressing mode programs could not use it.

The location of virtual storage can also be specified on the PGSER (page services)
macro instruction. The ANYWHER parameter on PGSER specifies that a
particular virtual storage area can be placed either above or below 16 megabytes on
future page-ins. This parameter applies to virtual storage areas where
LOC=(BELOW,ANY) or LOC=(ANY,ANY) was not specified on GETMAIN.

The MVS/370 nucleus is mapped so that its virtual storage addresses are equal to
its real storage addresses. MVS/370 has a V =R (virtual=real) nucleus. In
contrast, The MVS/XA nucleus is mapped and fixed in real storage without
attempting to make its virtual storage addresses equal to its real storage addresses.
MVS/XA has a V=F (virtual=fixed) nucleus.

Because the MVS/370 is V=R, nucleus code can turn DAT off, and the next
instruction executed is the same·as it would be if DAT was still on. Because the

MVS/XA nucleus is not V=R, MVS/XA nucleus code cannot turn DAT-off and
expect the next instruction executed to be the same as if D AT was on.

To allow for the execution of DAT-off nucleus code, the MVS/XA nucleus
consists of two load modules, one that runs with DAT on and one that runs with
DAT off. Nucleus code that needs to run with DAT off must reside in the
DAT-off portion of the nucleus.

When the system is initialized, the DAT -off portion of the nucleus is loaded into
the highest contiguous real storage. Therefore, you must modify any user modules
in the nucleus that run with DAT off so that they operate correctly above the 16
megabyte line. Among the things you may have to consider are:

• All modules in the DAT-off portion of the nucleus have the attributes AMODE
31, RMODE ANY. They may reside above 16 megabytes.

• These modules must return control via a BSM 0,14.

• Register 0 must not be destroyed on return.

To support modules in the DAT-off nucleus:

• Move the DAT -off code to a separate module with AMODE 31, RMODE
ANY attributes. Use as its entry point, lEA VEURn where n is a number from
1 to 4. (MVS/XA reserves four entry points in the DAT-off nucleus for
users.) Use BSM 0,14 as the return instruction. Do not destroy register O.

• Code a DATOFF macro instruction to invoke the DAT-off module:

DATOFF INDEX=INDUSRn

The value of n in INDUSRn must be the same as the value of n in lEA VEURn,
the DAT -off module's entry point.

• Link edit the DAT-off module (lEA VEURn) into the lEA VEDAT member of
SYS1.NUCLEUS (the DAT-off nucleus).

Refer to SPL: System Modifications and SPL: System Macros and Facilities for
more information about modifying the DAT -off portion of the nucleus and the
DATOFF macro instruction.

Chapter 6 - Understanding the Use of Real Storage 59

60 SPL: 31-Bit Addressing

Index

A

A-mode bit 2
affect on instructions 4
controlling length of address fields 4

above the line
residing 7

above 16 megabytes
ADCON 31
AD DR parameter on LOAD macro 23
address

entry point
set by LOAD macro 23

maximum 1
MVS/XA 1
MVS/370 1
real 1
size of fields for 10
virtual 1

address field length 4
address length 1

controlling 2
addressability

megabytes of
to parameters 32

addressable area 1
addresses passed as parameters 27
addressing mode 1, 2

accepting callers in either 40
and residency mode 15
dependent services 6
for I/O 43
for returning control 4
how to change 25
independent services 6
indicator 5
interface routine 34
of control program modules 40
saving and restoring by SVC 24
sensitive instructions 4
specified by SVC 24
specified by SYN CH 24
specifying 1

ALIAS control statement 18
alias entry

AMODE of 3
AMBLIST service aid 16
AMODE 1

after linkage editor processing 18
defaults 18
definition of 1, 15
how to find 16
in which a module gets control 15
indicator 31
linkage editor support of 18
of a CSECT 3
of an alias entry 3
of an entry point 3
parameter

on SYNCH macro 24
set by LOAD macro 23
specified alone 19
support by A TT ACH 23

AMODE and RMODE
assembler instructions 17
assembler support of 16

checking by the linkage editor 19
combinations 15

accepted by assembler 16
accepted by linkage editor 16
accepted by loader 16
at execution time 15

destroyed by overlay structure 18
determining 16
DFP linkage editor support 18
DFP loader support 21
in the ESD 17
input for the loader 21
instructions

multiple 17
MVS/XA support 22
processing

by the linkage editor 20
by the loader 22

support by loader 21
support of 22
valid cgmbinations 16

for linkage editor 19
AMODEANY 15

support by A TT ACH
LINK, and XCTL 23

AMODE ANY RMODE ANY
meaning of 16

AMODE instruction
format of 17
location of 17

AMODE 24 15
AMODE 24 module

cap for 41
AMODE 31 15

linkage consideration 32
AMODE's effect on dumps 24
ANYWHER parameter on PGSER 57
appendage routines

restrictions on 43
assembler

error checking 17
instructions 16
requirements 4
support of AMODE and RMODE 16

Assembler H 4
support of AMODE and RMODE 16

ATTACH support of AMODE 23

B

backing virtual storage with real frames 57
BAL 3

in 24-bit addressing mode 4
in 31-bit addressing mode 5

BALR 3
in 24-bit addressing mode 4
in 31-bit addressing mode 5

BAS
overview of 5

BASR
overview of 5

BASSM
description 29
example 30
overview of 5

Index 61

using 28
BC mode PSW field

restricted support 11
below the line

residing 7
below 16 megabytes

programs that must reside 3
bimodal operation 1

definition of 2
why necessary 2

bit 32 2
branch and save and set mode

description 29
overview of 5
using 28

branch and set mode
description 29
overview of 5
using 28

branching instructions 5
branching to modules with different addressing modes 5
BSM

description 29
example 30
overview of 5
used in OAT-off nucleus modules 59
using 28

buffers obtained by data management access methods 44

C

CALL macro 23
calling and returning with BASSM and BSM 30
cap 40

for an AMODE 24 module 41
capping 40
CAP24 40
CAP31 40
cc 3
CCW

format 0 44
CESD 16,18
changing

AM ODE
example of how to 25

program
need for 7

to 31-bit addressing mode
general considerations 9
specific considerations 9

CIRB macro
as a way to change AMODE 25

clearing high-order byte 3
how to 10

coding practices that depend on 24-bit addresses 3
coding suggestions for new programs 10
compatible macro expansions 12
composite external symbol dictionary 16
condition code 3,5
control

returning 4,27
control block

location 6
convention of pointer-defined linkage 31
conventions for 31-bit addressing 4
converting

existing programs 7
to 31-bit addressing

reasons for 7

62 SPL: 31-Bit Addressing

cross memory instructions
See PC or PT

CSECT AMODE and RMODE
information about 17

CVTMVSE bit 13

o

OAT-off

data

portion of nucleus 57
portion of the nucleus 58
routines 58

above the line 25
residence requirements for 4

data buffers
location of 43

Data Facility Product 4
data management access methods

buffers obtained by 44
support of AMODE and RMODE 24

data management macros 6
DATOFF macro instruction 59
debugging

making easier 11
determining the AMODE and RMODE of a load module 16
DFP 4
DFP linkage editor

support of AMODE and RMODE 18
DFP loader

support for AMODE and RMODE 21
directory

PDS 18
downward incompatible

definition of ·13
macros 13

dual path programs 12
dual programs 14
dumps

affected by AMODE 24

E

EC mode PSW 11
entry coding 40
entry point address

indicating 31
entry points

multiple 32
epilogue 40
error checking

assembler 17
error-related PSW

AMODE from 24
ESD 16

flags field 17
establishing interfaces to modules that move above the line 9
establishing linkage 27
example

of pointer-defined linkage 32
of supervisor-assisted linkage 33
of using a linkage assist routine 35
performing I/O above 16 megabytes

allocating storage 46,47,53
call a record analysis routine 49
closing I/O files 50

defining constants 51
defining DCBs 56
defining DSECTs 52
error analysis routines 55
freeing storage 55
opening I/O files 48
read a record 49
returning to the caller 51
storing files 54

EXCP service routine 43
execution

on both systems 16
requirements 4

exit coding 40
exit routines 7

restrictions on 43
external symbol dictionary 16

creation of 17

F

fixed areas 57
flags in the high-order byte 3
FLPA 57
format 0 CCW 44
FREEMAIN

forms to use 11

G

GETMAIN 44
effect on subpo.ollocation 57
forms to use 11
macro instruction 58

gigabytes 1
glue modules

See linkage assist routines

H

high-order bytes
cleaning up 32

how to change addressing mode 25
how to find AMODE of module 16

I/O
performing 43

example 45
to buffers above 16 megabytes 43
using EXCP 43
using EXCPVR 43
using VSAM 43

I/O control blocks 43
lCM instruction 10

use of 10
IDAWs 43
IDENTIFY macro instruction 23
IEAVEDAT member of SYS1.NUCLEUS 59
lEA VEURn entry point 59
lLC 3
indirect

address words 43
data address list 43

input! output

See I/O
insert characters under mask 10
insert program mask 5, 9
instruction

length code 3, 5
mode sensitive 4

interface summary 8
above the line 9

interfaces
published external 12

invalid name field 17
IPM 5,9

L

LA
in 24-bit addressing mode 5
in 31-bit addressing mode 5
use of 9

LA instruction
use of 3

large program needs 8
length

of address fields 4
of addresses

controlling 2
length of addresses 1
LINK support of AMODE 23
linkage 27

between modules with different AM ODEs and RMODEs 28
pointer-defined 31
restrictions on 27
supervisor-assisted 33

linkage assist routine 10, 34
advantage of 34
alternative to 40
alternatives to 34
definition of 34
disadvantage of 34
example of using 36,37,38,39
kinds used by control program 34

linkage editor
default values 18
EXEC statement

P ARM field of 18
override of AMODE and RMODE values 18
processing of AMODE and RMODE 20
requirements 4
RMODE processing 20
source of AMODE and RMODE specifications for 18
support 6
support of AMODE and RMODE 18

linkage registers
cleaning up 34

LISTLOAD control statement 16
load

address instruction 5
real address 5,57

LOAD macro
providing pointer-defined value 31
support of AMODE and RMODE 23

load module
CESD 18
determining the RMODE of 20
in overlay structure 18

loader
processing of AMODE and RMODE 21

Index 63

requirements 4
support 6

LOC parameter on GETMAIN 44,58
when it is not optional 58

location
of control blocks 6
of program in storage 3
of virtual and real storage 58
of virtual storage 44
parameter on GETMAIN 44

LPSW instruction
as a way to change AMODE 25

LRA 5
instruction 57

LSQA 57

M

macro
expansions

compatible 12
library requirements 4

main entry point
AMODE of 16

maintaining correct interfaces 8
mapping

macros 13
of nucleus 58

maximum addresses 1
missing name field 17
MLPA 57
mode

sensitive instructions 4
setting 25
switching example 25

MODE control statement 16, 18
modifying programs for 31-bit addressing 7
modules below 16 megabytes

concerns of 27
moving above the line

reason for 8
MVS/XA virtual storage
MVS/XA's support of AM ODE and RMODE 22

examples of 22
MVS/XA's use of 31-bit addressing 6

N

name field
incorrect 17

new instruction support 6
new programs

above 16 megabytes 12
below 16 megabytes 12
coding suggestions for 10
RMODE of 11
to run on both systems 12

nucleus 57

o

obtaining storage for new program 11
overlay structure 19

avoiding 8
overriding the RMODE 21

64 SPL: 31-Bit Addressing

P

page able
CSA 57
private areas 57
virtual pages 57

paging services 11
parameter registers

cleaning up 34
parameters

passing 31
P ARM field 16

of linkage editor EXEC statement 18
partitioned data set directory entry 3
passing parameters 10
PC

POL

as a way to change AMODE 25
setting up return for PT 24
support of AMODE 24

See pointer-defined linkage
PDS 3
PDS directory entry 18
performing I/O in 31-bit addressing mode 43
PGSER macro 11, 57

ANYWHER parameter 58
planning for 31-bit addressing 7
PLPA 57
pointer-defined linkage

example 32
using 31

pointer-defined value 31
from an AD CON 31

program attributes 1
program call support of AMODE 24
program fetch

support of RMODE 23
programmask 3,5
program residence 1, 3
programs for both systems

avoiding errors 12
prologue 40

using to identify AMODE and RMODE 11
PSW

PT

R

affect on addresses 4
AMODE

how to change 25
bit 32 2
EC mode 11

use without PC 24

real address
real addresses

in the nucleus 57
real storage

considerations for user programs 57
EXCPVR 44
location of 58
use of 57

reason for converting to 31-bit addressing 7
reason for moving above the line 8
register save area

location of 32

register 13 32
registers

zeroing 10
requirements for execution in 31-bit addressing mode 4
residence of programs 1, 3
residency 3
residency mode 1, 15
resident BLDL 57
returning control 27

convention for 4
RMODE 1,3

after linkage editor processing 18
defaults 18
definition of 15
how to find 16
linkage editor support of 18
overriding 21
processing by the linkage editor 19, 20

RMODE and AMODE
assembler instructions 17
assembler support of 16
combinations 15
determining 16
DFP linkage editor support 18
DFP loader support 21
instructions

mUltiple 17
MVS/XA support 22
processing

by the linkage editor 20
RMODE ANY 15

meaning of 3
RMODE instruction

format of 17
location of 17

RMODE 24 15
meaning of 3

rules and conventions for 31-bit addressing 4
rules associated with hardware 4

S

saving the addressing mode 30
SCHEDULE macro 24
SDWACTLI 11
SDWACTL2 11
SOW AEC 1 field 11
service aid

AMBLIST 16
service request block support of AMODE 24
services thatdo not support 31-bit addressing mode 6
set program mask instruction 9
shared data

location of 10, 27
SPIE macro restrictions 11
SPLEVEL macro 12

use of 13
SPM instruction 9
SQA 57
SR instruction

use of 10
SRB

as a way to change AMODE 25
SRB support of AM ODE 24
SRBEP field 24
ST AE macro restrictions 11
stage 2 exit effector 25
ST AI parameter restrictions 11

storage
obtaining 11
real

See real storage
virtual

See virtual storage
subpool

226 57
227 and 228 57

supervisor call
support of AMODE 24

supervisor-assisted linkage 25,27
example of 33

SVC
as a way to change AMODE 25

SVC support of AMODE 24
SYNCH 9

as a way to change AMODE 25
support of AMODE 24

SYSLIN data set 18

T

two gigabyte virtual storage map 2

u

understanding the use of real storage 57
understanding 31-bit addressing 1
user exit routines 7

restrictions on 43
using an ADCON to obtain a pointer-defined value 31
using capping

linkage using a prologue and epilogue 40
using EXCP 44
using EXCPVR 44
using pointer-defined linkage 31
using supervisor-assisted linkage 33
using the BASSM and BSM instructions 28
using the EXCP macro instruction 43
using the LOAD macro to obtain a pointer-defined value 32

v

V=F nucleus 58
V=R regions 57
valid 31-bit address 32
validating the high-order byte 4
value

pointer-defined 31
virtual address 1
virtual IDA W. 43
virtual storage 1

location of 58
map 2

virtual storage location of program 3
virtual=fixed nucleus 58
VSAM 6,27
VSAM macros 24

W

writing new programs for MVS/XA 10
writing programs to run on both MVS/370 and MVS/XA

Index 65

x

XCTL support of AMODE 23

z

zeroing registers 10

2

2 gigabyte virtual storage map 2
24-bit addresses 1

coding that depends on 3
24-bit addressing mode 2

dependencies
checking for 9

programs

66 SPL: 31-Bit Addressing

3

used to perform I/O 43
reasons for using 11

3 I-bit addresses
3I-bit addressing

conventions 4
planning for 7
rules 4
understanding 1

3I-bit addressing mode 2
requirements 4

3I-bit real address 5,57
370-XA processor 2
370-XA PSW 2

GC28-1158-1

------- --- ---~-.... -- - - -~---------_ .. -®

s:
< en -m
x
Ci!'
:::J
Q.
(1)
Q.

»
~
(")
::r
;:j.'
(1)
(")
c:
~
(1)

w
OJ
;:j.'

»
Q.
Q.

~
(I)
(I)

S'
ec

