Restricted Materials of IBM Corporation LY26-3895-0 File No. S370-30

Program Product

ιž.

 $\cdot 4$

MVS/Extended Architecture CVOL Processor Logic

Data Facility Product 5665-284

Release 1.0

First Edition (January 1983)

This edition applies to Release 1.0 of MVS/Extended Architecture Data Facility Product, Program Product 5665-284, and to any subsequent releases until otherwise indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; before using this publication in connection with the operation of IBM systems, consult the latest <u>IBM System/370 and 4300 Processors</u> <u>Bibliography</u>, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

Publications are not stocked at the address given below; requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed, comments may be addressed to IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

This document contains restricted materials of International Business Machines Corporation. © Copyright International Business Machines Corporation 1974, 1975, 1982. All rights reserved.

PREFACE

This publication describes the internal logic of the CVOL processor program and provides diagnostic information. This information is directed to maintenance personnel and development programmers who require in-depth knowledge of the program's design, organization, and data areas. It is not required for effective use of the CVOL processor.

You should be familiar with the following before reading this book:

- General programming techniques
- OS/VS2 concepts and use
- General concepts of catalog management
- System/370

The information in the following manuals, as they apply to the CVOL processor, should be understood before you read this publication:

- <u>MVS/Extended Architecture Catalog User's Guide</u>, GC26-4041, for an introduction to the CVOL processor.
- <u>MVS/Extended Architecture Catalog Diagnosis Reference</u>, SY26-3897, for information on VSAM Catalog Management.

Other publications that this book references and that you may find helpful are:

- <u>MVS/Extended Architecture Message Library: System Messages</u>, GC28-1156, for VSAM Catalog Management return codes. (See the chapter "Access Method Services Messages (IBC)" for these messages.)
- <u>MVS/Extended Architecture TSO Command processor Logic</u>, Volume IV, SY33-8548-3, for information on the TSO LISTCAT command.
- <u>OS/VS-DOS/VSE-VM/370</u> Assembler Language, GC33-4010, for an explanation of Assembler language.
- <u>OS/VS-VM/370 Assembler Programmer's Guide</u>, GC33-4021, for information on using Assembler language.
- <u>Assembler H Version 2 Application Programming: Language</u> <u>Reference</u>, GC26-4037, for an explanation of Assembler H language.
- <u>Assembler H Version 2 Application Programming: Guide</u>, SC26-4036, for information on using Assembler H.
- <u>MVS/Extended Architecture Data Management Services</u>, GC26-4013, for a general introduction to Catalog Management, as well as information on generation data groups.
- <u>MVS/Extended Architecture Access Method Services Reference</u> for the Integrated Catalog Facility, GC26-4019, which describes the general syntax of the Access Method Services language, the commands of this processor, and how they are used.
- <u>MVS/Extended Architecture Access Method Services Reference</u> <u>for VSAM Catalogs</u>, GC26-4075, which describes the access method services in relation to VSAM catalogs.

- <u>MVS/Extended Architecture Debugging Handbook</u>, Volumes 1 through 5, GBOF-1015, which describes how to analyze a main storage dump from MVS/XA, and which shows the content of most of the operating system control blocks and tables for MVS/XA.
- <u>MVS/Extended Architecture System Programming Library:</u> <u>Service Aids</u>, GC28-1159, which describes several service aids and programs available under the VS2 operating system.
- <u>MVS/Extended Architecture Supervisor Services and Macro</u> <u>Instructions</u>, GC28-1154, and <u>OS/VS2 System Programming</u> <u>Library: Supervisor</u>, GC28-1046 for information on the ESTAE macro, and authorized operands.
- <u>Vocabulary for Data Processing, Telecommunications, and</u> <u>Office Systems</u>, GC20-1699, for other data processing definitions not found in the glossary of this publication.

This book is divided into six chapters:

- "Introduction" on page 1 describes the CVOL processor and defines the terms used throughout the book.
- "Method of Operation" on page 4 provides the design overview. Emphasis is on the flow of data and the concepts of the CVOL processor, rather than on the organization of the CSECTs.

•

- "Program Organization" on page 13 describes each CSECT of the CVOL processor, and identifies the specific function that each CSECT performs to achieve the CVOL processor objectives. This chapter shows the logical flow from CSECT to CSECT and contains the flowcharts of the CSECTs.
- "Microfiche Directory" on page 86 relates information in this book to the listings on microfiche.
- "Data Areas" on page 92 describes the work areas that are used by the CVOL processor.
- "Diagnostic Aids" on page 114 shows you how to determine what CSECTs and subroutines are used for a particular request. It also shows how to dump and analyze the CVOL Catalog.

This publication also includes a glossary and an index.

In this manual, any references made to an IBM program product are not intended to state or imply that only IBM's program product may be used; any functionally equivalent program may be used instead. This manual has references to the following IBM program product: "RACF-Resource Access Control Facility, Program Number 5740-XXH."

<u>CONTENTS</u>

1

٠

.

Introduction Overview Requirements of Purpose and Physical Cha	Function	OĹ Pr	ocesso		· · ·	· · ·	•••	· · 1 · · 2
Method of Oper Diagram 1.0. (Diagram 2.0.) Diagram 2.1.) Diagram 3.0. (Diagram 3.1. (Diagram 3.2. (CVOL Proc Interface Interface CVOL Cata CVOL Cata	essor Mapp Mapp log M log M	(Over ers (I ers (C anagen anagen	rview) Determ Deneric ment () ment ()	ines Ty c Locat Gets In Gets up	pe of e) format)	 Reque:	st) 8 9 10 11
Program Organi CVOL Processor CVOL Processor OS LOCATE Ma OS INDEX Mac OS CATALOG, VSAM SUPERLO Other VSAM F	r Invocat r Exit an acro Retu cro Retur UNCATALO DCATE Ret	ion æ d Out rn Co n Cod G, or urn C	nd Ing put des es RECA1 odes V	ALOG	Return ccessin	Codes Codes	· · · ·	15
Catalogs Overview of th Interface Ma CSECT IGGO CSECT IGGO System Mac Resource B	he CVOL P appers DCLCA . DCLCB . cros Used Engueuing	roces ; ; by C for	Sor Or Sor Or SECTS CSECTS	ganiza iGGOC	ation LCA and CLCA an	IGGOC JIGGOC	LCB CLCB	$ \begin{array}{c} 18 \\ 19 \\ 19 \\ 23 \\ 23 \\ 23 $
Register (Catalog Mana Program Dr IGGOCLCE, CSECT IGGO CSECT IGGO CSECT IGGO CSECT IGGO	agement rganizati , and IGG DCLCC . DCLCD . DCLCE .	on of 0CLCF 	csect	IGG	i i i ci i	IGĠOĊL	ĊD;	· · 24
Services l and IGG00 Character IGG0CLCE, System Mac IGG0CLCE, Resource E	Jsed by C CLCF . Dependen , and IGG cros Used , and IGG Enqueuing	SECTS cy fo OCLCF by C OCLCF for	IGGD(rĊSĖ(SECTS CSECTS	LCC, : ts IG iggoc iggoc s Iggo	GÓCÍCĊ, LĊC; ÍG CÍCĊ, I	IGGÓC GOĊLĊD GGÓCLC	LCD, ; D,	· . 27 27 27
IGGOCLCE, Register L CSECT/Subrouti Chart 1. IGGO Chart 2. IGGO Chart 3. IGGO Chart 4. IGGO Chart 5. IGGOO	Jsage for ine Descr CLCA: Fi CLCB: Se DCLCO: I DCLCO: R	CVOL iptio rst I cond nitia elati	Catal ns nterfa Interf lizati ve GDC	ace Ma face Ma ion (CS	oper (C apper (SECT IG Alias (SECT I CSECT GOCLCC CSECT	GGOCLO IGGOCL	
Chart 6. IECPI Chart 7. IGG00 (CSECT IGG0CL0 Chart 8. IGG00 Chart 9. IGG00 Chart 10. IGG0	BLDL (CSE CLC3: Up CD) CLC4: En CLC5: Fi DCLC6: S DCLC6: S DCLC7: T	CT IG date try B rst L econd hird	GOCLCO Initia uildir oad of Load Load) alizat og (CS) F Upda of Upda of Upda	ion and ECT IGG te (CSE date (C ate and	Entry OCLCD) CT IGG SECT I Error	Build OCLCD GGOCLC Hand	
Chart 12. IGCO Chart 13. IGGO Microfiche Dir Data Areas	DOO2H: S DCLF2: S rectory	YSCTL YSCTL	G Oper G Form • • •	n/Exter natter	nd (CSECT (CSECT	CT IGG IGG0C) 76 . 82 . 86
SYSCTLG Entry Alias Entry					•••		• • •	· · 92 · · 93

Old CVOL Pointer Entry New CVOL Pointer Entry Data Set Pointer Entry (DSPE Generation Index Pointer Ent Index Control Entry (ICE) Index Link Entry (ILE) Index Pointer Entry (IPE) Volume Control Block (VCB) Volume Control Block Pointer Volume Index Control Entry (Environment Record (EREC DSE RPSD DSECT WORKCLCA Work Area WORKAREA DSECT CAMLSTD DSECT	Entry (VCBPE))3 12
Diagnoscic Aids Subroutine Selection Charts fo	or CSECTs IGGOCLCA and	4
IGGOCLCB	r CSECTS IGGOCLCC, IGGOCLCD.	14
Subroutine Selection Charts fo and IGGOCLCE	or CSECTS IGGOCLCC, IGGOCLCD, 12	21
Subroutine Selection Charts fo and IGGOCLCE Reading Dumps	Gr CŠEČTS IGĞOČLČC, IGĞOČLČD, 12 12	21 23
Subroutine Selection Charts fo and IGGOCLCE Reading Dumps Main Storage Dump Register Usage for the CVOL	or CSECTS IGGOCLCC, IGGOCLCD, 12 12 12 12 12 12 12 12 12 12	21 23 24 24
Subroutine Selection Charts fo and IGGOCLCE Reading Dumps Main Storage Dump Register Usage for the CVOL Register Usage for CSECT I	Processor	21 23 24 24 24
Subroutine Selection Charts fo and IGGOCLCE	or CSECTS IGGOCLCC, IGGOCLCD, 12	21 23 24 24 24 24
Subroutine Selection Charts fo and IGGOCLCE	Processor 12 GGOCLCA 12 GGOCLCA 12 GGOCLCA 12 IGGOCLCC, IGGOCLCD, and 12	21 23 24 24 24 24 24 24 24 25
Subroutine Selection Charts fo and IGGOCLCE	Processor 12 GGOCLCA 12 GGOCLCA 12 IGGOCLCB 12 IGGOCLCB 12 IGGOCLCC, IGGOCLCD, and 12 IGGOCLCC, IGGOCLCD, and 12	21324444 55
Subroutine Selection Charts fo and IGGOCLCE	Processor 12 GGOCLCA 12 GGOCLCA 12 IGGOCLCA 12 IGGOCLCA 12 IGGOCLCC, IGGOCLCD, and 12 IGGOCLCC, IGGOCLCD, and 12 IGGOCLCC, IGGOCLCD, 12 IZ	2134444 556
Subroutine Selection Charts fo and IGGOCLCE	Processor 12 GGOCLCA 12 GGOCLCA 12 IGGOCLCA 12 IGGOCLCA 12 IGGOCLCC, IGGOCLCD, and 12 IGGOCLCC, IGGOCLCD, and 12 IGGOCLCC, IGGOCLCD, 12 IZ	134444 5567

•

.

•

.

FIGURES

(

1.	Flow of Control to the CVOL Processor	1
2.	Symbols Used in This Chapter	- 4
3.	Abbreviations Used in the Diagrams	5
4.	CVOL Processor Visual Table of Contents	6
		•
5.	WORKCLCA at Processor Invocation	14
6.	Overall Program Organization of the CVOL processor .	18
7.	Requests to IGGOCLCA	19
8.	IGGOCLCB Example of Catalog Segment Block Handling .	21
9.	System Macros Used by CSECTS IGGOCLCA and IGGOCLCB	23
		23
10.	OS Catalog Management Compared to the New CVOL Catalog	
	Management	24
11.	Overall Program Organization of CSECTs IGGOCLCC,	
	IGGOCLCD, IGGOCLCE, and IGGOCLCF.	26
10		20
12.	System Macros Used by CSECTs IGGOCLCC, IGGOCLCD,	
	IGGOCLCE, and IGGOCLCF	28
13.	DCB/DEB Built by IGG0002H	78
14.		104
15.	Subroutine Selection Charts for CSECTs IGGOCLCA and	
12.		
		15
16.	Subroutine Selection Charts for CVOL Catalog	
	Management	121
17.		26
T/.	Sample Dump of the CVUL Catalog	120

INTRODUCTION

This book describes the logic of the CVOL processor program. The CVOL processor program is based on the OS catalog management function. It gets data from and puts data into CVOLs (control volumes), which can be created under OS, OS/VS1 Rel. 1, OS/VS2 MVS, or MVS/XA DFP.

DVERVIEW

Figure 1 shows the flow of control through the CVOL processor.

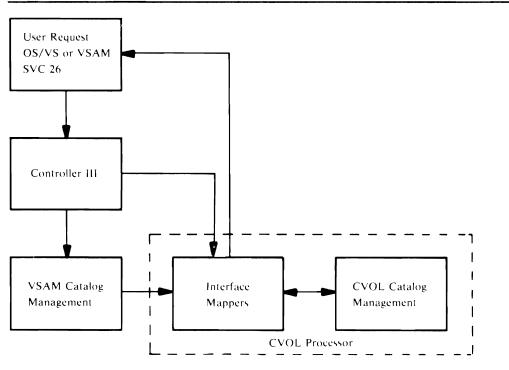


Figure 1. Flow of Control to the CVOL Processor

Notes to Figure 1:

- When an SVC 26 instruction is issued, controller III (IGC0002F) receives control. SVC 26 passes a parameter list to controller III. The parameter list has two possible formats. VSAM or OS, depending upon the type of request.
- 2. Controller III tests the parameter list. If it is an OS parameter list which specifies a CVOL volume serial, controller III simply passes this request to the CVOL processor. If it is an OS parameter list without a CVOL volume serial, controller III creates a VSAM parameter list and passes the OS parameter list and the newly created VSAM parameter list to VSAM catalog management. If it is a VSAM catalog management.
- 3. VSAM catalog management searches the VSAM catalog for the data set requested in the VSAM parameter list. If VSAM finds an alias to a SYSCILGx data set in the VSAM master catalog, it gives control to the CVOL processor (IGGOCLCA)

> via an XCTL. (The "x" in the SYSCTLGx term represents one or more characters that make this name unique from any other entry in the VSAM master catalog). VSAM passes both control and the parameter list(s) from controller III on to the CVOL processor.

4. After the CVOL processor has processed the SVC request, it returns control directly to the program that issued the SVC 26 instruction.

REQUIREMENTS OF THE CVOL PROCESSOR

PURPOSE AND FUNCTION

The CVOL processor's objective is to provide support for CVOLs within the single (VSAM) master catalog environment of MVS. The CVOL processor permits the use of existing CVOLs in a multiple processor environment when running OS, OS/VS1, OS/VS2, or MVS/XA without converting back and forth between the types of catalog structures supported by each operating system.

If a request is made for a catalog VSAM function against a CVOL catalog, the CVOL processor maps the request into an OS request and performs the catalog function. For more information on how the CVOL processor operates, see "Method of Operation" on page 4. For a list of requests and what the CVOL processor maps them into, as well as a list of requests that the CVOL processor does not accept, read the introduction of the IBM publication <u>Catalog</u> <u>User's Guide</u>.

PHYSICAL CHARACTERISTICS

The CVOL processor occupies 20,000 bytes of storage and consists of one load module named IGGOCLCA. It resides in SYS1.LPALIB and can be paged into real storage. The IGGOCLCA load module contains six CSECTs: IGGOCLCA, IGGOCLCB, IGGOCLCC, IGGOCLCD, IGGOCLCE, and IGGOCLCF.

The program organization of the CVOL processor can be thought of as two sections: the interface mappers and CVOL catalog management. The interface mappers consist of CSECTs IGGOCLCA and IGGOCLCB. CVOL catalog management consists of CSECTs IGGOCLCC, IGGOCLCD, IGGOCLCE, and IGGOCLCF. For more information on the subroutines and their use within each CSECT, see "Microfiche Directory" on page 86.

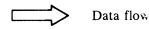
When the CVOL processor gains control, register 12 points to the work area, WORKCLCA, that is passed by VSAM catalog management. (Controller III creates WORKCLCA and passes it to VSAM catalog management. See Figure 5 on page 14 and "Data Areas" on page 92 for a description of WORKCLCA.)

If the request is successful, the data s returned as expected by the original OS or VSAM request. Register 15 contains zero. If the request is not successful, the CVOL processor passes a return code in register 15 to the issuer of the SVC 26. For a list of return codes and their meanings, refer to "CVOL Processor Exit and Output" on page 15 of this publication. For a list of control information required and any restrictions on the use of the CVOL processor, refer to the IBM publication Catalog User's Guide.

To determine which subroutine within the CVOL processor is involved in any given situation, see Figure 15 on page 115 and Figure 16 on page 121 in this publication. For more information on diagnostic aids for the CVOL processor, see "Diagnostic Aids" on page 114.

•

.


٠

Note: Because all CVOL catalogs are named "SYSCTLG," the terms "CVOL catalog" and "SYSCTLG" are used interchangeably in this documentation.

METHOD OF OPERATION

This chapter contains method-of-operation diagrams of the main elements of the CVOL processor. A table is included as part of each diagram which lists each step of the diagram, the CSECTs name, and the subroutines used. Using these names, you can go either to "Program Organization" on page 13 or to "Microfiche Directory" on page 86 (or to the microfiche itself) for more information.

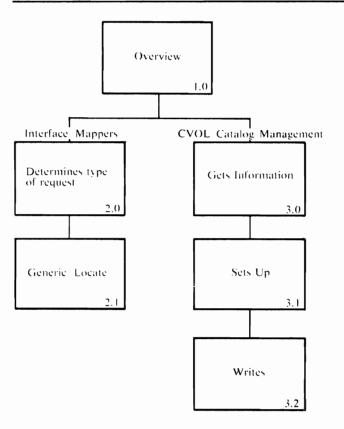
Figure 2 explains the symbols used in the diagrams and Figure 3 explains the abbreviations used in the diagrams.

Flow of control, entry and exit points

Data flow when existing data has been changed

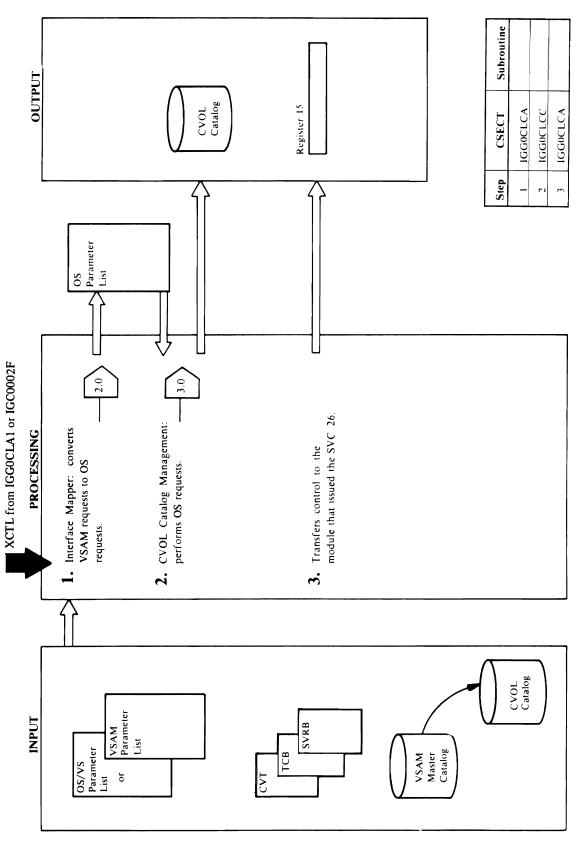
On-page connector

Off-page connector



Pointer to more information

Figure 2. Symbols Used in This Chapter


Abbreviation	Name	Description
CVT	Communication vector table	An operating system control block that contains pointers to operating system routines and other system data areas.
DSPE	Data set pointer entry	Contains the simple name of a data set and provides the location of this data set.
GIPE	Generation index pointer entry	Points to the lowest index for a generation data group.
ILE	Index link entry	links this block to the next block in a chain of blocks for one index.
IPE	Index pointer entry	Points to a lower-level index of this name.
SVRB	Supervisor request block	An operating system control block containing program status information and general register contents.
TCB	Task control block	An operating system control block that contains information and pointers associated with the task in progress.

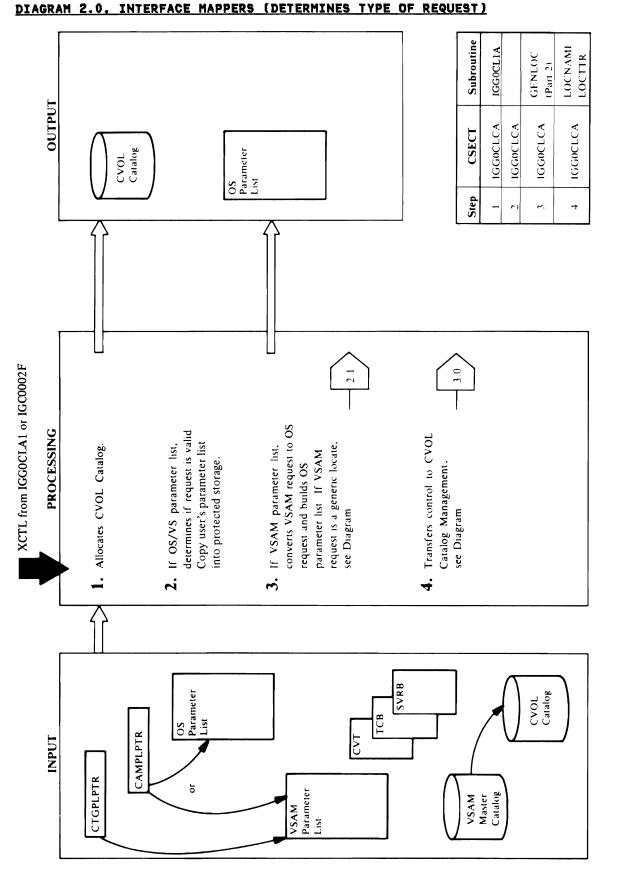
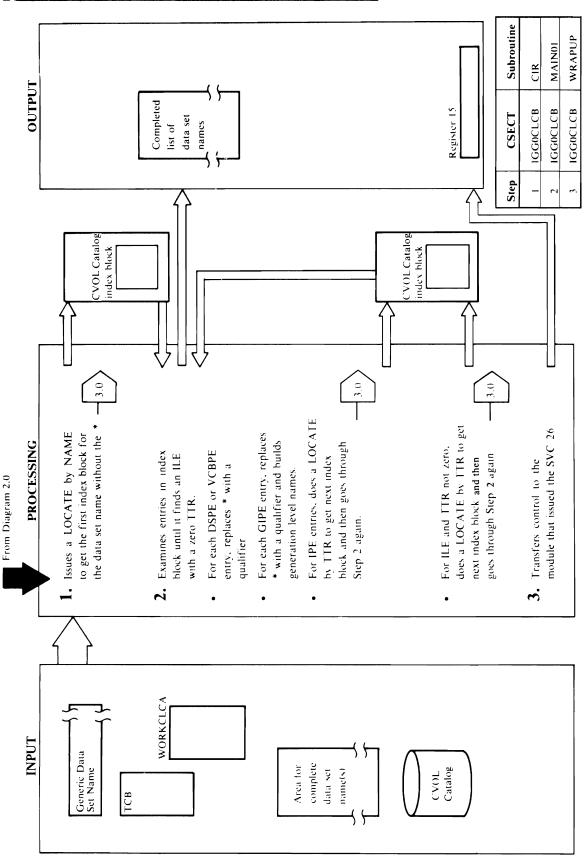
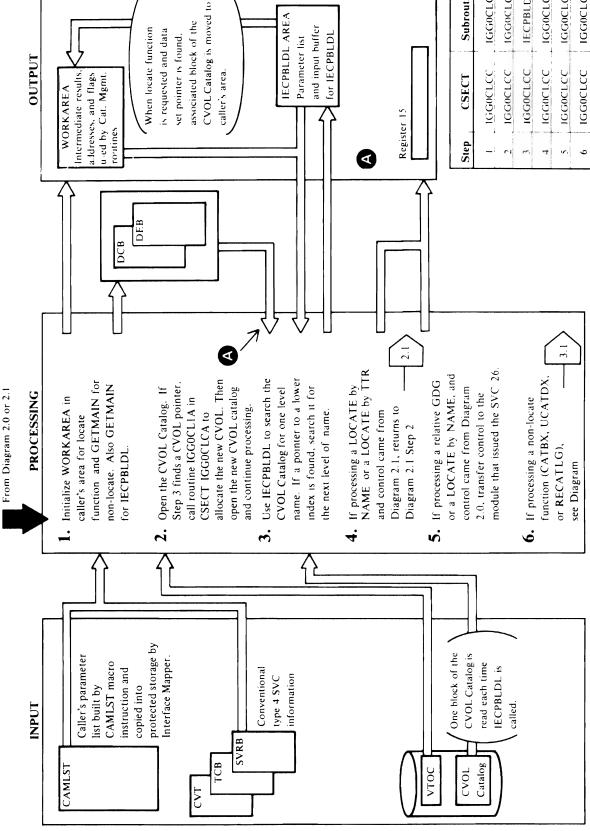

Figure 3. Abbreviations Used in the Diagrams

Figure 4. CVOL Processor Visual Table of Contents

DIAGRAM 1.0. CVOL PROCESSOR (OVERVIEW)




•

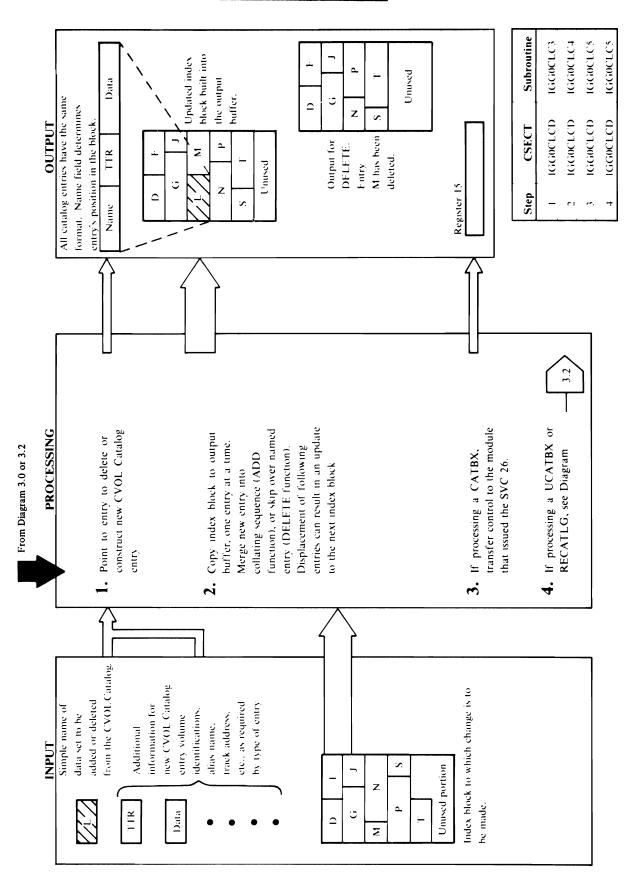
•

This document contains restricted materials of IBM. © Copyright IBM Corp. 1974,1982 LY26-3895-0

ETAGRAM 2.1. INTERFACE MAPPERS (GENERIC LOCATE)

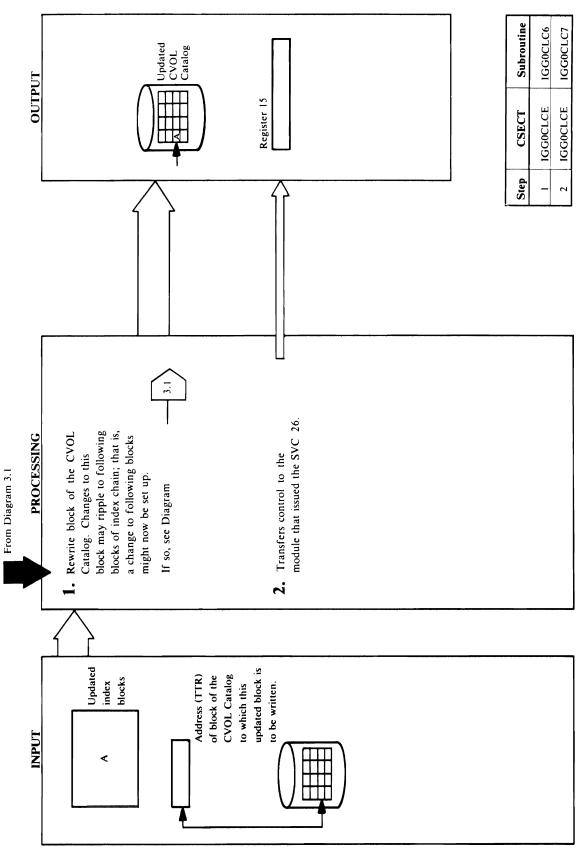
DIAGRAM 3.0. CVOL CATALOG MANAGEMENT (GETS INFORMATION)

This document contains restricted materials of IBM. © Copyright IBM Corp. 1974,1982 LY26-3895-0


Subroutine

IGG0CLC0

IECPBLDL


IGG0CLC0

IGG0CLC2 1GG0CLC1 IGG0CLC2

DIAGRAM 3.1. CVOL CATALOG MANAGEMENT (SETS UP)

DIAGRAM 3.2. CVOL CATALOG MANAGEMENT (WRITES)

PROGRAM ORGANIZATION

The CVOL processor consists of one load module named IGGOCLCA that resides in SYS1.LPALIB. (See "Physical Characteristics" on page 2 for an overall conceptual description of the CVOL processor. Also see Figure 1 on page 1 for an overview of the flow of control to the CVOL processor.)

CVOL PROCESSOR INVOCATION AND INPUT

The CVOL processor, module IGGOCLCA, gains control via an XCTL from Controller III, module IGC0002F, when an OS/VS type catalog request is issued which specifies a CVOL volume serial in the parameter list. i1.parameter list

The CVOL processor, module IGGOCLCA, also gains control via an XCTL from VSAM catalog management, module IGGOCLA1, when VSAM finds an alias to a SYSCTLGx data set in the VSAM Master catalog. (Where x is one or more characters that make this name unique from any other entry in the VSAM Master catalog.) This alias entry indicates that the data set requested by SVC 26 resides on a CVOL catalog.

The CVOL processor uses a non-standard convention for linkage. Register 1 points to a parameter list that is needed by the CVOL processor. Register 12 points to the work area named WORKCLCA that was created by Controller III. When the CVOL processor gets control, it puts the address of its own save area in register 13 and saves registers in that save area. Register 15 contains the entry point address of IGGOCLCA. Register 14 is not used. Figure 5 on page 14 illustrates the key fields within WORKCLCA that the CVOL processor depends upon.

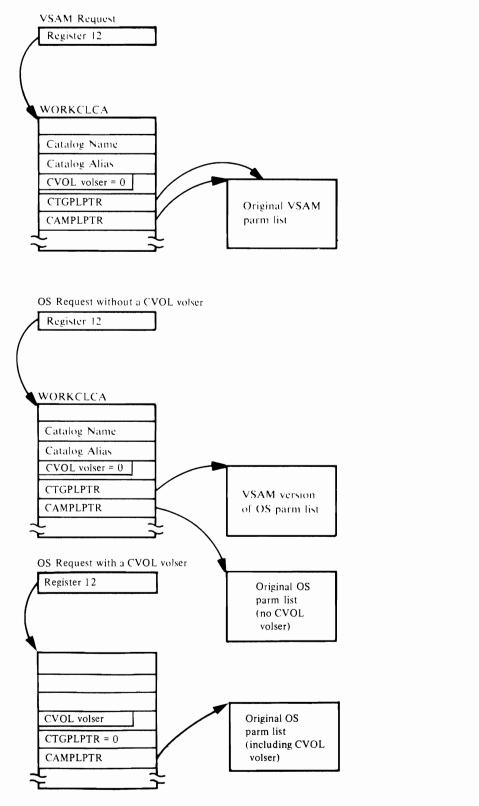


Figure 5. WORKCLCA at Processor Invocation

Notes to Figure 5:

- If the parameter list passed to SVC 26 indicates a VSAM request, CTFPLPTR and CAMPLPTR point to the VSAM parameter list.
- If the parameter list passed to SVC 26 indicates an OS request, CAMPLPTR points to the OS parameter list.
- 3. If the OS parameter list specifies a CVOL volser, then CTGPLPTR is zero, the CVOL volume serial field has been filled in by Controller III, and the catalog name and alias fields remain uninitialized. If the OS parameter list specifies no CVOL volser, then CTGPLPTR points to the VSAM parameter list created by Controller III, and the CVOL volume serial field is set to binary zeros. The catalog name and alias fields are filled in by VSAM catalog management.

CVOL PROCESSOR EXIT AND OUTPUT

CVOL processor returns control to the issuer of the SVC 26. If no errors were encountered, register 15 contains zero. If an error has occurred, register 15 always contains a return code indicating the type of error. In some cases registers 0 and 1 provide further information concerning the error; when the contents are significant, the meaning is noted below. The meaning of the return code varies according to the type of catalog request:

- If the request is a VSAM request, register 15 contains a return code defined by VSAM catalog management. These return codes are explained in <u>Message Library: System</u> <u>Messages</u>, in the chapter called "Access Method Services Messages (IDC)."
- If the request is an OS request, register 15 contains one of the return codes described in the following lists.
- If the OS request was satisfied in a VSAM catalog, and Register 15 does not contain a 0, Register 0 contains the VSAM catalog management return code.

Refer to the following lists for return code meanings.

OS LOCATE MACRO RETURN CODES

If processing an OS locate request, register 15 may contain:

Code Reason

- 0 Successful.
- 4 Either the required CVOL catalog does not exist, could not be allocated, or an MSS (Mass Storage System) acquire failed.
- 8 One of the following:
 - Entry not found. R0 contains number of index levels.
 - Protection violation. R0=56.
 - GDG alias found. R0 contains number of index levels.
- 12 Non-data set found at last qualifier. R0 contains number of index levels.
- 16 Data set exists at an earlier level of qualification. R0 contains number of index levels where data set was encountered.

- 20 Syntax error in data set name.
- 24 One of the following:
 - 1. Permanent I/O error. RD=VSAM return code or 0 if error in CVCL.
 - Unrecoverable error (including 'Do not allocate'). R0=0.
 - 3. Nonzero ESTAE return code. R0=0.
 - 4. Error in CAMLST. R0=0.
- 28 TTR is out of range.

OS INDEX MACRO RETURN CODES

When processing an OS BLDX, DLTX, LNKX, BLDG, BLDA, DLTA, or DRPX request, register 15 may contain:

Code Reason

- 0 Successful.
- 4 CVOL not available.
- 8 Catalog structure inconsistent with specified operation. R0 same as R0 on a LOCATE on this name. R1 same as R15 on a LOCATE on this name.
- 12 Can't delete a nonempty index.
- 16 Necessary index structure does no exist.
- 20 Space unavailable in catalog.
- 28 One of the following:
 - 1. Permanent I/O error.
 - 2. Nonzero ESTAE return code.

DS CATALOG, UNCATALOG, OR RECATALOG RETURN CODES

When processing an OS CATALOG, UNCATALOG, or RECATALOG request, register 15 may contain:

Code Reason

- 0 Successful.
- 4 Either the required CVOL catalog does not exist, or the CVOL catalog cannot be allocated or acquired.
- 8 One of the following:
 - Catalog structure inconsistent with the operation requested (including alias for GDG found). R0 same as R0 on a LOCATE on this name. R1 same as R15 on a LOCATE on this name.
 - 2. Protection violation. R0=56. R1=0.
- 20 Insufficient space on a CVOL catalog data set. Register 0 contains zero.
- 24 Improperly named generation data group not cataloged.

- 28 One of the following:
 - A permanent I/O error or an unrecoverable error occurred.
 - 2. An error was found in the OS parameter list.
 - 3. An I/O error occurred in a CVOL catalog.
 - 4. An ESTAE return code was nonzero.

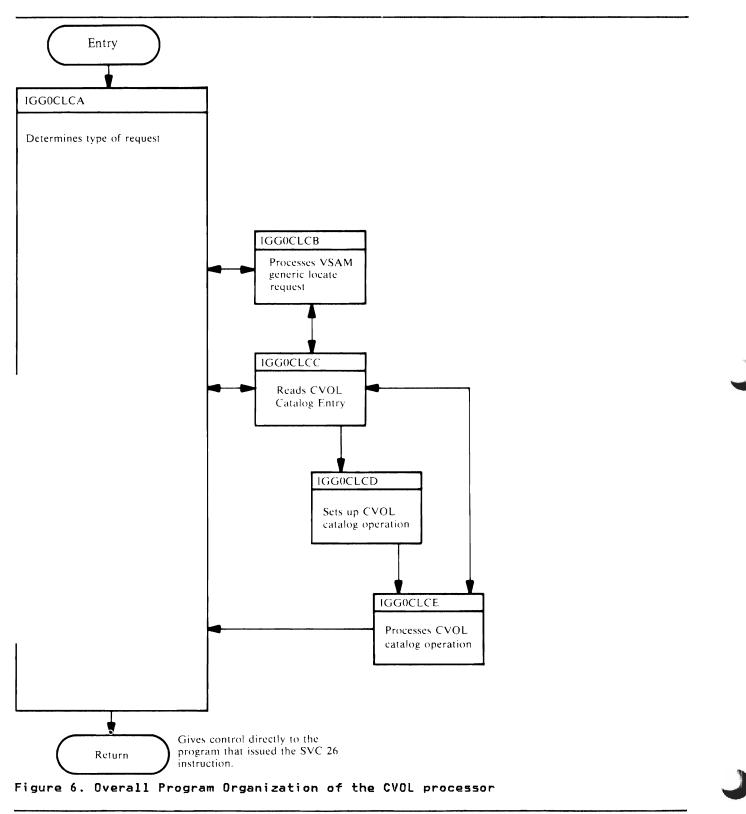
VSAM SUPERLOCATE RETURN CODES WHEN ACCESSING CVOL

When processing a VSAM SUPERLOCATE request, register 15 may contain:

Code Reason

- 0 Successful.
- 4 Allocation error occurred or unable to open a CVOL catalog.
- 8 Data set not found or the structure of the CVOL catalog was inconsistent.
- 24 I/O error or unrecoverable error.
- 44 Insufficient space available to CVOL processor.
- 68 The CVOL catalog cannot be allocated.
- 164 ESTAE return code was nonzero.

OTHER VSAM REQUEST RETURN CODES WHEN ACCESSING CVOL CATALOGS


When processing VSAM requests other than SUPERLOCATE, register 15 may contain:

Code Reason

- 0 Successful.
- 4 Allocation error or unable to open a CVOL catalog.
- 8 Data set not found or the structure of the CVOL catalog was inconsistent.
- 24 I/O error or unrecoverable error trying to locate information.
- 28 I/O error or unrecoverable error on any request action except trying to locate information.
- 40 Insufficient space.
- 48 Invalid function, not consistent with a CVOL catalog.
- 164 ESTAE return code was nonzero.

OVERVIEW OF THE CVOL PROCESSOR ORGANIZATION

Figure 6 gives the overall program organization of the CVOL processor. The figure is followed by a description of each of the CSECTs that the CVOL processor contains.

INTERFACE MAPPERS

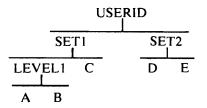
CSECTS IGGOCLCA and IGGOCLCB are called the First and Second Interface Mappers because they map VSAM requests into OS requests.

CSECT IGGOCLCA

CSECT IGGOCLCA, First interface mapper, is the entry and exit point for the CVOL processor. After ensuring that the PCCB (private catalog control block) is valid, IGGOCLCA determines what type of request has been sent to the CVOL processor and calls the appropriate subroutine. Figure 7 lists the types of requests IGGOCLCA honors, the subroutine that receives control, the action performed, and any other CSECTs called.

Type of Request	Subroutine	Action Performed	Other CSECTs Called
OS CAMLST format	OSREQ	Sets up and executes an original OS CAMLST format request.	IGGOCLCC
SUPERLOCATE without generic locate specified	SUPERLOCATE	Determines type of superlocate and calls the appropriate procedure: SLGDG, base generation number supplied; SLGDGB, locate GDG base only	IGGOCLCC
VSAM locate	VLOC	Processes a VSAM locate.	IGGOCLCC
VSAM delete	DELETE	Processes a VSAM delete request by issuing an OS UCATDX request and optionally a SCRATCH.	IGGOCLCC
SUPERLOCATE with generic locate specified	GENLOC	Processes a VSAM generic locate.	IGGOCLCB
Access Method Services LISTCAT without GET NEXT option	VLOC	Processes an Access Method Services LISTCAT (not GET NEXT) request.	IGGOCLCC

Figure 7. Requests to IGGOCLCA

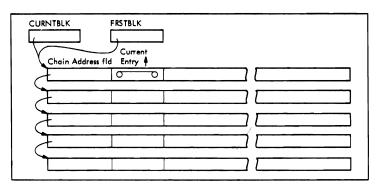

All other VSAM requests not listed in Figure 7 are rejected with a return code of 48 in register 15, and control is returned to the issuer of the SVC 26 instruction.

CSECT IGGOCLCB

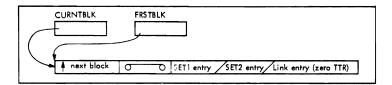
CSECT IGGOCLCB, Second interface mapper, produces a data set names found cataloged under the requested high-level qualifiers.

Figure 8 on page 21 shows how the Segment (CIRBLOCK) entries are processed after the first segment block information is returned by CIR. This example assumes the '01' and '02' option codes (data set names and index names) have been requested, and that the USERID is used a node point for the catalog search.

The catalog structure for this example is:


where SET1, SET2, and LEVEL1 are index names and A-E represent the lowest level, fully qualified, data set names.

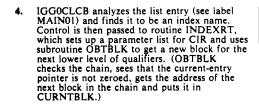
.


-

.

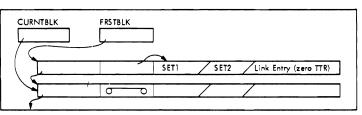
1. Four segment blocks are initialized. CURNTBLK and FRSTBLK are made to point to the first segment block. The current entry pointer is zeroed. IGGOCLCB then uses routine OBTBLK to find the first segment block containing a zeroed current entry field.

2. Then IGG0CLCB calls CIR, which reads the first index block and formats the entries.



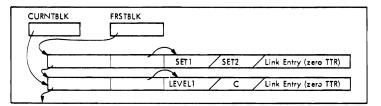
FRSTBLK

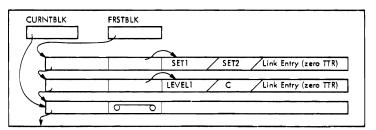
§ SET1


CURNTBLK

3. Control returns to IGG0CLCB, which then gets the CURNTBLK value, establishes a pointer to, and makes the current-entry field reflect the first entry (see MAIN00).

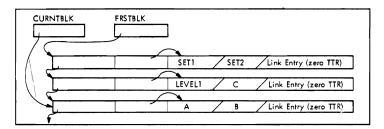
5. OBTBLK returns control to INDEXRT, which calls CIR and reads the next block from the catalog. The current-entry pointer of the second block is updated to point at the first entry in that block. A check is then made to see if the entry is a link entry (in this case, no).

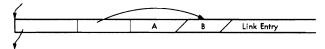




SET 1

SET2


Link Entry (zero TTR)



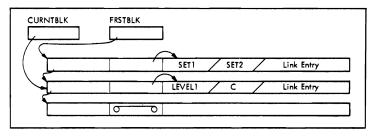


Figure 8 (Part 1 of 2). IGGOCLCB Example of Catalog Segment Block Handling

- 7. Control passes from INDEXRT to CIR, which reads in the block upon return to INDEXRT, the current-entry pointer is updated to point at the first entry of the third block. A check is made for a link entry in this position (in this case, no).
- 8. Control is returned to IGG0CLCB, through label MAIN01, which tests for entry type and finds the data set name .SET1.LEVEL1.A.
- 9. After the current entry is processed, control is returned to the POINTER subroutine, which updates the current-entry pointer of the third segment block to point to the B entry. A check is made to see if it is a link-entry (in this case, no).
- Processing for .SET1.LEVEL1.B continues (as in steps 8 and 9). This time, when the current-entry pointer is updated, the POINTER subroutine finds a zeroed link-entry. The current-entry pointer of the third segment block is cleared, releasing the block for possible future use. CURNTLBK is updated to point to the second block.
- 11. Control is returned to IGG0CLCB, through MAIN01, which updates the current-entry pointer of the current block to point to the next entry. The next entry is a data set name entry and is processed.
- 12. The remainder of the operation is summarized as follows:
 - When the zero-TTR in the second segment block is encountered, the block is released, and the CURNTBLK is updated to point to the first block.
 - The current-entry pointer is updated to point to SET2. SET2 is an index name, which means that CIR is entered to read into segment block 2. The new second-level information (D, E, and a zero-TTR link entry) overlays the old.
 - When no more entries remain to be processed (that is, when a zero-TTR link entry is encountered in the first segment block), the POINTER routine passes control to WRAPUP in IGGOCLCB, which cleans up and returns control to IGGOCLCA.

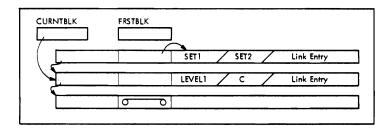


Figure 8 (Part 2 of 2). IGGOCLCB Example of Catalog Segment Block Handling

System Macros Used by CSECTS IGGOCLCA and IGGOCLCB

Figure 9 lists all system macros used by CSECTs IGGOCLCA and IGGOCLCB and the label closest to each point of issue.

Macro	CSECT	Label		
DEQ	IGGOCLCA	SRCHPCCB		
ENQ	IGGOCLCA	SRCHPCCB		
	IGGOCLCA	IGGOCL1A		
ESTAE	IGGOCLCA	IGGOCLCA Estaeexit		
ESTAE	IGGOCLCB	ESTAEDK WRAPUP		
	IGGOCLCA	IGGOCLCA		
FREEMAIN	IGGOCLCB	WRAPUP00 WRAPUP02 FREEMMDL FREEML		
GETMAIN	IGGOCLCB	IGGOCLCB Outblko2 GetmlMDL Getml		
LINK	IGGOCLCA	IGGOCLCA		
MODESET	IGGOCLCA	GETUSERK Getsvck		
NUDESCI	IGGOCLCB	BUILDNAM Outblk07		
RETURN	IGGOCLCB	ERREXIT Normexit		
SAVE	IGGOCLCB	IGGOCLCB CIR		
SCRATCH	IGGOCLCA	DELETE		

Figure 9. System Macros Used by CSECTs IGGOCLCA and IGGOCLCB

Resource Enqueuing for CSECTS IGGOCLCA and IGGOCLCB

During catalog allocation, CSECT IGGOCLCA enqueues on a chain of private catalog control blocks (PCCBs). The major name for enqueuing is always SYSZPCCB, and the minor name for enqueuing is always PCCB. CSECT IGGOCLCB does not use resource enqueuing.

During catalog allocation, IGGOCLCA also issues two ENQs to preserve data integrity. For both ENQs the minor name is SYSCTLG. Vxxxxxx, where xxxxxx is the volume serial of the CVOL. The major names used are (1) SYSZOPEN and (2) SYSDSN.

The SYSDSN ENQ prevents the CVOL from being scratched during SVC 26 processing. The SYSZOPEN ENQ is issued to prevent an unallocation that could dequeue the SYSDSN ENQ.

Register Usage for the Interface Mappers

Both interface mappers	use	registers	in	an	identical	manner,
except as noted.						

Reg	ister	Meaning	
-----	-------	---------	--

- 10 Second base register for CSECT-IGGOCLCA only
- 11 Base register for CSECT
- 12 Base register for WORKCLCA structure

CATALOG MANAGEMENT

OS catalog management in the CVOL processor consists of four CSECIs: IGGOCLCC, IGGOCLCD, IGGOCLCE, and IGGOCLCF. The first three CSECIs contain the three OS catalog management phases referred to in <u>Catalog Diagnosis Reference</u>. The three OS/VS phases contain eleven separate modules, while the four CVOL processor CSECIs contain eleven subroutines. Figure 10 gives a comparison of the four CVOL processor CSECIs versus the three OS catalog management phases.

Modules Contained	CSECT	Subroutines Contained	Comments
IGG0CLC0 IGG0CLC1 IGG0CLC2	IGGOCLCC	IGGOCLCO IGGOCLC1 IGGOCLC2 IECPBLDL	IGGOCLC1 and IGGOCLC2 return to IGGOCLCA or IGGOCLCB, whichever called IGGOCLCC. IECPBLDL was previously a separate service routine and is now included in IGGOCLCC.
IGGOCLC3 IGGOCLC4	IGGOCLCD	IGGOCLC3 IGGOCLC4 IGGOCLC5	IGG0CLC5 was previously included in Phase III.
IGGOCLC5 IGGOCLC6 IGGOCLC7	IGGOCLCE	IGGOCLC6 IGGOCLC7	IGGOCLC7 returns to IGGOCLCA or IGGOCLCB, whichever called IGGOCLCC.
IGG0002H IGG0CLF2	IGGOCLCF	IGC0002H IGG0CLF2	IGC0002H calls IGG0553A for new extents. IGC0002H returns to caller, as does IGG0CLF2. IGG0CLF2 is only the SYSCILG Formatter.

Figure 10. OS Catalog Management Compared to the New CVOL Catalog Management

Program Organization of CSECTS IGG0CLCC, IGG0CLCD, IGG0CLCE, and IGG0CLCF

CSECT IGGOCLCC, the entry point for CVOL catalog management, is called from CSECT IGGOCLCA or CSECT IGGOCLCB. IGGOCLCC passes control to CSECTS IGGOCLCD and IGGOCLCE via branch instructions. IGCOOO2H, one of the service subroutines, is invoked via a branch instruction; it passes control to IGGOCLF2 via a branch instruction. The path that occurs through the remaining subroutines of the three CVOL catalog management CSECTs depends on both the particular function requested and the entries that are found in the CVOL catalog.

All the CVOL catalog management CSECTs are reentrant. They use a common work space, WORKAREA, that is initialized by IGGOCLCO. (See "Data Areas" on page 92 for a description of WORKAREA.)

> Each block in Figure 11 on page 26 represents a subroutine of the CVOL catalog management routines and contains a brief description of the functions it performs. Each path is identified by the function/condition it represents.

Figure 11 gives the overall program organization of CSECTs IGG0CLCC, IGG0CLCD, IGG0CLCE, and IGG0CLCF.

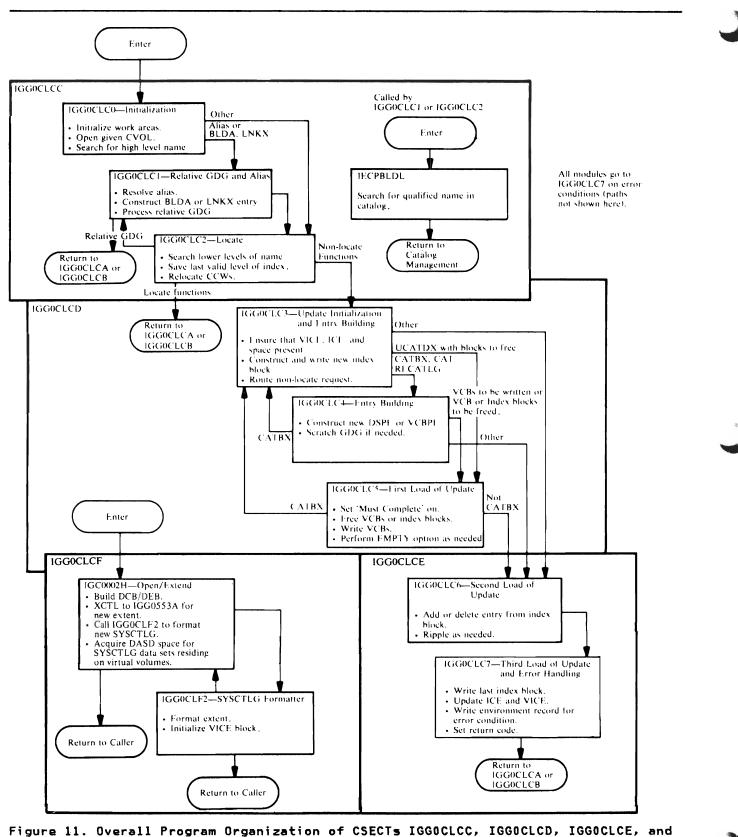
CSECT IGGOCLCC

CSECT IGGOCLCC performs the read operation. IGGOCLCC performs locate functions and the locate part of nonlocate functions. A locate function is a LOCATE by NAME or LOCATE by TTR, that is, a read-only function. A nonlocate function is CATBX, UCATDX, BLDA, BLDG, DLTA, DLTX, LNKX, DRPX, or RECATLG, that is, an update function.

- IGGOCLCO (Initialization) initializes work areas and opens the CVOL catalog.
- IGGOCLC1 (Relative GDG and Alias) resolves aliases and relative GDG numbers.
- IGGOCLC2 (Locate) searches the lower levels of the index structure.
- IECPBLDL (Search) searches for the qualified name in the CVOL catalog.

CSECT IGGOCLCD

CSECT IGG0CLCD performs the setup operation for adding or deleting entries in the CVOL catalog. IGG0CLCD checks the validity of the requests against the existing entries in the CVOL catalog and builds new entries to be added or names entries to be deleted. IGG0CLCD consists of the following subroutines:


- IGG0CLC3 (Update Initialization and Entry Building) begins the update process by building new index blocks and routing the request as needed.
- IGG0CLC4 (Entry Building) builds data set pointer entries to add to the last valid level of the index.
- IGGOCLC5 (First Load of Update) frees index blocks, frees volume control blocks (VCBs), and writes new VCBs.

CSECT IGGOCLCE

CSECT IGGOCLCE performs the write operation. It merges entries into CVOL catalog blocks, deletes entries from the blocks, and does most of the writing that is needed. IGGOCLCE consists of the following subroutines:

- IGG0CLC6 (Second Load of Update) updates blocks, writes updated blocks to the CV0L catalog and ripples the changes as needed to the last block of the updated chain.
- IGGOCLC7 (Third Load of Update and Error Handling) writes the last updated block, updates the control entries, returns control to IGGOCLCA or IGGOCLCB (whichever called IGGOCLCC), and handles error conditions.

This document contains restricted materials of IBM. © Copyright IBM Corp. 1974,1982 LY26-3895-0

IGGOCLCF.

CSECT IGGOCLCF

The two service subroutines included in IGGOCLCF are:

- IGC0002H (SYSCTLG Open/Extend) opens the CVOL catalog data set or gets the next extent of that data set when needed.
- IGG0CLCF2 (SYSCTLG Formatter) formats a new CVOL catalog.

Services Used by CSECTS IGGOCLCC, IGGOCLCD, IGGOCLCE, and IGGOCLCF

Two services are used throughout the CVOL catalog management subroutines. They are:

- IECPCNVT converts relative track addresses to absolute addresses. It is accessed through entry point IECPCNVT whose address is found in field CVTPCNVT of the Communication Vector Table (CVT). In the CVOL catalog management routines, this routine is used in the closed subroutine labeled "TQABSL."
- IECPRLTV converts absolute track addresses to relative addresses. It is accessed through entry point IECPRLTV, whose address is found in field CVTPRLTV of the CVT. In the CVOL catalog management routines, this routine is used in a closed subroutine labeled "TORLTV."

Character Dependency for CSECTS IGG0CLCC, IGG0CLCD, IGG0CLCE, and IGG0CLCF

The CSECTs of CVOL catalog management require that the character set used at execution time be equivalent to that used at assembly time. The IBM-supplied version of CVOL catalog management assumes EBCDIC character representations. If a different character set is to be used during execution, the CSECTs must be re-assembled. The instructions involved in this dependency are identified by label in the prologue commentary of each CSECT.

System Macros Used by CSECTS IGG0CLCC, 1GG0CLCD, IGG0CLCE, and IGG0CLCF

Figure 12 on page 28 lists all the executable system macros used by CSECTs IGGOCLCC, IGGOCLCD, IGGOCLCE, and IGGOCLCF and the label closest to each point of issue.

Macro	CSECT	Label
DEQ	IGGOCLCC	DEQUE Deqvi Erroo Exclusiv
DEW	IGGOCLCE	FREERES
	IGGOCLCC	EXCLUSIV
ENQ	IGGOCLCD	ENQVI Iggoclc5
FETAF	IGGOCLCC	ESTAESET Igg0clca
ESTAE	IGGOCLCE	FREWA2
	IGGOCLCC	B1
	IGGOCLCD	EXCP3
EXCP	IGGOCLCE	EXCP1 EXCP2
	IGGOCLCF	103 10
	IGGOCLCC	DEQVI
	IGGOCLCD	FRVCBEND
FREEMAIN	IGGOCLCE	SKIP5 RPSTST FREEWA2 RB2 RETURN CONTINUE
	IGGOCLCC	OPENGTMN Reloc
GETMAIN	IGGOCLCD	ENQVI Scratch Frvcbtn
	IGGOCLCE	RTTRP
	IGGOCLCF	GETMAINB Nofmt Format
ICBACREL	IGGOCLCF	RTTCTA
MODESET	IGGOCLCF	EXTENDC EXTENDAA EXTENDB

Figure 12 (Part 1 of 2). System Macros Used by CSECTs IGGOCLCC, IGGOCLCD, IGGOCLCE, and IGGOCLCF .

3

.

-

Macro	CSECT	Label
RACHECK	IGGOCLCC	RACSETUP
WAIT	IGGOCLCC	B1
	IGGOCLCD	EXCP3
	IGGOCLCE	EXCP1 EXCP2
	IGGOCLCF	103 10
WTO	IGGOCLCF	RVIRT8
XCTL	IGGOCLCE	RXP4
	IGGOCLCF	EXTENDAA

Figure 12 (Part 2 of 2). System Macros Used by CSECTs IGGOCLCC, IGGOCLCD, IGGOCLCE, and IGGOCLCF

Resource Enqueuing for CSECTS IGG0CLCC, IGG0CLCD, IGG0CLCE, and IGG0CLCF

Three resources are used: high-level name, volume index, and volume index control entry (VICE). To prevent an interlock between two callers, the high-level name is <u>always</u> enqueued first, the volume index is enqueued second, and the VICE is enqueued last.

The conditions of enqueuing are determined from the request. If the volume index is to be modified, then the volume index must be enqueued exclusively. requested, the high-level name is enqueued exclusively to protect all lower-level indexes under it.

The major name for enqueuing is always 'SYSCTLG'. The minor name is one of the high-level names with the UCB (unit control block) address appended to it. 'SYSCTLG' with the UCB address appended to it, or zeros with the UCB address appended to it.

Register Usage for CVOL Catalog Management

With the exception of IGC0002H and IGG0CLF2, the CVOL catalog management CSECTs use a common set of registers. Subroutine IGG0CLC0 initializes these registers, and their contents remain throughout. Contents of registers not described are considered destroyed.

Register Meaning

- 4 Base register for the CSECT
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT
- 12 Linkage register for BAL instructions
- 14 Linkage register for BAL instructions

CSECT/SUBROUTINE DESCRIPTIONS

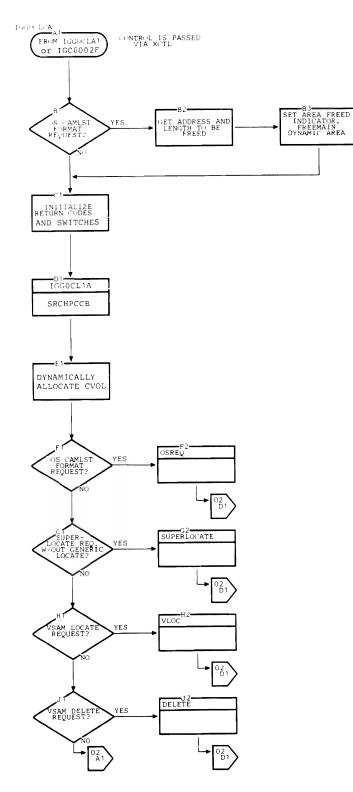
Each of the CSECTs of the CVOL processor and the subroutines of CVOL catalog management are described in this section.

Error-condition tests are not shown on the flowcharts. An error condition in CVOL catalog management results in a branch to label ERRxx, where xx is the appropriate error code. There, the error exception code is set, and a branch to IGGOCLC7 occurs. The labels on the flowchart are those used in the assembly listing.

•

.

.


,

(

C

.

CHART 1 (PART 1 OF 2). IGGOCLCA: FIRST INTERFACE MAPPER (CSECT IGGOCLCA)

Notes for Chart 1 (Part 1 of 2)

IGGOCLCA: First Interface Mapper

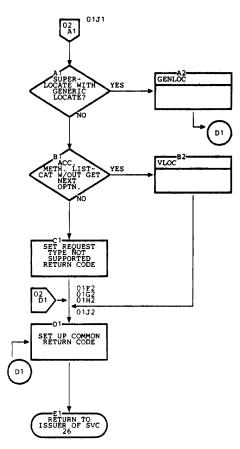
IGGOCLCA is the entry point. Control comes from IGGOCLA1 or IGGOOO2F via an XCTL.

Register Meaning

- 10 Second base register for CSECT
- 11 First base register for CSECT

12 Base register for WORKCLCA data area

FUNCTIONS: This CSECT is the entry and exit point for the CVOL processor. After ensuring that the PCCB is valid, IGGOCLCA determines what type of request has been sent to the CVOL processor and calls the appropriate subroutine. INTERNAL SUBROUTINES: For a list of internal subroutines used by IGGOCLCA, please see Figure 6 on page 18 in this chapter.

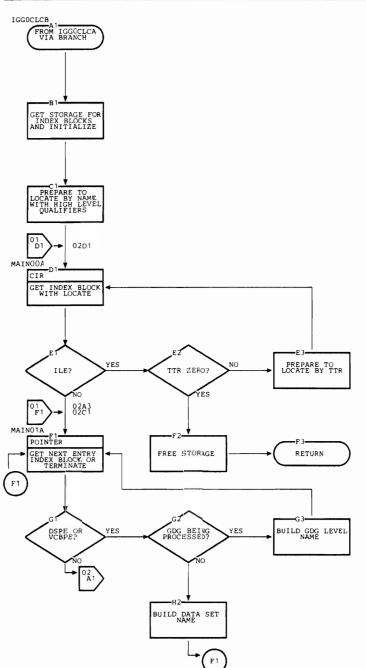

EXITS: Control passes via a branch instruction to:

- IGGOCLCB from subroutine GENLOC to process a VSAM generic locate.
- IGGOCLCC for all other valid requests.

ERROR CONDITIONS: For a list of error conditions, please see the lists of return codes under "CVOL Processor Exit and Output" on page 15 at the beginning of this chapter.

.

CHART 1 (PART 2 OF 2). IGGOCLCA: FIRST INTERFACE MAPPER (CSECT IGGOCLCA)


(

,

٠

٠

·

CHART 2 (PART 1 OF 2). IGGOCLCB: SECOND INTERFACE MAPPER (CSECT IGGOCLCB)

Notes for Chart 2 (Part 1 of 2)

IGGOCLCB: Second Interface Mapper

IGGOCLCB is the entry point. Control comes from subroutine GENLOC in the IGGOCLCA CSECT.

Register Meaning

11 Base register for CSECT

12 Base Register for WORKCLCA data area

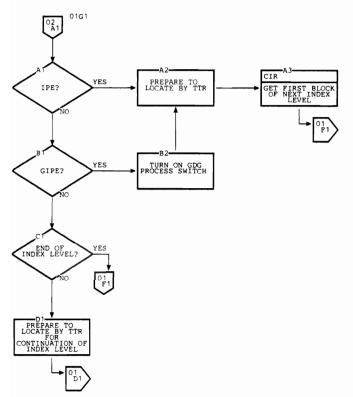
FUNCTIONS: CSECT IGGOCLCB produces a list of data set names found cataloged under the requested high-level qualifiers.

INTERNAL SUBROUTINES: CIR provides an interface between IGGOCLCB and CVOL catalog management.

POINTER updates the current entry pointer in the current block.

EXITS: Control passes to IGGOCLCA via a branch instruction with a return code of zero in register 15.

ERROR CONDITIONS: Control passes to IGGOCLCA via a branch instruction with one of the following return codes in register 15:

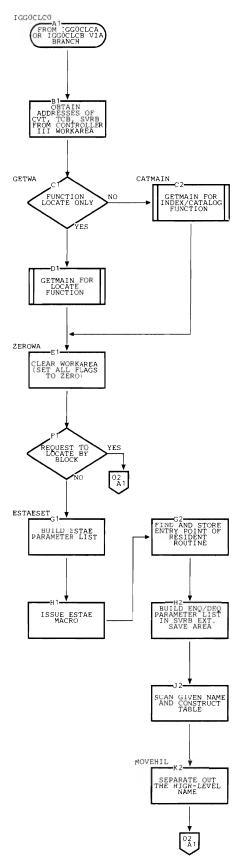

Code Reason

4 Data set(s) not found

8 Insufficient storage or ESTAE macro failed

12 User's work area too small

CHART 2 (PART 2 OF 2), IGGOCLCB: SECOND INTERFACE MAPPER (CSECT IGGOCLCB)


(

,

.

.

CHART 3 (PART 1 OF 2), IGGOCLCO: INITIALIZATION (CSECT IGGOCLCC)

Notes for Chart 3 (Part 1 of 2)

IGGOCLCC: Initialization

IGGOCLCO is the entry point. Control comes from IGGOCLCA or IGGOCLCB.

On entry, the registers are:

Register Meaning

- 1 Address of caller's parameter list (CAMLST)
- 12 Address of Controller III work area
- 13 Address of register save area within the Controller III work area

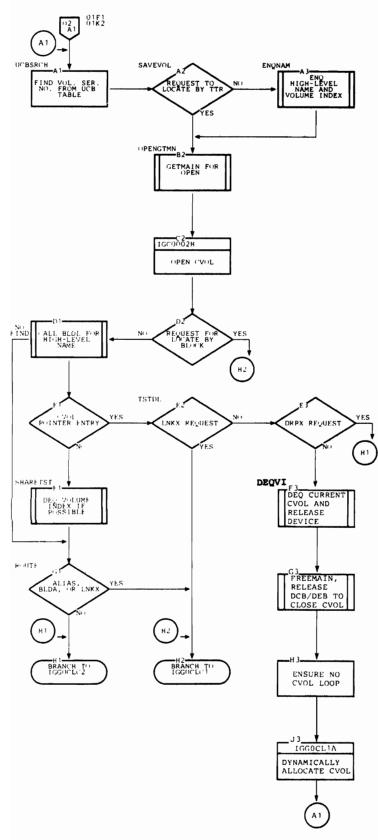
On exit, the registers are:

Register Meaning

- 2 Address of UCB
- 4 Base register for this subroutine
- 5 Pointer to SVRB extension
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT

- 9 Address of CVT
- 12 Linkage register for BAL instructions
- 13 Base register for BLDLAREA
- 14 Linkage register for BAL instructions

FUNCTIONS: WORKAREA is the common workspace and communications area for all CVOL catalog management subroutines. (Refer to "Data Areas" on page 92, for a description of WORKAREA.) When a locate function is requested, WORKAREA is built over the caller's 265-byte area, and the second area (called BLDLAREA) is obtained by GETMAIN. BLDLAREA is used with the routine IECPBLDL.


When a nonlocate function is requested, a larger area is obtained by GETMAIN for WORKAREA. Part of this area is used for BLDLAREA during execution of subroutines IGGOCLCO, IGGOCLC1, and IGGOCLC2. The BLDLAREA portion of WORKAREA is redefined for use as input/output buffers thereafter.

The first 256 bytes of WORKAREA are set to zero, which initializes all switches and flags. Supervisor addresses and the data set name go into WORKAREA, and the data set name is separated into its components.

Ł

.

CHART 3 (PART 2 OF 2). IGGOCLCO: INITIALIZATION (CSECT IGGOCLCC)

Notes for Chart 3 (Part 2 of 2)

BLDLAREA is initialized for use as input/output buffers.

The UCB table is searched for device information about the given CVOL catalog. GETMAIN allocates space for a DCB and a DEB, and IGC0002H opens the CVOL catalog.

Note: The OPEN macro instruction is not used to open a CVOL catalog. IGC0002H constructs a modified DCB/DEB for use by CVOL catalog management. No CLOSE macro is issued to close a CVOL catalog. FREEMAIN simply releases the main storage that is used for the modified DCB/DEB.

The first component of the data set name is used as the search parameter for BLDL. Searching begins with the first block of the CVOL catalog. If BLDL returns a CVOL pointer entry, an error return code is returned to the user.

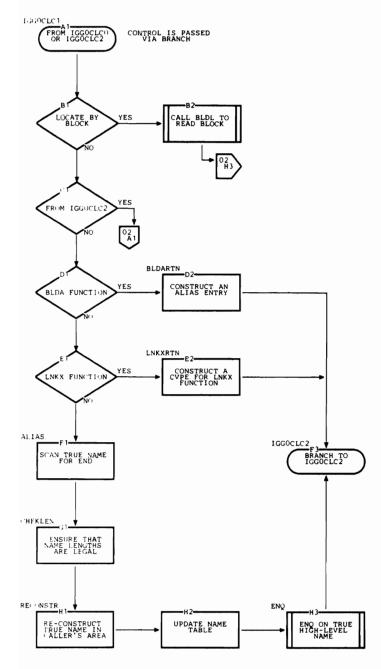
INTERNAL SUBROUTINES: None.

EXITS: Control passes via a branch instruction to:

 IGG0CLC1 if the requested function is BLDA or LNKX,

- LNKX or if the high-level name is an alias.
- IGG0CLC7 for an error condition.
- IGG0CLC2 for all other functions or conditions.

Control passes via a branch to IGC0002H to open the CVOL catalog and returns to this subroutine.


ERROR CONDITIONS

Code Reason

- 4 Volume not mounted or does not contain the CVOL catalog.
- 20 Syntax error in data set name.
- 24 Permanent input/output error.
- 28 Bad relative track address for the CVOL catalog.
- 32 Bad address for caller's area.

REFERENCES: CVT, TCB, SVRB, DCB, DEB, and UCB are described in <u>Data Areas</u>.

CHART 4 (PART 1 OF 2). IGGOCLC1: RELATIVE GDG AND ALIAS (CSECT IGGOCLCC)

Notes for Chart 4 (Part 1 of 2)

IGGOCLC1: Relative GDG and Alias

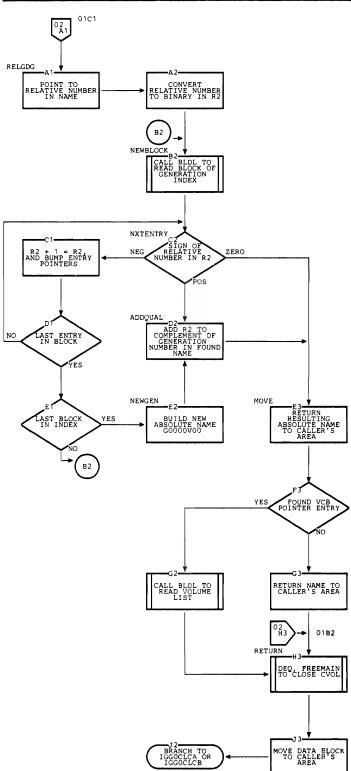
IGGOCLC1 is the entry point. Control comes from:

- IGGOCLCO when the requested function is either BLDA or LNKX, locate-by-block, or when an alias is found (except with a DLTA request).
- IGG0CLC2 when a relative GDG number is found in the data set name.

Register Meaning

- 4 Base register for this subroutine
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT
- 12 Linkage register for BAL instructions
- 13 Base register for BLDLAREA
- 14 Linkage register for BAL instructions

FUNCTIONS: When locate-by-block is requested, the block is read and returned to the caller.


When control comes from IGGOCLC2, control goes to label RELGDG for relative GDG processing.

If the requested function is BLDA or LNKX, the appropriate entry is constructed and control passes to IGG0CLC2 to the update subroutines.

When an alias is discovered, the fully qualified name is reconstructed in the caller's name area, using the true name. The name table is updated to reflect the change, and the high-level name is re-engueued.

Control comes from IGG0CLC2 when a relative GDG number is discovered in the data set name. This subroutine determines the absolute GDG name for the data set. If the request is a locate function, either the volume list for the data set or a new absolute GDG name is returned to the caller. Otherwise, an error condition exists and IGG0CLC7 is invoked.

The generation number in absolute GDG names is complemented before the names are added to the generation index. Therefore, the most recent entry (the highest generation number) is the first entry in the index, the second most recent entry is the second entry in the index, etc.

CHART 4 (PART 2 OF 2). IGGOCLC1: RELATIVE GDG AND ALIAS (CSECT IGGOCLCC)

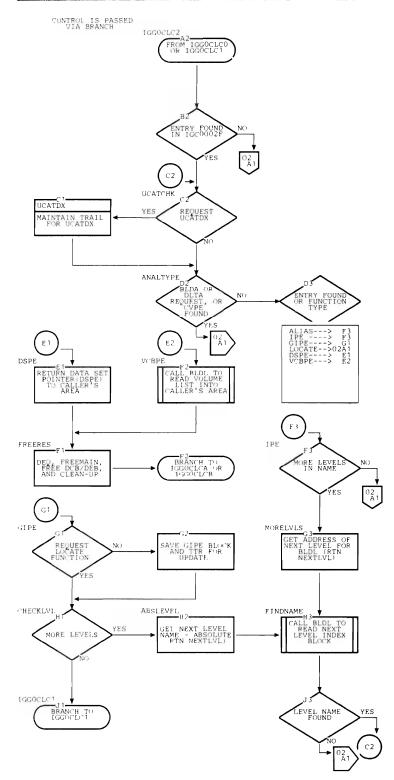
Notes for Chart 4 (Part 2 of 2)

When the relative GDG number is negative or zero, an absolute GDG name from the generation index is returned to the caller along with the corresponding volume list. Zero corresponds to the first entry, -1 corresponds to the second entry, and so forth.

When the relative GDG number is positive, a new absolute GDG name is created and returned to the caller. If the generation index is empty, this name is GOUONVOO (where n is the relative number). If the generation index is not empty, the relative GDG number is added to the generation number of the first entry to create the new absolute GDG name.

INTERNAL SUBROUTINES: CALLBLDL calls BLDL routine via entry point IECPBLDL. **EXITS:** Control passes via a branch instruction to:

- IGG0CLCA or IGG0CLCB after relative GDG processing.
- IGGOCLC7 for error conditions.
- IGG0CLC2 for all other functions or conditions.


ERROR CONDITIONS

Code Reason

- 8 Name not found for locate function, or existing structure inconsistent with request for non-locate function.
- 20 Syntax error in data set name.
- 28 Permanent I/O error.

,

CHART 5 (PART 1 OF 2), IGGOCLC2: LOCATE (CSECT IGGOCLCC)

Notes for Chart 5 (Part 1 of 2)

IGGOCLC2: Locate

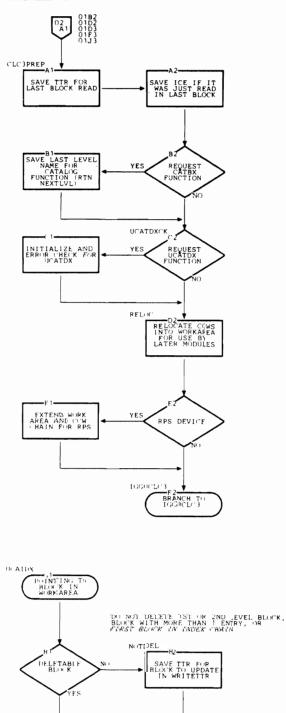
IGGOCLC2 is the entry point. Control comes from:

- IGG0CLC1 after resolving an alias or constructing an entry for BLDA or LNKX request.
- IGGOCLCO for all other functions or conditions.

Register Meaning

- 4 Base register for this subroutine
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT
- 12 Linkage register for BALR instructions
- 13 Base register for BLDLAREA
- 14 Linkage register for BALR instructions

FUNCTIONS: This subroutine completes the locate functions, or finds the last valid index level for a non-locate function. IECPBLDL (BLDL) is used to search index levels successively. At each index level, one component of the data set name is used. When locate-by-name is requested, BLDL is used with each component of the data set name as the search parameter. When BLDL returns an index pointer entry (IPE), IGGOCLC2 uses it to determine the track address for the next search. The search by BLDL continues with the next component of the name.


When BLDL returns a data set pointer entry (DSPE) or volume control block pointer entry (VCBPE), the corresponding volume list is returned to the caller.

When the request is for a non-locate function and BLDL fails to find the next level, the update process is initiated.

The last valid level of the existing index structure is saved to use while updating.

IGGOCLC2 contains skeletal channel programs that are used by the nonlocate subroutines. These CCW chains are moved to BLDLAREA.

CHART 5 (PART 2 OF 2), IGGOCLC2: LOCATE (CSECT IGGOCLCC)

J2

SAVE TTR FOR IST DELETABLE BLOCK IN DFLTTRI

Notes for Chart 5 (Part 2 of 2)

INTERNAL SUBROUTINES: UCATDX maintains a TTR trail of blocks that can be deleted.

BLDLCALL calls BLDL to search for one name.

TORLTV converts an absolute address to a relative track address.

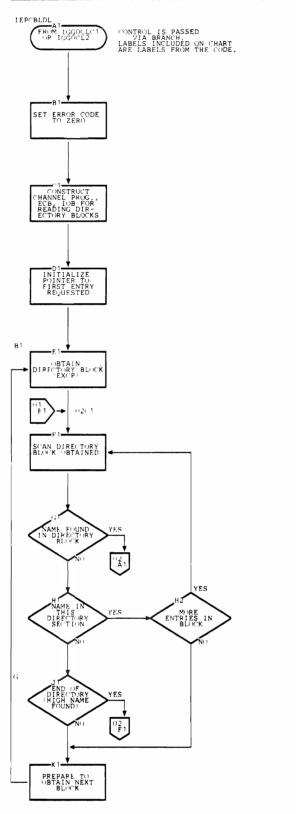
NEXTLVL gets the component of the data set name in order to search for the next level.

RECHK performs RACF authorization checking.

EXITS: When the request is a locate function, control passes to:

- IGG0CLCA or IGG0CLCB along with the volume list for the data set name.
- IGGOCLC1 for relative GDG number.

When the request is for a nonlocate function, control passes to:


- IGGOCLC7 for an error condition.
- IGG0CLC3 for all other functions or conditions.

ERROR CONDITIONS

Code Reason

- 8 Name not found for locate request, existing structure inconsistent with non-locate request, or the last entry found was a CVPE with locate request.
- 12 Last entry found was an IPE or alias with locate request.
- 16 Nonexistent index levels specified.
- 20 Syntax error in data set name.
- 28 Permanent I/O error.

CHART 6 (PART 1 OF 2), IECPBLDL (CSECT IGGOCLCC)

Notes for Chart 6 (Part 1 of 2)

IECPBLDL

IECPBLDL is the entry point. Control comes from IGG0CLC1 or IGG0CLC2.

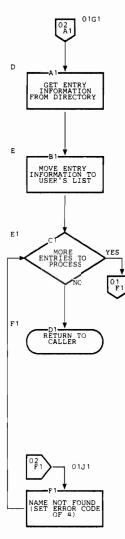
- Register Meaning
- 0 BLDL List address
- 1 DCB address
- 13 400 byte WORKAREA address

14 Return address

FUNCTIONS: This subroutine searches the CVOL catalog for a name, and returns the information stored in the directory associated with each name. The format of the directory and of the returned information is described in <u>System</u> <u>Programming Library: Data Management</u> <u>Services</u>.

EXITS: Control returns to the caller via a branch instruction when IECPBLDL completes its function.

Control returns to the caller via a branch instruction for an error condition.

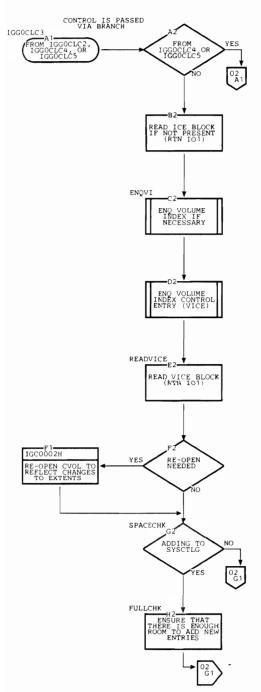

INTERNAL SUBROUTINES: None.

ERROR CONDITIONS

Code Reason

- 4 Entry not found
- 8 Permanent I/O error

CHART 6 (PART 2 OF 2), IECPBLDL (CSECT IGGOCLCC)



(

•

÷

CHART 7 (PART 1 OF 2), IGGOCLC3: UPDATE INITIALIZATION AND ENTRY BUILDING (CSECT IGGOCLCD)

Notes for Chart 7 (Part 1 of 2)

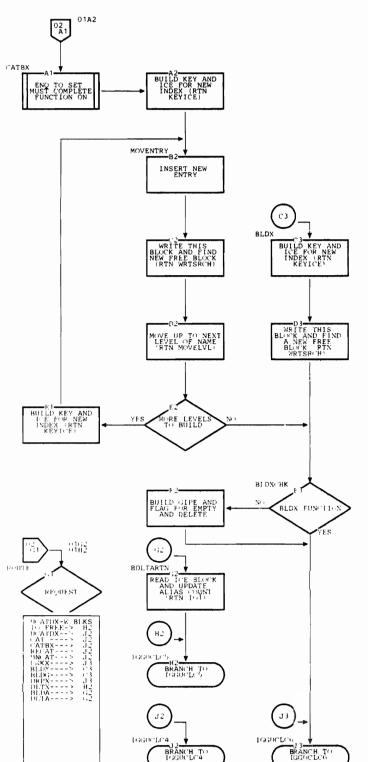
IGG0CLC3: Update Initialization and Entry Building

IGGOCLC3 is the entry point. Control comes from:

- IGG0CLC4 after constructing a DSPE for a CATBX request.
- IGG0CLC5 after writing a volume control block and constructing a VCBPE for a CATBX function.
- IGG0CLC2 for all other functions or conditions.

Register Meaning

- 4 Base register for this subroutine
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT
- 12 Linkage register for BAL instructions
- 14 Linkage register for BAL instructions


FUNCTIONS: When entry is from IGGOCLC4 or IGGOCLC5, index levels for a CATBX request must be built. Control goes to label CATBX on the next subchart.

When control comes from IGG0CLC2, the index control entry (ICE), if not already present, and volume index control entry (VICE) are read. The request is checked against available space in the CVOL catalog it ensure that there is enough space to make the required changes.

This module constructs new index levels for a CATBX function and constructs an index pointer entry for the new level to be added to the existing structure. When the requested function is DRPX or DLTA, the entry to be removed is named and IGGOCLC6 deletes it.

When CATBX is requested, IGG0CLC4 is called to construct the DSPE. Control returns to IGG0CLC3 where the required index levels are built and written into the CVOL catalog. Each level results in an index pointer entry (IPE) that must be added to the next higher level. When an existing level is reached, control passes to IGG0CLC6.

IGGOCLC3 routes the update request to the subroutines that perform the appropriate function.

CHART 7 (PART 2 OF 2). IGGOCLC3: UPDATE INITIALIZATION AND ENTRY BUILDING (CSECT IGGOCLCD)

Notes for Chart 7 (Part 2 of 2)

INTERNAL SUBROUTINES: MOVELVL gets the component of the data set name for the current index level from name table.

WRTSRCH writes a new block to the CVOL catalog and searches for another available block.

KEYICE constructs a new index block, with its ICE and key.

TOABSL converts a relative track address to an absolute track address.

TORLTV converts an absolute track address to a relative track address.

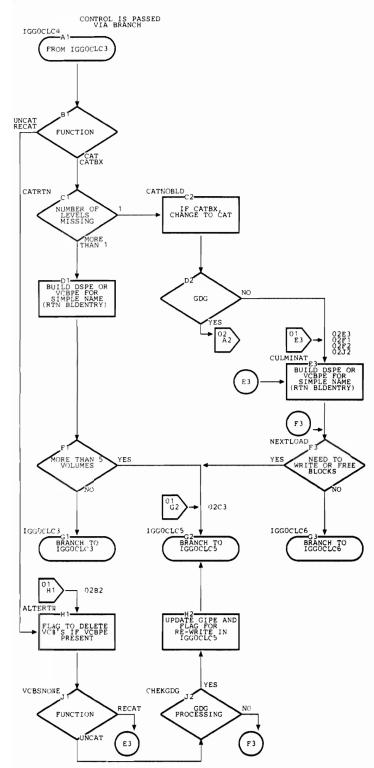
IO1 performs EXCP input/output. This subroutine invokes IGC0002H if a new extent of the CVOL catalog is required.

EXITS: Control passes via a branch instruction to:

- IGG0CLC4 when the requested function is CATBX, CAT, RECAT, or UNCAT.
- IGGOCLC5 when blocks of the CVOL catalog need to be freed, or when

new blocks have been written, but the requested process has been aborted.

- IGG0CLC7 for error conditions.
- IGG0CLC6 for all other functions or conditions.


Control passes via a branch to IGC0002H when a new extent of the CVOL catalog is required or when the CVOL catalog must be reopened, and returns to this subroutine.

ERROR CONDITIONS

Code Reason

- 8 Existing structure is inconsistent with the requested function.
- 12 Attempt to delete a nonempty index level.
- 20 Not enough space available in the CVOL catalog to perform the requested function.
- 28 Permanent I/O error.

CHART 8 (PART 1 OF 2). IGG0CLC4: ENTRY BUILDING (CSECT IGG0CLCD)

Notes for Chart 8 (Part 1 of 2)

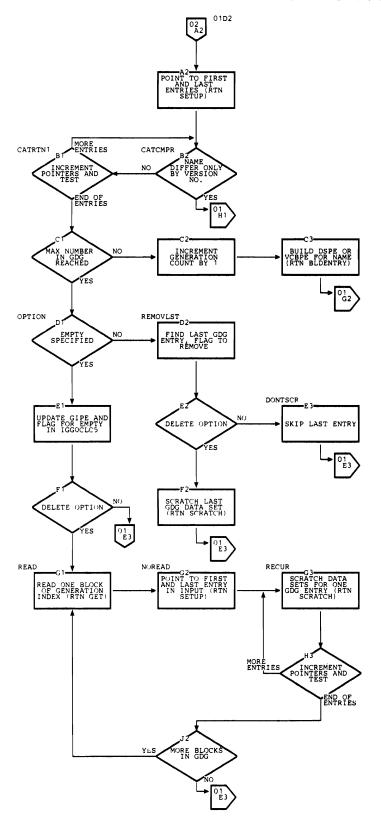
IGG0CLC4: Entry Building

IGGOCLC4 is the entry point. Control comes from IGGOCLC3 when the requested function is CAT, CATBX, RECAT, or UNCAT.

- Register Meaning
- 4 Base register for this subroutine
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT
- 12 Linkage register for BAL instructions
- 14 Linkage register for BAL instructions

FUNCTIONS: If the requested function is RECAT or UNCAT, control passes to label ALTERTN. If the request is for CAT or CATBX, control passes to label CATRTN.

This subroutine constructs a new DSPE or VCBPE. When there are more than five volumes in the volume list, IGGOCLC5 is invoked to write volume control blocks. If the data set name is not for a generation data group, control passes to label CULMINAT. Part two of the flowchart deals with cataloging functions to a generation index. The new member of a GDG is checked against existing members to see if this is a new version of an existing member.


If the maximum number of entries that a generation index can hold is exceeded with this addition, the EMPTY and DELETE options for GDG are processed.

If EMPTY was specified, IGG0CLC5 will remove all entries from the generation index before adding the new entry. Otherwise, IGG0CLC5 will remove only the oldest entry before adding the new entry. IGG0CLC4 flags what is to be done.

If DELETE was specified, IGGOCLC4 issues the SCRATCH macro instruction on every data set name that will be removed by IGGOCLC5. If DELETE is not specified, nothing is scratched.

The RECAT and UNCAT functions are processed by naming the old entry. IGGOCLC6 deletes the old entry when it gets control. For RECAT, a new entry is also constructed. IGGOCLC6 adds this new entry to the CVOL catalog.

CHART 8 (PART 2 OF 2). IGGOCLC4: ENTRY BUILDING (CSECT IGGOCLCD)

Notes for Chart 8 (Part 2 of 2)

INTERNAL SUBROUTINES: TOABSL2 converts an absolute track address to a relative track address.

IO2 performs EXCP input/output operations.

GET reads a block from the CVOL catalog into the input buffer of BLDLAREA.

SETUP points to the first and last entry in an index block.

INCR bumps the pointer to the next entry in an index block.

BLDENTRY constructs a data set pointer entry (DSPE) or a volume control block pointer entry (VCBPE).

SCRATCH performs a SCRATCH macro instruction for one data set and its VCBs.

EXITS: Control is passed via a branch instruction to:

- IGG0CLC3 when CATBX is being performed.
- IGG0CLC5 when auxiliary reading or writing is required:

- Volume control blocks (VCBs) need to be written.
- VCBs or index blocks need to be freed.
- The DELETE option of a GDG needs to be performed.
- Updated GDG index blocks need to be rewritten.
- IGG0CLC7 for error conditions.
- IGG0CLC6 for all other functions or conditions.

ERROR CONDITIONS

Code Reason

- 8 Existing structure is inconsistent with requested function.
- 16 Nonexistent index level required.
- 24 Improperly named GDG data set, or GDG data set to be added is older than existing GDG data sets.
- 28 Permanent I/O error.

•

-

÷

CHART 9 (PART 1 OF 2), IGGOCLC5: FIRST LOAD OF UPDATE (CSECT IGGOCLCD)

Notes for Chart 9 (Part 1 of 2)

IGG0CLC5: First Load of Update

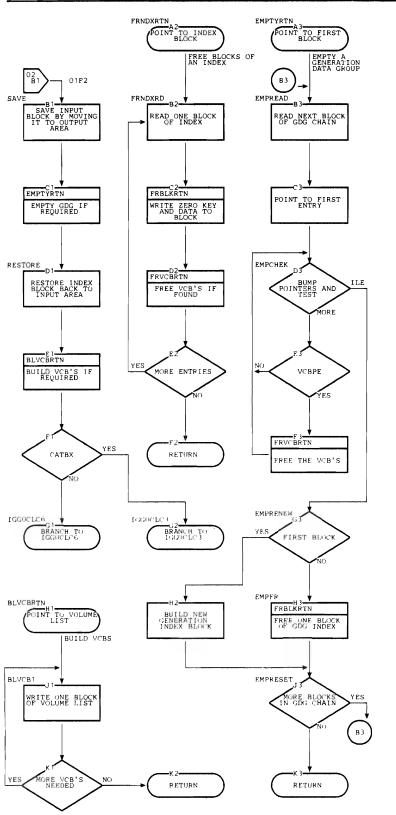
IGGOCLC5 is the entry point. Control comes from IGGOCLC3 or IGGOCLC4 when blocks of the CVOL catalog need to be written or freed.

Register Meaning

- 4 Base register for this subroutine
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT
- 12 Linkage register for BAL instructions
- 14 Linkage register for BAL instructions

FUNCTIONS: ENQ is reissued to ensure that any changes to the CVOL catalog will be completed.

This subroutine consists of a series of tests for required functions. Each test calls the appropriate internal subroutine to perform one function if it is required. Chains of volume control blocks (VCBs) and index blocks are freed if possible; that is, they are set to zeros and rewritten into the CVOL catalog. They then have a key of zero, indicating that they are available for use.


If changes have been made to a generation index, the block containing the generation index pointer entry (GIPE) must be updated. Likewise, the last block of the generation index may need to be rewritten.

If a generation index reached its maximum number of entries in IGGOCLC4 and the EMPTY option was specified, that option is processed. IGGOCLC4 will have already processed the DELETE option.

If the generation index if full and the EMPTY option was not specified, the name with the lowest generation number (the oldest data set) is removed from the index.

An UCATDX request can result in unneeded index blocks. Such blocks are freed.

If a CATBX function is requested and the volume list contains more than five volumes, volume control blocks are constructed from that list and written to the CVOL catalog.

CHART 9 (PART 2 OF 2). IGGOCLC5: FIRST LOAD OF UPDATE (CSECT IGGOCLCD)

Notes for Chart 9 (Part 2 of 2)

INTERNAL SUBROUTINES: WRBLKRTN, WRLSTRTN, EMPTYRTN, FRNDXRTN, FRVCBRTN, FRBLKRTN, and BLVCBRTN are shown on the flowchart.

SETUP points to the first and last entry in an index block.

INCR increments the pointer to the next entry in an index block.

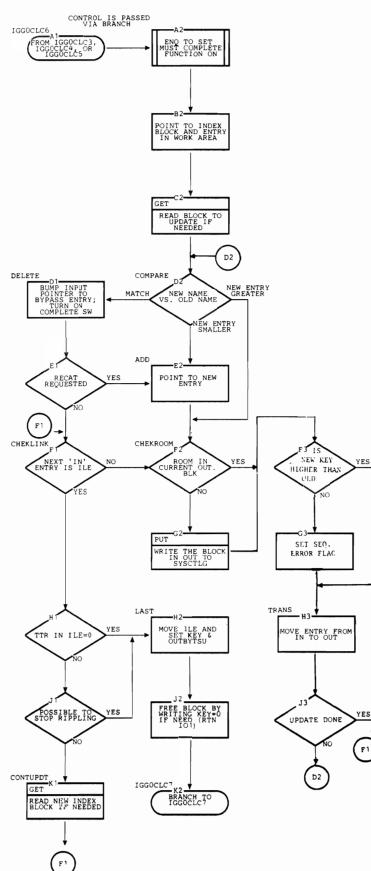
TOABSL converts a relative track address to an absolute track address.

TORLTV converts an absolute track address to a relative track address.

IO3 performs EXCP input/output operations. This subroutine invokes IGC0002H if a new extent is required.

EXITS: Control passes via a branch instruction to:

- IGG0CLC3 when the requested function is CATBX.
- IGGOCLC7 for error conditions.
- IGG0CLC6 for all other functions or conditions.


Control passes via a branch to IGC0002H when a new extent of the CVOL catalog is required, and returns to this subroutine.

ERROR CONDITIONS

Code Reason

- 20 Not enough space available in the CVOL catalog to perform the requested function.
- 28 Permanent I/O error.

CHART 10 (PART 1 OF 2). IGGOCLC6: SECOND LOAD OF UPDATE (CSECT IGGOCLCE)

Notes for Chart 10 (Part 1 of 2)

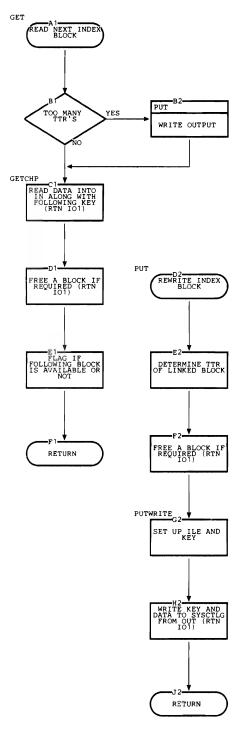
IGG0CLC6: Second Load of Update

IGGOCLC6 is the entry point. Control comes from:

- IGGOCLC4 when the requested function is CAT, UNCAT, RECAT, or CATBX.
- IGG0CLC3 or IGG0CLC5 for all other requests or conditions.

Register Meaning

- 4 Base register for this subroutine
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT
- 12 Linkage register for BAL instructions
- 14 Linkage register for BAL instructions


FUNCTIONS: This subroutine adds or deletes an entry to or from a given index block, as set up by earlier phases, and propagates (ripples) the change through the index chain as needed. Each entry is taken from the buffer INPUT and placed into the buffer OUTPUT until the collating sequence of the entry is equal to or greater than the name in the update request. If the request name is equal, that entry is skipped (delete function). If the request name is greater, the new entry is merged into OUTPUT (add function). Overflow entries become an add request for the next block in the chain.

Subroutines named GET and PUT are used for input/output. GET reads a block into INPUT, a field of WORKAREA, and initializes PUT. Entries are transferred from INPUT to OUTPUT, another field of WORKAREA. When all entries have been exhausted from INPUT, another block of the index is read from SYSCTLG.

When OUTPUT is full, a block is written to SYSCTLG from OUTPUT by the routine PUT. PUT checks all available records before writing the block and chooses the record of SYSCTLG that is most likely to result in contiguous blocks of one index. PUT tries to free any unneeded blocks; any unneeded block that PUT cannot free is later freed by GET.

٠

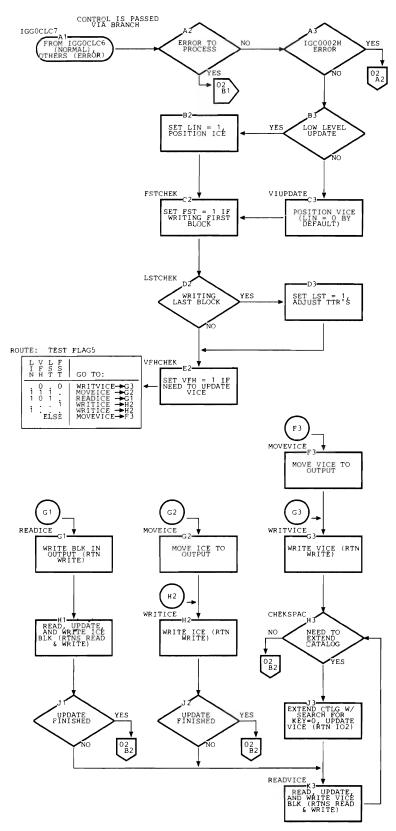
CHART 10 (PART 2 OF 2), IGGOCLC6: SECOND LOAD OF UPDATE (CSECT IGGOCLCE)

Notes for Chart 10 (Part 2 of 2)

INTERNAL SUBROUTINES: GET reads one block from an index in the CVOL catalog.

PUT prepares and writes one block into an index in the CVOL catalog.

TOABSL converts a relative track address to an absolute track address.


TORLTV converts an absolute track address to a relative track address.

IO1 performs EXCP I/O operations.

EXITS: Control is always passed to IGGOCLC7 via a branch instruction.

ERROR CONDITIONS: The only exception code from this subroutine is 28 (1C), which indicates that a permanent input/output error has occurred.

CHART 11 (PART 1 OF 2). IGGOCLC7: THIRD LOAD OF UPDATE AND ERROR HANDLING (CSECT IGGOCLCE)

Notes for Chart 11 (Part 1 of 2)

IGGOCLC7: Third Load of Update and Error Handling

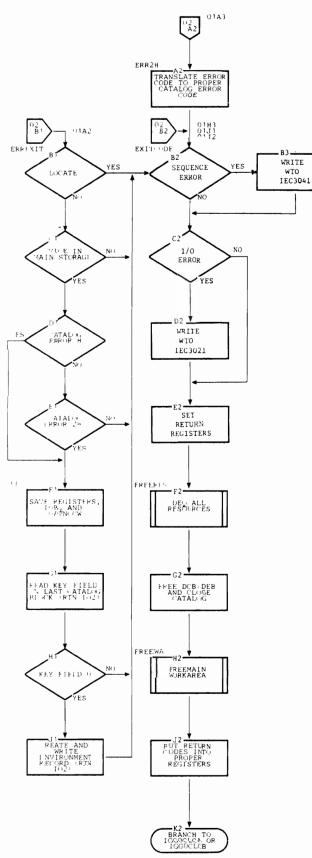
IGG0CLC7 is the entry point. Control normally comes from IGG0CLC6, but can come from any subroutine of CVOL catalog management when an error condition is discovered.

Register Meaning

- 4 Base register for this subroutine
- 5 Pointer to SVRB extension
- 6 Base register for WORKAREA DSECT
- 8 Base register for CAMLSTD DSECT
- 12 Linkage register for BAL instructions
- 14 Linkage register for BAL instructions

On exit, all registers (except registers 0, 1, and 15) are restored by the supervisor.

Register 15 contains the exceptional return code. Registers 0 and 1 contain additional information that specifies the type of error encountered. FUNCTIONS: IGGOCLC7 completes the update process. The last block of an updated index is written to the CVOL catalog.


The block containing the index control entry (ICE) is read, and the ICE is updated to reflect changes to the index. This block is rewritten to the CVOL catalog.

The block containing the volume index control entry (VICE) is read, and the VICE is updated to reflect changes to the CVOL catalog. This block is rewritten into the CVOL catalog.

Tests are made before rewriting any block. If the block is both the last block of an index and the block containing the ICE, or the block containing the VICE, it is rewritten only once.

If an error is discovered, pertinent information is gathered from the WORKAREA and placed into an environment record and written to the CVOL catalog. If the error is a sequence error, message IEC304I is written to the operator console. If the error is an I/O error on a non-locate operation, message IEC302I is written to the operator console. The exceptional return code is set and all resources are freed. Control returns to the caller of CVOL catalog management via a branch instruction.

CHART 11 (PART 2 OF 2). IGGOCLC7: THIRD LOAD OF UPDATE AND ERROR HANDLING (CSECT IGGOCLCE)

Notes for Chart 11 (Part 2 of 2)

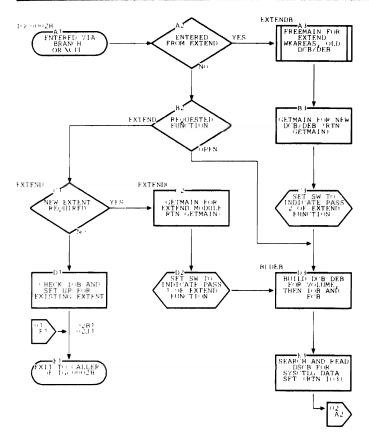
INTERNAL SUBROUTINES: READ reads one block from the CVOL catalog.

WRITE writes one block to the CVOL catalog.

TOABSL converts a relative track address to an absolute track address.

TORLTV converts an absolute track address to a relative track address.

IO2 performs EXCP input/output operations. This subroutine invokes IGC0002H if a new extent of the CVOL catalog is required. **ERROR CONDITIONS:** This subroutine returns any exception code from another CVOL catalog management CSECT to the caller. This exception code is passed to IGGOCLC7 in WORKAREA.


The only exception code from this subroutine is 28, which indicates that a permanent I/O error has occurred.

EXITS: IGG0002H may be invoked via a branch when a new extent of the CVOL catalog is required. Control returns to this subroutine when a new extent has been located.

Control returns to IGGOCLCA or IGGOCLCB via a branch instruction.

•

CHART 12 (PART 1 OF 2). IGC0002H: SYSCTLG OPEN/EXTEND (CSECT IGG0CLCF)

Notes	for	Chart	12	(Part	1	of	2)
110.000					-	•••	- /

IGC0002H: SYSCTLG Open/Extend

IGC0002H is the entry point. Control comes from:

- IGG0CLC0 or IGG0CLC3 to open a CVOL catalog.
- IGG0CLC3, IGG0CLC5, or IGG0CLC7 to extend the CVOL catalog.
- Control also comes via an XCTL macro instruction from IGG0553E after extending SYSCTLG.

On entry for opening, the registers are:

Register Meaning

0 Zero

1 Address of UCB for volume

8 Address of CAMLST

15 Address of area in which to build DCB/DEB chain

On entry for extending, the registers are:

Register Meaning

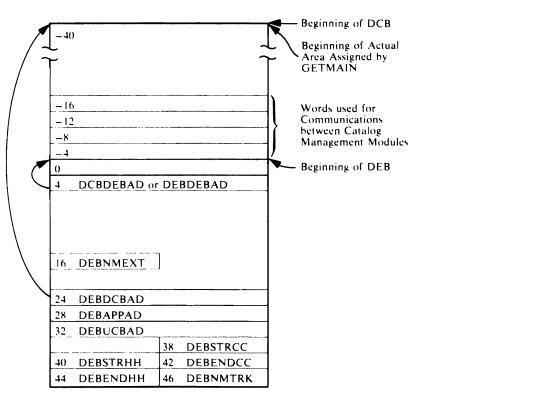
- 0 Address of DCB for the CVOL catalog
- 8 Address of CAMLST

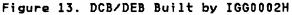
On entry after extending, the registers are:

Register Meaning

- 6 Address of SVRB
- 7 Address of Extend Work Area
- 8 Zero
- 9 Address of catalog DCB
- 10 UCB address

On exit, the register is:


Register Meaning


1 Address of DCB/DEB chain

FUNCTIONS: When this subroutine is entered to open a CVOL catalog, a data control block (DCB) and a data extent block (DEB) are built in the work area provided by IGGOCLCO. If the catalog is new, IGGOCLF2 is invoked to format it.

Note: The DCB/DEB constructed by this subroutine is a modification of that described in <u>Debugging Handbook</u>. These two blocks are merged together; that is, they overlap in the same area of main storage, as shown in Figure 13 on page 78.

For SYSCTLG data sets that reside on MSS virtual volumes, an acquire for DASD space is issued.

(

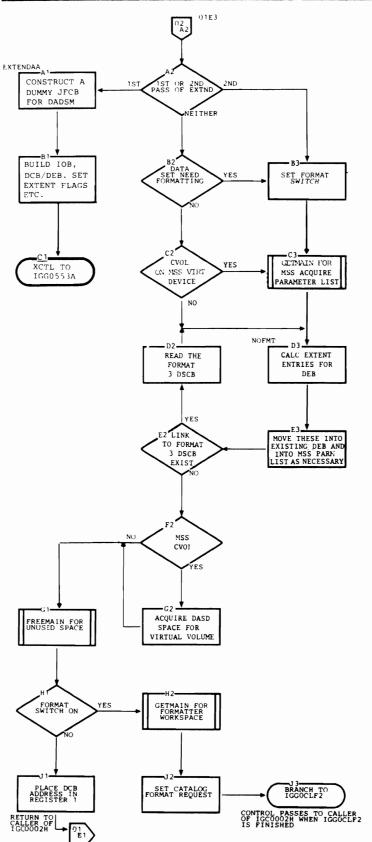


CHART 12 (PART 2 OF 2), IGC0002H: SYSCTLG OPEN/EXTEND (CSECT IGG0CLCF)

Notes for Chart 12 (Part 2 of 2)

When this subroutine is entered to cross to another extent of the CVOL catalog, a test is made to see if another extent already exists. If so, WORKAREA is modified accordingly, and control returns to the caller.

When another extent does not exist, the virtual storage for the previous DCB/DEB is released and a new area is obtained with GEIMAIN. IGG0553A is invoked to allocate a new extent and a new DCB/DEB is built into the new area (the catalog is reopened).

Main storage for the DCB/DEB is set to zeros before building; then only the fields that are shown are filled in. The DEB overlays the DCB at offset 40 (28). The fields that are named are described in <u>Debugging Handbook</u>.

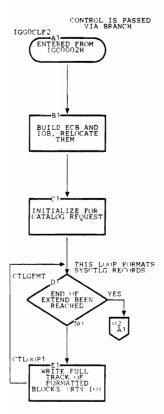
INTERNAL SUBROUTINES: GETMAIN gets main storage for the DCB/DEB.

IO performs EXCP input/output operations.

EXITS: Control returns to the caller via a branch instruction when IGC002H completes its function.

Control returns to the caller via a branch instruction for an error condition.

Control passes via XCTL to IGG0553A when another extent is required. Control returns via XCTL to entry point IGC0002H.


Control passes via a branch instruction to IGGOCLF2 when either the CVOL catalog or a new extent needs to be formatted. Control returns directly to the caller.

ERROR CONDITIONS

Code Reason

- 4 No extents are allocated or acquired.
- 8 No more extents are available.
- 12 Permanent I/O error.

CHART 13 (PART 1 OF 2). IGGOCLF2: SYSCTLG FORMATTER (CSECT IGGOCLCF)

6

Notes for Chart 13 (Part 1 of 2)

IGGOCLF2: SYSCTLG Formatter

IGG0CLF2 is the entry point. Control comes from IGC0002H.

Register Meaning

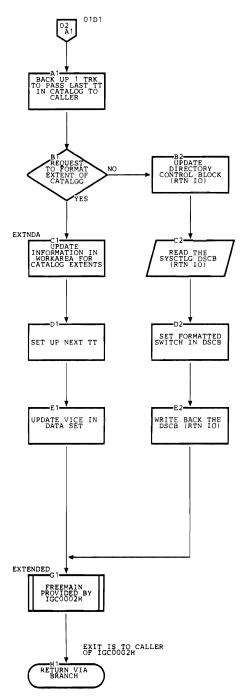
- 0 Contains zeros when formatting the CVOL catalog
- 1 Address of DCB for this data set
- 2 Number of blocks per track for this device
- 3 Number of bytes in work area passed to IGGOCLF2
- 5 Data management count decrement value

- Starting relative track address (TTR) when formatting the CVOL catalog
- 7 Address of work area

FUNCTIONS: The data set is formatted into 256-byte blocks with 8-byte keys.

If the extent is being formatted during an open CVOL catalog request, this is the first extent of a new CVOL catalog. The first block is initialized by writing a volume index control entry (VICE) into it.

If formatting is not being done for the first extent, this is a new extent of an already existing CVOL catalog. The VICE is read, updated, and rewritten to reflect the new extent.


The work area that is passed to IGGOCLF2 is freed before exit.

٠

.

.

CHART 13 (PART 2 OF 2). IGGOCLF2: SYSCTLG FORMATTER (CSECT IGGOCLCF)

Notes for Chart 13 (Part 2 of 2)

INTERNAL SUBROUTINES: CNVT converts a relative track address to an absolute track address.

IO performs EXCP input/output operations.

•

RELOC builds channel programs for input/output.

ERROR CONDITIONS: IGGOCLF2 returns on exception code, 12 (hex), which indicates that an I/O error has occurred.

EXITS: Control is returned to the caller of IGC0002H via a branch instruction.

MICROFICHE DIRECTORY

This chapter contains a listing of the CSECTs that make up the CVOL processor and the subroutines contained within each CSECT. These listings are helpful in summarizing program organization.

Note: The listings use CPL, FVT, and FPL instead of CTGPL, CTGFV, and CTGFL, respectively. See <u>Catalog Diagnosis Reference</u> for a description of these data areas.

In the following tables, the CSECT name appears in the first (leftmost) column. The second column contains an entry-point label or a subroutine label (internal procedure). The third column differentiates between entry points (EP) and procedures (PR). The fourth column describes the subroutine. For more information on the CSECTs and subroutines, refer to "Method of Operation" on page 4, and "Program Organization" on page 13.

.

(

.

(

CSECT	Subroutine	Use	Description
IGGOCLCA			CVOL Sharing Interface Mapper CSECT 1. This module is the first of two CSECTs that map VSAM and OS catalog functions to CVOL Catalog Management.
	IGGOCLCA	EP	Main entry point for this CSECT.
	IGGOCLIA	EP	Dynamically allocates a CVOL Catalog.
	DELETE	PR	Processes a VSAM-like delete request. This is accomplished by issuing an OS UCATDX request and optionally a SCRATCH SVC.
	DSCBTTR	PR	Processes a 'DSCBTTR' CTGFL.
	DSTYPNAM	PR	Processes a 'DSTYPNAM' CTGFL.
	ENTNAME	PR	Processes a 'ENTNAME' CTGFL.
	ENTYPE	PR	Processes a 'ENTYPE' CTGFL.
	ESTAEXIT	PR	Processes a 'ESTAE' intercepted abend.
	FPLMV	PR	Processes the following repeating field CTGFLs: DEVTYP, VOLSER, FILESEQ, and CATVOL.
	GENLOC	PR	Processes a VSAM-like generic locate. Most of the processing is done by the second CSECT of the Interface Mapper (IGGOCLCB).
	GETSVCK	PR	Changes storage key via MODESET macro from user key to SVC key.
	GETUSERK	PR	Changes storage key via MODESET macro from SVC key to user key.
	LOCNAME	PR	Issues an OS LOCATE by NAME request.
	LOCTTR	PR	Issues an OS LOCATE by TTR request.
	OSREQ	PR	Sets up and executes an original OS CAMLST format request.
	RESCAN	PR	Searches the CVOL Catalog and determines if the specified data set is a generation data group type. If a generation index pointer entry (GIPE) is found, the GIPEPTR contains the address of the GIPE. Otherwise, the GIPEPTR contains zeros to indicate the absence of a GIPE.
	SLDGD	PR	Processes a SUPERLOCATE generation data group request with the base generation number supplied.
	SLGDGB	PR	Processes a SUPERLOCATE generation data group request to return the generation data group base value.
	SLGDGBL	PR	Searches for a new absolute generation number if the supplied relative generation number is less than zero.

٠

-

.

CSECT	Subroutine	Use	Description
IGGOCLCA	SLNAME	PR	Processes a normal superlocate request or a GDG ALL request.
	SLVOLST	PR	Fills the user's volume list area with volume serial numbers, device types, and file sequence numbers.
	SRCHPCCB	PR	Searches the PCCB (Private Catalog Control Block) chain to see if a PCCB for the needed catalog is already on the chain. If it is, the PCCBPTR points to it. If there is no PCCB, the PCCBPTR is zeroed.
	SUPERLOC	PR	Determines type of superlocate request and calls the appropriate procedure: SLGDG, base generation number supplied; SLGDGB, base only requested; or SLNAME, normal SUPERLOCATE.
	VLOC	PR	Processes a VSAM LOCATE or an Access Method Services LISTCAT.
IGGOCLCB			This is the main processing module for the Generic Locate. It searches the SYSCILG data set using CVOL Catalog Management LOCATE and returns the names of all data sets that are found to have the requested high level qualifiers as the first part of the data set name.
	IGGOCLCB	EP	Only entry point for this CSECT.
	CIR	PR	CIR locates and builds the lists of qualifiers to be processed for CSECT IGGOCLB.
	CODECO	PR	This subroutine gets control if LOCATE passes a return code of zero.
	DSNAMRT	PR	This subroutine gets control when a data set entry is found in the list from CIR. DSNAMRT checks to determine if a generation data group is being processed. If so, the generation portion of the simple name must be complemented.
	GDGROUT	PR	This subroutine is entered if a generation data group entry is found in the CIR list. It turns on the GDGSW switch so that the data set name entry routine (DSNAMRT) will know that the generation number in the simple name will not need complementing. A check is made to see if any generations exist. If not, this entry is skipped. If any generations exist, the count of the number of generations cataloged is kept and decremented each time a generation name is processed. Control is passed to the index entry routine (INDEXRT) to read in the list of names through CIR. Register 6 points to the current entry.

(

٠

٠

•

CSECT	Subroutine	Use	Description
IGGOCLCB	INDEXRT	PR	This subroutine gets control when an index entry is discovered in the list from CIR. It sets up a parameter list for CIR and uses subroutine OBTBLK to allocate another block for a new list of lower qualifiers. The new list is made current, and CURNTBLK points to the current CIR list.
	MAINOO	PR	This subroutine checks for a null list and returns to the caller with a return code of 4 if the index structure specified or the USERID had no data sets cataloged under it.
	MAIN01	PR	Entry is made to this subroutine with register 6 pointing to a new list element or entry. The list entry is analyzed and the appropriate routine is used to process it. Data set name entries are used to complete fully qualified data set names, and are returned in the caller's output area.
	OBTBLK	PR	This subroutine is used to obtain a new block to be used as a work area for CIR and to become the current block. If no free blocks are available, a conditional GETMAIN is issued and the new block is added on the chain. If the GETMAIN fails, control is returned to caller with a return code of 8.
	POINTER	PR	This subroutine updates the current entry pointer in the current block. The current block is determined by searching the chain for the first block with a zero entry pointer and then backing up one. The current entry type is determined, and the pointer is advanced accordingly. If the next entry is a link entry which contains a nonzero TTR, the CIR is called to provide the next block of entries. If the TTR is zero, the current block is released and the preceding block is considered. When all blocks are processed, that is, the current block equals the first block and the empty block equals zero, the WRAPUP routine is entered.
	VCBROUT	PR	This subroutine is given control when a volume control block (VCB) entry is found in the list from CIR. A check is made to determine if a generation data group is being processed. If so, the generation portion of the simple name must be complemented. If there is no generation data group, the simple name is not complemented.
	WRAPUP	PR	This subroutine gets control when processing for IGGOCLCB is completed or an error resulting in termination occurs. It frees all the dynamic core obtained for IGGOCLCB.

•

•

.

,

CSECT	Subroutine	Use	Description
IGGOCLCC			CSECT IGGOCLCC performs the read operation for CVOL Catalog Management. It performs the locate functions and the locating part of the nonlocate functions.
	IGGOCLCC	EP	Only entry point for CSECT IGGOCLCC.
	IGGOCLCO	PR	This subroutine initializes the work areas, opens the given CVOL Catalog, and searches for high level names.
	IGGOCLC1	PR	This subroutine resolves aliases, constructs BLDA or LNKX entries, and processes relative generation data groups.
	IGGOCLC2	PR	This subroutine searches lower levels of the name, saves last valid index levels, and relocates CCWs for use by CSECTs IGGOCLCD and IGGOCLCE.
	IECBLDL	PR	This subroutine searches for the qualified name in the CVOL Catalog.
	RACHK	PR	Performs RACF authorization checking via RECHECK macro for UNCATLG, RECATLG, DRPX, and CATLG-GDG requests.
IGGOCLCD			CSECT IGGOCLCD performs the setup operation. It checks the validity of the requests against the existing entries in the CVOL Catalog. It builds new entries to be added to the catalog, or it names entries to be deleted.
	IGGOCLCD	EP	Only entry point for CSECT IGGOCLCD.
	IGGOCLC3	PR	This subroutine ensures that VICE, ICE, and space are present. It constructs and writes new index blocks, and routes nonlocate requests.
	IGGDCLC4	PR	This subroutine constructs new DSPEs or VCBPEs. It scratches generation data groups if requested. The EMPTY option for generation data groups allows the the existing generations to be scratched before adding new ones.
	IGG0CLC5	PR	This subroutine frees index blocks, frees volume control blocks, and writes new volume control blocks. It also performs the EMPTY option as requested.

CSECT	Subroutine	Use	Description
IGGOCLCE			CSECT IGGOCLCE performs the write operation. It merges entries into SYSCTLG blocks, deletes entries from blocks, and does most of the writing that is needed.
	IGGOCLCE	EP	Only entry point for CSECT IGGOCLCE.
	IGGOCLC6	PR	This subroutine updates blocks, writes updated blocks to SYSCTLG, and ripples a change as needed to the last block of the updated chain.
	IGGOCLC7	PR	This subroutine writes the last updated block, updates the control entries, returns control to CSECT IGGOCLCA or IGGOCLCB, whichever called CSECT IGGOCLCC. This subroutine also handles all error conditions for CSECTS IGGOCLCC, IGGOCLCD, and IGGOCLCE.
IGGOCLCF			CSECT IGGOCLCF performs three functions: it opens CVOLs, extends CVOLs, and formats new extents.
	IGGOCLCF	EP	Main entry point for CSECT IGGOCLCF.
	IGC0002H	EP	This subroutine opens the SYSCTLG data set and gets the next extent of that data set. For SYSCTLG data sets which reside on MSS virtual volumes, it acquires the DASD space using SVC 26.
	IGG0CLF2	PR	This subroutine formats new extents of a catalog.

C

•

DATA AREAS

The data areas and record formats in this chapter are described in four columns, which are interpreted as follows:

• Offset

The numeric address of the field relative to the beginning of the area. The first number is the offset in decimal, followed (in parentheses) by the hexadecimal equivalent.

Bytes and Alignment

The size (number of bytes) of the field and its alignment relative to the fullword boundary.

Examples:

- 4 A 4-byte field beginning on a word boundary.
- ..3 A 3-byte field beginning on a halfword boundary and running into the next word.

.

- ...2 A 2-byte field beginning at the low-order byte of a word and running into the next word.
- Name and Content

A name that identifies the field. This name appears as a label in the assembly listings.

This column is also used to show the contents of the field or the bit settings of flag fields (the state of bits in a byte). When the column is used to show the state of the bits (0 or 1) in a flag byte, it is shown as follows:

.... The 8 bit positions (0-7) in a byte. For ease of scanning, the high-order (leftmost) 4 bits are separated from the low-order 4 bits.

- x... A reference to bit 0.
- 1... Bit 0 is on.
- 0.... Bit 0 is off.

.... A reference to bits 6 and 7.

Bit settings that are significant are shown and described. Bit settings that are not presently shown are understood to be reserved bits.

Field Description and Meaning

The use of the field.

SYSCTLG ENTRY FORMATS

This section describes the formats of the entries of SYSCTLG, along with the symbolic labels that are used to refer to their fields. The entries are arranged alphabetically.

Except for the volume control block (VCB), SYSCTLG entries have a similar format. These entries share a common definition for the first 12 bytes. The shared names are:

ENAME	ETTR	ETYPE
(8 bytes)	(3 bytes)	(1 byte)

Individually named fields follow either ETTR or ETYPE.

The entries in a SYSCTLG block begin in the third byte of the block. The first halfword of the block contains the binary number of the bytes that are used in this block, including the halfword count field.

ALIAS ENTRY (AE)

An alias entry defines an alternate name for the high-level qualifier of a data set name.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	ENAME	Name: contains the alias of the high-level index whose relative track address is found at offset 8 of this entry.
8(8)	3	ETTR	Address: contains the relative track address (TTR) of the first block of the index named at offset 12 of this entry.
11(B)	1	ETYPE X'04'	Type: indicates that this is an alias entry; also that four halfwords follow in the remainder of the entry.
12(C)	8	ETRUEN	True name: contains the name of the index whose alias appears at the beginning of this entry.

CONTROL VOLUME POINTER ENTRY (CVPE)

A control volume pointer entry can appear only in volume indexes. Two forms are possible: the old form, created prior to Release 17 of IBM System/360 Operating System, and the new form, created since that release. Both forms are shown here.

Old CVOL Pointer Entry

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	ENAME	Name field: contains a high-level name that appears in the volume index of the control volume identified at offset 12 of this entry.
8(8)	3	ETTR X'000000'	Zero field.
11(B)	1	ETYPE X'03'	Type: indicates that this is either an old CVOL pointer entry (CVPE), or an index control entry (ICE). An ICE always appears as the first record of an index level; a CVOL pointer entry always appears in the volume index. This is also the number of halfwords that follow in the remainder of the entry.
12(C)	6	EVOLIDO	Serial number of the control volume whose volume index contains an entry for the name found at the beginning of this entry.

New CVOL Pointer Entry

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	ENAME	Name: contains a high-level name that appears in the volume index of the control volume identified at offset 12 of this entry.
8(8)	3	ETTR X'000000'	Zero field.
11(B)	1	ETYPE X'05'	Type: indicates that this is a new CVOL pointer entry (CVPE) or the volume index control entry (VICE). The VICE always appears as the first entry in the first block of SYSCTLG; a CVOL pointer entry never appears as the first entry of the first block. Also indicates that five halfwords follow in the remainder of the entry.
12(C)	4	EDEVTYP	Control volume device type: contains the binary device code of the control volume whose volume index contains an entry for the name found at the beginning of this entry.
16(10)	6	EVOLID	serial number of the control volume whose volume index contains an entry for the name found at the beginning of this entry.

DATA SET POINTER ENTRY (DSPE)

A data set pointer entry can appear in any index level. It contains the simple name of a data set and from one to five 12-byte fields, each of which identifies a volume on which the named data set resides.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	ENAME	Name: contains the simple name of the data set whose volumes are identified at offset 12 of this entry.
8(8)	3	EDSCBTTR	Address: contains either binary zero or, when the data set resides on only one volume, the track address (TTR) of the data set control block (DSCB) for this data set.
11(B)	1	ETYPE X'07' X'0D' X'13' X'19' X'1F'	Type: indicates that this is a data set pointer entry (DSPE). Also indicates the number of halfwords that follow in the remainder of this entry.
12(C)	2	EVOLCNT	Volume count: contains the binary count of the number of volumes identified beginning at offset 14.

l.		
	-	

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
14(E)	12 to 60	EDATA	Volume entries: contains from one to five 12-byte entries, each of which identifies one volume on which the data set resides. Catalog management neither uses nor checks the contents of this field.

GENERATION INDEX POINTER ENTRY (GIPE)

A generation index pointer entry can appear in any index except a generation index. It corresponds to the simple name used in the relative name for a GDG data

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	ENAME	Name: contains the name of the generation index to which this entry points.
8(8)	3	ETTR	Address: contains the relative track address of the first block of the generation index named in this entry, in the form TIR.
11(B)	1	ETYPE X'02'	Type: indicates that this is a generation index pointer entry (GIPE). Also indicates that two halfwords follow in the remainder of this entry.
12(C)	1	EGFLAGS 1. 1	Flags: contains the options specified by the creator of the generation data group: DELETE option. EMPTY option.
13(D)	.1	EGMAXSIZ	Maximum count: contains a binary number specifying the maximum number of generations allowed in the generation index at one time.
14(E)	2	EGCURSIZ	Current generation count: contains the binary number of generations currently cataloged in the index.

INDEX CONTROL ENTRY (ICE)

The index control entry is the first entry in all indexes except the volume index.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	INAME X'0001'	Name: low value of binary 1 ensures that this is the first entry in the index.
8(8)	3	ILSTBLK	Last block address: contains the relative track address of the last block assigned to the index, in the form TIR.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
11(B)	1	ITYPE X'03'	Type: indicates that this is either an ICE or an old CVOL pointer. An ICE always appears as the first entry of an index; an old CVOL pointer always appears in the volume index. Also indicates the number of halfwords that follow in the remainder of the entry.
12(C)	3	IFSTBLK	First block address: contains the relative address of the block in which this entry appears, in the form TTR.
15(F)	1	ILIASCNT	Number of aliases: contains a binary count of aliases assigned to the index. This count is always zero for indexes that are not high-level. An index cannot be deleted if this count is non-zero.
16(10)	2		Reserved.

INDEX LINK ENTRY (ILE)

An index link entry is always the last entry in any index block. It is used to link blocks of one index into a chain.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	ENAME X'FFFF'	Name: high value (all bits on) ensures that this is the last entry in the index.
8(8)	3	ETTR	Link address: contains the relative track address of the next block of the same index, if there is one, in the form TTR. When this is the last (or only) block, this field contains binary zero.
11(B)	1	ETYPE X'00'	Type: indicates that this is either an ILE or an IPE. The name field of an ILE always contains X'FFFFFFFFFFFFFFFF': the name field of an IPE never does. Also indicates that there are no more halfwords in the entry.

INDEX POINTER ENTRY (IPE)

The index pointer entry can appear in any index except a generation index. It points to a lower index.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	ENAME	Name: contains the name of the index to which this entry points.
8(8)	3	ETTR	Index address: contains the relative track address of the first block of the index named in this entry, in the form TTR.

.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
11(B)	1	ETYPE X'00'	Type: indicates that this is either an IPE or an ILE. The name field of an ILE always contains X'FFFFFFFFFFFFFFFFF': the name field of an IPE never does. Also indicates that there are no more bytes in the entry.

VOLUME CONTROL BLOCK (VCB)

A volume list can be recorded in one or more volume control blocks. Each volume control block is one block of the SYSCILG data set, and can identify up to 20 volumes on which one data set is recorded.

Note: This block is different from other blocks of SYSCILG. The first halfword does not contain the number of bytes used in the block as do other SYSCILG blocks. The fields VCBVOLCT, shown below, is the first halfword of the VCB block.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	2	VCBVOLCT	Number of volumes: contains the number of volumes identified in this and subsequent volume control blocks. This number is reduced by 20 for each subsequent volume control block. For example, if a data set resides on 61 volumes, it uses four volume control blocks. This field of each blocks contains 61, 21, and 1, respectively.
2(2)	12 to 240	VCBVOLS	Volume indentifications: contains from 1 to 20 12-byte entries, each of which identifies one of the volumes on which the data set resides. Catalog management neither uses nor inspects the content of these entries. Each 12-byte entry contains a 4-byte device code, a 6-byte volume serial number, and a 2-byte data set sequence number.
242(F2)	10	X'0000'	Zero field.
252(FC)	3		Chain address: contains the relative track address of the next volume control block, if there is one, in the form TTR. If this is the last (or only) block of the volume control block, this field contains binary zero.
255	1	×'00'	Zero field.

VOLUME CONTROL BLOCK POINTER ENTRY (VCBPE)

A volume control block pointer entry can appear in any index. It is used when a data set resides on more than five volumes.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8	ENAME	Name: contains the simple name of the data set whose volumes are identified in the volume control block that is pointed to by this entry.
8(8)	3	ETTR	Address: contains the relative track address of the volume control block identifying the volumes containing the data set named in this entry, in the form TTR.
11(B)	1	ETYPE X'01'	Type: indicates that this is a volume control block pointer entry. Also indicates that one halfword follows in the remainder of this entry.
12(C)	2	X'0000'	Zero field.

VOLUME INDEX CONTROL ENTRY (VICE)

The volume index control entry is always the first entry in the first block of data set SYSCILG.

`

•

•

۱

It is the control record for the entire data set, and acts as an ICE for the volume index.

Offset	Bytes and Alignment	Name and Content .	Field Description and Meaning
0(0)	8	VNAME X'0001'	Name: always contains a binary one to ensure that this is the first entry of the volume index.
8(8)	3	VLSTBLK	Last block address: contains the relative track address of the last block of the volume index, in the form TTR.
11(B)	1	VTYPE X'05'	Type: indicates that this is the volume index control entry or a new CVOL pointer entry. The volume index control entry is always the first entry of the first block of SYSCTLG; a CVOL pointer is never the first entry. Also indicates that five halfwords follow in the remainder of the entry.
12(C)	3	VCLSTBLK	Last block of the catalog: contains the relative track address of the last block is SYSCTLG, in the form TTR.
14(E)	1	VHIREC	Contains the number of TTRs in VCLSTBLK. Note that this field is the last byte of VCLSTBLK (offset 12).
15(F)	1	X'00'	Zero field.
16(10)	3	VFHOLE	First available block: contains the relative track address of the first unused block in SYSCTLG, in the form TTR.
19(13)	1	X'00'	Zero field.
20(14)	2		Reserved.

ENVIRONMENT RECORD (EREC DSECT)

The environment record is written by module IGG0CLC7 under certain error conditions. This record is useful in diagnosing problems using the catalog management routines. Reading the environment record is described in "Diagnostic Aids" on page 114.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	8		Reserved.
8(8)	8	ERTIME	Time stamp, as produced by the TIME macro instruction.
16(10)	4	ERCAMLST	First four bytes of the caller's parameter list produced by the CAMLST macro instruction.
20(14)	1	ERMODMAP	Field MODMAP1 from WORKAREA.
21(15)	.1	ERFLAG1	Field FLAG1 from WORKAREA.
22(16)	1	ERFLAG2	Field FLAG2 from WORKAREA.
23(17)	1	ERFLAG3	Field FLAG3 from WORKAREA.
24(18)	2	ERERRCOD	Fields ERRCATSV and ERRLOCSV from WORKAREA.
26(1A)	14	ERNAMTTR	Level name, TTR, type, and volcnt; the first 14 bytes of a general entry.
40(28)	60	ERREGSV	Contents of general registers 0 through 14 at the time the environment record is written (register 15 is destroyed by module IGGOCLC7).
100(64)	28	ERWA1	Contents of WORKAREA from offset 12 bytes (label TTR) through offset 39 bytes.
128(80)	18	ERINPUT	First entry in INPUT.
146(92)	18	EROUTPUT	First entry in OUTPUT.
164(A4)	8	EROPTNCC	Field OPTNCCW from WORKAREA.
176(B4)	40	ERIOB	Field IOB from WORKAREA.
212(D4)	44	ERNAME	Fully qualified name provided by the caller.

RPSD DSECT

RPSD describes the CCW chain used for rotational position sensing (RPS) support.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	16	RPSCCW	Two double-words: RPSSS and RPSTIC.
0(0)	8	RPSSS	Set sector CCW.
8(8)	8	RPSTIC	TICs to normal channel program.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
16(10)	16	RPSINPUT	Four words: RPSCNVT, RPSDDKR, RPSR1, and RPSPTR.
16(10)	4	RPSCNVT	Address of supervisor routine to convert sector value.
20(14)	4	RPSDDKR	Block size (DD, 256 bytes), key length (K, 8 bytes), and record number.
24(18)	4	RPSR1	Address of location of this DSECT during use.
28(1C)	4	RPSPTR	Type and address: the first byte contains the device type code, and the last three bytes contain the sector value.
32(20)	40	RPSAVE	10-word register save area.

.

WORKCLCA WORK AREA

/

,

•

Controller III creates WORKCLCA. The CVOL Processor gains control via an XCTL with register 12 pointing to WORKCLCA. For more information on WORKCLCA at processor invocation, see Figure 5 on page 14.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning	
0(0)	4	*	Reserved.	
4(4)	44	WKCATNM	Name of the non-VSAM entry that defines the CVOL Catalog in the VSAM Master Catalog.	
48(30)	44	WKCATANM	Alias name in the VSAM Master Catalog that is related to WKCATNM.	
92(5C)	6	WKCVOLVS	Volume serial number of CVOL Catalog.	
98(62)	2	×	Reserved.	
100(64)	4	CVTPTR	Address of CVT.	
104(68)	4	TCBPTR	Address of TCB.	
108(6C)	4	SVRBSAV	Address of SVRB.	
112(70)	4	VSRC15	VSAM register 15 return code.	
116(74)	4	REG13SAV	CVOL Catalog Management register 13 save area address.	
120(78)	4	LIMIT	Limit of DO Loop.	
124(7C)	4	EXITSAV	Address of Exit Prolog.	
128(80)	4	CTGPLPTR	Address of VSAM CTGPL.	
132(84)	4	CTGFLPTR	Address of VSAM CTGFL.	
136(88)	4	CAMPLPTR	Address of CAMLST.	
140(8C)	4	PRMLSTSZ	Size of Dynamic Area to be freed for SVC 26.	
144(90)	72	XSAVAREA	Save area for all external references.	
216(D8)	20	WKCAMLST	CAMLST build area for calling CVOL Catalog Management.	
	4	WKOPTNS	Option bytes.	
	4	WKPTR1	Address of data set name.	
	4	WKCVOLP	Address of CVOL = ZERO.	
	4	WKPTR3	Address of the CVOL Catalog Management output area.	
	4	WKDSCBP	Address of DSCB TTR.	
236(EC)	4	GIPEPTR	Address of Generation Index Pointer Entry (GIPE).	
240(F0)	4	PCCBPTR	Address of PCCB.	
244(F4)	4	SAVER1	Save area number of bytes in data set name.	
248(F8)	4	SAVER3	Save area for register 3.	

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning	
252(FC)	4	SAVER4	Save area for register 4.	
256(100)	4	SAVER6	Save area for register 6.	
260(104)	4	SAVER10	Saver for register 10 for ESTAE.	
264(108)	4	SAVER11	Save area for register 11 for ESTAE.	
268(10C)	4	SAVER12	Saver area for register 12 for ESTAE.	
272(110)	4	×	Reserved.	
276(114)	4	SAVE1	Save area for 1 pointer.	
280(118)	4	0SRC15	CVOL Catalog Management register 15 return code.	
284(11C)	4	OSRCO	CVOL Catalog Management register 0 return code.	
288(120)	4		One of the following:	
	4	RELNUM	Binary relative generation number.	
	4	ENTCOUNT	CTGFL entry byte count.	
292(124)	4	LBASE	Binary located base number.	
296(128)	4	SBASE	Binary supplied base number.	
300(12C)	44	LOCDSN	Data Set Name hold area.	
344(158)	44	WKDSN	Data Set Name hold area.	
388(184)	1	WKBLANK	Blank character to stop TRT on WKDSN.	
389(185)	. 3	WKDSCBT	DSCBTTR hold area.	
392(188)	1	KEYTYPE	Switch to indicate which key IGGOCLCA is currently operating under. X'OO'=SVC, X'FF'=USER.	
393(189)	.1	OLDKEY	MODESET savekey area.	
394(18A)	1	INCORESW	Switch to indicate type of block in storage. X'00'=NAME, X'FF'=TTR.	
395(18B)	1	PCCBSW	DO WHILE controller.	
373(175)	1	ENQDEQSW	X'00'=not enqueued, X'FF'=enqueued (enqueuing on a chain of PCCBs).	
396(18C)	. 3	×	Reserved.	
400(190)	8		One of the following:	
	8	HOLDINDX	Index name save area.	
	8	HOLDFPLN	CTGFL name being processed.	
408(198)	8	HOLDREL	GDG work area.	
416(1A0)	265	WKVOLST	Volume list area.	
	2	WKVOLNUM	Number of volumes.	
	250	WKVOLS	Volume entries.	

.

•

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning	
	3	WKNXTTTR	TTR to next block.	
	10	×	Reserved.	
681(2A9)	. 3	×	Reserved.	
634(2AC)	2794	×	Entire 2794 bytes needed for OS CVOL CATBX of RECAT only.	
684(2AC)	256	TRTABLE	Translate and Test Table.	
940(3AC)	4	LKNP	LINK name pointer.	
944(3B0)	4	LKDP	LINK DCB pointer.	
948(3B8)	8	LKNM	Name of module being linked to.	
956(3C0)	16	ESTAELIST	ESTAE macro list form.	
972(3D0)	44	WKTMPCNM	Temporary catalog name.	
3478(D96)	2	×	Reserved.	
3720(D98)	72	WKCL1ASV	IGGOCLC1A save area.	
3552(DE0)	48	WKSHRPRM	Shared parameter area.	
3552(DE0)	4	АСССВР	Pointer to Allocate Catalog Control options.	
	4	ACCRWP1	Pointer to ACCRWP2.	
	4	ACCJSCBP	Pointer to TCBJSCB.	
444-6464444444444444444444444444444444	4	ACCCATP1	Pointer to ACCCATP2.	
	4	ACCALSP1	Pointer to ACCALSP2.	
	4	ACCDDNMP	Pointer to zero.	
	4	ACCRWP2	Pointer to ACCRW.	
	4	ACCATP2	Pointer to WKCATNM Catalog Name.	
	4	ACCALSP2	Pointer to WKCATANM Catalog Alias Name.	
	4	ACCRW	Return data from Allocate Catalog control.	
	2	ACCRETCD	Allocate Catalog Control Return Code.	
<u></u>	.2	ACCRESCD	Allocate Catalog Control Reason Code.	
	2	АСССВ	Allocate Catalog Control bits.	
	.2	×	Reserved.	
3552(DE0)	16	ENQPARMA	ENQ/DEQ parameter area.	
3552(DE0)	4	×	Area for TCB.	
3556(DE4)	12	ENQDEQPL	ENQ/DEQ parameter list.	

WORKAREA DSECT

.

.

.

WORKAREA serves all CVOL Processor catalog CSECTs as an intermediate storage, communications area, and buffers. BLDLAREA is a portion of WORKAREA that serves the resident BLDL

routines. For a locate function, BLDLAREA is separate from WORKAREA.

Many of the fields in the WORKAREA overlay other fields, and sections of an area can have more than one label. Figure 14 shows where these overlays occur, by label. The listing for any module show more labels and more detail; only the most significant are shown here.

.

When function is non-locate, one area (GETMAIN) is used for all purposes.

When function is locate, two areas are used. Space for BLDL comes from GETMAIN.

WORKAREA				
	WORKAREA The caller's area* is used for WOI	RKAREA		
	RETDATA The caller's area' is redefined as to pass data back to the caller.	RETDATA		
	*The 'caller's area' in this context refers not to the caller of SVC 26 but to the module (IGGOCLCA or IGGOCLCB) which calls IGGOCLCC. The caller's area' is actually within the WORKCLCA data area described previously.			
BLDLAREA				
	BLDLAREA			
(Output)				

Figure 14. Data Area Hierarchy

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	4	BLDLIST SAVETTR3	List parameter for BLDL or, when appropriate, the name of the last valid index level.
4(4)	8	NAME Aliasnam	Name or alias in the entry that is being operated on.
5(5)	.4	GENNO	Generation number portion of an absolute GDG name.
12(C)	3	TTR	Relative track address in the current entry, in the form TTR.
15(F)	1	ТҮРЕ	Type of entry; also the binary number of halfwords following in the remainder of the entry. TYPE is interpreted as:
		×'00'	Either an index pointer entry (IPE) or an index link entry (ILE). The name field of an ILE always contains X'FFFFFFFFFFFFFFFF'; the name field of an IPE never does.
		×'01'	Volume control block pointer entry (VCBPE).
		X'02'	Generation index pointer entry (GIPE).
		X'03'	Index control entry (ICE) or old CVOL pointer entry (CVPE). An ICE always appears as the first entry of the index; a CVPE always appears in the volume index.
		X'04'	Alias entry (AE).
		X'05'	Volume index control entry (VICE) or new CVOL pointer entry (CVPE). The VICE always appears as the first entry of the first block of the catalog; a CVPE always appears later in the volume index.
		X'07'	Data set pointer entry (DSPE with one volue identification).
		X'OD'	DSPE with two volumes.
		X'13'	DSPE with three volumes.
		X'19'	DSPE with four volumes.
		X'1F'	DSPE with five volumes.

.

,

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
16(10)	8	TRUE	The true name related to the alias in offset 4.
16(10)	2	VOLCNT	Number of volumes indentified in DATA when the current entry is a data set pointer entry (DSPE).
16(10)	62	DATA	Volume identification for DSPE.
88(58)	1	ERRCATSV	Error code generated for non- locate function.
89(59)	.1	ERRLOCSV	Error code generated for locate function.
90(5A)	1	FLAG1	Switches declaring requested function.
		.1	The index control entry (ICE) must be read.
		1	SYSCTLG has no more room during CATBX or BLDX function.
		1	The DCB/DEB was freed by SVC 28 processing.
		1	CATBX request.
			UCATDX request.
		1.	Locate request.
		1	RECAT request.
91(5B)	1	FLAG2	Switches used to specify flow of control.
		1	RPS device.
		1	Alias entry has been found.
		1	Sequence error.
			Last entry found was a CVOL pointer entry (CVPE).
		1.	Generation index pointer entry (GIPE) has been found.
		1	Alias entry has been built.
92(5C)	28	SAVEAREA	Save area for temporarily storing the contents of general purpose registers.
120(78)	8	NEXTKEY NEXTCNT	The key or count of the next block beyond the one read.
128(80)	10	ICE	Index control entry. Ony bytes 8 through 15 are saved here.
136(88)	9	VICE	Volume index control entry. Only bytes 11-18 are saved here.

C

•

.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
148(94)	1	FLAG3	Switches to invoke functions of IGGOCLC5.
		1	Absolute GDG name found.
		.1	Free index blocks.
		1	Read a block for updating.
		1	Process EMPTY option of generation data group (GDG).
		1	Write the last block of a GDG chain when the GDG is full and a new one is being added.
		1	Build volume control blocks (VCBs).
		1.	Free VCBs.
		1	Write a block.
149(95)	.1	FLAG4	Switches to specify the flow of control in IGGOCLC6.
		1	New entry has been inserted into block now in the work area. Updating is in process.
		.1	The updated block has been written into SYSCTLG. Updating is complete.
		1	The block following the block pointed to by field WRITETTR is free.
		1.	The first write has occurred.
		1	The block following the block pointed to by field LINKTTR is free.
150(96)	2	NAMELEN	Length of the full name given by caller minus 1.
152(98)	4	NAMDELMP	Address of last delimiter in given name.
156(9C)	4	NAMLSTP	Pointer to last displacement of given name in the name table.
161(A1)	. 1	FLAG5	Flag bits.
		1	CVOL has extended security.
			Switches to specify flow of control in IGGOCLC7:
		1	Low-level index is involved.
			VFHOLE needs to be updated.
		1.	LSTBLK needs to be updated.
			FSTBLK needs to be updated.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
162(A2)	1	MODMAP1	Trace of modules that have been entered. The appropriate bit is set to 1 as each module is entered. There is no bit for subroutine IGGOCLCO, because it is always entered before any other.
		1	IGG0CLC1
		.1	IGGOCLC2
		1	IGG0CLC3
		1	IGG0CLC4
		1	IGG0CLC5
			IGG0CLC6
		1.	IGG0CLC7
164(A4)	4	EPBLDL	Address of the entry point of the supervisor routine BLDL. IECPBLDL (copied from field CVTPBLDL of the CVT).
168(A8)	4	BLDLISTP	Address of the list to be completed by BLDL (address of field BLDLIST, offset 0 of this DSECT).
172(AC)	4	DCBADDR	Address of the data control block (DCB) for the control volume.
176(80)	4	DEBADDR	Address of the data extent block (DEB) for the control volume.
180(B4)	4	FOUNDENT	Address of an entry in an input/ output buffer.
184(B8)	4	EPTQRLTV	Address of the entry point IECPRLTV, a supervisor routine that converts absolute track addresses to relative track addresses (copies from field CVTPRLTV of the CVT).

.

٩

C

.

.

,

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
188(BC)	4	EPTOABSL	Address of the entry point IECPCNVT, a supervisor routine that converts relative track addresses to absolute track addresses (copied from field CVTPCNVT of the CVT).
192(C0)	4	SVRBEXTP	Address of the extension of SVRB
196(C4)	4	ADDING	Address of new entry, meaningful only when bit 0 of FLAG4 is X'1'
200(C8)	4	SVBALREG	Branch and link register save area.
204(CC)	12	×	Reserved.
216(D8)	12	LNKENTRY	General form of index link entry (ILE). The first eight bytes contain X'FFFFFFFFFFFFFFFFFF.
224(E0)	4	LINKTTR	Last four bytes of LNKENTRY: contains the TTR for this ILE.
228(E4)	4	WRITETTR	Save area for relative address o block to be written.
232(E8)	4	ICETTR	Relative track address of block that contains an index control entry (ICE).
236(EC)	4	SAVETTR	Save area for any relative track address.
240(F0)	4	READTTR	Save area for relative address o block to be read.
244(F4)	4	CWAP	Pointer to catalog controller work area.
248(F8)	2	NAMLF	Number of levels of the name tha were found.
250(FA)	2	NAMLG	Number of levels in given name.
252(FC)	4	DEVTYPE	Device-type portion of an identification.
256(100)	1	THETA	Angular displacement value (theta) for rotational positioning support (RPS).
257(101)	. 1	INDEXLEN	Length of all levels given excep the last. Used with SCRATCH macr instruction.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
258(102)	1	ERRSV2H	Exceptional return code from subroutine IGC0002H.
259(103)	6	VOLSN	Serial-number portion of a volume identification.
16(10)	44	DSNAME	Data set name to be scratched when processing GDG data sets.
60(3C)	12	SCRPARM	Parameter list for SCRATCH macro instruction.
72(48)	4	SCRVOLS	Volume list for SCRATCH macro instruction.
32(20)	44	NAMTABLE	Name table containing the length and displacement of each component of the given name.
76(4C)	.1	NAMDELIM	Last delimiter in the given name, either b, or '('.
128(80)	8	RELNUMBR	Work area for Convert-to-Binary (CVB) instruction used with relative GDG processing.
136(88)	8	PKDNUMBR	Work area for PACK instruction used with relative GDG processing.
0(0)	256	RETDATA	Volume list returned to caller.
252(FC)	4	REDSCBT	Relative track address of the DSCB in the VTOC for a single- volume data set, as returned to the caller.
259(103)	6	RETCVOL	Serial number for the control volume containing the returned volume list.
265(109)	3	VICESAVE	Save area for volume index control entry (VICE) information.
268(10C)	4	BALREGS	Save area for register used in BAL instruction.

.

.

٠

C

.

.

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
272(110)	400	BLDLAREA	Work area for use by BLDL routine for a locate function, WORKAREA is in two parts, and BLDLAREA is the second part.
272(110)	48	SVAREA2H	Register save area for subroutine IGC0002H.
320(140)	16	ESTAEPRM	ESTAE exit routine parameter list
336(150)	24	ESTAESVA	ESTAE information area for ESTAE error exit cleanup.
360(168)	16	ESTAELST	ESTAE record parameter list.
632(278)	120	BLDLCNT	Parameters for BLDL routine.
752(2F0)	4	BASESAVE	Save area for the register that would otherwise be destroyed by BLDL.
640(280)	44	RESALIAS	Work area used when resolving an alias name.
376(178)	256	INPUT	Input buffer for channel program.
376(178)	256	TRTABLE	Translate table used with TR instruction to analyze the given name.
632(278)	8	SIDE	Search-ID-Equal CCW.
640(280)	8	TIC1	Transfer-In-Channel CCW.
648(288)	8	OPTNCCW	CCW that is changed to do the required input/output function.
656(290)	8	RC	Read-Count CCW.
664(298)	8	SKE	Search-Key-Equal CCW.
672(2A0)	8	TIC2	Transfer-In-Channel CCW.
680(2A8)	8	NOP	NOP CCW.
688(2B0)	4	ЕСВ	Event control block for channel programs.
672(2B4)	40	IOB	Input/output block for channel programs.
732(2DC)	8	RKD	Read-Key-Data CCW.
740(2E4)	8	RD	Read-Data CCW.
748(2EC)	8	WKD	Write-Key-Data CCW.
756(2F4)	264	OUTPUT	Output buffer for channel programs.

CAMLSTD DSECT

CAMLSTD describes the parameter list provided by the caller of CVOL Catalog Management. It maps the result of the CAMLST macro instruction.

.

.

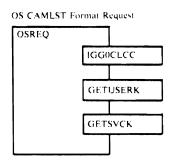
Offset	Bytes and Alignment	Name and Content	Field Description and Meaning
0(0)	1	CAMOPTN1	First option byte.
		1	Catalog is not on SYSRES.
		1	CAT or CATBX request.
		1	RECAT request.
		1	UNCAT or UNCATDX request.
			Locate-by-block request.
1(1)	. 1	CAMOPTN2	Second option byte.
		1	Do not allocate a catalog.
		.1	BLDX or CATBX request.
		1	BLDG request.
		1	BLDA request.
		1	LNKX request.
			DLTX or UCATDX request.
		1.	DSCB TTR has been specified.
		1	DLTA request.
2(2)	2	CAMOPTN3	Third option byte.
		1	DRPX request.
		.1	Scratch GDG data sets.
		1	Empty generation index when maximum generation count is reached.
		0	VS CAMLST.
		1	VSAM parameter list.
3(3)	1	CAMGEN	Maximum generation count.
4(4)	4	CAMPTR1	Address of the name field in caller's area. For locate-by- block, the name field contains a relative track address instead of a name.
8(8)	4	CAMCVOLP	Address of CVOL Catalog volume serial number (a 6-byte field).

Offset	Bytes and Alignment	Name and Content	Field Description and Meaning		
12(C)	4	CAMPTR3	Address of caller's third parameter. Meaning depends on the function:		
			Locate Caller's 265-byte work		
			area BLDA 8-byte name field LNKX 10-byte volume identification		
			CAT, CATBX Volume list or RECAT		
			Other Not used		
16(10)	4	CAMDSCBP	Address of three-byte field containing the relative track address (ITR) for the Format 1 DSCB for the data set named through CAMPTR1.		

C

(

DIAGNOSTIC AIDS


This chapter provides several aids that can be useful when diagnosing difficulties with the CVOL Processor. Before you use the following diagnostic aids, be sure that the CVOL Processor received control as a result of your SVC 26 instruction. That is, make sure that the CVOL Catalog you are referencing is properly defined in the VSAM Master Catalog. Also make sure that the data set you are referencing is defined as an alias of the CVOL Catalog if you are not explicitly specifying the CVOL volume serial in your SVC 26 request. You can use the Access Method Services LISTCAT command to list the VSAM Master Catalog. Refer to <u>Access Method Services Reference</u> for more information on the LISTCAT command. Refer to <u>Catalog User's Guide</u>, for more information on how to set up the CVOL Processor.

SUBROUTINE SELECTION CHARTS FOR CSECTS IGGOCLCA AND IGGOCLCB

Figure 15 on page 115 can help you determine which subroutine of CSECT IGGOCLCA is involved in any given situation. The figure consists of several charts. Each chart shows the path through CSECT IGGOCLCA for the function(s) noted with that chart.

Only subroutine GENLOC calls CSECT IGGOCLCB. Therefore, the GENLOC chart show the path through IGGOCLCB as well as the path through IGGOCLCA.

Note: The entry point for the CVOL Processor, CSECT IGGOCLCA, the subroutines IGGOCLC1A and SRCHPCCB, and the external subroutine IEFAB4F5 are common to all of the functions represented in these charts.

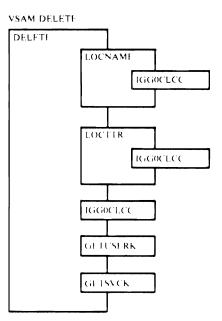
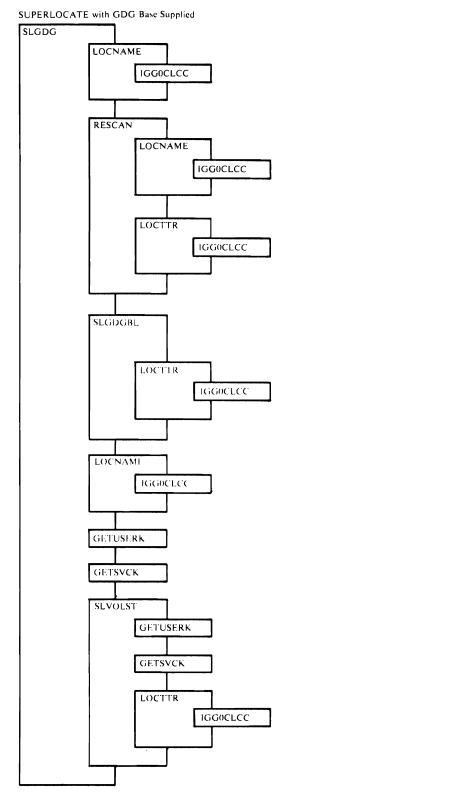



Figure 15 (Part 1 of 6). Subroutine Selection Charts for CSECTs IGGOCLCA and IGGOCLCB

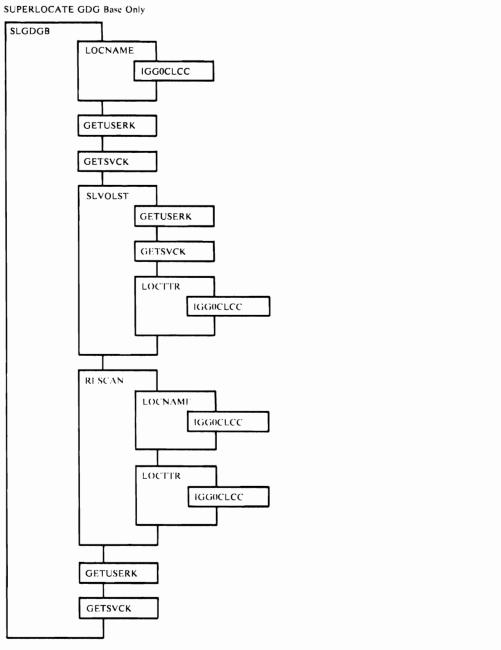


Figure 15 (Part 3 of 6). Subroutine Selection Charts for CSECTs IGGOCLCA and IGGOCLCB

۲

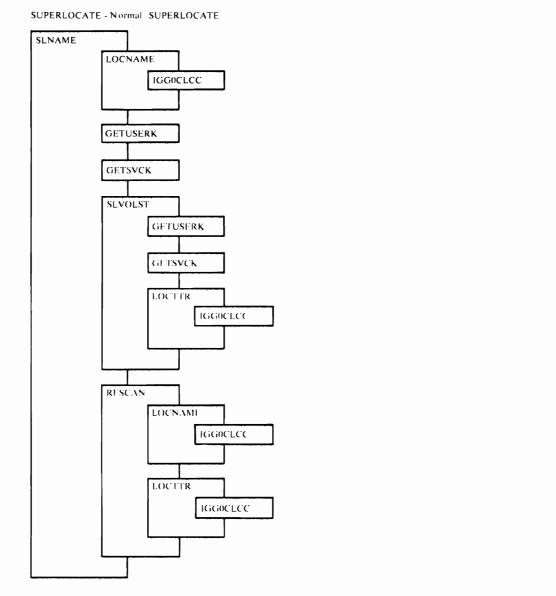
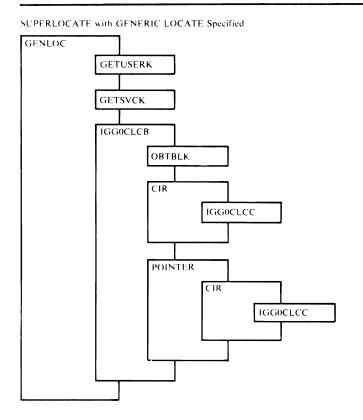
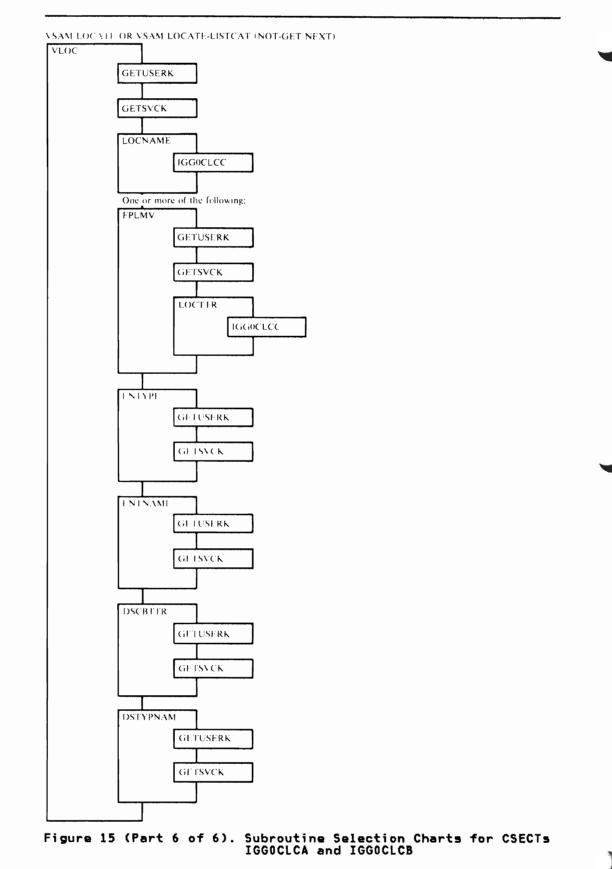




Figure 15 (Part 4 of 6). Subroutine Selection Charts for CSECTs IGGOCLCA and IGGOCLCB

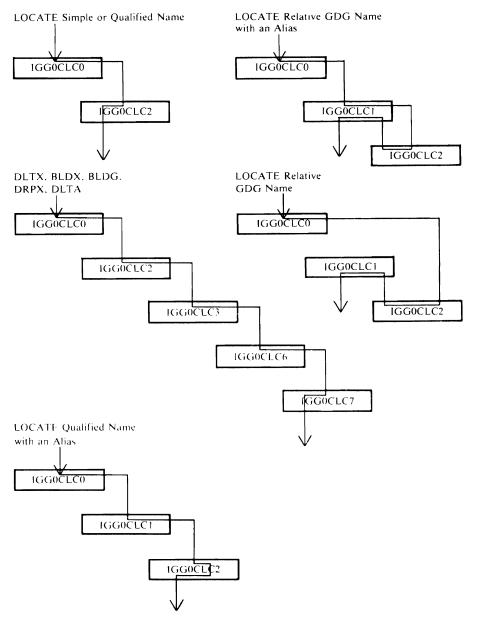
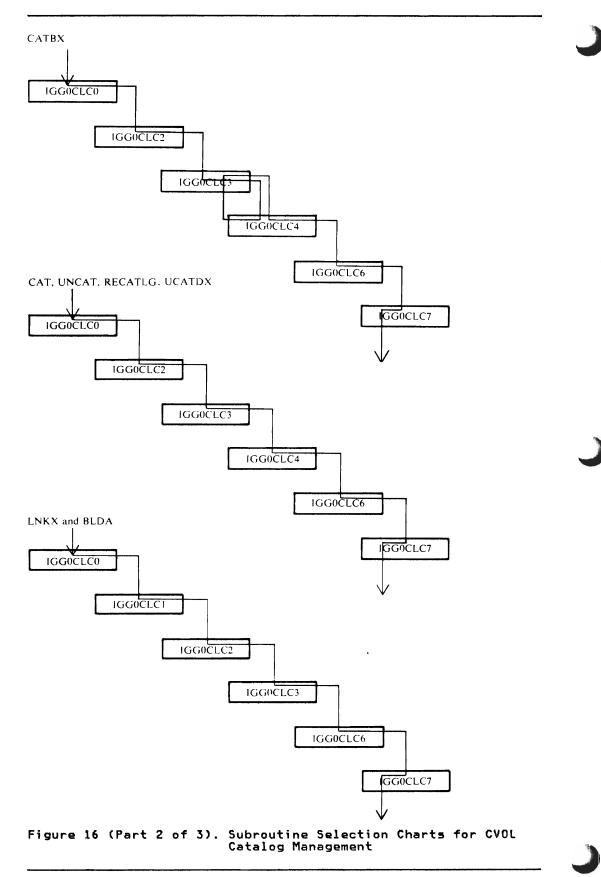
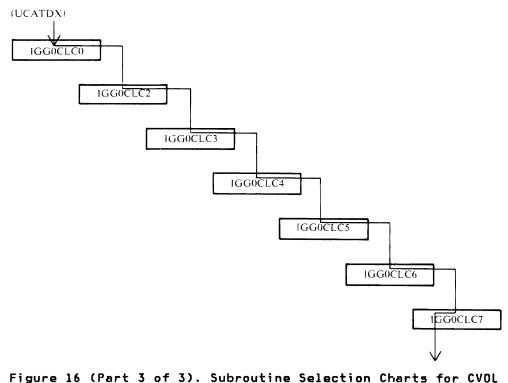


Figure 15 (Part 5 of 6). Subroutine Selection Charts for CSECTs IGGOCLCA and IGGOCLCB



SUBROUTINE SELECTION CHARTS FOR CSECTS IGGOCLCC, IGGOCLCD, AND IGGOCLCE

Figure 16 can help you determine which subroutines of the CVOL Catalog Management CSECTs are involved in any given function. The figure consists of several charts that are modifications of Figure 11 on page 26 of this publication. Each chart shows the path through the CVOL Catalog Management subroutines for the functions noted on that chart. The specific path is shown by an arrow. Always enter subroutine IGGOCLCO, which is the entry point for CSECT IGGOCLCC (upper left), then move down and to the right.



Catalog functions with VCB processing required,

GDG Empty option required, or blocks to delete

Catalog Management

READING DUMPS

All the CVOL Processor CSECTs use the ESTAE macro for error analysis. For more information on the ESTAE macro, refer to <u>Supervisor Services and Macro Instructions</u>, and <u>System</u> <u>Programming Library: Supervisor</u>. If you get a system completion code of "11A" when running the CVOL Processor, it is because the ESTAE macro determined that the error was caused by bad information in the parameter list passed by the SVC 26.

The following items are useful in diagnosing errors:

- Source or input listings related to the use of the CVOL Processor.
- Main storage dump produced by using a //SYSABEND DD statement.
- Listing of a CVOL Catalog data set.

Two kinds of dumps can be used while diagnosing trouble with the CVOL Processor:

- Main storage dumps and,
- CVOL Catalog data set dumps.

This section points out significant diagnostic clues to look for. It does not explain the full meaning of dumps; for that information, see <u>Debugging Handbook</u>.

MAIN STORAGE DUMP

Each CSECT of the CVOL Processor has its own identifier. The identifier is eight characters long, IGGOCLCA for example, and appears in the first few bytes after the entry point of the CSECT.

If an ABEND dump was produced because of an error in one of the CVOL Catalog Management CSECTs, then look at the content of the general registers at the time of the ABEND. The most significant registers are:

- Register 6 Pointer to WORKAREA. The field MODMAP1 shows which subroutines have been entered; compare this to the expected path for the requested function. The section "Subroutine Selection Charts" for CVOL Catalog Management in Figure 16 on page 121 shows the path for each function.
- Register 8 Pointer to CAMLST passed to IGGOCLCC. This CAMLST may be either the original CAMLST (built by the issuer of the SVC 26 instruction), or a CAMLST built by the Interface Mappers.

REGISTER USAGE FOR THE CVOL PROCESSOR

None of the CVOL Processor CSECTs use standard register linkage. Refer to the following lists for registers used by each CSECT.

Register Usage for CSECT IGGOCLCA

.

Register	Meaning
10	Second base register for CSECT
11	First base register for CSECT
12	Base register for WORKCLCA structure

Register Usage for CSECT IGGOCLCB

Register Meaning

11	Base	register	for	CSECT	
12	Base	register	for	WORKCLCA	structure

Register Usage for CSECTS IGG0CLCC, IGG0CLCD, and IGG0CLCE

Register Meaning

4	Base register for the CSECT
6	Base register for WORKAREA DSECT
8	Base register for CAMLSTD DSECT
12	Linkage register for BAL instructions
14	Linkage register for BAL instructions

CVOL CATALOG DUMP

There are several ways to dump a data set; this discussion assumes that AMASPZAP is used. AMASPZAP is a service-aid program that operates under the operating system. AMASPZAP is described in <u>System Programming Library: Service Aids</u>.

To dump the catalog with AMASPZAP, use the following JCL, where the //SYSLIB DD card points to the CVOL to be dumped:

//DUMPSTEP	EXEC	PGM=AMASPZAP
//SYSPRINT	DD	SYSOUT=A
//SYSLIB	DD	DSNAME=SYSCTLG,UNIT=uuuu,
11		VOL=SER=volser,DISP=OLD,
11		DCB=(KEYLEN=8)
//SYSIN	DD	×
ABSDUMP	ALL	
/*		

This JCL is used to dump the entire catalog. You can dump a portion of the catalog by specifying beginning and ending track addresses.

The DCB parameter KEYLEN in the "//SYSLIB DD" statement formats the key as well as the data for each block. The key appears as the first two words of the first line of each block. The data for the block begins in the third word.

EXAMPLE OF A CVOL CATALOG DUMP

Figure 17 shows an actual dump of the catalog. Entries in the volume index are outlined, and other blocks of the catalog are identified.

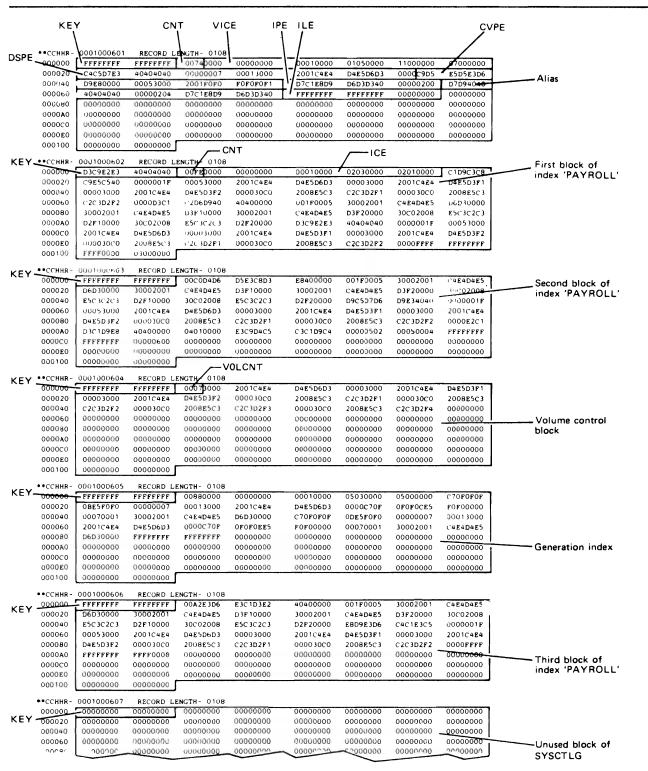


Figure 17. Sample Dump of the CVOL Catalog

> The data portion of each block begins with a 16-bit binary number that tells how many bytes of the block are used (including the two bytes of this number). The catalog entries begin immediately thereafter. These entries are described in detail in the chapter "Data Areas."

The first entry of the first block is always the volume index control entry (VICE). The type of each entry can be determined from the byte at offset 11 of the entry; the type codes are described under the field TYPE in the WORKAREA DSECT found in "Data Areas" on page 92.

ENVIRONMENT RECORD

Some error conditions cause an environment record to be written, whenever possible, to the last block of the CVOL Catalog. The environment record is written when a nonlocate function is requested, and the exceptional return code is 8 or 28. Here's how you can dump the catalog and examine this record to see what happened:

- Reproduce the failure, but this time reserve the data set CVOL Catalog for your exclusive use, so that no other task can destroy the environment record before you can dump it. Do this by adding or modifying your JCL statements to include a DD statement for CVOL Catalog with DISP=OLD.
- Add a step to your job to dump CVOL Catalog. Follow the instructions under "CVOL Catalog Dump."
- Look at the VICE, which begins at offset two of the first physical block of the catalog. (Remember to allow for the key.) Field VCLSTBLK (offset 12 bytes in the VICE) contains the TTR for the last block in CVOL Catalog. This block contains the environment record.
- 4. Compute the absolute track address by using the cylinder-head numbers supplied for the first block and the TIR. IT is the relative track from the first block; R is the record number for that track.
- 5. The fields of the environment record are described in "Environment Record (ERECT DSECT)," in the "Data Areas" chapter of this publication. The description for each field relates this information to other data areas.

The field ERMODMAP contains seven bits that show which subroutines have been entered. IGGOCLCO is always entered; there are no bit switches for this subroutine.

As an example, if ERMODMAP equals X'76', then modules IGGOCLCO, IGGOCLC2, IGGOCLC3, IGGOCLC4, IGGOCLC6, and IGGOCLC7 were entered during the request that caused the environment record to be written. This is the sequence of subroutines that normally occurs with a request for CATBX.

Note: The environmental record is not written for any error associated with a "catalog-full" condition.

GLOSSARY

This glossary contains definitions of words and acronyms that are used in this publication. Other data processing definitions can be found in <u>Vocabulary</u> for Data Processing, <u>Telecommunications</u>, and Office Systems.

alias. An alternative name for a data set. In a CVOL Catalog, only the high-level name of a fully qualified data set name may have an alias.

cataloged data set. In a CVOL Catalog, a data set that is represented in an index or hierarchy of indexes that provides the means for locating the data set.

communication vector table (CVT). An operating system control block that provides the address of information in the nucleus to nonresident routines.

control volume (CVOL). An OS/VS Catalog
that contains one or more of the
indexes.

CVOL catalog. The collection of all data set indexes maintained by CVOL Catalog Management.

data control block (DCB). An operating system control block that describes the current use of the data set.

data extent block (DEB). A control block that describes the physical attributes of the data set.

data set. The major unit of data storage and retrieval in the operating system.

data set control block (DSCB). A label for a data set on a direct storage volume.

data set name. An identifier that unambiguously names a data set.

data set pointer entry (DSPE). A CVOL Catalog entry that identifies the volume on which a named data set resides.

DEQ. An Assembler language macro instruction used to remove control of one or more serially reusable resources from the active task. It can also be used to determine whether control of the resource is currently assigned to or requested for the active task.

dequeue. To remove a request for a resource from a list of requests.

ENQ. An Assembler language macro instruction that requests the control program to assign control of one or more serially reusable resources to the active task. It is also used to determine the status of resource, that is, whether it is immediately available or in use, and whether control has been previously requested for the active task in another ENQ macro instruction.

enqueue. To build a list of requests for a named resource.

entry. A logical record of a catalog.

environment record. A 256-byte record that is written when CVOL Catalog Management discovers an error. This record, which contains significant data that is present at the time of the error, is written to the last block of data set SYSCILG for later analysis.

ESTAE. A Supervisor macro instruction used to extend the recovery capability of the STAE macro. ESTAE provides more levels of recovery than the STAE macro.

EXCP. An Assembler language macro instruction that requests the initiation of the I/O operations of a channel program.

FREEMAIN. An Assembler language macro instruction that releases one area of main storage that had previously been allocated to the job step as a result of a GETMAIN macro instruction.

generation. One member of a generation data group.

generation data group (GDG). A collection of historically related data sets.

generation index. An index of the CVOL Catalog that identifies the generations of a generation data group.

generation index pointer entry (GIPE). A CVOL Catalog entry that identifies a generation index.

GETMAIN. An Assembler language macro instruction that is used to allocate an area of main storage for use by the job step task.

high-level name. The first component of a qualified name. This name is found in a volume index of the CVOL Catalog.

index. A table in the CVOL Catalog structure that is used to locate data sets.

index control entry (ICE). The first entry of each index of the CVOL Catalog.

This entry contains all control information about the index.

index link entry (ILE). The last entry of each block of the CVOL Catalog, used to link blocks of one index together in a chain.

index pointer entry (IPE). A CVOL Catalog entry that attaches a lower-level index to the index in which it is found.

level. A conceptual relationship between indexes of the CVOL Catalog. The index corresponding to the simple name of a data set is said to be the lowest level; the first component of a qualifier name is said to correspond to the highest-level index.

LINK. An Assembler language macro instruction that causes control to be passed to a specified entry point. The linkage relationship established is the same as that created by a BAL instruction.

locate. Pertaining to functions that do not change the status of a catalog; that is, read-only operations are performed.

MODESET. A Supervisor macro instruction used to change the system status by altering the PSW key or the mode indicator.

must-complete. An indication to the operating system that the event must be performed without interruption or waiting.

nonlocate. Pertaining to functions that change the status of a catalog; that is, write operations are performed.

partitioned data set directory. The portion of a partitioned data set that provides a means of locating any of the members of the data set.

qualified name. A data set name consisting of a string of names separated by periods; for example, "TREE.FRUIT.APPLE" is a qualified name.

qualifier. Each component name in a qualified name other than the rightmost name. For example, "TREE" and "FRUIT" are qualifiers in "TREE.FRUIT.APPLE."

relative track address (TTR). A direct-access device address, expressed as a displacement in a data set. This address has the form TTR, where TT represents two hexadecimal digits specifying the track relative to the beginning of the data set, and R is one hexadecimal digit specifying the record on that track.

resource. Any facility of the computing system or operating system required by a job or task, including main storage,

input/output devices, the central processing unit, data sets, and control processing systems.

RETURN. An Assembler language macro instruction that is used to return control to the calling CSECT and to signal normal termination of the returning CSECT.

ripple. Moving data from one block of a chain to the next, due to modification of data in a preceding block.

SAVE. An Assembler language macro instruction that causes the contents of the specified registers to be stored in the save area at the address contained in register 13.

SCRATCH. An Assembler language macro instruction that points to the CAMLST macro instruction. SCRATCH, the first operand of CAMLST, specifies that a data set be deleted.

simple name. The rightmost component of a qualified name. For example, "APPLE" is the simple name in "TREE.FRUIT.APPLE." The simple name corresponds to the lowest index level in the CVOL Catalog for the data set name.

supervisor request block (SVRB). An cperating system control block containing program status information and general register contents.

SYSCTLG. The data set name of the CVOL Catalog.

system residence volume. The volume on which the nucleus of the operating system is located.

task control block (TCB). An operating system control block that contains information and pointers associated with the task in progress.

true name. In a CVOL Catalog, the high-level qualifier to which an alias is related.

uncatalog. To remove the catalog entry of a data set from a catalog.

volume control block (VCB). A block of the catalog that identifies as many as 20 volumes containing one data set.

volume control block pointer entry (VCBPE). A CVOL Catalog entry that identifies a VCB for a named data set.

volume index. The highest level of index in the CVOL Catalog structure. Entries in the volume index point to all lower indexes and simple names.

volume index control entry (VICE). The first entry in the volume index. The VICE describes the volume index and controls space allocation is SYSCILG.

volume table of contents (VTOC). A table associated with a direct access volume that describes each data set on that volume and identifies all available space on the volume.

WAIT. An Assembler language macro instruction that informs the control program that the issuing program cannot continue until a specific event, represented by an event control block, has occurred.

XCTL. An Assembler language macro instruction that causes control to be passed to a specified entry point.

,

۲

٠

INDEX

A

ABEND dump 124 absolute GDG name 45 absolute track address 59, 63, 67, 71 103 ACCALSP1 ACCALSP2 103 ACCATP2 103 ACCCATP1 103 ACCCB 103 ACCCBP 103 ACCDDNMP 103 access method services 114 ACCJSCBP 103 ACCRESCD 103 ACCRESCD 103 ACCRW 103 ACCRWP1 103 ACCRWP2 103 ADDING 109 Alias Entry (AE) 93 ALIASNAM 105 alignment, byte 92 allocation error 17 ALTERTN. 61 AMASPZAP 125 and volume index control entry 29

В

BALREGS 110 base generation number 19 base register 24 for CSECT 24 for WORKCLCA structure 24 BASESAVE 111 BLDA 16, 43 BLDENTRY 63 BLDG 16, 25 BLDL 43, 49 BLDLAREA 41, 45, 111 BLDLCALL 51 BLDLCNT 111 BLDLISTP 108 BLDX 16 BLVCBRTN 67

С

Caller's parameter list 41 CAMCVOLP 112 CAMDSCBP 113 CAMGEN 112 CAMLST 16, 41, 77, 99, 124 CAMLSTD 45, 112 CAMOPTN1 112 CAMOPTN2 112 CAMOPTN3 112 CAMOPTN3 112 CAMPLPTR 15, 101 CAMPTR1 112

CAMPTR3 113 CAT 61, 69 catalog dump, CVOL 125 Catalog Management 24, 27 system macros used by IGGOCLCC 27 IGGOCLCD 27 27 27 IGGOCLCE IGGOCLCF catalog segment block handling 22 catalog structures 2, 16 CATBX 25, 57, 61, 127 CATBX. 69 CATRIN 61 CCW 99 CCW chains 49 chain address CIR 19, 37, 88 CIRBLOCK 19 97 CODE00 88 communication vector table 5, 27 contiguous blocks, index 69 control volume index 93 Control Volume Pointer Entry (CVPE) 93 New CVOL Pointer Entry 94 Old CVOL Pointer Entry 93 controller III 1, 2, 13, 15, 41 CSECT identifier 124 CSECT Organization 24 IGGOCLCC 24 IGGOCLCD 24 IGGOCLCE 24 IGGOCLCF 24 CSECTs 19 character dependency for 27 IGC0002H 77 IGGOCLCA 19, 32 IGGOCLCB 19, 36 IGGOCLCC 25, 40 IGGOCLCD 25, 56 IGGOCLCE 25, 68 IGGOCLCF 27, 76 IGG0CLC1 45 IGG0CLC2 49 IGG0CLC3 57 IGG0CLC4 61 IGG0CLC5 65 IGG0CLC7 73 IGG0CLF2 83 Resource Enqueuing 23, 29 second load of update 69 Services Used by 27 Subroutine Descriptions 30 system macros used by 23, 27 CTFPLPTR 15 CTGFLPTR 101 CTGPLPTR 15, 101 CULMINAT 61 CVOL catalog 15, 17 accessing 17 VSAM Request Return Codes 17 CVOL Catalog Dump 125, 126 example of 126 CVOL catalog management 29 register usage 29 CVOL catalog management, figure 10 CVOL processor 1 exits 15

- Flow of Control, (figure) 1 Introduction to 1 invocation and input 13 organization 18 output 15 Overview 1 Physical Characteristics 2 Purpose and Function 2 Requirements 2 CVOL processor exit/output, figure 15 CVOL processor overview, figure 7 CVT 5, 43 CVTPCNVT 27 CVTPRLTV 27 CVTPRLTV 27 CVTPTR 101 CWAP 109 cylinder-head numbers 127
 - D
- DASD space 77 DATA 106 Data Areas 92 data set not found 17 5 data set pointer entry Data Set Pointer Entry (DSPE) 94 DCB 43 DCB/DEB 77, 81 DCBADDR 108 DEB 43 DEB 43 DEBADDR 108 DELETE 19, 87 DELETE option 61, 63, 95 DEQ 23, 28 DEVTYPE 109 Diagnostic Aids 114 Diagnostic Aids 114 directory, microfiche 86 DLTA 16, 25, 45 DLTX 16, 25 DRPX 16, 25 DSCBTTR 87 DSNAME 110 DSNAMRT 88 DSPE 5, 49, 61, 94 DSTYPNAM 87 Dumps 124 Dumps 124 Main Storage 124 Dumps, Reading 123
 - E

ECB 111 EDATA 95 EDEVTYP 94 EDSCBTTR 94 EGCURSIZ 95 EGMAXSIZ 95 EMPTY option 61, 95 EMPTYRTN 67 ENAME 93, 94, 96, 98 ENQ 23, 28, 65 ENQ 23 ENQ/DEQ 103

ENQDEQPL 103 ENQDEQSW 102 ENQPARMA 103 ENTCOUNT 102 ENTNAME 87 entries, processing 19 entry building 57, 61 ENTYPE 87 environment record 127 Environment Record (EREC DSECT) 99 EPBLDL 108 EPTOABSL 109 EPTORLTV 108 ERECT DSECT 127 ERERRCOD 99 ERFLAG1 99 ERFLAG2 99 ERFLAG3 99 ERINPUT 99 ERIOB 99 ERMODMAP 99, 127 ERNAME 99 ERNAMTTR 99 EROPTNCC 99 EROUTPUT 99 ERRCATSV 106 ERREGSV 99 ERRLOCSV 106 ERRSV2H 110 ERTIME 99 ESTAE 16, 17, 28, 111 ESTAE 23 ESTAE macro 1 ESTAELIST 103 ESTAELST 111 123 ESTAEPRM 111 ESTAESVA 111 ESTAEXIT 87 ETRUEN 93 ETTR 92, 93, 95, 96, 98 ETTPE 92, 93, 94, 96, 97 EVOLCNT 94 EVOLID 94 EVOLIDO 93 EXCP 28, 59 exit and output of the CVOL processor 15 EXITSAV 101

F

first interface mapper 19, 33 first load of update 65 106 FLAG1 106 FLAG2 FLAG3 107 FLAG4 107 FLAG5 107 FOUNDENT 108 FPLMV 87 FRBLKRTN 67 FREEMAIN 23, 28, 43 67 FRNDXRTN FRVCBRTN 67 fullword boundary 92

GDG data set. 95 GDG number, negative 47 GDGROUT 88 generation index pointer entry 5, 65, 101 Generation Index Pointer Entry (GIPE) 95 generation number 45 GENLOC 19, 87 GENLOC, subroutine 33 GENNO 105 GET 69 GETMAIN 23, 28, 41, 81 GETSVCK 87 GETUSERK 87 GIPE 5, 65, 95, 101 GIPEPTR 101 GOUDNVOO 47

G

halfword 93 halfwords 93, 95 high-level name 29 highest generation number 45 HOLDFPLN 102 HOLDINDX 102 HOLDREL 102

I/O error 17 in CVOL catalog 17 ICBACREL 28 ICE 106 ICETTR 109 IECBLDL 90 IECPBLDL 25, 49, 53 IECPCNVT 27 IECPRLTV 27 character dependency for IGGOCLCC 27 27 IGGOCLCD IGGOCLCE 27 IGGOCLCF 27 IEC3021 73 IEC304I 73 IFSTBLK 96 IGC0002F 13 IGC0002H 29, 59, 67, 75, 77, 85, 91 IGC002H 81 IGGOCLA1 13 IGGOCLCA 2, 13, 19, 23, 24, 32, 75, 87 IGGOCLCB 2, 19, 23, 36, 75, 88, 89 IGGOCLCB Example of Catalog Segment Block Handling 22 IGGOCLCC 2, 19, 24, 25, 40, 90 IGGOCLCD 2, 24, 25, 56, 90 IGGOCLCE 2, 24, 25, 68, 91 IGGOCLCF 2, 24, 27, 76, 91 Services Used by IGGOCLCC 27 IGGOCLCD 27 IGGOCLCE 27

IGGOCLCF 27 CO 24, 25, 29, 77, 90 C1 25, 43, 45, 53, 90 IGGOCLCO IGG0CLC1 25, 45, 47, 49, 90 IGG0CLC2 25, 57, 67, 69, IGG0CLC3 90 IGG0CLC4 25, 61, 65, 90 IGG0CLC5 61, 63, 65, 69, 77, 90 IGG0CLC6 25, 57, 61, 67, 69, 91 IGG0CLC7 25, 30, 47, 67, 73, 75, 77, 91, 99 IGOCLF2 29, 77, 83, 85, 91 IGG0CL1A 87 IGG0002H 75 IGG0553A 81 IGG0553E ILE 5, 77 96 ILIASCNT 96 ILSTBLK INAME 95 INCORESW 95 102 INCR 63 index block 63 index chain 69 index control entry 73 Index Control Entry (ICE) index link entry 5 Index Link Entry (ILE) 96 95 index pointer entry 5, 49 Index Pointer Entry (IPE) INDEXLEN 109 96 INDEXRT 89 INPUT 69, 111 insufficient space 16, 17 insufficient storage 37 interface mappers 19, 24 Register Usage 24 124 interface mappers. interface mappers, figure 8 interlock, between callers 29 invocation and input of the CVOL processor 13 IOB 111 IO1 59, 71 IO2 75 IO3, subroutine 67 IPE 5, 49, 51, 57, 96 ITYPE 96

к

key of zero 65 KEYICE 59 KEYLEN, DCB parameter 125

L

LBASE 102 LEVEL1 20 LIMIT 101 LINK 23 LINKENTRY 109 LINKTTR 109 list of error conditions 33 LKDP 103 LKNM 103 LKNP 103 LKNY 16, 25 LOCATE 16

locate function 29 locate-by-block 45 LOCDSN 102 LOCNAME 87 LOCTIR 87

main storage dump 123, 124 MAINOO 89 MAIN01 89 mapper, interface 33, 37 mappers, interface 19 Mass Storage System 15 Method of Operation CVOL Processor 4 microfiche directory 86 MODESET 28 MODESET 23 MODMAP1 108, 124 MOVELVL 59 MSS 15 MSS virtual volumes 77 multiple processor environment 2 MVS 2

NAMDELIM 110 NAMDELMP 107 NAMELEN 107 NAMLF 109 NAMLG 109 NAMLSTP 107 NAMTABLE 110 NEXTCNT 106 NEXTKEY 106 NEXTKEY 106 NEXTLVL 51 non-locate operation 73 NOP 111

OBTBLK 89 92 Offset OLDKEY 102 OPTNCCW 111 organization 24 CSECTs 24 IGGOCLCC 24 IGGOCLCD 24 IGGOCLCE 24 IGGOCLCF 24 of the CVOL processor 13 OS CAMLST format 19 OS CATALOG 16 Return Codes 16 OS catalog management 1 OS INDEX 16 Macro Return Codes OS LOCATE 15 16 Macro Return Codes 15 OS UCATDX 19 OS/VS phases 24

OSRC0 102 OSRC15 102 OSREQ 19, 87 OUTPUT 69, 111

parameter list error in OS OS list 1 17 VSAM 1 without CVOL volume serial 1 PCCB 33 PCCBPTR 101 PCCBSW 102 permanent I/O error 17 Physical Characteristics 2 of the CVOL processor 2 PKDNUMBR 110 POINTER 37, 89 private catalog control blocks PRMLSTSZ 101 23 program organization, CVOL -18 protection violation. 16 PUT 69

RACHECK 29 RACHK 90 RC 111 RD 111 READ 75 Reading Dumps 123 READTTR 109 RECAT 69 RECATALOG 16 Return Codes 16 RECATLG 25 RECHK 51 REDSCBT 110 reentrant, CSECTS 24 register save area 41 Register Usage 24, 29, 124, 125 for CSECT IGGOCLCA 124 for CSECT IGGOCLCB 124 for CVOL catalog management for IGGOCLCC, IGGOCLCD, and IGGOCLCE 125 29 for Interface mappers 24 for the CVOL Processor 124 register 0 15 register 1 13, 15 register 12 2, 13 register 13 13 register 14 13 register 15 REG13SAV 101 2, 13, 15, 16, 19 Relative GDG and Alias 25 45 relative GDG number relative GDG processing 4 relative track address 67 45 relative track address. 59, 63, 71 RELGDG 45 RELNUM 102 RELNUMBR 110 RELOC 85 RESALIAS 111

This document contains restricted materials of IBM. © Copyright IBM Corp. 1974,1982 LY26-3895-0 for CSECTs IGGOCLCA and IGGOCLCB 114 for CSECTs IGGOCLCC, IGGOCLCD, and RESCAN 87 Resource Enqueuing 23 IGGOC 121 SUPERLOC 88 CSECTS IGGOCLCA and IGGOCLCB 23 Resource Enqueuing CSECTS IGGOCLCA and IGGOCLCB 23 SUPERLOCATE 19 Resource Enqueuing for CSECTs supervisor request block 5 SVAREA2H 111 SVBALREG 109 CLCF 29 IGGOCLCC 29 SVC 26 1, 2, 13, 15, 19, 23, 114, 124 SVRB 5, 43 SVRBEXTP 109 29 IGGOCLCD IGGOCLCE 29 IGGOCLCF 29

SVRBSAV 101 Symbols, conventions used (figure) 4 SYSCILG 23, 77, 92, 93, 94, 98 SYSCILG Entry Formats 92 SYSCILG Formatter 83 SYSCILG Open/Extend 77 SYSCTLG. 69 SYSCTLGx 13 system macros used by IGGOCLCA, IGGOCLCB 23 SYSZOPEN 23 SYSZOPEN ENQ SYSZPCCB SYS1.LPALIB 2, 13

S

Resource Enqueuing

29 29

29

29

IGGOCLCC

IGGOCLCD

IGGOCLCE

IGGOCLCF

RETCVOL 110 RETDATA 110 RETURN 23

RPSAVE 100 RPSCCW 99 RPSCNVT 100

RPSD DSECT 99

RPSDDKR 100 RPSINPUT 100

RPSPTR 100 RPSR1 100

RPSSR1 100 99

99

RPSSS RPSTIC

R0 15

RKD 111

SAVE 23 SAVEAREA 106 SAVER1 101 SAVER10 102 SAVER11 102 102 SAVER12 SAVER3 101 SAVER4 102 SAVER6 102 SAVETTR 109 SAVETTR3 105 SAVE1 102 SBASE 102 SCRATCH 23, 63 SCRPARM 110 SCRVOLS 110 second interface mapper 19, 37 segment block handling 22 serial number, control volume 93 service-aid programs 125 partial 125 SETUP 63 setup operation 25 SIDE 111 SKE 111 skeletal channel programs 49 Skeletal channe SLDGD 87 SLGDGB 19 SLGDGBL 87 SLGDGBL 87 SLNAME 19, 88 SLVOLST 88 SRCHPCCB 88 Storage Dump, Main 124 Subroutine Descriptions, CSECT 30 Subroutine Selection Charts 114, 121

т TCB 5, 43 TCBPTR 101 THETA 109 third load of update and error handling 73 TIC1 111 TIC2 111 TOABSL 59, 71, 75 TOABSL2 63 TORLTV 51, 59, 71, 75 TRTABLE 103, 111 TRUE 106 TTR 16, 105, 127 TTR. 95 TTR, explanation of 127

23

23

23

U

UCATDX 25, 51, 65 UCB 43, 77 UCB address 29 UNCAT 69 UNCATALOG 16 Return Codes 16 unrecoverable error 17 update initialization 57 USERID 19

v

VCB 92 VCBPE 49, 61, 63, 97 VCBROUT 89 VCLSTBLK 98 98, 127 VFHOLE 98 VHIREC 98 VHIREC 98 VICE 29, 57, 73, 83, 94, 106

VICESAVE 110 Visual Table of Contents, figure 6 VLOC 19, 88 VLSTBLK 98 VNAME 98 VOLCNT 106 VOLSN 110 Volume Control Block (VCB) 97 volume control block pointer entry volume control blocks 65 97 volume index 29 volume index control entry 73, 83, 127 Volume Index Control Entry (VICE) 98 VSAM 1 catalog management 1, 2, 13 parameter list VSAM delete 19 1 VSAM locate 19 VSAM master catalog 114 VSAM Request Return Codes 17 when accessing CVOL Catalogs 17 VSAM SUPERLOCATE 17 return codes 17 when accessing CVOL catalogs 17 VSRC15 101 VTYPE 98

WKCVOLVS 101 WKD 111 WKDSCBP 101 WKDSCBT 102 WKDSN 102 WKNXTTTR 103 WKOPTNS 101 WKPTR1 101 WKPTR3 101 WKSHRPRM 103 103 WKTMPCNM WKVOLNUM 102 WKVOLS 102 WKVOLST 102 Work area initialization 25 WORKAREA 24, 41 WORKAREA DSECT 103 WORKCLCA 2, 13 WORKCLCA at processor invocation, figure 14 WORKCLCA Work Area 101 WRAPUP 89 WRAPUPOO 23 WRBLKRTN 67 WRITE 75 WRITETTR 109 WRLSTRTN 67 WRTSRCH 59 WTO 29

1

.

٠

W

WAIT 29 WKBLANK 102 WKCAMLST 101 WKCATANM 101 WKCATNM 101 WKCL1ASV 103 WKCV0LP 101 X

XCTL 13, 29, 81, 101 XCTL macro 77 XSAVAREA 101

C . C • C Restricted Materials of IBM Corporation LY26-3895-0

MVS/XA CVOL Processor Logic (File No. S370-30) Printed in U. S. A. LY26-3895-0

.

`

,

MVS/XA CVOL Processor Logic LY26-3895-0

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of IBM systems. You may use this form to communicate your comments about this publication, its organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL _____

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the back of the title page.) Thank you for your cooperation.

Note:

Reader's Comment Form

Fold and tape	Please do not staple		Fold and tape
	BUSINESS REPLY MAI FIRST CLASS PERMIT NO. 40 ARMONK, N. POSTAGE WILL BE PAID BY ADDRESSEE IBM Corporation P.O. Box 50020 Programming Publishing San Jose, California 95150		NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
Fold and tape	Please do not staple		Fold and tape
IBM.		LY26-38	

MVS/XA CVOL Processor Logic (File No. S370-30) Printed in U. S. A. LY26-3895-0

¢

4

....

١